Sample records for lead cooled fast

  1. LFR "Lead-Cooled Fast Reactor"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cinotti, L; Fazio, C; Knebel, J

    2006-05-11

    The main purpose of this paper is to present the current status of development of the Lead-cooled Fast Reactor (LFR) in Generation IV (GEN IV), including the European contribution, to identify needed R&D and to present the corresponding GEN IV International Forum (GIF) R&D plan [1] to support the future development and deployment of lead-cooled fast reactors. The approach of the GIF plan is to consider the research priorities of each member country in proposing an integrated, coordinated R&D program to achieve common objectives, while avoiding duplication of effort. The integrated plan recognizes two principal technology tracks: (1) a small,more » transportable system of 10-100 MWe size that features a very long refuelling interval, and (2) a larger-sized system rated at about 600 MWe, intended for central station power generation. This paper provides some details of the important European contributions to the development of the LFR. Sixteen European organizations have, in fact, taken the initiative to present to the European Commission the proposal for a Specific Targeted Research and Training Project (STREP) devoted to the development of a European Lead-cooled System, known as the ELSY project; two additional organizations from the US and Korea have joined the project. Consequently, ELSY will constitute the reference system for the large lead-cooled reactor of GEN IV. The ELSY project aims to demonstrate the feasibility of designing a competitive and safe fast power reactor based on simple technical engineered features that achieves all of the GEN IV goals and gives assurance of investment protection. As far as new technology development is concerned, only a limited amount of R&D will be conducted in the initial phase of the ELSY project since the first priority is to define the design guidelines before launching a larger and expensive specific R&D program. In addition, the ELSY project is expected to benefit greatly from ongoing lead and lead-alloy technology development already being carried out in different institutes participating in this STREP. This is particularly true in Europe where a large R&D program associated with the development of Accelerator Driven Systems (ADS) is being actively pursued. The general objective of the ELSY project is to design an innovative lead-cooled fast reactor complemented by an analytical effort to assess the existing knowledge base in the field of lead-alloy coolants (i.e., lead-bismuth eutectic (LBE) and also lead/lithium) in order to extrapolate this knowledge base to pure lead. This analysis effort will be complemented with some limited R&D activities to acquire missing or confirmatory information about fundamental topics for ELSY that are not sufficiently covered in the ongoing European ADS program or elsewhere.« less

  2. A Novel Approach for Controlling the Band Formation in Medium Mn Steels

    NASA Astrophysics Data System (ADS)

    Farahani, H.; Xu, W.; van der Zwaag, S.

    2018-06-01

    Formation of the microstructural ferrite/pearlite bands in medium Mn steels is an undesirable phenomenon commonly addressed through fast cooling treatments. In this study, a novel approach using the cyclic partial phase transformation concept is applied successfully to prevent microstructural band formation in a micro-chemically banded Fe-C-Mn-Si steel. The effectiveness of the new approach is assessed using the ASTM E1268-01 standard. The cyclic intercritical treatments lead to formation of isotropic microstructures even for cooling rates far below the critical one determined in conventional continuous cooling. In contrast, isothermal intercritical experiments have no effect on the critical cooling rate to suppress microstructural band formation. The origin of the suppression of band formation either by means of fast cooling or a cyclic partial phase transformation is investigated in detail. Theoretical modeling and microstructural observations confirm that band formation is suppressed only if the intercritical annealing treatment leads to partial reversion of the austenite-ferrite interfaces. The resulting interfacial Mn enrichment is responsible for suppression of the band formation upon final cooling at low cooling rates.

  3. A Novel Approach for Controlling the Band Formation in Medium Mn Steels

    NASA Astrophysics Data System (ADS)

    Farahani, H.; Xu, W.; van der Zwaag, S.

    2018-03-01

    Formation of the microstructural ferrite/pearlite bands in medium Mn steels is an undesirable phenomenon commonly addressed through fast cooling treatments. In this study, a novel approach using the cyclic partial phase transformation concept is applied successfully to prevent microstructural band formation in a micro-chemically banded Fe-C-Mn-Si steel. The effectiveness of the new approach is assessed using the ASTM E1268-01 standard. The cyclic intercritical treatments lead to formation of isotropic microstructures even for cooling rates far below the critical one determined in conventional continuous cooling. In contrast, isothermal intercritical experiments have no effect on the critical cooling rate to suppress microstructural band formation. The origin of the suppression of band formation either by means of fast cooling or a cyclic partial phase transformation is investigated in detail. Theoretical modeling and microstructural observations confirm that band formation is suppressed only if the intercritical annealing treatment leads to partial reversion of the austenite-ferrite interfaces. The resulting interfacial Mn enrichment is responsible for suppression of the band formation upon final cooling at low cooling rates.

  4. Interim status report on lead-cooled fast reactor (LFR) research and development.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzanos, C. P.; Sienicki, J. J.; Moisseytsev, A.

    2008-03-31

    This report discusses the status of Lead-Cooled Fast Reactor (LFR) research and development carried out during the first half of FY 2008 under the U.S. Department of Energy Generation IV Nuclear Energy Systems Initiative. Lead-Cooled Fast Reactor research and development has recently been transferred from Generation IV to the Reactor Campaign of the Global Nuclear Energy Partnership (GNEP). Another status report shall be issued at the end of FY 2008 covering all of the LFR activities carried out in FY 2008 for both Generation IV and GNEP. The focus of research and development in FY 2008 is an initial investigationmore » of a concept for a LFR Advanced Recycling Reactor (ARR) Technology Pilot Plant (TPP)/demonstration test reactor (demo) incorporating features and operating conditions of the European Lead-cooled SYstem (ELSY) {approx} 600 MWe lead (Pb)-cooled LFR preconceptual design for the transmutation of waste and central station power generation, and which would enable irradiation testing of advanced fuels and structural materials. Initial scoping core concept development analyses have been carried out for a 100 MWt core composed of sixteen open-lattice 20 by 20 fuel assemblies largely similar to those of the ELSY preconceptual fuel assembly design incorporating fuel pins with mixed oxide (MOX) fuel, central control rods in each fuel assembly, and cooled with Pb coolant. For a cycle length of three years, the core is calculated to have a conversion ratio of 0.79, an average discharge burnup of 108 MWd/kg of heavy metal, and a burnup reactivity swing of about 13 dollars. With a control rod in each fuel assembly, the reactivity worth of an individual rod would need to be significantly greater than one dollar which is undesirable for postulated rod withdrawal reactivity insertion events. A peak neutron fast flux of 2.0 x 10{sup 15} (n/cm{sup 2}-s) is calculated. For comparison, the 400 MWt Fast Flux Test Facility (FFTF) achieved a peak neutron fast flux of 7.2 x 10{sup 15} (n/cm{sup 2}-s) and the initially 563 MWt PHENIX reactor attained 2.0 x 10{sup 15} (n/cm{sup 2}-s) before one of three intermediate cooling loops was shut down due to concerns about potential steam generator tube failures. The calculations do not assume a test assembly location for advanced fuels and materials irradiation in place of a fuel assembly (e.g., at the center of the core); the calculations have not examined whether it would be feasible to replace the central assembly by a test assembly location. However, having only fifteen driver assemblies implies a significant effect due to perturbations introduced by the test assembly. The peak neutron fast flux is low compared with the fast fluxes previously achieved in FFTF and PHENIX. Furthermore, the peak neutron fluence is only about half of the limiting value (4 x 10{sup 23} n/cm{sup 2}) typically used for ferritic steels. The results thus suggest that a larger power level (e.g., 400 MWt) and a larger core would be better for a TPP based upon the ELSY fuel assembly design and which can also perform irradiation testing of advanced fuels and materials. In particular, a core having a higher power level and larger dimensions would achieve a suitable average discharge burnup, peak fast flux, peak fluence, and would support the inclusion of one or more test assembly locations. Participation in the Generation IV International Forum Provisional System Steering Committee for the LFR is being maintained throughout FY 2008. Results from the analysis of samples previously exposed to flowing lead-bismuth eutectic (LBE) in the DELTA loop are summarized and a model for the oxidation/corrosion kinetics of steels in heavy liquid metal coolants was applied to systematically compare the calculated long-term (i.e., following several years of growth) oxide layer thicknesses of several steels.« less

  5. Dependence of the residual surface resistance of superconducting radio frequency cavities on the cooling dynamics around T{sub c}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanenko, A., E-mail: aroman@fnal.gov; Grassellino, A., E-mail: annag@fnal.gov; Melnychuk, O.

    We report a strong effect of the cooling dynamics through T{sub c} on the amount of trapped external magnetic flux in superconducting niobium cavities. The effect is similar for fine grain and single crystal niobium and all surface treatments including electropolishing with and without 120 °C baking and nitrogen doping. Direct magnetic field measurements on the cavity walls show that the effect stems from changes in the flux trapping efficiency: slow cooling leads to almost complete flux trapping and higher residual resistance, while fast cooling leads to the much more efficient flux expulsion and lower residual resistance.

  6. Rapid hydrothermal cooling above the axial melt lens at fast-spreading mid-ocean ridge

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Koepke, Juergen; Kirchner, Clemens; Götze, Niko; Behrens, Harald

    2014-09-01

    Axial melt lenses sandwiched between the lower oceanic crust and the sheeted dike sequences at fast-spreading mid-ocean ridges are assumed to be the major magma source of oceanic crust accretion. According to the widely discussed ``gabbro glacier'' model, the formation of the lower oceanic crust requires efficient cooling of the axial melt lens, leading to partial crystallization and crystal-melt mush subsiding down to lower crust. These processes are believed to be controlled by periodical magma replenishment and hydrothermal circulation above the melt lens. Here we quantify the cooling rate above melt lens using chemical zoning of plagioclase from hornfelsic recrystallized sheeted dikes drilled from the East Pacific at the Integrated Ocean Drilling Program Hole 1256D. We estimate the cooling rate using a forward modelling approach based on CaAl-NaSi interdiffusion in plagioclase. The results show that cooling from the peak thermal overprint at 1000-1050°C to 600°C are yielded within about 10-30 years as a result of hydrothermal circulation above melt lens during magma starvation. The estimated rapid hydrothermal cooling explains how the effective heat extraction from melt lens is achieved at fast-spreading mid-ocean ridges.

  7. Dependence of the residual surface resistance of superconducting radio frequency cavities on the cooling dynamics around T c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanenko, A.; Grassellino, A.; Melnychuk, O.

    We report a strong effect of the cooling dynamics throughmore » $$T_\\mathrm{c}$$ on the amount of trapped external magnetic flux in superconducting niobium cavities. The effect is similar for fine grain and single crystal niobium and all surface treatments including electropolishing with and without 120$$^\\circ$$C baking and nitrogen doping. Direct magnetic field measurements on the cavity walls show that the effect stems from changes in the flux trapping efficiency: slow cooling leads to almost complete flux trapping and higher residual resistance while fast cooling leads to the much more efficient flux expulsion and lower residual resistance.« less

  8. Study on core radius minimization for long life Pb-Bi cooled CANDLE burnup scheme based fast reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afifah, Maryam, E-mail: maryam.afifah210692@gmail.com; Su’ud, Zaki; Miura, Ryosuke

    2015-09-30

    Fast Breeder Reactor had been interested to be developed over the world because it inexhaustible source energy, one of those is CANDLE reactor which is have strategy in burn-up scheme, need not control roads for control burn-up, have a constant core characteristics during energy production and don’t need fuel shuffling. The calculation was made by basic reactor analysis which use Sodium coolant geometry core parameter as a reference core to study on minimum core reactor radius of CANDLE for long life Pb-Bi cooled, also want to perform pure coolant effect comparison between LBE and sodium in a same geometry design.more » The result show that the minimum core radius of Lead Bismuth cooled CANDLE is 100 cm and 500 MWth thermal output. Lead-Bismuth coolant for CANDLE reactor enable to reduce much reactor size and have a better void coefficient than Sodium cooled as the most coolant for FBR, then we will have a good point in safety analysis.« less

  9. Low-power lead-cooled fast reactor loaded with MOX-fuel

    NASA Astrophysics Data System (ADS)

    Sitdikov, E. R.; Terekhova, A. M.

    2017-01-01

    Fast reactor for the purpose of implementation of research, education of undergraduate and doctoral students in handling innovative fast reactors and training specialists for atomic research centers and nuclear power plants (BRUTs) was considered. Hard neutron spectrum achieved in the fast reactor with compact core and lead coolant. Possibility of prompt neutron runaway of the reactor is excluded due to the low reactivity margin which is less than the effective fraction of delayed neutrons. The possibility of using MOX fuel in the BRUTs reactor was examined. The effect of Keff growth connected with replacement of natural lead coolant to 208Pb coolant was evaluated. The calculations and reactor core model were performed using the Serpent Monte Carlo code.

  10. Electron Cooling and Isotropization during Magnetotail Current Sheet Thinning: Implications for Parallel Electric Fields

    NASA Astrophysics Data System (ADS)

    Lu, San; Artemyev, A. V.; Angelopoulos, V.

    2017-11-01

    Magnetotail current sheet thinning is a distinctive feature of substorm growth phase, during which magnetic energy is stored in the magnetospheric lobes. Investigation of charged particle dynamics in such thinning current sheets is believed to be important for understanding the substorm energy storage and the current sheet destabilization responsible for substorm expansion phase onset. We use Time History of Events and Macroscale Interactions during Substorms (THEMIS) B and C observations in 2008 and 2009 at 18 - 25 RE to show that during magnetotail current sheet thinning, the electron temperature decreases (cooling), and the parallel temperature decreases faster than the perpendicular temperature, leading to a decrease of the initially strong electron temperature anisotropy (isotropization). This isotropization cannot be explained by pure adiabatic cooling or by pitch angle scattering. We use test particle simulations to explore the mechanism responsible for the cooling and isotropization. We find that during the thinning, a fast decrease of a parallel electric field (directed toward the Earth) can speed up the electron parallel cooling, causing it to exceed the rate of perpendicular cooling, and thus lead to isotropization, consistent with observation. If the parallel electric field is too small or does not change fast enough, the electron parallel cooling is slower than the perpendicular cooling, so the parallel electron anisotropy grows, contrary to observation. The same isotropization can also be accomplished by an increasing parallel electric field directed toward the equatorial plane. Our study reveals the existence of a large-scale parallel electric field, which plays an important role in magnetotail particle dynamics during the current sheet thinning process.

  11. Multiple lead seal assembly for a liquid-metal-cooled fast-breeder nuclear reactor

    DOEpatents

    Hutter, Ernest; Pardini, John A.

    1977-03-15

    A reusable multiple lead seal assembly provides leak-free passage of stainless-steel-clad instrument leads through the cover on the primary tank of a liquid-metal-cooled fast-breeder nuclear reactor. The seal isolates radioactive argon cover gas and sodium vapor within the primary tank from the exterior atmosphere and permits reuse of the assembly and the stainless-steel-clad instrument leads. Leads are placed in flutes in a seal body, and a seal shell is then placed around the seal body. Circumferential channels in the body and inner surface of the shell are contiguous and together form a conduit which intersects each of the flutes, placing them in communication with a port through the wall of the seal shell. Liquid silicone rubber sealant is injected into the flutes through the port and conduit; the sealant fills the space in the flutes not occupied by the leads themselves and dries to a rubbery hardness. A nut, threaded onto a portion of the seal body not covered by the seal shell, jacks the body out of the shell and shears the sealant without damage to the body, shell, or leads. The leads may then be removed from the body. The sheared sealant is cleaned from the body, leads, and shell and the assembly may then be reused with the same or different leads.

  12. Neutronic calculation of fast reactors by the EUCLID/V1 integrated code

    NASA Astrophysics Data System (ADS)

    Koltashev, D. A.; Stakhanova, A. A.

    2017-01-01

    This article considers neutronic calculation of a fast-neutron lead-cooled reactor BREST-OD-300 by the EUCLID/V1 integrated code. The main goal of development and application of integrated codes is a nuclear power plant safety justification. EUCLID/V1 is integrated code designed for coupled neutronics, thermomechanical and thermohydraulic fast reactor calculations under normal and abnormal operating conditions. EUCLID/V1 code is being developed in the Nuclear Safety Institute of the Russian Academy of Sciences. The integrated code has a modular structure and consists of three main modules: thermohydraulic module HYDRA-IBRAE/LM/V1, thermomechanical module BERKUT and neutronic module DN3D. In addition, the integrated code includes databases with fuel, coolant and structural materials properties. Neutronic module DN3D provides full-scale simulation of neutronic processes in fast reactors. Heat sources distribution, control rods movement, reactivity level changes and other processes can be simulated. Neutron transport equation in multigroup diffusion approximation is solved. This paper contains some calculations implemented as a part of EUCLID/V1 code validation. A fast-neutron lead-cooled reactor BREST-OD-300 transient simulation (fuel assembly floating, decompression of passive feedback system channel) and cross-validation with MCU-FR code results are presented in this paper. The calculations demonstrate EUCLID/V1 code application for BREST-OD-300 simulating and safety justification.

  13. Effects of Rolling and Cooling Conditions on Microstructure of Umbrella-Bone Steel

    NASA Astrophysics Data System (ADS)

    Wu, Yan-Xin; Fu, Jian-Xun; Zhang, Hua; Xu, Jie; Zhai, Qi-Jie

    2017-10-01

    The effects of deformation temperature and cooling rate on the micro-structure evolution of umbrella-bone steel was investigated using a Gleeble thermal-mechanical testing machine and dynamic continuous cooling transformation (CCT) curves. The results show that fast cooling which lowers the starting temperature of ferrite transformation leads to finer ferrite grains and more pearlite. Low temperature deformation enhances the hardening effect of austenite and reduces hardenability, allowing a wider range of cooling rates and thus avoiding martensite transformation after deformation. According to the phase transformation rules, the ultimate tensile strength and reduction in area of the wire rod formed in the optimized industrial trial are 636 MPa and 73.6 %, respectively, showing excellent strength and plasticity.

  14. Inhomogeneities and superconductivity in poly-phase Fe-Se-Te systems

    NASA Astrophysics Data System (ADS)

    Hartwig, S.; Schäfer, N.; Schulze, M.; Landsgesell, S.; Abou-Ras, D.; Blum, Ch. G. F.; Wurmehl, S.; Sokolowski, A.; Büchner, B.; Prokeš, K.

    2018-02-01

    The impact of synthesis conditions, post-preparation heating procedure, aging and influence of pressure on the superconducting properties of FeSe0.4Te0.6 crystals is reported. Two FeSe0.4Te0.6 single crystals were used in the study, prepared from stoichiometric melt but cooled down with very different cooling rates, and investigated using magnetic bulk and electrical-resistivity methods. The fast-cooled crystal contains large inclusions of Fe3Se2.1Te1.8 and exhibits bulk superconductivity in its as-prepared state, while the other is homogeneous and shows only traces of superconductivity. AC susceptibility measurements under hydrostatic pressure show that the superconducting transition temperature of the inhomogeneous crystal increases from 12.3 K at ambient pressure to Tsc = 17.9 K at 9 kbar. On the other hand, neither pressure nor mechanically-induced stress is sufficient to induce superconductivity in the homogeneous crystal. However, an additional heat treatment at 673 K followed by fast cooling down and/or long-term aging at ambient conditions leads to the appearance of bulk superconductivity also in the latter sample. This sample remains homogeneous on a scale down to few μm but shows an additional magnetic phase transition around 130 K suggesting that it must be inhomogeneous. For comparison also Fe3Se2.1Te1.8 polycrystals have been prepared and their magnetic properties have been studied. It appears that this phase is not superconducting by itself. It is concluded that nano-scale inhomogeneities that appear in the FeSexTe1-x system due to a spinodal decomposition in the solid state are necessary for bulk superconductivity, possibly due to minor changes in the crystal structure and microstructure. Macroscopic inclusions quenched by fast cooling from high temperatures lead obviously to strain and hence variations in the lattice constants, an effect that is further supported by application of pressure/stress.

  15. The effect of a 48 h fast on the thermoregulatory responses to graded cooling in man.

    PubMed

    Macdonald, I A; Bennett, T; Sainsbury, R

    1984-10-01

    The thermoregulatory responses to graded cooling were measured in 11 healthy male subjects after a 12 h fast and after a 48 h fast. The cooling stimulus was produced by changing the temperature of the skin of the trunk and legs with a water-perfused suit. Five levels of skin temperature from 35.5 to 24 degrees C were applied on each occasion. After a 12 h fast, core temperature was maintained during cooling. This maintenance of core temperature was associated with an increase in metabolic rate and a reduction in blood flow to the hand and to the forearm. After 48 h of fasting, the subjects could not maintain core temperature during cooling, and a decrease of 0.36 +/- 0.05 degrees C occurred as the suit temperature was reduced from 35.9 to 24 degrees C. Metabolic rate was slightly higher after the 48 h fast than after the 12 h fast, but similar increases in metabolic rate were observed during cooling. Vasoconstriction in the hand was initially less after a 48 h fast than after a 12 h fast, but at the lowest suit temperature, hand blood flow was similar, and low, on both occasions. After 48 h of fasting, forearm blood flow was elevated at all suit temperatures, being approximately twice the level recorded after the 12 h fast. Venous plasma noradrenaline levels did not change during cooling after the 12 h fast, whilst after 48 h of fasting a significant increase in noradrenaline level was observed at the lowest suit temperature. The results of this study provide further evidence that fasting induces an impairment of autonomic reflex mechanisms, but it is not clear whether this is due to a suppression of sympathetic nervous activity.

  16. Rapid hydrothermal cooling above the axial melt lens at fast-spreading mid-ocean ridge: Quantification through intra-plagioclase diffusion revealed by IODP Hole 1256D

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Koepke, J.; Kirchner, C.; Götze, N.; Behrens, H.

    2014-12-01

    At fast-spreading mid-ocean ridges the axial melt lenses sandwiched between the lower oceanic crust and the sheeted dike sequences are assumed to be the major magma source of oceanic crust accretion. According to the widely discussed "gabbro glacier" model, the formation of the lower oceanic crust requires efficient cooling of the axial melt lens, resulting in partly crystallization and leading to crystal-melt mush which may subside down to form the lower crust. These processes are believed to be controlled dominantly by periodical magma supply and hydrothermal circulation above melt lens. Here we quantify the cooling rate above melt lens using chemical zoning of plagioclase from hornfelsic recrystallized sheeted dikes overlying the uppermost gabbros, which are part of the dike-gabbro transition zone drilled in Hole 1256D in the Eastern equatorial Pacific by the Integrated Ocean Drilling Program, where for the first time the dike-gabbro transition zone of an intact oceanic crust was penetrated and sampled. The measured zoning patterns are supposed to be a combined result of diffusion during both on-ridge and off-ridge cooling. We estimate the on-ridge cooling rate using a forward modelling approach based on CaAl-NaSi interdiffusion in plagioclase. The results show that the recrystallized sheeted dikes have been cooled from the peak thermal overprint at 1000-1050 °C to 600 °C within about 5-30 years as a result of hydrothermal circulation above a melt lens during a period of magma starvation, corresponding to a cooling rate of 30±15 °C/yr. Heat balance calculation also approves that in order to balance the heat output of a melt lens at a fast-spreading mid-ocean ridge similar to the case of IODP Hole 1256D, the cooling rate above the melt lens is required to be around 30 °C/yr. The estimated rapid hydrothermal cooling rate coincides with the observed annual to decal episodes of melt lens fluctuation and lava eruption, which favors the "gabbro glacier" model and explains how the effective heat extraction from melt lens is achieved at fast-spreading mid-ocean ridges.

  17. An intrinsically safe facility for forefront research and training on nuclear technologies

    NASA Astrophysics Data System (ADS)

    Mansani, L.; Monti, S.; Ricco, G.; Ricotti, M.

    2014-04-01

    In this short paper the motivations for the development of fast spectrum lead-cooled reactors are briefly summarized. In particular the importance of subcritical research reactors, like the one described in this Focus Point, for the investigation of various scientifical and technological aspects and the training of students, is discussed.

  18. Competition between global warming and an abrupt collapse of the AMOC in Earth's energy imbalance.

    PubMed

    Drijfhout, Sybren

    2015-10-06

    A collapse of the Atlantic Meridional Overturning Circulation (AMOC) leads to global cooling through fast feedbacks that selectively amplify the response in the Northern Hemisphere (NH). How such cooling competes with global warming has long been a topic for speculation, but was never addressed using a climate model. Here it is shown that global cooling due to a collapsing AMOC obliterates global warming for a period of 15-20 years. Thereafter, the global mean temperature trend is reversed and becomes similar to a simulation without an AMOC collapse. The resulting surface warming hiatus lasts for 40-50 years. Global warming and AMOC-induced NH cooling are governed by similar feedbacks, giving rise to a global net radiative imbalance of similar sign, although the former is associated with surface warming, the latter with cooling. Their footprints in outgoing longwave and absorbed shortwave radiation are very distinct, making attribution possible.

  19. Giant Planet Formation by Disk Instability: A Comparison Simulation with an Improved Radiative Scheme

    NASA Astrophysics Data System (ADS)

    Cai, Kai; Pickett, Megan K.; Durisen, Richard H.; Milne, Anne M.

    2010-06-01

    There has been disagreement about whether cooling in protoplanetary disks can be sufficiently fast to induce the formation of gas giant protoplanets via gravitational instabilities. Simulations by our own group and others indicate that this method of planet formation does not work for disks around young, low-mass stars inside several tens of AU, while simulations by other groups show fragmentation into protoplanetary clumps in this region. To allow direct comparison in hopes of isolating the cause of the differences, we here present a high-resolution three-dimensional hydrodynamics simulation of a protoplanetary disk, where the disk model, initial perturbation, and simulation conditions are essentially identical to those used in a recent set of simulations by Boss in 2007, hereafter B07. As in earlier papers by the same author, B07 purports to show that cooling is fast enough to produce protoplanetary clumps. Here, we evolve the same B07 disk using an improved version of one of our own radiative schemes and find that the disk does not fragment in our code but instead quickly settles into a state with only low amplitude nonaxisymmetric structure, which persists for at least several outer disk rotations. We see no rapid radiative or convective cooling. We conclude that the differences in results are due to different treatments of regions at and above the disk photosphere, and we explain at least one way in which the scheme in B07 may lead to artificially fast cooling.

  20. SAM Theory Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Rui

    The System Analysis Module (SAM) is an advanced and modern system analysis tool being developed at Argonne National Laboratory under the U.S. DOE Office of Nuclear Energy’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. SAM development aims for advances in physical modeling, numerical methods, and software engineering to enhance its user experience and usability for reactor transient analyses. To facilitate the code development, SAM utilizes an object-oriented application framework (MOOSE), and its underlying meshing and finite-element library (libMesh) and linear and non-linear solvers (PETSc), to leverage modern advanced software environments and numerical methods. SAM focuses on modeling advanced reactormore » concepts such as SFRs (sodium fast reactors), LFRs (lead-cooled fast reactors), and FHRs (fluoride-salt-cooled high temperature reactors) or MSRs (molten salt reactors). These advanced concepts are distinguished from light-water reactors in their use of single-phase, low-pressure, high-temperature, and low Prandtl number (sodium and lead) coolants. As a new code development, the initial effort has been focused on modeling and simulation capabilities of heat transfer and single-phase fluid dynamics responses in Sodium-cooled Fast Reactor (SFR) systems. The system-level simulation capabilities of fluid flow and heat transfer in general engineering systems and typical SFRs have been verified and validated. This document provides the theoretical and technical basis of the code to help users understand the underlying physical models (such as governing equations, closure models, and component models), system modeling approaches, numerical discretization and solution methods, and the overall capabilities in SAM. As the code is still under ongoing development, this SAM Theory Manual will be updated periodically to keep it consistent with the state of the development.« less

  1. Will Your Battery Survive a World With Fast Chargers?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neubauer, J. S.; Wood, E.

    Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that result could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported the National Renewable Energy Laboratory's development ofmore » BLAST-V-the Battery Lifetime Analysis and Simulation Tool for Vehicles-to create a tool capable of accounting for all of these factors. We present on the findings of applying this tool to realistic fast charge scenarios. The effects of different travel patterns, climates, battery sizes, battery thermal management systems, and other factors on battery performance and degradation are presented. We find that the impact of realistic fast charging on battery degradation is minimal for most drivers, due to the low frequency of use. However, in the absence of active battery cooling systems, a driver's desired utilization of a BEV and fast charging infrastructure can result in unsafe peak battery temperatures. We find that active battery cooling systems can control peak battery temperatures to safe limits while allowing the desired use of the vehicle.« less

  2. A review of inherent safety characteristics of metal alloy sodium-cooled fast reactor fuel against postulated accidents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sofu, Tanju

    2015-04-01

    The thermal, mechanical, and neutronic performance of the metal alloy fast reactor fuel design complements the safety advantages of the liquid metal cooling and the pool-type primary system. Together, these features provide large safety margins in both normal operating modes and for a wide range of postulated accidents. In particular, they maximize the measures of safety associated with inherent reactor response to unprotected, double-fault accidents, and to minimize risk to the public and plant investment. High thermal conductivity and high gap conductance play the most significant role in safety advantages of the metallic fuel, resulting in a flatter radial temperaturemore » profile within the pin and much lower normal operation and transient temperatures in comparison to oxide fuel. Despite the big difference in melting point, both oxide and metal fuels have a relatively similar margin to melting during postulated accidents. When the metal fuel cladding fails, it typically occurs below the coolant boiling point and the damaged fuel pins remain cool-able. Metal fuel is compatible with sodium coolant, eliminating the potential of energetic fuel coolant reactions and flow blockages. All these, and the low retained heat leading to a longer grace period for operator action, are significant contributing factors to the inherently benign response of metallic fuel to postulated accidents. This paper summarizes the past analytical and experimental results obtained in past sodium-cooled fast reactor safety programs in the United States, and presents an overview of fuel safety performance as observed in laboratory and in-pile tests.« less

  3. Physiological Mechanisms Only Tell Half Story: Multiple Biological Processes are involved in Regulating Freezing Tolerance of Imbibed Lactuca sativa Seeds

    PubMed Central

    Jaganathan, Ganesh K.; Han, Yingying; Li, Weijie; Song, Danping; Song, Xiaoyan; Shen, Mengqi; Zhou, Qiang; Zhang, Chenxue; Liu, Baolin

    2017-01-01

    The physiological mechanisms by which imbibed seeds survive freezing temperatures in their natural environment have been categorized as freezing avoidance by supercooling and freezing tolerance by extracellular freeze-desiccation, but the biochemical and molecular mechanisms conferring seed freezing tolerance is unexplored. In this study, using imbibed Lactuca sativa seeds we show that fast cooled seeds (60 °C h−1) suffered significantly higher membrane damage at temperature between −20 °C and −10 °C than slow cooled (3 °Ch−1) seeds (P < 0.05), presumably explaining viability loss during fast cooling when temperature approaches −20 °C. Total soluble sugars increase in low temperature environment, but did not differ significantly between two cooling rates (P > 0.05). However, both SOD activity and accumulation of free proline were induced significantly after slow cooling to −20 °C compared with fast cooling. RNA-seq demonstrated that multiple pathways were differentially regulated between slow and fast cooling. Real-time verification of some differentially expressed genes (DEGs) revealed that fast cooling caused mRNA level changes of plant hormone and ubiquitionation pathways at higher sub-zero temperature, whilst slow cooling caused mRNA level change of those pathways at lower sub-zero ttemperatures. Thus, we conclude that imbibed seed tolerate low temperature not only by physiological mechanisms but also by biochemical and molecular changes. PMID:28287125

  4. Physiological Mechanisms Only Tell Half Story: Multiple Biological Processes are involved in Regulating Freezing Tolerance of Imbibed Lactuca sativa Seeds.

    PubMed

    Jaganathan, Ganesh K; Han, Yingying; Li, Weijie; Song, Danping; Song, Xiaoyan; Shen, Mengqi; Zhou, Qiang; Zhang, Chenxue; Liu, Baolin

    2017-03-13

    The physiological mechanisms by which imbibed seeds survive freezing temperatures in their natural environment have been categorized as freezing avoidance by supercooling and freezing tolerance by extracellular freeze-desiccation, but the biochemical and molecular mechanisms conferring seed freezing tolerance is unexplored. In this study, using imbibed Lactuca sativa seeds we show that fast cooled seeds (60 °C h -1 ) suffered significantly higher membrane damage at temperature between -20 °C and -10 °C than slow cooled (3 °Ch -1 ) seeds (P < 0.05), presumably explaining viability loss during fast cooling when temperature approaches -20 °C. Total soluble sugars increase in low temperature environment, but did not differ significantly between two cooling rates (P > 0.05). However, both SOD activity and accumulation of free proline were induced significantly after slow cooling to -20 °C compared with fast cooling. RNA-seq demonstrated that multiple pathways were differentially regulated between slow and fast cooling. Real-time verification of some differentially expressed genes (DEGs) revealed that fast cooling caused mRNA level changes of plant hormone and ubiquitionation pathways at higher sub-zero temperature, whilst slow cooling caused mRNA level change of those pathways at lower sub-zero ttemperatures. Thus, we conclude that imbibed seed tolerate low temperature not only by physiological mechanisms but also by biochemical and molecular changes.

  5. Competition between global warming and an abrupt collapse of the AMOC in Earth’s energy imbalance

    PubMed Central

    Drijfhout, Sybren

    2015-01-01

    A collapse of the Atlantic Meridional Overturning Circulation (AMOC) leads to global cooling through fast feedbacks that selectively amplify the response in the Northern Hemisphere (NH). How such cooling competes with global warming has long been a topic for speculation, but was never addressed using a climate model. Here it is shown that global cooling due to a collapsing AMOC obliterates global warming for a period of 15–20 years. Thereafter, the global mean temperature trend is reversed and becomes similar to a simulation without an AMOC collapse. The resulting surface warming hiatus lasts for 40–50 years. Global warming and AMOC-induced NH cooling are governed by similar feedbacks, giving rise to a global net radiative imbalance of similar sign, although the former is associated with surface warming, the latter with cooling. Their footprints in outgoing longwave and absorbed shortwave radiation are very distinct, making attribution possible. PMID:26437599

  6. A thermodynamic approach for advanced fuels of gas-cooled reactors

    NASA Astrophysics Data System (ADS)

    Guéneau, C.; Chatain, S.; Gossé, S.; Rado, C.; Rapaud, O.; Lechelle, J.; Dumas, J. C.; Chatillon, C.

    2005-09-01

    For both high temperature reactor (HTR) and gas cooled fast reactor (GFR) systems, the high operating temperature in normal and accidental conditions necessitates the assessment of the thermodynamic data and associated phase diagrams for the complex system constituted of the fuel kernel, the inert materials and the fission products. A classical CALPHAD approach, coupling experiments and thermodynamic calculations, is proposed. Some examples of studies are presented leading with the CO and CO 2 gas formation during the chemical interaction of [UO 2± x/C] in the HTR particle, and the chemical compatibility of the couples [UN/SiC], [(U, Pu)N/SiC], [(U, Pu)N/TiN] for the GFR system. A project of constitution of a thermodynamic database for advanced fuels of gas-cooled reactors is proposed.

  7. Status report on the Small Secure Transportable Autonomous Reactor (SSTAR) /Lead-cooled Fast Reactor (LFR) and supporting research and development.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sienicki, J. J.; Moisseytsev, A.; Yang, W. S.

    2008-06-23

    This report provides an update on development of a pre-conceptual design for the Small Secure Transportable Autonomous Reactor (SSTAR) Lead-Cooled Fast Reactor (LFR) plant concept and supporting research and development activities. SSTAR is a small, 20 MWe (45 MWt), natural circulation, fast reactor plant for international deployment concept incorporating proliferation resistance for deployment in non-fuel cycle states and developing nations, fissile self-sufficiency for efficient utilization of uranium resources, autonomous load following making it suitable for small or immature grid applications, and a high degree of passive safety further supporting deployment in developing nations. In FY 2006, improvements have been mademore » at ANL to the pre-conceptual design of both the reactor system and the energy converter which incorporates a supercritical carbon dioxide Brayton cycle providing higher plant efficiency (44 %) and improved economic competitiveness. The supercritical CO2 Brayton cycle technology is also applicable to Sodium-Cooled Fast Reactors providing the same benefits. One key accomplishment has been the development of a control strategy for automatic control of the supercritical CO2 Brayton cycle in principle enabling autonomous load following over the full power range between nominal and essentially zero power. Under autonomous load following operation, the reactor core power adjusts itself to equal the heat removal from the reactor system to the power converter through the large reactivity feedback of the fast spectrum core without the need for motion of control rods, while the automatic control of the power converter matches the heat removal from the reactor to the grid load. The report includes early calculations for an international benchmarking problem for a LBE-cooled, nitride-fueled fast reactor core organized by the IAEA as part of a Coordinated Research Project on Small Reactors without Onsite Refueling; the calculations use the same neutronics computer codes and methodologies applied to SSTAR. Another section of the report details the SSTAR safety design approach which is based upon defense-in-depth providing multiple levels of protection against the release of radioactive materials and how the inherent safety features of the lead coolant, nitride fuel, fast neutron spectrum core, pool vessel configuration, natural circulation, and containment meet or exceed the requirements for each level of protection. The report also includes recent results of a systematic analysis by LANL of data on corrosion of candidate cladding and structural material alloys of interest to SSTAR by LBE and Pb coolants; the data were taken from a new database on corrosion by liquid metal coolants created at LANL. The analysis methodology that considers penetration of an oxidation front into the alloy and dissolution of the trailing edge of the oxide into the coolant enables the long-term corrosion rate to be extracted from shorter-term corrosion data thereby enabling an evaluation of alloy performance over long core lifetimes (e.g., 30 years) that has heretofore not been possible. A number of candidate alloy specimens with special treatments or coatings which might enhance corrosion resistance at the temperatures at which SSTAR would operate were analyzed following testing in the DELTA loop at LANL including steels that were treated by laser peening at LLNL; laser peening is an approach that alters the oxide-metal bonds which could potentially improve corrosion resistance. LLNL is also carrying out Multi-Scale Modeling of the Fe-Cr system with the goal of assisting in the development of cladding and structural materials having greater resistance to irradiation.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkataraman, M.; Natarajan, R.; Raj, Baldev

    The reprocessing of spent fuel from Fast Breeder Test Reactor (FBTR) has been successfully demonstrated in the pilot plant, CORAL (COmpact Reprocessing facility for Advanced fuels in Lead shielded cell). Since commissioning in 2003, spent mixed carbide fuel from FBTR of different burnups and varying cooling period, have been reprocessed in this facility. Reprocessing of the spent fuel with a maximum burnup of 100 GWd/t has been successfully carried out so far. The feed backs from these campaigns with progressively increasing specific activities, have been useful in establishing a viable process flowsheet for reprocessing the Prototype Fast Breeder Reactor (PFBR)more » spent fuel. Also, the design of various equipments and processes for the future plants, which are either under design for construction, namely, the Demonstration Fast Reactor Fuel Reprocessing Plant (DFRP) and the Fast reactor fuel Reprocessing Plant (FRP) could be finalized. (authors)« less

  9. Importance of vagal input in maintaining gastric tone in the dog.

    PubMed Central

    Azpiroz, F; Malagelada, J R

    1987-01-01

    1. Using a gastric barostat to quantify variations in gastric tone, we had previously demonstrated that food ingestion or intestinal nutrient perfusion induces gastric relaxation. These data suggested a basal tonic contraction of the stomach during fasting. 2. To determine the role of vagal input in maintaining fasting gastric tone, we prepared two chronic canine models, either isolating both cervical vagal trunks in a cutaneous tunnel or including the supradiaphragmatic vagi within an implanted cooling jacket. In the fasted conscious dogs, we then studied the effect, on gastric tone, of acute and reversible vagal blockade by cooling. 3. Cervical vagal cooling produced a reversible gastric relaxation and increased the heart rate. Supradiaphragmatic vagal cooling produced a similar gastric relaxation without the cardiac effect. 4. Adrenergic blockade did not change either the base-line gastric tone or the cooling-induced relaxation. Adrenaline decreased gastric tone, but vagal cooling still produced a significant relaxation. 5. Atropine alone or combined with adrenergic antagonists produced a gastric relaxation that was not further increased by vagal cooling. Bethanechol increased gastric tone, an effect unchanged by vagal cooling. 6. We conclude that gastric tone during fasting is maintained by a cholinergic input, which is vagally mediated at both the cervical and the supradiaphragmatic levels. Images Fig. 1 PMID:2888879

  10. Design of alumina forming FeCrAl steels for lead or lead-bismuth cooled fast reactors

    NASA Astrophysics Data System (ADS)

    Lim, Jun; Hwang, Il Soon; Kim, Ji Hyun

    2013-10-01

    Iron-chromium-aluminum alloys containing 15-20 wt.% Cr and 4-6 wt.% Al have shown excellent corrosion resistance in the temperature range up to 600 °C or higher in liquid lead and lead-bismuth eutectic environments by the formation of protective Al2O3 layers. However, the higher Cr and Al concentrations in ferritic alloys could be problematic because of severe embrittlement in the manufacturing process as well as in service, caused by the formation of brittle phases. For this reason, efforts worldwide have so far mainly focused on the development of aluminizing surface treatments. However, aluminizing surface treatments have major disadvantages of cost, processing difficulties and reliability issues. In this study, a new FeCrAl alloy is proposed for structural materials in lead and lead-bismuth cooled nuclear applications. The alloy design relied on corrosion experiments in high temperature lead and lead-bismuth eutectic environments and computational thermodynamic calculations using the commercial software, JMatPro. The design of new alloys has focused on the optimization of Cr and Al levels for the formation of an external Al2O3 layer which can provide excellent oxidation and corrosion resistance in liquid lead alloys in the temperature range 300-600 °C while still retaining workable mechanical properties.

  11. Assessment of the Technical Maturity of Generation IV Concepts for Test or Demonstration Reactor Applications, Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gougar, Hans David

    2015-10-01

    The United States Department of Energy (DOE) commissioned a study the suitability of different advanced reactor concepts to support materials irradiations (i.e. a test reactor) or to demonstrate an advanced power plant/fuel cycle concept (demonstration reactor). As part of the study, an assessment of the technical maturity of the individual concepts was undertaken to see which, if any, can support near-term deployment. A Working Group composed of the authors of this document performed the maturity assessment using the Technical Readiness Levels as defined in DOE’s Technology Readiness Guide . One representative design was selected for assessment from of each ofmore » the six Generation-IV reactor types: gas-cooled fast reactor (GFR), lead-cooled fast reactor (LFR), molten salt reactor (MSR), supercritical water-cooled reactor (SCWR), sodium-cooled fast reactor (SFR), and very high temperature reactor (VHTR). Background information was obtained from previous detailed evaluations such as the Generation-IV Roadmap but other technical references were also used including consultations with concept proponents and subject matter experts. Outside of Generation IV activity in which the US is a party, non-U.S. experience or data sources were generally not factored into the evaluations as one cannot assume that this data is easily available or of sufficient quality to be used for licensing a US facility. The Working Group established the scope of the assessment (which systems and subsystems needed to be considered), adapted a specific technology readiness scale, and scored each system through discussions designed to achieve internal consistency across concepts. In general, the Working Group sought to determine which of the reactor options have sufficient maturity to serve either the test or demonstration reactor missions.« less

  12. Key Assets for a Sustainable Low Carbon Energy Future

    NASA Astrophysics Data System (ADS)

    Carre, Frank

    2011-10-01

    Since the beginning of the 21st century, concerns of energy security and climate change gave rise to energy policies focused on energy conservation and diversified low-carbon energy sources. Provided lessons of Fukushima accident are evidently accounted for, nuclear energy will probably be confirmed in most of today's nuclear countries as a low carbon energy source needed to limit imports of oil and gas and to meet fast growing energy needs. Future challenges of nuclear energy are then in three directions: i) enhancing safety performance so as to preclude any long term impact of severe accident outside the site of the plant, even in case of hypothetical external events, ii) full use of Uranium and minimization long lived radioactive waste burden for sustainability, and iii) extension to non-electricity energy products for maximizing the share of low carbon energy source in transportation fuels, industrial process heat and district heating. Advanced LWRs (Gen-III) are today's best available technologies and can somewhat advance nuclear energy in these three directions. However, breakthroughs in sustainability call for fast neutron reactors and closed fuel cycles, and non-electric applications prompt a revival of interest in high temperature reactors for exceeding cogeneration performances achievable with LWRs. Both types of Gen-IV nuclear systems by nature call for technology breakthroughs to surpass LWRs capabilities. Current resumption in France of research on sodium cooled fast neutron reactors (SFRs) definitely aims at significant progress in safety and economic competitiveness compared to earlier reactors of this type in order to progress towards a new generation of commercially viable sodium cooled fast reactor. Along with advancing a new generation of sodium cooled fast reactor, research and development on alternative fast reactor types such as gas or lead-alloy cooled systems (GFR & LFR) is strategic to overcome technical difficulties and/or political opposition specific to sodium. In conclusion, research and technology breakthroughs in nuclear power are needed for shaping a sustainable low carbon future. International cooperation is key for sharing costs of research and development of the required novel technologies and cost of first experimental reactors needed to demonstrate enabling technologies. At the same time technology breakthroughs are developed, pre-normative research is required to support codification work and harmonized regulations that will ultimately apply to safety and security features of resulting innovative reactor types and fuel cycles.

  13. Effects of Cooling Conditions on Microstructure, Tensile Properties, and Charpy Impact Toughness of Low-Carbon High-Strength Bainitic Steels

    NASA Astrophysics Data System (ADS)

    Sung, Hyo Kyung; Shin, Sang Yong; Hwang, Byoungchul; Lee, Chang Gil; Lee, Sunghak

    2013-01-01

    In this study, four low-carbon high-strength bainitic steel specimens were fabricated by varying finish cooling temperatures and cooling rates, and their tensile and Charpy impact properties were investigated. All the bainitic steel specimens consisted of acicular ferrite, granular bainite, bainitic ferrite, and martensite-austenite constituents. The specimens fabricated with higher finish cooling temperature had a lower volume fraction of martensite-austenite constituent than the specimens fabricated with lower finish cooling temperature. The fast-cooled specimens had twice the volume fraction of bainitic ferrite and consequently higher yield and tensile strengths than the slow-cooled specimens. The energy transition temperature tended to increase with increasing effective grain size or with increasing volume fraction of granular bainite. The fast-cooled specimen fabricated with high finish cooling temperature and fast cooling rate showed the lowest energy transition temperature among the four specimens because of the lowest content of coarse granular bainite. These findings indicated that Charpy impact properties as well as strength could be improved by suppressing the formation of granular bainite, despite the presence of some hard microstructural constituents such as bainitic ferrite and martensite-austenite.

  14. Application of a Self-Actuating Shutdown System (SASS) to a Gas-Cooled Fast Reactor (GCFR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germer, J.H.; Peterson, L.F.; Kluck, A.L.

    1980-09-01

    The application of a SASS (Self-Actuated Shutdown System) to a GCFR (Gas-Cooled Fast Reactor) is compared with similar systems designed for an LMFBR (Liquid Metal Fast Breeder Reactor). A comparison of three basic SASS concepts is given: hydrostatic holdup, fluidic control, and magnetic holdup.

  15. Fast optical cooling of a nanomechanical cantilever by a dynamical Stark-shift gate.

    PubMed

    Yan, Leilei; Zhang, Jian-Qi; Zhang, Shuo; Feng, Mang

    2015-10-12

    The efficient cooling of nanomechanical resonators is essential to exploration of quantum properties of the macroscopic or mesoscopic systems. We propose such a laser-cooling scheme for a nanomechanical cantilever, which works even for the low-frequency mechanical mode and under weak cooling lasers. The cantilever is coupled by a diamond nitrogen-vacancy center under a strong magnetic field gradient and the cooling is assisted by a dynamical Stark-shift gate. Our scheme can effectively enhance the desired cooling efficiency by avoiding the off-resonant and undesired carrier transitions, and thereby cool the cantilever down to the vicinity of the vibrational ground state in a fast fashion.

  16. Fast optical cooling of a nanomechanical cantilever by a dynamical Stark-shift gate

    PubMed Central

    Yan, Leilei; Zhang, Jian-Qi; Zhang, Shuo; Feng, Mang

    2015-01-01

    The efficient cooling of nanomechanical resonators is essential to exploration of quantum properties of the macroscopic or mesoscopic systems. We propose such a laser-cooling scheme for a nanomechanical cantilever, which works even for the low-frequency mechanical mode and under weak cooling lasers. The cantilever is coupled by a diamond nitrogen-vacancy center under a strong magnetic field gradient and the cooling is assisted by a dynamical Stark-shift gate. Our scheme can effectively enhance the desired cooling efficiency by avoiding the off-resonant and undesired carrier transitions, and thereby cool the cantilever down to the vicinity of the vibrational ground state in a fast fashion. PMID:26455901

  17. The art of Bernard Palissy (1510-1590): influence of firing conditions on the microstructure of iron-coloured high-lead glazes

    NASA Astrophysics Data System (ADS)

    Roisine, Gauthier; Capobianco, Natan; Caurant, Daniel; Wallez, Gilles; Bouquillon, Anne; Majérus, Odile; Cormier, Laurent; Gilette, Solène; Gerbier, Aurélie

    2017-08-01

    During the French Renaissance, a well-known ceramist, Bernard Palissy (1510-1590), succeeded to create amazing lead-glazed ceramics, the recipe of which he kept totally secret. The present study is a first step to try to understand the process of manufacture of Palissy's honey iron-coloured high-lead aluminosilicate glazes through examination of both ancient glazes—discovered in Palissy's workshop (Paris, garden of Tuileries), during archaeological excavations—and replicate glazes of similar composition prepared in the laboratory from raw materials mixtures under controlled conditions (different firing temperatures T_p and cooling rates). These replicate glazes were characterised by X-ray diffraction (XRD) and scanning electron microscopy coupled with energy-dispersive spectroscopy (SEM-EDS). According to laboratory experimentations, three iron-rich crystalline phases are likely to be formed in the glaze after firing (hematite {Fe2O3}, melanotekite {Pb2Fe2Si2O9} and magnetoplumbite PbFe_{12}O_{19}) and their nature, abundance and microstructure strongly depend on both temperature T_p and cooling rate. Comparing the microstructures of replicate glazes and authentic Palissy's glazes allowed to better understand the artist technique in terms of firing process: he would have probably fired most of his production around 1000°C, above liquidus temperature, and would have used a reasonably fast cooling rate (faster than 5° C/h), which enables both to melt all raw materials and to prevent crystallisation during cooling.

  18. A cool Southwest Indian Ocean connection to El Niño events

    NASA Astrophysics Data System (ADS)

    Wieners, Claudia; Manola, Iris; Ridderinkhof, Wim; Dijkstra, Henk; von der Heydt, Anna; Kirtman, Benjamin; Selten, Frank; de Ruijter, Wilhelmus

    2014-05-01

    Recent studies have shown that anomalously high sea surface temperatures (SST) in the southeastern equatorial Indian Ocean (IO) can influence early El Niño development by modulating the winds over the western Pacific. We have collected observational evidence for a dynamic connection between relatively cool SST developments in the southwestern Indian Ocean and the following years' El Niño. These cool anomalies appear over the so-called Seychelles thermocline Dome. Depending on strength and timing they generate a fast atmospheric response by stimulating an Indo-Pacific atmospheric bridge that leads to enhanced convection over the western Pacific. The slow oceanic response involves a pathway of upwelling Rossby and Kelvin waves that propagate towards and across the equator. We will present the first results of a series of dedicated climate model experiments. They were designed to stimulate the response of the coupled system to the SST cooling using a global climate model. First results seem to support the observational analysis.

  19. Engineering the mobility increment in pentacene-based field-effect transistors by fast cooling of polymeric modification layer

    NASA Astrophysics Data System (ADS)

    Ling, Haifeng; Zhang, Chenxi; Chen, Yan; Shao, Yaqing; Li, Wen; Li, Huanqun; Chen, Xudong; Yi, Mingdong; Xie, Linghai; Huang, Wei

    2017-06-01

    In this work, we investigate the effect of the cooling rate of polymeric modification layers (PMLs) on the mobility improvement of pentacene-based organic field-effect transistors (OFETs). In contrast to slow cooling (SC), the OFETs fabricated through fast cooling (FC) with PMLs containing side chain-phenyl rings, such as polystyrene (PS) and poly (4-vinylphenol) (PVP), show an obvious mobility incensement compared with that of π-group free polymethylmethacrylate (PMMA). Atomic force microscopy (AFM) images and x-ray diffraction (XRD) characterizations have showed that fast-cooled PMLs could effectively enhance the crystallinity of pentacene, which might be related to the optimized homogeneity of surface energy on the surface of polymeric dielectrics. Our work has demonstrated that FC treatment could be a potential strategy for performance modulation of OFETs.

  20. One-group fission cross sections for plutonium and minor actinides inserted in calculated neutron spectra of fast reactor cooled with lead-208 or lead-bismuth eutectic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khorasanov, G. L.; Blokhin, A. I.

    The paper is dedicated to one-group fission cross sections of Pu and MA in LFRs spectra with the aim to increase these values by choosing a coolant which hardens neutron spectra. It is shown that replacement of coolant from Pb-Bi with Pb-208 in the fast reactor RBEC-M, designed in Russia, leads to increasing the core mean neutron energy. As concerns fuel Pu isotopes, their one-group fission cross sections become slightly changed, while more dramatically Am-241 one-group fission cross section is changed. Another situation occurs in the lateral blanket containing small quantities of minor actinides. It is shown that as amore » result of lateral blanket mean neutron energy hardening the one-group fission cross sections of Np-237, Am-241 and Am-243 increases up to 8-11%. This result allows reducing the time of minor actinides burning in FRs. (authors)« less

  1. Arbitrary amplitude fast electron-acoustic solitons in three-electron component space plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mbuli, L. N.; Maharaj, S. K.; Department of Physics, University of the Western Cape

    We examine the characteristics of fast electron-acoustic solitons in a four-component unmagnetised plasma model consisting of cool, warm, and hot electrons, and cool ions. We retain the inertia and pressure for all the plasma species by assuming adiabatic fluid behaviour for all the species. By using the Sagdeev pseudo-potential technique, the allowable Mach number ranges for fast electron-acoustic solitary waves are explored and discussed. It is found that the cool and warm electron number densities determine the polarity switch of the fast electron-acoustic solitons which are limited by either the occurrence of fast electron-acoustic double layers or warm and hotmore » electron number density becoming unreal. For the first time in the study of solitons, we report on the coexistence of fast electron-acoustic solitons, in addition to the regular fast electron-acoustic solitons and double layers in our multi-species plasma model. Our results are applied to the generation of broadband electrostatic noise in the dayside auroral region.« less

  2. The EUCLID/V1 Integrated Code for Safety Assessment of Liquid Metal Cooled Fast Reactors. Part 1: Basic Models

    NASA Astrophysics Data System (ADS)

    Mosunova, N. A.

    2018-05-01

    The article describes the basic models included in the EUCLID/V1 integrated code intended for safety analysis of liquid metal (sodium, lead, and lead-bismuth) cooled fast reactors using fuel rods with a gas gap and pellet dioxide, mixed oxide or nitride uranium-plutonium fuel under normal operation, under anticipated operational occurrences and accident conditions by carrying out interconnected thermal-hydraulic, neutronics, and thermal-mechanical calculations. Information about the Russian and foreign analogs of the EUCLID/V1 integrated code is given. Modeled objects, equation systems in differential form solved in each module of the EUCLID/V1 integrated code (the thermal-hydraulic, neutronics, fuel rod analysis module, and the burnup and decay heat calculation modules), the main calculated quantities, and also the limitations on application of the code are presented. The article also gives data on the scope of functions performed by the integrated code's thermal-hydraulic module, using which it is possible to describe both one- and twophase processes occurring in the coolant. It is shown that, owing to the availability of the fuel rod analysis module in the integrated code, it becomes possible to estimate the performance of fuel rods in different regimes of the reactor operation. It is also shown that the models implemented in the code for calculating neutron-physical processes make it possible to take into account the neutron field distribution over the fuel assembly cross section as well as other features important for the safety assessment of fast reactors.

  3. An intrinsically safe facility for forefront research and training on nuclear technologies — General description of the system

    NASA Astrophysics Data System (ADS)

    Mansani, L.; Bruzzone, M.; Frambati, S.; Reale, M.

    2014-04-01

    In the framework of research on generation-IV reactors, it is very important to have infrastructures specifically dedicated to the study of fundamental parameters in dynamics and kinetics of future fast-neutron reactors. Among various options pursued by international groups, Italy focused on lead-cooled reactors, which guarantee minimal neutron slowdown and capture and efficient cooling. In this paper it is described the design of a the low-power prototype generator, LEADS, that could be used within research facilities such as the National Laboratory of Legnaro of the INFN. The LEADS has a high safety standard in order to be used as a training facility, but it has also a good flexibility so as to allow a wide range of measurements and experiments. A high safety standard is achieved by limiting the reactor power to less than few hundred kW and the neutron multiplication factor k eff to less than 0.95 (a limiting value for spent fuel pool), by using a pure-uranium fuel (no plutonium) and by using solid lead as a diffuser. The proposed core is therefore intrinsically subcritical and has to be driven by an external neutron source generated by a proton beam impinging in a target. Preliminary simulations, performed with the MCNPX code indicated, for a 0.75mA continuous proton beam current at 70MeV proton energy, a reactor power of about 190kW when using a beryllium converter. The enriched-uranium fuel elements are immersed in a solid-lead matrix and contained within a steel vessel. The system is cooled by helium gas, which is transparent to neutrons and does not undergo activation. The gas is pumped by a compressor through specific holes at the entrance of the active volume with a temperature which varies according to the operating conditions and a pressure of about 1.1MPa. The hot gas coming out of the vessel is cooled by an external helium-water heat exchanger. The beryllium converter is cooled by its dedicated helium gas cooling system. After shutdown, the decay is completely dissipated by conduction through the lead reflector and steel vessel, and then evacuated by irradiation from the vessel surface to the external ambient air.

  4. A review of inherent safety characteristics of metal alloy sodium-cooled fast reactor fuel against postulated accidents

    DOE PAGES

    Sofu, Tanju

    2015-04-01

    The thermal, mechanical, and neutronic performance of the metal alloy fast reactor fuel design complements the safety advantages of the liquid metal cooling and the pool-type primary system. Together, these features provide large safety margins in both normal operating modes and for a wide range of postulated accidents. In particular, they maximize the measures of safety associated with inherent reactor response to unprotected, double-fault accidents, and to minimize risk to the public and plant investment. High thermal conductivity and high gap conductance play the most significant role in safety advantages of the metallic fuel, resulting in a flatter radial temperaturemore » profile within the pin and much lower normal operation and transient temperatures in comparison to oxide fuel. Despite the big difference in melting point, both oxide and metal fuels have a relatively similar margin to melting during postulated accidents. When the metal fuel cladding fails, it typically occurs below the coolant boiling point and the damaged fuel pins remain coolable. Metal fuel is compatible with sodium coolant, eliminating the potential of energetic fuel--coolant reactions and flow blockages. All these, and the low retained heat leading to a longer grace period for operator action, are significant contributing factors to the inherently benign response of metallic fuel to postulated accidents. This paper summarizes the past analytical and experimental results obtained in past sodium-cooled fast reactor safety programs in the United States, and presents an overview of fuel safety performance as observed in laboratory and in-pile tests.« less

  5. Geminga: A cooling superfluid neutron star

    NASA Technical Reports Server (NTRS)

    Page, Dany

    1994-01-01

    We compare the recent temperature estimate for Geminga with neutron star cooling models. Because of its age (approximately 3.4 x 10(exp 5) yr), Geminga is in the photon cooling era. We show that its surface temperature (approximately 5.2 x 10(exp 5) K) can be understood by both types of neutrino cooling scenarios, i.e., slow neutrino cooling by the modified Urca process or fast neutrino cooling by the direct Urca process or by some exotic matter, and thus does not allow us to discriminate between these two competing schemes. However, for both types of scenarios, agreement with the observed temperature can only be obtained if baryon pairing is present in most, if not all, of the core of the star. Within the slow neutrino cooling scenario, early neutrino cooling is not sufficient to explain the observed low temperature, and extensive pairing in the core is necessary to reduce the specific heat and increase the cooling rate in the present photon cooling era. Within all the fast neutrino cooling scenarios, pairing is necessary throughout the whole core to control the enormous early neutrino emission which, without pairing suppression, would result in a surface temperature at the present time much lower than observed. We also comment on the recent temperature estimates for PSR 0656+14 and PSR 1055-52, which pertain to the same photon cooling era. If one assumes that all neutron stars undergo fast neutrino cooling, then these two objects also provide evidence for extensive baryon pairing in their core; but observational uncertainties also permit a more conservative interpretation, with slow neutrino emission and no pairing at all. We argue though that observational evidence for the slow neutrino cooling model (the 'standard' model) is in fact very dim and that the interpretation of the surface temperature of all neutron stars could be done with a reasonable theoretical a priori within the fast neutrino cooling scenarios only. In this case, Geminga, PSR 0656+14, and PSR 1055-52 all show evidence of baryon pairing down to their very centers.

  6. Analysis of C/E results of fission rate ratio measurements in several fast lead VENUS-F cores

    NASA Astrophysics Data System (ADS)

    Kochetkov, Anatoly; Krása, Antonín; Baeten, Peter; Vittiglio, Guido; Wagemans, Jan; Bécares, Vicente; Bianchini, Giancarlo; Fabrizio, Valentina; Carta, Mario; Firpo, Gabriele; Fridman, Emil; Sarotto, Massimo

    2017-09-01

    During the GUINEVERE FP6 European project (2006-2011), the zero-power VENUS water-moderated reactor was modified into VENUS-F, a mock-up of a lead cooled fast spectrum system with solid components that can be operated in both critical and subcritical mode. The Fast Reactor Experiments for hybrid Applications (FREYA) FP7 project was launched in 2011 to support the designs of the MYRRHA Accelerator Driven System (ADS) and the ALFRED Lead Fast Reactor (LFR). Three VENUS-F critical core configurations, simulating the complex MYRRHA core design and one configuration devoted to the LFR ALFRED core conditions were investigated in 2015. The MYRRHA related cores simulated step by step design peculiarities like the BeO reflector and in pile sections. For all of these cores the fuel assemblies were of a simple design consisting of 30% enriched metallic uranium, lead rodlets to simulate the coolant and Al2O3 rodlets to simulate the oxide fuel. Fission rate ratios of minor actinides such as Np-237, Am-241 as well as Pu-239, Pu-240, Pu-242 and U-238 to U-235 were measured in these VENUS-F critical assemblies with small fission chambers in specially designed locations, to determine the spectral indices in the different neutron spectrum conditions. The measurements have been analyzed using advanced computational tools including deterministic and stochastic codes and different nuclear data sets like JEFF-3.1, JEFF-3.2, ENDF/B7.1 and JENDL-4.0. The analysis of the C/E discrepancies will help to improve the nuclear data in the specific energy region of fast neutron reactor spectra.

  7. Fast automotive diesel exhaust measurement using quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Herbst, J.; Brunner, R.; Lambrecht, A.

    2013-12-01

    Step by step, US and European legislations enforce the further reduction of atmospheric pollution caused by automotive exhaust emissions. This is pushing automotive development worldwide. Fuel efficient diesel engines with SCRtechnology can impede NO2-emission by reduction with NH3 down to the ppm range. To meet the very low emission limits of the Euro6 resp. US NLEV (National Low Emission Vehicle) regulations, automotive manufacturers have to optimize continuously all phases of engine operation and corresponding catalytic converters. Especially nonstationary operation holds a high potential for optimizing gasoline consumption and further reducing of pollutant emissions. Test equipment has to cope with demanding sensitivity and speed requirements. In the past Fraunhofer IPM has developed a fast emission analyzer called DEGAS (Dynamic Exhaust Gas Analyzer System), based on cryogenically cooled lead salt lasers. These systems have been used at Volkswagen AG`s test benches for a decade. Recently, IPM has developed DEGAS-Next which is based on cw quantum cascade lasers and thermoelectrically cooled detectors. The system is capable to measure three gas components (i.e. NO, NO2, NH3) in two channels with a time resolution of 20 ms and 1 ppm detection limits. We shall present test data and a comparison with fast FTIR measurements.

  8. Three-Dimensional Printed Thermal Regulation Textiles.

    PubMed

    Gao, Tingting; Yang, Zhi; Chen, Chaoji; Li, Yiju; Fu, Kun; Dai, Jiaqi; Hitz, Emily M; Xie, Hua; Liu, Boyang; Song, Jianwei; Yang, Bao; Hu, Liangbing

    2017-11-28

    Space cooling is a predominant part of energy consumption in people's daily life. Although cooling the whole building is an effective way to provide personal comfort in hot weather, it is energy-consuming and high-cost. Personal cooling technology, being able to provide personal thermal comfort by directing local heat to the thermally regulated environment, has been regarded as one of the most promising technologies for cooling energy and cost savings. Here, we demonstrate a personal thermal regulated textile using thermally conductive and highly aligned boron nitride (BN)/poly(vinyl alcohol) (PVA) composite (denoted as a-BN/PVA) fibers to improve the thermal transport properties of textiles for personal cooling. The a-BN/PVA composite fibers are fabricated through a fast and scalable three-dimensional (3D) printing method. Uniform dispersion and high alignment of BN nanosheets (BNNSs) can be achieved during the processing of fiber fabrication, leading to a combination of high mechanical strength (355 MPa) and favorable heat dispersion. Due to the improved thermal transport property imparted by the thermally conductive and highly aligned BNNSs, better cooling effect (55% improvement over the commercial cotton fiber) can be realized in the a-BN/PVA textile. The wearable a-BN/PVA textiles containing the 3D-printed a-BN/PVA fibers offer a promising selection for meeting the personal cooling requirement, which can significantly reduce the energy consumption and cost for cooling the whole building.

  9. Existence domains of slow and fast ion-acoustic solitons in two-ion space plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maharaj, S. K., E-mail: smaharaj@sansa.org.za; Bharuthram, R., E-mail: rbharuthram@uwc.ac.za; Singh, S. V., E-mail: satyavir@iigs.iigm.res.in

    2015-03-15

    A study of large amplitude ion-acoustic solitons is conducted for a model composed of cool and hot ions and cool and hot electrons. Using the Sagdeev pseudo-potential formalism, the scope of earlier studies is extended to consider why upper Mach number limitations arise for slow and fast ion-acoustic solitons. Treating all plasma constituents as adiabatic fluids, slow ion-acoustic solitons are limited in the order of increasing cool ion concentrations by the number densities of the cool, and then the hot ions becoming complex valued, followed by positive and then negative potential double layer regions. Only positive potentials are found formore » fast ion-acoustic solitons which are limited only by the hot ion number density having to remain real valued. The effect of neglecting as opposed to including inertial effects of the hot electrons is found to induce only minor quantitative changes in the existence regions of slow and fast ion-acoustic solitons.« less

  10. Studies on Materials for Heavy-Liquid-Metal-Cooled Reactors in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minoru Takahashi; Masayuki Igashira; Toru Obara

    2002-07-01

    Recent studies on materials for the development of lead-bismuth (Pb-Bi)-cooled fast reactors (FR) and accelerator-driven sub-critical systems (ADS) in Japan are reported. The measurement of the neutron cross section of Bi to produce {sup 210}Po, the removal experiment of Po contamination and steel corrosion test in Pb-Bi flow were performed in Tokyo Institute of Technology. A target material corrosion test was performed in the project of Transmutation Experimental Facility for ADS in Japan Atomic Energy Research Institute (JAERI). Steel corrosion test was started in Mitsui Engineering and Shipbuilding Co., LTD (MES). The feasibility study for FR cycle performed in Japanmore » Nuclear Cycle Institute (JNC) are described. (authors)« less

  11. Neutron fluxes in test reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youinou, Gilles Jean-Michel

    Communicate the fact that high-power water-cooled test reactors such as the Advanced Test Reactor (ATR), the High Flux Isotope Reactor (HFIR) or the Jules Horowitz Reactor (JHR) cannot provide fast flux levels as high as sodium-cooled fast test reactors. The memo first presents some basics physics considerations about neutron fluxes in test reactors and then uses ATR, HFIR and JHR as an illustration of the performance of modern high-power water-cooled test reactors.

  12. First-principles investigation of neutron-irradiation-induced point defects in B4C, a neutron absorber for sodium-cooled fast nuclear reactors

    NASA Astrophysics Data System (ADS)

    You, Yan; Yoshida, Katsumi; Yano, Toyohiko

    2018-05-01

    Boron carbide (B4C) is a leading candidate neutron absorber material for sodium-cooled fast nuclear reactors owing to its excellent neutron-capture capability. The formation and migration energies of the neutron-irradiation-induced defects, including vacancies, neutron-capture reaction products, and knocked-out atoms were studied by density functional theory calculations. The vacancy-type defects tend to migrate to the C–B–C chains of B4C, which indicates that the icosahedral cage structures of B4C have strong resistance to neutron irradiation. We found that lithium and helium atoms had significantly lower migration barriers along the rhombohedral (111) plane of B4C than perpendicular to this plane. This implies that the helium and lithium interstitials tended to follow a two-dimensional diffusion regime in B4C at low temperatures which explains the formation of flat disk like helium bubbles experimentally observed in B4C pellets after neutron irradiation. The knocked-out atoms are considered to be annihilated by the recombination of the close pairs of self-interstitials and vacancies.

  13. Catastrophic cooling and cessation of heating in the solar corona

    NASA Astrophysics Data System (ADS)

    Peter, H.; Bingert, S.; Kamio, S.

