[Effect of lead on the cardiovascular system].
Zyśko, Dorota; Chlebda, Ewa; Gajek, Jacek
2004-11-01
Lead is a metal widely spread in the natural environment. It is strongly toxic, particularly to the peripheral and central nervous systems. The toxic influence on the cardiovascular system is most pronounced in case of higher exposures, where myocardium and the renal circulation are affected, in consequence of which secondary arterial hypertension can develop. It seems that lead affects the cardiovascular system mainly by changing the peripheral autonomic nervous system and leading to chronic neuropathy. Chronic exposure, even to low doses of lead, can impair conduction in myocardium. In order to assess those changes thoroughly prospective studies involving newly employed workers with occupational exposure to toxic activity of lead will be necessary.
BLOOD LEAD CONCENTRATION AND DELAYED PUBERTY IN GIRLS
Background
Environmental lead exposure has been linked to alterations in growth and endocrine function. It is not known whether such exposure affects pubertal development.
Methods
We analyzed the relations between blood lead concentration and pubertal...
Lead remediation and changes in human lead exposure: some physiological and biokinetic dimensions.
Mushak, Paul
2003-02-15
This paper presents a qualitative and quantitative analysis of the various aspects of lead remediation effectiveness with particular reference to human health risk assessment. One of the key elements of lead remediation efforts at such sites as those under the Superfund program deals with populations at elevated exposure and toxicity risk in the proximity of, or at, the site of remediation, especially remediation workers, workers at other tasks on sites that were remediated down to some action level of lead concentration in soils, and groups at risk in nearby communities. A second element has to do with how one measures or models lead exposure changes with special reference to baseline and post-remediation conditions. Various biomarkers of lead exposure can be employed, but their use requires detailed knowledge of what results using each means. The most commonly used approach is measurement of blood lead (Pb-B). Recognized limitations in the use of Pb-B has led to the use of predictive Pb exposure models, which are less vulnerable to the many behavioral, physiological, and environmental parameters that can distort isolated or 'single shot' Pb-B testings. A third aspect covered in this paper presents various physiological factors that affect the methods by which one evaluates Pb remediation effectiveness. Finally, this article offers an integrated look at how lead remediation actions directed at one lead source or pathway affect the total lead exposure picture for human populations at elevated lead exposure and toxicity risk.
Pb Neurotoxicity: Neuropsychological Effects of Lead Toxicity
Mason, Lisa H.; Harp, Jordan P.; Han, Dong Y.
2014-01-01
Neurotoxicity is a term used to describe neurophysiological changes caused by exposure to toxic agents. Such exposure can result in neurocognitive symptoms and/or psychiatric disturbances. Common toxic agents include heavy metals, drugs, organophosphates, bacterial, and animal neurotoxins. Among heavy metal exposures, lead exposure is one of the most common exposures that can lead to significant neuropsychological and functional decline in humans. In this review, neurotoxic lead exposure's pathophysiology, etiology, and epidemiology are explored. In addition, commonly associated neuropsychological difficulties in intelligence, memory, executive functioning, attention, processing speed, language, visuospatial skills, motor skills, and affect/mood are explored. PMID:24516855
Neurotoxic effects and biomarkers of lead exposure: a review.
Sanders, Talia; Liu, Yiming; Buchner, Virginia; Tchounwou, Paul B
2009-01-01
Lead, a systemic toxicant affecting virtually every organ system, primarily affects the central nervous system, particularly the developing brain. Consequently, children are at a greater risk than adults of suffering from the neurotoxic effects of lead. To date, no safe lead-exposure threshold has been identified. The ability of lead to pass through the blood-brain barrier is due in large part to its ability to substitute for calcium ions. Within the brain, lead-induced damage in the prefrontal cerebral cortex, hippocampus, and cerebellum can lead to a variety of neurologic disorders. At the molecular level, lead interferes with the regulatory action of calcium on cell functions and disrupts many intracellular biological activities. Experimental studies have also shown that lead exposure may have genotoxic effects, especially in the brain, bone marrow, liver, and lung cells. Knowledge of the neurotoxicology of lead has advanced in recent decades due to new information on its toxic mechanisms and cellular specificity. This paper presents an overview, updated to January 2009, of the neurotoxic effects of lead with regard to children, adults, and experimental animals at both cellular and molecular levels, and discusses the biomarkers of lead exposure that are useful for risk assessment in the field of environmental health.
Der-Avakian, Andre; Markou, Athina
2010-07-01
Psychostimulant withdrawal leads to depressive symptoms, such as anhedonia and social dysfunction. We determined the effects of withdrawal from chronic exposure to nicotine (9 mg/kg/day salt, 28 days) or amphetamine (10 mg/kg/day salt, 7 days) on the motivated response for a sucrose reward and on social interaction in rats. Both nicotine and amphetamine exposure increased the motivated response for sucrose. However, only spontaneous amphetamine withdrawal led to an immediate and persistent decrease in motivated behavior, which was not correlated with body weight loss. Social interaction was not affected during withdrawal from either drug. These results indicate that withdrawal from chronic amphetamine exposure leads to an immediate and enduring anhedonic state.
Lead Policy and Academic Performance: Insights from Massachusetts
ERIC Educational Resources Information Center
Reyes, Jessica Wolpaw
2015-01-01
In this article, Jessica Wolpaw Reyes investigates the link between lead exposure and student achievement in Massachusetts. Childhood exposure to even low levels of lead can adversely affect neurodevelopment, behavior, and cognitive performance. Using a panel dataset of cohorts of children born in the 1990s who were third and fourth graders in the…
Mapping the spatio-temporal risk of lead exposure in apex species for more effective mitigation
Mateo-Tomás, Patricia; Olea, Pedro P.; Jiménez-Moreno, María; Camarero, Pablo R.; Sánchez-Barbudo, Inés S.; Rodríguez Martín-Doimeadios, Rosa C.; Mateo, Rafael
2016-01-01
Effective mitigation of the risks posed by environmental contaminants for ecosystem integrity and human health requires knowing their sources and spatio-temporal distribution. We analysed the exposure to lead (Pb) in griffon vulture Gyps fulvus—an apex species valuable as biomonitoring sentinel. We determined vultures' lead exposure and its main sources by combining isotope signatures and modelling analyses of 691 bird blood samples collected over 5 years. We made yearlong spatially explicit predictions of the species risk of lead exposure. Our results highlight elevated lead exposure of griffon vultures (i.e. 44.9% of the studied population, approximately 15% of the European, showed lead blood levels more than 200 ng ml−1) partly owing to environmental lead (e.g. geological sources). These exposures to environmental lead of geological sources increased in those vultures exposed to point sources (e.g. lead-based ammunition). These spatial models and pollutant risk maps are powerful tools that identify areas of wildlife exposure to potentially harmful sources of lead that could affect ecosystem and human health. PMID:27466455
Soil Lead and Children’s Blood Lead Disparities in Pre- and Post-Hurricane Katrina New Orleans (USA)
Mielke, Howard W.; Gonzales, Christopher R.; Powell, Eric T.
2017-01-01
This study appraises New Orleans soil lead and children’s lead exposure before and ten years after Hurricane Katrina flooded the city. Introduction: Early childhood exposure to lead is associated with lifelong and multiple health, learning, and behavioral disorders. Lead exposure is an important factor hindering the long-term resilience and sustainability of communities. Lead exposure disproportionately affects low socioeconomic status of communities. No safe lead exposure is known and the common intervention is not effective. An essential responsibility of health practitioners is to develop an effective primary intervention. Methods: Pre- and post-Hurricane soil lead and children’s blood lead data were matched by census tract communities. Soil lead and blood lead data were described, mapped, blood lead graphed as a function of soil lead, and Multi-Response Permutation Procedures statistics established disparities. Results: Simultaneous decreases occurred in soil lead accompanied by an especially large decline in children’s blood lead 10 years after Hurricane Katrina. Exposure disparities still exist between children living in the interior and outer areas of the city. Conclusions: At the scale of a city, this study demonstrates that decreasing soil lead effectively reduces children’s blood lead. Primary prevention of lead exposure can be accomplished by reducing soil lead in the urban environment. PMID:28417939
Mielke, Howard W; Gonzales, Christopher R; Powell, Eric T
2017-04-12
This study appraises New Orleans soil lead and children's lead exposure before and ten years after Hurricane Katrina flooded the city. Introduction : Early childhood exposure to lead is associated with lifelong and multiple health, learning, and behavioral disorders. Lead exposure is an important factor hindering the long-term resilience and sustainability of communities. Lead exposure disproportionately affects low socioeconomic status of communities. No safe lead exposure is known and the common intervention is not effective. An essential responsibility of health practitioners is to develop an effective primary intervention. Methods : Pre- and post-Hurricane soil lead and children's blood lead data were matched by census tract communities. Soil lead and blood lead data were described, mapped, blood lead graphed as a function of soil lead, and Multi-Response Permutation Procedures statistics established disparities. Results : Simultaneous decreases occurred in soil lead accompanied by an especially large decline in children's blood lead 10 years after Hurricane Katrina. Exposure disparities still exist between children living in the interior and outer areas of the city. Conclusions : At the scale of a city, this study demonstrates that decreasing soil lead effectively reduces children's blood lead. Primary prevention of lead exposure can be accomplished by reducing soil lead in the urban environment.
In Utero Alcohol Exposure, Epigenetic Changes, and Their Consequences
Ungerer, Michelle; Knezovich, Jaysen; Ramsay, Michele
2013-01-01
Exposure to alcohol has serious consequences for the developing fetus, leading to a range of conditions collectively known as fetal alcohol spectrum disorders (FASD). Most importantly, alcohol exposure affects the development of the brain during critical periods of differentiation and growth, leading to cognitive and behavioral deficits. The molecular mechanisms and processes underlying the teratogenic effects of alcohol exposure remain poorly understood and are complex, because the specific effects depend on the timing, amount, and duration of exposure as well as genetic susceptibility. Accumulating evidence from studies on DNA methylation and histone modification that affect chromatin structure, as well as on the role of microRNAs in regulating mRNA levels supports the contribution of epigenetic mechanisms to the development of FASD. These epigenetic effects are difficult to study, however, because they often are cell-type specific and transient in nature. Rodent models play an important role in FASD research. Although recent studies using these models have yielded some insight into epigenetic mechanisms affecting brain development, they have generated more questions than they have provided definitive answers. Researchers are just beginning to explore the intertwined roles of different epigenetic mechanisms in neurogenesis and how this process is affected by exposure to alcohol, causing FASD. PMID:24313163
Hirsch, Helmut V. B.; Possidente, Debra; Averill, Sarah; Despain, Tamira Palmetto; Buytkins, Joel; Thomas, Valerie; Goebel, W. Paul; Shipp-Hilts, Asante; Wilson, Diane; Hollocher, Kurt; Possidente, Bernard; Lnenicka, Greg; Ruden, Douglas M.
2009-01-01
We developed Drosophila melanogaster as a model to study correlated behavioral, neuronal and genetic effects of the neurotoxin lead, known to affect cognitive and behavioral development in children. We showed that, as in vertebrates, lead affects both synaptic development and complex behaviors (courtship, fecundity, locomotor activity) in Drosophila. By assessing differential behavioral responses to developmental lead exposure among recombinant inbred Drosophila lines (RI), derived from parental lines Oregon R and Russian 2b, we have now identified a genotype by environment interaction (GEI) for a behavioral trait affected by lead. Drosophila Activity Monitors (TriKinetics, Waltham, MA), which measure activity by counting the number of times a single fly in a small glass tube walks through an infrared beam aimed at the middle of the tube, were used to measure activity of flies, reared from eggs to 4 days of adult age on either control or lead-contaminated medium, from each of 75 RI lines. We observed a significant statistical association between the effect of lead on average daytime activity across lines and one marker locus, 30AB, on chromosome 2; we define this as a Quantitative Trait Locus (QTL) associated with behavioral effects of developmental lead exposure. When 30AB was from Russian 2b, lead significantly increased locomotor activity, whereas, when 30AB was from Oregon R, lead decreased it. 30AB contains about 125 genes among which are likely “candidate genes” for the observed lead-dependent behavioral changes. Drosophila are thus a useful, underutilized model for studying behavioral, synaptic and genetic changes following chronic exposure to lead or other neurotoxins during development. PMID:19428504
Sen, Arko; Heredia, Nicole; Senut, Marie-Claude; Hess, Matthew; Land, Susan; Qu, Wen; Hollacher, Kurt; Dereski, Mary O; Ruden, Douglas M
2015-01-01
Aims In this paper, we tested the hypothesis that early life lead (Pb) exposure associated DNA methylation (5mC) changes are dependent on the sex of the child and can serve as biomarkers for Pb exposure. Methods In this pilot study, we measured the 5mC profiles of DNA extracted from dried blood spots (DBS) in a cohort of 43 children (25 males and 18 females; ages from 3 months to 5 years) from Detroit. Result & Discussion We found that the effect of Pb-exposure on the 5-mC profiles can be separated into three subtypes: affected methylation loci which are conserved irrespective of the sex of the child (conserved); affected methylation loci unique to males (male-specific); and affected methylation loci unique to females (female-specific). PMID:26077427
Newth, J L; Rees, E C; Cromie, R L; McDonald, R A; Bearhop, S; Pain, D J; Norton, G J; Deacon, C; Hilton, G M
2016-02-01
Lead poisoning, through the ingestion of spent lead gunshot, is an established cause of morbidity and mortality in waterbirds globally, but the thresholds at which blood levels begin to affect the physiology of birds in the wild are less well known. Here we determine the prevalence of lead exposure in whooper swans and, for the first time, identify the level of blood lead associated with initial reductions in body condition. Blood lead elevated above background levels (i.e. >20 μg dL(-1)) was found in 41.7% (125/300) of swans tested. Blood lead was significantly negatively associated with winter body condition when levels were ≥44 μg dL(-1) (27/260 = 10%). Our findings indicating that sub-lethal impacts of lead on body condition occur at the lower end of previously established clinical thresholds and that a relatively high proportion of individuals in this population may be affected, reaffirm the importance of reducing contamination of the environment with lead shot. Copyright © 2015 Elsevier Ltd. All rights reserved.
2004-07-09
Lead poisoning adversely affects children worldwide. During 1999-2000, an estimated 434,000 children aged 1-5 years in the United States had elevated blood lead levels (BLLs) >/=10 microg/dL. Glazes found on ceramics, earthenware, bone china, and porcelain often contain lead and are a potential source of lead exposure. Children are especially vulnerable to the neurotoxic effects of lead. Exposures to lead in early childhood can have adverse effects on the developing nervous system, resulting in decreased intelligence and changes in behavior. In addition, certain behaviors (e.g., thumb sucking) place children at greater risk for exposure to lead. In 2003, the New York City Department of Health and Mental Hygiene's Lead Poisoning Prevention Program (LPPP), and the Mount Sinai Pediatric Environmental Health Specialty Unit (PEHSU) investigated a case of lead poisoning in a boy aged 20 months. This report summarizes that case investigation, which identified ceramic dinnerware imported from France as the source of lead exposure. This case underscores the susceptibility of children to a toxic exposure associated with 1) the high proportion of time spent in the home and 2) dietary habits that promote exposure to lead leached from ceramic ware.
Effect of subacute exposure to lead and estrogen on immature pre-weaning rat leukocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villagra, R.; Tchernitchin, N.N.; Tchernitchin, A.N.
1997-02-01
Lead is an environmental pollutant known to cause damage to human health, affecting specially the central nervous system, reproductive organs, the immune system and kidney. From the perspective or reproduction, lead affects both men and women. Reported effects in women include infertility, miscarriage, pre-eclampsia, pregnancy hypertension and premature delivery. In experimental animals, lead affects female reproductive organs through different mechanisms. The heavy metal may interact at the enzyme level. It may interfere with the action of reproductive hormones at the target organ, modifying the activity of estrogen receptors in the pregnant uterus and inhibiting responses where estrogens play a role.more » Lead may induce imprinting mechanism, causing persistent changes in uterine estrogen receptors and ovary LH receptors following perinatal exposure. Finally, it may interfere at the level of hypothalamus-pituitary, decreasing pituitary response to growth hormone releasing factor, affecting levels of FSH and LH and increasing blood levels of glucocorticoids, which modify the action of estrogens in the uterus. This study examines the mechanisms of lead-induced interference with female reproductive and immune functions. 33 refs., 2 figs., 2 tabs.« less
Neurodevelopment in Early Childhood Affected by Prenatal Lead Exposure and Iron Intake.
Shah-Kulkarni, Surabhi; Ha, Mina; Kim, Byung-Mi; Kim, Eunjeong; Hong, Yun-Chul; Park, Hyesook; Kim, Yangho; Kim, Bung-Nyun; Chang, Namsoo; Oh, Se-Young; Kim, Young Ju; Kimʼs, Young Ju; Lee, Boeun; Ha, Eun-Hee
2016-01-01
No safe threshold level of lead exposure in children has been recognized. Also, the information on shielding effect of maternal dietary iron intake during pregnancy on the adverse effects of prenatal lead exposure on children's postnatal neurocognitive development is very limited. We examined the association of prenatal lead exposure and neurodevelopment in children at 6, 12, 24, and 36 months and the protective action of maternal dietary iron intake against the impact of lead exposure. The study participants comprise 965 pregnant women and their subsequent offspring of the total participants enrolled in the Mothers and Children's environmental health study: a prospective birth cohort study. Generalized linear model and linear mixed model analysis were performed to analyze the effect of prenatal lead exposure and mother's dietary iron intake on children's cognitive development at 6, 12, 24, and 36 months. Maternal late pregnancy lead was marginally associated with deficits in mental development index (MDI) of children at 6 months. Mothers having less than 75th percentile of dietary iron intake during pregnancy showed significant increase in the harmful effect of late pregnancy lead exposure on MDI at 6 months. Linear mixed model analyses showed the significant detrimental effect of prenatal lead exposure in late pregnancy on cognitive development up to 36 months in children of mothers having less dietary iron intake during pregnancy. Thus, our findings imply importance to reduce prenatal lead exposure and have adequate iron intake for better neurodevelopment in children.
Neurodevelopment in Early Childhood Affected by Prenatal Lead Exposure and Iron Intake
Shah-Kulkarni, Surabhi; Ha, Mina; Kim, Byung-Mi; Kim, Eunjeong; Hong, Yun-Chul; Park, Hyesook; Kim, Yangho; Kim, Bung-Nyun; Chang, Namsoo; Oh, Se-Young; Kim, Young Ju; Lee, Boeun; Ha, Eun-Hee
2016-01-01
Abstract No safe threshold level of lead exposure in children has been recognized. Also, the information on shielding effect of maternal dietary iron intake during pregnancy on the adverse effects of prenatal lead exposure on children's postnatal neurocognitive development is very limited. We examined the association of prenatal lead exposure and neurodevelopment in children at 6, 12, 24, and 36 months and the protective action of maternal dietary iron intake against the impact of lead exposure. The study participants comprise 965 pregnant women and their subsequent offspring of the total participants enrolled in the Mothers and Children's environmental health study: a prospective birth cohort study. Generalized linear model and linear mixed model analysis were performed to analyze the effect of prenatal lead exposure and mother's dietary iron intake on children's cognitive development at 6, 12, 24, and 36 months. Maternal late pregnancy lead was marginally associated with deficits in mental development index (MDI) of children at 6 months. Mothers having less than 75th percentile of dietary iron intake during pregnancy showed significant increase in the harmful effect of late pregnancy lead exposure on MDI at 6 months. Linear mixed model analyses showed the significant detrimental effect of prenatal lead exposure in late pregnancy on cognitive development up to 36 months in children of mothers having less dietary iron intake during pregnancy. Thus, our findings imply importance to reduce prenatal lead exposure and have adequate iron intake for better neurodevelopment in children. PMID:26825887
Gao, Bei; Chi, Liang; Mahbub, Ridwan; Bian, Xiaoming; Tu, Pengcheng; Ru, Hongyu; Lu, Kun
2017-04-17
Lead exposure remains a global public health issue, and the recent Flint water crisis has renewed public concern about lead toxicity. The toxicity of lead has been well established in a variety of systems and organs. The gut microbiome has been shown to be highly involved in many critical physiological processes, including food digestion, immune system development, and metabolic homeostasis. However, despite the key role of the gut microbiome in human health, the functional impact of lead exposure on the gut microbiome has not been studied. The aim of this study is to define gut microbiome toxicity induced by lead exposure in C57BL/6 mice using multiomics approaches, including 16S rRNA sequencing, whole genome metagenomics sequencing, and gas chromatography-mass spectrometry (GC-MS) metabolomics. 16S rRNA sequencing revealed that lead exposure altered the gut microbiome trajectory and phylogenetic diversity. Metagenomics sequencing and metabolomics profiling showed that numerous metabolic pathways, including vitamin E, bile acids, nitrogen metabolism, energy metabolism, oxidative stress, and the defense/detoxification mechanism, were significantly disturbed by lead exposure. These perturbed molecules and pathways may have important implications for lead toxicity in the host. Taken together, these results demonstrated that lead exposure not only altered the gut microbiome community structures/diversity but also greatly affected metabolic functions, leading to gut microbiome toxicity.
Handley, Margaret A; Nelson, Kali; Sanford, Eric; Clarity, Cassidy; Emmons-Bell, Sophia; Gorukanti, Anuhandra; Kennelly, Patrick
2017-10-26
In California, the annual number of children under age 6 y of age with blood lead levels (BLL) ≥10μg/dL is estimated at over 1,000 cases, and up to 10,000 cases when BLL between 4.5 and 9.5 μg/dL are included. State-issued health alerts for food contamination provide one strategy for tracking sources of food-related lead exposures. As well, California passed legislation in 2006 for the Food and Drug Branch (FDB) of the state health department to test and identify lead in candy. This report presents health alert data from California over a 14-y period, compares data before and after the candy testing program began, and examines country of origin, ZIP code data, and time from candy testing to release of health alerts for lead-contaminated candies for 2011-2012. After 2007, health alerts issued for lead in candy and food increased significantly. Analysis of candy-testing data indicated that multiple counties and ZIP codes were affected. Seventeen candies with high lead concentrations were identified, resulting in rapid dissemination (<2wk) of health alerts to local health departments and community clinicians and to the public. Surveillance of lead exposures from state-based food and candy testing programs provides an opportunity to identify and immediately act to remove nonpaint sources of lead affecting children. https://doi.org/10.1289/EHP2582.
Sublethal Lead Exposure Alters Movement Behavior in Free-Ranging Golden Eagles.
Ecke, Frauke; Singh, Navinder J; Arnemo, Jon M; Bignert, Anders; Helander, Björn; Berglund, Åsa M M; Borg, Hans; Bröjer, Caroline; Holm, Karin; Lanzone, Michael; Miller, Tricia; Nordström, Åke; Räikkönen, Jannikke; Rodushkin, Ilia; Ågren, Erik; Hörnfeldt, Birger
2017-05-16
Lead poisoning of animals due to ingestion of fragments from lead-based ammunition in carcasses and offal of shot wildlife is acknowledged globally and raises great concerns about potential behavioral effects leading to increased mortality risks. Lead levels in blood were correlated with progress of the moose hunting season. Based on analyses of tracking data, we found that even sublethal lead concentrations in blood (25 ppb, wet weight), can likely negatively affect movement behavior (flight height and movement rate) of free-ranging scavenging Golden Eagles (Aquila chrysaetos). Lead levels in liver of recovered post-mortem analyzed eagles suggested that sublethal exposure increases the risk of mortality in eagles. Such adverse effects on animals are probably common worldwide and across species, where game hunting with lead-based ammunition is widespread. Our study highlights lead exposure as a considerably more serious threat to wildlife conservation than previously realized and suggests implementation of bans of lead ammunition for hunting.
[Assessment for effect of low level lead-exposure on neurobehavior in workers of printing house].
Niu, Q; Dai, F; Chen, Y
1998-11-30
WHO Neurobehavioral Core Test Battery (NCTB) was conducted among 28 lead-exposed workers (mean age 24.84, SD2.85) in printing house and 46 controls (mean age 22.78, SD1.45), in order to assess whether low level lead exposure may be related to neurobehavioral dysfunction. The items of test were: 1. Profile of mood state(POMS), (2) Simple reaction time, (3) Digit span, (4) Santa Anna manual dexterity, (5) Digit simbol, (6) Benton visual retention; and Prusuit aiming test. In all the NCTB test values, there was no significant difference between two groups. Multiple stepwise regression analysis shows that exposure duration is related to neurobehavior scores. Mild lead exposure may affect neurobehavior in some degree but not significant.
Tobacco smoke exposure induces nicotine dependence in rats
Small, Elysia; Shah, Hina P.; Davenport, Jake J.; Geier, Jacqueline E.; Yavarovich, Kate R.; Yamada, Hidetaka; Sabarinath, Sreedharan N.; Derendorf, Hartmut; Pauly, James R.; Gold, Mark S.; Bruijnzeel, Adrie W.
2013-01-01
RATIONALE Tobacco smoke contains nicotine and many other compounds that act in concert on the brain reward system. Therefore, animal models are needed that allow the investigation of chronic exposure to the full spectrum of tobacco smoke constituents. OBJECTIVES The aim of these studies was to investigate if exposure to tobacco smoke leads to nicotine dependence in rats. METHODS The intracranial self-stimulation procedure was used to assess the negative affective aspects of nicotine withdrawal. Somatic signs were recorded from a checklist of nicotine abstinence signs. Nicotine self-administration sessions were conducted to investigate if tobacco smoke exposure affects the motivation to self-administer nicotine. Nicotinic receptor autoradiography was used to investigate if exposure to tobacco smoke affects central α7 nicotinic acetylcholine receptor (nAChR) and non-α7 nAChR levels (primarily α4β2 nAChRs). RESULTS The nAChR antagonist mecamylamine dose-dependently elevated the brain reward thresholds of the rats exposed to tobacco smoke and did not affect the brain reward thresholds of the untreated control rats. Furthermore, mecamylamine induced more somatic withdrawal signs in the smoke exposed rats than in the control rats. Nicotine self-administration was decreased 1 day after the last tobacco smoke exposure sessions and was returned to control levels 5 days later. Tobacco smoke exposure increased the α7 nAChR density in the CA2/3 area and the stratum oriens and increased the non-α7 nAChR density in the dentate gyrus. CONCLUSION Tobacco smoke exposure leads to nicotine dependence as indicated by precipitated affective and somatic withdrawal signs and induces an upregulation of nAChRs in the hippocampus. PMID:19936715
Sex-Dependent Effects of Developmental Lead Exposure on the Brain.
Singh, Garima; Singh, Vikrant; Sobolewski, Marissa; Cory-Slechta, Deborah A; Schneider, Jay S
2018-01-01
The role of sex as an effect modifier of developmental lead (Pb) exposure has until recently received little attention. Lead exposure in early life can affect brain development with persisting influences on cognitive and behavioral functioning, as well as, elevated risks for developing a variety of diseases and disorders in later life. Although both sexes are affected by Pb exposure, the incidence, manifestation, and severity of outcomes appears to differ in males and females. Results from epidemiologic and animal studies indicate significant effect modification by sex, however, the results are not consistent across studies. Unfortunately, only a limited number of human epidemiological studies have included both sexes in independent outcome analyses limiting our ability to draw definitive conclusions regarding sex-differentiated outcomes. Additionally, due to various methodological differences across studies, there is still not a good mechanistic understanding of the molecular effects of lead on the brain and the factors that influence differential responses to Pb based on sex. In this review, focused on prenatal and postnatal Pb exposures in humans and animal models, we discuss current literature supporting sex differences in outcomes in response to Pb exposure and explore some of the ideas regarding potential molecular mechanisms that may contribute to sex-related differences in outcomes from developmental Pb exposure. The sex-dependent variability in outcomes from developmental Pb exposure may arise from a combination of complex factors, including, but not limited to, intrinsic sex-specific molecular/genetic mechanisms and external risk factors including sex-specific responses to environmental stressors which may act through shared epigenetic pathways to influence the genome and behavioral output.
Sex-Dependent Effects of Developmental Lead Exposure on the Brain
Singh, Garima; Singh, Vikrant; Sobolewski, Marissa; Cory-Slechta, Deborah A.; Schneider, Jay S.
2018-01-01
The role of sex as an effect modifier of developmental lead (Pb) exposure has until recently received little attention. Lead exposure in early life can affect brain development with persisting influences on cognitive and behavioral functioning, as well as, elevated risks for developing a variety of diseases and disorders in later life. Although both sexes are affected by Pb exposure, the incidence, manifestation, and severity of outcomes appears to differ in males and females. Results from epidemiologic and animal studies indicate significant effect modification by sex, however, the results are not consistent across studies. Unfortunately, only a limited number of human epidemiological studies have included both sexes in independent outcome analyses limiting our ability to draw definitive conclusions regarding sex-differentiated outcomes. Additionally, due to various methodological differences across studies, there is still not a good mechanistic understanding of the molecular effects of lead on the brain and the factors that influence differential responses to Pb based on sex. In this review, focused on prenatal and postnatal Pb exposures in humans and animal models, we discuss current literature supporting sex differences in outcomes in response to Pb exposure and explore some of the ideas regarding potential molecular mechanisms that may contribute to sex-related differences in outcomes from developmental Pb exposure. The sex-dependent variability in outcomes from developmental Pb exposure may arise from a combination of complex factors, including, but not limited to, intrinsic sex-specific molecular/genetic mechanisms and external risk factors including sex-specific responses to environmental stressors which may act through shared epigenetic pathways to influence the genome and behavioral output. PMID:29662502
Air pollution and heart rate variability: effect modification by chronic lead exposure.
Park, Sung Kyun; O'Neill, Marie S; Vokonas, Pantel S; Sparrow, David; Wright, Robert O; Coull, Brent; Nie, Huiling; Hu, Howard; Schwartz, Joel
2008-01-01
Outdoor air pollution and lead exposure can disturb cardiac autonomic function, but the effects of both these exposures together have not been studied. We examined whether higher cumulative lead exposures, as measured by bone lead, modified cross-sectional associations between air pollution and heart rate variability among 384 elderly men from the Normative Aging Study. We used linear regression, controlling for clinical, demographic, and environmental covariates. We found graded, significant reductions in both high-frequency and low-frequency powers of heart rate variability in relation to ozone and sulfate across the quartiles of tibia lead. Interquartile range increases in ozone and sulfate were associated respectively, with 38% decrease (95% confidence interval = -54.6% to -14.9%) and 22% decrease (-40.4% to 1.6%) in high frequency, and 38% decrease (-51.9% to -20.4%) and 12% decrease (-28.6% to 9.3%) in low frequency, in the highest quartile of tibia lead after controlling for potential confounders. We observed similar but weaker effect modification by tibia lead adjusted for education and cumulative traffic (residuals of the regression of tibia lead on education and cumulative traffic). Patella lead modified only the ozone effect on heart rate variability. People with long-term exposure to higher levels of lead may be more sensitive to cardiac autonomic dysfunction on high air pollution days. Efforts to understand how environmental exposures affect the health of an aging population should consider both current levels of pollution and history of lead exposure as susceptibility factors.
Cleveland, Lisa M; Minter, Monica L; Cobb, Kathleen A; Scott, Anthony A; German, Victor F
2008-10-01
Poor, urban, and immigrant populations are at far greater risk for lead exposure than are other groups in the United States. Children with even slightly elevated blood lead levels are at increased risk for significant neurobehavioral problems that can extend through adolescence. Research has shown that elevated blood lead levels in pregnant women, even those well below 10 micrograms per deciliter-the Centers for Disease Control and Prevention's "level of concern"-can cause miscarriage, premature birth, low birth weight, and subsequent developmental delays in their children. Despite these well-established dangers, routine prenatal lead screening and lead education is not a standard of care. Part 1 of this two-part article presents a short case example of a pregnant mother with lead poisoning and describes the epidemiology of lead exposure in the United States, the main sources of lead exposure, and the effects of lead on the pregnant mother and the developing fetus and child. Prevention is crucial. Treatment options such as chelation must be used selectively and will not reverse damage once it's occurred. Part 2 will describe recommendations for screening, education, nutrition, reducing environmental exposures, and treatment.
Zheng, Jiajia; Huynh, Trang; Gasparon, Massimo; Ng, Jack; Noller, Barry
2013-12-01
Lead from historical mining and mineral processing activities may pose potential human health risks if materials with high concentrations of bioavailable lead minerals are released to the environment. Since the Joint Expert Committee on Food Additives of Food and Agriculture Organization/World Health Organization withdrew the Provisional Tolerable Weekly Intake of lead in 2011, an alternative method was required for lead exposure assessment. This study evaluated the potential lead hazard to young children (0-7 years) from a historical mining location at a semi-arid area using the U.S. EPA Integrated Exposure Uptake Biokinetic (IEUBK) Model, with selected site-specific input data. This study assessed lead exposure via the inhalation pathway for children living in a location affected by lead mining activities and with specific reference to semi-arid conditions and made comparison with the ingestion pathway by using the physiologically based extraction test for gastro-intestinal simulation. Sensitivity analysis for major IEUBK input parameters was conducted. Three groups of input parameters were classified according to the results of predicted blood concentrations. The modelled lead absorption attributed to the inhalation route was lower than 2 % (mean ± SE, 0.9 % ± 0.1 %) of all lead intake routes and was demonstrated as a less significant exposure pathway to children's blood, compared with ingestion. Whilst dermal exposure was negligible, diet and ingestion of soil and dust were the dominant parameters in terms of children's blood lead prediction. The exposure assessment identified the changing role of dietary intake when house lead loadings varied. Recommendations were also made to conduct comprehensive site-specific human health risk assessment in future studies of lead exposure under a semi-arid climate.
Engström, Karin; Rydbeck, Filip; Kippler, Maria; Wojdacz, Tomasz K.; Arifeen, Shams; Vahter, Marie; Broberg, Karin
2015-01-01
Abstract Early-life lead exposure impairs neurodevelopment and later exposure affects the cardiovascular system. Lead has been associated with reduced global 5-methylcytosine DNA methylation, suggesting that lead toxicity acts through epigenetic mechanisms. The objective of this study is to clarify how early-life lead exposure alters DNA methylation of specific genes, using an epigenomic approach. We measured lead concentrations in urine [gestational week (GW), 8] and erythrocytes (GW 14), using inductively coupled plasma mass spectrometry, for 127 pregnant mothers recruited in the MINIMat food and supplementation cohort in rural Bangladesh. Cord blood DNA methylation was analyzed with the Infinium HumanMethylation450K BeadChip, and top sites were validated by methylation-sensitive high-resolution melt curve analysis. Maternal urinary lead concentrations (divided into quartiles) showed significant (after adjustment for false discovery rate) inverse associations with methylation at nine CpGs. Three of these sites were in the 5′-end, including the promoter, of glycoprotein IV (GP6); cg18355337 (q = 0.029, β = −0.30), cg25818583 (q = 0.041, β = −0.18), and cg23796967 (q = 0.047, β = −0.17). The methylation in another CpG site in GP6 was close to significant (cg05374025, q = 0.057, β = − 0.23). The erythrocyte lead concentrations (divided into quartiles) were also inversely associated with CpG methylation in GP6, although this was not statistically significant after false discovery rate adjustments. Eight CpG sites in GP6 constituted a differentially methylated region in relation to urinary lead (P = 0.005, q = 0.48) and erythrocyte lead (P = 0.007, q = 0.46). In conclusion, we found that moderate prenatal lead exposure appears to epigenetically affect GP6, a key component of platelet aggregation and thrombus formation, suggesting a novel link between early lead exposure and cardiovascular disease later in life. PMID:29492281
Psychopathy, traumatic exposure, and lifetime posttraumatic stress.
Willemsen, Jochem; De Ganck, Julie; Verhaeghe, Paul
2012-06-01
This study examined two theoretical models on the interaction between psychopathy, traumatic exposure, and lifetime posttraumatic stress in a sample of 81 male detainees. In Model 1, the interpersonal and affective features of psychopathy were assumed to protect against posttraumatic stress. In Model 2, the lifestyle and antisocial traits of psychopathy were assumed to lead to a lifestyle that increases the risk of traumatic exposure and subsequent posttraumatic stress. The authors found significant negative bivariate associations between Psychopathy Checklist-Revised (PCL-R) total, Interpersonal and Affective facet scores, and posttraumatic stress. Model 1 was confirmed, as they found the interaction between the Affective facet and traumatic exposure had a significant negative effect on posttraumatic stress. Model 2 was rejected. The authors' findings confirm that the interpersonal and affective features of psychopathy are associated with an emotional deficit and that the affective features of psychopathy are crucial for understanding the relationship between psychopathy and anxiety.
Scientists are seeking to understand how early exposure to chemicals such as lead, bisphenol A (BPA), and phthalates affects growth and sexual development during childhood and adolescence and the risk for diseases in adulthood.
Yamada, Hidetaka; Bishnoi, Mahendra; Keijzers, Kim F M; van Tuijl, Irma A; Small, Elysia; Shah, Hina P; Bauzo, Rayna M; Kobeissy, Firas H; Sabarinath, Sreedharan N; Derendorf, Hartmut; Bruijnzeel, Adrie W
2010-06-01
Epidemiological studies indicate that parental smoking increases the risk for smoking in children. However, the underlying mechanisms by which parental smoking increases the risk for smoking are not known. The aim of these studies was to investigate if preadolescent tobacco smoke exposure, postnatal days 21-35, affects the rewarding effects of nicotine and nicotine withdrawal in adult rats. The rewarding effects of nicotine were investigated with the conditioned place preference procedure. Nicotine withdrawal was investigated with the conditioned place aversion procedure and intracranial self-stimulation (ICSS). Elevations in brain reward thresholds in the ICSS paradigm reflect a dysphoric state. Plasma nicotine and cotinine levels in the preadolescent rats immediately after smoke exposure were 188 ng/ml and 716 ng/ml, respectively. Preadolescent tobacco smoke exposure led to the development of nicotine dependence as indicated by an increased number of mecamylamine-precipitated somatic withdrawal signs in the preadolescent tobacco smoke exposed rats compared to the control rats. Nicotine induced a similar place preference in adult rats that had been exposed to tobacco smoke or air during preadolescence. Furthermore, mecamylamine induced place aversion in nicotine dependent rats but there was no effect of preadolescent tobacco smoke exposure. Finally, preadolescent tobacco smoke exposure did not affect the elevations in brain reward thresholds associated with precipitated or spontaneous nicotine withdrawal. These studies indicate that passive exposure to tobacco smoke during preadolescence leads to the development of nicotine dependence but preadolescent tobacco smoke exposure does not seem to affect the rewarding effects of nicotine or nicotine withdrawal in adulthood. Published by Elsevier Inc.
Developmental lead exposure has mixed effects on butterfly cognitive processes.
Philips, Kinsey H; Kobiela, Megan E; Snell-Rood, Emilie C
2017-01-01
While the effects of lead pollution have been well studied in vertebrates, it is unclear to what extent lead may negatively affect insect cognition. Lead pollution in soils can elevate lead in plant tissues, suggesting it could negatively affect neural development of insect herbivores. We used the cabbage white butterfly (Pieris rapae) as a model system to study the effect of lead pollution on insect cognitive processes, which play an important role in how insects locate and handle resources. Cabbage white butterfly larvae were reared on a 4-ppm lead diet, a concentration representative of vegetation in polluted sites; we measured eye size and performance on a foraging assay in adults. Relative to controls, lead-reared butterflies did not differ in time or ability to search for a food reward associated with a less preferred color. Indeed, lead-treated butterflies were more likely to participate in the behavioral assay itself. Lead exposure did not negatively affect survival or body size, and it actually sped up development time. The effects of lead on relative eye size varied with sex: lead tended to reduce eye size in males, but increase eye size in females. These results suggest that low levels of lead pollution may have mixed effects on butterfly vision, but only minimal impacts on performance in foraging tasks, although follow-up work is needed to test whether this result is specific to cabbage whites, which are often associated with disturbed areas.
The effects of preceding lead-alone and lag-alone click trains on the buildup of echo suppression.
Bishop, Christopher W; Yadav, Deepak; London, Sam; Miller, Lee M
2014-08-01
Spatial perception in echoic environments is influenced by recent acoustic history. For instance, echo suppression becomes more effective or "builds up" with repeated exposure to echoes having a consistent acoustic relationship to a temporally leading sound. Four experiments were conducted to investigate how buildup is affected by prior exposure to unpaired lead-alone or lag-alone click trains. Unpaired trains preceded lead-lag click trains designed to evoke and assay buildup. Listeners reported how many sounds they heard from the echo hemifield during the lead-lag trains. Stimuli were presented in free field (experiments 1 and 4) or dichotically through earphones (experiments 2 and 3). In experiment 1, listeners reported more echoes following a lead-alone train compared to a period of silence. In contrast, listeners reported fewer echoes following a lag-alone train; similar results were observed with earphones. Interestingly, the effects of lag-alone click trains on buildup were qualitatively different when compared to a no-conditioner trial type in experiment 4. Finally, experiment 3 demonstrated that the effects of preceding click trains on buildup cannot be explained by a change in counting strategy or perceived click salience. Together, these findings demonstrate that echo suppression is affected by prior exposure to unpaired stimuli.
Challenges in Addressing Variability Of Lead in Domestic Plumbing
Current data indicate that lead exposure is of concern even at low concentrations. Corrosion is an important problem in drinking water because it can affect public health due to leaching of lead or other metals into the drinking water. For this reason, a corrosion control program...
Shen, W; Chen, J; Yin, J; Wang, S-L
2016-01-01
Lead is a common environmental contaminant. Lead accumulation in the body is especially dangerous for pregnant women and newborns. Selenium is a trace element which may rectify the damaging effects of lead. Here we tested potential protective effects of selenium against gestational lead exposure. Pregnant SD rats were exposed to 200 mg/L of lead acetate (given with water), with or without sodium selenite supplementation (2-8 mg/kg/day via intragastric administration). Pregnant rats not exposed to lead or selenium served as control animals. The outcomes in pregnant rats were serum lead and selenium levels, reproductive hormone (follicle-stimulating hormone, luteinizing hormone, prolactin, oestradiol, progesterone) levels, and uterine and ovarian morphological changes. The outcomes in the offspring were sex differentiation, survival rates (day 21 after birth), weight (days 0-35 after birth), weight of reproductive organs, and puberty onset (foreskin separation or vaginal opening). Selenium supplementation dose-dependently decreased serum lead levels, rectified reproductive hormone levels, and attenuated reproductive morphological changes caused by lead exposure. Lead exposure did not affect sex differentiation, but significantly (p < 0.05 vs. control animals) decreased the offspring weight on days 0-28 and the weight of their reproductive organs. Furthermore, lead exposure delayed the onset of puberty. These pathological changes were dose-dependently rectified or attenuated by selenium supplementation. Gestational lead exposure causes damages to the reproductive system of pregnant rats, and negatively modulates growth and reproductive system development of the offspring. These adverse effects are rectified or attenuated by selenium supplementation.
Mousa, Alyaa M; Al-Fadhli, Ameera S; Rao, Muddanna S; Kilarkaje, Narayana
2015-01-01
Lead (Pb), a known environmental toxicant, adversely affects almost all organ systems. In this study, we investigated the effects of maternal lead exposure on fetal rat cerebellum. Female Sprague-Dawley rats were given lead nitrate in drinking water (0, 0.5, and 1%) for two weeks before conception, and during pregnancy. Fetuses were collected by caesarian section on gestational day 21 and observed for developmental abnormalities. The fetal cerebellar sections from control and 1% lead group were stained with cresyl violet. Immunohistochemical expressions of p53, Bax, Bcl-2, and caspase 3 were quantified by AnalySIS image analyzer (Life Science, Germany). Lead exposure induced developmental abnormalities of eyes, ear, limbs, neck and ventral abdominal wall; however, these abnormalities were commonly seen in the 1% lead-treated group. In addition, lead also caused fetal mortality and reduced body growth in both dose groups and reduced brain weight in the 1% lead-treated group. The fetal cerebella from the 1% lead-treated group showed unorganized cerebellar cortical layers, and degenerative changes in granule and Purkinje cells such as the formation of clumps of Nissl granules. An increase in Bax and caspase 3, and a decrease in Bcl-2 (p < 0.05), but not in p53, showed apoptosis of the neurons. In conclusion, gestational lead exposure in rats induces fetal toxicity and developmental abnormalities. The lead exposure also impairs development of cerebellar layers, induces structural changes, and apoptosis in the fetal cerebellar cortex. These results suggest that lead exposure during gestation is extremely toxic to developing cerebellum in rats.
Gender differences in the disposition and toxicity of metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vahter, Marie; Akesson, Agneta; Liden, Carola
There is increasing evidence that health effects of toxic metals differ in prevalence or are manifested differently in men and women. However, the database is small. The present work aims at evaluating gender differences in the health effects of cadmium, nickel, lead, mercury and arsenic. There is a markedly higher prevalence of nickel-induced allergy and hand eczema in women compared to men, mainly due to differences in exposure. Cadmium retention is generally higher in women than in men, and the severe cadmium-induced Itai-itai disease was mainly a woman's disease. Gender differences in susceptibility at lower exposure are uncertain, but recentmore » data indicate that cadmium has estrogenic effects and affect female offspring. Men generally have higher blood lead levels than women. Lead accumulates in bone and increased endogenous lead exposure has been demonstrated during periods of increased bone turnover, particularly in women in pregnancy and menopause. Lead and mercury, in the form of mercury vapor and methylmercury, are easily transferred from the pregnant women to the fetus. Recent data indicate that boys are more susceptible to neurotoxic effects of lead and methylmercury following exposure early in life, while experimental data suggest that females are more susceptible to immunotoxic effects of lead. Certain gender differences in the biotransformation of arsenic by methylation have been reported, and men seem to be more affected by arsenic-related skin effect than women. Experimental studies indicate major gender differences in arsenic-induced cancer. Obviously, research on gender-related differences in health effects caused by metals needs considerable more focus in the future.« less
Newman, Nick; Jones, Camille; Page, Elena; Ceballos, Diana; Oza, Aalok
2015-07-17
Lead affects the developing nervous system of children, and no safe blood lead level (BLL) in children has been identified. Elevated BLLs in childhood are associated with hyperactivity, attention problems, conduct problems, and impairment in cognition. Young children are at higher risk for environmental lead exposure from putting their hands or contaminated objects in their mouth. Although deteriorating lead paint in pre-1979 housing is the most common source of lead exposure in children, data indicate that ≥30% of children with elevated BLLs were exposed through a source other than paint. Take-home contamination occurs when lead dust is transferred from the workplace on employees' skin, clothing, shoes, and other personal items to their car and home. Recycling of used electronics (e-scrap) is a relatively recent source of exposure to developmental neurotoxicants, including lead. In 2010, the Cincinnati Health Department and Cincinnati Children's Hospital Pediatric Environmental Health Specialty Unit (PEHSU) investigated two cases of childhood lead poisoning in a single family. In 2012, CDC's National Institute for Occupational Safety and Health (NIOSH) learned about the lead poisonings during an evaluation of the e-scrap recycling facility where the father of the two children with lead poisoning worked. This report summarizes the case investigation. Pediatricians should ask about parents' occupations and hobbies that might involve lead when evaluating elevated BLLs in children, in routine lead screening questionnaires, and in evaluating children with signs or symptoms of lead exposure.
ERIC Educational Resources Information Center
Funk, Jeanne B.; Baldacci, Heidi Bechtoldt; Pasold; Tracie; Baumgardner, Jennifer
2004-01-01
It is believed that repeated exposure to real-life and to entertainment violence may alter cognitive, affective, and behavioral processes, possibly leading to desensitization. The goal of the present study was to determine if there are relationships between real-life and media violence exposure and desensitization as reflected in related…
Childhood lead poisoning: the torturous path from science to policy
Bellinger, David C.; Bellinger, Andrew M.
2006-01-01
The long history of lead poisoning provides many lessons about the process by which scientific knowledge is translated into public health policy. In the United States, lead was added to paint and to gasoline in enormous quantities long after medical evidence clearly showed that excessive lead exposure caused considerable morbidity in the population. This article discusses some of the factors that contributed to the slow pace of efforts to address this problem, including the ubiquity and magnitude of lead exposure during much of the twentieth century, which produced a distorted notion about the blood lead level that can be considered “normal”; the prevailing model of disease during this period, notably the novelty of the concept of subclinical disease; the fact that childhood lead poisoning affected mostly families that were politically and economically disenfranchised, fostering a “blame the victim” attitude; and that controlling lead exposure would have impeded efforts to achieve other desirable goals, illustrating the role that value trade-offs often play in policy decisions. PMID:16585952
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simões, Maylla Ronacher, E-mail: yllars@hotmail.com; Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz; Aguado, Andrea
Chronic exposure to low lead concentration produces hypertension; however, the underlying mechanisms remain unclear. We analyzed the role of oxidative stress, cyclooxygenase-2-dependent pathways and MAPK in the vascular alterations induced by chronic lead exposure. Aortas from lead-treated Wistar rats (1st dose: 10 μg/100 g; subsequent doses: 0.125 μg/100 g, intramuscular, 30 days) and cultured aortic vascular smooth muscle cells (VSMCs) from Sprague Dawley rats stimulated with lead (20 μg/dL) were used. Lead blood levels of treated rats attained 21.7 ± 2.38 μg/dL. Lead exposure increased systolic blood pressure and aortic ring contractile response to phenylephrine, reduced acetylcholine-induced relaxation and didmore » not affect sodium nitroprusside relaxation. Endothelium removal and L-NAME left-shifted the response to phenylephrine more in untreated than in lead-treated rats. Apocynin and indomethacin decreased more the response to phenylephrine in treated than in untreated rats. Aortic protein expression of gp91(phox), Cu/Zn-SOD, Mn-SOD and COX-2 increased after lead exposure. In cultured VSMCs lead 1) increased superoxide anion production, NADPH oxidase activity and gene and/or protein levels of NOX-1, NOX-4, Mn-SOD, EC-SOD and COX-2 and 2) activated ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized superoxide anion production, NADPH oxidase activity and mRNA levels of NOX-1, NOX-4 and COX-2. Blockade of the ERK1/2 and p38 signaling pathways abolished lead-induced NOX-1, NOX-4 and COX-2 expression. Results show that lead activation of the MAPK signaling pathways activates inflammatory proteins such as NADPH oxidase and COX-2, suggesting a reciprocal interplay and contribution to vascular dysfunction as an underlying mechanisms for lead-induced hypertension. - Highlights: • Lead-exposure increases oxidative stress, COX-2 expression and vascular reactivity. • Lead exposure activates MAPK signaling pathway. • ROS and COX-2 activation by MAPK in lead exposure • Relationship between vascular ROS and COX-2 products in lead exposure.« less
A Framework for Assessing Chemical/Nonchemical ...
Chemical and nonchemical stressors may contribute to negative health consequences in certain individuals. Nonchemical stressors include poverty, crowding, noise, and exposure to violence. Research has suggested that some nonchemical stressors may alter chemical toxicity. We propose a framework to explore the evidence for the interaction of chemical and nonchemical stressors. Specifically, the framework is used to evaluate the potential interaction of lead exposure and psychosocial stress associated with low-socioeconomic status. We conducted a literature review and analyzed NHANES data to answer the following questions: 1) Does lead exposure occur disproportionately in low-SES groups that typically may also face higher levels of psychosocial stress? 2) Do lead and stress result in similar neurodevelopmental outcomes via similar pathways, particularly, affecting the hypothalamic-pituitary axis (HPA)? 3) Do studies demonstrate that stress alters the dose response for lead neurotoxicity? We found, that although overall blood lead levels continue to decline, lower-SES individuals are still disproportionately exposed to lead and that both lead exposure and stress result in cognitive impairments through their interaction with the HPA axis. We note that many human and animal studies demonstrate that psychosocial stress increases lead-toxicity. Currently, many data gaps exist regarding interactions of other chemical and nonchemical stressors. This framework may be u
Gandhi, Jason; Hernandez, Rafael J; Chen, Andrew; Smith, Noel L; Sheynkin, Yefim R; Joshi, Gargi; Khan, Sardar Ali
2017-04-01
Lead poisoning is a stealthy threat to human physiological systems as chronic exposure can remain asymptomatic for long periods of time before symptoms manifest. We presently review the biophysical mechanisms of lead poisoning that contribute to male infertility. Environmental and occupational exposure of lead may adversely affect the hypothalamic-pituitary-testicular axis, impairing the induction of spermatogenesis. Dysfunction at the reproductive axis, namely testosterone suppression, is most susceptible and irreversible during pubertal development. Lead poisoning also appears to directly impair the process of spermatogenesis itself as well as sperm function. Spermatogenesis issues may manifest as low sperm count and stem from reproductive axis dysfunction or testicular degeneration. Generation of excessive reactive oxygen species due to lead-associated oxidative stress can potentially affect sperm viability, motility, DNA fragmentation, membrane lipid peroxidation, capacitation, hyperactivation, acrosome reaction, and chemotaxis for sperm-oocyte fusion, all of which can contribute to deter fertilization. Reproductive toxicity has been tested through cross-sectional analysis studies in humans as well as in vivo and in vitro studies in animals.
Brumbaugh, William G; Mora, Miguel A; May, Thomas W; Phalen, David N
2010-11-01
Voles and small passerine birds were live-captured near the Delong Mountain Regional Transportation System (DMTS) haul road in Cape Krusenstern National Monument in northwest Alaska to assess metals exposure and sub-lethal biological effects. Similar numbers of animals were captured from a reference site in southern Cape Krusenstern National Monument for comparison. Histopathological examination of selected organs, and analysis of cadmium, lead, and zinc concentrations in liver and blood samples were performed. Voles and small birds captured from near the haul road had about 20 times greater blood and liver lead concentrations and about three times greater cadmium concentrations when compared to those from the reference site, but there were no differences in zinc tissue concentrations. One vole had moderate metastatic mineralization of kidney tissue, otherwise we observed no abnormalities in internal organs or DNA damage in the blood of any of the animals. The affected vole also had the greatest liver and blood Cd concentration, indicating that the lesion might have been caused by Cd exposure. Blood and liver lead concentrations in animals captured near the haul road were below concentrations that have been associated with adverse biological effects in other studies; however, subtle effects resulting from lead exposure, such as the suppression of the activity of certain enzymes, cannot be ruled out for some individual animals. Results from our 2006 reconnaissance-level study indicate that overall, voles and small birds obtained from near the DMTS road in Cape Krusenstern National Monument were not adversely affected by metals exposure; however, because of the small sample size and other uncertainties, continued monitoring of lead and cadmium in terrestrial habitats near the DMTS road is advised.
Brumbaugh, William G.; Mora, Miguel A.; May, Thomas W.; Phalen, David N.
2010-01-01
Voles and small passerine birds were live-captured near the Delong Mountain Regional Transportation System (DMTS) haul road in Cape Krusenstern National Monument in northwest Alaska to assess metals exposure and sub-lethal biological effects. Similar numbers of animals were captured from a reference site in southern Cape Krusenstern National Monument for comparison. Histopathological examination of selected organs, and analysis of cadmium, lead, and zinc concentrations in liver and blood samples were performed. Voles and small birds captured from near the haul road had about 20 times greater blood and liver lead concentrations and about three times greater cadmium concentrations when compared to those from the reference site, but there were no differences in zinc tissue concentrations. One vole had moderate metastatic mineralization of kidney tissue, otherwise we observed no abnormalities in internal organs or DNA damage in the blood of any of the animals. The affected vole also had the greatest liver and blood Cd concentration, indicating that the lesion might have been caused by Cd exposure. Blood and liver lead concentrations in animals captured near the haul road were below concentrations that have been associated with adverse biological effects in other studies; however, subtle effects resulting from lead exposure, such as the suppression of the activity of certain enzymes, cannot be ruled out for some individual animals. Results from our 2006 reconnaissance-level study indicate that overall, voles and small birds obtained from near the DMTS road in Cape Krusenstern National Monument were not adversely affected by metals exposure; however, because of the small sample size and other uncertainties, continued monitoring of lead and cadmium in terrestrial habitats near the DMTS road is advised.
Kim, Johanna Inhyang; Kim, Jae-Won; Lee, Jong-Min; Yun, Hyuk Jin; Sohn, Chul-Ho; Shin, Min-Sup; Kim, Bongseog; Chae, Jonghee; Roh, Jaewoo; Kim, Bung-Nyun
2018-03-02
The dopamine receptor D2 receptor (DRD2) gene and lead exposure are both thought to contribute to the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). ADHD is characterized by delay in brain maturation, most prominent in the prefrontal cortex (PFC). The D2 receptor is also mainly located in the PFC, and animal studies show that lead exposure affects the dopaminergic system of the frontal lobe, indicating an overlap in neural correlates of ADHD, DRD2, and lead exposure. We examined the interaction effects of DRD2 rs1800497 and lead exposure on the cortical thickness of the frontal lobe in patients with ADHD. A 1:1 age- and gender-matched sample of 75 participants with ADHD and 75 healthy participants was included in the analysis. The interaction effects of DRD2 and lead exposure on the cortical thickness of 12 regions of interest in the frontal lobe were examined by multivariable linear regression analyses. When we investigated the DRD2×lead effects in the ADHD and HC groups separately, significant DRD2×lead effects were found in the ADHD group, but not in the healthy control group in multiple ROIs of the frontal lobe. There was a significant negative correlation between the cortical thickness of the right superior frontal gyrus and inattention scores. The present findings demonstrated significant interaction effects of DRD2 and lead exposure on the cortical thickness of the frontal lobe in ADHD. Replication studies with larger sample sizes, using a prospective design, are warranted to confirm these findings. Copyright © 2017 Elsevier Inc. All rights reserved.
Rodríguez-Estival, Jaime; de la Lastra, José M Pérez; Ortiz-Santaliestra, Manuel E; Vidal, Dolors; Mateo, Rafael
2013-04-01
Lead (Pb) is a highly toxic metal that can induce oxidative stress and affect the immune system by modifying the expression of immunomodulator-related genes. The aim of the present study was to investigate the association between Pb exposure and the transcriptional profiles of some cytokines, as well as the relationship between Pb exposure and changes in oxidative stress biomarkers observed in the spleen of wild ungulates exposed to mining pollution. Red deer and wild boar from the mining area studied had higher spleen, liver, and bone Pb levels than controls, indicating a chronic exposure to Pb pollution. Such exposure caused a depletion of spleen glutathione levels in both species and disrupted the activity of antioxidant enzymes, suggesting the generation of oxidative stress conditions. Deer from the mining area also showed an induced T-helper (Th )-dependent immune response toward the Th 2 pathway, whereas boar from the mining area showed a cytokine profile suggesting an inclination of the immune response toward the Th 1 pathway. These results indicate that environmental exposure to Pb may alter immune responses in wild ungulates exposed to mining pollution. However, evidence of direct relationships between Pb-mediated oxidative stress and the changes detected in immune responses were not found. Further research is needed to evaluate the immunotoxic potential of Pb pollution, also considering the prevalence of chronic infectious diseases in wildlife in environments affected by mining activities. Copyright © 2013 SETAC.
Prior Cocaine Exposure Disrupts Extinction of Fear Conditioning
ERIC Educational Resources Information Center
Gugsa, Nishan; Schoenbaum, Geoffrey; Burke, Kathryn A.; Franz, Theresa M.
2006-01-01
Psychostimulant exposure has been shown to cause molecular and cellular changes in prefrontal cortex. It has been hypothesized that these drug-induced changes might affect the operation of prefrontal-limbic circuits, disrupting their normal role in controlling behavior and thereby leading to compulsive drug-seeking. To test this hypothesis, we…
Blood lead levels and longitudinal language outcomes in children from 4 to 12 years.
Lewis, Barbara A; Minnes, Sonia; Min, Meeyoung O; Short, Elizabeth J; Wu, Miaoping; Lang, Adelaide; Weishampel, Paul; Singer, Lynn T
In this study, the authors aimed to examine the association of a range of blood lead levels on language skills assessed at 4, 6, 10 and 12 years of age using a prospective longitudinal design controlling for potential confounding variables including maternal vocabulary, caregiver's psychological distress and symptomatology, child's race and prenatal drug exposure. The participants (N = 278) were a subsample of a large longitudinal study that examined the association of prenatal drug exposure on children who were followed prospectively from birth and assessed for receptive and expressive language skills at 4, 6, 10 and 12 years of age. Blood lead levels were determined at 4-years of age by atomic absorption spectrometry. A mixed model approach with restricted maximum likelihood procedures was used to assess the association of lead on language outcomes. Longitudinal mixed model analyses suggested a negative effect of lead exposure on both receptive and expressive language, with the adverse outcomes of lead exposure appearing to become more prominent at 10 and 12 years. Higher caregiver vocabulary was positively associated with child's language scores whereas caregiver psychological distress appeared to negatively affect language scores. Prenatal drug exposure was not related to the effects of lead on language skills. These findings suggest that elevated blood lead levels occurring early in life may be associated with poorer language skills at older ages. A language rich environment may minimize the negative influence of early lead exposure on language skills, with psychological distress seemingly exacerbating the negative outcome. Copyright © 2018 Elsevier Inc. All rights reserved.
Brandon, Jonathan W; Solarczyk, Justin K; Durrani, Timur S
Lead toxicity is an important environmental disease and its effects on the human body can be devastating. Unique exposures to Special Operations Forces personnel may include use of firing ranges, use of automotive fuels, production of ammunition, and bodily retention of bullets. Toxicity may degrade physical and psychological fitness, and cause long-term negative health outcomes. Specific effects on fine motor movements, reaction times, and global function could negatively affect shooting skills and decision-making. Biologic monitoring and chelation treatment are poor solutions for protecting this population. Through primary prevention, Special Operations Forces personnel can be protected, in any environment, from the devastating effects of lead exposure. This article offers tools to physicians, environmental service officers, and Special Operations Medics for primary prevention of lead poisoning in the conventional and the austere or forward deployed environments. 2018.
The availability of prolactin (PRL) to the neonatal brain is known to affect the development of the tuberoinfundibular (TIDA) neurons and, as a consequence, lead to alterations in subsequent PRL regulation. Without early lactational exposure to PRL (derived from the dam's milk), ...
Air pollution during pregnancy and lung development in the child.
Korten, Insa; Ramsey, Kathryn; Latzin, Philipp
2017-01-01
Air pollution exposure has increased extensively in recent years and there is considerable evidence that exposure to particulate matter can lead to adverse respiratory outcomes. The health impacts of exposure to air pollution during the prenatal period is especially concerning as it can impair organogenesis and organ development, which can lead to long-term complications. Exposure to air pollution during pregnancy affects respiratory health in different ways. Lung development might be impaired by air pollution indirectly by causing lower birth weight, premature birth or disturbed development of the immune system. Exposure to air pollution during pregnancy has also been linked to decreased lung function in infancy and childhood, increased respiratory symptoms, and the development of childhood asthma. In addition, impaired lung development contributes to infant mortality. The mechanisms of how prenatal air pollution affects the lungs are not fully understood, but likely involve interplay of environmental and epigenetic effects. The current epidemiological evidence on the effect of air pollution during pregnancy on lung function and children's respiratory health is summarized in this review. While evidence for the adverse effects of prenatal air pollution on lung development and health continue to mount, rigorous actions must be taken to reduce air pollution exposure and thus long-term respiratory morbidity and mortality. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yan, Jin; Gao, Zhenyan; Wang, Ju; Ma, Wenjuan; Ying, Xiaolan; Zhou, Cancan; Yan, Chonghuai
2018-05-01
To explore the potential environmental and dietary factors during pregnancy affecting low-level prenatal lead exposure, we conducted a longitudinal study in Wujiang City, China. A total of 1976 mother-infant pairs were included from 2009 to 2010. An interviewed questionnaire was conducted and cord blood samples were collected. The geometric means of cord blood lead level was 30.3 μg/L (95% CI, 29.8-30.8) with 99.24% below 100 μg/L. Maternal age, passive smoking, and living in the countryside were significantly associated with cord blood lead concentrations. Multiple logistic models showed that some family environmental factors including using firewood and electricity as kitchen fuel were positively correlated with increased cord blood lead levels. Among dietary sources recorded in this study, meat consumption (> 3 times/week), fish consumption (1-3 times/week), vegetables consumption (> 1 times/day), and fruit intake (> 1 times/day) had inverse relationship with cord blood lead levels. In general, our findings may have important implications for family environmental and dietary direction during pregnancy to decrease prenatal lead exposure.
2012-01-01
Lead is an old environmental metal which is presented everywhere and lead poisoning is an important health issue in many countries in the world including Iran. It is known as a silent environmental disease which can have life-long adverse health effects. In children, the most vulnerable population, mental development of children health effects is of the greatest influence. Low level lead exposure can significantly induce motor dysfunctions and cognitive impairment in children. The sources of lead exposure vary among countries. Occupational lead exposure is an important health issue in Iran and mine workers, employees of paint factories, workers of copying centers, drivers, and tile making factories are in higher risk of lead toxicity. Moreover lead processing industry has always been a major of concern which affects surface water, drinking waters, and ground waters, even water of Caspian Sea, Persian Gulf and rivers due to increasing the number of industries in vicinity of rivers that release their waste discharges into river or sea. In addition, lead contamination of soil and air especially in vicinity of polluted and industrialized cities is another health problem in Iran. Even foods such as rice and fishes, raw milk, and vegetables which are the most common food of Iranian population are polluted to lead in some area of Iran. Adding lead to the opium is a recently health hazard in Iran that has been observed among opium addicts. There are few studies evaluated current status of lead exposure and toxicity in the Iranian children and pregnant women which should be taken into account of authorities. We recommend to identify sources, eliminate or control sources, and monitor environmental exposures and hazards to prevent lead poisoning. PMID:23226111
Household chemicals: management of intoxication and antidotes.
Rauber-Lüthy, Christine; Kupferschmidt, Hugo
2010-01-01
Exposure to household products is very common, but in industrialized countries severe or fatal poisoning with household products is rare today, due to the legal restriction of sale of hazardous household products. The big challenge for physicians, pharmacologists and toxicologists is to identify the few exceptional life-threatening situations where immediate intervention is needed. Among thousands of innocuous products available for the household only very few are hazardous. Substances found in these products include detergents, corrosives, alcohols, hydrocarbons, and some of the essential oils. The ingestion of batteries and magnets and the exposure to cyanoacrylates (super glue) can cause complications in exceptional situations. Among the most dangerous substances still present in household products are ethylene glycol and methanol. These substances cause major toxicity only through their metabolites. Therefore, initial symptoms may be only mild or absent. Treatment even in asymptomatic patients has to be initiated as early as possible to inhibit production of toxic metabolites. For all substances not only the compound itself but also the route of exposure is relevant for toxicity. Oral ingestion and inhalation generally lead to most pronounced symptoms, while dermal exposure is often limited to mild irritation. However, certain circumstances need special attention. Exposure to hydrofluoric acid may lead to fatal hypocalcemia, depending on the concentration, duration of exposure, and area of the affected skin. Accidents with hydrocarbon pressure injectors and spray guns are very serious events, which may lead to amputation of affected limbs. Button batteries normally pass the gastrointestinal tract without problems even in toddlers; in rare cases, however, they get lodged in the esophagus with the risk of localized tissue damage and esophageal perforation.
The persistent problem of lead poisoning in birds from ammunition and fishing tackle
Haig, Susan M.; D'Elia, Jesse; Eagles-Smith, Collin A.; Fair, Jeanne M.; Gervais, Jennifer; Herring, Garth; Rivers, James W.; Schulz, John H.
2014-01-01
Lead (Pb) is a metabolic poison that can negatively influence biological processes, leading to illness and mortality across a large spectrum of North American avifauna (>120 species) and other organisms. Pb poisoning can result from numerous sources, including ingestion of bullet fragments and shot pellets left in animal carcasses, spent ammunition left in the field, lost fishing tackle, Pb-based paints, large-scale mining, and Pb smelting activities. Although Pb shot has been banned for waterfowl hunting in the United States (since 1991) and Canada (since 1999), Pb exposure remains a problem for many avian species. Despite a large body of scientific literature on exposure to Pb and its toxicological effects on birds, controversy still exists regarding its impacts at a population level. We explore these issues and highlight areas in need of investigation: (1) variation in sensitivity to Pb exposure among bird species; (2) spatial extent and sources of Pb contamination in habitats in relation to bird exposure in those same locations; and (3) interactions between avian Pb exposure and other landscape-level stressors that synergistically affect bird demography. We explore multiple paths taken to reduce Pb exposure in birds that (1) recognize common ground among a range of affected interests; (2) have been applied at local to national scales; and (3) engage governmental agencies, interest groups, and professional societies to communicate the impacts of Pb ammunition and fishing tackle, and to describe approaches for reducing their availability to birds. As they have in previous times, users of fish and wildlife will play a key role in resolving the Pb poisoning issue.
Plumlee, Geoffrey S; Durant, James T; Morman, Suzette A; Neri, Antonio; Wolf, Ruth E; Dooyema, Carrie A; Hageman, Philip L; Lowers, Heather A; Fernette, Gregory L; Meeker, Gregory P; Benzel, William M; Driscoll, Rhonda L; Berry, Cyrus J; Crock, James G; Goldstein, Harland L; Adams, Monique; Bartrem, Casey L; Tirima, Simba; Behbod, Behrooz; von Lindern, Ian; Brown, Mary Jean
2013-06-01
In 2010, Médecins Sans Frontières discovered a lead poisoning outbreak linked to artisanal gold processing in northwestern Nigeria. The outbreak has killed approximately 400 young children and affected thousands more. Our aim was to undertake an interdisciplinary geological- and health-science assessment to clarify lead sources and exposure pathways, identify additional toxicants of concern and populations at risk, and examine potential for similar lead poisoning globally. We applied diverse analytical methods to ore samples, soil and sweep samples from villages and family compounds, and plant foodstuff samples. Natural weathering of lead-rich gold ores before mining formed abundant, highly gastric-bioaccessible lead carbonates. The same fingerprint of lead minerals found in all sample types confirms that ore processing caused extreme contamination, with up to 185,000 ppm lead in soils/sweep samples and up to 145 ppm lead in plant foodstuffs. Incidental ingestion of soils via hand-to-mouth transmission and of dusts cleared from the respiratory tract is the dominant exposure pathway. Consumption of water and foodstuffs contaminated by the processing is likely lesser, but these are still significant exposure pathways. Although young children suffered the most immediate and severe consequences, results indicate that older children, adult workers, pregnant women, and breastfed infants are also at risk for lead poisoning. Mercury, arsenic, manganese, antimony, and crystalline silica exposures pose additional health threats. Results inform ongoing efforts in Nigeria to assess lead contamination and poisoning, treat victims, mitigate exposures, and remediate contamination. Ore deposit geology, pre-mining weathering, and burgeoning artisanal mining may combine to cause similar lead poisoning disasters elsewhere globally.
Durant, James T.; Morman, Suzette A.; Neri, Antonio; Wolf, Ruth E.; Dooyema, Carrie A.; Hageman, Philip L.; Lowers, Heather A.; Fernette, Gregory L.; Meeker, Gregory P.; Benzel, William M.; Driscoll, Rhonda L.; Berry, Cyrus J.; Crock, James G.; Goldstein, Harland L.; Adams, Monique; Bartrem, Casey L.; Tirima, Simba; Behbod, Behrooz; von Lindern, Ian; Brown, Mary Jean
2013-01-01
Background: In 2010, Médecins Sans Frontières discovered a lead poisoning outbreak linked to artisanal gold processing in northwestern Nigeria. The outbreak has killed approximately 400 young children and affected thousands more. Objectives: Our aim was to undertake an interdisciplinary geological- and health-science assessment to clarify lead sources and exposure pathways, identify additional toxicants of concern and populations at risk, and examine potential for similar lead poisoning globally. Methods: We applied diverse analytical methods to ore samples, soil and sweep samples from villages and family compounds, and plant foodstuff samples. Results: Natural weathering of lead-rich gold ores before mining formed abundant, highly gastric-bioaccessible lead carbonates. The same fingerprint of lead minerals found in all sample types confirms that ore processing caused extreme contamination, with up to 185,000 ppm lead in soils/sweep samples and up to 145 ppm lead in plant foodstuffs. Incidental ingestion of soils via hand-to-mouth transmission and of dusts cleared from the respiratory tract is the dominant exposure pathway. Consumption of water and foodstuffs contaminated by the processing is likely lesser, but these are still significant exposure pathways. Although young children suffered the most immediate and severe consequences, results indicate that older children, adult workers, pregnant women, and breastfed infants are also at risk for lead poisoning. Mercury, arsenic, manganese, antimony, and crystalline silica exposures pose additional health threats. Conclusions: Results inform ongoing efforts in Nigeria to assess lead contamination and poisoning, treat victims, mitigate exposures, and remediate contamination. Ore deposit geology, pre-mining weathering, and burgeoning artisanal mining may combine to cause similar lead poisoning disasters elsewhere globally. PMID:23524139
Plumlee, Geoffrey S.; Durant, James T.; Morman, Suzette A.; Neri, Antonio; Wolf, Ruth E.; Dooyema, Carrie A.; Hageman, Philip L.; Lowers, Heather; Fernette, Gregory L.; Meeker, Gregory P.; Benzel, William M.; Driscoll, Rhonda L.; Berry, Cyrus J.; Crock, James G.; Goldstein, Harland L.; Adams, Monique; Bartrem, Casey L.; Tirima, Simba; Behrooz, Behbod; von Lindern, Ian; Brown, Mary Jean
2013-01-01
Background: In 2010, Médecins Sans Frontières discovered a lead poisoning outbreak linked to artisanal gold processing in northwestern Nigeria. The outbreak has killed approximately 400 young children and affected thousands more. Objectives: Our aim was to undertake an interdisciplinary geological- and health-science assessment to clarify lead sources and exposure pathways, identify additional toxicants of concern and populations at risk, and examine potential for similar lead poisoning globally. Methods: We applied diverse analytical methods to ore samples, soil and sweep samples from villages and family compounds, and plant foodstuff samples. Results: Natural weathering of lead-rich gold ores before mining formed abundant, highly gastric-bioaccessible lead carbonates. The same fingerprint of lead minerals found in all sample types confirms that ore processing caused extreme contamination, with up to 185,000 ppm lead in soils/sweep samples and up to 145 ppm lead in plant foodstuffs. Incidental ingestion of soils via hand-to-mouth transmission and of dusts cleared from the respiratory tract is the dominant exposure pathway. Consumption of water and foodstuffs contaminated by the processing is likely lesser, but these are still significant exposure pathways. Although young children suffered the most immediate and severe consequences, results indicate that older children, adult workers, pregnant women, and breastfed infants are also at risk for lead poisoning. Mercury, arsenic, manganese, antimony, and crystalline silica exposures pose additional health threats. Conclusions: Results inform ongoing efforts in Nigeria to assess lead contamination and poisoning, treat victims, mitigate exposures, and remediate contamination. Ore deposit geology, pre-mining weathering, and burgeoning artisanal mining may combine to cause similar lead poisoning disasters elsewhere globally.
Analysis of lead toxicity in human cells.
Gillis, Bruce S; Arbieva, Zarema; Gavin, Igor M
2012-07-27
Lead is a metal with many recognized adverse health side effects, and yet the molecular processes underlying lead toxicity are still poorly understood. Quantifying the injurious effects of lead is also difficult because of the diagnostic limitations that exist when analyzing human blood and urine specimens for lead toxicity. We analyzed the deleterious impact of lead on human cells by measuring its effects on cytokine production and gene expression in peripheral blood mononuclear cells. Lead activates the secretion of the chemokine IL-8 and impacts mitogen-dependent activation by increasing the secretion of the proinflammatory cytokines IL-6 and TNF-α and of the chemokines IL-8 and MIP1-α in the presence of phytohemagglutinin. The recorded changes in gene expression affected major cellular functions, including metallothionein expression, and the expression of cellular metabolic enzymes and protein kinase activity. The expression of 31 genes remained elevated after the removal of lead from the testing medium thereby allowing for the measurement of adverse health effects of lead poisoning. These included thirteen metallothionein transcripts, three endothelial receptor B transcripts and a number of transcripts which encode cellular metabolic enzymes. Cellular responses to lead correlated with blood lead levels and were significantly altered in individuals with higher lead content resultantly affecting the nervous system, the negative regulation of transcription and the induction of apoptosis. In addition, we identified changes in gene expression in individuals with elevated zinc protoporphyrin blood levels and found that genes regulating the transmission of nerve impulses were affected in these individuals. The affected pathways were G-protein mediated signaling, gap junction signaling, synaptic long-term potentiation, neuropathic pain signaling as well as CREB signaling in neurons. Cellular responses to lead were altered in subjects with high zinc protoporphyrin blood levels. The results of our study defined specific changes in gene and protein expression in response to lead challenges and determined the injurious effects of exposures to lead on a cellular level. This information can be used for documenting the health effects of exposures to lead which will facilitate identifying and monitoring efficacious treatments for lead-related maladies.