    2012-01-01

    Context. Condensations in the more than 106 K hot corona of the Sun are commonly observed in the extreme ultraviolet (EUV). While their contribution to the total solar EUV radiation is still a matter of debate, these condensations certainly provide a valuable tool for studying the dynamic response of the corona to the heating processes. Aims: We investigate different distributions of energy input in time and space to investigate which process is most relevant for understanding these coronal condensations. Methods: For a comparison to observations we synthesize EUV emission from a time-dependent, one-dimensional model for coronal loops, where we employ two heating scenarios: simply shutting down the heating and a model where the heating is very concentrated at the loop footpoints, while keeping the total heat input constant. Results: The heating off/on model does not lead to significant EUV count rates that one observes with SDO/AIA. In contrast, the concentration of the heating near the footpoints leads to thermal non-equilibrium near the loop top resulting in the well-known catastrophic cooling. This process gives a good match to observations of coronal condensations. Conclusions: This shows that the corona needs a steady supply of energy to support the coronal plasma, even during coronal condensations. Otherwise the corona would drain very fast, too fast to even form a condensation. Movies are available in electronic form at http://www.aanda.org

  14. The Potential of the LFR and the ELSY Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cinotti, L; Smith, C F; Sienicki, J J

    2007-03-12

    This paper presents the current status of the development of the Lead-cooled Fast Reactor (LFR) in support of Generation IV (GEN IV) Nuclear Energy Systems. The approach being taken by the GIF plan is to address the research priorities of each member state in developing an integrated and coordinated research program to achieve common objectives, while avoiding duplication of effort. The integrated plan being prepared by the LFR Provisional System Steering Committee of the GIF, known as the LFR System research Plan (SRP) recognizes two principal technology tracks for pursuit of LFR technology: (1) a small, transportable system of 10-100more » MWe size that features a very long refueling interval, (2) a larger-sized system rated at about 600 MWe, intended for central station power generation and waste transmutation. This paper, in particular, describes the ongoing activities to develop the Small Secure Transportable Autonomous Reactor (SSTAR) and the European Lead-cooled SYstem (ELSY), the two research initiatives closely aligned with the overall tracks of the SRP and outlines the Proliferation-resistant Environment-friendly Accident-tolerant Continual & Economical Reactors (PEACER) conceived with particular focus on burning/transmuting of long-living TRU waste and fission fragments of concern, such as Tc and I. The current reference design for the SSTAR is a 20 MWe natural circulation pool-type reactor concept with a small shippable reactor vessel. Specific features of the lead coolant, the nitride fuel containing transuranics, the fast spectrum core, and the small size combine to promote a unique approach to achieve proliferation resistance, while also enabling fissile self-sufficiency, autonomous load following, simplicity of operation, reliability, transportability, as well as a high degree of passive safety. Conversion of the core thermal power into electricity at a high plant efficiency of 44% is accomplished utilizing a supercritical carbon dioxide Brayton cycle power converter. The ELSY reference design is a 600 MWe pool-type reactor cooled by pure lead. This concept has been under development since September 2006, and is sponsored by the Sixth Framework Programme of EURATOM. The ELSY project is being performed by a consortium consisting of twenty organizations including seventeen from Europe, two from Korea and one from the USA. ELSY aims to demonstrate the possibility of designing a competitive and safe fast critical reactor using simple engineered technical features while fully complying with the Generation IV goal of minor actinide (MA) burning capability. The use of a compact and simple primary circuit with the additional objective that all internal components be removable, are among the reactor features intended to assure competitive electric energy generation and long-term investment protection. Simplicity is expected to reduce both the capital cost and the construction time; these are also supported by the compactness of the reactor building (reduced footprint and height). The reduced footprint would be possible due to the elimination of the Intermediate Cooling System, the reduced elevation the result of the design approach of reduced-height components.« less

  15. Effect of cooling rate on leucite volume fraction in dental porcelains.

    PubMed

    Mackert, J R; Evans, A L

    1991-02-01

    Prasad et al. (1988) have shown that slow cooling of dental porcelain produces increases in thermal expansion sufficient to make a compatible metal-porcelain system incompatible. The present study was undertaken to determine whether the increase in porcelain thermal expansion might be attributable to crystallization of additional leucite during slow cooling of the porcelain. Eight x-ray diffraction specimens for each of six commercial dental porcelains and for the Component No. 1 frit of the Weinstein and Weinstein (1962) and Weinstein et al. (1962) patents were fabricated and divided into two groups. Specimens in the first group (termed fast-cooled) were cooled in the conventional manner by removing them from the furnace at the maximum firing temperature immediately into room air. Specimens in the second group (termed slow-cooled) were cooled slowly by interrupting power to the furnace muffle and allowing them to cool inside the closed furnace. Quantitative x-ray diffraction was performed on the fast- and slow-cooled porcelain specimens with standards containing leucite volume fractions of 0.111, 0.223, 0.334, and 0.445. Unpaired, one-tailed t tests were performed on the fast- and slow-cool data, and a significant increase (p less than 0.05) in the amount of leucite (as a function of the slow cooling) was found for each of the porcelains. The increases in the leucite volume fractions resulting from the slow cooling ranged from a low of 8.5% to a high of 55.8%, with an average increase of 26.9%.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from workmore » on this project (since project inception) are listed in Appendix A.« less

  17. Spiral Flows in Cool-core Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Keshet, Uri

    2012-07-01

    We argue that bulk spiral flows are ubiquitous in the cool cores (CCs) of clusters and groups of galaxies. Such flows are gauged by spiral features in the thermal and chemical properties of the intracluster medium, by the multiphase properties of CCs, and by X-ray edges known as cold fronts. We analytically show that observations of piecewise-spiral fronts impose strong constraints on the CC, implying the presence of a cold, fast flow, which propagates below a hot, slow inflow, separated by a slowly rotating, trailing, quasi-spiral, tangential discontinuity surface. This leads to the nearly logarithmic spiral pattern, two-phase plasma, ρ ~ r -1 density (or T ~ r 0.4 temperature) radial profile, and ~100 kpc size, characteristic of CCs. By advecting heat and mixing the gas, such flows can eliminate the cooling problem, provided that a feedback mechanism regulates the flow. In particular, we present a quasi-steady-state model for an accretion-quenched, composite flow, in which the fast phase is an outflow, regulated by active galactic nucleus bubbles, reproducing the observed low star formation rates and explaining some features of bubbles such as their Rb vpropr size. The simplest two-component model reproduces several key properties of CCs, so we propose that all such cores harbor a spiral flow. Our results can be tested directly in the next few years, for example by ASTRO-H.

  18. Digestive state influences the heart rate hysteresis and rates of heat exchange in the varanid lizard Varanus rosenbergi.

    PubMed

    Clark, T D; Butler, P J; Frappell, P B

    2005-06-01

    To maximize the period where body temperature (Tb) exceeds ambient temperature (Ta), many reptiles have been reported to regulate heart rate (fH) and peripheral blood flow so that the rate of heat gain in a warming environment occurs more rapidly than the rate of heat loss in a cooling environment. It may be hypothesized that the rate of cooling, particularly at relatively cool Tbs, would be further reduced during postprandial periods when specific dynamic action (SDA) increases endogenous heat production (i.e. the heat increment of feeding). Furthermore, it may also be hypothesized that the increased perfusion of the gastrointestinal organs that occurs during digestion may limit peripheral blood flow and thus compromise the rate of heating. Finally, if the changes in fh are solely for the purpose of thermoregulation, there should be no associated changes in energy demand and, consequently, no hysteresis in the rate of oxygen consumption (V(O2)). To test these hypotheses, seven individual Varanus rosenbergi were heated and cooled between 19 degrees C and 35 degrees C following at least 8 days fasting and then approximately 25 h after consumption of a meal (mean 10% of fasted body mass). For a given Tb between the range of 19-35 degrees C, fh of fasting lizards was higher during heating than during cooling. Postprandial lizards also displayed a hysteresis in fh, although the magnitude was reduced in comparison with that of fasting lizards as a result of a higher fh during cooling in postprandial animals. Both for fasting and postprandial lizards, there was no hysteresis in V(O2) at any Tb throughout the range although, as a result of SDA, postprandial animals displayed a significantly higher V(O2) than fasting animals both during heating and during cooling at Tbs above 24 degrees C. The values of fh during heating at a given Tb were the same for fasting and postprandial animals, which, in combination with a slower rate of heating in postprandial animals, suggests that a prioritization of blood flow to the gastrointestinal organs during digestion is occurring at the expense of higher rates of heating. Additionally, postprandial lizards took longer to cool at Tbs below 23 degrees C, suggesting that the endogenous heat produced during digestion temporarily enhances thermoregulatory ability at lower temperatures, which would presumably assist V. rosenbergi during cooler periods in the natural environment by augmenting temperature-dependent physiological processes.

  19. Quasi-spherical accretion in High Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Postnov, Konstantin

    2016-07-01

    Quasi-spherical accreion onto magnetized neutron stars from stellar winds in high-mass X-ray binaries is discussed. Depending on the X-ray luminosity of the neutron star, the accretion can proceed in two regimes (modes): at L_x ≳ 4× 10^{36} erg/s, Compton cooling of accreting matter near magnetosphere leads to a supersonic (Bondi) accretion, while at smaller X-ray luminosity the Compton cooling is ineffective, and subsonic settling accretion regime sets in. In this regime, a hot convective shell is formed around the magnetosphere, and the plasma entry rate into magnetosphere is controlled by less effective radiative plasma cooling. The shell mediates the angular momentum transfer from/to the neutron star magnetosphere. Observational evidences for the different accretion regimes in slowly rotating X-ray pulsars with moderate and low X-ray luminosity, as well as possible manifestations of non-stationary quasi-spherical settling accretion due to the magnetospheric shell instability in Supergiant Fast X-ray Transients will be presented.

  20. Mixed-method pre-cooling reduces physiological demand without improving performance of medium-fast bowling in the heat.

    PubMed

    Minett, Geoffrey M; Duffield, Rob; Kellett, Aaron; Portus, Marc

    2012-05-01

    This study examined physiological and performance effects of pre-cooling on medium-fast bowling in the heat. Ten, medium-fast bowlers completed two randomised trials involving either cooling (mixed-methods) or control (no cooling) interventions before a 6-over bowling spell in 31.9±2.1°C and 63.5±9.3% relative humidity. Measures included bowling performance (ball speed, accuracy and run-up speeds), physical characteristics (global positioning system monitoring and counter-movement jump height), physiological (heart rate, core temperature, skin temperature and sweat loss), biochemical (serum concentrations of damage, stress and inflammation) and perceptual variables (perceived exertion and thermal sensation). Mean ball speed (114.5±7.1 vs. 114.1±7.2 km · h(-1); P = 0.63; d = 0.09), accuracy (43.1±10.6 vs. 44.2±12.5 AU; P = 0.76; d = 0.14) and total run-up speed (19.1±4.1 vs. 19.3±3.8 km · h(-1); P = 0.66; d = 0.06) did not differ between pre-cooling and control respectively; however 20-m sprint speed between overs was 5.9±7.3% greater at Over 4 after pre-cooling (P = 0.03; d = 0.75). Pre-cooling reduced skin temperature after the intervention period (P = 0.006; d = 2.28), core temperature and pre-over heart rates throughout (P = 0.01-0.04; d = 0.96-1.74) and sweat loss by 0.4±0.3 kg (P = 0.01; d = 0.34). Mean rating of perceived exertion and thermal sensation were lower during pre-cooling trials (P = 0.004-0.03; d = 0.77-3.13). Despite no observed improvement in bowling performance, pre-cooling maintained between-over sprint speeds and blunted physiological and perceptual demands to ease the thermoregulatory demands of medium-fast bowling in hot conditions.

  1. Quantitative examination of carbide and sulphide precipitates in chemically complex steels processed by direct strip casting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorin, Thomas, E-mail: thomas.dorin@deakin.edu.au; Wood, Kathleen; Taylor, Adam

    2016-02-15

    A high strength low alloy steel composition has been melted and processed by two different routes: simulated direct strip casting and slow cooled ingot casting. The microstructures were examined with scanning and transmission electron microscopy, atom probe tomography and small angle neutron scattering (SANS). The formation of cementite (Fe{sub 3}C), manganese sulphides (MnS) and niobium carbo-nitrides (Nb(C,N)) was investigated in both casting conditions. The sulphides were found to be significantly refined by the higher cooling rate, and developed an average diameter of only 100 nm for the fast cooled sample, and a diameter too large to be measured with SANSmore » in the slow cooled condition (> 1.1 μm). Slow cooling resulted in the development of classical Nb(C,N) precipitation, with an average diameter of 7.2 nm. However, after rapid cooling both the SANS and atom probe tomography data indicated that the Nb was retained in the matrix as a random solid solution. There was also some evidence that O, N and S are also retained in solid solution in levels not found during conventional processing. - Highlights: • The influence of cooling rate on microstructure is investigated in a HSLA steel. • SANS, TEM and APT are used to characterise the sulphides and Nb(C,N) precipitates. • The slow cooling rate result in the formation of Nb(C,N) precipitates. • The fast cooling rate results in a microstructure supersaturated in Nb, C and N. • The sulphides are 100 nm in the fast cooled sample and > 1 μm in the slow cooled one.« less

  2. Hypersonic aerospace vehicle leading edge cooling using heat pipe, transpiration and film cooling techniques

    NASA Astrophysics Data System (ADS)

    Modlin, James Michael

    An investigation was conducted to study the feasibility of cooling hypersonic vehicle leading edge structures exposed to severe aerodynamic surface heat fluxes using a combination of liquid metal heat pipes and surface mass transfer cooling techniques. A generalized, transient, finite difference based hypersonic leading edge cooling model was developed that incorporated these effects and was demonstrated on an assumed aerospace plane-type wing leading edge section and a SCRAMJET engine inlet leading edge section. The hypersonic leading edge cooling model was developed using an existing, experimentally verified heat pipe model. Two applications of the hypersonic leading edge cooling model were examined. An assumed aerospace plane-type wing leading edge section exposed to a severe laminar, hypersonic aerodynamic surface heat flux was studied. A second application of the hypersonic leading edge cooling model was conducted on an assumed one-quarter inch nose diameter SCRAMJET engine inlet leading edge section exposed to both a transient laminar, hypersonic aerodynamic surface heat flux and a type 4 shock interference surface heat flux. The investigation led to the conclusion that cooling leading edge structures exposed to severe hypersonic flight environments using a combination of liquid metal heat pipe, surface transpiration, and film cooling methods appeared feasible.

  3. Effect of Cooling Rate on SCC Susceptibility of β-Processed Ti-6Al-4V Alloy in 0.6M NaCl Solution

    NASA Astrophysics Data System (ADS)

    Ahn, Soojin; Park, Jiho; Jeong, Daeho; Sung, Hyokyung; Kwon, Yongnam; Kim, Sangshik

    2018-03-01

    The effects of cooling rate on the stress corrosion cracking (SCC) susceptibility of β-processed Ti-6Al-4V (Ti64) alloy, including BA/S specimen with furnace cooling and BQ/S specimen with water quenching, were investigated in 0.6M NaCl solution under various applied potentials using a slow strain rate test technique. It was found that the SCC susceptibility of β-processed Ti64 alloy in aqueous NaCl solution decreased with fast cooling rate, which was particularly substantial under an anodic applied potential. The micrographic and fractographic analyses suggested that the enhancement with fast cooling rate was related to the random orientation of acicular α platelets in BQ/S specimen. Based on the experimental results, the effect of cooling rate on the SCC behavior of β-processed Ti64 alloy in aqueous NaCl solution was discussed.

  4. Safety and core design of large liquid-metal cooled fast breeder reactors

    NASA Astrophysics Data System (ADS)

    Qvist, Staffan Alexander

    In light of the scientific evidence for changes in the climate caused by greenhouse-gas emissions from human activities, the world is in ever more desperate need of new, inexhaustible, safe and clean primary energy sources. A viable solution to this problem is the widespread adoption of nuclear breeder reactor technology. Innovative breeder reactor concepts using liquid-metal coolants such as sodium or lead will be able to utilize the waste produced by the current light water reactor fuel cycle to power the entire world for several centuries to come. Breed & burn (B&B) type fast reactor cores can unlock the energy potential of readily available fertile material such as depleted uranium without the need for chemical reprocessing. Using B&B technology, nuclear waste generation, uranium mining needs and proliferation concerns can be greatly reduced, and after a transitional period, enrichment facilities may no longer be needed. In this dissertation, new passively operating safety systems for fast reactors cores are presented. New analysis and optimization methods for B&B core design have been developed, along with a comprehensive computer code that couples neutronics, thermal-hydraulics and structural mechanics and enables a completely automated and optimized fast reactor core design process. In addition, an experiment that expands the knowledge-base of corrosion issues of lead-based coolants in nuclear reactors was designed and built. The motivation behind the work presented in this thesis is to help facilitate the widespread adoption of safe and efficient fast reactor technology.

  5. High-energy astrophysics: A theoretical analysis of thermal radiation from neutron stars

    NASA Technical Reports Server (NTRS)

    Applegate, James H.

    1994-01-01

    The unambiguous detection of thermal radiation from the surface of a cooling neutron star was one of the most anxiously awaited results in neutron star physics. This particular Holy Grail was found by Halpern and Holt, who used ROSAT to detect pulsed X-rays from the gamma-ray source Geminga and demonstrate that it was a neutron star, probably a radio pulsar beamed away from us. At an age of approximately 3.4 x 10(exp 5) years, Geminga is in the photon cooling era. Its surface temperature of 5.2 x 10(exp 5) K can be explained within the contexts of both the slow and fast cooling scenarios. In the slow cooling scenario, the surface temperature is too high unless the specific heat of the interior is reduced by extensive baryon pairing. In the fast cooling scenario, the surface temperature will be much too low unless the fast neutrino cooling is shut off by baryon pairing. Two other pulsars, PSR 0656+14 and PSR 1055-52, have also been detected in thermal X-rays by ROSAT. They are also in the photon cooling era. All of this research's neutron star cooling models to date have used the unmagnetized effective temperature-interior temperature relation for the outer boundary condition. Models are being improved by using published magnetic envelope calculations and assumed geometried for the surface magnetic field to determine local interior temperature-emitted flux relations for the surface of the star.

  6. Theoretical Estimate of Maximum Possible Nuclear Explosion

    DOE R&D Accomplishments Database

    Bethe, H. A.

    1950-01-31

    The maximum nuclear accident which could occur in a Na-cooled, Be moderated, Pu and power producing reactor is estimated theoretically. (T.R.H.) 2O82 Results of nuclear calculations for a variety of compositions of fast, heterogeneous, sodium-cooled, U-235-fueled, plutonium- and power-producing reactors are reported. Core compositions typical of plate-, pin-, or wire-type fuel elements and with uranium as metal, alloy, and oxide were considered. These compositions included atom ratios in the following range: U-23B to U-235 from 2 to 8; sodium to U-235 from 1.5 to 12; iron to U-235 from 5 to 18; and vanadium to U-235 from 11 to 33. Calculations were performed to determine the effect of lead and iron reflectors between the core and blanket. Both natural and depleted uranium were evaluated as the blanket fertile material. Reactors were compared on a basis of conversion ratio, specific power, and the product of both. The calculated results are in general agreement with the experimental results from fast reactor assemblies. An analysis of the effect of new cross-section values as they became available is included. (auth)

  7. Highly c-axis-oriented monocrystalline Pb(Zr, Ti)O₃ thin films on si wafer prepared by fast cooling immediately after sputter deposition.

    PubMed

    Yoshida, Shinya; Hanzawa, Hiroaki; Wasa, Kiyotaka; Esashi, Masayoshi; Tanaka, Shuji

    2014-09-01

    We successfully developed sputter deposition technology to obtain a highly c-axis-oriented monocrystalline Pb(Zr, Ti)O3 (PZT) thin film on a Si wafer by fast cooling (~-180°C/min) of the substrate after deposition. The c-axis orientation ratio of a fast-cooled film was about 90%, whereas that of a slow-cooled (~-40°C/min) film was only 10%. The c-axis-oriented monocrystalline Pb(Zr0.5, Ti0.5)O3 films showed reasonably large piezoelectric coefficients, e(31,f) = ~-11 C/m(2), with remarkably small dielectric constants, ϵ(r) = ~220. As a result, an excellent figure of merit (FOM) was obtained for piezoelectric microelectromechanical systems (MEMS) such as a piezoelectric gyroscope. This c-axis orientation technology on Si will extend industrial applications of PZT-based thin films and contribute further to the development of piezoelectric MEMS.

  8. Effective micro-spray cooling for light-emitting diode with graphene nanoporous layers

    NASA Astrophysics Data System (ADS)

    Keong Lay, Kok; Yew Cheong, Brian Mun; Li Tong, Wei; Tan, Ming Kwang; Hung, Yew Mun

    2017-04-01

    A graphene nanoplatelet (GNP) coating is utilized as a functionalized surface in enhancing the evaporation rate of micro-spray cooling for light-emitting diodes (LEDs). In micro-spray cooling, water is atomized into micro-sized droplets to reduce the surface energy and to increase the surface area for evaporation. The GNP coating facilitates the effective filmwise evaporation through the attribute of fast water permeation. The oxygenated functional groups of GNPs provide the driving force that initiates the intercalation of water molecules through the carbon nanostructure. The water molecules slip through the frictionless passages between the hydrophobic carbon walls, resulting an effective filmwise evaporation. The enhancement of evaporation leads to an enormous temperature reduction of 61.3 °C. The performance of the LED is greatly enhanced: a maximum increase in illuminance of 25% and an extension of power rating from 9 W to 12 W can be achieved. With the application of GNP coating, the high-temperature region is eliminated while maintaining the LED surface temperature for optimal operation. This study paves the way for employing the effective hybrid spray-evaporation-nanostructure technique in the development of a compact, low-power-consumption cooling system.

  9. Effect of cooling rate during hot stamping on low cyclic fatigue of boron steel sheet

    NASA Astrophysics Data System (ADS)

    Suh, Chang Hee; Jang, Won Seok; Oh, Sang Kyun; Lee, Rac Gyu; Jung, Yun-Chul; Kim, Young Suk

    2012-08-01

    Boron steel is widely used throughout the automobile industry due to its high tensile strength and hardenability. When boron steel is used for body parts, only high strength is required for crashworthiness. However, when boron steel is used for chassis parts, a high fatigue life is needed. The microstructure of boron steel is mainly affected by the cooling rate during hot stamping. Therefore, this study investigated the low cyclic fatigue life according to the cooling rate. The fatigue life increased at a low strain amplitude when the cooling rate was fast. However, at a high strain amplitude, the fatigue life decreased, due to the low ductility and fracture toughness of the martensite formed by rapid cooling. Martensite formed by a fast cooling rate shows excellent fatigue life at a low total strain amplitude; however, a multiphase microstructure formed by a slow cooling rate is recommended if the parts experience high and low total strain amplitudes alternately. In addition, the cooling rate has little effect on the distribution of solute boron and boron precipitations, so it is expected that boron rarely affects low cyclic fatigue.

  10. Cooling circuit for steam and air-cooled turbine nozzle stage

    DOEpatents

    Itzel, Gary Michael; Yu, Yufeng

    2002-01-01

    The turbine vane segment includes inner and outer walls with a vane extending therebetween. The vane includes leading and trailing edge cavities and intermediate cavities. An impingement plate is spaced from the outer wall to impingement-cool the outer wall. Post-impingement cooling air flows through holes in the outer wall to form a thin air-cooling film along the outer wall. Cooling air is supplied an insert sleeve with openings in the leading edge cavity for impingement-cooling the leading edge. Holes through the leading edge afford thin-film cooling about the leading edge. Cooling air is provided the trailing edge cavity and passes through holes in the side walls of the vane for thin-film cooling of the trailing edge. Steam flows through a pair of intermediate cavities for impingement-cooling of the side walls. Post-impingement steam flows to the inner wall for impingement-cooling of the inner wall and returns the post-impingement cooling steam through inserts in other intermediate cavities for impingement-cooling the side walls of the vane.

  11. Effect of Mg(2+) doping on beta-alpha phase transition in tricalcium phosphate (TCP) bioceramics.

    PubMed

    Frasnelli, Matteo; Sglavo, Vincenzo M

    2016-03-01

    The beta to alpha transition in tricalcium phosphate (TCP) bioceramics containing different amount of magnesium was studied in the present work. Mg-doped TCP powder was obtained by solid-state reaction starting from pure calcium carbonate, ammonium phosphate dibasic and magnesium oxide powders. The β to α transformation temperature was identified by dilatometric and thermo-differential analyses. Small pellets produced by uniaxial pressing samples were employed to study the influence of Mg(2+) on the transition kinetic, after sintering at 1550°C and subsequent slow or fast cooling down to room temperature. The evolution of β- and α-TCP crystalline phases during each thermal treatment was determined by X-ray powder diffraction analysis combined with Rietveld method-based software An annealing treatment, suitable to reconvert metastable α phase to the more clinically suitable β phase, was also investigated. It is shown that the presence of magnesium within the TCP lattice strongly influences the kinetic of the β⇆α phase transition, promoting the spontaneous α→β reconversion even upon fast cooling, or slowing down the β→α transition during heating. Similarly, it allows the α→β transformation in TCP sintered components by optimized annealing treatment at 850°C. This work concerns the effect of Mg(2+) doping on the β→α phase reconstructive transition in tricalcium phosphate (TCP), one of the most important bio-resorbable materials for bone tissue regeneration. The transition occurs upon the sintering process and is has been shown to be strongly irreversible upon cooling, leading to technological issues such as poor mechanical properties and excessive solubility due to the presence of metastable α-phase. This paper points out the kinetic contribution of Mg(2+) on the spontaneous α→β reconversion also upon fast cooling (i.e. quenching). Moreover, an annealing treatment has been shown to be beneficial to remove the retained α-phase in sintered TCP components, the presence of Mg promoting the reconversion process. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Processes in massive nuclei reactions and the way to complete fusion of reactants. What perspectives for the synthesis of heavier superheavy elements?

    NASA Astrophysics Data System (ADS)

    Mandaglio, G.; Nasirov, A. K.; Curciarello, F.; De Leo, V.; Romaniuk, M.; Fazio, G.; Giardina, G.

    2012-12-01

    By using the dinuclear system (DNS) model we determine the capture of reactants at the first stage of reaction, the competition between the DNS decay by the quasifission (QF) and the complete fusion (CF) process up to formation of the compound nucleus (CN) having compact shape. Further evolution of the CN is considered as its fission into two fragments or formation of evaporation residues (ER) by its cooling after emission of neutrons or/and charged light particles. Disappearance of the CN fission barrier due to its fast rotation leads to the fast fission (FF) by formation of fissionlike fragments. The results of calculations for the mass symmetric 136Xe+136Xe reaction, almost mass symmetric 108Mo+144Ba reaction, and mass asymmetric like 24Mg+238U and 34S+248Cm reactions are discussed. The fusion probability PCN calculated for many massive nuclei reactions leading to formation of superheavy nuclei have been analyzed. The reactions which can lead in perspective to the synthesis of superheavy elements in the Z = 120 - 126 range and, eventually, also to heaviest nuclei, are discussed.

  13. Rapid tenderisation of lamb M. longissimus with very fast chilling depends on rapidly achieving sub-zero temperatures.

    PubMed

    Jacob, Robin; Rosenvold, Katja; North, Michael; Kemp, Robert; Warner, Robyn; Geesink, Geert

    2012-09-01

    A study was undertaken to determine whether variations within the defined temperature-by-time profile for very fast chilling (VFC), might explain variations in tenderness found with VFC. Loins from 32 lambs were subjected to one of five cooling regimes; defined by the average temperature between the meat surface and centre reached at a specific time post mortem. These were: -0.3 °C at 22 h (Control), 2.6 °C at 1.5 h (Fast(supra-zero)), 0.7 °C at 5.5 h (Slow(supra-zero)), -1.6 °C at 1.5 h (Fast(sub-zero)) and -2.3 °C at 5.5 h (Slow(sub-zero)), respectively. Shear force values considered very tender by consumers (less than 50 N, MIRINZ tenderometer) were found 2 days post mortem in Fast(sub-zero) loins only. Both time and temperature at the end of the cooling period contributed to variations in shear force. To achieve low shear force, the loins needed to be cooled to less than 0 °C at 1.5 h post mortem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Modeling of the non-isothermal crystallization kinetics of polyamide 6 composites during thermoforming

    NASA Astrophysics Data System (ADS)

    Kugele, Daniel; Dörr, Dominik; Wittemann, Florian; Hangs, Benjamin; Rausch, Julius; Kärger, Luise; Henning, Frank

    2017-10-01

    The combination of thermoforming processes of continuous-fiber reinforced thermoplastics and injection molding offers a high potential for cost-effective use in automobile mass production. During manufacturing, the thermoplastic laminates are initially heated up to a temperature above the melting point. This is followed by continuous cooling of the material during the forming process, which leads to crystallization under non-isothermal conditions. To account for phase change effects in thermoforming simulation, an accurate modeling of the crystallization kinetics is required. In this context, it is important to consider the wide range of cooling rates, which are observed during processing. Consequently, this paper deals with the experimental investigation of the crystallization at cooling rates varying from 0.16 K/s to 100 K/s using standard differential scanning calorimetry (DSC) and fast scanning calorimetry (Flash DSC). Two different modeling approaches (Nakamura model, modified Nakamura-Ziabicki model) for predicting crystallization kinetics are parameterized according to DSC measurements. It turns out that only the modified Nakamura-Ziabicki model is capable of predicting crystallization kinetics for all investigated cooling rates. Finally, the modified Nakamura-Ziabicki model is validated by cooling experiments using PA6-CF laminates with embedded temperature sensors. It is shown that the modified Nakamura-Ziabicki model predicts crystallization at non-isothermal conditions and varying cooling rates with a good accuracy. Thus, the study contributes to a deeper understanding of the non-isothermal crystallization and presents an overall method for modeling crystallization under process conditions.

  15. Design of a fuel element for a lead-cooled fast reactor

    NASA Astrophysics Data System (ADS)

    Sobolev, V.; Malambu, E.; Abderrahim, H. Aït

    2009-03-01

    The options of a lead-cooled fast reactor (LFR) of the fourth generation (GEN-IV) reactor with the electric power of 600 MW are investigated in the ELSY Project. The fuel selection, design and optimization are important steps of the project. Three types of fuel are considered as candidates: highly enriched Pu-U mixed oxide (MOX) fuel for the first core, the MOX containing between 2.5% and 5.0% of the minor actinides (MA) for next core and Pu-U-MA nitride fuel as an advanced option. Reference fuel rods with claddings made of T91 ferrite-martensitic steel and two alternative fuel assembly designs (one uses a closed hexagonal wrapper and the other is an open square variant without wrapper) have been assessed. This study focuses on the core variant with the closed hexagonal fuel assemblies. Based on the neutronic parameters provided by Monte-Carlo modeling with MCNP5 and ALEPH codes, simulations have been carried out to assess the long-term thermal-mechanical behaviour of the hottest fuel rods. A modified version of the fuel performance code FEMAXI-SCK-1, adapted for fast neutron spectrum, new fuels, cladding materials and coolant, was utilized for these calculations. The obtained results show that the fuel rods can withstand more than four effective full power years under the normal operation conditions without pellet-cladding mechanical interaction (PCMI). In a variant with solid fuel pellets, a mild PCMI can appear during the fifth year, however, it remains at an acceptable level up to the end of operation when the peak fuel pellet burnup ∼80 MW d kg-1 of heavy metal (HM) and the maximum clad damage of about 82 displacements per atom (dpa) are reached. Annular pellets permit to delay PCMI for about 1 year. Based on the results of this simulation, further steps are envisioned for the optimization of the fuel rod design, aiming at achieving the fuel burnup of 100 MW d kg-1 of HM.

  16. Effects of mixed-method cooling on recovery of medium-fast bowling performance in hot conditions on consecutive days.

    PubMed

    Minett, Geoffrey M; Duffield, Rob; Kellett, Aaron; Portus, Marc

    2012-01-01

    This investigation examined physiological and performance effects of cooling on recovery of medium-fast bowlers in the heat. Eight, medium-fast bowlers completed two randomised trials, involving two sessions completed on consecutive days (Session 1: 10-overs and Session 2: 4-overs) in 31 ± 3°C and 55 ± 17% relative humidity. Recovery interventions were administered for 20 min (mixed-method cooling vs. control) after Session 1. Measures included bowling performance (ball speed, accuracy, run-up speeds), physical demands (global positioning system, counter-movement jump), physiological (heart rate, core temperature, skin temperature, sweat loss), biochemical (creatine kinase, C-reactive protein) and perceptual variables (perceived exertion, thermal sensation, muscle soreness). Mean ball speed was higher after cooling in Session 2 (118.9 ± 8.1 vs. 115.5 ± 8.6 km · h⁻¹; P = 0.001; d = 0.67), reducing declines in ball speed between sessions (0.24 vs. -3.18 km · h⁻¹; P = 0.03; d = 1.80). Large effects indicated higher accuracy in Session 2 after cooling (46.0 ± 11.2 vs. 39.4 ± 8.6 arbitrary units [AU]; P = 0.13; d = 0.93) without affecting total run-up speed (19.0 ± 3.1 vs. 19.0 ± 2.5 km · h⁻¹; P = 0.97; d = 0.01). Cooling reduced core temperature, skin temperature and thermal sensation throughout the intervention (P = 0.001-0.05; d = 1.31-5.78) and attenuated creatine kinase (P = 0.04; d = 0.56) and muscle soreness at 24-h (P = 0.03; d = 2.05). Accordingly, mixed-method cooling can reduce thermal strain after a 10-over spell and improve markers of muscular damage and discomfort alongside maintained medium-fast bowling performance on consecutive days in hot conditions.

  17. Thermally induced fracture for core-veneered dental ceramic structures.

    PubMed

    Zhang, Zhongpu; Guazzato, Massimiliano; Sornsuwan, Tanapon; Scherrer, Susanne S; Rungsiyakull, Chaiy; Li, Wei; Swain, Michael V; Li, Qing

    2013-09-01

    Effective and reliable clinical uses of dental ceramics necessitate an insightful analysis of the fracture behaviour under critical conditions. To better understand failure characteristics of porcelain veneered to zirconia core ceramic structures, thermally induced cracking during the cooling phase of fabrication is studied here by using the extended finite element method (XFEM). In this study, a transient thermal analysis of cooling is conducted first to determine the temperature distributions. The time-dependent temperature field is then imported to the XFEM model for viscoelastic thermomechanical analysis, which predicts thermally induced damage and cracking at different time steps. Temperature-dependent material properties are used in both transient thermal and thermomechanical analyses. Three typical ceramic structures are considered in this paper, namely bi-layered spheres, squat cylinders and dental crowns with thickness ratios of either 1:2 or 1:1. The XFEM fracture patterns exhibit good agreement with clinical observation and the in vitro experimental results obtained from scanning electron microscopy characterization. The study reveals that fast cooling can lead to thermal fracture of these different bi-layered ceramic structures, and cooling rate (in terms of heat transfer coefficient) plays a critical role in crack initiation and propagation. By exploring different cooling rates, the heat transfer coefficient thresholds of fracture are determined for different structures, which are of clear clinical implication. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. μ SR studies of the extended kagome systems YBaCo4O7+δ (δ = 0 and 0.1)

    NASA Astrophysics Data System (ADS)

    Lee, Suheon; Lee, Wonjun; Mitchell, John; Choi, Kwang-Yong

    We present a μSR study of the extended kagome systems YBaCo4O7+δ (δ = 0 and 0.1), which are made up of an alternating stacking of triangular and kagome layers. The parent material YBaCo4O7.0 undergoes a structural phase transition at 310 K, releasing geometrical frustration and thereby stabilizing an antiferromagnetically ordered state below TN = 106 K. The μSR spectra of YBaCo4O7.0 exhibit the loss of initial asymmetry and the development of a fast relaxation component below TN = 111 K. This indicates that the Co spins in the kagome planes remain in an inhomogeneous and dynamically fluctuating state down to 4 K, while the triangular spins order antiferromagnetically below TN. The nonstoichiometric YBaCo4O7.1 compound with no magnetic ordering exhibits a disparate spin dynamics between the fast cooling (10 K/min) and slow cooling (1 K/min) procedures. While the fast-cooled μSR spectra show a simple exponential decay, the slow-cooled spectra are described with a sum of a simple exponential function and a stretched exponential function. These are in agreements with the occurrence of the phase separation between interstitial oxygen-rich and poor regions in the slow-cooling measurements.

  19. Miniature Convection Cooled Plug-type Heat Flux Gauges

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.

    1994-01-01

    Tests and analysis of a new miniature plug-type heat flux gauge configuration are described. This gauge can simultaneously measure heat flux on two opposed active surfaces when heat flux levels are equal to or greater than about 0.2 MW/m(sup 2). The performance of this dual active surface gauge was investigated over a wide transient and steady heat flux and temperature range. The tests were performed by radiatively heating the front surface with an argon arc lamp while the back surface was convection cooled with air. Accuracy is about +20 percent. The gauge is responsive to fast heat flux transients and is designed to withstand the high temperature (1300 K), high pressure (15 MPa), erosive and corrosive environments in modern engines. This gauge can be used to measure heat flux on the surfaces of internally cooled apparatus such as turbine blades and combustors used in jet propulsion systems and on the surfaces of hypersonic vehicles. Heat flux measurement accuracy is not compromised when design considerations call for various size gauges to be fabricated into alloys of various shapes and properties. Significant gauge temperature reductions (120 K), which can lead to potential gauge durability improvement, were obtained when the gauges were air-cooled by forced convection.

  20. Gravitational Instabilities in Disks: From Polytropes to Protoplanets?

    NASA Astrophysics Data System (ADS)

    Durisen, R. H.

    2004-12-01

    Gravitational instabilities (GI's) probably occur in disks around young stellar objects during their early embedded phase. This paper reviews what is known about the nonlinear consequences of GI's for planet formation and disk evolution. All researchers agree that, for sufficiently fast cooling, disks fragment into dense clumps or arclike structures, but there is no universal agreement about whether fast enough cooling to cause fragmentation ever occurs and, if it does, whether any clumps that form will become bound protoplanets.

  1. High thermoelectricpower factor in graphene/hBN devices

    PubMed Central

    Duan, Junxi; Wang, Xiaoming; Lai, Xinyuan; Li, Guohong; Taniguchi, Takashi; Zebarjadi, Mona; Andrei, Eva Y.

    2016-01-01

    Fast and controllable cooling at nanoscales requires a combination of highly efficient passive cooling and active cooling. Although passive cooling in graphene-based devices is quite effective due to graphene’s extraordinary heat conduction, active cooling has not been considered feasible due to graphene’s low thermoelectric power factor. Here, we show that the thermoelectric performance of graphene can be significantly improved by using hexagonal boron nitride (hBN) substrates instead of SiO2. We find the room temperature efficiency of active cooling in the device, as gauged by the power factor times temperature, reaches values as high as 10.35 W⋅m−1⋅K−1, corresponding to more than doubling the highest reported room temperature bulk power factors, 5 W⋅m−1⋅K−1, in YbAl3, and quadrupling the best 2D power factor, 2.5 W⋅m−1⋅K−1, in MoS2. We further show that the Seebeck coefficient provides a direct measure of substrate-induced random potential fluctuations and that their significant reduction for hBN substrates enables fast gate-controlled switching of the Seebeck coefficient polarity for applications in integrated active cooling devices. PMID:27911824

  2. Air-Cooled Turbine Blades with Tip Cap For Improved Leading-Edge Cooling

    NASA Technical Reports Server (NTRS)

    Calvert, Howard F.; Meyer, Andre J., Jr.; Morgan, William C.

    1959-01-01

    An investigation was conducted in a modified turbojet engine to determine the cooling characteristics of the semistrut corrugated air- cooled turbine blade and to compare and evaluate a leading-edge tip cap as a means for improving the leading-edge cooling characteristics of cooled turbine blades. Temperature data were obtained from uncapped air-cooled blades (blade A), cooled blades with the leading-edge tip area capped (blade B), and blades with slanted corrugations in addition to leading-edge tip caps (blade C). All data are for rated engine speed and turbine-inlet temperature (1660 F). A comparison of temperature data from blades A and B showed a leading-edge temperature reduction of about 130 F that could be attributed to the use of tip caps. Even better leading-edge cooling was obtained with blade C. Blade C also operated with the smallest chordwise temperature gradients of the blades tested, but tip-capped blade B operated with the lowest average chordwise temperature. According to a correlation of the experimental data, all three blade types 0 could operate satisfactorily with a turbine-inlet temperature of 2000 F and a coolant flow of 3 percent of engine mass flow or less, with an average chordwise temperature limit of 1400 F. Within the range of coolant flows investigated, however, only blade C could maintain a leading-edge temperature of 1400 F for a turbine-inlet temperature of 2000 F.

  3. Concept of a staged FEL enabled by fast synchrotron radiation cooling of laser-plasma accelerated beam by solenoidal magnetic fields in plasma bubble

    NASA Astrophysics Data System (ADS)

    Seryi, Andrei; Lesz, Zsolt; Andreev, Alexander; Konoplev, Ivan

    2017-03-01

    A novel method for generating GigaGauss solenoidal fields in a laser-plasma bubble, using screw-shaped laser pulses, has been recently presented. Such magnetic fields enable fast synchrotron radiation cooling of the beam emittance of laser-plasma accelerated leptons. This recent finding opens a novel approach for design of laser-plasma FELs or colliders, where the acceleration stages are interleaved with laser-plasma emittance cooling stages. In this concept paper, we present an outline of what a staged plasma-acceleration FEL could look like, and discuss further studies needed to investigate the feasibility of the concept in detail.

  4. Optical Spectra Tuning of All-Glass Photonic Bandgap Fiber Infiltrated with Silver Fast-Ion-Conducting Glasses.

    PubMed

    Konidakis, Ioannis; Pissadakis, Stavros

    2014-08-07

    Silver iodide metaphosphate glasses of the x AgI + (1- x )AgPO₃ family are embedded inside the air capillaries of a commercial silica photonic crystal fiber (PCF) by means of vacuum-assisted infiltration technique. In this paper, we report on tuning the photonic bandgap (PBG) guidance characteristics of the fabricated all-glass photonic bandgap fibers, by varying the composition of the fast-ion-conducting phosphate glass infiltration medium. Doping AgPO₃ metaphosphate glass with AgI significantly alters the PBG guidance patterns in the examined range between 350 and 1750 nm, as it leads to the introduction of numerous additional transmission stop-bands, while affecting scattering dependant losses. The effect of phosphate glass cooling method during sample fabrication on the transmission behavior of the x AgI + (1- x )AgPO₃/PCFs is also considered.

  5. Development of fast cooling pulsed magnets at the Wuhan National High Magnetic Field Center.

    PubMed

    Peng, Tao; Sun, Quqin; Zhao, Jianlong; Jiang, Fan; Li, Liang; Xu, Qiang; Herlach, Fritz

    2013-12-01

    Pulsed magnets with fast cooling channels have been developed at the Wuhan National High Magnetic Field Center. Between the inner and outer sections of a coil wound with a continuous length of CuNb wire, G10 rods with cross section 4 mm × 5 mm were inserted as spacers around the entire circumference, parallel to the coil axis. The free space between adjacent rods is 6 mm. The liquid nitrogen flows freely in the channels between these rods, and in the direction perpendicular to the rods through grooves provided in the rods. For a typical 60 T pulsed magnetic field with pulse duration of 40 ms, the cooling time between subsequent pulses is reduced from 160 min to 35 min. Subsequently, the same technology was applied to a 50 T magnet with 300 ms pulse duration. The cooling time of this magnet was reduced from 480 min to 65 min.

  6. Proposed Advanced Reactor Adaptation of the Standard Review Plan NUREG-0800 Chapter 4 (Reactor) for Sodium-Cooled Fast Reactors and Modular High-Temperature Gas-Cooled Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belles, Randy; Poore, III, Willis P.; Brown, Nicholas R.

    2017-03-01

    This report proposes adaptation of the previous regulatory gap analysis in Chapter 4 (Reactor) of NUREG 0800, Standard Review Plan (SRP) for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR [Light Water Reactor] Edition. The proposed adaptation would result in a Chapter 4 review plan applicable to certain advanced reactors. This report addresses two technologies: the sodium-cooled fast reactor (SFR) and the modular high temperature gas-cooled reactor (mHTGR). SRP Chapter 4, which addresses reactor components, was selected for adaptation because of the possible significant differences in advanced non-light water reactor (non-LWR) technologies compared with the current LWR-basedmore » description in Chapter 4. SFR and mHTGR technologies were chosen for this gap analysis because of their diverse designs and the availability of significant historical design detail.« less

  7. Molecule formation and infrared emission in fast interstellar shocks. I Physical processes

    NASA Technical Reports Server (NTRS)

    Hollenbach, D.; Mckee, C. F.

    1979-01-01

    The paper analyzes the structure of fast shocks incident upon interstellar gas of ambient density from 10 to the 7th per cu cm, while focusing on the problems of formation and destruction of molecules and infrared emission in the cooling, neutral post shock gas. It is noted that such fast shocks initially dissociate almost all preexisting molecules. Discussion covers the physical processes which determine the post shock structure between 10 to the 4 and 10 to the 2 K. It is shown that the chemistry of important molecular coolants H2, CO, OH, and H2O, as well as HD and CH, is reduced to a relatively small set of gas phase and grain surface reactions. Also, the chemistry follows the slow conversion of atomic hydrogen into H2, which primarily occurs on grain surfaces. The dependence of this H2 formation rate on grain and gas temperatures is examined and the survival of grains behind fast shocks is discussed. Post shock heating and cooling rates are calculated and an appropriate, analytic, universal cooling function is developed for molecules other than hydrogen which includes opacities from both the dust and the lines.

  8. Development of a neutronics calculation method for designing commercial type Japanese sodium-cooled fast reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, T.; Shimazu, Y.; Hibi, K.

    2012-07-01

    Under the R and D project to improve the modeling accuracy for the design of fast breeder reactors the authors are developing a neutronics calculation method for designing a large commercial type sodium- cooled fast reactor. The calculation method is established by taking into account the special features of the reactor such as the use of annular fuel pellet, inner duct tube in large fuel assemblies, large core. The Verification and Validation, and Uncertainty Qualification (V and V and UQ) of the calculation method is being performed by using measured data from the prototype FBR Monju. The results of thismore » project will be used in the design and analysis of the commercial type demonstration FBR, known as the Japanese Sodium fast Reactor (JSFR). (authors)« less

  9. Void effect analysis of Pb-208 of fast reactors with modified CANDLE burn-up scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widiawati, Nina, E-mail: nina-widiawati28@yahoo.com; Su’ud, Zaki, E-mail: szaki@fi.itb.ac.id

    Void effect analysis of Pb-208 as coolant of fast reactors with modified candle burn-up scheme has been conducted. Lead cooled fast reactor (LFR) is one of the fourth-generation reactor designs. The reactor is designed with a thermal power output of 500 MWt. Modified CANDLE burn-up scheme allows the reactor to have long life operation by supplying only natural uranium as fuel cycle input. This scheme introducing discrete region, the fuel is initially put in region 1, after one cycle of 10 years of burn up it is shifted to region 2 and region 1 is filled by fresh natural uraniummore » fuel. The reactor is designed for 100 years with 10 regions arranged axially. The results of neutronic calculation showed that the void coefficients ranged from −0.6695443 % at BOC to −0.5273626 % at EOC for 500 MWt reactor. The void coefficients of Pb-208 more negative than Pb-nat. The results showed that the reactors with Pb-208 coolant have better level of safety than Pb-nat.« less

  10. Fast optical cooling of nanomechanical cantilever with the dynamical Zeeman effect.

    PubMed

    Zhang, Jian-Qi; Zhang, Shuo; Zou, Jin-Hua; Chen, Liang; Yang, Wen; Li, Yong; Feng, Mang

    2013-12-02

    We propose an efficient optical electromagnetically induced transparency (EIT) cooling scheme for a cantilever with a nitrogen-vacancy center attached in a non-uniform magnetic field using dynamical Zeeman effect. In our scheme, the Zeeman effect combined with the quantum interference effect enhances the desired cooling transition and suppresses the undesired heating transitions. As a result, the cantilever can be cooled down to nearly the vibrational ground state under realistic experimental conditions within a short time. This efficient optical EIT cooling scheme can be reduced to the typical EIT cooling scheme under special conditions.

  11. KrioBlast TM as a New Technology of Hyper-fast Cryopreservation of Cells and Tissues. Part I. Thermodynamic Aspects and Potential Applications in Reproductive and Regenerative Medicine.

    PubMed

    Katkov, I I; Bolyukh, V F; Sukhikh, G T

    2018-03-01

    Kinetic (dynamic) vitrification is a promising trend in cryopreservation of biological materials because it allows avoiding the formation of lethal intracellular ice and minimizes harmful effects of highly toxic penetrating cryoprotectants. A uniform cooling protocol and the same instruments can be used for practically all types of cells. In modern technologies, the rate of cooling is essentially limited by the Leidenfrost effect. We describe a novel platform for kinetic vitrification of biological materials KrioBlast TM that realizes hyper-fast cooling and allows overcoming the Leidenfrost effect. This opens prospects for creation of a novel technology of cell cryopreservation for reproductive and regenerative medicine.

  12. Numerical investigations of transient heat transfer characteristics and vitrification tendencies in ultra-fast cell cooling processes.

    PubMed

    Jiao, Anjun; Han, Xu; Critser, John K; Ma, Hongbin

    2006-06-01

    During freezing, cells are often damaged directly or indirectly by ice formation. Vitrification is an alternative approach to cryopreservation that avoids ice formation. The common method to achieve vitrification is to use relatively high concentrations of cryoprotectant agents (CPA) in combination with a relatively slow cooling rate. However, high concentrations of CPAs have potentially damaging toxic and/or osmotic effects on cells. Therefore, establishing methods to achieve vitrification with lower concentrations of CPAs through ultra-fast cooling rates would be advantageous in these aspects. These ultra-fast cooling rates can be realized by a cooling system with an ultra-high heat transfer coefficient (h) between the sample and coolant. The oscillating motion heat pipe (OHP), a novel cooling device utilizing the pressure change to excite the oscillation motion of the liquid plugs and vapor bubbles, can significantly increase h and may fulfill this aim. The current investigation was designed to numerically study the effects of different values of h on the transient heat transfer characteristics and vitrification tendencies of the cell suspension during the cooling processes in an ultra-thin straw (100 microm in diameter). The transient temperature distribution, the cooling rate and the volume ratio (x) of the ice quantity to the maximum crystallizable ice of the suspension were calculated. From these numerical results, it is concluded that the ultra-high h (>10(4) W/m2 K) obtained by OHPs could facilitate vitrification by efficiently decreasing x as well as the time to pass through the dangerous temperature region where the maximum ice formation happens. For comparison, OHPs can decrease both of the parameters to less than 20% of those from the widely used open pulled straw methods. Therefore, the OHP method will be a promising approach to improving vitrification tendencies of CPA solutions and could also decrease the required concentration of CPAs for vitrification, both of which are of great importance for the successful cryopreservation of cells by vitrification.

  13. Study on the Effect of water Injection Momentum on the Cooling Effect of Rocket Engine Exhaust Plume

    NASA Astrophysics Data System (ADS)

    Yang, Kan; Qiang, Yanhui; Zhong, Chenghang; Yu, Shaozhen

    2017-10-01

    For the study of water injection momentum factors impact on flow field of the rocket engine tail flame, the numerical computation model of gas-liquid two phase flow in the coupling of high temperature and high speed gas flow and low temperature liquid water is established. The accuracy and reliability of the numerical model are verified by experiments. Based on the numerical model, the relationship between the flow rate and the cooling effect is analyzed by changing the water injection momentum of the water spray pipes. And the effective mathematical expression is obtained. What’s more, by changing the number of the water spray and using small flow water injection, the cooling effect is analyzed to check the application range of the mathematical expressions. The results show that: the impact and erosion of the gas flow field could be reduced greatly by water injection, and there are two parts in the gas flow field, which are the slow cooling area and the fast cooling area. In the fast cooling area, the influence of the water flow momentum and nozzle quantity on the cooling effect can be expressed by mathematical functions without causing bifurcation flow for the mainstream gas. The conclusion provides a theoretical reference for the engineering application.

  14. Heat transfer and material temperature conditions in the leading edge area of impingement-cooled turbine vanes

    NASA Astrophysics Data System (ADS)

    Berg, H. P.; Pfaff, K.; Hennecke, D. K.

    The resultant effects on the cooling effectiveness at the leading edge area of an impingement-cooled turbine vane by varying certain geometrical parameters is described with reference to local internal heat transfer coefficients determined from experiment and temperature calculations. The local heat transfer on the cooling-air side is determined experimentally with the aid of the analogy between heat- and mass transfer. The impingement cooling is provided from an inserted sheet-metal containing a single row of holes. The Reynolds Number and several of the cooling geometry parameters were varied. The results demonstrate the high local resolution of the method of measurement, which allows improved analytical treatment of the leading-edge cooling configuration. These experiments also point to the necessity of not always performing model tests under idealized conditions. This becomes very clear in the case of the tests performed on an application-oriented impingement-cooling configuration like that often encountered in engine manufacture. In conclusion, as an example, temperature calculations are employed to demonstrate the effect on the cooling effectiveness of varying the distances between insert and inner surface of the leading edge. It shows how the effectiveness of the leading edge cooling can be increased by simple geometrical measures, which results in a considerable improvement in service life.

  15. Quench-Induced Stresses in AA2618 Forgings for Impellers: A Multiphysics and Multiscale Problem

    NASA Astrophysics Data System (ADS)

    Chobaut, Nicolas; Saelzle, Peter; Michel, Gilles; Carron, Denis; Drezet, Jean-Marie

    2015-05-01

    In the fabrication of heat-treatable aluminum parts such as AA2618 compressor impellers for turbochargers, solutionizing and quenching are key steps to obtain the required mechanical characteristics. Fast quenching is necessary to avoid coarse precipitation as it reduces the mechanical properties obtained after heat treatment. However, fast quenching induces residual stresses that can cause unacceptable distortions during machining. Furthermore, the remaining residual stresses after final machining can lead to unfavorable stresses in service. Predicting and controlling internal stresses during the whole processing from heat treatment to final machining is therefore of particular interest to prevent negative impacts of residual stresses. This problem is multiphysics because processes such as heat transfer during quenching, precipitation phenomena, thermally induced deformations, and stress generation are interacting and need to be taken into account. The problem is also multiscale as precipitates of nanosize form during quenching at locations where the cooling rate is too low. This precipitation affects the local yield strength of the material and thus impacts the level of macroscale residual stresses. A thermomechanical model accounting for precipitation in a simple but realistic way is presented. Instead of modelling precipitation that occurs during quenching, the model parameters are identified using a limited number of tensile tests achieved after representative interrupted cooling paths in a Gleeble machine. The simulation results are compared with as-quenched residual stresses in a forging measured by neutron diffraction.

  16. Fuel development for gas-cooled fast reactors

    NASA Astrophysics Data System (ADS)

    Meyer, M. K.; Fielding, R.; Gan, J.

    2007-09-01

    The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High-Temperature Reactor (VHTR), as well as actinide burning concepts [A Technology Roadmap for Generation IV Nuclear Energy Systems, US DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, December 2002]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the US and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic 'honeycomb' structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.

  17. Formation of Cool and Warm Jets by Magnetic Flux Emerging from the Solar Chromosphere to Transition Region

    NASA Astrophysics Data System (ADS)

    Yang, Liping; Peter, Hardi; He, Jiansen; Tu, Chuanyi; Wang, Linghua; Zhang, Lei; Yan, Limei

    2018-01-01

    In the solar atmosphere, jets are ubiquitous at various spatial-temporal scales. They are important for understanding the energy and mass transports in the solar atmosphere. According to recent observational studies, the high-speed network jets are likely to be intermittent but continual sources of mass and energy for the solar wind. Here, we conduct a 2D magnetohydrodynamics simulation to investigate the mechanism of these network jets. A combination of magnetic flux emergence and horizontal advection is used to drive the magnetic reconnection in the transition region between a strong magnetic loop and a background open flux. The simulation results show that not only a fast warm jet, much similar to the network jets, is found, but also an adjacent slow cool jet, mostly like classical spicules, is launched. Differing from the fast warm jet driven by magnetic reconnection, the slow cool jet is mainly accelerated by gradients of both thermal pressure and magnetic pressure near the outer border of the mass-concentrated region compressed by the emerging loop. These results provide a different perspective on our understanding of the formation of both the slow cool jets from the solar chromosphere and the fast warm jets from the solar transition region.

  18. Laser cooling of 85Rb atoms to the recoil-temperature limit

    NASA Astrophysics Data System (ADS)

    Huang, Chang; Kuan, Pei-Chen; Lan, Shau-Yu

    2018-02-01

    We demonstrate the laser cooling of 85Rb atoms in a two-dimensional optical lattice. We follow the two-step degenerate Raman sideband cooling scheme [Kerman et al., Phys. Rev. Lett. 84, 439 (2000), 10.1103/PhysRevLett.84.439], where a fast cooling of atoms to an auxiliary state is followed by a slow cooling to a dark state. This method has the advantage of independent control of the heating rate and cooling rate from the optical pumping beam. We operate the lattice at a Lamb-Dicke parameter η =0.45 and show the cooling of spin-polarized 85Rb atoms to the recoil temperature in both dimensions within 2.4 ms with the aid of adiabatic cooling.

  19. Material-based figure of merit for caloric materials

    DOE PAGES

    Griffith, L. D.; Mudryk, Y.; Slaughter, J.; ...

    2018-01-21

    Efficient use of reversible thermal effects in magnetocaloric, electrocaloric, and elastocaloric materials is a promising avenue that can lead to a substantially increased efficiency of refrigeration and heat pumping devices, most importantly those used in household and commercial cooling applications near ambient temperature. A proliferation in caloric materials research has resulted in a wide array of materials where only the isothermal change in entropy in response to a handful of different field strengths over a limited range of temperatures has been evaluated and reported. Given the abundance of such data, there is a clear need for a simple and reliablemore » figure of merit enabling fast screening and down-selection to justify further detailed characterization of those materials systems that hold the greatest promise. Based on the analysis of several well-known materials that exhibit vastly different magnetocaloric effects, the Temperature averaged Entropy Change (TEC) is introduced as a suitable early indicator of the material’s utility for magnetocaloric cooling applications, and its adoption by the caloric community is recommended.« less

  20. Material-based figure of merit for caloric materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffith, L. D.; Mudryk, Y.; Slaughter, J.

    Efficient use of reversible thermal effects in magnetocaloric, electrocaloric, and elastocaloric materials is a promising avenue that can lead to a substantially increased efficiency of refrigeration and heat pumping devices, most importantly those used in household and commercial cooling applications near ambient temperature. A proliferation in caloric materials research has resulted in a wide array of materials where only the isothermal change in entropy in response to a handful of different field strengths over a limited range of temperatures has been evaluated and reported. Given the abundance of such data, there is a clear need for a simple and reliablemore » figure of merit enabling fast screening and down-selection to justify further detailed characterization of those materials systems that hold the greatest promise. Based on the analysis of several well-known materials that exhibit vastly different magnetocaloric effects, the Temperature averaged Entropy Change (TEC) is introduced as a suitable early indicator of the material’s utility for magnetocaloric cooling applications, and its adoption by the caloric community is recommended.« less

  1. Receptivity of Hypersonic Boundary Layers to Acoustic and Vortical Disturbances (Invited)

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2015-01-01

    Boundary-layer receptivity to two-dimensional acoustic and vortical disturbances for hypersonic flows over two-dimensional and axi-symmetric geometries were numerically investigated. The role of bluntness, wall cooling, and pressure gradients on the receptivity and stability were analyzed and compared with the sharp nose cases. It was found that for flows over sharp nose geometries in adiabatic wall conditions the instability waves are generated in the leading-edge region and that the boundary layer is much more receptive to slow acoustic waves as compared to the fast waves. The computations confirmed the stabilizing effect of nose bluntness and the role of the entropy layer in the delay of boundary layer transition. The receptivity coefficients in flows over blunt bodies are orders of magnitude smaller than that for the sharp cone cases. Wall cooling stabilizes the first mode strongly and destabilizes the second mode. However, the receptivity coefficients are also much smaller compared to the adiabatic case. The adverse pressure gradients increased the unstable second mode regions.

  2. Reducing the nucleation barrier in magnetocaloric Heusler alloys by nanoindentation

    NASA Astrophysics Data System (ADS)

    Niemann, R.; Hahn, S.; Diestel, A.; Backen, A.; Schultz, L.; Nielsch, K.; Wagner, M. F.-X.; Fähler, S.

    2016-06-01

    Magnetocaloric materials are promising as solid state refrigerants for more efficient and environmentally friendly cooling devices. The highest effects have been observed in materials that exhibit a first-order phase transition. These transformations proceed by nucleation and growth which lead to a hysteresis. Such irreversible processes are undesired since they heat up the material and reduce the efficiency of any cooling application. In this article, we demonstrate an approach to decrease the hysteresis by locally changing the nucleation barrier. We created artificial nucleation sites and analyzed the nucleation and growth processes in their proximity. We use Ni-Mn-Ga, a shape memory alloy that exhibits a martensitic transformation. Epitaxial films serve as a model system, but their high surface-to-volume ratio also allows for a fast heat transfer which is beneficial for a magnetocaloric regenerator geometry. Nanoindentation is used to create a well-defined defect. We quantify the austenite phase fraction in its proximity as a function of temperature which allows us to determine the influence of the defect on the transformation.

  3. High duty cycle hard soldered kilowatt laser diode arrays

    NASA Astrophysics Data System (ADS)

    Klumel, Genady; Karni, Yoram; Oppenheim, Jacob; Berk, Yuri; Shamay, Moshe; Tessler, Renana; Cohen, Shalom

    2010-02-01

    High-brightness laser diode arrays operating at a duty cycle of 10% - 20% are in ever-increasing demand for the optical pumping of solid state lasers and directed energy applications. Under high duty-cycle operation at 10% - 20%, passive (conductive) cooling is of limited use, while micro-coolers using de-ionized cooling water can considerably degrade device reliability. When designing and developing actively-cooled collimated laser diode arrays for high duty cycle operation, three main problems should be carefully addressed: an effective local and total heat removal, a minimization of packaging-induced and operational stresses, and high-precision fast axis collimation. In this paper, we present a novel laser diode array incorporating a built-in tap water cooling system, all-hard-solder bonded assembly, facet-passivated high-power 940 nm laser bars and tight fast axis collimation. By employing an appropriate layout of water cooling channels, careful choice of packaging materials, proper design of critical parts, and active optics alignment, we have demonstrated actively-cooled collimated laser diode arrays with extended lifetime and reliability, without compromising their efficiency, optical power density, brightness or compactness. Among the key performance benchmarks achieved are: 150 W/bar optical peak power at 10% duty cycle, >50% wallplug efficiency and <1° collimated fast axis divergence. A lifetime of >0.5 Ghots with <2% degradation has been experimentally proven. The laser diode arrays have also been successfully tested under harsh environmental conditions, including thermal cycling between -20°C and 40°C and mechanical shocks at 500g acceleration. The results of both performance and reliability testing bear out the effectiveness and robustness of the manufacturing technology for high duty-cycle laser arrays.

  4. Test case specifications for coupled neutronics-thermal hydraulics calculation of Gas-cooled Fast Reactor

    NASA Astrophysics Data System (ADS)

    Osuský, F.; Bahdanovich, R.; Farkas, G.; Haščík, J.; Tikhomirov, G. V.

    2017-01-01

    The paper is focused on development of the coupled neutronics-thermal hydraulics model for the Gas-cooled Fast Reactor. It is necessary to carefully investigate coupled calculations of new concepts to avoid recriticality scenarios, as it is not possible to ensure sub-critical state for a fast reactor core under core disruptive accident conditions. Above mentioned calculations are also very suitable for development of new passive or inherent safety systems that can mitigate the occurrence of the recriticality scenarios. In the paper, the most promising fuel material compositions together with a geometry model are described for the Gas-cooled fast reactor. Seven fuel pin and fuel assembly geometry is proposed as a test case for coupled calculation with three different enrichments of fissile material in the form of Pu-UC. The reflective boundary condition is used in radial directions of the test case and vacuum boundary condition is used in axial directions. During these condition, the nuclear system is in super-critical state and to achieve a stable state (which is numerical representation of operational conditions) it is necessary to decrease the reactivity of the system. The iteration scheme is proposed, where SCALE code system is used for collapsing of a macroscopic cross-section into few group representation as input for coupled code NESTLE.

  5. Performance Investigation of a Solar Heat Driven Adsorption Chiller under Two Different Climatic Conditions

    NASA Astrophysics Data System (ADS)

    Choudhury, Biplab; Chatterjee, Pradip Kumar; Habib, Khairul; Saha, Bidyut Baran

    2018-06-01

    The demand for cooling, especially in the developing economies, is rising at a fast rate. Fast-depleting sources of fossil fuel and environmental concerns necessitate looking for alternative cooling solutions. Solar heat driven adsorption based cooling cycles are environmentally friendly due to their use of natural refrigerants and the thermal compression process. In this paper, a performance simulation study of a basic two-bed solar adsorption chiller has been performed through a transient model for two different climatic locations in India. Effect of operating temperatures and cycle time on the chiller performance has been studied. It is observed that the solar hot water temperature obtained in the composite climate of Delhi (28.65°N, 77.25°E) can run the basic adsorption cooling cycle efficiently throughout the year. Whereas, the monsoon months of July and August in the warm and humid climate of Durgapur (23.48°N, 87.32°E) are unable to supply the required driving heat.

  6. Nucleation and growth of lead oxide particles in liquid lead-bismuth eutectic.

    PubMed

    Gladinez, Kristof; Rosseel, Kris; Lim, Jun; Marino, Alessandro; Heynderickx, Geraldine; Aerts, Alexander

    2017-10-18

    Liquid lead-bismuth eutectic (LBE) is an important candidate to become the primary coolant of future, generation IV, nuclear fast reactors and Accelerator Driven System (ADS) concepts. One of the main challenges with the use of LBE as a coolant is to avoid its oxidation which results in solid lead oxide (PbO) precipitation. The chemical equilibria governing PbO formation are well understood. However, insufficient kinetic information is currently available for the development of LBE-based nuclear technology. Here, we report the results of experiments in which the nucleation, growth and dissolution of PbO in LBE during temperature cycling are measured by monitoring dissolved oxygen using potentiometric oxygen sensors. The metastable region, above which PbO nucleation can occur, has been determined under conditions relevant for the operation of LBE cooled nuclear systems and was found to be independent of setup geometry and thus thought to be widely applicable. A kinetic model to describe formation and dissolution of PbO particles in LBE is proposed, based on Classical Nucleation Theory (CNT) combined with mass transfer limited growth and dissolution. This model can accurately predict the experimentally observed changes in oxygen concentration due to nucleation, growth and dissolution of PbO, using the effective interfacial energy of a PbO nucleus in LBE as a fitting parameter. The results are invaluable to evaluate the consequences of oxygen ingress in LBE cooled nuclear systems under normal operating and accidental conditions and form the basis for the development of cold trap technology to avoid PbO formation in the primary reactor circuit.

  7. Development of Low Carbon Niobium Bearing High Strength F-B Dual Phase Steel with High Hole Expansion Property

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Xia, Ming-sheng; Xiong, Zi-liu; Du, Yan-bing; Qiao, Zhi-ming; Zhang, Hong-bo

    In the study a low carbon niobium bearing high strength F-B dual phase automobile steel with high hole expansion property has been investigated. Steels of different chemical composition have been investigated by simulation experiments of controlled rolling and cooling process to study the influences of chemical elements, especially for C,Nb and Ti, and cooling pattern on the mechanical properties, flangeability and microstructure of strips. So-called 3-stages cooling pattern was adopted in simulation experiments, combining ultra fast cooling in first stage, air cooling in middle stage and fast cooling in the last stage, and at the end of run-out table the temperature of rolled pieces drop to below Bs point. Optical microstructure and SEM morphology have been observed. Results indicate that it is possible to obtain dual phase microstructure of polygonal ferrite plus bainite in adopting 3-stages cooling pattern. The low temperature coiling method using 3-step controlled cooling pattern after hot rolling is effective to produce low carbon Nb bearing steel with high balance of strength-ductility-flangeability, in addition, higher carbon content of steel tend to be detrimental to flangeability of steel, due to much carbide precipitation at ferrite boundary. Based on the results of simulation experiments mill trial has been carried out and hot rolled high strength steel with tensile strength higher as 600Mpa and hole expansion ratio higher as 100% has been developed successfully.

  8. Integrals for IBS and beam cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burov, A.; /Fermilab

    Simulation of beam cooling usually requires performing certain integral transformations every time step or so, which is a significant burden on the CPU. Examples are the dispersion integrals (Hilbert transforms) in the stochastic cooling, wake fields and IBS integrals. An original method is suggested for fast and sufficiently accurate computation of the integrals. This method is applied for the dispersion integral. Some methodical aspects of the IBS analysis are discussed.

  9. Integrals for IBS and Beam Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burov, A.

    Simulation of beam cooling usually requires performing certain integral transformations every time step or so, which is a significant burden on the CPU. Examples are the dispersion integrals (Hilbert transforms) in the stochastic cooling, wake fields and IBS integrals. An original method is suggested for fast and sufficiently accurate computation of the integrals. This method is applied for the dispersion integral. Some methodical aspects of the IBS analysis are discussed.

  10. Pre-Licensing Evaluation of Legacy SFR Metallic Fuel Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yacout, A. M.; Billone, M. C.

    2016-09-16

    The US sodium cooled fast reactor (SFR) metallic fuel performance data that are of interest to advanced fast reactors applications, can be attributed mostly to the Integral Fast Reactor (IFR) program between 1984 and 1994. Metallic fuel data collected prior to the IFR program were associated with types of fuel that are not of interest to future advanced reactors deployment (e.g., previous U-Fissium alloy fuel). The IFR fuels data were collected from irradiation of U-Zr based fuel alloy, with and without Pu additions, and clad in different types of steels, including HT9, D9, and 316 stainless-steel. Different types of datamore » were generated during the program, and were based on the requirements associated with the DOE Advanced Liquid Metal Cooled Reactor (ALMR) program.« less

  11. Study of laser cooling in deep optical lattice: two-level quantum model

    NASA Astrophysics Data System (ADS)

    Prudnikov, O. N.; Il'enkov, R. Ya.; Taichenachev, A. V.; Yudin, V. I.; Rasel, E. M.

    2018-01-01

    We study a possibility of laser cooling of 24Mg atoms in deep optical lattice formed by intense off-resonant laser field in a presence of cooling field resonant to narrow (3s3s) 1 S 0 → (3s3p)3 P 1 (λ = 457 nm) optical transition. For description of laser cooling with taking into account quantum recoil effects we consider two quantum models. The first one is based on direct numerical solution of quantum kinetic equation for atom density matrix and the second one is simplified model based on decomposition of atom density matrix over vibration states in the lattice wells. We search cooling field intensity and detuning for minimum cooling energy and fast laser cooling.

  12. Heat transport in an anharmonic crystal

    NASA Astrophysics Data System (ADS)

    Acharya, Shiladitya; Mukherjee, Krishnendu

    2018-04-01

    We study transport of heat in an ordered, anharmonic crystal in the form of slab geometry in three dimensions. Apart from attaching baths of Langevin type to two extreme surfaces, we also attach baths of same type to the intermediate surfaces of the slab. Since the crystal is uninsulated, it exchanges energy with the intermediate heat baths. We find that both Fourier’s law of heat conduction and the Newton’s law of cooling hold to leading order in anharmonic coupling. The leading behavior of the temperature profile is exponentially falling from high to low temperature surface of the slab. As the anharmonicity increases, profiles fall more below the harmonic one in the log plot. In the thermodynamic limit thermal conductivity remains independent of the environment temperature and its leading order anharmonic contribution is linearly proportional to the temperature change between the two extreme surfaces of the slab. A fast crossover from one-dimensional (1D) to three-dimensional (3D) behavior of the thermal conductivity is observed in the system.

  13. Qualification of Simulation Software for Safety Assessment of Sodium Cooled Fast Reactors. Requirements and Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nicholas R.; Pointer, William David; Sieger, Matt

    2016-04-01

    The goal of this review is to enable application of codes or software packages for safety assessment of advanced sodium-cooled fast reactor (SFR) designs. To address near-term programmatic needs, the authors have focused on two objectives. First, the authors have focused on identification of requirements for software QA that must be satisfied to enable the application of software to future safety analyses. Second, the authors have collected best practices applied by other code development teams to minimize cost and time of initial code qualification activities and to recommend a path to the stated goal.

  14. Investigations on the heat transport capability of a cryogenic oscillating heat pipe and its application in achieving ultra-fast cooling rates for cell vitrification cryopreservation☆

    PubMed Central

    Han, Xu; Ma, Hongbin; Jiao, Anjun; Critser, John K.

    2010-01-01

    Theoretically, direct vitrification of cell suspensions with relatively low concentrations (~1 M) of permeating cryoprotective agents (CPA) is suitable for cryopreservation of almost all cell types and can be accomplished by ultra-fast cooling rates that are on the order of 106–7 K/min. However, the methods and devices currently available for cell cryopreservation cannot achieve such high cooling rates. In this study, we constructed a novel cryogenic oscillating heat pipe (COHP) using liquid nitrogen as its working fluid and investigated its heat transport capability to assess its application for achieving ultra-fast cooling rates for cell cryopreservation. The experimental results showed that the apparent heat transfer coefficient of the COHP can reach 2 × 105 W/m2·K, which is two orders of the magnitude higher than traditional heat pipes. Theoretical analyzes showed that the average local heat transfer coefficient in the thin film evaporation region of the COHP can reach 1.2 × 106 W/m2·K, which is approximately 103 times higher than that achievable with standard pool-boiling approaches. Based on these results, a novel device design applying the COHP and microfabrication techniques is proposed and its efficiency for cell vitrification is demonstrated through numerical simulation. The estimated average cooling rates achieved through this approach is 106–7 K/min, which is much faster than the currently available methods and sufficient for achieving vitrification with relatively low concentrations of CPA. PMID:18430413

  15. Investigations on the heat transport capability of a cryogenic oscillating heat pipe and its application in achieving ultra-fast cooling rates for cell vitrification cryopreservation.

    PubMed

    Han, Xu; Ma, Hongbin; Jiao, Anjun; Critser, John K

    2008-06-01

    Theoretically, direct vitrification of cell suspensions with relatively low concentrations ( approximately 1 M) of permeating cryoprotective agents (CPA) is suitable for cryopreservation of almost all cell types and can be accomplished by ultra-fast cooling rates that are on the order of 10(6-7) K/min. However, the methods and devices currently available for cell cryopreservation cannot achieve such high cooling rates. In this study, we constructed a novel cryogenic oscillating heat pipe (COHP) using liquid nitrogen as its working fluid and investigated its heat transport capability to assess its application for achieving ultra-fast cooling rates for cell cryopreservation. The experimental results showed that the apparent heat transfer coefficient of the COHP can reach 2 x 10(5) W/m(2).K, which is two orders of the magnitude higher than traditional heat pipes. Theoretical analyzes showed that the average local heat transfer coefficient in the thin film evaporation region of the COHP can reach 1.2 x 10(6) W/m(2).K, which is approximately 10(3) times higher than that achievable with standard pool-boiling approaches. Based on these results, a novel device design applying the COHP and microfabrication techniques is proposed and its efficiency for cell vitrification is demonstrated through numerical simulation. The estimated average cooling rates achieved through this approach is 10(6-7)K/min, which is much faster than the currently available methods and sufficient for achieving vitrification with relatively low concentrations of CPA.

  16. High performance infrared fast cooled detectors for missile applications

    NASA Astrophysics Data System (ADS)

    Reibel, Yann; Espuno, Laurent; Taalat, Rachid; Sultan, Ahmad; Cassaigne, Pierre; Matallah, Noura

    2016-05-01

    SOFRADIR was selected in the late 90's for the production of 320×256 MW detectors for major European missile programs. This experience has established our company as a key player in the field of missile programs. SOFRADIR has since developed a vast portfolio of lightweight, compact and high performance JT-based solutions for missiles. ALTAN is a 384x288 Mid Wave infrared detector with 15μm pixel pitch, and is offered in a miniature ultra-fast Joule- Thomson cooled Dewar. Since Sofradir offers both Indium Antimonide (InSb) and Mercury Cadmium Telluride technologies (MCT), we are able to deliver the detectors best suited to customers' needs. In this paper we are discussing different figures of merit for very compact and innovative JT-cooled detectors and are highlighting the challenges for infrared detection technologies.

  17. A feasibility study of heat-pipe-cooled leading edges for hypersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Silverstein, C. C.

    1971-01-01

    A theoretical study of the use of heat pipe structures for cooling the leading edges of hypersonic cruise aircraft was carried out over a Mach number range of 6 to 12. Preliminary design studies showed that a heat pipe cooling structure with a 33-in. chordwise length could maintain the maximum temperature of a 65 deg sweepback wing with a 0.5-in. leading edge radius below 1600 F during cruise at Mach 8. A few relatively minor changes in the steady-state design of the structure were found necessary to insure satisfactory cooling during the climb to cruise speed and altitude. It was concluded that heat pipe cooling is an attractive, feasible technique for limiting leading edge temperatures of hypersonic cruise aircraft.

  18. Temperature Resistant Fiber Bragg Gratings for On-Line and Structural Health Monitoring of the Next-Generation of Nuclear Reactors.

    PubMed

    Laffont, Guillaume; Cotillard, Romain; Roussel, Nicolas; Desmarchelier, Rudy; Rougeault, Stéphane

    2018-06-02

    The harsh environment associated with the next generation of nuclear reactors is a great challenge facing all new sensing technologies to be deployed for on-line monitoring purposes and for the implantation of SHM methods. Sensors able to resist sustained periods at very high temperatures continuously as is the case within sodium-cooled fast reactors require specific developments and evaluations. Among the diversity of optical fiber sensing technologies, temperature resistant fiber Bragg gratings are increasingly being considered for the instrumentation of future nuclear power plants, especially for components exposed to high temperature and high radiation levels. Research programs are supporting the developments of optical fiber sensors under mixed high temperature and radiative environments leading to significant increase in term of maturity. This paper details the development of temperature-resistant wavelength-multiplexed fiber Bragg gratings for temperature and strain measurements and their characterization for on-line monitoring into the liquid sodium used as a coolant for the next generation of fast reactors.

  19. Stacking with stochastic cooling

    NASA Astrophysics Data System (ADS)

    Caspers, Fritz; Möhl, Dieter

    2004-10-01

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 105 the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some considerations to the 'azimuthal' schemes.

  20. Hot-electron transfer in quantum-dot heterojunction films.

    PubMed

    Grimaldi, Gianluca; Crisp, Ryan W; Ten Brinck, Stephanie; Zapata, Felipe; van Ouwendorp, Michiko; Renaud, Nicolas; Kirkwood, Nicholas; Evers, Wiel H; Kinge, Sachin; Infante, Ivan; Siebbeles, Laurens D A; Houtepen, Arjan J

    2018-06-13

    Thermalization losses limit the photon-to-power conversion of solar cells at the high-energy side of the solar spectrum, as electrons quickly lose their energy relaxing to the band edge. Hot-electron transfer could reduce these losses. Here, we demonstrate fast and efficient hot-electron transfer between lead selenide and cadmium selenide quantum dots assembled in a quantum-dot heterojunction solid. In this system, the energy structure of the absorber material and of the electron extracting material can be easily tuned via a variation of quantum-dot size, allowing us to tailor the energetics of the transfer process for device applications. The efficiency of the transfer process increases with excitation energy as a result of the more favorable competition between hot-electron transfer and electron cooling. The experimental picture is supported by time-domain density functional theory calculations, showing that electron density is transferred from lead selenide to cadmium selenide quantum dots on the sub-picosecond timescale.

  1. Natural Convection Heat Transfer in a Rectangular Liquid Metal Pool With Bottom Heating and Top Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Il S.; Yu, Yong H.; Son, Hyoung M.

    2006-07-01

    An experimental study is performed to investigate the natural convection heat transfer characteristics with subcooled coolant to create engineering database for basic applications in a lead alloy cooled reactor. Tests are performed in the ALTOS (Applied Liquid-metal Thermal Operation Study) apparatus as part of MITHOS (Metal Integrated Thermo Hydrodynamic Operation System). A relationship is determined between the Nusselt number Nu and the Rayleigh number Ra in the liquid metal rectangular pool. Results are compared with correlations and experimental data in the literature. Given the similar Ra condition, the present test results for Nu of the liquid metal pool with topmore » subcooling are found to be similar to those predicted by the existing correlations or experiments. The current test results are utilized to develop natural convection heat transfer correlations applicable to low Prandtl number Pr fluids that are heated from below and cooled by the external coolant above. Results from this study are slated to be used in designing BORIS (Battery Optimized Reactor Integral System), a small lead cooled modular fast reactor for deployment at remote sites cycled with MOBIS (Modular Optimized Brayton Integral System) for electricity generation, tied with NAVIS (Naval Application Vessel Integral System) for ship propulsion, joined with THAIS (Thermochemical Hydrogen Acquisition Integral System) for hydrogen production, and coupled with DORIS (Desalination Optimized Reactor Integral System) for seawater desalination. Tests are performed with Wood's metal (Pb-Bi-Sn-Cd) filling a rectangular pool whose lower surface is heated and upper surface cooled by forced convection of water. The test section is 20 cm long, 11.3 cm high and 15 cm wide. The simulant has a melting temperature of 78 deg. C. The constant temperature and heat flux condition was realized for the bottom heating once the steady state had been met. The test parameters include the heated bottom surface temperature of the liquid metal pool, the input power to the bottom surface of the section, and the coolant temperature. (authors)« less

  2. Effects of cooling rate and Al on MnS formation in medium-carbon non-quenched and tempered steels

    NASA Astrophysics Data System (ADS)

    Li, Meng-long; Wang, Fu-ming; Li, Chang-rong; Yang, Zhan-bing; Meng, Qing-yong; Tao, Su-fen

    2015-06-01

    The effect of Al on the morphology of MnS in medium-carbon non-quenched and tempered steel was investigated at three different cooling rates of 0.24, 0.43, and 200°C·s-1. The formation mechanisms of three types of MnS were elucidated based on phase diagram information combined with crystal growth models. The morphology of MnS is governed by the precipitation mode and the growth conditions. A monotectic reaction and subsequent fast solidification lead to globular Type I MnS. Type II MnS inclusions with different morphological characteristics form as a result of a eutectic reaction followed by the growth in the Fe matrix. Type III MnS presents a divorced eutectic morphology. At the cooling rate of 0.24°C·s-1, the precipitation of dispersed Type III MnS is significantly enhanced by the addition of 0.044wt% acid-soluble Al (Als), while Type II MnS clusters prefer to form in steels with either 0.034wt% or 0.052wt% Als. At the relatively higher cooling rates of 200°C·s-1 and 0.43°C·s-1, the formation of Type I and Type II MnS inclusions is promoted, and the influence of Al is negligible. The results of this work are expected to be employed in practice to improve the mechanical properties of non-quenched and tempered steels.

  3. Research Program of a Super Fast Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oka, Yoshiaki; Ishiwatari, Yuki; Liu, Jie

    2006-07-01

    Research program of a supercritical-pressure light water cooled fast reactor (Super Fast Reactor) is funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology) in December 2005 as one of the research programs of Japanese NERI (Nuclear Energy Research Initiative). It consists of three programs. (1) development of Super Fast Reactor concept; (2) thermal-hydraulic experiments; (3) material developments. The purpose of the concept development is to pursue the advantage of high power density of fast reactor over thermal reactors to achieve economic competitiveness of fast reactor for its deployment without waiting for exhausting uranium resources. Design goal is notmore » breeding, but maximizing reactor power by using plutonium from spent LWR fuel. MOX will be the fuel of the Super Fast Reactor. Thermal-hydraulic experiments will be conducted with HCFC22 (Hydro chlorofluorocarbons) heat transfer loop of Kyushu University and supercritical water loop at JAEA. Heat transfer data including effect of grid spacers will be taken. The critical flow and condensation of supercritical fluid will be studied. The materials research includes the development and testing of austenitic stainless steel cladding from the experience of PNC1520 for LMFBR. Material for thermal insulation will be tested. SCWR (Supercritical-Water Cooled Reactor) of GIF (Generation-4 International Forum) includes both thermal and fast reactors. The research of the Super Fast Reactor will enhance SCWR research and the data base. The research period will be until March 2010. (authors)« less

  4. Feasibility and operating costs of an air cycle for CCHP in a fast food restaurant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Blanco, Horacio; Vineyard, Edward

    This work considers the possibilities of an air-based Brayton cycle to provide the power, heating and cooling needs of fast-food restaurants. A model of the cycle based on conventional turbomachinery loss coefficients is formulated. The heating, cooling and power capabilities of the cycle are extracted from simulation results. Power and thermal loads for restaurants in Knoxville, TN and in International Falls, MN, are considered. It is found that the cycle can meet the loads by setting speed and mass flow-rate apportionment between the power and cooling functional sections. The associated energy costs appear elevated when compared to the cost ofmore » operating individual components or a more conventional, absorption-based CHP system. Lastly, a first-order estimate of capital investments is provided. Suggestions for future work whereby the operational costs could be reduced are given in the conclusions.« less

  5. Feasibility and operating costs of an air cycle for CCHP in a fast food restaurant

    DOE PAGES

    Perez-Blanco, Horacio; Vineyard, Edward

    2016-05-06

    This work considers the possibilities of an air-based Brayton cycle to provide the power, heating and cooling needs of fast-food restaurants. A model of the cycle based on conventional turbomachinery loss coefficients is formulated. The heating, cooling and power capabilities of the cycle are extracted from simulation results. Power and thermal loads for restaurants in Knoxville, TN and in International Falls, MN, are considered. It is found that the cycle can meet the loads by setting speed and mass flow-rate apportionment between the power and cooling functional sections. The associated energy costs appear elevated when compared to the cost ofmore » operating individual components or a more conventional, absorption-based CHP system. Lastly, a first-order estimate of capital investments is provided. Suggestions for future work whereby the operational costs could be reduced are given in the conclusions.« less

  6. Fast Quasi-Adiabatic Gas Cooling: An Experiment Revisited

    ERIC Educational Resources Information Center

    Oss, S.; Gratton, L. M.; Calza, G.; Lopez-Arias, T.

    2012-01-01

    The well-known experiment of the rapid expansion and cooling of the air contained in a bottle is performed with a rapidly responsive, yet very cheap thermometer. The adiabatic, low temperature limit is approached quite closely and measured with our apparatus. A straightforward theoretical model for this process is also presented and discussed.…

  7. The Potential of Different Concepts of Fast Breeder Reactor for the French Fleet Renewal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massara, Simone; Tetart, Philippe; Lecarpentier, David

    2006-07-01

    The performances of different concepts of Fast Breeder Reactor (Na-cooled, He-cooled and Pb-cooled FBR) for the current French fleet renewal are analyzed in the framework of a transition scenario to a 100% FBR fleet at the end of the 21. century. Firstly, the modeling of these three FBR types by means of a semi-analytical approach in TIRELIRE - STRATEGIE, the EDF fuel cycle simulation code, is presented, together with some validation elements against ERANOS, the French reference code system for neutronic FBR analysis (CEA). Afterwards, performances comparisons are made in terms of maximum deployable power, natural uranium consumption and wastemore » production. The results show that the FBR maximum deployable capacity, independently from the FBR technology, is highly sensitive to the fuel cycle options, like the spent nuclear fuel cooling time or the Minor Actinides management strategy. Thus, some of the key parameters defining the dynamic of FBR deployment are highlighted, to inform the orientation of R and D in the development and optimization of these systems. (authors)« less

  8. Preliminary Design Study of Medium Sized Gas Cooled Fast Reactor with Natural Uranium as Fuel Cycle Input

    NASA Astrophysics Data System (ADS)

    Meriyanti, Su'ud, Zaki; Rijal, K.; Zuhair, Ferhat, A.; Sekimoto, H.

    2010-06-01

    In this study a fesibility design study of medium sized (1000 MWt) gas cooled fast reactors which can utilize natural uranium as fuel cycle input has been conducted. Gas Cooled Fast Reactor (GFR) is among six types of Generation IV Nuclear Power Plants. GFR with its hard neuron spectrum is superior for closed fuel cycle, and its ability to be operated in high temperature (850° C) makes various options of utilizations become possible. To obtain the capability of consuming natural uranium as fuel cycle input, modified CANDLE burn-up scheme[1-6] is adopted this GFR system by dividing the core into 10 parts of equal volume axially. Due to the limitation of thermal hydraulic aspects, the average power density of the proposed design is selected about 70 W/cc. As an optimization results, a design of 1000 MWt reactors which can be operated 10 years without refueling and fuel shuffling and just need natural uranium as fuel cycle input is discussed. The average discharge burn-up is about 280 GWd/ton HM. Enough margin for criticallity was obtained for this reactor.

  9. Partial Reflection and Trapping of a Fast-mode Wave in Solar Coronal Arcade Loops

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Innes, D. E.

    2015-04-01

    We report on the first direct observation of a fast-mode wave propagating along and perpendicular to cool (171 Å) arcade loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA). The wave was associated with an impulsive/compact flare near the edge of a sunspot. The EUV wavefront expanded radially outward from the flare center and decelerated in the corona from 1060 to 760 km s-1 within ˜3-4 minutes. Part of the EUV wave propagated along a large-scale arcade of cool loops and was partially reflected back to the flare site. The phase speed of the wave was about 1450 km s-1, which is interpreted as a fast-mode wave. A second overlying loop arcade, orientated perpendicular to the cool arcade, is heated and becomes visible in the AIA hot channels. These hot loops sway in time with the EUV wave, as it propagated to and fro along the lower loop arcade. We suggest that an impulsive energy release at one of the footpoints of the arcade loops causes the onset of an EUV shock wave that propagates along and perpendicular to the magnetic field.

  10. Pre-test analysis of protected loss of primary pump transients in CIRCE-HERO facility

    NASA Astrophysics Data System (ADS)

    Narcisi, V.; Giannetti, F.; Del Nevo, A.; Tarantino, M.; Caruso, G.

    2017-11-01

    In the frame of LEADER project (Lead-cooled European Advanced Demonstration Reactor), a new configuration of the steam generator for ALFRED (Advanced Lead Fast Reactor European Demonstrator) was proposed. The new concept is a super-heated steam generator, double wall bayonet tube type with leakage monitoring [1]. In order to support the new steam generator concept, in the framework of Horizon 2020 SESAME project (thermal hydraulics Simulations and Experiments for the Safety Assessment of MEtal cooled reactors), the ENEA CIRCE pool facility will be refurbished to host the HERO (Heavy liquid mEtal pRessurized water cOoled tubes) test section to investigate a bundle of seven full scale bayonet tubes in ALFRED-like thermal hydraulics conditions. The aim of this work is to verify thermo-fluid dynamic performance of HERO during the transition from nominal to natural circulation condition. The simulations have been performed with RELAP5-3D© by using the validated geometrical model of the previous CIRCE-ICE test section [2], in which the preceding heat exchanger has been replaced by the new bayonet bundle model. Several calculations have been carried out to identify thermal hydraulics performance in different steady state conditions. The previous calculations represent the starting points of transient tests aimed at investigating the operation in natural circulation. The transient tests consist of the protected loss of primary pump, obtained by reducing feed-water mass flow to simulate the activation of DHR (Decay Heat Removal) system, and of the loss of DHR function in hot conditions, where feed-water mass flow rate is absent. According to simulations, in nominal conditions, HERO bayonet bundle offers excellent thermal hydraulic behavior and, moreover, it allows the operation in natural circulation.

  11. Cooling rate dependence of the glass transition at free surfaces

    NASA Astrophysics Data System (ADS)

    Streit-Nierobisch, S.; Gutt, C.; Paulus, M.; Tolan, M.

    2008-01-01

    In situ x-ray reflectivity measurements are used to determine the cooling rate dependent freezing of capillary waves on the oligomer poly(propylene glycol). Only above the glass transition temperature TG can the surface roughness σ be described by the capillary wave model for simple liquids, whereas the surface fluctuations are frozen-in at temperatures below TG . As the state of a glass forming liquid strongly depends on its thermal history, this effect occurs for fast cooling rates already at a higher temperature than for slow cooling. For the fastest cooling rates a very large shift of TG up to 240K compared to the bulk value of 196K was observed.

  12. MOLTEN PLUTONIUM FUELED FAST BREEDER REACTOR

    DOEpatents

    Kiehn, R.M.; King, L.D.P.; Peterson, R.E.; Swickard, E.O. Jr.

    1962-06-26

    A description is given of a nuclear fast reactor fueled with molten plutonium containing about 20 kg of plutonium in a tantalum container, cooled by circulating liquid sodium at about 600 to 650 deg C, having a large negative temperature coefficient of reactivity, and control rods and movable reflector for criticality control. (AEC)

  13. A simplified model of a mechanical cooling tower with both a fill pack and a coil

    NASA Astrophysics Data System (ADS)

    Van Riet, Freek; Steenackers, Gunther; Verhaert, Ivan

    2017-11-01

    Cooling accounts for a large amount of the global primary energy consumption in buildings and industrial processes. A substantial part of this cooling demand is produced by mechanical cooling towers. Simulations benefit the sizing and integration of cooling towers in overall cooling networks. However, for these simulations fast-to-calculate and easy-to-parametrize models are required. In this paper, a new model is developed for a mechanical draught cooling tower with both a cooling coil and a fill pack. The model needs manufacturers' performance data at only three operational states (at varying air and water flow rates) to be parametrized. The model predicts the cooled, outgoing water temperature. These predictions were compared with experimental data for a wide range of operational states. The model was able to predict the temperature with a maximum absolute error of 0.59°C. The relative error of cooling capacity was mostly between ±5%.

  14. MYRRHA: A multipurpose nuclear research facility

    NASA Astrophysics Data System (ADS)

    Baeten, P.; Schyns, M.; Fernandez, Rafaël; De Bruyn, Didier; Van den Eynde, Gert

    2014-12-01

    MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a multipurpose research facility currently being developed at SCK•CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level to allow operation feedback. As a flexible irradiation facility, the MYRRHA research facility will be able to work in both critical as subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by lead-bismuth eutectic and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) GEN IV concept. MYRRHA will also contribute to the study of partitioning and transmutation of high-level waste. Transmutation of minor actinides (MA) can be completed in an efficient way in fast neutron spectrum facilities, so both critical reactors and subcritical ADS are potential candidates as dedicated transmutation systems. However critical reactors heavily loaded with fuel containing large amounts of MA pose reactivity control problems, and thus safety problems. A subcritical ADS operates in a flexible and safe manner, even with a core loading containing a high amount of MA leading to a high transmutation rate. In this paper, the most recent developments in the design of the MYRRHA facility are presented.

  15. Changes in copper sulfate crystal habit during cooling crystallization

    NASA Astrophysics Data System (ADS)

    Giulietti, M.; Seckler, M. M.; Derenzo, S.; Valarelli, J. V.

    1996-09-01

    The morphology of technical grade copper(II) sulfate pentahydrate crystals produced from batch cooling experiments in the temperature range of 70 to 30°C is described and correlated with the process conditions. A slow linear cooling rate (batch time of 90 min) predominantly caused the appearance of well-formed crystals. Exponential cooling (120 min) resulted in the additional formation of agglomerates and twins. The presence of seeds for both cooling modes led to round crystals, agglomerates and twins. Fast linear cooling (15 min) gave rise to a mixture of the former types. Broken crystals and adhering fragments were often found. Growth zoning was pronounced in seeded and linear cooling experiments. Fluid inclusions were always found and were more pronounced for larger particles. The occurrence of twinning, zoning and fluid inclusions was qualitatively explained in terms of fundamental principles.

  16. Heat pipe cooling for scramjet engines

    NASA Technical Reports Server (NTRS)

    Silverstein, Calvin C.

    1986-01-01

    Liquid metal heat pipe cooling systems have been investigated for the combustor liner and engine inlet leading edges of scramjet engines for a missile application. The combustor liner is cooled by a lithium-TZM molybdenum annular heat pipe, which incorporates a separate lithium reservoir. Heat is initially absorbed by the sensible thermal capacity of the heat pipe and liner, and subsequently by the vaporization and discharge of lithium to the atmosphere. The combustor liner temperature is maintained at 3400 F or less during steady-state cruise. The engine inlet leading edge is fabricated as a sodium-superalloy heat pipe. Cooling is accomplished by radiation of heat from the aft surface of the leading edge to the atmosphere. The leading edge temperature is limited to 1700 F or less. It is concluded that heat pipe cooling is a viable method for limiting scramjet combustor liner and engine inlet temperatures to levels at which structural integrity is greatly enhanced.

  17. Current leads cooling for the series-connected hybrid magnets

    NASA Astrophysics Data System (ADS)

    Bai, Hongyu; Marshall, William S.; Bird, Mark D.; Gavrilin, Andrew V.; Weijers, Hubertus W.

    2014-01-01

    Two Series-Connected Hybrid (SCH) magnets are being developed at the National High Magnetic Field Laboratory. Both SCH magnets combine a set of resistive Florida-Bitter coils with a superconducting outsert coil constructed of the cable-in-conduit conductor (CICC). The outsert coils of the two magnets employ 20 kA BSCCO HTS current leads for the power supply although they have different designs and cooling methods. The copper heat exchangers of the HTS current leads for the HZB SCH are cooled with forced flow helium at a supply temperature of 44 K, while the copper heat exchangers of HTS current leads for NHMFL SCH are cooled with liquid nitrogen at a temperature of 78 K in a self-demand boil-off mode. This paper presents the two cooling methods and their impacts on cryogenic systems. Their efficiencies and costs are compared and presented.

  18. Numerical investigation of mist/air impingement cooling on ribbed blade leading-edge surface.

    PubMed

    Bian, Qingfei; Wang, Jin; Chen, Yi-Tung; Wang, Qiuwang; Zeng, Min

    2017-12-01

    The working gas turbine blades are exposed to the environment of high temperature, especially in the leading-edge region. The mist/air two-phase impingement cooling has been adopted to enhance the heat transfer on blade surfaces and investigate the leading-edge cooling effectiveness. An Euler-Lagrange particle tracking method is used to simulate the two-phase impingement cooling on the blade leading-edge. The mesh dependency test has been carried out and the numerical method is validated based on the available experimental data of mist/air cooling with jet impingement on a concave surface. The cooling effectiveness on three target surfaces is investigated, including the smooth and the ribbed surface with convex/concave columnar ribs. The results show that the cooling effectiveness of the mist/air two-phase flow is better than that of the single-phase flow. When the ribbed surfaces are used, the heat transfer enhancement is significant, the surface cooling effectiveness becomes higher and the convex ribbed surface presents a better performance. With the enhancement of the surface heat transfer, the pressure drop in the impingement zone increases, but the incremental factor of the flow friction is smaller than that of the heat transfer enhancement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Influence of hydrophobicity on ice accumulation process under sleet and wind conditions

    NASA Astrophysics Data System (ADS)

    Xu, Ke; Hu, Jianlin; Shu, Lichun; Jiang, Xingliang; Huang, Zhengyong

    2018-03-01

    Glaze, the most dangerous ice type in natural environment, forms during sleet weather, which is usually accompanied with wind. The icing performance of hydrophobic coatings under the impact of wind needs further research. This paper studies the influence of hydrophobicity on ice accumulation process under sleet and wind conditions by computer simulations and icing tests. The results indicate that the heat dissipation process of droplets on samples with various hydrophobicity will be accelerated by wind significantly and that a higher hydrophobicity cannot reduce the cooling rate effectively. However, on different hydrophobic surfaces, the ice accumulation process has different characteristics. On a hydrophilic surface, the falling droplets form continuously water film, which will be cooled fast. On superhydrophobic surface, the frozen droplets form ice bulges, which can shield from wind and slow down the heat dissipation process. These ice accumulation characteristics lead to the difference in ice morphology and make a higher hydrophobic surface to have a lower ice mass growth rate in long period icing tests. As a conclusion, superhydrophobic coating remain icephobic under wind and sleet conditions.

  20. Transient Load Following and Control Analysis of Advanced S-CO2 Power Conversion with Dry Air Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moisseytsev, Anton; Sienicki, James J.

    2016-01-01

    Supercritical carbon dioxide (S-CO2) Brayton cycles are under development as advanced energy converters for advanced nuclear reactors, especially the Sodium-Cooled Fast Reactor (SFR). The use of dry air cooling for direct heat rejection to the atmosphere ultimate heat sink is increasingly becoming a requirement in many regions due to restrictions on water use. The transient load following and control behavior of an SFR with an S-CO2 cycle power converter utilizing dry air cooling have been investigated. With extension and adjustment of the previously existing control strategy for direct water cooling, S-CO2 cycle power converters can also be used for loadmore » following operation in regions where dry air cooling is a requirement« less

  1. Zaoyang chondrite cooling history from pyroxene Fe(2+)-Mg intracrystalline ordering and exolutions

    NASA Technical Reports Server (NTRS)

    Molin, G. M.; Tribaudino, M.; Brizi, E.

    1993-01-01

    The Zaoyang ordinary chondrite fell as a single 14.15-kg mass in Hubey province (China) in October 1984 and was classified as a non-brecciated H5 chondrite, shock facies b. Cooling rate in pyroxenes can be calculated down to about 1000 C by using fine textures and at still lower temperatures (700 to 200 C) by intracrystalline ordering processes. The crystal chemistry of clinopyroxene and orthopyroxene from the matrix of the H5 Zaoyang chondrite has been investigated by X-ray structure refinement and detailed microprobe analysis. By comparison with terrestrial pyroxenes cell and polyhedral volumes in clino- and orthopyroxenes show a low crystallization pressure. Fe(2+) and Mg are rather disordered in M1 and M2 sites of clino- and orthopyroxenes; the closure temperatures of the exchange reaction are 600 and 512 C respectively, which is consistent with a quite fast cooling rate, estimated of the order of one degree per day. The closure temperature for the intercrystalline Ca-Mg exchange reaction for clino- and orthopyroxene showing clinopyroxene lamellae about 10 microns thick. Kinetic evaluations based on the thickness of exolved lamellae give a cooling rate of not more than a few degrees per 10(exp 4) years. The different cooling rates obtained from Fe(2+)-Mg intracrystalline partitioning and exolution lamellae suggest an initial episode of slow cooling at 900 C, followed by faster cooling at temperatures of 600-500 C at low pressure conditions. The most probable scenario of the meteorite history seems that the exolved orthopyroxene entered the parental chondrite body after exolution had taken place at high temperature. Subsequent fast cooling occurred at low temperature after the formation of the body.

  2. Thermostructural applications of heat pipes for cooling leading edges of high-speed aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J.; Glass, David E.

    1992-01-01

    Heat pipes have been considered for use on wing leading edge for over 20 years. Early concepts envisioned metal heat pipes cooling a metallic leading edge. Several superalloy/sodium heat pipes were fabricated and successfully tested for wing leading edge cooling. Results of radiant heat and aerothermal testing indicate the feasibility of using heat pipes to cool the stagnation region of shuttle-type space transportation systems. The test model withstood a total seven radiant heating tests, eight aerothermal tests, and twenty-seven supplemental radiant heating tests. Cold-wall heating rates ranged from 21 to 57 Btu/sq ft-s and maximum operating temperatures ranged from 1090 to 1520 F. Follow-on studies investigated the application of heat pipes to cool the stagnation regions of single-stage-to-orbit and advanced shuttle vehicles. Results of those studies indicate that a 'D-shaped' structural design can reduce the mass of the heat-pipe concept by over 44 percent compared to a circular heat-pipe geometry. Simple analytical models for heat-pipe startup from the frozen state (working fluid initially frozen) were adequate to approximate transient, startup, and steady-state heat-pipe performance. Improvement in analysis methods has resulted in the development of a finite-element analysis technique to predict heat-pipe startup from the frozen state. However, current requirements of light-weight design and reliability suggest that metallic heat pipes embedded in a refractory composite material should be used. This concept is the concept presently being evaluated for NASP. A refractory-composite/heat-pipe-cooled wing leading edge is currently being considered for the National Aero-Space Plane (NASP). This concept uses high-temperature refractory-metal/lithium heat pipes embedded within a refractory-composite structure and is significantly lighter than an actively cooled wing leading edge because it eliminates the need for active cooling during ascent and descent. Since the NASP vehicle uses cryogenic hydrogen to cool structural components and then burns this fuel in the combustor, hydrogen necessary for descent cooling only, when the vehicle is unpowered, is considered to be a weight penalty. Details of the design of the refractory-composite/heat-pipe-cooled wing leading edge are currently being investigated. Issues such as thermal contact resistance and thermal stress are also being investigated.

  3. Thermostructural applications of heat pipes for cooling leading edges of high-speed aerospace vehicles

    NASA Astrophysics Data System (ADS)

    Camarda, Charles J.; Glass, David E.

    1992-10-01

    Heat pipes have been considered for use on wing leading edge for over 20 years. Early concepts envisioned metal heat pipes cooling a metallic leading edge. Several superalloy/sodium heat pipes were fabricated and successfully tested for wing leading edge cooling. Results of radiant heat and aerothermal testing indicate the feasibility of using heat pipes to cool the stagnation region of shuttle-type space transportation systems. The test model withstood a total seven radiant heating tests, eight aerothermal tests, and twenty-seven supplemental radiant heating tests. Cold-wall heating rates ranged from 21 to 57 Btu/sq ft-s and maximum operating temperatures ranged from 1090 to 1520 F. Follow-on studies investigated the application of heat pipes to cool the stagnation regions of single-stage-to-orbit and advanced shuttle vehicles. Results of those studies indicate that a 'D-shaped' structural design can reduce the mass of the heat-pipe concept by over 44 percent compared to a circular heat-pipe geometry. Simple analytical models for heat-pipe startup from the frozen state (working fluid initially frozen) were adequate to approximate transient, startup, and steady-state heat-pipe performance. Improvement in analysis methods has resulted in the development of a finite-element analysis technique to predict heat-pipe startup from the frozen state. However, current requirements of light-weight design and reliability suggest that metallic heat pipes embedded in a refractory composite material should be used. This concept is the concept presently being evaluated for NASP. A refractory-composite/heat-pipe-cooled wing leading edge is currently being considered for the National Aero-Space Plane (NASP). This concept uses high-temperature refractory-metal/lithium heat pipes embedded within a refractory-composite structure and is significantly lighter than an actively cooled wing leading edge because it eliminates the need for active cooling during ascent and descent. Since the NASP vehicle uses cryogenic hydrogen to cool structural components and then burns this fuel in the combustor, hydrogen necessary for descent cooling only, when the vehicle is unpowered, is considered to be a weight penalty. Details of the design of the refractory-composite/heat-pipe-cooled wing leading edge are currently being investigated. Issues such as thermal contact resistance and thermal stress are also being investigated.

  4. Solid state amorphization of metastable Al 0.5TiZrPdCuNi high entropy alloy investigated by high voltage electron microscopy

    DOE PAGES

    Nagase, Takeshi; Takeuchi, Akira; Amiya, Kenji; ...

    2017-07-18

    Here, the phase stability of high entropy alloy (HEA), Al 0.5TiZrPdCuNi, under fast electron irradiation was studied by in-situ high voltage electron microscopy (HVEM). The initial phase of this alloy quenched from the melt was dependent on cooling rate. At high cooling rates an amorphous phase was obtained, whereas a body-centered cubic ( b.c.c.) phase were obtained at low cooling rates. By thermal crystallization of the amorphous phase b.c.c. phase nano-crystals were formed. Upon fast electron irradiation solid state amorphization (SSA) was observed in b.c.c. phase regardless of the initial microstructure (i.e., “coarse crystalline structure” or “nano-crystalline structure with grainmore » boundaries as a sink for point defects”). SSA behavior in the Al 0.5TiZrPdCuNi HEAs was investigated by in-situ transmission electron microscopy observations. Because the amorphization is very rarely achieved in a solid solution phase under fast electron irradiation in common metallic materials, this result suggests that the Al 0.5TiZrPdCuNi HEA from other common alloys and the other HEAs. The differences in phase stability against the irradiation between the Al 0.5TiZrPdCuNi HEA and the other HEAs were discussed. This is the first experimental evidence of SSA in HEAs stimulated by fast electron irradiation.« less

  5. Effects of Wall Cooling on Hypersonic Boundary Layer Receptivity Over a Cone

    NASA Technical Reports Server (NTRS)

    Kara, K.; Balakumar, P.; Kandil, O. A.

    2008-01-01

    Effects of wall cooling on the receptivity process induced by the interaction of slow acoustic disturbances in the free-stream are numerically investigated for a boundary layer flow over a 5-degrees straight cone. The free-stream Mach number is 6.0 and the Reynolds number is 7.8x10(exp 6)/ft. Both the steady and unsteady solutions are obtained by solving the full Navier-Stokes equations using 5th-order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using 3rd-order total variation diminishing (T VD) Runge-K utta scheme for time integration. Computations are performed for a cone with nose radius of 0.001 inch for adiabatic wall temperature (T(sub aw)), 0.75*T(sub aw), 0.5*T(sub aw), 0.40*T(sub aw), 0.30*T(sub aw), and 0.20*T(sub aw). Once the mean flow field is computed, disturbances are introduced at the upstream end of the computational domain. Generation of instability waves from leading edge region and receptivity of boundary layer to slow acoustic waves are investigated. Computations showed that wall cooling has strong stabilization effect on the first mode disturbances as was observed in the experiments. T ransition location moved to upstream when wall cooling was applied It is also found that the boundary layer is much more receptive to fast acoustic wave (by almost a factor of 50). When simulations performed using the same forcing frequency growth of the second mode disturbances are delayed with wall cooling and they attained values two times higher than that of adiabatic case. In 0.20*T(sub aw) case the transition Reynolds number is doubled compared to adiabatic conditions. The receptivity coefficient for adiabatic wall case (804 R) is 1.5225 and for highly cooled cones (241, and 161 R); they are in the order of 10(exp -3).

  6. Development of Inspection and Repair Technology for Heat Exchanger Tubes in Fast Breeder Reactors

    DTIC Science & Technology

    2009-06-01

    Technology for Heat Exchanger Tubes in Fast Breeder Reactors Akihiko NISHIMURA *1 , Takahisa SHOBU, Kiyoshi OKA, Toshihiko YAMAGUCHI, Yukihiro SHIMADA...fast breeder reactors (FBRs). It comprises a laser processing head combined with an eddy current testing unit. Ultrashort laser pulse ablation is used...be applied in the main- tenance of large structures such as nuclear reactors and chemical factories [1]. Internal access to a blanket cooling pipe

  7. Transient Effects in Turbulence Modelling.

    DTIC Science & Technology

    1979-12-01

    plenum region of a liquid-metal- cooled fast breeder reactor (LMFBR). The efficient heat transfer characteristics of liquid metal coolant, combined...Transients in Generalized Liquid-Metal Fast Breeder Reactor Outlet Plenums," Nuclear Technology, Vol. 44, July 1979, p. 210. 135 15. Lorenz, J. J., "MIX... Sodium Coolant in the Outlet Plenum of a Fast Nuclear Reactor ," Int. J. Heat Mass Transfer, Vol. 21, 1978, pp. 1565-1579. 19. Chen, Y. B., Golay, M. W

  8. The integral fast reactor and its role in a new generation of nuclear power plants, Tokai, Japan, November 19-21, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R.R.

    1986-01-01

    This report presents information on the Integral Fast Reactor and its role in the future. Information is presented in the areas of: inherent safety; other virtues of sodium-cooled breeder; and solving LWR fuel cycle problems with IFR technologies. (JDB)

  9. Impact of nuclear data on sodium-cooled fast reactor calculations

    NASA Astrophysics Data System (ADS)

    Aures, Alexander; Bostelmann, Friederike; Zwermann, Winfried; Velkov, Kiril

    2016-03-01

    Neutron transport and depletion calculations are performed in combination with various nuclear data libraries in order to assess the impact of nuclear data on safety-relevant parameters of sodium-cooled fast reactors. These calculations are supplemented by systematic uncertainty analyses with respect to nuclear data. Analysed quantities are the multiplication factor and nuclide densities as a function of burn-up and the Doppler and Na-void reactivity coefficients at begin of cycle. While ENDF/B-VII.0 / -VII.1 yield rather consistent results, larger discrepancies are observed between the JEFF libraries. While the newest evaluation, JEFF-3.2, agrees with the ENDF/B-VII libraries, the JEFF-3.1.2 library yields significant larger multiplication factors.

  10. Crossover from localized to cascade relaxations in metallic glasses

    DOE PAGES

    Fan, Yue; Iwashita, Takuya; Egami, Takeshi

    2015-07-21

    Thermally activated deformation is investigated in two metallic glass systems with different cooling histories. By probing the atomic displacements and stress changes on the potential energy landscape, two deformation modes, a localized process and cascade process, have observed. The localized deformation involves fewer than 30 atoms and appears in both systems, and its size is invariant with cooling history. However, the cascade deformation is more frequently observed in the fast quenched system than in the slowly quenched system. As a result, the origin of the cascade process in the fast quenched system is attributed to the higher density of localmore » minima on the underlying potential energy landscape.« less

  11. Radiation Pressure Cooling as a Quantum Dynamical Process

    NASA Astrophysics Data System (ADS)

    He, Bing; Yang, Liu; Lin, Qing; Xiao, Min

    2017-06-01

    One of the most fundamental problems in optomechanical cooling is how small the thermal phonon number of a mechanical oscillator can be achieved under the radiation pressure of a proper cavity field. Different from previous theoretical predictions, which were based on an optomechanical system's time-independent steady states, we treat such cooling as a dynamical process of driving the mechanical oscillator from its initial thermal state, due to its thermal equilibrium with the environment, to a stabilized quantum state of higher purity. We find that the stabilized thermal phonon number left in the end actually depends on how fast the cooling process could be. The cooling speed is decided by an effective optomechanical coupling intensity, which constitutes an essential parameter for cooling, in addition to the sideband resolution parameter that has been considered in other theoretical studies. The limiting thermal phonon number that any cooling process cannot surpass exhibits a discontinuous jump across a certain value of the parameter.

  12. Mesospheric dynamics and chemistry from SME data

    NASA Technical Reports Server (NTRS)

    Strobel, Darrell F.

    1987-01-01

    A fast Curtis matrix calculation of cooling rates due to the 15 micron band of CO2 is modified to parameterize the detailed calculations by Dickinson (1984) of infrared cooling by CO2 in the mesosphere and lower thermosphere. The calculations included separate NLTE treatment of the different 15 micron bands likely to be important for cooling. The goal was to compress the detailed properties of the different bands into a modified Curtis matrix, which represents one composite band with appropriate averaged radiative properties to allow for a simple and quick calculation of cooling rates given a temperature profile. Vertical constituent transport in the mesosphere was also studied.

  13. Adaptive multiple super fast simulated annealing for stochastic microstructure reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Seun; Lin, Guang; Sun, Xin

    2013-01-01

    Fast image reconstruction from statistical information is critical in image fusion from multimodality chemical imaging instrumentation to create high resolution image with large domain. Stochastic methods have been used widely in image reconstruction from two point correlation function. The main challenge is to increase the efficiency of reconstruction. A novel simulated annealing method is proposed for fast solution of image reconstruction. Combining the advantage of very fast cooling schedules, dynamic adaption and parallelization, the new simulation annealing algorithm increases the efficiencies by several orders of magnitude, making the large domain image fusion feasible.

  14. Development work for a borax internal core-catcher for a gas-cooled fast reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donne, M.D.; Dorner, S.; Schumacher, G.

    1978-07-01

    Preliminary thermal calculations show that a corecatcher, which is able to cope with the complete meltdown of the core and blankets of a 1000-MW(electric) gas-cooled fast reactor, appears to be feasible. This core-catcher is based on borax (Na/sub 2/B/sub 4/O/sub 7/) dissolving the oxide fuel and the fission products occurring in oxide form. The borax is contained in steel boxes forming a 2.2-m-thick slab on the base of the reactor cavity inside the prestressed concrete reactor vessel (PCRV), just underneath the reactor core. After a complete meltdown accident, the fission products, in oxide form, are dispersed in the pool formedmore » by the liquid borax. The metallic fission products are contained in the steel lying below the borax pool and in contact with the water-cooled PCRV liner. The volumetric power density of the molten core is conveniently reduced as it is dissolved in the borax, and the resulting heat fluxes at the borders of the pool can be safely carried away through the PCRV liner and its water cooling system.« less

  15. Multi channel thermal hydraulic analysis of gas cooled fast reactor using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Drajat, R. Z.; Su'ud, Z.; Soewono, E.; Gunawan, A. Y.

    2012-05-01

    There are three analyzes to be done in the design process of nuclear reactor i.e. neutronic analysis, thermal hydraulic analysis and thermodynamic analysis. The focus in this article is the thermal hydraulic analysis, which has a very important role in terms of system efficiency and the selection of the optimal design. This analysis is performed in a type of Gas Cooled Fast Reactor (GFR) using cooling Helium (He). The heat from nuclear fission reactions in nuclear reactors will be distributed through the process of conduction in fuel elements. Furthermore, the heat is delivered through a process of heat convection in the fluid flow in cooling channel. Temperature changes that occur in the coolant channels cause a decrease in pressure at the top of the reactor core. The governing equations in each channel consist of mass balance, momentum balance, energy balance, mass conservation and ideal gas equation. The problem is reduced to finding flow rates in each channel such that the pressure drops at the top of the reactor core are all equal. The problem is solved numerically with the genetic algorithm method. Flow rates and temperature distribution in each channel are obtained here.

  16. Adaptive polynomial chaos techniques for uncertainty quantification of a gas cooled fast reactor transient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perko, Z.; Gilli, L.; Lathouwers, D.

    2013-07-01

    Uncertainty quantification plays an increasingly important role in the nuclear community, especially with the rise of Best Estimate Plus Uncertainty methodologies. Sensitivity analysis, surrogate models, Monte Carlo sampling and several other techniques can be used to propagate input uncertainties. In recent years however polynomial chaos expansion has become a popular alternative providing high accuracy at affordable computational cost. This paper presents such polynomial chaos (PC) methods using adaptive sparse grids and adaptive basis set construction, together with an application to a Gas Cooled Fast Reactor transient. Comparison is made between a new sparse grid algorithm and the traditionally used techniquemore » proposed by Gerstner. An adaptive basis construction method is also introduced and is proved to be advantageous both from an accuracy and a computational point of view. As a demonstration the uncertainty quantification of a 50% loss of flow transient in the GFR2400 Gas Cooled Fast Reactor design was performed using the CATHARE code system. The results are compared to direct Monte Carlo sampling and show the superior convergence and high accuracy of the polynomial chaos expansion. Since PC techniques are easy to implement, they can offer an attractive alternative to traditional techniques for the uncertainty quantification of large scale problems. (authors)« less

  17. Cooling circuit for and method of cooling a gas turbine bucket

    DOEpatents

    Jacala, Ariel C. P.

    2002-01-01

    A closed internal cooling circuit for a gas turbine bucket includes axial supply and return passages in the dovetail of the bucket. A first radial outward supply passage provides cooling medium to and along a passageway adjacent the leading edge and then through serpentine arranged passageways within the airfoil to a chamber adjacent the airfoil tip. A second radial passage crosses over the radial return passage for supplying cooling medium to and along a pair of passageways along the trailing edge of the airfoil section. The last passageway of the serpentine passageways and the pair of passageways communicate one with the other in the chamber for returning spent cooling medium radially inwardly along divided return passageways to the return passage. In this manner, both the leading and trailing edges are cooled using the highest pressure, lowest temperature cooling medium.

  18. System Analysis for Decay Heat Removal in Lead-Bismuth Cooled Natural Circulated Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takaaki Sakai; Yasuhiro Enuma; Takashi Iwasaki

    2002-07-01

    Decay heat removal analyses for lead-bismuth cooled natural circulation reactors are described in this paper. A combined multi-dimensional plant dynamics code (MSG-COPD) has been developed to conduct the system analysis for the natural circulation reactors. For the preliminary study, transient analysis has been performed for a 100 MWe lead-bismuth-cooled reactor designed by Argonne National Laboratory (ANL). In addition, decay heat removal characteristics of a 400 MWe lead-bismuth-cooled natural circulation reactor designed by Japan Nuclear Cycle Development Institute (JNC) has been evaluated by using MSG-COPD. PRACS (Primary Reactor Auxiliary Cooling System) is prepared for the JNC's concept to get sufficient heatmore » removal capacity. During 2000 sec after the transient, the outlet temperature shows increasing tendency up to the maximum temperature of 430 Centigrade, because the buoyancy force in a primary circulation path is temporary reduced. However, the natural circulation is recovered by the PRACS system and the out let temperature decreases successfully. (authors)« less

  19. System Analysis for Decay Heat Removal in Lead-Bismuth-Cooled Natural-Circulation Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Takaaki; Enuma, Yasuhiro; Iwasaki, Takashi

    2004-03-15

    Decay heat removal analyses for lead-bismuth-cooled natural-circulation reactors are described in this paper. A combined multidimensional plant dynamics code (MSG-COPD) has been developed to conduct the system analysis for the natural-circulation reactors. For the preliminary study, transient analysis has been performed for a 300-MW(thermal) lead-bismuth-cooled reactor designed by Argonne National Laboratory. In addition, decay heat removal characteristics of a 400-MW(electric) lead-bismuth-cooled natural-circulation reactor designed by the Japan Nuclear Cycle Development Institute (JNC) has been evaluated by using MSG-COPD. The primary reactor auxiliary cooling system (PRACS) is prepared for the JNC concept to get sufficient heat removal capacity. During 2000 smore » after the transient, the outlet temperature shows increasing tendency up to the maximum temperature of 430 deg. C because the buoyancy force in a primary circulation path is temporarily reduced. However, the natural circulation is recovered by the PRACS system, and the outlet temperature decreases successfully.« less

  20. Water-cooled hard-soldered kilowatt laser diode arrays operating at high duty cycle

    NASA Astrophysics Data System (ADS)

    Klumel, Genady; Karni, Yoram; Oppenhaim, Jacob; Berk, Yuri; Shamay, Moshe; Tessler, Renana; Cohen, Shalom; Risemberg, Shlomo

    2010-04-01

    High brightness laser diode arrays are increasingly found in defense applications either as efficient optical pumps or as direct energy sources. In many instances, duty cycles of 10- 20 % are required, together with precise optical collimation. System requirements are not always compatible with the use of microchannel based cooling, notwithstanding their remarkable efficiency. Simpler but effective solutions, which will not involve high fluid pressure drops as well as deionized water, are needed. The designer is faced with a number of challenges: effective heat removal, minimization of the built- in and operational stresses as well as precise and accurate fast axis collimation. In this article, we report on a novel laser diode array which includes an integral tap water cooling system. Robustness is achieved by all around hard solder bonding of passivated 940nm laser bars. Far field mapping of the beam, after accurate fast axis collimation will be presented. It will be shown that the design of water cooling channels , proper selection of package materials, careful design of fatigue sensitive parts and active collimation technique allow for long life time and reliability, while not compromising the laser diode array efficiency, optical power density ,brightness and compactness. Main performance characteristics are 150W/bar peak optical power, 10% duty cycle and more than 50% wall plug efficiency with less than 1° fast axis divergence. Lifetime of 0.5 Gshots with less than 10% power degradation has been proved. Additionally, the devices have successfully survived harsh environmental conditions such as thermal cycling of the coolant temperature and mechanical shocks.

  1. Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors

    DOE PAGES

    Cheng, Lap-Yan; Wei, Thomas Y. C.

    2009-01-01

    The safety goal of the current designs of advanced high-temperature thermal gas-cooled reactors (HTRs) is that no core meltdown would occur in a depressurization event with a combination of concurrent safety system failures. This study focused on the analysis of passive decay heat removal (DHR) in a GEN IV direct-cycle gas-cooled fast reactor (GFR) which is based on the technology developments of the HTRs. Given the different criteria and design characteristics of the GFR, an approach different from that taken for the HTRs for passive DHR would have to be explored. Different design options based on maintaining core flow weremore » evaluated by performing transient analysis of a depressurization accident using the system code RELAP5-3D. The study also reviewed the conceptual design of autonomous systems for shutdown decay heat removal and recommends that future work in this area should be focused on the potential for Brayton cycle DHRs.« less

  2. The Geminga neutron star: Evidence for nucleon superfluidity at very high density

    NASA Technical Reports Server (NTRS)

    Page, Dany

    1993-01-01

    A comparison of the recent age and temperature estimates of the Geminga neutron star with cooling models is presented. This star is already in the photon cooling era and it is shown that its temperature can be understood within both the slow and fast neutrino emission scenarios and consequently will not allow discrimination between these two scenarios. However in both cases agreement of the theoretical cooling curves with the observed temperature depends crucially on the presence of nucleon pairing in most, if not all, of the core.

  3. Near wall cooling for a highly tapered turbine blade

    DOEpatents

    Liang, George [Palm City, FL

    2011-03-08

    A turbine blade having a pressure sidewall and a suction sidewall connected at chordally spaced leading and trailing edges to define a cooling cavity. Pressure and suction side inner walls extend radially within the cooling cavity and define pressure and suction side near wall chambers. A plurality of mid-chord channels extend radially from a radially intermediate location on the blade to a tip passage at the blade tip for connecting the pressure side and suction side near wall chambers in fluid communication with the tip passage. In addition, radially extending leading edge and trailing edge flow channels are located adjacent to the leading and trailing edges, respectively, and cooling fluid flows in a triple-pass serpentine path as it flows through the leading edge flow channel, the near wall chambers and the trailing edge flow channel.

  4. Helium Leak Detection of Vessels in Fuel Transfer Cell (FTC) of Prototype Fast Breeder Reactor (PFBR)

    NASA Astrophysics Data System (ADS)

    Dutta, N. G.

    2012-11-01

    Bharatiya Nabhikiya Vidyut Nigam (BHAVINI) is engaged in construction of 500MW Prototype Fast Breeder Reactor (PFBR) at Kalpak am, Chennai. In this very important and prestigious national programme Special Product Division (SPD) of M/s Kay Bouvet Engg.pvt. ltd. (M/s KBEPL) Satara is contributing in a major way by supplying many important sub-assemblies like- Under Water trolley (UWT), Airlocks (PAL, EAL) Container and Storage Rack (CSR) Vessels in Fuel Transfer Cell (FTC) etc for PFBR. SPD of KBEPL caters to the requirements of Government departments like - Department of Atomic Energy (DAE), BARC, Defense, and Government undertakings like NPCIL, BHAVINI, BHEL etc. and other precision Heavy Engg. Industries. SPD is equipped with large size Horizontal Boring Machines, Vertical Boring Machines, Planno milling, Vertical Turret Lathe (VTL) & Radial drilling Machine, different types of welding machines etc. PFBR is 500 MWE sodium cooled pool type reactor in which energy is produced by fissions of mixed oxides of Uranium and Plutonium pellets by fast neutrons and it also breeds uranium by conversion of thorium, put along with fuel rod in the reactor. In the long run, the breeder reactor produces more fuel then it consumes. India has taken the lead to go ahead with Fast Breeder Reactor Programme to produce electricity primarily because India has large reserve of Thorium. To use Thorium as further fuel in future, thorium has to be converted in Uranium by PFBR Technology.

  5. Urban evaporation rates for water-permeable pavements.

    PubMed

    Starke, P; Göbel, P; Coldewey, W G

    2010-01-01

    In urban areas the natural water balance is disturbed. Infiltration and evaporation are reduced, resulting in a high surface runoff and a typical city climate, which can lead to floods and damages. Water-permeable pavements have a high infiltration rate that reduces surface runoff by increasing the groundwater recharge. The high water retention capacity of the street body of up to 51 l/m(2) and its connection via pores to the surface lead to higher evaporation rates than impermeable surfaces. A comparison of these two kinds of pavements shows a 16% increase in evaporation levels of water-permeable pavements. Furthermore, the evaporation from impermeable pavements is linked directly to rain events due to fast-drying surfaces. Water-permeable pavements show a more evenly distributed evaporation after a rain event. Cooling effects by evaporative heat loss can improve the city climate even several days after rain events. On a large scale use, uncomfortable weather like sultriness or dry heat can be prevented and the urban water balance can be attenuated towards the natural.

  6. DE-NE0008277_PROTEUS final technical report 2018

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enqvist, Andreas

    This project details re-evaluations of experiments of gas-cooled fast reactor (GCFR) core designs performed in the 1970s at the PROTEUS reactor and create a series of International Reactor Physics Experiment Evaluation Project (IRPhEP) benchmarks. Currently there are no gas-cooled fast reactor (GCFR) experiments available in the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook). These experiments are excellent candidates for reanalysis and development of multiple benchmarks because these experiments provide high-quality integral nuclear data relevant to the validation and refinement of thorium, neptunium, uranium, plutonium, iron, and graphite cross sections. It would be cost prohibitive to reproduce suchmore » a comprehensive suite of experimental data to support any future GCFR endeavors.« less

  7. BRENDA: a dynamic simulator for a sodium-cooled fast reactor power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hetrick, D.L.; Sowers, G.W.

    1978-06-01

    This report is a users' manual for one version of BRENDA (Breeder Reactor Nuclear Dynamic Analysis), which is a digital program for simulating the dynamic behavior of a sodium-cooled fast reactor power plant. This version, which contains 57 differential equations, represents a simplified model of the Clinch River Breeder Reactor Project (CRBRP). BRENDA is an input deck for DARE P (Differential Analyzer Replacement, Portable), which is a continuous-system simulation language developed at the University of Arizona. This report contains brief descriptions of DARE P and BRENDA, instructions for using BRENDA in conjunction with DARE P, and some sample output. Amore » list of variable names and a listing for BRENDA are included as appendices.« less

  8. Effect of fast mold surface temperature evolution on iPP part morphology gradients

    NASA Astrophysics Data System (ADS)

    Liparoti, Sara; Sorrentino, Andrea; Guzman, Gustavo; Cakmak, Mukerrem; Titomanlio, Giuseppe

    2016-03-01

    The control of mold surface temperature is an important factor that affects the sample surface morphology as well as the structural gradients (orientation crystal size, and type) as well as cooling stresses. The frozen layer thickness formed during the filling stage also has a very significant effect on the flow resistance and thus on the resulting pressure drop and flow length in thin wall parts. The possibility to have a hot mold during filling and a quick cooling soon afterward is a significant process enhancement particularly for specialized applications such as micro injection molding and for the reproduction of micro structured surfaces. Up to now, several methods (electromagnetic, infrared, hot vapor fleshing etc,) were tried to achieve fast temperature evolution of the mold. Unfortunately, all these methods require a complex balance between thermal and mechanical problems, equipment cost, energy consumption, safety, molding cycle time and part quality achievable. In this work, a thin electrical resistance was designed and used to generate a fast and confined temperature variation on mold surface (by joule effect). Since the whole temperature evolution can take place in a few seconds, one can couple the advantages of a high surface temperature during filling with the advantages of a low mold temperature, fast cooling and low heating dissipation. Some experiments were performed with a commercial iPP resin. The effects of the surface temperature and of the heating time (under constant electric power) on surface finishing and on the final morphology (thickness and structure of the different layers) are explored and discussed.

  9. Effect of fast mold surface temperature evolution on iPP part morphology gradients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liparoti, Sara; Sorrentino, Andrea; Guzman, Gustavo

    The control of mold surface temperature is an important factor that affects the sample surface morphology as well as the structural gradients (orientation crystal size, and type) as well as cooling stresses. The frozen layer thickness formed during the filling stage also has a very significant effect on the flow resistance and thus on the resulting pressure drop and flow length in thin wall parts. The possibility to have a hot mold during filling and a quick cooling soon afterward is a significant process enhancement particularly for specialized applications such as micro injection molding and for the reproduction of micromore » structured surfaces. Up to now, several methods (electromagnetic, infrared, hot vapor fleshing etc,) were tried to achieve fast temperature evolution of the mold. Unfortunately, all these methods require a complex balance between thermal and mechanical problems, equipment cost, energy consumption, safety, molding cycle time and part quality achievable. In this work, a thin electrical resistance was designed and used to generate a fast and confined temperature variation on mold surface (by joule effect). Since the whole temperature evolution can take place in a few seconds, one can couple the advantages of a high surface temperature during filling with the advantages of a low mold temperature, fast cooling and low heating dissipation. Some experiments were performed with a commercial iPP resin. The effects of the surface temperature and of the heating time (under constant electric power) on surface finishing and on the final morphology (thickness and structure of the different layers) are explored and discussed.« less

  10. Numerical Investigations of the Influence of Unsteady Vane Trailing Edge Shock Wave on Film Cooling Effectiveness of Rotor Blade Leading Edge

    NASA Astrophysics Data System (ADS)

    Wang, Yufeng; Cai, Le; Wang, Songtao; Zhou, Xun

    2018-04-01

    Unsteady numerical simulations of a high-load transonic turbine stage have been carried out to study the influences of vane trailing edge outer-extending shockwave on rotor blade leading edge film cooling performance. The turbine stage used in this paper is composed of a vane section and a rotor one which are both near the root section of a transonic high-load turbine stage. The Mach number is 0.94 at vane outlet, and the relative Mach number is above 1.10 at rotor outlet. Various positions and oblique angles of film cooling holes were investigated in this research. Results show that the cooling efficiency on the blade surface of rotor near leading edge is significantly affected by vane trailing edge outer-extending shockwave in some cases. In the cases that film holes are close to leading edge, cooling performance suffers more from the sweeping vane trailing edge outer-extending shockwave. In addition, coolant flow ejected from oblique film holes is harder to separate from the blade surface of rotor, and can cover more blade area even under the effects of sweeping vane trailing edge shockwave. As a result, oblique film holes can provide better film cooling performance than vertical film holes do near the leading edge on turbine blade which is swept by shockwaves.

  11. Optimized evaporative cooling for sodium Bose-Einstein condensation against three-body loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shobu, Takahiko; Yamaoka, Hironobu; Imai, Hiromitsu

    2011-09-15

    We report on a highly efficient evaporative cooling optimized experimentally. We successfully created sodium Bose-Einstein condensates with 6.4x10{sup 7} atoms starting from 6.6x10{sup 9} thermal atoms trapped in a magnetic trap by employing a fast linear sweep of radio frequency at the final stage of evaporative cooling so as to overcome the serious three-body losses. The experimental results such as the cooling trajectory and the condensate growth quantitatively agree with the numerical simulations of evaporative cooling on the basis of the kinetic theory of a Bose gas carefully taking into account our specific experimental conditions. We further discuss theoretically amore » possibility of producing large condensates, more than 10{sup 8} sodium atoms, by simply increasing the number of initial thermal trapped atoms and the corresponding optimization of evaporative cooling.« less

  12. Influence of tempering and contraction mismatch on crack development in ceramic surfaces.

    PubMed

    Anusavice, K J; DeHoff, P H; Hojjatie, B; Gray, A

    1989-07-01

    Tempering of glass produces a state of compressive stress in surface regions which can enhance the resistance to crack initiation and growth. The objective of this study was to determine the influence of tempering on the sizes of surface cracks induced within the tempered surfaces of opaque porcelain-body porcelain discs, with contraction coefficient differences (alpha O-alpha B) of +3.2, +0.7, 0.0, -0.9, and -1.5 ppm/degrees C. We fired the discs to the maturing temperature (982 degrees C) of body porcelain and then subjected them to three cooling procedures: slow cooling in a furnace (SC), fast cooling in air (FC), and tempering (T) by blasting the body porcelain surface with compressed air for 90 s. We used body porcelain discs as the thermally compatible (delta alpha = 0) control specimens. We measured the diameters of cracks induced by a microhardness indenter at an applied load of 4.9 N at 80 points along diametral lines within the surface of body porcelain. The mean values of the crack diameters varied from 75.9 microns (delta alpha = -1.5 ppm/degrees C) to 103.3 microns (delta alpha = +3.2 ppm/degrees C). The results of ANOVA indicate that significant differences in crack dimensions were controlled by cooling rate, contraction mismatch, and their combined effect (p less than 0.0001). Multiple contrast analysis (Tukey's HSD Test) revealed significantly lower (p less than 0.05) crack sizes for tempered specimens compared with those of fast-cooled and slow-cooled specimens.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Research and Development Roadmaps for Liquid Metal Cooled Fast Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, T. K.; Grandy, C.; Natesan, K.

    The United States Department of Energy (DOE) commissioned the development of technology roadmaps for advanced (non-light water reactor) reactor concepts to help focus research and development funding over the next five years. The roadmaps show the research and development needed to support demonstration of an advanced (non-LWR) concept by the early 2030s, consistent with DOE’s Vision and Strategy for the Development and Deployment of Advanced Reactors. The intent is only to convey the technical steps that would be required to achieve such a goal; the means by which DOE will determine whether to invest in specific tasks will be treatedmore » separately. The starting point for the roadmaps is the Technical Readiness Assessment performed as part of an Advanced Test and Demonstration Reactor study released in 2016. The roadmaps were developed based upon a review of technical reports and vendor literature summarizing the technical maturity of each concept and the outstanding research and development needs. Critical path tasks for specific systems were highlighted on the basis of time and resources needed to complete the tasks and the importance of the system to the performance of the reactor concept. The roadmaps are generic, i.e. not specific to a particular vendor’s design but vendor design information may have been used as representative of the concept family. In the event that both near-term and more advanced versions of a concept are being developed, either a single roadmap with multiple branches or separate roadmaps for each version were developed. In each case, roadmaps point to a demonstration reactor (engineering or commercial) and show the activities that must be completed in parallel to support that demonstration in the 2030-2035 window. This report provides the roadmaps for two fast reactor concepts, the Sodium-cooled Fast Reactor (SFR) and the Lead-cooled Fast Reactor (LFR). The SFR technology is mature enough for commercial demonstration by the early 2030s, and the remaining critical paths and R&D needs are generally related to the completion of qualification of fuel and structural materials, validation of reactor design codes and methods, and support of the licensing frameworks. The LFR’s technology is instead less-mature compared to the SFR’s, and will be at the engineering demonstration stage by the early 2030s. Key LFR technology development activities will focus on resolving remaining design challenges and demonstrating the viability of systems and components in the integral system, which will be done in parallel with addressing the gaps shared with SFR technology. The approach and timeline presented here assume that, for the first module demonstration, vendors would pursue a two-step licensing process based on 10CFR Part 50.« less

  14. The physics of galactic winds driven by active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Faucher-Giguère, Claude-André; Quataert, Eliot

    2012-09-01

    Active galactic nuclei (AGN) drive fast winds in the interstellar medium of their host galaxies. It is commonly assumed that the high ambient densities and intense radiation fields in galactic nuclei imply short cooling times, thus making the outflows momentum conserving. We show that cooling of high-velocity shocked winds in AGN is in fact inefficient in a wide range of circumstances, including conditions relevant to ultraluminous infrared galaxies (ULIRGs), resulting in energy-conserving outflows. We further show that fast energy-conserving outflows can tolerate a large amount of mixing with cooler gas before radiative losses become important. For winds with initial velocity vin ≳ 10 000 km s-1, as observed in ultraviolet and X-ray absorption, the shocked wind develops a two-temperature structure. While most of the thermal pressure support is provided by the protons, the cooling processes operate directly only on the electrons. This significantly slows down inverse Compton cooling, while free-free cooling is negligible. Slower winds with vin ˜ 1000 km s-1, such as may be driven by radiation pressure on dust, can also experience energy-conserving phases but under more restrictive conditions. During the energy-conserving phase, the momentum flux of an outflow is boosted by a factor ˜vin/2vs by work done by the hot post-shock gas, where vs is the velocity of the swept-up material. Energy-conserving outflows driven by fast AGN winds (vin ˜ 0.1c) may therefore explain the momentum fluxes Ṗ≫LAGN/c of galaxy-scale outflows recently measured in luminous quasars and ULIRGs. Shocked wind bubbles expanding normal to galactic discs may also explain the large-scale bipolar structures observed in some systems, including around the Galactic Centre, and can produce significant radio, X-ray and γ-ray emission. The analytic solutions presented here will inform implementations of AGN feedback in numerical simulations, which typically do not include all the important physics.