Analysis of lead toxicity in human cells
2012-01-01
Background Lead is a metal with many recognized adverse health side effects, and yet the molecular processes underlying lead toxicity are still poorly understood. Quantifying the injurious effects of lead is also difficult because of the diagnostic limitations that exist when analyzing human blood and urine specimens for lead toxicity. Results We analyzed the deleterious impact of lead on human cells by measuring its effects on cytokine production and gene expression in peripheral blood mononuclear cells. Lead activates the secretion of the chemokine IL-8 and impacts mitogen-dependent activation by increasing the secretion of the proinflammatory cytokines IL-6 and TNF-α and of the chemokines IL-8 and MIP1-α in the presence of phytohemagglutinin. The recorded changes in gene expression affected major cellular functions, including metallothionein expression, and the expression of cellular metabolic enzymes and protein kinase activity. The expression of 31 genes remained elevated after the removal of lead from the testing medium thereby allowing for the measurement of adverse health effects of lead poisoning. These included thirteen metallothionein transcripts, three endothelial receptor B transcripts and a number of transcripts which encode cellular metabolic enzymes. Cellular responses to lead correlated with blood lead levels and were significantly altered in individuals with higher lead content resultantly affecting the nervous system, the negative regulation of transcription and the induction of apoptosis. In addition, we identified changes in gene expression in individuals with elevated zinc protoporphyrin blood levels and found that genes regulating the transmission of nerve impulses were affected in these individuals. The affected pathways were G-protein mediated signaling, gap junction signaling, synaptic long-term potentiation, neuropathic pain signaling as well as CREB signaling in neurons. Cellular responses to lead were altered in subjects with high zinc protoporphyrin blood levels. Conclusions The results of our study defined specific changes in gene and protein expression in response to lead challenges and determined the injurious effects of exposures to lead on a cellular level. This information can be used for documenting the health effects of exposures to lead which will facilitate identifying and monitoring efficacious treatments for lead-related maladies. PMID:22839698
Mellerick, Dervla M; Liu, Heather
2004-09-05
Despite the significant contributions of tissue culture and bacterial models to toxicology, whole animal models for developmental neurotoxins are limited in availability and ease of experimentation. Because Drosophila is a well understood model for embryonic development that is highly accessible, we asked whether it could be used to study methanol developmental neurotoxicity. In the presence of 4% methanol, approximately 35% of embryos die and methanol exposure leads to severe CNS defects in about half those embryos, where the longitudinal connectives are dorsally displaced and commissure formation is severely reduced. In addition, a range of morphological defects in other germ layers is seen, and cell movement is adversely affected by methanol exposure. Although we did not find any evidence to suggest that methanol exposure affects the capacity of neuroblasts to divide or induces inappropriate apoptosis in these cells, in the CNS of germ band retracted embryos, the number of apoptotic nuclei is significantly increased in methanol-exposed embryos in comparison to controls, particularly in and adjacent to the ventral midline. Apoptosis contributes significantly to methanol neurotoxicity because embryos lacking the cell death genes grim, hid, and reaper have milder CNS defects resulting from methanol exposure than wild-type embryos. Our data suggest that when neurons and glia are severely adversely affected by methanol exposure, the damaged cells are cleared by apoptosis, leading to embryonic death. Thus, the Drosophila embryo may prove useful in identifying and unraveling mechanistic aspects of developmental neurotoxicity, specifically in relation to methanol toxicity.
Lead exposure affects health indices in free-ranging ducks in Argentina.
Ferreyra, Hebe; Beldomenico, Pablo M; Marchese, Krysten; Romano, Marcelo; Caselli, Andrea; Correa, Ana I; Uhart, Marcela
2015-05-01
Numerous experiments under controlled conditions and extensive investigation of waterfowl die-offs have demonstrated that exposure to lead from spent gunshot is highly detrimental to the health of waterfowl. However, few studies have focused on examining the more subtle sub-lethal effects of lead toxicity on ducks in non-experimental settings. In our study, the health of ducks exposed to varying amounts of lead under natural conditions was assessed by correlating individual lead exposure with relevant indices of health. Based on hunter-killed wild ducks in Argentina, we measured spleen mass, body condition, examined bone marrow smears, and determined Ca and P in bone tissue. In free-ranging live-trapped ducks we determined basic hematology and aminolevulinic acid dehydratase activity. Using multivariate analyses, we found that, when controlling for the potential confounding effect of site type, year, duck species, body mass and age, lead levels in the liver were negatively associated with body condition and spleen mass. Spleen mass was also lower in ducks with higher lead levels in their bones. In live ducks, high blood lead levels were associated with low packed cell volume and red cell morphologic abnormalities. These findings suggest that, despite the lack of recorded lead-induced mortality in the region, lead exposure results in less conspicuous but still significant impacts on the health of ducks, which could have serious implications for their conservation. Moreover, this evidence further supports the need for urgently banning lead shot in the region.
2007-11-02
Lead is a common environmental contaminant, and exposure to lead is a preventable risk that exists in all areas of the United States. Lead is associated with negative outcomes in children, including impaired cognitive, motor, behavioral, and physical abilities. In 1991, CDC defined the blood lead level (BLL) that should prompt public health actions as 10 microg/dL. Concurrently, CDC also recognized that a BLL of 10 microg/dL did not define a threshold for the harmful effects of lead. Research conducted since 1991 has strengthened the evidence that children's physical and mental development can be affected at BLLs < or =10 microg/dL. This report summarizes the findings of a review of clinical interpretation and management of BLLs < or =10 microg/dL conducted by CDC's Advisory Committee on Childhood Lead Poisoning Prevention. This report provides information to help clinicians understand BLLs < or =10 microg/dL, identifies gaps in knowledge concerning lead levels in this range, and outlines strategies to reduce childhood exposures to lead. In addition, this report summarizes scientific data relevant to counseling, blood lead screening, and lead exposure risk assessment. To aid in the interpretation of BLLs, clinicians should understand the laboratory error range for blood lead values and, if possible, select a laboratory that achieves routine performance within +/-2 microg/dL. Clinicians should obtain an environmental history on all children they examine, provide families with lead prevention counseling, and follow blood lead screening recommendations established for their areas. As local and patient circumstances permit, clinicians should consider early referral to developmental programs for children at high risk for exposure to lead and consider more frequent rescreening of children with BLLs approaching 10 microg/dL, depending on the potential for exposure to lead, child age, and season of testing. In addition, clinicians should direct parents to agencies and sources of information that will help them establish a lead-safe environment for their children. For these preventive strategies to succeed, partnerships between health-care providers, families, and local public health and housing programs should be strengthened.
Yamanaka, Tsuyuko; Raffaelli, David; White, Piran C. L.
2013-01-01
Sea-level rise induced by climate change may have significant impacts on the ecosystem functions and ecosystem services provided by intertidal sediment ecosystems. Accelerated sea-level rise is expected to lead to steeper beach slopes, coarser particle sizes and increased wave exposure, with consequent impacts on intertidal ecosystems. We examined the relationships between abundance, biomass, and community metabolism of benthic fauna with beach slope, particle size and exposure, using samples across a range of conditions from three different locations in the UK, to determine the significance of sediment particle size beach slope and wave exposure in affecting benthic fauna and ecosystem function in different ecological contexts. Our results show that abundance, biomass and oxygen consumption of intertidal macrofauna and meiofauna are affected significantly by interactions among sediment particle size, beach slope and wave exposure. For macrofauna on less sloping beaches, the effect of these physical constraints is mediated by the local context, although for meiofauna and for macrofauna on intermediate and steeper beaches, the effects of physical constraints dominate. Steeper beach slopes, coarser particle sizes and increased wave exposure generally result in decreases in abundance, biomass and oxygen consumption, but these relationships are complex and non-linear. Sea-level rise is likely to lead to changes in ecosystem structure with generally negative impacts on ecosystem functions and ecosystem services. However, the impacts of sea-level rise will also be affected by local ecological context, especially for less sloping beaches. PMID:23861863
Yamanaka, Tsuyuko; Raffaelli, David; White, Piran C L
2013-01-01
Sea-level rise induced by climate change may have significant impacts on the ecosystem functions and ecosystem services provided by intertidal sediment ecosystems. Accelerated sea-level rise is expected to lead to steeper beach slopes, coarser particle sizes and increased wave exposure, with consequent impacts on intertidal ecosystems. We examined the relationships between abundance, biomass, and community metabolism of benthic fauna with beach slope, particle size and exposure, using samples across a range of conditions from three different locations in the UK, to determine the significance of sediment particle size beach slope and wave exposure in affecting benthic fauna and ecosystem function in different ecological contexts. Our results show that abundance, biomass and oxygen consumption of intertidal macrofauna and meiofauna are affected significantly by interactions among sediment particle size, beach slope and wave exposure. For macrofauna on less sloping beaches, the effect of these physical constraints is mediated by the local context, although for meiofauna and for macrofauna on intermediate and steeper beaches, the effects of physical constraints dominate. Steeper beach slopes, coarser particle sizes and increased wave exposure generally result in decreases in abundance, biomass and oxygen consumption, but these relationships are complex and non-linear. Sea-level rise is likely to lead to changes in ecosystem structure with generally negative impacts on ecosystem functions and ecosystem services. However, the impacts of sea-level rise will also be affected by local ecological context, especially for less sloping beaches.
Sex-based differences in gene expression in hippocampus following postnatal lead exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, J.S., E-mail: jay.schneider@jefferson.edu; Anderson, D.W.; Sonnenahalli, H.
The influence of sex as an effect modifier of childhood lead poisoning has received little systematic attention. Considering the paucity of information available concerning the interactive effects of lead and sex on the brain, the current study examined the interactive effects of lead and sex on gene expression patterns in the hippocampus, a structure involved in learning and memory. Male or female rats were fed either 1500 ppm lead-containing chow or control chow for 30 days beginning at weaning.Blood lead levels were 26.7 {+-} 2.1 {mu}g/dl and 27.1 {+-} 1.7 {mu}g/dl for females and males, respectively. The expression of 175more » unique genes was differentially regulated between control male and female rats. A total of 167 unique genes were differentially expressed in response to lead in either males or females. Lead exposure had a significant effect without a significant difference between male and female responses in 77 of these genes. In another set of 71 genes, there were significant differences in male vs. female response. A third set of 30 genes was differentially expressed in opposite directions in males vs. females, with the majority of genes expressed at a lower level in females than in males. Highly differentially expressed genes in males and females following lead exposure were associated with diverse biological pathways and functions. These results show that a brief exposure to lead produced significant changes in expression of a variety of genes in the hippocampus and that the response of the brain to a given lead exposure may vary depending on sex. - Highlights: > Postnatal lead exposure has a significant effect on hippocampal gene expression patterns. > At least one set of genes was affected in opposite directions in males and females. > Differentially expressed genes were associated with diverse biological pathways.« less
Lead exposure reduces sperm quality and DNA integrity in mice.
Li, Cuiling; Zhao, Kai; Zhang, Huiping; Liu, Lili; Xiong, Fei; Wang, Kunyu; Chen, Biao
2018-05-01
Toxicity of lead on male reproductive functions has raised wide public concern as environmental lead contamination remains common worldwide. Conflicting and controversial data are available regarding effects of lead on male fertility. More importantly, our knowledge on effects of lead on sperm DNA integrity is significantly limited. Thus, further studies should focus on this issue. In the current study, adult male mice were exposed to a series of lead acetate concentrations in drinking water for six weeks. Following administration, lead levels in blood, testicles, and epididymis were measured, and potential changes in morphology of testis and epididymis due to lead exposure were identified. We also analyzed sperm parameters, including sperm density, viability, motility, and morphology, to evaluate quality of sperm collected from epididymis. Especially, hypothetical influence of lead on sperm DNA integrity was also evaluated by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling, alkaline comet assay, and sperm chromatin structure assay. Lead exposure possibly exerted no effect on growth of mice because these animals acquired similar body weight gain during the experimental period. However, high lead concentrations (0.5% and 1%) in drinking water affected sperm motility and increased percentage of spermatozoa with abnormal morphology. In groups treated with 0.25%, 0.5%, and 1% lead acetate, percentages of sperm cells showing DNA breaks and chromatin structure damage significantly increased. Altogether, lead exposure not only exhibits adverse effects on sperm physiological parameters, but also impairs DNA structure and integrity. These effects may lead to significant decline in male fertility. © 2018 Wiley Periodicals, Inc.
Schmitt, C.J.; Wildhaber, M.L.; Hunn, J.B.; Nash, T.; Tieger, M. N.; Steadman, B. L.
1993-01-01
The activity of the enzyme δ-aminolevulinic acid dehydratase (ALA-D) in erythrocytes has long been used as a biomarker of lead exposure in humans and waterfowl and, more recently, in fishes. The assay was tested for ALA-D activity in fishes from streams affected by lead in combination with other metals from lead-zinc mining and related activities. Fishes (mostly catostomids) were collected from sites affected by historic and current mining activities, and from sites considered to be unaffected by mining (reference sites). A group of potentially toxic elements was measured in blood and carcass samples of individual fish, as were ALA-D activity, total protein (TP), and hemoglobin (Hb) in blood. Concentrations of mining-related metals (lead, zinc, and cadmium) were significantly greater (P<0.05) in fish blood and carcass at sites affected by historic mining activities than at reference and active mining sites. When analyzed by multiple regression, ALA-D activity, Hb, and TP accounted for 66% of blood-lead and 69% of carcass-lead variability. Differences among species were small. ALA-D activity as a biomarker adequately distinguished sites affected by bioavailable environmental lead. Zinc was the only other metal that affected ALA-D activity; it appeared to ameliorate the inactivation of ALA-D by lead.
Effects of blood lead and cadmium levels on homocysteine level in plasma.
Cai, R; Zheng, Y-F; Bu, J-G; Zhang, Y-Y; Fu, S-L; Wang, X-G; Guo, L-L; Zhang, J-R
2017-01-01
We studied the effect of non-occupational exposure to lead and cadmium on homocysteine level in plasma. Homocysteine is a marker for plasma folate folic acid metabolism in urban populations. 159 individuals from Beijing, Guangzhou, Shenzhen and Shanghai with no history of close exposure to heavy metals and no history of metabolic diseases were enrolled to participate in this study. Blood lead and cadmium levels were detected using ICP-MS method and the level of homocysteine was also measured using enzyme method. Our results showed that blood lead and cadmium levels in males were significantly higher than those in females. Also, blood lead and cadmium levels in smokers were higher than those in non-smokers; homocysteine level was significantly higher in smokers as well. According to blood lead and cadmium levels, cases were divided into four groups. Our results showed that a surge in blood lead and cadmium levels could result in an increase in homocysteine level. We concluded that in the Chinese population, smoking and gender might be the risk factors for elevated levels of lead and cadmium. Meanwhile, blood lead and cadmium levels may influence the homocysteine levels in the body. It is possible to speculate that non-occupational exposure to lead and cadmium, by increasing the homocysteine levels, negatively affect the cardiovascular and nervous system.
ERIC Educational Resources Information Center
Coles, Claire D.; Strickland, Dorothy C.; Padgett, Lynne; Bellmoff, Lynnae
2007-01-01
Unintentional injuries are a leading cause of death and disability for children. Those with developmental disabilities, including children affected by prenatal alcohol exposure, are at highest risk for injuries. Although teaching safety skills is recommended to prevent injury, cognitive limitations and behavioral problems characteristic of…
Kashala-Abotnes, Espérance; Mumbere, Pépé Penghele; Mishika, Jeannette Mukanya; Ndjukendi, Ally Omba; Mpaka, Davin Beya; Bumoko, Makila-Mabe Guy; Kayembe, Tharcisse Kalula; Tshala-Katumbay, Désiré; Kazadi, Théodore Kayembe; Okitundu, Daniel Luwa E-Andjafono
2016-12-01
Childhood lead exposure remains a problem in developing countries, and little is known about its effects on early child neurodevelopment and temperament in the Democratic Republic of Congo (DRC). We, therefore, conducted this study to determine the association between lead exposure and the neurodevelopment and behaviour of children aged 12-24 months in Kinshasa, DRC. A cross-sectional study was conducted between February and June 2012, and parents of 104 children were invited to participate. Blood lead levels (BLLs) of each child were tested using the flame atomic spectrophotometry method. All children were subject to a clinical examination and assessed with two selected early child neurodevelopmental tools, the Gensini-Gavito and the baby characteristics questionnaire, to measure their neurodevelopment and temperament. Detectable BLLs ranged from 1 to 30 μg/dl with a geometric mean of 6.9 (SD 4.8) μg/dl. BLLs at 5-9 and ≥10 μg/dl were significantly associated with the child temperament (p <0.05). Perinatal and maternal factors did not seem to affect early child neurodevelopment and temperament. Children exposed to lead were reported with more temperament difficulties at even blood lead levels <10 μg/dl, suggesting the need for preventive and intervention measures to reduce lead exposure among children in Kinshasa, DRC.
Cigarette-Smoke-Induced Dysregulation of MicroRNA Expression and Its Role in Lung Carcinogenesis
Russ, Rebecca; Slack, Frank J.
2012-01-01
Dysregulation of microRNAs (miRNAs), particularly their downregulation, has been widely shown to be associated with the development of lung cancer. Downregulation of miRNAs leads to the overactivation of their oncogene targets, while upregulation of some miRNAs leads to inhibition of important tumor suppressors. Research has implicated cigarette smoke in miRNA dysregulation, leading to carcinogenesis. Cigarette smoke may lead to genetic or epigenetic damage to miRNAs, many of which map to fragile sites and some of which contain single nucleotide polymorphisms. Cigarette smoke may also cause dysregulation by affecting regulatory mechanisms controlling miRNA expression. Researchers have shown a correlation between smoke-exposure-induced dysregulation of miRNAs and age. Furthermore, dysregulation seems to be associated with intensity and duration of smoke exposure and duration of cessation. Longer exposure at a threshold level is needed for irreversibility of changes in expression. Better understanding of miRNA dysregulation may allow for improved biomonitoring and treatment regimens for lung cancer. PMID:22191027
The Bioinorganic Chemistry of Lead in the Context of Its Toxicity.
Maret, Wolfgang
2017-04-10
Owing to its abundance on earth and its multiple uses by humans, lead (Pb) is a major toxicant that has threatened human health for millennia and continues to do so. There is no safe level of exposure, necessitating a nuanced approach to its control in the food we consume, the water we drink, and the air we breathe. Turnover in soft tissues is within days. In contrast, lead accumulates in bone and turns over with a half-life of about 30 years, though it can be mobilized from bone under physiological and pathophysiological conditions of bone resorption. Children are particularly vulnerable to lead exposure and suffer irreversible neurological deficits affecting learning ability and behavior. In adults, chronic effects of exposure to lead include elevated blood pressure, development of cancers, and, as suggested more recently, neurodegeneration. Some pathways of systemic and cellular metabolism of Pb(II) are known. However, except for its action in δ-aminolevulinate dehydratase, its molecular toxicology remains largely speculative in terms of specific targets. One major molecular mechanism seems to be the replacement of zinc with lead in zinc proteins with functional consequences. Calcium binding proteins are also being discussed as possible targets. However, the affinities of lead for calcium sites in proteins are orders of magnitude lower than those for zinc sites. Therefore, it remains to be shown whether lead at the concentrations occurring in tissues can replace calcium in proteins in vivo. Despite humans having recognized the hazards of lead exposure for a very long time, uncertainties remain as to the threshold for adverse effects on our health and the low levels of exposure during our lives as a risk factor for chronic disease.
Evaluation of the humoral immune response of children with low level lead exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reigart, J.R.; Graber, C.D.
1976-07-01
Twelve lead-exposed children, with evidence of metabolic impairment, and seven non-lead exposed children were examined for evidence of impairment of their immunological response. There were no differences between the control group and the lead exposed group with reference to complement levels, immunoglobulins, or anamnestic response to the tetanus toxoid antigen. It remains to be demonstrated whether or not there is deficient response to primary immunization, whether other antigens are more affected by lead, or whether impairment of humoral immune response requires a more serious degree of lead intoxication.
Baranowska-Bosiacka, Irena; Falkowska, Anna; Gutowska, Izabela; Gąssowska, Magdalena; Kolasa-Wołosiuk, Agnieszka; Tarnowski, Maciej; Chibowska, Karina; Goschorska, Marta; Lubkowska, Anna; Chlubek, Dariusz
2017-09-01
Lead (Pb) is an environmental neurotoxin which particularly affects the developing brain but the molecular mechanism of its neurotoxicity still needs clarification. The aim of this paper was to examine whether pre- and neonatal exposure to Pb (concentration of Pb in rat offspring blood below the "threshold level") may affect the brain's energy metabolism in neurons and astrocytes via the amount of available glycogen. We investigated the glycogen concentration in the brain, as well as the expression of the key enzymes involved in glycogen metabolism in brain: glycogen synthase 1 (Gys1), glycogen phosphorylase (PYGM, an isoform active in astrocytes; and PYGB, an isoform active in neurons) and phosphorylase kinase β (PHKB). Moreover, the expression of connexin 43 (Cx43) was evaluated to analyze whether Pb poisoning during the early phase of life may affect the neuron-astrocytes' metabolic cooperation. This work shows for the first time that exposure to Pb in early life can impair brain energy metabolism by reducing the amount of glycogen and decreasing the rate of its metabolism. This reduction in brain glycogen level was accompanied by a decrease in Gys1 expression. We noted a reduction in the immunoreactivity and the gene expression of both PYGB and PYGM isoform, as well as an increase in the expression of PHKB in Pb-treated rats. Moreover, exposure to Pb induced decrease in connexin 43 immunoexpression in all the brain structures analyzed, both in astrocytes as well as in neurons. Our data suggests that exposure to Pb in the pre- and neonatal periods results in a decrease in the level of brain glycogen and a reduction in the rate of its metabolism, thereby reducing glucose availability, which as a further consequence may lead to the impairment of brain energy metabolism and the metabolic cooperation between neurons and astrocytes. Copyright © 2017 Elsevier B.V. All rights reserved.
Binns, Helen J; Campbell, Carla; Brown, Mary Jean
2007-11-01
Lead is a common environmental contaminant. Lead exposure is a preventable risk that exists in all areas of the United States. In children, lead is associated with impaired cognitive, motor, behavioral, and physical abilities. In 1991, the Centers for Disease Control and Prevention defined the blood lead level that should prompt public health actions as 10 microg/dL. Concurrently, the Centers for Disease Control and Prevention also recognized that a blood lead level of 10 microg/dL did not define a threshold for the harmful effects of lead. Research conducted since 1991 has strengthened the evidence that children's physical and mental development can be affected at blood lead levels of < 10 microg/dL. In this report we provide information to help clinicians understand blood lead levels < 10 microg/dL, identify gaps in knowledge concerning lead levels in this range, and outline strategies to reduce childhood exposures to lead. We also summarize scientific data relevant to counseling, blood lead screening, and lead-exposure risk assessment. To aid in the interpretation of blood lead levels, clinicians should understand the laboratory error range for blood lead values and, if possible, select a laboratory that achieves routine performance within +/-2 microg/dL. Clinicians should obtain an environmental history on all children they examine, provide families with lead-prevention counseling, and follow blood lead screening recommendations established for their areas. As circumstances permit, clinicians should consider referral to developmental programs for children at high risk for exposure to lead and more frequent rescreening of children with blood lead levels approaching 10 microg/dL. In addition, clinicians should direct parents to agencies and sources of information that will help them establish a lead-safe environment for their children. For these preventive strategies to succeed, partnerships between health care providers, families, and local public health and housing programs should be strengthened.
Pb exposure attenuates hypersensitivity in vivo by increasing regulatory T cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Liang; Zhao, Fang; Shen, Xuefeng
Pb is a common environmental pollutant affecting various organs. Exposure of the immune system to Pb leads to immunosuppression or immunodysregulation. Although previous studies showed that Pb exposure can modulate the function of helper T cells, Pb immunotoxicity remains incompletely understood. In this study, we investigated the effect of Pb exposure on T cell development, and the underlying mechanism of Pb-induced suppression of the delayed-type hypersensitivity (DTH) response in vivo. Sprague–Dawley rats were exposed to 300 ppm Pb-acetate solution via the drinking water for six weeks, and we found that Pb exposure significantly increased Pb concentrations in the blood bymore » 4.2-fold (p < 0.05) as compared to those in the control rats. In Pb-exposed rats, the amount of thymic CD4{sup +}CD8{sup −} and peripheral CD4{sup +} T cells was significantly reduced, whereas, CD8{sup +} population was not affected. In contrast to conventional CD4{sup +} T cells, Foxp3{sup +} regulatory T cells (Tregs) were increased in both the thymus and peripheral lymphoid organs of Pb-exposed rats. In line with the increase of Tregs, the DTH response of Pb-exposed rats was markedly suppressed. Depletion of Tregs reversed the suppression of DTH response by Pb-exposed CD4{sup +} T cells in an adoptive transfer model, suggesting a critical role of the increased Tregs in suppressing the DTH response. Collectively, this study revealed that Pb-exposure may upregulate Tregs, thereby leading to immunosuppression. -- Highlights: ► Pb exposure impaired CD4{sup +} thymic T cell development. ► Peripheral T lymphocytes were reduced following Pb exposure. ► Pb exposure increases thymic and peripheral Treg cells in rats. ► Tregs played a critical role in Pb-exposure-induced immune suppression.« less
Lead in Albacore: Guide to Lead Pollution in Americans
NASA Astrophysics Data System (ADS)
Settle, Dorothy M.; Patterson, Clair C.
1980-03-01
Lead contamination in canned tuna, exceeding natural concentrations 10,000-fold, went undiscovered for decades because of analytical error. The magnitude of this pollution effect helps explain the difference between the lead concentration in the diets of present-day Americans (0.2 part per million) and in the diets of prehistoric peoples (estimated to be less than 0.002 part per million). It also explains how skeletal concentrations of lead in typical Americans became elevated 500-fold above the natural concentrations measured in bones of Peruvians who lived in an unpolluted environment 1800 years ago. It has been tacitly assumed that natural biochemical effects of lead in human cells have been studied, but this is not so because reagents, nutrients, and controls used in laboratory and field studies have been unknowingly contaminated with lead far in excess of naturally occurring levels. An unrecognized form of poisoning caused by this excessive exposure to lead may affect most Americans because magnitudes of biochemical dysfunctions are proportional to degrees of exposure.
Bedrosian, Bryan; Craighead, Derek; Crandall, Ross
2012-01-01
Studies suggest hunter discarded viscera of big game animals (i.e., offal) is a source of lead available to scavengers. We investigated the incidence of lead exposure in bald eagles in Wyoming during the big game hunting season, the influx of eagles into our study area during the hunt, the geographic origins of eagles exposed to lead, and the efficacy of using non-lead rifle ammunition to reduce lead in eagles. We tested 81 blood samples from bald eagles before, during and after the big game hunting seasons in 2005-2010, excluding 2008, and found eagles had significantly higher lead levels during the hunt. We found 24% of eagles tested had levels indicating at least clinical exposure (>60 ug/dL) during the hunt while no birds did during the non-hunting seasons. We performed driving surveys from 2009-2010 to measure eagle abundance and found evidence to suggest that eagles are attracted to the study area during the hunt. We fitted 10 eagles with satellite transmitters captured during the hunt and all migrated south after the cessation of the hunt. One returned to our study area while the remaining nine traveled north to summer/breed in Canada. The following fall, 80% returned to our study area for the hunting season, indicating that offal provides a seasonal attractant for eagles. We fitted three local breeding eagles with satellite transmitters and none left their breeding territories to feed on offal during the hunt, indicating that lead ingestion may be affecting migrants to a greater degree. During the 2009 and 2010 hunting seasons we provided non-lead rifle ammunition to local hunters and recorded that 24% and 31% of successful hunters used non-lead ammunition, respectively. We found the use of non-lead ammunition significantly reduced lead exposure in eagles, suggesting this is a viable solution to reduce lead exposure in eagles.
Bedrosian, Bryan; Craighead, Derek; Crandall, Ross
2012-01-01
Studies suggest hunter discarded viscera of big game animals (i.e., offal) is a source of lead available to scavengers. We investigated the incidence of lead exposure in bald eagles in Wyoming during the big game hunting season, the influx of eagles into our study area during the hunt, the geographic origins of eagles exposed to lead, and the efficacy of using non-lead rifle ammunition to reduce lead in eagles. We tested 81 blood samples from bald eagles before, during and after the big game hunting seasons in 2005–2010, excluding 2008, and found eagles had significantly higher lead levels during the hunt. We found 24% of eagles tested had levels indicating at least clinical exposure (>60 ug/dL) during the hunt while no birds did during the non-hunting seasons. We performed driving surveys from 2009–2010 to measure eagle abundance and found evidence to suggest that eagles are attracted to the study area during the hunt. We fitted 10 eagles with satellite transmitters captured during the hunt and all migrated south after the cessation of the hunt. One returned to our study area while the remaining nine traveled north to summer/breed in Canada. The following fall, 80% returned to our study area for the hunting season, indicating that offal provides a seasonal attractant for eagles. We fitted three local breeding eagles with satellite transmitters and none left their breeding territories to feed on offal during the hunt, indicating that lead ingestion may be affecting migrants to a greater degree. During the 2009 and 2010 hunting seasons we provided non-lead rifle ammunition to local hunters and recorded that 24% and 31% of successful hunters used non-lead ammunition, respectively. We found the use of non-lead ammunition significantly reduced lead exposure in eagles, suggesting this is a viable solution to reduce lead exposure in eagles. PMID:23284837
Rao, Chinthalapally V.; Pal, Sanya; Mohammed, Altaf; Farooqui, Mudassir; Doescher, Mark P.; Asch, Adam S.; Yamada, Hiroshi Y.
2017-01-01
Through contaminated diet, water, and other forms of environmental exposure, arsenic affects human health. There are many U.S. and worldwide “hot spots” where the arsenic level in public water exceeds the maximum exposure limit. The biological effects of chronic arsenic exposure include generation of reactive oxygen species (ROS), leading to oxidative stress and DNA damage, epigenetic DNA modification, induction of genomic instability, and inflammation and immunomodulation, all of which can initiate carcinogenesis. High arsenic exposure is epidemiologically associated with skin, lung, bladder, liver, kidney and pancreatic cancer, and cardiovascular, neuronal, and other diseases. This review briefly summarizes the biological effects of arsenic exposure and epidemiological cancer studies worldwide, and provides an overview for emerging rodent-based studies of reagents that can ameliorate the effects of arsenic exposure in vivo. These reagents may be translated to human populations for disease prevention. We propose the importance of developing a biomarker-based precision prevention approach for the health issues associated with arsenic exposure that affects millions of people worldwide. PMID:28915699
2012-08-24
Lead poisoning still occurs in the United States despite extensive prevention efforts and strict regulations. Exposure to lead can damage the brain, kidneys, and nervous and reproductive systems. Fetal exposure to lead can adversely affect neurodevelopment, decrease fetal growth, and increase the risk for premature birth and miscarriage. During 2011-2012, the New York City Department of Health and Mental Hygiene (DOHMH) investigated six cases of lead poisoning associated with the use of 10 oral Ayurvedic medications made in India. All six cases were in foreign-born pregnant women assessed for lead exposure risk by health-care providers during prenatal visits, as required by New York state law. Their blood lead levels (BLLs) ranged from 16 to 64 µg/dL. Lead concentrations of the medications were as high as 2.4%; several medications also contained mercury or arsenic, which also can have adverse health effects. DOHMH distributed information about the medications to health-care providers, product manufacturers, and government agencies in the United States and abroad, via postal and electronic mail. DOHMH also ordered a local business selling contaminated products to cease sales. Health-care providers should ask patients, especially foreign-born or pregnant patients, about any use of foreign health products, supplements, and remedies such as Ayurvedic medications. Public health professionals should consider these types of products when investigating heavy metal exposures and raise awareness among health-care providers and the public regarding the health risks posed by such products.
Chen, Aimin; Cai, Bo; Dietrich, Kim N; Radcliffe, Jerilynn; Rogan, Walter J
2007-03-01
Lead exposure in childhood lowers IQ scores, but its effect on children's behavior is less clear. Because IQ, per se, affects behavior, measuring the direct effect of lead requires measuring and then adjusting for IQ. In addition, either peak blood lead concentration, usually at 2 years old, or the lower blood lead level measured at school age may be the most relevant. Few studies have all of this information. The purpose of this work was to differentiate the direct effect of lead on behavior and the indirect effect through IQ and to examine the strength of the association for peak and concurrent blood lead concentration. Data come from a clinical trial of the chelating drug succimer to prevent cognitive impairment in 780 urban 12- to 33-month-olds with blood lead concentrations of 20 to 44 microg/dL. The children were followed from ages 2 to 7 years. The trial data were analyzed as a prospective observational study. Blood lead concentration at 2 years old was not associated with Conners' Parent Rating Scale-Revised scores at 5 years of age or Behavioral Assessment Systems for Children scores at 7 years of age. Blood lead level at 7 years of age had direct effects on the Behavioral Assessment Systems for Children behavioral symptoms index, externalizing, and school problems at age 7. Concurrent blood lead concentration was associated with externalizing and school problems scales at 7 years of age, and the effect was not entirely mediated through the effect of lead on IQ.
Analysis of the hematological and biochemical parameters related to lead intoxication.
Yılmaz, Hınç; Keten, Alper; Karacaoğlu, Emre; Tutkun, Engin; Akçan, Ramazan
2012-11-01
In parallel with industrial advancements, number of the occupational diseases secondary to chemical exposure is increasing. The chemical agents in the work places affect various organ and tissue systems, leading to chronic diseases. In this study, the cases diagnosed with occupational disease due to exposure to lead were studied and importance of the environmental forensic sciences on this issue was emphasized. A hundred and ninety patients diagnosed with occupational disease related to lead intoxication in Ankara Occupational Diseases Hospital between 01/01/2009 and 31/12/2009 were included in the study. Twenty cases were used as the controls. Sociodemographic characteristics, serum chemical parameters and hematological parameters of the patients were retrospectively assessed. Mean age of the cases included in the study was 35.3±8.69. Hemoglobin (Hb) (p=0.018) and Mean corpuscular volume (MCV) (p<0.001) values were found significantly lower in the patients with lead exposure than in the controls. Gamma glutamyl transferase (GGT) was significantly lower in the patients with lead exposure than in the controls (p=0.002), whereas alkaline phosphatase (ALP) was found higher (p<0.001). In thyroid function test (TFTs) panel, free triiodothyronine (fT3) levels were found significantly higher in the patients with lead exposure than in the control group (p=0.01), while Thyrotrophin-stimulating hormone (TSH) levels were lower (p<0.001). No significant difference was found in terms of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) values. In the correlation analysis; serum level of serum lead (Pb) was correlated positively with ALP values and negatively with Hb, MCV and TSH. Considering its effects on the biochemical and hematological parameters, a detailed investigation should be carried out in the cases with lead exposure, which occupies an important place among the occupational diseases. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Movvahedi, M. M.; Tavakkoli-Golpayegani, A.; Mortazavi, S. A. R.; Haghani, M.; Razi, Z.; Shojaie-fard, M. B.; Zare, M.; Mina, E.; Mansourabadi, L.; Nazari-Jahromi; Safari, A.; Shokrpour, N.; Mortazavi, S. M. J.
2014-01-01
Background: Now-a-days, children are exposed to mobile phone radiation at a very early age. We have previously shown that a large proportion of children in the city of Shiraz, Iran use mobile phones. Furthermore, we have indicated that the visual reaction time (VRT) of university students was significantly affected by a 10 min real/sham exposure to electromagnetic fields emitted by mobile phone. We found that these exposures decreased the reaction time which might lead to a better response to different hazards. We have also revealed that occupational exposures to radar radiations decreased the reaction time in radar workers. The purpose of this study was to investigate whether short-term exposure of elementary school students to radiofrequency (RF) radiation leads to changes in their reaction time and short-term memory. Materials and Methods: A total of 60 elementary school children ages ranging from 8 to 10 years studying at a public elementary school in Shiraz, Iran were enrolled in this study. Standardized computer-based tests of VRT and short-term memory (modified for children) were administered. The students were asked to perform some preliminary tests for orientation with the VRT test. After orientation, to reduce the random variation of measurements, each test was repeated ten times in both real and sham exposure phases. The time interval between the two subsequent sham and real exposure phases was 30 min. Results: The mean ± standard deviation reaction times after a 10 min talk period and after a 10 min sham exposure (switched off mobile) period were 249.0 ± 82.3 ms and 252.9 ± 68.2 ms (P = 0.629), respectively. On the other hand, the mean short-term memory scores after the talk and sham exposure periods were 1062.60 ± 305.39, and 1003.84 ± 339.68 (P = 0.030), respectively. Conclusion: To the best of our knowledge, this is the first study to show that short-term exposure of elementary school students to RF radiation leads to the better performance of their short-term memory. PMID:25250064
Systemic Sclerosis: Diffuse and Limited
... the vascular and the immune systems. For example, blood vessels are frequently affected (vasculopathy), leading to spasmodic color changes (red, white, or blue) brought on by cold exposure. This is commonly referred to as Raynaud phenomenon and it ...
Wild brown trout affected by historical mining in the Cévennes National Park, France.
Monna, F; Camizuli, E; Revelli, P; Biville, C; Thomas, C; Losno, R; Scheifler, R; Bruguier, O; Baron, S; Chateau, C; Ploquin, A; Alibert, P
2011-08-15
In the protected area of the Cévennes National Park (Southern France), 114 wild brown trout (Salmo trutta fario) were captured at six locations affected to different extents by historical mining and metallurgy dating from the Iron Age to Modern Times. Cadmium and lead in trout livers and muscles reflect high sediment contamination, although an age-related effect was also detected for hepatic metal concentrations. Lead isotope signatures confirm exposure to drainage from mining and metallurgical waste. Developmental instability, assessed by fluctuating asymmetry, is significantly correlated with cadmium and lead concentrations in trout tissues, suggesting that local contamination may have affected fish development. Nowadays, the area is among the least industrialized in France. However, our results show that 60% of the specimens at one site exceed EU maximum allowed cadmium or lead concentration in foodstuffs. The mining heritage should not be neglected when establishing strategies for long-term environmental management.
Lead contamination of paint remediation workers' vehicles.
Boraiko, Carol; Wright, Eva M; Ralston, Faye
2013-03-01
Exposure to lead has been shown to be harmful to adults; it is a teratogen, it can damage the peripheral nervous system, and it adversely affects the reproductive system. Professional lead-based paint remediation workers are at risk of exposure to lead dust. The authors' study was conducted to determine if these remediation workers transfer lead from their work site to their vehicles and then potentially expose their families. It was hypothesized that remediation workers transported the lead from the remediation work site to the floorboards of their vehicles due to not following required protective equipment use. The laboratory's level of quantitation for lead on the wipe samples, 10 microg/ft2, was used to indicate lead contamination. This level was exceeded in 50% of the floorboards sampled. These results confirm that many vehicle floorboards used by remediation workers are contaminated with lead dust, potentially resulting in transfer of lead dust. The ultimate detrimental outcome could be the transfer of lead particles to other family members, causing the poisoning of a child or other at-risk person.
Dongre, Nilima N; Suryakar, Adinath N; Patil, Arun J; Hundekari, Indira A; Devarnavadagi, Basavaraj B
2013-01-01
Lead is one of the most widely scattered toxic metals in the environment and used by mankind for over 9,000 years. Lead in the environment may be derived from natural or anthropogenic sources. In humans, lead can cause a wide range of biological effects depending upon the level and duration of exposure. The purpose of this study was to find out the effect of lead exposure on systolic and diastolic blood pressure, serum calcium, ionized calcium, phosphorus, parathyroid hormone and vitamin D and examine the overall effect of all these parameters on the bone mineral density of battery manufacture workers. For this study ninety battery manufacture workers were selected and divided in three groups depending upon duration of lead exposure. Group I-workers with duration of lead exposure 1-5 years, Group II-workers with duration of lead exposure 6-10 years and Group III-workers with duration of lead exposure more than 10 years. Each group consisted of thirty workers. Thirty age matched healthy control subjects were taken for comparison. Demographic, occupational and clinical data were collected by using questionnaire and interview. The venous blood samples were collected from the study groups and normal healthy control group. At the time of blood collection random urine samples were collected in amber coloured bottles. The biochemical parameters were estimated by using standard assay procedures. Statistical analysis of the data was done using independent student't' test for parametric variables. Values were expressed as mean ± standard deviation (SD). P values of 0.05 or less were considered to be statistically significant. The blood lead levels and urinary lead levels of all workers were significantly increased (P < 0.001) in proportion to the duration of lead exposure as compared to controls. Systolic and diastolic blood pressure were significantly raised (P < 0.001) in all three study groups of battery manufacture workers as compared to controls. Serum Calcium, Ionized calcium, phosphorus were significantly decreased (P < 0.001) in all the three study groups. Serum vitamin D levels were lowered (P < 0.01) and serum PTH was increased (P < 0.01) in workers as compared to controls. The results of this study clearly indicate that the absorption of lead is more in these workers which adversely affects blood pressure, disturbs calcium and phosphorus metabolism which further impairs mineralization of bone resulting in decreased bone mineral density observed in these workers. Lead toxicity is still persistent in battery manufacture workers though they are using sophisticated techniques in these industries. There is a need to protect the workers from the health hazards of occupational lead exposure.
Lead in contruction - compliance implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krentz, R.S.
When Federal OSHA adopted the Lead in Construction standard, the requirements of the standard affected not only the construction trades, but the environmental remediation and technology industries as well. Due to the prevalence of lead-based paint abatement activities and the handling of lead contaminated materials, the potential for significant exposures to construction workers and individuals performing remedial operations has resulted. While similar regulatory measures are being developed by other regulatory agencies, the focus of this paper is upon Federal OSHA 29 CFR 1926.62 {open_quotes}Lead in Construction.{close_quotes}
Pediatric lead exposure and the water crisis in Flint, Michigan.
DeWitt, Rachel D
2017-02-01
Changing the source of the water supply to save money had the unintended consequence of exposing residents of Flint, Mich., to elevated lead levels in their drinking water. A study done at Flint's Hurley Children's Hospital demonstrated that the incidence of elevated blood lead levels of children living in the affected area nearly doubled after the change in the water source. This article reviews the recommendations for lead screening and for reporting, following, and treating children with blood lead levels greater than 5 mcg/dL.
Rylander, Charlotta; Odland, Jon Ø; Sandanger, Torkjel M
2011-01-01
In 2007, the Intergovernmental Panel on Climate Change (IPCC) presented a report on global warming and the impact of human activities on global warming. Later the Lancet commission identified six ways human health could be affected. Among these were not environmental factors which are also believed to be important for human health. In this paper we therefore focus on environmental factors, climate change and the predicted effects on maternal and newborn health. Arctic issues are discussed specifically considering their exposure and sensitivity to long range transported contaminants. Considering that the different parts of pregnancy are particularly sensitive time periods for the effects of environmental exposure, this review focuses on the impacts on maternal and newborn health. Environmental stressors known to affects human health and how these will change with the predicted climate change are addressed. Air pollution and food security are crucial issues for the pregnant population in a changing climate, especially indoor climate and food security in Arctic areas. The total number of environmental factors is today responsible for a large number of the global deaths, especially in young children. Climate change will most likely lead to an increase in this number. Exposure to the different environmental stressors especially air pollution will in most parts of the world increase with climate change, even though some areas might face lower exposure. Populations at risk today are believed to be most heavily affected. As for the persistent organic pollutants a warming climate leads to a remobilisation and a possible increase in food chain exposure in the Arctic and thus increased risk for Arctic populations. This is especially the case for mercury. The perspective for the next generations will be closely connected to the expected temperature changes; changes in housing conditions; changes in exposure patterns; predicted increased exposure to Mercury because of increased emissions and increased biological availability. A number of environmental stressors are predicted to increase with climate change and increasingly affecting human health. Efforts should be put on reducing risk for the next generation, thus global politics and research effort should focus on maternal and newborn health.
Silveira, Edna Aparecida; Siman, Fabiana Dayse Magalhães; de Oliveira Faria, Thaís; Vescovi, Marcos Vinícius Altoé; Furieri, Lorena Barros; Lizardo, Juliana Hott Fúcio; Stefanon, Ivanita; Padilha, Alessandra Simão; Vassallo, Dalton Valentim
2014-02-01
Chronic lead exposure induces hypertension affecting endothelial function. We investigated whether low-concentration lead exposure alters blood pressure and vascular reactivity, focusing on the roles of NO, oxidative stress, cyclooxygenase-derived vasoconstrictor prostanoids, and the local angiotensin-renin system. Aortic rings from 3-month-old Wistar rats were treated daily with lead acetate (first dose 4mg/100g, subsequent doses 0.05mg/100g, im) or vehicle for 30 days. Treatment increased lead blood levels (12μg/dl), blood pressure, and aortic ring contractile response to phenylephrine (1nM-100mM). Contractile response after L-NAME administration increased in both groups but was higher after lead treatment. Lead effects on Rmax decreased more after apocynin and superoxide dismutase administration compared to control. Indomethacin reduced phenylephrine response more after lead treatment than in controls. The selective COX-2 inhibitor NS398, thromboxane A2/prostaglandin H2 receptor antagonist SQ 29,548, TXA2 synthase inhibitor furegrelate, EP1 receptor antagonist SC 19220, and ACE inhibitor and AT1 receptor antagonist losartan reduced phenylephrine responses only in vessels from lead-treated rats. Basal and stimulated NO release was reduced and local O2(-) liberation increased in the lead-treated group compared to controls. eNOS, iNOS, and AT1 receptor protein expression increased with lead exposure, but COX-2 protein expression decreased. This is the first demonstration that blood Pb(2+) (12µg/dl) concentrations below the WHO-established values increased systolic blood pressure and vascular phenylephrine reactivity. This effect was associated with reduced NO bioavailability, increased reactive oxygen species production, increased participation of COX-derived contractile prostanoids, and increased renin-angiotensin system activity. © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Exposure science in an age of rapidly changing climate: challenges and opportunities
LaKind, Judy S; Overpeck, Jonathan; Breysse, Patrick N; Backer, Lorrie; Richardson, Susan D; Sobus, Jon; Sapkota, Amir; Upperman, Crystal R; Jiang, Chengsheng; Beard, C Ben; Brunkard, J M; Bell, Jesse E; Harris, Ryan; Chretien, Jean-Paul; Peltier, Richard E; Chew, Ginger L; Blount, Benjamin C
2016-01-01
Climate change is anticipated to alter the production, use, release, and fate of environmental chemicals, likely leading to increased uncertainty in exposure and human health risk predictions. Exposure science provides a key connection between changes in climate and associated health outcomes. The theme of the 2015 Annual Meeting of the International Society of Exposure Science—Exposures in an Evolving Environment—brought this issue to the fore. By directing attention to questions that may affect society in profound ways, exposure scientists have an opportunity to conduct “consequential science”—doing science that matters, using our tools for the greater good and to answer key policy questions, and identifying causes leading to implementation of solutions. Understanding the implications of changing exposures on public health may be one of the most consequential areas of study in which exposure scientists could currently be engaged. In this paper, we use a series of case studies to identify exposure data gaps and research paths that will enable us to capture the information necessary for understanding climate change-related human exposures and consequent health impacts. We hope that paper will focus attention on under-developed areas of exposure science that will likely have broad implications for public health. PMID:27485992
Effects of lead and cadmium exposure from electronic waste on child physical growth.
Yang, Hui; Huo, Xia; Yekeen, Taofeek Akangbe; Zheng, Qiujian; Zheng, Minghao; Xu, Xijin
2013-07-01
Many studies indicate that lead (Pb) and cadmium (Cd) exposure may alter bone development through both direct and indirect mechanisms, increasing the risk of osteoporosis later in life. The aim of this study was to investigate the association between Pb and Cd exposure, physical growth, and bone and calcium metabolism in children of an electronic waste (e-waste) processing area. We recruited 246 children (3-8 years) in a kindergarten located in Guiyu, China. Blood lead levels (BLLs) and blood cadmium levels (BCLs) of recruited children were measured as biomarkers for exposure. Serum calcium, osteocalcin, bone alkaline phosphatase, and urinary deoxypyridinoline were used as biomarkers for bone and calcium metabolism. Physical indexes such as height, weight, and head and chest circumference were also measured. The mean values of BLLs and BCLs obtained were 7.30 μg/dL and 0.69 μg/L, respectively. The average of BCLs increased with age. In multiple linear regression analysis, BLLs were negatively correlated with both height and weight, and positively correlated with bone resorption biomarkers. Neither bone nor calcium metabolic biomarkers showed significant correlation with cadmium. Childhood lead exposure affected both physical development and increased bone resorption of children in Guiyu. Primitive e-waste recycling may threaten the health of children with elevated BLL which may eventually cause adult osteoporosis.
Exposure to lead affects male biothiols metabolism.
Kasperczyk, Sławomir; Błaszczyk, Iwona; Dobrakowski, Michał; Romuk, Ewa; Kapka-Skrzypczak, Lucyna; Adamek, Mariusz; Birkner, Ewa
2013-01-01
The most important biothiols include glutathione, homocysteine (HCY), cysteine and proteins. The aim of the presented study was to evaluate the influence of lead on the biothiol turnover--the concentration of HCY and protein sulfhydryl groups (P-SH) in the serum and reduced glutathione (G-SH) in erythrocytes--in individuals (employees of metal works) exposed to lead and to evaluate its probable oxidative disorders, measured as the carbonyl protein (CP) concentration in serum. The exposed workers were divided into 2 subgroups: 1) low lead exposure (LPb), with a lead concentration in the blood (PbB) of 20-45 µg dl(-1) (n= 102), and 2) high lead exposure (HPb), with PbB = 45-60 µg dl(-1) (n= 81). The control group consisted of 72 office workers or other healthy subjects with no history of occupational exposure to lead. All the controls had normal PbB (<10 μg dl(-1)) and ZPP (<2.5 μg dl(-1)) levels. The concentration of HCY was higher in the LPb group by 11% and in the HPb group by 26%, compared with the control group (n=72). The CP concentration in these 2 groups was more than twice as high as that of the control group, with 108% and 125% increases for the LPb and HPb groups, respectively; G-SH was lower by 6.6% and 7.4% for the LPb and HPb groups, respectively; P-SH was lower by 8.2% and 13% for the LPb and HPb groups, respectively. Lead decreases levels of glutathione and protein thiol groups. Lead-induced oxidative stress contributes to the observed elevation of protein carbonyl groups. Besides, lead poisoning seems to be associated with hyperhomocysteinaemia, which may promote the development of atherosclerosis.
Kulkarni, P S; Gramapurohit, N P
2017-09-15
Corticosterone (CORT), a principal glucocorticoid in amphibians, is known to regulate diverse physiological processes including growth and metamorphosis of anuran tadpoles. Environmental stressors activate the neuroendocrine stress axis (hypothalamus-pituitary-interrenal axis, HPI) leading to an acute increase in CORT, which in turn, helps in coping with particular stress. However, chronic increase in CORT can negatively affect other physiological processes such as growth and metamorphosis. Herein, we studied the effect of exogenous CORT on larval growth, antipredator behaviour and metamorphic traits of Hylarana indica. Embryonic exposure to 5 or 20μg/L CORT did not affect their development, hatching duration as well as larval growth and metamorphosis. Exposure of tadpoles to 10 or 20μg/L CORT throughout larval development caused slower growth and development leading to increased body mass at stage 37. However, body and tail morphology of tadpoles was not affected. Interestingly, larval exposure to 5, 10 or 20μg/L CORT enhanced their antipredator response against kairomones in a concentration-dependent manner. Further, larval exposure to increasing concentrations of CORT resulted in the emergence of heavier froglets at 10 and 20μg/L while, delaying metamorphosis at all concentrations. Interestingly, the heavier froglets had shorter hindlimbs and consequently shorter jump distances. Tadpoles exposed to 20μg/L CORT during early, mid or late larval stages grew and developed slowly but tadpole morphology was not altered. Interestingly, exposure during early or mid-larval stages resulted in an enhanced antipredator response. These individuals metamorphosed later but at higher body mass while SVL was unaffected. Copyright © 2016 Elsevier Inc. All rights reserved.
Cao, Yi; Li, Juan; Liu, Fang; Li, Xiyue; Jiang, Qin; Cheng, Shanshan; Gu, Yuxiu
2016-09-01
Nanoparticles (NPs) are increasingly used in food, and the toxicity of NPs following oral exposure should be carefully assessed to ensure the safety. Indeed, a number of studies have shown that oral exposure to NPs, especially solid NPs, may induce toxicological responses both in vivo and in vitro. However, most of the toxicological studies only used NPs for oral exposure, and the potential interaction between NPs and food components in real life was ignored. In this review, we summarized the relevant studies and suggested that the interaction between NPs and food components may exist by that 1) NPs directly affect nutrients absorption through disruption of microvilli or alteration in expression of nutrient transporter genes; 2) food components directly affect NP absorption through physico-chemical modification; 3) the presence of food components affect oxidative stress induced by NPs. All of these interactions may eventually enhance or reduce the toxicological responses induced by NPs following oral exposure. Studies only using NPs for oral exposure may therefore lead to misinterpretation and underestimation/overestimation of toxicity of NPs, and it is necessary to assess the synergistic effects of NPs in a complex system when considering the safety of NPs used in food. Copyright © 2016 Elsevier B.V. All rights reserved.
Tadpole swimming performance and activity affected by acute exposure to sublethal levels of carbaryl
Bridges, C.M.
1997-01-01
General activity and swimming performance (i.e., sprint speed and distance) of plains leopard frog tadpoles (Rana blairi) were examined after acute exposure to three sublethal concentrations of carbaryl (3.5, 5.0, and 7.2 mg/L). Both swimming performance and spontaneous swimming activity are important for carrying out life history functions (e.g., growth and development) and for escaping from predators. Measured tadpole activity diminished by nearly 90% at 3.5 mg/L carbaryl and completely ceased at 7.2 mg/L. Sprint speed and sprint distance also decreased significantly following exposure. Carbaryl affected both swimming performance and activity after just 24 h, suggesting that 24 h may be an adequate length of exposure to determine behavioral effects on tadpoles. Slight recovery of activity levels was noted at 24 and 48 h post-exposure; no recovery of swimming performance was observed. Reduction in activity and swimming performance may result in increased predation rates and, because activity is closely associated with feeding, may result in slowed growth leading to a failure to emerge before pond drying or an indirect reduction in adult fitness. Acute exposure to sublethal toxicants such as carbaryl may not only affect immediate survival of tadpoles but also impact critical life history functions and generate changes at the local population level.
Lead and Arsenic Accumulation and Its Effects on Plasma Cortisol Levels in Oreochromis sp.
Thang, Nguyen Quoc; Huy, Bui The; Van Tan, Le; Phuong, Nguyen Thi Kim
2017-08-01
The accumulation, elimination and effect of heavy metals on plasma cortisol levels in Oreochromis sp. were studied in the exposure and recovery phases. In the exposure phase, the mean rate of accumulation in the tissues was in the order gill > liver > muscle for Pb exposure and muscle > liver > gill for As exposure. In the recovery phase, the order of elimination in the tissues was gill > liver > muscle for Pb and liver > gill > muscle for As. The amount of cortisol secreted by the Oreochromis sp. after Pb or As treatment was lower compared to Oreochromis sp. in the control group during the exposure phase. In the recovery phase, plasma cortisol levels in Oreochromis sp. increased in all Pb treatment groups while it continuously decreased in all As treatment groups. A fish affected by As has obvious difficulty recovering from the stress response. It was concluded that exposure to the tested concentrations of Pb and As over 20 days could be a potent endocrine disruptor, which may lead to adverse impacts on the health of the Oreochromis sp.
Lead toxicity: An overview of prevalence in Indians.
Iyer, Sandhya; Sengupta, Caesar; Velumani, A
2015-12-07
Elements form a basic and natural constituent of the Earth's crust and are released into the atmosphere due to many human activities like mining and manufacturing. Of all, the elements, lead toxicity is a prevailing as well as a growing concern the world over because of its ability to affect multiple clinical functions. Blood lead levels have been analyzed in a large pan-India cohort of 222,668 comprising of 121,115 males and 101,553 females respectively. The cohort included all age groups from <2 to >55 years old. The analytical platform of Inductively Coupled Plasma-Mass Spectrometry has been used to assess lead levels. Blood lead levels of ≥150 μg/L was considered high for analysis. The total frequency of high lead levels detected in our study was 1.16%. The frequency of males affected were higher than females, with the difference being statistically significant.. Lead being ubiquitous in its presence and also serving no biological function, has grown today to become a serious threat to human health. The high frequency of affected detected in our study raises a cause for concern. Determining its presence and the most affected geography in any country will aid in charting guidelines on controlling its release as well as exposure. Copyright © 2015 Elsevier B.V. All rights reserved.
Oral Chromium Exposure and Toxicity
Sun, Hong; Brocato, Jason
2015-01-01
Hexavalent chromium [Cr(VI)] is a known carcinogen when inhaled. However, inhalational exposure to Cr(VI) affects only a small portion of the population, mainly by occupational exposures. In contrast, oral exposure to Cr(VI) is widespread and affects many people throughout the globe. In 2008, the National Toxicology Program (NTP) released a 2-year study demonstrating that ingested Cr(VI) was carcinogenic in rats and mice. The effects of Cr(VI) oral exposure is mitigated by reduction in the gut, however a portion evades the reductive detoxification and reaches target tissues. Once Cr(VI) enters the cell, it ultimately gets reduced to Cr(III), which mediates its toxicity via induction of oxidative stress during the reduction while Cr intermediates react with protein and DNA. Cr(III) can form adducts with DNA that may lead to mutations. This review will discuss the potential adverse effects of oral exposure to Cr(VI) by presenting up-to-date human and animal studies, examining the underlying mechanisms that mediate Cr(VI) toxicity, as well as highlighting opportunities for future research. PMID:26231506
New directions in the toxicokinetics of human lead exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mushak, P.
An important determinant of body lead (Pb) burden and Pb toxicity in exposed humans is Pb metabolism, or more correctly, Pb toxicokinetics. It affects the former through the quantitative processes of uptake, distribution and retention/excretion and the latter via delivery of toxic doses to cellular/molecular sites of action. Pb toxicokinetics has useful application in understanding Pb's behavior in populations. Several of these applications have been studied and results are presented for the toxicokinetic basis of dose-neurotoxic effect relationships in selected longitudinal studies and the use of toxicokinetic modeling for estimation of body lead burden in early populations. Three well-known, ongoingmore » longitudinal studies of developmental neurotoxicity--in Boston, Cincinnati, and Port Pirie, Australia--involve cohorts who differ markedly as to their pre- and postnatal lead exposure profiles. Toxicokinetic examination of these exposure differences helps to explain the temporal variability seen in blood Pb-toxic effect relationships and supports a causal role for lead. Toxicokinetic models of Pb uptake and in-vivo behavior are increasingly being considered for estimating Pb-B levels in lieu of direct measurement. A linear biokinetic model, using reliable input data for natural/prehistoric levels of Pb in sources, was applied to estimation of prehistoric/preindustrial children's blood lead. A range of 0.06 to 0.12 microgram/dl was estimated for two lead intakes. These estimates are still two orders of magnitude (85 to 165-fold) lower than the newly issued CDC toxicity guideline for children of 10 micrograms/dl. Lastly, the toxicokinetics of lead in bone, particularly its resorption with metabolic stimuli, is of concern, particularly for baby boom women who are either of childbearing age or approaching menopause and who had greatly elevated environmental lead exposures in the 1940s to 1970s. 115 refs.« less
Bordner, Kelly; Deak, Terrence
2015-01-01
Background Despite considerable knowledge that prenatal ethanol exposure can lead to devastating effects on the developing fetus, alcohol consumption by pregnant women remains strikingly prevalent. Both clinical and basic research has suggested that, in addition to possible physical, behavioral, and cognitive deficits, gestational exposure to alcohol may lead to an increased risk for the development of later alcohol-related use and abuse disorders. The current work sought to characterize alterations in endogenous opioid signaling peptides and gene expression produced by ethanol exposure during the last days of gestation. Methods Experimental subjects were 4-, 8-, and 12-day old infant rats obtained from pregnant females that were given daily intubations of 0, 1, or 2 g/kg ethanol during the last few days of gestation (GD17-20). Using real-time RT-PCR, western blotting analysis, and enzyme immunoassays, we examined mRNA and protein for three opioid receptors and ligands in the nucleus accumbens, ventral tegmental area, and hypothalamus. Results Three main trends emerged - (1) mRNA for the majority of factors were found to upregulate across each of the three postnatal ages assessed, indicative of escalating ontogenetic expression of opioid-related genes; (2) prenatal ethanol significantly reduced many opioid peptides, suggesting a possible mechanism by which prenatal exposure can affect future responsiveness towards ethanol; and (3) the nucleus accumbens emerged as a key site for ethanol-dependent effects, suggesting a potential target for additional assessment and intervention towards understanding the ethanol's ability to program the developing brain. Conclusion We provide a global assessment of relatively long-term changes in both opioid gene expression and protein following exposure to only moderate amounts of ethanol during a relatively short window in the prenatal period. These results suggest that, while continuing to undergo ontogenetic changes, the infant brain is sensitive to prenatal ethanol exposure and that such exposure may lead to relatively long-lasting changes in the endogenous opioid system within the reward circuitry. These data indicate a potential mechanism and target for additional assessments of ethanol's ability to program the brain, affecting later responsiveness towards the drug. PMID:25662024
Environmental epigenetics in metal exposure
Martinez-Zamudio, Ricardo
2011-01-01
Although it is widely accepted that chronic exposure to arsenite, nickel, chromium and cadmium increases cancer incidence in individuals, the molecular mechanisms underlying their ability to transform cells remain largely unknown. Carcinogenic metals are typically weak mutagens, suggesting that genetic-based mechanisms may not be primarily responsible for metal-induced carcinogenesis. Growing evidence shows that environmental metal exposure involves changes in epigenetic marks, which may lead to a possible link between heritable changes in gene expression and disease susceptibility and development. Here, we review recent advances in the understanding of metal exposure affecting epigenetic marks and discuss establishment of heritable gene expression in metal-induced carcinogenesis. PMID:21610324
Drinking Water Contamination Due To Lead-based Solder
NASA Astrophysics Data System (ADS)
Garcia, N.; Bartelt, E.; Cuff, K. E.
2004-12-01
The presence of lead in drinking water creates many health hazards. Exposure to lead-contaminated water can affect the brain, the central nervous system, blood cells, and kidneys, causing such problems as mental retardation, kidney disease, heart disease, stroke, and death. One way in which lead can contaminate our water supply is through the use of lead solder to join pipes. Lead solder was widely used in the past because of its ease of application as well as its low cost. Lead contamination in residential areas has previously been found to be a particularly serious problem in first-draw samples, of water that has sat stagnant in pipes overnight. To investigate the time-dependence of drinking water lead contamination, we analyzed samples taken hourly of water exposed to lead solder. While our preliminary data was insufficient to show more than a rough correlation between time of exposure and lead concentration over short periods (1-3 hours), we were able to confirm that overnight exposure of water to lead-based solder results in the presence high levels of lead. We also investigated other, external factors that previous research has indicated contribute to increased concentrations of lead. Our analysis of samples of lead-exposed water at various pH and temperatures suggests that these factors can be equally significant in terms of their contribution to elevated lead concentration levels. In particular, water that is slightly corrosive appears to severely impact the solubility of lead. As this type of water is common in much of the Northeast United States, the presence of lead-based solder in residential areas there is especially problematic. Although lead-based solder has been banned since the 1980s, it remains a serious concern, and a practical solution still requires further research.
[Jellyfish and poison-producing animals that endanger swimmers].
Litschauer-Poursadrollah, M; Mayer, D E; Hemmer, W; Jarisch, R
2010-05-01
Exposure to fresh water as well as to sea water can cause unpleasant consequences. The water of lakes or biotopes may be the reason for severe itching reactions on exposed skin, caused by cercariae. Exposure to seawater may lead to skin affections including itching or burning urticarial lesions as well as life threatening reactions. The causes for these reactions are especially species of jellyfish. (c) Georg Thieme Verlag KG Stuttgart. New York.
Climate Change and Our Environment: The Effect on Respiratory and Allergic Disease
Barnes, Charles S.; Alexis, Neil E.; Bernstein, Jonathan A.; Cohn, John R.; Demain, Jeffrey G.; Horner, Elliott; Levetin, Estelle; Nel, Andre; Phipatanakul, Wanda
2013-01-01
Climate change is a constant and ongoing process. It is postulated that human activities have reached a point at which we are producing global climate change. This article provides suggestions to help the allergist/environmental physician integrate recommendations about improvements in outdoor and indoor air quality and the likely response to predicted alterations in the earth’s environment into their patient’s treatment plan. Many changes that affect respiratory disease are anticipated. Examples of responses to climate change include energy reduction retrofits in homes that could potentially affect exposure to allergens and irritants, more hot sunny days that increase ozone-related difficulties, and rises in sea level or altered rainfall patterns that increase exposure to damp indoor environments. Climate changes can also affect ecosystems, manifested as the appearance of stinging and biting arthropods in new areas. Higher ambient carbon dioxide concentrations, warmer temperatures, and changes in floristic zones could potentially increase exposure to ragweed and other outdoor allergens, whereas green practices such as composting can increase allergen and irritant exposure. Finally, increased energy costs may result in urban crowding and human source pollution, leading to changes in patterns of infectious respiratory illnesses. Improved governmental controls on airborne pollutants could lead to cleaner air and reduced respiratory diseases but will meet strong opposition because of their effect on business productivity. The allergy community must therefore adapt, as physician and research scientists always have, by anticipating the needs of patients and by adopting practices and research methods to meet changing environmental conditions. PMID:23687635
Effect of Manganese on some aspects of carbohydrate metabolism in rats. [None
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, R.; Mushtaq, M.; Seth, P.K.
1980-10-01
Numerous biochemical and toxicological studies have indicated that chronic exposure to manganese leads to neurological abnormalities. Increasing use of manganese compounds as antiknocks in gasoline and diesel fuel has aroused a great concern over the toxicological potential of this metal and stressed the need for understanding the mechanism of its poisoning. Reports of alerations in the levels of biogenic amines have helped in understanding the basis of neurological disorders. However, little is known about the mechanism by which manganese exposure leads to hypoglycemia in workers. This study deals with the influence of manganese exposure on metabolism of glucose, the chiefmore » fuel of the brain, and some enzymes involved in its oxidation. These studies will provide an assessment of the extent to which manganese affects the various processes controlling carbohydrate metabolism.« less
Cohick, Wendie S; Crismale-Gann, Catina; Stires, Hillary; Katz, Tiffany A
2015-01-01
Fetal alcohol spectrum disorders affect a significant number of live births each year, indicating that alcohol consumption during pregnancy is an important public health issue. Environmental exposures and lifestyle choices during pregnancy may affect the offspring's risk of disease in adulthood, leading to the idea that a woman's risk of breast cancer may be pre-programmed prior to birth. Exposure of pregnant rats to alcohol increases tumorigenesis in the adult offspring in response to mammary carcinogens. The estrogen and insulin-like growth factor (IGF-I) axes occupy central roles in normal mammary gland development and breast cancer. 17-β estradiol (E2) and IGF-I synergize to regulate formation of terminal end buds and ductal elongation during pubertal development. The intracellular signaling pathways mediated by the estrogen and IGF-I receptors cross-talk at multiple levels through both genomic and non-genomic mechanisms. Several components of the E2 and IGF-I systems are altered in early development in rat offspring exposed to alcohol in utero, therefore, these changes may play a role in the enhanced susceptibility to mammary carcinogens observed in adulthood. Alcohol exposure in utero induces a number of epigenetic alterations in non-mammary tissues in the offspring and other adverse in utero exposures induce epigenetic modifications in the mammary gland. Future studies will determine if fetal alcohol exposure can induce epigenetic modifications in genes that regulate E2/IGF action at key phases of mammary development, ultimately leading to changes in susceptibility to carcinogens.
Everett, Julie C; Licón-Muñoz, Yamhilette; Valenzuela, C Fernando
2012-09-01
Fetal alcohol spectrum disorders are often associated with structural and functional hippocampal abnormalities, leading to long-lasting learning and memory deficits. The mechanisms underlying these abnormalities are not fully understood. Here, we investigated whether ethanol exposure during the 3rd trimester-equivalent period alters spontaneous network activity that is involved in neuronal circuit development in the CA3 hippocampal region. This activity is driven by GABA(A) receptors, which can have excitatory actions in developing neurons as a consequence of greater expression of the Cl(-) importer, NKCC1, with respect to expression of the Cl(-) exporter, KCC2, resulting in high [Cl(-)](i). Rat pups were exposed to ethanol vapor from postnatal day (P) 2-16 (4 h/day). Weight gain was significantly reduced in pups exposed to ethanol compared to control at P15 and 16. Brain slices were prepared immediately after the end of the 4-h exposure on P4-16 and experiments were also performed under ethanol-free conditions at the end of the exposure paradigm (P17-22). Ethanol exposure did not significantly affect expression of KCC2 or NKCC1, nor did it affect network activity in the CA3 hippocampal region. Ethanol exposure significantly decreased the frequency (at P9-11) and increased the amplitude (at P5-8 and P17-21) of GABA(A) receptor-mediated miniature postsynaptic currents. These data suggest that repeated in vivo exposure to ethanol during the 3rd trimester-equivalent period alters GABAergic transmission in the CA3 hippocampal region, an effect that could lead to abnormal circuit maturation and perhaps contribute to the pathophysiology of fetal alcohol spectrum disorders. Copyright © 2012 Elsevier Inc. All rights reserved.
Epigenomics in Environmental Health
Christensen, Brock C.; Marsit, Carmen J.
2011-01-01
This review considers the emerging relationships between environmental factors and epigenetic alterations and the application of genome-wide assessments to better define these relationships. First we will briefly cover epigenetic programming in development, one-carbon metabolism, and exposures that may disrupt normal developmental programming of epigenetic states. In addition, because a large portion of epigenetic research has focused on cancer, we discuss exposures associated with carcinogenesis including asbestos, alcohol, radiation, arsenic, and air pollution. Research on other exposures that may affect epigenetic states such as endocrine disruptors is also described, and we also review the evidence for epigenetic alterations associated with aging that may reflect cumulative effects of exposures. From this evidence, we posit potential mechanisms by which exposures modify epigenetic states, noting that understanding the true effect of environmental exposures on the human epigenome will require additional research with appropriate epidemiologic studies and application of novel technologies. With a more comprehensive understanding of the affects of exposures on the epigenome, including consideration of genetic background, the prediction of the toxic potential of new compounds may be more readily achieved, and may lead to the development of more personalized disease prevention and treatment strategies. PMID:22303378
Both physiology and epidemiology support zero tolerable blood lead levels.
Shefa, Syeda T; Héroux, Paul
2017-10-05
Inorganic lead is one of the most common causes of environmental metal poisonings, and its adverse effects on multiple body systems are of great concern. The brain, along with the kidneys, are critically susceptible to lead toxicity for their hosting of high affinity lead binding proteins, and very sensitive physiology. Prolonged low-lead exposure frequently remains unrecognized, causes subtle changes in these organ systems, and manifests later at an irreversible stage. With the repeated documentation of "no safe blood lead level", the pernicious effects of lead at any measurable concentration need to be emphasized. In this review, we surveyed articles on chronic low-level lead exposures with a blood lead concentrations <10μg/dL and the development of neurobehavioral or renal disorders. The negative impacts of lead on both nervous and renal systems were obvious at a blood lead concentration of 2μg/dL, with the absence of any detectable threshold. The deleterious effect of lead on two different organ systems at such low concentrations drew our attention to the various extracellular and intracellular events that might be affected by minimal concentration of body lead, especially blood lead. Is there a true common ground between low-level lead toxicity in both the nervous system and the kidney? Copyright © 2017 Elsevier B.V. All rights reserved.
IDENTIFICATION OF INTERSPECIES CONCORDANCE OF MECHANISMS OF ARSENIC-INDUCED BLADDER CANCER
Exposure to arsenic causes cancer by inducing a variety of responses that affect the expression of genes associated with numerous biological pathways leading to altered cell growth and proliferation, signaling, apoptosis and oxidative stress response. Affymetrix GeneChip® arrays ...
Jedrychowski, Wieslaw; Perera, Frederica; Jankowski, Jeffery; Mrozek-Budzyn, Dorota; Mroz, Elzbieta; Flak, Elzbieta; Edwards, Susan; Skarupa, Anita; Lisowska-Miszczyk, Ilona
2009-08-01
The primary purpose of this study was to assess the relationship between very low-level of prenatal lead exposure measured in the cord blood (<5 microg/dL) and possible gender-specific cognitive deficits in the course of the first three years of life. The accumulated lead dose in infants over the pregnancy period was measured by the cord blood lead level (BLL) and cognitive deficits were assessed by the Bayley Mental Development Index (MDI). The study sample consisted of 457 children born to non-smoking women living in the inner city and the outlying residential areas of Krakow. The relationship between prenatal lead exposure and MDI scores measured at 12, 24 and 36 months of age and adjusted to a set of important covariates (gender of child, maternal education, parity, breastfeeding, prenatal and postnatal environmental tobacco smoke) was evaluated with linear multivariate regression, and the Generalized Estimating Equations (GEE) longitudinal panel model. The median of lead level in cord blood was 1.21 microg/dL with the range of values from 0.44 to 4.60 microg/dL. Neither prenatal BLL (dichotomized by median) nor other covariates affected MDI score at 12 months of age. Subsequent testing of children at 24 months of age showed a borderline significant inverse association of lead exposure and mental function (beta coefficient=-2.42, 95%CI: -4.90 to 0.03), but the interaction term (BLL x male gender) was not significant. At 36 months, prenatal lead exposure was inversely and significantly associated with cognitive function in boys (Spearman correlation coefficient=-0.239, p=0.0007) but not girls (r=-0.058, p=0.432) and the interaction between BLL and male gender was significant (beta coefficient=-4.46; 95%CI: -8.28 to -0.63). Adjusted estimates of MDI deficit in boys at 36 months confirmed very strong negative impact of prenatal lead exposure (BLL>1.67 microg/dL) compared with the lowest quartile of exposure (beta coefficient=-6.2, p=0.002), but the effect in girls was insignificant (beta coefficient=-0.74, p=0.720). The average deficit of cognitive function in the total sample over the first three years of life (GEE model) associated with higher prenatal lead exposure was also significant (beta coefficient=-3.00; 95%CI: -5.22 to -0.70). Beside prenatal lead exposure, presence of older siblings at home and prenatal environmental tobacco smoke had a negative impact on MDI score. Better maternal education showed a strong beneficial effect on the cognitive development of children. the study suggests that there might be no threshold for lead toxicity in children and provides evidence that 3-year old boys are more susceptible than girls to prenatal very low lead exposure. The results of the study should persuade policy makers to consider gender-related susceptibility to lead and possibly to other toxic hazards in setting environmental protection guidelines. To determine whether the cognitive deficit documented in this study persists to older ages, the follow-up of the children over the next several years is to be carried out.
Behavioral Teratology Comes to the Classroom.
ERIC Educational Resources Information Center
Brackbill, Yvonne
1987-01-01
The article discusses types of teratogenic agents, (behavioral defects caused by toxic agents) behavioral targets, organismic vulnerability during growth spurts, teratogenic "routing" (path to the brain), exposure, and duration of effects. Lead is used as a paradigm of chemical neurotoxins known to affect cognitive and noncognitive…
Thermal perception thresholds among workers in a cold climate.