  15. Cooling of a sunspot

    NASA Technical Reports Server (NTRS)

    Boruta, N.

    1977-01-01

    The question of whether a perturbed photospheric area can grow into a region of reduced temperature resembling a sunspot is investigated by considering whether instabilities exist that can lead to a growing temperature change and corresponding magnetic-field concentration in some region of the photosphere. After showing that Alfven cooling can lead to these instabilities, the effect of a heat sink on the temperature development of a perturbed portion of the photosphere is studied. A simple form of Alfven-wave cooling is postulated, and computations are performed to determine whether growing modes exist for physically relevant boundary conditions. The results indicate that simple inhibition of convection does not give growing modes, but Alfven-wave production can result in cooling that leads to growing field concentration. It is concluded that since growing instabilities can occur with strong enough cooling, it is quite possible that energy loss through Alfven waves gives rise to a self-generating temperature change and sunspot formation.

  16. A display module implemented by the fast high-temperatue response of carbon nanotube thin yarns.

    PubMed

    Wei, Yang; Liu, Peng; Jiang, Kaili; Fan, Shoushan

    2012-05-09

    Suspending superaligned multiwalled carbon nanotube (MWCNT) films were processed into CNT thin yarns, about 1 μm in diameter, by laser cutting and an ethanol atomization bath treatment. The fast high-temperature response under a vacuum was revealed by monitoring the incandescent light with a photo diode. The thin yarns can be electrically heated up to 2170 K in 0.79 mS, and the succeeding cool-down time is 0.36 mS. The fast response is attributed to the ultrasmall mass of the independent single yarn, large radiation coefficient, and improved thermal conductance through the two cool ends. The millisecond response time makes it possible to use the visible hot thin yarns as light-emitting elements of an incandescent display. A fully sealed display with 16 × 16 matrix was successfully fabricated using screen-printed thick electrodes and CNT thin yarns. It can display rolling characters with a low power consumption. More applications can be further developed based on the addressable CNT thermal arrays.

  17. Heat-Pipe-Cooled Leading Edges for Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    2006-01-01

    Heat pipes can be used to effectively cool wing leading edges of hypersonic vehicles. . Heat-pipe leading edge development. Design validation heat pipe testing confirmed design. Three heat pipes embedded and tested in C/C. Single J-tube heat pipe fabricated and testing initiated. HPCLE work is currently underway at several locations.

  18. Turbine Vane External Heat Transfer. Volume 1: Analytical and Experimental Evaluation of Surface Heat Transfer Distributions with Leading Edge Showerhead Film Cooling

    NASA Technical Reports Server (NTRS)

    Turner, E. R.; Wilson, M. D.; Hylton, L. D.; Kaufman, R. M.

    1985-01-01

    Progress in predictive design capabilities for external heat transfer to turbine vanes was summarized. A two dimensional linear cascade (previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils) was used to examine the effect of leading edge shower head film cooling on downstream heat transfer. The data were used to develop and evaluate analytical models. Modifications to the two dimensional boundary layer model are described. The results were used to formulate and test an effective viscosity model capable of predicting heat transfer phenomena downstream of the leading edge film cooling array on both the suction and pressure surfaces, with and without mass injection.

  19. Fast quench reactor and method

    DOEpatents

    Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.

    2002-01-01

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

  20. Packed rod neutron shield for fast nuclear reactors

    DOEpatents

    Eck, John E.; Kasberg, Alvin H.

    1978-01-01

    A fast neutron nuclear reactor including a core and a plurality of vertically oriented neutron shield assemblies surrounding the core. Each assembly includes closely packed cylindrical rods within a polygonal metallic duct. The shield assemblies are less susceptible to thermal stresses and are less massive than solid shield assemblies, and are cooled by liquid coolant flow through interstices among the rods and duct.

  1. Fast quench reactor and method

    DOEpatents

    Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.

    1998-01-01

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

  2. Fast quench reactor and method

    DOEpatents

    Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.

    2002-09-24

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

  3. The effects of leading edge and downstream film cooling on turbine vane heat transfer

    NASA Astrophysics Data System (ADS)

    Hylton, L. D.; Nirmalan, V.; Sultanian, B. K.; Kaufman, R. M.

    1988-11-01

    The progress under contract NAS3-24619 toward the goal of establishing a relevant data base for use in improving the predictive design capabilities for external heat transfer to turbine vanes, including the effect of downstream film cooling with and without leading edge showerhead film cooling. Experimental measurements were made in a two-dimensional cascade previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils under contract NAS3-22761 and leading edge showerhead film cooled airfoils under contract NAS3-23695. The principal independent parameters (Mach number, Reynolds number, turbulence, wall-to-gas temperature ratio, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio) were maintained over ranges consistent with actual engine conditions and the test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. Data provide a data base for downstream film cooled turbine vanes and extends the data bases generated in the two previous studies. The vane external heat transfer obtained indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The data obtained and presented illustrate the interaction of the variables and should provide the airfoil designer and computational analyst the information required to improve heat transfer design capabilities for film cooled turbine airfoils.

  4. The effects of leading edge and downstream film cooling on turbine vane heat transfer

    NASA Technical Reports Server (NTRS)

    Hylton, L. D.; Nirmalan, V.; Sultanian, B. K.; Kaufman, R. M.

    1988-01-01

    The progress under contract NAS3-24619 toward the goal of establishing a relevant data base for use in improving the predictive design capabilities for external heat transfer to turbine vanes, including the effect of downstream film cooling with and without leading edge showerhead film cooling. Experimental measurements were made in a two-dimensional cascade previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils under contract NAS3-22761 and leading edge showerhead film cooled airfoils under contract NAS3-23695. The principal independent parameters (Mach number, Reynolds number, turbulence, wall-to-gas temperature ratio, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio) were maintained over ranges consistent with actual engine conditions and the test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. Data provide a data base for downstream film cooled turbine vanes and extends the data bases generated in the two previous studies. The vane external heat transfer obtained indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The data obtained and presented illustrate the interaction of the variables and should provide the airfoil designer and computational analyst the information required to improve heat transfer design capabilities for film cooled turbine airfoils.

  5. A summary of sodium-cooled fast reactor development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoto, Kazumi; Dufour, Philippe; Hongyi, Yang

    Much of the basic technology for the Sodium-cooled fast Reactor (SFR) has been established through long term development experience with former fast reactor programs, and is being confirmed by the Phénix end-of-life tests in France, the restart of Monju in Japan, the lifetime extension of BN-600 in Russia, and the startup of the China Experimental Fast Reactor in China. Planned startup in 2014 for new SFRs: BN-800 in Russia and PFBR in India, will further enhance the confirmation of the SFR basic technology. Nowadays, the SFR development has advanced to aiming at establishment of the Generation-IV system which is dedicatedmore » to sustainable energy generation and actinide management, and several advanced SFR concepts are under development such as PRISM, JSFR, ASTRID, PGSFR, BN-1200, and CFR-600. Generation-IV International Forum is an international collaboration framework where various R&D activities are progressing on design of system and component, safety and operation, advanced fuel, and actinide cycle for the Generation-IV SFR development, and will play a beneficial role of promoting them thorough providing an opportunity to share the past experience and the latest data of design and R&D among countries developing SFR.« less

  6. Cryopreservation of lipid-rich seeds: effect of moisture content and cooling rate on germination.

    PubMed

    González-Benito, E M; Pérez-García, F

    2001-01-01

    The effect of fast and slow cooling on germination of seeds from two Brassicaceae species (Eruca vesicaria (L.) Cav., Brassica napus L. var. oleifera (Moench) DC cv. Bingo) and cypselas from three Compositae species (Onopordum nervosum Boiss., Onopordum acanthium L., Helianthus annuus L. cv. Viky) at different moisture contents was studied. Seed lipid content (dry weight basis) ranged from 15% (O. nervosum) to 41% (H. annuus). For each species, seeds with four moisture contents were cryopreserved either by direct immersion in liquid nitrogen or by previous cooling at 10 degrees C/min from room temperature to -50 degrees C. In three species (E. vesicaria, B. napus, and H. annuus) germination of air-dried (6.2-8.9% moisture content) seeds cooled by direct immersion in liquid nitrogen was not significantly different from germination of control seeds (air-dried, non-cooled). In the two Onorpordum species the best response among cooling treatments was observed when air-dried seeds were slowly cooled.

  7. Cooling rate effects in sodium silicate glasses: Bridging the gap between molecular dynamics simulations and experiments

    NASA Astrophysics Data System (ADS)

    Li, Xin; Song, Weiying; Yang, Kai; Krishnan, N. M. Anoop; Wang, Bu; Smedskjaer, Morten M.; Mauro, John C.; Sant, Gaurav; Balonis, Magdalena; Bauchy, Mathieu

    2017-08-01

    Although molecular dynamics (MD) simulations are commonly used to predict the structure and properties of glasses, they are intrinsically limited to short time scales, necessitating the use of fast cooling rates. It is therefore challenging to compare results from MD simulations to experimental results for glasses cooled on typical laboratory time scales. Based on MD simulations of a sodium silicate glass with varying cooling rate (from 0.01 to 100 K/ps), here we show that thermal history primarily affects the medium-range order structure, while the short-range order is largely unaffected over the range of cooling rates simulated. This results in a decoupling between the enthalpy and volume relaxation functions, where the enthalpy quickly plateaus as the cooling rate decreases, whereas density exhibits a slower relaxation. Finally, we show that, using the proper extrapolation method, the outcomes of MD simulations can be meaningfully compared to experimental values when extrapolated to slower cooling rates.

  8. Optimization of 200 MWth and 250 MWt Ship Based Small Long Life NPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitriyani, Dian; Su'ud, Zaki

    2010-06-22

    Design optimization of ship-based 200 MWth and 250 MWt nuclear power reactors have been performed. The neutronic and thermo-hydraulic programs of the three-dimensional X-Y-Z geometry have been developed for the analysis of ship-based nuclear power plant. Quasi-static approach is adopted to treat seawater effect. The reactor are loop type lead bismuth cooled fast reactor with nitride fuel and with relatively large coolant pipe above reactor core, the heat from primary coolant system is directly transferred to watersteam loop through steam generators. Square core type are selected and optimized. As the optimization result, the core outlet temperature distribution is changing withmore » the elevation angle of the reactor system and the characteristics are discussed.« less

  9. Pulsed Film Cooling on a Turbine Blade Leading Edge

    DTIC Science & Technology

    2009-09-01

    LEADING EDGE 1. Introduction Gas turbine engines are based on the Brayton cycle in which atmospheric air is compressed, heated via combustion...generation. Because the working fluid is in an open loop, a cooling process is absent from the Brayton cycle. The ideal Brayton cycle (one in which...Technology, Taylor & Francis, 2000. Harrison, K. and Bogard, D., “CFD Predictions of Film Cooling Adiabatic Effectiveness for Cylindrical Holes Embedded

  10. The Muon Ionization Cooling Experiment User Software

    NASA Astrophysics Data System (ADS)

    Dobbs, A.; Rajaram, D.; MICE Collaboration

    2017-10-01

    The Muon Ionization Cooling Experiment (MICE) is a proof-of-principle experiment designed to demonstrate muon ionization cooling for the first time. MICE is currently on Step IV of its data taking programme, where transverse emittance reduction will be demonstrated. The MICE Analysis User Software (MAUS) is the reconstruction, simulation and analysis framework for the MICE experiment. MAUS is used for both offline data analysis and fast online data reconstruction and visualization to serve MICE data taking. This paper provides an introduction to MAUS, describing the central Python and C++ based framework, the data structure and and the code management and testing procedures.

  11. Reanalysis of the gas-cooled fast reactor experiments at the zero power facility proteus - Spectral indices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perret, G.; Pattupara, R. M.; Girardin, G.

    2012-07-01

    The gas-cooled fast reactor (GCFR) concept was investigated experimentally in the PROTEUS zero power facility at the Paul Scherrer Inst. during the 1970's. The experimental program was aimed at neutronics studies specific to the GCFR and at the validation of nuclear data in fast spectra. A significant part of the program used thorium oxide and thorium metal fuel either distributed quasi-homogeneously in the reference PuO{sub 2}/UO{sub 2} lattice or introduced in the form of radial and axial blanket zones. Experimental results obtained at the time are still of high relevance in view of the current consideration of the Gas-cooled Fastmore » Reactor (GFR) as a Generation-IV nuclear system, as also of the renewed interest in the thorium cycle. In this context, some of the experiments have been modeled with modern Monte Carlo codes to better account for the complex PROTEUS whole-reactor geometry and to allow validating recent continuous neutron cross-section libraries. As a first step, the MCNPX model was used to test the JEFF-3.1, JEFF-3.1.1, ENDF/B-VII.0 and JENDL-3.3 libraries against spectral indices, notably involving fission and capture of {sup 232}Th and {sup 237}Np, measured in GFR-like lattices. (authors)« less

  12. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection

    PubMed Central

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-01-01

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection. PMID:26838053

  13. How cracks are hot and cool: a burning issue for this paper

    NASA Astrophysics Data System (ADS)

    Toussaint, Renaud; Santucci, Stéphane; Lengliné, Olivier; Maloy, Knut Jorgen; Vincent-Dospital, Tom; Naert-Giuillot, Muriel

    2017-04-01

    Material failure is accompanied by important heat exchange, with extremely high temperature - thousands of degrees - reached at crack tips. Such temperature may subsequently alter the mechanical properties of stressed solids, and finally facilitate their rupture. Thermal runaway weakening processes could indeed explain stick-slip motions and even be responsible for deep earthquakes. Therefore, to better understand and eventually prevent catastrophic rupture events, it appears crucial to establish an accurate energy budget of fracture propagation from a clear measure of the various energy dissipation sources. In this work, combining analytical calculations and numerical simulations, we directly relate the temperature field around a moving crack tip to the part α of mechanical energy converted into heat. Monitoring the slow crack growth in paper sheets with an infrared camera, we measure a significant fraction α = 12±4%. Besides, we show that (self-generated) heat accumulation could weaken our samples with microfibers combustion, and lead to a fast crack/dynamic failure/ regime. Reference: Toussaint, R., Lengline, O., Santucci, S., Vincent-Dospital, T., Naert-Guillot, M. and Maloy, K.J., How cracks are hot and cool: a burning issue for paper (2016), Soft Matter (12), 5563-5571, DOI: 10.1039/C6SM00615A

  14. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection.

    PubMed

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-02-03

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection.

  15. Sensitivity of a Cloud-Resolving Model to Bulk and Explicit Bin Microphysical Schemes. Part 2; Cloud Microphysics and Storm Dynamics Interactions

    NASA Technical Reports Server (NTRS)

    Li, Xiaowen; Tao, Wei-Kuo; Khain, Alexander P.; Simpson, Joanne; Johnson, Daniel E.

    2009-01-01

    Part I of this paper compares two simulations, one using a bulk and the other a detailed bin microphysical scheme, of a long-lasting, continental mesoscale convective system with leading convection and trailing stratiform region. Diagnostic studies and sensitivity tests are carried out in Part II to explain the simulated contrasts in the spatial and temporal variations by the two microphysical schemes and to understand the interactions between cloud microphysics and storm dynamics. It is found that the fixed raindrop size distribution in the bulk scheme artificially enhances rain evaporation rate and produces a stronger near surface cool pool compared with the bin simulation. In the bulk simulation, cool pool circulation dominates the near-surface environmental wind shear in contrast to the near-balance between cool pool and wind shear in the bin simulation. This is the main reason for the contrasting quasi-steady states simulated in Part I. Sensitivity tests also show that large amounts of fast-falling hail produced in the original bulk scheme not only result in a narrow trailing stratiform region but also act to further exacerbate the strong cool pool simulated in the bulk parameterization. An empirical formula for a correction factor, r(q(sub r)) = 0.11q(sub r)(exp -1.27) + 0.98, is developed to correct the overestimation of rain evaporation in the bulk model, where r is the ratio of the rain evaporation rate between the bulk and bin simulations and q(sub r)(g per kilogram) is the rain mixing ratio. This formula offers a practical fix for the simple bulk scheme in rain evaporation parameterization.

  16. Hydrogen-oxygen auxiliary propulsion for the space shuttle. Volume 1: High pressure thrusters

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Technology for long life, high performing, gaseous hydrogen-gaseous oxygen rocket engines suitable for auxiliary propulsion was provided by a combined analytical and experimental program. Propellant injectors, fast response valves, igniters, and regeneratively and film-cooled thrust chambers were tested over a wide range of operating conditions. Data generated include performance, combustion efficiency, thermal characteristics film cooling effectiveness, dynamic response in pulsing, and cycle life limitations.

  17. Ultrafast Electric Field Pulse Control of Giant Temperature Change in Ferroelectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Y.; Liu, S.; Lindenberg, A. M.

    There is a surge of interest in developing environmentally friendly solid-state-based cooling technology. Here, we point out that a fast cooling rate (≈ 10 11 K/s) can be achieved by driving solid crystals to a high-temperature phase with a properly designed electric field pulse. Specifically, we predict that an ultrafast electric field pulse can cause a giant temperature decrease up to 32 K in PbTiO 3 occurring on few picosecond time scales. Here, we explain the underlying physics of this giant electric field pulse-induced temperature change with the concept of internal energy redistribution: the electric field does work on amore » ferroelectric crystal and redistributes its internal energy, and the way the kinetic energy is redistributed determines the temperature change and strongly depends on the electric field temporal profile. This concept is supported by our all-atom molecular dynamics simulations of PbTiO 3 and BaTiO 3. Moreover, this internal energy redistribution concept can also be applied to understand electrocaloric effect. We further propose new strategies for inducing giant cooling effect with ultrafast electric field pulse. This Letter offers a general framework to understand electric-field-induced temperature change and highlights the opportunities of electric field engineering for controlled design of fast and efficient cooling technology.« less

  18. Ultrafast Electric Field Pulse Control of Giant Temperature Change in Ferroelectrics

    DOE PAGES

    Qi, Y.; Liu, S.; Lindenberg, A. M.; ...

    2018-01-30

    There is a surge of interest in developing environmentally friendly solid-state-based cooling technology. Here, we point out that a fast cooling rate (≈ 10 11 K/s) can be achieved by driving solid crystals to a high-temperature phase with a properly designed electric field pulse. Specifically, we predict that an ultrafast electric field pulse can cause a giant temperature decrease up to 32 K in PbTiO 3 occurring on few picosecond time scales. Here, we explain the underlying physics of this giant electric field pulse-induced temperature change with the concept of internal energy redistribution: the electric field does work on amore » ferroelectric crystal and redistributes its internal energy, and the way the kinetic energy is redistributed determines the temperature change and strongly depends on the electric field temporal profile. This concept is supported by our all-atom molecular dynamics simulations of PbTiO 3 and BaTiO 3. Moreover, this internal energy redistribution concept can also be applied to understand electrocaloric effect. We further propose new strategies for inducing giant cooling effect with ultrafast electric field pulse. This Letter offers a general framework to understand electric-field-induced temperature change and highlights the opportunities of electric field engineering for controlled design of fast and efficient cooling technology.« less

  19. Ultrafast Electric Field Pulse Control of Giant Temperature Change in Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Qi, Y.; Liu, S.; Lindenberg, A. M.; Rappe, A. M.

    2018-01-01

    There is a surge of interest in developing environmentally friendly solid-state-based cooling technology. Here, we point out that a fast cooling rate (≈1011 K /s ) can be achieved by driving solid crystals to a high-temperature phase with a properly designed electric field pulse. Specifically, we predict that an ultrafast electric field pulse can cause a giant temperature decrease up to 32 K in PbTiO3 occurring on few picosecond time scales. We explain the underlying physics of this giant electric field pulse-induced temperature change with the concept of internal energy redistribution: the electric field does work on a ferroelectric crystal and redistributes its internal energy, and the way the kinetic energy is redistributed determines the temperature change and strongly depends on the electric field temporal profile. This concept is supported by our all-atom molecular dynamics simulations of PbTiO3 and BaTiO3 . Moreover, this internal energy redistribution concept can also be applied to understand electrocaloric effect. We further propose new strategies for inducing giant cooling effect with ultrafast electric field pulse. This Letter offers a general framework to understand electric-field-induced temperature change and highlights the opportunities of electric field engineering for controlled design of fast and efficient cooling technology.

  20. Nozzle cavity impingement/area reduction insert

    DOEpatents

    Yu, Yufeng Phillip; Itzel, Gary Michael; Osgood, Sarah Jane

    2002-01-01

    A turbine vane segment is provided that has inner and outer walls spaced from one another, a vane extending between the inner and outer walls and having leading and trailing edges and pressure and suction sides, the vane including discrete leading edge, intermediate, aft and trailing edge cavities between the leading and trailing edges and extending lengthwise of the vane for flowing a cooling medium; and an insert sleeve within at least one of the cavities and spaced from interior wall surfaces thereof. The insert sleeve has an inlet for flowing the cooling medium into the insert sleeve and has impingement holes defined in first and second walls thereof that respectively face the pressure and suction sides of the vane. The impingement holes of at least one of those first and second walls are defined along substantially only a first, upstream portion thereof, whereby the cooling flow is predominantly impingement cooling along a first region of the insert wall corresponding to the first, upstream portion and the cooling flow is predominantly convective cooling along a second region corresponding to a second, downstream portion of the at least one wall of the insert sleeve.

  1. Fast cool-down coaxial pulse tube microcooler

    NASA Astrophysics Data System (ADS)

    Nast, T.; Olson, J. R.; Champagne, P.; Roth, E.; Kaldas, G.; Saito, E.; Loung, V.; McCay, B. S.; Kenton, A. C.; Dobbins, C. L.

    2016-09-01

    We report the development and initial testing of the Lockheed Martin first-article, single-stage, compact, coaxial, Fast Cooldown Pulse Tube Microcryocooler (FC-PTM). The new cryocooler supports cooling requirements for emerging large, high operating temperature (105-150K) infrared focal plane array sensors with nominal cooling loads of 300 mW @105K @293K ambient. This is a sequel development that builds on our inline and coaxial pulse tube microcryocoolers reported at CEC 20137, ICC188,9, and CEC201510. The new FC-PTM and the prior units all share our long life space technology attributes, which typically have 10 year life requirements1. The new prototype microcryocooler builds on the previous development by incorporating cold head design improvements in two key areas: 1) reduced cool-down time and 2) novel repackaging that greatly reduces envelope. The new coldhead and Dewar were significantly redesigned from the earlier versions in order to achieve a cooldown time of 2-3 minutes- a projected requirement for tactical applications. A design approach was devised to reduce the cold head length from 115mm to 55mm, while at the same time reducing cooldown time. We present new FC-PTM performance test measurements with comparisons to our previous pulse-tube microcryocooler measurements and design predictions. The FC-PTM exhibits attractive small size, volume, weight, power and cost (SWaP-C) features with sufficient cooling capacity over required ambient conditions that apply to an increasing variety of space and tactical applications.

  2. The Effect of the Wall Contact and Post-Growth C001-Down on Defects in CdTe Crystals Grown by Contactless PVT

    NASA Technical Reports Server (NTRS)

    Palosz, W.; Grasza, K.; Dudley, M.; Raghothamachar, B.; Cai, L.; Durose, K.; Halliday, D.; Boyall, N. M.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    In crystal growth, the quality of the final material may depend, among other factors, on its interaction with the walls of the ampoule during and after the growth, and on the rate of the crystal cool-down at the end of ate the process. To investigate the above phenomena, a series of CdTe crystal growth processes was carried out, The crystals were grown by physical vapor transport without contact with the side walls of the silica glass ampoules, applying the Low Supersaturation Nucleation technique. The source temperature was 930 C, the undercooling was a few degrees. The crystals, having the diameter of 25 mm, grew at the rate of a few mm per day. The post-growth cool-down to the room temperature was conducted at different rates, and lasted from a few minutes to four days. The crystals were characterized using chemical etching low temperature luminescence, and Synchrotron White Beam X-ray Topography techniques. The dislocation (etch pit) density was measured and its distribution was analyzed by comparison with Poisson curves and with the Normalized Radial Distribution Correlation Function. It was found that the contact of the crystal with silica leads to a strain field and high (in the 105 sq cm range) dislocation (etch pit) density. Similar defect concentrations were found in crystals subjected to fast post-growth cool-down. Typical EPD values for lower cool-down rates and in regions not affected by wall interactions are in the lower 10(exp 4) sq cm range. In some areas the actual dislocation density was about 10(exp 3) sq cm or even less. No apparent effect of the cool-down rate on polygonization was observed. A fine structure could be discerned in low-temperature PL spectra of crystals with low dislocation density.

  3. Cooling Strategies for Vane Leading Edges in a Syngas Environment Including Effects of Deposition and Turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ames, Forrest; Bons, Jeffrey

    2014-09-30

    The Department of Energy has goals to move land based gas turbine systems to alternate fuels including coal derived synthetic gas and hydrogen. Coal is the most abundant energy resource in the US and in the world and it is economically advantageous to develop power systems which can use coal. Integrated gasification combined cycles are (IGCC) expected to allow the clean use of coal derived fuels while improving the ability to capture and sequester carbon dioxide. These cycles will need to maintain or increase turbine entry temperatures to develop competitive efficiencies. The use of coal derived syngas introduces a rangemore » of potential contaminants into the hot section of the gas turbine including sulfur, iron, calcium, and various alkali metals. Depending on the effectiveness of the gas clean up processes, there exists significant likelihood that the remaining materials will become molten in the combustion process and potentially deposit on downstream turbine surfaces. Past evidence suggests that deposition will be a strong function of increasing temperature. Currently, even with the best gas cleanup processes a small level of particulate matter in the syngas is expected. Consequently, particulate deposition is expected to be an important consideration in the design of turbine components. The leading edge region of first stage vanes most often have higher deposition rates than other areas due to strong fluid acceleration and streamline curvature in the vicinity of the surface. This region remains one of the most difficult areas in a turbine nozzle to cool due to high inlet temperatures and only a small pressure ratio for cooling. The leading edge of a vane often has relatively high heat transfer coefficients and is often cooled using showerhead film cooling arrays. The throat of the first stage nozzle is another area where deposition potentially has a strongly adverse effect on turbine performance as this region meters the turbine inlet flow. Based on roughness levels found on in service vanes (Bons, et al., 2001, up to 300 microns) flow blockage in first stage turbine nozzles can easily reach 1 to 2 percent in conventional turbines. Deposition levels in syngas fueled gas turbines are expected to be even more problematic. The likelihood of significant deposition to the leading edge of vanes in a syngas environment indicates the need to examine this effect on the leading edge cooling problem. It is critical to understand the influence of leading edge geometry and turbulence on deposition rates for both internally and showerhead cooled leading edge regions. The expected level of deposition in a vane stagnation region not only significantly changes the heat transfer problem but also suggests that cooling arrays may clog. Addressing the cooling issue suggests a need to better understand stagnation region heat transfer with realistic roughness as well as the other variables affecting transport near the leading edge. Also, the question of whether leading edge regions can be cooled internally with modern cooling approaches should also be raised, thus avoiding the clogging issue. Addressing deposition in the pressure side throat region of the nozzle is another critical issue for this environment. Issues such as examining the protective effect of slot and full coverage discrete-hole film cooling on limiting deposition as well as the influence of roughness and turbulence on effectiveness should be raised. The objective of this present study is to address these technical challenges to help enable the development of high efficiency syngas tolerant gas turbine engines.« less

  4. Thermal baffle for fast-breeder reacton

    DOEpatents

    Rylatt, John A.

    1977-01-01

    A liquid-metal-cooled fast-breeder reactor includes a bridge structure for separating hot outlet coolant from relatively cool inlet coolant consisting of an annular stainless steel baffle plate extending between the core barrel surrounding the core and the thermal liner associated with the reactor vessel and resting on ledges thereon, there being inner and outer circumferential webs on the lower surface of the baffle plate and radial webs extending between the circumferential webs, a stainless steel insulating plate completely covering the upper surface of the baffle plate and flex seals between the baffle plate and the ledges on which the baffle plate rests to prevent coolant from washing through the gaps therebetween. The baffle plate is keyed to the core barrel for movement therewith and floating with respect to the thermal liner and reactor vessel.

  5. On the influence of the americium isotopic vector on the cooling time of minor actinides bearing blankets in fast reactors

    NASA Astrophysics Data System (ADS)

    Kooyman, Timothée; Buiron, Laurent; Rimpault, Gerald

    2018-05-01

    In the heterogeneous minor actinides transmutation approach, the nuclei to be transmuted are loaded in dedicated targets often located at the core periphery, so that long-lived heavy nuclides are turned into shorter-lived fission products by fission. To compensate for low flux level at the core periphery, the minor actinides content in the targets is set relatively high (around 20 at.%), which has a negative impact on the reprocessing of the targets due to their important decay heat level. After a complete analysis of the main contributors to the heat load of the irradiated targets, it is shown here that the choice of the reprocessing order of the various feeds of americium from the fuel cycle depends on the actual limit for fuel reprocessing. If reprocessing of hot targets is possible, it is more interesting to reprocess first the americium feed with a high 243Am content in order to limit the total cooling time of the targets, while if reprocessing of targets is limited by their decay heat, it is more interesting to wait for an increase in the 241Am content before loading the americium in the core. An optimization of the reprocessing order appears to lead to a decrease of the total cooling time by 15 years compared to a situation where all the americium feeds are mixed together when two feeds from SFR are considered with a high reprocessing limit.

  6. A fast method to compute Three-Dimensional Infrared Radiative Transfer in non scattering medium

    NASA Astrophysics Data System (ADS)

    Makke, Laurent; Musson-Genon, Luc; Carissimo, Bertrand

    2014-05-01

    The Atmospheric Radiation field has seen the development of more accurate and faster methods to take into account absoprtion in participating media. Radiative fog appears with clear sky condition due to a significant cooling during the night, so scattering is left out. Fog formation modelling requires accurate enough method to compute cooling rates. Thanks to High Performance Computing, multi-spectral approach of Radiative Transfer Equation resolution is most often used. Nevertheless, the coupling of three-dimensionnal radiative transfer with fluid dynamics is very detrimental to the computational cost. To reduce the time spent in radiation calculations, the following method uses analytical absorption functions fitted by Sasamori (1968) on Yamamoto's charts (Yamamoto,1956) to compute a local linear absorption coefficient. By averaging radiative properties, this method eliminates the spectral integration. For an isothermal atmosphere, analytical calculations lead to an explicit formula between emissivities functions and linear absorption coefficient. In the case of cooling to space approximation, this analytical expression gives very accurate results compared to correlated k-distribution. For non homogeneous paths, we propose a two steps algorithm. One-dimensional radiative quantities and linear absorption coefficient are computed by a two-flux method. Then, three-dimensional RTE under the grey medium assumption is solved with the DOM. Comparisons with measurements of radiative quantities during ParisFOG field (2006) shows the cability of this method to handle strong vertical variations of pressure/temperature and gases concentrations.

  7. Molecular dynamics simulations on the local order of liquid and amorphous ZnTe

    NASA Astrophysics Data System (ADS)

    Rino, José Pedro; Borges, Denilson; Mota, Rita C.; Silva, Maurício A. P.

    2008-05-01

    Molecular dynamics studies of structural and dynamical correlations of molten and vitreous states under several conditions of density and temperature were performed. We use an effective recently proposed interatomic potential, consisting of two- and three-body covalent interactions which has successfully described the structural, dynamical, and structural phase transformation induced by pressure in ZnTe [D. S. Borges and J. P. Rino, Phys. Rev. B 72, 014107 (2005)]. The two-body term of the interaction potential consists of Coulomb interaction resulting from charge transfer, steric repulsion due to atomic sizes, charge-dipole interaction to include the effect of electronic polarizability of anions, and dipole-dipole (van der Waals) interactions. The three-body covalent term is a modification of the Stillinger-Weber potential. Molecular dynamics simulations in isobaric-isenthalpic ensemble have been performed for systems amounting to 4096 and 64 000 particles. Starting from a crystalline zinc-blende (ZB) structure, the system is initially heated until a very homogeneous liquid is obtained. The vitreous zinc telluride phase is attained by cooling the liquid at sufficiently fast cooling rates, while slower cooling rates lead to a disordered ZB crystalline structure. Two- and three-body correlations for the liquid and vitreous phases are analyzed through pair distribution functions, static structure factors, and bond angle distributions. In particular, the neutron static structure factor for the liquid phase is in very good agreement with both the reported experimental data and first-principles simulations.

  8. Numerical studies of fast ion slowing down rates in cool magnetized plasma using LSP

    NASA Astrophysics Data System (ADS)

    Evans, Eugene S.; Kolmes, Elijah; Cohen, Samuel A.; Rognlien, Tom; Cohen, Bruce; Meier, Eric; Welch, Dale R.

    2016-10-01

    In MFE devices, rapid transport of fusion products from the core into the scrape-off layer (SOL) could perform the dual roles of energy and ash removal. The first-orbit trajectories of most fusion products from small field-reversed configuration (FRC) devices will traverse the SOL, allowing those particles to deposit their energy in the SOL and be exhausted along the open field lines. Thus, the fast ion slowing-down time should affect the energy balance of an FRC reactor and its neutron emissions. However, the dynamics of fast ion energy loss processes under the conditions expected in the FRC SOL (with ρe <λDe) are analytically complex, and not yet fully understood. We use LSP, a 3D electromagnetic PIC code, to examine the effects of SOL density and background B-field on the slowing-down time of fast ions in a cool plasma. As we use explicit algorithms, these simulations must spatially resolve both ρe and λDe, as well as temporally resolve both Ωe and ωpe, increasing computation time. Scaling studies of the fast ion charge (Z) and background plasma density are in good agreement with unmagnetized slowing down theory. Notably, Z-scaling represents a viable way to dramatically reduce the required CPU time for each simulation. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466.

  9. Cold-stage microscopy system for fast-frozen liquids.

    PubMed

    Talmon, Y; Davis, H T; Scriven, L E; Thomas, E L

    1979-06-01

    The least artifact-laden fixation technique for examining colloidal suspensions, microemulsions, and other microstructured liquids in the electron microscope appears to be thermal fixation, i.e., ultrafast freezing of the liquid specimen. For rapid-enough cooling and for observation in TEM/STEM a thin sample is needed. The need is met by trapping a thin layer ( approximately 100 nm) of liquid between two polyimide films ( approximately 40 nm thickness) mounted on copper grids and immersing the resulting sandwich in liquid nitrogen at its melting point. For liquids containing water, polyimides films are used since this polymer is far less susceptible to the electron beam damage observed for the commonly used polymer films such as Formvar and collodion in contact with ice. Transfer of the frozen sample into the microscope column without deleterious frost deposition and warming is accomplished with a new transfer module for the cooling stage of the JEOL JEM-100CX microscope, which makes a true cold stage out of a device originally intended for cooling specimens inside the column. Sample results obtained with the new fast-freeze, cold-stage microscopy system are given.

  10. Fast quench reactor and method

    DOEpatents

    Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.

    1998-05-12

    A fast quench reactor includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This ``freezes`` the desired end product(s) in the heated equilibrium reaction stage. 7 figs.

  11. Assessment of the high temperature fission chamber technology for the French fast reactor program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jammes, C.; Filliatre, P.; Geslot, B.

    2011-07-01

    High temperature fission chambers are key instruments for the control and protection of the sodium-cooled fast reactor. First, the developments of those neutron detectors, which are carried out either in France or abroad are reviewed. Second, the French realizations are assessed with the use of the technology readiness levels in order to identify tracks of improvement. (authors)

  12. Design of Current Leads for the MICE Coupling Magnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Li; Li, L.K.; Wu, Hong

    2008-04-02

    A pair of superconducting coupling magnets will be part of the Muon Ionization Cooling Experiment (MICE). They were designed and will be constructed by the Institute of Cryogenics and Superconductivity Technology, Harbin Institute of Technology, in collaboration with Lawrence Berkeley National Laboratory. The coupling magnet is to be cooled by using cryocoolers at 4.2K. In order to reduce the heat leak to the 4.2K cold mass from 300 K, a pair of current leads composed of conventional copper leads and high temperature superconductor (HTS) leads will be used to supply current to the magnet. This paper presents the optimization ofmore » the conventional conduction-cooled metal leads for the coupling magnet. Analyses on heat transfer down the leads using theoretical method and numerical simulation were carried out. The stray magnetic field around the HTS leads has been calculated and effects of the magnetic field on the performance of the HTS leads has also been analyzed.« less

  13. Hysteresis of heart rate and heat exchange of fasting and postprandial savannah monitor lizards (Varanus exanthematicus).

    PubMed

    Zaar, Morten; Larsen, Einer; Wang, Tobias

    2004-04-01

    Reptiles are ectothermic, but regulate body temperatures (T(b)) by behavioural and physiological means. Body temperature has profound effects on virtually all physiological functions. It is well known that heating occurs faster than cooling, which seems to correlate with changes in cutaneous perfusion. Increased cutaneous perfusion, and hence elevated cardiac output, during heating is reflected in an increased heart rate (f(H)), and f(H), at a given T(b), is normally higher during heating compared to cooling ('hysteresis of heart rate'). Digestion is associated with an increased metabolic rate. This is associated with an elevated f(H) and many species of reptiles also exhibited a behavioural selection of higher T(b) during digestion. Here, we examine whether digestion affects the rate of heating and cooling as well as the hysteresis of heart rate in savannah monitor lizards (Varanus exanthematicus). Fasting lizards were studied after 5 days of food deprivation while digesting lizards were studied approximately 24 h after ingesting dead mice that equalled 10% of their body mass. Heart rate was measured while T(b) increased from 28 to 38 degrees C under a heat lamp and while T(b) decreased during a subsequent cooling phase. The lizards exhibited hysteresis of heart rate, and heating occurred faster than cooling. Feeding led to an increased f(H) (approximately 20 min(-1) irrespective of T(b)), but did not affect the rate of temperature change during heating or cooling. Therefore, it is likely that the increased blood flows during digestion are distributed exclusively to visceral organs and that the thermal conductance remains unaffected by the elevated metabolic rate during digestion.

  14. Time resolved analysis of Fermi gamma-ray bursts with fast-and slow-cooled synchrotron photon models

    DOE PAGES

    Burgess, J. M.; Preece, R. D.; Connaughton, V.; ...

    2014-02-27

    Time-resolved spectroscopy is performed on eight bright, long gamma-ray bursts (GRBs) dominated by single emission pulses that were observed with the Fermi Gamma-Ray Space Telescope. Fitting the prompt radiation of GRBs by empirical spectral forms such as the Band function leads to ambiguous conclusions about the physical model for the prompt radiation. Moreover, the Band function is often inadequate to fit the data. Therefore, the GRB spectrum is modeled with two emission components consisting of optically thin non-thermal synchrotron radiation from relativistic electrons and, when significant, thermal emission from a jet photosphere, which is represented by a blackbody spectrum. Inmore » order to produce an acceptable fit, the addition of a blackbody component is required in five out of the eight cases. We also find that the low-energy spectral index α is consistent with a synchrotron component with α = –0.81 ± 0.1. This value lies between the limiting values of α = –2/3 and α = –3/2 for electrons in the slow- and fast-cooling regimes, respectively, suggesting ongoing acceleration at the emission site. The blackbody component can be more significant when using a physical synchrotron model instead of the Band function, illustrating that the Band function does not serve as a good proxy for a non-thermal synchrotron emission component. The temperature and characteristic emission-region size of the blackbody component are found to, respectively, decrease and increase as power laws with time during the prompt phase. Additionally, we find that the blackbody and non-thermal components have separate temporal behaviors as far as their respective flux and spectral evolutions.« less

  15. Closed Form Equations for the Preliminary Design of a Heat-Pipe-Cooled Leading Edge

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    1998-01-01

    A set of closed form equations for the preliminary evaluation and design of a heat-pipe-cooled leading edge is presented. The set of equations can provide a leading-edge designer with a quick evaluation of the feasibility of using heat-pipe cooling. The heat pipes can be embedded in a metallic or composite structure. The maximum heat flux, total integrated heat load, and thermal properties of the structure and heat-pipe container are required input. The heat-pipe operating temperature, maximum surface temperature, heat-pipe length, and heat pipe-spacing can be estimated. Results using the design equations compared well with those from a 3-D finite element analysis for both a large and small radius leading edge.

  16. Wave-optics modeling of the optical-transport line for passive optical stochastic cooling

    NASA Astrophysics Data System (ADS)

    Andorf, M. B.; Lebedev, V. A.; Piot, P.; Ruan, J.

    2018-03-01

    Optical stochastic cooling (OSC) is expected to enable fast cooling of dense particle beams. Transition from microwave to optical frequencies enables an achievement of stochastic cooling rates which are orders of magnitude higher than ones achievable with the classical microwave based stochastic cooling systems. A subsystemcritical to the OSC scheme is the focusing optics used to image radiation from the upstream "pickup" undulator to the downstream "kicker" undulator. In this paper, we present simulation results using wave-optics calculation carried out with the SYNCHROTRON RADIATION WORKSHOP (SRW). Our simulations are performed in support to a proof-of-principle experiment planned at the Integrable Optics Test Accelerator (IOTA) at Fermilab. The calculations provide an estimate of the energy kick received by a 100-MeV electron as it propagates in the kicker undulator and interacts with the electromagnetic pulse it radiated at an earlier time while traveling through the pickup undulator.

  17. Quantum feedback cooling of a mechanical oscillator using variational measurements: tweaking Heisenberg’s microscope

    NASA Astrophysics Data System (ADS)

    Habibi, Hojat; Zeuthen, Emil; Ghanaatshoar, Majid; Hammerer, Klemens

    2016-08-01

    We revisit the problem of preparing a mechanical oscillator in the vicinity of its quantum-mechanical ground state by means of feedback cooling based on continuous optical detection of the oscillator position. In the parameter regime relevant to ground-state cooling, the optical back-action and imprecision noise set the bottleneck of achievable cooling and must be carefully balanced. This can be achieved by adapting the phase of the local oscillator in the homodyne detection realizing a so-called variational measurement. The trade-off between accurate position measurement and minimal disturbance can be understood in terms of Heisenberg’s microscope and becomes particularly relevant when the measurement and feedback processes happen to be fast within the quantum coherence time of the system to be cooled. This corresponds to the regime of large quantum cooperativity {C}{{q}}≳ 1, which was achieved in recent experiments on feedback cooling. Our method provides a simple path to further pushing the limits of current state-of-the-art experiments in quantum optomechanics.

  18. Wavy flow cooling concept for turbine airfoils

    DOEpatents

    Liang, George

    2010-08-31

    An airfoil including an outer wall and a cooling cavity formed therein. The cooling cavity includes a leading edge flow channel located adjacent a leading edge of the airfoil and a trailing edge flow channel located adjacent a trailing edge of the airfoil. Each of the leading edge and trailing edge flow channels define respective first and second flow axes located between pressure and suction sides of the airfoil. A plurality of rib members are located within each of the flow channels, spaced along the flow axes, and alternately extending from opposing sides of the flow channels to define undulating flow paths through the flow channels.

  19. Multilead, Vaporization-Cooled Soldering Heat Sink

    NASA Technical Reports Server (NTRS)

    Rice, John

    1995-01-01

    Vaporization-cooled heat sink proposed for use during soldering of multiple electrical leads of packaged electronic devices to circuit boards. Heat sink includes compliant wicks held in grooves on edges of metal fixture. Wicks saturated with water. Prevents excessive increases in temperature at entrances of leads into package.

  20. LSP simulations of fast ions slowing down in cool magnetized plasma

    NASA Astrophysics Data System (ADS)

    Evans, Eugene S.; Cohen, Samuel A.

    2015-11-01

    In MFE devices, rapid transport of fusion products, e.g., tritons and alpha particles, from the plasma core into the scrape-off layer (SOL) could perform the dual roles of energy and ash removal. Through these two processes in the SOL, the fast particle slowing-down time will have a major effect on the energy balance of a fusion reactor and its neutron emissions, topics of great importance. In small field-reversed configuration (FRC) devices, the first-orbit trajectories of most fusion products will traverse the SOL, potentially allowing those particles to deposit their energy in the SOL and eventually be exhausted along the open field lines. However, the dynamics of the fast-ion energy loss processes under conditions expected in the FRC SOL, where the Debye length is greater than the electron gyroradius, are not fully understood. What modifications to the classical slowing down rate are necessary? Will instabilities accelerate the energy loss? We use LSP, a 3D PIC code, to examine the effects of SOL plasma parameters (density, temperature and background magnetic field strength) on the slowing down time of fast ions in a cool plasma with parameters similar to those expected in the SOL of small FRC reactors. This work supported by DOE contract DE-AC02-09CH11466.

  1. Detection sensitivities in 3-8 MeV neutron activation

    NASA Technical Reports Server (NTRS)

    Wahlgren, M. A.; Wing, J.

    1968-01-01

    Study of detection sensitivities of 73 radioactive elements using fast unmoderated neutrons includes experiments for irradiation, cooling and counting conditions. The gamma ray emission spectra is used to identify the unknown material.

  2. Phase characteristics of rare earth elements in metallic fuel for a sodium-cooled fast reactor by injection casting

    NASA Astrophysics Data System (ADS)

    Kuk, Seoung Woo; Kim, Ki Hwan; Kim, Jong Hwan; Song, Hoon; Oh, Seok Jin; Park, Jeong-Yong; Lee, Chan Bock; Youn, Young-Sang; Kim, Jong-Yun

    2017-04-01

    Uranium-zirconium-rare earth (U-Zr-RE) fuel slugs for a sodium-cooled fast reactor were manufactured using a modified injection casting method, and investigated with respect to their uniformity, distribution, composition, and phase behavior according to RE content. Nd, Ce, Pr, and La were chosen as four representative lanthanide elements because they are considered to be major RE components of fuel ingots after pyroprocessing. Immiscible layers were found on the top layers of the melt-residue commensurate with higher fuel slug RE content. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) data showed that RE elements in the melt-residue were distributed uniformly throughout the fuel slugs. RE element agglomeration did not contaminate the fuel slugs but strongly affected the RE content of the slugs.

  3. Power flattening on modified CANDLE small long life gas-cooled fast reactor

    NASA Astrophysics Data System (ADS)

    Monado, Fiber; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Ariani, Menik; Sekimoto, Hiroshi

    2014-09-01

    Gas-cooled Fast Reactor (GFR) is one of the candidates of next generation Nuclear Power Plants (NPPs) that expected to be operated commercially after 2030. In this research conceptual design study of long life 350 MWt GFR with natural uranium metallic fuel as fuel cycle input has been performed. Modified CANDLE burn-up strategy with first and second regions located near the last region (type B) has been applied. This reactor can be operated for 10 years without refuelling and fuel shuffling. Power peaking reduction is conducted by arranging the core radial direction into three regions with respectively uses fuel volume fraction 62.5%, 64% and 67.5%. The average power density in the modified core is about 82 Watt/cc and the power peaking factor decreased from 4.03 to 3.43.

  4. Development of variable-width ribbon heating elements for liquid-metal and gas-cooled fast breeder reactor fuel-pin simulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCulloch, R.W.; Post, D.W.; Lovell, R.T.

    1981-04-01

    Variable-width ribbon heating elements that provide a chopped-cosine variable heat flux profile have been fabricated for fuel pin simulators used in test loops by the Breeder Reactor Program Thermal-Hydraulic Out-of-Reactor Safety test facility and the Gas-Cooled Fast Breeder Reactor-Core Flow Test Loop. Thermal, mechanical, and electrical design considerations are used to derive an analytical expression that precisely describes ribbon contour in terms of the major fabrication parameters. These parameters are used to generate numerical control tapes that control ribbon cutting and winding machines. Infrared scanning techniques are developed to determine the optimum transient thermal profile of the coils and relatemore » this profile to that generated by the coils in completed fuel pin simulators.« less

  5. Atom-probe tomography and transmission electron microscopy of the kamacite-taenite interface in the fast-cooled Bristol IVA iron meteorite

    NASA Astrophysics Data System (ADS)

    Rout, Surya S.; Heck, Philipp R.; Isheim, Dieter; Stephan, Thomas; Zaluzec, Nestor J.; Miller, Dean J.; Davis, Andrew M.; Seidman, David N.

    2017-12-01

    We report the first combined atom-probe tomography (APT) and transmission electron microscopy (TEM) study of a kamacite-tetrataenite (K-T) interface region within an iron meteorite, Bristol (IVA). Ten APT nanotips were prepared from the K-T interface with focused ion beam scanning electron microscopy (FIB-SEM) and then studied using TEM followed by APT. Near the K-T interface, we found 3.8 ± 0.5 wt% Ni in kamacite and 53.4 ± 0.5 wt% Ni in tetrataenite. High-Ni precipitate regions of the cloudy zone (CZ) have 50.4 ± 0.8 wt% Ni. A region near the CZ and martensite interface has <10 nm sized Ni-rich precipitates with 38.4 ± 0.7 wt% Ni present within a low-Ni matrix having 25.5 ± 0.6 wt% Ni. We found that Cu is predominantly concentrated in tetrataenite, whereas Co, P, and Cr are concentrated in kamacite. Phosphorus is preferentially concentrated along the K-T interface. This study is the first precise measurement of the phase composition at high spatial resolution and in 3-D of the K-T interface region in a IVA iron meteorite and furthers our knowledge of the phase composition changes in a fast-cooled iron meteorite below 400 °C. We demonstrate that APT in conjunction with TEM is a useful approach to study the major, minor, and trace elemental composition of nanoscale features within fast-cooled iron meteorites.

  6. Vapor cooled current lead for cryogenic electrical equipment

    DOEpatents

    Vansant, James H.

    1983-01-01

    Apparatus and method are provided for conducting electric current to cryogenic electrical equipment devices. A combination of inner and outer tubes together form a plurality of hollow composite tubes housed in a sheath. Top and bottom block mounting means are fitted to hold the composite tubes and are affixed to the ends of the sheath. This combination forms a current lead. The current lead is attached to a cryogenic device housing a fluid coolant which moves through the current lead, cooling the current lead as the fluid travels.

  7. An anisotropic numerical model for thermal hydraulic analyses: application to liquid metal flow in fuel assemblies

    NASA Astrophysics Data System (ADS)

    Vitillo, F.; Vitale Di Maio, D.; Galati, C.; Caruso, G.

    2015-11-01

    A CFD analysis has been carried out to study the thermal-hydraulic behavior of liquid metal coolant in a fuel assembly of triangular lattice. In order to obtain fast and accurate results, the isotropic two-equation RANS approach is often used in nuclear engineering applications. A different approach is provided by Non-Linear Eddy Viscosity Models (NLEVM), which try to take into account anisotropic effects by a nonlinear formulation of the Reynolds stress tensor. This approach is very promising, as it results in a very good numerical behavior and in a potentially better fluid flow description than classical isotropic models. An Anisotropic Shear Stress Transport (ASST) model, implemented into a commercial software, has been applied in previous studies, showing very trustful results for a large variety of flows and applications. In the paper, the ASST model has been used to perform an analysis of the fluid flow inside the fuel assembly of the ALFRED lead cooled fast reactor. Then, a comparison between the results of wall-resolved conjugated heat transfer computations and the results of a decoupled analysis using a suitable thermal wall-function previously implemented into the solver has been performed and presented.

  8. Preliminary design of high temperature ultrasonic transducers for liquid sodium environments

    NASA Astrophysics Data System (ADS)

    Prowant, M. S.; Dib, G.; Qiao, H.; Good, M. S.; Larche, M. R.; Sexton, S. S.; Ramuhalli, P.

    2018-04-01

    Advanced reactor concepts include fast reactors (including sodium-cooled fast reactors), gas-cooled reactors, and molten-salt reactors. Common to these concepts is a higher operating temperature (when compared to light-water-cooled reactors), and the proposed use of new alloys with which there is limited operational experience. Concerns about new degradation mechanisms, such as high-temperature creep and creep fatigue, that are not encountered in the light-water fleet and longer operating cycles between refueling intervals indicate the need for condition monitoring technology. Specific needs in this context include periodic in-service inspection technology for the detection and sizing of cracking, as well as technologies for continuous monitoring of components using in situ probes. This paper will discuss research on the development and evaluation of high temperature (>550°C; >1022°F) ultrasonic probes that can be used for continuous monitoring of components. The focus of this work is on probes that are compatible with a liquid sodium-cooled reactor environment, where the core outlet temperatures can reach 550°C (1022°F). Modeling to assess sensitivity of various sensor configurations and experimental evaluation have pointed to a preferred design and concept of operations for these probes. This paper will describe these studies and ongoing work to fabricate and fully evaluate survivability and sensor performance over extended periods at operational temperatures.

  9. Statistical mechanical approach to secondary processes and structural relaxation in glasses and glass formers: a leading model to describe the onset of Johari-Goldstein processes and their relationship with fully cooperative processes.

    PubMed

    Crisanti, A; Leuzzi, L; Paoluzzi, M

    2011-09-01

    The interrelation of dynamic processes active on separated time-scales in glasses and viscous liquids is investigated using a model displaying two time-scale bifurcations both between fast and secondary relaxation and between secondary and structural relaxation. The study of the dynamics allows for predictions on the system relaxation above the temperature of dynamic arrest in the mean-field approximation, that are compared with the outcomes of the equations of motion directly derived within the Mode Coupling Theory (MCT) for under-cooled viscous liquids. By varying the external thermodynamic parameters, a wide range of phenomenology can be represented, from a very clear separation of structural and secondary peak in the susceptibility loss to excess wing structures.

  10. Gas turbine bucket wall thickness control

    DOEpatents

    Stathopoulos, Dimitrios; Xu, Liming; Lewis, Doyle C.

    2002-01-01

    A core for use in casting a turbine bucket including serpentine cooling passages is divided into two pieces including a leading edge core section and a trailing edge core section. Wall thicknesses at the leading edge and the trailing edge of the turbine bucket can be controlled independent of each other by separately positioning the leading edge core section and the trailing edge core section in the casting die. The controlled leading and trailing edge thicknesses can thus be optimized for efficient cooling, resulting in more efficient turbine operation.

  11. The small chill: mild hypothermia for cardioprotection?

    PubMed

    Tissier, Renaud; Chenoune, Mourad; Ghaleh, Bijan; Cohen, Michael V; Downey, James M; Berdeaux, Alain

    2010-12-01

    Reducing the heart's temperature by 2-5°C is a potent cardioprotective treatment in animal models of coronary artery occlusion. The anti-infarct benefit depends upon the target temperature and the time at which cooling is instituted. Protection primarily results from cooling during the ischaemic period, whereas cooling during reperfusion or beyond offers little protection. In animal studies, protection is proportional to both the depth and duration of cooling. An optimal cooling protocol must appreciably shorten the normothermic ischaemic time to effectively salvage myocardium. Patients presenting with acute myocardial infarction could be candidates for mild hypothermia since the current door-to-balloon time is typically 90 min. But they would have to be cooled quickly shortly after their arrival. Several strategies have been proposed for ultra-fast cooling, but most like liquid ventilation and pericardial perfusion are too invasive. More feasible strategies might include cutaneous cooling, peritoneal lavage with cold solutions, and endovascular cooling with intravenous thermodes. This last option has been investigated clinically, but the results have been disappointing possibly because the devices lacked capacity to cool the patient quickly or cooling was not implemented soon enough. The mechanism of hypothermia's protection has been assumed to be energy conservation. However, whereas deep hypothermia clearly preserves ATP, mild hypothermia has only a modest effect on ATP depletion during ischaemia. Some evidence suggests that intracellular signalling pathways might be responsible for the protection. It is unknown how cooling could trigger these pathways, but, if true, then it might be possible to duplicate cooling's protection pharmacologically.

  12. Variations of the earth's magnetic field and rapid climatic cooling: A possible link through changes in global ice volume

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.

    1979-01-01

    A possible relationship between large scale changes in global ice volume, variations in the earth's magnetic field, and short term climatic cooling is investigated through a study of the geomagnetic and climatic records of the past 300,000 years. The calculations suggest that redistribution of the Earth's water mass can cause rotational instabilities which lead to geomagnetic excursions; these magnetic variations in turn may lead to short-term coolings through upper atmosphere effects. Such double coincidences of magnetic excursions and sudden coolings at times of ice volume changes have occurred at 13,500, 30,000, 110,000, and 135,000 YBP.

  13. Photoinduced local heating in silica photonic crystals for fast and reversible switching.

    PubMed

    Gallego-Gómez, Francisco; Blanco, Alvaro; López, Cefe

    2012-12-04

    Fast and reversible photonic-bandgap tunability is achieved in silica artificial opals by local heating. The effect is fully reversible as heat rapidly dissipates through the non-irradiated structure without active cooling and water is readsorbed. The performance is strongly enhanced by decreasing the photoirradiated opal volume, allowing bandgap shifts of 12 nm and response times of 20 ms. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Modeling and Observation of Interstellar He+ Pickup Ions in the Inner Heliosphere

    NASA Astrophysics Data System (ADS)

    Chen, Junhong

    Interstellar pickup ions constitute a charged particle population that originates from interstellar neutrals inside the heliosphere. They are produced by photoionization, charge exchange with solar wind ions, and electron impact ionization (EI). Once ionized, they are picked up by the interplanetary magnetic field (IMF) and rapidly swept outward with the solar wind. Typically, pickup ion distributions have been described in terms of a velocity distribution function that evolves through fast pitch angle scattering followed by adiabatic cooling during radial transport in the reference frame of the solar wind [e.g., Vasyliunas & Siscoe, 1976, VS76 hereafter]. In the VS76 model, the slope of the isotropic velocity distributions is controlled by the combination of the ionization rate and the cooling process. Thus far, for the cooling index that relates the slope of the velocity distribution to the radial transport and expansion of the pickup ions a constant value of 3/2 has been widely used. The implicit assumptions to arrive at this value are immediate PUI isotropization due to pitch angle scattering and solar wind expansion with the square of the distance from the Sun. Any experimental determination of the cooling index depends on the knowledge of the ionization rate and its spatial variation, as well as solar wind and interplanetary conditions. In this thesis, we study their influences on the PUI cooling index and separate them by making use of the two complementary helium PUI data sets from SWICS instrument on the ACE spacecraft, and PLASTIC instrument on STEREO spacecraft. We use the pickup ion observations from ACE SIWCS in the last solar cycle to determine the cooling index, and the possible effects of the electron impact ionization on the determination of the cooling index. With pickup ion observations from STEREO PLASTIC, we determine how solar wind expansion patterns affect the cooling index. We find that the cooling index varies substantially with solar activity and suspect that these variations may be due to the influence of electron impact ionization, solar wind structures, and slow pitch angle scattering. Electron impact ionization, which does not scale as 1/r 2, is shown to have negligible influence on the cooling index and its variations. However, the effects of solar wind compression and rarefaction regions are found to be important. Comparisons of the pickup ion cooling behavior in the compression and rarefaction regions show that the radial solar wind expansion behaviors that differer from the usual 1/r 2 scaling may play the leading roles in the observed variations. A kinetic model of PUI is used to quantitatively describe their behavior in co-rotating interaction regions (CIR). The simulated distributions mimic closely the observed variations in the cooling behavior of PUIs in these regions. In addition, suprathermal tails appear to emerge from the PUI distributions inside compression regions, which provide further evidence that some particles of this population are accelerated locally in CIR compression regions even in the absence of shocks.

  15. Reliability and Maintainability Data for Lead Lithium Cooling Systems

    DOE PAGES

    Cadwallader, Lee

    2016-11-16

    This article presents component failure rate data for use in assessment of lead lithium cooling systems. Best estimate data applicable to this liquid metal coolant is presented. Repair times for similar components are also referenced in this work. These data support probabilistic safety assessment and reliability, availability, maintainability and inspectability analyses.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidl, P. A.; Waldron, W.

    This report describes the prototype final focus solenoid (FFS-1G), or 1st generation FFS. In order to limit eddy currents, the solenoid winding consists of Litz wire wound on a non-conductive G-10 tube. For the same reason, the winding pack was inserted into an electrically insulating, but thermally conducting Polypropylene (Cool- Poly© D1202) housing and potted with highly viscous epoxy (to be able to wick the single strands of the Litz wire). The magnet is forced-air cooled through cooling channels. The magnet was designed for water cooling, but he cooling jacket cracked, and therefore cooling (beyond natural conduction and radiation) wasmore » exclusively by forced air. Though the design operating point was 8 Tesla, for the majority of running on NDCX-1 it operated up to about 5 Tesla. This was due mostly from limitations of voltage holding at the leads, where discharges at higher pulsed current damaged the leads. Generation 1 was replaced by the 2nd generation solenoid (FFS-2G) about a year later, which has operated reliably up to 8 Tesla, with a better lead design and utilizes water cooling. At this point, FFS-1G was used for plasma source R&D by LBNL and PPPL. The maximum field for those experiments was reduced to 3 Tesla due to continued difficulty with the leads and because higher field was not essential for those experiments. The pulser for the final focusing solenoid is a SCR-switched capacitor bank which produces a half-sine current waveform. The pulse width is ~800us and a charge voltage of 3kV drives ~20kA through the magnet producing ~8T field.« less

  17. Slow hot carrier cooling in cesium lead iodide perovskites

    NASA Astrophysics Data System (ADS)

    Shen, Qing; Ripolles, Teresa S.; Even, Jacky; Ogomi, Yuhei; Nishinaka, Koji; Izuishi, Takuya; Nakazawa, Naoki; Zhang, Yaohong; Ding, Chao; Liu, Feng; Toyoda, Taro; Yoshino, Kenji; Minemoto, Takashi; Katayama, Kenji; Hayase, Shuzi

    2017-10-01

    Lead halide perovskites are attracting a great deal of interest for optoelectronic applications such as solar cells, LEDs, and lasers because of their unique properties. In solar cells, heat dissipation by hot carriers results in a major energy loss channel responsible for the Shockley-Queisser efficiency limit. Hot carrier solar cells offer the possibility to overcome this limit and achieve energy conversion efficiency as high as 66% by extracting hot carriers. Therefore, fundamental studies on hot carrier relaxation dynamics in lead halide perovskites are important. Here, we elucidated the hot carrier cooling dynamics in all-inorganic cesium lead iodide (CsPbI3) perovskite using transient absorption spectroscopy. We observe that the hot carrier cooling rate in CsPbI3 decreases as the fluence of the pump light increases and the cooling is as slow as a few 10 ps when the photoexcited carrier density is 7 × 1018 cm-3, which is attributed to phonon bottleneck for high photoexcited carrier densities. Our findings suggest that CsPbI3 has a potential for hot carrier solar cell applications.

  18. Numerical simulation of film-cooled ablative rocket nozzles

    NASA Technical Reports Server (NTRS)

    Landrum, D. B.; Beard, R. M.

    1996-01-01

    The objective of this research effort was to evaluate the impact of incorporating an additional cooling port downstream between the injector and nozzle throat in the NASA Fast Track chamber. A numerical model of the chamber was developed for the analysis. The analysis did not model ablation but instead correlated the initial ablation rate with the initial nozzle wall temperature distribution. The results of this study provide guidance in the development of a potentially lighter, second generation ablative rocket nozzle which maintains desired performance levels.

  19. Effect of Ultra-Fast Cooling on Microstructure and Properties of High Strength Steel for Shipbuilding

    NASA Astrophysics Data System (ADS)

    Zhou, Cheng; Ye, Qibin; Yan, Ling

    The effect of ultra-fast cooling(UFC) and conventional accelerated cooling(AcC) on the mechanical properties and microstructure of controlled rolled AH32 grade steel plates on industrial scale were compared using tensile test, Charpy impact test, welding thermal simulation, and microscopic analysis. The results show that the properties of the plate produced by UFC are improved considerably comparing to that by AcC. The yield strength is increased with 54 MPa without deterioration in the ductility and the impact energy is improved to more than 260 J at -60 °C with much lower ductile-to-brittle transition temperature(DBTT). The ferrite grain size is refined to ASTM No. 11.5 in the UFC steel with uniform microstructure throughout the thickness direction, while that of the AcC steel is ASTM No. 9.5. The analysis of nucleation kinetics of α-ferrite indicates that the microstructure is refined due to the increased nucleation rate of α-ferrite by much lower γ→α transition temperature through the UFC process. The Hall-Petch effect is quantified for the improvement of the strength and toughness of the UFC steel attributed to the grain refinement.

  20. Core design of a direct-cycle, supercritical-water-cooled fast breeder reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jevremovic, T.; Oka, Yoshiaki; Koshizuka, Seiichi

    1994-10-01

    The conceptual design of a direct-cycle fast breeder reactor (FBR) core cooled by supercritical water is carried out as a step toward a low-cost FBR plant. The supercritical water does not exhibit change of phase. The turbines are directly driven by the core outlet coolant. In comparison with a boiling water reactor (BWR), the recirculation systems, steam separators, and dryers are eliminated. The reactor system is much simpler than the conventional steam-cooled FBRs, which adopted Loeffler boilers and complicated coolant loops for generating steam and separating it from water. Negative complete and partial coolant void reactivity are provided without muchmore » deterioration in the breeding performances by inserting thin zirconium-hydride layers between the seeds and blankets in a radially heterogeneous core. The net electric power is 1245 MW (electric). The estimated compound system doubling time is 25 yr. The discharge burnup is 77.7 GWd/t, and the refueling period is 15 months with a 73% load factor. The thermal efficiency is high (41.5%), an improvement of 24% relative to a BWR's. The pressure vessel is not thick at 30.3 cm.« less

  1. Decay Heat Removal from a GFR Core by Natural Convection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Wesley C.; Hejzlar, Pavel; Driscoll, Michael J.

    2004-07-01

    One of the primary challenges for Gas-cooled Fast Reactors (GFR) is decay heat removal after a loss of coolant accident (LOCA). Due to the fact that thermal gas cooled reactors currently under design rely on passive mechanisms to dissipate decay heat, there is a strong motivation to accomplish GFR core cooling through natural phenomena. This work investigates the potential of post-LOCA decay heat removal from a GFR core to a heat sink using an external convection loop. A model was developed in the form of the LOCA-COLA (Loss of Coolant Accident - Convection Loop Analysis) computer code as a meansmore » for 1D steady state convective heat transfer loop analysis. The results show that decay heat removal by means of gas cooled natural circulation is feasible under elevated post-LOCA containment pressure conditions. (authors)« less

  2. PyCOOL — A Cosmological Object-Oriented Lattice code written in Python

    NASA Astrophysics Data System (ADS)

    Sainio, J.

    2012-04-01

    There are a number of different phenomena in the early universe that have to be studied numerically with lattice simulations. This paper presents a graphics processing unit (GPU) accelerated Python program called PyCOOL that solves the evolution of scalar fields in a lattice with very precise symplectic integrators. The program has been written with the intention to hit a sweet spot of speed, accuracy and user friendliness. This has been achieved by using the Python language with the PyCUDA interface to make a program that is easy to adapt to different scalar field models. In this paper we derive the symplectic dynamics that govern the evolution of the system and then present the implementation of the program in Python and PyCUDA. The functionality of the program is tested in a chaotic inflation preheating model, a single field oscillon case and in a supersymmetric curvaton model which leads to Q-ball production. We have also compared the performance of a consumer graphics card to a professional Tesla compute card in these simulations. We find that the program is not only accurate but also very fast. To further increase the usefulness of the program we have equipped it with numerous post-processing functions that provide useful information about the cosmological model. These include various spectra and statistics of the fields. The program can be additionally used to calculate the generated curvature perturbation. The program is publicly available under GNU General Public License at https://github.com/jtksai/PyCOOL. Some additional information can be found from http://www.physics.utu.fi/tiedostot/theory/particlecosmology/pycool/.

  3. Evolution of systems concepts for a 100 kWe class Space Nuclear Power System

    NASA Technical Reports Server (NTRS)

    Katucki, R.; Josloff, A.; Kirpich, A.; Florio, F.

    1985-01-01

    Conceptual designs for the SP-100 Space Nuclear Power System have been prepared that meet baseline, backup and growth program scenarios. Near-term advancement in technology was considered in the design of the Baseline Concept. An improved silicon-germanium thermoelectric technique is used to convert the heat from a fast-spectrum, liquid lithium cooled reactor. This system produces a net power of 100 kWe with a 10-year end of life, under the specific constraints of area and volume. Output of the Backup Concept is estimated to be 60 kWe for a 10-year end of life. This system differs from the Baseline Concept because currently available thermoelectric conversion is used from energy supplied by a liquid sodium cooled reactor. The Growth Concept uses Stirling engine conversion to produce 100 kWe within the constraints of mass and volume. The Growth Concept can be scaled up to produce a 1 MWe output that uses the same type reactor developed for the Baseline Concept. Assessments made for each of the program scenarios indicate the key development efforts needed to initiate detailed design and hardware program phases. Development plans were prepared for each scenario that detail the work elements and show the program activities leading to a state of flight readiness.

  4. Design Status of the Cryogenic System and Operation Modes Analysys of the JT-60SA Tokamak

    NASA Astrophysics Data System (ADS)

    Roussel, P.; Hoa, C.; Lamaison, V.; Michel, F.; Reynaud, P.; Wanner, M.

    2010-04-01

    The JT-60SA project is part of the Broader Approach Programme signed between Japan and Europe. This superconducting upgrade of the existing JT-60U tokamak in Naka, Japan shall start operation in 2016 and shall support ITER exploitation and research towards DEMO fusion reactor. JT-60SA is currently in the basic design phase. The cryogenic system of JT-60SA shall provide supercritical helium to cool the superconducting magnets and their structures at 4.4 K, and the divertor cryopumps at a temperature of 3.7 K. In addition it shall provide refrigeration for the thermal shields at 80 K and deliver helium at 50 K for the current leads. The equivalent refrigeration capacity at 4.5 K will be about 10 kW. The refrigeration process has to be optimised for different operation modes. During the day, in plasma operation state, the refrigerator will cope with the pulsed heat loads which may increase up to 100% of the average power, representing a big challenge compared to other tokamaks. Fast discharge quenches of the magnets, the impact from baking of the vacuum vessel, cool down and warm up modes are presented from the cryogenic system point of view and their impact on the cryogenic design is described.

  5. Modelling the radiolysis of RSG-GAS primary cooling water

    NASA Astrophysics Data System (ADS)

    Butarbutar, S. L.; Kusumastuti, R.; Subekti, M.; Sunaryo, G. R.

    2018-02-01

    Water chemistry control for light water coolant reactor required a reliable understanding of radiolysis effect in mitigating corrosion and degradation of reactor structure material. It is known that oxidator products can promote the corrosion, cracking and hydrogen pickup both in the core and in the associated piping components of the reactor. The objective of this work is to provide the radiolysis model of RSG GAS cooling water and further more to predict the oxidator concentration which can lead to corrosion of reactor material. Direct observations or measurements of the chemistry in and around the high-flux core region of a nuclear reactor are difficult due to the extreme conditions of high temperature, pressure, and mixed radiation fields. For this reason, chemical models and computer simulations of the radiolysis of water under these conditions are an important route of investigation. FACSIMILE were used to calculate the concentration of O2 formed at relatively long-time by the pure water γ and neutron irradiation (pH=7) at temperature between 25 and 50 °C. This simulation method is based on a complex chemical reaction kinetic. In this present work, 300 MeV-proton were used to mimic γ-rays radiolysis and 2 MeV fast neutrons. Concentration of O2 were calculated at 10-6 - 106 s time scale.

  6. Experimental cooling during incubation leads to reduced innate immunity and body condition in nestling tree swallows.

    PubMed

    Ardia, Daniel R; Pérez, Jonathan H; Clotfelter, Ethan D

    2010-06-22

    Nest microclimate can have strong effects that can carry over to later life-history stages. We experimentally cooled the nests of tree swallows (Tachycineta bicolor). Females incubating in cooled nests reduced incubation time and allowed egg temperatures to drop, leading to extended incubation periods. We partially cross-fostered nestlings to test carry-over effects of cooling during incubation on nestling innate constitutive immunity, assessed through bacteria killing ability (BKA) of blood. Nestlings that had been cooled as eggs showed a lower ability to kill bacteria than control nestlings, regardless of the treatment of their foster mother. However, there was no effect of treatment of rearing females on nestling BKA in control nestlings, even though cooled females made significantly fewer feeding visits than did control females. This suggests that the effect of cooling occurred during incubation and was not due to carry-over effects on nestling condition. Nestlings that were exposed to experimental cooling as embryos had lower residual body mass and absolute body mass at all four ages measured. Our results indicate that environmental conditions and trade-offs experienced during one stage of development can have important carry-over effects on later life-history stages.

  7. Effect of thermal history on mechanical properties of polyetheretherketone below the glass transition temperature

    NASA Technical Reports Server (NTRS)

    Cebe, Peggy; Chung, Shirley Y.; Hong, Su-Don

    1987-01-01

    The effect of thermal history on the tensile properties of polyetheretherketone neat resin films was investigated at different test temperatures (125, 25, and -100) using four samples: fast-quenched amorphous (Q); quenched, then crystallized at 180 C (C180); slowly cooled (for about 16 h) from the melt (SC); and air-cooled (2-3 h) from the melt (AC). It was found that thermal history significantly affects the tensile properties of the material below the glass transition. Fast quenched amorphous films were most tough, could be drawn to greatest strain before rupture, and undergo densification during necking; at the test temperature of -100 C, these films had the best ultimate mechanical properties. At higher temperatures, the semicrystalline films AC and C180 had properties that compared favorably with the Q films. The SC films exhibited poor mechanical properties at all test temperatures.

  8. Method of detecting leakage of reactor core components of liquid metal cooled fast reactors

    DOEpatents

    Holt, Fred E.; Cash, Robert J.; Schenter, Robert E.

    1977-01-01

    A method of detecting the failure of a sealed non-fueled core component of a liquid-metal cooled fast reactor having an inert cover gas. A gas mixture is incorporated in the component which includes Xenon-124; under neutron irradiation, Xenon-124 is converted to radioactive Xenon-125. The cover gas is scanned by a radiation detector. The occurrence of 188 Kev gamma radiation and/or other identifying gamma radiation-energy level indicates the presence of Xenon-125 and therefore leakage of a component. Similarly, Xe-126, which transmutes to Xe-127 and Kr-84, which produces Kr-85.sup.m can be used for detection of leakage. Different components are charged with mixtures including different ratios of isotopes other than Xenon-124. On detection of the identifying radiation, the cover gas is subjected to mass spectroscopic analysis to locate the leaking component.

  9. Safety design approach for external events in Japan sodium-cooled fast reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamano, H.; Kubo, S.; Tani, A.

    2012-07-01

    This paper describes a safety design approach for external events in the design study of Japan sodium-cooled fast reactor. An emphasis is introduction of a design extension external condition (DEEC). In addition to seismic design, other external events such as tsunami, strong wind, abnormal temperature, etc. were addressed in this study. From a wide variety of external events consisting of natural hazards and human-induced ones, a screening method was developed in terms of siting, consequence, frequency to select representative events. Design approaches for these events were categorized on the probabilistic, statistical and deterministic basis. External hazard conditions were considered mainlymore » for DEECs. In the probabilistic approach, the DEECs of earthquake, tsunami and strong wind were defined as 1/10 of exceedance probability of the external design bases. The other representative DEECs were also defined based on statistical or deterministic approaches. (authors)« less

  10. Dynamic event tree analysis with the SAS4A/SASSYS-1 safety analysis code

    DOE PAGES

    Jankovsky, Zachary K.; Denman, Matthew R.; Aldemir, Tunc

    2018-02-02

    The consequences of a transient in an advanced sodium-cooled fast reactor are difficult to capture with the traditional approach to probabilistic risk assessment (PRA). Numerous safety-relevant systems are passive and may have operational states that cannot be represented by binary success or failure. In addition, the specific order and timing of events may be crucial which necessitates the use of dynamic PRA tools such as ADAPT. The modifications to the SAS4A/SASSYS-1 sodium-cooled fast reactor safety analysis code for linking it to ADAPT to perform a dynamic PRA are described. A test case is used to demonstrate the linking process andmore » to illustrate the type of insights that may be gained with this process. Finally, newly-developed dynamic importance measures are used to assess the significance of reactor parameters/constituents on calculated consequences of initiating events.« less

  11. Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCulloch, R.W.; MacPherson, R.E.

    1983-03-01

    The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm/sup 2/, 1000/sup 0/C cladding temperature, and (2) 40 h at 40 W/cm/sup 2/, 1200/sup 0/C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through cladmore » melting at 1370/sup 0/C.« less

  12. Development of infrared thermal imager for dry eye diagnosis

    NASA Astrophysics Data System (ADS)

    Chiang, Huihua Kenny; Chen, Chih Yen; Cheng, Hung You; Chen, Ko-Hua; Chang, David O.

    2006-08-01

    This study aims at the development of non-contact dry eye diagnosis based on an infrared thermal imager system, which was used to measure the cooling of the ocular surface temperature of normal and dry eye patients. A total of 108 subjects were measured, including 26 normal and 82 dry eye patients. We have observed that the dry eye patients have a fast cooling of the ocular surface temperature than the normal control group. We have developed a simplified algorithm for calculating the temperature decay constant of the ocular surface for discriminating between normal and dry eye. This study shows the diagnostic of dry eye syndrome by the infrared thermal imager system has reached a sensitivity of 79.3%, a specificity of 75%, and the area under the ROC curve 0.841. The infrared thermal imager system has a great potential to be developed for dry eye screening with the advantages of non-contact, fast, and convenient implementation.

  13. Dynamic event tree analysis with the SAS4A/SASSYS-1 safety analysis code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jankovsky, Zachary K.; Denman, Matthew R.; Aldemir, Tunc

    The consequences of a transient in an advanced sodium-cooled fast reactor are difficult to capture with the traditional approach to probabilistic risk assessment (PRA). Numerous safety-relevant systems are passive and may have operational states that cannot be represented by binary success or failure. In addition, the specific order and timing of events may be crucial which necessitates the use of dynamic PRA tools such as ADAPT. The modifications to the SAS4A/SASSYS-1 sodium-cooled fast reactor safety analysis code for linking it to ADAPT to perform a dynamic PRA are described. A test case is used to demonstrate the linking process andmore » to illustrate the type of insights that may be gained with this process. Finally, newly-developed dynamic importance measures are used to assess the significance of reactor parameters/constituents on calculated consequences of initiating events.« less

  14. Preliminary safety analysis of Pb-Bi cooled 800 MWt modified CANDLE burn-up scheme based fast reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su'ud, Zaki, E-mail: szaki@fi.itba.c.id; Sekimoto, H., E-mail: hsekimot@gmail.com

    2014-09-30

    Pb-Bi Cooled fast reactors with modified CANDLE burn-up scheme with 10 regions and 10 years cycle length has been investigated from neutronic aspects. In this study the safety aspect of such reactors have been investigated and discussed. Several condition of unprotected loss of flow (ULOF) and unprotected rod run-out transient over power (UTOP) have been simulated and the results show that the reactors excellent safety performance. At 80 seconds after unprotected loss of flow condition, the core flow rate drop to about 25% of its initial flow and slowly move toward its natural circulation level. The maximum fuel temperature canmore » be managed below 1000°C and the maximum cladding temperature can be managed below 700°C. The dominant reactivity feedback is radial core expansion and Doppler effect, followed by coolant density effect and fuel axial expansion effect.« less

  15. Effects of Rolling and Cooling Conditions on Microstructure and Tensile and Charpy Impact Properties of Ultra-Low-Carbon High-Strength Bainitic Steels

    NASA Astrophysics Data System (ADS)

    Sung, Hyo Kyung; Shin, Sang Yong; Hwang, Byoungchul; Lee, Chang Gil; Kim, Nack J.; Lee, Sunghak

    2011-07-01

    Six ultra-low-carbon high-strength bainitic steel plates were fabricated by controlling rolling and cooling conditions, and effects of bainitic microstructure on tensile and Charpy impact properties were investigated. The microstructural evolution was more critically affected by start cooling temperature and cooling rate than by finish rolling temperature. Bainitic microstructures such as granular bainites (GBs) and bainitic ferrites (BFs) were well developed as the start cooling temperature decreased or the cooling rate increased. When the steels cooled from 973 K or 873 K (700 °C or 600 °C) were compared under the same cooling rate of 10 K/s (10 °C/s), the steels cooled from 973 K (700 °C) consisted mainly of coarse GBs, while the steels cooled from 873 K (600 °C) contained a considerable amount of BFs having high strength, thereby resulting in the higher strength but the lower ductility and upper shelf energy (USE). When the steels cooled from 673 K (400 °C) at a cooling rate of 10 K/s (10 °C/s) or 0.1 K/s (0.1 °C/s) were compared under the same start cooling temperature of 873 K (600 °C), the fast cooled specimens were composed mainly of coarse GBs or BFs, while the slowly cooled specimens were composed mainly of acicular ferrites (AFs). Since AFs had small effective grain size and contained secondary phases finely distributed at grain boundaries, the slowly cooled specimens had a good combination of strength, ductility, and USE, together with very low energy transition temperature (ETT).

  16. An experimental study of turbine vane heat transfer with leading edge and downstream film cooling

    NASA Astrophysics Data System (ADS)

    Nirmalan, V.; Hylton, L. D.

    1989-06-01

    This paper presents the effects of downstream film cooling, with and without leading edge showerhead film cooling, on turbine-vane external heat transfer. Steady-state experimental measurements were made in a three-vane linear two-dimensional cascade. The principal independent parameters were maintained over ranges consistent with actual engine conditions. The test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. The data obtained indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The downstream film cooling process was shown to be a complex interaction of two competing mechanisms. The thermal dilution effect, associated with the injection of relatively cold fluid, results in a decrease in the heat transfer to the airfoil. Conversely, the turbulence augmentation, produced by the injection process, results in increased heat transfer to the airfoil.

  17. An experimental study of turbine vane heat transfer with leading edge and downstream film cooling

    NASA Technical Reports Server (NTRS)

    Nirmalan, V.; Hylton, L. D.

    1989-01-01

    This paper presents the effects of downstream film cooling, with and without leading edge showerhead film cooling, on turbine-vane external heat transfer. Steady-state experimental measurements were made in a three-vane linear two-dimensional cascade. The principal independent parameters were maintained over ranges consistent with actual engine conditions. The test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. The data obtained indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The downstream film cooling process was shown to be a complex interaction of two competing mechanisms. The thermal dilution effect, associated with the injection of relatively cold fluid, results in a decrease in the heat transfer to the airfoil. Conversely, the turbulence augmentation, produced by the injection process, results in increased heat transfer to the airfoil.

  18. Review and status of heat-transfer technology for internal passages of air-cooled turbine blades

    NASA Technical Reports Server (NTRS)

    Yeh, F. C.; Stepka, F. S.

    1984-01-01

    Selected literature on heat-transfer and pressure losses for airflow through passages for several cooling methods generally applicable to gas turbine blades is reviewed. Some useful correlating equations are highlighted. The status of turbine-blade internal air-cooling technology for both nonrotating and rotating blades is discussed and the areas where further research is needed are indicated. The cooling methods considered include convection cooling in passages, impingement cooling at the leading edge and at the midchord, and convection cooling in passages, augmented by pin fins and the use of roughened internal walls.

  19. Utilizing of inner porous structure in injection moulds for application of special cooling method

    NASA Astrophysics Data System (ADS)

    Seidl, M.; Bobek, J.; Šafka, J.; Habr, J.; Nováková, I.; Běhálek, L.

    2016-04-01

    The article is focused on impact evaluation of controlled inner structure of production tools and new cooling method on regulation of thermal processes for injection moulding technology. The mould inserts with porous structure were cooled by means of liquid CO2 which is very progressive cooling method and enables very fast and intensive heat transfer among the plastic product, the production tool and cooling medium. The inserts were created using rapid prototype technology (DLSM) and they had a bi-component structure consisting of thin compact surface layer and defined porous inner structure of open cell character where liquid CO2 was flowing through. This analyse includes the evaluation of cooling efficiency for different inner structures and different time profiles for dosing of liquid CO2 into the porous structure. The thermal processes were monitored using thermocouples and IR thermal analyse of product surface and experimental device. Intensive heat removal influenced also the final structure and the shape and dimensional accuracy of the moulded parts that were made of semi-crystalline polymer. The range of final impacts of using intensive cooling method on the plastic parts was defined by DSC and dimensional analyses.

  20. Wave-Optics Modeling of the Optical-Transport Line for Passive Optical Stochastic Cooling

    DOE PAGES

    Andorf, M. B.; Lebedev, V. A.; Piot, P.; ...

    2018-03-01

    Optical stochastic cooling (OSC) is expected to enable fast cooling of dense particle beams. Transition from microwave to optical frequencies enables an achievement of stochastic cooling rates which are orders of magnitude higher than ones achievable with the classical microwave based stochastic cooling systems. A subsystemcritical to the OSC scheme is the focusing optics used to image radiation from the upstream “pickup” undulator to the downstream “kicker” undulator. In this paper, we present simulation results using wave-optics calculation carried out with the Synchrotron Radiation Workshop (SRW). Our simulations are performed in support to a proof-of-principle experiment planned at the Integrablemore » Optics Test Accelerator (IOTA) at Fermilab. The calculations provide an estimate of the energy kick received by a 100-MeV electron as it propagates in the kicker undulator and interacts with the electromagnetic pulse it radiated at an earlier time while traveling through the pickup undulator.« less

  1. Continuous parametric feedback cooling of a single atom in an optical cavity

    NASA Astrophysics Data System (ADS)

    Sames, C.; Hamsen, C.; Chibani, H.; Altin, P. A.; Wilk, T.; Rempe, G.

    2018-05-01

    We demonstrate a feedback algorithm to cool a single neutral atom trapped inside a standing-wave optical cavity. The algorithm is based on parametric modulation of the confining potential at twice the natural oscillation frequency of the atom, in combination with fast and repetitive atomic position measurements. The latter serve to continuously adjust the modulation phase to a value for which parametric excitation of the atomic motion is avoided. Cooling is limited by the measurement backaction which decoheres the atomic motion after only a few oscillations. Nonetheless, applying this feedback scheme to an ˜5 -kHz oscillation mode increases the average storage time of a single atom in the cavity by a factor of 60 to more than 2 s. In contrast to previous feedback schemes, our algorithm is also capable of cooling a much faster ˜500 -kHz oscillation mode within just microseconds. This demonstrates that parametric cooling is a powerful technique that can be applied in all experiments where optical access is limited.

  2. Cooling Spheres and Accumulating Lead: The History of Attempts to Date the Earth's Formation.

    ERIC Educational Resources Information Center

    Brush, Stephen G.

    1987-01-01

    Presents a chronology of scientific efforts designed to determine the age of the earth. Summarizes scientists' attempts at dating the planet's formation, including the examination of lead in the environment, the calculation of the earth's cooling temperature and time, the study of geological sedimentation and the analysis of moon rocks. (TW)

  3. Laminated turbine vane design and fabrication. [utilizing film cooling as a cooling system

    NASA Technical Reports Server (NTRS)

    Hess, W. G.

    1979-01-01

    A turbine vane and associated endwalls designed for advanced gas turbine engine conditions are described. The vane design combines the methods of convection cooling and selective areas of full coverage film cooling. The film cooling technique is utilized on the leading edge, pressure side, and endwall regions. The turbine vane involves the fabrication of airfoils from a stack of laminates with cooling passages photoetched on the surface. Cold flow calibration tests, a thermal analysis, and a stress analysis were performed on the turbine vanes.

  4. Numerical solution for the temperature distribution in a cooled guide vane blade of a radial gas turbine

    NASA Technical Reports Server (NTRS)

    Hosny, W. M.; Tabakoff, W.

    1977-01-01

    A two dimensional finite difference numerical technique is presented to determine the temperature distribution of an internal cooled blade of radial turbine guide vanes. A simple convection cooling is assumed inside the guide vane blade. Such cooling has relatively small cooling effectiveness at the leading edge and at the trailing edge. Heat transfer augmentation in these critical areas may be achieved by using impingement jets and film cooling. A computer program is written in FORTRAN IV for IBM 370/165 computer.

  5. Final Report on Two-Stage Fast Spectrum Fuel Cycle Options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Won Sik; Lin, C. S.; Hader, J. S.

    2016-01-30

    This report presents the performance characteristics of two “two-stage” fast spectrum fuel cycle options proposed to enhance uranium resource utilization and to reduce nuclear waste generation. One is a two-stage fast spectrum fuel cycle option of continuous recycle of plutonium (Pu) in a fast reactor (FR) and subsequent burning of minor actinides (MAs) in an accelerator-driven system (ADS). The first stage is a sodium-cooled FR fuel cycle starting with low-enriched uranium (LEU) fuel; at the equilibrium cycle, the FR is operated using the recovered Pu and natural uranium without supporting LEU. Pu and uranium (U) are co-extracted from the dischargedmore » fuel and recycled in the first stage, and the recovered MAs are sent to the second stage. The second stage is a sodium-cooled ADS in which MAs are burned in an inert matrix fuel form. The discharged fuel of ADS is reprocessed, and all the recovered heavy metals (HMs) are recycled into the ADS. The other is a two-stage FR/ADS fuel cycle option with MA targets loaded in the FR. The recovered MAs are not directly sent to ADS, but partially incinerated in the FR in order to reduce the amount of MAs to be sent to the ADS. This is a heterogeneous recycling option of transuranic (TRU) elements« less

  6. A study of Equartorial wave characteristics using rockets, balloons, lidar and radar

    NASA Astrophysics Data System (ADS)

    Sasi, M.; Krishna Murthy, B.; Ramkumar, G.; Satheesan, K.; Parameswaran, K.; Rajeev, K.; Sunilkumar, S.; Nair, P.; Krishna Murthy, K.; Bhavanikumar, Y.; Raghunath, K.; Jain, A.; Rao, P.; Krishnaiah, M.; Nayar, S.; Revathy, K.

    Dynamics of low latitude middle atmosphere is dominated by the zonal wind quasi- biennial oscillation (QBO) in the lower stratosphere and zonl wind semiannual oscillation (SAO) in the stratopause and mesopause regions. Equatorial waves play a significant role in the evolution of QBO and SAO through wave- mean flow interactions resulting in momentum transfer from the waves to the mean flow in the equatorial middle atmosphere. With the objective of characterising the equatorial wave characteristics and momentum fluxes associated with them a campaign experiment was conducted in 2000 using RH-200 rockets, balloons, Raleigh lidar and MST radar. Winds and temperatures in the troposphere, stratosphere and mesosphere over two low latitude stations Gadanki (13.5°N, 79.2°E) and SHAR (13.7°N, 80.2°E) were measured, using MST Radar, Rayleigh Lidar, balloons and RH-200 rockets, for 40 consecutive days from 21 February to 01 April 2000 and were used for the study of equatorial waves and their interactions with the background mean flow in various atmospheric regions. The study shows the occurrence of a strong stratospheric cooling (~25 K) anomaly along with a zonal wind anomaly and this low-latitude event appears to be linked to high-latitude stratospheric warming event and leads to subsequent generation of short period (~5 days) oscillations lasting for a few cycles in the stratosphere. A slow Kelvin wave (~18 day period), fast Kelvin wave (~8 days) and ultra fast Kelvin wave (~3.3 day period) and RG wave (~4.8 day period) have been identified. There are indications of slow and ultra fast Kelvin waves, in addition to fast Kelvin waves, contributing to the evolution of the westerly phase of the stratopause SAO.

  7. Strategy for Passivating Char Efficiently at the Pilot Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunning, Timothy C

    Fast pyrolysis is a promising pathway for the commercialization of liquid transportation fuels from biomass. Fast pyrolysis is performed at moderate heat (450-600 degrees Celcius) in an oxygen-deficient environment. One of the products of fast pyrolysis is biochar, which is often used as a heat source or as a soil amendment. Biochar is a partially reacted solid that is created in the production of bio-oil during fast pyrolysis. Biochar produced at these conditions contains significant quantities of carbon that adsorb oxygen when exposed to air. Biochar adsorption of oxygen is an exothermic process that may generate sufficient heat for combustionmore » in ambient air. Biochar is also a self-insulating material which compounds the effects of heat generated internally. These factors lead to safety concerns and material handling difficulties. The Thermochemical Process Development Unit at the National Renewable Energy Laboratory operates a pilot plant that may be configured for fast pyrolysis, gasification, and will be introducing catalytic fast pyrolysis capabilities in 2018. The TCPDU designed and installed a system to introduce oxygen to collected biochar systematically for a controlled passivation. Biochar is collected and cooled in an oxygen deficient environment during fast pyrolysis. Oxygen is then introduced to the biochar on a mass flow basis. A sparger imbedded within the biochar sample near the bottom of the bed flows air diluted with nitrogen into the char bed, and excess gasses are removed from the top of the collection drum, above the char bed. Pressure within the collection drum is measured indicating adequate flow through filters. Sample weight is recorded before and after passivation. During passivation, temperature is measured at 18 points within the char bed. Oxygen content and temperature are measured leaving the char bed. Maximum temperature parameters were established to ensure operator safety during biochar passivation. Extensive passivation data was collected on pine and blended feedstocks and has been analyzed to characterize the exotherm of char samples. Observations and data collected while passivating char will be discussed.« less

  8. Fast cooldown coaxial pulse tube microcooler

    NASA Astrophysics Data System (ADS)

    Nast, T.; Olson, J. R.; Champagne, P.; Roth, E.; Kaldas, G.; Saito, E.; Loung, V.; McCay, B. S.; Kenton, A. C.; Dobbins, C. L.

    2016-05-01

    We report the development and initial testing of the Lockheed Martin first-article, single-stage, compact, coaxial, Fast Cooldown Pulse Tube Microcryocooler (FC-PTM). The new cryocooler supports cooling requirements for emerging large, high operating temperature (105-150K) infrared focal plane array sensors with nominal cooling loads of ~300 mW @105K @293K ambient. This is a sequel development that builds on our inline and coaxial pulse tube microcryocoolers reported at CEC 20137, ICC188,9, and CEC201510. The new FC-PTM and the prior units all share our long life space technology attributes, which typically have 10 year life requirements1. The new prototype microcryocooler builds on the previous development by incorporating cold head design improvements in two key areas: 1) reduced cool-down time and 2) novel repackaging that greatly reduces envelope. The new coldhead and Dewar were significantly redesigned from the earlier versions in order to achieve a cooldown time of 2-3 minutes-- a projected requirement for tactical applications. A design approach was devised to reduce the cold head length from 115mm to 55mm, while at the same time reducing cooldown time. We present new FC-PTM performance test measurements with comparisons to our previous pulse-tube microcryocooler measurements and design predictions. The FC-PTM exhibits attractive small size, volume, weight, power and cost (SWaP-C) features with sufficient cooling capacity over required ambient conditions that apply to an increasing variety of space and tactical applications.

  9. Characterization of CuCrZr and CuCrZr/SS joint strength for different blanket components manufacturing conditions

    NASA Astrophysics Data System (ADS)

    Gillia, Olivier; Briottet, Laurent; Chu, Isabelle; Lemoine, Patrick; Rigal, Emmanuel; Peacock, Alan

    2009-04-01

    This work describes studies on the strength of CuCrZr/SS joints for different manufacturing conditions foreseen for the fabrication of blanket components. In the meantime, as junction strength is expected to be strongly related to CuCrZr properties, investigation on the properties of the CuCrZr itself after the different manufacturing conditions is also presented. The initial manufacturing conditions retained were made of a HIP treatment combined with a fast cooling plus a subsequent ageing treatment. For security reasons, the HIP-quenching operation was not possible. A supplementary solutionning cycle with fast cooling has thus been inserted in the heat treatment process just after the HIP bonding treatment. The influence of solutionning temperature (1040 °C or 980 °C), the cooling rate after solutionning (70 °C/min to water quench), the ageing temperature (480 °C or 560 °C) and the HIP temperature (1040 °C or 980 °C) have been addressed. Test results show that the ageing temperature is very important for keeping high strength of material whereas elongation properties are not very sensible to the manufacturing conditions. 1040 °C HIP or solutionning temperature gives better strength properties, as well as a higher cooling rate after solutionning. Concerning samples with joints, it appears that CT test is more selective than other tests since tensile test does not give rupture at joint and KCU test eliminates a route without classifying other routes.

  10. Vented target elements for use in an isotope-production reactor. [LMFBR

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium gas in a fast breeder reactor cooled with liquid metal. Lithium target material is placed in pins equipped with vents, and tritium gas is recovered from the coolant.

  11. Assemblies with both target and fuel pins in an isotope-production reactor

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target material is placed in pins adjacent to fuel pins in order to increase the tritium production rate.

  12. An Assessment of Fission Product Scrubbing in Sodium Pools Following a Core Damage Event in a Sodium Cooled Fast Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucknor, M.; Farmer, M.; Grabaskas, D.

    The U.S. Nuclear Regulatory Commission has stated that mechanistic source term (MST) calculations are expected to be required as part of the advanced reactor licensing process. A recent study by Argonne National Laboratory has concluded that fission product scrubbing in sodium pools is an important aspect of an MST calculation for a sodium-cooled fast reactor (SFR). To model the phenomena associated with sodium pool scrubbing, a computational tool, developed as part of the Integral Fast Reactor (IFR) program, was utilized in an MST trial calculation. This tool was developed by applying classical theories of aerosol scrubbing to the decontamination ofmore » gases produced as a result of postulated fuel pin failures during an SFR accident scenario. The model currently considers aerosol capture by Brownian diffusion, inertial deposition, and gravitational sedimentation. The effects of sodium vapour condensation on aerosol scrubbing are also treated. This paper provides details of the individual scrubbing mechanisms utilized in the IFR code as well as results from a trial mechanistic source term assessment led by Argonne National Laboratory in 2016.« less

  13. Model-based optimal design of active cool thermal energy storage for maximal life-cycle cost saving from demand management in commercial buildings

    DOE PAGES

    Cui, Borui; Gao, Dian-ce; Xiao, Fu; ...

    2016-12-23

    This article provides a method in comprehensive evaluation of cost-saving potential of active cool thermal energy storage (CTES) integrated with HVAC system for demand management in non-residential building. The active storage is beneficial by shifting peak demand for peak load management (PLM) as well as providing longer duration and larger capacity of demand response (DR). In this research, a model-based optimal design method using genetic algorithm is developed to optimize the capacity of active CTES aiming for maximizing the life-cycle cost saving concerning capital cost associated with storage capacity as well as incentives from both fast DR and PLM. Inmore » the method, the active CTES operates under a fast DR control strategy during DR events while under the storage-priority operation mode to shift peak demand during normal days. The optimal storage capacities, maximum annual net cost saving and corresponding power reduction set-points during DR event are obtained by using the proposed optimal design method. Lastly, this research provides guidance in comprehensive evaluation of cost-saving potential of CTES integrated with HVAC system for building demand management including both fast DR and PLM.« less

  14. Study Neutronic of Small Pb-Bi Cooled Non-Refuelling Nuclear Power Plant Reactor (SPINNOR) with Hexagonal Geometry Calculation

    NASA Astrophysics Data System (ADS)

    Nur Krisna, Dwita; Su'ud, Zaki

    2017-01-01

    Nuclear reactor technology is growing rapidly, especially in developing Nuclear Power Plant (NPP). The utilization of nuclear energy in power generation systems has been progressing phase of the first generation to the fourth generation. This final project paper discusses the analysis neutronic one-cooled fast reactor type Pb-Bi, which is capable of operating up to 20 years without refueling. This reactor uses Thorium Uranium Nitride as fuel and operating on power range 100-500MWtNPPs. The method of calculation used a computer simulation program utilizing the SRAC. SPINNOR reactor is designed with the geometry of hexagonal shaped terrace that radially divided into three regions, namely the outermost regions with highest percentage of fuel, the middle regions with medium percentage of fuel, and most in the area with the lowest percentage. SPINNOR fast reactor operated for 20 years with variations in the percentage of Uranium-233 by 7%, 7.75%, and 8.5%. The neutronic calculation and analysis show that the design can be optimized in a fast reactor for thermal power output SPINNOR 300MWt with a fuel fraction 60% and variations of Uranium-233 enrichment of 7%-8.5%.

  15. Model-based optimal design of active cool thermal energy storage for maximal life-cycle cost saving from demand management in commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Borui; Gao, Dian-ce; Xiao, Fu

    This article provides a method in comprehensive evaluation of cost-saving potential of active cool thermal energy storage (CTES) integrated with HVAC system for demand management in non-residential building. The active storage is beneficial by shifting peak demand for peak load management (PLM) as well as providing longer duration and larger capacity of demand response (DR). In this research, a model-based optimal design method using genetic algorithm is developed to optimize the capacity of active CTES aiming for maximizing the life-cycle cost saving concerning capital cost associated with storage capacity as well as incentives from both fast DR and PLM. Inmore » the method, the active CTES operates under a fast DR control strategy during DR events while under the storage-priority operation mode to shift peak demand during normal days. The optimal storage capacities, maximum annual net cost saving and corresponding power reduction set-points during DR event are obtained by using the proposed optimal design method. Lastly, this research provides guidance in comprehensive evaluation of cost-saving potential of CTES integrated with HVAC system for building demand management including both fast DR and PLM.« less

  16. Performance of the Conduction-Cooled LDX Levitation Coil

    NASA Astrophysics Data System (ADS)

    Michael, P. C.; Schultz, J. H.; Smith, B. A.; Titus, P. H.; Radovinsky, A.; Zhukovsky, A.; Hwang, K. P.; Naumovich, G. J.; Camille, R. J.

    2004-06-01

    The Levitated Dipole Experiment (LDX) was developed to study plasma confinement in a dipole magnetic field. Plasma is confined in the magnetic field of a 680-kg Nb3Sn Floating Coil (F-coil) that is electromagnetically supported at the center of a 5-m diameter by 3-m tall vacuum chamber. The Levitation Coil (L-coil) is a 2800-turn, double pancake winding that supports the weight of the F-coil and controls its vertical position within the vacuum chamber. The use of high-temperature superconductor (HTS) Bi-2223 for the L-coil minimizes the electrical and cooling power needed for levitation. The L-coil winding pack and support plate are suspended within the L-coil cryostat and cooled by conduction to a single-stage cryocooler rated for 25-W heat load at approximately 20 K. The coil current leads consist of conduction-cooled copper running from room temperature to 80 K and a pair of commercially-available, 150-A HTS leads. An automatically filled liquid-nitrogen reservoir provides cooling for the coil's radiation shield and for the leads' 80-K heat stations. This paper discusses the L-coil system design and its observed cryogenic performance.

  17. Cross-stacked carbon nanotubes assisted self-separation of free-standing GaN substrates by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Wei, Tongbo; Yang, Jiankun; Wei, Yang; Huo, Ziqiang; Ji, Xiaoli; Zhang, Yun; Wang, Junxi; Li, Jinmin; Fan, Shoushan

    2016-06-01

    We report a novel method to fabricate high quality 2-inch freestanding GaN substrate grown on cross-stacked carbon nanotubes (CSCNTs) coated sapphire by hydride vapor phase epitaxy (HVPE). As nanoscale masks, these CSCNTs can help weaken the interface connection and release the compressive stress by forming voids during fast coalescence and also block the propagation of threading dislocations (TDs). During the cool-down process, thermal stress-induced cracks are initiated at the CSCNTs interface with the help of air voids and propagated all over the films which leads to full self-separation of FS-GaN substrate. Raman and photoluminescence spectra further reveal the stress relief and crystalline improvement of GaN with CSCNTs. It is expected that the efficient, low cost and mass-producible technique may enable new applications for CNTs in nitride optoelectronic fields.

  18. Heat flux sensor research and development: The cool film calorimeter

    NASA Technical Reports Server (NTRS)

    Abtahi, A.; Dean, P.

    1990-01-01

    The goal was to meet the measurement requirement of the NASP program for a gauge capable of measuring heat flux into a 'typical' structure in a 'typical' hypersonic flight environment. A device is conceptually described that has fast response times and is small enough to fit in leading edge or cowl lip structures. The device relies heavily on thin film technology. The main conclusion is the description of the limitations of thin film technology both in the art of fabrication and in the assumption that thin films have the same material properties as the original bulk material. Three gauges were designed and fabricated. Thin film deposition processes were evaluated. The effect of different thin film materials on the performance and fabrication of the gauge was studied. The gauges were tested in an arcjet facility. Survivability and accuracy were determined under various hostile environment conditions.

  19. The hydrological cycle response to cirrus cloud thinning

    NASA Astrophysics Data System (ADS)

    Kristjánsson, Jón Egill; Muri, Helene; Schmidt, Hauke

    2015-12-01

    Recent multimodel studies have shown that if one attempts to cancel increasing CO2 concentrations by reducing absorbed solar radiation, the hydrological cycle will weaken if global temperature is kept unchanged. Using a global climate model, we investigate the hydrological cycle response to "cirrus cloud thinning (CCT)," which is a proposed climate engineering technique that seeks to enhance outgoing longwave radiation. Investigations of the "fast response" in experiments with fixed sea surface temperatures reveal that CCT causes a significant enhancement of the latent heat flux and precipitation. This is due to enhanced radiative cooling of the troposphere, which is opposite to the effect of increased CO2 concentrations. By combining CCT with CO2 increase in multidecadal simulations with a slab ocean, we demonstrate a systematic enhancement of the hydrological cycle due to CCT. This leads to enhanced moisture availability in low-latitude land regions and a strengthening of the Indian monsoon.

  20. Cross-stacked carbon nanotubes assisted self-separation of free-standing GaN substrates by hydride vapor phase epitaxy.

    PubMed

    Wei, Tongbo; Yang, Jiankun; Wei, Yang; Huo, Ziqiang; Ji, Xiaoli; Zhang, Yun; Wang, Junxi; Li, Jinmin; Fan, Shoushan

    2016-06-24

    We report a novel method to fabricate high quality 2-inch freestanding GaN substrate grown on cross-stacked carbon nanotubes (CSCNTs) coated sapphire by hydride vapor phase epitaxy (HVPE). As nanoscale masks, these CSCNTs can help weaken the interface connection and release the compressive stress by forming voids during fast coalescence and also block the propagation of threading dislocations (TDs). During the cool-down process, thermal stress-induced cracks are initiated at the CSCNTs interface with the help of air voids and propagated all over the films which leads to full self-separation of FS-GaN substrate. Raman and photoluminescence spectra further reveal the stress relief and crystalline improvement of GaN with CSCNTs. It is expected that the efficient, low cost and mass-producible technique may enable new applications for CNTs in nitride optoelectronic fields.

  1. Cross-stacked carbon nanotubes assisted self-separation of free-standing GaN substrates by hydride vapor phase epitaxy

    PubMed Central

    Wei, Tongbo; Yang, Jiankun; Wei, Yang; Huo, Ziqiang; Ji, Xiaoli; Zhang, Yun; Wang, Junxi; Li, Jinmin; Fan, Shoushan

    2016-01-01

    We report a novel method to fabricate high quality 2-inch freestanding GaN substrate grown on cross-stacked carbon nanotubes (CSCNTs) coated sapphire by hydride vapor phase epitaxy (HVPE). As nanoscale masks, these CSCNTs can help weaken the interface connection and release the compressive stress by forming voids during fast coalescence and also block the propagation of threading dislocations (TDs). During the cool-down process, thermal stress-induced cracks are initiated at the CSCNTs interface with the help of air voids and propagated all over the films which leads to full self-separation of FS-GaN substrate. Raman and photoluminescence spectra further reveal the stress relief and crystalline improvement of GaN with CSCNTs. It is expected that the efficient, low cost and mass-producible technique may enable new applications for CNTs in nitride optoelectronic fields. PMID:27340030

  2. Evidence of solvent-gelator interaction in sugar-based organogel studied by field-cycling NMR relaxometry.

    PubMed

    Bielejewski, Michal; Tritt-Goc, Jadwiga

    2010-11-16

    The dynamics of bulk toluene and toluene confined in the 1,2-O-(1-ethylpropylidene)-α-D-glucofuranose gel was studied using (1)H field-cycling nuclear magnetic resonance relaxometry. The proton spin-lattice relaxation time T(1) was measured as a function of the magnetic field strength and temperature. The observed dispersion in the frequency range 10(4)-10(6) Hz for the relaxation rate of toluene in the gel system give evidence of the interaction between the toluene and the gelator aggregates. The data were interpreted in terms of the two-fraction fast-exchange model. Additionally it was also shown that a cooling rate during gel preparation process influences the gel microstructure and leads to different gelator-solvent interactions as reflected in a different behavior of the proton spin-lattice relaxation rate of toluene within the gel observed at the low frequency range.

  3. Application of the monolithic solid oxide fuel cell to space power systems

    NASA Astrophysics Data System (ADS)

    Myles, Kevin M.; Bhattacharyya, Samit K.

    1991-01-01

    The monolithic solid-oxide fuel cell (MSOFC) is a promising electrochemical power generation device that is currently under development at Argonne National Laboratory. The extremely high power density of the MSOFC leads to MSOFC systems that have sufficiently high energy densities that they are excellent candidates for a number of space missions. The fuel cell can also be operated in reverse, if it can be coupled to an external power source, to regenerate the fuel and oxidant from the water product. This feature further enhances the potential mission applications of the MSOFC. In this paper, the current status of the fuel cell development is presented—the focus being on fabrication and currently achievable performance. In addition, a specific example of a space power system, featuring a liquid metal cooled fast spectrum nuclear reactor and a monolithic solid oxide fuel cell, is presented to demonstrate the features of an integrated system.

  4. Reducing the Liquid Helium Consumption of Superconducting Rock Magnetometers (SRMs) used in Paleomagnetic and Rock Magnetic studies: Gallium Lubrication of Gifford-McMahon Cryocoolers Leads to a Dramatic Increase in Cool-down Efficiency, and a Drop in Liquid Helium Consumption

    NASA Astrophysics Data System (ADS)

    Kirschvink, J. L.

    2015-12-01

    Two-stage Gifford-McMahon helium-gas cryocoolers have been used for the past 40+ years in a wide variety of cryogenic applications, including reducing the liquid helium consumption of SRMs. However, the cooling efficiency depends greatly on the friction of the displacement pistons, which need to be replaced every few years. This and the rising cost of liquid helium are major headaches in the operation of modern paleomagnetic laboratories. Although the development of efficient pulse-tube cryocoolers has eliminated the need for liquid helium in new superconducting magnetometers, there are still nearly 100 older SRMs around the globe that use liquid helium. In a failed attempt to replace the Gifford-McMahon unit on one of Caltech's SRMs with a pulse-tube, we irreversibly contaminated the cylindrical surfaces of the stainless-steel heat exchanger with a thin film of gallium, a non-toxic metal that has a melting temperature of ~ 30˚C. Liquid gallium will diffuse into other metals, altering their surface properties. We noticed that the next cryocooler-assisted cool down of the SRM went nearly twice as fast as in previous cycles, and the helium boiloff rate for the past 2 years has stabilized at less than half of its average over the past 30 years. It seems that the thin layer of gallium may be reducing the sliding friction of the Gifford-McMahon cryocoolers. We recently tested this on a second SRM, with similar results. We found that the inner cryocooler surface reached its equilibrium temperature in about 1/3 of the time that it took in previous cool-down cycles. WSGI also confirmed that this cool-down was unusually efficient compared to other instruments they have built. Subsequent records of the helium gas boiloff show that this system is also running at about half of its former loss rate. Based on these two results, we tentatively recommend this simple procedure any time cold-head swaps are performed on these cryocoolers.

  5. Computation of the temperature distribution in cooled radial inflow turbine guide vanes

    NASA Technical Reports Server (NTRS)

    Tabakoff, W.; Hosny, W.; Hamed, A.

    1977-01-01

    A two-dimensional finite-difference numerical technique is presented to determine the temperature distribution of an internally-cooled blade of radial turbine guide vanes. A simple convection cooling is assumed inside the guide vane. Such an arrangement results in relatively small cooling effectiveness at the leading edge and at the trailing edge. Heat transfer augmentation in these critical areas may be achieved by using impingement jets and film cooling. A computer program is written in Fortran IV for IBM 370/165 computer.

  6. Use of liquid metals in nuclear and thermonuclear engineering, and in other innovative technologies

    NASA Astrophysics Data System (ADS)

    Rachkov, V. I.; Arnol'dov, M. N.; Efanov, A. D.; Kalyakin, S. G.; Kozlov, F. A.; Loginov, N. I.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    By now, a good deal of experience has been gained with using liquid metals as coolants in nuclear power installations; extensive knowledge has been gained about the physical, thermophysical, and physicochemical properties of these coolants; and the scientific principles and a set of methods and means for handling liquid metals as coolants for nuclear power installations have been elaborated. Prototype and commercialgrade sodium-cooled NPP power units have been developed, including the BOR-60, BN-350, and BN-600 power units (the Soviet Union); the Rapsodie, Phenix, and Superphenix power units (France), the EBR-II power unit (the United States); and the PFR power unit (the United Kingdom). In Russia, dedicated nuclear power installations have been constructed, including those with a lead-bismuth coolant for nuclear submarines and with sodium-potassium alloy for spacecraft (the Buk and Topol installations), which have no analogs around the world. Liquid metals (primarily lithium and its alloy with lead) hold promise for use in thermonuclear power engineering, where they can serve not only as a coolant, but also as tritium-producing medium. In this article, the physicochemical properties of liquid metal coolants, as well as practical experience gained from using them in nuclear and thermonuclear power engineering and in innovative technologies are considered, and the lines of further research works are formulated. New results obtained from investigations carried out on the Pb-Bi and Pb for the SVBR and BREST fast-neutron reactors (referred to henceforth as fast reactors) and for controlled accelerator systems are described.

  7. Winds from cool stars

    NASA Technical Reports Server (NTRS)

    Dupree, A. K.

    1995-01-01

    Spectral observations of cool stars enable study of the presence and character of winds and the mass loss process in objects with effective temperatures, gravities, and atmospheric compositions which differ from that of the Sun. A wealth of recent spectroscopic measurements from the Hubble Space Telescope, and the Extreme Ultraviolet Explorer complement high resolution ground-based measures in the optical and infrared spectral regions. Such observations when combined with realistic semi-empirical atmospheric modeling allow us to estimate the physical conditions in the atmospheres and winds of many classes of cool stars. Line profiles support turbulent heating and mass motions. In low gravity stars, evidence is found for relatively fast (approximately 200 km s(exp -1)), warm winds with rapid acceleration occurring in the chromosphere. In some cases outflows commensurate with stellar escape velocities are present. Our current understanding of cool star winds will be reviewed including the implications of stellar observations for identification of atmospheric heating and acceleration processes.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andorf, M. B.; Lebedev, V. A.; Piot, P.

    Optical stochastic cooling (OSC) is expected to enable fast cooling of dense particle beams. Transition from microwave to optical frequencies enables an achievement of stochastic cooling rates which are orders of magnitude higher than ones achievable with the classical microwave based stochastic cooling systems. A subsystemcritical to the OSC scheme is the focusing optics used to image radiation from the upstream “pickup” undulator to the downstream “kicker” undulator. In this paper, we present simulation results using wave-optics calculation carried out with the Synchrotron Radiation Workshop (SRW). Our simulations are performed in support to a proof-of-principle experiment planned at the Integrablemore » Optics Test Accelerator (IOTA) at Fermilab. The calculations provide an estimate of the energy kick received by a 100-MeV electron as it propagates in the kicker undulator and interacts with the electromagnetic pulse it radiated at an earlier time while traveling through the pickup undulator.« less

  9. A Gradient in Cooling Rate Beneath the Moho at the Oman Ophiolite: Fresh Insights into Cooling Processes at Mid-Ocean Ridges from REE-Based Thermometry

    NASA Astrophysics Data System (ADS)

    Dygert, N. J.; Kelemen, P. B.; Liang, Y.

    2015-12-01

    The Wadi Tayin massif in the southern Oman ophiolite has a more than 10 km thick mantle section and is believed to have formed in a mid-ocean ridge like environment with an intermediate to fast spreading rate. Previously, [1] used major element geothermometers to investigate spatial variations in temperatures recorded in mantle peridotites and observed that samples near the paleo-Moho have higher closure temperatures than samples at the base of the mantle section. Motivated by these observations, we measured major and trace elements in orthopyroxene and clinopyroxene in peridotites from depths of ~1-8km beneath the Moho to determine closure temperatures of REE in the samples using the REE-in-two-pyroxene thermometer [2]. Clinopyroxene are depleted in LREE and have REE concentrations that vary depending on distance from the Moho. Samples nearer the Moho have lower REE concentrations than those deeper in the section (e.g., chondrite normalized Yb ranges from ~1.5 at the Moho to 4 at 8km depth), consistent with near fractional melting along a mantle adiabat. Orthopyroxene are highly depleted in LREE but measurements of middle to heavy REE have good reproducibility. We find that REE-in-two-pyroxene temperatures decrease with increasing distance from the Moho, ranging from 1325±10°C near the Moho to 1063±24°C near the base of the mantle section. Using methods from [3], we calculate cooling rates of >1000°C/Myr near the Moho, dropping to rates of <10°C/Myr at the bottom of the section. The faster cooling rate is inconsistent with conductive cooling models. Fast cooling of the mantle lithosphere could be facilitated by infiltration of seawater to or beneath the petrologic Moho. This can explain why abyssal peridotites from ultra-slow spreading centers (which lack a crustal section) have cooling rates comparable to those of Oman peridotites [3]. [1] Hanghøj et al. (2010), JPet 51(1-2), 201-227. [2] Liang et al. (2013), GCA 102, 246-260. [3] Dygert & Liang (2015), EPSL 420, 151-161.

  10. Cooling of a Bose-Einstein Condensate by Spin Distillation.

    PubMed

    Naylor, B; Maréchal, E; Huckans, J; Gorceix, O; Pedri, P; Vernac, L; Laburthe-Tolra, B

    2015-12-11

    We propose and experimentally demonstrate a new cooling mechanism leading to purification of a Bose-Einstein condensate (BEC). Our scheme starts with a BEC polarized in the lowest energy spin state. Spin excited states are thermally populated by lowering the single particle energy gap set by the magnetic field. Then, these spin-excited thermal components are filtered out, which leads to an increase of the BEC fraction. We experimentally demonstrate such cooling for a spin 3 ^{52}Cr dipolar BEC. Our scheme should be applicable to Na or Rb, with the perspective to reach temperatures below 1 nK.

  11. Cool Down Experiences with the SST-1 Helium Cryogenics System before and after Current Feeders System Modification

    NASA Astrophysics Data System (ADS)

    Patel, R.; Panchal, P.; Panchal, R.; Tank, J.; Mahesuriya, G.; Sonara, D.; Srikanth, G. L. N.; Garg, A.; Bairagi, N.; Christian, D.; Patel, K.; Shah, P.; Nimavat, H.; Sharma, R.; Patel, J. C.; Gupta, N. C.; Prasad, U.; Sharma, A. N.; Tanna, V. L.; Pradhan, S.

    The SST-1 machine comprises a superconducting magnet system (SCMS), which includes TF and PF magnets. In order to charge the SCMS, we need superconducting current feeders consisting of SC feeders and vapor cooled current leads (VCCLs). We have installed all 10 (+/-) pairs of VCCLs for the TF and PF systems. While conducting initial engineering validation of the SST-1 machine, our prime objective was to produce circular plasma using only the TF system. During the SST-1 campaign I to VI, we have to stop the PF magnets cooling in order to get the cryo- stable conditions for current charging of the TF magnets system. In that case, the cooling of the PF current leads is not essential. It has been also observed that after aborting the PF system cooling, there was a limited experimental window of TF operation. Therefore, in the recent SST-1 campaign-VII, we removed the PF current leads (9 pairs) and kept only single (+/-) pair of the 10,000 A rated VCCLs to realize the charging of the TF system for the extended window of operation. We have observed a better cryogenic stability in the TF magnets after modifications in the CFS. In this paper, we report the comparison of the cool down performance for the SST-1 machine operation before and after modifications of the current feeders system.

  12. Apparatus for production of ultrapure amorphous metals utilizing acoustic cooling

    NASA Technical Reports Server (NTRS)

    Lee, M. C. (Inventor)

    1985-01-01

    Amorphous metals are produced by forming a molten unit of metal and deploying the unit into a bidirectional acoustical levitating field or by dropping the unit through a spheroidizing zone, a slow quenching zone, and a fast quenching zone in which the sphere is rapidly cooled by a bidirectional jet stream created in the standing acoustic wave field produced between a half cylindrical acoustic driver and a focal reflector or a curved driver and a reflector. The cooling rate can be further augmented first by a cryogenic liquid collar and secondly by a cryogenic liquid jacket surrounding a drop tower. The molten unit is quenched to an amorphous solid which can survive impact in a unit collector or is retrieved by a vacuum chuck.

  13. Studying cooling curves with a smartphone

    NASA Astrophysics Data System (ADS)

    Silva, Manuela Ramos; Martín-Ramos, Pablo; da Silva, Pedro Pereira

    2018-01-01

    This paper describes a simple procedure for the study of the cooling of a spherical body using a standard thermometer and a smartphone. Experiments making use of smartphone sensors have been described before, contributing to an improved teaching of classical mechanics, but rarely expand to thermodynamics. In this experiment, instead of using a smartphone camera to slow down a fast movement, we are using the device to speed up a slow process. For that we propose the use of the free app Framelapse to take periodic pictures (in the form of a time-lapse video) and then the free app VidAnalysis to track the position of the mercury inside the thermometer, thus effortlessly tracking the temperature of a cooling body (Fig. 1).

  14. Fuel pins with both target and fuel pellets in an isotope-production reactor

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target pellets are placed in close contact with fissile fuel pellets in order to increase the tritium production rate.

  15. Fast infrared response of YBCO thin films

    NASA Technical Reports Server (NTRS)

    Ballentine, P. H.; Kadin, A. M.; Donaldson, W. R.; Scofield, J. H.; Bajuk, L.

    1990-01-01

    The response to short infrared pulses of some epitaxial YBCO films prepared by sputter deposition and by electron-beam evaporation is reported. The response is found to be essentially bolometric on the ns timescale, with some indirect hints of nonequilibrium electron transport on the ps scale. Fast switching could be obtained either by biasing the switch close to the critical current or by cooling the film below about 20 K. These results are encouraging for potential application to a high-current optically-triggered opening switch.

  16. Fast quench reactor method

    DOEpatents

    Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.; Berry, R.A.

    1999-08-10

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream. 8 figs.

  17. Results of thermal test of metallic molybdenum disk target and fast-acting valve testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virgo, M.; Chemerisov, S.; Gromov, R.

    2016-12-01

    This report describes the irradiation conditions for thermal testing of helium-cooled metallic disk targets that was conducted on March 9, 2016, at the Argonne National Laboratory electron linac. The four disks in this irradiation were pressed and sintered by Oak Ridge National Laboratory from molybdenum metal powder. Two of those disks were instrumented with thermocouples. Also reported are results of testing a fast-acting-valve system, which was designed to protect the accelerator in case of a target-window failure.

  18. Fast quench reactor method

    DOEpatents

    Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.; Berry, Ray A.

    1999-01-01

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream.

  19. Stagnation region gas film cooling for turbine blade leading edge applications

    NASA Technical Reports Server (NTRS)

    Luckey, D. W.; Winstanley, D. K.; Hanus, G. J.; Lecuyer, M. R.

    1976-01-01

    An experimental investigation was conducted to model the film-cooling performance for a turbine-vane leading edge using the stagnation region of a cylinder in cross flow. Experiments were conducted with a single row of spanwise-angled coolant holes for a range of the coolant blowing ratio with a freestream-to-wall temperature ratio of about 2.1 and a Reynolds number of 170,000, characteristic of the gas-turbine environment. Data from local heat-flux measurements are presented for coolant-hole injection angles of 25, 35, and 45 deg with the row of holes located at three positions relative to the stagnation line on the cylinder. Results show the spanwise (hole-to-hole) variation of heat-flux reduction due to film cooling and indicate conditions for the optimum film-cooling performance.

  20. Turbine blade with spar and shell

    DOEpatents

    Davies, Daniel O [Palm City, FL; Peterson, Ross H [Loxahatchee, FL

    2012-04-24

    A turbine blade with a spar and shell construction in which the spar and the shell are both secured within two platform halves. The spar and the shell each include outward extending ledges on the bottom ends that fit within grooves formed on the inner sides of the platform halves to secure the spar and the shell against radial movement when the two platform halves are joined. The shell is also secured to the spar by hooks extending from the shell that slide into grooves formed on the outer surface of the spar. The hooks form a serpentine flow cooling passage between the shell and the spar. The spar includes cooling holes on the lower end in the leading edge region to discharge cooling air supplied through the platform root and into the leading edge cooling channel.

  1. High voltage-high power components for large space power distribution systems

    NASA Technical Reports Server (NTRS)

    Renz, D. D.

    1984-01-01

    Space power components including a family of bipolar power switching transistors, fast switching power diodes, heat pipe cooled high frequency transformers and inductors, high frequency conduction cooled transformers, high power-high frequency capacitors, remote power controllers and rotary power transfer devices were developed. Many of these components such as the power switching transistors, power diodes and the high frequency capacitor are commercially available. All the other components were developed to the prototype level. The dc/dc series resonant converters were built to the 25 kW level.

  2. Gfr Core Neutronics Studies at CEA

    NASA Astrophysics Data System (ADS)

    Bosq, J. C.; Brun-Magaud, V.; Rimpault, G.; Tommasi, J.; Conti, A.; Garnier, J. C.

    2006-04-01

    The Gas cooled Fast Reactor (GFR) is a high priority in the CEA R&D program on Future Nuclear Energy Systems. After preliminary neutronics and thermo-aerolic studies, a first He-cooled 2400MWth core design based on a series of carbide CERCER plates arranged in an hexagonal wrapper were selected. Although GFR subassembly and core design studies are still at an early stage of development, it is nonetheless possible to identify a number of nuclear data needs that could have some impact on the actual design: new materials, decay heat contributors….

  3. Microtextured Surfaces for Turbine Blade Impingement Cooling

    NASA Technical Reports Server (NTRS)

    Fryer, Jack

    2014-01-01

    Gas turbine engine technology is constantly challenged to operate at higher combustor outlet temperatures. In a modern gas turbine engine, these temperatures can exceed the blade and disk material limits by 600 F or more, necessitating both internal and film cooling schemes in addition to the use of thermal barrier coatings. Internal convective cooling is inadequate in many blade locations, and both internal and film cooling approaches can lead to significant performance penalties in the engine. Micro Cooling Concepts, Inc., has developed a turbine blade cooling concept that provides enhanced internal impingement cooling effectiveness via the use of microstructured impingement surfaces. These surfaces significantly increase the cooling capability of the impinging flow, as compared to a conventional untextured surface. This approach can be combined with microchannel cooling and external film cooling to tailor the cooling capability per the external heating profile. The cooling system then can be optimized to minimize impact on engine performance.

  4. Solid-state Graft Copolymer Electrolytes for Lithium Battery Applications

    PubMed Central

    Hu, Qichao; Caputo, Antonio; Sadoway, Donald R.

    2013-01-01

    Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (<80 °C), flammable, and volatile organic electrolytes. These organic based electrolyte systems are viable at ambient temperatures, but require a cooling system to ensure that temperatures do not exceed 80 °C. These cooling systems tend to increase battery costs and can malfunction which can lead to battery malfunction and explosions, thus endangering human life. Increases in petroleum prices lead to a huge demand for safe, electric hybrid vehicles that are more economically viable to operate as oil prices continue to rise. Existing organic based electrolytes used in lithium ion batteries are not applicable to high temperature automotive applications. A safer alternative to organic electrolytes is solid polymer electrolytes. This work will highlight the synthesis for a graft copolymer electrolyte (GCE) poly(oxyethylene) methacrylate (POEM) to a block with a lower glass transition temperature (Tg) poly(oxyethylene) acrylate (POEA). The conduction mechanism has been discussed and it has been demonstrated the relationship between polymer segmental motion and ionic conductivity indeed has a Vogel-Tammann-Fulcher (VTF) dependence. Batteries containing commercially available LP30 organic (LiPF6 in ethylene carbonate (EC):dimethyl carbonate (DMC) at a 1:1 ratio) and GCE were cycled at ambient temperature. It was found that at ambient temperature, the batteries containing GCE showed a greater overpotential when compared to LP30 electrolyte. However at temperatures greater than 60 °C, the GCE cell exhibited much lower overpotential due to fast polymer electrolyte conductivity and nearly the full theoretical specific capacity of 170 mAh/g was accessed. PMID:23963203

  5. Solid-state graft copolymer electrolytes for lithium battery applications.

    PubMed

    Hu, Qichao; Caputo, Antonio; Sadoway, Donald R

    2013-08-12

    Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (< 80 °C), flammable, and volatile organic electrolytes. These organic based electrolyte systems are viable at ambient temperatures, but require a cooling system to ensure that temperatures do not exceed 80 °C. These cooling systems tend to increase battery costs and can malfunction which can lead to battery malfunction and explosions, thus endangering human life. Increases in petroleum prices lead to a huge demand for safe, electric hybrid vehicles that are more economically viable to operate as oil prices continue to rise. Existing organic based electrolytes used in lithium ion batteries are not applicable to high temperature automotive applications. A safer alternative to organic electrolytes is solid polymer electrolytes. This work will highlight the synthesis for a graft copolymer electrolyte (GCE) poly(oxyethylene) methacrylate (POEM) to a block with a lower glass transition temperature (Tg) poly(oxyethylene) acrylate (POEA). The conduction mechanism has been discussed and it has been demonstrated the relationship between polymer segmental motion and ionic conductivity indeed has a Vogel-Tammann-Fulcher (VTF) dependence. Batteries containing commercially available LP30 organic (LiPF6 in ethylene carbonate (EC):dimethyl carbonate (DMC) at a 1:1 ratio) and GCE were cycled at ambient temperature. It was found that at ambient temperature, the batteries containing GCE showed a greater overpotential when compared to LP30 electrolyte. However at temperatures greater than 60 °C, the GCE cell exhibited much lower overpotential due to fast polymer electrolyte conductivity and nearly the full theoretical specific capacity of 170 mAh/g was accessed.

  6. Shear heating and solid state diffusion: Constraints from clumped isotope thermometry in carbonate faults

    NASA Astrophysics Data System (ADS)

    Siman-Tov, S.; Affek, H. P.; Matthews, A.; Aharonov, E.; Reches, Z.

    2015-12-01

    Natural faults are expected to heat rapidly during seismic slip and to cool quite quickly after the event. Here we examine clumped isotope thermometry for its ability to identify short duration elevated temperature events along frictionally heated carbonate faults. This method is based on measured Δ47 values that indicate the relative atomic order of oxygen and carbon stable isotopes in the calcite lattice, which is affected by heat and thus can serve as a thermometer. We examine three types of calcite rock samples: (1) samples that were rapidly heated and then cooled in static laboratory experiments, simulating the temperature cycle experienced by fault rock during earthquake slip; (2) limestone samples that were experimentally sheared to simulate earthquake slip events; and (3) samples taken from principle slip zones of natural carbonate faults that likely experienced earthquake slip. Experimental results show that Δ47 values decrease rapidly (in the course of seconds) and systematically both with increasing temperature and shear velocity. On the other hand, carbonate shear zone from natural faults do not show such Δ47 reduction. We propose that the experimental Δ47 response is controlled by the presence of high-stressed nano-grains within the fault zone that can reduce the activation energy for diffusion by up to 60%, and thus lead to an increased rate of solid-state diffusion in the experiments. However, the lowering of activation energy is a double-edged sword in terms of clumped isotopes: In laboratory experiments, it allows for rapid disordering so that isotopic signal appears after very short heating, but in natural faults it also leads to relatively fast isotopic re-ordering after the cessation of frictional heating, thus erasing the high temperature signature in Δ47 values within relatively short geological times (<1 Ma).

  7. Effect of RANS-Type Turbulence Models on Adiabatic Film Cooling Effectiveness over a Scaled Up Gas Turbine Blade Leading Edge Surface

    NASA Astrophysics Data System (ADS)

    Yepuri, Giridhara Babu; Talanki Puttarangasetty, Ashok Babu; Kolke, Deepak Kumar; Jesuraj, Felix

    2016-06-01

    Increasing the gas turbine inlet temperature is one of the key technologies in raising gas turbine engine power output. Film cooling is one of the efficient cooling techniques to cool the hot section components of a gas turbine engines in turn the turbine inlet temperature can be increased. This study aims at investigating the effect of RANS-type turbulence models on adiabatic film cooling effectiveness over a scaled up gas turbine blade leading edge surfaces. For the evaluation, five different two equation RANS-type turbulent models have been taken in consideration, which are available in the ANSYS-Fluent. For this analysis, the gas turbine blade leading edge configuration is generated using Solid Works. The meshing is done using ANSYS-Workbench Mesh and ANSYS-Fluent is used as a solver to solve the flow field. The considered gas turbine blade leading edge model is having five rows of film cooling circular holes, one at stagnation line and the two each on either side of stagnation line at 30° and 60° respectively. Each row has the five holes with the hole diameter of 4 mm, pitch of 21 mm arranged in staggered manner and has the hole injection angle of 30° in span wise direction. The experiments are carried in a subsonic cascade tunnel facility at heat transfer lab of CSIR-National Aerospace Laboratory with a Reynolds number of 1,00,000 based on leading edge diameter. From the Computational Fluid Dynamics (CFD) evaluation it is found that K-ɛ Realizable model gives more acceptable results with the experimental values, compared to the other considered turbulence models for this type of geometries. Further the CFD evaluated results, using K-ɛ Realizable model at different blowing ratios are compared with the experimental results.

  8. Conceptual design of laser fusion reactor KOYO-fast Concepts of reactor system and laser driver

    NASA Astrophysics Data System (ADS)

    Kozaki, Y.; Miyanaga, N.; Norimatsu, T.; Soman, Y.; Hayashi, T.; Furukawa, H.; Nakatsuka, M.; Yoshida, K.; Nakano, H.; Kubomura, H.; Kawashima, T.; Nishimae, J.; Suzuki, Y.; Tsuchiya, N.; Kanabe, T.; Jitsuno, T.; Fujita, H.; Kawanaka, J.; Tsubakimoto, K.; Fujimoto, Y.; Lu, J.; Matsuoka, S.; Ikegawa, T.; Owadano, Y.; Ueda, K.; Tomabechi, K.; Reactor Design Committee in Ife Forum, Members Of

    2006-06-01

    We have carried out the design studies of KOYO-Fast laser fusion power plant, using fast ignition cone targets, DPSSL lasers, and LiPb liquid wall chambers. Using fast ignition targets, we could design a middle sized 300 MWe reactor module, with 200 MJ fusion pulse energy and 4 Hz rep-rates, and 1200MWe modular power plants with 4 reactor modules and a 16 Hz laser driver. The liquid wall chambers with free surface cascade flows are proposed for cooling surface quickly enough to a 4 Hz pulse operation. We examined the potential of Yb-YAG ceramic lasers operated at 150˜ 225 K for both implosion and heating laser systems required for a 16-Hz repetition and 8 % total efficiency.

  9. Modeling and Experiments on Fast Cooldown of a 120 Hz Pulse Tube Cryocooler

    NASA Astrophysics Data System (ADS)

    Vanapalli, Srinivas; Lewis, Michael; Grossman, Gershon; Gan, Zhihua; Radebaugh, Ray; Brake, H. J. M. ter

    2008-03-01

    High frequency operation of a pulse tube cryocooler leads to reduced regenerator volume, which results in a reduced heat capacity and a faster cooldown time. A pulse tube cryocooler operating at a frequency of 120 Hz and an average pressure of 3.5 MPa achieved a no-load temperature of 50 K. The cooling power at 80 K was about 3.35 W with a cooldown time from 285 K to 80 K of about 5.5 minutes, even though the additional thermal mass at the cold end due to flanges, screws, heater, and thermometer was 4.2 times that of the regenerator. This fast cooldown is about two to four times faster than that of typical pulse tube cryocoolers and is very attractive to many applications. In this study we measure the cooldown time to 80 K for different cold-end masses and extrapolate to zero cold-end mass. We also present an analytical model for the cooldown time for different cold-end masses and compare the results with the experiments. The model and the extrapolated experimental results indicate that with zero cold-end mass the cooldown time to 80 K with this 120 Hz pulse tube cryocooler would be about 32 s.

  10. Fast molecular shocks. II - Emission from fast dissociative shocks

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Dalgarno, A.

    1989-01-01

    The line radiations emitted in the cooling gas behind a fast dissociative shock are studied. The intensities emitted in high rotational transitions of the neutral molecules CO, SiO, HCN, CN, NO, and SO are estimated, as well as in rovibrational transitions of the molecular ions HeH(+) and OH(+) in radio recombination lines of atomic hydrogen and in fine-structure transitions of C, C(+), O, and Si(+). The predictions are compared with the observed intensities of line emission from the Orion-KL region. For Orion-KL the observations do not exclude, but probably do not require, the presence of a fast dissociative shock. Emission from SiO in high-J rotational states and from vibrationally excited OH(+), HeH(+), HeH(+), and SO(+) may be detectable from dissociative shocks under suitable conditions of preshock density and shock velocity; such emission may prove to be a useful diagnostic probe of fast shock activity.

  11. The Synchrotron Spectrum of Fast Cooling Electrons Revisited.

    PubMed

    Granot; Piran; Sari

    2000-05-10

    We discuss the spectrum arising from synchrotron emission by fast cooling (FC) electrons, when fresh electrons are continually accelerated by a strong blast wave, into a power-law distribution of energies. The FC spectrum has so far been described by four power-law segments divided by three break frequencies nusa

  12. Pre-cooling of ton-scale particle detectors in low radioactivity environments

    NASA Astrophysics Data System (ADS)

    Cappelli, L.; Pagliarone, C. E.; Bucci, C.; D’Aguanno, D.; Erme, G.; Gorla, P.; Kartal, S.; Marignetti, F.

    2018-03-01

    Low radioactivity sites are mandatory to perform searches for rare processes that cannot be studied with particle accelerators and requires low environmental backgrounds. Neutrino-less double β decay or Dark Matter searches must be performed in underground low radioactivity observatories. Large detectors are needed to increase the acceptances and proper cryogenic systems to run dedicated detectors. To reach the working temperatures, refrigerators as Pulse Tubes, Dilution Units are used inside complex cryostats. CUORE, Cryogenic Underground Observatory for Rare Events, is an experiment located at LNGS under the Gran Sasso mountain. So far, it’s the coldest cubic meter and the largest cold mass ever realized. Its 998 TeO2 bolometers need to be kept at temperatures T< 10 mK. Using only Pulse Tubes, CUORE needs several weeks to reach the baseline T. Then a Fast Cooling System has been designed and constructed for a faster precooling of the whole CUORE cold volume. The Fast Cooling System (FCS) consists of a cryostat with heat exchangers that use 3 Gifford-McMahon refrigerators, a 4He compressor, a filtering module and several sensors that allow to monitor and control the system during CUORE cooldown. The present work describes the FCS and summarizes its performances during the first full CUORE cooldown.

  13. Preferred response of the East Asian summer monsoon to local and non-local anthropogenic sulphur dioxide emissions

    NASA Astrophysics Data System (ADS)

    Dong, Buwen; Sutton, Rowan T.; Highwood, Eleanor J.; Wilcox, Laura J.