Burström, Lage; Björ, Bodil; Nilsson, Tohr; Pettersson, Hans; Rödin, Ingemar; Wahlström, Jens
2017-10-01
To investigate whether exposure to cold could influence the thermal perception thresholds in a working population. This cross-sectional study was comprised of 251 males and females and was carried out at two mines in the northern part of Norway and Sweden. The testing included a baseline questionnaire, a clinical examination and measurements of thermal perception thresholds, on both hands, the index (Digit 2) and little (Digit 5) fingers, for heat and cold. The thermal perception thresholds were affected by age, gender and test site. The thresholds were impaired by experiences of frostbite in the fingers and the use of medication that potentially could affect neurosensory functions. No differences were found between the calculated normative values for these workers and those in other comparative investigations conducted in warmer climates. The study provided no support for the hypothesis that living and working in cold climate will lead to impaired thermal perception thresholds. Exposure to cold that had caused localized damage in the form of frostbite was shown to lead to impaired thermal perception.
UV-B exposure impairs resistance to infection by Trichinella spiralis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goettsch, W.; Garssen, J.; Deijns, A.
1994-03-01
To assess the possibility that increases in UV-B exposure on the earth's surface could lead to impaired resistance to several infectious diseases, we studied the effect of UV-B exposure on resistance against Trichinella spiralis. Wistar rats, orally infected with T. spiralis larvae, were exposed to suberythemal doses of UV-B radiation daily for 5 days at different time periods before or after infection. A significant increase in the number of Trichinella larvae was found in the carcasses of rats irradiated with UV-B between 6 and 10 days after infection. These data indicate that exposure to UV-B radiation suppresses the resistance tomore » a parasitic infection. We suggested that UV-B radiation especially suppresses cellular immune responses against these worms because specific IgM, IgG, and IgE titers were not significantly altered by UV-B exposure. These data indicate that UV-B irradiation plays a role in the course of infection with T. spiralis, which suggests that increases of UV-B exposure might also lead to problems with other infectious diseases and might affect vaccination because of the interaction of UV-B irradiation with memory T-cells. 38 refs., 3 figs., 1 tab.« less
Effects of prenatal exposure to coal-burning pollutants on children's development in China.
Tang, Deliang; Li, Tin-yu; Liu, Jason J; Zhou, Zhi-jun; Yuan, Tao; Chen, Yu-hui; Rauh, Virginia A; Xie, Jiang; Perera, Frederica
2008-05-01
Environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs), lead, and mercury are released by combustion of coal and other fossil fuels. In the present study we evaluated the association between prenatal exposure to these pollutants and child development measured by the Gesell Developmental Schedules at 2 years of age. The study was conducted in Tongliang, Chongqing, China, where a seasonally operated coal-fired power plant was the major source of ambient PAHs and also contributed lead and mercury to the air. In a cohort of nonsmoking women and their newborns enrolled between March 2002 and June 2002, we measured levels of PAH-DNA adducts, lead, and mercury in umbilical cord blood. PAH-DNA adducts (specifically benzo[a]pyrene adducts) provided a biologically relevant measure of PAH exposure. We also obtained developmental quotients (DQs) in motor, adaptive, language, and social areas. Decrements in one or more DQs were significantly associated with cord blood levels of PAH-DNA adducts and lead, but not mercury. Increased adduct levels were associated with decreased motor area DQ (p = 0.043), language area DQ (p = 0.059), and average DQ (p = 0.047) after adjusting for cord lead level, environmental tobacco smoke, sex, gestational age, and maternal education. In the same model, high cord blood lead level was significantly associated with decreased social area DQ (p = 0.009) and average DQ (p = 0.038). The findings indicate that exposure to pollutants from the power plant adversely affected the development of children living in Tongliang; these findings have implications for environmental health policy.
Effects of Prenatal Exposure to Coal-Burning Pollutants on Children’s Development in China
Tang, Deliang; Li, Tin-yu; Liu, Jason J.; Zhou, Zhi-jun; Yuan, Tao; Chen, Yu-hui; Rauh, Virginia A.; Xie, Jiang; Perera, Frederica
2008-01-01
Background Environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs), lead, and mercury are released by combustion of coal and other fossil fuels. Objectives In the present study we evaluated the association between prenatal exposure to these pollutants and child development measured by the Gesell Developmental Schedules at 2 years of age. Methods The study was conducted in Tongliang, Chongqing, China, where a seasonally operated coal-fired power plant was the major source of ambient PAHs and also contributed lead and mercury to the air. In a cohort of nonsmoking women and their newborns enrolled between March 2002 and June 2002, we measured levels of PAH–DNA adducts, lead, and mercury in umbilical cord blood. PAH–DNA adducts (specifically benzo[a]pyrene adducts) provided a biologically relevant measure of PAH exposure. We also obtained developmental quotients (DQs) in motor, adaptive, language, and social areas. Results Decrements in one or more DQs were significantly associated with cord blood levels of PAH–DNA adducts and lead, but not mercury. Increased adduct levels were associated with decreased motor area DQ (p = 0.043), language area DQ (p = 0.059), and average DQ (p = 0.047) after adjusting for cord lead level, environmental tobacco smoke, sex, gestational age, and maternal education. In the same model, high cord blood lead level was significantly associated with decreased social area DQ (p = 0.009) and average DQ (p = 0.038). Conclusion The findings indicate that exposure to pollutants from the power plant adversely affected the development of children living in Tongliang; these findings have implications for environmental health policy. PMID:18470301
Andersen, Susan L
2015-05-01
The relationship between developmental exposure to adversity and affective disorders is reviewed. Adversity discussed herein includes physical and sexual abuse, neglect, or loss of a caregiver in humans. While these stressors can occur at any point during development, the unique temporal relationship to specific depressive symptoms was the focus of discussion. Further influences of stress exposure during sensitive periods can vary by gender and duration of abuse as well. Data from animal studies are presented to provide greater translational and causal understanding of how sensitive periods, different types of psychosocial stressors, and sex interact to produce depressive-like behaviors. Findings from maternal separation, isolation rearing, chronic variable stress, and peer-peer rearing paradigms clarify interpretation about how various depressive behaviors are influenced by age of exposure. Depressive behaviors are broken down into the following categories: mood and affect, anhedonia, energy, working memory, sleep-wake, appetite changes, suicide, and general malaise. Cross-species evidence from humans, nonhuman primates, rats, and mice within each of these categories is discussed. In conclusion, sensitive periods for affective-related behaviors (anxiety, mood, and controllability) occur earlier in life, while other aspects of depression are associated with adversity later during adolescence.
Lead levels in Canadian children: Do we have to review the standard?
Tsekrekos, Stephen N; Buka, Irena
2005-01-01
Research indicates that the blood lead levels that were once considered safe can adversely affect the neurodevelopment of children. The purpose of the present article is to review issues surrounding lead exposure in Canadian children, including sources, chronic low levels of exposure, and recommendations for prevention. Information was obtained through searches of MEDLINE and Web of Science using a combination of: “Canada” or “Canadian” plus “child” or “paediatrics” plus “lead” or “lead poisoning” or “blood lead”. Centers for Disease Control and Prevention data and American peer-reviewed literature were also used. On-line Health Canada advisories (available since 1995), as well as relevant reports from nongovernmental organization and the media, were reviewed. The present review found that there has been limited surveillance of blood lead levels of Canadian children and, mainly, among high-risk groups. Harmful health effects may occur below the current standards and the threat of lead in consumer products remains. The current regulation seems to be inadequate to protect Canadian children. PMID:19668617
Nováková, Jaroslava; Lukačínová, Agnesa; Lovásová, Eva; Cimboláková, Iveta; Rácz, Oliver; Ništiar, František
2015-05-01
The aim of the study was to assess the effects of exposure to low doses of lead dissolved in drinking water (average daily dose of 2.2 mg kg(-1) day(-1)) on selected carbohydrate metabolism parameters in 20 wistar rats. Animals were divided into two groups - control (C) (group drinking clear water) and experimental group (Pb; group exposed to low doses of lead acetate in a concentration of 100 μmol l(-1) of drinking water). In this study, we studied the biochemical parameters (glucose, haemoglobin (Hb), glycated haemoglobin (HbA1c), lactate dehydrogenase (LDH) and amylase (AMS)) in rat blood. Glucose and Hb concentration and AMS activity decreased, LDH activity increased but HbA1c concentration levels did not change in rats exposed to lead. Our results well documented that lifetime exposure to lead affected carbohydrate metabolism of rats. Some parameters like concentration of Hb as well as activities of AMS and LDH are useful markers of intoxication of rats with lead. For the evaluation of results (e.g. AMS), not only the data at the end of the experiment should be taken into account but also the entire duration of trials (i.e. more time steps) that makes results more objective should be considered. © The Author(s) 2013.
Neurotoxicity of lead, methylmercury, and PCBs in relation to the Great Lakes.
Rice, D C
1995-01-01
There is ample evidence identifying lead, methylmercury, and polychlorinated biphenyls (PCBs) as neurotoxic agents. A large body of data on the neurotoxicity of lead, based on both epidemiologic studies in children and animal models of developmental exposure, reveals that body burdens of lead typical of people in industrialized environments produce behavioral impairment. Methylmercury was identified as a neurotoxicant in both adults and the developing organism based on episodes of human poisoning: these effects have been replicated and extended in animals. High-dose PCB exposure was recognized as a developmental toxicant as a result of several episodes of contamination of cooking oil. The threshold for PCB neurotoxicity in humans is less clear, although research in animals suggests that relatively low-level exposure produces behavioral impairment and other toxic effects. Tissue levels in fish below which human health would not be adversely affected were estimated for methylmercury and PCBs based on calculated reference doses (RfDs) and estimated fish intake. Present levels in fish tissue in the Great Lakes exceed these levels for both neurotoxicants. Great Lakes fish and water do not pose a particular hazard for increased lead intake. However, the fact that the present human body burden is in a range at which functional deficits are probable suggests that efforts should be made to eliminate point sources of lead contamination in the Great Lakes basin. PMID:8635443
Can Chemicals in the Environment That Affect Hormone Function Disrupt Development?
Hormones, including estrogens and androgens, regulate the expression of genes that play critical roles in guiding the development of organ systems in the embryo. Changes in either the amount or the timing of hormone exposure can lead to altered human development. For example, hum...
Lead in albacore: guide to lead pollution in Americans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Settle, D.M.; Patterson, C.C.
1980-03-14
Research report: The magnitude of lead contamination in canned tuna is used to explain the difference between the lead concentration in the diets of present-day U.S. consumers (0.2 ppm) and that in the diets of prehistoric peoples (/sup 1/m ls /sup 1/x0.002 ppm). It is also used to illustrate how skeletal concentrations of lead in typical Americans became elevated 500-fold above the natural concentrations measured in bones of Peruvians who lived in an unpolluted environment 1800 years ago. An unrecognized form of poisoning caused by this excessive exposure to lead may affect most U.S. consumers. (3 drawings, 59 references, 3more » tables)« less
Graham, Bronwyn M; Richardson, Rick
2010-06-01
Fibroblast growth factor-2 (FGF2) is a potent neurotrophic factor that is involved in brain development and the formation of long-term memory. It has recently been shown that acute FGF2, administered at the time of learning, enhances long-term memory for contextual fear conditioning as well as extinction of conditioned fear in developing rats. As other research has shown that administering FGF2 on the first day of life leads to long-term morphological changes in the hippocampus, in the present study we investigated whether early life exposure to FGF2 affects contextual fear conditioning, and renewal following extinction, later in life. Experiment 1 demonstrated that a single injection of FGF2 on Postnatal Day (PND) 1 did not lead to any detectable changes in contextual fear conditioning in PND 16 or PND 23 rats. Experiments 2 and 3 demonstrated that 5 days of injections of FGF2 (from PND 1-5) facilitated contextual fear conditioning in PND 16 and PND 23 rats. Experiment 4 demonstrated that the observed facilitation of memory was not due to FGF2 increasing rats' sensitivity to foot shock. Experiment 5 showed that early life exposure to FGF2 did not affect learning about a discrete conditioned stimulus, but did allow PND 16 rats to use contextual information in more complex ways, leading to context-dependent extinction of conditioned fear. These results further implicate FGF2 as a critical signal involved in the development of learning and memory.
Ruiz, Sandra; Espín, Silvia; Rainio, Miia; Ruuskanen, Suvi; Salminen, Juha-Pekka; Lilley, Thomas M; Eeva, Tapio
2016-06-01
Exposure to metal pollution negatively affects animal physiology, including nutrient metabolism, but in the wild an effect can seldom be attributed to a single metal. Moreover, little is known about how the metabolism of vitamins, essential micronutrients for developing juveniles, is affected by toxic metals. Therefore we experimentally investigated the effects of lead (Pb), a widespread toxic metal, on four fat-soluble vitamins A (total and retinol), D3, E (total and α-tocopherol) and K and carotenoids (lutein, zeaxanthin and unidentified) in great tit (Parus major) nestlings. In addition to a control group where no Pb was provided, two Pb-dosed groups were compared to a metal exposed group in the vicinity of a Ni-Cu smelter. We examined whether Pb treatment affects vitamin homeostasis and how the response of Pb-treated birds relates to that of a population under industrial exposure of Pb and other metals. For this purpose, vitamin and carotenoid levels were quantified with UPLC-MS from plasma of 7 days-old nestlings. All metal exposed groups showed increased vitamin A and retinol levels. However, vitamin levels were not directly associated with fecal Pb levels, with the exception of retinol, which was positively correlated with fecal Pb. Alpha-tocopherol, lutein and zeaxanthin levels were positively associated with body mass and wing growth rate. To conclude, Pb exposure increased plasma vitamin A and retinol levels while the levels of other vitamins and carotenoids rather reflected secondary pollution effects via differences in habitat and diet quality at the smelter site. Our findings suggest Pb exposed nestlings may allocate the vitamins needed for growth and development to fight the physiological stress thus compromising their fitness. Copyright © 2016 Elsevier Ltd. All rights reserved.
Climate change and our environment: the effect on respiratory and allergic disease.
Barne, Charles; Alexis, Neil E; Bernstein, Jonathan A; Cohn, John R; Demain, Jeffrey G; Horner, Elliot; Levetin, Estelle; Nei, Andre; Phipatanakul, Wanda
2013-03-01
Climate change is a constant and ongoing process. It is postulated that human activities have reached a point at which we are producing global climate change. It provides suggestions to help the allergist/environmental physician integrate recommendations about improvements in outdoor and indoor air quality and the likely response to predicted alterations in the earth's environment into his or her patient's treatment plan. It incorporates references retrieved from Pub Med searches for topics, including:climate change, global warming, global climate change, greenhouse gasses, air pollution, particulates, black carbon, soot and sea level, as well as references contributed by the individual authors. Many changes that affect respiratory disease are anticipated.Examples of responses to climate change include energy reduction retrofits in homes that could potentially affect exposure to allergens and irritants, more hot sunny days that increase ozone-related difficulties, and rises in sea level or altered rainfall patterns that increase exposure to damp indoor environments.Climate changes can also affect ecosystems, manifested as the appearance of stinging and biting arthropods in new areas.Higher ambient carbon dioxide concentrations, warmer temperatures, and changes in floristic zones could potentially increase exposure to ragweed and other outdoor allergens,whereas green practices such as composting can increase allergen and irritant exposure. Finally, increased energy costs may resultin urban crowding and human source pollution, leading to changes in patterns of infectious respiratory illnesses. Improved governmental controls on airborne pollutants could lead to cleaner air and reduced respiratory diseases but will meet strong opposition because of their effect on business productivity. The allergy community must therefore adapt, as physician and research scientists always have, by anticipating the needs of patients and by adopting practices and research methods to meet changing environmental conditions.
Fernandez, Gina M.; Lew, Brandon J.; Vedder, Lindsey C.; Savage, Lisa M
2017-01-01
Chronic intermittent exposure to ethanol (EtOH; CIE) that produces binge-like levels of intoxication has been associated with age-dependent deficits in cognitive functioning. Male Sprague-Dawley rats were exposed to CIE (5 g/kg, 25% EtOH, 13 intragastric gavages) beginning at three ages: early adolescence (postnatal day [PD] 28), mid-adolescence (PD35) and adulthood (PD72). In experiment 1, rats were behaviorally tested following CIE. Spatial memory was not affected by CIE, but adult CIE rats were impaired at acquiring a non-spatial discrimination task and subsequent reversal tasks. Rats exposed to CIE during early or mid-adolescence were impaired on the first reversal, demonstrating transient impairment in behavioral flexibility. Blood EtOH concentrations negatively correlated with performance on reversal tasks. Experiment 2 examined changes in brain derived neurotrophic factor (BNDF) levels within the frontal cortex (FC) and hippocampus (HPC) at four time points: during intoxication, 24-hrs after the final EtOH exposure (acute abstinence), 3-weeks following abstinence (recovery) and after behavioral testing. HPC BDNF levels were not affected by CIE at any time point. During intoxication, BDNF was suppressed in the FC, regardless of the age of exposure. However, during acute abstinence, reduced FC BDNF levels persisted in early adolescent CIE rats, whereas adult CIE rats displayed an increase in BDNF levels. Following recovery, neurotrophin levels in all CIE rats recovered. Our results indicate that intermittent binge-like EtOH exposure leads to acute disruptions in FC BDNF levels and long-lasting behavioral deficits. However, the type of cognitive impairment and its duration differ depending on the age of exposure. PMID:28257889
Current research and prospects for health effects of nanoparticles on offspring
NASA Astrophysics Data System (ADS)
Umezawa, Masakazu; Takeda, Ken
2011-10-01
Caution in handling ceramic nanoparticles is required by workers and consumers if they are to be used safely and profitably. The small size of nanoparticles can bestow high reactivity and unique translocational properties. Studies have shown that exposure to some types of nanoparticles affects the respiratory, cardiovascular and central nervous systems and various organs. When pregnant mice were exposed to nanoparticles, various organs of offspring are also affected. Our recent studies showed that prenatal exposure to nanoparticles (carbon black and titanium dioxide) causes long-term adverse effects on the reproductive, respiratory and central nervous systems of offspring. The effects of nanoparticles on fetuses and children and the possibility of them leading to the onset of diseases in adulthood are of concern. Thus, it is important to research the risk of unintentional exposure to nanoparticles, including ceramic nanoparticles, from the environment and to attempt to identify methods to protect against their toxicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slotkin, T.A.; Navarro, H.A.; McCook, E.C.
1990-01-01
Gestational exposure to nicotine has been shown to affect development of noradrenergic activity in both the central and peripheral nervous systems. In the current study, pregnant rats received nicotine infusions of 6 mg/kg/day throughout gestation, administered by osmotic minipump implants. After birth, offspring of the nicotine-infused dams exhibited marked increases in basal adenylate cyclase activity in membranes prepared from kidney and heart, as well as supersensitivity to stimulation by either a {beta}-adrenergic agonist, isoproterenol, or by forskolin. The altered responses were not accompanied by up-regulation of {beta}-adrenergic receptors: in fact, ({sup 125}I)pindolol binding was significantly decreased in the nicotine group.more » These results indicate that fetal nicotine exposure affects enzymes involved in membrane receptor signal transduction, leading to altered responsiveness independently of changes at the receptor level.« less
Do scientific theories affect men's evaluations of sex crimes?
Dar-Nimrod, Ilan; Heine, Steven J; Cheung, Benjamin Y; Schaller, Mark
2011-01-01
Evolutionary psychology accounts of gender differences in sexual behaviors in general and men's sexual aggression, in particular, has been criticized for legitimizing males' sexual misconduct. To empirically assess such critiques, two studies examined how men's judgments of male sex crimes (solicitation of sex from a prostitute; rape) are influenced by exposure to (a) evolutionary psychological theories and (b) social-constructivist theories. Across two studies, a consistent pattern emerged compared with a control condition (a) exposure to evolutionary psychology theories had no observable impact on male judgments of men's criminal sexual behavior, whereas (b) exposure to social-constructivist theories did affect judgments, leading men to evaluate sex crimes more harshly. Additional results (from Study 2) indicate that this effect is mediated by perceptions of male control over sexual urges. These results have implications for journalists, educators, and scientists. Aggr. Behav. 37:440-449, 2011. © 2011 Wiley-Liss, Inc. © 2011 Wiley-Liss, Inc.
Do scientific theories affect men’s evaluations of sex crimes?
DAR-NIMROD, ILAN; HEINE, STEVEN J.; CHEUNG, BENJAMIN Y.; SCHALLER, MARK
2012-01-01
Evolutionary Psychology accounts of gender differences in sexual behaviors in general and men’s sexual aggression in particular, have been criticized for legitimizing males’ sexual misconduct. To empirically assess such critiques, two studies examined how men’s judgments of male sex crimes (solicitation of sex from a prostitute; rape) are influenced by exposure to (a) evolutionary psychological theories, and (b) social-constructivist theories. Across two studies a consistent pattern emerged: compared to a control condition, (a) exposure to evolutionary psychology theories had no observable impact on male judgments of men’s criminal sexual behavior, whereas (b) exposure to social-constructivist theories did affect judgments, leading men to evaluate sex crimes more harshly. Additional results (from Study 2) indicate that this effect is mediated by perceptions of male control over sexual urges. These results have implications, for journalists, educators, and scientists. PMID:21678431
Singh, G; Singh, V; Wang, Zi-Xuan; Voisin, G; Lefebvre, F; Navenot, J-M; Evans, B; Verma, M; Anderson, D W; Schneider, J S
2018-06-15
Developmental lead (Pb) exposure results in persistent cognitive/behavioral impairments as well as an elevated risk for developing a variety of diseases in later life. Environmental exposures during development can result in a variety of epigenetic changes, including alterations in DNA methylation, that can influence gene expression patterns and affect the function and development of the nervous system. The present promoter-based methylation microarray profiling study explored the extent to which developmental Pb exposure may modify the methylome of a brain region, hippocampus, known to be sensitive to the effects of Pb exposure. Male and female Long Evans rats were exposed to 0 ppm, 150 ppm, 375 ppm, or 750 ppm Pb through perinatal exposures (gestation through lactation), early postnatal exposures (birth through weaning), or long-term postnatal exposures (birth through postnatal day 55). Results showed a significant contribution of sex to the hippocampal methylome and effects of Pb exposure level, with non-linear dose response effects on methylation. Surprisingly, the developmental period of exposure contributed only a small amount of variance to the overall data and gene ontology (GO) analysis revealed the largest number of overrepresented GO terms in the groups with the lowest level of exposure. The highest number of significant differentially methylated regions was found in females exposed to Pb at the lowest exposure level. Our data reinforce the significant effect that low level Pb exposure may have on gene-specific DNA methylation patterns in brain and that this occurs in a sex-dependent manner. Copyright © 2018 Elsevier B.V. All rights reserved.
Huang, JuFang; Huang, Kai; Shang, Lei; Wang, Hui; Zhang, Mengqi; Fan, Chun-Ling; Chen, Dan; Yan, Xiaoxin; Xiong, Kun
2012-07-19
Chronic lead (Pb) poisoning remains an environmental risk especially for the pediatric population, and it may affect brain development. Immature neurons expressing doublecortin (DCX+) exist around cortical layer II in various mammals, including adult guinea pigs and humans. Using young adult guinea pigs as an experimental model, the present study explored if chronic Pb exposure affects cortical DCX + immature neurons and those around the subventricular and subgranular zones (SVZ, SGZ). Two month-old guinea pigs were treated with 0.2% lead acetate in drinking water for 2, 4 and 6 months. Blood Pb levels in these animals reached 10.27 ± 0.62, 16.25 ± 0.78 and 19.03 ± 0.86 μg/dL at the above time points, respectively, relative to ~3 μg/dL in vehicle controls. The density of DCX + neurons was significantly reduced around cortical layer II, SVZ and SGZ in Pb-treated animals surviving 4 and 6 months relative to controls. Bromodeoxyuridine (BrdU) pulse-chasing studies failed to find cellular colocalization of this DNA synthesis indicator in DCX + cells around layer II in Pb-treated and control animals. These cortical immature neurons were not found to coexist with active caspase-3 or Fluoro-Jade C labeling. Chronic Pb exposure can lead to significant reduction in the number of the immature neurons around cortical layer II and in the conventional neurogenic sites in young adult guinea pigs. No direct evidence could be identified to link the reduced cortical DCX expression with alteration in local neurogenesis or neuronal death.
Take, Toshio; Sato, Kaori; Kiuchi, Katsunori; Nakazawa, Yasuo
2007-11-20
A variety of radiation hazards resulting from interventional radiology (IVR) have been reported in recent years. Particularly affected are the skin and the crystalline lens, with their high radiation sensitivity. During neurological interventions, the radiological technologist should consider decreasing radiation exposure. We found exposure projections where the exposure dose became a radiation hazard for the crystalline lens, and examined an efficient method of cover for the exposure projections used for neurological interventions. The exposure projection for maximum crystalline lens radiation exposure was a lateral projection. In the crystalline lens the maximum exposure to radiation was on the X-ray tube side. The method of defense adopted was that of installing a lead plate of the appropriate shape on the surface of the X-ray tube collimator. In other exposure projections, this cover did not become a redundant shadow. With the cover that was created, the X-ray side crystalline lens lateral projection could be defended effectively.
Chemical exposures in the workplace: effect on breast cancer risk among women.
Snedeker, Suzanne M
2006-06-01
Occupational health nurses need to be aware of the current science on breast cancer risks in the workplace because they are risk communicators for employees and their families. Occupational health nurses can serve as advocates for necessary research ultimately leading to risk reduction and prevention strategies in the workplace. Current research suggests exposure to organic solvents, metals, acid mists, sterilizing agents (ethylene oxide), some pesticides, light at night (shift work), and tobacco smoke increases breast cancer risk among women in occupational settings. Animal cancer bioassays conducted by the National Toxicology Program indicate more than 40 chemicals can induce mammary tumors, and most of these are still in production. A variety of occupations worldwide, including health care providers and metal, textile, dye, rubber, and plastic manufacturing workers, have been identified as having some evidence of higher breast cancer risk. Although some chemical exposures are suspected to affect breast cancer risk, estimates of or actual exposures to these chemicals in the workplace often have not been determined. Research needed to better identify breast cancer risks in occupational settings includes monitoring breast cancer incidence in occupations with exposures to suspected carcinogens, characterizing chemical exposures by job type and task, determining whether potential gender differences affect chemical exposures, and using molecular approaches to identify gene-environment interactions.
European consensus statement on leptospirosis in dogs and cats
USDA-ARS?s Scientific Manuscript database
Leptospirosis is a zoonotic disease of worldwide distribution affecting most mammalian species. Clinical leptospirosis is common in dogs but seems to be rare in cats. Both dogs and cats however, can shed leptospires in the urine. This is problematic as it can lead to exposure of humans. The control ...
Bordner, Kelly; Deak, Terrence
2015-09-01
Despite considerable knowledge that prenatal ethanol exposure can lead to devastating effects on the developing fetus, alcohol consumption by pregnant women remains strikingly prevalent. Both clinical and basic research has suggested that, in addition to possible physical, behavioral, and cognitive deficits, gestational exposure to alcohol may lead to an increased risk for the development of later alcohol-related use and abuse disorders. The current work sought to characterize alterations in endogenous opioid signaling peptides and gene expression produced by ethanol exposure during the last days of gestation. Experimental subjects were 4-, 8-, and 12-day old infant rats obtained from pregnant females that were given daily intubations of 0, 1, or 2g/kg ethanol during the last few days of gestation (GDs 17-20). Using real-time RT-PCR, western blotting analysis, and enzyme immunoassays, we examined mRNA and protein for three opioid receptors and ligands in the nucleus accumbens, ventral tegmental area, and hypothalamus. Three main trends emerged - (1) mRNA for the majority of factors was found to upregulate across each of the three postnatal ages assessed, indicative of escalating ontogenetic expression of opioid-related genes; (2) prenatal ethanol significantly reduced many opioid peptides, suggesting a possible mechanism by which prenatal exposure can affect future responsiveness towards ethanol; and (3) the nucleus accumbens emerged as a key site for ethanol-dependent effects, suggesting a potential target for additional assessment and intervention towards understanding the ethanol's ability to program the developing brain. We provide a global assessment of relatively long-term changes in both opioid gene expression and protein following exposure to only moderate amounts of ethanol during a relatively short window in the prenatal period. These results suggest that, while continuing to undergo ontogenetic changes, the infant brain is sensitive to prenatal ethanol exposure and that such exposure may lead to relatively long-lasting changes in the endogenous opioid system within the reward circuitry. These data indicate a potential mechanism and target for additional assessments of ethanol's ability to program the brain, affecting later responsiveness towards the drug. Copyright © 2015 Elsevier Inc. All rights reserved.
Xenopus laevis oocyte maturation is affected by metal chlorides.
Marin, Matthieu; Slaby, Sylvain; Marchand, Guillaume; Demuynck, Sylvain; Friscourt, Noémie; Gelaude, Armance; Lemière, Sébastien; Bodart, Jean-François
2015-08-01
Few studies have been conducted using Xenopus laevis germ cells as oocytes, though these cells offer many advantages allowing both electrophysiological studies and morphological examination. Our aim was to investigate the effects of metal (cadmium, lead, cobalt and zinc) exposures using cell biology approaches. First, cell survival was evaluated with both phenotypical and electrophysiological approaches. Secondly, the effect of metals on oocyte maturation was assessed with morphological observations and electrophysiological recordings. From survival experiments, our results showed that metal chlorides did not affect cell morphology but strongly depolarized X. laevis oocyte resting potential. In addition, cadmium chloride was able to inhibit progesterone-induced oocyte maturation. By contrast, zinc, but also to a lesser extent cadmium, cobalt and lead, were able to enhance spontaneous oocyte maturation in the absence of progesterone stimulation. Finally, electrophysiological recordings revealed that some metal chlorides (lead, cadmium) exposures could disturb calcium signaling in X. laevis oocyte by modifying calcium-activated chloride currents. Our results demonstrated the high sensitivity of X. laevis oocytes toward exogenous metals such as lead and cadmium. In addition, the cellular events recorded might have a predictive value of effects occurring later on the ability of oocytes to be fertilized. Together, these results suggest a potential use of this cellular lab model as a tool for ecotoxicological assessment of contaminated fresh waters. Copyright © 2015 Elsevier Ltd. All rights reserved.
Prior cocaine exposure disrupts extinction of fear conditioning
Burke, Kathryn A.; Franz, Theresa M.; Gugsa, Nishan; Schoenbaum, Geoffrey
2008-01-01
Psychostimulant exposure has been shown to cause molecular and cellular changes in prefrontal cortex. It has been hypothesized that these drug-induced changes might affect the operation of prefrontal-limbic circuits, disrupting their normal role in controlling behavior and thereby leading to compulsive drug-seeking. To test this hypothesis, we tested cocaine-treated rats in a fear conditioning, inflation, and extinction task, known to depend on medial prefrontal cortex and amygdala. Cocaine-treated rats conditioned and inflated similar to saline controls but displayed slower extinction learning. These results support the hypothesis that control processes in the medial prefrontal cortex are impaired by cocaine exposure. PMID:16847305
Prior cocaine exposure disrupts extinction of fear conditioning.
Burke, Kathryn A; Franz, Theresa M; Gugsa, Nishan; Schoenbaum, Geoffrey
2006-01-01
Psychostimulant exposure has been shown to cause molecular and cellular changes in prefrontal cortex. It has been hypothesized that these drug-induced changes might affect the operation of prefrontal-limbic circuits, disrupting their normal role in controlling behavior and thereby leading to compulsive drug-seeking. To test this hypothesis, we tested cocaine-treated rats in a fear conditioning, inflation, and extinction task, known to depend on medial prefrontal cortex and amygdala. Cocaine-treated rats conditioned and inflated similar to saline controls but displayed slower extinction learning. These results support the hypothesis that control processes in the medial prefrontal cortex are impaired by cocaine exposure.
Haider, Saida; Saleem, Sadia; Tabassum, Saiqa; Khaliq, Saima; Shamim, Saima; Batool, Zehra; Parveen, Tahira; Inam, Qurat-ul-ain; Haleem, Darakhshan J
2013-03-01
Lead toxicity is known to induce a broad range of physiological, biochemical and behavioral dysfunctions that may result in adverse effects on several organs, including the central nervous system. Long-term exposure to low levels of lead (Pb(2+)) has been shown to produce behavioral deficits in rodents and humans by affecting hypothalamic-pituitary-adrenal (HPA) axis. These deficits are thought to be associated with altered brain monoamine neurotransmission and due to changes in glucocorticoids levels. This study was designed to investigate the effects of Pb(2+)exposure on growth rate, locomotor activity, anxiety, depression, plasma corticosterone and brain serotonin (5-HT) levels in rats. Rats were exposed to lead in drinking water (500 ppm; lead acetate) for 5 weeks. The assessment of depression was done using the forced swimming test (FST). Estimation of brain 5-HT was determined by high-performance liquid chromatography with electrochemical detection. Plasma corticosterone was determined by spectrofluorimetric method. The present study showed that long term exposure to Pb(2+) significantly decreased the food intake followed by the decrease in growth rate in Pb(2+)exposed rats as compared to control group. No significant changes in open field activity were observed following Pb(2+)exposure while significant increase in anxiogenic effect was observed. Increased plasma corticosterone and decreased 5-HT levels were exhibited by Pb(2+)exposed rats as compared to controls. A significant increase in depressive like symptoms was exhibited by Pb(2+)exposed rats as compared to control rats. The results are discussed in the context of Pb(2+) inducing a stress-like response in rats leading to changes in plasma corticosterone and brain 5-HT levels via altering tryptophan pyrrolase activity.
Lead intoxicated children in Kabwe, Zambia.
Bose-O'Reilly, Stephan; Yabe, John; Makumba, Joseph; Schutzmeier, Paul; Ericson, Bret; Caravanos, Jack
2017-10-28
Kabwe is a lead contaminated mining town in Zambia. Kabwe has extensive lead contaminated soil and children in Kabwe ingest and inhale high quantities of this toxic dust. The aim of this paper is to analyze the health impact of this exposure for children. Health data from three existing studies were re-analyzed. Over 95% of children living in the most affected townships had high blood lead levels (BLLs) > 10µg/dL. Approximately 50% of those children had BLLs ≥ 45µg/dL. The existing data clearly establishes the presence of a severe environmental health crisis in Kabwe which warrants immediate attention. Copyright © 2017 Elsevier Inc. All rights reserved.
Gravity as a factor in the animal environment.
NASA Technical Reports Server (NTRS)
Smith, A. H.
1972-01-01
Review of current knowledge, research, and research planning on the influence of gravity upon living organisms. Discussed factors affecting the adaptability of animals to increased acceleration fields include age, sex, posture, and body size. Affected functions and aspects reviewed cover growth and mature body size, body composition, maintenance feed requirements, and feed utilization efficiency. It is expected that research involving the exposure of animals to altered gravity states will lead to new biological concepts of very broad importance.
Neurobehavioral performance in adolescents is inversely associated with traffic exposure.
Kicinski, Michal; Vermeir, Griet; Van Larebeke, Nicolas; Den Hond, Elly; Schoeters, Greet; Bruckers, Liesbeth; Sioen, Isabelle; Bijnens, Esmée; Roels, Harry A; Baeyens, Willy; Viaene, Mineke K; Nawrot, Tim S
2015-02-01
On the basis of animal research and epidemiological studies in children and elderly there is a growing concern that traffic exposure may affect the brain. The aim of our study was to investigate the association between traffic exposure and neurobehavioral performance in adolescents. We examined 606 adolescents. To model the exposure, we constructed a traffic exposure factor based on a biomarker of benzene (urinary trans,trans-muconic acid) and the amount of contact with traffic preceding the neurobehavioral examination (using distance-weighted traffic density and time spent in traffic). We used a Bayesian structural equation model to investigate the association between traffic exposure and three neurobehavioral domains: sustained attention, short-term memory, and manual motor speed. A one standard deviation increase in traffic exposure was associated with a 0.26 standard deviation decrease in sustained attention (95% credible interval: -0.02 to -0.51), adjusting for gender, age, smoking, passive smoking, level of education of the mother, socioeconomic status, time of the day, and day of the week. The associations between traffic exposure and the other neurobehavioral domains studied had the same direction but did not reach the level of statistical significance. The results remained consistent in the sensitivity analysis excluding smokers and passive smokers. The inverse association between sustained attention and traffic exposure was independent of the blood lead level. Our study in adolescents supports the recent findings in children and elderly suggesting that traffic exposure adversely affects the neurobehavioral function. Copyright © 2014 Elsevier Ltd. All rights reserved.
Plumlee, Geoffrey S.; Morman, Suzette A.; Ziegler, Thomas L.
2006-01-01
A broad spectrum of earth materials have been linked to, blamed for, and/or debated as sources for disease. In some cases, the links are clear. For example, excessive exposures to mineral dusts have long been recognized for their role in diseases such as: asbestosis, mesothelioma, and lung cancers (asbestos); silicosis and lung cancer (silica dusts); and coal-workers pneumoconiosis (coal dust). Lead poisoning, particularly in toddlers and young children, has been conclusively linked to involuntary ingestion of soils or other materials contaminated with lead-rich paint particles, leaded gasoline combustion byproducts, and some types of lead-rich mine wastes or smelter particulates. Waters with naturally elevated arsenic contents are common in many regions of the globe, and consumption of these waters has been documented as the source of arsenic-related diseases affecting thousands of people in south Asia and other regions. Exposure to dusts or soils containing pathogens has been documented as the cause of regionally common diseases such as valley fever (coccidioidomycosis) and much rarer diseases such as anthrax. Links between many other earth materials and specific diseases, although suspected, are less clear or are debated. For example, it has been suggested that geographic clusters of diseases such as leukemia are related to exposures to waters or atmospheric particulates containing organic or metal contaminants; however, for many clusters the exact causal relationships between disease and environmental exposure are difficult to prove conclusively. Even for many diseases in which the causal relationship is clear, such as in asbestosis and mesothelioma triggered by asbestos exposure, the minimum exposures needed to trigger disease, the influence of genetic factors, and the exact mechanisms of toxicity are still incompletely understood and are the focus of considerable debate within the public health community. Hence, understanding the health effects resulting from occupational and environmental exposures to a wide variety of earth materials remains a very active and fruitful area of research.
Boone, M.D.; Bridges, C.M.; Rothermel, B.B.
2001-01-01
Our objective was to determine how green frogs (Rana clamitans) are affected by multiple exposures to a sublethal level of the carbamate insecticide, carbaryl, in outdoor ponds. Tadpoles were added to 1,000-1 ponds at a low or high density which were exposed to carbaryl 0, 1, 2, or 3 times. Length of the larval period, mass, developmental stage, tadpole survival, and proportion metamorphosed were used to determine treatment effects. The frequency of dosing affected the proportion of green frogs that reached metamorphosis and the developmental stage of tadpoles. Generally, exposure to carbaryl increased rates of metamorphosis and development. The effect of the frequency of carbaryl exposure on development varied with the density treatment; the majority of metamorphs and the most developed tadpoles came from high-density ponds exposed to carbaryl 3 times. This interaction suggests that exposure to carbaryl later in the larval period stimulated metamorphosis, directly or indirectly, under high-density conditions. Our study indicates that exposure to a contaminant can lead to early initiation of metamorphosis and that natural biotic factors can mediate the effects of a contaminant in the environment.
The mammalian respiratory system and critical windows of exposure for children's health.
Pinkerton, K E; Joad, J P
2000-01-01
The respiratory system is a complex organ system composed of multiple cell types involved in a variety of functions. The development of the respiratory system occurs from embryogenesis to adult life, passing through several distinct stages of maturation and growth. We review embryonic, fetal, and postnatal phases of lung development. We also discuss branching morphogenesis and cellular differentiation of the respiratory system, as well as the postnatal development of xenobiotic metabolizing systems within the lungs. Exposure of the respiratory system to a wide range of chemicals and environmental toxicants during perinatal life has the potential to significantly affect the maturation, growth, and function of this organ system. Although the potential targets for exposure to toxic factors are currently not known, they are likely to affect critical molecular signals expressed during distinct stages of lung development. The effects of exposure to environmental tobacco smoke during critical windows of perinatal growth are provided as an example leading to altered cellular and physiological function of the lungs. An understanding of critical windows of exposure of the respiratory system on children's health requires consideration that lung development is a multistep process and cannot be based on studies in adults. Images Figure 1 Figure 4 PMID:10852845
Influence of electromagnetic pulse on the offspring sex ratio of male BALB/c mice.
Li, Jin-Hui; Jiang, Da-Peng; Wang, Ya-Feng; Yan, Jia-Jia; Guo, Qi-Yan; Miao, Xia; Lang, Hai-Yang; Xu, Sheng-Long; Liu, Jun-Ye; Guo, Guo-Zhen
2017-09-01
Public concern is growing about the exposure to electromagnetic fields (EMF) and its effect on male reproductive health. Detrimental effect of EMF exposure on sex hormones, reproductive performance and sex-ratio was reported. The present study was designed to clarify whether paternal exposure to electromagnetic pulse (EMP) affects offspring sex ratio in mice. 50 male BALB/c mice aged 5-6 weeks were exposed to EMP daily for 2 weeks before mated with non-exposed females at 0d, 7d, 14d, 21d and 28d after exposure. Sex hormones including total testosterone, LH, FSH, and GnRH were detected using radioimmunoassay. The sex ratio was examined by PCR and agarose gel electrophoresis. The results of D0, D21 and D28 showed significant increases compared with sham-exposed groups. The serum testosterone increased significantly in D0, D14, D21, and D28 compared with sham-exposed groups (p<0.05). Overall, this study suggested that EMP exposure may lead to the disturbance of reproductive hormone levels and affect the offspring sex ratio. Copyright © 2017. Published by Elsevier B.V.
de Barros Mendes Lopes, Thais; Groth, Espen E; Veras, Mariana; Furuya, Tatiane K; de Souza Xavier Costa, Natalia; Ribeiro Júnior, Gabriel; Lopes, Fernanda Degobbi; de Almeida, Francine M; Cardoso, Wellington V; Saldiva, Paulo Hilario Nascimento; Chammas, Roger; Mauad, Thais
2018-06-04
Gestational exposure to air pollution is associated with negative outcomes in newborns and children. In a previous study, we demonstrated a synergistic negative effect of pre- and postnatal exposure to PM 2.5 on lung development in mice. However, the means by which air pollution affects development of the lung have not yet been identified. In this study, we exposed pregnant BALB/c mice and their offspring to concentrated urban PM 2.5 (from São Paulo, Brazil; target dose 600 μg/m 3 for 1 h daily). Exposure was started on embryonic day 5.5 (E5.5, time of placental implantation). Lung tissue of fetuses and offspring was submitted to stereological and transcriptomic analyses at E14.5 (pseudoglandular stage of lung development), E18.5 (saccular stage) and P40 (postnatal day 40, alveolarized lung). Additionally, lung function and cellularity of bronchoalveolar lavage (BAL) fluid were studied in offspring animals at P40. Compared to control animals that were exposed to filtered air throughout gestation and postnatal life, PM-exposed mice exhibited higher lung elastance and a lower alveolar number at P40 whilst the total lung volume and cellularity of BAL fluid were not affected. Glandular and saccular structures of fetal lungs were not altered upon gestational exposure; transcriptomic signatures, however, showed changes related to DNA damage and its regulation, inflammation and regulation of cell proliferation. A differential expression was validated at E14.5 for the candidates Sox8, Angptl4 and Gas1. Our data substantiate the in utero biomolecular effect of gestational exposure to air pollution and provide first-time stereological evidence that pre- and early life-postnatal exposure compromise lung development, leading to a reduced number of alveoli and an impairment of lung function in the adult mouse. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lin, Wan-Ting; Chen, Wun-Ling; Cheng, Wei-Chih; Chang, Hui-Chuan; Tsai, Shih-Wei
2017-07-01
Food detergents are commonly used in households. The main components of detergents include surfactants and water. It has been found that certain compounds, which may cause health concerns, appear in food detergents, such as alkylphenols, arsenic, and lead. After applying food detergents is when people may be exposed to various levels of these chemicals when there are residues. In this study, the Taguchi experimental design was performed to determine the possible factors that might affect the residual characteristics of food detergent on dishware, fruits, and vegetables. The results showed that the variety of detergent was found to be the most significant factor affecting the residue amounts of arsenic (62.9%) and lead (71.6%) on fruits and vegetables, whereas the concentration of detergent used affected the amount of lead residue only (10.5%). On the other hand, dishware material, the concentration of analytes, immersion time, and type of surfactant contributed to arsenic residues on dishware, whereas technical nonylphenol isomer residues on dishware increased as the concentration of spiked analyte increased. In addition, the occurrence of 1,4-dioxane, a possible human carcinogen, in household food detergents in Taiwan was also determined in this research by solid-phase microextraction and GC-MS. Among the 80 detergent samples, 71 contained different concentrations ranges of 1,4-dioxane, from 0.03 to ~3.73 µg/g. In the exposure assessment, it was estimated that the maximum amounts of 1,4-dioxane in contact with the skin from the use of household food detergent in Taiwan was 0.015 µg/kg/day.
Oral lead bullet fragment exposure in northern bobwhite (Colinus virginianus).
Kerr, Richard; Holladay, Jeremy; Holladay, Steven; Tannenbaum, Lawrence; Selcer, Barbara; Meldrum, Blair; Williams, Susan; Jarrett, Timothy; Gogal, Robert
2011-11-01
Lead (Pb) is a worldwide environmental contaminant known to adversely affect multiple organ systems in both mammalian and avian species. In birds, a common route of exposure is via oral ingestion of lead particles. Data are currently lacking for the retention and clearance of Pb bullet fragments in gastrointestinal (GI) tract of birds while linking toxicity with blood Pb levels. In the present study, northern bobwhite quail fed a seed-based diet were orally gavaged with Pb bullet fragments (zero, one or five fragments/bird) and evaluated for rate of fragment clearance, and changes in peripheral blood, renal, immune, and gastrointestinal parameters. Based on radiographs, the majority of the birds cleared or absorbed the fragments by seven days, with the exception of one five-fragment bird which took between 7 and 14 days. Blood Pb levels were higher in males than females, which may be related to egg production in females. In males but not females, feed consumption, body weight gain, packed cell volume (PCV), plasma protein concentration, and δ-aminolevulinic acid dehydratase (δ-ALAD) activity were all adversely affected by five Pb fragments. Birds of both sexes that received a single Pb fragment displayed depressed δ-ALAD, suggesting altered hematologic function, while all birds dosed with five bullet fragments exhibited greater morbidity.
ERIC Educational Resources Information Center
Iles, Irina A.; Seate, Anita Atwell; Waks, Leah
2016-01-01
Purpose: Previous studies have documented that exposure to stereotypical information about certain social groups leads to unfavorable perceptions and feelings toward that group. Integrating insights from the mental illness stigma and the social identity perspective literatures, the purpose of this paper is to explore the effects of eating disorder…
ERIC Educational Resources Information Center
Bull, Leah E.; Oliver, Chris; Callaghan, Eleanor; Woodcock, Kate A.
2015-01-01
Several neurodevelopmental disorders are associated with preference for routine and challenging behavior following changes to routines. We examine individuals with Prader-Willi syndrome, who show elevated levels of this behavior, to better understand how previous experience of a routine can affect challenging behavior elicited by disruption to…
Assessment of the cerebellar neurotoxic effects of nicotine in prenatal alcohol exposure in rats.
Bhattacharya, Dwipayan; Majrashi, Mohammed; Ramesh, Sindhu; Govindarajulu, Manoj; Bloemer, Jenna; Fujihashi, Ayaka; Crump, Bailee-Ryan; Hightower, Harrison; Bhattacharya, Subhrajit; Moore, Timothy; Suppiramaniam, Vishnu; Dhanasekaran, Muralikrishnan
2018-02-01
The adverse effects of prenatal nicotine and alcohol exposure on human reproductive outcomes are a major scientific and public health concern. In the United States, substantial percentage of women (20-25%) of childbearing age currently smoke cigarettes and consume alcohol, and only a small percentage of these individuals quit after learning of their pregnancy. However, there are very few scientific reports on the effect of nicotine in prenatal alcohol exposure on the cerebellum of the offspring. Therefore, this study was conducted to investigate the cerebellar neurotoxic effects of nicotine in a rodent model of Fetal Alcohol Spectrum Disorder (FASD). In this study, we evaluated the behavioral changes, biochemical markers of oxidative stress and apoptosis, mitochondrial functions and the molecular mechanisms associated with nicotine in prenatal alcohol exposure on the cerebellum. Prenatal nicotine and alcohol exposure induced oxidative stress, did not affect the mitochondrial functions, increased the monoamine oxidase activity, increased caspase expression and decreased ILK, PSD-95 and GLUR1 expression without affecting the GSK-3β. Thus, our current study of prenatal alcohol and nicotine exposure on cerebellar neurotoxicity may lead to new scientific perceptions and novel and suitable therapeutic actions in the future. Copyright © 2017. Published by Elsevier Inc.
Prion pathogenesis and secondary lymphoid organs (SLO)
Mabbott, Neil A.
2012-01-01
Prion diseases are subacute neurodegenerative diseases that affect humans and a range of domestic and free-ranging animal species. These diseases are characterized by the accumulation of PrPSc, an abnormally folded isoform of the cellular prion protein (PrPC), in affected tissues. The pathology during prion disease appears to occur almost exclusively within the central nervous system. The extensive neurodegeneration which occurs ultimately leads to the death of the host. An intriguing feature of the prion diseases, when compared with other protein-misfolding diseases, is their transmissibility. Following peripheral exposure, some prion diseases accumulate to high levels within lymphoid tissues. The replication of prions within lymphoid tissue has been shown to be important for the efficient spread of disease to the brain. This article describes recent progress in our understanding of the cellular mechanisms that influence the propagation of prions from peripheral sites of exposure (such as the lumen of the intestine) to the brain. A thorough understanding of these events will lead to the identification of important targets for therapeutic intervention, or alternatively, reveal additional processes that influence disease susceptibility to peripherally-acquired prion diseases. PMID:22895090
Telomere length in children environmentally exposed to low-to-moderate levels of lead
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawlas, Natalia, E-mail: n-pawlas@wp.pl; Płachetka, Anna; Kozłowska, Agnieszka
Shorter relative telomere length in peripheral blood is a risk marker for some types of cancers and cardiovascular diseases. Several environmental hazards appear to shorten telomeres, and this shortening may predispose individuals to disease. The aim of the present cross-sectional study was to assess the effect of environmental exposure to lead on relative telomere length (rTL) in children. A cohort of 99 8-year-old children was enrolled from 2007–2010. Blood lead concentrations (B-Pb) were measured by graphite furnace atomic absorption spectrometry, and blood rTL was measured by quantitative PCR. The geometric mean of B-Pb was 3.28 μg/dl (range: 0.90–14.2), and themore » geometric mean of rTL was 1.08 (range: 0.49–2.09). B-Pb was significantly inversely associated with rTL in the children (r{sub S} = − 0.25, p = 0.013; in further analyses both log-transformed-univariate regression analysis β = − 0.13, p = 0.026, and R{sup 2}adj 4%; and β = − 0.12, p = 0.056 when adjusting for mothers' smoking during pregnancy, Apgar score, mother's and father's ages at delivery, sex and mother's education, R{sup 2}adj 12%, p = 0.011). The effect of lead remained significant in children without prenatal tobacco exposure (N = 87, r{sub S} = − 0.24, p = 0.024; in further analyses, β = − 0.13, p = 0.029, and R{sup 2}adj 4%). rTL was not affected by sex, the concentrations of other elements in the blood (i.e., cadmium and selenium concentrations), or oxidative injury parameters (total antioxidant status, 8-hydroxydeoxyguanosine and thiobarbituric acid-reactive substances). Lead exposure in childhood appears to be associated with shorter telomeres, which might contribute to diseases, such as cardiovascular disease. The inverse association between blood lead level and the telomeres in children emphasizes the importance of further reducing lead levels in the environment. - Highlights: • This cross-sectional study analyzes the association between environmental lead exposure and telomere length in children. • Blood lead concentrations were inversely associated with relative telomere length in 8-year-old children. • Environmental lead exposure during childhood might contribute to telomere shortening, and in turn, future risk for disease.« less
An EPA Pilot Study Evaluating Personal, Housing, and ...
EPA pilot studyAddresses how young children’s exposures to various indoor pollutants (both chemical and biological agents) change as a result of building renovation-based interventions, potentially affecting their asthma exacerbation and morbidityProvide additional information on chemical exposures and children’s interactions with their environments to enhance ongoing research in the Green Housing Study’s evaluation of green housing and impacts on childhood asthma Invited presentation to the NC Lead and Healthy Homes Task Force Meeting, Wednesday, February 24, 2016, UNC Institute for the Environment, Chapel Hill, NC
Raap, Thomas; Casasole, Giulia; Pinxten, Rianne; Eens, Marcel
2016-11-01
Light pollution or artificial light at night (ALAN) is increasingly recognised to be an important anthropogenic environmental pressure on wildlife, affecting animal behaviour and physiology. Early life experiences are extremely important for the development, physiological status and health of organisms, and as such, early exposure to artificial light may have detrimental consequences for organism fitness. We experimentally manipulated the light environment of free-living great tit nestlings (Parus major), an important model species in evolutionary and environmental research. Haptoglobin (Hp) and nitric oxide (NOx), as important indicators of immunity, health, and physiological condition, were quantified in nestlings at baseline (13 days after hatching) and after a two night exposure to ALAN. We found that ALAN increased Hp and decreased NOx. ALAN may increase stress and oxidative stress and reduce melatonin which could subsequently lead to increased Hp and decreased NOx. Haptoglobin is part of the immune response and mounting an immune response is costly in energy and resources and, trade-offs are likely to occur with other energetically demanding tasks, such as survival or reproduction. Acute inhibition of NOx may have a cascading effect as it also affects other physiological aspects and may negatively affect immunocompetence. The consequences of the observed effects on Hp and NOx remain to be examined. Our study provides experimental field evidence that ALAN affects nestlings' physiology during development and early life exposure to ALAN could therefore have long lasting effects throughout adulthood. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yabe, John; Nakayama, Shouta M M; Ikenaka, Yoshinori; Yohannes, Yared B; Bortey-Sam, Nesta; Kabalo, Abel Nketani; Ntapisha, John; Mizukawa, Hazuki; Umemura, Takashi; Ishizuka, Mayumi
2018-07-01
Lead (Pb) and cadmium (Cd) are toxic metals that exist ubiquitously in the environment. Children in polluted areas are particularly vulnerable to metal exposure, where clinical signs and symptoms could be nonspecific. Absorbed metals are excreted primarily in urine and reflect exposure from all sources. We analyzed Pb and Cd concentrations in blood, feces and urine of children from polluted townships near a lead-zinc mine in Kabwe, Zambia, to determine concurrent childhood exposure to the metals. Moreover, the study determined the Pb and Cd relationships among urine, feces and blood as well as accessed the potential of urine and fecal analysis for biomonitoring of Pb and Cd exposure in children. Fecal Pb (up to 2252 mg/kg, dry weight) and urine Pb (up to 2914 μg/L) were extremely high. Concentrations of Cd in blood (Cd-B) of up to 7.7 μg/L, fecal (up to 4.49 mg/kg, dry weight) and urine (up to 18.1 μg/L) samples were elevated. metal levels were higher in younger children (0-3 years old) than older children (4-7). Positive correlations were recorded for Pb and Cd among blood, urine and fecal samples whereas negative correlations were recorded with age. These findings indicate children are exposed to both metals at their current home environment. Moreover, urine and feces could be useful for biomonitoring of metals due to their strong relationships with blood levels. There is need to conduct a clinical evaluation of the affected children to fully appreciate the health impact of these metal exposure. Copyright © 2018. Published by Elsevier Ltd.
Wu, Yue; Gu, Jun-Ming; Huang, Yun; Duan, Yan-Ying; Huang, Rui-Xue; Hu, Jian-An
2016-01-01
Long-term airborne lead exposure, even below official occupational limits, has been found to cause lead poisoning at higher frequencies than expected, which suggests that China’s existing occupational exposure limits should be reexamined. A retrospective cohort study was conducted on 1832 smelting workers from 1988 to 2008 in China. These were individuals who entered the plant and came into continuous contact with lead at work for longer than 3 months. The dose-response relationship between occupational cumulative lead exposure and lead poisoning, abnormal blood lead, urinary lead and erythrocyte zinc protoporphyrin (ZPP) were analyzed and the benchmark dose lower bound confidence limits (BMDLs) were calculated. Statistically significant positive correlations were found between cumulative lead dust and lead fumes exposures and workplace seniority, blood lead, urinary lead and ZPP values. A dose-response relationship was observed between cumulative lead dust or lead fumes exposure and lead poisoning (p < 0.01). The BMDLs of the cumulative occupational lead dust and fumes doses were 0.68 mg-year/m3 and 0.30 mg-year/m3 for lead poisoning, respectively. The BMDLs of workplace airborne lead concentrations associated with lead poisoning were 0.02 mg/m3 and 0.01 mg/m3 for occupational exposure lead dust and lead fume, respectively. In conclusion, BMDLs for airborne lead were lower than occupational exposure limits, suggesting that the occupational lead exposure limits need re-examination and adjustment. Occupational cumulative exposure limits (OCELs) should be established to better prevent occupational lead poisoning. PMID:26999177
Wildemann, Tanja M; Siciliano, Steven D; Weber, Lynn P
2016-01-02
Hypertension is considered to be the most important risk factor for the development of cardiovascular diseases. Beside life-style risk factors, exposure to lead and mercury species are increasingly discussed as potential risk factors. Although there are a few previous studies, the underlying mechanism by which exposure to lead and mercury disturb blood pressure regulation is not currently understood. Potential mechanisms are oxidative stress production, kidney damage and activation of the renin-angiotensin system (RAS), all of which can interact to cause dysregulation of blood pressure. Male rats (Wistar) were exposed to lead, inorganic mercury, methylmercury or two mixtures of all three metals for four weeks through the drinking water. The two mixture ratios were based on ratios of known reference values or environmental exposure from the literature. To investigate the potential mechanism of actions, blood pressure was measured after four weeks and compared to plasma nitrotyrosine or reduced/oxidized glutathione levels in liver as markers for oxidative stress. Plasma renin and angiotensin II levels were used as markers for RAS activation. Finally, kidney function and injury were assessed via urinary and plasma creatinine levels, creatinine clearance and urinary kidney-injury molecule (KIM-1). While exposure to lead by itself increased oxidative stress and kidney damage along with blood pressure, inorganic mercury did not affect blood pressure or any end-point examined. Conversely, methylmercury instead increased RAS activation along with blood pressure. Surprisingly, when administered as mixtures, lead no longer increased oxidative stress or altered kidney function. Moreover, the mixture based on an environmental ratio no longer had an effect on blood pressure, while the reference value ratio still retained an increase in blood pressure. Based on our results, the prominent mechanism of action associated with the development of hypertension seems to be oxidative stress and kidney damage for lead, while increased RAS activation links methylmercury to hypertension, but these mechanisms along with hypertension disappear when metals are present in some mixtures. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Early alcohol exposure impairs ocular dominance plasticity throughout the critical period.
Medina, Alexandre E; Ramoa, Ary S
2005-06-09
Animal models of fetal alcohol syndrome (FAS) have revealed an impairment of sensory neocortex plasticity. Here, we examine whether early alcohol exposure leads to a permanent impairment of ocular dominance plasticity (OD) or to an alteration in the timing of the critical period. Ferrets were exposed to alcohol during a brief period of development prior to eye opening and effects of monocular deprivation examined during early, mid and late critical period. Single-unit electrophysiology revealed markedly reduced OD plasticity at every age examined. This finding provides evidence that early alcohol exposure does not affect the timing or duration of the critical period of OD plasticity and suggests an enduring impairment of neural plasticity in FAS.
Journey to the Center of the Fetal Brain: Environmental Exposures and Autophagy.
Lei, Jun; Calvo, Pilar; Vigh, Richard; Burd, Irina
2018-01-01
Fetal brain development is known to be affected by adverse environmental exposures during pregnancy, including infection, inflammation, hypoxia, alcohol, starvation, and toxins. These exposures are thought to alter autophagy activity in the fetal brain, leading to adverse perinatal outcomes, such as cognitive and sensorimotor deficits. This review introduces the physiologic autophagy pathways in the fetal brain. Next, methods to detect and monitor fetal brain autophagy activity are outlined. An additional discussion explores possible mechanisms by which environmental exposures during pregnancy alter fetal brain autophagy activity. In the final section, a correlation of fetal autophagy activity with the observed postnatal phenotype is attempted. Our main purpose is to provide the current understanding or a lack thereof mechanisms on autophagy, underlying the fetal brain injury exposed to environmental insults.
Effect of interfacial species on shear strength of metal-sapphire contacts
NASA Technical Reports Server (NTRS)
Pepper, S. V.
1979-01-01
The interfacial shear strength of the metal-insulator system has been studied by means of the coefficient of static friction of copper, nickel, or gold contacts on sapphire in ultrahigh vacuum. The effect on contact strength of adsorbed oxygen, nitrogen, chlorine, and carbon monoxide on the metal surfaces is reported. It was found that exposures as low as 1 L of O2 on Ni produced observable increases in contact strength, whereas exposures of 3 L of Cl2 lead to a decrease in contact strength. These results imply that submonolayer concentrations of these species at the interface of a thin Ni film on Al2O3 should affect film adhesion similarly. The atomic mechanism by which these surface or interface phases affect interfacial strength is not yet understood.
Koh, Dong-Hee; Locke, Sarah J.; Chen, Yu-Cheng; Purdue, Mark P.; Friesen, Melissa C.
2016-01-01
Background Retrospective exposure assessment of occupational lead exposure in population-based studies requires historical exposure information from many occupations and industries. Methods We reviewed published US exposure monitoring studies to identify lead exposure measurement data. We developed an occupational lead exposure database from the 175 identified papers containing 1,111 sets of lead concentration summary statistics (21% area air, 47% personal air, 32% blood). We also extracted ancillary exposure-related information, including job, industry, task/location, year collected, sampling strategy, control measures in place, and sampling and analytical methods. Results Measurements were published between 1940 and 2010 and represented 27 2-digit standardized industry classification codes. The majority of the measurements were related to lead-based paint work, joining or cutting metal using heat, primary and secondary metal manufacturing, and lead acid battery manufacturing. Conclusions This database can be used in future statistical analyses to characterize differences in lead exposure across time, jobs, and industries. PMID:25968240
Occupational health surveillance strategies for an ethnically diverse Asian employee population.
Sakamoto, M; Vaughan, J; Tobias, B
2001-05-01
1. Implementation of a medical/health surveillance program can prevent the damaging effects of lead toxicity. Lead toxicity may be a result of acute or chronic exposure and can affect the hematopoietic, nervous, renal, and reproductive systems. 2. Minority groups tend to be overrepresented in lead industries. Further, an increase in high lead levels can be compounded by cultural influences. Education must be geared toward the specific employee populations. 3. Successful programs require assistance from all team members--occupational health nurse, safety engineer, industrial hygienist, and environmental engineer. Occupational health nurses play an important role in implementation of medical/health surveillance programs by scheduling regular blood testing, monitoring results, and educating employees.
Stamper, C E; Hoisington, A J; Gomez, O M; Halweg-Edwards, A L; Smith, D G; Bates, K L; Kinney, K A; Postolache, T T; Brenner, L A; Rook, G A W; Lowry, C A
2016-01-01
It is increasingly evident that inflammation is an important determinant of cognitive function and emotional behaviors that are dysregulated in stress-related psychiatric disorders, such as anxiety and affective disorders. Inflammatory responses to physical or psychological stressors are dependent on immunoregulation, which is indicated by a balanced expansion of effector T-cell populations and regulatory T cells. This balance is in part driven by microbial signals. The hygiene or "old friends" hypothesis posits that exposure to immunoregulation-inducing microorganisms is reduced in modern urban societies, leading to an epidemic of inflammatory disease and increased vulnerability to stress-related psychiatric disorders. With the global trend toward urbanization, humans are progressively spending more time in built environments, thereby, experiencing limited exposures to these immunoregulatory "old friends." Here, we evaluate the implications of the global trend toward urbanization, and how this transition may affect human microbial exposures and human behavior. © 2016 Elsevier Inc. All rights reserved.
A decade of changes in radiation protection.
Moulder, J E
1992-04-01
Although radiation protection standards have changed remarkably little over the past decade, there have been changes in our understanding of radiation hazards that may affect the practice of radiation medicine over the next decade. With recognition of indoor radon exposure has come a new focus for public health concerns, because it is now clear that radon rather than medical exposure is the largest controllable source of radiation exposure to the general public. Continued follow-up of irradiated populations has led to an increase in our estimate of the cancer risk for high-dose exposures; this increased risk estimate is, in turn, leading to decreases in radiation exposure limits. Although our concern about the carcinogenic risk for radiation exposure has increased, our concern about genetic consequences has decreased, because no genetic effects have yet been observed in the offspring of atomic bomb survivors. Studies of atomic bomb survivors have also led to a change in the focus of concern over prenatal radiation exposure; the principle risk now appears to be mental retardation rather than childhood cancer.
Claus Henn, Birgit; Ettinger, Adrienne S; Hopkins, Marianne R; Jim, Rebecca; Amarasiriwardena, Chitra; Christiani, David C; Coull, Brent A; Bellinger, David C; Wright, Robert O
2016-08-01
Limited epidemiologic data exist on prenatal arsenic exposure and fetal growth, particularly in the context of co-exposure to other toxic metals. We examined whether prenatal arsenic exposure predicts birth outcomes among a rural U.S. population, while adjusting for exposure to lead and manganese. We collected maternal and umbilical cord blood samples at delivery from 622 mother-infant pairs residing near a mining-related Superfund site in Northeast Oklahoma. Whole blood arsenic, lead, and manganese were measured using inductively coupled plasma mass spectrometry. We modeled associations between arsenic concentrations and birth weight, gestational age, head circumference, and birth weight for gestational age. Median (25th-75th percentile) maternal and umbilical cord blood metal concentrations, respectively, were as follows: arsenic, 1.4 (1.0-2.3) and 2.4 (1.8-3.3) μg/L; lead, 0.6 (0.4-0.9) and 0.4 (0.3-0.6) μg/dL; manganese, 22.7 (18.8-29.3) and 41.7 (32.2-50.4) μg/L. We estimated negative associations between maternal blood arsenic concentrations and birth outcomes. In multivariable regression models adjusted for lead and manganese, an interquartile range increase in maternal blood arsenic was associated with -77.5 g (95% CI: -127.8, -27.3) birth weight, -0.13 weeks (95% CI: -0.27, 0.01) gestation, -0.22 cm (95% CI: -0.42, -0.03) head circumference, and -0.14 (95% CI: -0.24, -0.04) birth weight for gestational age z-score units. Interactions between arsenic concentrations and lead or manganese were not statistically significant. In a population with environmental exposure levels similar to the U.S. general population, maternal blood arsenic was negatively associated with fetal growth. Given the potential for relatively common fetal and early childhood arsenic exposures, our finding that prenatal arsenic can adversely affect birth outcomes is of considerable public health importance. Claus Henn B, Ettinger AS, Hopkins MR, Jim R, Amarasiriwardena C, Christiani DC, Coull BA, Bellinger DC, Wright RO. 2016. Prenatal arsenic exposure and birth outcomes among a population residing near a mining-related Superfund site. Environ Health Perspect 124:1308-1315; http://dx.doi.org/10.1289/ehp.1510070.
Hui, Changye; Guo, Yan; Zhang, Wen; Gao, Chaoxian; Yang, Xueqin; Chen, Yuting; Li, Limei; Huang, Xianqing
2018-04-09
Human exposure to lead mainly occurs by ingestion of contaminated food, water and soil. Blocking lead uptake in the gastrointestinal tract is a novel prevention strategy. Whole-cell biosorbent for lead was constructed with PbrR genetically engineered on the cell surface of Escherichia coli (E. coli), a predominant strain among intestinal microflora, using lipoprotein (Lpp)-OmpA as the anchoring protein. In vitro, the PbrR displayed cells had an enhanced ability for immobilizing toxic lead(II) ions from the external media at both acidic and neutral pH, and exhibited a higher specific adsorption for lead compared to other physiological two valence metal ions. In vivo, the persistence of recombinant E. coli in the murine intestinal tract and the integrity of surface displayed PbrR were confirmed. In addition, oral administration of surface-engineered E. coli was safe in mice, in which the concentrations of physiological metal ions in blood were not affected. More importantly, lead associated with PbrR-displayed E. coli was demonstrated to be less bioavailable in the experimental mouse model with exposure to oral lead. This is reflected by significantly lower blood and femur lead concentrations in PbrR-displayed E. coli groups compared to the control. These results open up the possibility for the removal of toxic metal ions in vivo using engineered microorganisms as adsorbents.
Aoyama, Yuki; Toriumi, Kazuya; Mouri, Akihiro; Hattori, Tomoya; Ueda, Eriko; Shimato, Akane; Sakakibara, Nami; Soh, Yuka; Mamiya, Takayoshi; Nagai, Taku; Kim, Hyoung-Chun; Hiramatsu, Masayuki; Nabeshima, Toshitaka; Yamada, Kiyofumi
2016-01-01
Cigarette smoking during pregnancy is associated with various disabilities in the offspring such as attention deficit/hyperactivity disorder, learning disabilities, and persistent anxiety. We have reported that nicotine exposure in female mice during pregnancy, in particular from embryonic day 14 (E14) to postnatal day 0 (P0), induces long-lasting behavioral deficits in offspring. However, the mechanism by which prenatal nicotine exposure (PNE) affects neurodevelopment, resulting in behavioral deficits, has remained unclear. Here, we report that PNE disrupted the proliferation of neuronal progenitors, leading to a decrease in the progenitor pool in the ventricular and subventricular zones. In addition, using a cumulative 5-bromo-2′-deoxyuridine labeling assay, we evaluated the rate of cell cycle progression causing the impairment of neuronal progenitor proliferation, and uncovered anomalous cell cycle kinetics in mice with PNE. Accordingly, the density of glutamatergic neurons in the medial prefrontal cortex (medial PFC) was reduced, implying glutamatergic dysregulation. Mice with PNE exhibited behavioral impairments in attentional function and behavioral flexibility in adulthood, and the deficits were ameliorated by microinjection of D-cycloserine into the PFC. Collectively, our findings suggest that PNE affects the proliferation and maturation of progenitor cells to glutamatergic neuron during neurodevelopment in the medial PFC, which may be associated with cognitive deficits in the offspring. PMID:26105135
Erythrocyte ion channels in regulation of apoptosis.
Lang, Florian; Birka, Christina; Myssina, Svetlana; Lang, Karl S; Lang, Philipp A; Tanneur, Valerie; Duranton, Christophe; Wieder, Thomas; Huber, Stephan M
2004-01-01
Erythrocytes lack mitochondria and nuclei, key organelles in the regulation of apoptosis. Until recently, erythrocytes were thus not considered subject to this type of cell death. However, exposure of erythrocytes to the Ca2+ ionophore ionomycin was shown to induce cell shrinkage, cell membrane blebbing and breakdown of phosphatidylserine asymmetry with subsequent phosphatidylserine exposure at the cell surface, all typical features of apoptosis. Further studies revealed the participation of ion channels in the regulation of erythrocyte "apoptosis." Osmotic shock, oxidative stress and energy depletion all activate a Ca2(+)-permeable non-selective cation channel in the erythrocyte cell membrane. The subsequent increase of Ca2+ concentration stimulates a scramblase leading to breakdown of cell membrane phosphatidylserine asymmetry and activates Ca2+ sensitive K+ (Gardos) channels leading to KCl loss and (further) cell shrinkage. Phosphatidylserine exposure and cell shrinkage are blunted in the nominal absence of extracellular Ca2+, in the presence of the cation channel inhibitors amiloride or ethylisopropylamiloride, at increased extracellular K+ or in the presence of the Gardos channel inhibitors clotrimazole or charybdotoxin. Thus, increase of cytosolic Ca2+ and cellular loss of K+ participate in the triggering of erythrocyte scramblase. Nevertheless, phosphatidylserine exposure is not completely abrogated in the nominal absence of Ca2+, pointing to additional Ca2(+)-independent pathways. One of those is activation of sphingomyelinase with subsequent formation of ceramide which in turn leads to stimulation of erythrocyte scramblase. The exposure of phosphatidylserine at the extracellular face of the cell membrane stimulates phagocytes to engulf the apoptotic erythrocytes. Thus, sustained activation of the cation channels eventually leads to clearance of affected erythrocytes from peripheral blood. Erythropoietin inhibits the non-selective cation channel and thus interferes with erythrocyte "apoptosis." Susceptibility to scramblase activation is enhanced in thalassemia, sickle cell disease and glucose-6-phosphate dehydrogenase deficiency. Infection with Plasmodium falciparum leads to activation of the cation channel eventually triggering erythrocyte "apoptosis."
Effects of the workplace on fertility and related reproductive outcomes.
Baranski, B
1993-01-01
This report reviews the recent literature on the adverse effects of occupational factors on fertility and related reproductive outcomes. Few studies fulfill the criteria of good study design because of small sample size, insensitive measures of effect, selection, recall, and observation bias, weak if any control of confounding factors, bad definition of exposure, inability to analyze a dose-response relationship, and inadequate statistical analysis. The high prevalence of unsuccessful reproductive outcomes in the general population makes the design of human fertility studies difficult. Although a number of publications indicate that certain occupational factors and settings adversely affect both male and female fertility, it is virtually impossible to estimate the proportion of infertility due to occupational factors in the general population. The collected data suggest that the exposure to the following substances or occupational settings may affect a function of male genital system, leading to sperm abnormalities, hyperestrogenism, impotence, infertility, and/or increased spontaneous abortion rate in wives of exposed workers: alkylmercury, antimonide, anesthetic gases, boron, carbon disulfide, chlorodecone, chloroprene, some carbamates (carbaryl), diaminostilbene, 1,2-dibromo-3-chloropropane, ethylene glycol ethers, ethylene dibromide, inorganic lead, manganese, methyl chloride, organic solvents, synthetic estrogens and progestins, tetraethyllead, combined exposure to styrene and acetone, welding operations, and heat. The majority of reviewed papers on female fertility concerns the alterations of menstrual cycle and pregnancy complications rather than occupational exposure-induced female infertility. The literature supports the hypothesis that, in general, working women have a tendency of higher risk of unsuccessful reproductive outcomes, although the existing data are not sufficient. PMID:8243410
ERIC Educational Resources Information Center
Linehan, Edward; O'Toole, James
1982-01-01
Studied subliminal symbiotic stimulation as a treatment aid in conjunction with counselor self-disclosures in group counseling. Results showed that subliminal exposure to MOMMY AND I ARE ONE stimulus would lead to more client self-disclosures in group counseling. Suggests impact of symbiotic stimulus can be affected by counselor behavior. (RC)
Mercury cycling in peatland watersheds. Chapter 11.
Randall K. Kolka; Carl P.J. Mitchell; Jeffrey D. Jeremiason; Neal A. Hines; David F. Grigal; Daniel R. Engstrom; Jill K. Coleman-Wasik; Edward A. Nater; Edward B. Swain; Bruce A. Monson; Jacob A. Fleck; Brian Johnson; James E. Almendinger; Brian A. Branfireun; Patrick L. Brezonik; James B. Cotner
2011-01-01
Mercury (Hg) is of great environmental concern due to its transformation into the toxic methylmercury (MeHg) form that bioaccumulates within the food chain and causes health concerns for both humans and wildlife (U.S. Environmental Protection Agency 2002). Mercury can affect neurological development in fetuses and young children. In adults, exposure to Hg can lead to...
Diesel exhaust exposure, its multi-system effects, and the effect of new technology diesel exhaust.