    2016-03-01

    In this study, the atmospheric component of a state-of-the-art climate model (HadGEM2-ES) that includes earth system components such as interactive chemistry and eight species of tropospheric aerosols considering aerosol direct, indirect, and semi-direct effects, has been used to investigate the impacts of local and non-local emissions of anthropogenic sulphur dioxide on the East Asian summer monsoon (EASM). The study focuses on the fast responses (including land surface feedbacks, but without sea surface temperature feedbacks) to sudden changes in emissions from Asia and Europe. The initial responses, over days 1-40, to Asian and European emissions show large differences. The response to Asian emissions involves a direct impact on the sulphate burden over Asia, with immediate consequences for the shortwave energy budget through aerosol-radiation and aerosol-cloud interactions. These changes lead to cooling of East Asia and a weakening of the EASM. In contrast, European emissions have no significant impact on the sulphate burden over Asia, but they induce mid-tropospheric cooling and drying over the European sector. Subsequently, however, this cold and dry anomaly is advected into Asia, where it induces atmospheric and surface feedbacks over Asia and the Western North Pacific (WNP), which also weaken the EASM. In spite of very different perturbations to the local aerosol burden in response to Asian and European sulphur dioxide emissions, the large scale pattern of changes in land-sea thermal contrast, atmospheric circulation and local precipitation over East Asia from days 40 onward exhibits similar structures, indicating a preferred response, and suggesting that emissions from both regions likely contributed to the observed weakening of the EASM. Cooling and drying of the troposphere over Asia, together with warming and moistening over the WNP, reduces the land-sea thermal contrast between the Asian continent and surrounding oceans. This leads to high sea level pressure (SLP) anomalies over Asia and low SLP anomalies over the WNP, associated with a weakened EASM. In response to emissions from both regions warming and moistening over the WNP plays an important role and determines the time scale of the response.

  14. Cooling interventions for athletes: An overview of effectiveness, physiological mechanisms, and practical considerations

    PubMed Central

    Bongers, Coen C. W. G.; Hopman, Maria T. E.; Eijsvogels, Thijs M. H.

    2017-01-01

    ABSTRACT Exercise-induced increases in core body temperature could negative impact performance and may lead to development of heat-related illnesses. The use of cooling techniques prior (pre-cooling), during (per-cooling) or directly after (post-cooling) exercise may limit the increase in core body temperature and therefore improve exercise performance. The aim of the present review is to provide a comprehensive overview of current scientific knowledge in the field of pre-cooling, per-cooling and post-cooling. Based on existing studies, we will discuss 1) the effectiveness of cooling interventions, 2) the underlying physiological mechanisms and 3) practical considerations regarding the use of different cooling techniques. Furthermore, we tried to identify the optimal cooling technique and compared whether cooling-induced performance benefits are different between cool, moderate and hot ambient conditions. This article provides researchers, physicians, athletes and coaches with important information regarding the implementation of cooling techniques to maintain exercise performance and to successfully compete in thermally stressful conditions. PMID:28349095

  15. Continuous production of tritium in an isotope-production reactor with a separate circulation system

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium is allowed to flow through the reactor in separate loops in order to facilitate the production and removal of tritium.

  16. Shock Magnetic Field and Origin of the Earth

    NASA Technical Reports Server (NTRS)

    Tunyi, I.; Timko, M.; Roth, L. E.

    2001-01-01

    To the effects of impulse magnetic field in protoplanetary nebula (fast melting, cooling and magnetization of chondrules), there is added another possible effect - mechanism associated with the forces of attraction between magnetized planetesimals. Additional information is contained in the original extended abstract.

  17. Experimental Investigation of an Air-Cooled Turbine Operating in a Turbojet Engine at Turbine Inlet Temperatures up to 2500 F

    NASA Technical Reports Server (NTRS)

    Cochran, Reeves P.; Dengler, Robert P.

    1961-01-01

    An experimental investigation was made of an air-cooled turbine at average turbine inlet temperatures up to 2500 F. A modified production-model 12-stage axial-flow-compressor turbojet engine operating in a static sea-level stand was used as the test vehicle. The modifications to the engine consisted of the substitution of special combustor and turbine assemblies and double-walled exhaust ducting for the standard parts of the engine. All of these special parts were air-cooled to withstand the high operating temperatures of the investigation. The air-cooled turbine stator and rotor blades were of the corrugated-insert type. Leading-edge tip caps were installed on the rotor blades to improve leading-edge cooling by diverting the discharge of coolant to regions of lower gas pressure toward the trailing edge of the blade tip. Caps varying in length from 0.15- to 0.55-chord length were used in an attempt to determine the optimum cap length for this blade. The engine was operated over a range of average turbine inlet temperatures from about 1600 to about 2500 F, and a range of average coolant-flow ratios of 0.012 to 0.065. Temperatures of the air-cooled turbine rotor blades were measured at all test conditions by the use of thermocouples and temperature-indicating paints. The results of the investigation indicated that this type of blade is feasible for operation in turbojet engines at the average turbine inlet temperatures and stress levels tested(maximums of 2500 F and 24,000 psi, respectively). An average one-third-span blade temperature of 1300 F could be maintained on 0.35-chord tip cap blades with an average coolant-flow ratio of about 0.022 when the average turbine inlet temperature was 2500 F and cooling-air temperature was about 260 F. All of the leading-edge tip cap lengths improved the cooling of the leading-edge region of the blades, particularly at low average coolant-flow ratios. At high gas temperatures, such parts as the turbine stator and the combustor liners are likely to be as critical as the turbine rotor blades.

  18. Effect of Common Cryoprotectants on Critical Warming Rates and Ice Formation in Aqueous Solutions

    PubMed Central

    Hopkins, Jesse B.; Badeau, Ryan; Warkentin, Matthew; Thorne, Robert E.

    2012-01-01

    Ice formation on warming is of comparable or greater importance to ice formation on cooling in determining survival of cryopreserved samples. Critical warming rates required for ice-free warming of vitrified aqueous solutions of glycerol, dimethyl sulfoxide, ethylene glycol, polyethylene glycol 200 and sucrose have been measured for warming rates of order 10 to 104 K/s. Critical warming rates are typically one to three orders of magnitude larger than critical cooling rates. Warming rates vary strongly with cooling rates, perhaps due to the presence of small ice fractions in nominally vitrified samples. Critical warming and cooling rate data spanning orders of magnitude in rates provide rigorous tests of ice nucleation and growth models and their assumed input parameters. Current models with current best estimates for input parameters provide a reasonable account of critical warming rates for glycerol solutions at high concentrations/low rates, but overestimate both critical warming and cooling rates by orders of magnitude at lower concentrations and larger rates. In vitrification protocols, minimizing concentrations of potentially damaging cryoprotectants while minimizing ice formation will require ultrafast warming rates, as well as fast cooling rates to minimize the required warming rates. PMID:22728046

  19. Gas turbine bucket cooling circuit and related process

    DOEpatents

    Lewis, Doyle C.; Barb, Kevin Joseph

    2002-01-01

    A turbine bucket includes an airfoil portion having leading and trailing edges; at least one radially extending cooling passage within the airfoil portion, the airfoil portion joined to a platform at a radially inner end of the airfoil portion; a dovetail mounting portion enclosing a cooling medium supply passage; and, a crossover passage in fluid communication with the cooling medium supply passage and with at least one radially extending cooling passage, the crossover passage having a portion extending along and substantially parallel to an underside surface of the platform.

  20. Formation of fast-spreading lower oceanic crust as revealed by a new Mg-REE coupled geospeedometer

    NASA Astrophysics Data System (ADS)

    Sun, Chenguang; Lissenberg, C. Johan

    2018-04-01

    A new geospeedometer is developed based on the differential closures of Mg and rare earth element (REE) bulk-diffusion between coexisting plagioclase and clinopyroxene. By coupling the two elements with distinct bulk closure temperatures, this speedometer can numerically solve the initial temperatures and cooling rates for individual rock samples. As the existing Mg-exchange thermometer was calibrated for a narrow temperature range and strongly relies on model-dependent silica activities, a new thermometer is developed using literature experimental data. When the bulk closure temperatures of Mg and REE are determined, respectively, using this new Mg-exchange thermometer and the existing REE-exchange thermometer, this speedometer can be implemented for a wide range of compositions, mineral modes, and grain sizes. Applications of this new geospeedometer to oceanic gabbros from the fast-spreading East Pacific Rise at Hess Deep reveal that the lower oceanic crust crystallized at temperatures of 998-1353 °C with cooling rates of 0.003-10.2 °C/yr. Stratigraphic variations of the cooling rates and crystallization temperatures support deep hydrothermal circulations and in situ solidification of various replenished magma bodies. Together with existing petrological, geochemical and geophysical evidence, results from this new speedometry suggest that the lower crust formation at fast-spreading mid-ocean ridges involves emplacement of primary mantle melts in the deep section of the crystal mush zone coupled with efficient heat removal by crustal-scale hydrothermal circulations. The replenished melts become chemically and thermally evolved, accumulate as small magma bodies at various depths, feed the shallow axial magma chamber, and may also escape from the mush zone to generate off-axial magma lenses.

  1. An Analysis of Methanol and Hydrogen Production via High-Temperature Electrolysis Using the Sodium Cooled Advanced Fast Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shannon M. Bragg-Sitton; Richard D. Boardman; Robert S. Cherry

    2014-03-01

    Integration of an advanced, sodium-cooled fast spectrum reactor into nuclear hybrid energy system (NHES) architectures is the focus of the present study. A techno-economic evaluation of several conceptual system designs was performed for the integration of a sodium-cooled Advanced Fast Reactor (AFR) with the electric grid in conjunction with wind-generated electricity. Cases in which excess thermal and electrical energy would be reapportioned within an integrated energy system to a chemical plant are presented. The process applications evaluated include hydrogen production via high temperature steam electrolysis and methanol production via steam methane reforming to produce carbon monoxide and hydrogen which feedmore » a methanol synthesis reactor. Three power cycles were considered for integration with the AFR, including subcritical and supercritical Rankine cycles and a modified supercritical carbon dioxide modified Brayton cycle. The thermal efficiencies of all of the modeled power conversions units were greater than 40%. A thermal efficiency of 42% was adopted in economic studies because two of the cycles either performed at that level or could potentially do so (subcritical Rankine and S-CO2 Brayton). Each of the evaluated hybrid architectures would be technically feasible but would demonstrate a different internal rate of return (IRR) as a function of multiple parameters; all evaluated configurations showed a positive IRR. As expected, integration of an AFR with a chemical plant increases the IRR when “must-take” wind-generated electricity is added to the energy system. Additional dynamic system analyses are recommended to draw detailed conclusions on the feasibility and economic benefits associated with AFR-hybrid energy system operation.« less

  2. Hydrothermal alteration of kimberlite by convective flows of external water.

    PubMed

    Afanasyev, A A; Melnik, O; Porritt, L; Schumacher, J C; Sparks, R S J

    Kimberlite volcanism involves the emplacement of olivine-rich volcaniclastic deposits into volcanic vents or pipes. Kimberlite deposits are typically pervasively serpentinised as a result of the reaction of olivine and water within a temperature range of 130-400 °C or less. We present a model for the influx of ground water into hot kimberlite deposits coupled with progressive cooling and serpentisation. Large-pressure gradients cause influx and heating of water within the pipe with horizontal convergent flow in the host rock and along pipe margins, and upward flow within the pipe centre. Complete serpentisation is predicted for wide ranges of permeability of the host rocks and kimberlite deposits. For typical pipe dimensions, cooling times are centuries to a few millennia. Excess volume of serpentine results in filling of pore spaces, eventually inhibiting fluid flow. Fresh olivine is preserved in lithofacies with initial low porosity, and at the base of the pipe where deeper-level host rocks have low permeability, and the pipe is narrower leading to faster cooling. These predictions are consistent with fresh olivine and serpentine distribution in the Diavik A418 kimberlite pipe, (NWT, Canada) and with features of kimberlites of the Yakutian province in Russia affected by influx of ground water brines. Fast reactions and increases in the volume of solid products compared to the reactants result in self-sealing and low water-rock ratios (estimated at <0.2). Such low water-rock ratios result in only small changes in stable isotope compositions; for example, δO 18 is predicted only to change slightly from mantle values. The model supports alteration of kimberlites predominantly by interactions with external non-magmatic fluids.

  3. Can Thermal Bending Fracture Ice Shelves?

    NASA Astrophysics Data System (ADS)

    MacAyeal, D. R.; Sergienko, O. V.; Banwell, A. F.; Willis, I.; Macdonald, G. J.; Lin, J.

    2017-12-01

    Visco-elastic plates will bend if the temperature on one side is cooled. If the plate is constrained to float, as for sea ice floes, this bending will lead to tensile stresses that can fracture the ice. The hydroacoustic regime below sea ice displays increased fracture-sourced noise when air temperatures above the ice cools with the diurnal cycle. The McMurdo Ice Shelf, Antarctica, also displays a massive increase in seismicity during the cooling phase of the diurnal cycle, and this motivates the question: Can surface cooling (or other forcing with thermal consequences) drive through-thickness fracture leading to iceberg calving? Past study of this question for sea ice gives an upper limit of ice-plate thickness (order meters) for which diurnal-scale thermal bending fracture can occur; but could cooling with longer time scales induce fracture of thicker ice plates? Given the seismic evidence of thermal bending fracture on the McMurdo Ice Shelf, the authors examine this question further.

  4. Turbine vane leading edge gas film cooling with spanwise angled coolant holes

    NASA Technical Reports Server (NTRS)

    Hanus, G. J.; Lecuyer, M. R.

    1976-01-01

    An experimental film cooling study was conducted on a 3x size model turbine vane. Injection at the leading edge was from a single row of holes angled in a spanwise direction for two configurations of holes at 18 or 35 deg to the surface. The reduction in the local Stanton number for injection at a coolant-to-mainstream density ratio of 2.18 was calculated from heat flux measurements downstream of injection. Results indicate that optimum cooling occurs near a coolant-to-mainstream velocity ratio of 0.5. Shallow injection angles appear to be most beneficial when injecting into a highly accelerated mainstream.

  5. Heat transfer characteristics of hypersonic waveriders with an emphasis on the leading edge effects. M.S. Thesis, 1991

    NASA Technical Reports Server (NTRS)

    Vanmol, Denis O.; Anderson, John D., Jr.

    1992-01-01

    The heat transfer characteristics in surface radiative equilibrium and the aerodynamic performance of blunted hypersonic waveriders are studied along two constant dynamic pressure trajectories for four different Mach numbers. The inviscid leading edge drag was found to be a small (4 to 8 percent) but not negligible fraction of the inviscid drag of the vehicle. Although the viscous drag at the leading edge can be neglected, the presence of the leading edge will influence the transition pattern of the upper and the lower surfaces and therefore affect the viscous drag of the entire vehicle. For an application similar to the National Aerospace Plane (NASP), the present study demonstrates that the waverider remains a valuable concept at high Mach numbers if a state-of-the-art active cooling device is used along the leading edge. At low Mach number (less than 5), the study shows the surface radiative cooling might be sufficient. In all cases, radiative cooling is sufficient for the upper and lower surfaces of the vehicle if ceramic composites are used as thermal protection.

  6. Family ties of WR to LBV nebulae yielding clues for stellar evolution

    NASA Astrophysics Data System (ADS)

    Weis, K.

    Luminous Blue Variables (LBVs) are stars is a transitional phase massive stars may enter while evolving from main-sequence to Wolf-Rayet stars. The to LBVs intrinsic photometric variability is based on the modulation of the stellar spectrum. Within a few years the spectrum shifts from OB to AF type and back. During their cool phase LBVs are close to the Humphreys-Davidson (equivalent to Eddington/Omega-Gamma) limit. LBVs have a rather high mass loss rate, with stellar winds that are fast in the hot and slower in the cool phase of an LBV. These alternating wind velocities lead to the formation of LBV nebulae by wind-wind interactions. A nebula can also be formed in a spontaneous giant eruption in which larger amounts of mass are ejected. LBV nebulae are generally small (< 5 pc) mainly gaseous circumstellar nebulae, with a rather large fraction of LBV nebulae being bipolar. After the LBV phase the star will turn into a Wolf-Rayet star, but note that not all WR stars need to have passed the LBV phase. Some follow from the RSG and the most massive directly from the MS phase. In general WRs have a large mass loss and really fast stellar winds. The WR wind may interact with winds of earlier phases (MS, RSG) to form WR nebulae. As for WR with LBV progenitors the scenario might be different, here no older wind is present but an LBV nebula! The nature of WR nebulae are therefore manifold and in particular the connection (or family ties) of WR to LBV nebulae is important to understand the transition between these two phases, the evolution of massive stars, their winds, wind-wind and wind-nebula interactions. Looking at the similarities and differences of LBV and WR nebula, figuring what is a genuine LBV and WR nebula are the basic question addressed in the analysis presented here.

  7. Improvements and Performance of the Fermilab Solenoid Test Facility

    DOE PAGES

    Orris, Darryl; Arnold, Don; Brandt, Jeffrey; ...

    2017-06-01

    Here, the Solenoid Test Facility at Fermilab was built using a large vacuum vessel for testing of conduction-cooled superconducting solenoid magnets, and was first used to determine the performance of the MICE Coupling Coil. The facility was modified recently to enable testing of solenoid magnets for the Mu2e experiment, which operate at much higher current than the Coupling Coil. One pair of low current conduction-cooled copper and NbTi leads was replaced with two pairs of 10 kA HTS leads cooled by heat exchange with liquid nitrogen and liquid helium. The new design, with additional control and monitoring capability, also providesmore » helium cooling of the superconducting magnet leads by conduction. A high current power supply with energy extraction was added, and several improvements to the quench protection and characterization system were made. Here we present details of these changes and report on performance results from a test of the Mu2e prototype Transport Solenoid (TS) module. Progress on additional improvements in preparation for production TS module testing will be presented.« less

  8. Improvements and Performance of the Fermilab Solenoid Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orris, Darryl; Arnold, Don; Brandt, Jeffrey

    Here, the Solenoid Test Facility at Fermilab was built using a large vacuum vessel for testing of conduction-cooled superconducting solenoid magnets, and was first used to determine the performance of the MICE Coupling Coil. The facility was modified recently to enable testing of solenoid magnets for the Mu2e experiment, which operate at much higher current than the Coupling Coil. One pair of low current conduction-cooled copper and NbTi leads was replaced with two pairs of 10 kA HTS leads cooled by heat exchange with liquid nitrogen and liquid helium. The new design, with additional control and monitoring capability, also providesmore » helium cooling of the superconducting magnet leads by conduction. A high current power supply with energy extraction was added, and several improvements to the quench protection and characterization system were made. Here we present details of these changes and report on performance results from a test of the Mu2e prototype Transport Solenoid (TS) module. Progress on additional improvements in preparation for production TS module testing will be presented.« less

  9. Hybrid Methods for Muon Accelerator Simulations with Ionization Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunz, Josiah; Snopok, Pavel; Berz, Martin

    Muon ionization cooling involves passing particles through solid or liquid absorbers. Careful simulations are required to design muon cooling channels. New features have been developed for inclusion in the transfer map code COSY Infinity to follow the distribution of charged particles through matter. To study the passage of muons through material, the transfer map approach alone is not sufficient. The interplay of beam optics and atomic processes must be studied by a hybrid transfer map--Monte-Carlo approach in which transfer map methods describe the deterministic behavior of the particles, and Monte-Carlo methods are used to provide corrections accounting for the stochasticmore » nature of scattering and straggling of particles. The advantage of the new approach is that the vast majority of the dynamics are represented by fast application of the high-order transfer map of an entire element and accumulated stochastic effects. The gains in speed are expected to simplify the optimization of cooling channels which is usually computationally demanding. Progress on the development of the required algorithms and their application to modeling muon ionization cooling channels is reported.« less

  10. Exercise hyperthermia as a factor limiting physical performance - Temperature effect on muscle metabolism

    NASA Technical Reports Server (NTRS)

    Kozlowski, S.; Brzezinska, Z.; Kruk, B.; Kaciuba-Uscilko, H.; Greenleaf, J. E.

    1985-01-01

    The effect of trunk cooling on the muscle contents of ATP, ADP, AMP, creatine phosphate (CrP), and creatine, as well as of glycogen, some glycolytic intermediates, pyruvate, and lactate were assessed in 11 fasted dogs exercised at 20 C on treadmill to exhaustion. Without cooling, dogs were able to run 57 min, and their rectal (Tre) and muscle (Tm) temperatures increased to 41.8 and 43.0 C, respectively. Cooling with ice packs prolonged the ability to run by 45 percent, and resulted in lower Tre (by 1.1 C) and Tm (by 1.2 C). Depletion of muscle content of total high-energy phosphates (ATP + CrP) and glycogen, and increases in contents of AMP, pyruvate, and lactate were lower in cooled dogs than in non-cooled dogs. The muscle content of lactiate correlated positively with TM. These results indicate that hypothermia accelerates glycolysis, and shifts the equilibrium between high- and low-energy phosphates in favor of the latter. The adverse effect of hypothermia on muscle metabolism may be relevant to the limitation of endurance.

  11. Coupling Network Computing Applications in Air-cooled Turbine Blades Optimization

    NASA Astrophysics Data System (ADS)

    Shi, Liang; Yan, Peigang; Xie, Ming; Han, Wanjin

    2018-05-01

    Through establishing control parameters from blade outside to inside, the parametric design of air-cooled turbine blade based on airfoil has been implemented. On the basis of fast updating structure features and generating solid model, a complex cooling system has been created. Different flow units are modeled into a complex network topology with parallel and serial connection. Applying one-dimensional flow theory, programs have been composed to get pipeline network physical quantities along flow path, including flow rate, pressure, temperature and other parameters. These inner units parameters set as inner boundary conditions for external flow field calculation program HIT-3D by interpolation, thus to achieve full field thermal coupling simulation. Referring the studies in literatures to verify the effectiveness of pipeline network program and coupling algorithm. After that, on the basis of a modified design, and with the help of iSIGHT-FD, an optimization platform had been established. Through MIGA mechanism, the target of enhancing cooling efficiency has been reached, and the thermal stress has been effectively reduced. Research work in this paper has significance for rapid deploying the cooling structure design.

  12. Emergency cooling analysis for the loss of coolant malfunction

    NASA Technical Reports Server (NTRS)

    Peoples, J. A.

    1972-01-01

    This report examines the dynamic response of a conceptual space power fast-spectrum lithium cooled reactor to the loss of coolant malfunction and several emergency cooling concepts. The results show that, following the loss of primary coolant, the peak temperatures of the center most 73 fuel elements can range from 2556 K to the region of the fuel melting point of 3122 K within 3600 seconds after the start of the accident. Two types of emergency aftercooling concepts were examined: (1) full core open loop cooling and (2) partial core closed loop cooling. The full core open loop concept is a one pass method of supplying lithium to the 247 fuel pins. This method can maintain fuel temperature below the 1611 K transient damage limit but requires a sizable 22,680-kilogram auxiliary lithium supply. The second concept utilizes a redundant internal closed loop to supply lithium to only the central area of each hexagonal fuel array. By using this method and supplying lithium to only the triflute region, fuel temperatures can be held well below the transient damage limit.

  13. Methods for absorbing neutrons

    DOEpatents

    Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  14. D0 Solenoid Upgrade Project: D0 Solenoid Current Leads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rucinski, R.; /Fermilab

    This engineering note documents information gathered and design decisions made regarding the vapor cooled current leads for the D-Zero Solenoid. The decision was made during design group meetings that the D-Zero Solenoid, rated at 4825 amps, should use vapor cooled current leads rated at 6000 amps. CDF uses 6000 amp leads from American Magnetics Inc. (AMI) and has two spares in their storage lockers. Because of the spares situation and AMI's reputation, AMI would be the natural choice of vendor. The manufacturer's listed helium consumption is 19.2 liters/hr. From experience with these types of leads, more stable operation is acheivedmore » at an increased gas flow. See attached E-Mail message from RLS. We have decided to list the design flow rate at 28.8 liquid liters/hr in the design report. This corresponds to COFs operating point. A question was raised regarding how long the current leads could last at full current should the vapor cooling flow was stopped. This issue was discussed with Scott Smith from AMI. We do not feel that there is a problem for this failure scenario.« less

  15. Design and evaluation of active cooling systems for Mach 6 cruise vehicle wings

    NASA Technical Reports Server (NTRS)

    Mcconarty, W. A.; Anthony, F. M.

    1971-01-01

    Active cooling systems, which included transpiration, film, and convective cooling concepts, are examined. Coolants included hydrogen, helium, air, and water. Heat shields, radiation barriers, and thermal insulation are considered to reduce heat flow to the cooling systems. Wing sweep angles are varied from 0 deg to 75 deg and wing leading edge radii of 0.05 inch and 2.0 inches are examined. Structural temperatures are varied to allow comparison of aluminum alloy, titanium alloy, and superalloy structural materials. Cooled wing concepts are compared among themselves, and with the uncooled concept on the basis of structural weight, cooling system weight, and coolant weight.

  16. Far-from-Equilibrium Route to Superthermal Light in Bimodal Nanolasers

    NASA Astrophysics Data System (ADS)

    Marconi, Mathias; Javaloyes, Julien; Hamel, Philippe; Raineri, Fabrice; Levenson, Ariel; Yacomotti, Alejandro M.

    2018-02-01

    Microscale and nanoscale lasers inherently exhibit rich photon statistics due to complex light-matter interaction in a strong spontaneous emission noise background. It is well known that they may display superthermal fluctuations—photon superbunching—in specific situations due to either gain competition, leading to mode-switching instabilities, or carrier-carrier coupling in superradiant microcavities. Here we show a generic route to superbunching in bimodal nanolasers by preparing the system far from equilibrium through a parameter quench. We demonstrate, both theoretically and experimentally, that transient dynamics after a short-pump-pulse-induced quench leads to heavy-tailed superthermal statistics when projected onto the weak mode. We implement a simple experimental technique to access the probability density functions that further enables quantifying the distance from thermal equilibrium via the thermodynamic entropy. The universality of this mechanism relies on the far-from-equilibrium dynamical scenario, which can be mapped to a fast cooling process of a suspension of Brownian particles in a liquid. Our results open up new avenues to mold photon statistics in multimode optical systems and may constitute a test bed to investigate out-of-equilibrium thermodynamics using micro or nanocavity arrays.

  17. High temperature corrosion of cold worked YUS409D bellows of bellow-sealed valve in LBE

    NASA Astrophysics Data System (ADS)

    Mustari1, A. P. A.; Irwanto1, D.; Takahashi, M.

    2017-01-01

    Lead-bismuth eutectic (LBE) loop test is highly contributes to the lead-alloy-cooled fast breeder reactor (LFR) and accelerator driven system (ADS) research and development by providing comprehensive results of both corrosion and erosion phenomenon. Bellows-sealed valve is a crucial part in the LBE loop test apparatus, due to its capability of preventing corrosion on valve spring, thus improves the operation time of the system. LBE is very corrosive to stainless steel by formation of oxide layer or elemental dissolution, e.g. Ni. Thus, new type of bellows for bellows-sealed valve made of nickel free material, i.e. YUS409D, is proposed to be used in the LBE. Bellows material undergo heat treatments for mechanical improvement including cold working and annealing. The thickness reduction by the heat treatments is about 90% of initial condition. Corrosion behavior of the bellows has been studied in stagnant LBE at 500 and 600 °C for 500 hours. The oxygen concentration was controlled at about 10-7 wt%. Typical oxide layers were developed on the surface. Oxidation rate was sharply increased at 600°C.

  18. Definition of a Robust Supervisory Control Scheme for Sodium-Cooled Fast Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponciroli, R.; Passerini, S.; Vilim, R. B.

    In this work, an innovative control approach for metal-fueled Sodium-cooled Fast Reactors is proposed. With respect to the classical approach adopted for base-load Nuclear Power Plants, an alternative control strategy for operating the reactor at different power levels by respecting the system physical constraints is presented. In order to achieve a higher operational flexibility along with ensuring that the implemented control loops do not influence the system inherent passive safety features, a dedicated supervisory control scheme for the dynamic definition of the corresponding set-points to be supplied to the PID controllers is designed. In particular, the traditional approach based onmore » the adoption of tabulated lookup tables for the set-point definition is found not to be robust enough when failures of the implemented SISO (Single Input Single Output) actuators occur. Therefore, a feedback algorithm based on the Reference Governor approach, which allows for the optimization of reference signals according to the system operating conditions, is proposed.« less

  19. Design Study of Modular Nuclear Power Plant with Small Long Life Gas Cooled Fast Reactors Utilizing MOX Fuel

    NASA Astrophysics Data System (ADS)

    Ilham, Muhammad; Su'ud, Zaki

    2017-01-01

    Growing energy needed due to increasing of the world’s population encourages development of technology and science of nuclear power plant in its safety and security. In this research, it will be explained about design study of modular fast reactor with helium gas cooling (GCFR) small long life reactor, which can be operated over 20 years. It had been conducted about neutronic design GCFR with Mixed Oxide (UO2-PuO2) fuel in range of 100-200 MWth NPPs of power and 50-60% of fuel fraction variation with cylindrical pin cell and cylindrical balance of reactor core geometry. Calculation method used SRAC-CITATION code. The obtained results are the effective multiplication factor and density value of core reactor power (with geometry optimalization) to obtain optimum design core reactor power, whereas the obtained of optimum core reactor power is 200 MWth with 55% of fuel fraction and 9-13% of percentages.

  20. Single-jet gas cooling of in-beam foils or specimens: Prediction of the convective heat-transfer coefficient

    NASA Astrophysics Data System (ADS)

    Steyn, Gideon; Vermeulen, Christiaan

    2018-05-01

    An experiment was designed to study the effect of the jet direction on convective heat-transfer coefficients in single-jet gas cooling of a small heated surface, such as typically induced by an accelerated ion beam on a thin foil or specimen. The hot spot was provided using a small electrically heated plate. Heat-transfer calculations were performed using simple empirical methods based on dimensional analysis as well as by means of an advanced computational fluid dynamics (CFD) code. The results provide an explanation for the observed turbulent cooling of a double-foil, Havar beam window with fast-flowing helium, located on a target station for radionuclide production with a 66 MeV proton beam at a cyclotron facility.

  1. Passive cooling and heating program at Oak Ridge National Laboratory for FY-1981

    NASA Astrophysics Data System (ADS)

    Shapira, H. B.; Kaplan, S. I.; Chester, C. V.

    Construction was completed of an earth-sheltered, passively solar heated office-dormitory, the Joint Institute for Heavy Ion Research, designed at ORNL. Instrumentation of the building was designed, procured, and installed. Building performance will be monitored and compared with predictions of the DOE-2 code. A study of the incorporation of vegetation on architecture was conducted by the Harvard School of Design. A final report was issued which is a prototype handbook for the use of vegetation to reduce cooling loads in structures. An experiment to reduce the cooling requirement of mobile homes by shading with fast-growing vines was begun: a maintenance-oriented trellis was constructed and vines were planted. An RFP for the production of a prototype set of reflective insulating blinds was issued.

  2. Indirect-cycle FBR cooled by supercritical steam-concept and design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshiaki, Oka; Tatjana, Jevremovic; Sei-ichi, Koshizuka

    1993-01-01

    Neutronic and thermal-hydraulic design of an in direct-cycle supercritical steam-cooled fast breeder reactor (SCFBR-I) is carried out to find a way to make low-cost FBRs (Ref. 1). The advantages of supercritical steam cooling are high thermal efficiency, low pumping power, simplified system (no primary steam generators and no Loeffler boilers), and the use of experienced technology in fossil-fired power plants. The design goals are fissile fuel breeding (compound system doubling time below 30 yr), 1000-M(electric) class out-put, high fuel discharge burnup, and a long refueling period. The coolant void reactivity should be negative throughout fuel lifetime because the loss-of-coolant accidentmore » is the design-basis accident. These goals have never been satisfied simultaneously in previous SCFBRs.« less

  3. A novel stochastic modeling method to simulate cooling loads in residential districts

    DOE PAGES

    An, Jingjing; Yan, Da; Hong, Tianzhen; ...

    2017-09-04

    District cooling systems are widely used in urban residential communities in China. Most of such systems are oversized, which leads to wasted investment, low operational efficiency and, thus, waste of energy. The accurate prediction of district cooling loads that can support the rightsizing of cooling plant equipment remains a challenge. This study develops a novel stochastic modeling method that consists of (1) six prototype house models representing most apartments in a district, (2) occupant behavior models of residential buildings reflecting their spatial and temporal diversity as well as their complexity based on a large-scale residential survey in China, and (3)more » a stochastic sampling process to represent all apartments and occupants in the district. The stochastic method was applied to a case study using the Designer's Simulation Toolkit (DeST) to simulate the cooling loads of a residential district in Wuhan, China. The simulation results agreed well with the measured data based on five performance metrics representing the aggregated cooling consumption, the peak cooling loads, the spatial load distribution, the temporal load distribution and the load profiles. Two prevalent simulation methods were also employed to simulate the district cooling loads. Here, the results showed that oversimplified assumptions about occupant behavior could lead to significant overestimation of the peak cooling load and the total cooling loads in the district. Future work will aim to simplify the workflow and data requirements of the stochastic method for its application, and to explore its use in predicting district heating loads and in commercial or mixed-use districts.« less

  4. A novel stochastic modeling method to simulate cooling loads in residential districts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Jingjing; Yan, Da; Hong, Tianzhen

    District cooling systems are widely used in urban residential communities in China. Most of such systems are oversized, which leads to wasted investment, low operational efficiency and, thus, waste of energy. The accurate prediction of district cooling loads that can support the rightsizing of cooling plant equipment remains a challenge. This study develops a novel stochastic modeling method that consists of (1) six prototype house models representing most apartments in a district, (2) occupant behavior models of residential buildings reflecting their spatial and temporal diversity as well as their complexity based on a large-scale residential survey in China, and (3)more » a stochastic sampling process to represent all apartments and occupants in the district. The stochastic method was applied to a case study using the Designer's Simulation Toolkit (DeST) to simulate the cooling loads of a residential district in Wuhan, China. The simulation results agreed well with the measured data based on five performance metrics representing the aggregated cooling consumption, the peak cooling loads, the spatial load distribution, the temporal load distribution and the load profiles. Two prevalent simulation methods were also employed to simulate the district cooling loads. Here, the results showed that oversimplified assumptions about occupant behavior could lead to significant overestimation of the peak cooling load and the total cooling loads in the district. Future work will aim to simplify the workflow and data requirements of the stochastic method for its application, and to explore its use in predicting district heating loads and in commercial or mixed-use districts.« less

  5. Acid-fast intranuclear inclusion bodies in the kidneys of mallards fed lead shot

    USGS Publications Warehouse

    Locke, L.N.; Bagley, George E.; Irby, H.D.

    1966-01-01

    Acid-fast intranuclear inclusion bodies were found in the cells of the proximal convoluted tubules of the kidneys of mallards fed one, two, three or eight number 6 lead shot and maintained on cracked or whole corn and on grain-duck pellet diets. No acid-fast inclusion bodies were found in mallards fed one or three lead shot but maintained on a duck pellet ration. Dietary factors may be responsible for the failure of mallards fed a duck pellet ration to develop lead Inclusion bodies when treated with one or three lead shot. The authors suggest these inclusion bodies can be used as presumptive evidence for lead intoxication in mallards.

  6. Cooling for SC devices of test cryomodule for ADS Injector II at IMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L.; Wang, S. Y.; Sun, S.

    2014-01-29

    The superconducting half-wave resonance cavities connected in series with superconducting solenoids will be applied to the Injector II of the Accelerator Driven Sub-critical System (ADS) to be built at the Modern Physics Institute, China. A test system has been developed for the purpose of performance test of the HWR cavities as well as validating the relevant technique for cooling the cavity and the solenoids together. It mainly comprises a cryogenic valve box (TVB), a test cryomodule (TCM1) and transfer lines. The TCM1 includes one HWR cavity, two superconducting solenoids, one cold BPM and their cooling system. The design of themore » TCM1 cryostat was carried out by the Shanghai Institute of Applied Physics (SINAP), CAS. Both the cavity and the solenoids will work at 4.4 K by bath cooling. The fast cooling down for the cavity from around 100 K to 120 K is required to avoid degrading of the cavity performance. After cool down and before energization, the solenoids should be warmed up to above 10 K and re-cooled down for the purpose of degaussing. The TCM1 can not only be cooled by using the dewar-filling system, but also operated by the refrigerator system. For the purpose of reducing the heat loads to the cold mass at 4 K from room temperature, thermal radiation shields cooled by liquid nitrogen flowing in tubing were employed. This paper presents the design details of cooling circuits and thermal shields of the TCM1 as well as related calculations and analyses.« less

  7. Cooling for SC devices of test cryomodule for ADS Injector II at IMP

    NASA Astrophysics Data System (ADS)

    Wang, L.; Wang, S. Y.; Sun, S.; Guo, X. L.; Wang, S. H.; Liu, Y. Y.

    2014-01-01

    The superconducting half-wave resonance cavities connected in series with superconducting solenoids will be applied to the Injector II of the Accelerator Driven Sub-critical System (ADS) to be built at the Modern Physics Institute, China. A test system has been developed for the purpose of performance test of the HWR cavities as well as validating the relevant technique for cooling the cavity and the solenoids together. It mainly comprises a cryogenic valve box (TVB), a test cryomodule (TCM1) and transfer lines. The TCM1 includes one HWR cavity, two superconducting solenoids, one cold BPM and their cooling system. The design of the TCM1 cryostat was carried out by the Shanghai Institute of Applied Physics (SINAP), CAS. Both the cavity and the solenoids will work at 4.4 K by bath cooling. The fast cooling down for the cavity from around 100 K to 120 K is required to avoid degrading of the cavity performance. After cool down and before energization, the solenoids should be warmed up to above 10 K and re-cooled down for the purpose of degaussing. The TCM1 can not only be cooled by using the dewar-filling system, but also operated by the refrigerator system. For the purpose of reducing the heat loads to the cold mass at 4 K from room temperature, thermal radiation shields cooled by liquid nitrogen flowing in tubing were employed. This paper presents the design details of cooling circuits and thermal shields of the TCM1 as well as related calculations and analyses.

  8. Sustainable Thorium Nuclear Fuel Cycles: A Comparison of Intermediate and Fast Neutron Spectrum Systems

    DOE PAGES

    Brown, Nicholas R.; Powers, Jeffrey J.; Feng, B.; ...

    2015-05-21

    This paper presents analyses of possible reactor representations of a nuclear fuel cycle with continuous recycling of thorium and produced uranium (mostly U-233) with thorium-only feed. The analysis was performed in the context of a U.S. Department of Energy effort to develop a compendium of informative nuclear fuel cycle performance data. The objective of this paper is to determine whether intermediate spectrum systems, having a majority of fission events occurring with incident neutron energies between 1 eV and 10 5 eV, perform as well as fast spectrum systems in this fuel cycle. The intermediate spectrum options analyzed include tight latticemore » heavy or light water-cooled reactors, continuously refueled molten salt reactors, and a sodium-cooled reactor with hydride fuel. All options were modeled in reactor physics codes to calculate their lattice physics, spectrum characteristics, and fuel compositions over time. Based on these results, detailed metrics were calculated to compare the fuel cycle performance. These metrics include waste management and resource utilization, and are binned to accommodate uncertainties. The performance of the intermediate systems for this selfsustaining thorium fuel cycle was similar to a representative fast spectrum system. However, the number of fission neutrons emitted per neutron absorbed limits performance in intermediate spectrum systems.« less

  9. Developments and Tendencies in Fission Reactor Concepts

    NASA Astrophysics Data System (ADS)

    Adamov, E. O.; Fuji-Ie, Y.

    This chapter describes, in two parts, new-generation nuclear energy systems that are required to be in harmony with nature and to make full use of nuclear resources. The issues of transmutation and containment of radioactive waste will also be addressed. After a short introduction to the first part, Sect. 58.1.2 will detail the requirements these systems must satisfy on the basic premise of peaceful use of nuclear energy. The expected designs themselves are described in Sect. 58.1.3. The subsequent sections discuss various types of advanced reactor systems. Section 58.1.4 deals with the light water reactor (LWR) whose performance is still expected to improve, which would extend its application in the future. The supercritical-water-cooled reactor (SCWR) will also be shortly discussed. Section 58.1.5 is mainly on the high temperature gas-cooled reactor (HTGR), which offers efficient and multipurpose use of nuclear energy. The gas-cooled fast reactor (GFR) is also included. Section 58.1.6 focuses on the sodium-cooled fast reactor (SFR) as a promising concept for advanced nuclear reactors, which may help both to achieve expansion of energy sources and environmental protection thus contributing to the sustainable development of mankind. The molten-salt reactor (MSR) is shortly described in Sect. 58.1.7. The second part of the chapter deals with reactor systems of a new generation, which are now found at the research and development (R&D) stage and in the medium term of 20-30 years can shape up as reliable, economically efficient, and environmentally friendly energy sources. They are viewed as technologies of cardinal importance, capable of resolving the problems of fuel resources, minimizing the quantities of generated radioactive waste and the environmental impacts, and strengthening the regime of nonproliferation of the materials suitable for nuclear weapons production. Particular attention has been given to naturally safe fast reactors with a closed fuel cycle (CFC) - as an advanced and promising reactor system that offers solutions to the above problems. The difference (not confrontation) between the approaches to nuclear power development based on the principles of “inherent safety” and “natural safety” is demonstrated.

  10. Power spool test, TSH-002, SPTF No. 19

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McInturff, A.D.

    1982-05-28

    The data presented in this Technical Memo will pertain to the operating characteristics of Power Spool TSH-002. This spool had a large number of thermometers built into it. These thermometers monitored most of the thermal characteristics of the 5000 A American Magnetics, Inc. vapor-cooled leads used in this power spool. Operating conditions, such as peak temperatures, ramp and dc lead cooling gas flow requirements, voltage as an indicator of stable conditions (ac and dc) and general voltage characteristics (i.e., amount of ice formed outside of leads vs high-pot voltage) were measured and observed. It was found that previous operating conditionsmore » of the power leads influenced the temperature gradients of the leads in certain cases.« less

  11. Laser Cooling of 2-6 Semiconductors

    DTIC Science & Technology

    2016-08-12

    practical optical refrigeration . The challenge is the stoichiometric defect in bulk crystal which introduces mid-gap states that manifest as broad-band...cooling in semiconductor has stimulated strong interest in further scaling up towards practical optical refrigeration . The challenge is the...energy. The upconversion process is facilitated by the annihilation of phonons and leads to cooling of the matter. The concept of optical refrigeration

  12. Simulation Kinetics of Austenitic Phase Transformation in Ti+Nb Stabilized IF and Microalloyed Steels

    NASA Astrophysics Data System (ADS)

    Ghosh, Sumit; Dasharath, S. M.; Mula, Suhrit

    2018-05-01

    In the present study, the influence of cooling rates (low to ultrafast) on diffusion controlled and displacive transformation of Ti-Nb IF and microalloyed steels has been thoroughly investigated. Mechanisms of nucleation and formation of non-equiaxed ferrite morphologies (i.e., acicular ferrite and bainitic ferrite) have been analyzed in details. The continuous cooling transformation behavior has been studied in a thermomechanical simulator (Gleeble 3800) using the cooling rates of 1-150 °C/s. On the basis of the dilatometric analysis of each cooling rate, continuous cooling transformation (CCT) diagrams have been constructed for both the steels to correlate the microstructural features at each cooling rate in different critical zones. In the case of the IF steel, massive ferrite grains along with granular bainite structures have been developed at cooling rates > 120 °C/s. On the other hand, a mixture of lath bainitic and lath martensite structures has been formed at a cooling rate of 80 °C/s in the microalloyed steel. A strong dependence of the cooling rates and C content on the microstructures and mechanical properties has been established. The steel samples that were fast cooled to a mixture of bainite ferrite and martensite showed a significant improvement of impact toughness and hardness (157 J, for IF steel and 174 J for microalloyed steel) as compared to that of the as-received specimens (133 J for IF steel and 116 J for microalloyed steel). Thus, it can be concluded that the hardness and impact toughness properties are correlated well with the microstructural constituents as indicated by the CCT diagram. Transformation mechanisms and kinetics of austenitic transformation to different phase morphologies at various cooling rates have been discussed in details to correlate microstructural evolution and mechanical properties.

  13. Simulation Kinetics of Austenitic Phase Transformation in Ti+Nb Stabilized IF and Microalloyed Steels

    NASA Astrophysics Data System (ADS)

    Ghosh, Sumit; Dasharath, S. M.; Mula, Suhrit

    2018-04-01

    In the present study, the influence of cooling rates (low to ultrafast) on diffusion controlled and displacive transformation of Ti-Nb IF and microalloyed steels has been thoroughly investigated. Mechanisms of nucleation and formation of non-equiaxed ferrite morphologies (i.e., acicular ferrite and bainitic ferrite) have been analyzed in details. The continuous cooling transformation behavior has been studied in a thermomechanical simulator (Gleeble 3800) using the cooling rates of 1-150 °C/s. On the basis of the dilatometric analysis of each cooling rate, continuous cooling transformation (CCT) diagrams have been constructed for both the steels to correlate the microstructural features at each cooling rate in different critical zones. In the case of the IF steel, massive ferrite grains along with granular bainite structures have been developed at cooling rates > 120 °C/s. On the other hand, a mixture of lath bainitic and lath martensite structures has been formed at a cooling rate of 80 °C/s in the microalloyed steel. A strong dependence of the cooling rates and C content on the microstructures and mechanical properties has been established. The steel samples that were fast cooled to a mixture of bainite ferrite and martensite showed a significant improvement of impact toughness and hardness (157 J, for IF steel and 174 J for microalloyed steel) as compared to that of the as-received specimens (133 J for IF steel and 116 J for microalloyed steel). Thus, it can be concluded that the hardness and impact toughness properties are correlated well with the microstructural constituents as indicated by the CCT diagram. Transformation mechanisms and kinetics of austenitic transformation to different phase morphologies at various cooling rates have been discussed in details to correlate microstructural evolution and mechanical properties.

  14. Effects of Simulated Surface Effect Ship Motions on Crew Habitability. Phase II. Volume 2. Facility, Test conditions, and Schedules

    DTIC Science & Technology

    1977-05-01

    fast acceleration response over the frequency range from 0.2 to 5 Hz, being characterized by a flat amplitude and a 0.02-0.03 sec effective delay...the hot reservoir oil through three fan-cooled radiators. The c••ling syst~m operates intermit - tently (controlled by a thermostat) to keep the oil...a very fast and puowerful hydrau- lic position servo, having its own 1000 psi power supply and very tight position control loop. It can position the 4

  15. Actinide management with commercial fast reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohki, Shigeo

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GW{sub e}y if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel.

  16. Decay heat of sodium fast reactor: Comparison of experimental measurements on the PHENIX reactor with calculations performed with the French DARWIN package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benoit, J. C.; Bourdot, P.; Eschbach, R.

    2012-07-01

    A Decay Heat (DH) experiment on the whole core of the French Sodium-Cooled Fast Reactor PHENIX has been conducted in May 2008. The measurements began an hour and a half after the shutdown of the reactor and lasted twelve days. It is one of the experiments used for the experimental validation of the depletion code DARWIN thereby confirming the excellent performance of the aforementioned code. Discrepancies between measured and calculated decay heat do not exceed 8%. (authors)

  17. Fast adaptive optical system for the high-power laser beam correction in atmosphere

    NASA Astrophysics Data System (ADS)

    Kudryashov, Alexis; Lylova, Anna; Samarkin, Vadim; Sheldakova, Julia; Alexandrov, Alexander

    2017-09-01

    Key elements of the fast adaptive optical system (AOS), having correction frequency of 1400 Hz, for atmospheric turbulence compensation, are described in this paper. A water-cooled bimorph deformable mirror with 46 electrodes, as well as stacked actuator deformable mirror with 81 piezoactuators and 2000 Hz Shack-Hartmann wavefront sensor were considered to be used to control the light beam. The parameters of the turbulence at the 1.2 km path of the light propagation were measured and analyzed. The key parameters for such an adaptive system were worked out.

  18. Cambomba caroliniana Gray (Cabombaceae)

    USDA-ARS?s Scientific Manuscript database

    Cabomba, or water fanwort, is a fast-growing submerged aquatic plant that has the potential to infest permanent water bodies in a range of regions – from tropical to cool temperate – throughout the world. It is considered a serious pest in the United States, Canada, the Netherlands, Japan, India, Ch...

  19. Radial blanket assembly orificing arrangement

    DOEpatents

    Patterson, J.F.

    1975-07-01

    A nuclear reactor core for a liquid metal cooled fast breeder reactor is described in which means are provided for increasing the coolant flow through the reactor fuel assemblies as the reactor ages by varying the coolant flow rate with the changing coolant requirements during the core operating lifetime. (auth)

  20. High-throughput search for caloric materials: the CaloriCool approach

    NASA Astrophysics Data System (ADS)

    Zarkevich, N. A.; Johnson, D. D.; Pecharsky, V. K.

    2018-01-01

    The high-throughput search paradigm adopted by the newly established caloric materials consortium—CaloriCool®—with the goal to substantially accelerate discovery and design of novel caloric materials is briefly discussed. We begin with describing material selection criteria based on known properties, which are then followed by heuristic fast estimates, ab initio calculations, all of which has been implemented in a set of automated computational tools and measurements. We also demonstrate how theoretical and computational methods serve as a guide for experimental efforts by considering a representative example from the field of magnetocaloric materials.

  1. Vitrification and devitrification of micro-droplets

    NASA Astrophysics Data System (ADS)

    Ryoun Youn, Jae; Song, Young Seok

    2012-11-01

    Vitrification can be achieved by flash freezing and thawing (i.e. quenching) when ice crystal formation is inhibited in a cryogenic environment. Such ultra-rapid cooling and rewarming occurs due to the large temperature difference between the liquid and its surrounding medium. Here, we analyze the crystallization behavior of a droplet (i.e. vitrification and devitrification) by using a numerical model. The numerical results were found to explain the experimental observations successfully. The findings showed that for successful cryopreservation not only sufficiently fast cooling, but also rewarming processes should be designed and controlled to avoid devitrification of a droplet.

  2. High-throughput search for caloric materials: the CaloriCool approach

    DOE PAGES

    Zarkevich, Nikolai A.; Johnson, Duane D.; Pecharsky, V. K.

    2017-12-13

    The high-throughput search paradigm adopted by the newly established caloric materials consortium—CaloriCool ®—with the goal to substantially accelerate discovery and design of novel caloric materials is briefly discussed. Here, we begin with describing material selection criteria based on known properties, which are then followed by heuristic fast estimates, ab initio calculations, all of which has been implemented in a set of automated computational tools and measurements. We also demonstrate how theoretical and computational methods serve as a guide for experimental efforts by considering a representative example from the field of magnetocaloric materials.

  3. The effect of cooling rate on the phase formation and magnetocaloric properties in La0.6Ce0.4Fe11.0Si2.0 alloys

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Shao, Yanyan; Feng, Zaixin; Liu, Jian

    2018-04-01

    In this work, the microstructure, phase formation behavior of the NaZn13-type 1:13 phase and related magnetocaloric effect have been investigated in La0.6Ce0.4Fe11.0Si2.0 as-cast bulk and melt-spun ribbons with different cooling rates. A multi-phase structure consisting of 1:13, α-Fe and La-rich phases is observed in the induction-melted sample with slow cooling. By fast cooling in the melt spinning processing, the La-rich phase can be almost eliminated and thus 1:13 phases with volume fraction as high as 74.4% directly form in the absence of further heat treatment. The resulting maximum magnetic entropy change of 3.1 J/kg K in 2 T field appears at its Curie temperature of 210 K for the La0.6Ce0.4Fe11.0Si2.0 ribbon prepared in 25 m/s.

  4. Computation of infrared cooling rates in the water vapor bands

    NASA Technical Reports Server (NTRS)

    Chou, M. D.; Arking, A.

    1978-01-01

    A fast but accurate method for calculating the infrared radiative terms due to water vapor has been developed. It makes use of the far wing approximation to scale transmission along an inhomogeneous path to an equivalent homogeneous path. Rather than using standard conditions for scaling, the reference temperatures and pressures are chosen in this study to correspond to the regions where cooling is most significant. This greatly increased the accuracy of the new method. Compared to line by line calculations, the new method has errors up to 4% of the maximum cooling rate, while a commonly used method based upon the Goody band model (Rodgers and Walshaw, 1966) introduces errors up to 11%. The effect of temperature dependence of transmittance has also been evaluated; the cooling rate errors range up to 11% when the temperature dependence is ignored. In addition to being more accurate, the new method is much faster than those based upon the Goody band model.

  5. Heat-transfer dynamics during cryogen spray cooling of substrate at different initial temperatures.

    PubMed

    Jia, Wangcun; Aguilar, Guillermo; Wang, Guo-Xiang; Nelson, J Stuart

    2004-12-07

    Cryogen spray cooling (CSC) is used to minimize the risk of epidermal damage during laser dermatologic therapy. However, the dominant mechanisms of heat transfer during the transient cooling process are incompletely understood. The objective of this study is to elucidate the physics of CSC by measuring the effect of initial substrate temperature (T0) on cooling dynamics. Cryogen was delivered by a straight-tube nozzle onto a skin phantom. A fast-response thermocouple was used to record the phantom temperature changes before, during and after the cryogen spray. Surface heat fluxes (q") and heat-transfer coefficients (h) were computed using an inverse heat conduction algorithm. The maximum surface heat flux (q"max) was observed to increase with T0. The surface temperature corresponding to q"max also increased with T0 but the latter has no significant effect on h. It is concluded that heat transfer between the cryogen spray and skin phantom remains in the nucleate boiling region even if T0 is 80 degrees C.

  6. Investigating the influence of photocatalytic cool wall adoption on meteorology and air quality in the Los Angeles basin

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Tang, X.; Levinson, R.; Destaillats, H.; Mohegh, A.; Li, Y.; Tao, W.; Liu, J.; Ban-Weiss, G. A.

    2017-12-01

    Solar reflective "cool materials" can be used to lower urban temperatures, useful for mitigating the urban heat island effect and adapting to the local impacts of climate change. While numerous past studies have investigated the climate impacts of cool surfaces, few studies have investigated their effects on air pollution. Meteorological changes from increases in surface albedo can lead to temperature and transport induced modifications in air pollutant concentrations. In an effort to maintain high albedos in polluted environments, cool surfaces can also be made using photocatalytic "self-cleaning" materials. These photocatalytic materials can also remove NOx from ambient air, with possible consequences on ambient gas and particle phase pollutant concentrations. In this research, we investigate the impact of widespread deployment of cool walls on urban meteorology and air pollutant concentrations in the Los Angeles basin. Both photocatalytic and standard (not photocatalytic) high albedo wall materials are investigated. Simulations using a coupled meteorology-chemistry model (WRF-Chem) show that cool walls could effectively decrease urban temperatures in the Los Angeles basin. Preliminary results indicate that meteorology-induced changes from adopting standard cool walls could lead to ozone concentration reductions of up to 0.5 ppb. NOx removal induced by photocatalytic materials was modeled by modifying the WRF-Chem dry deposition scheme, with deposition rates informed by laboratory measurements of various commercially available materials. Simulation results indicate that increased deposition of NOx by photocatalytic materials could increase ozone concentrations, analogous to the ozone "weekend effect" in which reduced weekend NOx emissions can lead to increases in ozone. The impacts of cool walls on particulate matter concentrations are also discussed. Changes in particulate matter concentrations are found to be driven by albedo-induced changes in air pollutant transport in the basin, temperature induced changes in photochemistry and aerosol phase partitioning, and changes to secondary organic aerosol.

  7. Cooled airfoil in a turbine engine

    DOEpatents

    Vitt, Paul H; Kemp, David A; Lee, Ching-Pang; Marra, John J

    2015-04-21

    An airfoil in a gas turbine engine includes an outer wall and an inner wall. The outer wall includes a leading edge, a trailing edge opposed from the leading edge in a chordal direction, a pressure side, and a suction side. The inner wall is coupled to the outer wall at a single chordal location and includes portions spaced from the pressure and suction sides of the outer wall so as to form first and second gaps between the inner wall and the respective pressure and suction sides. The inner wall defines a chamber therein and includes openings that provide fluid communication between the respective gaps and the chamber. The gaps receive cooling fluid that provides cooling to the outer wall as it flows through the gaps. The cooling fluid, after traversing at least substantial portions of the gaps, passes into the chamber through the openings in the inner wall.

  8. Hot gas path component trailing edge having near wall cooling features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacy, Benjamin Paul; Kottilingam, Srikanth Chandrudu; Miranda, Carlos Miguel

    A hot gas path component includes a substrate having an outer surface and an inner surface. The inner surface defines an interior space. The outer surface defines a pressure side surface and a suction side surface. The pressure and suction side surfaces are joined together at a leading edge and at a trailing edge. A first cooling passage is formed in the suction side surface of the substrate. It is coupled in flow communication to the interior space. A second cooling passage, separate from the first cooling passage, is formed in the pressure side surface. The second cooling passage ismore » coupled in flow communication to the interior space. A cover is disposed over at least a portion of the first and second cooling passages. The interior space channels a cooling fluid to the first and second cooling passages, which channel the cooling fluid therethrough to remove heat from the component.« less

  9. Application of local indentations for film cooling of gas turbine blade leading edge

    NASA Astrophysics Data System (ADS)

    Petelchyts, V. Yu.; Khalatov, A. A.; Pysmennyi, D. N.; Dashevskyy, Yu. Ya.

    2016-09-01

    The paper presents results of computer simulation of the film cooling on the turbine blade leading edge model where the air coolant is supplied through radial holes and row of cylindrical inclined holes placed inside hemispherical dimples or trench. The blowing factor was varied from 0.5 to 2.0. The model size and key initial parameters for simulation were taken as for a real blade of a high-pressure high-performance gas turbine. Simulation was performed using commercial software code ANSYS CFX. The simulation results were compared with reference variant (no dimples or trench) both for the leading edge area and for the flat plate downstream of the leading edge.

  10. AGN Feedback and Cooling Flows: Problems with Simple Hydrodynamic Models

    NASA Astrophysics Data System (ADS)

    Vernaleo, John C.; Reynolds, Christopher S.

    2006-07-01

    In recent years it has become increasingly clear that active galactic nuclei, and radio galaxies in particular, have an impact on large-scale structure and galaxy formation. In principle, radio galaxies are energetic enough to halt the cooling of the virialized intracluster medium (ICM) in the inner regions of galaxy clusters, solving the cooling flow problem and explaining the high-mass truncation of the galaxy luminosity function. We explore this process through a series of high-resolution, three-dimensional hydrodynamic simulations of jetted active galaxies that act in response to cooling-mediated accretion of an ICM atmosphere. We find that our models are incapable of producing a long-term balance of heating and cooling; catastrophic cooling can be delayed by the jet action but inevitably takes hold. At the heart of the failure of these models is the formation of a low-density channel through which the jet can freely flow, carrying its energy out of the cooling core. It is possible that this failure is due to an oversimplified treatment of the fast jet (which may underestimate the ``dentist drill'' effect). However, it seems likely that additional complexity (large-angle jet precession or ICM turbulence) or additional physics (magnetohydrodynamic effects and plasma transport processes) is required to produce a spatial distribution of jet heating that can prevent catastrophic cooling. This work also underscores the importance of including jet dynamics in any feedback model, as opposed to the isotropically inflated bubble approach taken in some previous works.

  11. Computer supplies insulation recipe for Cookie Company Roof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Roofing contractors no longer have to rely on complicated calculations and educated guesses to determine cost-efficient levels of roof insulation. A simple hand-held calculator and printer offers seven different programs for fast figuring insulation thickness based on job type, roof size, tax rates, and heating and cooling cost factors.

  12. Long-term stability of crystal-stabilized water-in-oil emulsions.

    PubMed

    Ghosh, Supratim; Pradhan, Mamata; Patel, Tejas; Haj-Shafiei, Samira; Rousseau, Dérick

    2015-12-15

    The impact of cooling rate and mixing on the long-term kinetic stability of wax-stabilized water-in-oil emulsions was investigated. Four cooling/mixing protocols were investigated: cooling from 45°C to either 25°C or 4°C with/without stirring and two cooling rates - slow (1°C/min) and fast (5°C/min). The sedimentation behaviour of the emulsions was significantly affected by cooling protocol. Stirring was critical to the stability of all emulsions, with statically-cooled (no stirring) emulsions suffering from extensive aqueous phase separation. Emulsions stirred while cooling showed sedimentation of a waxy emulsion layer leaving a clear oil layer at the top, with a smaller separation and droplet size distribution at 4°C compared to 25°C, indicating the importance of the amount of crystallized wax on emulsion stability. Light microscopy revealed that crystallized wax appeared both on the droplet surface and in the continuous phase, suggesting that stirring ensured dispersibility of the water droplets during cooling as the wax was crystallizing. Wax crystallization on the droplet surface provided stability against droplet coalescence while continuous phase wax crystals minimized inter-droplet collisions. The key novel aspect of this research is in the simplicity to tailor the spatial distribution of wax crystals, i.e., either at the droplet surface or in the continuous phase via use of a surfactant and judicious stirring and/or cooling. Knowledge gained from this research can be applied to develop strategies for long-term storage stability of crystal-stabilized W/O emulsions. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. EBR-II Static Neutronic Calculations by PHISICS / MCNP6 codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paolo Balestra; Carlo Parisi; Andrea Alfonsi

    2016-02-01

    The International Atomic Energy Agency (IAEA) launched a Coordinated Research Project (CRP) on the Shutdown Heat Removal Tests (SHRT) performed in the '80s at the Experimental fast Breeder Reactor EBR-II, USA. The scope of the CRP is to improve and validate the simulation tools for the study and the design of the liquid metal cooled fast reactors. Moreover, training of the next generation of fast reactor analysts is being also considered the other scope of the CRP. In this framework, a static neutronic model was developed, using state-of-the art neutron transport codes like SCALE/PHISICS (deterministic solution) and MCNP6 (stochastic solution).more » Comparison between both solutions is briefly illustrated in this summary.« less

  14. Note: Development of fast heating inert gas annealing apparatus operated at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Das, S. C.; Majumdar, A.; Shripathi, T.; Hippler, R.

    2012-04-01

    Here, we report the development of a simple, small, fast heating, and portable, homemade, inert gas (Ar) atmospheric annealing setup. Instead of using a conventional heating element, a commercial soldering rod having an encapsulated fast heating heater is used here. The sample holder is made of a block of stainless steel. It takes 200 s to reach 700 °C, and 10 min to cool down. The probability of oxidation or surface contamination has been examined by means of x ray photoelectron spectroscopy of virgin Cu sample after annealing at 600 °C. In addition, we compare the annealing of a hydrogenated carbon nitride film (HCNx) in both a conventional vacuum and our newly developed ambient Ar atmosphere setup.

  15. Rapid crystallization of externally produced ions in a Penning trap

    NASA Astrophysics Data System (ADS)

    Murböck, T.; Schmidt, S.; Birkl, G.; Nörtershäuser, W.; Thompson, R. C.; Vogel, M.

    2016-10-01

    We have studied the cooling dynamics, formation process, and geometric structure of mesoscopic crystals of externally produced magnesium ions in a Penning trap. We present a cooling model and measurements for a combination of buffer gas cooling and laser cooling which has been found to reduce the ion kinetic energy by eight orders of magnitude from several hundreds of eV to μ eV and below within seconds. With ion numbers of the order of 1 ×103 to 1 ×105 , such cooling leads to the formation of ion Coulomb crystals which display a characteristic shell structure in agreement with the theory of non-neutral plasmas. We show the production and characterization of two-species ion crystals as a means of sympathetic cooling of ions lacking a suitable laser-cooling transition.

  16. Effects of Thermal Barrier Coatings on Approaches to Turbine Blade Cooling

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.

    2007-01-01

    Reliance on Thermal Barrier Coatings (TBC) to reduce the amount of air used for turbine vane cooling is beneficial both from the standpoint of reduced NOx production, and as a means of improving cycle efficiency through improved component efficiency. It is shown that reducing vane cooling from 10 to 5 percent of mainstream air can lead to NOx reductions of nearly 25 percent while maintaining the same rotor inlet temperature. An analysis is given which shows that, when a TBC is relied upon in the vane thermal design process, significantly less coolant is required using internal cooling alone compared to film cooling. This is especially true for small turbines where internal cooling without film cooling permits the surface boundary layer to remain laminar over a significant fraction of the vane surface.

  17. Nuclear Data Needs for Generation IV Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    Rullhusen, Peter

    2006-04-01

    Nuclear data needs for generation IV systems. Future of nuclear energy and the role of nuclear data / P. Finck. Nuclear data needs for generation IV nuclear energy systems-summary of U.S. workshop / T. A. Taiwo, H. S. Khalil. Nuclear data needs for the assessment of gen. IV systems / G. Rimpault. Nuclear data needs for generation IV-lessons from benchmarks / S. C. van der Marck, A. Hogenbirk, M. C. Duijvestijn. Core design issues of the supercritical water fast reactor / M. Mori ... [et al.]. GFR core neutronics studies at CEA / J. C. Bosq ... [et al]. Comparative study on different phonon frequency spectra of graphite in GCR / Young-Sik Cho ... [et al.]. Innovative fuel types for minor actinides transmutation / D. Haas, A. Fernandez, J. Somers. The importance of nuclear data in modeling and designing generation IV fast reactors / K. D. Weaver. The GIF and Mexico-"everything is possible" / C. Arrenondo Sánchez -- Benmarks, sensitivity calculations, uncertainties. Sensitivity of advanced reactor and fuel cycle performance parameters to nuclear data uncertainties / G. Aliberti ... [et al.]. Sensitivity and uncertainty study for thermal molten salt reactors / A. Biduad ... [et al.]. Integral reactor physics benchmarks- The International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPHEP) / J. B. Briggs, D. W. Nigg, E. Sartori. Computer model of an error propagation through micro-campaign of fast neutron gas cooled nuclear reactor / E. Ivanov. Combining differential and integral experiments on [symbol] for reducing uncertainties in nuclear data applications / T. Kawano ... [et al.]. Sensitivity of activation cross sections of the Hafnium, Tanatalum and Tungsten stable isotopes to nuclear reaction mechanisms / V. Avrigeanu ... [et al.]. Generating covariance data with nuclear models / A. J. Koning. Sensitivity of Candu-SCWR reactors physics calculations to nuclear data files / K. S. Kozier, G. R. Dyck. The lead cooled fast reactor benchmark BREST-300: analysis with sensitivity method / V. Smirnov ... [et al.]. Sensitivity analysis of neutron cross-sections considered for design and safety studies of LFR and SFR generation IV systems / K. Tucek, J. Carlsson, H. Wider -- Experiments. INL capabilities for nuclear data measurements using the Argonne intense pulsed neutron source facility / J. D. Cole ... [et al.]. Cross-section measurements in the fast neutron energy range / A. Plompen. Recent measurements of neutron capture cross sections for minor actinides by a JNC and Kyoto University Group / H. Harada ... [et al.]. Determination of minor actinides fission cross sections by means of transfer reactions / M. Aiche ... [et al.] -- Evaluated data libraries. Nuclear data services from the NEA / H. Henriksson, Y. Rugama. Nuclear databases for energy applications: an IAEA perspective / R. Capote Noy, A. L. Nichols, A. Trkov. Nuclear data evaluation for generation IV / G. Noguère ... [et al.]. Improved evaluations of neutron-induced reactions on americium isotopes / P. Talou ... [et al.]. Using improved ENDF-based nuclear data for candu reactor calculations / J. Prodea. A comparative study on the graphite-moderated reactors using different evaluated nuclear data / Do Heon Kim ... [et al.].

  18. Fast Cooling and Vitrification of Aqueous Solutions for Cryopreservation

    NASA Astrophysics Data System (ADS)

    Warkentin, Matt; Husseini, Naji; Berejnov, Viatcheslav; Thorne, Robert

    2006-03-01

    In many applications, a small volume of aqueous solution must be cooled at a rate sufficient to produce amorphous solid water. Two prominent examples include flash-freezing of protein crystals for X-ray data collection and freezing of cells (i.e. spermatozoa) for cryopreservation. The cooling rate required to vitrify pure water (˜10^6 K/s) is unattainable for volumes that might contain cells or protein crystals, but the required rate can be reduced by adding cryoprotectants. We report the first measurements of the critical concentration required to produce a vitrified sample as a function of the sample's volume, the cryogen into which the sample is plunged, and the temperature of the cryogen, for a wide range of cryoprotectants. These experiments have broad practical consequences for cryopreservation, and provide insight into the physics of glass formation in aqueous systems.

  19. Passive cooling and heating program at Oak Ridge National Laboratory for FY-1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapira, H.B.; Kaplan, S.I.; Chester, C.V.

    1981-01-01

    Construction was completed of an earth-sheltered, passively solar heated office-dormitory, the Joint Institute for Heavy Ion Research, designed at ORNL. Instrumentation of the building was designed, procured, and installed. Building performance will be monitored and compared with predictions of the DOE-2 code. A study of the incorporation of vegetation on architecture was conducted by the Harvard School of Design. A final report was issued which is a prototype handbook for the use of vegetation to reduce cooling loads in structures. An experiment to reduce the cooling requirement of mobile homes by shading with fast-growing vines was begun: a maintenance-oriented trellismore » was constructed and vines were planted. An RFP for the production of a prototype set of reflective insulating blinds was issued.« less

  20. Analytical electron microscope study of eight ataxites

    NASA Technical Reports Server (NTRS)

    Novotny, P. M.; Goldstein, J. I.; Williams, D. B.

    1982-01-01

    Optical and electron optical (SEM, TEM, AEM) techniques were employed to investigate the fine structure of eight ataxite-iron meteorites. Structural studies indicated that the ataxites can be divided into two groups: a Widmanstaetten decomposition group and a martensite decomposition group. The Widmanstaetten decomposition group has a Type I plessite microstructure and the central taenite regions contain highly dislocated lath martensite. The steep M shaped Ni gradients in the taenite are consistent with the fast cooling rates, of not less than 500 C/my, observed for this group. The martensite decomposition group has a Type III plessite microstructure and contains all the chemical group IVB ataxites. The maximum taenite Ni contents vary from 47.5 to 52.7 wt % and are consistent with slow cooling to low temperatures of not greater than 350 C at cooling rates of not greater than 25 C/my.