Reis, Haley; Reis, Cesar; Sharip, Akbar; Reis, Wenes; Zhao, Yong; Sinclair, Ryan; Beeson, Lawrence
2018-05-01
Exposure to diesel exhaust (DE) from vehicles and industry is hazardous and affects proper function of organ systems. DE can interfere with normal physiology after acute and chronic exposure to particulate matter (PM). Exposure leads to potential systemic disease processes in the central nervous, visual, hematopoietic, respiratory, cardiovascular, and renal systems. In this review, we give an overview of the epidemiological evidence supporting the harmful effects of diesel exhaust, and the numerous animal studies conducted to investigate the specific pathophysiological mechanisms behind DE exposure. Additionally, this review includes a summary of studies that used biomarkers as an indication of biological plausibility, and also studies evaluating new technology diesel exhaust (NTDE) and its systemic effects. Lastly, this review includes new approaches to improving DE emissions, and emphasizes the importance of ongoing study in this field of environmental health. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gust, Kurt A; Pirooznia, Mehdi; Quinn, Michael J; Johnson, Mark S; Escalon, Lynn; Indest, Karl J; Guan, Xin; Clarke, Joan; Deng, Youping; Gong, Ping; Perkins, Edward J
2009-07-01
Munitions constituents (MCs) including hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), 2,4,6-trinitrotoluene (TNT), and TNT derivatives are recognized to elicit aberrant neuromuscular responses in many species. The onset of seizures resulting in death was observed in the avian model Northern bobwhite after oral dosing with RDX beginning at 8 mg/kg/day in subacute (14 days) exposures, whereas affective doses of the TNT derivative, 2,6-dinitrotoluene (2,6-DNT), caused gastrointestinal impacts, lethargy, and emaciation in subacute and subchronic (60 days) exposures. To assess and contrast the potential neurotoxicogenomic effects of these MCs, a Northern bobwhite microarray was developed consisting of 4119 complementary DNA (cDNA) features enriched for differentially-expressed brain transcripts from exposures to RDX and 2,6-DNT. RDX affected hundreds of genes in brain tissue, whereas 2,6-DNT affected few (
Mechanisms and significance of eryptosis.
Lang, Florian; Lang, Karl S; Lang, Philipp A; Huber, Stephan M; Wieder, Thomas
2006-01-01
Suicidal death of erythrocytes (eryptosis) is characterized by cell shrinkage, membrane blebbing, activation of proteases, and phosphatidylserine exposure at the outer membrane leaflet. Exposed phosphatidylserine is recognized by macrophages that engulf and degrade the affected cells. Eryptosis is triggered by erythrocyte injury after several stressors, including oxidative stress. Besides caspase activation after oxidative stress, two signaling pathways converge to trigger eryptosis: (a) formation of prostaglandin E(2) leads to activation of Ca(2+)-permeable cation channels, and (b) the phospholipase A(2)-mediated release of platelet-activating factor activates a sphingomyelinase, leading to formation of ceramide. Increased cytosolic Ca(2+) activity and enhanced ceramide levels lead to membrane scrambling with subsequent phosphatidylserine exposure. Moreover, Ca(2+) activates Ca(2+)-sensitive K(2+) channels, leading to cellular KCl loss and cell shrinkage. In addition, Ca(2+) stimulates the protease calpain, resulting in degradation of the cytoskeleton. Eryptosis is inhibited by erythropoietin, which thus extends the life span of circulating erythrocytes. Eryptosis may be a mechanism of defective erythrocytes to escape hemolysis. Conversely, excessive eryptosis favors the development of anemia. Conditions with excessive eryptosis include iron deficiency, lead or mercury intoxication, sickle cell anemia, thalassemia, glucose 6- phosphate dehydrogenase deficiency, malaria, and infection with hemolysin-forming pathogens.
Oncogenomic disruptions in arsenic-induced carcinogenesis
Ng, Kevin W.; Stewart, Greg L.; Dummer, Trevor J.B.; Lam, Wan L.; Martinez, Victor D
2017-01-01
Chronic exposure to arsenic affects more than 200 million people worldwide, and has been associated with many adverse health effects, including cancer in several organs. There is accumulating evidence that arsenic biotransformation, a step in the elimination of arsenic from the human body, can induce changes at a genetic and epigenetic level, leading to carcinogenesis. At the genetic level, arsenic interferes with key cellular processes such as DNA damage-repair and chromosomal structure, leading to genomic instability. At the epigenetic level, arsenic places a high demand on the cellular methyl pool, leading to global hypomethylation and hypermethylation of specific gene promoters. These arsenic-associated DNA alterations result in the deregulation of both oncogenic and tumour-suppressive genes. Furthermore, recent reports have implicated aberrant expression of non-coding RNAs and the consequential disruption of signaling pathways in the context of arsenic-induced carcinogenesis. This article provides an overview of the oncogenomic anomalies associated with arsenic exposure and conveys the importance of non-coding RNAs in the arsenic-induced carcinogenic process. PMID:28179585
Fluoride’s Effects on the Formation of Teeth and Bones, and the Influence of Genetics
Everett, E.T.
2011-01-01
Fluorides are present in the environment. Excessive systemic exposure to fluorides can lead to disturbances of bone homeostasis (skeletal fluorosis) and enamel development (dental/enamel fluorosis). The severity of dental fluorosis is also dependent upon fluoride dose and the timing and duration of fluoride exposure. Fluoride’s actions on bone cells predominate as anabolic effects both in vitro and in vivo. More recently, fluoride has been shown to induce osteoclastogenesis in mice. Fluorides appear to mediate their actions through the MAPK signaling pathway and can lead to changes in gene expression, cell stress, and cell death. Different strains of inbred mice demonstrate differential physiological responses to ingested fluoride. Genetic studies in mice are capable of identifying and characterizing fluoride-responsive genetic variations. Ultimately, this can lead to the identification of at-risk human populations who are susceptible to the unwanted or potentially adverse effects of fluoride action and to the elucidation of fundamental mechanisms by which fluoride affects biomineralization. PMID:20929720
Can environmental or occupational hazards alter the sex ratio at birth? A systematic review
Terrell, Metrecia L.; Hartnett, Kathleen P.; Marcus, Michele
2011-01-01
More than 100 studies have examined whether environmental or occupational exposures of parents affect the sex ratio of their offspring at birth. For this review, we searched Medline and Web of Science using the terms ‘sex ratio at birth’ and ‘sex ratio and exposure’ for all dates, and reviewed bibliographies of relevant studies to find additional articles. This review focuses on exposures that have been the subject of at least four studies including polychlorinated biphenyls (PCBs), dioxins, pesticides, lead and other metals, radiation, boron, and g-forces. For paternal exposures, only dioxins and PCBs were consistently associated with sex ratios higher or lower than the expected 1.06. Dioxins were associated with a decreased proportion of male births, whereas PCBs were associated with an increased proportion of male births. There was limited evidence for a decrease in the proportion of male births after paternal exposure to DBCP, lead, methylmercury, non-ionizing radiation, ionizing radiation treatment for childhood cancer, boron, or g-forces. Few studies have found higher or lower sex ratios associated with maternal exposures. Studies in humans and animals have found a reduction in the number of male births associated with lower male fertility, but the mechanism by which environmental hazards might change the sex ratio has not yet been established. PMID:24149027
White, Ilsun M; Minamoto, Takehiro; Odell, Joseph R; Mayhorn, Joseph; White, Wesley
2009-04-17
Exposure to methamphetamine (METH) and phencyclidine (PCP) during early development is thought to produce later behavioral deficits. We postulated that exposure to METH and PCP during later development would produce similar behavioral deficits, particularly learning deficits in adulthood. Wistar rats were treated with METH (9 mg/kg), PCP (9 mg/kg), or saline during later development, postnatal days (PD) 50-51, and subsequent behavioral changes were examined including: locomotor activity during the acute drug state (PD 50-51) and the post-drug phase (PD 50-80); social interaction on PD 54-80; and spatial discrimination and reversal in adulthood (after PD 90). METH and PCP differentially affected locomotion during the acute state, but not during the post-drug phase. METH decreased social interaction throughout tests two weeks after drug treatment, whereas PCP decreased social interaction only during the first 8 min of tests. Neither METH nor PCP impaired initial acquisition of spatial discrimination. However, reversal was significantly impaired by PCP, whereas METH produced a mild deficit, compared to controls. Our data provide evidence that exposure to PCP and METH during later development lead to enduring cognitive deficits in adulthood. Selective impairment of reversal may reflect neurological damage in the prefrontal cortex due to early exposure to drugs.
Itzhaki, Michal; Bluvstein, Irit; Peles Bortz, Anat; Kostistky, Hava; Bar Noy, Dor; Filshtinsky, Vivian; Theilla, Miriam
2018-01-01
Professional quality of life (ProQOL) reflects how individuals feel about their work as helpers. Psychiatric ward nurses cope with significant psychological and physical challenges, including exposure to verbal and physical violence. This study was based on two aspects of ProQOL, the positive compassion satisfaction, and the negative compassion fatigue, with the aim of investigating the relation of ProQOL to job stress and violence exposure at a large mental health center. Data were collected from 114 mental health nurses (49/63 M/F) who completed a self-administered questionnaire examining violence exposure, ProQOL, and job stress. The results showed that during the last year, almost all nurses (88.6%) experienced verbal violence, and more than half (56.1%) experienced physical violence. Only 2.6% experienced no violence. ProQOL was not associated with violence exposure but was reduced by work stress and by previous exposure to violence; nurses who perceived their work as more stressful had lower satisfaction from their work. In conclusion, although most mental health nurses are exposed to physical and verbal violence, their ProQOL is more related to job stress than to workplace violence (WPV). Hospital managements should conduct work stress reduction intervention programs and promote strategizes to reduce WPV. Further exploration of (a) factors affecting ProQOL and (b) the effect of violence coping workshops on ProQOL is warranted.
Xia, Jizhou; Jin, Cuiyuan; Pan, Zihong; Sun, Liwei; Fu, Zhengwei; Jin, Yuanxiang
2018-08-01
Lead (Pb) is one of the most prevalent toxic, nonessential heavy metals that can contaminate food and water. In this study, effects of chronic exposure to low concentrations of Pb on metabolism and gut microbiota were evaluated in mice. It was observed that exposure of mice to 0.1mg/L Pb, supplied via drinking water, for 15weeks increased hepatic TG and TCH levels. The levels of some key genes related to lipid metabolism in the liver increased significantly in Pb-treated mice. For the gut microbiota, at the phylum level, the relative abundance of Firmicutes and Bacteroidetes changed obviously in the feces and the cecal contents of mice exposed to 0.1mg/L Pb for 15weeks. In addition, 16s rRNA gene sequencing further discovered that Pb exposure affected the structure and richness of the gut microbiota. Moreover, a 1 H NMR metabolic analysis unambiguously identified 31 metabolites, and 15 metabolites were noticeably altered in 0.1mg/L Pb-treated mice. Taken together, the data indicate that chronic Pb exposure induces dysbiosis of the gut microbiota and metabolic disorder in mice. Chronic Pb exposure induces metabolic disorder, dysbiosis of the gut microbiota and hepatic lipid metabolism disorder in mice. Copyright © 2018 Elsevier B.V. All rights reserved.
Sundar, Isaac K; Yao, Hongwei; Huang, Yadi; Lyda, Elizabeth; Sime, Patricia J; Sellix, Michael T; Rahman, Irfan
2014-01-01
The circadian timing system controls daily rhythms of physiology and behavior, and disruption of clock function can trigger stressful life events. Daily exposure to cigarette smoke (CS) can lead to alteration in diverse biological and physiological processes. Smoking is associated with mood disorders, including depression and anxiety. Patients with chronic obstructive pulmonary disease (COPD) have abnormal circadian rhythms, reflected by daily changes in respiratory symptoms and lung function. Corticosterone (CORT) is an adrenal steroid that plays a considerable role in stress and anti-inflammatory responses. Serotonin (5-hydroxytryptamine; 5HT) is a neurohormone, which plays a role in sleep/wake regulation and affective disorders. Secretion of stress hormones (CORT and 5HT) is under the control of the circadian clock in the suprachiasmatic nucleus. Since smoking is a contributing factor in the development of COPD, we hypothesize that CS can affect circadian rhythms of CORT and 5HT secretion leading to sleep and mood disorders in smokers and patients with COPD. We measured the daily rhythms of plasma CORT and 5HT in mice following acute (3 d), sub-chronic (10 d) or chronic (6 mo) CS exposure and in plasma from non-smokers, smokers and patients with COPD. Acute and chronic CS exposure affected both the timing (peak phase) and amplitude of the daily rhythm of plasma CORT and 5HT in mice. Acute CS appeared to have subtle time-dependent effects on CORT levels but more pronounced effects on 5HT. As compared with CORT, plasma 5HT was slightly elevated in smokers but was reduced in patients with COPD. Thus, the effects of CS on plasma 5HT were consistent between mice and patients with COPD. Together, these data reveal a significant impact of CS exposure on rhythms of stress hormone secretion and subsequent detrimental effects on cognitive function, depression-like behavior, mood/anxiety and sleep quality in smokers and patients with COPD.
Lead isotope profiling in dairy calves.
Buchweitz, John; McClure-Brinton, Kimberly; Zyskowski, Justin; Stensen, Lauren; Lehner, Andreas
2015-03-01
Lead (Pb) is a common cause of heavy metal poisonings in cattle. Sources of Pb on farms include crankcase oil, machinery grease, batteries, plumbing, and paint chips. Consequently, consumption of Pb from these sources may negatively impact animal health and Pb may be inadvertently introduced into the food supply. Therefore, the scope of poisoning incidents must be clearly assessed and sources of intoxication identified and strategies to mitigate exposure evaluated and implemented to prevent future exposures. Stable isotope analysis by inductively-coupled plasma mass spectrometry (ICP-MS) has proven itself of value in forensic investigations. We report on the extension of Pb stable isotope analysis to bovine tissues and profile comparisons with paint chips and soils collected from an affected dairy farm to elucidate the primary source. Pb occurs naturally as four stable isotopes: (204)Pb, (206)Pb, (207)Pb, and (208)Pb. Herein a case is reported to illustrate the use of (207)Pb/(206)Pb and (208)Pb/(206)Pb ratios to link environmental sources of exposure with tissues from a poisoned animal. Chemical Pb profiling provides a valuable tool for field investigative approaches to Pb poisoning in production agriculture and is applicable to subclinical exposures. Copyright © 2014 Elsevier Inc. All rights reserved.
Palgi, Yuval; Ben-Ezra, Menachem; Shrira, Amit
2012-01-01
Two studies examined peritraumatic symptoms due to war-related stress among hospital personnel with different affect types. In Study 1, we examined 80 Israeli hospital personnel during the period they were exposed to frequent missile attacks in the Second Lebanon War. In Study 2, we examined 67 and 74 Israeli hospital personnel during the time they were exposed and were not exposed, respectively, to missile attacks in the Gaza "Cast Lead" operation. In both studies, hospital personnel completed measures of posttraumatic stress disorder symptoms as well as of positive- and negative-affect items (PA and NA, respectively). Exposed personnel with a positive congruent (high PA and low NA) or a deflated incongruent (low PA and low NA) affective types had a lower level of peritraumatic symptoms compared to those with a negative congruent (low PA and high NA) or an inflated incongruent (high PA and NA) affective types. Study 2 further showed that among non-exposed personnel, only personnel with a negative congruent affective type had a higher level of peritraumatic symptoms compared to personnel with other affective types. Clinical implications and required future studies are discussed.
Finkelstein, M E; George, D; Scherbinski, S; Gwiazda, R; Johnson, M; Burnett, J; Brandt, J; Lawrey, S; Pessier, A P; Clark, M; Wynne, J; Grantham, J; Smith, D R
2010-04-01
Lead poisoning is a primary factor impeding the survival and recovery of the critically endangered California Condor (Gymnogyps californianus). However, the frequency and magnitude of lead exposure in condors is not well-known in part because most blood lead monitoring occurs biannually, and biannual blood samples capture only approximately 10% of a bird's annual exposure history. We investigated the use of growing feathers from free-flying condors in California to establish a bird's lead exposure history. We show that lead concentration and stable lead isotopic composition analyses of sequential feather sections and concurrently collected blood samples provided a comprehensive history of lead exposure over the 2-4 month period of feather growth. Feather analyses identified exposure events not evident from blood monitoring efforts, and by fitting an empirically derived timeline to actively growing feathers, we were able to estimate the time frame for specific lead exposure events. Our results demonstrate the utility of using sequentially sampled feathers to reconstruct lead exposure history. Since exposure risk in individuals is one determinant of population health, our findings should increase the understanding of population-level effects from lead poisoning in condors; this information may also be helpful for other avian species potentially impacted by lead poisoning.
Finkelstein, M.E.; George, D.; Scherbinski, S.; Gwiazda, R.; Johnson, M.; Burnett, J.; Brandt, J.; Lawrey, S.; Pessier, Allan P.; Clark, M.R.; Wynne, J.; Grantham, And J.; Smith, D.R.
2010-01-01
Lead poisoning is a primary factor impeding the survival and recovery of the critically endangered California Condor (Gymnogyps californianus). However, the frequency and magnitude of lead exposure in condors is not well-known in part because most blood lead monitoring occurs biannually, and biannual blood samples capture only ∼10% of a bird’s annual exposure history. We investigated the use of growing feathers from free-flying condors in California to establish a bird’s lead exposure history. We show that lead concentration and stable lead isotopic composition analyses of sequential feather sections and concurrently collected blood samples provided a comprehensive history of lead exposure over the 2−4 month period of feather growth. Feather analyses identified exposure events not evident from blood monitoring efforts, and by fitting an empirically derived timeline to actively growing feathers, we were able to estimate the time frame for specific lead exposure events. Our results demonstrate the utility of using sequentially sampled feathers to reconstruct lead exposure history. Since exposure risk in individuals is one determinant of population health, our findings should increase the understanding of population-level effects from lead poisoning in condors; this information may also be helpful for other avian species potentially impacted by lead poisoning.
Mechanism underlying the effect of long-term exposure to low dose of pesticides on DNA integrity.
Alleva, Renata; Manzella, Nicola; Gaetani, Simona; Bacchetti, Tiziana; Bracci, Massimo; Ciarapica, Veronica; Monaco, Federica; Borghi, Battista; Amati, Monica; Ferretti, Gianna; Tomasetti, Marco
2018-04-01
Pesticides, including herbicides, insecticides and fungicides, are widely used in intensive agriculture. Recently, the long-term effects of pesticide exposure were found to be associated with many diseases. In this study, we evaluated the long-term effect of low-level exposure to a mixture of pesticides on DNA damage response (DDR) in relation to individual detoxifying variability. A residential population chronically exposed to pesticides was enrolled, biological/environmental pesticide levels; paroxonase 1 (PON-1) activity and 192 Q/R polymorphism and DDR were evaluated at three different periods of pesticide exposure. OGG1-dependent DNA repair activity was decreased in relation to pesticide exposure. The increase of DNA lesions and pesticide levels in the intensive pesticide-spraying period was independent on PON-1 activity. Next, human bronchial epithelial and neuronal cells were used as a model for in vitro evaluation of the mechanistic effect of pesticides. Pesticides induced mitochondrial dysfunction leading to ROS formation. ROS from mitochondria induced DNA damage, which in turn induced OGG1-dependent DNA repair activity through 8-oxoguanine DNA glycosylase 1 (OGG1) expression and activation. Even though OGG1 was overexpressed, an inhibition of its activity, associated with DNA lesion accumulation, was found at prolonged pesticide-exposure. A post-translational regulation of OGG1 by pesticide may be postulated. Taken together, long-term exposure to low-levels of pesticides affects DDR resulting in accumulation of DNA lesions that eventually may lead to cancer or neurological disorders. © 2018 Wiley Periodicals, Inc.
Wang, Tao; Guan, Rui-Li; Liu, Ming-Chao; Shen, Xue-Feng; Chen, Jing Yuan; Zhao, Ming-Gao; Luo, Wen-Jing
2016-08-01
Lead (Pb) is an environmental neurotoxic metal. Pb exposure may cause neurobehavioral changes, such as learning and memory impairment, and adolescence violence among children. Previous animal models have largely focused on the effects of Pb exposure during early development (from gestation to lactation period) on neurobehavior. In this study, we exposed Sprague-Dawley rats during the juvenile stage (from juvenile period to adult period). We investigated the synaptic function and structural changes and the relationship of these changes to neurobehavioral deficits in adult rats. Our results showed that juvenile Pb exposure caused fear-conditioned memory impairment and anxiety-like behavior, but locomotion and pain behavior were indistinguishable from the controls. Electrophysiological studies showed that long-term potentiation induction was affected in Pb-exposed rats, and this was probably due to excitatory synaptic transmission impairment in Pb-exposed rats. We found that NMDA and AMPA receptor-mediated current was inhibited, whereas the GABA synaptic transmission was normal in Pb-exposed rats. NR2A and phosphorylated GluR1 expression decreased. Moreover, morphological studies showed that density of dendritic spines declined by about 20 % in the Pb-treated group. The spine showed an immature form in Pb-exposed rats, as indicated by spine size measurements. However, the length and arborization of dendrites were unchanged. Our results suggested that juvenile Pb exposure in rats is associated with alterations in the glutamate receptor, which caused synaptic functional and morphological changes in hippocampal CA1 pyramidal neurons, thereby leading to behavioral changes.
A Novel Framework for Characterizing Exposure-Related ...
Descriptions of where and how individuals spend their time are important for characterizing exposures to chemicals in consumer products and in indoor environments. Herein we create an agent-based model (ABM) that is able to simulate longitudinal patterns in behaviors. By basing our ABM upon a needs-based artificial intelligence (AI) system, we create agents that mimic human decisions on these exposure-relevant behaviors. In a case study of adults, we use the AI to predict the inter-individual variation in the start time and duration of four behaviors: sleeping, eating, commuting, and working. The results demonstrate that the ABM can capture both inter-individual variation and how decisions on one behavior can affect subsequent behaviors. Preset NERL's research on the use of agent based modeling in exposure assessments. To obtain feed back on the approach from the leading experts in the field.
Funk, Jeanne B; Baldacci, Heidi Bechtoldt; Pasold, Tracie; Baumgardner, Jennifer
2004-02-01
It is believed that repeated exposure to real-life and to entertainment violence may alter cognitive, affective, and behavioral processes, possibly leading to desensitization. The goal of the present study was to determine if there are relationships between real-life and media violence exposure and desensitization as reflected in related characteristics. One hundred fifty fourth and fifth graders completed measures of real-life violence exposure, media violence exposure, empathy, and attitudes towards violence. Regression analyses indicated that only exposure to video game violence was associated with (lower) empathy. Both video game and movie violence exposure were associated with stronger proviolence attitudes. The active nature of playing video games, intense engagement, and the tendency to be translated into fantasy play may explain negative impact, though causality was not investigated in the present design. The samples' relatively low exposure to real-life violence may have limited the identification of relationships. Although difficult to quantify, desensitization to violence should be further studied using related characteristics as in the present study. Individual differences and causal relationships should also be examined.
The mere exposure effect is modulated by selective attention but not visual awareness.
Huang, Yu-Feng; Hsieh, Po-Jang
2013-10-18
Repeated exposures to an object will lead to an enhancement of evaluation toward that object. Although this mere exposure effect may occur when the objects are presented subliminally, the role of conscious perception per se on evaluation has never been examined. Here we use a binocular rivalry paradigm to investigate whether a variance in conscious perceptual duration of faces has an effect on their subsequent evaluation, and how selective attention and memory interact with this effect. Our results show that face evaluation is positively biased by selective attention but not affected by visual awareness. Furthermore, this effect is not due to participants recalling which face had been attended to. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fletcher, A M; Gelberg, K H; Marshall, E G
1999-06-01
The purpose of this study was to examine the circumstances under which women receive blood lead tests in New York State and to characterize the sources of lead exposure among women of childbearing age with moderate blood lead levels. Telephone interviews were conducted with 135 women between the ages of 18 and 45, with blood lead levels from 10 through 25 micrograms/dl, were used to collect information on the reason for their blood lead test and possible sources of lead exposure. It was found that the two most common reasons to be tested for blood lead were workplace screening (47%) and pregnancy (27%). Occupational exposure was the primary source of lead exposure in this population (46%). Another common source of lead exposure was home renovation (24%). A significant proportion (31%) of women with blood lead levels from 10 through 25 micrograms/dl had no known current source of lead exposure. Based on New York's sample, there are a significant number of women of reproductive age with potentially fetotoxic blood lead levels.
Lead foil in dental X-ray film: Backscattering rejection or image intensifier?
NASA Astrophysics Data System (ADS)
Hönnicke, M. G.; Delben, G. J.; Godoi, W. C.; Swinka-Filho, V.
2014-11-01
Dental X-ray films are still largely used due to sterilization issues, simplicity and, mainly, economic reasons. These films almost always are double coated (double emulsion) and have a lead foil in contact with the film for X-ray backscattering rejection. Herein we explore the use of the lead foil as an image intensifier. In these studies, spatial resolution was investigated when images were acquired on the dental X-ray films with and without the lead foil. Also, the lead foil was subjected to atomic analysis (fluorescent measurements) and structure analysis (X-ray diffraction). We determined that the use of the lead foil reduces the exposure time, however, does not affect the spatial resolution on the acquired images. This suggests that the fluorescent radiation spread is smaller than the grain sizes of the dental X-ray films.
Feltes, Bruno César; de Faria Poloni, Joice; Nunes, Itamar José Guimarães
2014-01-01
Abstract Fetal alcohol syndrome (FAS) is a prenatal disease characterized by fetal morphological and neurological abnormalities originating from exposure to alcohol. Although FAS is a well-described pathology, the molecular mechanisms underlying its progression are virtually unknown. Moreover, alcohol abuse can affect vitamin metabolism and absorption, although how alcohol impairs such biochemical pathways remains to be elucidated. We employed a variety of systems chemo-biology tools to understand the interplay between ethanol metabolism and vitamins during mouse neurodevelopment. For this purpose, we designed interactomes and employed transcriptomic data analysis approaches to study the neural tissue of Mus musculus exposed to ethanol prenatally and postnatally, simulating conditions that could lead to FAS development at different life stages. Our results showed that FAS can promote early changes in neurotransmitter release and glutamate equilibrium, as well as an abnormal calcium influx that can lead to neuroinflammation and impaired neurodifferentiation, both extensively connected with vitamin action and metabolism. Genes related to retinoic acid, niacin, vitamin D, and folate metabolism were underexpressed during neurodevelopment and appear to contribute to neuroinflammation progression and impaired synapsis. Our results also indicate that genes coding for tubulin, tubulin-associated proteins, synapse plasticity proteins, and proteins related to neurodifferentiation are extensively affected by ethanol exposure. Finally, we developed a molecular model of how ethanol can affect vitamin metabolism and impair neurodevelopment. PMID:24816220
Feltes, Bruno César; de Faria Poloni, Joice; Nunes, Itamar José Guimarães; Bonatto, Diego
2014-06-01
Fetal alcohol syndrome (FAS) is a prenatal disease characterized by fetal morphological and neurological abnormalities originating from exposure to alcohol. Although FAS is a well-described pathology, the molecular mechanisms underlying its progression are virtually unknown. Moreover, alcohol abuse can affect vitamin metabolism and absorption, although how alcohol impairs such biochemical pathways remains to be elucidated. We employed a variety of systems chemo-biology tools to understand the interplay between ethanol metabolism and vitamins during mouse neurodevelopment. For this purpose, we designed interactomes and employed transcriptomic data analysis approaches to study the neural tissue of Mus musculus exposed to ethanol prenatally and postnatally, simulating conditions that could lead to FAS development at different life stages. Our results showed that FAS can promote early changes in neurotransmitter release and glutamate equilibrium, as well as an abnormal calcium influx that can lead to neuroinflammation and impaired neurodifferentiation, both extensively connected with vitamin action and metabolism. Genes related to retinoic acid, niacin, vitamin D, and folate metabolism were underexpressed during neurodevelopment and appear to contribute to neuroinflammation progression and impaired synapsis. Our results also indicate that genes coding for tubulin, tubulin-associated proteins, synapse plasticity proteins, and proteins related to neurodifferentiation are extensively affected by ethanol exposure. Finally, we developed a molecular model of how ethanol can affect vitamin metabolism and impair neurodevelopment.
Concurrent photolytic degradation of aqueous methylmercury and dissolved organic matter
Fleck, Jacob A.; Gill, Gary W.; Bergamaschi, Brian A.; Kraus, Tamara E.C.; Downing, Bryan D.; Alpers, Charles N.
2014-01-01
Monomethyl mercury (MeHg) is a potent neurotoxin that threatens ecosystem viability and human health. In aquatic systems, the photolytic degradation of MeHg (photodemethylation) is an important component of the MeHg cycle. Dissolved organic matter (DOM) is also affected by exposure to solar radiation (light exposure) leading to changes in DOM composition that can affect its role in overall mercury (Hg) cycling. This study investigated changes in MeHg concentration, DOM concentration, and the optical signature of DOM caused by light exposure in a controlled field-based experiment using water samples collected from wetlands and rice fields. Filtered water from all sites showed a marked loss in MeHg concentration after light exposure. The rate of photodemethylation was 7.5 × 10-3 m2 mol-1 (s.d. 3.5 × 10-3) across all sites despite marked differences in DOM concentration and composition. Light exposure also caused changes in the optical signature of the DOM despite there being no change in DOM concentration, indicating specific structures within the DOM were affected by light exposure at different rates. MeHg concentrations were related to optical signatures of labile DOM whereas the percent loss of MeHg was related to optical signatures of less labile, humic DOM. Relationships between the loss of MeHg and specific areas of the DOM optical signature indicated that aromatic and quinoid structures within the DOM were the likely contributors to MeHg degradation, perhaps within the sphere of the Hg-DOM bond. Because MeHg photodegradation rates are relatively constant across freshwater habitats with natural Hg–DOM ratios, physical characteristics such as shading and hydrologic residence time largely determine the relative importance of photolytic processes on the MeHg budget in these mixed vegetated and open-water systems.
Concurrent photolytic degradation of aqueous methylmercury and dissolved organic matter.
Fleck, Jacob A; Gill, Gary; Bergamaschi, Brian A; Kraus, Tamara E C; Downing, Bryan D; Alpers, Charles N
2014-06-15
Monomethyl mercury (MeHg) is a potent neurotoxin that threatens ecosystem viability and human health. In aquatic systems, the photolytic degradation of MeHg (photodemethylation) is an important component of the MeHg cycle. Dissolved organic matter (DOM) is also affected by exposure to solar radiation (light exposure) leading to changes in DOM composition that can affect its role in overall mercury (Hg) cycling. This study investigated changes in MeHg concentration, DOM concentration, and the optical signature of DOM caused by light exposure in a controlled field-based experiment using water samples collected from wetlands and rice fields. Filtered water from all sites showed a marked loss in MeHg concentration after light exposure. The rate of photodemethylation was 7.5×10(-3)m(2)mol(-1) (s.d. 3.5×10(-3)) across all sites despite marked differences in DOM concentration and composition. Light exposure also caused changes in the optical signature of the DOM despite there being no change in DOM concentration, indicating specific structures within the DOM were affected by light exposure at different rates. MeHg concentrations were related to optical signatures of labile DOM whereas the percent loss of MeHg was related to optical signatures of less labile, humic DOM. Relationships between the loss of MeHg and specific areas of the DOM optical signature indicated that aromatic and quinoid structures within the DOM were the likely contributors to MeHg degradation, perhaps within the sphere of the Hg-DOM bond. Because MeHg photodegradation rates are relatively constant across freshwater habitats with natural Hg-DOM ratios, physical characteristics such as shading and hydrologic residence time largely determine the relative importance of photolytic processes on the MeHg budget in these mixed vegetated and open-water systems. Published by Elsevier B.V.
Impact of effects of acid precipitation on toxicity of metals.
Nordberg, G F; Goyer, R A; Clarkson, T W
1985-01-01
Acid precipitation may increase human exposure to several potentially toxic metals by increasing metal concentrations in major pathways to man, particularly food and water, and in some instances by enhancing the conversion of metal species to more toxic forms. Human exposures to methylmercury are almost entirely by way of consumption of fish and seafood. In some countries, intakes by this route may approach the levels that can give rise to adverse health effects for population groups with a high consumption of these food items. A possible increase in methylmercury concentrations in fish from lakes affected by acid precipitation may thus be of concern to selected population groups. Human exposures to lead reach levels that are near those associated with adverse health effects in certain sensitive segments of the general population in several countries. The possibility exists that increased exposures to lead may be caused by acid precipitation through a mobilization of lead from soils into crops. A route of exposure to lead that may possibly be influenced by acid precipitation is an increased deterioration of surface materials containing lead and a subsequent ingestion by small children. A similar situation with regard to uptake from food exists for cadmium (at least in some countries). Human metal exposures via drinking water may be increased by acid precipitation. Decreasing pH increases corrosiveness of water enhancing the mobilization of metal salts from soil; metallic compounds may be mobilized from minerals, which may eventually reach drinking water. Also, the dissolution of metals (Pb, Cd, Cu) from piping systems for drinking water by soft acidic waters of high corrosivity may increase metal concentrations in drinking water. Exposures have occasionally reached concentrations which are in the range where adverse health effects may be expected in otherwise healthy persons. Dissolution from piping systems can be prevented by neutralizing the water before distribution. Increased aluminum concentrations in water is a result mainly of the occurrence of Al in acidified natural waters and the use of Al chemicals in drinking water purification. If such water is used for dialysis in patients with chronic renal failure, it may give rise to cases of dialysis dementia and other disorders. A possible influence on health of persons with normal renal function (e.g., causing Alzheimer's disease) is uncertain and requires further investigation.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:3908087
The effect of family violence on children's academic performance and behavior.
Dyson, J. L.
1990-01-01
Homicide perpetrated by an acquaintance or a close family member is the leading cause of death among blacks. Black children adversely affected by these violent occurrences suffer posttraumatic stress disorder. The purpose of this study is to illustrate how damage caused to black children from exposure to violence is reflected in behavior problems and poor school performance. PMID:2304094
Mabbott, Neil A
2012-01-01
Prion diseases are subacute neurodegenerative diseases that affect humans and a range of domestic and free-ranging animal species. These diseases are characterized by the accumulation of PrP (Sc), an abnormally folded isoform of the cellular prion protein (PrP (C)), in affected tissues. The pathology during prion disease appears to occur almost exclusively within the central nervous system. The extensive neurodegeneration which occurs ultimately leads to the death of the host. An intriguing feature of the prion diseases, when compared with other protein-misfolding diseases, is their transmissibility. Following peripheral exposure, some prion diseases accumulate to high levels within lymphoid tissues. The replication of prions within lymphoid tissue has been shown to be important for the efficient spread of disease to the brain. This article describes recent progress in our understanding of the cellular mechanisms that influence the propagation of prions from peripheral sites of exposure (such as the lumen of the intestine) to the brain. A thorough understanding of these events will lead to the identification of important targets for therapeutic intervention, or alternatively, reveal additional processes that influence disease susceptibility to peripherally-acquired prion diseases.
Lead exposures in the human environment. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elias, R.W.
Humans consume lead by inhaling air, drinking beverages, eating food and ingesting dust. The natural source of this lead is primarily soil. Anthropogenic sources are lead in gasoline, fossil fuels and industrial products and processes. Lead is ubiquitous in the human environment, and pinpointing the primary sources of lead in any particular environmental component is difficult. Nevertheless, our purpose is to describe the total exposure of humans to environmental lead and to determine the sources of lead contributing to this exposure. The total exposure is the total amount of lead consumed by ingestion and inhalation. Excluding lead exposure from choicemore » or circumstance, a baseline level of potential human exposure can be defined for a normal individual eating a typical diet and living in a non-urban community remote from industrial sources of lead in a house without lead-based paints. Beyond this level, additive exposure factors can be determined for other environments (e.g. urban, occupational and smelter communities) and for certain habits and activities (e.g. pica, smoking, drinking and hobbies), with variation for age, sex or socioeconomic status.« less
Qu, Wen; Gurdziel, Katherine; Pique-Regi, Roger; Ruden, Douglas M
2017-01-01
Lead (Pb) poisoning has been a major public health issue globally and the recent Flint water crisis has drawn nation-wide attention to its effects. To better understand how lead plays a role as a neurotoxin, we utilized the Drosophila melanogaster model to study the genetic effects of lead exposure during development and identified lead-responsive genes. In our previous studies, we have successfully identified hundreds of lead-responsive expression QTLs (eQTLs) by using RNA-seq analysis on heads collected from the Drosophila Synthetic Population Resource. Cis -eQTLs, also known as allele-specific expression (ASE) polymorphisms, are generally single-nucleotide polymorphisms in the promoter regions of genes that affect expression of the gene, such as by inhibiting the binding of transcription factors. Trans -eQTLs are genes that regulate mRNA levels for many genes, and are generally thought to be SNPs in trans -acting transcription or translation factors. In this study, we focused our attention on alternative splicing events that are affected by lead exposure. Splicing QTLs (sQTLs), which can be caused by SNPs that alter splicing or alternative splicing (AS), such as by changing the sequence-specific binding affinity of splicing factors to the pre-mRNA. We applied two methods in search for sQTLs by using RNA-seq data from control and lead-exposed w 1118 Drosophila heads. First, we used the fraction of reads in a gene that falls in each exon as the phenotype. Second, we directly compared the transcript counts among the various splicing isoforms as the phenotype. Among the 1,236 potential Pb-responsive sQTLs ( p < 0.0001, FDR < 0.39), mostly cis -sQTLs, one of the most distinct genes is Dscam1 (Down Syndrome Cell Adhesion Molecule), which has over 30,000 potential alternative splicing isoforms. We have also identified a candidate Pb-responsive trans -sQTL hotspot that appears to regulate 129 genes that are enriched in the "cation channel" gene ontology category, suggesting a model in which alternative splicing of these channels might lead to an increase in the elimination of Pb 2+ from the neurons encoding these channels. To our knowledge, this is the first paper that uses sQTL analyses to understand the neurotoxicology of an environmental toxin in any organism, and the first reported discovery of a candidate trans -sQTL hotspot.
Qu, Wen; Gurdziel, Katherine; Pique-Regi, Roger; Ruden, Douglas M.
2017-01-01
Lead (Pb) poisoning has been a major public health issue globally and the recent Flint water crisis has drawn nation-wide attention to its effects. To better understand how lead plays a role as a neurotoxin, we utilized the Drosophila melanogaster model to study the genetic effects of lead exposure during development and identified lead-responsive genes. In our previous studies, we have successfully identified hundreds of lead-responsive expression QTLs (eQTLs) by using RNA-seq analysis on heads collected from the Drosophila Synthetic Population Resource. Cis-eQTLs, also known as allele-specific expression (ASE) polymorphisms, are generally single-nucleotide polymorphisms in the promoter regions of genes that affect expression of the gene, such as by inhibiting the binding of transcription factors. Trans-eQTLs are genes that regulate mRNA levels for many genes, and are generally thought to be SNPs in trans-acting transcription or translation factors. In this study, we focused our attention on alternative splicing events that are affected by lead exposure. Splicing QTLs (sQTLs), which can be caused by SNPs that alter splicing or alternative splicing (AS), such as by changing the sequence-specific binding affinity of splicing factors to the pre-mRNA. We applied two methods in search for sQTLs by using RNA-seq data from control and lead-exposed w1118 Drosophila heads. First, we used the fraction of reads in a gene that falls in each exon as the phenotype. Second, we directly compared the transcript counts among the various splicing isoforms as the phenotype. Among the 1,236 potential Pb-responsive sQTLs (p < 0.0001, FDR < 0.39), mostly cis-sQTLs, one of the most distinct genes is Dscam1 (Down Syndrome Cell Adhesion Molecule), which has over 30,000 potential alternative splicing isoforms. We have also identified a candidate Pb-responsive trans-sQTL hotspot that appears to regulate 129 genes that are enriched in the “cation channel” gene ontology category, suggesting a model in which alternative splicing of these channels might lead to an increase in the elimination of Pb2+ from the neurons encoding these channels. To our knowledge, this is the first paper that uses sQTL analyses to understand the neurotoxicology of an environmental toxin in any organism, and the first reported discovery of a candidate trans-sQTL hotspot. PMID:29114259
Historical View on Lead: Guidelines and Regulations.
Pohl, Hana R; Ingber, Susan Z; Abadin, Henry G
2017-04-10
Lead has been used in many commodities for centuries. As a result, human exposure has occurred through the production and use of these lead-containing products. For example, leaded gasoline, lead-based paint, and lead solder/pipes in water distribution systems have been important in terms of exposure potential to the general population. Worker exposures occur in various industrial activities such as lead smelting and refining, battery manufacturing, steel welding or cutting operations, printing, and construction. Some industrial locations have also been a source of exposure to the surrounding communities. While the toxicity of relatively high lead exposures has been recognized for centuries, modern scientific studies have shown adverse health effects at very low doses, particularly in the developing nervous system of fetuses and children. This chapter reflects on historical and current views on lead toxicity. It also addresses the development and evolution of exposure prevention policies. As discussed here, these lead policies target a variety of potential exposure routes and sources. The changes reflect our better understanding of lead toxicity. The chapter provides lead-related guidelines and regulations currently valid in the U. S. and in many countries around the world. The reader will learn about the significant progress that has been made through regulations and guidelines to reduce exposure and prevent lead toxicity.
NASA Astrophysics Data System (ADS)
Marselina, M.; Roosmini, D.; Salami, I. R. S.; Ayu A, M.; Cahyadi, W.
2016-03-01
Respirable particulate exposure strongly affects human health, especially for children who lived around industrial area. This study was conducted to evaluate the effect of respirable particulate exposure to lung capacity of children. Study location in this study was Parung Panjang District, area of lead smelter industry and also in Astana Anyar District, area of e-waste processing industry. Thirty children were involved in Astana Anyar District and also thirty children in Parung Panjang District. The control groups were also studied in both areas. Predicted average daily intake (ADD) of respirable particulate was estimated and lung or respiration condition of children was measured by using spirometer. The lung condition of respondents was estimated by FEV1.0 and FVC values. As the result, the predicted ADD of children in lead smelter area is 3 times higher than the predicted ADD of children in e-waste processing area. It was correlated positively with the higher PM2.5 concentration in Parung Panjang District than the PM2.5 concentration in Astana Anyar District. Metals concentration in Parung Panjang was also measured with X-Ray Fluorescence (XRF) in this study and it was clearly state that metals concentration in location study were higher than metals concentration in control area.
Lead exposure is a risk for worsening bone mineral density in middle-aged male workers.
Akbal, Ayla; Tutkun, Engin; Yılmaz, Hınç
2014-09-01
Lead exposure linked to osteoporosis in women. However, there is no direct evidence whether lead exposure has effects on bone metabolism in middle-aged male subjects. Therefore, the present study investigated the relationship between bone mineral densitometry measurements, bone markers, endocrine hormones and blood lead levels. The present study included lead exposure patients (n: 30) and control subjects (n: 32). We recorded information on patient demographics and risk factors of osteoporosis. Blood lead levels were evaluated using Varian AA 240Z atomic absorption spectrophotometry. Bone mineral density measurements were measured using dual-energy X-ray absorptiometry. Each lumbar T and Z scores in the lead exposure group were lower than the control group. There were no significant differences in femur neck and femur total T and Z scores between two groups. Blood lead levels were also negatively correlated with lumbar 2-4 T score, total lumbar T score, lumbar 2-4 Z score and total lumbar Z score. Urinary hydroxyproline and urinary deoxypyridinoline levels in the lead exposure group were significantly higher compared to controls. Blood lead levels were strong, positively correlated with urinary deoxypyridinoline. Endocrine hormone levels and 1,25-dihydroxy-vitamin D3 levels were comparable between lead exposure and control group. Lead exposure in male workers is an important factor for deterioration in bone mineral density. We should be screening blood lead levels and history of lead exposure in male osteoporosis.
Glass composition development for stabilization of lead based paints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marra, J.C.
1996-10-01
Exposure to lead can lead to adverse health affects including permanent damage to the central nervous system. Common means of exposure to lead are from ingestion of lead paint chips or breathing of dust from deteriorating painted surfaces. The U.S. Army has over 101 million square feet of buildings dating to World War II or earlier. Many of these structures were built before the 1978 ban on lead based paints. The U.S. Army Corps of Engineers CERL is developing technologies to remove and stabilize lead containing organic coatings. Promising results have been achieved using a patented flame spray process thatmore » utilizes a glass frit to stabilize the hazardous constituents. When the glass frit is sprayed onto the paint containing substrate, differences in thermal expansion coefficients between the frit and the paint results in spalling of the paint from the substrate surface. The removed fragments are then collected and remelted to stabilize the hazardous constituents and allow for disposal as non-hazardous waste. Similar successful results using a patented process involving microwave technology for paint removal have also been achieved. In this process, the painted surface is coated with a microwave coupling compound that when exposed to microwave energy results in the spalling of the hazardous paint from the surface. The fragments can again be accumulated and remelted for stabilization and disposal.« less
Bellinger, David C
2004-04-01
Children differ from adults in the relative importance of lead sources and pathways, lead metabolism, and the toxicities expressed. The central nervous system effects of lead on children seem not to be reversible. Periods of enhanced vulnerability within childhood have not consistently been identified. The period of greatest vulnerability might be endpoint specific, perhaps accounting for the failure to identify a coherent "behavioral signature" for lead toxicity. The bases for the substantial individual variability in vulnerability to lead are uncertain, although they might include genetic polymorphisms and contextual factors. The current Centers for Disease Control and Prevention screening guideline of 10 micro g/dL is a risk management tool and should not be interpreted as a threshold for toxicity. No threshold has been identified, and some data are consistent with effects well below 10. Historically, most studies have concentrated on neurocognitive effects of lead, but higher exposures have recently been associated with morbidities such as antisocial behavior and delinquency. Studies of lead toxicity in experimental animal models are critical to the interpretation of nonexperimental human studies, particularly in addressing the likelihood that associations observed in the latter studies can be attributed to residual confounding. Animal models are also helpful in investigating the behavioral and neurobiological mechanisms of the functional deficits observed in lead-exposed humans. Studies of adults who have been exposed to lead are of limited use in understanding childhood lead toxicity because developmental and acquired lead exposure differ in terms of the maturity of the organs affected, the presumed mechanisms of toxicity, and the forms in which toxicities are expressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelenak, J.P.
There is extensive literature documenting the physical effects, such as renal impairment and disruption of hematopoiesis, of lead exposure in occupational cohorts. In addition, a small number of case studies have suggested that lead exposure might result in hepatocellular effects. This study was undertaken to determine if these effects still existed for a population of lead storage battery workers exposed to occupational lead exposures which were lower than those experienced by most lead workers prior to 1978. The relationship between the lead exposure indices,zinc protoporphyrin (ZPP) and a time weighted average blood lead measure (TWA), with twelve biochemical parameters indicativemore » of renal, hematopoietic and hepatic functioning and the reporting of recent abdominal pain was investigated. In addition, the possible modifying effects of alcohol consumption and duration of exposure on the relationship between lead exposure and the biochemical parameters were examined. The subjects for this analysis consisted of 288 lead workers form three lead storage battery plants and a group of 181 workers employed in an industry which did not involve lead exposure. The study was conducted from 1982-83. Comparisons of the lead exposure indices with the dependent variables were made through univariate correlational and hierarchical regression analyses. The lead exposure index, ZPP, was significantly associated wit BUN levels, though less than three percent of the lead and control workers had BUN levels above the normal range, In addition, NPP, was negatively associated with hemoglobin levels at probability levels between 0.052 and 0.055. Furthermore, there were no hemoglobin levels outside of the normal range for any of the sites studied. The other lead exposure index, TWA, was significantly associated with alkaline phosphatase and triglycerides. However, these analyses were not age-adjusted.« less
Richter, Patricia A; Bishop, Ellen E; Wang, Jiantong; Kaufmann, Rachel
2013-12-19
Tobacco smoke is a source of exposure to thousands of toxic chemicals including lead, a chemical of longstanding public health concern. We assessed trends in blood lead levels in youths and adults with cotinine-verified tobacco smoke exposure by using 10 years of data from the National Health and Nutrition Examination Survey. Geometric mean levels of blood lead are presented for increasing levels of tobacco smoke exposure. Regression models for lead included age, race/ethnicity, poverty, survey year, sex, age of home, birth country, and, for adults, alcohol consumption. Lead levels were evaluated for smokers and nonsmokers on the basis of age of residence and occupation. Positive trend tests indicate that a linear relationship exists between smoke exposure and blood lead levels in youths and adults and that secondhand smoke exposure contributes to blood lead levels above the level caused by smoking. Youths with secondhand smoke exposure had blood lead levels suggestive of the potential for adverse cognitive outcomes. Despite remediation efforts in housing and the environment and declining smoking rates and secondhand smoke exposure in the United States, tobacco smoke continues to be a substantial source of exposure to lead in vulnerable populations and the population in general.
Li, Xiaowei; Liu, Qing; Liu, Liping; Wu, Yongning
2012-05-01
To assess the distribution of dietary lead exposure in different age-gender groups of Chinese residents by using the data from China Total Diet Study, and combining the new risk assessment and the PTWI withdrawn by JECFA. Methods Combining the lead concentrations of dietary samples with the food consumption data from China Total Diet Study in 2007 to obtain the distribution of dietary intake and dietary source of lead in different age-gender population groups. Dietary lead exposure of different age-gender population groups in China was in the range of 48.7 -116.7 microg/d. The status of higher lead exposure in younger age groups was not optimistic, as the mean and median margins of exposure (MOE) have been less than 1.0 (0.1 - 0.3). The main sources of dietary lead were cereals and vegetables, which covering 57% of total lead exposure. Lowering the dietary lead exposure of Chinese residents is necessary, especially of infants and children.
Long-term human exposure to lead from different media and intake pathways.
Pizzol, Massimo; Thomsen, Marianne; Andersen, Mikael Skou
2010-10-15
Lead (Pb) is well known as an environmental pollutant: it can accumulate in various media, so actual lead exposure reflects both historical and present contaminations. Two main challenges then emerge: obtaining updated information to gain an overall picture of the sources of exposure, and predicting the resulting internal body exposure levels and effects that occur under long-term exposure conditions. In this paper, a modeling approach is used to meet these challenges with reference to Danish exposure conditions. Levels of lead content in various media have been coupled with data for lead intake and absorption in the human body, for both children and adults. An age-dependent biokinetic model allows then for determination of the blood lead levels resulting from chronic exposure. The study shows that the actual intake of lead is up to 27% of the Provisional Tolerable Daily Intake (PTDI) for children and around 8% for adults. It is confirmed that the critical route of exposure is via ingestion, accounting for 99% of total lead intake, while inhalation contributes only to 1% of total lead intake. The resulting lead levels in the blood after 2 years of exposure to actual contamination conditions have been estimated as up to 2.2μg/dl in children and almost 1μg/dl in adults. Impacts from lead can occur even at such levels. The role of historical and present sources to lead in the environment is discussed, and, for specific child and adult exposure scenarios, external-internal concentration relationships for the direct linkage between lead in environmental media and resulting concentrations of lead in blood are then presented. Copyright © 2010 Elsevier B.V. All rights reserved.
Lead exposure is related to hypercortisolemic profiles and allostatic load in Brazilian older adults
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souza-Talarico, Juliana N., E-mail: junery@usp.br
Lead levels (Pb) have been linked to both hyper- and hypo-reactivity of hypothalamic-pituitary-adrenal axis (HPA) axis to acute stress in animals and humans. Similarly, allostatic load (AL), the ‘wear and tear’ of chronic stress, is associated with inadequate HPA axis activity. We examined whether Pb levels would be associated with altered diurnal cortisol profile, as a primary mediator of AL, during aging. Pb levels were measured from blood samples (BPb) of 126 Brazilian individuals (105 women), between 50 and 82 years old. Six neuroendocrine, metabolic, and anthropometric biomarkers were analyzed and values were transformed into an AL index using clinicalmore » reference cut-offs. Salivary samples were collected at home over 2 days at awakening, 30-min after waking, afternoon, and evening periods to determine cortisol levels. A multiple linear regression model showed a positive association between BPb as the independent continuous variable and cortisol awakening response (R{sup 2}=0.128; B=0.791; p=0.005) and overall cortisol concentration (R{sup 2}=0.266; B=0.889; p<0.001) as the outcomes. Repeated measures ANOVA showed that individuals with high BPb levels showed higher cortisol at 30 min after awakening (p=0.003), and in the afternoon (p=0.002) than those with low BPb values. Regarding AL, regression model showed that BPb was positively associated with AL index (R{sup 2}=0.100; B=0.204; p=0.032). Correlation analyzes with individual biomarkers showed that BPb was positively correlated with HDL cholesterol (p=0.02) and negatively correlated with DHEA-S (p=0.049). These findings suggest that Pb exposure, even at levels below the reference blood lead level for adults recommended by the National Institute for Occupational Safety and Health and by the Center for Disease Control and Prevention, may contribute to AL and dysregulated cortisol functioning in older adults. Considering these findings were based on cross-sectional data future research is needed to confirm our exploratory results. - Highlights: • Lead exposure is associated with several negative health outcomes. • Allostatic load (AL), the wear and tear of chronic stress, may be affected by lead exposure. • Lead concentration was associated with high cortisol levels and high allostatic load. • Even at very low levels of exposure, lead was associated with chronic stress mediators.« less
Allert, A.L.; Fairchild, J.F.; DiStefano, R.J.; Schmitt, C.J.; Brumbaugh, W.G.; Besser, J.M.
2009-01-01
The Viburnum Trend mining district in southeast Missouri, USA is one of the largest producers of lead-zinc ore in the world. Previous stream surveys found evidence of increased metal exposure and reduced population densities of crayfish immediately downstream of mining sites. We conducted an in-situ 28-d exposure to assess toxicity of mining-derived metals to the woodland crayfish (Orconectes hylas). Crayfish survival and biomass were significantly lower at mining sites than at reference and downstream sites. Metal concentrations in water, detritus, macroinvertebrates, fish, and crayfish were significantly higher at mining sites, and were negatively correlated with caged crayfish survival. These results support previous field and laboratory studies that showed mining-derived metals negatively affect O. hylas populations in streams draining the Viburnum Trend, and that in-situ toxicity testing was a valuable tool for assessing the impacts of mining on crayfish populations.
Lead exposure potentiates predatory attack behavior in the cat.
Li, Wenjie; Han, Shenggao; Gregg, Thomas R; Kemp, Francis W; Davidow, Amy L; Louria, Donald B; Siegel, Allan; Bogden, John D
2003-07-01
Epidemiologic studies have demonstrated that environmental lead exposure is associated with aggressive behavior in children; however, numerous confounding variables limit the ability of these studies to establish a causal relationship. The study of aggressive behavior using a validated animal model was used to test the hypothesis that there is a causal relationship between lead exposure and aggression in the absence of confounding variables. We studied the effects of lead exposure on a feline model of aggression: predatory (quiet biting) attack of an anesthetized rat. Five cats were stimulated with a precisely controlled electrical current via electrodes inserted into the lateral hypothalamus. The response measure was the predatory attack threshold current (i.e., the current required to elicit an attack response on 50% of the trials). Blocks of trials were administered in which predatory attack threshold currents were measured three times a week for a total of 6-10 weeks, including before, during, and after lead exposure. Lead was incorporated into cat food "treats" at doses of 50-150 mg/kg/day. Two of the five cats received a second period of lead exposure. Blood lead concentrations were measured twice a week and were <1, 21-77, and <20 micro g/dL prior to, during, and after lead exposure, respectively. The predatory attack threshold decreased significantly during initial lead exposure in three of five cats and increased after the cessation of lead exposure in four of the five cats (P<0.01). The predatory attack thresholds and blood lead concentrations for each cat were inversely correlated (r=-0.35 to -0.74). A random-effects mixed model demonstrated a significant (P=0.0019) negative association between threshold current and blood lead concentration. The data of this study demonstrate that lead exposure enhances predatory aggression in the cat and provide experimental support for a causal relationship between lead exposure and aggressive behavior in humans.
Prenatal lead exposure and bone growth. Doctoral thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, J.D.; O'Flaherty, E.J.
1990-07-24
An experimental system of lead (7439921) related prenatal and postnatal growth retardation in rats was developed. Sprague-Dawley-rats and Long-Evans-rats were used in these studies. Rats were exposed to lead in their drinking water at up to 1000 parts per million. A significant effect on fetal bone mineralization could not be excluded and there was a definite effect on fetal body weight following maternal lead exposure. Reduced food intake during the first week of lead exposure was the primary determinant of reduced body and skeletal growth in the lead exposed weanling female rats. When maternal lead exposure was continued during lactationmore » a greater degree of lead related growth retardation in rat offspring occurred than when maternal lead exposure was terminated at parturition. Combined prenatal and postnatal lead exposure impaired bone resorption and increased growth plate widths. In studies using matrix induced endochondral bone plaques, locally applied lead enhanced plaque mineralization through comineralization of lead with calcium. When lead was administered in drinking water, plaque mineralization was also enhanced through the comineralization of lead with calcium.« less
Barbosa, Fernando; Corrêa Rodrigues, Maria Heloísa; Buzalaf, Maria R; Krug, Francisco J; Gerlach, Raquel F; Tanus-Santos, José Eduardo
2006-10-01
We conducted a study to evaluate the use of parotid salivary lead (Pb-saliva) levels as a surrogate of the blood lead (Pb-B) or plasma lead levels (Pb-P) to diagnose lead exposure. The relationship between these biomarkers was assessed in a lead exposed population. Pb-saliva and Pb-P were determined by inductively coupled plasma mass spectrometry, while in whole blood lead was determined by graphite furnace atomic absorption spectrometry. We studied 88 adults (31 men and 57 women) from 18 to 60 years old. Pb-saliva levels varied from 0.05 to 4.4 microg/l, with a mean of 0.85 microg/l. Blood lead levels varied from 32.0 to 428.0 microg/l in men (mean 112.3 microg/l) and from 25.0 to 263.0 microg/l (mean 63.5 microg/l) in women. Corresponding Pb-Ps were 0.02-2.50 microg/l (mean 0.77 microg/l) and 0.03-1.6 microg/l (mean 0.42 microg/l) in men and women, respectively. A weak correlation was found between Log Pb-saliva and Log Pb-B (r=0.277, P<0.008), and between Log Pb-saliva and Log Pb-P (r=0.280, P=0.006). The Pb-saliva/Pb-P ratio ranged from 0.20 to 18.0. Age or gender does not affect Pb-saliva levels or Pb-saliva/Pb-P ratio. Taken together, these results suggest that salivary lead may not be used as a biomarker to diagnose lead exposure nor as a surrogate of plasma lead levels at least for low to moderately lead exposed population.
Association of Lead Levels and Cerebral Palsy
Bansal, Neha; Aggarwal, Anju; Faridi, M. M. A.; Sharma, Tusha; Baneerjee, B. D.
2017-01-01
Background: Cerebral palsy is a common motor disability in childhood. Raised lead levels affect cognition. Children with cerebral palsy may have raised lead levels, further impairing their residual cognitive motor and behavioral abilities. Environmental exposure and abnormal eating habits may lead to increased lead levels. Aims and Objectives: To measure blood lead levels in children with cerebral palsy and compare them with healthy neurologically normal children. To correlate blood lead levels with environmental factors. Material and Methods: Design: Prospective case-control study. Setting: Tertiary care hospital. Participants: Cases comprised 34 children with cerebral palsy, and controls comprised 34 neurologically normal, age- and sex-matched children. Methods: Clinical and demographic details were recorded as per proforma. Detailed environmental history was recorded to know the source of exposure to lead. These children were investigated and treated as per protocol. Venous blood was collected in ethylenediaminetetraacetic acid vials for analysis of blood lead levels. Lead levels were estimated by Schimadzu Flame AA-6800 (atomic absorption spectrophotometer). Data were analyzed using SPSS version 17. P < .05 was taken as significant. Results: Mean blood lead levels were 9.20 ± 8.31 µg/dL in cerebral palsy cases and 2.89 ± 3.04 µg/dL in their controls (P < .001). Among children with cerebral palsy, 19 (55.88%) children had blood lead levels ≥5 µg/dL. Lead levels in children with pica were 12.33 ± 10.02 µg/dL in comparison to children with no history of pica, 6.70 ± 4.60 µg/dL (P = .029). No correlation was found between hemoglobin and blood lead levels in cases and controls. Conclusion: In our study, blood lead levels are raised in children with cerebral palsy. However, further studies are required to show effects of raised levels in these children. PMID:28491920
Human geography of New Orleans' high-lead geochemical setting.
Campanella, Richard; Mielke, Howard W
2008-12-01
Previous soil lead studies in New Orleans focused on the geochemical footprint and its health impacts. This study examines the human geography of race, income, and age in pre-Katrina metropolitan New Orleans within the context of lead accumulation in soils. Sample points of soil lead data (n = 5,467) collected in 1998-2000 were mapped in a geographic information system (GIS), binned into 9 ranges, and queried by (1) 2000 Census racial demographic data, (2) 1999 median household income, and (3) 2000 age data. The absolute population generally declines as lead levels increase except at lead levels from 200-400 to 400-1,000 mg/kg when population increases; the African-American population comprises a disproportionate share of this cohort. The high-lead areas occur in the inner city, home to the largest populations of African-Americans in New Orleans. The mean household income curve indicates that lower economic groups are at risk to higher levels of lead. A total of 44,701 children under the age of 5 years, plus 123,579 children aged 5-17, lived in census block groups containing at least one sample point with over 100 mg/kg lead, and these include 23,124 and 64,064 young people, respectively, who live near at least one point over 400 mg/kg. Lead exposure affects a panoply of outcomes that influence the health and welfare of the community. Unless corrected, children are likely to return to the same or, because of lack of lead-safe practices during renovation, even higher exposure risks than before the flooding of New Orleans.
Itzhaki, Michal; Bluvstein, Irit; Peles Bortz, Anat; Kostistky, Hava; Bar Noy, Dor; Filshtinsky, Vivian; Theilla, Miriam
2018-01-01
Professional quality of life (ProQOL) reflects how individuals feel about their work as helpers. Psychiatric ward nurses cope with significant psychological and physical challenges, including exposure to verbal and physical violence. This study was based on two aspects of ProQOL, the positive compassion satisfaction, and the negative compassion fatigue, with the aim of investigating the relation of ProQOL to job stress and violence exposure at a large mental health center. Data were collected from 114 mental health nurses (49/63 M/F) who completed a self-administered questionnaire examining violence exposure, ProQOL, and job stress. The results showed that during the last year, almost all nurses (88.6%) experienced verbal violence, and more than half (56.1%) experienced physical violence. Only 2.6% experienced no violence. ProQOL was not associated with violence exposure but was reduced by work stress and by previous exposure to violence; nurses who perceived their work as more stressful had lower satisfaction from their work. In conclusion, although most mental health nurses are exposed to physical and verbal violence, their ProQOL is more related to job stress than to workplace violence (WPV). Hospital managements should conduct work stress reduction intervention programs and promote strategizes to reduce WPV. Further exploration of (a) factors affecting ProQOL and (b) the effect of violence coping workshops on ProQOL is warranted. PMID:29535652
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, K.A.; Caldwell, C.A.; Sandheinrich, M.B.
1995-12-31
Contaminants often invoke a stress response in aquatic organisms, and may compromise their capacity to respond to secondary stressors. This may reduce growth, reproduction and survival. The authors objectives were to assess the effects of lead and secondary stressors on hematology and blood chemistry of rainbow trout. After a 7 to 8-week aqueous exposure to Pb(100{micro}g/L), rainbow trout were challenged with forced swimming or hypoxia. Lead significantly reduced concentrations of 5-aminolevulinic acid dehydratase (ALAD), but not other constituents in the blood. Lead did not affect the swimming endurance of the fish. Hematocrit, mean cell hemoglobin content, and mean cell volumemore » were significantly lower in Pb-exposed trout following the swimming challenge. Although hypoxia resulted in increased hematocrit and plasma glucose concentrations, there were no significant differences between the Pb and control groups. Hypoxia did not affect plasma chloride concentrations, although concentrations increased in Pb-exposed trout. There was no difference in lactic acid concentrations between Pb-exposed and control fish after forced swimming or hypoxia.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, William Jowett
1996-05-01
Indoor air exposures to gaseous contaminants originating in soil can cause large human health risks. To predict and control these exposures, the mechanisms that affect vapor transport in near-surface soils need to be understood. In particular, radon exposure is a concern since average indoor radon concentrations lead to much higher risks than are generally accepted for exposure to other environmental contaminants. This dissertation examines an important component of the indoor radon problem: the impacts of wind on soil-gas and radon transport and entry into buildings. The research includes experimental and modeling studies of wind`s interactions with a building`s superstructure andmore » the resulting soil-gas and radon flows in the surrounding soil. In addition to exploring the effects of steady winds, a novel modeling technique is developed to examine the impacts of fluctuating winds on soil-gas and radon transport.« less
Adaptive Role of Inversion Polymorphism of Drosophila subobscura in Lead Stressed Environment
Kenig, Bojan; Kurbalija Novičić, Zorana; Patenković, Aleksandra; Stamenković-Radak, Marina; Anđelković, Marko
2015-01-01
Local adaptation to environmental stress at different levels of genetic polymorphism in various plants and animals has been documented through evolution of heavy metal tolerance. We used samples of Drosophila subobscura populations from two differently polluted environments to analyze the change of chromosomal inversion polymorphism as genetic marker during laboratory exposure to lead. Exposure to environmental contamination can affect the genetic content within a particular inversion and produce targets for selection in populations from different environments. The aims were to discover whether the inversion polymorphism is shaped by the local natural environments, and if lead as a selection pressure would cause adaptive divergence of two populations during the multigenerational laboratory experiment. The results showed that populations retain signatures from past contamination events, and that heavy metal pollution can cause adaptive changes in population. Differences in inversion polymorphism between the two populations increased over generations under lead contamination in the laboratory. The inversion polymorphism of population originating from the more polluted natural environment was more stable during the experiment, both under conditions with and without lead. Therefore, results showed that inversion polymorphism as a genetic marker reflects a strong signature of adaptation to the local environment, and that historical demographic events and selection are important for both prediction of evolutionary potential and long-term viability of natural populations. PMID:26102201
Adaptive Role of Inversion Polymorphism of Drosophila subobscura in Lead Stressed Environment.
Kenig, Bojan; Kurbalija Novičić, Zorana; Patenković, Aleksandra; Stamenković-Radak, Marina; Anđelković, Marko
2015-01-01
Local adaptation to environmental stress at different levels of genetic polymorphism in various plants and animals has been documented through evolution of heavy metal tolerance. We used samples of Drosophila subobscura populations from two differently polluted environments to analyze the change of chromosomal inversion polymorphism as genetic marker during laboratory exposure to lead. Exposure to environmental contamination can affect the genetic content within a particular inversion and produce targets for selection in populations from different environments. The aims were to discover whether the inversion polymorphism is shaped by the local natural environments, and if lead as a selection pressure would cause adaptive divergence of two populations during the multigenerational laboratory experiment. The results showed that populations retain signatures from past contamination events, and that heavy metal pollution can cause adaptive changes in population. Differences in inversion polymorphism between the two populations increased over generations under lead contamination in the laboratory. The inversion polymorphism of population originating from the more polluted natural environment was more stable during the experiment, both under conditions with and without lead. Therefore, results showed that inversion polymorphism as a genetic marker reflects a strong signature of adaptation to the local environment, and that historical demographic events and selection are important for both prediction of evolutionary potential and long-term viability of natural populations.
Recommendations for Medical Management of Adult Lead Exposure
Kosnett, Michael J.; Wedeen, Richard P.; Rothenberg, Stephen J.; Hipkins, Karen L.; Materna, Barbara L.; Schwartz, Brian S.; Hu, Howard; Woolf, Alan
2007-01-01
Research conducted in recent years has increased public health concern about the toxicity of lead at low dose and has supported a reappraisal of the levels of lead exposure that may be safely tolerated in the workplace. In this article, which appears as part of a mini-monograph on adult lead exposure, we summarize a body of published literature that establishes the potential for hypertension, effects on renal function, cognitive dysfunction, and adverse female reproductive outcome in adults with whole-blood lead concentrations < 40 μg/dL. Based on this literature, and our collective experience in evaluating lead-exposed adults, we recommend that individuals be removed from occupational lead exposure if a single blood lead concentration exceeds 30 μg/dL or if two successive blood lead concentrations measured over a 4-week interval are ≥ 20 μg/dL. Removal of individuals from lead exposure should be considered to avoid long-term risk to health if exposure control measures over an extended period do not decrease blood lead concentrations to < 10 μg/dL or if selected medical conditions exist that would increase the risk of continued exposure. Recommended medical surveillance for all lead-exposed workers should include quarterly blood lead measurements for individuals with blood lead concentrations between 10 and 19 μg/dL, and semiannual blood lead measurements when sustained blood lead concentrations are < 10 μg/dL. It is advisable for pregnant women to avoid occupational or avocational lead exposure that would result in blood lead concentrations > 5 μg/dL. Chelation may have an adjunctive role in the medical management of highly exposed adults with symptomatic lead intoxication but is not recommended for asymptomatic individuals with low blood lead concentrations. PMID:17431500
Madder, Ryan D; VanOosterhout, Stacie; Mulder, Abbey; Elmore, Matthew; Campbell, Jessica; Borgman, Andrew; Parker, Jessica; Wohns, David
Reports of left-sided brain malignancies among interventional cardiologists have heightened concerns regarding physician radiation exposure. This study evaluated the impact of a suspended lead suit and robotic system on physician radiation exposure during percutaneous coronary intervention (PCI). Real-time radiation exposure data were prospectively collected from dosimeters worn by operating physicians at the head- and chest-level during consecutive PCI cases. Exposures were compared in three study groups: 1) manual PCI performed with traditional lead apparel; 2) manual PCI performed using suspended lead; and 3) robotic PCI performed in combination with suspended lead. Among 336 cases (86.6% manual, 13.4% robotic) performed over 30weeks, use of suspended lead during manual PCI was associated with significantly less radiation exposure to the chest and head of operating physicians than traditional lead apparel (chest: 0.0 [0.1] μSv vs 0.4 [4.0] μSv, p<0.001; head: 0.5 [1.9] μSv vs 14.9 [51.5] μSv, p<0.001). Chest-level radiation exposure during robotic PCI performed in combination with suspended lead was 0.0 [0.0] μSv, which was significantly less chest exposure than manual PCI performed with traditional lead (p<0.001) or suspended lead (p=0.046). In robotic PCI the median head-level exposure was 0.1 [0.2] μSv, which was 99.3% less than manual PCI performed with traditional lead (p<0.001) and 80.0% less than manual PCI performed with suspended lead (p<0.001). Utilization of suspended lead and robotics were observed to result in significantly less radiation exposure to the chest and head of operating physicians during PCI. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikeda, Masahiko; Tamura, Masashi; Yamashita, Junko
2005-08-15
The effects of in utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the reproductive system of male rat offspring (F{sub 1}) and the sex ratio of the subsequent generation (F{sub 2}) were examined. Female Holtzman rats were gavaged with an initial loading dose of 400 ng/kg TCDD prior to mating, followed by weekly maintenance doses of 80 ng/kg during mating, pregnancy, and the lactation period. Maternal exposure to TCDD had no significant effects on fetus/pup (F{sub 1}) mortality, litter size, or sex ratio on gestation day (GD) 20 or postnatal day (PND) 2. The TCDD concentration in maternal livers and adipose tissuemore » on GD20 was 1.21 and 1.81 ng/kg, respectively, and decreased at weaning to 0.72 in the liver and 0.84 in the adipose tissue. In contrast, the TCDD concentration in pup livers was 1.32 ng/kg on PND2 and increased to 1.80 ng/kg at weaning. Ventral prostate weight of male offspring was significantly decreased by TCDD exposure on PND28 and 120 compared with that of controls. Weight of the testes, cauda epididymides, and seminal vesicle, and sperm number in the cauda epididymis were not changed by TCDD exposure at PND120. TCDD- or vehicle-exposed male offspring were mated with unexposed females. The sex ratio (percentage of male pups) of F{sub 2} offspring was significantly reduced in the TCDD-exposed group compared with controls. These results suggest that in utero and lactational TCDD exposures affect the development of male gonads in offspring (F{sub 1}), leading to changes in the sex ratio of the subsequent generation (F{sub 2})« less
Audesirk, T; Audesirk, G; Ferguson, C; Shugarts, D
1991-01-01
Lead exposure has devastating effects on the developing nervous system, and has been implicated in variety of behavioral and cognitive deficits as well as neural morphological abnormalities. Since lead impacts many calcium-dependent processes, one likely mechanism of lead toxicity is its disruption of calcium dependent processes, among which is neuronal differentiation. We investigated the effects of inorganic lead on survival and several parameters of differentiation of cultured neurons. Three different cell types were used: Rat hippocampal neurons (a primary CNS cell type), B50 rat neuroblastoma cells (a transformed CNS-derived cell line), and N1E-115 mouse neuroblastoma cells (a transformed peripherally-derived cell line). Lead concentrations ranged from low nM to 1 mM. Lead effects differed considerably among the three cell types, with B50 cells least affected. Lead effects were generally multimodal, with fewest effects observed at intermediate concentrations. Lead inhibited neurite initiation in hippocampal neurons, but stimulated initiation in N1E-115 cells. In those cells that differentiated, lead increased dendrite numbers in hippocampal neurons and neurite numbers in N1E-115 cells. Lead exposure increased both the length and the degree of branching of axons in hippocampal neurons and the length of neurites in N1E-115 cells. We hypothesize that lead impacts multiple regulatory processes that influence neuron survival and differentiation, and that its effects show differing dose-dependencies. The differing responses of the different cell types to lead suggests that differentiation may be regulated in different ways by the three types of cells. Alternatively, or additionally, the cell types may differ in their ability to compensate for, sequester, or expel lead.
ERIC Educational Resources Information Center
Kimball, Sarah L.
This report discusses the effects of lead exposure and toxicity on children's cognitive development and school performance and addresses the role of schools in prevention of lead poisoning. Sources of lead exposure include mining, smelting and refining activities, lead paint, leaded gasoline, and industrial emissions. The results of lead poisoning…
Radiation-induced gene expression in the nematode Caenorhabditis elegans
NASA Technical Reports Server (NTRS)
Nelson, Gregory A.; Jones, Tamako A.; Chesnut, Aaron; Smith, Anna L.
2002-01-01
We used the nematode C. elegans to characterize the genotoxic and cytotoxic effects of ionizing radiation in a simple animal model emphasizing the unique effects of charged particle radiation. Here we demonstrate by RT-PCR differential display and whole genome microarray hybridization experiments that gamma rays, accelerated protons and iron ions at the same physical dose lead to unique transcription profiles. 599 of 17871 genes analyzed (3.4%) showed differential expression 3 hrs after exposure to 3 Gy of radiation. 193 were up-regulated, 406 were down-regulated and 90% were affected only by a single species of radiation. A novel statistical clustering technique identified the regulatory relationships between the radiation-modulated genes and showed that genes affected by each radiation species were associated with unique regulatory clusters. This suggests that independent homeostatic mechanisms are activated in response to radiation exposure as a function of track structure or ionization density.
Air Pollution, Oxidative Stress, and Alzheimer's Disease
Moulton, Paula Valencia; Yang, Wei
2012-01-01
Alzheimer's disease (AD) is the most common form of dementia affecting millions of people worldwide and will continue to affect millions more with population aging on the rise. AD causality is multifactorial. Known causal factors include genetic predisposition, age, and sex. Environmental toxins such as air pollution (AP) have also been implicated in AD causation. Exposure to AP can lead to chronic oxidative stress (OS), which is involved in the pathogenesis of AD. Whereas AP plays a role in AD pathology, the epidemiological evidence for this association is limited. Given the significant prevalence of AP exposure combined with increased population aging, epidemiological evidence for this link is important to consider. In this paper, we examine the existing evidence supporting the relationship between AP, OS, and AD and provide recommendations for future research on the population level, which will provide evidence in support of public health interventions. PMID:22523504
Automobile proximity and indoor residential concentrations of BTEX and MTBE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corsi, Dr. Richard; Morandi, Dr. Maria; Siegel, Dr. Jeffrey
Attached garages have been identified as important sources of indoor residential air pollution. However, the literature lacks information on how the proximity of cars to the living area affects indoor concentrations of gasoline-related compounds, and the origin of these pollutants. We analyzed data from the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study and evaluated 114 residences with cars in an attached garage, detached garage or carport, or without cars. Results indicate that homes with cars in attached garages were affected the most. Concentrations in homes with cars in detached garages and residences without cars were similar. The contributionmore » from gasoline-related sources to indoor benzene and MTBE concentrations appeared to be dominated by car exhaust, or a combination of tailpipe and gasoline vapor emissions. Residing in a home with an attached garage could lead to benzene exposures ten times higher than exposures from commuting in heavy traffic.« less
Biomass fuel combustion and health*
de Koning, H. W.; Smith, K. R.; Last, J. M.