  1. Cooling rate dependence of structural order in Al90Sm10 metallic glass

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Zhang, Yue; Zhang, Feng; Ye, Zhuo; Ding, Zejun; Wang, Cai-Zhuang; Ho, Kai-Ming

    2016-07-01

    The atomic structure of Al90Sm10 metallic glass is studied using molecular dynamics simulations. By performing a long sub-Tg annealing, we developed a glass model closer to the experiments than the models prepared by continuous cooling. Using the cluster alignment method, we found that "3661" cluster is the dominating short-range order in the glass samples. The connection and arrangement of "3661" clusters, which define the medium-range order in the system, are enhanced significantly in the sub-Tg annealed sample as compared with the fast cooled glass samples. Unlike some strong binary glass formers such as Cu64.5Zr35.5, the clusters representing the short-range order do not form an interconnected interpenetrating network in Al90Sm10, which has only marginal glass formability.

  2. Experimental investigation of a new method for advanced fast reactor shutdown cooling

    NASA Astrophysics Data System (ADS)

    Pakholkov, V. V.; Kandaurov, A. A.; Potseluev, A. I.; Rogozhkin, S. A.; Sergeev, D. A.; Troitskaya, Yu. I.; Shepelev, S. F.

    2017-07-01

    We consider a new method for fast reactor shutdown cooling using a decay heat removal system (DHRS) with a check valve. In this method, a coolant from the decay heat exchanger (DHX) immersed into the reactor upper plenum is supplied to the high-pressure plenum and, then, inside the fuel subassemblies (SAs). A check valve installed at the DHX outlet opens by the force of gravity after primary pumps (PP-1) are shut down. Experimental studies of the new and alternative methods of shutdown cooling were performed at the TISEY test facility at OKBM. The velocity fields in the upper plenum of the reactor model were obtained using the optical particle image velocimetry developed at the Institute of Applied Physics (Russian Academy of Sciences). The study considers the process of development of natural circulation in the reactor and the DHRS models and the corresponding evolution of the temperature and velocity fields. A considerable influence of the valve position in the displacer of the primary pump on the natural circulation of water in the reactor through the DHX was discovered (in some modes, circulation reversal through the DHX was obtained). Alternative DHRS designs without a shell at the DHX outlet with open and closed check valve are also studied. For an open check valve, in spite of the absence of a shell, part of the flow is supplied through the DHX pipeline and then inside the SA simulators. When simulating power modes of the reactor operation, temperature stratification of the liquid was observed, which increased in the cooling mode via the DHRS. These data qualitatively agree with the results of tests at BN-600 and BN-800 reactors.

  3. Adaptation to Low Temperature Exposure Increases Metabolic Rates Independently of Growth Rates

    PubMed Central

    Williams, Caroline M.; Szejner-Sigal, Andre; Morgan, Theodore J.; Edison, Arthur S.; Allison, David B.; Hahn, Daniel A.

    2016-01-01

    Metabolic cold adaptation is a pattern where ectotherms from cold, high-latitude, or -altitude habitats have higher metabolic rates than ectotherms from warmer habitats. When found, metabolic cold adaptation is often attributed to countergradient selection, wherein short, cool growing seasons select for a compensatory increase in growth rates and development times of ectotherms. Yet, ectotherms in high-latitude and -altitude environments face many challenges in addition to thermal and time constraints on lifecycles. In addition to short, cool growing seasons, high-latitude and - altitude environments are characterized by regular exposure to extreme low temperatures, which cause ectotherms to enter a transient state of immobility termed chill coma. The ability to resume activity quickly after chill coma increases with latitude and altitude in patterns consistent with local adaptation to cold conditions. We show that artificial selection for fast and slow chill coma recovery among lines of the fly Drosophila melanogaster also affects rates of respiratory metabolism. Cold-hardy fly lines, with fast recovery from chill coma, had higher respiratory metabolic rates than control lines, with cold-susceptible slow-recovering lines having the lowest metabolic rates. Fast chill coma recovery was also associated with higher respiratory metabolism in a set of lines derived from a natural population. Although their metabolic rates were higher than control lines, fast-recovering cold-hardy lines did not have faster growth rates or development times than control lines. This suggests that raised metabolic rates in high-latitude and -altitude species may be driven by adaptation to extreme low temperatures, illustrating the importance of moving “Beyond the Mean”. PMID:27103615

  4. Particle-in-cell studies of fast-ion slowing-down rates in cool tenuous magnetized plasma

    NASA Astrophysics Data System (ADS)

    Evans, Eugene S.; Cohen, Samuel A.; Welch, Dale R.

    2018-04-01

    We report on 3D-3V particle-in-cell simulations of fast-ion energy-loss rates in a cold, weakly-magnetized, weakly-coupled plasma where the electron gyroradius, ρe, is comparable to or less than the Debye length, λDe, and the fast-ion velocity exceeds the electron thermal velocity, a regime in which the electron response may be impeded. These simulations use explicit algorithms, spatially resolve ρe and λDe, and temporally resolve the electron cyclotron and plasma frequencies. For mono-energetic dilute fast ions with isotropic velocity distributions, these scaling studies of the slowing-down time, τs, versus fast-ion charge are in agreement with unmagnetized slowing-down theory; with an applied magnetic field, no consistent anisotropy between τs in the cross-field and field-parallel directions could be resolved. Scaling the fast-ion charge is confirmed as a viable way to reduce the required computational time for each simulation. The implications of these slowing down processes are described for one magnetic-confinement fusion concept, the small, advanced-fuel, field-reversed configuration device.

  5. Front End and HFOFO Snake for a Muon Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuffer, D.; Alexahin, Y.

    2015-09-01

    A neutrino factory or muon collider requires the capture and cooling of a large number of muons. Scenarios for capture, bunching, phase-energy rotation and initial cooling of μ’s produced from a proton source target have been developed, for neutrino factory and muon collider scenarios. They require a drift section from the target, a bunching section and amore » $$\\phi-\\delta E$$ rotation section leading into the cooling channel. The currently preferred cooling channel design is an “HFOFO Snake” configuration that cools both $$\\mu^+$$ and $$\\mu^-$$ transversely and longitudinally. The status of the design is presented and variations are discussed.« less

  6. A MEMS-based super fast dew point hygrometer—construction and medical applications

    NASA Astrophysics Data System (ADS)

    Jachowicz, Ryszard S.; Weremczuk, Jerzy; Paczesny, Daniel; Tarapata, Grzegorz

    2009-12-01

    The paper shows how MEMS (micro-electro-mechanical system) technology and a modified principle of fast temperature control (by heat injection instead of careful control of cooling) can considerably improve the dynamic parameters of dew point hygrometers. Some aspects of MEMS-type integrated sensor construction and technology, whole measurement system design, the control algorithm to run the system as well as empirical dynamic parameters from the tests are discussed too. The hygrometer can easily obtain five to six measurements per second with an uncertainty of less than 0.3 K. The meter range is between -10 °C and 40 °C dew point. In the second part of the paper (section 2), two different successful applications in medicine based on fast humidity measurements have been discussed. Some specific constructions of these super fast dew point hygrometers based on a MEMS sensor as well as limited empirical results from clinical tests have been reported too.

  7. Effect of Cooling Rate on Microstructure and Centerline Segregation of a High-Strength Steel for Shipbuilding

    NASA Astrophysics Data System (ADS)

    Ye, Qibin; Liu, Zhenyu; Wang, Guodong

    Ultra-fast cooling (UFC) has been increasingly applied in industry, but accompanying with great changes of rolling strategy. It is therefore of importance to evaluate the characteristics of steels produced by UFC as compared to those processed by conventional accelerated cooling (ACQ. The present study examines the microstructure through thickness and centerline segregation of solute elements between UFC and ACC steels, both of which were rolled at a final rolling temperature at around non-recrystallized temperature. UFC steel showed the pronounced microstructural transition from lath-type bainite with Widmanstätten ferrite at subsurface to acicular ferrite in an average size of 5 µm dispersed with degenerate pearlite in the interior. In contrast, ACC steel had the homogeneous microstructure through the thickness, which was distinguished with coarser polygonal ferrite grains and pearlite nodules. Moreover, the centerline segregation was significantly suppressed by applying UFC at a higher cooling rate of 40 K/s compared to 17K/s for ACC steel. The significant differences in the microstructure and centerline segregation caused by various cooling rate is discussed from the view of γ→α transformation.

  8. Thermal and exhumation history of the central Rwenzori Mountains, Western Rift of the East African Rift System, Uganda

    NASA Astrophysics Data System (ADS)

    Bauer, F. U.; Glasmacher, U. A.; Ring, U.; Schumann, A.; Nagudi, B.

    2010-10-01

    The Rwenzori Mountains (Mtns) in west Uganda are the highest rift mountains on Earth and rise to more than 5,000 m. We apply low-temperature thermochronology (apatite fission-track (AFT) and apatite (U-Th-Sm)/He (AHe) analysis) for tracking the cooling history of the Rwenzori Mtns. Samples from the central and northern Rwenzoris reveal AFT ages between 195.0 (±8.4) Ma and 85.3 (±5.3) Ma, and AHe ages between 210.0 (±6.0) Ma to 24.9 (±0.5) Ma. Modelled time-temperature paths reflect a protracted cooling history with accelerated cooling in Permo-Triassic and Jurassic times, followed by a long period of constant and slow cooling, than succeeded by a renewed accelerated cooling in the Neogene. During the last 10 Ma, differentiated erosion and surface uplift affected the Rwenzori Mtns, with more pronounced uplift along the western flank. The final rock uplift of the Rwenzori Mtns that partly led to the formation of the recent topography must have been fast and in the near past (Pliocene to Pleistocene). Erosion could not compensate for the latest rock uplift, resulting in Oligocene to Miocene AHe ages.

  9. Computation of leading edge film cooling from a CONSOLE geometry (CONverging Slot hOLE)

    NASA Astrophysics Data System (ADS)

    Guelailia, A.; Khorsi, A.; Hamidou, M. K.

    2016-01-01

    The aim of this study is to investigate the effect of mass flow rate on film cooling effectiveness and heat transfer over a gas turbine rotor blade with three staggered rows of shower-head holes which are inclined at 30° to the spanwise direction, and are normal to the streamwise direction on the blade. To improve film cooling effectiveness, the standard cylindrical holes, located on the leading edge region, are replaced with the converging slot holes (console). The ANSYS CFX has been used for this computational simulation. The turbulence is approximated by a k-ɛ model. Detailed film effectiveness distributions are presented for different mass flow rate. The numerical results are compared with experimental data.

  10. Film cooling performance of a row of dual-fanned holes at various injection angles

    NASA Astrophysics Data System (ADS)

    Li, Guangchao; Wang, Haofeng; Zhang, Wei; Kou, Zhihai; Xu, Rangshu

    2017-10-01

    Film cooling performance about a row of dual-fanned holes with injection angles of 30°, 60 ° and 90° were experimentally investigated at blowing ratios of 1.0 and 2.0. Dual-fanned hole is a novel shaped hole which has both inlet expansion and outlet expansion. A transient thermochromic liquid crystal technique was used to reveal the local values of film cooling effectiveness and heat transfer coefficient. The results show that injection angles have strong influence on the two dimensional distributions of film cooling effectiveness and heat transfer coefficient. For the small injection angle of 30 degree and small blowing ratio of 1.0, there is only a narrow spanwise region covered with film. The increase of injection angle and blowing ratio both leads to the enhanced spanwise film diffusion, but reduced local cooling ability far away from the hole. Injection angles have comprehensive influence on the averaged film cooling effectiveness for various x/d locations. As injection angles are 30 and 60 degree, two bands of high heat transfer coefficients are found in mixing region of the gas and coolant. As injection angle increases to 90 degree, the mixing leads to the enhanced heat transfer region near the film hole. The averaged heat transfer coefficient increases with the increase of injection angle.

  11. Onset and localisation of convection during transient growth of mushy sea ice

    NASA Astrophysics Data System (ADS)

    Wells, Andrew; Hitchen, Joe

    2017-11-01

    More than 20 million square kilometres of the polar oceans freeze over each year to form sea ice. Sea ice is a mushy layer: a reactive, porous, multiphase material consisting of ice crystals bathed in liquid brine. Atmospheric cooling generates a density gradient in the interstitial brine, which can drive convection and rejection of brine from the sea ice to force ocean circulation and mixing. We use linear stability analysis and nonlinear numerical simulations to consider the convection in a transiently growing mushy layer. An initial salt water layer is cooled from above via a linearised thermal exchange with the atmosphere, and generates a growing mushy layer with the porosity varying in space and time. We determine how the critical porous-medium Rayleigh number for the onset of convection varies with the surface cooling rate, and the initial temperature and salinity of the solidifying salt water. Differences in the cooling conditions modify the structure of the ice and the resulting convection cells. Weak cooling leads to full-depth convection through ice with slowly varying porosity, whilst stronger cooling leads to localised convection confined to a highly permeable basal layer. These results provide insight into the onset of convective brine drainage from growing sea ice.

  12. CFD Analysis of Upper Plenum Flow for a Sodium-Cooled Small Modular Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, A.; Hu, R.

    2015-01-01

    Upper plenum flow behavior is important for many operational and safety issues in sodium fast reactors. The Prototype Gen-IV Sodium Fast Reactor (PGSFR), a pool-type, 150 MWe output power design, was used as a reference case for a detailed characterization of upper plenum flow for normal operating conditions. Computational Fluid Dynamics (CFD) simulation was utilized with detailed geometric modeling of major structures. Core outlet conditions based on prior system-level calculations were mapped to approximate the outlet temperatures and flow rates for each core assembly. Core outlet flow was found to largely bypass the Upper Internal Structures (UIS). Flow curves overmore » the shield and circulates within the pool before exiting the plenum. Cross-flows and temperatures were evaluated near the core outlet, leading to a proposed height for the core outlet thermocouples to ensure accurate assembly-specific temperature readings. A passive scalar was used to evaluate fluid residence time from core outlet to IHX inlet, which can be used to assess the applicability of various methods for monitoring fuel failure. Additionally, the gas entrainment likelihood was assessed based on the CFD simulation results. Based on the evaluation of velocity gradients and turbulent kinetic energies and the available gas entrainment criteria in the literature, it was concluded that significant gas entrainment is unlikely for the current PGSFR design.« less

  13. How cracks are hot and cool: a burning issue for paper.

    PubMed

    Toussaint, Renaud; Lengliné, Olivier; Santucci, Stéphane; Vincent-Dospital, Tom; Naert-Guillot, Muriel; Måløy, Knut Jørgen

    2016-07-07

    Material failure is accompanied by important heat exchange, with extremely high temperature - thousands of degrees - reached at crack tips. Such a temperature may subsequently alter the mechanical properties of stressed solids, and finally facilitate their rupture. Thermal runaway weakening processes could indeed explain stick-slip motions and even be responsible for deep earthquakes. Therefore, to better understand catastrophic rupture events, it appears crucial to establish an accurate energy budget of fracture propagation from a clear measure of various energy dissipation sources. In this work, combining analytical calculations and numerical simulations, we directly relate the temperature field around a moving crack tip to the part α of mechanical energy converted into heat. By monitoring the slow crack growth in paper sheets using an infrared camera, we measure a significant fraction α = 12% ± 4%. Besides, we show that (self-generated) heat accumulation could weaken our samples by microfiber combustion, and lead to a fast crack/dynamic failure/regime.

  14. Confinement and diffusion time-scales of CR hadrons in AGN-inflated bubbles

    NASA Astrophysics Data System (ADS)

    Prokhorov, D. A.; Churazov, E. M.

    2017-09-01

    While rich clusters are powerful sources of X-rays, γ-ray emission from these large cosmic structures has not been detected yet. X-ray radiative energy losses in the central regions of relaxed galaxy clusters are so strong that one needs to consider special sources of energy, likely active galactic nucleus (AGN) feedback, to suppress catastrophic cooling of the gas. We consider a model of AGN feedback that postulates that the AGN supplies the energy to the gas by inflating bubbles of relativistic plasma, whose energy content is dominated by cosmic-ray (CR) hadrons. If most of these hadrons can quickly escape the bubbles, then collisions of CRs with thermal protons in the intracluster medium (ICM) should lead to strong γ-ray emission, unless fast diffusion of CRs removes them from the cluster. Therefore, the lack of detections with modern γ-ray telescopes sets limits on the confinement time of CR hadrons in bubbles and CR diffusive propagation in the ICM.

  15. Synthesis and characterization of carbon microsphere for extinguishing sodium fire

    NASA Astrophysics Data System (ADS)

    Snehalatha, V.; Ponraju, D.; Nashine, B. K.; Chellapandi, P.

    2013-06-01

    In Sodium cooled Fast breeder Reactors (SFRs), accidental leakage of liquid sodium leads to sodium fire. Carbon microsphere is a promising and novel extinguishant for sodium fire since it possesses high thermal conductivity, chemical inertness and excellent flow characteristics. Low density Carbon microsphere (CMS) with high thermal stability was successfully synthesized from functionalized styrene divinyl benzene copolymer by carbonization under inert atmosphere. Protocol for stepwise carbonization was developed by optimizing heating rate and time of heating. The synthesized CMS was characterized by Densimeter, Scanning Electron Microscope (SEM), Fourier Transfer Infra-Red spectroscopy (FTIR), Thermogravimetry (TG), X-ray Diffraction (XRD) and RAMAN spectroscopy. CMS thus obtained was spherical in shape having diameters ranging between 60 to 80μm with narrow size distribution. The smooth surface of CMS ensures its free flow characteristics. The yield of carbonization process was about 38%. The performance of CMS was tested on small scale sodium. This paper describes the development of carbon microsphere for extinguishing sodium fire and its characteristics.

  16. Programming Nanoparticles in Multiscale: Optically Modulated Assembly and Phase Switching of Silicon Nanoparticle Array.

    PubMed

    Wang, Letian; Rho, Yoonsoo; Shou, Wan; Hong, Sukjoon; Kato, Kimihiko; Eliceiri, Matthew; Shi, Meng; Grigoropoulos, Costas P; Pan, Heng; Carraro, Carlo; Qi, Dongfeng

    2018-03-27

    Manipulating and tuning nanoparticles by means of optical field interactions is of key interest for nanoscience and applications in electronics and photonics. We report scalable, direct, and optically modulated writing of nanoparticle patterns (size, number, and location) of high precision using a pulsed nanosecond laser. The complex nanoparticle arrangement is modulated by the laser pulse energy and polarization with the particle size ranging from 60 to 330 nm. Furthermore, we report fast cooling-rate induced phase switching of crystalline Si nanoparticles to the amorphous state. Such phase switching has usually been observed in compound phase change materials like GeSbTe. The ensuing modification of atomic structure leads to dielectric constant switching. Based on these effects, a multiscale laser-assisted method of fabricating Mie resonator arrays is proposed. The number of Mie resonators, as well as the resonance peaks and dielectric constants of selected resonators, can be programmed. The programmable light-matter interaction serves as a mechanism to fabricate optical metasurfaces, structural color, and multidimensional optical storage devices.

  17. Joining of Aluminium Alloy and Steel by Laser Assisted Reactive Wetting

    NASA Astrophysics Data System (ADS)

    Liedl, Gerhard; Vázquez, Rodrigo Gómez; Murzin, Serguei P.

    2018-03-01

    Compounds of dissimilar materials, like aluminium and steel offer an interesting opportunity for the automotive industry to reduce the weight of a car body. Thermal joining of aluminium and steel leads to the formation of brittle intermetallic compounds, which negatively affects the properties of the welded joint. Amongst others, growth of such intermetallic compounds depends on maximum temperature and on the time at certain temperatures. Laser welding with its narrow well seam and its fast heating and cooling cycles provides an excellent opportunity to obtain an ultrathin diffusion zone. Joining of sheet metal DC01 with aluminium alloy AW6016 has been chosen for research. The performed experimental studies showed that by a variation of the beam power and scanning speed it is possible to obtain an ultrathin diffusion zone with narrow intermetallic interlayers. With the aim of supporting further investigation of laser welding of the respective and other dissimilar pairings a multi-physical simulation model has been developed.

  18. FastStats: Leading Causes of Death

    MedlinePlus

    ... Births Teen Births Unmarried Childbearing Deaths Deaths and Mortality Leading Causes of Death Life Expectancy Race and ... Data are for 2015) Related FastStats Deaths and mortality More data Deaths: Final Data for 2015 [PDF – ...

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappiello, M.; Hobbins, R.; Penny, K.

    As part of the Department of Energy Advanced Fuel Cycle program, a series of fuels development irradiation tests have been performed in the Advanced Test Reactor (ATR) at the Idaho National Laboratory. These tests are providing excellent data for advanced fuels development. The program is focused on the transmutation of higher actinides which best can be accomplished in a sodium-cooled fast reactor. Because a fast test reactor is no longer available in the US, a special test vehicle is used to achieve near-prototypic fast reactor conditions (neutron spectra and temperature) for use in ATR (a water-cooled thermal reactor). As partmore » of the testing program, there were many successful tests of advanced fuels including metals and ceramics. Recently however, there have been three experimental campaigns using metal fuels that experienced failure during irradiation. At the request of the program, an independent review committee was convened to review the post-test analyses performed by the fuels development team, to assess the conclusions of the team for the cause of the failures, to assess the adequacy and completeness of the analyses, to identify issues that were missed, and to make recommendations for improvements in the design and operation of future tests. Although there is some difference of opinion, the review committee largely agreed with the conclusions of the fuel development team regarding the cause of the failures. For the most part, the analyses that support the conclusions are sufficient.« less

  20. Fluid flow and heat convection studies for actively cooled airframes

    NASA Technical Reports Server (NTRS)

    Mills, A. F.

    1993-01-01

    This report details progress made on the jet impingement - liquid crystal - digital imaging experiment. With the design phase complete, the experiment is currently in the construction phase. In order to reach this phase two design related issues were resolved. The first issue was to determine NASP leading edge active cooling design parameters. Meetings were arranged with personnel at SAIC International, Torrance, CA in order to obtain recent publications that characterized expected leading edge heat fluxes as well as other details of NASP operating conditions. The information in these publications was used to estimate minimum and maximum jet Reynolds numbers needed to accomplish the required leading edge cooling, and to determine the parameters of the experiment. The details of this analysis are shown in Appendix A. One of the concerns for the NASP design is that of thermal stress due to large surface temperature gradients. Using a series of circular jets to cool the leading edge will cause a non-uniform temperature distribution and potentially large thermal stresses. Therefore it was decided to explore the feasibility of using a slot jet to cool the leading edge. The literature contains many investigations into circular jet heat transfer but few investigations of slot jet heat transfer. The first experiments will be done on circular jets impinging on a fiat plate and results compared to previously published data to establish the accuracy of the method. Subsequent experiments will be slot jets impinging on full scale models of the NASP leading edge. Table 1 shows the range of parameters to be explored. Next a preliminary design of the experiment was done. Previous papers which used a similar experimental technique were studied and elements of those experiments adapted to the jet impingement study. Trade-off studies were conducted to determine which design was the least expensive, easy to construct, and easy to use. Once the final design was settled, vendors were contacted to verify that equipment could be obtained to meet our specifications. Much of the equipment required to complete the construction of the experiment has been ordered or received. The material status list is shown in Appendix B.

  1. Specific features of the structural and magnetic states of a Zn1 - x Ni x Se crystal ( x = 0.0025) at low temperatures

    NASA Astrophysics Data System (ADS)

    Dubinin, S. F.; Sokolov, V. I.; Parkhomenko, V. D.; Teploukhov, S. G.; Gruzdev, N. B.

    2008-12-01

    The magnetic state and the structure of a Zn1 - x Ni x Se ( x = 0.0025) bulk crystal were studied at low temperatures. It is revealed that the magnetic and crystal structures below T ≅ 15 K are dependent on the cooling rate of this dilute semiconductor. For example, on fast cooling to 4.2 K, about 10% hexagonal ferromagnetic phase is formed in the crystal. During heating, the phase disappears at T ≅ 15 K. The results obtained are discussed with allowance for the specific features of the Jahn-Teller distortions in this compound.

  2. Nuclear and Physical Properties of Dielectrics under Neutron Irradiation in Fast (BN-600) and Fusion (DEMO-S) Reactors

    NASA Astrophysics Data System (ADS)

    Blokhin, D. A.; Chernov, V. M.; Blokhin, A. I.

    2017-12-01

    Nuclear and physical properties (activation and transmutation of elements) of BN and Al2O3 dielectric materials subjected to neutron irradiation for up to 5 years in Russian fast (BN-600) and fusion (DEMO-S) reactors were calculated using the ACDAM-2.0 software complex for different post-irradiation cooling times (up to 10 years). Analytical relations were derived for the calculated quantities. The results may be used in the analysis of properties of irradiated dielectric materials and may help establish the rules for safe handling of these materials.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Hyun, J.; Mihalcea, D.

    A photocathode, immersed in solenoidal magnetic field, can produce canonical-angular-momentum (CAM) dominated or “magnetized” electron beams. Such beams have an application in electron cooling of hadron beams and can also be uncoupled to yield asymmetric-emittance (“flat”) beams. In the present paper we explore the possibilities of the flat beam generation at Fermilab’s Accelerator Science and Technology (FAST) facility. We present optimization of the beam flatness and four-dimensional transverse emittance and investigate the mapping and its limitations of the produced eigen-emittances to conventional emittances using a skew-quadrupole channel. Possible application of flat beams at the FAST facility are also discussed.

  4. Comparison of JSFR design with EDF requirements for future SFR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uematsu, M. M.; Prele, G.; Mariteau, P.

    2012-07-01

    A comparison of Japan sodium-cooled fast reactor (JSFR) design with future French SFR concept has been done based on the requirement of EDF, the investor-operator of future French SFR, and the French safety baseline, under the framework of EDF-JAEA bilateral agreement of research and development cooperation on future SFR. (authors)

  5. Experimental studies on metallic fuel relocation in a single-pin core structure of a sodium-cooled fast reactor

    DOE PAGES

    Kim, Taeil; Harbaruk, Dzmitry; Gerardi, Craig; ...

    2017-07-10

    Experiments dropping molten uranium into test sections of single fuel pin geometry filled with sodium were conducted to investigate relocation behavior of metallic fuel in the core structures of sodium-cooled fast reactors during a hypothetical core disruptive accident. Metallic uranium was used as a fuel material and HT-9M was used as a fuel cladding material in the experiment in order to accurately mock-up the thermo-physical behavior of the relocation. The fuel cladding failed due to eutectic formation between the uranium and HT-9M for all experiments. The extent of the eutectic formation increased with increasing molten uranium temperature. Voids in themore » relocated fuel were observed for all experiments and were likely formed by sodium boiling in contact with the fuel. In one experiment, numerous fragments of the relocated fuel were found. In conclusion, it could be concluded that the injected metallic uranium fuel was fragmented and dispersed in the narrow coolant channel by sodium boiling« less

  6. Slowing techniques for loading a magneto-optical trap of CaF molecules

    NASA Astrophysics Data System (ADS)

    Truppe, Stefan; Fitch, Noah; Williams, Hannah; Hambach, Moritz; Sauer, Ben; Hinds, Ed; Tarbutt, Mike

    2016-05-01

    Ultracold molecules in a magneto-optical trap (MOT) are useful for testing fundamental physics and studying strongly-interacting quantum systems. With experiments starting with a relatively fast (50-200 m/s) buffer-gas beam, a primary concern is decelerating molecules to below the MOT capture velocity, typically 10 m/s. Direct laser cooling, where the molecules are slowed via momentum transfer from a chirped counter-propagating narrowband laser, is a natural choice. However, chirping the cooling and repump lasers requires precise control of multiple laser frequencies simultaneously. Another approach, called ``white-light slowing'' uses a broadband laser such that all fast molecules in the beam are decelerated. By addressing numerous velocities no chirping is needed. Unfortunately, both techniques have significant losses as molecules are transversely heated during the optical cycling. Ideally, the slowing method would provide simultaneous deceleration and transverse guiding. A newly developed technique, called Zeeman-Sisyphus deceleration, is potentially capable of both. Using permanent magnets and optical pumping, the number of scattered photons is reduced, lessening transverse heating and relaxing the repump requirements. Here we compare all three options for CaF.

  7. Experimental studies on metallic fuel relocation in a single-pin core structure of a sodium-cooled fast reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Taeil; Harbaruk, Dzmitry; Gerardi, Craig

    Experiments dropping molten uranium into test sections of single fuel pin geometry filled with sodium were conducted to investigate relocation behavior of metallic fuel in the core structures of sodium-cooled fast reactors during a hypothetical core disruptive accident. Metallic uranium was used as a fuel material and HT-9M was used as a fuel cladding material in the experiment in order to accurately mock-up the thermo-physical behavior of the relocation. The fuel cladding failed due to eutectic formation between the uranium and HT-9M for all experiments. The extent of the eutectic formation increased with increasing molten uranium temperature. Voids in themore » relocated fuel were observed for all experiments and were likely formed by sodium boiling in contact with the fuel. In one experiment, numerous fragments of the relocated fuel were found. In conclusion, it could be concluded that the injected metallic uranium fuel was fragmented and dispersed in the narrow coolant channel by sodium boiling« less

  8. Effects of Ultra-Fast Cooling After Hot Rolling and Intercritical Treatment on Microstructure and Cryogenic Toughness of 3.5%Ni Steel

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Liu, Zhenyu

    2017-07-01

    A novel process comprised of ultra-fast cooling after control rolling, intercritical quenching and tempering (UFC-LT) was applied to 3.5%Ni steel. In addition, quenching and tempering (QT) treatment was conducted in comparison. The present study focuses on the relationship between the microstructure and cryogenic toughness of 3.5%Ni steel. Results show that the microstructure of steel treated by UFC-LT consisted of tempered martensite, intercritical ferrite and two types of reversed austenite (RA) (needle shape and blocky). Compared to the QT sample, the UFC-LT sample's ultimate tensile strength decreased slightly, while its elongation increased from 32.3 to 35.7%, and its Charpy absorption energy at -135 °C increased from 112 to 237 J. The ductile-brittle transition temperature of UFC-LT sample was lower than that of the QT sample by 18 °C. The superior cryogenic toughness after UFC-LT compared to QT treatment can be attributed to the dissolution of cementite, approximately 3.0% increase in RA and the decrease in effective grain size.

  9. Simulation of Radioactive Corrosion Product in Primary Cooling System of Japanese Sodium-Cooled Fast Breeder Reactor

    NASA Astrophysics Data System (ADS)

    Matuo, Youichirou; Miyahara, Shinya; Izumi, Yoshinobu

    Radioactive Corrosion Product (CP) is a main cause of personal radiation exposure during maintenance with no breached fuel in fast breeder reactor (FBR) plants. The most important CP is 54Mn and 60Co. In order to establish techniques of radiation dose estimation for radiation workers in radiation-controlled areas of the FBR, the PSYCHE (Program SYstem for Corrosion Hazard Evaluation) code was developed. We add the Particle Model to the conventional PSYCHE analytical model. In this paper, we performed calculation of CP transfer in JOYO using an improved calculation code in which the Particle Model was added to the PSYCHE. The C/E (calculated / experimentally observed) value for CP deposition was improved through use of this improved PSYCHE incorporating the Particle Model. Moreover, among the percentage of total radioactive deposition accounted for by CP in particle form, 54Mn was estimated to constitute approximately 20 % and 60Co approximately 40 % in the cold-leg region. These calculation results are consistent with the measured results for the actual cold-leg piping in the JOYO.

  10. Changes made on a 2.7-m long superconducting solenoid magnet cryogenic system that allowed the magnet to be kept cold using 4 K pulse tube coolers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, M. A.; Pan, H.; Preece, R. M.

    2014-01-29

    Two 2.7-m long solenoid magnets with a cold mass of 1400 kg were fabricated in between 2007 and 2010. The magnet cryostat outside diameter is ∼1.4 meters and the cryostat length is ∼2.73 meters. The magnet warm bore is 0.4 meters. The magnet was designed to be cooled using three 1.5 W two-stage coolers. In both magnets, three coolers could not keep the cryostat filled with liquid helium. The temperatures of the shield and the tops of the HTS leads were too warm. A 140 W single stage cooler was added to magnet 2 to cool the HTS leads, themore » shield and the cold mass support intercepts. When the magnet 2 was retested in 2010, the net cooling at 4.2 K was −1.5 W with first-stage temperatures of the four coolers at ∼42 K. The tops of the HTS leads were <50 K, but the shield and cold mass support intercepts remained too warm. The solenoid cryostat and shield were modified during 2011 and 2012 to reduce the 4.2 K heat load and increase the cooling. This magnet was tested in 2012, with five 1.5 W two-stage coolers and the single stage cooler. The changes made in the magnet are described in this report. As a result of the cryostat and shield changes, and adding 3.0 W of cooling at 4.2 K, the net 4.2 K cooling changed from −1.6 W to +5.0 W. About half of the change in net cooling to this magnet was due changes that reduced the shield temperature. This report demonstrates the importance of running the shield cold (∼40 K) and reducing the heat loads from all sources on both the shield and the cold mass.« less

  11. Improved Seismic Images of the Pacific Northwest Interior, With a Focus on the Region of the Columbia River Flood Basalts and Central Idaho

    NASA Astrophysics Data System (ADS)

    Stanciu, A. C.; Humphreys, E.; Clayton, R. W.

    2017-12-01

    We construct a P-wave model of the upper mantle based on new and previously acquired data from the USArray-TA stations and regional deployments, including the HLP, ID-OR, and the currently recording Wallowa stations. Our teleseismic arrival times are corrected for crustal structure (based on surface wave, receiver function, and controlled-source models from the region). Our modeling incorporates 3-D ray tracing and several simple considerations of radial anisotropy on travel time. As imaged previously, we find high P-wave velocity anomalies located beneath the Wallowa Mountains and beneath the Idaho Batholith in central west Idaho. Our improved imaging finds that these two anomalies are located down to 350 km depth, and are clearly separated from one another and from a shallower fast anomaly in the uppermost mantle beneath the westernmost Snake River Plain. Our preferred interpretation includes a combination of delamination and slab fragments in this region. As fast (and presumably cool) structures, these upper-mantle anomalies are thought to have a lithospheric origin. The anomaly beneath central Idaho is interpreted as the leading edge of the Farallon slab associated with the accretion of Siletzia terrane to North America. This anomaly may include some North American lithosphere that delaminated from the Laramide-thickened lithospheric mantle, perhaps related to Challis magmatism. The Wallowa anomaly is likely to represent Farallon lithosphere that delaminated during the Columbia River flood basalt event. The small anomaly between the two deeper fast anomalies, occurring at depths above 150km, could represent an isolated lithospheric fragment or a structure created by the Columbia River flood basalt event.

  12. PRELIMINARY DATA CALL REPORT ADVANCED BURNER REACTOR START UP FUEL FABRICATION FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. T. Khericha

    2007-04-01

    The purpose of this report is to provide data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives is to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept has been proposed tomore » achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR is proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu will be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) is being considered for fabrication of WG Pu fuel for the ABR. This report is provided in response to ‘Data Call’ for the construction of startup fuel fabrication facility. It is anticipated that the facility will provide the startup fuel for 10-15 years and will take to 3 to 5 years to construct.« less

  13. A Blueprint for GNEP Advanced Burner Reactor Startup Fuel Fabrication Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Khericha

    2010-12-01

    The purpose of this article is to identify the requirements and issues associated with design of GNEP Advanced Burner Reactor Fuel Facility. The report was prepared in support of providing data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives was to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn thesemore » actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept was proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR was proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu was assumed to be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) was being considered for fabrication of WG Pu fuel for the ABR. It was estimated that the facility will provide the startup fuel for 10-15 years and would take 3 to 5 years to construct.« less

  14. The Mechanical and Microstructural Changes of Sn-Ag-Bi Solders with Cooling Rate and Bi Content Variations

    NASA Astrophysics Data System (ADS)

    Abd El-Rehim, A. F.; Zahran, H. Y.; AlFaify, S.

    2018-02-01

    The purpose of this study is to investigate the influence of cooling rate and Bi addition on the microstructure evolution and mechanical properties of Sn-3.5Ag alloy. A series of Sn-3.5Ag-xBi solders has been fabricated with Bi content in the range of 0.5-3.5 wt.%. After solution heat treatment at 170 °C for 24 h and subsequent aging heat treatment at 100 °C for 2 h, samples were divided into two groups. One group was rapidly quenched into iced water (water quenching) for the fast cooling rate (20 °C/s), while the second group was slowly cooled (furnace cooling) in the furnace for the slow cooling rate (0.2 °C/s) after the furnace reflow. The microstructural evolutions of the present solders have been investigated using x-ray diffraction and scanning electron microscopy. The microhardness was measured to correlate the mechanical properties to alloy compositions and cooling rate. It was found that the microhardness of Sn-3.5Ag-xBi solders increased with increasing cooling rate. The indentation creep curves have been evaluated from the obtained microhardness values. Results revealed the steady-state creep rate decreased with increasing Bi content exhibiting an anomalous behavior at 2.5Bi. The reason for improved creep resistance of Sn-3.5Ag-xBi solders is the result of the combination of the solid solution strengthening and precipitation strengthening of Bi. The mean values of stress exponent indicated that the operative creep mechanism is dislocation climb.

  15. Transient Response to Rapid Cooling of a Stainless Steel Sodium Heat Pipe

    NASA Technical Reports Server (NTRS)

    Mireles, Omar R.; Houts, Michael G.

    2011-01-01

    Compact fission power systems are under consideration for use in long duration space exploration missions. Power demands on the order of 500 W, to 5 kW, will be required for up to 15 years of continuous service. One such small reactor design consists of a fast spectrum reactor cooled with an array of in-core alkali metal heat pipes coupled to thermoelectric or Stirling power conversion systems. Heat pipes advantageous attributes include a simplistic design, lack of moving parts, and well understood behavior. Concerns over reactor transients induced by heat pipe instability as a function of extreme thermal transients require experimental investigations. One particular concern is rapid cooling of the heat pipe condenser that would propagate to cool the evaporator. Rapid cooling of the reactor core beyond acceptable design limits could possibly induce unintended reactor control issues. This paper discusses a series of experimental demonstrations where a heat pipe operating at near prototypic conditions experienced rapid cooling of the condenser. The condenser section of a stainless steel sodium heat pipe was enclosed within a heat exchanger. The heat pipe - heat exchanger assembly was housed within a vacuum chamber held at a pressure of 50 Torr of helium. The heat pipe was brought to steady state operating conditions using graphite resistance heaters then cooled by a high flow of gaseous nitrogen through the heat exchanger. Subsequent thermal transient behavior was characterized by performing an energy balance using temperature, pressure and flow rate data obtained throughout the tests. Results indicate the degree of temperature change that results from a rapid cooling scenario will not significantly influence thermal stability of an operating heat pipe, even under extreme condenser cooling conditions.

  16. Fabrication and Testing of Mo-Re Heat Pipes Embedded in Carbon/Carbon

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Merrigan, Michael A.; Sena, J. Tom

    1998-01-01

    Refractory-composite/heat-pipe-cooled wing an tail leading edges are being considered for use on hypersonic vehicles to limit maximum temperatures to values below material reuse limits and to eliminate the need to actively cool the leading edges. The development of a refractory-composite/heat-pipe-cooled leading edge has evolved from the design stage to the fabrication and testing of heat pipes embedded in carbon/carbon (C/C). A three-foot-long, molybdenum-rhenium heat pipe with a lithium working fluid was fabricated and tested at an operating temperature of 2460 F to verify the individual heat-pipe design. Following the fabrication of this heat pipe, three additional heat pipes were fabricated and embedded in C/C. The C/C heat-pipe test article was successfully tested using quartz lamps in a vacuum chamber in both a horizontal and vertical orientation. Start up and steady state data are presented for the C/C heat-pipe test article. Radiography and eddy current evaluations were performed on the test article.

  17. Turbine vane gas film cooling with injection in the leading edge region from a single row of spanwise angled holes

    NASA Technical Reports Server (NTRS)

    Lecuyer, M. R.; Hanus, G. J.

    1976-01-01

    An experimental study of gas film cooling was conducted on a 3X size model turbine vane. Injection in the leading edge region was from a single row of holes angled in a spanwise direction. Measurements of the local heat flux downstream from the row of coolant holes, both with and without film coolant flow, were used to determine the film cooling performance presented in terms of the Stanton number ratio. Results for a range of coolant blowing ratio, M = 0 to 2.0, indicate a reduction in heat flux of up to 15 to 30 percent at a point 10 to 11 hole diameters downstream from injection. An optimum coolant blowing ratio corresponds to a coolant-to-freestream velocity ratio in the range of 0.5. The shallow injection angle resulted in superior cooling performance for injection closest to stagnation, while the effect of injection angle was insignificant for injection further from stagnation.

  18. Cooling rate dependence of structural order in Al 90Sm 10 metallic glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yang; Zhang, Yue; Zhang, Feng

    2016-07-07

    Here, the atomic structure of Al 90Sm 10 metallic glass is studied using molecular dynamics simulations. By performing a long sub-T g annealing, we developed a glass model closer to the experiments than the models prepared by continuous cooling. Using the cluster alignment method, we found that “3661” cluster is the dominating short-range order in the glass samples. The connection and arrangement of “3661” clusters, which define the medium-range order in the system, are enhanced significantly in the sub-T g annealed sample as compared with the fast cooled glass samples. Unlike some strong binary glass formers such as Cu 64.5Zrmore » 35.5, the clusters representing the short-range order do not form an interconnected interpenetrating network in Al 90Sm 10, which has only marginal glass formability.« less

  19. Cooling rate dependence of structural order in Al{sub 90}Sm{sub 10} metallic glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yang; Ames Laboratory, US Department of Energy, Ames, Iowa 50011; Zhang, Yue

    2016-07-07

    The atomic structure of Al{sub 90}Sm{sub 10} metallic glass is studied using molecular dynamics simulations. By performing a long sub-T{sub g} annealing, we developed a glass model closer to the experiments than the models prepared by continuous cooling. Using the cluster alignment method, we found that “3661” cluster is the dominating short-range order in the glass samples. The connection and arrangement of “3661” clusters, which define the medium-range order in the system, are enhanced significantly in the sub-T{sub g} annealed sample as compared with the fast cooled glass samples. Unlike some strong binary glass formers such as Cu{sub 64.5}Zr{sub 35.5},more » the clusters representing the short-range order do not form an interconnected interpenetrating network in Al{sub 90}Sm{sub 10,} which has only marginal glass formability.« less

  20. Simple Heat Treatment for Production of Hot-Dip Galvanized Dual Phase Steel Using Si-Al Steels

    NASA Astrophysics Data System (ADS)

    Equihua-Guillén, F.; García-Lara, A. M.; Muñíz-Valdes, C. R.; Ortíz-Cuellar, J. C.; Camporredondo-Saucedo, J. E.

    2014-01-01

    This work presents relevant metallurgical considerations to produce galvanized dual phase steels from low cost aluminum-silicon steels which are produced by continuous strip processing. Two steels with different contents of Si and Al were austenized in the two-phase field ferrite + austenite (α + γ) in a fast manner to obtain dual phase steels, suitable for hot-dip galvanizing process, under typical parameters of continuous annealing processing line. Tensile dual phase properties were obtained from specimens cooled from temperature below Ar3, held during 3 min, intermediate cooling at temperature above Ar1 and quenching in Zn bath at 465 °C. The results have shown typical microstructure and tensile properties of galvanized dual phase steels. Finally, the synergistic effect of aluminum, silicon, and residual chromium on martensite start temperature ( M s), critical cooling rate ( C R), volume fraction of martensite, and tensile properties has been studied.

  1. The fuzzy algorithm in the die casting mould for the application of multi-channel temperature control

    NASA Astrophysics Data System (ADS)

    Sun, Jin-gen; Chen, Yi; Zhang, Jia-nan

    2017-01-01

    Mould manufacturing is one of the most basic elements in the production chain of China. The mould manufacturing technology has become an important symbol to measure the level of a country's manufacturing industry. The die-casting mould multichannel intelligent temperature control method is studied by cooling water circulation, which uses fuzzy control to realize, aiming at solving the shortcomings of slow speed and big energy consumption during the cooling process of current die-casting mould. At present, the traditional PID control method is used to control the temperature, but it is difficult to ensure the control precision. While , the fuzzy algorithm is used to realize precise control of mould temperature in cooling process. The design is simple, fast response, strong anti-interference ability and good robustness. Simulation results show that the control method is completely feasible, which has higher control precision.

  2. Evaporative cooling of speleothem drip water

    PubMed Central

    Cuthbert, M. O.; Rau, G. C.; Andersen, M. S.; Roshan, H.; Rutlidge, H.; Marjo, C. E.; Markowska, M.; Jex, C. N.; Graham, P. W.; Mariethoz, G.; Acworth, R. I.; Baker, A.

    2014-01-01

    This study describes the first use of concurrent high-precision temperature and drip rate monitoring to explore what controls the temperature of speleothem forming drip water. Two contrasting sites, one with fast transient and one with slow constant dripping, in a temperate semi-arid location (Wellington, NSW, Australia), exhibit drip water temperatures which deviate significantly from the cave air temperature. We confirm the hypothesis that evaporative cooling is the dominant, but so far unattributed, control causing significant disequilibrium between drip water and host rock/air temperatures. The amount of cooling is dependent on the drip rate, relative humidity and ventilation. Our results have implications for the interpretation of temperature-sensitive, speleothem climate proxies such as δ18O, cave microecology and the use of heat as a tracer in karst. Understanding the processes controlling the temperature of speleothem-forming cave drip waters is vital for assessing the reliability of such deposits as archives of climate change. PMID:24895139

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuffer, David; Snopok, Pavel; Alexahin, Yuri

    A neutrino factory or muon collider requires the capture and cooling of a large number of muons. Scenarios for capture, bunching, phase-energy rotation and initial cooling of μ’s produced from a proton source target have been developed, initially for neutrino factory scenarios. They require a drift section from the target, a bunching section and a Φ-δE rotation section leading into the cooling channel. Important concerns are rf limitations within the focusing magnetic fields and large losses in the transport. The currently preferred cooling channel design is an “HFOFO Snake” configuration that cools both μ + and μ - transversely andmore » longitudinally. Finally, the status of the design is presented and variations are discussed.« less

  4. Front End for a neutrino factory or muon collider

    NASA Astrophysics Data System (ADS)

    Neuffer, D.; Snopok, P.; Alexahin, Y.

    2017-11-01

    A neutrino factory or muon collider requires the capture and cooling of a large number of muons. Scenarios for capture, bunching, phase-energy rotation and initial cooling of μ 's produced from a proton source target have been developed, initially for neutrino factory scenarios. They require a drift section from the target, a bunching section and a varphi -δ E rotation section leading into the cooling channel. Important concerns are rf limitations within the focusing magnetic fields and large losses in the transport. The currently preferred cooling channel design is an "HFOFO Snake" configuration that cools both μ+ and μ- transversely and longitudinally. The status of the design is presented and variations are discussed.

  5. Multiple piece turbine blade

    DOEpatents

    Kimmel, Keith D [Jupiter, FL

    2012-05-29

    A turbine rotor blade with a spar and shell construction, the spar including an internal cooling supply channel extending from an inlet end on a root section and ending near the tip end, and a plurality of external cooling channels formed on both side of the spar, where a middle external cooling channel is connected to the internal cooling supply channels through a row of holes located at a middle section of the channels. The spar and the shell are held together by hooks that define serpentine flow passages for the cooling air and include an upper serpentine flow circuit and a lower serpentine flow circuit. the serpentine flow circuits all discharge into a leading edge passage or a trailing edge passage.

  6. Note: development of fast heating inert gas annealing apparatus operated at atmospheric pressure.

    PubMed

    Das, S C; Majumdar, A; Shripathi, T; Hippler, R

    2012-04-01

    Here, we report the development of a simple, small, fast heating, and portable, homemade, inert gas (Ar) atmospheric annealing setup. Instead of using a conventional heating element, a commercial soldering rod having an encapsulated fast heating heater is used here. The sample holder is made of a block of stainless steel. It takes 200 s to reach 700 °C, and 10 min to cool down. The probability of oxidation or surface contamination has been examined by means of x ray photoelectron spectroscopy of virgin Cu sample after annealing at 600 °C. In addition, we compare the annealing of a hydrogenated carbon nitride film (HCN(x)) in both a conventional vacuum and our newly developed ambient Ar atmosphere setup. © 2012 American Institute of Physics

  7. Development of Cross Section Library and Application Programming Interface (API)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C. H.; Marin-Lafleche, A.; Smith, M. A.

    2014-04-09

    The goal of NEAMS neutronics is to develop a high-fidelity deterministic neutron transport code termed PROTEUS for use on all reactor types of interest, but focused primarily on sodium-cooled fast reactors. While PROTEUS-SN has demonstrated good accuracy for homogeneous fast reactor problems and partially heterogeneous fast reactor problems, the simulation results were not satisfactory when applied on fully heterogeneous thermal problems like the Advanced Test Reactor (ATR). This is mainly attributed to the quality of cross section data for heterogeneous geometries since the conventional cross section generation approach does not work accurately for such irregular and complex geometries. Therefore, onemore » of the NEAMS neutronics tasks since FY12 has been the development of a procedure to generate appropriate cross sections for a heterogeneous geometry core.« less

  8. Secondary flow and heat transfer control in gas turbine inlet nozzle guide vanes

    NASA Astrophysics Data System (ADS)

    Burd, Steven Wayne

    1998-12-01

    Endwall heat transfer is a very serious problem in the inlet nozzle guide vane region of gas turbine engines. To resolve heat transfer concerns and provide the desired thermal protection, modern cooling flows for the vane endwalls tend to be excessive leading to lossy and inefficient designs. Coolant introduction is further complicated by the flow patterns along vane endwall surfaces. They are three-dimensional and dominated by strong, complex secondary flows. To achieve performance goals for next-generation engines, more aerodynamically efficient and advanced cooling concepts, including combustor bleed cooling, must be investigated. To this end, the overall performance characteristics of several combustor bleed flow designs are assessed in this experimental study. In particular, their contributions toward secondary flow control and component cooling are documented. Testing is performed in a large-scale, guide vane simulator comprised of three airfoils encased between one contoured and one flat endwall. Core flow is supplied to this simulator at an inlet chord Reynolds number of 350,000 and turbulence intensity of 9.5%. Combustor bleed cooling flow is injected through the contoured endwall via inclined slots. The slots vary in cross-sectional area, have equivalent slot widths, and are positioned with their leeward edges 10% of the axial chord ahead of the airfoil leading edges. Measurements with hot-wire anemometry characterize the inlet and exit flow fields of the cascade. Total and static pressure measurements document aerodynamic performance. Thermocouple measurements detail thermal fields and permit evaluation of surface adiabatic effectiveness. To elucidate the effects of bleed injection, data are compared to an experiment taken without bleed. The influence of bleed mass flow rate and slot geometry on the aerodynamic losses and thermal protection arc given. This study suggests that such combustor bleed flow cooling offers significant thermal protection without imposing aerodynamic penalties. Such performance is contrary to the performance of present vane cooling schemes. The results of this investigation support designs which incorporate combustor coolant injection upstream of the airfoil leading edges. To complement, a short exploratory study regarding the effects of surface roughness was also performed. Results indicate modified cooling performance and significantly higher aerodynamic losses with rough surfaces.

  9. Efficient and lightweight current leads

    NASA Astrophysics Data System (ADS)

    Bromberg, L.; Dietz, A. J.; Michael, P. C.; Gold, C.; Cheadle, M.

    2014-01-01

    Current leads generate substantial cryogenic heat loads in short length High Temperature Superconductor (HTS) distribution systems. Thermal conduction, as well as Joule losses (I2R) along the current leads, comprises the largest cryogenic loads for short distribution systems. Current leads with two temperature stages have been designed, constructed and tested, with the goal of minimizing the electrical power consumption, and to provide thermal margin for the cable. We present the design of a two-stage current lead system, operating at 140 K and 55 K. This design is very attractive when implemented with a turbo-Brayton cycle refrigerator (two-stage), with substantial power and weight reduction. A heat exchanger is used at each temperature station, with conduction-cooled stages in-between. Compact, efficient heat exchangers are challenging, because of the gaseous coolant. Design, optimization and performance of the heat exchangers used for the current leads will be presented. We have made extensive use of CFD models for optimizing hydraulic and thermal performance of the heat exchangers. The methodology and the results of the optimization process will be discussed. The use of demountable connections between the cable and the terminations allows for ease of assembly, but require means of aggressively cooling the region of the joint. We will also discuss the cooling of the joint. We have fabricated a 7 m, 5 kA cable with second generation HTS tapes. The performance of the system will be described.

  10. Experiments on microjets of undercooled liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Fernández, José M.; Kühnel, Matthias; Tejeda, Guzmán; Kalinin, Anton; Grisenti, Robert E.; Montero, Salvador

    2012-11-01

    Novel experiments on liquid microjets (filaments) of hydrogen and deuterium, carried out at the Laboratory of Molecular Fluid Dynamics of the IEM, are reported. These filaments, less than 10 microns in diameter, are an ideal medium to produce highly undercooled liquid samples and to investigate the homogeneous solidification process, free from wall effects. The filaments exit from cryogenic capillary nozzles into a vacuum chamber, to cool down very fast by surface evaporation. Finite size radius leads to a temperature gradient across the filament, determined by thermal conductivity, and, possibly, to a velocity gradient as well. The filaments are monitored by laser shadowgraphy, and analyzed by means of high performance Raman spectroscopy. Real-time measurements in the rotational and vibrational spectral regions reveal the structure and temperature along the filaments, allowing to track the crystal growth process. The high spatial resolution of Raman spectroscopy allows observing in situ the structural changes of the liquid microjets, with a time resolution of ˜ 10 ns. The filaments of pure para-H2 can be cooled down to 9 K (65% of its melting point at 13.8 K), while staying liquid, before eventually solidifying into a metastable polymorph. Crystallization kinetics revealed a growth rate of 33 cm/s, much higher than expected for a thermally activated process. The time and spatial control attained in these experiments offers new opportunities for investigating the processes of nonequilibrium phase transformations in undercooled fluids, as well as the propagation of liquid jets into a rarefied gas media.

  11. Crustal accretion at fast spreading ridges and implications for hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Theissen-Krah, S.; Rupke, L.; Hasenclever, J.

    2015-12-01

    Oceanic crust is continuously created at mid-ocean ridges, but the location of lower crust crystallization continues to be debated since the proposal of the gabbro glacier and many sills end-member models. Geophysical and geochemical studies find evidence for either of the models. The crust is cooled by a combination of heat diffusion and advection, and hydrothermal circulation is thought to play a key role in distinguishing between both models. We use our numerical model for joint modeling of crustal accretion and hydrothermal circulation1 to test different accretion and hydrothermal cooling scenarios. The results match the seismic and structural observations from the East Pacific Rise2 and the Oman Ophiolite3, with a shallow melt lens at the correct location overlaying a narrow volume of partially molten rocks. Our results show that no more than 25-50% of the lower crust crystallizes in situ and that deep circulation is likely to occur at fast and intermediate spreading ridges. The occurrence of deep hydrothermal cooling however does not rule out that a major portion of the lower crust is formed in the shallow melt lens; our simulations rather suggest that it is necessary independent of where in the lower crust crystallization takes place. 1 Theissen-Krah, S., Iyer, K., Rupke, L. H. & Morgan, J. P. Coupled mechanical and hydrothermal modeling of crustal accretion at intermediate to fast spreading ridges. Earth and Planetary Science Letters 311, 275-286, doi:10.1016/j.epsl.2011.09.018 (2011). 2 Dunn, R. A., Toomey, D. R. & Solomon, S. C. Three-dimensional seismic structure and physical properties of the crust and shallow mantle beneath the East Pacific Rise at 9 degrees 30'N. Journal of Geophysical Research-Solid Earth 105, 23537-23555 (2000). 3 Nicolas, A. & Boudier, F. Structural contribution from the Oman ophiolite to processes of crustal accretion at the East Pacific Rise. Terra Nova 27, 77-96, doi:10.1111/ter.12137 (2015).

  12. Transient boiling in two-phase helium natural circulation loops

    NASA Astrophysics Data System (ADS)

    Furci, H.; Baudouy, B.; Four, A.; Meuris, C.

    2014-01-01

    Two-phase helium natural circulation loops are used for cooling large superconducting magnets, as CMS for LHC. During normal operation or in the case of incidents, transients are exerted on the cooling system. Here a cooling system of this type is studied experimentally. Sudden power changes are operated on a vertical-heated-section natural convection loop, simulating a fast increase of heat deposition on magnet cooling pipes. Mass flow rate, heated section wall temperature and pressure drop variations are measured as a function of time, to assess the time behavior concerning the boiling regime according to the values of power injected on the heated section. The boiling curves and critical heat flux (CHF) values have been obtained in steady state. Temperature evolution has been observed in order to explore the operating ranges where heat transfer is deteriorated. Premature film boiling has been observed during transients on the heated section in some power ranges, even at appreciably lower values than the CHF. A way of attenuating these undesired temperature excursions has been identified through the application of high enough initial heating power.

  13. SMA foil-based elastocaloric cooling: from material behavior to device engineering

    NASA Astrophysics Data System (ADS)

    Bruederlin, F.; Ossmer, H.; Wendler, F.; Miyazaki, S.; Kohl, M.

    2017-10-01

    The elastocaloric effect associated with the stress-induced first order phase transformation in pseudoelastic shape memory alloy (SMA) films and foils is of special interest for cooling applications on a miniature scale enabling fast heat transfer and high cycling frequencies as well as tunable transformation temperatures. The focus is on TiNi-based materials having the potential to meet the various challenges associated with elastocaloric cooling including large adiabatic temperature change and ultra-low fatigue. The evolution of strain and temperature bands during tensile load cycling is investigated with respect to strain and strain-rate by in situ digital image correlation and infrared thermography with a spatial resolution in the order of 25 µm. Major design issues and challenges in fabrication of SMA film-based elastocaloric cooling devices are discussed including the efficiency of heat transfer as well as force recovery to enhance the coefficient of performance (COP) on the system level. Advanced demonstrators show a temperature span of 13 °C after 30 s, while the COP of the overall device reaches almost 10% of Carnot efficiency.

  14. Investigation of a continuous heating/cooling technique for cardiac output measurement.

    PubMed

    Ehlers, K C; Mylrea, K C; Calkins, J M

    1987-01-01

    Cardiac output is frequently measured to assess patient hemodynamic status in the operating room and intensive care unit. Current research for measuring cardiac output includes continuous sinusoidal heating and synchronous detection of thermal signals. This technique is limited by maximum heating element temperatures and background thermal noise. A continuous heating and cooling technique was investigated in vitro to determine if greater thermal signal magnitudes could be obtained. A fast responding thermistor was employed to measure consecutive ejected temperature plateaus in the thermal signal. A flow bath and mechanical ventricle were used to simulate the cardiovascular system. A thermoelectric module was used to apply heating and cooling energy to the flow stream. Trials encompassing a range of input power, input frequency, and flow rate were conducted. By alternating heating and cooling, thermal signal magnitude can be increased when compared to continuous heating alone. However, the increase was not sufficient to allow for recording in all patients over the expected normal range of cardiac output. Consecutive ejected temperature plateaus were also measured on the thermal signal and ejection fraction calculations were made.

  15. Comparison of fusion alpha performance in JET advanced scenario and H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Asunta, O.; Kurki-Suonio, T.; Tala, T.; Sipilä, S.; Salomaa, R.; contributors, JET-EFDA

    2008-12-01

    Currently, plasmas with internal transport barriers (ITBs) appear the most likely candidates for steady-state scenarios for future fusion reactors. In such plasmas, the broad hot and dense region in the plasma core leads to high fusion gain, while the cool edge protects the integrity of the first wall. Economically desirable large bootstrap current fraction and low inductive current drive may, however, lead to degraded fast ion confinement. In this work the confinement and heating profile of fusion alphas were compared between H-mode and ITB plasmas in realistic JET geometry. The work was carried out using the Monte Carlo-based guiding-center-following code ASCOT. For the same plasma current, the ITB discharges were found to produce four to eight times more fusion power than a comparable ELMy H-mode discharge. Unfortunately, also the alpha particle losses were larger (~16%) compared with the H-mode discharge (7%). In the H-mode discharges, alpha power was deposited to the plasma symmetrically around the magnetic axis, whereas in the current-hole discharge, the power was spread out to a larger volume in the plasma center. This was due to wider particle orbits, and the magnetic structure allowing for a broader hot region in the centre.

  16. On-and-off chip cooling of a Coulomb blockade thermometer down to 2.8 mK

    NASA Astrophysics Data System (ADS)

    Palma, M.; Scheller, C. P.; Maradan, D.; Feshchenko, A. V.; Meschke, M.; Zumbühl, D. M.

    2017-12-01

    Cooling nanoelectronic devices below 10 mK is a great challenge since thermal conductivities become very small, thus creating a pronounced sensitivity to heat leaks. Here, we overcome these difficulties by using adiabatic demagnetization of both the electronic leads and the large metallic islands of a Coulomb blockade thermometer. This reduces the external heat leak through the leads and also provides on-chip refrigeration, together cooling the thermometer down to 2.8 ± 0.1 mK. We present a thermal model which gives a good qualitative account and suggests that the main limitation is heating due to pulse tube vibrations. With better decoupling, temperatures below 1 mK should be within reach, thus opening the door for μK nanoelectronics.

  17. Non-Markovian optimal sideband cooling

    NASA Astrophysics Data System (ADS)

    Triana, Johan F.; Pachon, Leonardo A.

    2018-04-01

    Optimal control theory is applied to sideband cooling of nano-mechanical resonators. The formulation described here makes use of exact results derived by means of the path-integral approach of quantum dynamics, so that no approximation is invoked. It is demonstrated that the intricate interplay between time-dependent fields and structured thermal bath may lead to improve results of the sideband cooling by an order of magnitude. Cooling is quantified by means of the mean number of phonons of the mechanical modes as well as by the von Neumann entropy. Potencial extension to non-linear systems, by means of semiclassical methods, is briefly discussed.

  18. Feasibility Study of a Pressure-fed Engine for a Water Recoverable Space Shuttle Booster

    NASA Technical Reports Server (NTRS)

    Gerstl, E.

    1972-01-01

    Detailed mass properties are presented for a gimbaled, fixed thrust, regeneratively cooled engine having a coaxial pintle injector. The baseline design parameters for this engine are tabulated. Mass properties are also summarized for several other engine configurations i.e., a hinge nozzle using a Techroll seal, a gimbaled duct cooled engine and a regeneratively cooled engine using liquid injection thrust vector control (LITVC). Detailed engine analysis and design trade studies leading to the selection of a regeneratively cooled gimbaled engine and pertaining to the selection of the baseline design configuration are also given.

  19. Cooling in the single-photon strong-coupling regime of cavity optomechanics

    NASA Astrophysics Data System (ADS)

    Nunnenkamp, A.; Børkje, K.; Girvin, S. M.

    2012-05-01

    In this Rapid Communication we discuss how red-sideband cooling is modified in the single-photon strong-coupling regime of cavity optomechanics where the radiation pressure of a single photon displaces the mechanical oscillator by more than its zero-point uncertainty. Using Fermi's golden rule we calculate the transition rates induced by the optical drive without linearizing the optomechanical interaction. In the resolved-sideband limit we find multiple-phonon cooling resonances for strong single-photon coupling that lead to nonthermal steady states including the possibility of phonon antibunching. Our study generalizes the standard linear cooling theory.

  20. Cooling in reduced period optical lattices: Non-zero Raman detuning

    NASA Astrophysics Data System (ADS)

    Malinovsky, V. S.; Berman, P. R.

    2006-08-01

    In a previous paper [Phys. Rev. A 72 (2005) 033415], it was shown that sub-Doppler cooling occurs in a standing-wave Raman scheme (SWRS) that can lead to reduced period optical lattices. These calculations are extended to allow for non-zero detuning of the Raman transitions. New physical phenomena are encountered, including cooling to non-zero velocities, combinations of Sisyphus and "corkscrew" polarization cooling, and somewhat unusual origins of the friction force. The calculations are carried out in a semi-classical approximation and a dressed state picture is introduced to aid in the interpretation of the results.

  1. High-temperature hydrothermal circulation in the lower oceanic crust at fast spreading ridges: Reconciling geophysical and geochemical constraints

    NASA Astrophysics Data System (ADS)

    Wilcock, W.

    2003-04-01

    Hydrothermal circulation is the dominant mechanism for cooling young oceanic crust and knowledge of its depth, extent and timing is critical for our understanding of crustal accretion. At fast-spreading ridges there is considerable controversy regarding the importance of this process in the lower crust. Geochemical data indicate that high-temperature hydrothermal fluids react with the lower crust but they also suggest that the reactions are limited to a narrow temperature interval and involve relatively small volumes of fluid. As a result many geochemical studies conclude that high-temperature hydrothermal circulation plays a relatively small role in heat transport in the lower crust and occurs in a closed system that is isolated from upper crustal hydrothermal cells. In contrast, seismic observations on the fast spreading East Pacific Rise show that the mid-crustal axial magma chamber is underlain by a low velocity zone which is no more than 5-8 km wide throughout the lower crust and is interpreted as a region of elevated temperatures containing relatively low average melt fractions. Irrespective of the style of lower crustal accretion, simple physical considerations suggest that this structure is only thermally feasible if the lower crust cools by extensive hydrothermal circulation. Modeling studies indicate that this requires the permeability of the lower crust to temporarily reach at least ~10-13 m2. In order to reconcile the geochemical and geophysical data it is important to recognize that the thermal constraints do not require pervasive seawater circulation in the lower crust and can be satisfied by focused flow through narrow permeable zones spaced as far as about 1 km apart. Widely spaced regions of flow might be difficult to find in the field especially if the sampling strategies focus on the freshest outcrops. There is a tendency to overestimate the volume of fluid that must circulate through an open single-pass system. The fluid-rock ratios (0.2 - 1) inferred from oxygen isotope studies are often cited as evidence of limited circulation but when interpreted physically they are actually sufficient to transport a substantial proportion of the heat required to solidify and cool the lower crust. Nevertheless the geophysical constraints are also compatible with circulation in a two-layer double diffusive system favored by many researchers, in which the lower crust is cooled by a recirculating brine cell.

  2. A 3D view of magnetic stripes at Pito Deep: implications for the thermal history of fast-spreading lower oceanic crust

    NASA Astrophysics Data System (ADS)

    Maher, S. M.; Gee, J. S.; Doran, A. K.; Gess, M.; Cheadle, M. J.; Coogan, L. A.; Gillis, K. M.; John, B. E.

    2017-12-01

    There is no consensus on how the lower oceanic crust cools at fast-spreading centers and, correspondingly, how the isotherms change with depth. Sufficient heat extraction above the axial magma lens might result in shallowly dipping fossil isotherms off axis, while significant removal of heat laterally in the lower crust would be accompanied by steeper isotherms. These end-member models and additional intermediate models may be accompanied by distinctive geochemical, mineralogical, and textural changes, but the record of geomagnetic reversals can provide key complementary information on the thermal history of the lower oceanic crust. In particular, the location of a reversal boundary with depth over exposed sections of gabbroic rock should reveal the fossil pattern of cooling below 600°C. Tectonic exposures at Pito Deep reveal cross sections of two magnetic reversals recorded in gabbroic rock formed at the fast-spreading East Pacific Rise during chron C2A (3.58­-2.581 Ma). High quality magnetic anomaly data, using a new miniature total field sensor, were acquired on 11 Sentry dives centered over 2An.2n (3.22­-3.11 Ma) and another over the young end of 2An.3n (3.58­-3.33 Ma). The local bathymetry is complex, so we have constructed several forward models based on isotherms predicted by different end-member models to determine which best fits the magnetic anomaly data. Initial results are difficult to reconcile with models of deep crustal cooling and steep isotherms within a few km of the axis. Instead they favor a model in which gabbroic rocks cool over long time periods, resulting in a polarity offset between the gabbros and the overlying dikes and lavas extending for several km. This difference in polarity is supported by magnetization inversions, calculated for a series of horizontal laminae using the Occam inversion (Constable et al., 1987). Additional confirmation comes from the magnetic remanence of nearly 400 gabbroic samples (most partially or fully oriented) retrieved by Jason II. Preliminary thermal demagnetization results provide evidence of multiple magnetization components in many samples, generally consistent with the presence of isochron boundaries between normal and reverse polarities inferred from the anomaly data.

  3. Upgrade of the gas flow control system of the resistive current leads of the LHC inner triplet magnets: Simulation and experimental validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perin, A.; Casas-Cubillos, J.; Pezzetti, M.