1985-01-01
Biomass fuels (wood, agricultural waste, and dung) are used by about half the world's population as a major, often the only, source of domestic energy for cooking and heating. The smoke emissions from these fuels are an important source of indoor air pollution, especially in rural communities in developing countries. These emissions contain important pollutants that adversely affect health—such as suspended particulate matter and polycyclic organic matter which includes a number of known carcinogens, such as benzo[a]pyrene, as well as gaseous pollutants like carbon monoxide and formaldehyde. Exposure to large amounts of smoke may present a health risk that is of a similar order of magnitude to the risk from tobacco smoke. The effects on health arising from exposure to air pollution are reviewed, based on what has been reported in the literature so far. Further and more detailed information on exposures and on the epidemiological aspects is urgently required. The persons most frequently affected are women who do the cooking for households in rural villages; they suffer from impaired health due to prolonged and repeated contact with these harmful pollutants. When they are pregnant, the developing fetus may also be exposed and this leads to the risk of excess deaths. In the developing countries, exposure to biomass fuel emissions is probably one of the most important occupational health hazards for women. A conservatively estimated 300-400 million people worldwide, mostly in the rural areas of developing countries, are affected by these problems. PMID:3872729
How Have Deployments During the War on Terrorism Affected Reenlistment?
2009-01-01
review found generally positive effects of deployment on reenlistment but growing concern about the mental health consequences of deployment. Studies ...or Afghanistan as compared with other locations. However, a study found that, among service members who had married since 2002, the effect of...did soldiers. It is worth studying whether longer deployments, and more prolonged exposure to combat, lead to lower reenlistment and higher
Dodd-Butera, Teresa; Quintana, Penelope J E; Ramirez-Zetina, Martha; Batista-Castro, Ana C; Sierra, Maria M; Shaputnic, Carolyn; Garcia-Castillo, Maura; Ingmanson, Sonja; Hull, Stacy
2017-01-01
Environmental exposures along the US-Mexico border have the potential to adversely affect the maternal-fetal environment. The purpose of this study was to assess placental biomarkers of environmental exposures in an obstetric population at the California-Baja California border in relation to detoxifying enzymes in the placenta and nutritional status. This study was conducted on consenting, full-term, obstetric patients (n=54), delivering in a hospital in Tijuana, Baja California (BC), Mexico. Placental polyaromatic hydrocarbon (PAH)-DNA adducts were measured in addition to placental glutathione-S-transferase (GST) activity and genotype, maternal serum folate, and maternal and umbilical cord blood lead and cadmium levels. A questionnaire was administered to the mothers to determine maternal occupation in a maquiladora, other exposures, and obstetric indicators. In univariate analysis, maternal serum folate levels were inversely correlated with total PAH-DNA adducts (rho=-0.375, p=0.007); adduct #1 (rho=-0.388, p=0.005); and adduct #3 (rho =-0.430, p=0.002). Maternal lead levels were significantly positively correlated with cord blood lead levels (rho=0.512, p<0.001). Cadmium levels were generally very low but significantly higher in mothers exposed to environmental tobacco smoke (ETS) (either at work or at home, n=10). In multivariate analysis, only maternal serum folate levels remained as a significant negative predictor of total DNA-PAH adducts levels in placenta. These findings affirm that placental tissue is a valuable and readily available source of human tissue for biomonitoring; and indicate that further study of the role of nutrition in detoxification and mitigation of environmental exposures in pregnant women is warranted. Copyright © 2016 Elsevier Inc. All rights reserved.
Prenatal alcohol exposure and long-term developmental consequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spohr, H.L.; Willms, J.; Steinhausen, H.C.
Fetal alcohol syndrome (FAS) is a leading cause of congenital mental retardation but little is known about the long-term development and adolescent outcome of children with FAS. In a 10-year follow-up study of 60 patients diagnosed as having FAS in infancy and childhood, the authors investigated the long-term sequelae of intrauterine alcohol exposure. The authors found that the characteristic craniofacial malformations of FAS diminish with time, but microcephaly and, to a lesser degree, short stature and underweight (in boys) persist; in female adolescents body weight normalizes. Persistent mental retardation is the major sequela of intrauterine alcohol exposure in many cases,more » and environmental and educational factors do not have strong compensatory effects on the intellectual development of affected children.« less
ANCA-associated vasculitis in Greek siblings with chronic exposure to silica.
Brener, Z; Cohen, L; Goldberg, S J; Kaufman, A M
2001-11-01
We present the case of two siblings with similar environmental exposure to silica. Both of them developed perinuclear antineutrophil cytoplasmic antibody (p-ANCA)-associated vasculitis with pulmonary-renal syndrome. p-ANCAs were present with antimyeloperoxidase specificity on capture enzyme-linked immunosorbent assay. Treatment with corticosteroids and cyclophosphamide resulted in resolution of the clinical picture. Chronic exposure to silica is the leading environmental factor associated with ANCA-positive vasculitis. Several clusters of systemic vasculitis have been described. Positive and negative human leukocyte antigens (HLA) have been reported in systemic vasculitis. Affected brothers in our case shared one parental HLA haplotype. To the best of our knowledge, this is the first report of a family cluster of silica-induced, ANCA-associated systemic vasculitis with members sharing some of their HLA antigens.
Antonissen, Gunther; Devreese, Mathias; Van Immerseel, Filip; De Baere, Siegrid; Hessenberger, Sabine; Martel, An; Croubels, Siska
2015-01-01
Both deoxynivalenol (DON) and fumonisin B1 (FB1) are common contaminants of feed. Fumonisins (FBs) in general have a very limited oral bioavailability in healthy animals. Previous studies have demonstrated that chronic exposure to DON impairs the intestinal barrier function and integrity, by affecting the intestinal surface area and function of the tight junctions. This might influence the oral bioavailability of FB1, and possibly lead to altered toxicity of this mycotoxin. A toxicokinetic study was performed with two groups of 6 broiler chickens, which were all administered an oral bolus of 2.5 mg FBs/kg BW after three-week exposure to either uncontaminated feed (group 1) or feed contaminated with 3.12 mg DON/kg feed (group 2). No significant differences in toxicokinetic parameters of FB1 could be demonstrated between the groups. Also, no increased or decreased body exposure to FB1 was observed, since the relative oral bioavailability of FB1 after chronic DON exposure was 92.2%. PMID:25690690
Emotionally anesthetized: media violence induces neural changes during emotional face processing
Stockdale, Laura A.; Morrison, Robert G.; Kmiecik, Matthew J.; Garbarino, James
2015-01-01
Media violence exposure causes increased aggression and decreased prosocial behavior, suggesting that media violence desensitizes people to the emotional experience of others. Alterations in emotional face processing following exposure to media violence may result in desensitization to others’ emotional states. This study used scalp electroencephalography methods to examine the link between exposure to violence and neural changes associated with emotional face processing. Twenty-five participants were shown a violent or nonviolent film clip and then completed a gender discrimination stop-signal task using emotional faces. Media violence did not affect the early visual P100 component; however, decreased amplitude was observed in the N170 and P200 event-related potentials following the violent film, indicating that exposure to film violence leads to suppression of holistic face processing and implicit emotional processing. Participants who had just seen a violent film showed increased frontal N200/P300 amplitude. These results suggest that media violence exposure may desensitize people to emotional stimuli and thereby require fewer cognitive resources to inhibit behavior. PMID:25759472
DETERMINANTS OF RESIDENTIAL LEAD EXPOSURE
The phase-out of leaded gasoline, and the accompanying decrease in lead emissions, resulted in a dramatic decline in mean blood lead levels from the late 1970s through the early 1990s. Nonetheless, lead exposures remain a public health concern. Long-term exposures to even low...
Effects of L-cysteine on lead acetate induced neurotoxicity in albino mice.
Mahmoud, Y I; Sayed, S S
2016-07-01
Lead is a toxic heavy metal that adversely affects nervous tissues; it often occurs as an environmental pollutant. We investigated histological changes in the cerebral cortex, hippocampus and cerebellum of adult albino mice following exposure to lead acetate. We also studied the possible ameliorative effect of the chelating agent, L-cysteine, on lead-induced neurotoxicity. We divided albino mice into six groups: 1) vehicle-only control, 2) L-cysteine control, 3 and 4) treated for 7 days with 20 and 40 mg/kg lead acetate, respectively, and 5 and 6) treated for 7 days with 20 and 40 mg/kg lead acetate, respectively, followed by 50 mg/kg L-cysteine for 7 days. Lead acetate administration caused disorganization of cell layers, neuronal loss and degeneration, and neuropil vacuolization. Brain sections from lead-intoxicated mice treated with L-cysteine showed fewer pathological changes; the neuropil showed less vacuolization and the neurons appeared less damaged. L-cysteine at the dose we used only marginally alleviated lead-induced toxicity.
Exposure to alcohol advertisements and teenage alcohol-related problems.
Grenard, Jerry L; Dent, Clyde W; Stacy, Alan W
2013-02-01
This study used prospective data to test the hypothesis that exposure to alcohol advertising contributes to an increase in underage drinking and that an increase in underage drinking then leads to problems associated with drinking alcohol. A total of 3890 students were surveyed once per year across 4 years from the 7th through the 10th grades. Assessments included several measures of exposure to alcohol advertising, alcohol use, problems related to alcohol use, and a range of covariates, such as age, drinking by peers, drinking by close adults, playing sports, general TV watching, acculturation, parents' jobs, and parents' education. Structural equation modeling of alcohol consumption showed that exposure to alcohol ads and/or liking of those ads in seventh grade were predictive of the latent growth factors for alcohol use (past 30 days and past 6 months) after controlling for covariates. In addition, there was a significant total effect for boys and a significant mediated effect for girls of exposure to alcohol ads and liking of those ads in 7th grade through latent growth factors for alcohol use on alcohol-related problems in 10th grade. Younger adolescents appear to be susceptible to the persuasive messages contained in alcohol commercials broadcast on TV, which sometimes results in a positive affective reaction to the ads. Alcohol ad exposure and the affective reaction to those ads influence some youth to drink more and experience drinking-related problems later in adolescence.
Exposure to Alcohol Advertisements and Teenage Alcohol-Related Problems
Dent, Clyde W.; Stacy, Alan W.
2013-01-01
OBJECTIVE: This study used prospective data to test the hypothesis that exposure to alcohol advertising contributes to an increase in underage drinking and that an increase in underage drinking then leads to problems associated with drinking alcohol. METHODS: A total of 3890 students were surveyed once per year across 4 years from the 7th through the 10th grades. Assessments included several measures of exposure to alcohol advertising, alcohol use, problems related to alcohol use, and a range of covariates, such as age, drinking by peers, drinking by close adults, playing sports, general TV watching, acculturation, parents’ jobs, and parents’ education. RESULTS: Structural equation modeling of alcohol consumption showed that exposure to alcohol ads and/or liking of those ads in seventh grade were predictive of the latent growth factors for alcohol use (past 30 days and past 6 months) after controlling for covariates. In addition, there was a significant total effect for boys and a significant mediated effect for girls of exposure to alcohol ads and liking of those ads in 7th grade through latent growth factors for alcohol use on alcohol-related problems in 10th grade. CONCLUSIONS: Younger adolescents appear to be susceptible to the persuasive messages contained in alcohol commercials broadcast on TV, which sometimes results in a positive affective reaction to the ads. Alcohol ad exposure and the affective reaction to those ads influence some youth to drink more and experience drinking-related problems later in adolescence. PMID:23359585
Wynant, Willy; Siemiatycki, Jack; Parent, Marie-Élise; Rousseau, Marie-Claude
2013-03-01
We investigated the association between workplace lead exposure and lung cancer risk, separately for organic lead and for inorganic lead, from either engine emissions or from other sources. Two population-based case-control studies were carried out in Montreal (1979-1986 and 1996-2002) to investigate occupational factors in relation to lung cancer among 1593 men with histologically confirmed incident lung cancer, and 1426 controls from the general population. Interviews elicited information on sociodemographic characteristics, lifetime smoking and occupational history. Chemists translated each job into potential chemical exposures. Cumulative indices of exposure were derived and classified into non-substantial and substantial exposure. ORs adjusted for several potential confounders including smoking, and 95% CIs were estimated by logistic regression. Lifetime prevalences of exposure in Study I were 3% for organic lead, 40% for inorganic lead from engine emissions and 17% for inorganic lead from other sources; corresponding prevalences in Study II were 4%, 19% and 16%, respectively. No associations were observed when comparing ever to never exposed subjects in pooled analyses (organic lead, OR=1.39, 95% CI 0.77 to 2.52; inorganic lead from engine emissions: OR=0.89, 95% CI 0.72 to 1.09; inorganic lead from other sources: OR=0.99, 95% CI 0.76 to 1.29). Nor were these exposures associated with lung cancer in subjects with substantial cumulative exposure. In this large study, using a blinded expert-based assessment of lifetime occupational exposure and adjustment for several potential confounders, we observed no increased risk of lung cancer with exposure to lead compounds.
Prini, Pamela; Penna, Federica; Sciuccati, Emanuele; Alberio, Tiziana; Rubino, Tiziana
2017-10-04
Adolescence represents a vulnerable period for the psychiatric consequences of delta9-tetrahydrocannabinol (Δ⁸-THC) exposure, however, the molecular underpinnings of this vulnerability remain to be established. Histone modifications are emerging as important epigenetic mechanisms involved in the etiopathogenesis of psychiatric diseases, thus, we investigated the impact of chronic Δ⁸-THC exposure on histone modifications in different brain areas of female rats. We checked histone modifications associated to both transcriptional repression (H3K9 di- and tri-methylation, H3K27 tri-methylation) and activation (H3K9 and H3K14 acetylation) after adolescent and adult chronic Δ⁸-THC exposure in the hippocampus, nucleus accumbens, and amygdala. Chronic exposure to increasing doses of Δ⁸-THC for 11 days affected histone modifications in a region- and age-specific manner. The primary effect in the adolescent brain was represented by changes leading to transcriptional repression, whereas the one observed after adult treatment led to transcriptional activation. Moreover, only in the adolescent brain, the primary effect was followed by a homeostatic response to counterbalance the Δ⁸-THC-induced repressive effect, except in the amygdala. The presence of a more complex response in the adolescent brain may be part of the mechanisms that make the adolescent brain vulnerable to Δ⁸-THC adverse effects.
Work, Thierry M.; Smith, M.R.
1996-01-01
Prevalence of lead exposure and elevated tissue lead was determined in Laysan albatross (Diomedea immutabilis) in Hawaii. The relationship between lead exposure and proximity to buildings, between elevated blood lead and droopwing status, and elevated liver lead and presence of lead-containing paint chips in the proventriculus in albatross chicks was also examined. Finally, the effects of lead on the enzyme δ-amino-levulinic acid dehydratase (ALAD) was determined. There was a significant association between lead exposure or elevated tissue lead and proximity to buildings in albatross chicks and presence of lead paint chips in the proventriculus and elevated liver lead in carcasses. Although there was a significant association between elevated blood lead and droopwing chicks, there were notable exceptions. Prevalence of elevated tissue lead in albatross chicks was highest on Sand Island Midway and much less so on Kauai and virtually nonexistent in other areas. Prevalence of lead exposure decreased as numbers of buildings to which chicks were exposed on a given island decreased. Laysan albatross adults had minimal to no lead exposure. There was a significant negative correlation between blood lead concentration and ALAD activity in chicks. Based on ALAD activity, 0.03-0.05 μg/ml was the no effect range for blood lead in albatross chicks.
Marasinghe Wadige, Chamani P M; Taylor, Anne M; Maher, William A; Ubrihien, Rodney P; Krikowa, Frank
2014-04-01
Lead entering aquatic ecosystems adsorbs to sediments and has the potential to cause adverse effects on the health of benthic organisms. To evaluate the freshwater bivalve Hyridella australis as a bioindicator for sediment toxicity, their exposure-dose and response to lead contaminated sediments (< 0.01, 205 ± 9 and 419 ± 16 μg/g dry mass) was investigated in laboratory microcosms using 28 day exposures. Despite high concentrations of lead in the sediments, organisms accumulated low concentrations of lead in their tissues after 28 days of exposure (low treatment: 2.2 ± 0.2 μg/g dry mass, high treatment: 4.2 ± 0.1 μg/g dry mass), however, accumulated lead concentrations in lead exposed organisms were two fold (low treatment) and four fold (high treatment) higher than that of unexposed organisms (1.2 ± 0.3 μg/g dry mass). Accumulation of lead by H. australis may have occurred as analogues of calcium and magnesium. Labial palps accumulated significantly more lead than other tissues. Of the lead accumulated in the hepatopancreas, 83%-91% was detoxified and stored in metal rich granules. The proportions and concentrations of lead in this fraction increased with lead exposure, which suggests that lead detoxification pathway plays an important role in metal tolerance of H. australis. The biologically active lead was mainly present in the mitochondrial fraction which increased with lead exposure. Total antioxidant capacity of H. australis significantly decreased while lipid peroxidation and lysosomal membrane destabilation increased with lead exposure. This study showed a clear lead exposure-dose-response relationship and indicates that H. australis would be a good biomonitor for lead in freshwater ecosystems. Copyright © 2014 Elsevier B.V. All rights reserved.
Basch, Corey H; Jackson, Ashley M; Yin, Jingjing; Hammond, Rodney N; Adhikari, Atin; Fung, Isaac Chun-Hai
2017-07-01
Exposure to lead is detrimental to children's development. YouTube is a form of social media through which people may learn about lead poisoning. The aim of this cross-sectional study was to analyze the variation in lead poisoning-related YouTube contents between different video sources. The 100 most viewed lead poisoning-related videos were manually coded, among which, 50 were consumer-generated, 19 were created by health care professionals, and 31 were news. The 100 videos had a total of more than 8.9 million views, with news videos accounting for 63% of those views. The odds of mentioning what lead poisoning is, how to remove lead, and specifically mentioning the danger in ages 1-5 because of rapid growth among videos created by health care professionals were 7.28 times (Odds ratio, OR = 7.28, 95% CI, 2.09, 25.37, p = 0.002); 6.83 times (OR = 6.83, 95% CI, 2.05, 22.75, p = 0.002) and 9.14 times (OR = 9.14, CI, 2.05, 40.70, p = 0.004) that of consumer-generated videos, respectively. In this study, professional videos had more accurate information regarding lead but their videos were less likely to be viewed compared to consumer-generated videos and news videos. If professional videos about lead poisoning can attract more viewers, more people would be better informed and could possibly influence policy agendas, thereby helping communities being affected by lead exposure.
Chemical-agnostic hazard prediction: statistical inference of in ...
Toxicity pathways have been defined as normal cellular pathways that, when sufficiently perturbed as a consequence of chemical exposure, lead to an adverse outcome. If an exposure alters one or more normal biological pathways to an extent that leads to an adverse toxicity outcome, a significant correlation must exist between the exposure, the extent of pathway alteration, and the degree of adverse outcome. Biological pathways are regulated at multiple levels, including transcriptional, post-transcriptional, post-translational, and targeted degradation, each of which can affect the levels and extents of modification of proteins involved in the pathways. Significant alterations of toxicity pathways resulting from changes in regulation at any of these levels therefore are likely to be detectable as alterations in the proteome. We hypothesize that significant correlations between exposures, adverse outcomes, and changes in the proteome have the potential to identify putative toxicity pathways, facilitating selection of candidate targets for high throughput screening, even in the absence of a priori knowledge of either the specific pathways involved or the specific agents inducing the pathway alterations. We explored this hypothesis in vitro in BEAS-2B human airway epithelial cells exposed to different concentrations of Ni2+, Cd2+, and Cr6+, alone and in defined mixtures. Levels and phosphorylation status of a variety of signaling pathway proteins and cytokines were
Kim, Dohyeong; Galeano, M. Alicia Overstreet; Hull, Andrew; Miranda, Marie Lynn
2008-01-01
Background Preventive approaches to childhood lead poisoning are critical for addressing this longstanding environmental health concern. Moreover, increasing evidence of cognitive effects of blood lead levels < 10 μg/dL highlights the need for improved exposure prevention interventions. Objectives Geographic information system–based childhood lead exposure risk models, especially if executed at highly resolved spatial scales, can help identify children most at risk of lead exposure, as well as prioritize and direct housing and health-protective intervention programs. However, developing highly resolved spatial data requires labor-and time-intensive geocoding and analytical processes. In this study we evaluated the benefit of increased effort spent geocoding in terms of improved performance of lead exposure risk models. Methods We constructed three childhood lead exposure risk models based on established methods but using different levels of geocoded data from blood lead surveillance, county tax assessors, and the 2000 U.S. Census for 18 counties in North Carolina. We used the results to predict lead exposure risk levels mapped at the individual tax parcel unit. Results The models performed well enough to identify high-risk areas for targeted intervention, even with a relatively low level of effort on geocoding. Conclusions This study demonstrates the feasibility of widespread replication of highly spatially resolved childhood lead exposure risk models. The models guide resource-constrained local health and housing departments and community-based organizations on how best to expend their efforts in preventing and mitigating lead exposure risk in their communities. PMID:19079729
Windows of lead exposure sensitivity, attained height, and body mass index at 48 months.
Afeiche, Myriam; Peterson, Karen E; Sánchez, Brisa N; Schnaas, Lourdes; Cantonwine, David; Ettinger, Adrienne S; Solano-González, Maritsa; Hernández-Avila, Mauricio; Hu, Howard; Téllez-Rojo, Martha M
2012-06-01
To examine longitudinal associations of prenatal, infancy, and early childhood lead exposure during sensitive periods with height and body mass index (BMI). A total of 773 participants were recruited between 1994 and 2005 in Mexico City. Lead exposure history categories were constructed for the prenatal period (maternal patellar lead concentration) and for infancy and childhood (mean child blood lead concentration at birth to 24 months and 30-48 months, respectively). Linear regression models were used to study lead exposure history with height and BMI at 48 months. Mean height at age 48 months was significantly lower in children with a blood lead level exceeding the median during infancy (-0.84 cm; 95% CI, -1.42 to -0.25) than in children with a level below the median. Prenatal lead exposure was not associated with height at 48 months. Results for attained BMI generally trended in the same direction as for height. Our findings suggest an effect of lead exposure early in life on height attainment at 48 months, with the exposure window of greatest sensitivity in infancy. Copyright © 2012 Mosby, Inc. All rights reserved.
Jiang, Yifei; Tong, Dongyi; Hofacer, Rylon D; Loepke, Andreas W; Lian, Qingquan; Danzer, Steve C
2016-12-01
Exposure to isoflurane increases apoptosis among postnatally generated hippocampal dentate granule cells. These neurons play important roles in cognition and behavior, so their permanent loss could explain deficits after surgical procedures. To determine whether developmental anesthesia exposure leads to persistent deficits in granule cell numbers, a genetic fate-mapping approach to label a cohort of postnatally generated granule cells in Gli1-CreER::GFP bitransgenic mice was utilized. Green fluorescent protein (GFP) expression was induced on postnatal day 7 (P7) to fate map progenitor cells, and mice were exposed to 6 h of 1.5% isoflurane or room air 2 weeks later (P21). Brain structure was assessed immediately after anesthesia exposure (n = 7 controls and 8 anesthesia-treated mice) or after a 60-day recovery (n = 8 controls and 8 anesthesia-treated mice). A final group of C57BL/6 mice was exposed to isoflurane at P21 and examined using neurogenesis and cell death markers after a 14-day recovery (n = 10 controls and 16 anesthesia-treated mice). Isoflurane significantly increased apoptosis immediately after exposure, leading to cell death among 11% of GFP-labeled cells. Sixty days after isoflurane exposure, the number of GFP-expressing granule cells in treated animals was indistinguishable from control animals. Rates of neurogenesis were equivalent among groups at both 2 weeks and 2 months after treatment. These findings suggest that the dentate gyrus can restore normal neuron numbers after a single, developmental exposure to isoflurane. The authors' results do not preclude the possibility that the affected population may exhibit more subtle structural or functional deficits. Nonetheless, the dentate appears to exhibit greater resiliency relative to nonneurogenic brain regions, which exhibit permanent neuron loss after isoflurane exposure.
Lead exposure in Canada geese of the Eastern Prairie Population
DeStefano, S.; Brand, C.J.; Rusch, D.H.; Finley, Daniel L.; Gillespie, M.M.
1991-01-01
We monitored lead exposure in Eastern Prairie Population Canada geese during summer-winter, 1986-1987 and 1987-1988 at 5 areas. Blood lead concentrations in geese trapped during summer at Cape Churchill Manitoba were below levels indicative of recent lead exposure (0.18 ppm). Geese exposed to lead (≥0.18 ppm blood lead) increased to 7.6% at Oak Hammock Wildlife Management Area (WMA), southern Manitoba, where lead shot was still in use, and to 10.0% at Roseau River WMA, northern Minnesota, when fall-staging geese were close to a source of lead shot in Manitoba. Proportion of birds exposed to lead dropped to <2% at Lac Qui Parle WMA, Minnesota, a steel shot zone since 1980. On the wintering grounds at Swan Lake National Wildlife Refuge in Missouri, 4.9% of all geese showed exposure to lead before the hunting season. Lead exposure rose to 10.0% after hunting ended and then decreased to 5.2% in late winter. Incidence of lead shot in gizzards and concentrations of lead in livers supported blood assay data. Soil samples indicated that lead shot continues to be available to geese at Swan Lake, even though the area was established as a non-toxic shot zone in 1978. Steel shot zones have reduced lead exposure in the Eastern Prairie Population, but lead shot persists in the environment and continues to account for lead exposure and mortality in Eastern Prairie Population Canada geese.
Effects of methyl mercury exposure on pancreatic beta cell development and function.
Schumacher, Lauren; Abbott, Louise C
2017-01-01
Methyl mercury is an environmental contaminant of worldwide concern. Since the discovery of methyl mercury exposure due to eating contaminated fish as the underlying cause of the Minamata disaster, the scientific community has known about the sensitivity of the developing central nervous system to mercury toxicity. Warnings are given to pregnant women and young children to limit consumption of foods containing methyl mercury to protect the embryonic, fetal and postnatally developing central nervous system. However, evidence also suggests that exposure to methyl mercury or various forms of inorganic mercury may also affect development and function of other organs. Numerous reports indicate a worldwide increase in diabetes, particularly type 2 diabetes. Quite recently, methyl mercury has been shown to have adverse effects on pancreatic beta (β) cell development and function, resulting in insulin resistance and hyperglycemia and may even lead to the development of diabetes. This review discusses possible mechanisms by which methyl mercury exposure may adversely affect pancreatic β cell development and function, and the role that methyl mercury exposure may have in the reported worldwide increase in diabetes, particularly type 2 diabetes. While additional information is needed regarding associations between mercury exposure and specific mechanisms of the pathogenesis of diabetes in the human population, methyl mercury's adverse effects on the body's natural sources of antioxidants suggest that one possible therapeutic strategy could involve supplementation with antioxidants. Thus, it is important that additional investigation be undertaken into the role of methyl mercury exposure and reduced pancreatic β cell function. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Abu Bakar, Noraini; Mohd Sata, Nurul Syafida Asma'; Ramlan, Nurul Farhana; Wan Ibrahim, Wan Norhamidah; Zulkifli, Syaizwan Zahmir; Che Abdullah, Che Azurahanim; Ahmad, Syahida; Amal, Mohammad Noor Azmai
Chronic exposure to mercury (Hg) can lead to cumulative impairments in motor and cognitive functions including alteration in anxiety responses. Although several risk factors have been identified in recent year, little is known about the environmental factors that either due exposure toward low level of inorganic mercury that may led to the developmental disorders. The present study investigated the effects of embryonic exposure of mercury chloride on motor function and anxiety-like behavior. The embryo exposed to 6 different concentrations of HgCl 2 (7.5, 15, 30, 100, 125, 250nM) at 5hpf until hatching (72hpf) in a semi-static condition. The mortality rate increased in a dose dependent manner where the chronic embryonic exposure to 100nM decreased the number of tail coiling, heartbeat, and swimming activity. Aversive stimulus was used to examine the effects of 100nM interferes with the development of anxiety-related behavior. No elevation in both thigmotaxis and avoidance response of 6dpf larvae exposed with 100nM were found. Biochemical analysis showed HgCl 2 exposure affects proteins, lipids, carbohydrates and nucleic acids of the zebrafish larvae. These results showed that implication of HgCl 2 on locomotor and biochemical defects affects motor performance and anxiety-like responses. Yet, the potential underlying mechanisms these responses need to be further investigated which is crucial to prevent potential hazards on the developing organism due to neurotoxicant exposure. Copyright © 2016 Elsevier Inc. All rights reserved.
Glazer, Lilah; Wells, Corinne N; Drastal, Meghan; Odamah, Kathryn-Ann; Galat, Richard E; Behl, Mamta; Levin, Edward D
2018-05-01
Polybrominated diphenyl ethers (PBDEs) were widely used as flame retardants until the early 2000s, mainly in home furnishings and electronics. The persistence of PBDEs in the environment leads to continued ubiquitous exposure to low levels, with infants and children experiencing higher exposures than adults. Accumulating evidence suggest that low-level exposures during early life stages can affect brain development and lead to long-term behavioral impairments. We investigated the effects of zebrafish exposure to low doses of the two prominent PBDEs; 2,2',4,4',5,-Pentabromodiphenyl ether (BDE-99) and 2,2',4,4',-Tetrabromodiphenyl ether (BDE-47), during embryo-development on short- and long-term behavioral endpoints. We included the organophosphate pesticide chlorpyrifos (CPF) due to its well documented neurotoxicity across species from zebrafish to humans. Zebrafish embryos were exposed to the following individual treatments; 0.1% DMSO (vehicle control); 0.3μM CPF; 0.01, 0.03, 0.1, 0.3μM BDE-47; 0.003, 0.03, 0.3, 1, 3, 10, 20μM BDE-99 from 5 until 120h post fertilization (hpf). Low exposure levels were determined as those not causing immediate overt toxicity, and behavior assays were conducted in the low-level range. At 144 hpf the larvae were tested for locomotor activity. At approximately 6 months of age adult zebrafish were tested in a behavioral battery including assays for anxiety-related behavior, sensorimotor response and habituation, social interaction, and predator avoidance. In the short-term, larval locomotor activity was reduced in larvae treated with 0.3μM CPF and 0.1μM BDE-47. BDE-99 treatment caused non-monotonic dose effects, with 0.3μM causing hyperactivity and 1μM or higher causing hypoactivity. In the long-term, adult anxiety-related behavior was reduced in all treatments as measured in both the novel tank dive test and tap test. We show that exposure of zebrafish embryos to low concentrations of the brominated flame retardants BDE-47 and BDE-99, and the organophosphate pesticide CPF, caused both short- and long-term behavioral impairments. Interestingly, we also found that at very low exposure concentrations, where there were no visible effects on larval activity, adult behavior was still strongly affected. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodd-Butera, Teresa, E-mail: tdbutera@csusb.edu
Environmental exposures along the US-Mexico border have the potential to adversely affect the maternal-fetal environment. The purpose of this study was to assess placental biomarkers of environmental exposures in an obstetric population at the California-Baja California border in relation to detoxifying enzymes in the placenta and nutritional status. This study was conducted on consenting, full-term, obstetric patients (n=54), delivering in a hospital in Tijuana, Baja California (BC), Mexico. Placental polyaromatic hydrocarbon (PAH)-DNA adducts were measured in addition to placental glutathione-S-transferase (GST) activity and genotype, maternal serum folate, and maternal and umbilical cord blood lead and cadmium levels. A questionnaire wasmore » administered to the mothers to determine maternal occupation in a maquiladora, other exposures, and obstetric indicators. In univariate analysis, maternal serum folate levels were inversely correlated with total PAH-DNA adducts (rho=−0.375, p=0.007); adduct #1 (rho=−0.388, p=0.005); and adduct #3 (rho =−0.430, p=0.002). Maternal lead levels were significantly positively correlated with cord blood lead levels (rho=0.512, p<0.001). Cadmium levels were generally very low but significantly higher in mothers exposed to environmental tobacco smoke (ETS) (either at work or at home, n=10). In multivariate analysis, only maternal serum folate levels remained as a significant negative predictor of total DNA-PAH adducts levels in placenta. These findings affirm that placental tissue is a valuable and readily available source of human tissue for biomonitoring; and indicate that further study of the role of nutrition in detoxification and mitigation of environmental exposures in pregnant women is warranted. - Highlights: • Maternal-fetal environment susceptible to toxic exposures at US-Mexico border. • Lower serum folate was correlated with higher PAH-DNA adduct levels at birth. • Placental DNA adducts in GST mu (-) cord blood were higher than GST(+) genotype. • Blood lead levels in Mexican women were higher than reported to NHANES. • Cadmium levels in mothers exposed to ETS correlated with total PAH-DNA adducts.« less
NASA Astrophysics Data System (ADS)
Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.
2004-01-01
Exposure to heavy particles can affect the functioning of the central nervous system (CNS), particularly the dopaminergic system. In turn, the radiation-induced disruption of dopaminergic function affects a variety of behaviors that are dependent upon the integrity of this system, including motor behavior (upper body strength), amphetamine (dopamine)-mediated taste aversion learning, and operant conditioning (fixed-ratio bar pressing). Although the relationships between heavy particle irradiation and the effects of exposure depend, to some extent, upon the specific behavioral or neurochemical endpoint under consideration, a review of the available research leads to the hypothesis that the endpoints mediated by the CNS have certain characteristics in common. These include: (1) a threshold, below which there is no apparent effect; (2) the lack of a dose-response relationship, or an extremely steep dose-response curve, depending on the particular endpoint; and (3) the absence of recovery of function, such that the heavy particle-induced behavioral and neural changes are present when tested up to one year following exposure. The current report reviews the data relevant to the degree to which these characteristics are common to neurochemical and behavioral endpoints that are mediated by the effects of exposure to heavy particles on CNS activity.
NASA Technical Reports Server (NTRS)
Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.
2004-01-01
Exposure to heavy particles can affect the functioning of the central nervous system (CNS), particularly the dopaminergic system. In turn, the radiation-induced disruption of dopaminergic function affects a variety of behaviors that are dependent upon the integrity of this system, including motor behavior (upper body strength), amphetamine (dopamine)-mediated taste aversion learning, and operant conditioning (fixed-ratio bar pressing). Although the relationships between heavy particle irradiation and the effects of exposure depend, to some extent, upon the specific behavioral or neurochemical endpoint under consideration, a review of the available research leads to the hypothesis that the endpoints mediated by the CNS have certain characteristics in common. These include: (1) a threshold, below which there is no apparent effect; (2) the lack of a dose-response relationship, or an extremely steep dose-response curve, depending on the particular endpoint; and (3) the absence of recovery of function, such that the heavy particle-induced behavioral and neural changes are present when tested up to one year following exposure. The current report reviews the data relevant to the degree to which these characteristics are common to neurochemical and behavioral endpoints that are mediated by the effects of exposure to heavy particles on CNS activity. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Dietary exposure to lead of adults in Shenzhen city, China.
Pan, Liubo; Wang, Zhou; Peng, Zhaoqiong; Liu, Guihua; Zhang, Huimin; Zhang, Jinzhou; Jiang, Jie; Pathiraja, Nimal; Xiao, Ying; Jiao, Rui; Huang, Wei
2016-07-01
Lead, a ubiquitous heavy metal, can be found in the environment and food. The present study is the first to estimate the lead dietary exposure of Shenzhen adults (≥ 20 years old) in various age-gender subgroups, and to assess the associated health risk. Food samples that represented the Shenzhen people's dietary pattern were collected and prepared for analysis. Lead was determined in 13 food groups using 276 individual cooked samples by inductively coupled plasma-mass spectrometry (ICP-MS). Dietary exposures were estimated by combining the analytical results with the local food consumption data of Shenzhen adults. The mean and 95th percentile lead exposure of Shenzhen adults were 0.59-0.73 and 0.75-0.94 μg kg(-1) bw day(-1), respectively. In all food groups, the highest lead exposure was from 'Eggs and their products' (42.4-51.6% of the total exposure); preserved eggs being the main contributor. The other major contributors to lead exposure of Shenzhen adults were 'Fish and seafood, and their products' (14.3-16.7% of the total exposure) and 'Vegetables and their products' (15.5-16.2% of the total exposure). The margin of exposure (MOE) approach was used for the risk assessment of lead, and the results showed that the risk was considered to be low in all age-gender groups for Shenzhen adults. However, having considered a number of toxic effects of lead, it is suggested that more efforts should be made to reduce the lead levels in foodstuff for Shenzhen adults.
Determinants of bone and blood lead concentrations in the early postpartum period
Brown, M. J.; Hu, H.; Gonzales-Cossio, T.; Peterson, K.; Sanin, L.; Kageyama, M. d.; Palazuelos, E.; Aro, A.; Schnaas, L.; Hernandez-Avila, M.
2000-01-01
OBJECTIVE—This study investigated determinants of bone and blood lead concentrations in 430 lactating Mexican women during the early postpartum period and the contribution of bone lead to blood lead. METHODS—Maternal venous lead was measured at delivery and postpartum, and bone lead concentrations, measured with in vivo K-x ray fluorescence, were measured post partum. Data on environmental exposure, demographic characteristics, and maternal factors related to exposure to lead were collected by questionnaire. Linear regression was used to examine the relations between bone and blood lead, demographics, and environmental exposure variables. RESULTS—Mean (SD) blood, tibial, and patellar lead concentrations were 9.5 (4.5) µg/dl, 10.2 (10.1) µg Pb/g bone mineral, and 15.2 (15.1) µg Pb/g bone mineral respectively. These values are considerably higher than values for women in the United States. Older age, the cumulative use of lead glazed pottery, and higher proportion of life spent in Mexico City were powerful predictors of higher bone lead concentrations. Use of lead glazed ceramics to cook food in the past week and increased patellar lead concentrations were significant predictors of increased blood lead. Patellar lead concentrations explained one third of the variance accounted for by the final blood lead model. Women in the 90th percentile for patella lead had an untransformed predicted mean blood lead concentration 3.6 µg/dl higher than those in the 10th percentile. CONCLUSIONS—This study identified the use of lead glazed ceramics as a major source of cumulative exposure to lead, as reflected by bone lead concentrations, as well as current exposure, reflected by blood lead, in Mexico. A higher proportion of life spent in Mexico City, a proxy for exposure to leaded gasoline emissions, was identified as the other major source of cumulative lead exposure. The influence of bone lead on blood lead coupled with the long half life of lead in bone has implications for other populations and suggests that bone stores may pose a threat to women of reproductive age long after exposure has declined. Keywords: postpartum; blood lead; bone lead PMID:10896960
Sallsten, Gerd; Almerud, Pernilla; Basu, Samar; Barregard, Lars
2013-01-01
Introduction: Air pollution increases the risk of cardiovascular diseases. A proposed mechanism is that local airway inflammation leads to systemic inflammation, affecting coagulation and the long-term risk of atherosclerosis. One major source of air pollution is wood burning. Here we investigate whether exposure to two kinds of wood smoke, previously shown to cause airway effects, affects biomarkers of systemic inflammation, coagulation and lipid peroxidation. Methods: Thirteen healthy adults were exposed to filtered air followed by two sessions of wood smoke for three hours, one week apart. One session used smoke from the start-up phase of the wood-burning cycle, and the other smoke from the burn-out phase. Mean particle mass concentrations were 295 µg/m3 and 146 µg/m3, and number concentrations were 140 000/cm3 and 100 000/cm3, respectively. Biomarkers were analyzed in samples of blood and urine taken before and several times after exposure. Results after wood smoke exposure were adjusted for exposure to filtered air. Results: Markers of systemic inflammation and soluble adhesion molecules did not increase after wood smoke exposure. Effects on markers of coagulation were ambiguous, with minor decreases in fibrinogen and platelet counts and mixed results concerning the coagulation factors VII and VIII. Urinary F2-isoprostane, a consistent marker of in vivo lipid peroxidation, unexpectedly decreased after wood smoke exposure. Conclusions: The effects on biomarkers of inflammation, coagulation and lipid peroxidation do not indicate an increased risk of cardiovascular diseases in healthy adults by short-term exposure to wood smoke at these moderate doses, previously shown to cause airway effects. PMID:23808634
Zarei, S.; Mortazavi, S. M. J.; Mehdizadeh, A. R.; Jalalipour, M.; Borzou, S.; Taeb, S.; Haghani, M.; Mortazavi, S. A. R.; Shojaei-fard, M. B.; Nematollahi, S.; Alighanbari, N.; Jarideh, S.
2015-01-01
Background Nowadays, mothers are continuously exposed to different sources of electromagnetic fields before and even during pregnancy. It has recently been shown that exposure to mobile phone radiation during pregnancy may lead to adverse effects on the brain development in offspring and cause hyperactivity. Researchers have shown that behavioral problems in laboratory animals which have a similar appearance to ADHD are caused by intrauterine exposure to mobile phones. Objective The purpose of this study was to investigate whether the maternal exposure to different sources of electromagnetic fields affect on the rate and severity of speech problems in their offspring. Methods In this study, mothers of 35 healthy 3-5 year old children (control group) and 77 children and diagnosed with speech problems who had been referred to a speech treatment center in Shiraz, Iran were interviewed. These mothers were asked whether they had exposure to different sources of electromagnetic fields such as mobile phones, mobile base stations, Wi-Fi, cordless phones, laptops and power lines. Results We found a significant association between either the call time (P=0.002) or history of mobile phone use (months used) and speech problems in the offspring (P=0.003). However, other exposures had no effect on the occurrence of speech problems. To the best of our knowledge, this is the first study to investigate a possible association between maternal exposure to electromagnetic field and speech problems in the offspring. Although a major limitation in our study is the relatively small sample size, this study indicates that the maternal exposure to common sources of electromagnetic fields such as mobile phones can affect the occurrence of speech problems in the offspring. PMID:26396971
Zarei, S; Mortazavi, S M J; Mehdizadeh, A R; Jalalipour, M; Borzou, S; Taeb, S; Haghani, M; Mortazavi, S A R; Shojaei-Fard, M B; Nematollahi, S; Alighanbari, N; Jarideh, S
2015-09-01
Nowadays, mothers are continuously exposed to different sources of electromagnetic fields before and even during pregnancy. It has recently been shown that exposure to mobile phone radiation during pregnancy may lead to adverse effects on the brain development in offspring and cause hyperactivity. Researchers have shown that behavioral problems in laboratory animals which have a similar appearance to ADHD are caused by intrauterine exposure to mobile phones. The purpose of this study was to investigate whether the maternal exposure to different sources of electromagnetic fields affect on the rate and severity of speech problems in their offspring. In this study, mothers of 35 healthy 3-5 year old children (control group) and 77 children and diagnosed with speech problems who had been referred to a speech treatment center in Shiraz, Iran were interviewed. These mothers were asked whether they had exposure to different sources of electromagnetic fields such as mobile phones, mobile base stations, Wi-Fi, cordless phones, laptops and power lines. We found a significant association between either the call time (P=0.002) or history of mobile phone use (months used) and speech problems in the offspring (P=0.003). However, other exposures had no effect on the occurrence of speech problems. To the best of our knowledge, this is the first study to investigate a possible association between maternal exposure to electromagnetic field and speech problems in the offspring. Although a major limitation in our study is the relatively small sample size, this study indicates that the maternal exposure to common sources of electromagnetic fields such as mobile phones can affect the occurrence of speech problems in the offspring.
Zolaly, Mohammed Adnan; Hanafi, Manal Ibrahim; Shawky, Nashaat; El-Harbi, Khalid; Mohamadin, Ahmed M
2012-01-01
Both occupational and environmental exposures to lead remain a serious problem in many developing and industrializing countries. When humans are exposed to high levels of lead, there is damage to almost all organs and organ systems (most importantly, the central nervous system, kidneys, and blood), which often culminates in death. To estimate the prevalence of blood lead levels (BLLs) and to identify the sources of environmental exposure and potential risk factors for elevated BLLs among Saudi schoolchildren. A cross-sectional survey was conducted from March to May 2010. The study population included 557 Saudi school students of both sexes. A multistage random sampling technique was used. Information about socioeconomic status, house and school construction, and parents' education and employment was collected using questionnaires. Lead was analyzed in a blood sample using an atomic absorption technique and hemoglobin was measured using a Sysmex hematological analyzer. The mean BLL was 4.94 ± 3.38 μg/dL (range 0.45-26.3 μg/dL). A total of 19% had BLLs <1.0 μg/dL, 16% had BLLs <2.5 μg/dL, 15% had BLLs <5.0 μg/dL, 20% had BLLs <7.5 μg/dL, 25% had BLLs <10.0 μg/dL, and about 6% had BLLs >10.0 μg/dL. Analysis of odds by controlling all risk factors (adjusted odds ratio [OR]) that affect BLLs (≥10 μg/dL) indicated that using cosmetics (OR = 18.5, confidence interval [CI] = 14.4-19.8), putting colored toys in mouth (OR = 15.7, CI = 3.6-16.2), eating canned food (OR = 9.8, CI = 7.0-10.1), and using newspaper during food preparation (OR = 7.6, CI = 6.3-8.2) are risk factors. There were significant correlations between BLLs and family habits (r = 0.225, P = 0.000), personal habits (r = 0.321, P = 0.000), eating habits (r = 0.128, P = 0.002) and school building characteristics (r = 0.469, P = 0.000). There was a significant correlation between BLLs and anemia in age group 6 < 12 years (P = 0.000) and age group 12 to less than 18 years, among males (P = 0.000) and females (P = 0.041). The BLLs of children are affected by multiple factors. Female students have higher BLLs and lower hemoglobin concentration than males. The possible sources of lead exposure were use of toothpaste, use of kohl, putting colored toys in the mouth, use of both canned food and canned juice, use of lip gloss in females, and different methods of handling newspaper while preparing food.
Zolaly, Mohammed Adnan; Hanafi, Manal Ibrahim; Shawky, Nashaat; el-Harbi, Khalid; Mohamadin, Ahmed M
2012-01-01
Introduction Both occupational and environmental exposures to lead remain a serious problem in many developing and industrializing countries. When humans are exposed to high levels of lead, there is damage to almost all organs and organ systems (most importantly, the central nervous system, kidneys, and blood), which often culminates in death. Objective To estimate the prevalence of blood lead levels (BLLs) and to identify the sources of environmental exposure and potential risk factors for elevated BLLs among Saudi schoolchildren. Methods A cross-sectional survey was conducted from March to May 2010. The study population included 557 Saudi school students of both sexes. A multistage random sampling technique was used. Information about socioeconomic status, house and school construction, and parents’ education and employment was collected using questionnaires. Lead was analyzed in a blood sample using an atomic absorption technique and hemoglobin was measured using a Sysmex hematological analyzer. Results The mean BLL was 4.94 ± 3.38 μg/dL (range 0.45–26.3 μg/dL). A total of 19% had BLLs <1.0 μg/dL, 16% had BLLs <2.5 μg/dL, 15% had BLLs <5.0 μg/dL, 20% had BLLs <7.5 μg/dL, 25% had BLLs <10.0 μg/dL, and about 6% had BLLs >10.0 μg/dL. Analysis of odds by controlling all risk factors (adjusted odds ratio [OR]) that affect BLLs (≥10 μg/dL) indicated that using cosmetics (OR = 18.5, confidence interval [CI] = 14.4–19.8), putting colored toys in mouth (OR = 15.7, CI = 3.6–16.2), eating canned food (OR = 9.8, CI = 7.0–10.1), and using newspaper during food preparation (OR = 7.6, CI = 6.3–8.2) are risk factors. There were significant correlations between BLLs and family habits (r = 0.225, P = 0.000), personal habits (r = 0.321, P = 0.000), eating habits (r = 0.128, P = 0.002) and school building characteristics (r = 0.469, P = 0.000). There was a significant correlation between BLLs and anemia in age group 6 < 12 years (P = 0.000) and age group 12 to less than 18 years, among males (P = 0.000) and females (P = 0.041). Conclusion The BLLs of children are affected by multiple factors. Female students have higher BLLs and lower hemoglobin concentration than males. The possible sources of lead exposure were use of toothpaste, use of kohl, putting colored toys in the mouth, use of both canned food and canned juice, use of lip gloss in females, and different methods of handling newspaper while preparing food. PMID:22573942
Towards the prevention of lead exposure in South Africa: contemporary and emerging challenges.
Mathee, Angela
2014-12-01
The prevention of lead exposure continues to constitute a major public health challenge in developed countries. In well-resourced countries major lead exposure reduction interventions have resulted in significant improvements in childhood blood lead distributions. In developing countries on the other hand, while lead exposure and poisoning remain serious public health concerns, a range of prevailing factors and circumstances, such as poverty, a large informal sector, competing public health challenges, low levels of awareness of lead hazards and weak capacity to enforce legislation, contribute to an increase in the scale and intensity of the challenge, and limit the prospects of comparable success in the foreseeable future. This paper collates available information to illustrate that despite some progress, a wide range of sources of lead exist in South Africa, and that certain settings and groups continue to be at high risk of lead exposure. Lead exposure in relation to paint, mining, lead melting in subsistence fishing communities, the consumption of Ayurvedic medicines and food production is described, and discussed with regard to the key factors hindering efforts to prevent lead poisoning and exposure in South Africa and many other developing countries. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
A Public Health Approach to Addressing Lead
Describes EPA’s achievements in reducing childhood lead exposures and emphasizes the need to continue actions to further reduce lead exposures, especially in those communities where exposures remain high.
Tan, Jacinth J X; Kraus, Michael W
2015-03-01
The economic conditions of one's life can profoundly and systematically influence health outcomes over the life course. Our present research demonstrates that rejecting the notion that social class categories are biologically determined-a nonessentialist belief-buffers lower-class individuals from poor self-rated health and negative affect, whereas conceiving of social class categories as rooted in biology-an essentialist belief-does not. In Study 1, lower-class individuals self-reported poorer health than upper-class individuals when they endorsed essentialist beliefs but showed no such difference when they rejected such beliefs. Exposure to essentialist theories of social class also led lower-class individuals to report greater feelings of negative self-conscious emotions (Studies 2 and 3), and perceive poorer health (Study 3) than upper-class individuals, whereas exposure to nonessentialist theories did not lead to such differences. Discussion considers how lay theories of social class potentially shape long-term trajectories of health and affect of lower-class individuals. © 2015 by the Society for Personality and Social Psychology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, Donald A., E-mail: dafox@uh.edu; Department of Biology and Biochemistry, University of Houston, Houston, TX; Department of Pharmacology and Pharmaceutical Sciences, University of Houston, Houston, TX
Gestational lead exposure (GLE) produces supernormal scotopic electroretinograms (ERG) in children, monkeys and rats, and a novel retinal phenotype characterized by an increased number of rod photoreceptors and bipolar cells in adult mice and rats. Since the loss of dopaminergic amacrine cells (DA ACs) in GLE monkeys and rats contributes to supernormal ERGs, the retinal DA system was analyzed in mice following GLE. C57BL/6 female mice were exposed to low (27 ppm), moderate (55 ppm) or high (109 ppm) lead throughout gestation and until postnatal day 10 (PN10). Blood [Pb] in control, low-, moderate- and high-dose GLE was {<=} 1,more » {<=} 10, {approx} 25 and {approx} 40 {mu}g/dL, respectively, on PN10 and by PN30 all were {<=} 1 {mu}g/dL. At PN60, confocal-stereology studies used vertical sections and wholemounts to characterize tyrosine hydroxylase (TH) expression and the number of DA and other ACs. GLE dose-dependently and selectively decreased the number of TH-immunoreactive (IR) DA ACs and their synaptic plexus without affecting GABAergic, glycinergic or cholinergic ACs. Immunoblots and confocal revealed dose-dependent decreases in retinal TH protein expression and content, although monoamine oxidase-A protein and gene expression were unchanged. High-pressure liquid chromatography showed that GLE dose-dependently decreased retinal DA content, its metabolites and DA utilization/release. The mechanism of DA selective vulnerability is unknown. However, a GLE-induced loss/dysfunction of DA ACs during development could increase the number of rods and bipolar cells since DA helps regulate neuronal proliferation, whereas during adulthood it could produce ERG supernormality as well as altered circadian rhythms, dark/light adaptation and spatial contrast sensitivity. -- Highlights: Black-Right-Pointing-Pointer Peak [BPb] in control, low-, moderate- and high-dose newborn mice with gestational lead exposure: {<=} 1, {<=} 10, 25 and 40 {mu}g/dL Black-Right-Pointing-Pointer Gestational lead exposure dose-dependently decreased the number of TH-immunoreactive dopaminergic amacrine cells Black-Right-Pointing-Pointer Gestational lead exposure selectively decreased dopaminergic, but not GABAergic, glycinergic or cholinergic, amacrine cells Black-Right-Pointing-Pointer Gestational lead exposure dose-dependently decreased retinal dopamine content, its metabolites and dopamine utilization Black-Right-Pointing-Pointer A decrease in dopamine can alter ERG amplitudes, circadian rhythms, dark/light adaptation and spatial contrast sensitivity.« less
Testing for lead in toys at day care centers.
Sanders, Martha; Stolz, Julie; Chacon-Baker, Ashley
2013-01-01
Exposure to lead-based paint or material has been found to impact children's cognitive and behavioral development at blood lead levels far below current standards. The purpose of the project was to screen for lead in toy items in daycare centers in order to raise awareness of inside environmental lead exposures and minimize lead-based exposures for children. Occupational therapy students in a service learning class tested for lead in ten daycare or public centers using the XRF Thermo Scientific Niton XL3t, a method accepted by the Consumer Product Safety Commission (CPSC). A total of 460 items were tested over a two-month period for an average of 66 toys per setting. Fifty six (56) items tested > 100 ppm, which represented 12% of the entire sample. Items with high lead levels included selected toys constructed with lead-based paint, lead metals, plastics using lead as a color enhancer, and decorative objects. While the actual number of lead-based products is small, the cumulative exposure or habitual use may pose an unnecessary risk to children. Indoor exposures occurred for all day care centers regardless of socio-economic levels. Recommendations to minimize exposures are provided.
Exploring childhood lead exposure through GIS: a review of the recent literature.
Akkus, Cem; Ozdenerol, Esra
2014-06-18
Childhood exposure to lead remains a critical health control problem in the US. Integration of Geographic Information Systems (GIS) into childhood lead exposure studies significantly enhanced identifying lead hazards in the environment and determining at risk children. Research indicates that the toxic threshold for lead exposure was updated three times in the last four decades: 60 to 30 micrograms per deciliter (µg/dL) in 1975, 25 µg/dL in 1985, and 10 µb/dL in 1991. These changes revealed the extent of lead poisoning. By 2012 it was evident that no safe blood lead threshold for the adverse effects of lead on children had been identified and the Center for Disease Control (CDC) currently uses a reference value of 5 µg/dL. Review of the recent literature on GIS-based studies suggests that numerous environmental risk factors might be critical for lead exposure. New GIS-based studies are used in surveillance data management, risk analysis, lead exposure visualization, and community intervention strategies where geographically-targeted, specific intervention measures are taken.
Exploring Childhood Lead Exposure through GIS: A Review of the Recent Literature
Akkus, Cem; Ozdenerol, Esra
2014-01-01
Childhood exposure to lead remains a critical health control problem in the US. Integration of Geographic Information Systems (GIS) into childhood lead exposure studies significantly enhanced identifying lead hazards in the environment and determining at risk children. Research indicates that the toxic threshold for lead exposure was updated three times in the last four decades: 60 to 30 micrograms per deciliter (µg/dL) in 1975, 25 µg/dL in 1985, and 10 µb/dL in 1991. These changes revealed the extent of lead poisoning. By 2012 it was evident that no safe blood lead threshold for the adverse effects of lead on children had been identified and the Center for Disease Control (CDC) currently uses a reference value of 5 µg/dL. Review of the recent literature on GIS-based studies suggests that numerous environmental risk factors might be critical for lead exposure. New GIS-based studies are used in surveillance data management, risk analysis, lead exposure visualization, and community intervention strategies where geographically-targeted, specific intervention measures are taken. PMID:24945189
Zhu, Gaochun; Chen, Zhenying; Dai, Bo; Zheng, Chaoran; Jiang, Huaide; Xu, Yurong; Sheng, Xuan; Guo, Jingjing; Dan, Yu; Liang, Shangdong; Li, Guilin
2018-06-01
Chronic lead exposure causes peripheral sympathetic nerve stimulation, including increased blood pressure and heart rate. Purinergic receptors are involved in the sympathoexcitatory response induced by myocardial ischemia injury. However, whether P2X4 receptor participates in sympathoexcitatory response induced by chronic lead exposure and the possible mechanisms are still unknown. The aim of this study was to explore the change of the sympathoexcitatory response induced by chronic lead exposure via the P2X4 receptor in the stellate ganglion (SG). Rats were given lead acetate through drinking water freely at doses of 0 g/L (control group), 0.5 g/L (low lead group), and 2 g/L (high lead group) for 1 year. Our results demonstrated that lead exposure caused autonomic nervous dysfunction, including blood pressure and heart rate increased and heart rate variability (HRV) decreased. Western blotting results indicated that after lead exposure, the protein expression levels in the SG of P2X4 receptor, IL-1β and Cx43 were up-regulated, the phosphorylation of p38 mitogen-activated protein kinase (MAPK) was activated. Real-time PCR results showed that the mRNA expression of P2X4 receptor in the SG was higher in lead exposure group than that in the control group. Double-labeled immunofluorescence results showed that P2X4 receptor was co-expressed with glutamine synthetase (GS), the marker of satellite glial cells (SGCs). These changes were positively correlated with the dose of lead exposure. The up-regulated expression of P2X4 receptor in SGCs of the SG maybe enhance the sympathoexcitatory response induced by chronic lead exposure. © 2018 Wiley Periodicals, Inc.
Joo, Hyunjoo; Lim, Myung-Ho; Kwon, Ho-Jang; Yoo, Seung Jin; Choi, Kyung-Hwa; Paik, Ki-Chung
2017-01-01
Aim: Secondhand smoke (SHS) is a major indoor pollutant. We examined the possible association between exposure to both SHS and low levels of lead and attention-deficit–hyperactivity disorder (ADHD) and its symptom domain in children. Methods: This case–control study was based on the results of a community survey using the ADHD rating scale conducted in 49 elementary schools. Both cases and control subjects were confirmed by a child psychiatrist. Each case was matched with one control subject according to gender, school, and grade in school. Using a multivariate conditional logistic regression model, we analyzed 214 case–control pairs of children who ranged in age from 6 to 10 years. Urine and blood levels of cotinine and of lead were determined, and information pertaining to SHS exposure was obtained by means of a questionnaire. Results: Exposure to low levels of lead (geometric mean = 1.65 µg/dL) was related to ADHD, particularly inattention (odds ratio [OR] = 1.67, 95% confidence interval [CI] = 1.07–2.59), whereas SHS exposure was associated mainly with hyperactivity/impulsivity (OR = 3.85, 95% CI = 1.55–9.56). In the pathway from blood lead to hyperactivity/impulsivity, children’s SHS exposure mediated and indirectly accounted for about 73% of this relationship. The combined exposure to lead and SHS synergistically increased the risk of ADHD, evident as both inattention and hyperactivity/impulsivity. Conclusion: SHS, which is associated with hyperactivity/impulsivity in particular, combined with exposure to low blood levels of lead synergistically increased the risk of ADHD. Therefore, the exposure of children to both SHS and lead needs to be reduced. Implications: Although exposure to low levels of lead has been shown to be associated with ADHD, there is little evidence of symptom domain specificity. In our study, low blood lead levels were related to inattention. In addition, prenatal or postnatal exposure to SHS increased the risk of ADHD, particularly hyperactivity/impulsivity. Combined exposure to lead and SHS synergistically increased the risk for both these ADHD symptom domains. To protect children from environmental risk factors related to ADHD, it is necessary to further reduce children’s exposure to SHS and lead, even in those with low blood lead levels. PMID:27613950
Joo, Hyunjoo; Lim, Myung-Ho; Ha, Mina; Kwon, Ho-Jang; Yoo, Seung Jin; Choi, Kyung-Hwa; Paik, Ki-Chung
2017-01-01
Secondhand smoke (SHS) is a major indoor pollutant. We examined the possible association between exposure to both SHS and low levels of lead and attention-deficit-hyperactivity disorder (ADHD) and its symptom domain in children. This case-control study was based on the results of a community survey using the ADHD rating scale conducted in 49 elementary schools. Both cases and control subjects were confirmed by a child psychiatrist. Each case was matched with one control subject according to gender, school, and grade in school. Using a multivariate conditional logistic regression model, we analyzed 214 case-control pairs of children who ranged in age from 6 to 10 years. Urine and blood levels of cotinine and of lead were determined, and information pertaining to SHS exposure was obtained by means of a questionnaire. Exposure to low levels of lead (geometric mean = 1.65 µg/dL) was related to ADHD, particularly inattention (odds ratio [OR] = 1.67, 95% confidence interval [CI] = 1.07-2.59), whereas SHS exposure was associated mainly with hyperactivity/impulsivity (OR = 3.85, 95% CI = 1.55-9.56). In the pathway from blood lead to hyperactivity/impulsivity, children's SHS exposure mediated and indirectly accounted for about 73% of this relationship. The combined exposure to lead and SHS synergistically increased the risk of ADHD, evident as both inattention and hyperactivity/impulsivity. SHS, which is associated with hyperactivity/impulsivity in particular, combined with exposure to low blood levels of lead synergistically increased the risk of ADHD. Therefore, the exposure of children to both SHS and lead needs to be reduced. Although exposure to low levels of lead has been shown to be associated with ADHD, there is little evidence of symptom domain specificity. In our study, low blood lead levels were related to inattention. In addition, prenatal or postnatal exposure to SHS increased the risk of ADHD, particularly hyperactivity/impulsivity. Combined exposure to lead and SHS synergistically increased the risk for both these ADHD symptom domains. To protect children from environmental risk factors related to ADHD, it is necessary to further reduce children's exposure to SHS and lead, even in those with low blood lead levels. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco.
2015-01-15
chemical warfare agent that irreversibly inhibits acetylcholinesterase in the periphery and central nervous system. Soman induces status epilepticus ...of signs and symptoms including status epilepticus and death. The neuropathology leads to severe cognitive performance, including long-term cognitive... status epilepticus and excessive synaptic accumulation of acetylcholine affects other organ systems beside the brain causing hypersecretions
Massaly, Nicolas; Morón, Jose A; Al-Hasani, Ream
2016-01-01
Pain and stress are protective mechanisms essential in avoiding harmful or threatening stimuli and ensuring survival. Despite these beneficial roles, chronic exposure to either pain or stress can lead to maladaptive hormonal and neuronal modulations that can result in chronic pain and a wide spectrum of stress-related disorders including anxiety and depression. By inducing allostatic changes in the mesolimbic dopaminergic pathway, both chronic pain and stress disorders affect the rewarding values of both natural reinforcers, such as food or social interaction, and drugs of abuse. Despite opioids representing the best therapeutic strategy in pain conditions, they are often misused as a result of these allostatic changes induced by chronic pain and stress. The kappa opioid receptor (KOR) system is critically involved in these neuronal adaptations in part through its control of dopamine release in the nucleus accumbens. Therefore, it is likely that changes in the kappa opioid system following chronic exposure to pain and stress play a key role in increasing the misuse liability observed in pain patients treated with opioids. In this review, we will discuss how chronic pain and stress-induced pathologies can affect mesolimbic dopaminergic transmission, leading to increased abuse liability. We will also assess how the kappa opioid system may underlie these pathological changes.
El Khalloufi, Fatima; Oufdou, Khalid; Lahrouni, Majida; El Ghazali, Issam; Saqrane, Sanaa; Vasconcelos, Vitor; Oudra, Brahim
2011-03-01
The eutrophication of water leads to massive blooms of cyanobacteria potentially producers of highly toxic substances: cyanotoxins, especially microcystins (MC). The contamination of water used for irrigation by these toxins, can cause several adverse effects on plants and microorganisms. In this work, we report the phytotoxic effects of microcystins on the development of symbiosis between the leguminous plant Medicago sativa (Alfalfa) and rhizobia strains. The exposure of rhizobial strains to three different concentrations 0.01, 0.05 and 0.1 μg MC ml(-1) led to decrease on the bacteria growth. The strains of rhizobia Rh L1, Rh L2, Rh L3 and Rh L4 reduced their growth to, respectively, 20.85%, 20.80%, 33.19% and 25.65%. The chronic exposure of alfalfa seeds and seedlings to different MC concentrations affects the whole stages of plant development. The germination process has also been disrupted with an inhibition, which reaches 68.34% for a 22.24 μg MC ml(-1). Further, seedlings growth and photosynthetic process were also disrupted. The toxins reduced significantly the roots length and nodule formation and leads to an oxidative stress. Thus, the MCs contained in lake water and used for irrigation affect the development of symbiosis between M. sativa and Rhizobia. Copyright © 2010 Elsevier Inc. All rights reserved.
[Lead exposure of people living in a lead high exposure area from local diet].
Zhou, Yong; He, Liping; Huang, Xiao; He, Junshan
2011-11-01
To study the lead exposure of people living in a lead high exposure area from local diet, and to assess its health risks. Thirty five subjects were selected by random from a mining area and another 30 subjects were selected from a non-polluted area. The exposure of lead was estimated by the content of lead in drinking water and vegetables, and health risks was estimated by the levels of lead in blood and urine. The content of lead in drinking water and vegetables in the mining area was 20.6 microg/L and 1.61mg/kg (geometric mean) respectively, which were higher than that in the unpolluted area (6.0 microg/L and 0.56 mg/kg, geometric mean) (P < 0.01). The daily lead exposure of male and female inhabitants in the mining area from diet was 16.88 microg/kg and 16.09 microg/kg respectively, which was higher than that in the unpolluted area (P < 0.01), but the sex difference was not significant statistically (P > 0.05). Blood lead and urine lead of inhabitants in the mining-area were higher than those in the unpolluted area. The health risks for male and female inhabitants in the mining area were 4.73 and 4.51. The health risks of lead exposure caused by diet (drinking water and food) were relatively high in the mining area.
Neurobiological consequences of childhood trauma.
Nemeroff, Charles B
2004-01-01
There is considerable evidence to suggest that adverse early-life experiences have a profound effect on the developing brain. Neurobiological changes that occur in response to untoward early-life stress can lead to lifelong psychiatric sequelae. Children who are exposed to sexual or physical abuse or the death of a parent are at higher risk for development of depressive and anxiety disorders later in life. Preclinical and clinical studies have shown that repeated early-life stress leads to alterations in central neurobiological systems, particularly in the corticotropin-releasing factor system, leading to increased responsiveness to stress. Clearly, exposure to early-life stressors leads to neurobiological changes that increase the risk of psychopathology in both children and adults. Identification of the neurobiological substrates that are affected by adverse experiences in early life should lead to the development of more effective treatments for these disorders. The preclinical and clinical studies evaluating the consequences of early-life stress are reviewed.
a Marca Pereira, M L; Eppler, E; Thorpe, K L; Wheeler, J R; Burkhardt-Holm, P
2014-02-01
A range of chemicals found in the aquatic environment have the potential to influence endocrine function and affect sexual development by mimicking or antagonizing the effects of hormones, or by altering the synthesis and metabolism of hormones. The aim of this study was to evaluate whether the effects of chemicals interfering with sex hormone synthesis may affect the regulation of early ovarian development via the modulation of sex steroid and insulin-like growth factor (IGF) systems. To this end, ex vivo ovary cultures of juvenile brown trout (Salmo trutta fario) were exposed for 2 days to either 1,4,6-androstatriene-3,17-dione (ATD, a specific aromatase inhibitor), prochloraz (an imidazole fungicide), or tributyltin (TBT, a persistent organic pollutant). Further, juvenile female brown trout were exposed in vivo for 2 days to prochloraz or TBT. The ex vivo and in vivo ovarian gene expression of the aromatase (CYP19), responsible for estrogen production, and of IGF1 and 2 were compared. Moreover, 17β-estradiol (E2) and testosterone (T) production from ex vivo ovary cultures was assessed. Ex vivo exposure to ATD inhibited ovarian E2 synthesis, while T levels accumulated. However, ATD did not affect ex vivo expression of cyp19, igf1, or igf2. Ex vivo exposure to prochloraz inhibited ovarian E2 production, but did not affect T levels. Further prochloraz up-regulated igf1 expression in both ex vivo and in vivo exposures. TBT exposure did not modify ex vivo synthesis of either E2 or T. However, in vivo exposure to TBT down-regulated igf2 expression. The results indicate that ovarian inhibition of E2 production in juvenile brown trout might not directly affect cyp19 and igf gene expression. Thus, we suggest that the test chemicals may interfere with both sex steroid and IGF systems in an independent manner, and based on published literature, potentially lead to endocrine dysfunction and altered sexual development. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.
Combined exposure to cyanobacterial biomass, lead and the Newcastle virus enhances avian toxicity.
Pikula, Jiri; Bandouchova, Hana; Hilscherova, Klara; Paskova, Veronika; Sedlackova, Jana; Adamovsky, Ondrej; Knotkova, Zora; Lany, Petr; Machat, Jiri; Marsalek, Blahoslav; Novotny, Ladislav; Pohanka, Miroslav; Vitula, Frantisek
2010-10-01
Under environmental conditions, wild birds can be exposed to multiple stressors including natural toxins, anthropogenic pollutants and infectious agents at the same time. This experimental study was successful in testing the hypothesis that adverse effects of cyanotoxins, heavy metals and a non-pathogenic immunological challenge combine to enhance avian toxicity. Mortality occurred in combined exposures to naturally occurring cyanobacterial biomass and lead shots, lead shots and Newcastle vaccination as well as in single lead shot exposure. Mostly acute effects around day 10 were observed. On day 30 of exposure, there were no differences in the liver accumulation of lead in single and combined exposure groups. Interestingly, liver microcystin levels were elevated in birds co-exposed to cyanobacterial biomass together with lead or lead and the Newcastle virus. Significant differences in body weights between all Pb-exposed and Pb-non-exposed birds were found on days 10 and 20. Single exposure to cyanobacterial biomass resulted in hepatic vacuolar dystrophy, whereas co-exposure with lead led to more severe granular dystrophy. Haematological changes were associated with lead exposure, in particular. Biochemical analysis revealed a decrease in glucose and an increase in lactate dehydrogenase in single and combined cyanobacterial and lead exposures, which also showed a decreased antibody response to vaccination. The combined exposure of experimental birds to sub-lethal doses of individual stressors is ecologically realistic. It brings together new pieces of knowledge on avian health. In light of this study, investigators of wild bird die-offs should be circumspect when evaluating findings of low concentrations of contaminants that would not result in mortality on a separate basis. As such it has implications for wildlife biologists, veterinarians and conservationists of avian biodiversity. Copyright 2010 Elsevier B.V. All rights reserved.
Pace, R.M.; Hohman, W.L.; Custer, T.W.
1999-01-01
We tested whether lead exposure, as evidenced by liver lead concentration, affected body composition and organ sizes of canvasback ducks Aythya valisineria in Louisiana during winter 1987-88. After adjusting for body size, sex, age, and site and month of collection, we found decreases in ingesta-free body mass; breast, leg, and body protein; body fat; intestine length; and liver and gizzard masses associated with increased liver lead concentrations. There were no apparent associations between liver lead concentrations and testes and body ash masses, or caecal length. We used the concentration of 26.7 ppm of liver lead on a dry matter (dm) basis as indicative of lead toxicosis. We predicted that a canvasback with 26.7 ppm dm liver lead would weigh 209 g less and have 105 g less fat than an unexposed individual. Whereas many lead exposed canvasbacks may survive through winter, their subsequent survival, ability to reproduce and perform other annual cycle events may be compromised. We recommend management to make lead unavailable to waterfowl at major concentration areas and periodic monitoring of lead contamination in waterfowl populations.
Exposure to metals during pregnancy and neuropsychological development at the age of 4 years.
Forns, Joan; Fort, Marta; Casas, Maribel; Cáceres, Alejandro; Guxens, Mònica; Gascon, Mireia; Garcia-Esteban, Raquel; Julvez, Jordi; Grimalt, Joan O; Sunyer, Jordi
2014-01-01
There is insufficient epidemiological evidence for deciding whether prenatal exposure to the current low-levels of metals in developed countries may affect neuropsychological function in early childhood. Our goal was to evaluate potential neurotoxic effects of prenatal exposure to seven metals (cobalt, copper, arsenic, cadmium, antimony, thallium and lead), during the 1st and 3rd trimester of pregnancy, on child neuropsychological development at 4 years of age. This study was based on a population-based birth cohort established in Sabadell (Catalonia, Spain) as part of the INMA [Environment and Childhood] Project. Metals were measured in 485 urine samples collected from mothers during the 1st and 3rd trimester of pregnancy. We assessed the neuropsychological development of 553 4-year-olds with the McCarthy Scales of Childrens' Abilitites (MSCA), together with their ADHD symptomatology, using the ADHD-DSM-IV criteria. A total of 385 children were included in the present study. We found no statistically significant associations between metals and general cognitive scale or executive function of the MSCA. We found negative coefficients for the exposure to cadmium 1st trimester, cadmium 3rd trimester and lead 3rd trimester on the general cognitive score of MSCA, although these results were not significant. We did not find any association between prenatal exposure to metals and ADHD symptomatology at the age of 4 years. Our results do not suggest that prenatal exposure to current low-levels of metals impairs children's cognitive development during preschool years. Copyright © 2013 Elsevier Inc. All rights reserved.
Chronic lead intoxication affects glial and neural systems and induces hypoactivity in adult rat.
Sansar, Wafa; Ahboucha, Samir; Gamrani, Halima
2011-10-01
Lead is an environmental toxin and its effects are principally manifested in the brain. Glial and neuronal changes have been described during development following chronic or acute lead intoxication, however, little is known about the effects of chronic lead intoxication in adults. In this study we evaluated immunohistochemically the glial and dopaminergic systems in adult male Wistar rats. 0.5% (v/v) lead acetate in drinking water was administrated chronically over a 3-month period. Hypertrophic immunoreactive astrocytes were observed in the frontal cortex and other brain structures of the treated animals. Analysis of the astroglial features showed increased number of astrocyte cell bodies and processes in treated rats, an increase confirmed by Western blot. Particular distribution of glial fibrillary acidic protein immunoreactivity was observed within the blood vessel walls in which dense immunoreactive glial processes emanate from astrocytes. Glial changes in the frontal cortex were concomitant with reduced tyrosine hydroxylase immunoreactive neuronal processes, which seem to occur as a consequence of significantly reduced dopaminergic neurons within the nucleus of origin in the substantia nigra. These glial and neuronal changes following lead intoxication may affect animal behavior as evidenced by reduced locomotor activity in an open field test. These findings demonstrate that chronic lead exposure induces astroglial changes, which may compromise neuronal function and consequently animal behavior. Copyright © 2010 Elsevier GmbH. All rights reserved.
Pattee, Oliver H.; Pain, Deborah J.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John
2003-01-01
Anthropogenic uses of lead have probably altered its availability and environmental distribution more than any other toxic element. Consequently, lead concentrations in many living organisms may be approaching thresholds of toxicity for the adverse effects of lead. Such thresholds are difficult to define, as they vary with the chemical and physical form of lead, exposure regime, other elements present and also vary both within and between species. The technological capability to accurately quantify low lead concentrations has increased over the last decade, and physiological and behavioral effects have been measured in wildlife with tissue lead concentrations below those previously considered safe for humans.s.236 Consequently. lead criteria for the protection of wildlife and human health are frequently under review, and 'thresholds' of lead toxicity are being reconsidered. Proposed lead criteria for the protection of natural resources have been reviewed by Eisler. Uptake of lead by plants is limited by its generally low availability in soils and sediments, and toxicity may be limited by storage mechanisms and its apparently limited translocation within most plants. Lead does not generally accumulate within the foliar parts of plants, which limits its transfer to higher trophic levels. Although lead may concentrate in plant and animal tissues, no evidence of biomagnification exists. Acid deposition onto surface waters and soils with low buffering capacity may influence the availability of lead for uptake by plants and animals, and this may merit investigation at susceptible sites. The biological significance of chronic low-level lead exposure to wildlife is sometimes difficult to quantify. Animals living in urban environments or near point sources of lead emission are inevitably subject to greater exposure to lead and enhanced risk of lead poisoning. Increasingly strict controls on lead emissions in many countries have reduced exposure to lead from some sources. and the .reduction of lead in gasoline has resulted in lower tissue lead concentrations in humans and wildlife from many, particularly urban, locations. However, it has been suggested that increasing use of organic lead compounds as catalysts for the production of plastics and as wood preservatives and biocides could adversely affect wildlife. The most significant source of direct wildlife mortality from lead is spent gunshot and fishing sinkers. Elevated mortality from shot ingestion in avian species resulted in the introduction of nontoxic (steel) shot zones along certain flyways in the United States in the mid-1970s and a total ban on the use of lead for waterfowl and coot hunting nationwide by 1992. Several other countries are now following suit and have either banned or are in the process of restricting the use of lead shot for waterfowl hunting. In the United States it has been estimated that since the 1986 hunting season. when the use of nontoxic shot became widespread. over 6 million ducks have not been lost to lead poisoning. Raptors, especially eagles, have also apparently benefited. although lead poisoning from ingestion of bullet fragments remains a problem for the critically threatened California condor. Quantifying reductions in lead mortality rates would be difficult since eagle populations throughout North America are rapidly recovering from other anthropogenic perturbations, especially organochlorine pesticides.
Alasia, D D; Emem-Chioma, P C; Wokoma, F S
2010-01-01
In spite of the high risk of lead exposure in Nigeria, there is a paucity of data on the occupational and environmental burden of lead exposure and its impact on human health especially its nephrotoxic effects. This study aims to assess the degree of occupational and environmental lead exposure in Port Harcourt Nigeria and the relationship between lead exposure and indices of renal function. A cross sectional comparative study of 190 aduIt subjects with occupational lead exposure and 80 matched controls. Blood lead was used as the biomarker of lead exposure. Serum urea, creatinine, uric acid, urine albumin and glomerular filtration rate were the renal function indices measured. Occupationally lead exposed subjects had higher mean blood lead 50.37 +/- 24.58 ug/dI, than controls 41.40 +/- 26.85 ug/dl (p = 0.008). The mean values of serum urea, creatinine and uric acid were significantly higher in study subjects compared to controls 3.06 +/- 0.81 mmol/L vs. 2.7 +/- 0.84 mmol/L (p = 0.002), 87.2 +/- 14.30 umol/L vs. 80.68 +/- 14.70 umol/L (p = 0.001) and 271.93 +/- 71.18 umol/L vs. 231.1 +/- 62.70 umol/L (p = 0.000) respectively. Creatinine clearance was significantly lower in subjects compared to controls 98.86 +/- 21.26 mI/min/1.72m2 vs. 108.18 +/- 25.16 mI/min/1.72m2 (p = 0.002). Blood lead correlated positively only with blood urea [r = .031, r2 = .017, p = .031] and negatively [r = -.144, r2 = .02 1, p = .018] with serum phosphate. The level of environmental and occupational lead exposure in Port Harcourt, Nigeria is high, with occupational lead exposure increasing the risk of lead toxicity and renal function impairment.
Alkozei, Anna; Smith, Ryan; Pisner, Derek A; Vanuk, John R; Berryhill, Sarah M; Fridman, Andrew; Shane, Bradley R; Knight, Sara A; Killgore, William D S
2016-09-01
Prolonged exposure to blue wavelength light has been shown to have an alerting effect, and enhances performance on cognitive tasks. A small number of studies have also shown that relatively short exposure to blue light leads to changes in functional brain responses during the period of exposure. The extent to which blue light continues to affect brain functioning during a cognitively challenging task after cessation of longer periods of exposure (i.e., roughly 30 minutes or longer), however, has not been fully investigated. A total of 35 healthy participants (18 female) were exposed to either blue (469 nm) (n = 17) or amber (578 nm) (n = 18) wavelength light for 30 minutes in a darkened room, followed immediately by functional magnetic resonance imaging (fMRI) while undergoing a working memory task (N-back task). Participants in the blue light condition were faster in their responses on the N-back task and showed increased activation in the dorsolateral (DLPFC) and ventrolateral (VLPFC) prefrontal cortex compared to those in the amber control light condition. Furthermore, greater activation within the VLPFC was correlated with faster N-back response times. This is the first study to suggest that a relatively brief, single exposure to blue light has a subsequent beneficial effect on working memory performance, even after cessation of exposure, and leads to temporarily persisting functional brain changes within prefrontal brain regions associated with executive functions. These findings may have broader implication for using blue-enriched light in a variety of work settings where alertness and quick decision-making are important. © 2016 Associated Professional Sleep Societies, LLC.
Auditory and non-auditory effects of noise on health
Basner, Mathias; Babisch, Wolfgang; Davis, Adrian; Brink, Mark; Clark, Charlotte; Janssen, Sabine; Stansfeld, Stephen
2014-01-01
Noise is pervasive in everyday life and can cause both auditory and non-auditory health effects. Noise-induced hearing loss remains highly prevalent in occupational settings, and is increasingly caused by social noise exposure (eg, through personal music players). Our understanding of molecular mechanisms involved in noise-induced hair-cell and nerve damage has substantially increased, and preventive and therapeutic drugs will probably become available within 10 years. Evidence of the non-auditory effects of environmental noise exposure on public health is growing. Observational and experimental studies have shown that noise exposure leads to annoyance, disturbs sleep and causes daytime sleepiness, affects patient outcomes and staff performance in hospitals, increases the occurrence of hypertension and cardiovascular disease, and impairs cognitive performance in schoolchildren. In this Review, we stress the importance of adequate noise prevention and mitigation strategies for public health. PMID:24183105
Fischer, Florian; Kraemer, Alexander
2016-02-05
Evidence of the adverse health effects attributable to second-hand smoke (SHS) exposure is available. This study aims to quantify the impact of SHS exposure on ischaemic heart diseases (IHD), chronic obstructive pulmonary diseases (COPD), and stroke in Germany. Therefore, this study estimated and forecasted the morbidity for the three outcomes in the German population. Furthermore, a health impact assessment was performed using DYNAMO-HIA, which is a generic software tool applying a Markov model. Overall 687,254 IHD cases, 231,973 COPD cases, and 288,015 stroke cases were estimated to be attributable to SHS exposure in Germany for 2014. Under the assumption that the population prevalence of these diseases and the prevalence of SHS exposure remain constant, the total number of cases will increase due to demographic aging. Assuming a total eradication of SHS exposure beginning in 2014 leads to an estimated reduction of 50% in cases, compared to the reference scenario in 2040 for all three diseases. The results highlight the relevance of SHS exposure because it affects several chronic disease conditions and has a major impact on the population's health. Therefore, public health campaigns to protect non-smokers are urgently needed.
Yan, Changhui; Jiao, Lifei; Zhao, Jun; Yang, Haiying; Peng, Shuangqing
2012-07-01
Chlorpyrifos (CPF) is one of the most commonly used insecticides throughout the world and has become one of the major pesticides detected in farm products. Chronic exposures to CPF, especially at the dosages without eliciting any systemic toxicity, require greater attention. The purpose of this study was, therefore, to evaluate the behavioral effects of repeated low doses (doses that do not produce overt signs of cholinergic toxicity) of CPF in adult rats. Male rats were given 0, 1.0, 5.0 or 10.0mg/kg of CPF through intragastric administration daily for 4 consecutive weeks. The behavioral functions were assessed in a series of behavioral tests, including water maze task, open-field test, grip strength and rotarod test. Furthermore, the present study was designed to evaluate the effects of repeated exposures to CPF on water maze recall and not acquisition. The results showed that the selected doses only had mild inhibition effects on cholinesterase activity, and have no effects on weight gain and daily food consumption. Performances in the spatial retention task (Morris water maze) were impaired after the 4-week exposure to CPF, but the performances of grip strength and rotarod test were not affected. Motor activities in the open field were changed, especially the time spent in the central zone increased. The results indicated that repeated exposures to low doses of CPF may lead to spatial recall impairments, behavioral abnormalities. However, the underlying mechanism needs further investigations. Copyright © 2012 Elsevier Inc. All rights reserved.
Araki, S; Murata, K; Aono, H; Yanagihara, S; Ushio, K
1983-07-01
CaEDTA 20 mg/kg was administered weekly for 3.5 years after termination of occupational exposure to two lead workers. The diminution half-lives for lead in blood and urine lead mobilized by CaEDTA were 4.8 and 3.3 years respectively for subject 1 following 28 years exposure and 3.3 and 2.0 years respectively for subject 2 following 26 years exposure. The difference in the diminution rate between lead in blood and lead mobilized by CaEDTA was significant in subject 2 (p less than 0.05).
Metals, Oxidative Stress and Neurodegeneration: A focus on Iron, Manganese and Mercury
Farina, Marcelo; Avila, Daiana Silva; da Rocha, João Batista Teixeira
2013-01-01
Essential metals are crucial for the maintenance of cell homeostasis. Among the 23 elements that have known physiological functions in humans, 12 are metals, including iron (Fe) and manganese (Mn). Nevertheless, excessive exposure to these metals may lead to pathological conditions, including neurodegeneration. Similarly, exposure to metals that do not have known biological functions, such as mercury (Hg), also present great health concerns. This reviews focuses on the neurodegenerative mechanisms and effects of Fe, Mn and Hg. Oxidative stress (OS), particularly in mitochondria, is a common feature of Fe, Mn and Hg toxicity. However, the primary molecular targets triggering OS are distinct. Free cationic iron is a potent pro-oxidant and can initiate a set of reactions that form extremely reactive products, such as OH•. Mn can oxidize dopamine (DA), generating reactive species and also affect mitochondrial function, leading to accumulation of metabolites and culminating with OS. Cationic Hg forms have strong affinity for nucleophiles, such as –SH and –SeH. Therefore, they target critical thiol- and selenol-molecules with antioxidant properties. Finally, we address the main sources of exposure to these metals, their transport mechanisms into the brain, and therapeutic modalities to mitigate their neurotoxic effects. PMID:23266600
Zare, S; Afaghi, A; Heidari, R; Asadpoor, Y; Shiri, S
2007-08-01
The objective of this study was to evaluate the possible effects of PbNO3 exposure on variations of glucose and cortisol levels in Cyprinus carpio. Fish were subjected to two sub-lethal concentrations of PbNO3 for 14 days. Blood samples were isolated from the fish following the exposure, to measure the levels of cortisol and glucose compared to the control group. We found significant increases (p<0.05) in the levels of blood cortisol in two groups of fish after 14 days of exposure to two concentrations of PbNO3 (1.3 and 2.6 mg L (-1)) The results showed significant increases in the glucose levels of both fish groups exposed for 14 days In the later treatment, the rate of increase in group II (exposed to 2.6 mg L(-1) PbNO3) was higher than that of group I (exposed to 1.3 mg L(-1) PbNO3) (P = 0 compare to P = 0.007). Present findings attest that exposing to waterborne lead would affect the levels of both glucose and cortisol in Cyprinus carpio.
Lucano, Elena; Liberti, Micaela; Lloyd, Tom; Apollonio, Francesca; Wedan, Steve; Kainz, Wolfgang; Angelone, Leonardo M
2018-02-01
This study aims to investigate how the positions of the feeding sources of the transmit radiofrequency (RF) coil, field orientation direction with respect to the patient, and patient dimensions affect the global and local electromagnetic exposure in human body models. Three RF coil models were implemented, namely a specific two-source (S2) feed and two multisource feed configurations: generic 32-source (G32) and hybrid 16-source (H16). Thirty-two feeding conditions were studied for the S2, whereas two were studied for the G32 and H16. The study was performed using five human body models. Additionally, for two of the body models, the case of a partially implanted lead was evaluated. The results showed an overall variation due to coil feeding conditions of the whole-body specific absorption rate (SAR) of less than 20%, but deviations up to 98% of the magnitude of the electric field tangential to a possible lead path. For the analysis with the partially implanted lead, a variation of local SAR at the tip of the lead of up to 60% was observed with respect to feed position and field orientation direction. The results of this study suggest that specific information about feed position and field orientation direction must be considered for an accurate evaluation of patient exposure. Magn Reson Med 79:1135-1144, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
The Environment and Children's Health Care in Northwest China.
Trasande, Leonardo; Niu, Jingping; Li, Juansheng; Liu, Xingrong; Zhang, Benzhong; Li, Zhilan; Ding, Guowu; Sun, Yingbiao; Chen, Meichi; Hu, Xiaobin; Chen, Lung-Chi; Mendelsohn, Alan; Chen, Yu; Qu, Qingshan
2014-03-27
Industrialization in the northwest provinces of the People's Republic of China is accelerating rapid increases in early life environmental exposures, yet no publications have assessed health care provider capacity to manage common hazards. To assess provider attitudes and beliefs regarding the environment in children's health, determine self-efficacy in managing concerns, and identify common approaches to managing patients with significant exposures or environmentally-mediated conditions, a two-page survey was administered to pediatricians, child care specialists, and nurses in five provinces (Gansu, Shaanxi, Xinjiang, Qinghai, and Ningxia). Descriptive and multivariable analyses assessed predictors of strong self-efficacy, beliefs or attitudes. 960 surveys were completed with <5% refusal; 695 (72.3%) were valid for statistical analyses. The role of environment in health was rated highly (mean 4.35 on a 1-5 scale). Self-efficacy reported with managing lead, pesticide, air pollution, mercury, mold and polychlorinated biphenyl exposures were generally modest (2.22-2.52 mean). 95.4% reported patients affected with 11.9% reporting seeing >20 affected patients. Only 12.0% reported specific training in environmental history taking, and 12.0% reported owning a text on children's environmental health. Geographic disparities were most prominent in multivariable analyses, with stronger beliefs in environmental causation yet lower self-efficacy in managing exposures in the northwestern-most province. Health care providers in Northwest China have strong beliefs regarding the role of environment in children's health, and frequently identify affected children. Few are trained in environmental history taking or rate self-efficacy highly in managing common hazards. Enhancing provider capacity has promise for improving children's health in the region.
Lead exposure in adult males in urban Transvaal Province, South Africa during the apartheid era.
Hess, Catherine A; Cooper, Matthew J; Smith, Martin J; Trueman, Clive N; Schutkowski, Holger
2013-01-01
Human exposure to lead is a substantial public health hazard worldwide and is particularly problematic in the Republic of South Africa given the country's late cessation of leaded petrol. Lead exposure is associated with a number of serious health issues and diseases including developmental and cognitive deficiency, hypertension and heart disease. Understanding the distribution of lifetime lead burden within a given population is critical for reducing exposure rates. Femoral bone from 101 deceased adult males living in urban Transvaal Province (now Gauteng Province), South Africa between 1960 and 1998 were analyzed for lead concentration by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Of the 72 black and 29 white individuals sampled, chronic lead exposure was apparent in nearly all individuals. White males showed significantly higher median bone lead concentration (ME = 10.04 µg·g(-1)), than black males (ME = 3.80 µg·g(-1)) despite higher socioeconomic status. Bone lead concentration covaries significantly, though weakly, with individual age. There was no significant temporal trend in bone lead concentration. These results indicate that long-term low to moderate lead exposure is the historical norm among South African males. Unexpectedly, this research indicates that white males in the sample population were more highly exposed to lead.
Sabbar, Mariam; Dkhissi-Benyahya, Ouria; Benazzouz, Abdelhamid; Lakhdar-Ghazal, Nouria
2017-01-01
Lead exposure has been reported to produce many clinical features, including parkinsonism. However, its consequences on the circadian rhythms are still unknown. Here we aimed to examine the circadian rhythms of locomotor activity following lead intoxication and investigate the mechanisms by which lead may induce alterations of circadian rhythms in rats. Male Wistar rats were injected with lead or sodium acetate (10 mg/kg/day, i.p.) during 4 weeks. Both groups were tested in the “open field” to quantify the exploratory activity and in the rotarod to evaluate motor coordination. Then, animals were submitted to continuous 24 h recordings of locomotor activity under 14/10 Light/dark (14/10 LD) cycle and in complete darkness (DD). At the end of experiments, the clock proteins BMAL1, PER1-2, and CRY1-2 were assayed in the suprachiasmatic nucleus (SCN) using immunohistochemistry. We showed that lead significantly reduced the number of crossing in the open field, impaired motor coordination and altered the daily locomotor activity rhythm. When the LD cycle was advanced by 6 h, both groups adjusted their daily locomotor activity to the new LD cycle with high onset variability in lead-intoxicated rats compared to controls. Lead also led to a decrease in the number of immunoreactive cells (ir-) of BMAL1, PER1, and PER2 without affecting the number of ir-CRY1 and ir-CRY2 cells in the SCN. Our data provide strong evidence that lead intoxication disturbs the rhythm of locomotor activity and alters clock proteins expression in the SCN. They contribute to the understanding of the mechanism by which lead induce circadian rhythms disturbances. PMID:28970786
Implications of new data on lead toxicity for managing and preventing exposure.
Silbergeld, E K
1990-01-01
Recent advances in research on low-level lead poisoning point to the need to increase efforts to prevent exposure. Current biomedical consensus accepts that blood lead levels as low as 5 to 15 mcg/dL are risky to fetuses, young children, and adults. Lead at low dose is associated with increased blood pressure in adults, and chronic exposure has been associated in cohort studies with kidney disease and cancer. Data on lead toxicokinetics also points to the hazards of low-level, chronic exposure, since the lead that is accumulated over time in bone can be released at a relatively rapid rate during pregnancy and menopause. Sources that contribute to current lead exposure of the general population include unabated lead-based paint and contaminated soils, as well as lower level but pervasive sources in drinking water, food, and consumer products. PMID:2088754
Implications of new data on lead toxicity for managing and preventing exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silbergeld, E.K.
1990-11-01
Recent advances in research on low-level lead poisoning point to the need to increase efforts to prevent exposure. Current biomedical consensus accepts that blood lead levels as low as 5 to 15 mcg/dL are risky to fetuses, young children, and adults. Lead at low dose is associated with increased blood pressure in adults, and chronic exposure has been associated in cohort studies with kidney disease and cancer. Data on lead toxicokinetics also points to the hazards of low-level, chronic exposure, since the lead that is accumulated over time in bone can be released at a relatively rapid rate during pregnancymore » and menopause. Sources that contribute to current lead exposure of the general population include unabated lead-based paint and contaminated soils, as well as lower level but pervasive sources in drinking water, food, and consumer products.« less
Lead Exposure in Free-Flying Turkey Vultures Is Associated with Big Game Hunting in California
Kelly, Terra R.; Johnson, Christine K.
2011-01-01
Predatory and scavenging birds are at risk of lead exposure when they feed on animals injured or killed by lead ammunition. While lead ammunition has been banned from waterfowl hunting in North America for almost two decades, lead ammunition is still widely used for hunting big game and small game animals. In this study, we evaluated the association between big game hunting and blood lead concentration in an avian scavenger species that feeds regularly on large mammals in California. We compared blood lead concentration in turkey vultures within and outside of the deer hunting season, and in areas with varying wild pig hunting intensity. Lead exposure in turkey vultures was significantly higher during the deer hunting season compared to the off-season, and blood lead concentration was positively correlated with increasing wild pig hunting intensity. Our results link lead exposure in turkey vultures to deer and wild pig hunting activity at these study sites, and we provide evidence that spent lead ammunition in carrion poses a significant risk of lead exposure to scavengers. PMID:21494326
Lead exposure in free-flying turkey vultures is associated with big game hunting in California.
Kelly, Terra R; Johnson, Christine K
2011-04-06
Predatory and scavenging birds are at risk of lead exposure when they feed on animals injured or killed by lead ammunition. While lead ammunition has been banned from waterfowl hunting in North America for almost two decades, lead ammunition is still widely used for hunting big game and small game animals. In this study, we evaluated the association between big game hunting and blood lead concentration in an avian scavenger species that feeds regularly on large mammals in California. We compared blood lead concentration in turkey vultures within and outside of the deer hunting season, and in areas with varying wild pig hunting intensity. Lead exposure in turkey vultures was significantly higher during the deer hunting season compared to the off-season, and blood lead concentration was positively correlated with increasing wild pig hunting intensity. Our results link lead exposure in turkey vultures to deer and wild pig hunting activity at these study sites, and we provide evidence that spent lead ammunition in carrion poses a significant risk of lead exposure to scavengers.
Cleveland, Lisa M; Minter, Monica L; Cobb, Kathleen A; Scott, Anthony A; German, Victor F
2008-11-01
In the United States the risk of lead exposure is far higher among poor, urban, and immigrant populations than among other groups. And even slightly elevated blood lead levels increase children's risk of significant neurobehavioral problems extending through adolescence. Research has shown that blood lead levels in pregnant women well below the Centers for Disease Control and Prevention's "level of concern" of 10 micrograms per deciliter can cause miscarriage, premature birth, low birth weight, and subsequent developmental delays in their children. Despite these well-established dangers of lead exposure, routine prenatal lead screening and education is not a standard of care in the United States. Part 1 of this two-part article (October) presented the case of a pregnant woman with lead poisoning and described the epidemiology of lead exposure in the United States, the main sources of it, and its effects on a pregnant woman and her developing fetus and child. Part 2 describes recommendations for prenatal screening and strategies for dealing with lead exposure when it occurs: education, reduction in environmental exposure, treatment options, and developmental surveillance.
Grashow, Rachel; Spiro, Avron; Taylor, Kathryn M.; Newton, Kimberly; Shrairman, Ruth; Landau, Alexander; Sparrow, David; Hu, Howard; Weisskopf, Marc
2013-01-01
Background and Aims Lead exposure in children and occupationally-exposed adults has been associated with reduced visuomotor and fine motor function. However, associations in environmentally-exposed adults remain relatively unexplored. To address this, we examined the association between cumulative lead exposure—as measured by lead in bone—and performance on the Grooved Pegboard (GP) manual dexterity task, as well as on handwriting tasks using a novel assessment approach, among men in the VA Normative Aging Study (NAS). Methods GP testing was done with 362 NAS participants, and handwriting assessment with 328, who also had tibia and patella lead measurements made with K-X-Ray Fluorescence (KXRF). GP scores were time (sec) to complete the task with the dominant hand. The handwriting assessment approach assessed the production of signature and cursive lowercase l and m letter samples. Signature and lm task scores reflect consistency in repeated trials. We used linear regression to estimate associations and 95% confidence intervals (CI) with adjustment for age, smoking, education, income and computer experience. A backward elimination algorithm was used in the subset with both GP and handwriting assessment to identify variables predictive of each outcome. Results The mean (SD) participant age was 69.1 (7.2) years; mean patella and tibia concentrations were 25.0 (20.7) μg/g and 19.2 (14.6) μg/g, respectively. In multivariable-adjusted analyses, GP performance was associated with tibia (β per 15 μg/g bone = 4.66, 95% CI: 1.73, 7.58, p=0.002) and patella (β per 20 μg/g = 3.93, 95% CI: 1.11, 6.76, p = 0.006). In multivariable adjusted models of handwriting production, only the lm-pattern task showed a significant association with tibia (β per 15 μg/g bone = 1.27, 95% CI: 0.24, 2.29, p = 0.015), such that lm pattern production was more stable with increasing lead exposure. GP and handwriting scores were differentially sensitive to education, smoking, computer experience, financial stability, income and alcohol consumption. Conclusions Long-term cumulative environmental lead exposure was associated with deficits in GP performance, but not handwriting production. Higher lead appeared to be associated with greater consistency on the lm task. Lead sensitivity differences could suggest that lead affects neural processing speed rather than motor function per se, or could result from distinct brain areas involved in the execution of different motor tasks. PMID:23370289
Lead Exposures in U.S. Children, 2008: Implications for Prevention
Levin, Ronnie; Brown, Mary Jean; Kashtock, Michael E.; Jacobs, David E.; Whelan, Elizabeth A.; Rodman, Joanne; Schock, Michael R.; Padilla, Alma; Sinks, Thomas
2008-01-01
Objective We reviewed the sources of lead in the environments of U.S. children, contributions to children’s blood lead levels, source elimination and control efforts, and existing federal authorities. Our context is the U.S. public health goal to eliminate pediatric elevated blood lead levels (EBLs) by 2010. Data sources National, state, and local exposure assessments over the past half century have identified risk factors for EBLs among U.S. children, including age, race, income, age and location of housing, parental occupation, and season. Data extraction and synthesis Recent national policies have greatly reduced lead exposure among U.S. children, but even very low exposure levels compromise children’s later intellectual development and lifetime achievement. No threshold for these effects has been demonstrated. Although lead paint and dust may still account for up to 70% of EBLs in U.S. children, the U.S. Centers for Disease Control and Prevention estimates that ≥30% of current EBLs do not have an immediate lead paint source, and numerous studies indicate that lead exposures result from multiple sources. EBLs and even deaths have been associated with inadequately controlled sources including ethnic remedies and goods, consumer products, and food-related items such as ceramics. Lead in public drinking water and in older urban centers remain exposure sources in many areas. Conclusions Achieving the 2010 goal requires maintaining current efforts, especially programs addressing lead paint, while developing interventions that prevent exposure before children are poisoned. It also requires active collaboration across all levels of government to identify and control all potential sources of lead exposure, as well as primary prevention. PMID:18941567
Lead exposures in U.S. Children, 2008: implications for prevention.
Levin, Ronnie; Brown, Mary Jean; Kashtock, Michael E; Jacobs, David E; Whelan, Elizabeth A; Rodman, Joanne; Schock, Michael R; Padilla, Alma; Sinks, Thomas
2008-10-01
We reviewed the sources of lead in the environments of U.S. children, contributions to children's blood lead levels, source elimination and control efforts, and existing federal authorities. Our context is the U.S. public health goal to eliminate pediatric elevated blood lead levels (EBLs) by 2010. National, state, and local exposure assessments over the past half century have identified risk factors for EBLs among U.S. children, including age, race, income, age and location of housing, parental occupation, and season. Recent national policies have greatly reduced lead exposure among U.S. children, but even very low exposure levels compromise children's later intellectual development and lifetime achievement. No threshold for these effects has been demonstrated. Although lead paint and dust may still account for up to 70% of EBLs in U.S. children, the U.S. Centers for Disease Control and Prevention estimates that >or=30% of current EBLs do not have an immediate lead paint source, and numerous studies indicate that lead exposures result from multiple sources. EBLs and even deaths have been associated with inadequately controlled sources including ethnic remedies and goods, consumer products, and food-related items such as ceramics. Lead in public drinking water and in older urban centers remain exposure sources in many areas. Achieving the 2010 goal requires maintaining current efforts, especially programs addressing lead paint, while developing interventions that prevent exposure before children are poisoned. It also requires active collaboration across all levels of government to identify and control all potential sources of lead exposure, as well as primary prevention.
Whittaker, Stephen G
2003-07-01
Radiator repair workers in Washington State have the greatest number of very elevated (> or =60 microg/dL) blood lead levels of any other worker population. The goals of this study were to determine the number of radiator repair workers potentially exposed to lead; estimate the extent of blood lead data underreporting to the Occupational Lead Exposure Registry; describe current safety and health practices in radiator repair shops; and determine appropriate intervention strategies to reduce exposure and increase employer and worker awareness. Lead exposure in Washington State's radiator repair workers was assessed by reviewing Registry data and conducting a statewide survey of radiator repair businesses. This study revealed that a total of 226 workers in Washington State (including owner-operators and all employees) conduct repair activities that could potentially result in excessive exposures to lead. Approximately 26% of radiator repair workers with elevated blood lead levels (> or =25 microg/dL) were determined to report to Washington State's Registry. This study also revealed a lack of awareness of lead's health effects, appropriate industrial hygiene controls, and the requirements of the Lead Standard. Survey respondents requested information on a variety of workplace health and safety issues and waste management; 80% requested a confidential, free-of-charge consultation. Combining data derived from an occupational health surveillance system and a statewide mail survey proved effective at characterizing lead exposures and directing public health intervention in Washington State.
Levin, S M; Goldberg, M; Doucette, J T
1997-03-01
Over 50,000 workers are at risk of occupational exposure to lead in the course of renovating the nation's deteriorating infrastructure. In mid-1993, to control exposure to lead in the construction setting OSHA promulgated a Lead in Construction Standard. In this study, we assessed the effect of the mandated changes in exposure conditions which followed the introduction of this new standard. We analyzed changes in baseline and maximum blood lead concentrations and in maximum increments in blood lead levels before and after introduction of the standard among iron workers employed in the renovation of a large, lead-painted, steel bridge in New York City. Results indicated that baseline and maximum blood lead levels fell significantly after the implementation of the provisions of the standard, as did maximum increments in blood lead concentrations. Seventy-six percent of the workers maintained blood lead concentrations below 20 micrograms/dl after the OSHA standard, as compared with 66% prior to its implementation. Increments of 20 micrograms/dl or more occurred considerably more frequently before introduction of the standard (13% before vs. 4% after; p = 0.01). Evidence of decreased exposure to lead was observed among iron workers who were present both before and after the introduction of the OSHA standard, as well as among iron workers newly hired after the OSHA provisions were put in place. These findings document the effectiveness of the OSHA construction lead standard in controlling exposure to lead in this complex and variable environment. The data indicate the utility of blood lead determinations in assessing the outcome of industrial hygiene interventions to reduce exposures to lead in the construction setting.
Gorguner, Metin; Akgun, Metin
2010-01-01
Inhaled substances may cause injury in pulmonary epithelium at various levels of respiratory tract, leading from simple symptoms to severe disease. Acute inhalation injury (AII) is not uncommon condition. There are certain high risk groups but AII may occur at various places including home or workplace. Environmental exposure is also possible. In addition to individual susceptibility, the characteristics of inhaled substances such as water solubility, size of substances and chemical properties may affect disease severity as well as its location. Although AII cases may recover in a few days but AII may cause long-term complications, even death. We aimed to discuss the effects of short-term exposures (minutes to hours) to toxic substances on the lungs. PMID:25610115
Impact of climate change on waterborne diseases.
Funari, Enzo; Manganelli, Maura; Sinisi, Luciana
2012-01-01
Change in climate and water cycle will challenge water availability but it will also increase the exposure to unsafe water. Floods, droughts, heavy storms, changes in rain pattern, increase of temperature and sea level, they all show an increasing trend worldwide and will affect biological, physical and chemical components of water through different paths thus enhancing the risk of waterborne diseases. This paper is intended, through reviewing the available literature, to highlight environmental changes and critical situations caused by floods, drought and warmer temperature that will lead to an increase of exposure to water related pathogens, chemical hazards and cyanotoxins. The final aim is provide knowledge-based elements for more focused adaptation measures.
Wang, Ming-Dong; Gomes, James; Cashman, Neil R; Little, Julian; Krewski, Daniel
2014-12-01
The association between occupational exposure to lead and amyotrophic lateral sclerosis (ALS) was examined through systematic review and meta-analyses of relevant epidemiological studies and reported according to PRISMA guidelines. Relevant studies were searched in multiple bibliographic databases through September 2013; additional articles were tracked through PubMed until submission. All records were screened in DistillerSR, and the data extracted from included articles were synthesized with meta-analysis. The risk of developing ALS among individuals with a history of exposure to lead was almost doubled (odds ratio, 1.81; 95% confidence interval, 1.39 to 2.36) on the basis of nine included case-control studies with specific lead exposure information, with no apparent heterogeneity across included studies (I = 14%). The attributable risk of ALS because of exposure to lead was estimated to be 5%. Previous exposure to lead may be a risk factor for ALS.
Lead Speciation in Microorganisms.
Stewart, Theodora J
2017-04-10
The biogeochemical cycles of lead (Pb) have been largely affected by anthropogenic activities as a result of its high natural abundance and use over the centuries [1]. At sites more strongly impacted by urbanization [2] and mining [3], Pb is found at high nano to low micromolar concentrations in surface waters, and can be significantly higher in soil and sediment [4]. Microorganisms are found everywhere and their responses to Pb exposure can range from resistant to highly sensitive [5, 6]. These varying levels of toxicity can be attributed to the cellular handling of Pb, making it important to understand the role of intracellular Pb speciation for more accurate toxicity predictions.
Brooke, Basil D.
2018-01-01
Metal exposure is one of the commonest anthropogenic pollutants mosquito larvae are exposed to, both in agricultural and urban settings. As members of the Anopheles gambiae complex, which contains several major malaria vector species including An. arabiensis, are increasingly adapting to polluted environments, this study examined the effects of larval metal exposure on various life history traits of epidemiological importance. Two laboratory strains of An. arabiensis, SENN (insecticide susceptible) and SENN DDT (insecticide resistant), were reared in maximum acceptable toxicity concentrations, (MATC—the highest legally accepted concentration) of cadmium chloride, lead nitrate and copper nitrate. Following these exposures, time to pupation, adult size and longevity were determined. Larvae reared in double the MATC were assessed for changes in malathion and deltamethrin tolerance, measured by lethal time bottle bioassay, as well as changes in detoxification enzyme activity. As defence against oxidative stress has previously been demonstrated to affect the expression of insecticide resistance, catalase, glutathione peroxidase and superoxide dismutase activity was assessed. The relative metal toxicity to metal naïve larvae was also assessed. SENN DDT larvae were more tolerant of metal pollution than SENN larvae. Pupation in SENN larvae was significantly reduced by metal exposure, while adult longevity was not affected. SENN DDT showed decreased adult size after larval metal exposure. Adult insecticide tolerance was increased after larval metal exposure, and this effect appeared to be mediated by increased β-esterase, cytochrome P450 and superoxide dismutase activity. These data suggest an enzyme-mediated positive link between tolerance to metal pollutants and insecticide resistance in adult mosquitoes. Furthermore, exposure of larvae to metal pollutants may have operational consequences under an insecticide-based vector control scenario by increasing the expression of insecticide resistance in adults. PMID:29408922
Renal and blood pressure effects from environmental cadmium exposure in Thai children
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swaddiwudhipong, Witaya, E-mail: swaddi@hotmail.com; Mahasakpan, Pranee; Jeekeeree, Wanpen
Very few studies have shown renal and blood pressure effects from environmental cadmium exposure in children. This population study examined associations between urinary cadmium excretion, a good biomarker of long-term cadmium exposure, and renal dysfunctions and blood pressure in environmentally exposed Thai children. Renal functions including urinary excretion of β{sub 2}-microglobulin, calcium (early renal effects), and total protein (late renal effect), and blood pressure were measured in 594 primary school children. Of the children studied, 19.0% had urinary cadmium ≥1 μg/g creatinine. The prevalence of urinary cadmium ≥1 μg/g creatinine was significantly higher in girls and in those consuming ricemore » grown in cadmium-contaminated areas. The geometric mean levels of urinary β{sub 2}-microglobulin, calcium, and total protein significantly increased with increasing tertiles of urinary cadmium. The analysis did not show increased blood pressure with increasing tertiles of urinary cadmium. After adjusting for age, sex, and blood lead levels, the analysis showed significant positive associations between urinary cadmium and urinary β{sub 2}-microglobulin and urinary calcium, but not urinary total protein nor blood pressure. Our findings provide evidence that environmental cadmium exposure can affect renal functions in children. A follow-up study is essential to assess the clinical significance and progress of renal effects in these children. - Highlights: • Few studies show renal effects from environmental cadmium exposure in children. • We report renal and blood pressure effects from cadmium exposure in Thai children. • Urinary β{sub 2}-microglobulin and calcium increased with increasing urinary cadmium. • The study found no association between urinary cadmium levels and blood pressure. • Environmental cadmium exposure can affect renal functions in children.« less
Effects of exposure estimation errors on estimated exposure-response relations for PM2.5.
Cox, Louis Anthony Tony
2018-07-01
Associations between fine particulate matter (PM2.5) exposure concentrations and a wide variety of undesirable outcomes, from autism and auto theft to elderly mortality, suicide, and violent crime, have been widely reported. Influential articles have argued that reducing National Ambient Air Quality Standards for PM2.5 is desirable to reduce these outcomes. Yet, other studies have found that reducing black smoke and other particulate matter by as much as 70% and dozens of micrograms per cubic meter has not detectably affected all-cause mortality rates even after decades, despite strong, statistically significant positive exposure concentration-response (C-R) associations between them. This paper examines whether this disconnect between association and causation might be explained in part by ignored estimation errors in estimated exposure concentrations. We use EPA air quality monitor data from the Los Angeles area of California to examine the shapes of estimated C-R functions for PM2.5 when the true C-R functions are assumed to be step functions with well-defined response thresholds. The estimated C-R functions mistakenly show risk as smoothly increasing with concentrations even well below the response thresholds, thus incorrectly predicting substantial risk reductions from reductions in concentrations that do not affect health risks. We conclude that ignored estimation errors obscure the shapes of true C-R functions, including possible thresholds, possibly leading to unrealistic predictions of the changes in risk caused by changing exposures. Instead of estimating improvements in public health per unit reduction (e.g., per 10 µg/m 3 decrease) in average PM2.5 concentrations, it may be essential to consider how interventions change the distributions of exposure concentrations. Copyright © 2018 Elsevier Inc. All rights reserved.
Urban gardens: Lead exposure, recontamination mechanisms, and implications for remediation design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Heather F.; Hausladen, Debra M.; Brabander, Daniel J.
2008-07-15
Environmental lead contamination is prevalent in urban areas where soil represents a significant sink and pathway of exposure. This study characterizes the speciation of lead that is relevant to local recontamination and to human exposure in the backyard gardens of Roxbury and Dorchester, MA, USA. One hundred forty-one backyard gardens were tested by X-ray fluorescence, and 81% of gardens have lead levels above the US EPA action limit of 400 {mu}g/g. Raised gardening beds are the in situ exposure reduction method used in the communities to promote urban gardening. Raised beds were tested for lead and the results showed thatmore » the lead concentration increased from an initial range of 150{+-}40 {mu}g/g to an average of 336 {mu}g/g over 4 years. The percent distribution of lead in the fine grain soil (<100 {mu}m) and the trace metal signature of the raised beds support the conclusion that the mechanism of recontamination is wind-transported particles. Scanning electron microscopy and sequential extraction were used to characterize the speciation of lead, and the trace metal signature of the fine grain soil in both gardens and raised gardening beds is characteristic of lead-based paint. This study demonstrates that raised beds are a limited exposure reduction method and require maintenance to achieve exposure reduction goals. An exposure model was developed based on a suite of parameters that combine relevant values from the literature with site-specific quantification of exposure pathways. This model suggests that consumption of homegrown produce accounts for only 3% of children's daily exposure of lead while ingestion of fine grained soil (<100 {mu}m) accounts for 82% of the daily exposure. This study indicates that urban lead remediation on a yard-by-yard scale requires constant maintenance and that remediation may need to occur on a neighborhood-wide scale.« less
Urban gardens: lead exposure, recontamination mechanisms, and implications for remediation design.
Clark, Heather F; Hausladen, Debra M; Brabander, Daniel J
2008-07-01
Environmental lead contamination is prevalent in urban areas where soil represents a significant sink and pathway of exposure. This study characterizes the speciation of lead that is relevant to local recontamination and to human exposure in the backyard gardens of Roxbury and Dorchester, MA, USA. One hundred forty-one backyard gardens were tested by X-ray fluorescence, and 81% of gardens have lead levels above the US EPA action limit of 400 microg/g. Raised gardening beds are the in situ exposure reduction method used in the communities to promote urban gardening. Raised beds were tested for lead and the results showed that the lead concentration increased from an initial range of 150+/-40 microg/g to an average of 336 microg/g over 4 years. The percent distribution of lead in the fine grain soil (<100 microm) and the trace metal signature of the raised beds support the conclusion that the mechanism of recontamination is wind-transported particles. Scanning electron microscopy and sequential extraction were used to characterize the speciation of lead, and the trace metal signature of the fine grain soil in both gardens and raised gardening beds is characteristic of lead-based paint. This study demonstrates that raised beds are a limited exposure reduction method and require maintenance to achieve exposure reduction goals. An exposure model was developed based on a suite of parameters that combine relevant values from the literature with site-specific quantification of exposure pathways. This model suggests that consumption of homegrown produce accounts for only 3% of children's daily exposure of lead while ingestion of fine grained soil (<100 microm) accounts for 82% of the daily exposure. This study indicates that urban lead remediation on a yard-by-yard scale requires constant maintenance and that remediation may need to occur on a neighborhood-wide scale.
Hivert, Marie-France; Cardenas, Andres; Zhong, Jia; Rifas-Shiman, Sheryl L.; Agha, Golareh; Colicino, Elena; Just, Allan C.; Amarasiriwardena, Chitra; Lin, Xihong; Litonjua, Augusto A.; DeMeo, Dawn L.; Gillman, Matthew W.; Wright, Robert O.; Oken, Emily
2017-01-01
Background: Early-life exposure to lead is associated with deficits in neurodevelopment and with hematopoietic system toxicity. DNA methylation may be one of the underlying mechanisms for the adverse effects of prenatal lead on the offspring, but epigenome-wide methylation data for low levels of prenatal lead exposure are lacking. Objectives: We investigated the association between prenatal maternal lead exposure and epigenome-wide DNA methylation in umbilical cord blood nucleated cells in Project Viva, a prospective U.S.-based prebirth cohort with relatively low levels of lead exposure. Methods: Among 268 mother–infant pairs, we measured lead concentrations in red blood cells (RBC) from prenatal maternal blood samples, and using HumanMethylation450 Bead Chips, we measured genome-wide methylation levels at 482,397 CpG loci in umbilical cord blood and retained 394,460 loci after quality control. After adjustment for batch effects, cell types, and covariates, we used robust linear regression models to examine associations of prenatal lead exposure with DNA methylation in cord blood at epigenome-wide significance level [false discovery rate (FDR)<0.05]. Results: The mean [standard deviation (SD)] maternal RBC lead level was 1.22 (0.63) μg/dL. CpG cg10773601 showed an epigenome-wide significant negative association with prenatal lead exposure (−1.4% per doubling increase in lead exposure; p=2.3×10−7) and was annotated to C-Type Lectin Domain Family 11, Member A (CLEC11A), which functions as a growth factor for primitive hematopoietic progenitor cells. In sex-specific analyses, we identified more CpGs with FDR<0.05 among female infants (n=38) than among male infants (n=2). One CpG (cg24637308), which showed a strong negative association with prenatal lead exposure among female infants (−4.3% per doubling increase in lead exposure; p=1.1×10−06), was annotated to Dynein Heavy Chain Domain 1 gene (DNHD1) which is highly expressed in human brain. Interestingly, there were strong correlations between blood and brain methylation for CpG (cg24637308) based on another independent set of samples with a high proportion of female participants. Conclusion: Prenatal low-level lead exposure was associated with newborn DNA methylation, particularly in female infants. https://doi.org/10.1289/EHP1246 PMID:28858830
Wu, Shaowei; Hivert, Marie-France; Cardenas, Andres; Zhong, Jia; Rifas-Shiman, Sheryl L; Agha, Golareh; Colicino, Elena; Just, Allan C; Amarasiriwardena, Chitra; Lin, Xihong; Litonjua, Augusto A; DeMeo, Dawn L; Gillman, Matthew W; Wright, Robert O; Oken, Emily; Baccarelli, Andrea A
2017-08-25
Early-life exposure to lead is associated with deficits in neurodevelopment and with hematopoietic system toxicity. DNA methylation may be one of the underlying mechanisms for the adverse effects of prenatal lead on the offspring, but epigenome-wide methylation data for low levels of prenatal lead exposure are lacking. We investigated the association between prenatal maternal lead exposure and epigenome-wide DNA methylation in umbilical cord blood nucleated cells in Project Viva, a prospective U.S.-based prebirth cohort with relatively low levels of lead exposure. Among 268 mother-infant pairs, we measured lead concentrations in red blood cells (RBC) from prenatal maternal blood samples, and using HumanMethylation450 Bead Chips, we measured genome-wide methylation levels at 482,397 CpG loci in umbilical cord blood and retained 394,460 loci after quality control. After adjustment for batch effects, cell types, and covariates, we used robust linear regression models to examine associations of prenatal lead exposure with DNA methylation in cord blood at epigenome-wide significance level [false discovery rate (FDR)<0.05]. The mean [standard deviation (SD)] maternal RBC lead level was 1.22 (0.63) μg/dL. CpG cg10773601 showed an epigenome-wide significant negative association with prenatal lead exposure (-1.4% per doubling increase in lead exposure; p=2.3×10-7) and was annotated to C-Type Lectin Domain Family 11, Member A ( CLEC11A ), which functions as a growth factor for primitive hematopoietic progenitor cells. In sex-specific analyses, we identified more CpGs with FDR<0.05 among female infants (n=38) than among male infants (n=2). One CpG (cg24637308), which showed a strong negative association with prenatal lead exposure among female infants (-4.3% per doubling increase in lead exposure; p=1.1×10-06), was annotated to Dynein Heavy Chain Domain 1 gene ( DNHD1 ) which is highly expressed in human brain. Interestingly, there were strong correlations between blood and brain methylation for CpG (cg24637308) based on another independent set of samples with a high proportion of female participants. Prenatal low-level lead exposure was associated with newborn DNA methylation, particularly in female infants. https://doi.org/10.1289/EHP1246.
EVIDENCE FOR EFFECTS OF CHRONIC LEAD EXPOSURE ON BLOOD PRESSURE IN EXPERIMENTAL ANIMALS: AN OVERVIEW
Information obtained in a number of experimental studies conducted over the last forty years on the effects of lead on blood pressure is reviewed. Differences in animal species, age at beginning of exposure, level of lead exposure, indices of lead burden, and blood pressure effec...
Cortright, James J.; Lorrain, Daniel S.; Beeler, Jeff A.; Tang, Wei-Jen
2011-01-01
Previous exposure to amphetamine leads to enhanced locomotor and nucleus accumbens (NAcc) dopamine (DA) responding to the drug as well as enhanced amphetamine self-administration. Here, we investigated the effects of exposure to Δ9-tetrahydrocannibinol (Δ9-THC) on behavioral and biochemical responding to amphetamine. Rats in different groups received five exposure injections of vehicle or one of five doses of Δ9-THC (0.4, 0.75, 1.5, 3.0, and 6.0 mg/kg i.p.) and were tested 2 days and 2 weeks later. Exposure to all but the lowest and highest doses of Δ9-THC enhanced the locomotor response to amphetamine (0.75 mg/kg i.p.), but all failed to enhance NAcc DA overflow in response to the drug. Moreover, exposure to 3.0 mg/kg i.p. Δ9-THC increased forskolin-evoked adenylyl cyclase activity in the NAcc and rats' locomotor response to the direct DA receptor agonist apomorphine (1.0 mg/kg s.c.), suggesting that Δ9-THC sensitized locomotor responding to amphetamine by up-regulating postsynaptic DA receptor signaling in the NAcc. Finally, amphetamine self-administration (200 μg/kg/infusion i.v.) was enhanced in amphetamine (5 × 1.5 mg/kg i.p.)-exposed rats, but not in rats exposed to Δ9-THC (5 × 3.0 mg/kg i.p.). Previous exposure to this dose of Δ9-THC modestly increased apomorphine SA (0.5 mg/kg/infusion i.v.). Thus, unlike amphetamine exposure, exposure to Δ9-THC does not enhance the subsequent NAcc DA response to amphetamine or promote amphetamine self-administration. Although Δ9-THC leads to alterations in postsynaptic DA receptor signaling in the NAcc and these can affect the generation of locomotion, these neuroadaptations do not seem to be linked to the expression of enhanced amphetamine self-administration. PMID:21389094
Dallaire, Renée; Dewailly, Éric; Ayotte, Pierre; Forget-Dubois, Nadine; Jacobson, Sandra W; Jacobson, Joseph L; Muckle, Gina
2014-10-01
Because of their geographical location and traditional lifestyle, Canadian Inuit children are highly exposed to polychlorinated biphenyls (PCBs) and lead (Pb), environmental contaminants that are thought to affect fetal and child growth. We examined the associations of these exposures with the fetal and postnatal growth of Inuit children. We conducted a prospective cohort study among Inuit from Nunavik (Arctic Québec). Mothers were recruited at their first prenatal visit; children (n=290) were evaluated at birth and at 8-14 years of age. Concentrations of PCB 153 and Pb were determined in umbilical cord and child blood. Weight, height and head circumference were measured at birth and during childhood. Cord blood PCB 153 concentrations were not associated with anthropometric measurements at birth or school age, but child blood PCB 153 concentrations were associated with reduced weight, height and head circumference during childhood. There was no association between cord Pb levels and anthropometric outcomes at birth, but cord blood Pb was related to smaller height and shows a tendency of a smaller head circumference during childhood. Our results suggest that chronic exposure to PCBs during childhood is negatively associated with skeletal growth and weight, while prenatal Pb exposure is related to reduced growth during childhood. This study is the first to link prenatal Pb exposure to poorer growth in school-age children. Copyright © 2014 Elsevier Inc. All rights reserved.
Gamiño-Gutiérrez, Sandra P; González-Pérez, C Ivonne; Gonsebatt, María E; Monroy-Fernández, Marcos G
2013-02-01
Environmental geochemical and health studies were carried out in urban areas of Villa de la Paz, S.L.P. (Mexico), where mining activities have been developed for more of 200 years, leading to the pollution of surface soil by arsenic and heavy metals (Pb, Cd, Cu, Zn). The analysis of urban soils to determine total and bioaccessibility concentrations of As and Pb, demonstrated a combined contribution of the natural and anthropogenic concentrations in the site, at levels higher than the environmental guideline values that provoke a human health risk. Contour soil mapping confirmed that historical mine waste deposits without environmental control measures, are the main source of pollution soil by As and Pb in the site. Exposure (Pb in blood and As in urine) and effect (micronucleated exfoliated cells assay) biological monitoring were then carried out in the childhood population of the site and in a control site. The exposure biological monitoring demonstrated that at least 20-30 % of children presented Pb and As exposure values higher than the national and international maximum intervention values. The effect biomonitoring by MEC assay confirmed that there is a genotoxic damage in local childhood population that could be associated with the arsenic exposure in the site.
In utero exposure to dioxin causes neocortical dysgenesis through the actions of p27Kip1
Mitsuhashi, Takayuki; Yonemoto, Junzo; Sone, Hideko; Kosuge, Yasuhiro; Kosaki, Kenjiro; Takahashi, Takao
2010-01-01
Dioxins have been reported to exert various adverse effects, including cell-cycle dysregulation in vitro and impairment of spatial learning and memory after in utero exposure in rodents. Furthermore, children born to mothers who are exposed to dioxin analogs polychlorinated dibenzofurans or polychlorinated biphenyls have developmental impairments in cognitive functions. Here, we show that in utero exposure to dioxins in mice alters differentiation patterns of neural progenitors and leads to decreased numbers of non-GABAergic neurons and thinner deep neocortical layers. This reduction in number of non-GABAergic neurons is assumed to be caused by accumulation of cyclin-dependent kinase inhibitor p27Kip1 in nuclei of neural progenitors. Lending support to this presumption, mice lacking p27Kip1 are not susceptible to in utero dioxin exposure. These results show that environmental pollutants may affect neocortical histogenesis through alterations of functions of specific gene(s)/protein(s) (in our case, dioxins), exerting adverse effects by altering functions of p27Kip1. PMID:20805476
Zahran, Sammy; Laidlaw, Mark A S; Rowe, Dominic B; Ball, Andrew S; Mielke, Howard W
2017-02-01
The age standardized death rate from motor neuron disease (MND) for persons 40-84 years of age in the Australian States of New South Wales, Victoria, and Queensland increased dramatically from 1958 to 2013. Nationally, age-specific MND death rates also increased over this time period, but the rate of the rise varied considerably by age-group. The historic use of lead (Pb) additives in Australian petrol is a candidate explanation for these trends in MND mortality (International Classification of Disease (ICD)-10 G12.2). Leveraging temporal and spatial variation in petrol lead exposure risk resulting from the slow rise and rapid phase-out of lead as a constituent in gasoline in Australia, we analyze relationships between (1) national age-specific MND death rates in Australia and age-specific lifetime petrol lead exposure, (2) annual between-age dispersions in age-specific MND death rates and age-specific lifetime petrol lead exposure; and (3) state-level age-standardized MND death rates as a function of age-weighted lifetime petrol lead exposure. Other things held equal, we find that a one percent increase in lifetime petrol lead exposure increases the MND death rate by about one-third of one percent in both national age-specific and state-level age-standardized models of MND mortality. Lending support to the supposition that lead exposure is a driver of MND mortality risk, we find that the annual between-age group standard deviation in age-specific MND death rates is strongly correlated with the between-age standard deviation in age-specific lifetime petrol lead exposure. Legacy petrol lead emissions are associated with age-specific MND death rates as well as state-level age-standardized MND death rates in Australia. Results indicate that we are approaching peak lead exposure-attributable MND mortality. Copyright © 2016 Elsevier Inc. All rights reserved.
Evolutionary clade affects resistance of Clostridium difficile spores to Cold Atmospheric Plasma
NASA Astrophysics Data System (ADS)
Connor, Mairéad; Flynn, Padrig B.; Fairley, Derek J.; Marks, Nikki; Manesiotis, Panagiotis; Graham, William G.; Gilmore, Brendan F.; McGrath, John W.
2017-02-01
Clostridium difficile is a spore forming bacterium and the leading cause of colitis and antibiotic associated diarrhoea in the developed world. Spores produced by C. difficile are robust and can remain viable for months, leading to prolonged healthcare-associated outbreaks with high mortality. Exposure of C. difficile spores to a novel, non-thermal atmospheric pressure gas plasma was assessed. Factors affecting sporicidal efficacy, including percentage of oxygen in the helium carrier gas admixture, and the effect on spores from different strains representing the five evolutionary C. difficile clades was investigated. Strains from different clades displayed varying resistance to cold plasma. Strain R20291, representing the globally epidemic ribotype 027 type, was the most resistant. However all tested strains displayed a ~3 log reduction in viable spore counts after plasma treatment for 5 minutes. Inactivation of a ribotype 078 strain, the most prevalent clinical type seen in Northern Ireland, was further assessed with respect to surface decontamination, pH, and hydrogen peroxide concentration. Environmental factors affected plasma activity, with dry spores without the presence of organic matter being most susceptible. This study demonstrates that cold atmospheric plasma can effectively inactivate C. difficile spores, and highlights factors that can affect sporicidal activity.
Emotionally anesthetized: media violence induces neural changes during emotional face processing.
Stockdale, Laura A; Morrison, Robert G; Kmiecik, Matthew J; Garbarino, James; Silton, Rebecca L
2015-10-01
Media violence exposure causes increased aggression and decreased prosocial behavior, suggesting that media violence desensitizes people to the emotional experience of others. Alterations in emotional face processing following exposure to media violence may result in desensitization to others' emotional states. This study used scalp electroencephalography methods to examine the link between exposure to violence and neural changes associated with emotional face processing. Twenty-five participants were shown a violent or nonviolent film clip and then completed a gender discrimination stop-signal task using emotional faces. Media violence did not affect the early visual P100 component; however, decreased amplitude was observed in the N170 and P200 event-related potentials following the violent film, indicating that exposure to film violence leads to suppression of holistic face processing and implicit emotional processing. Participants who had just seen a violent film showed increased frontal N200/P300 amplitude. These results suggest that media violence exposure may desensitize people to emotional stimuli and thereby require fewer cognitive resources to inhibit behavior. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Diaz, Sabrina D; Smith, Lynne M; LaGasse, Linda L; Derauf, Chris; Newman, Elana; Shah, Rizwan; Arria, Amelia; Huestis, Marilyn A; Della Grotta, Sheri; Dansereau, Lynne M; Neal, Charles; Lester, Barry M
2014-06-01
To examine child behavioral and cognitive outcomes after prenatal exposure to methamphetamine. We enrolled 412 mother-infant pairs (204 methamphetamine-exposed and 208 unexposed matched comparisons) in the Infant Development, Environment, and Lifestyle study. The 151 children exposed to methamphetamine and 147 comparisons who attended the 7.5-year visit were included. Exposure was determined by maternal self-report and/or positive meconium toxicology. Maternal interviews assessed behavioral and cognitive outcomes using the Conners' Parent Rating Scale-Revised: Short Form. After adjusting for covariates, children exposed to methamphetamine had significantly higher cognitive problems subscale scores than comparisons and were 2.8 times more likely to have cognitive problems scores that were above average on the Conners' Parent Rating Scale-Revised: Short Form. No association between prenatal methamphetamine exposure and behavioral problems, measured by the oppositional, hyperactivity, and attention-deficit/hyperactivity disorder index subscales, were found. Prenatal methamphetamine exposure was associated with increased cognitive problems, which may affect academic achievement and lead to increased negative behavioral outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.
Studies on battery repair and recycling workers occupationally exposed to lead in Karachi.
Haider, Muhammad Jamal; Qureshi, Naeemullah
2013-01-01
OBJECTIVE. The present study was carried out to investigate the effects of occupational lead exposure on the hematological and biochemical parameters in occupationally exposed and non exposed inhabitants of Karachi. MATERIAL AND METHODS. In 100 lead exposed subjects recruited from automobile workshops, lead battery repair and recycling units located in Karachi and in 100 control subjects the general health status, hematological parameters and exposure markers for lead were measured. RESULTS. Results indicated that the mean values of blood lead level and delta-aminolevulinic acid were significantly higher (P<0.05) while the activity of delta-aminolevulinic acid dehydratase were significantly decreased (P<0.05) among battery repair and recycling workers as compared to controls. The abnormalities in the blood lead level, delta-aminolevulinic acid and delta-aminolevulinic acid dehydratase were more frequent in lead exposed battery repair workers when compared with control subjects. The blood lead levels and deltaaminolevulinic acid were positively correlated while delta-aminolevulinic acid dehydratase was found to be negatively correlated with age, years of exposure and years of employment. Blood lead level was positively correlated with hemoglobin and RBC count while delta-aminolevulinic acid dehydratase was negatively correlated with hemoglobin concentration. The work related symptoms, droopiness, nasal symptoms and muscular pain were more frequent among battery repair workers as compared to control group. The findings of present study confirmed that occupational exposure to lead is associated with deviation in important hematological parameters and biological markers of exposure to lead among lead exposed workers, and also confirms the impact of lead exposure in the development of adverse effects among lead exposed workers. The study provides the data for risk assessment in lead battery repair workers of Karachi and suggests the need for preventive measures for battery repair workers and improvements to reduce occupational lead exposures to protect them from lead toxicity. It is suggested that hematological and physical examinations of lead exposed workers should be carried out periodically to prevent future health hazards.
Lead exposure and rate of change in cognitive function in older women
Power, Melinda C; Korrick, Susan; Tchetgen Tchetgen, Eric J; Nie, Linda H; Grodstein, Francine; Hu, Howard; Weuve, Jennifer; Schwartz, Joel; Weisskopf, Marc G
2014-01-01
Background Higher long-term cumulative lead exposure predicts faster cognitive decline in older men, but evidence of an association in women is lacking. Objective To determine if there is an association between lead exposure and cognitive decline in women. Methods This study considers a sample of 584 women from the Nurses’ Health Study who live in or near Boston, Massachusetts. We quantified lead exposure using biomarkers of lead exposure assessed in 1993–2004 and evaluated cognitive decline by repeated performance on a telephone battery of cognitive tests primarily assessing learning, memory, executive function, and attention completed in 1995–2008. All cognitive test scores were z-transformed for use in analyses. We used linear mixed models with random effects to quantify the association between each lead biomarker and change in cognition overall and on each individual test. Results Consideration of individual tests showed greater cognitive decline with increased tibia lead concentrations, a measure of long-term cumulative exposure, for story memory and category fluency. The estimated excess annual decline in overall cognitive test z-score per SD increase in tibia bone lead concentration was suggestive, although the confidence intervals included the null (0.024 standard units, 95% confidence interval: −0.053 , 0.004 – an additional decline in function equivalent to being 0.33 years older). We found little support for associations between cognitive decline and patella or blood lead, which provide integrated measures of exposure over shorter timeframes. Conclusions Long-term cumulative lead exposure may be weakly associated with faster cognitive decline in community-dwelling women, at least in some cognitive domains. PMID:24529005
Wang, Chao-Jie; Wang, Guang; Wang, Xiao-Yu; Liu, Meng; Chuai, Manli; Lee, Kenneth Ka Ho; He, Xiao-Song; Lu, Da-Xiang; Yang, Xuesong
2016-06-15
Imidacloprid is a neonicotinoid pesticide that is widely used in the control pests found on crops and fleas on pets. However, it is still unclear whether imidacloprid exposure could affect early embryo development-despite some studies having been conducted on the gametes. In this study, we demonstrated that imidacloprid exposure could lead to abnormal craniofacial osteogenesis in the developing chick embryo. Cranial neural crest cells (NCCs) are the progenitor cells of the chick cranial skull. We found that the imidacloprid exposure retards the development of gastrulating chick embryos. HNK-1, PAX7, and Ap-2α immunohistological stainings indicated that cranial NCCs generation was inhibited after imidacloprid exposure. Double immunofluorescent staining (Ap-2α and PHIS3 or PAX7 and c-Caspase3) revealed that imidacloprid exposure inhibited both NCC proliferation and apoptosis. In addition, it inhibited NCCs production by repressing Msx1 and BMP4 expression in the developing neural tube and by altering expression of EMT-related adhesion molecules (Cad6B, E-Cadherin, and N-cadherin) in the developing neural crests. We also determined that imidacloprid exposure suppressed cranial NCCs migration and their ability to differentiate. In sum, we have provided experimental evidence that imidacloprid exposure during embryogenesis disrupts NCCs development, which in turn causes defective cranial bone development.
Psychiatric epidemiologic study of occupational lead exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parkinson, D.K.; Ryan, C.; Bromet, E.J.
1986-02-01
The association of occupational lead exposure with neuropsychiatric functioning was evaluated using data collected in 1982 in eastern Pennsylvania from 288 lead-exposed workers and 181 nonexposed subjects. Both current and cumulative exposure indices were used. After controlling for age, education, and income, few meaningful differences between exposed and control workers were found on either neuropsychologic or psychosocial variables. Dose-response analyses indicated that among lead-exposed workers, cumulative and current exposure were unrelated to neuropsychologic performance. The only meaningful associations occurred between exposure and level of conflict in interpersonal relationships. The results thus give evidence against hypotheses suggesting adverse neuropsychologic effects.
2014-01-01
Background The toxic heavy metal lead continues to be a leading environmental risk factor, with the number of attributable deaths having doubled between 1990 and 2010. Although major sources of lead exposure, in particular lead in petrol, have been significantly reduced in recent decades, lead is still used in a wide range of processes and objects, with developing countries disproportionally affected. The objective of this systematic review is to assess the effectiveness of regulatory, environmental and educational interventions for reducing blood lead levels and associated health outcomes in children, pregnant women and the general population. Methods/design The databases MEDLINE, Embase and the Global Health Library (GHL) will be searched using a sensitive search strategy. Studies in English, German, French, Spanish, Italian or Afrikaans will be screened according to predefined inclusion and exclusion criteria. We will consider randomized and non-randomized studies accepted by the Cochrane Effective Practice and Organization of Care (EPOC) Group, as well as additional non-randomized studies. Screening of titles and abstracts will be performed by one author. Full texts of potentially relevant studies will be independently assessed for eligibility by two authors. A single author will extract data, with a second reviewer checking the extraction form. Risk of bias will be assessed by two researchers using the Graphical Appraisal Tool for Epidemiological studies, as modified by the Centre for Public Health at the UK National Institute for Health and Care Excellence. Any inconsistencies in the assessment of eligibility, data extraction or quality appraisal will be resolved through discussion. Where two or more studies report the primary outcome blood lead levels within the same population group, intervention category and source of lead exposure, data will be pooled using random effects meta-analysis. In parallel, harvest plots as a graphical method of evidence synthesis will be used to present findings for blood lead levels and secondary outcomes. Discussion This systematic review will fill an important evidence gap with respect to the effectiveness of interventions to reduce lead in consumer products and drinking water in the context of new WHO guidelines for the prevention and management of lead poisoning. It will also contribute to setting a future research agenda. PMID:24731516
Ferrie, Joseph P; Rolf, Karen; Troesken, Werner
2012-01-01
Higher prior exposure to water-borne lead among male World War Two U.S. Army enlistees was associated with lower intelligence test scores. Exposure was proxied by urban residence and the water pH levels of the cities where enlistees lived in 1930. Army General Classification Test scores were six points lower (nearly 1/3 standard deviation) where pH was 6 (so the water lead concentration for a given amount of lead piping was higher) than where pH was 7 (so the concentration was lower). This difference rose with time exposed. At this time, the dangers of exposure to lead in water were not widely known and lead was ubiquitous in water systems, so these results are not likely the effect of individuals selecting into locations with different levels of exposure. Copyright © 2011 Elsevier B.V. All rights reserved.
[Blood cerebrospinal fluid barrier damage of rats induced by lead acetate or nano-lead exposure].
Feng, P P; Zhai, F J; Jiang, S F; Wu, J Z; Xue, L; Zheng, M M; Zhou, L L; Meng, C Y; Cao, M Y; Zhang, Y S
2016-05-20
To investigate the damage of blood-cerebrospinal fluid barrier (BCB) of rats induced by lead and nano-lead exposure in order to provide the basis for mechanism study of lead neurotoxicity. 39 male rats were randomly divided into control group, lead acetate exposed group and nano-lead exposed group. Rats in lead acetate exposed group and nano-lead exposed group were given 20 mg/kg lead acetate or nano-lead by oral gavage and rats in control groups were given the same amount saline for 9 weeks.Morris maze was used to test the learning function, serum albumin and CSF albumin were determined by ELISA. Confocal laser scanning microscope was applied to detect ZO-1 and Occludin protein expression in choroid plexus, real time-PCR was used to test the expression of ZO-1 and Occludin mRNA expression. Pathological changes of choroid plexus cells were observed by the electron microscopy. Compared with the control group, the escape latency of rats in lead acetate or nano-lead exposure group were longer and times of across platform were less. The levels of CSF albumin and the CSF albumin index in lead acetate or nano-lead exposed rats were obviously higher, and the fluorescence intensity of ZO-1, Occludin as well as mRNA expressions were lower than those in control group(P<0.05). Compared with lead acetate exposed group, the levels of CSF albumin and the CSF albumin index in nano-lead exposure group were higher. The fluorescence intensity and mRNA expressions of ZO-1, Occludin in nano-lead exposure group were than those in lead acetate group(P<0.05). Electron microscopy revealed that lead acetate or nano-lead exposure could induce shorter microvillus of choroid plexus epithelial cells, mitochondrion destruction and partial disconnection in intracellular junctions between two adjacent epithelial cells. Lead acetate and nano-lead exposed can result in the blood-cerebrospinal fluid barrier damage, which may involve in the process of lead induced neurotoxicity. Meanwhile, nano-lead exposure can induced in more worse damage in terms of blood-results in blood-cerebrospinal fluid barrier function.
Kelly, Terra R; Bloom, Peter H; Torres, Steve G; Hernandez, Yvette Z; Poppenga, Robert H; Boyce, Walter M; Johnson, Christine K
2011-04-06
Predatory and scavenging birds may be exposed to high levels of lead when they ingest shot or bullet fragments embedded in the tissues of animals injured or killed with lead ammunition. Lead poisoning was a contributing factor in the decline of the endangered California condor population in the 1980s, and remains one of the primary factors threatening species recovery. In response to this threat, a ban on the use of lead ammunition for most hunting activities in the range of the condor in California was implemented in 2008. Monitoring of lead exposure in predatory and scavenging birds is essential for assessing the effectiveness of the lead ammunition ban in reducing lead exposure in these species. In this study, we assessed the effectiveness of the regulation in decreasing blood lead concentration in two avian sentinels, golden eagles and turkey vultures, within the condor range in California. We compared blood lead concentration in golden eagles and turkey vultures prior to the lead ammunition ban and one year following implementation of the ban. Lead exposure in both golden eagles and turkey vultures declined significantly post-ban. Our findings provide evidence that hunter compliance with lead ammunition regulations was sufficient to reduce lead exposure in predatory and scavenging birds at our study sites.
Kelly, Terra R.; Bloom, Peter H.; Torres, Steve G.; Hernandez, Yvette Z.; Poppenga, Robert H.; Boyce, Walter M.; Johnson, Christine K.
2011-01-01
Predatory and scavenging birds may be exposed to high levels of lead when they ingest shot or bullet fragments embedded in the tissues of animals injured or killed with lead ammunition. Lead poisoning was a contributing factor in the decline of the endangered California condor population in the 1980s, and remains one of the primary factors threatening species recovery. In response to this threat, a ban on the use of lead ammunition for most hunting activities in the range of the condor in California was implemented in 2008. Monitoring of lead exposure in predatory and scavenging birds is essential for assessing the effectiveness of the lead ammunition ban in reducing lead exposure in these species. In this study, we assessed the effectiveness of the regulation in decreasing blood lead concentration in two avian sentinels, golden eagles and turkey vultures, within the condor range in California. We compared blood lead concentration in golden eagles and turkey vultures prior to the lead ammunition ban and one year following implementation of the ban. Lead exposure in both golden eagles and turkey vultures declined significantly post-ban. Our findings provide evidence that hunter compliance with lead ammunition regulations was sufficient to reduce lead exposure in predatory and scavenging birds at our study sites. PMID:21494329
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, M.H.; Stebbings, J.H.; Peterson, D.P.
1993-03-01
This study was to determine the concentration and chemical nature of lead (Pb) aerosols produced during the firing of artillery and to determine the exposures and biological responses of crew members exposed to lead aerosols during such firing. The concentrations of lead-containing aerosols at crew positions depended on wind conditions, with higher concentrations when firing into a head wind. Aerosol concentrations were highest in the muzzle blast zone. Concentrations of lead in the blood of crew members rose during the first 12 days of exposure to elevated airborne lead concentrations and then leveled off. There was no rapid decrease inmore » blood lead concentrations after completion of firing. Small decreases in hematocrit and small increases in free erythrocyte porphyrin were correlated with increasing exposure to airborne lead. These changes were reversed by seven weeks after firing. Changes in nerve conduction velocity had borderline statistical significance to airborne lead exposure. In measuring nerve conduction velocity, differences in skin temperature must be taken into account.« less
Environmental exposures to lead and cadmium measured in human placenta.
Falcón, María; Viñas, Pilar; Osuna, Eduardo; Luna, Aurelio
2002-01-01
Pregnant women exposed to even low levels of environmental lead and cadmium may experience adverse perinatal effects. To evaluate the usefulness of the placenta for monitoring environmental lead and cadmium exposure, concentrations of both metals were measured in placentas (n = 86) with atomic absorption spectrometry. Environmental exposure was assessed in accordance with the degree of industrial activity and transport pollution near the places of residence. The authors found significantly higher lead and cadmium levels in placentas of women living in urban-industrial areas than in placentas of women living in rural areas. Lead concentrations in placenta reflect environmental exposures; smoking during gestation explained a large portion of placental cadmium. This finding suggests that when a pregnant woman is a heavy smoker, tobacco exposure masks environmental cadmium exposure, especially in areas with low levels of cadmium pollution.
Childhood Lead Exposure from Battery Recycling in Vietnam
Van Tung, Lo; Wallace, Ryan M.; Havens, Deborah J.; Karr, Catherine J.; Bich Diep, Nguyen; Croteau, Gerry A.; Beaudet, Nancy J.; Duy Bao, Nguyen
2015-01-01
Background. Battery recycling facilities in developing countries can cause community lead exposure. Objective. To evaluate child lead exposure in a Vietnam battery recycling craft village after efforts to shift home-based recycling outside the village. Methods. This cross-sectional study evaluated 109 children in Dong Mai village, using blood lead level (BLL) measurement, parent interview, and household observation. Blood samples were analyzed with a LeadCare II field instrument; highest BLLs (≥45 μg/dL) were retested by laboratory analysis. Surface and soil lead were measured at 11 households and a school with X-ray fluorescence analyzer. Results. All children had high BLLs; 28% had BLL ≥45 μg/dL. Younger age, family recycling, and outside brick surfaces were associated with higher BLL. Surface and soil lead levels were high at all tested homes, even with no recycling history. Laboratory BLLs were lower than LeadCare BLLs, in 24 retested children. Discussion. In spite of improvements, lead exposure was still substantial and probably associated with continued home-based recycling, legacy contamination, and workplace take-home exposure pathways. There is a need for effective strategies to manage lead exposure from battery recycling in craft villages. These reported BLL values should be interpreted cautiously, although the observed field-laboratory discordance may reflect bias in laboratory results. PMID:26587532
Childhood Lead Exposure from Battery Recycling in Vietnam.
Daniell, William E; Van Tung, Lo; Wallace, Ryan M; Havens, Deborah J; Karr, Catherine J; Bich Diep, Nguyen; Croteau, Gerry A; Beaudet, Nancy J; Duy Bao, Nguyen
2015-01-01
Battery recycling facilities in developing countries can cause community lead exposure. To evaluate child lead exposure in a Vietnam battery recycling craft village after efforts to shift home-based recycling outside the village. This cross-sectional study evaluated 109 children in Dong Mai village, using blood lead level (BLL) measurement, parent interview, and household observation. Blood samples were analyzed with a LeadCare II field instrument; highest BLLs (≥45 μg/dL) were retested by laboratory analysis. Surface and soil lead were measured at 11 households and a school with X-ray fluorescence analyzer. All children had high BLLs; 28% had BLL ≥45 μg/dL. Younger age, family recycling, and outside brick surfaces were associated with higher BLL. Surface and soil lead levels were high at all tested homes, even with no recycling history. Laboratory BLLs were lower than LeadCare BLLs, in 24 retested children. In spite of improvements, lead exposure was still substantial and probably associated with continued home-based recycling, legacy contamination, and workplace take-home exposure pathways. There is a need for effective strategies to manage lead exposure from battery recycling in craft villages. These reported BLL values should be interpreted cautiously, although the observed field-laboratory discordance may reflect bias in laboratory results.
Environmental contaminants in California condors
Wiemeyer, Stanley N.; Scott, J.M.; Anderson, M.P.; Bloom, P.H.; Stafford, C.J.
1988-01-01
Five wild Califorinia condors (Gymnogyps californianus) that died in 1980-86 were necropsied and tissues were analyzed for environmental contaminants. Three died of lead (Pb) poisoning, 1 presumably of cyanide (CN) poisoning, and 1 nestling of handling shock. Organochlorine concentrations were low in 4 condors that were analyzed for these contaminants. Blood samples from 14 wild and 14 captive condors were analyzed primarily for Pb. Five of 14 wild condors sampled had elevated (> 0.70 ppm) concentrations of Pb in blood whereas Pb concentrations in all captive condors were low. Lead levels in individual birds often fluctuated over time. Lead exposure, especially poisoning, was a major factor affecting the wild California condor population during 1982-86. The probable source of Pb was bullet fragments in carrion on which condors were feeding.
Childhood Lead Poisoning in the '90s.
ERIC Educational Resources Information Center
Piomelli, Sergio
1994-01-01
Notes that, despite gains in eliminating lead sources, there are still detectable effects from low-level exposure. Discusses at what level of exposure the adverse effects of lead become trivial and what measures, if any, should be taken to reduce low-level exposure. (HTH)
The intersection of aggregate-level lead exposure and crime.
Boutwell, Brian B; Nelson, Erik J; Emo, Brett; Vaughn, Michael G; Schootman, Mario; Rosenfeld, Richard; Lewis, Roger
2016-07-01
Childhood lead exposure has been associated with criminal behavior later in life. The current study aimed to analyze the association between elevated blood lead levels (n=59,645) and crime occurrence (n=90,433) across census tracts within St. Louis, Missouri. Longitudinal ecological study. Saint Louis, Missouri. Blood lead levels. Violent, Non-violent, and total crime at the census tract level. Spatial statistical models were used to account for the spatial autocorrelation of the data. Greater lead exposure at the census-tract level was associated with increased violent, non-violent, and total crime. In addition, we examined whether non-additive effects existed in the data by testing for an interaction between lead exposure and concentrated disadvantage. Some evidence of a negative interaction emerged, however, it failed to reach traditional levels of statistical significance (supplementary models, however, revealed a similar negative interaction that was significant). More precise measurements of lead exposure in the aggregate, produced additional evidence that lead is a potent predictor of criminal outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.