    2014-01-29

    The 600 A and 120 A circuits of the inner triplet magnets of the Large Hadron Collider are powered by resistive gas cooled current leads. The current solution for controlling the gas flow of these leads has shown severe operability limitations. In order to allow a more precise and more reliable control of the cooling gas flow, new flowmeters will be installed during the first long shutdown of the LHC. Because of the high level of radiation in the area next to the current leads, the flowmeters will be installed in shielded areas located up to 50 m away frommore » the current leads. The control valves being located next to the current leads, this configuration leads to long piping between the valves and the flowmeters. In order to determine its dynamic behaviour, the proposed system was simulated with a numerical model and validated with experimental measurements performed on a dedicated test bench.« less

  4. Spectrum and light curve of a supernova shock breakout through a thick Wolf-Rayet wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svirski, Gilad; Nakar, Ehud, E-mail: swirskig@post.tau.ac.il

    Wolf-Rayet stars are known to eject winds. Thus, when a Wolf-Rayet star explodes as a supernova, a fast (≳ 40, 000 km s{sup –1}) shock is expected to be driven through a wind. We study the signal expected from a fast supernova shock propagating through an optically thick wind and find that the electrons behind the shock driven into the wind are efficiently cooled by inverse Compton over soft photons that were deposited by the radiation-mediated shock that crossed the star. Therefore, the bolometric luminosity is comparable to the kinetic energy flux through the shock, and the spectrum is foundmore » to be a power law, whose slope and frequency range depend on the number flux of soft photons available for cooling. Wolf-Rayet supernovae that explode through a thick wind have a high flux of soft photons, producing a flat spectrum, νF {sub ν} = Const, in the X-ray range of 0.1 ≲ T ≲ 50 keV. As the shock expands into an optically thin wind, the soft photons are no longer able to cool the shock that plows through the wind, and the bulk of the emission takes the form of a standard core-collapse supernova (without a wind). However, a small fraction of the soft photons is upscattered by the shocked wind and produces a transient unique X-ray signature.« less

  5. Nonconvex model predictive control for commercial refrigeration

    NASA Astrophysics Data System (ADS)

    Gybel Hovgaard, Tobias; Boyd, Stephen; Larsen, Lars F. S.; Bagterp Jørgensen, John

    2013-08-01

    We consider the control of a commercial multi-zone refrigeration system, consisting of several cooling units that share a common compressor, and is used to cool multiple areas or rooms. In each time period we choose cooling capacity to each unit and a common evaporation temperature. The goal is to minimise the total energy cost, using real-time electricity prices, while obeying temperature constraints on the zones. We propose a variation on model predictive control to achieve this goal. When the right variables are used, the dynamics of the system are linear, and the constraints are convex. The cost function, however, is nonconvex due to the temperature dependence of thermodynamic efficiency. To handle this nonconvexity we propose a sequential convex optimisation method, which typically converges in fewer than 5 or so iterations. We employ a fast convex quadratic programming solver to carry out the iterations, which is more than fast enough to run in real time. We demonstrate our method on a realistic model, with a full year simulation and 15-minute time periods, using historical electricity prices and weather data, as well as random variations in thermal load. These simulations show substantial cost savings, on the order of 30%, compared to a standard thermostat-based control system. Perhaps more important, we see that the method exhibits sophisticated response to real-time variations in electricity prices. This demand response is critical to help balance real-time uncertainties in generation capacity associated with large penetration of intermittent renewable energy sources in a future smart grid.

  6. On the area of accretion curtains from fast aperiodic time variability of the intermediate polar EX Hya

    NASA Astrophysics Data System (ADS)

    Semena, Andrey N.; Revnivtsev, Mikhail G.; Buckley, David A. H.; Kotze, Marissa M.; Khabibullin, Ildar I.; Breytenbach, Hannes; Gulbis, Amanda A. S.; Coppejans, Rocco; Potter, Stephen B.

    2014-08-01

    We present results of a study of the fast timing variability of the magnetic cataclysmic variable (mCV) EX Hya. It was previously shown that one may expect the rapid flux variability of mCVs to be smeared out at time-scales shorter than the cooling time of hot plasma in the post-shock region of the accretion curtain near the white dwarf (WD) surface. Estimates of the cooling time and the mass accretion rate, thus provide us with a tool to measure the density of the post-shock plasma and the cross-sectional area of the accretion funnel at the WD surface. We have probed the high frequencies in the aperiodic noise of one of the brightest mCV EX Hya with the help of optical telescopes, namely Southern African Large Telescope and the South African Astronomical Observatory 1.9 m telescope. We place upper limits on the plasma cooling time-scale τ < 0.3 s, on the fractional area of the accretion curtain footprint f < 1.6 × 10-4, and a lower limit on the specific mass accretion rate Ṁ/A>3 g s-1 cm-2. We show that measurements of accretion column footprints via eclipse mapping highly overestimate their areas. We deduce a value of Δr/r ≲ 10- 3 as an upper limit to the penetration depth of the accretion disc plasma at the boundary of the magnetosphere.

  7. Differential temperature sensitivity of synaptic and firing processes in a neural mass model of epileptic discharges explains heterogeneous response of experimental epilepsy to focal brain cooling.

    PubMed

    Soriano, Jaymar; Kubo, Takatomi; Inoue, Takao; Kida, Hiroyuki; Yamakawa, Toshitaka; Suzuki, Michiyasu; Ikeda, Kazushi

    2017-10-01

    Experiments with drug-induced epilepsy in rat brains and epileptic human brain region reveal that focal cooling can suppress epileptic discharges without affecting the brain's normal neurological function. Findings suggest a viable treatment for intractable epilepsy cases via an implantable cooling device. However, precise mechanisms by which cooling suppresses epileptic discharges are still not clearly understood. Cooling experiments in vitro presented evidence of reduction in neurotransmitter release from presynaptic terminals and loss of dendritic spines at post-synaptic terminals offering a possible synaptic mechanism. We show that termination of epileptic discharges is possible by introducing a homogeneous temperature factor in a neural mass model which attenuates the post-synaptic impulse responses of the neuronal populations. This result however may be expected since such attenuation leads to reduced post-synaptic potential and when the effect on inhibitory interneurons is less than on excitatory interneurons, frequency of firing of pyramidal cells is consequently reduced. While this is observed in cooling experiments in vitro, experiments in vivo exhibit persistent discharges during cooling but suppressed in magnitude. This leads us to conjecture that reduction in the frequency of discharges may be compensated through intrinsic excitability mechanisms. Such compensatory mechanism is modelled using a reciprocal temperature factor in the firing response function in the neural mass model. We demonstrate that the complete model can reproduce attenuation of both magnitude and frequency of epileptic discharges during cooling. The compensatory mechanism suggests that cooling lowers the average and the variance of the distribution of threshold potential of firing across the population. Bifurcation study with respect to the temperature parameters of the model reveals how heterogeneous response of epileptic discharges to cooling (termination or suppression only) is exhibited. Possibility of differential temperature effects on post-synaptic potential generation of different populations is also explored.

  8. Differential temperature sensitivity of synaptic and firing processes in a neural mass model of epileptic discharges explains heterogeneous response of experimental epilepsy to focal brain cooling

    PubMed Central

    Inoue, Takao; Kida, Hiroyuki; Yamakawa, Toshitaka; Suzuki, Michiyasu

    2017-01-01

    Experiments with drug-induced epilepsy in rat brains and epileptic human brain region reveal that focal cooling can suppress epileptic discharges without affecting the brain’s normal neurological function. Findings suggest a viable treatment for intractable epilepsy cases via an implantable cooling device. However, precise mechanisms by which cooling suppresses epileptic discharges are still not clearly understood. Cooling experiments in vitro presented evidence of reduction in neurotransmitter release from presynaptic terminals and loss of dendritic spines at post-synaptic terminals offering a possible synaptic mechanism. We show that termination of epileptic discharges is possible by introducing a homogeneous temperature factor in a neural mass model which attenuates the post-synaptic impulse responses of the neuronal populations. This result however may be expected since such attenuation leads to reduced post-synaptic potential and when the effect on inhibitory interneurons is less than on excitatory interneurons, frequency of firing of pyramidal cells is consequently reduced. While this is observed in cooling experiments in vitro, experiments in vivo exhibit persistent discharges during cooling but suppressed in magnitude. This leads us to conjecture that reduction in the frequency of discharges may be compensated through intrinsic excitability mechanisms. Such compensatory mechanism is modelled using a reciprocal temperature factor in the firing response function in the neural mass model. We demonstrate that the complete model can reproduce attenuation of both magnitude and frequency of epileptic discharges during cooling. The compensatory mechanism suggests that cooling lowers the average and the variance of the distribution of threshold potential of firing across the population. Bifurcation study with respect to the temperature parameters of the model reveals how heterogeneous response of epileptic discharges to cooling (termination or suppression only) is exhibited. Possibility of differential temperature effects on post-synaptic potential generation of different populations is also explored. PMID:28981509

  9. Thermoelectrics in Coulomb-coupled quantum dots: Cotunneling and energy-dependent lead couplings

    NASA Astrophysics Data System (ADS)

    Walldorf, Nicklas; Jauho, Antti-Pekka; Kaasbjerg, Kristen

    2017-09-01

    We study thermoelectric effects in Coulomb-coupled quantum-dot (CCQD) systems beyond lowest-order tunneling processes and the often applied wide-band approximation. To this end, we present a master-equation (ME) approach based on a perturbative T -matrix calculation of the charge and heat tunneling rates and transport currents. Applying the method to transport through a noninteracting single-level QD, we demonstrate excellent agreement with the Landauer-Büttiker theory when higher-order (cotunneling) processes are included in the ME. Next, we study the effect of cotunneling and energy-dependent lead couplings on the heat currents in a system of two CCQDs. We find that cotunneling processes (i) can dominate the off-resonant heat currents at low temperature and bias compared to the interdot interaction, and (ii) give rise to a pronounced reduction of the cooling power achievable with the recently demonstrated Maxwell's demon cooling mechanism. Furthermore, we demonstrate that the cooling power can be boosted significantly by carefully engineering the energy dependence of the lead couplings to filter out undesired transport processes. Our findings emphasize the importance of higher-order cotunneling processes as well as engineered energy-dependent lead couplings in the optimization of the thermoelectric performance of CCQD systems.

  10. Thermal Analysis of the ILC Superconductin Quadrupole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Ian; /Rose-Hulman Inst., Terre Haute /SLAC

    2006-09-13

    Critical to a particle accelerator's functioning, superconducting magnets serve to focus and aim the particle beam. The Stanford Linear Accelerator Center (SLAC) has received a prototype superconducting quadrupole designed and built by the Centro de Investigaciones Energ{acute e}ticas, Medioambientales y Tecnol{acute o}gicas (CIEMAT) to be evaluated for the International Linear Collider (ILC) project. To ensure proper functioning of the magnet, the device must be maintained at cryogenic temperatures by use of a cooling system containing liquid nitrogen and liquid helium. The cool down period of a low temperature cryostat is critical to the success of an experiment, especially a prototypemore » setup such as this one. The magnet and the dewar each contain unique heat leaks and material properties. These differences can lead to tremendous thermal stresses. The system was analyzed mathematically, leading to ideal liquid helium and liquid nitrogen flow rates during the magnet's cool-down to 4.2 K, along with a reasonable estimate of how long this cool-down will take. With a flow rate of ten gaseous liters of liquid nitrogen per minute, the nitrogen shield will take approximately five hours to cool down to 77 K. With a gaseous helium flow rate of sixty liters per minute, the magnet will take at least nineteen hours to cool down to a temperature of 4.2 K.« less

  11. Variable exhumation rates and variable displacement rates: Documenting recent slowing of Himalayan shortening in western Bhutan

    USGS Publications Warehouse

    McQuarrie, Nadine; Tobgay, Tobgay; Long, Sean P.; Reiners, Peter W.; Cosca, Michael A.

    2014-01-01

    We link exhumational variability in space and time to the evolving geometry of the Himalayan fold–thrust belt in western Bhutan. By combining new and published geochronologic and thermochronologic data we document the burial age, peak temperatures and complete cooling history from 20 Ma to the present over an across-strike distance of ∼125 km. These integrated cooling curves highlight windows of fast exhumation that vary spatially and temporally. We propose that pulses of fast exhumation are a result of structures that facilitate the vertical motion of material, illustrated in sequentially-restored cross sections. Due to a range of permissible geometries at depth, we explore and evaluate the impact of geometry on kinematics and rates of deformation. The linked cooling history and cross sections provide estimates of both magnitude and timing of thrust sheet displacement and highlight temporal variability in potential shortening rates. Structural and chronologic data illustrate a general north to south progression of Himalayan deformation, with emplacement of the Main Central thrust (MCT), Paro thrust and Shumar thrust by 12 to no later than 9 Ma. Two different geometries and kinematic scenarios for the Lesser Himalayan duplex are proposed. A north to south propagating duplex system requires that the southern portion of that system, south of the MCT, deformed and cooled by 9 Ma, leaving only the southernmost thrust sheets, including the Main Boundary and Main Frontal thrusts, to deform between 9 and 0 Ma. This limited post 9 Ma shortening would necessitate a marked slowdown in convergence accommodated on the Main Himalayan thrust. A two-tiered duplex system, which allows for the Paro window duplex and the southern Baxa duplex to form simultaneously, permits duplex formation and accompanying exhumation until 6 Ma. Limited cooling from ∼200 °C to the surface post 6 Ma suggests either a decrease in shortening rates from 6 to 0 Ma or that duplex formation and exhumation are temporally decoupled. Our combined cooling curves highlight that the youngest cooling ages may not mark the fastest thrusting rates or the window of fastest exhumation. Instead, temporal variations in exhumation are best viewed through identifying transients in exhumation rate. We suggest that the strongest control on exhumation magnitude and variability is fold–thrust belt geometry, particularly the locations and magnitudes of footwall ramps, which can change over 10ʼs of km distance. Balanced cross sections predict the location and magnitude of these ramps and how they vary in space and time, providing an untapped potential for testing permissible cross-section geometries and kinematics against measured cooling histories.

  12. Numerical optimization of a multi-jet cooling system for the blown film extrusion

    NASA Astrophysics Data System (ADS)

    Janas, M.; Wortberg, J.

    2015-05-01

    The limiting factor for every extrusion process is the cooling. For the blown film process, this task is usually done by means of a single or dual lip air ring. Prior work has shown that two major effects are responsible for a bad heat transfer. The first one is the interaction between the jet and the ambient air. It reduces the velocity of the jet and enlarges the straight flow. The other one is the formation of a laminar boundary layer on the film surface due to the fast flowing cooling air. In this case, the boundary layer isolates the film and prevents an efficient heat transfer. To improve the heat exchange, a novel cooling approach is developed, called Multi-Jet. The new cooling system uses several slit nozzles over the whole tube formation zone for cooling the film. In contrast to a conventional system, the cooling air is guided vertically on the film surface in different heights to penetrate the boundary sublayer. Simultaneously, a housing of the tube formation zone is practically obtained to reduce the interaction with the ambient air. For the numerical optimization of the Multi-Jet system, a new procedure is developed. First, a prediction model identifies a worth considering cooling configuration. Therefore, the prediction model computes a film curve using the formulation from Zatloukal-Vlcek and the energy balance for the film temperature. Thereafter, the optimized cooling geometry is investigated in detail using a process model for the blown film extrusion that is able to compute a realistic bubble behavior depending on the cooling situation. In this paper, the Multi-Jet cooling system is numerically optimized for several different process states, like mass throughputs and blow-up ratios using one slit nozzle setting. For each process condition, the best cooling result has to be achieved. Therefore, the height of any nozzle over the tube formation zone is adjustable. The other geometrical parameters of the cooling system like the nozzle diameter or the nozzle width are fix.

  13. Test facility for investigation of heat transfer of promising coolants for the nuclear power industry

    NASA Astrophysics Data System (ADS)

    Belyaev, I. A.; Sviridov, V. G.; Batenin, V. M.; Biryukov, D. A.; Nikitina, I. S.; Manchkha, S. P.; Pyatnitskaya, N. Yu.; Razuvanov, N. G.; Sviridov, E. V.

    2017-11-01

    The results are presented of experimental investigations into liquid metal heat transfer performed by the joint research group consisting of specialist in heat transfer and hydrodynamics from NIU MPEI and JIHT RAS. The program of experiments has been prepared considering the concept of development of the nuclear power industry in Russia. This concept calls for, in addition to extensive application of water-cooled, water-moderated (VVER-type) power reactors and BN-type sodium cooled fast reactors, development of the new generation of BREST-type reactors, fusion power reactors, and thermonuclear neutron sources. The basic coolants for these nuclear power installations will be heavy liquid metals, such as lead and lithium-lead alloy. The team of specialists from NRU MPEI and JIHT RAS commissioned a new RK-3 mercury MHD-test facility. The major components of this test facility are a unique electrical magnet constructed at Budker Nuclear Physics Institute and a pressurized liquid metal circuit. The test facility is designed for investigating upward and downward liquid metal flows in channels of various cross-sections in a transverse magnetic field. A probe procedure will be used for experimental investigation into heat transfer and hydrodynamics as well as for measuring temperature, velocity, and flow parameter fluctuations. It is generally adopted that liquid metals are the best coolants for the Tokamak reactors. However, alternative coolants should be sought for. As an alternative to liquid metal coolants, molten salts, such as fluorides of lithium and beryllium (so-called FLiBes) or fluorides of alkali metals (so-called FLiNaK) doped with uranium fluoride, can be used. That is why the team of specialists from NRU MPEI and JIHT RAS, in parallel with development of a mercury MHD test facility, is designing a test facility for simulating molten salt heat transfer and hydrodynamics. Since development of this test facility requires numerical predictions and verification of numerical codes, all examined configurations of the MHD flow are also investigated numerically.

  14. Radiogenic lead as coolant, reflector and moderator in advanced fast reactors

    NASA Astrophysics Data System (ADS)

    Kulikov, E. G.

    2017-01-01

    Main purpose of the study is assessing reasonability for recovery, production and application of radiogenic lead as a coolant, neutron moderator and neutron reflector in advanced fast reactors. When performing the study, thermal, physical and neutron-physical properties of natural and radiogenic lead were analyzed. The following results were obtained: 1. Radiogenic lead with high content of isotope 208Pb can be extracted from thorium or mixed thorium-uranium ores because 208Pb is a final product of 232Th natural decay chain. 2. The use of radiogenic lead with high 208Pb content in advanced fast reactors and accelerator-driven systems (ADS) makes it possible to improve significantly their neutron-physical and thermal-hydraulic parameters. 3. The use of radiogenic lead with high 208Pb content in advanced fast reactors as a coolant opens the possibilities for more intense fuel breeding and for application of well-known oxide fuel instead of the promising but not tested enough nitride fuel under the same safety parameters. 4. The use of radiogenic lead with high 208Pb content in ADS as a coolant can upgrade substantially the level of neutron flux in the ADS blanket, which enables effective transmutation of radioactive wastes with low cross-sections of radiative neutron capture.

  15. Sex differences in mouse Transient Receptor Potential Cation Channel, Subfamily M, Member 8 expressing trigeminal ganglion neurons

    PubMed Central

    Caudle, Stephanie L.; Jenkins, Alan C.; Ahn, Andrew H.; Neubert, John K.

    2017-01-01

    The detection of cool temperatures is thought to be mediated by primary afferent neurons that express the cool temperature sensing protein Transient Receptor Potential Cation Channel, Subfamily M, Member 8 (TRPM8). Using mice, this study tested the hypothesis that sex differences in sensitivity to cool temperatures were mediated by differences in neurons that express TRPM8. Ion currents from TRPM8 expressing trigeminal ganglion (TRG) neurons in females demonstrated larger hyperpolarization-activated cyclic nucleotide-gated currents (Ih) than male neurons at both 30° and 18°C. Additionally, female neurons’ voltage gated potassium currents (Ik) were suppressed by cooling, whereas male Ik was not significantly affected. At the holding potential tested (-60mV) TRPM8 currents were not visibly activated in either sex by cooling. Modeling the effect of Ih and Ik on membrane potentials demonstrated that at 30° the membrane potential in both sexes is unstable. At 18°, female TRPM8 TRG neurons develop a large oscillating pattern in their membrane potential, whereas male neurons become highly stable. These findings suggest that the differences in Ih and Ik in the TRPM8 TRG neurons of male and female mice likely leads to greater sensitivity of female mice to the cool temperature. This hypothesis was confirmed in an operant reward/conflict assay. Female mice contacted an 18°C surface for approximately half the time that males contacted the cool surface. At 33° and 10°C male and female mice contacted the stimulus for similar amounts of time. These data suggest that sex differences in the functioning of Ih and Ik in TRPM8 expressing primary afferent neurons leads to differences in cool temperature sensitivity. PMID:28472061

  16. X-ray chemical analyzer for field applications

    DOEpatents

    Gamba, Otto O. M.

    1977-01-01

    A self-supporting portable field multichannel X-ray chemical analyzer system comprising a lightweight, flexibly connected, remotely locatable, radioisotope-excited sensing probe utilizing a cryogenically-cooled solid state semi-conductor crystal detector for fast in situ non-destructive, qualitative and quantitative analysis of elements in solid, powder, liquid or slurried form, utilizing an X-ray energy dispersive spectrometry technique.

  17. Measurements of convective and radiative heating in wildland fires

    Treesearch

    David Frankman; Brent W. Webb; Bret W. Butler; Daniel Jimenez; Jason M. Forthofer; Paul Sopko; Kyle S. Shannon; J. Kevin Hiers; Roger D. Ottmar

    2012-01-01

    Time-resolved irradiance and convective heating and cooling of fast-response thermopile sensors were measured in 13 natural and prescribed wildland fires under a variety of fuel and ambient conditions. It was shown that a sensor exposed to the fire environment was subject to rapid fluctuations of convective transfer whereas irradiance measured by a windowed sensor was...

  18. Highly crosslinked silicon polymers for gas chromatography columns

    NASA Technical Reports Server (NTRS)

    Shen, Thomas C. (Inventor)

    1994-01-01

    A new highly crosslinked silicone polymer particle for gas chromatography application and a process for synthesizing such copolymer are described. The new copolymer comprises vinyltriethoxysilane and octadecyltrichlorosilane. The copolymer has a high degree of crosslinking and a cool balance of polar to nonpolar sites in the porous silicon polymer assuring fast separation of compounds of variable polarity.

  19. Vapour Pressure and Adiabatic Cooling from Champagne: Slow-Motion Visualization of Gas Thermodynamics

    ERIC Educational Resources Information Center

    Vollmer, Michael; Mollmann, Klaus-Peter

    2012-01-01

    The recent introduction of inexpensive high-speed cameras offers a new experimental approach to many simple but fast-occurring events in physics. In this paper, the authors present two simple demonstration experiments recorded with high-speed cameras in the fields of gas dynamics and thermal physics. The experiments feature vapour pressure effects…

  20. Particle-in-cell studies of fast-ion slowing-down rates in cool tenuous magnetized plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Eugene S.; Cohen, Samuel A.; Welch, Dale R.

    We report on 3D-3V particle-in-cell simulations of fast-ion energy-loss rates in a cold, weakly-magnetized, weakly-coupled plasma where the electron gyroradius, ρe, is comparable to or less than the Debye length, λ De, and the fast-ion velocity exceeds the electron thermal velocity, a regime in which the electron response may be impeded. These simulations use explicit algorithms, spatially resolve ρ e and λ De, and temporally resolve the electron cyclotron and plasma frequencies. For mono-energetic dilute fast ions with isotropic velocity distributions, these scaling studies of the slowing-down time, τ s, versus fast-ion charge are in agreement with unmagnetized slowing-down theory;more » with an applied magnetic field, no consistent anisotropy between τs in the cross-field and field-parallel directions could be resolved. Scaling the fast-ion charge is confirmed as a viable way to reduce the required computational time for each simulation. In conclusion, the implications of these slowing down processes are described for one magnetic-confinement fusion concept, the small, advanced-fuel, field-reversed configuration device.« less

  1. Particle-in-cell studies of fast-ion slowing-down rates in cool tenuous magnetized plasma

    DOE PAGES

    Evans, Eugene S.; Cohen, Samuel A.; Welch, Dale R.

    2018-04-05

    We report on 3D-3V particle-in-cell simulations of fast-ion energy-loss rates in a cold, weakly-magnetized, weakly-coupled plasma where the electron gyroradius, ρe, is comparable to or less than the Debye length, λ De, and the fast-ion velocity exceeds the electron thermal velocity, a regime in which the electron response may be impeded. These simulations use explicit algorithms, spatially resolve ρ e and λ De, and temporally resolve the electron cyclotron and plasma frequencies. For mono-energetic dilute fast ions with isotropic velocity distributions, these scaling studies of the slowing-down time, τ s, versus fast-ion charge are in agreement with unmagnetized slowing-down theory;more » with an applied magnetic field, no consistent anisotropy between τs in the cross-field and field-parallel directions could be resolved. Scaling the fast-ion charge is confirmed as a viable way to reduce the required computational time for each simulation. In conclusion, the implications of these slowing down processes are described for one magnetic-confinement fusion concept, the small, advanced-fuel, field-reversed configuration device.« less

  2. Challenges of using air conditioning in an increasingly hot climate

    NASA Astrophysics Data System (ADS)

    Lundgren-Kownacki, Karin; Hornyanszky, Elisabeth Dalholm; Chu, Tuan Anh; Olsson, Johanna Alkan; Becker, Per

    2018-03-01

    At present, air conditioning (AC) is the most effective means for the cooling of indoor space. However, its increased global use is problematic for various reasons. This paper explores the challenges linked to increased AC use and discusses more sustainable alternatives. A literature review was conducted applying a transdisciplinary approach. It was further complemented by examples from cities in hot climates. To analyse the findings, an analytical framework was developed which considers four societal levels—individual, community, city, and national. The main challenges identified from the literature review are as follows: environmental, organisational, socio-economical, biophysical and behavioural. The paper also identifies several measures that could be taken to reduce the fast growth of AC use. However, due to the complex nature of the problem, there is no single solution to provide sustainable cooling. Alternative solutions were categorised in three broad categories: climate-sensitive urban planning and building design, alternative cooling technologies, and climate-sensitive attitudes and behaviour. The main findings concern the problems arising from leaving the responsibility to come up with cooling solutions entirely to the individual, and how different societal levels can work towards more sustainable cooling options. It is concluded that there is a need for a more holistic view both when it comes to combining various solutions as well as involving various levels in society.

  3. Thermometry of levitated nanoparticles in a hybrid electro-optical trap

    NASA Astrophysics Data System (ADS)

    Aranas, E. B.; Fonseca, P. Z. G.; Barker, P. F.; Monteiro, T. S.

    2017-03-01

    There have been recent rapid developments in stable trapping of levitated nanoparticles in high vacuum. Cooling of nanoparticles, from phonon occupancies of 107 down to ≃ 100{--}1000 phonons, have already been achieved by several groups. Prospects for quantum ground-state cooling seem extremely promising. Cavity-cooling without added stabilisation by feedback cooling remains challenging, but trapping at high vacuum in a cavity is now possible through the addition of a Paul trap. However, the Paul trap has been found to qualitatively modify the cavity output spectrum, with the latter acquiring an atypical ‘split-sideband’ structure, of different form from the displacement spectrum, and which depends on N, the optical well at which the particle localises. In the present work we investigate the N-dependence of the dynamics, in particular with respect to thermometry: we show that in strong cooling regions N≳ 100, the temperature may still be reliably inferred from the cavity output spectra. We also explain the N-dependence of the mechanical frequencies and optomechanical coupling showing that these may be accurately estimated. We present a simple ‘fast-cavity’ model for the cavity output and test all our findings against full numerical solutions of the nonlinear stochastic equations of motion for the system.

  4. New Research on the Cowling and Cooling of Radial Engines

    NASA Technical Reports Server (NTRS)

    Molloy, Richard C.; Brewster, James H., III

    1943-01-01

    An extensive series of wind-tunnel tests on a half-scale conventional, nacelle model were made by the United Aircraft Corporation to determine and correlate the effects of many variables on cooling air flow and nacelle drag. The primary investigation was concerned with the reaction of these factors to varying conditions ahead of, across, and behind the engine. In the light of this investigation, common misconceptions and factors which are frequently overlooked in the cooling and cowling of radial engines are considered in some detail. Data are presented to support certain design recommendations and conclusions which should lead toward the improvement of present engine installations. Several charts are included to facilitate the estimation of cooling drag, available cooling pressure, and cowl exit area.

  5. Front End for a neutrino factory or muon collider

    DOE PAGES

    Neuffer, David; Snopok, Pavel; Alexahin, Yuri

    2017-11-30

    A neutrino factory or muon collider requires the capture and cooling of a large number of muons. Scenarios for capture, bunching, phase-energy rotation and initial cooling of μ’s produced from a proton source target have been developed, initially for neutrino factory scenarios. They require a drift section from the target, a bunching section and a Φ-δE rotation section leading into the cooling channel. Important concerns are rf limitations within the focusing magnetic fields and large losses in the transport. The currently preferred cooling channel design is an “HFOFO Snake” configuration that cools both μ + and μ - transversely andmore » longitudinally. Finally, the status of the design is presented and variations are discussed.« less

  6. Cooling circuit for a gas turbine bucket and tip shroud

    DOEpatents

    Willett, Fred Thomas

    2004-07-13

    An open cooling circuit for a gas turbine airfoil and associated tip shroud includes a first group of cooling holes internal to the airfoil and extending in a radially outward direction generally along a leading edge of the airfoil; a second group of cooling holes internal to the airfoil and extending in a radially outward direction generally along a trailing edge of the airfoil. A common plenum is formed in the tip shroud in direct communication with the first and second group of cooling holes, but a second plenum may be provided for the second group of radial holes. A plurality of exhaust holes extends from the plenum(s), through the tip shroud and opening along a peripheral edge of the tip shroud.

  7. A Charge Separation Study to Enable the Design of a Complete Muon Cooling Channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshikawa, C.; Ankenbrandt, Charles M.; Johnson, Rolland P.

    2013-12-01

    The most promising designs for 6D muon cooling channels operate on a specific sign of electric charge. In particular, the Helical Cooling Channel (HCC) and Rectilinear RFOFO designs are the leading candidates to become the baseline 6D cooling channel in the Muon Accelerator Program (MAP). Time constraints prevented the design of a realistic charge separator, so a simplified study was performed to emulate the effects of charge separation on muons exiting the front end of a muon collider. The output of the study provides particle distributions that the competing designs will use as input into their cooling channels. We reportmore » here on the study of the charge separator that created the simulated particles.« less

  8. A Techno-Economic Assessment of Hybrid Cooling Systems for Coal- and Natural-Gas-Fired Power Plants with and without Carbon Capture and Storage.

    PubMed

    Zhai, Haibo; Rubin, Edward S

    2016-04-05

    Advanced cooling systems can be deployed to enhance the resilience of thermoelectric power generation systems. This study developed and applied a new power plant modeling option for a hybrid cooling system at coal- or natural-gas-fired power plants with and without amine-based carbon capture and storage (CCS) systems. The results of the plant-level analyses show that the performance and cost of hybrid cooling systems are affected by a range of environmental, technical, and economic parameters. In general, when hot periods last the entire summer, the wet unit of a hybrid cooling system needs to share about 30% of the total plant cooling load in order to minimize the overall system cost. CCS deployment can lead to a significant increase in the water use of hybrid cooling systems, depending on the level of CO2 capture. Compared to wet cooling systems, widespread applications of hybrid cooling systems can substantially reduce water use in the electric power sector with only a moderate increase in the plant-level cost of electricity generation.

  9. Radiative Cooling: Principles, Progress, and Potentials

    PubMed Central

    Hossain, Md. Muntasir

    2016-01-01

    The recent progress on radiative cooling reveals its potential for applications in highly efficient passive cooling. This approach utilizes the maximized emission of infrared thermal radiation through the atmospheric window for releasing heat and minimized absorption of incoming atmospheric radiation. These simultaneous processes can lead to a device temperature substantially below the ambient temperature. Although the application of radiative cooling for nighttime cooling was demonstrated a few decades ago, significant cooling under direct sunlight has been achieved only recently, indicating its potential as a practical passive cooler during the day. In this article, the basic principles of radiative cooling and its performance characteristics for nonradiative contributions, solar radiation, and atmospheric conditions are discussed. The recent advancements over the traditional approaches and their material and structural characteristics are outlined. The key characteristics of the thermal radiators and solar reflectors of the current state‐of‐the‐art radiative coolers are evaluated and their benchmarks are remarked for the peak cooling ability. The scopes for further improvements on radiative cooling efficiency for optimized device characteristics are also theoretically estimated. PMID:27812478

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinbeck, S.

    Meteorological data collected at SRS since the mid-1960’s have been analyzed for trends in minimum and maximum temperature, heating and cooling degree days, precipitation and relative humidity. The trends in meteorological data collected have been relatively small compared to the interannual variability that is observed. The observed increases, while small, appear to be real (statistically significant). Overnight low temperatures (3.1°F) have increased over twice as fast as the increases in daytime highs (1.4°F). Similarly, there are statistically significant increases in the number of cooling degree days as well. There has been a similar decrease in the number of HDD andmore » freezing days, consistent with the overall increase in overnight low temperatures.« less

  11. High-power closed-cycle 4He cryostat with top-loading sample exchange

    NASA Astrophysics Data System (ADS)

    Piegsa, F. M.; van den Brandt, B.; Kirch, K.

    2017-10-01

    We report on the development of a versatile cryogen-free laboratory cryostat based upon a commercial pulse tube cryocooler. It provides enough cooling power for continuous recondensation of circulating 4He gas at a condensation pressure of approximately 250 mbar. Moreover, the cryostat allows for exchange of different cryostat-inserts as well as fast and easy ;wet; top-loading of samples directly into the 1 K pot with a turn-over time of less than 75 min. Starting from room temperature and using a 4He cryostat-insert, a base temperature of 1.0 K is reached within approximately seven hours and a cooling power of 250 mW is established at 1.24 K.

  12. Fast charging of lithium-ion batteries at all temperatures.

    PubMed

    Yang, Xiao-Guang; Zhang, Guangsheng; Ge, Shanhai; Wang, Chao-Yang

    2018-06-25

    Fast charging is a key enabler of mainstream adoption of electric vehicles (EVs). None of today's EVs can withstand fast charging in cold or even cool temperatures due to the risk of lithium plating. Efforts to enable fast charging are hampered by the trade-off nature of a lithium-ion battery: Improving low-temperature fast charging capability usually comes with sacrificing cell durability. Here, we present a controllable cell structure to break this trade-off and enable lithium plating-free (LPF) fast charging. Further, the LPF cell gives rise to a unified charging practice independent of ambient temperature, offering a platform for the development of battery materials without temperature restrictions. We demonstrate a 9.5 Ah 170 Wh/kg LPF cell that can be charged to 80% state of charge in 15 min even at -50 °C (beyond cell operation limit). Further, the LPF cell sustains 4,500 cycles of 3.5-C charging in 0 °C with <20% capacity loss, which is a 90× boost of life compared with a baseline conventional cell, and equivalent to >12 y and >280,000 miles of EV lifetime under this extreme usage condition, i.e., 3.5-C or 15-min fast charging at freezing temperatures.

  13. Decommissioning of German Nuclear Research Facilities under the Governance of the Federal Ministry of Education and Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weigl, M.

    2008-07-01

    Since the announcement of the first nuclear program in 1956, nuclear R and D in Germany has been supported by the Federal Government under four nuclear programs and later on under more general energy R and D programs. The original goal was to help German industry to achieve safe, low-cost generation of energy and self-sufficiency in the various branches of nuclear technology, including the fast breeder reactor and the fuel cycle. Several national research centers were established to host or operate experimental and demonstration plants. These are mainly located at the sites of the national research centers at Juelich andmore » Karlsruhe. In the meantime, all these facilities were shut down and most of them are now in a state of decommissioning and dismantling (D and D). Meanwhile, Germany is one of the leading countries in the world in the field of D and D. Two big demonstration plants, the Niederaichbach Nuclear Power Plant (KKN) a heavy-water cooled pressure tube reactor with carbon-dioxide cooling and the Karlstein Superheated Steam Reactor (HDR) a boiling light water reactor with a thermal power of 100 MW, are totally dismantled and 'green field' is reached. For two other projects the return to 'green field' sites will be reached by the end of this decade. These are the dismantling of the Multi-Purpose Research Reactor (MZFR) and the Compact Sodium Cooled Reactor (KNK) both located at the Forschungszentrum Karlsruhe. Within these projects a lot of new solutions und innovative techniques were tested, which were developed at German universities and in small and medium sized companies mostly funded by the Federal Ministry of Education and Research (BMBF). For example, high performance underwater cutting technologies like plasma arc cutting and contact arc metal cutting. (authors)« less

  14. Moderate Cortical Cooling Eliminates Thalamocortical Silent States during Slow Oscillation.

    PubMed

    Sheroziya, Maxim; Timofeev, Igor

    2015-09-23

    Reduction in temperature depolarizes neurons by a partial closure of potassium channels but decreases the vesicle release probability within synapses. Compared with cooling, neuromodulators produce qualitatively similar effects on intrinsic neuronal properties and synapses in the cortex. We used this similarity of neuronal action in ketamine-xylazine-anesthetized mice and non-anesthetized mice to manipulate the thalamocortical activity. We recorded cortical electroencephalogram/local field potential (LFP) activity and intracellular activities from the somatosensory thalamus in control conditions, during cortical cooling and on rewarming. In the deeply anesthetized mice, moderate cortical cooling was characterized by reversible disruption of the thalamocortical slow-wave pattern rhythmicity and the appearance of fast LFP spikes, with frequencies ranging from 6 to 9 Hz. These LFP spikes were correlated with the rhythmic IPSP activities recorded within the thalamic ventral posterior medial neurons and with depolarizing events in the posterior nucleus neurons. Similar cooling of the cortex during light anesthesia rapidly and reversibly eliminated thalamocortical silent states and evoked thalamocortical persistent activity; conversely, mild heating increased thalamocortical slow-wave rhythmicity. In the non-anesthetized head-restrained mice, cooling also prevented the generation of thalamocortical silent states. We conclude that moderate cortical cooling might be used to manipulate slow-wave network activity and induce neuromodulator-independent transition to activated states. Significance statement: In this study, we demonstrate that moderate local cortical cooling of lightly anesthetized or naturally sleeping mice disrupts thalamocortical slow oscillation and induces the activated local field potential pattern. Mild heating has the opposite effect; it increases the rhythmicity of thalamocortical slow oscillation. Our results demonstrate that slow oscillation can be influenced by manipulations to the properties of cortical neurons without changes in neuromodulation. Copyright © 2015 the authors 0270-6474/15/3513006-14$15.00/0.

  15. Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moisseytsev, A.; Sienicki, J. J.

    2009-07-01

    Analyses of supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle performance have largely settled on the recompression supercritical cycle (or Feher cycle) incorporating a flow split between the main compressor downstream of heat rejection, a recompressing compressor providing direct compression without heat rejection, and high and low temperature recuperators to raise the effectiveness of recuperation and the cycle efficiency. Alternative cycle layouts have been previously examined by Angelino (Politecnico, Milan), by MIT (Dostal, Hejzlar, and Driscoll), and possibly others but not for sodium-cooled fast reactors (SFRs) operating at relatively low core outlet temperature. Thus, the present authors could not be suremore » that the recompression cycle is an optimal arrangement for application to the SFR. To ensure that an advantageous alternative layout has not been overlooked, several alternative cycle layouts have been investigated for a S-CO{sub 2} Brayton cycle coupled to the Advanced Burner Test Reactor (ABTR) SFR preconceptual design having a 510 C core outlet temperature and a 470 C turbine inlet temperature to determine if they provide any benefit in cycle performance (e.g., enhanced cycle efficiency). No such benefits were identified, consistent with the previous examinations, such that attention was devoted to optimizing the recompression supercritical cycle. The effects of optimizing the cycle minimum temperature and pressure are investigated including minimum temperatures and/or pressures below the critical values. It is found that improvements in the cycle efficiency of 1% or greater relative to previous analyses which arbitrarily fixed the minimum temperature and pressure can be realized through an optimal choice of the combination of the minimum cycle temperature and pressure (e.g., for a fixed minimum temperature there is an optimal minimum pressure). However, this leads to a requirement for a larger cooler for heat rejection which may impact the tradeoff between efficiency and capital cost. In addition, for minimum temperatures below the critical temperature, a lower heat sink temperature is required the availability of which is dependent upon the climate at the specific plant site.« less

  16. Optimizing Cold Water Immersion for Exercise-Induced Hyperthermia: A Meta-analysis.

    PubMed

    Zhang, Yang; Davis, Jon-Kyle; Casa, Douglas J; Bishop, Phillip A

    2015-11-01

    Cold water immersion (CWI) provides rapid cooling in events of exertional heat stroke. Optimal procedures for CWI in the field are not well established. This meta-analysis aimed to provide structured analysis of the effectiveness of CWI on the cooling rate in healthy adults subjected to exercise-induced hyperthermia. An electronic search (December 2014) was conducted using the PubMed and Web of Science. The mean difference of the cooling rate between CWI and passive recovery was calculated. Pooled analyses were based on a random-effects model. Sources of heterogeneity were identified through a mixed-effects model Q statistic. Inferential statistics aggregated the CWI cooling rate for extrapolation. Nineteen studies qualified for inclusion. Results demonstrate CWI elicited a significant effect: mean difference, 0.03°C·min(-1); 95% confidence interval, 0.03-0.04°C·min(-1). A conservative, observed estimate of the CWI cooling rate was 0.08°C·min(-1) across various conditions. CWI cooled individuals twice as fast as passive recovery. Subgroup analyses revealed that cooling was more effective (Q test P < 0.10) when preimmersion core temperature ≥38.6°C, immersion water temperature ≤10°C, ambient temperature ≥20°C, immersion duration ≤10 min, and using torso plus limbs immersion. There is insufficient evidence of effect using forearms/hands CWI for rapid cooling: mean difference, 0.01°C·min(-1); 95% confidence interval, -0.01°C·min(-1) to 0.04°C·min(-1). A combined data summary, pertaining to 607 subjects from 29 relevant studies, was presented for referencing the weighted cooling rate and recovery time, aiming for practitioners to better plan emergency procedures. An optimal procedure for yielding high cooling rates is proposed. Using prompt vigorous CWI should be encouraged for treating exercise-induced hyperthermia whenever possible, using cold water temperature (approximately 10°C) and maximizing body surface contact (whole-body immersion).

  17. Nuclear safety considerations in the conceptual design of a fast reactor for space electric power and propulsion

    NASA Technical Reports Server (NTRS)

    Hsieh, T.-M.; Koenig, D. R.

    1977-01-01

    Some nuclear safety aspects of a 3.2 mWt heat pipe cooled fast reactor with out-of-core thermionic converters are discussed. Safety related characteristics of the design including a thin layer of B4C surrounding the core, the use of heat pipes and BeO reflector assembly, the elimination of fuel element bowing, etc., are highlighted. Potential supercriticality hazards and countermeasures are considered. Impacts of some safety guidelines of space transportation system are also briefly discussed, since the currently developing space shuttle would be used as the primary launch vehicle for the nuclear electric propulsion spacecraft.

  18. Integrated circuit cooled turbine blade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ching-Pang; Jiang, Nan; Um, Jae Y.

    A turbine rotor blade includes at least two integrated cooling circuits that are formed within the blade that include a leading edge circuit having a first cavity and a second cavity and a trailing edge circuit that includes at least a third cavity located aft of the second cavity. The trailing edge circuit flows aft with at least two substantially 180-degree turns at the tip end and the root end of the blade providing at least a penultimate cavity and a last cavity. The last cavity is located along a trailing edge of the blade. A tip axial cooling channelmore » connects to the first cavity of the leading edge circuit and the penultimate cavity of the trailing edge circuit. At least one crossover hole connects the penultimate cavity to the last cavity substantially near the tip end of the blade.« less

  19. Efficient electroluminescent cooling with a light-emitting diode coupled to a photovoltaic cell (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xiao, Tianyao P.; Chen, Kaifeng; Santhanam, Parthiban; Fan, Shanhui; Yablonovitch, Eli

    2017-02-01

    The new breakthrough in photovoltaics, exemplified by the slogan "A great solar cell has to be a great light-emitting diode (LED)", has led to all the major new solar cell records, while also leading to extraordinary LED efficiency. As an LED becomes very efficient in converting its electrical input into light, the device cools as it operates because the photons carry away entropy as well as energy. If these photons are absorbed in a photovoltaic (PV) cell, the generated electricity can be used to provide part of the electrical input that drives the LED. Indeed, the LED/PV cell combination forms a new type of heat engine with light as the working fluid. The electroluminescent refrigerator requires only a small amount of external electricity to provide cooling, leading to a high coefficient of performance. We present the theoretical performance of such a refrigerator, in which the cool side (LED) is radiatively coupled to the hot side (PV) across a vacuum gap. The coefficient of performance is maximized by using a highly luminescent material, such as GaAs, together with device structures that optimize extraction of the luminescence. We consider both a macroscopic vacuum gap and a sub-wavelength gap; the latter allows for evanescent coupling of photons between the devices, potentially providing a further enhancement to the efficiency of light extraction. Using device assumptions based on the current record-efficiency solar cells, we show that electroluminescent cooling can, in certain regimes of cooling power, achieve a higher coefficient of performance than thermoelectric cooling.

  20. Fast molecular shocks. I - Reformation of molecules behind a dissociative shock

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Dalgarno, A.

    1989-01-01

    The physical and chemical processes that operate in the cooling gas behind a fast, dissociative, single-fluid shock propagating in a dense interstellar cloud are discussed. The treatment extends previous theoretical work on fast molecular shocks by including the effects of the conversion of Ly-alpha photons into radiation of the two-photon continuum and into H2 Lyman band emission lines, the effects of CO photodissociation following line absorption, and the formation and destruction of molecules containing the elements nitrogen, silicon, and sulphur, and of the complex hydrocarbons. Abundance profiles for the molecular species of interest are presented. After molecular hydrogen begins to reform, by means of gas phase and grain surface processes, the neutral species OH, H2O, O2, CO, CN, HCN, N2, NO, SO, and SiO reach substantial abundances. The molecular ions HeH(+), OH(+), SO(+), CH(+), H2(+), and H3(+), are produced while the gas is still hot and partially ionized. Emissions from them provide a possible diagnostic probe of fast molecular shocks.

  1. Design and testing of a self-actuated shut down system for the protection of liquid metal fast breeder reactors (LMFBRs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephson, J.; Sowa, E.S.

    1977-04-01

    The design and testing of a simple and reliable Self-Actuated Shutdown System (SASS) for the protection of Liquid Metal Fast Breeder Reactors (LMFBRs) is described. A ferromagnetic Curie temperature permanent magnet holding device has been selected for the design of the Self-Actuated Shutdown System in order to enhance the safety of liquid metal cooled fast reactors (LMFBRs). The self-actuated, self-contained device operates such that accident conditions, resulting in increased coolant temperature or neutron flux reduce the magnetic holding force suspending a neutron absorber above the core by raising the temperature of the trigger mechanism above the Curie point. Neutron absorbermore » material is then inserted into the core, under gravity, terminating the accident. Two possible design variations of the selected concept are presented.« less

  2. Building on knowledge base of sodium cooled fast spectrum reactors to develop materials technology for fusion reactors

    NASA Astrophysics Data System (ADS)

    Raj, Baldev; Rao, K. Bhanu Sankara

    2009-04-01

    The alloys 316L(N) and Mod. 9Cr-1Mo steel are the major structural materials for fabrication of structural components in sodium cooled fast reactors (SFRs). Various factors influencing the mechanical behaviour of these alloys and different modes of deformation and failure in SFR systems, their analysis and the simulated tests performed on components for assessment of structural integrity and the applicability of RCC-MR code for the design and validation of components are highlighted. The procedures followed for optimal design of die and punch for the near net shape forming of petals of main vessel of 500 MWe prototype fast breeder reactor (PFBR); the safe temperature and strain rate domains established using dynamic materials model for forming of 316L(N) and 9Cr-1Mo steels components by various industrial processes are illustrated. Weldability problems associated with 316L(N) and Mo. 9Cr-1Mo are briefly discussed. The utilization of artificial neural network models for prediction of creep rupture life and delta-ferrite in austenitic stainless steel welds is described. The usage of non-destructive examination techniques in characterization of deformation, fracture and various microstructural features in SFR materials is briefly discussed. Most of the experience gained on SFR systems could be utilized in developing science and technology for fusion reactors. Summary of the current status of knowledge on various aspects of fission and fusion systems with emphasis on cross fertilization of research is presented.

  3. Microstructural characterization and strengthening behavior of nanometer sized carbides in Ti–Mo microalloyed steels during continuous cooling process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chih-Yuan, E-mail: chen6563@gmail.com; Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan; Yang, Jer-Ren, E-mail: jryang@ntu.edu.tw

    Nanometer-sized carbides that precipitated in a Ti–Mo bearing steel after interrupted continuous cooling in a temperature range of 620–700 °C with or without hot deformation were investigated by field-emission-gun transmission electron microscopy. The nanometer-sized carbides were identified as randomly homogeneous precipitation carbides and interphase precipitation carbides coexisting in the ferrite matrix. It is found that this dual precipitation morphology of carbides in the steel leads to the non-uniform mechanical properties of individual ferrite grains. Vickers hardness data mainly revealed that, in the specimens cooled at a rate of 0.5 °C/s without hot deformation, the range of Vickers hardness distribution wasmore » 230–340 HV 0.1 when cooling was interrupted at 680 °C, and 220–360 HV 0.1 when cooling was interrupted at 650 °C. For the specimens cooled at a rate of 0.5 °C/s with hot deformation, the range of Vickers hardness distribution was 290–360 HV 0.1 when cooling was interrupted at 680 °C, and 280–340 HV 0.1 when cooling was interrupted at 650 °C. Therefore, a narrower range of hardness distribution occurred in the specimens that underwent hot deformation and were then cooled with a lower interrupted cooling temperature. The uniform precipitation status in each ferrite grain can lead to ferrite grains with a narrower Vickers hardness distribution. On the other hand, interrupted cooling produced a maximum Vickers hardness of 320–330 HV 0.1 for the hot deformed specimens and 290–310 HV 0.1 for the non-deformed specimens with cooling interrupted in the temperature range of 660–670 °C. The maximum Vickers hardness obtained in such a temperature range can be ascribed to the full precipitation of the microalloying elements in the supersaturated ferrite matrix with a tiny size (~ 4–7 nm). - Highlight: • The interrupted continuous cooling temperatures were 620 °C to 700 °C. • Precipitation carbides with dual dispersed morphology coexisted in the matrix. • Heavy hot deformation narrowed the range of hardness distribution. • Full precipitation of nano-sized carbides achieved maximum hardening.« less

  4. DNS of unsteady, turbulent convection in a rotating stratified fluid

    NASA Astrophysics Data System (ADS)

    Pal, Anikesh; Chalmalla, Vamsi

    2017-11-01

    Turbulent convection under the influence of intense surface cooling and earth's rotation is a common phenomenon observed in the ocean. In the present study, direct numerical simulations are performed to understand this dynamics. The effect of rotation is represented by Rossby number Ro* which is defined in terms of ocean depth H, Coriolis parameter f and surface buoyancy flux B0, as Ro* =B01// 2 Hf 3 / 2 . Cooling at the surface results in the formation of unstable density configuration where denser fluid lies on top of the lighter fluid. These unstable density configuration leads to a turbulent front. When the turbulent front reaches a transition depth zc, it experiences the effect of rotation leading to the formation of quasi- 2D vortices beneath the 3D turbulent layer. If the surface cooling is strong enough, these vortices penetrate further downwards producing vortex columns. Qualitatively, DNS results agree well with the findings of experimental study by Maxworthy & Narimousa (1993). The motivation of this study is to understand the nonlinear dynamics and turbulence scaling as the surface cooling and Coriolis parameter are varied.

  5. On the use of tin?lithium alloys as breeder material for blankets of fusion power plants

    NASA Astrophysics Data System (ADS)

    Fütterer, M. A.; Aiello, G.; Barbier, F.; Giancarli, L.; Poitevin, Y.; Sardain, P.; Szczepanski, J.; Li Puma, A.; Ruvutuso, G.; Vella, G.

    2000-12-01

    Tin-lithium alloys have several attractive thermo-physical properties, in particular high thermal conductivity and heat capacity, that make them potentially interesting candidates for use in liquid metal blankets. This paper presents an evaluation of the advantages and drawbacks caused by the substitution of the currently employed alloy lead-lithium (Pb-17Li) by a suitable tin-lithium alloy: (i) for the European water-cooled Pb-17Li (WCLL) blanket concept with reduced activation ferritic-martensitic steel as the structural material; (ii) for the European self-cooled TAURO blanket with SiC f/SiC as the structural material. It was found that in none of these blankets Sn-Li alloys would lead to significant advantages, in particular due to the low tritium breeding capability. Only in forced convection cooled divertors with W-alloy structure, Sn-Li alloys would be slightly more favorable. It is concluded that Sn-Li alloys are only advantageous in free surface cooled reactor internals, as this would make maximum use of the principal advantage of Sn-Li, i.e., the low vapor pressure.

  6. Experimental und numerical investigations on cooling efficiency of Air-Mist nozzles on steel during continuous casting

    NASA Astrophysics Data System (ADS)

    Arth, G.; Taferner, M.; Bernhard, C.; Michelic, S.

    2016-07-01

    Cooling strategies in continuous casting of steel can vary from rapid cooling to slow cooling, mainly controlled by adjusting the amount of water sprayed onto the surface of the product. Inadequate adjustment however can lead to local surface undercooling or reheating, leading to surface and inner defects. This paper focuses on cooling efficiency of Air-Mist nozzles on casted steel and the experimental and numerical prediction of surface temperature distributions over the product width. The first part explains the determination of heat transfer coefficients (HTC) on laboratory scale, using a so called nozzle measuring stand (NMS). Based on measured water distributions and determined HTC's for air-mist nozzles using the NMS, surface temperatures are calculated by a transient 2D-model on a simple steel plate, explained in the second part of this paper. Simulations are carried out varying water impact density and spray water distribution, consequently influencing the local HTC distribution over the plate width. Furthermore, these results will be interpreted with regard to their consequence for surface and internal quality of the cast product. The results reveal the difficulty of correct adjustment of the amount of sprayed water, concurrent influencing water distribution and thus changing HTC distribution and surface temperature.

  7. Theoretical model for Sub-Doppler Cooling with EIT System

    NASA Astrophysics Data System (ADS)

    He, Peiru; Tengdin, Phoebe; Anderson, Dana; Rey, Ana Maria; Holland, Murray

    2016-05-01

    We propose a of sub-Doppler cooling mechanism that takes advantage of the unique spectral features and extreme dispersion generated by the so-called Electromagnetically Induced Transparency (EIT) effect, a destructive quantum interference phenomenon experienced by atoms with Lambda-shaped energy levels when illuminated by two light fields with appropriate frequencies. By detuning the probe lasers slightly from the ``dark resonance'', we observe that atoms can be significantly cooled down by the strong viscous force within the transparency window, while being just slightly heated by the diffusion caused by the small absorption near resonance. In contrast to polarization gradient cooling or EIT sideband cooling, no external magnetic field or external confining potential are required. Using a semi-classical method, analytical expressions, and numerical simulations, we demonstrate that the proposed EIT cooling method can lead to temperatures well below the Doppler limit. This work is supported by NSF and NIST.

  8. Cavity Control and Cooling of Nanoparticles in High Vacuum

    NASA Astrophysics Data System (ADS)

    Millen, James

    2016-05-01

    Levitated systems are a fascinating addition to the world of optically-controlled mechanical resonators. It is predicted that nanoparticles can be cooled to their c.o.m. ground state via the interaction with an optical cavity. By freeing the oscillator from clamping forces dissipation and decoherence is greatly reduced, leading to the potential to produce long-lived, macroscopically spread, mechanical quantum states, allowing tests of collapse models and any mass limit of quantum physics. Reaching the low pressures required to cavity-cool to the ground state has proved challenging. Our approach is to cavity cool a beam of nanoparticles in high vacuum. We can cool the c.o.m. motion of nanospheres, and control the rotation of nanorods, with the potential to produce cold, aligned nanostructures. Looking forward, we will utilize novel microcavities to enhance optomechanical cooling, preparing particles in a coherent beam ideally suited to ultra-high mass interferometry at 107 a.m.u.

  9. Cavity Cooling of Nanoparticles: Towards Matter-Wave experiments

    NASA Astrophysics Data System (ADS)

    Millen, James; Kuhn, Stefan; Arndt, Markus

    2016-05-01

    Levitated systems are a fascinating addition to the world of optically-controlled mechanical resonators. It is predicted that nanoparticles can be cooled to their c.o.m. ground state via the interaction with an optical cavity. By freeing the oscillator from clamping forces dissipation and decoherence is greatly reduced, leading to the potential to produce long-lived, macroscopically spread, mechanical quantum states, allowing tests of collapse models and any mass limit of quantum physics. Reaching the low pressures required to cavity-cool to the ground state has proved challenging. Our approach is to cavity cool a beam of nanoparticles in high vacuum. We can cool the c.o.m. motion of nanospheres a few hundred nanometers in size. Looking forward, we will utilize novel microcavities to enhance optomechanical cooling, preparing particles in a coherent beam ideally suited to ultra-high mass interferometry at 107 a.m.u.

  10. Microbial fouling community analysis of the cooling water system of a nuclear test reactor with emphasis on sulphate reducing bacteria.

    PubMed

    Balamurugan, P; Joshi, M Hiren; Rao, T S

    2011-10-01

    Culture and molecular-based techniques were used to characterize bacterial diversity in the cooling water system of a fast breeder test reactor (FBTR). Techniques were selected for special emphasis on sulphate-reducing bacteria (SRB). Water samples from different locations of the FBTR cooling water system, in addition to biofilm scrapings from carbon steel coupons and a control SRB sample were characterized. Whole genome extraction of the water samples and SRB diversity by group specific primers were analysed using nested PCR and denaturing gradient gel electrophoresis (DGGE). The results of the bacterial assay in the cooling water showed that the total culturable bacteria (TCB) ranged from 10(3) to 10(5) cfu ml(-1); iron-reducing bacteria, 10(3) to 10(5) cfu ml(-1); iron oxidizing bacteria, 10(2) to 10(3) cfu ml(-1) and SRB, 2-29 cfu ml(-1). However, the counts of the various bacterial types in the biofilm sample were 2-3 orders of magnitude higher. SRB diversity by the nested PCR-DGGE approach showed the presence of groups 1, 5 and 6 in the FBTR cooling water system; however, groups 2, 3 and 4 were not detected. The study demonstrated that the PCR protocol influenced the results of the diversity analysis. The paper further discusses the microbiota of the cooling water system and its relevance in biofouling.

  11. Investigation of a para-ortho hydrogen reactor for application to spacecraft sensor cooling

    NASA Technical Reports Server (NTRS)

    Nast, T. C.

    1983-01-01

    The utilization of solid hydrogen in space for sensor and instrument cooling is a very efficient technique for long term cooling or for cooling at high heat rates. The solid hydrogen can provide temperatures as low as 7 to 8 K to instruments. Vapor cooling is utilized to reduce parasitic heat inputs to the 7 to 8 K stage and is effective in providing intermediate cooling for instrument components operating at higher temperatures. The use of solid hydrogen in place of helium may lead to weight reductions as large as a factor of ten and an attendent reduction in system volume. The results of an investigation of a catalytic reactor for use with a solid hydrogen cooling system is presented. Trade studies were performed on several configurations of reactor to meet the requirements of high reactor efficiency with low pressure drop. Results for the selected reactor design are presented for both liquid hydrogen systems operating at near atmospheric pressure and the solid hydrogen cooler operating as low as 1 torr.

  12. Predicted optimum ambient temperatures for broiler chickens to dissipate metabolic heat do not affect performance or improve breast muscle quality

    PubMed Central

    Zahoor, I.; Mitchell, M.A.; Hall, S.; Beard, P.M.; Gous, R.M.; De Koning, D.J.; Hocking, P.M.

    2016-01-01

    Abstract An experiment was conducted to test the hypothesis that muscle damage in fast-growing broiler chickens is associated with an ambient temperature that does not permit the birds to lose metabolic heat resulting in physiological heat stress and a reduction in meat quality.The experiment was performed in 4 climate chambers and was repeated in 2 trials using a total of 200 male broiler chickens. Two treatments compared the recommended temperature profile and a cool regimen. The cool regimen was defined by a theoretical model that determined the environmental temperature that would enable heat generated by the bird to be lost to the environment.There were no differences in growth rate or feed intake between the two treatments. Breast muscles from birds on the recommended temperature regimen were lighter, less red and more yellow than those from the cool temperature regimen. There were no differences in moisture loss or shear strength but stiffness was greater in breast muscle from birds housed in the cool compared to the recommended regimen.Histopathological changes in the breast muscle were similar in both treatments and were characterised by mild to severe myofibre degeneration and necrosis with regeneration, fibrosis and adipocyte infiltration. There was no difference in plasma creatine kinase activity, a measure of muscle cell damage, between the two treatments consistent with the absence of differences in muscle pathology.It was concluded that breast muscle damage in fast-growing broiler chickens was not the result of an inability to lose metabolic heat at recommended ambient temperatures. The results suggest that muscle cell damage and breast meat quality concerns in modern broiler chickens are related to genetic selection for muscle yields and that genetic selection to address breast muscle integrity in a balanced breeding programme is imperative. PMID:26670305

  13. Wave propagation simulation in the upper core of sodium-cooled fast reactors using a spectral-element method for heterogeneous media

    NASA Astrophysics Data System (ADS)

    Nagaso, Masaru; Komatitsch, Dimitri; Moysan, Joseph; Lhuillier, Christian

    2018-01-01

    ASTRID project, French sodium cooled nuclear reactor of 4th generation, is under development at the moment by Alternative Energies and Atomic Energy Commission (CEA). In this project, development of monitoring techniques for a nuclear reactor during operation are identified as a measure issue for enlarging the plant safety. Use of ultrasonic measurement techniques (e.g. thermometry, visualization of internal objects) are regarded as powerful inspection tools of sodium cooled fast reactors (SFR) including ASTRID due to opacity of liquid sodium. In side of a sodium cooling circuit, heterogeneity of medium occurs because of complex flow state especially in its operation and then the effects of this heterogeneity on an acoustic propagation is not negligible. Thus, it is necessary to carry out verification experiments for developments of component technologies, while such kind of experiments using liquid sodium may be relatively large-scale experiments. This is why numerical simulation methods are essential for preceding real experiments or filling up the limited number of experimental results. Though various numerical methods have been applied for a wave propagation in liquid sodium, we still do not have a method for verifying on three-dimensional heterogeneity. Moreover, in side of a reactor core being a complex acousto-elastic coupled region, it has also been difficult to simulate such problems with conventional methods. The objective of this study is to solve these 2 points by applying three-dimensional spectral element method. In this paper, our initial results on three-dimensional simulation study on heterogeneous medium (the first point) are shown. For heterogeneity of liquid sodium to be considered, four-dimensional temperature field (three spatial and one temporal dimension) calculated by computational fluid dynamics (CFD) with Large-Eddy Simulation was applied instead of using conventional method (i.e. Gaussian Random field). This three-dimensional numerical experiment yields that we could verify the effects of heterogeneity of propagation medium on waves in Liquid sodium.

  14. Predicted optimum ambient temperatures for broiler chickens to dissipate metabolic heat do not affect performance or improve breast muscle quality.

    PubMed

    Zahoor, I; Mitchell, M A; Hall, S; Beard, P M; Gous, R M; De Koning, D J; Hocking, P M

    2016-01-01

    An experiment was conducted to test the hypothesis that muscle damage in fast-growing broiler chickens is associated with an ambient temperature that does not permit the birds to lose metabolic heat resulting in physiological heat stress and a reduction in meat quality. The experiment was performed in 4 climate chambers and was repeated in 2 trials using a total of 200 male broiler chickens. Two treatments compared the recommended temperature profile and a cool regimen. The cool regimen was defined by a theoretical model that determined the environmental temperature that would enable heat generated by the bird to be lost to the environment. There were no differences in growth rate or feed intake between the two treatments. Breast muscles from birds on the recommended temperature regimen were lighter, less red and more yellow than those from the cool temperature regimen. There were no differences in moisture loss or shear strength but stiffness was greater in breast muscle from birds housed in the cool compared to the recommended regimen. Histopathological changes in the breast muscle were similar in both treatments and were characterised by mild to severe myofibre degeneration and necrosis with regeneration, fibrosis and adipocyte infiltration. There was no difference in plasma creatine kinase activity, a measure of muscle cell damage, between the two treatments consistent with the absence of differences in muscle pathology. It was concluded that breast muscle damage in fast-growing broiler chickens was not the result of an inability to lose metabolic heat at recommended ambient temperatures. The results suggest that muscle cell damage and breast meat quality concerns in modern broiler chickens are related to genetic selection for muscle yields and that genetic selection to address breast muscle integrity in a balanced breeding programme is imperative.

  15. Direct Evidence of an Eruptive, Filament-hosting Magnetic Flux Rope Leading to a Fast Solar Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Bastian, T. S.; Gary, D. E.

    2014-10-01

    Magnetic flux ropes (MFRs) are believed to be at the heart of solar coronal mass ejections (CMEs). A well-known example is the prominence cavity in the low corona that sometimes makes up a three-part white-light (WL) CME upon its eruption. Such a system, which is usually observed in quiet-Sun regions, has long been suggested to be the manifestation of an MFR with relatively cool filament material collecting near its bottom. However, observational evidence of eruptive, filament-hosting MFR systems has been elusive for those originating in active regions. By utilizing multi-passband extreme-ultraviolet (EUV) observations from Solar Dynamics Observatory/Atmospheric Imaging Assembly, we present direct evidence of an eruptive MFR in the low corona that exhibits a hot envelope and a cooler core; the latter is likely the upper part of a filament that undergoes a partial eruption, which is later observed in the upper corona as the coiled kernel of a fast, WL CME. This MFR-like structure exists more than 1 hr prior to its eruption, and displays successive stages of dynamical evolution, in which both ideal and non-ideal physical processes may be involved. The timing of the MFR kinematics is found to be well correlated with the energy release of the associated long-duration C1.9 flare. We suggest that the long-duration flare is the result of prolonged energy release associated with the vertical current sheet induced by the erupting MFR.

  16. Polar Science Is Cool!

    ERIC Educational Resources Information Center

    Weeks, Sophie

    2012-01-01

    Children are fascinated by the fact that polar scientists do research in extremely cold and dangerous places. In the Arctic they might be viewed as lunch by a polar bear. In the Antarctic, they could lose toes and fingers to frostbite and the wind is so fast it can rip skin off. They camp on ice in continuous daylight, weeks from any form of…

  17. Impact of Active Control on Passive Safety Response Characteristics of Sodium-cooled Fast Reactors: I - Theoretical background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Passerini, Stefano; Ponciroli, Roberto; Vilim, Richard B.

    Here, the interaction of the active control system with passive safety behavior is investigated for sodium-cooled fast reactors. A claim often made of advanced reactors is that they are passively safe against unprotected upset events. In practice, such upset events are not analyzed in the context of the plant control system, but rather the analyses are performed without considering the normally programmed response of the control system (open-loop approach). This represents an oversimplification of the safety case. The issue of passive safety override arises since the control system commands actuators whose motions have safety consequences. Depending on the upset involvingmore » the control system ( operator error, active control system failure, or inadvertent control system override), an actuator does not necessarily go in the same direction as needed for safety. So neglecting to account for control system action during an unprotected upset is nonconservative from a safety standpoint. It is important then, during the design of the plant, to consider the potential for the control system to work against the inherent and safe regulating effects of purposefully engineered temperature feedbacks.« less

  18. Influence of hydrogen effusion from hydrogenated silicon nitride layers on the regeneration of boron-oxygen related defects in crystalline silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilking, S., E-mail: Svenja.Wilking@uni-konstanz.de; Ebert, S.; Herguth, A.

    The degradation effect boron doped and oxygen-rich crystalline silicon materials suffer from under illumination can be neutralized in hydrogenated silicon by the application of a regeneration process consisting of a combination of slightly elevated temperature and carrier injection. In this paper, the influence of variations in short high temperature steps on the kinetics of the regeneration process is investigated. It is found that hotter and longer firing steps allowing an effective hydrogenation from a hydrogen-rich silicon nitride passivation layer result in an acceleration of the regeneration process. Additionally, a fast cool down from high temperature to around 550 °C seems tomore » be crucial for a fast regeneration process. It is suggested that high cooling rates suppress hydrogen effusion from the silicon bulk in a temperature range where the hydrogenated passivation layer cannot release hydrogen in considerable amounts. Thus, the hydrogen content of the silicon bulk after the complete high temperature step can be increased resulting in a faster regeneration process. Hence, the data presented here back up the theory that the regeneration process might be a hydrogen passivation of boron-oxygen related defects.« less

  19. Impact of Active Control on Passive Safety Response Characteristics of Sodium-cooled Fast Reactors: I - Theoretical background

    DOE PAGES

    Passerini, Stefano; Ponciroli, Roberto; Vilim, Richard B.

    2017-06-21

    Here, the interaction of the active control system with passive safety behavior is investigated for sodium-cooled fast reactors. A claim often made of advanced reactors is that they are passively safe against unprotected upset events. In practice, such upset events are not analyzed in the context of the plant control system, but rather the analyses are performed without considering the normally programmed response of the control system (open-loop approach). This represents an oversimplification of the safety case. The issue of passive safety override arises since the control system commands actuators whose motions have safety consequences. Depending on the upset involvingmore » the control system ( operator error, active control system failure, or inadvertent control system override), an actuator does not necessarily go in the same direction as needed for safety. So neglecting to account for control system action during an unprotected upset is nonconservative from a safety standpoint. It is important then, during the design of the plant, to consider the potential for the control system to work against the inherent and safe regulating effects of purposefully engineered temperature feedbacks.« less

  20. Radio Jets Clearing the Way Through a Galaxy: Watching Feedback in Action in the Seyfert Galaxy IC 5063

    NASA Astrophysics Data System (ADS)

    Morganti, R.; Oosterloo, T. A.; Oonk, J. B. R.; Frieswijk, W.; Tadhunter, C. N.

    2015-12-01

    High-resolution (0.5 arcsec) CO(2-1) observations performed with the Atacama Large Millimetre/submillimetre Array have been used to trace the kinematics of the molecular gas in the Seyfert 2 galaxy{IC 5063}. Although one of the most radio-loud Seyfert galaxy, IC 5063 is a relatively weak radio source (P1.4GHz=3 ×1023 W Hz-1). The data reveal that the kinematics of the gas is very complex. A fast outflow of molecular gas extends along the entire radio jet (˜ 1 kpc), with the highest outflow velocities about 0.5 kpc from the nucleus, at the location of the brighter hot-spot in the W lobe. All the observed characteristics can be described by a scenario of a radio plasma jet expanding into a clumpy medium, interacting directly with the clouds and inflating a cocoon that drives a lateral outflow into the interstellar medium. This suggests that most of the observed cold molecular outflow is due to fast cooling of the gas after the passage of a shock and that it is the end product of the cooling process.

Top