Chronic lead exposure induces cochlear oxidative stress and potentiates noise-induced hearing loss.
Jamesdaniel, Samson; Rosati, Rita; Westrick, Judy; Ruden, Douglas M
2018-08-01
Acquired hearing loss is caused by complex interactions of multiple environmental risk factors, such as elevated levels of lead and noise, which are prevalent in urban communities. This study delineates the mechanism underlying lead-induced auditory dysfunction and its potential interaction with noise exposure. Young-adult C57BL/6 mice were exposed to: 1) control conditions; 2) 2 mM lead acetate in drinking water for 28 days; 3) 90 dB broadband noise 2 h/day for two weeks; and 4) both lead and noise. Blood lead levels were measured by inductively coupled plasma mass spectrometry analysis (ICP-MS) lead-induced cochlear oxidative stress signaling was assessed using targeted gene arrays, and the hearing thresholds were assessed by recording auditory brainstem responses. Chronic lead exposure downregulated cochlear Sod1, Gpx1, and Gstk1, which encode critical antioxidant enzymes, and upregulated ApoE, Hspa1a, Ercc2, Prnp, Ccl5, and Sqstm1, which are indicative of cellular apoptosis. Isolated exposure to lead or noise induced 8-12 dB and 11-25 dB shifts in hearing thresholds, respectively. Combined exposure induced 18-30 dB shifts, which was significantly higher than that observed with isolated exposures. This study suggests that chronic exposure to lead induces cochlear oxidative stress and potentiates noise-induced hearing impairment, possibly through parallel pathways. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Koh, Dong-Hee; Bhatti, Parveen; Coble, Joseph B.; Stewart, Patricia A; Lu, Wei; Shu, Xiao-Ou; Ji, Bu-Tian; Xue, Shouzheng; Locke, Sarah J.; Portengen, Lutzen; Yang, Gong; Chow, Wong-Ho; Gao, Yu-Tang; Rothman, Nathaniel; Vermeulen, Roel; Friesen, Melissa C.
2012-01-01
The epidemiologic evidence for the carcinogenicity of lead is inconsistent and requires improved exposure assessment to estimate risk. We evaluated historical occupational lead exposure for a population-based cohort of women (n=74,942) by calibrating a job-exposure matrix (JEM) with lead fume (n=20,084) and lead dust (n=5,383) measurements collected over four decades in Shanghai, China. Using mixed-effect models, we calibrated intensity JEM ratings to the measurements using fixed-effects terms for year and JEM rating. We developed job/industry-specific estimates from the random-effects terms for job and industry. The model estimates were applied to subjects’ jobs when the JEM probability rating was high for either job or industry; remaining jobs were considered unexposed. The models predicted that exposure increased monotonically with JEM intensity rating and decreased 20–50-fold over time. The cumulative calibrated JEM estimates and job/industry-specific estimates were highly correlated (Pearson correlation=0.79–0.84). Overall, 5% of the person-years and 8% of the women were exposed to lead fume; 2% of the person-years and 4% of the women were exposed to lead dust. The most common lead-exposed jobs were manufacturing electronic equipment. These historical lead estimates should enhance our ability to detect associations between lead exposure and cancer risk in future epidemiologic analyses. PMID:22910004
White, Stephen J; Briffa, Mark
2017-02-01
Natural animal populations are increasingly exposed to human impacts on the environment, which could have consequences for their behaviour. Among these impacts is exposure to anthropogenic contaminants. Any environmental variable that influences internal state could impact behaviour across a number of levels: at the sample mean, at the level of among-individual differences in behaviour ('animal personality') and at the level of within-individual variation in behaviour (intra-individual variation, 'IIV'). Here we examined the effect of exposure to seawater-borne copper on the startle response behaviour of European hermit crabs, Pagurus bernhardus across these levels. Copper exposure rapidly led to longer startle responses on average, but did not lead to any change in repeatability indicating that individual differences were present and equally consistent in the presence and absence of copper. There was no strong evidence that copper exposure led to changes in IIV. Our data show that exposure to copper for 1 week produces sample mean level changes in the behaviour of hermit crabs. However, there is no evidence that this exposure led to changes in repeatability through feedback loops.
Developmental Bisphenol A Exposure Modulates Immune-Related Diseases
Xu, Joella; Huang, Guannan; Guo, Tai L.
2016-01-01
Bisphenol A (BPA), used in polycarbonate plastics and epoxy resins, has a widespread exposure to humans. BPA is of concern for developmental exposure resulting in immunomodulation and disease development due to its ability to cross the placental barrier and presence in breast milk. BPA can use various mechanisms to modulate the immune system and affect diseases, including agonistic and antagonistic effects on many receptors (e.g., estrogen receptors), epigenetic modifications, acting on cell signaling pathways and, likely, the gut microbiome. Immune cell populations and function from the innate and adaptive immune system are altered by developmental BPA exposure, including decreased T regulatory (Treg) cells and upregulated pro- and anti-inflammatory cytokines and chemokines. Developmental BPA exposure can also contribute to the development of type 2 diabetes mellitus, allergy, asthma and mammary cancer disease by altering immune function. Multiple sclerosis and type 1 diabetes mellitus may also be exacerbated by BPA, although more research is needed. Additionally, BPA analogs, such as bisphenol S (BPS), have been increasing in use, and currently, little is known about their immune effects. Therefore, more studies should be conducted to determine if developmental exposure BPA and its analogs modulate immune responses and lead to immune-related diseases. PMID:29051427
Developmental Bisphenol A Exposure Modulates Immune-Related Diseases.
Xu, Joella; Huang, Guannan; Guo, Tai L
2016-09-26
Bisphenol A (BPA), used in polycarbonate plastics and epoxy resins, has a widespread exposure to humans. BPA is of concern for developmental exposure resulting in immunomodulation and disease development due to its ability to cross the placental barrier and presence in breast milk. BPA can use various mechanisms to modulate the immune system and affect diseases, including agonistic and antagonistic effects on many receptors (e.g., estrogen receptors), epigenetic modifications, acting on cell signaling pathways and, likely, the gut microbiome. Immune cell populations and function from the innate and adaptive immune system are altered by developmental BPA exposure, including decreased T regulatory (Treg) cells and upregulated pro- and anti-inflammatory cytokines and chemokines. Developmental BPA exposure can also contribute to the development of type 2 diabetes mellitus, allergy, asthma and mammary cancer disease by altering immune function. Multiple sclerosis and type 1 diabetes mellitus may also be exacerbated by BPA, although more research is needed. Additionally, BPA analogs, such as bisphenol S (BPS), have been increasing in use, and currently, little is known about their immune effects. Therefore, more studies should be conducted to determine if developmental exposure BPA and its analogs modulate immune responses and lead to immune-related diseases.
Keogh, Ruth H; Daniel, Rhian M; VanderWeele, Tyler J; Vansteelandt, Stijn
2018-05-01
Estimation of causal effects of time-varying exposures using longitudinal data is a common problem in epidemiology. When there are time-varying confounders, which may include past outcomes, affected by prior exposure, standard regression methods can lead to bias. Methods such as inverse probability weighted estimation of marginal structural models have been developed to address this problem. However, in this paper we show how standard regression methods can be used, even in the presence of time-dependent confounding, to estimate the total effect of an exposure on a subsequent outcome by controlling appropriately for prior exposures, outcomes, and time-varying covariates. We refer to the resulting estimation approach as sequential conditional mean models (SCMMs), which can be fitted using generalized estimating equations. We outline this approach and describe how including propensity score adjustment is advantageous. We compare the causal effects being estimated using SCMMs and marginal structural models, and we compare the two approaches using simulations. SCMMs enable more precise inferences, with greater robustness against model misspecification via propensity score adjustment, and easily accommodate continuous exposures and interactions. A new test for direct effects of past exposures on a subsequent outcome is described.
Contribution of internal exposures to the radiological consequences of the Chernobyl accident.
Balonov, M I; Anspaugh, L R; Bouville, A; Likhtarev, I A
2007-01-01
The main pathways leading to exposure of members of the general public due to the Chernobyl accident were external exposure from radionuclides deposited on the ground and ingestion of contaminated terrestrial food products. The collective dose to the thyroid was nearly 1.5 million man Gy in Belarus, Russia and Ukraine with nearly half received by children and adolescents. The collective effective dose received in 1986-2005 by approximately five million residents living in the affected areas of the three countries was approximately 50,000 man Sv with approximately 40% from ingestion. That contribution might have been larger if countermeasures had not been applied. The main radionuclide contributing to both external and internal effective dose is 137Cs with smaller contributions of 134Cs and 90Sr and negligible contribution of transuranic elements. The major demonstrated radiation-caused health effect of the Chernobyl accident has been an elevated incidence of thyroid cancer in children.
Milosevic, Matija; McConville, Kristiina M Valter
2012-01-01
Operation of handheld power tools results in exposure to hand-arm vibrations, which over time lead to numerous health complications. The objective of this study was to evaluate protective equipment and working techniques for the reduction of vibration exposure. Vibration transmissions were recorded during different work techniques: with one- and two-handed grip, while wearing protective gloves (standard, air and anti-vibration gloves) and while holding a foam-covered tool handle. The effect was examined by analyzing the reduction of transmitted vibrations at the wrist. The vibration transmission was recorded with a portable device using a triaxial accelerometer. The results suggest large and significant reductions of vibration with appropriate safety equipment. Reductions of 85.6% were achieved when anti-vibration gloves were used. Our results indicated that transmitted vibrations were affected by several factors and could be measured and significantly reduced.
Lead burdens and behavioral impairments of the lined shore crab Pachygrapsus crassipes
Hui, C.A.
2002-01-01
Sublethal burdens of lead impair behaviors critical to survival in a variety of animals. In a test arena, I measured refuge-seeking behaviors of adult, male, lined shore crabs from lead-free and lead-contaminated sites. The body sizes of the test groups did not differ although the mean total body lead burdens differed by over 2,300%. A lead-contaminated environment does not appear to affect growth. Each of the 31 crabs had at least six trials in the arena. The fraction of trials with more than one pause, number of pauses per trial, mean time per pause, and the fraction of time a crab spent in pauses did not differ between groups. The absence of behavioral effects of the lead burdens may be because a large portion of the lead burden was sequestered in the carapace. The neurological and other soft tissues would then have lower levels of lead. Predators that ingest primarily soft tissues would have little exposure to the lead burden of these crabs. Those that also ingest the carapace may benefit from its high calcium content that inhibits lead uptake from the gut, regardless of the location of lead in the crab body.
Gomes, James; Cashman, Neil R.; Little, Julian; Krewski, Daniel
2014-01-01
Objective: The association between occupational exposure to lead and amyotrophic lateral sclerosis (ALS) was examined through systematic review and meta-analyses of relevant epidemiological studies and reported according to PRISMA guidelines. Methods: Relevant studies were searched in multiple bibliographic databases through September 2013; additional articles were tracked through PubMed until submission. All records were screened in DistillerSR, and the data extracted from included articles were synthesized with meta-analysis. Results: The risk of developing ALS among individuals with a history of exposure to lead was almost doubled (odds ratio, 1.81; 95% confidence interval, 1.39 to 2.36) on the basis of nine included case-control studies with specific lead exposure information, with no apparent heterogeneity across included studies (I2 = 14%). The attributable risk of ALS because of exposure to lead was estimated to be 5%. Conclusions: Previous exposure to lead may be a risk factor for ALS. PMID:25479292
Role of inflammation in cardiopulmonary health effects of PM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donaldson, Ken; Mills, Nicholas; MacNee, William
2005-09-01
The relationship between increased exposure to PM and adverse cardiovascular effects is well documented in epidemiological studies. Inflammation in the lungs, caused by deposited particles, can be seen as a key process that could mediate adverse effects on the cardiovascular system. There are at least three potential pathways that could lead from pulmonary inflammation to adverse cardiovascular effects. Firstly, inflammation in the lung could lead to systemic inflammation, which is well known to be linked to sudden death from cardiovascular causes. Systemic inflammation can lead to destabilization by activation of inflammatory processes in atheromatous plaques. Secondly, inflammation can cause anmore » imbalance in coagulation factors that favor propagation of thrombi if thrombosis is initiated. Thirdly, inflammation could affect the autonomic nervous system activity in ways that could lead to alterations in the control of heart rhythm which could culminate in fatal dysrhythmia.« less
Weitzman, Michael; Baten, Ahmareen; Rosenthal, David G; Hoshino, Risa; Tohn, Ellen; Jacobs, David E
2013-09-01
The connection between housing and health is well established. Physical, chemical, and biological aspects of the child's home, such as cleanliness, moisture, pests, noise, accessibility, injury risks, and other forms of housing environmental quality, all have the potential to influence multiple aspects of the health and development of children. Basic sanitation, reduced household crowding, other improvements in housing and expanded, and improved housing regulations have led to advances in children's health. For example, lead poisoning prevention policies have profoundly reduced childhood lead exposure in the United States. This and many other successes highlight the health benefits for families, particularly children, by targeting interventions that reduce or eliminate harmful exposures in the home. Additionally, parental mental health problems, food insecurity, domestic violence, and the presence of guns in children's homes all are largely experienced by children in their homes, which are not as yet considered part of the Healthy Homes agenda. There is a large movement and now a regulatory structure being put in place for healthy housing, which is becoming closely wedded with environmental health, public health, and the practice of pediatrics. The importance of homes in children's lives, history of healthy homes, asthma, and exposures to lead, carbon monoxide, secondhand/thirdhand smoke, radon, allergy triggers is discussed, as well as how changes in ambient temperature, increased humidity, poor ventilation, water quality, infectious diseases, housing structure, guns, electronic media, family structure, and domestic violence all affect children's health. Copyright © 2013 Mosby, Inc. All rights reserved.
Health impact of climate change on occupational health and productivity in Thailand
Langkulsen, Uma; Vichit-Vadakan, Nuntavarn; Taptagaporn, Sasitorn
2010-01-01
Background The rise in global temperature is well documented. Changes in temperature lead to increases in heat exposure, which may impact health ranging from mild heat rashes to deadly heat stroke. Heat exposure can also aggravate several chronic diseases including cardiovascular and respiratory disease. Objective This study examined the relationship between climate condition and health status and productivity in two main categories of the occupational setting – where one setting involves heat generated from the industry and the other with heat in a natural setting. Design This cross-sectional study included four industrial sites (pottery industry, power plant, knife industry, and construction site) and one agricultural site in the Pathumthani and Ayutthaya provinces. Exposure data were comprised of meteorological data and heat exposure including relative humidity (RH) measured by Wet Bulb Globe Temperature (WBGT) monitor. Heat index was calculated to measure the effects of heat exposure on the study population, which consisted of 21 workers at five worksites; a questionnaire was also used to collect data on workers. Results Among the five workplaces, the outdoor WBGT was found to be highest at 34.6°C during 12:00 and 1:00 PM at the agricultural site. It was found that four out of five study sites had heat indices in the ‘extreme caution,’ where heat cramp and exhaustion may be possible and one site showed a value of 41°C that falls into the category of ‘danger,’ where sunstroke and heat exhaustion are likely and prolonged exposure may lead to heatstroke. Productivity as perceived by the workers revealed that only the construction and pottery industry workers had a loss of productivity ranged from 10 to 60 %. Conclusions Climate conditions in Thailand potentially affect both the health and productivity in occupational settings. PMID:21160553
Health impact of climate change on occupational health and productivity in Thailand.
Langkulsen, Uma; Vichit-Vadakan, Nuntavarn; Taptagaporn, Sasitorn
2010-12-09
The rise in global temperature is well documented. Changes in temperature lead to increases in heat exposure, which may impact health ranging from mild heat rashes to deadly heat stroke. Heat exposure can also aggravate several chronic diseases including cardiovascular and respiratory disease. This study examined the relationship between climate condition and health status and productivity in two main categories of the occupational setting - where one setting involves heat generated from the industry and the other with heat in a natural setting. This cross-sectional study included four industrial sites (pottery industry, power plant, knife industry, and construction site) and one agricultural site in the Pathumthani and Ayutthaya provinces. Exposure data were comprised of meteorological data and heat exposure including relative humidity (RH) measured by Wet Bulb Globe Temperature (WBGT) monitor. Heat index was calculated to measure the effects of heat exposure on the study population, which consisted of 21 workers at five worksites; a questionnaire was also used to collect data on workers. Among the five workplaces, the outdoor WBGT was found to be highest at 34.6°C during 12:00 and 1:00 PM at the agricultural site. It was found that four out of five study sites had heat indices in the 'extreme caution,' where heat cramp and exhaustion may be possible and one site showed a value of 41°C that falls into the category of 'danger,' where sunstroke and heat exhaustion are likely and prolonged exposure may lead to heatstroke. Productivity as perceived by the workers revealed that only the construction and pottery industry workers had a loss of productivity ranged from 10 to 60 %. Climate conditions in Thailand potentially affect both the health and productivity in occupational settings.
Polycystic ovary syndrome and environmental toxins.
Rutkowska, Aleksandra Zofia; Diamanti-Kandarakis, Evanthia
2016-09-15
Polycystic ovary syndrome (PCOS) is the most common, heterogeneous, and multifactorial endocrine disorder in premenopausal women. The pathophysiology of this endocrinopathy is still unclear; however, the heterogeneity of its features within ethnic races, geographic location, and families suggests that environment and lifestyle are of prime importance. This work is mainly focused on the possible role of the most common and studied environmental toxins for this syndrome in the pathogenesis of PCOS. Plasticizers, such as bisphenol A (BPA) or phthalates, which belong to the categories of endocrine disrupting chemicals (EDCs) and advanced glycation end products (AGEs), affect humans' health in everyday, industrialized life; therefore special attention should be paid to such exposure. Timing of exposure to EDCs is crucial for the intensity of adverse health effects. It is now evident that fetuses, infants, and/or young children are the most susceptible groups, especially in the early development periods. Prenatal exposure to EDCs that mimic endogenous hormones may contribute to the altered fetal programming and in consequence lead to PCOS and other adverse health effects, potentially transgenerationally. Acute or prolonged exposure to EDCs and AGEs through different life cycle stages may result in destabilization of the hormonal homeostasis and lead to disruption of reproductive functions. They may also interfere with metabolic alterations such as obesity, insulin resistance, and compensatory hyperinsulinemia that can exacerbate the PCOS phenotype and contribute to PCOS consequences such as type 2 diabetes and cardiovascular disease. Since wide exposure to environmental toxins and their role in the pathophysiology of PCOS are supported by extensive data derived from diverse scientific models, protective strategies and strong recommendations should be considered to reduce human exposure to protect present and future generations from their adverse health effects. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Poulose, Shibu M.; Rabin, Bernard M.; Bielinski, Donna F.; Kelly, Megan E.; Miller, Marshall G.; Thanthaeng, Nopporn; Shukitt-Hale, Barbara
2017-02-01
The protective effects of anthocyanin-rich blueberries (BB) on brain health are well documented and are particularly important under conditions of high oxidative stress, which can lead to "accelerated aging." One such scenario is exposure to space radiation, consisting of high-energy and -charge particles (HZE), which are known to cause cognitive dysfunction and deleterious neurochemical alterations. We recently tested the behavioral and neurochemical effects of acute exposure to HZE particles such as 56Fe, within 24-48 h after exposure, and found that radiation primarily affects memory and not learning. Importantly, we observed that specific brain regions failed to upregulate antioxidant and anti-inflammatory mechanisms in response to this insult. To further examine these endogenous response mechanisms, we have supplemented young rats with diets rich in BB, which are known to contain high amounts of antioxidant-phytochemicals, prior to irradiation. Exposure to 56Fe caused significant neurochemical changes in hippocampus and frontal cortex, the two critical regions of the brain involved in cognitive function. BB supplementation significantly attenuated protein carbonylation, which was significantly increased by exposure to 56Fe in the hippocampus and frontal cortex. Moreover, BB supplementation significantly reduced radiation-induced elevations in NADPH-oxidoreductase-2 (NOX2) and cyclooxygenase-2 (COX-2), and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) in the hippocampus and frontal cortex. Overall results indicate that 56Fe particles may induce their toxic effects on hippocampus and frontal cortex by reactive oxygen species (ROS) overload, which can cause alterations in the neuronal environment, eventually leading to hippocampal neuronal death and subsequent impairment of cognitive function. Blueberry supplementation provides an effective preventative measure to reduce the ROS load on the CNS in an event of acute HZE exposure.
Affect labeling enhances exposure effectiveness for public speaking anxiety.
Niles, Andrea N; Craske, Michelle G; Lieberman, Matthew D; Hur, Christopher
2015-05-01
Exposure is an effective treatment for anxiety but many patients do not respond fully. Affect labeling (labeling emotional experience) attenuates emotional responding. The current project examined whether affect labeling enhances exposure effectiveness in participants with public speaking anxiety. Participants were randomized to exposure with or without affect labeling. Physiological arousal and self-reported fear were assessed before and after exposure and compared between groups. Consistent with hypotheses, participants assigned to Affect Labeling, especially those who used more labels during exposure, showed greater reduction in physiological activation than Control participants. No effect was found for self-report measures. Also, greater emotion regulation deficits at baseline predicted more benefit in physiological arousal from exposure combined with affect labeling than exposure alone. The current research provides evidence that behavioral strategies that target prefrontal-amygdala circuitry can improve treatment effectiveness for anxiety and these effects are particularly pronounced for patients with the greatest deficits in emotion regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.
The effect of lead intoxication on endocrine functions.
Doumouchtsis, K K; Doumouchtsis, S K; Doumouchtsis, E K; Perrea, D N
2009-02-01
Studies on the effects of lead on the endocrine system are mainly based on occupationally lead-exposed workers and experimental animal models. Although evidence is conflicting, it has been reported that accumulation of lead affects the majority of the endocrine glands. In particular, it appears to have an effect on the hypothalamic-pituitary axis causing blunted TSH, GH, and FSH/LH responses to TRH, GHRH, and GnRH stimulation, respectively. Suppressed GH release has been reported, probably caused by reduced synthesis of GHRH, inhibition of GHRH release or reduced somatotrope responsiveness. Higher levels of PRL in lead intoxication have been reported. In short-term lead-exposed individuals, high LH and FSH levels are usually associated to normal testosterone concentrations, whereas in long-term exposed individuals' low testosterone levels do not induce high LH and FSH concentrations. These findings suggest that lead initially causes some subclinical testicular damage, followed by hypothalamic or pituitary disturbance when longer periods of exposure take place. Similarly, lead accumulates in granulosa cells of the ovary, causing delays in growth and pubertal development and reduced fertility in females. In the parenchyma of adrenals histological and cytological changes are demonstrated, causing changes in plasma basal and stress-mediated corticosterone concentrations and reduced cytosolic and nuclear glucocorticoid receptor binding. Thyroid hormone kinetics are also affected. Central defect of the thyroid axis or an alteration in T4 metabolism or binding to proteins may be involved in derangements in thyroid hormone action. Lead toxicity involves alterations on calcitropic hormones' homeostasis, which increase the risk of skeletal disorders.
Lead Levels in Landfill Areas and Childhood Exposure: An Integrative Review.
Kim, M Angela; Williams, Kimberly A
2017-01-01
Landfills are high-risk areas for environmental lead exposure for children living in poverty stricken areas in many countries. This review examines landfills and lead toxicity in children. The review discusses the effects of lead toxicity, provides evidenced based recommendations to reduce lead exposure, and identify gaps in the evidence. A database search was conducted of articles in English from 1985 to 2014. Ten articles met the inclusion criteria. The Whittemore and Knafl framework and the John Hopkins Research Evidence Appraisal Tool © were used for reviewing the data. Elevated blood lead levels (BLLs) of children living near landfills were related to increased soil lead levels. Toxic effects of lead included adverse outcomes such as encephalopathy or death for children. Different approaches to decrease lead level include environmental surveillance, BLL screening, and soil abatement which are costly. Increased BLL through environmental exposure is connected with poor health outcomes and death among children. Evidence-based prevention included monitoring and screening and costly soil abatement. It is recommended that future studies focus on community education for exposure avoidance for children living near landfill areas. © 2016 Wiley Periodicals, Inc.
Glazed clay pottery and lead exposure in Mexico: Current experimental evidence.
Diaz-Ruiz, Araceli; Tristán-López, Luis Antonio; Medrano-Gómez, Karen Itzel; Torres-Domínguez, Juan Alejandro; Ríos, Camilo; Montes, Sergio
2017-11-01
Lead exposure remains a significant environmental problem; lead is neurotoxic, especially in developing humans. In Mexico, lead in human blood is still a concern. Historically, much of the lead exposure is attributed to the use of handcrafted clay pottery for cooking, storing and serving food. However, experimental cause-and-effect demonstration is lacking. The present study explores this issue with a prospective experimental approach. We used handcrafted clay containers to prepare and store lemonade, which was supplied as drinking water to pregnant rats throughout the gestational period. We found that clay pots, jars, and mugs leached on average 200 µg/l lead, and exposure to the lemonade resulted in 2.5 µg/dl of lead in the pregnant rats' blood. Neonates also showed increased lead content in the hippocampus and cerebellum. Caspase-3 activity was found to be statistically increased in the hippocampus in prenatally exposed neonates, suggesting increased apoptosis in that brain region. Glazed ceramics are still an important source of lead exposure in Mexico, and our results confirm that pregnancy is a vulnerable period for brain development.
Effects of Humic Acids in Chronic Lead Poisoning.
Vašková, Janka; Krempaská, Klára; Žatko, Daniel; Mudroň, Pavol; Glinská, Gabriela; Vaško, Ladislav
2018-05-10
Chronic exposure to lead causes disruption to energy production mechanisms and tissue damage, in particular through its binding to thiol groups and competition for zinc binding sites. We investigated the possibility of preventing the consequences of chronic lead poisoning by administration of three different doses of humic acids (HAs) into feed with the aim of establishing an effective HA dose. During the 10-week experiment, a sub-lethal dose of lead acetate was given to rats during the first 5 weeks, with continuous administration of HA over 10 weeks. Measurements were taken to determine the content of the metals Pb, Mn, Cu, Fe and Zn; the metalloid Se; and selected antioxidant markers in the heart, liver, kidney and plasma after the first, fifth and tenth weeks of experiment. The administration of lead and HAs clearly affects the redistribution of the elements and the activity of the antioxidant enzymes. This fact was particularly highlighted in the lead-only group as, within the experiment, significantly higher Pb concentrations were found only in the plasma of this group. However, in the group with 1% HA administered with lead, we observed a rise in Zn concentrations in the organs and the deposition of Fe into the liver. Decreased glutathione reductase activity in the plasma and balanced reduced glutathione concentrations indicated sufficient efficiency of redox reactions. SOD activities were among those affected most strongly, with only the 1% HA group showing no effect on heavy metal redistribution as a result of HA administration.
Alkozei, Anna; Smith, Ryan; Pisner, Derek A.; Vanuk, John R.; Berryhill, Sarah M.; Fridman, Andrew; Shane, Bradley R.; Knight, Sara A.; Killgore, William D.S.
2016-01-01
Study Objectives: Prolonged exposure to blue wavelength light has been shown to have an alerting effect, and enhances performance on cognitive tasks. A small number of studies have also shown that relatively short exposure to blue light leads to changes in functional brain responses during the period of exposure. The extent to which blue light continues to affect brain functioning during a cognitively challenging task after cessation of longer periods of exposure (i.e., roughly 30 minutes or longer), however, has not been fully investigated. Methods: A total of 35 healthy participants (18 female) were exposed to either blue (469 nm) (n = 17) or amber (578 nm) (n = 18) wavelength light for 30 minutes in a darkened room, followed immediately by functional magnetic resonance imaging (fMRI) while undergoing a working memory task (N-back task). Results: Participants in the blue light condition were faster in their responses on the N-back task and showed increased activation in the dorsolateral (DLPFC) and ventrolateral (VLPFC) prefrontal cortex compared to those in the amber control light condition. Furthermore, greater activation within the VLPFC was correlated with faster N-back response times. Conclusions: This is the first study to suggest that a relatively brief, single exposure to blue light has a subsequent beneficial effect on working memory performance, even after cessation of exposure, and leads to temporarily persisting functional brain changes within prefrontal brain regions associated with executive functions. These findings may have broader implication for using blue-enriched light in a variety of work settings where alertness and quick decision-making are important. Citation: Alkozei A, Smith R, Pisner DA, Vanuk JR, Berryhill SM, Fridman A, Shane BR, Knight SA, Killgore WD. Exposure to blue light increases subsequent functional activation of the prefrontal cortex during performance of a working memory task. SLEEP 2016;39(9):1671–1680. PMID:27253770
Behavioral Characterization of the Effects of Cannabis Smoke and Anandamide in Rats
Bruijnzeel, Adriaan W.; Qi, Xiaoli; Guzhva, Lidia V.; Wall, Shannon; Deng, Jie V.; Gold, Mark S.; Febo, Marcelo; Setlow, Barry
2016-01-01
Cannabis is the most widely used illicit drug in the world. Delta-9-tetrahydrocannabinol (Δ9-THC) is the main psychoactive component of cannabis and its effects have been well-studied. However, cannabis contains many other cannabinoids that affect brain function. Therefore, these studies investigated the effect of cannabis smoke exposure on locomotor activity, rearing, anxiety-like behavior, and the development of dependence in rats. It was also investigated if cannabis smoke exposure leads to tolerance to the locomotor-suppressant effects of the endogenous cannabinoid anandamide. Cannabis smoke was generated by burning 5.7% Δ9-THC cannabis cigarettes in a smoking machine. The effect of cannabis smoke on the behavior of rats in a small and large open field and an elevated plus maze was evaluated. Cannabis smoke exposure induced a brief increase in locomotor activity followed by a prolonged decrease in locomotor activity and rearing in the 30-min small open field test. The cannabinoid receptor type 1 (CB1) receptor antagonist rimonabant increased locomotor activity and prevented the smoke-induced decrease in rearing. Smoke exposure also increased locomotor activity in the 5-min large open field test and the elevated plus maze test. The smoke exposed rats spent more time in the center zone of the large open field, which is indicative of a decrease in anxiety-like behavior. A high dose of anandamide decreased locomotor activity and rearing in the small open field and this was not prevented by rimonabant or pre-exposure to cannabis smoke. Serum Δ9-THC levels were 225 ng/ml after smoke exposure, which is similar to levels in humans after smoking cannabis. Exposure to cannabis smoke led to dependence as indicated by more rimonabant-precipitated somatic withdrawal signs in the cannabis smoke exposed rats than in the air-control rats. In conclusion, chronic cannabis smoke exposure in rats leads to clinically relevant Δ9-THC levels, dependence, and has a biphasic effect on locomotor activity. PMID:27065006
Behavioral Characterization of the Effects of Cannabis Smoke and Anandamide in Rats.
Bruijnzeel, Adriaan W; Qi, Xiaoli; Guzhva, Lidia V; Wall, Shannon; Deng, Jie V; Gold, Mark S; Febo, Marcelo; Setlow, Barry
2016-01-01
Cannabis is the most widely used illicit drug in the world. Delta-9-tetrahydrocannabinol (Δ9-THC) is the main psychoactive component of cannabis and its effects have been well-studied. However, cannabis contains many other cannabinoids that affect brain function. Therefore, these studies investigated the effect of cannabis smoke exposure on locomotor activity, rearing, anxiety-like behavior, and the development of dependence in rats. It was also investigated if cannabis smoke exposure leads to tolerance to the locomotor-suppressant effects of the endogenous cannabinoid anandamide. Cannabis smoke was generated by burning 5.7% Δ9-THC cannabis cigarettes in a smoking machine. The effect of cannabis smoke on the behavior of rats in a small and large open field and an elevated plus maze was evaluated. Cannabis smoke exposure induced a brief increase in locomotor activity followed by a prolonged decrease in locomotor activity and rearing in the 30-min small open field test. The cannabinoid receptor type 1 (CB1) receptor antagonist rimonabant increased locomotor activity and prevented the smoke-induced decrease in rearing. Smoke exposure also increased locomotor activity in the 5-min large open field test and the elevated plus maze test. The smoke exposed rats spent more time in the center zone of the large open field, which is indicative of a decrease in anxiety-like behavior. A high dose of anandamide decreased locomotor activity and rearing in the small open field and this was not prevented by rimonabant or pre-exposure to cannabis smoke. Serum Δ9-THC levels were 225 ng/ml after smoke exposure, which is similar to levels in humans after smoking cannabis. Exposure to cannabis smoke led to dependence as indicated by more rimonabant-precipitated somatic withdrawal signs in the cannabis smoke exposed rats than in the air-control rats. In conclusion, chronic cannabis smoke exposure in rats leads to clinically relevant Δ9-THC levels, dependence, and has a biphasic effect on locomotor activity.
Davis, Elysia Poggi; Pfaff, Donald
2014-01-01
During gestation, development proceeds at a pace that is unmatched by any other stage of the lifecycle. For these reason the human fetus is particularly susceptible not only to organizing influences, but also to pathogenic disorganizing influences. Growing evidence suggests that exposure to prenatal adversity leads to neurological changes that underlie lifetime risks for mental illness. Beginning early in gestation, males and females show differential developmental trajectories and responses to stress. It is likely that sex-dependent organization of neural circuits during the fetal period influences differential vulnerability to mental health problems. We consider in this review evidence that sexually dimorphic responses to early life stress are linked to two developmental disorders: affective problems (greater female prevalence) and autism spectrum disorder (greater male prevalence). Recent prospective studies illustrating the neurodevelopmental consequences of fetal exposure to stress and stress hormones for males and females are considered here. Plausible biological mechanisms including the role of the sexually differentiated placenta are discussed. We consider in this review evidence that sexually dimorphic responses to early life stress are linked to two sets of developmental disorders: affective problems (greater female prevalence) and autism spectrum disorders (greater male prevalence). PMID:25038479
Lack of observed movement response to lead exposure of California condors
Poessel, Sharon; Brandt, Joseph; Uyeda, Linda; Astell, Molly; Katzner, Todd E.
2018-01-01
Lead poisoning is an important conservation concern for wildlife, and scavenging birds are especially at risk from consumption of carcasses of animals killed with lead ammunition. Because current methods to identify lead exposure require animal capture and blood collection, management would benefit from the development of a less costly and noninvasive behavioral test for illness in wild animals. We attempted to design such a test to identify lead exposure in California condors (Gymnogyps californianus) that we tracked with global positioning system (GPS) telemetry in southern California, USA, 2013–2016. We measured blood-lead concentrations in tracked birds and expected that flight behavior would be influenced by lead exposure; thus, we measured the effect of blood-lead concentrations on 2 different types of movement rates and on the proportion of time condors spent in flight. We found no effect of lead exposure on any of these 3 behavioral metrics. Our work suggests that the measurements we took of flight behaviors were not a useful tool in predicting lead exposure in the mildly to moderately exposed birds we studied. Wild birds are effective at hiding illness, especially condors who have a strong social hierarchy in which showing weakness is a disadvantage. However, focusing on behaviors other than flight, expanding the sample studied to include birds with a wider range of lead concentration values, or analyzing tissues such as feathers (rather than, or in addition to, blood) may be more useful for identification of lead exposure and other diseases that may limit wildlife populations. © 2017 This article is a U.S. Government work and is in the public domain in the USA.
Lead Poisoning Prevention Tips
... be done to prevent exposure to lead? Lead-Safe Work Coloring book Reduce a child’s exposure from non- ... here to print a coloring storybook on lead-safe work [PDF - 1.94 MB] . Top of Page To ...
Bromer, Jason G.; Zhou, Yuping; Taylor, Melissa B.; Doherty, Leo; Taylor, Hugh S.
2010-01-01
Bisphenol-A (BPA) is a nonsteroidal estrogen that is ubiquitous in the environment. The homeobox gene Hoxa10 controls uterine organogenesis, and its expression is affected by in utero BPA exposure. We hypothesized that an epigenetic mechanism underlies BPA-mediated alterations in Hoxa10 expression. We analyzed the expression pattern and methylation profile of Hoxa10 after in utero BPA exposure. Pregnant CD-1 mice were treated with BPA (5 mg/kg IP) or vehicle control on d 9–16 of pregnancy. Hoxa10 mRNA and protein expression were increased by 25% in the reproductive tract of mice exposed in utero. Bisulfite sequencing revealed that cytosine-guanine dinucleotide methylation was decreased from 67 to 14% in the promoter and from 71 to 3% in the intron of Hoxa10 after in utero BPA exposure. Decreased DNA methylation led to an increase in binding of ER-α to the Hoxa10 ERE both in vitro as and in vivo as determined by EMSA and chromatin immunoprecipitation, respectively. Diminished methylation of the ERE-containing promoter sequence resulted in an increase in ERE-driven gene expression in reporter assays. We identify altered methylation as a novel mechanism of BPA-induced altered developmental programming. Permanent epigenetic alteration of ERE sensitivity to estrogen may be a general mechanism through which endocrine disruptors exert their action.—Bromer, J. G., Zhou, Y., Taylor, M. B., Doherty, L., Taylor, H. S.. Bisphenol-A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response. PMID:20181937
Before the first breath: prenatal exposures to air pollution and lung development.
Veras, Mariana Matera; de Oliveira Alves, Nilmara; Fajersztajn, Lais; Saldiva, Paulo
2017-03-01
Various environmental contaminants are known to impair the growth trajectories of major organs, indirectly (gestational exposure) or directly (postnatal exposure). Evidence associates pre-gestational and gestational exposure to air pollutants with adverse birth outcomes (e.g., low birth weight, prematurity) and with a wide range of diseases in childhood and later in life. In this review, we explore the way that pre-gestational and gestational exposure to air pollution affects lung development. We present results in topics underlining epidemiological and toxicological evidence. We also provide a summary of the biological mechanisms by which air pollution exposure possibly leads to adverse respiratory outcomes. We conclude that gestational and early life exposure to air pollutants are linked to alterations in lung development and function and to other negative respiratory conditions in childhood (wheezing, asthma) that may last into adulthood. Plausible mechanisms encompass changes in maternal physiology (e.g., hypoxia, oxidative stress and inflammation) and DNA alterations in the fetus. Evidence for pre-gestational and gestational effects on the lung is scarce compared with that on early life exposure and further studies are needed. However, the suggested mechanisms are credible and the evidence of pre-gestational and gestational air pollution exposure is robust for adverse birth outcomes. Air pollutants might change lung developmental trajectories of the unborn child predisposing it to diseases later in life highlighting the urgent need for controls on urban air pollution levels worldwide.
Economic Costs of Childhood Lead Exposure in Low- and Middle-Income Countries
Trasande, Leonardo
2013-01-01
Background: Children’s blood lead levels have declined worldwide, especially after the removal of lead in gasoline. However, significant exposure remains, particularly in low- and middle-income countries. To date, there have been no global estimates of the costs related to lead exposure in children in developing countries. Objective: Our main aim was to estimate the economic costs attributable to childhood lead exposure in low- and middle-income countries. Methods: We developed a regression model to estimate mean blood lead levels in our population of interest, represented by each 1-year cohort of children < 5 years of age. We used an environmentally attributable fraction model to estimate lead-attributable economic costs and limited our analysis to the neurodevelopmental impacts of lead, assessed as decrements in IQ points. Our main outcome was lost lifetime economic productivity due to early childhood exposure. Results: We estimated a total cost of $977 billions of international dollars in low- and middle-income countries, with economic losses equal to $134.7 billion in Africa [4.03% of gross domestic product (GDP)], $142.3 billion in Latin America and the Caribbean (2.04% of GDP), and $699.9 billion in Asia (1.88% of GDP). Our sensitivity analysis indicates a total economic loss in the range of $728.6–1162.5 billion. Conclusions: We estimated that, in low- and middle-income countries, the burden associated with childhood lead exposure amounts to 1.20% of world GDP in 2011. For comparison, in the United States and Europe lead-attributable economic costs have been estimated at $50.9 and $55 billion, respectively, suggesting that the largest burden of lead exposure is now borne by low- and middle-income countries. Citation: Attina TM, Trasande L. 2013. Economic costs of childhood lead exposure in low- and middle-income countries. Environ Health Perspect 121:1097–1102; http://dx.doi.org/10.1289/ehp.1206424 PMID:23797342
Neves, Raquel A. F.; Fernandes, Tainá; dos Santos, Luciano Neves; Nascimento, Silvia M.
2017-01-01
Harmful algae may differently affect their primary grazers, causing sub-lethal effects and/or leading to their death. The present study aim to compare the effects of three toxic benthic dinoflagellates on clearance and grazing rates, behavioral changes, and survival of Artemia salina. Feeding assays consisted in 1-h incubations of brine shrimps with the toxic Prorocentrum lima, Gambierdiscus excentricus and Ostreopsis cf. ovata and the non-toxic Tetraselmis sp. Brine shrimps fed unselectively on all toxic and non-toxic algal preys, without significant differences in clearance and ingestion rates. Acute toxicity assays were performed with dinoflagellate cells in two growth phases during 7-h to assess differences in cell toxicity to A. salina. Additionally, exposure to cell-free medium was performed to evaluate its effects on A. salina survival. The behavior of brine shrimps significantly changed during exposure to the toxic dinoflagellates, becoming immobile at the bottom by the end of the trials. Dinoflagellates significantly affected A. salina survival with 100% mortality after 7-h exposure to cells in exponential phase (all treatments) and to P. lima in stationary phase. Mortality rates of brine shrimps exposed to O. cf. ovata and G. excentricus in stationary phase were 91% and 75%, respectively. However, incubations of the brine shrimps with cell-free medium did not affect A. salina survivorship. Significant differences in toxic effects between cell growth phases were only found in the survival rates of A. salina exposed to G. excentricus. Acute exposure to benthic toxic dinoflagellates induced harmful effects on behavior and survival of A. salina. Negative effects related to the toxicity of benthic dinoflagellates are thus expected on their primary grazers making them more vulnerable to predation and vectors of toxins through the marine food webs. PMID:28388672
Neves, Raquel A F; Fernandes, Tainá; Santos, Luciano Neves Dos; Nascimento, Silvia M
2017-01-01
Harmful algae may differently affect their primary grazers, causing sub-lethal effects and/or leading to their death. The present study aim to compare the effects of three toxic benthic dinoflagellates on clearance and grazing rates, behavioral changes, and survival of Artemia salina. Feeding assays consisted in 1-h incubations of brine shrimps with the toxic Prorocentrum lima, Gambierdiscus excentricus and Ostreopsis cf. ovata and the non-toxic Tetraselmis sp. Brine shrimps fed unselectively on all toxic and non-toxic algal preys, without significant differences in clearance and ingestion rates. Acute toxicity assays were performed with dinoflagellate cells in two growth phases during 7-h to assess differences in cell toxicity to A. salina. Additionally, exposure to cell-free medium was performed to evaluate its effects on A. salina survival. The behavior of brine shrimps significantly changed during exposure to the toxic dinoflagellates, becoming immobile at the bottom by the end of the trials. Dinoflagellates significantly affected A. salina survival with 100% mortality after 7-h exposure to cells in exponential phase (all treatments) and to P. lima in stationary phase. Mortality rates of brine shrimps exposed to O. cf. ovata and G. excentricus in stationary phase were 91% and 75%, respectively. However, incubations of the brine shrimps with cell-free medium did not affect A. salina survivorship. Significant differences in toxic effects between cell growth phases were only found in the survival rates of A. salina exposed to G. excentricus. Acute exposure to benthic toxic dinoflagellates induced harmful effects on behavior and survival of A. salina. Negative effects related to the toxicity of benthic dinoflagellates are thus expected on their primary grazers making them more vulnerable to predation and vectors of toxins through the marine food webs.
Mahemuti, Laziyan; Chen, Qixuan; Coughlan, Melanie C; Qiao, Cunye; Chepelev, Nikolai L; Florian, Maria; Dong, Dillon; Woodworth, Robert G; Yan, Jin; Cao, Xu-Liang; Scoggan, Kylie A; Jin, Xiaolei; Willmore, William G
2018-04-01
Experimental and/or epidemiological studies suggest that prenatal exposure to bisphenol A (BPA) may delay fetal lung development and maturation and increase the susceptibility to childhood respiratory disease. However, the underlying mechanisms remain to be elucidated. In our previous study with cultured human fetal lung fibroblasts (HFLF), we demonstrated that 24-h exposure to 1 and 100 µM BPA increased GPR30 protein in the nuclear fraction. Exposure to 100 μM BPA had no effects on cell viability, but increased cytoplasmic expression of ERβ and release of GDF-15, as well as decreased release of IL-6, ET-1, and IP-10 through suppression of NFκB phosphorylation. By performing global gene expression and pathway analysis in this study, we identified molecular pathways, gene networks, and key molecules that were affected by 100, but not 0.01 and 1 µM BPA in HFLF. Using multiple genomic and proteomic tools, we confirmed these changes at both gene and protein levels. Our data suggest that 100 μM BPA increased CYP1B1 and HSD17B14 gene and protein expression and release of endogenous estradiol, which was associated with increased ROS production and DNA double-strand breaks, upregulation of genes and/or proteins in steroid synthesis and metabolism, and activation of Nrf2-regulated stress response pathways. In addition, BPA activated ATM-p53 signaling pathway, resulting in increased cell cycle arrest at G1 phase, senescence and autophagy, and decreased cell proliferation in HFLF. The results suggest that prenatal exposure to BPA at certain concentrations may affect fetal lung development and maturation, and thereby affecting susceptibility to childhood respiratory diseases.
Bernard, S M; Samet, J M; Grambsch, A; Ebi, K L; Romieu, I
2001-01-01
Climate change may affect exposures to air pollutants by affecting weather, anthropogenic emissions, and biogenic emissions and by changing the distribution and types of airborne allergens. Local temperature, precipitation, clouds, atmospheric water vapor, wind speed, and wind direction influence atmospheric chemical processes, and interactions occur between local and global-scale environments. If the climate becomes warmer and more variable, air quality is likely to be affected. However, the specific types of change (i.e., local, regional, or global), the direction of change in a particular location (i.e., positive or negative), and the magnitude of change in air quality that may be attributable to climate change are a matter of speculation, based on extrapolating present understanding to future scenarios. There is already extensive evidence on the health effects of air pollution. Ground-level ozone can exacerbate chronic respiratory diseases and cause short-term reductions in lung function. Exposure to particulate matter can aggravate chronic respiratory and cardiovascular diseases, alter host defenses, damage lung tissue, lead to premature death, and possibly contribute to cancer. Health effects of exposures to carbon monoxide, sulfur dioxide, and nitrogen dioxide can include reduced work capacity, aggravation of existing cardiovascular diseases, effects on pulmonary function, respiratory illnesses, lung irritation, and alterations in the lung's defense systems. Adaptations to climate change should include ensuring responsiveness of air quality protection programs to changing pollution levels. Research needs include basic atmospheric science work on the association between weather and air pollutants; improving air pollution models and their linkage with climate change scenarios; and closing gaps in the understanding of exposure patterns and health effects. PMID:11359687
Bernard, S M; Samet, J M; Grambsch, A; Ebi, K L; Romieu, I
2001-05-01
Climate change may affect exposures to air pollutants by affecting weather, anthropogenic emissions, and biogenic emissions and by changing the distribution and types of airborne allergens. Local temperature, precipitation, clouds, atmospheric water vapor, wind speed, and wind direction influence atmospheric chemical processes, and interactions occur between local and global-scale environments. If the climate becomes warmer and more variable, air quality is likely to be affected. However, the specific types of change (i.e., local, regional, or global), the direction of change in a particular location (i.e., positive or negative), and the magnitude of change in air quality that may be attributable to climate change are a matter of speculation, based on extrapolating present understanding to future scenarios. There is already extensive evidence on the health effects of air pollution. Ground-level ozone can exacerbate chronic respiratory diseases and cause short-term reductions in lung function. Exposure to particulate matter can aggravate chronic respiratory and cardiovascular diseases, alter host defenses, damage lung tissue, lead to premature death, and possibly contribute to cancer. Health effects of exposures to carbon monoxide, sulfur dioxide, and nitrogen dioxide can include reduced work capacity, aggravation of existing cardiovascular diseases, effects on pulmonary function, respiratory illnesses, lung irritation, and alterations in the lung's defense systems. Adaptations to climate change should include ensuring responsiveness of air quality protection programs to changing pollution levels. Research needs include basic atmospheric science work on the association between weather and air pollutants; improving air pollution models and their linkage with climate change scenarios; and closing gaps in the understanding of exposure patterns and health effects.
Ansorge, Mark S; Morelli, Emanuela; Gingrich, Jay A
2008-01-02
Serotonin (5-HT) acts as a neurotransmitter, but also modulates brain maturation during early development. The demonstrated influence of genetic variants on brain function, personality traits, and susceptibility to neuropsychiatric disorders suggests a critical importance of developmental mechanisms. However, little is known about how and when developmentally perturbed 5-HT signaling affects circuitry and resulting behavior. The 5-HT transporter (5-HTT) is a key regulator of extracellular 5-HT levels and we used pharmacologic strategies to manipulate 5-HTT function during development and determine behavioral consequences. Transient exposure to the 5-HTT inhibitors fluoxetine, clomipramine, and citalopram from postnatal day 4 (P4) to P21 produced abnormal emotional behaviors in adult mice. Similar treatment with the norepinephrine transporter (NET) inhibitor, desipramine, did not adversely affect adult behavior, suggesting that 5-HT and norepinephrine (NE) do not share the same effects on brain development. Shifting our period of treatment/testing to P90/P185 failed to mimic the effect of earlier exposure, demonstrating that 5-HT effects on adult behavior are developmentally specific. We have hypothesized that early-life perturbations of 5-HT signaling affect corticolimbic circuits that do not reach maturity until the peri-adolescent period. In support of this idea, we found that abnormal behaviors resulting from postnatal fluoxetine exposure have a post-pubescent onset and persist long after reaching adult age. A better understanding of the underlying 5-HT sensitive circuits and how they are perturbed should lead to new insights into how various genetic polymorphisms confer their risk to carriers. Furthermore, these studies should help determine whether in utero exposure to 5-HTT blocking drugs poses a risk for behavioral abnormalities in later life.
Ren, L H; Mu, X Y; Chen, H Y; Yang, H L; Qi, W
2016-06-01
To explore the relationship between umbilical cord blood brain-derived neurotrophic factor (BDNF) and neonatal neurobehavioral development in lead exposure infants. All infants and their mother were randomly selected during 2011 to 2012, subjects were selected according to the umbilical cord blood lead concentrations, which contcentration of lead was higher than 0.48 μmol/L were taken into high lead exposure group, about 60 subjects included. Comparing to the high lead exposure group, according to gender, weight, pregnant week, length and head circumferenece, the level of cord blood lead concentration under 0.48 μmol/L were taken into control group, 60 cases included. Lead content was determined by graphite furnace atomic absorption spectrometry. Neonatal behavioral neurological assessment (NBNA) was used to determine the development of neonatal neuronal behavior. The content of BDNF was detected by ELISA. Comparing the BDNF and the NBNA score between two groups, and linear correlation was given on analysis the correlation between lead concentration in cord blood and BDNF, BDNF and the NBNA score. Lead content in high exposure group was (0.613±0.139) μmol/L, and higher than (0.336±0.142) μmol/L in low exposure group (t=3.21, P<0.001) . NBNA summary score (36.35±1.86), active muscle tension score (6.90±0.27) and general assessment score (5.93±0.32) in high exposure group were lower than those (38.13±0.96, 7.79±0.35, 6.00±0.00) in low exposure group (t values were 8.21, 10.23, 2.32, respectively, P values were <0.001, <0.001 and 0.037) . BDNF content in high exposure group which was (3.538±1.203) ng/ml was higher than low exposure group (2.464±0.918) ng/ml (t=7.60, P<0.001). The correlation analysis found that the cord blood BDNF content was negatively correlated with NBNA summary score, passive muscle tension and active muscle tone score (r was -0.27, -0.29, -0.30, respectively, P values were <0.001, respectively) . Prenatal lead exposure results poor neonatal neurobehavioral development and cord blood BDNF was negatively correlated with neonatal neurodevelopment, may serve as a useful biomarker.
Mulholland, Patrick J; Spencer, Kathryn B; Hu, Wei; Kroener, Sven; Chandler, L Judson
2015-06-01
Chronic alcohol-induced cognitive impairments and maladaptive plasticity of glutamatergic synapses are well-documented. However, it is unknown if prolonged alcohol exposure affects dendritic signaling that may underlie hippocampal dysfunction in alcoholics. Back-propagation of action potentials (bAPs) into apical dendrites of hippocampal neurons provides distance-dependent signals that modulate dendritic and synaptic plasticity. The amplitude of bAPs decreases with distance from the soma that is thought to reflect an increase in the density of Kv4.2 channels toward distal dendrites. The aim of this study was to quantify changes in hippocampal Kv4.2 channel function and expression using electrophysiology, Ca(2+) imaging, and western blot analyses in a well-characterized in vitro model of chronic alcohol exposure. Chronic alcohol exposure significantly decreased expression of Kv4.2 channels and KChIP3 in hippocampus. This reduction was associated with an attenuation of macroscopic A-type K(+) currents in CA1 neurons. Chronic alcohol exposure increased bAP-evoked Ca(2+) transients in the distal apical dendrites of CA1 pyramidal neurons. The enhanced bAP-evoked Ca(2+) transients induced by chronic alcohol exposure were not related to synaptic targeting of N-methyl-D-aspartate (NMDA) receptors or morphological adaptations in apical dendritic arborization. These data suggest that chronic alcohol-induced decreases in Kv4.2 channel function possibly mediated by a downregulation of KChIP3 drive the elevated bAP-associated Ca(2+) transients in distal apical dendrites. Alcohol-induced enhancement of bAPs may affect metaplasticity and signal integration in apical dendrites of hippocampal neurons leading to alterations in hippocampal function.
UVA Irradiation of Dysplastic Keratinocytes: Oxidative Damage versus Antioxidant Defense
Nechifor, Marina T.; Niculiţe, Cristina M.; Urs, Andreea O.; Regalia, Teodor; Mocanu, Mihaela; Popescu, Alexandra; Manda, Gina; Dinu, Diana; Leabu, Mircea
2012-01-01
UVA affects epidermal cell physiology in a complex manner, but the harmful effects have been studied mainly in terms of DNA damage, mutagenesis and carcinogenesis. We investigated UVA effects on membrane integrity and antioxidant defense of dysplastic keratinocytes after one and two hours of irradiation, both immediately after exposure, and 24 h post-irradiation. To determine the UVA oxidative stress on cell membrane, lipid peroxidation was correlated with changes in fatty acid levels. Membrane permeability and integrity were assessed by propidium iodide staining and lactate dehydrogenase release. The effects on keratinocyte antioxidant protection were investigated in terms of catalase activity and expression. Lipid peroxidation increased in an exposure time-dependent manner. UVA exposure decreased the level of polyunsaturated fatty acids, which gradually returned to its initial value. Lactate dehydrogenase release showed a dramatic loss in membrane integrity after 2 h minimum of exposure. The cell ability to restore membrane permeability was noted at 24 h post-irradiation (for one hour exposure). Catalase activity decreased in an exposure time-dependent manner. UVA-irradiated dysplastic keratinocytes developed mechanisms leading to cell protection and survival, following a non-lethal exposure. The surviving cells gained an increased resistance to apoptosis, suggesting that their pre-malignant status harbors an abnormal ability to control their fate. PMID:23222638
Developmental toxicity of lead contaminated sediment to mallard ducks
Hoffman, D.J.; Heinz, G.H.; Sileo, L.; Audet, D.J.; Campbell, J.K.; LeCaptain, L.J.
2000-01-01
Sediment ingestion has been identified as an important exposure route for toxicants in waterfowl. The toxicity of lead-contaminated sediment from the Coeur d'Alene River Basin (CDARB) in Idaho was examined on posthatching development of mallard (Anas platyrhynchos) ducklings for 6 weeks. Day-old ducklings received either untreated control diet, clean sediment (24%) supplemented control diet, CDARB sediment (3,449 I?g/g lead) supplemented diets at 12% or 24%, or a positive control diet containing lead acetate equivalent to that found in 24% CDARB. The 12% CDARB diet resulted in a geometric mean blood lead concentration of 1.41 ppm (WW) with over 90% depression of red blood cell ALAD activity and over threefold elevation of free erythrocyte protoporphyrin concentration. The 24% CDARB diet resulted in blood lead of 2.56 ppm with over sixfold elevation of protoporphyrin and lower brain weight. In this group the liver lead concentration was 7.92 ppm (WW), and there was a 40% increase in hepatic reduced glutathione concentration. The kidney lead concentration in this group was 7.97 ppm, and acid-fast inclusion bodies were present in the kidneys of four of nine ducklings. The lead acetate positive control group was more adversely affected in most respects than the 24% CDARB group. With a less optimal diet (mixture of two thirds corn and one third standard diet), CDARB sediment was more toxic; blood lead levels were higher, body growth and liver biochemistry (TBARS) were more affected, and prevalence of acid-fast inclusion bodies increased. Lead from CDARB sediment accumulated more readily in duckling blood and liver than reported in goslings, but at given concentrations was generally less toxic to ducklings. Many of these effects are similar to ones reported in wild mallards and geese within the CDARB.
Developmental toxicity of lead-contaminated sediment to mallard ducklings
Hoffman, D.J.; Heinz, G.H.; Sileo, L.; Audet, D.J.; Campbell, J.K.; LeCaptain, L.J.
2000-01-01
Sediment ingestion has been identified as an important exposure route for toxicants in waterfowl. The toxicity of lead-contaminated sediment from the Coeur d'Alene River Basin (CDARB) in Idaho was examined on posthatching development of mallard (Anas platyrhynchos) ducklings for 6 weeks. Day-old ducklings received either untreated control diet, clean sediment (24%) supplemented control diet, CDARB sediment (3,449 ug/g lead) supplemented diets at 12% or 24%, or a positive control diet containing lead acetate equivalent to that found in 24% CDARB. The 12% CDARB diet resulted in a geometric mean blood lead concentration of 1.41 ppm (WW) with over 90% depression of red blood cell ALAD activity and over threefold elevation of free erythrocyte protoporphyrin concentration. The 24% CDARB diet resulted in blood lead of 2.56 ppm with over sixfold elevation of protoporphyrin and lower brain weight. In this group the liver lead concentration was 7.92 ppm (WW), and there was a 40% increase in hepatic reduced glutathione concentration. The kidney lead concentration in this group was 7.97 ppm, and acid-fast inclusion bodies were present in the kidneys of four of nine ducklings. The lead acetate positive control group was more adversely affected in most respects than the 24% CDARB group. With a less optimal diet (mixture of two thirds corn and one third standard diet), CDARB sediment was more toxic; blood lead levels were higher, body growth and liver biochemistry (TBARS) were more affected, and prevalence of acid-fast inclusion bodies increased. Lead from CDARB sediment accumulated more readily in duckling blood and liver than reported in goslings, but at given concentrations was generally less toxic to ducklings. Many of these effects are similar to ones reported in wild mallards and geese within the CDARB.
Prenatal Alcohol Exposure in Rodents As a Promising Model for the Study of ADHD Molecular Basis
Rojas-Mayorquín, Argelia E.; Padilla-Velarde, Edgar; Ortuño-Sahagún, Daniel
2016-01-01
A physiological parallelism, or even a causal effect relationship, can be deducted from the analysis of the main characteristics of the “Alcohol Related Neurodevelopmental Disorders” (ARND), derived from prenatal alcohol exposure (PAE), and the behavioral performance in the Attention-deficit/hyperactivity disorder (ADHD). These two clinically distinct disease entities, exhibits many common features. They affect neurological shared pathways, and also related neurotransmitter systems. We briefly review here these parallelisms, with their common and uncommon characteristics, and with an emphasis in the subjacent molecular mechanisms of the behavioral manifestations, that lead us to propose that PAE in rats can be considered as a suitable model for the study of ADHD. PMID:28018163
Custers, Kathleen; Van den Bulck, Jan
2012-04-01
Both news media and entertainment fiction may lead to short-term and enduring fright reactions. Even TV programs, movies and news made for children may trigger fear. Preoperational children (3 to 7 years of age) are most afraid of fantasy characters, transformations and interpersonal violence. Operational children (8 to 11 years) are more afraid of abstract ideas and imagined implications regarding their own risk. Pediatricians must include media in their history taking and beware of ensuing fear, phobias, sleep and behavior problems. Parents can play a vital role in preventing exposure to or mediating the effects of frightening media. Hospitals must have a pediatric media exposure policy. Media use can have immediate and enduring fear effects that affect many children and that are far from trivial.
Dobrakowski, Michał; Pawlas, Natalia; Hudziec, Edyta; Kozłowska, Agnieszka; Mikołajczyk, Agnieszka; Birkner, Ewa; Kasperczyk, Sławomir
2016-07-01
The aim of the study was to investigate the influence of subacute exposure to lead on the glutathione-related antioxidant defense and oxidative stress parameters in 36 males occupationally exposed to lead for 40±3.2days. Blood lead level in the examined population increased significantly by 359% due to lead exposure. Simultaneously, erythrocyte glutathione level decreased by 16%, whereas the activity of glutathione-6-phosphate dehydrogenase in erythrocytes and leukocytes decreased by 28% and 10%, respectively. Similarly, the activity of glutathione-S-transferase in erythrocytes decreased by 45%. However, the activity of glutathione reductase in erythrocytes and leukocytes increased by 26% and 6%, respectively, whereas the total oxidant status value in leukocytes increased by 37%. Subacute exposure to lead results in glutathione pool depletion and accumulation of lipid peroxidation products; however, it does not cause DNA damage. Besides, subacute exposure to lead modifies the activity of glutathione-related enzymes. Copyright © 2016 Elsevier B.V. All rights reserved.
Low level lead exposure: history and discovery.
Needleman, Herbert
2009-04-01
The history of lead toxicity spans 2 millennnia. With increasingly sensitive methods, deficits due to lead exposure have been demonstrated at lower and lower doses. Persuasive evidence suggests that no threshold for lead toxicity exists.
Romieu, I; Lacasana, M; McConnell, R
1997-01-01
As a result of the rapid industrialization of Latin America and the Caribbean during the second half of this century, exposure to lead has become an increasingly important problem. To obtain an estimate of the magnitude of lead exposure in the region, we carried out a survey and a literature search on potential sources of lead exposure and on blood lead concentrations. Sixteen out of 18 Latin American and 2 out of 10 Caribbean countries responded to the survey. Lead in gasoline remains a major problem, although the lead content has decreased in many countries in the last few years. The impact of leaded fuel is more important in urban settings, given their high vehicular density. Seventy-five percent of the population of the region lives in urban areas, and children younger than 15 years of age, the most susceptible group, comprise 30% of the population. Other sources of lead exposure identified in the region included industrial emissions, battery recycling, paint and varnishes, and contaminated food and water. Lead is recognized as a priority problem by national authorities in 72% of the countries that responded to the survey, and in 50% of the countries some legislation exists to regulate the lead content in certain products. However, compliance is low. There is an urgent need for a broad-based coalition between policy makers, industry, workers, unions, health care providers, and the community to take actions to reduce environmental and occupational lead exposures in all the Latin American and Caribbean countries. Images Figure 1. Figure 2. PMID:9189704
Global approach to reducing lead exposure and poisoning.
Meyer, Pamela A; Brown, Mary Jean; Falk, Henry
2008-01-01
Lead poisoning is an important environmental disease that can have life-long adverse health effects. Most susceptible are children, and most commonly exposed are those who are poor and live in developing countries. Studies of children's blood-lead levels (BLLs) are showing cognitive impairment at increasingly lower BLLs. Lead is dangerous at all levels in children. The sources of lead exposure vary among and within countries depending on past and current uses. Sources of lead may be from historic contamination, recycling old lead products, or from manufacturing new products. In all countries that have banned leaded gasoline, average population BLLs have declined rapidly. In many developing countries where leaded gasoline is no longer used, many children and workers are exposed to fugitive emissions and mining wastes. Unexpected lead threats, such as improper disposal of electronics and children's toys contaminated with lead, continue to emerge. The only medical treatment available is chelation, which can save lives of persons with very high BLLs. However, chelating drugs are not always available in developing countries and have limited value in reducing the sequelae of chronic low dose lead exposure. Therefore, the best approach is to prevent exposure to lead. Because a key strategy for preventing lead poisoning is to identify and control or eliminate lead sources, this article highlights several major sources of lead poisoning worldwide. In addition, we recommend three primary prevention strategies for lead poisoning: identify sources, eliminate or control sources, and monitor environmental exposures and hazards.
Effects of environmental pollutants on the reproduction and welfare of ruminants
Rhind, S. M.; Evans, N. P.; Bellingham, M.; Sharpe, R. M.; Cotinot, C.; Mandon-Pepin, B.; Loup, B.; Sinclair, K. D.; Lea, R. G.; Pocar, P.; Fischer, B.; van der Zalm, E.; Hart, K.; Schmidt, J.-S.; Amezaga, M. R.; Fowler, P. A.
2010-01-01
Anthropogenic pollutants comprise a wide range of synthetic organic compounds and heavy metals, which are dispersed throughout the environment, usually at low concentrations. Exposure of ruminants, as for all other animals, is unavoidable and while the levels of exposure to most chemicals are usually too low to induce any physiological effects, combinations of pollutants can act additively or synergistically to perturb multiple physiological systems at all ages but particularly in the developing foetus. In sheep, organs affected by pollutant exposure include the ovary, testis, hypothalamus and pituitary gland and bone. Reported effects of exposure include changes in organ weight and gross structure, histology and gene and protein expression but these changes are not reflected in changes in reproductive performance under the conditions tested. These results illustrate the complexity of the effects of endocrine disrupting compounds on the reproductive axis, which make it difficult to extrapolate between, or even within, species. Effects of pollutant exposure on the thyroid gland, immune, cardiovascular and obesogenic systems have not been shown explicitly, in ruminants, but work on other species suggests that these systems can also be perturbed. It is concluded that exposure to a mixture of anthropogenic pollutants has significant effects on a wide variety of physiological systems, including the reproductive system. Although this physiological insult has not yet been shown to lead to a reduction in ruminant gross performance, there are already reports indicating that anthropogenic pollutant exposure can compromise several physiological systems and may pose a significant threat to both reproductive performance and welfare in the longer term. At present, many potential mechanisms of action for individual chemicals have been identified but knowledge of factors affecting the rate of tissue exposure and of the effects of combinations of chemicals on physiological systems is poor. Nevertheless, both are vital for the identification of risks to animal productivity and welfare. PMID:20582145
Tirima, Simba; Bartrem, Casey; von Lindern, Ian; von Braun, Margrit; Lind, Douglas; Anka, Shehu Mohamed; Abdullahi, Aishat
2018-05-01
In 2010, an estimated 400 to 500 children died of acute lead poisoning associated with artisanal gold mining in Zamfara, Nigeria. Processing of gold ores containing up to 10% lead within residential compounds put residents, especially children, at the highest risk. Principal routes of exposure were incidental ingestion and inhalation of contaminated soil and dusts. Several Nigerian and international health organizations collaborated to reduce lead exposures through environmental remediation and medical treatment. The contribution of contaminated food to total lead exposure was assessed during the environmental health response. Objectives of this investigation were to assess the influence of cultural/dietary habits on lead exposure pathways and estimate the contribution of contaminated food to children's blood lead levels (BLLs). A survey of village dietary practices and staple food lead content was conducted to determine dietary composition, caloric intakes, and lead intake. Potential blood lead increments were estimated using bio-kinetic modeling techniques. Most dietary lead exposure was associated with contamination of staple cereal grains and legumes during post-harvest processing and preparation in contaminated homes. Average post-harvest and processed cereal grain lead levels were 0.32mg/kg and 0.85mg/kg dry weight, respectively. Age-specific food lead intake ranged from 7 to 78μg/day. Lead ingestion and absorption were likely aggravated by the dusty environment, fasting between meals, and nutritional deficiencies. Contamination of staple cereal grains by highly bioavailable pulverized ores could account for as much as 11%-34% of children's BLLs during the epidemic, and were a continuing source after residential soil remediation until stored grain inventories were exhausted. Copyright © 2017. Published by Elsevier B.V.
Saoudi, Abdessattar; Dereumeaux, Clémentine; Goria, Sarah; Berat, Bénédicte; Brunel, Serge; Pecheux, Marie; de Crouy-Chanel, Perrine; Zeghnoun, Abdelkrim; Rambaud, Loïc; Wagner, Vérène; le Tertre, Alain; Fillol, Clémence; Vandentorren, Stéphanie; Guldner, Laurence
2018-04-01
As a result of the ban on lead in gasoline on 2nd January 2000, the French population's exposure to lead has decreased in recent years. However, because of the acknowledged harmful cognitive effects of lead even at low levels, lead exposure remains a major public health issue. In France, few biomonitoring data are available for exposure to lead in pregnant women and newborn. The purpose of the perinatal component of the French human biomonitoring (HBM) program was to describe levels of various biomarkers of exposure to several environmental pollutants, including lead, among mother-baby pairs. In this paper, we aimed to describe the distribution of cord blood lead levels (CBLL) in French mother-baby pairs, and to estimate the contribution of the main lead exposure risk factors to these levels. A total of 1968 mother-baby pairs selected from the participants of the perinatal component of the French HBM program were included in the study on lead. Lead levels were analyzed in cord blood collected at child delivery by inductively coupled plasma-mass spectrometry (ICP-MS). The data collected included biological sample, socio-demographic characteristics, environmental and occupational exposure, and information on dietary factors. CBLL were quantified for 99.5% of the sample. The CBLL geometric mean was 8.30 μg/l (95% CI [7.94-8.68]) with a 95th percentile of 24.3 μg/l (95% CI [20.7-27.1]). Factors significantly associated with CBLL were tap water consumption, alcohol consumption, shellfish consumption, vegetable consumption, bread consumption, smoking, and the mother being born in countries where lead is often used. This study provides the first reference value for CBLL in a random sample of mother-baby pairs not particularly exposed to high levels of lead (24.3 μg/l). A substantial decrease in CBLL over time was observed, which confirms the decrease of exposure to lead among the general population. CBLL observed in this French study were in the range of those found in recent surveys conducted in other countries. Copyright © 2018 Elsevier GmbH. All rights reserved.
Rocha, Angelica; Valles, Rodrigo; Hart, Nigel; Bratton, Gerald R; Nation, Jack R
2008-06-01
Perinatal (gestation/lactation) lead exposure modifies the reinforcement efficacy of various psychoactive drugs (e.g., cocaine, opiates) across the phases of initial selection, use, and abuse [Nation J.R., Cardon A.L., Heard H.M., Valles R., Bratton G.R. Perinatal lead exposure and relapse to drug-seeking behavior in the rat: a cocaine reinstatement study. Psychopharmacol 2003;168: 236-243.; Nation J.R., Smith K.R., Bratton G.R. Early developmental lead exposure increases sensitivity to cocaine in a self-administration paradigm. Pharmacol Biochem Behave 2004; 77: 127-13; Rocha A., Valles R., Cardon A.L., Bratton G.R., Nation J.R. Enhanced acquisition of cocaine self-administration in rats developmentally exposed to lead. Neuropsychopharmacol 2005; 30: 2058-2064.]. However, changes in sensitivity to methamphetamine across the phases of drug abuse have not been examined in animals perinatally exposed to lead. Because the mainstream popularity of methamphetamine in the United States is increasing and lead exposure continues to be widespread, an examination of this drug and how it may be modified by perinatal exposure to lead is warranted. The studies reported here examined the effects of perinatal lead exposure on adult self-administration of intravenous (i.v.) methamphetamine across the maintenance phase of drug addiction. Experiment 1 examined dose-effect patterns in control and lead-exposed animals. Experiment 2 evaluated control and lead-exposed animals in a progressive ratio task. Female rats were administered a 16-mg lead or a control solution for 30 days prior to breeding with non-exposed males. Exposure continued through pregnancy and lactation and was discontinued at weaning (postnatal day [PND] 21). Animals born to control or lead-exposed dams received indwelling jugular catheters as adults (PND 70) and subsequently were randomly assigned to one of the two studies, using only one male rat per litter for each study. The data showed a general attenuation of the reinforcement efficacy of methamphetamine in animals perinatally exposed to lead, as compared to control animals.
Economic costs of childhood lead exposure in low- and middle-income countries.
Attina, Teresa M; Trasande, Leonardo
2013-09-01
Children's blood lead levels have declined worldwide, especially after the removal of lead in gasoline. However, significant exposure remains, particularly in low- and middle-income countries. To date, there have been no global estimates of the costs related to lead exposure in children in developing countries. Our main aim was to estimate the economic costs attributable to childhood lead exposure in low- and middle-income countries. We developed a regression model to estimate mean blood lead levels in our population of interest, represented by each 1-year cohort of children < 5 years of age. We used an environmentally attributable fraction model to estimate lead-attributable economic costs and limited our analysis to the neurodevelopmental impacts of lead, assessed as decrements in IQ points. Our main outcome was lost lifetime economic productivity due to early childhood exposure. We estimated a total cost of $977 billions of international dollars in low- and middle-income countries, with economic losses equal to $134.7 billion in Africa [4.03% of gross domestic product (GDP)], $142.3 billion in Latin America and the Caribbean (2.04% of GDP), and $699.9 billion in Asia (1.88% of GDP). Our sensitivity analysis indicates a total economic loss in the range of $728.6-1162.5 billion. We estimated that, in low- and middle-income countries, the burden associated with childhood lead exposure amounts to 1.20% of world GDP in 2011. For comparison, in the United States and Europe lead-attributable economic costs have been estimated at $50.9 and $55 billion, respectively, suggesting that the largest burden of lead exposure is now borne by low- and middle-income countries.
Cao, Suzhen; Duan, Xiaoli; Zhao, Xiuge; Wang, Beibei; Ma, Jin; Fan, Delong; Sun, Chengye; He, Bin; Wei, Fusheng; Jiang, Guibin
2015-04-01
As a highly toxic heavy metal, the pollution and exposure risks of lead are of widespread concern for human health. However, the collection of blood samples for use as an indicator of lead pollution is not always feasible in most cohort or longitudinal studies, especially those involving children health. To evaluate the potential use of urinary lead as an indicator of exposure levels and source apportionment, accompanying with environmental media samples, lead concentrations and isotopic measurements (expressed as (207)Pb/(206)Pb, (208)Pb/(206)Pb and (204)Pb/(206)Pb) were investigated and compared between blood and urine from children living in the vicinities of a typical coking plant and lead-acid battery factory. The results showed urinary lead might not be a preferable proxy for estimating blood lead levels. Fortunately, urinary lead isotopic measurements could be used as an alternative for identifying the sources of children's lead exposure, which coincided well with the blood lead isotope ratio analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Interaction betwen Lead and Bone Protein to Affect Bone Calcium Level Using UV-Vis Spectroscopy
NASA Astrophysics Data System (ADS)
Noor, Z.; Azharuddin, A.; Aflanie, I.; Kania, N.; Suhartono, E.
2018-05-01
This present study aim to evaluate the interactions between lead (Pb) and with bone protein by UV-Vis approach. In addition, this prsent study also aim to investigate the effect of Pb on bone calcium (Ca) level. The present study was a true experimental study design to examine the impact of Pb exposure in bone of male rats (Rattus novergicus). The study involved 5 groups, P1 was the control group, while the other (P2-P5) were the case group with exposure of Pb in different concentration within 4 weeks. At the end of the exposure, the interaction between Pb and protein was determined using UV-Vis spectrophotometric method, and the Ca level was determined using permanganometric method. The results shows that that there is an interaction between Pb and bone protein. The result also shows that the value of the binding constant of Protein-Pb is 32.71. It means Pb have an high affinity to bind with bone protein, which promote a further reaction to induced the release of bone Ca from the bone protein. In conclusion, this present study found an obvious relationship between Pb and bone protein which promote a further reaction to increase the releasing of bone calcium.
Functional Consequences of Repeated Organophosphate Exposure: Potential Non-Cholinergic Mechanisms
Terry, A.V.
2012-01-01
The class of chemicals known as the “organophosphates” (OPs) comprises many of the most common agricultural and commercial pesticides that are used worldwide as well as the highly toxic chemical warfare agents. The mechanism of the acute toxicity of OPs in both target and non-target organisms is primarily attributed to inhibitory actions on various forms of cholinesterase leading to excessive peripheral and central cholinergic activity. However, there is now substantial evidence that this canonical (cholinesterase-based) mechanism cannot alone account for the wide-variety of adverse consequences of OP exposure that have been described, especially those associated with repeated exposures to levels that produce no overt signs of acute toxicity. This type of exposure has been associated with prolonged impairments in attention, memory, and other domains of cognition, as well as chronic illnesses where these symptoms are manifested (e.g., Gulf War Illness, Alzheimer’s disease). Due to their highly reactive nature, it is not surprising that OPs might alter the function of a number of enzymes and proteins (in addition to cholinesterase). However, the wide variety of long-term neuropsychiatric symptoms that have been associated with OPs suggests that some basic or fundamental neuronal process was adversely affected during the exposure period. The purpose of this review is to discuss several non-cholinesterase targets of OPs that might affect such fundamental processes and includes cytoskeletal and motor proteins involved in axonal transport, neurotrophins and their receptors, and mitochondria (especially their morphology and movement in axons). Potential therapeutic implications of these OP interactions are also discussed. PMID:22465060
YANAI, Shogo; HIRANO, Tetsushi; OMOTEHARA, Takuya; TAKADA, Tadashi; YONEDA, Naoki; KUBOTA, Naoto; YAMAMOTO, Anzu; MANTANI, Youhei; YOKOYAMA, Toshifumi; KITAGAWA, Hiroshi; HOSHI, Nobuhiko
2017-01-01
Neonicotinoids are pesticides used worldwide. They bind to insect nicotinic acetylcholine receptors (nAChRs) with high affinity. We previously reported that clothianidin (CTD), one of the latest neonicotinoids, reduced antioxidant expression and induced germ cell death in the adult testis of vertebrates. Here, we investigated the male reproductive toxicity of prenatal and early postnatal exposure to CTD, because it is likely that developmental exposure more severely affects the testis compared to adults due to the absence of the blood-testis barrier. Pregnant C57BL/6 mice were given water gel blended with CTD (0, 10 or 50 mg/kg/day; no-observed-adverse-effect-level [NOAEL for mice]: 47.2 mg/kg/day) between gestational day 1 and 14 days post-partum. We then examined the testes of male offspring at postnatal day 14. The testis weights and the numbers of germ cells per seminiferous tubule were decreased in the CTD-50 group, and abnormal tubules containing no germ cells appeared. Nevertheless, the apoptotic cell number and proliferative activity were not significantly different between the control and CTD-exposed groups. There were no significant differences in the androgen-related parameters, such as the Leydig cell volume per testis, the Sertoli cell number and the tubule diameter. The present study is the first demonstration that in utero and lactational exposures to CTD at around the NOAEL for mice reduce the germ cell number, but our findings suggest that these exposures do not affect steroidogenesis in Leydig cells during prenatal or early postnatal life. PMID:28579575
Yuruk, Emrah; Gureser, Gokhan; Tuken, Murat; Ertas, Kasim
2016-01-01
Introduction The aim of this study was to demonstrate the efficacy of Instadose™, a novel dosimeter designed for radiation workers to provide a measurement of the radiation dose at any time from any computer; to determine the amount of radiation exposure during percutaneous nephrolithotomy (PNL); and to evaluate the factors that affect the amount of radiation exposed. Material and methods Two experienced surgeons wore Instadose™ on the outer part of their lead aprons during the PNL procedures performed between December 2013 and July 2014. Patient demographics and stone characteristics were noted. Factors affecting radiation dose were determined. Fluoroscopic screening time was compared with the amount of radiation in order to validate the measurements of Instadose™. Results Overall, 51 patients with a mean age of 43.41 ±18.58 (range 1–75) years were enrolled. Male to female ratio was 35/16. The amount of radiation was greater than 0.01mSv in only 19 (37.25%) cases. Stone location complexity (p = 0.380), dilation type (p = 0.584), stone size (p = 0.565), dilation size (p = 0.891) and access number (p = 0.268) were not associated with increased radiation exposure. Instadose™ measurements were correlated with fluoroscopic screening time (r = 0.519, p = 0.001). Conclusions Instadose™ is a useful tool for the measurement of radiation exposure during PNL. The advantage of measuring the amount of radiation exposure after each PNL operation is that it may aid urologists in taking appropriate precautions to minimize the risk of radiation related complications. PMID:27551558
Children's Lead Exposure: A Multimedia Modeling Analysis to Guide Public Health Decision-Making.
Zartarian, Valerie; Xue, Jianping; Tornero-Velez, Rogelio; Brown, James
2017-09-12
Drinking water and other sources for lead are the subject of public health concerns around the Flint, Michigan, drinking water and East Chicago, Indiana, lead in soil crises. In 2015, the U.S. Environmental Protection Agency (EPA)'s National Drinking Water Advisory Council (NDWAC) recommended establishment of a "health-based, household action level" for lead in drinking water based on children's exposure. The primary objective was to develop a coupled exposure-dose modeling approach that can be used to determine what drinking water lead concentrations keep children's blood lead levels (BLLs) below specified values, considering exposures from water, soil, dust, food, and air. Related objectives were to evaluate the coupled model estimates using real-world blood lead data, to quantify relative contributions by the various media, and to identify key model inputs. A modeling approach using the EPA's Stochastic Human Exposure and Dose Simulation (SHEDS)-Multimedia and Integrated Exposure Uptake and Biokinetic (IEUBK) models was developed using available data. This analysis for the U.S. population of young children probabilistically simulated multimedia exposures and estimated relative contributions of media to BLLs across all population percentiles for several age groups. Modeled BLLs compared well with nationally representative BLLs (0-23% relative error). Analyses revealed relative importance of soil and dust ingestion exposure pathways and associated Pb intake rates; water ingestion was also a main pathway, especially for infants. This methodology advances scientific understanding of the relationship between lead concentrations in drinking water and BLLs in children. It can guide national health-based benchmarks for lead and related community public health decisions. https://doi.org/10.1289/EHP1605.
Glorennec, Philippe
2006-02-01
Exposure to lead is a special problem in children, because they are more highly exposed than adults and because this pollutant, which accumulates in the body, induces neurobehavioral and cognitive effects. The objective of this study was to determine the probability density of the lead exposure dose of a 2-year-old child around an old mine site and to analyze its uncertainties, especially those associated with the bioavailability of lead in soil. Children's exposure was estimated indirectly from environmental samples (soils, domestic dust, water, air) and parameters (volume inhaled, body weight, soil intake rate, water intake, dietary intake) from the literature. Uncertainty and variability were analyzed separately in a two-dimensional Monte Carlo simulation with Crystal Ball software. Exposure doses were simulated with different methods for accessing the bioavailability of lead in soil. The exposure dose per kilogram of body weight varied from 2 microg/kgday at the 5th percentile to 5.5 microg/kgday at the 95th percentile (and from 2 to 10 microg/kgday, respectively, when ignoring bioavailability). The principal factors of variation were dietary intake, soil concentrations, and soil ingestion. The principal uncertainties were associated with the level of soil ingestion and the bioavailability of lead. Reducing uncertainty about the bioavailability of lead in soil by taking into account information about the type of mineral made it possible to increase our degree of confidence (from 25% to more than 95%) that the median exposure dose does not exceed the Tolerable Daily Intake. Knowledge of the mineral very substantially increases the degree of confidence in estimates of children's lead exposure around an old mining site by reducing the uncertainty associated with lead's bioavailability.
Xu, Jian; Hu, Howard; Wright, Rosalind; Sánchez, Brisa N.; Schnaas, Lourdes; Bellinger, David C.; Park, Sung Kyun; Martínez, Sandra; Hernández-Avila, Mauricio; Téllez-Rojo, Martha Maria; Wright, Robert O.
2015-01-01
Objective To prospectively evaluate the association of maternal self-esteem measured when their offspring were toddlers with the subsequent development of attention-deficit-hyperactivity-disorder (ADHD)-like behavior in their school-age offspring and the potential modifying effects of prenatal lead exposure. Study design We evaluated a subsample of 192 mother-child pairs from a long-running birth-cohort project that enrolled mothers in Mexico from 1994 to 2011. Prenatal lead exposure was assessed using cord blood lead and maternal bone lead around delivery (tibia and patella lead, measured by K-x-ray-fluorescence). When children were 2 years old, maternal self-esteem was measured using the Coopersmith-Self-esteem-Inventory. When children were 7-to-15 years old, children's blood lead levels and ADHD symptoms were assessed, and Conners’ Parental-Rating-Scales-Revised (CPRS-R) and Behavior-Rating-Inventory-of-Executive-Function-Parent Form (BRIEF-P) were used as measures of ADHD-like behavior. Results Adjusting for family economic status, marital status, maternal education and age, child's age and sex, and children's current blood lead levels, increased maternal self-esteem was associated with reduced child inattention behavior. Compared with those among high prenatal lead exposure (P25-P100), this association was stronger among low prenatal lead exposure groups (P1-P25, p-values for the interaction effects between prenatal lead exposure and maternal self-esteem levels < 0.10). Each 1-point increase in maternal self-esteem scores was associated with 0.6-to-1.3-point decrease in CPRS-R and BRIEF-P T-scores among groups with low cord blood lead and patella lead (P1-P25). Conclusions Children experiencing high maternal self-esteem during toddlerhood were less likely to develop inattention behavior at school-age. Prenatal lead exposure may play a role in attenuating this protective effect. PMID:26047683
Xu, Jian; Hu, Howard; Wright, Rosalind; Sánchez, Brisa N; Schnaas, Lourdes; Bellinger, David C; Park, Sung Kyun; Martínez, Sandra; Hernández-Avila, Mauricio; Téllez-Rojo, Martha Maria; Wright, Robert O
2015-08-01
To prospectively evaluate the association of maternal self-esteem measured when their offspring were toddlers with the subsequent development of attention deficit hyperactivity disorder (ADHD)-like behavior in their school-age offspring and the potential modifying effects of prenatal lead exposure. We evaluated a subsample of 192 mother-child pairs from a long-running birth-cohort project that enrolled mothers in Mexico from 1994-2011. Prenatal lead exposure was assessed using cord blood lead and maternal bone lead around delivery (tibia and patella lead, measured by K-x-ray-fluorescence). When children were 2 years old, maternal self-esteem was measured using the Coopersmith Self-Esteem Inventory. When children were 7-15 years old, children's blood lead levels and ADHD symptoms were assessed, and Conners' Parent Rating Scale-Revised and Behavior Rating Inventory of Executive Function-Parent Form were used as measures of ADHD-like behavior. Adjusting for family economic status, marital status, maternal education and age, child's age and sex, and children's current blood lead levels, increased maternal self-esteem was associated with reduced child inattention behavior. Compared with those among high prenatal lead exposure (P25-P100), this association was stronger among low prenatal lead exposure groups (P1-P25, P values for the interaction effects between prenatal lead exposure and maternal self-esteem levels of <.10). Each 1-point increase in maternal self-esteem scores was associated with 0.6- to 1.3-point decrease in Conners' Parent Rating Scale-Revised and Behavior Rating Inventory of Executive Function-Parent Form T-scores among groups with low cord blood lead and patella lead (P1-P25). Children experiencing high maternal self-esteem during toddlerhood were less likely to develop inattention behavior at school age. Prenatal lead exposure may play a role in attenuating this protective effect. Copyright © 2015 Elsevier Inc. All rights reserved.
Occupational Health Management in the Lead Industry: The Korean Experience
2011-01-01
In 1967, the problem of occupational lead exposure came to public attention in Korea. Since then, regular progress has been made in lowering workplace lead exposures, instituting new workplace controls, and implementing health examinations of exposed workers. Past serious lead poisoning episodes made it possible to introduce biological monitoring programs on a voluntary basis in high-lead-exposure facilities in Korea. Industry-specific occupational health services for lead workers in Korea during the last 22 years can be categorized into three phases. During the first phase (1988-1993), efforts were directed at increasing awareness among workers about the hazards of lead exposure, biological monitoring of blood zinc protoporphyrin began, and a respiratory protection program was introduced. During the second phase (1994-1997), a computerized health management system for lead workers was developed, blood-lead measurement was added to biologic monitoring, and engineering controls were introduced in the workplace to lower air-lead levels to comply with air-lead regulations. Finally, during the third phase (1998-present), a new biomarker, bone-lead measurement by X-ray fluorescence, was introduced. Bone-lead measurement proved to be useful for assessing body burden and to demonstrate past lead exposure in retired workers. Occupational health service practice for lead workers, including the industry-specific group occupational health system, has brought considerable success in the prevention of lead poisoning and in reducing the lead burden in Korean lead workers during the last several decades. The successful achievement of prevention of lead poisoning in Korea was a result of the combined efforts of lead workers, employers, relevant government agencies, and academic institutes. PMID:22953192
López-Larrubia, Pilar; Cauli, Omar
2011-03-15
Diffusion-weighted imaging (DWI) allows the assessment of the water apparent diffusion coefficient (ADC), a measure of tissue water diffusivity which is altered during different pathological conditions such as cerebral oedema. By means of DWI, we repeatedly measured in the same rats apparent diffusion coefficient ADC in different brain areas (motor cortex (MCx), somato-sensory cortex (SCx), caudate-putamen (CPu), hippocampus (Hip), mesencephalic reticular formation (RF), corpus callosum (CC) and cerebellum (Cb)) after 1 week, 4 and 12 weeks of lead acetate exposure via drinking water (50 or 500 ppm). After 12 weeks of lead exposure rats received albumin-Evans blue complex administration and were sacrificed 1h later. Blood-brain barrier permeability and water tissue content were determined in order to evaluate their relationship with ADC changes. Chronic exposure to lead acetate (500 ppm) for 4 weeks increased ADC values in Hip, RF and Cb but no in other brain areas. After 12 weeks of lead acetate exposure at 500 ppm ADC is significantly increased also in CPu and CC. Brain areas displaying high ADC values after lead exposure showed also an increased water content and increased BBB permeability to Evans blue-albumin complex. Exposure to 50 ppm for 12 weeks increased ADC values and BBB permeability in the RF and Cb. In summary, chronic lead exposure induces cerebral oedema in the adult brain depending on the brain area and the dose of exposure. RF and Cb appeared the most sensitive brain areas whereas cerebral cortex appears resistant to lead-induced cerebral oedema. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Dickinson, Gary H; Ivanina, Anna V; Matoo, Omera B; Pörtner, Hans O; Lannig, Gisela; Bock, Christian; Beniash, Elia; Sokolova, Inna M
2012-01-01
Rising levels of atmospheric CO(2) lead to acidification of the ocean and alter seawater carbonate chemistry, which can negatively impact calcifying organisms, including mollusks. In estuaries, exposure to elevated CO(2) levels often co-occurs with other stressors, such as reduced salinity, which enhances the acidification trend, affects ion and acid-base regulation of estuarine calcifiers and modifies their response to ocean acidification. We studied the interactive effects of salinity and partial pressure of CO(2) (P(CO2)) on biomineralization and energy homeostasis in juveniles of the eastern oyster, Crassostrea virginica, a common estuarine bivalve. Juveniles were exposed for 11 weeks to one of two environmentally relevant salinities (30 or 15 PSU) either at current atmospheric P(CO2) (∼400 μatm, normocapnia) or P(CO2) projected by moderate IPCC scenarios for the year 2100 (∼700-800 μatm, hypercapnia). Exposure of the juvenile oysters to elevated P(CO2) and/or low salinity led to a significant increase in mortality, reduction of tissue energy stores (glycogen and lipid) and negative soft tissue growth, indicating energy deficiency. Interestingly, tissue ATP levels were not affected by exposure to changing salinity and P(CO2), suggesting that juvenile oysters maintain their cellular energy status at the expense of lipid and glycogen stores. At the same time, no compensatory upregulation of carbonic anhydrase activity was found under the conditions of low salinity and high P(CO2). Metabolic profiling using magnetic resonance spectroscopy revealed altered metabolite status following low salinity exposure; specifically, acetate levels were lower in hypercapnic than in normocapnic individuals at low salinity. Combined exposure to hypercapnia and low salinity negatively affected mechanical properties of shells of the juveniles, resulting in reduced hardness and fracture resistance. Thus, our data suggest that the combined effects of elevated P(CO2) and fluctuating salinity may jeopardize the survival of eastern oysters because of weakening of their shells and increased energy consumption.
Angelier, Frédéric; Meillère, Alizée; Grace, Jacquelyn K; Trouvé, Colette; Brischoux, François
2016-06-01
Anthropogenic noise can have important physiological and behavioral effects on wild animals. For example, urban noise could lead to a state of chronic stress and could alter the development of the hypothalamus-pituitary-adrenal (HPA) axis. Supporting this hypothesis, several studies have found that human disturbance is associated with increased circulating corticosterone (CORT) levels. However, it remains unclear whether increased CORT levels are the result of anthropogenic noise or other anthropogenic factors. Here, we experimentally tested the impact of urban noise on the CORT stress response in an urban exploiter (the house sparrow, Passer domesticus) by exposing chicks to a traffic noise ('disturbed chicks') or not ('control chicks'). If noise exposure has a negative impact on developing chicks, we predicted that (1) disturbed chicks will grow slower, will be in poorer condition, and will have a lower fledging probability than controls; (2) disturbed chicks will have higher baseline CORT levels than control; (3) the CORT stress response will be affected by this noise exposure. Contrary to these predictions, we found no effect of our experiment on growth, body condition, and fledging success, suggesting that house sparrow chicks were not negatively affected by this noise exposure. Moreover, we did not find any effect of noise exposure on either baseline CORT levels or the CORT stress response of chicks. This suggests not only that house sparrow chicks did not perceive this noise as stressful, but also that the development of the HPA axis was not affected by such noise exposure. Our study suggests that, contrary to urban avoiders, urban exploiters might be relatively insensitive to urban noise during their development. Further comparative studies are now needed to understand whether such insensitivity to anthropogenic noise is a consistent phenomenon in urban exploiters and whether this is a major requirement of an urban way of life. Copyright © 2015 Elsevier Inc. All rights reserved.
Environmental lead exposure: a public health problem of global dimensions.
Tong, S.; von Schirnding, Y. E.; Prapamontol, T.
2000-01-01
Lead is the most abundant of the heavy metals in the Earth's crust. It has been used since prehistoric times, and has become widely distributed and mobilized in the environment. Exposure to and uptake of this non-essential element have consequently increased. Both occupational and environmental exposures to lead remain a serious problem in many developing and industrializing countries, as well as in some developed countries. In most developed countries, however, introduction of lead into the human environment has decreased in recent years, largely due to public health campaigns and a decline in its commercial usage, particularly in petrol. Acute lead poisoning has become rare in such countries, but chronic exposure to low levels of the metal is still a public health issue, especially among some minorities and socioeconomically disadvantaged groups. In developing countries, awareness of the public health impact of exposure to lead is growing but relatively few of these countries have introduced policies and regulations for significantly combating the problem. This article reviews the nature and importance of environmental exposure to lead in developing and developed countries, outlining past actions, and indicating requirements for future policy responses and interventions. PMID:11019456
Ultrastructural and DNA damaging effects of lead nitrate in the liver.
Narayana, K; Al-Bader, Maie
2011-01-01
A ubiquitous environmental toxicant - lead is known to affect several organ systems. This study was designed to investigate the effects of lead nitrate exposure on liver structure and DNA fragmentation. Adult male Wistar rats were treated orally with lead nitrate at the dose levels of 0%, 0.5% and 1% for 60 days and sacrificed on the next day. The liver was processed for thick sections and evaluated after toludine blue staining and by electron microscopy after staining with uranyl acetate and lead citrate. The DNA damage was assessed by DNA fragmentation assay. The liver weight was not significantly affected in the experimental groups. Hepatocyte nuclei were not shrunk, instead lead was mitogenic to hepatocytes as indicated by an increase in the number of binucleated hepatocytes (P<0.05). The number of mitochondria per hepatocyte decreased in a dose-dependent manner (P<0.05). Qualitatively, the necrotic changes such as small to large-sized cytoplasmic vacuoles often displacing the organelles, decrease in hepatocyte microvilli, degeneration of mitochondria, and vacuolar encroachment of nuclei and dilatation of sinusoids were observed. The qualitative changes were induced in a dose-dependent manner. Kupffer cells or Ito cells did not present any notable structural changes. Although the electrophoretic flow of DNA fragments was observed in lead-treated groups, these changes were not significantly different from that in control as evaluated by optical density. In conclusion, lead induces necrotic changes with simultaneous mitogenic activity; however, it does not induce significant DNA damage in the liver. Copyright © 2009 Elsevier GmbH. All rights reserved.
ERIC Educational Resources Information Center
Cole, Claire; Winsler, Adam
2010-01-01
The detrimental effects of lead exposure in children have been known for over 100 years. Although a few initial measures implemented about 30 years ago were effective in somewhat reducing levels of lead exposure in children, relatively little has been done recently from a policy perspective to protect children from lead. We now know from recent…
Baker, Harolyn W.; Tufts, Margaret; Raymond, Randall E.; Salihu, Hamisu; Elliott, Michael R.
2013-01-01
Objectives. We assessed the long-term effect of early childhood lead exposure on academic achievement in mathematics, science, and reading among elementary and junior high school children. Methods. We linked early childhood blood lead testing surveillance data from the Detroit Department of Health and Wellness Promotion to educational testing data from the Detroit, Michigan, public schools. We used the linked data to investigate the effect of early childhood lead exposure on academic achievement among school-aged children, both marginally and adjusted for grade level, gender, race, language, maternal education, and socioeconomic status. Results. High blood lead levels before age 6 years were strongly associated with poor academic achievement in grades 3, 5, and 8. The odds of scoring less than proficient for those whose blood lead levels were greater than 10 micrograms per deciliter were more than twice the odds for those whose blood lead levels were less than 1 micrograms per deciliter after adjustment for potential confounders. Conclusions. Early childhood lead exposure was negatively associated with academic achievement in elementary and junior high school, after adjusting for key potential confounders. The control of lead poisoning should focus on primary prevention of lead exposure in children and development of special education programs for students with lead poisoning. PMID:23327265
Cognitive development and low-level lead exposure in poly-drug exposed children.
Min, Meeyoung O; Singer, Lynn T; Kirchner, H Lester; Minnes, Sonia; Short, Elizabeth; Hussain, Zehra; Nelson, Suchitra
2009-01-01
The impact of early postnatal lead exposure measured at age 4 on children's IQ and academic achievement at and 11 years of age was examined. The sample consisted of 278 inner-city, primarily African American children who were polydrug exposed prenatally. Regression analyses indicated a linear effect of lead exposure on outcomes and no moderating effects of polydrug exposure. An IQ loss of about 4.1-5.4 Full Scale IQ points was estimated for each 10 microg/dL increase in blood lead level at ages 4, 9, and 11 years as a function of blood lead level at age 4. Decrements in scores on tests of non-verbal reasoning were consistently associated with higher lead levels at age 4, while verbal decrements became apparent only at age 11. Lower reading summary scores at 9 and 11 years were consistently associated with higher lead exposure, while decrements in mathematics were not apparent until 11 years. Subgroup analyses on children with blood lead levels <10 microg/dL showed detrimental lead effects even at the 5 microg/dL level, providing additional evidence of adverse effects occurring at blood lead levels below the current 10 microg/dL public health blood lead action level.
Determination of exposure to lead of subjects from southwestern Poland by human hair analysis.
Michalak, Izabela; Wołowiec, Paulina; Chojnacka, Katarzyna
2014-04-01
The aim of the present work was to investigate the exposure to lead from various sources by investigation of mineral composition of human scalp hair. The research was carried out on hair sampled from 267 young adults living in Wrocław (southwest Poland). The effect of the place of residence, diet, and lifestyle on lead content in hair was examined by inductively coupled plasma optical emission spectrometry (ICP-OES). Lead was determined at the wavelength 220.353 nm. These outcomes were reached by linking the results of lead level in hair with the results of questionnaire survey. The mean lead level in hair of the whole examined population was 2.01 ± 2.10 mg kg(-1). Lead can enter the human body mainly by inhalation and gastrointestinal absorption. It was found that consuming cheese, fish, and lettuce caused increased level of lead in hair. On the other hand, drinking of milk, tea, coffee, or lemon resulted in decreased content of lead in hair. Additional source of exposure to lead could be cigarette smoking, distance to the traffic road, painting the walls, amalgam filling. Based on the results, it can be concluded that exposure to lead can occur mainly from eating habits and environmental exposure.
Cognitive Development and Low-Level Lead Exposure in Poly-Drug Exposed Children
Min, Meeyoung O.; Singer, Lynn T.; Kirchner, H. Lester; Minnes, Sonia; Short, Elizabeth; Hussain, Zehra; Nelson, Suchitra
2009-01-01
The impact of early postnatal lead exposure measured at age 4 on children’s IQ and academic achievement at 4, 9, and 11 years of age was examined. The sample consisted of 278 inner-city, primarily African American children who were polydrug exposed prenatally. Regression analyses indicated a linear effect of lead exposure on outcomes and no moderating effects of polydrug exposure. An IQ loss of about 4.1–5.4 Full Scale IQ points was estimated for each 10 ug/dl increase in blood lead level at ages 4, 9, and 11 years as a function of blood lead level at age 4. Decrements in scores on tests of non-verbal reasoning were consistently associated with higher lead levels at age 4, while verbal decrements became apparent only at age 11. Lower reading summary scores at 9 and 11 years were consistently associated with higher lead exposure, while decrements in mathematics were not apparent until 11 years. Subgroup analyses on children with blood lead levels < 10 μg/dL showed detrimental lead effects even at the 5 μg/dL level, providing additional evidence of adverse effects occurring at blood lead levels below the current 10 μg/dL public health blood lead action level. PMID:19345261
Olfactory recognition memory is disrupted in young mice with chronic low-level lead exposure
Flores-Montoya, Mayra Gisel; Alvarez, Juan Manuel; Sobin, Christina
2015-01-01
Chronic developmental lead exposure yielding very low blood lead burden is an unresolved child public health problem. Few studies have attempted to model neurobehavioral changes in young animals following very low level exposure, and studies are needed to identify tests that are sensitive to the neurobehavioral changes that may occur. Mechanisms of action are not yet known however results have suggested that hippocampus/dentate gyrus may be uniquely vulnerable to early chronic low-level lead exposure. This study examined the sensitivity of a novel odor recognition task to differences in pre-adolescent C57BL/6J mice chronically exposed from birth to PND 28, to 0 ppm (control), 30 ppm (low-dose), or 330 ppm (higher-dose) lead acetate (N = 33). Blood lead levels (BLLs) determined by ICP-MS ranged from 0.02 to 20.31 µg/dL. Generalized linear mixed model analyses with litter as a random effect showed a significant interaction of BLL × sex. As BLLs increased olfactory recognition memory decreased in males. Among females, non-linear effects were observed at lower but not higher levels of lead exposure. The novel odor detection task is sensitive to effects associated with early chronic low-level lead exposure in young C57BL/6J mice. PMID:25936521
Measuring Lead Exposure in Infants, Children, and Other Sensitive Populations.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC.
Adverse health effects from exposure to lead are now recognized to be among industrialized society's most important health problems. This report, prepared by the National Research Council's Committee on Measuring Lead Exposure in Critical Populations, concurs with new findings issued by the Centers for Disease Control which state that lead…
Al-Gubory, Kaïs H
2014-07-01
Developmental toxicity caused by exposure to a mixture of environmental pollutants has become a major health concern. Human-made chemicals, including xenoestrogens, pesticides and heavy metals, as well as unhealthy lifestyle behaviours, mainly tobacco smoking, alcohol consumption and medical drug abuse, are major factors that adversely influence prenatal development and increase susceptibility of offspring to diseases. There is evidence to suggest that the developmental toxicological mechanisms of chemicals and lifestyle factors involve the generation of reactive oxygen species (ROS) and cellular oxidative damage. Overproduction of ROS induces oxidative stress, a state where increased ROS generation overwhelms antioxidant protection and subsequently leads to oxidative damage of cellular macromolecules. Data on the involvement of oxidative stress in the mechanism of developmental toxicity following exposure to environmental pollutants are reviewed in an attempt to provide an updated basis for future studies on the toxic effect of such pollutants, particularly the notion of increased risk for developmental toxicity due to combined and cumulative exposure to various environmental pollutants. The aims of such studies are to better understand the mechanisms by which environmental pollutants adversely affect conceptus development and to elucidate the impact of cumulative exposures to multiple pollutants on post-natal development and health outcomes. Developmental toxicity caused by exposure to mixture of environmental pollutants has become a major health concern. Human-made chemicals, including xenoestrogens, pesticides and heavy metals, as well as unhealthy lifestyle behaviors, mainly tobacco smoking, alcohol consumption and medical drug abuse, are major factors that adversely influence prenatal development and increase the susceptibility of offspring to development complications and diseases. There is evidence to suggest that the developmental toxicological mechanisms of human-made chemicals and unhealthy lifestyle factors involve the generation of reactive oxygen species (ROS) and cellular oxidative damage. Overproduction of ROS induces oxidative stress, a state where increased generation of ROS overwhelms antioxidant protection and subsequently leads to oxidative damage of cellular macromolecules. Exposure to various environmental pollutants induces synergic and cumulative dose-additive adverse effects on prenatal development, pregnancy outcomes and neonate health. Data from the literature on the involvement of oxidative stress in the mechanism of developmental toxicity following in vivo exposure to environmental pollutants will be reviewed in an attempt to provide an updated basis for future studies on the toxic effect of such pollutants, particularly the notion of increased risk for developmental toxicity due to combined and cumulative exposure to various environmental pollutants. The aims of such studies are to better understand the mechanisms by which environmental pollutants adversely affect conceptus development and to elucidate the impact of cumulative exposures to multiple pollutants on postnatal development and health outcomes. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Trait and state anxiety reduce the mere exposure effect
Ladd, Sandra L.; Gabrieli, John D. E.
2015-01-01
The mere exposure effect refers to an affective preference elicited by exposure to previously unfamiliar items. Although it is a well-established finding, its mechanism remains uncertain, with some positing that it reflects affective processes and others positing that it reflects perceptual or motor fluency with repeated items. Here we examined whether individual differences in trait and state anxiety, which have been associated with the experience of emotion, influence the mere exposure effect. Participants’ trait (Study 1) and state (Study 2) anxiety were characterized with the State-Trait Anxiety Inventory. Greater trait and state anxiety correlated with greater negative affect and lesser positive affect. In both experiments, greater anxiety was associated with a reduced mere exposure effect. Measures of fluency (response times at study and test) were unrelated to the mere exposure effect. These findings support the role of affective processes in the mere exposure effect, and offer a new insight into the nature of anxiety such that anxiety is associated with a reduced experience of positive affect typically associated with familiarity. PMID:26074851
Trait and state anxiety reduce the mere exposure effect.
Ladd, Sandra L; Gabrieli, John D E
2015-01-01
The mere exposure effect refers to an affective preference elicited by exposure to previously unfamiliar items. Although it is a well-established finding, its mechanism remains uncertain, with some positing that it reflects affective processes and others positing that it reflects perceptual or motor fluency with repeated items. Here we examined whether individual differences in trait and state anxiety, which have been associated with the experience of emotion, influence the mere exposure effect. Participants' trait (Study 1) and state (Study 2) anxiety were characterized with the State-Trait Anxiety Inventory. Greater trait and state anxiety correlated with greater negative affect and lesser positive affect. In both experiments, greater anxiety was associated with a reduced mere exposure effect. Measures of fluency (response times at study and test) were unrelated to the mere exposure effect. These findings support the role of affective processes in the mere exposure effect, and offer a new insight into the nature of anxiety such that anxiety is associated with a reduced experience of positive affect typically associated with familiarity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathee, Angela
Introduction: Lead exposure in shooting ranges has been under scrutiny for decades, but no information in this regard is available in respect of African settings, and in South Africa specifically. The aim of this study was to determine the blood lead levels in the users of randomly selected private shooting ranges in South Africa's Gauteng province. Methods: An analytical cross sectional study was conducted, with participants recruited from four randomly selected shooting ranges and three archery ranges as a comparator group. Results: A total of 118 (87 shooters and 31 archers) were included in the analysis. Shooters had significantly highermore » blood lead levels (BLL) compared to archers with 36/85 (42.4%) of shooters versus 2/34 (5.9%) of archers found to have a BLL ≥10 μg/dl (p<0.001). Conclusion: Shooting ranges may constitute an import site of elevated exposure to lead. Improved ventilation, low levels of awareness of lead hazards, poor housekeeping, and inadequate personal hygiene facilities and practices at South African shooting ranges need urgent attention. - Highlights: • This is the first study, to our knowledge, of lead exposure in shooting ranges in an African setting. • This study indicates highly elevated lead exposure amongst the users of certain private shooting ranges in South Africa. • Lead exposure may be a serious, yet under-studied, source of adult lead exposure in South Africa, and possibly elsewhere on the African continent.« less
Stephenson, D J; Lillquist, D R
2001-04-01
Occupational hygienists perform air sampling to characterize airborne contaminant emissions, assess occupational exposures, and establish allowable workplace airborne exposure concentrations. To perform these air sampling applications, occupational hygienists often compare an airborne exposure concentration to a corresponding American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) or an Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL). To perform such comparisons, one must understand the physiological assumptions used to establish these occupational exposure limits, the relationship between a workplace airborne exposure concentration and its associated TLV or PEL, and the effect of temperature and pressure on the performance of an accurate compliance evaluation. This article illustrates the correct procedure for performing compliance evaluations using airborne exposure concentrations expressed in both parts per million and milligrams per cubic meter. In so doing, a brief discussion is given on the physiological assumptions used to establish TLVs and PELs. It is further shown how an accurate compliance evaluation is fundamentally based on comparison of a measured work site exposure dose (derived from the sampling site exposure concentration estimate) to an estimated acceptable exposure dose (derived from the occupational exposure limit concentration). In addition, this article correctly illustrates the effect that atmospheric temperature and pressure have on airborne exposure concentrations and the eventual performance of a compliance evaluation. This article also reveals that under fairly moderate conditions of temperature and pressure, 30 degrees C and 670 torr, a misunderstanding of how varying atmospheric conditions affect concentration values can lead to a 15 percent error in assessing compliance.
Assessment of Lead Exposure Risk in Locksmiths
Kondrashov, Vladislav; McQuirter, Joseph L.; Miller, Melba; Rothenberg, Stephen J.
2005-01-01
Exposure to lead has been well recognized in a number of work environments, but little is known about lead exposure associated with machining brass keys containing lead. The brass that is widely used for key manufacturing usually contains 1.5% – 2.5 % of lead. Six (6) licensed locksmiths and 6 case-matched controls successfully completed the pilot study to assess the prevalence of increased body lead burden of professional locksmiths. We measured both Blood Lead (atomic absorption spectrometry), bone-lead (KXRF) and had each subject complete a health and lead exposure risk questionnaire. One locksmith had not cut keys during the past two years, therefore this subject and case-matched control was excluded from the blood lead analysis only. The average blood-lead concentration (±SEM) for the 5 paired subjects was 3.1 (± 0.4) μg/dL and 2.2 (± 0.3) μg /dL for controls. Bone measurements, including all 6 paired subjects, showed tibia lead concentration (±SEM) for locksmiths and controls was 27.8 (± 2.3) μg /g and 13.7 (± 3.3) μg /g, respectively; average calcaneus lead concentration for locksmiths and controls was 31.9 (± 3.7) μg /g and 22.6 (± 4.1) μg /g, respectively: The t-test shows a significantly higher tibia lead (p<0.05) and blood lead (p<0.05) for locksmiths than for their matched controls, but no significant difference for calcaneus lead (p>0.10). Given that the mean tibia bone lead concentration was 13.1μg/g higher in locksmiths than in their matched controls, this average difference in the two groups would translate to an OR of increased hypertension in locksmiths of between 1.1 and 2.3, based on the published literature. Even with the very small number of subjects participating in this pilot study, we were able to demonstrate that locksmiths had significantly higher current exposure to lead (blood lead concentration) and significantly higher past exposure to lead (tibia lead concentration) than their age, sex and ethnically matched controls. Additional research is needed to fully identify the prevalence and associated risk factors for occupational exposure of lead in this previously understudied profession. PMID:16705814
NASA Technical Reports Server (NTRS)
1993-01-01
Background on lead exposure is presented including forms of lead, sources, hematologic effects, neurologic effects, endocrine effects, renal effects, and reproductive and developmental effects. The purpose of the Lead Surveillance Program at LeRC is outlined, and the specifics of the Medical Surveillance Program for Lead Exposure at LeRC are discussed.
Benhaddya, Mohammed Lamine; Boukhelkhal, Abdelaziz; Halis, Youcef; Hadjel, Mohammed
2016-04-01
Hassi Messaoud town is a recent city that is situated inside the oil field, which hosts an important petroleum extraction field and refinery. Large-scale and long-term oil refinery and corresponding industrial activities may contaminate the surrounding soil/dust and could lead to pollution levels that can affect human health. The soil and road dust samples were analysed for different trace elements: copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn). Geo-accumulation index (I(geo)), pollution index (PI), and integrated pollution index (IPI) were calculated to evaluate the heavy metal contamination level of urban soil and road dust. The I(geo) values indicate unpolluted to moderate polluted of investigated metals in the soil samples. The assessment results of PI support the results of I(geo), and IPI indicates heavy metals in road dust polluted seriously. The noncarcinogenic health risk assessment shows that ingestion of soil/dust particles is the route for exposure to heavy metals, followed by dermal adsorption. The human exposure risk assessment based on different exposure pathways showed that the hazard index (HI) was <1.0 for all of the elements. The relative exposure risk (noncarcinogenic) was greater for toddlers. Although the overall risk was within the acceptable limit of 1.00, the HI of Pb from the soil (0.103) and road dust (0.132) was close to the threshold limits, which over the long-term may pose a health risk.
Birceanu, Oana; Sorensen, Lisa A; Henry, Matthew; McClelland, Grant B; Wang, Yuxiang S; Wilkie, Michael P
2014-03-01
The pesticide 3-trifluoromethyl-4-nitrophenol (TFM) is used to control sea lamprey (Petromyzon marinus) populations in the Great Lakes through its application to nursery streams containing larval sea lampreys. TFM uncouples oxidative phosphorylation, impairing mitochondrial ATP production in sea lampreys and rainbow trout (Oncorhynchus mykiss). However, little else is known about its sub-lethal effects on non-target aquatic species. The present study tested the hypotheses that TFM exposure in hard water leads to (i) marked depletion of energy stores in metabolically active tissues (brain, muscle, kidney, liver) and (ii) disruption of active ion transport across the gill, adversely affecting electrolyte homeostasis in trout. Exposure of trout to 11.0mgl(-1) TFM (12-h LC50) led to increases in muscle TFM and TFM-glucuronide concentrations, peaking at 9h and 12h, respectively. Muscle and brain glycogen was reduced by 50%, while kidney and muscle lactate increased with TFM exposure. Kidney ATP and phosphocreatine decreased by 50% and 70%, respectively. TFM exposure caused no changes in whole body ion (Na(+), Cl(-), Ca(2+), K(+)) concentrations, gill Na(+)/K(+) ATPase activity, or unidirectional Na(+) movements across the gills. We conclude that TFM causes a mismatch between ATP supply and demand in trout, leading to increased reliance on glycolysis, but it does not have physiologically relevant effects on ion balance in hard water. © 2013.
Polanska, Kinga; Hanke, Wojciech; Sobala, Wojciech; Trzcinka-Ochocka, Malgorzata; Ligocka, Danuta; Brzeznicki, Slawomir; Strugala-Stawik, Halina; Magnus, Per
2013-01-01
This paper estimates the effects of exposure to environmental factors, including lead, mercury, environmental tobacco smoke (ETS), and polycyclic aromatic hydrocarbons (PAH), on child psychomotor development. The study population consists of mother-child pairs in the Polish Mother and Child Cohort Study. Prenatal and postnatal exposure to environmental factors was determined from biomarker measurements as follows: for lead exposure--cord blood lead level, for mercury--maternal hair mercury level, for ETS--cotinine level in saliva and urine, and for PAH--1-hydroxypyrene (1-HP) in urine. At the age of 12 (406 subjects) and 24 months (198 subjects) children were assessed using Bayley Scales of Infant and Toddler Development. There were no statistically significant effects of prenatal exposure to mercury or 1-HP on child psychomotor development. After adjusting for potential confounders, adverse effects of prenatal exposure to ETS on motor development ( β = -2.6; P = 0.02) and postnatal exposure to ETS on cognitive ( β = -0.2; P = 0.05) and motor functions ( β = -0.5; P = 0.01) were found. The adverse effect of prenatal lead exposure on cognitive score was of borderline significance ( β = -6.2; P = 0.06). The study underscores the importance of policies and public health interventions that aim to reduce prenatal and postnatal exposure to lead and ETS.
External lead contamination of women's nails by surma in Pakistan: Is the biomarker reliable?
Ikegami, Akihiko; Takagi, Mai; Fatmi, Zafar; Kobayashi, Yayoi; Ohtsu, Mayumi; Cui, Xiaoyi; Mise, Nathan; Mizuno, Atsuko; Sahito, Ambreen; Khoso, Aneeta; Kayama, Fujio
2016-11-01
Adverse health effects of heavy metals are a public health concern, especially lead may cause negative health impacts to human fetal and infantile development. The lead concentrations in Pakistani pregnant women's nails, used as a biomarker, were measured to estimate the lead exposure. Thirteen nail samples out of 84 nails analyzed contained lead higher than the concentration (13.6 μg/g) of the fatal lead poisoning case, raising the possibility of an external contamination. Eye cosmetics such as surma are recognized as one of the important sources of lead exposure in Pakistan. We collected in Pakistan 30 eye cosmetics made in Pakistan, Saudi Arabia and western countries. As the metal composition analysis by energy dispersive X-ray fluorescence spectrometry revealed that some surma samples contained lead more than 96%, the surma might contaminate the nail specimen. Scanning electron microscopy observations showed that lead-containing surma consists of fine particle of galena (ore of lead sulfide) in respirable dust range (less than 10 μm). In addition, relative in vitro bioavailability of lead in the surma was determined as 5.2%. Thus, lead-containing surma consists of inhalable and bioavailable particles, and it contributes an increased risk of lead exposure. Moreover, the relationship between the surma and the lead-contaminated nails by lead isotope ratios analysis indicated the potential of lead contamination in nails by surma. These results suggest that lead in the nails was derived both from body burden of lead and external contamination by lead-containing surma. Therefore, nail is not suited as a biomarker for lead exposure in the countries where surma used, because we may overestimate lead exposure by surface lead contamination in the nail by surma. Copyright © 2016 Elsevier Ltd. All rights reserved.
Saili, Katerine S.; Corvi, Margaret M.; Weber, Daniel N.; Patel, Ami U.; Das, Siba R.; Przybyla, Jennifer; Anderson, Kim A.; Tanguay, Robert L.
2011-01-01
Developmental bisphenol A (BPA) exposure has been implicated in adverse behavior and learning deficits. The mode of action underlying these effects is unclear. The zebrafish model was employed to investigate the neurobehavioral effects of developmental bisphenol A (BPA) exposure. The objectives of this study were to identify whether low-dose, developmental BPA exposure affects larval zebrafish locomotor behavior and whether learning deficits occur in adults exposed during development. Two control compounds, 17β-estradiol (an estrogen receptor ligand) and GSK4716 (a synthetic estrogen related receptor gamma ligand), were included. Larval toxicity assays were used to determine appropriate BPA, 17β-estradiol, and GSK4716 concentrations for behavior testing. BPA tissue uptake was analyzed using HPLC and lower doses were extrapolated using a linear regression analysis. Larval behavior tests were conducted using a ViewPoint Zebrabox. Adult learning tests were conducted using a custom-built T-maze. BPA exposure to ≤30 μM was nonteratogenic in zebrafish. Neurodevelopmental BPA exposure to 0.01, 0.1, or 1 μM led to larval hyperactivity or learning deficits in adult zebrafish. Exposure to 0.1 μM 17β-estradiol or GSK4716 also led to larval hyperactivity. This study demonstrates the efficacy of using the larval zebrafish model for studying the neurobehavioral effects of low-dose developmental BPA exposure. PMID:22108044
Measurement error in environmental epidemiology and the shape of exposure-response curves.
Rhomberg, Lorenz R; Chandalia, Juhi K; Long, Christopher M; Goodman, Julie E
2011-09-01
Both classical and Berkson exposure measurement errors as encountered in environmental epidemiology data can result in biases in fitted exposure-response relationships that are large enough to affect the interpretation and use of the apparent exposure-response shapes in risk assessment applications. A variety of sources of potential measurement error exist in the process of estimating individual exposures to environmental contaminants, and the authors review the evaluation in the literature of the magnitudes and patterns of exposure measurement errors that prevail in actual practice. It is well known among statisticians that random errors in the values of independent variables (such as exposure in exposure-response curves) may tend to bias regression results. For increasing curves, this effect tends to flatten and apparently linearize what is in truth a steeper and perhaps more curvilinear or even threshold-bearing relationship. The degree of bias is tied to the magnitude of the measurement error in the independent variables. It has been shown that the degree of bias known to apply to actual studies is sufficient to produce a false linear result, and that although nonparametric smoothing and other error-mitigating techniques may assist in identifying a threshold, they do not guarantee detection of a threshold. The consequences of this could be great, as it could lead to a misallocation of resources towards regulations that do not offer any benefit to public health.
Lim, Stephen S; Vos, Theo; Flaxman, Abraham D; Danaei, Goodarz; Shibuya, Kenji; Adair-Rohani, Heather; Amann, Markus; Anderson, H Ross; Andrews, Kathryn G; Aryee, Martin; Atkinson, Charles; Bacchus, Loraine J; Bahalim, Adil N; Balakrishnan, Kalpana; Balmes, John; Barker-Collo, Suzanne; Baxter, Amanda; Bell, Michelle L; Blore, Jed D; Blyth, Fiona; Bonner, Carissa; Borges, Guilherme; Bourne, Rupert; Boussinesq, Michel; Brauer, Michael; Brooks, Peter; Bruce, Nigel G; Brunekreef, Bert; Bryan-Hancock, Claire; Bucello, Chiara; Buchbinder, Rachelle; Bull, Fiona; Burnett, Richard T; Byers, Tim E; Calabria, Bianca; Carapetis, Jonathan; Carnahan, Emily; Chafe, Zoe; Charlson, Fiona; Chen, Honglei; Chen, Jian Shen; Cheng, Andrew Tai-Ann; Child, Jennifer Christine; Cohen, Aaron; Colson, K Ellicott; Cowie, Benjamin C; Darby, Sarah; Darling, Susan; Davis, Adrian; Degenhardt, Louisa; Dentener, Frank; Des Jarlais, Don C; Devries, Karen; Dherani, Mukesh; Ding, Eric L; Dorsey, E Ray; Driscoll, Tim; Edmond, Karen; Ali, Suad Eltahir; Engell, Rebecca E; Erwin, Patricia J; Fahimi, Saman; Falder, Gail; Farzadfar, Farshad; Ferrari, Alize; Finucane, Mariel M; Flaxman, Seth; Fowkes, Francis Gerry R; Freedman, Greg; Freeman, Michael K; Gakidou, Emmanuela; Ghosh, Santu; Giovannucci, Edward; Gmel, Gerhard; Graham, Kathryn; Grainger, Rebecca; Grant, Bridget; Gunnell, David; Gutierrez, Hialy R; Hall, Wayne; Hoek, Hans W; Hogan, Anthony; Hosgood, H Dean; Hoy, Damian; Hu, Howard; Hubbell, Bryan J; Hutchings, Sally J; Ibeanusi, Sydney E; Jacklyn, Gemma L; Jasrasaria, Rashmi; Jonas, Jost B; Kan, Haidong; Kanis, John A; Kassebaum, Nicholas; Kawakami, Norito; Khang, Young-Ho; Khatibzadeh, Shahab; Khoo, Jon-Paul; Kok, Cindy; Laden, Francine; Lalloo, Ratilal; Lan, Qing; Lathlean, Tim; Leasher, Janet L; Leigh, James; Li, Yang; Lin, John Kent; Lipshultz, Steven E; London, Stephanie; Lozano, Rafael; Lu, Yuan; Mak, Joelle; Malekzadeh, Reza; Mallinger, Leslie; Marcenes, Wagner; March, Lyn; Marks, Robin; Martin, Randall; McGale, Paul; McGrath, John; Mehta, Sumi; Mensah, George A; Merriman, Tony R; Micha, Renata; Michaud, Catherine; Mishra, Vinod; Mohd Hanafiah, Khayriyyah; Mokdad, Ali A; Morawska, Lidia; Mozaffarian, Dariush; Murphy, Tasha; Naghavi, Mohsen; Neal, Bruce; Nelson, Paul K; Nolla, Joan Miquel; Norman, Rosana; Olives, Casey; Omer, Saad B; Orchard, Jessica; Osborne, Richard; Ostro, Bart; Page, Andrew; Pandey, Kiran D; Parry, Charles D H; Passmore, Erin; Patra, Jayadeep; Pearce, Neil; Pelizzari, Pamela M; Petzold, Max; Phillips, Michael R; Pope, Dan; Pope, C Arden; Powles, John; Rao, Mayuree; Razavi, Homie; Rehfuess, Eva A; Rehm, Jürgen T; Ritz, Beate; Rivara, Frederick P; Roberts, Thomas; Robinson, Carolyn; Rodriguez-Portales, Jose A; Romieu, Isabelle; Room, Robin; Rosenfeld, Lisa C; Roy, Ananya; Rushton, Lesley; Salomon, Joshua A; Sampson, Uchechukwu; Sanchez-Riera, Lidia; Sanman, Ella; Sapkota, Amir; Seedat, Soraya; Shi, Peilin; Shield, Kevin; Shivakoti, Rupak; Singh, Gitanjali M; Sleet, David A; Smith, Emma; Smith, Kirk R; Stapelberg, Nicolas J C; Steenland, Kyle; Stöckl, Heidi; Stovner, Lars Jacob; Straif, Kurt; Straney, Lahn; Thurston, George D; Tran, Jimmy H; Van Dingenen, Rita; van Donkelaar, Aaron; Veerman, J Lennert; Vijayakumar, Lakshmi; Weintraub, Robert; Weissman, Myrna M; White, Richard A; Whiteford, Harvey; Wiersma, Steven T; Wilkinson, James D; Williams, Hywel C; Williams, Warwick; Wilson, Nicholas; Woolf, Anthony D; Yip, Paul; Zielinski, Jan M; Lopez, Alan D; Murray, Christopher J L; Ezzati, Majid; AlMazroa, Mohammad A; Memish, Ziad A
2012-12-15
Quantification of the disease burden caused by different risks informs prevention by providing an account of health loss different to that provided by a disease-by-disease analysis. No complete revision of global disease burden caused by risk factors has been done since a comparative risk assessment in 2000, and no previous analysis has assessed changes in burden attributable to risk factors over time. We estimated deaths and disability-adjusted life years (DALYs; sum of years lived with disability [YLD] and years of life lost [YLL]) attributable to the independent effects of 67 risk factors and clusters of risk factors for 21 regions in 1990 and 2010. We estimated exposure distributions for each year, region, sex, and age group, and relative risks per unit of exposure by systematically reviewing and synthesising published and unpublished data. We used these estimates, together with estimates of cause-specific deaths and DALYs from the Global Burden of Disease Study 2010, to calculate the burden attributable to each risk factor exposure compared with the theoretical-minimum-risk exposure. We incorporated uncertainty in disease burden, relative risks, and exposures into our estimates of attributable burden. In 2010, the three leading risk factors for global disease burden were high blood pressure (7·0% [95% uncertainty interval 6·2-7·7] of global DALYs), tobacco smoking including second-hand smoke (6·3% [5·5-7·0]), and alcohol use (5·5% [5·0-5·9]). In 1990, the leading risks were childhood underweight (7·9% [6·8-9·4]), household air pollution from solid fuels (HAP; 7·0% [5·6-8·3]), and tobacco smoking including second-hand smoke (6·1% [5·4-6·8]). Dietary risk factors and physical inactivity collectively accounted for 10·0% (95% UI 9·2-10·8) of global DALYs in 2010, with the most prominent dietary risks being diets low in fruits and those high in sodium. Several risks that primarily affect childhood communicable diseases, including unimproved water and sanitation and childhood micronutrient deficiencies, fell in rank between 1990 and 2010, with unimproved water and sanitation accounting for 0·9% (0·4-1·6) of global DALYs in 2010. However, in most of sub-Saharan Africa childhood underweight, HAP, and non-exclusive and discontinued breastfeeding were the leading risks in 2010, while HAP was the leading risk in south Asia. The leading risk factor in Eastern Europe, most of Latin America, and southern sub-Saharan Africa in 2010 was alcohol use; in most of Asia, North Africa and Middle East, and central Europe it was high blood pressure. Despite declines, tobacco smoking including second-hand smoke remained the leading risk in high-income north America and western Europe. High body-mass index has increased globally and it is the leading risk in Australasia and southern Latin America, and also ranks high in other high-income regions, North Africa and Middle East, and Oceania. Worldwide, the contribution of different risk factors to disease burden has changed substantially, with a shift away from risks for communicable diseases in children towards those for non-communicable diseases in adults. These changes are related to the ageing population, decreased mortality among children younger than 5 years, changes in cause-of-death composition, and changes in risk factor exposures. New evidence has led to changes in the magnitude of key risks including unimproved water and sanitation, vitamin A and zinc deficiencies, and ambient particulate matter pollution. The extent to which the epidemiological shift has occurred and what the leading risks currently are varies greatly across regions. In much of sub-Saharan Africa, the leading risks are still those associated with poverty and those that affect children. Bill & Melinda Gates Foundation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Lim, Stephen S; Vos, Theo; Flaxman, Abraham D; Danaei, Goodarz; Shibuya, Kenji; Adair-Rohani, Heather; Amann, Markus; Anderson, H Ross; Andrews, Kathryn G; Aryee, Martin; Atkinson, Charles; Bacchus, Loraine J; Bahalim, Adil N; Balakrishnan, Kalpana; Balmes, John; Barker-Collo, Suzanne; Baxter, Amanda; Bell, Michelle L; Blore, Jed D; Blyth, Fiona; Bonner, Carissa; Borges, Guilherme; Bourne, Rupert; Boussinesq, Michel; Brauer, Michael; Brooks, Peter; Bruce, Nigel G; Brunekreef, Bert; Bryan-Hancock, Claire; Bucello, Chiara; Buchbinder, Rachelle; Bull, Fiona; Burnett, Richard T; Byers, Tim E; Calabria, Bianca; Carapetis, Jonathan; Carnahan, Emily; Chafe, Zoe; Charlson, Fiona; Chen, Honglei; Chen, Jian Shen; Cheng, Andrew Tai-Ann; Child, Jennifer Christine; Cohen, Aaron; Colson, K Ellicott; Cowie, Benjamin C; Darby, Sarah; Darling, Susan; Davis, Adrian; Degenhardt, Louisa; Dentener, Frank; Des Jarlais, Don C; Devries, Karen; Dherani, Mukesh; Ding, Eric L; Dorsey, E Ray; Driscoll, Tim; Edmond, Karen; Ali, Suad Eltahir; Engell, Rebecca E; Erwin, Patricia J; Fahimi, Saman; Falder, Gail; Farzadfar, Farshad; Ferrari, Alize; Finucane, Mariel M; Flaxman, Seth; Fowkes, Francis Gerry R; Freedman, Greg; Freeman, Michael K; Gakidou, Emmanuela; Ghosh, Santu; Giovannucci, Edward; Gmel, Gerhard; Graham, Kathryn; Grainger, Rebecca; Grant, Bridget; Gunnell, David; Gutierrez, Hialy R; Hall, Wayne; Hoek, Hans W; Hogan, Anthony; Hosgood, H Dean; Hoy, Damian; Hu, Howard; Hubbell, Bryan J; Hutchings, Sally J; Ibeanusi, Sydney E; Jacklyn, Gemma L; Jasrasaria, Rashmi; Jonas, Jost B; Kan, Haidong; Kanis, John A; Kassebaum, Nicholas; Kawakami, Norito; Khang, Young-Ho; Khatibzadeh, Shahab; Khoo, Jon-Paul; Kok, Cindy; Laden, Francine; Lalloo, Ratilal; Lan, Qing; Lathlean, Tim; Leasher, Janet L; Leigh, James; Li, Yang; Lin, John Kent; Lipshultz, Steven E; London, Stephanie; Lozano, Rafael; Lu, Yuan; Mak, Joelle; Malekzadeh, Reza; Mallinger, Leslie; Marcenes, Wagner; March, Lyn; Marks, Robin; Martin, Randall; McGale, Paul; McGrath, John; Mehta, Sumi; Mensah, George A; Merriman, Tony R; Micha, Renata; Michaud, Catherine; Mishra, Vinod; Hanafiah, Khayriyyah Mohd; Mokdad, Ali A; Morawska, Lidia; Mozaff arian, Dariush; Murphy, Tasha; Naghavi, Mohsen; Neal, Bruce; Nelson, Paul K; Nolla, Joan Miquel; Norman, Rosana; Olives, Casey; Omer, Saad B; Orchard, Jessica; Osborne, Richard; Ostro, Bart; Page, Andrew; Pandey, Kiran D; Parry, Charles D H; Passmore, Erin; Patra, Jayadeep; Pearce, Neil; Pelizzari, Pamela M; Petzold, Max; Phillips, Michael R; Pope, Dan; Pope III, C Arden; Powles, John; Rao, Mayuree; Razavi, Homie; Rehfuess, Eva A; Rehm, Jürgen T; Ritz, Beate; Rivara, Frederick P; Roberts, Thomas; Robinson, Carolyn; Rodriguez-Portales, Jose A; Romieu, Isabelle; Room, Robin; Rosenfeld, Lisa C; Roy, Ananya; Rushton, Lesley; Salomon, Joshua A; Sampson, Uchechukwu; Sanchez-Riera, Lidia; Sanman, Ella; Sapkota, Amir; Seedat, Soraya; Shi, Peilin; Shield, Kevin; Shivakoti, Rupak; Singh, Gitanjali M; Sleet, David A; Smith, Emma; Smith, Kirk R; Stapelberg, Nicolas J C; Steenland, Kyle; Stöckl, Heidi; Stovner, Lars Jacob; Straif, Kurt; Straney, Lahn; Thurston, George D; Tran, Jimmy H; Van Dingenen, Rita; van Donkelaar, Aaron; Veerman, J Lennert; Vijayakumar, Lakshmi; Weintraub, Robert; Weissman, Myrna M; White, Richard A; Whiteford, Harvey; Wiersma, Steven T; Wilkinson, James D; Williams, Hywel C; Williams, Warwick; Wilson, Nicholas; Woolf, Anthony D; Yip, Paul; Zielinski, Jan M; Lopez, Alan D; Murray, Christopher J L; Ezzati, Majid
2014-01-01
Summary Background Quantification of the disease burden caused by different risks informs prevention by providing an account of health loss different to that provided by a disease-by-disease analysis. No complete revision of global disease burden caused by risk factors has been done since a comparative risk assessment in 2000, and no previous analysis has assessed changes in burden attributable to risk factors over time. Methods We estimated deaths and disability-adjusted life years (DALYs; sum of years lived with disability [YLD] and years of life lost [YLL]) attributable to the independent effects of 67 risk factors and clusters of risk factors for 21 regions in 1990 and 2010. We estimated exposure distributions for each year, region, sex, and age group, and relative risks per unit of exposure by systematically reviewing and synthesising published and unpublished data. We used these estimates, together with estimates of cause-specific deaths and DALYs from the Global Burden of Disease Study 2010, to calculate the burden attributable to each risk factor exposure compared with the theoretical-minimum-risk exposure. We incorporated uncertainty in disease burden, relative risks, and exposures into our estimates of attributable burden. Findings In 2010, the three leading risk factors for global disease burden were high blood pressure (7·0% [95% uncertainty interval 6·2–7·7] of global DALYs), tobacco smoking including second-hand smoke (6·3% [5·5–7·0]), and alcohol use (5·5% [5·0–5·9]). In 1990, the leading risks were childhood underweight (7·9% [6·8–9·4]), household air pollution from solid fuels (HAP; 7·0% [5·6–8·3]), and tobacco smoking including second-hand smoke (6·1% [5·4–6·8]). Dietary risk factors and physical inactivity collectively accounted for 10·0% (95% UI 9·2–10·8) of global DALYs in 2010, with the most prominent dietary risks being diets low in fruits and those high in sodium. Several risks that primarily affect childhood communicable diseases, including unimproved water and sanitation and childhood micronutrient deficiencies, fell in rank between 1990 and 2010, with unimproved water we and sanitation accounting for 0·9% (0·4–1·6) of global DALYs in 2010. However, in most of sub-Saharan Africa childhood underweight, HAP, and non-exclusive and discontinued breastfeeding were the leading risks in 2010, while HAP was the leading risk in south Asia. The leading risk factor in Eastern Europe, most of Latin America, and southern sub-Saharan Africa in 2010 was alcohol use; in most of Asia, North Africa and Middle East, and central Europe it was high blood pressure. Despite declines, tobacco smoking including second-hand smoke remained the leading risk in high-income north America and western Europe. High body-mass index has increased globally and it is the leading risk in Australasia and southern Latin America, and also ranks high in other high-income regions, North Africa and Middle East, and Oceania. Interpretation Worldwide, the contribution of different risk factors to disease burden has changed substantially, with a shift away from risks for communicable diseases in children towards those for non-communicable diseases in adults. These changes are related to the ageing population, decreased mortality among children younger than 5 years, changes in cause-of-death composition, and changes in risk factor exposures. New evidence has led to changes in the magnitude of key risks including unimproved water and sanitation, vitamin A and zinc deficiencies, and ambient particulate matter pollution. The extent to which the epidemiological shift has occurred and what the leading risks currently are varies greatly across regions. In much of sub-Saharan Africa, the leading risks are still those associated with poverty and those that affect children. Funding Bill & Melinda Gates Foundation. PMID:23245609
Lin, Yu-Lung; Lin, Shu-Yi; Wang, Sabrina
2012-03-01
Maternal infection during pregnancy may affect fetal brain development and lead to neurological and mental disorders. Previously, we used lipopolysaccharide [LPS, 33 μg/kg, intraperitoneal injection] exposure on gestation day 10.5 to mimic maternal bacterial infection in rats and found reduced dopaminergic and serotoninergic neurons in the offspring. In the present study, we examined the anxiety and stress responses of the affected offspring and the neurophysiological changes in their brains. Our results show that LPS rats displayed more anxiety-like behaviors and heightened stress responses. Dopamine (DA) in the nucleus accumbens and serotonin (5-HT) in the medial prefrontal cortex and the hippocampus were significantly reduced in LPS rats. Their glucocorticoid receptors in the dorsal hippocampus and the 5-HT(1A) receptors in the dorsal and ventral hippocampus were also reduced. In addition, chronic but not acute fluoxetine treatment reversed the behavioral changes and increased hippocampal 5-HT(1A) receptor expression. This study demonstrates that LPS exposure during a critical time of embryonic development could produce long-term reduction of DA and 5-HT and other neurophysiological changes; such alterations may be associated with the increases in stress response and anxiety-like behaviors in the offspring. Copyright © 2011 Elsevier Inc. All rights reserved.
Sarman, Ihsan
2018-06-01
Studies are increasingly focusing on the effects of prenatal alcohol exposure (PAE) on child health. The aim of this review was to provide paediatricians with new insights to help them communicate key messages about avoiding alcohol during pregnancy. Inspired by the 7th International Conference on Fetal Alcohol Spectrum Disorder, which focused on integrating research, policy and practice, we studied English language papers published since 2010 on how early PAE triggered epigenetic mechanisms that had an impact on the development of some chronic diseases. We also report the findings of a human study using three-dimensional photography of the face to explore associations between PAE and craniofacial phenotyping. Animal models with different alcohol exposure patterns show that early PAE may lead to long-term chronic effects, due to developmental programming for some adult diseases in cardiovascular, metabolic and renal systems. The study with three-dimensional photographing is very promising in helping paediatricians to understand how even small amounts of PAE can affect craniofacial phenotyping. Even low levels of PAE can cause adverse foetal effects and not just in the brain. It is not currently possible to determine a safe period and level when alcohol consumption would not affect the foetus. ©2018 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Sørhus, Elin; Incardona, John P.; Karlsen, Ørjan; Linbo, Tiffany; Sørensen, Lisbet; Nordtug, Trond; van der Meeren, Terje; Thorsen, Anders; Thorbjørnsen, Maja; Jentoft, Sissel; Edvardsen, Rolf B.; Meier, Sonnich
2016-01-01
Recent studies have shown that crude oil exposure affects cardiac development in fish by disrupting excitation-contraction (EC) coupling. We previously found that eggs of Atlantic haddock (Melanogrammus aeglefinus) bind dispersed oil droplets, potentially leading to more profound toxic effects from uptake of polycyclic aromatic hydrocarbons (PAHs). Using lower concentrations of dispersed crude oil (0.7–7 μg/L ∑PAH), here we exposed a broader range of developmental stages over both short and prolonged durations. We quantified effects on cardiac function and morphogenesis, characterized novel craniofacial defects, and examined the expression of genes encoding potential targets underlying cardiac and craniofacial defects. Because of oil droplet binding, a 24-hr exposure was sufficient to create severe cardiac and craniofacial abnormalities. The specific nature of the craniofacial abnormalities suggests that crude oil may target common craniofacial and cardiac precursor cells either directly or indirectly by affecting ion channels and intracellular calcium in particular. Furthermore, down-regulation of genes encoding specific components of the EC coupling machinery suggests that crude oil disrupts excitation-transcription coupling or normal feedback regulation of ion channels blocked by PAHs. These data support a unifying hypothesis whereby depletion of intracellular calcium pools by crude oil-derived PAHs disrupts several pathways critical for organogenesis in fish. PMID:27506155
Drinking water incidents due to chemical contamination in England and Wales, 2006-2008.
Paranthaman, Karthikeyan; Harrison, Henrietta
2010-12-01
Contamination of drinking water by microbiological and chemical agents can lead to adverse health effects. In England and Wales, the Chemicals Hazards and Poisons Division (CHaPD) of the Health Protection Agency provides expert advice on the consequences to public health of chemical contamination incidents affecting drinking water. In this study, we extracted data from the National Database on the type and nature of drinking water contamination events reported to the CHaPD between 2006 and 2008. Eighty-two incidents with confirmed chemical contamination were identified. Among the 70 incidents where data was available, 40% (28/70) of incidents related to contamination of drinking water provided by private suppliers, 31% (22/70) were due to contamination occurring close to the point of consumption (i.e. near consumer) and 29% (20/70) related to incidents where public water supplies were identified as the contaminated source. For the majority of incidents, little or no information was available on the critical exposure variables such as duration of contamination and actual or estimates of the population affected. Reassuringly, the levels of exposure in most incidents were considered unlikely to cause serious immediate or long term ill health effects. Recording of exposure data for reported contamination incidents needs to be improved.
Kjellstrom, Tord; Lemke, Bruno; Otto, Matthias
2017-09-01
Occupational health is particularly affected by high heat exposures in workplaces, which will be an increasing problem as climate change progresses. People working in jobs of moderate or heavy work intensity in hot environments are at particular risk, owing to exposure to high environmental heat and internal heat production. This heat needs to be released to protect health, and such release is difficult or impossible at high temperatures and high air humidity. A range of clinical health effects can occur, and the heat-related physical exhaustion leads to a reduction of work capacity and labour productivity, which may cause substantial economic losses. Current trends in countries of the World Health Organization South-East Asia Region are towards higher ambient heat levels during large parts of each year, and modelling indicates continuing trends, which will particularly affect low-income individuals and communities. Prevention activities need to address the climate policies of each country, and to apply currently available heat-reducing technologies in workplaces whenever possible. Work activities can be adjusted to reduce exposure to daily heat peaks or seasonal heat concerns. Application of basic occupational health principles, such as supply of drinking water, enforcement of rest periods and training of workers and supervisors, is essential.
Childhood lead exposure and sexually transmitted infections: New evidence.
Nelson, Erik J; Shacham, Enbal; Boutwell, Brian B; Rosenfeld, Richard; Schootman, Mario; Vaughn, Michael; Lewis, Roger
2015-11-01
The adverse health effects of lead exposure in children are well documented and include intellectual and behavioral maladies. Childhood lead exposure has also been linked to impulsive behaviors, which, in turn, are associated with a host of negative health outcomes including an increased risk for sexually transmitted infections (STI). The purpose of this study was to assess the association of lead exposure with STI rates across census tracts in St. Louis City, Missouri. Incident cases of gonorrhea and chlamydia (GC) during 2011 were identified from the Missouri Department of Health and Senior Services and aggregated by census tract. We also geocoded the home address of 59,645 children >72 months in age who had blood lead level tests performed in St. Louis City from 1996 to 2007. Traditional regression and Bayesian spatial models were used to determine the relationship between GC and lead exposure while accounting for confounders (condom and alcohol availability, crime, and an index of concentrated disadvantage). Incident GC rates were found to cluster across census tracts (Moran's I=0.13, p=0.006). After accounting for confounders and their spatial dependence, a linear relationship existed between lead exposure and GC incidence across census tracts, with higher GC rates occurring in the northern part of St. Louis City At the census-tract level, higher lead exposure is associated with higher STI rates. Visualizing these patterns through maps may help deliver targeted interventions to reduce geographic disparities in GC rates. Copyright © 2015 Elsevier Inc. All rights reserved.
Levels of blood lead and urinary cadmium in industrial complex residents in Ulsan.
Kim, Sang Hoon; Kim, Yang Ho; An, Hyun Chan; Sung, Joo Hyun; Sim, Chang Sun
2017-01-01
Populations neighboring industrial complexes are at an increased health risk, due to constant exposure to various potentially hazardous compounds released during industrial production activity. Although there are many previous studies that focus on occupational exposure to heavy metals, studies that focused on environmental exposure to lead and cadmium are relatively rare. The purpose of this study is to evaluate the extent of the environmental exposure of heavy metals in residents of industrial area. Four areas in close proximity to the Ulsan petrochemical industrial complex and the Onsan national industrial complex were selected to be included in the exposure group, and an area remotely located from these industrial complexes was selected as the non-exposure group. Among the residents of our study areas, a total of 1573 subjects aged 20 years and older were selected and all study subjects completed a written questionnaire. Blood and urine samples were obtained from about one third of the subjects (465 subjects) who provided informed consent for biological sample collection. Total 429 subjects (320 subjects from exposure area, 109 subjects from non-exposure area) were included in final analysis. The geometric mean blood lead level among the subjects in the exposed group was 2.449 μg/dL, which was significantly higher than the non-exposure group's level of 2.172 μg/dL. Similarly, the geometric mean urine cadmium levels between the two groups differed significantly, at 1.077 μg/g Cr. for the exposed group, and 0.709 μg/g Cr. for the non-exposure group. In a multiple linear regression analysis to determine the relationship between blood lead level and related factors, the results showed that blood lead level had a significant positive correlation with age, the male, exposure area, and non-drinkers. In the same way, urine cadmium level was positively correlated with age, the female, exposure area, and smokers. This study found that blood lead levels and urine cadmium levels were significantly higher among the residents of industrial areas than among the non-exposure area residents, which is thought to be due to the difference in environmental exposure of lead and cadmium. Furthermore, it was clear that at a low level of exposure, differences in blood lead or urine cadmium levels based on age, gender, and smoking status were greater than the differences based on area of residence. Therefore, when evaluating heavy metal levels in the body at a low level of exposure, age, gender, and smoking status must be adjusted, as they are significant confounding factors.
Site-specific lead exposure from lead pellet ingestion in sentinel mallards
Rocke, T.E.; Brand, C.J.; Mensik, John G.
1997-01-01
We monitored lead poisoning from the ingestion of spent lead pellets in sentinel mallards (Anas platyhrynchos) at the Sacramento National Wildlife Refuge (SNWR), Willows, California for 4 years (1986-89) after the conversion to steel shot for waterfowl hunting on refuges in 1986. Sentinel mallards were held in 1.6-ha enclosures in 1 hunted (P8) and 2 non-hunted (T19 and TF) wetlands. We compared site-specific rates of lead exposure, as determined by periodic measurement of blood lead concentrations, and lead poisoning mortality between wetlands with different lead pellet densities, between seasons, and between male and female sentinels. In 1986, the estimated 2-week rate of lead exposure was significantly higher (P < 0.005) in P8 (43.8%), the wetland with the highest density of spent lead pellets (>2,000,000 pellets/ha), than in those with lower densities of lead pellets, T19 (18.1%; 173,200 pellets/ha) and TF (0.9%; 15,750 pellets/ha). The probability of mortality from lead poisoning was also significantly higher (P < 0.01) in sentinel mallards enclosed in P8 (0.25) than T19 (0) and TF (0) in 1986 and remained significantly higher (P < 0.001) during the 4-year study. Both lead exposure and the probability of lead poisoning mortality in P8 were significantly higher (P < 0.001) in the fall of 1986 (43.8%; 0.25), before hunting season, than in the spring of 1987 (21.6%; 0.04), after hunting season. We found no significant differences in the rates of lead exposure or lead poisoning mortality between male and female sentinel mallards. The results of this study demonstrate that in some locations, lead exposure and lead poisoning in waterfowl will continue to occur despite the conversion to steel shot for waterfowl hunting.
OBGYN screening for environmental exposures: A call for action.
Grindler, N M; Allshouse, A A; Jungheim, E; Powell, T L; Jansson, T; Polotsky, A J
2018-01-01
Prenatal exposures have known adverse effects on maternal and neonatal outcomes. Professional societies recommend routine screening for environmental, occupational, and dietary exposures to reduce exposures and their associated sequelae. Our objective was to determine the frequency of environmental exposure screening by obstetricians and gynecologists (OBGYNs) at initial patient visits. Practicing OBGYNs were approached at the University of Colorado and by social media. The survey instrument queried demographics, environmental literacy, and screening practices. Statistical analysis was performed using Chi-square and two-sample t-test. We received 312 online survey responses (response rate of 12%). Responding OBGYNs were predominantly female (96%), board-certified (78%), generalists (65%) with a mean age of 37.1 years. Fewer than half of physicians screened for the following factors: occupational exposures, environmental chemicals, air pollution, pesticide use, personal care products, household cleaners, water source, use of plastics for food storage, and lead and mercury exposure. Eighty five percent of respondents reported that they did not feel comfortable obtaining an environmental history and 58% respondents reported that they performed no regular screening of environmental exposures. A higher frequency of screening was associated with > 4 years of practice (p = 0.001), and having read the environmental committee opinion (p = <0.001). The majority of OBGYNs did not incorporate screening for known environmental exposures into routine practice. Reading the environmental committee opinions was strongly and significantly associated with a higher rate of screening. Improving physician comfort in counseling patients may enhance screening for exposures that affect reproductive health.
McKelvey, Shauna M; Horgan, Karina A; Murphy, Richard A
2015-01-01
Lead, an environmental toxin is known to induce a broad range of physiological and biochemical dysfunctions in humans through a number of mechanisms including the deactivation of antioxidants thus leading to generation of reactive oxygen species (ROS) and subsequent DNA damage. Selenium on the other hand has been proven to play an important role in the protection of cells from free radical damage and oxidative stress, though its effects are thought to be form and dose dependent. As the liver is the primary organ required for metabolite detoxification, HepG2 cells were chosen to assess the protective effects of various selenium compounds following exposure to the genotoxic agent lead nitrate. Initially DNA damage was quantified using a comet assay, gene expression patterns associated with DNA damage and signalling were also examined using PCR arrays and the biological pathways which were most significantly affected by selenium were identified. Interestingly, the organic type selenium compounds (selenium yeast and selenomethionine) conferred protection against lead induced DNA damage in HepG2 cells; this is evident by reduction in the quantity of DNA present in the comet tail of cells cultured in their presence with lead. This trend also followed through the gene expression changes noted in DNA damage pathways analysed. These results were in contrast with those of inorganic sodium selenite which promoted lead induced DNA damage evident in both the comet assay results and the gene expression analysis. Over all this study provided valuable insights into the effects which various selenium compounds had on the DNA damage and signalling pathway indicating the potential for using organic forms of selenium such as selenium enriched yeast to protect against DNA damaging agents. Copyright © 2014 Elsevier GmbH. All rights reserved.
Biomarkers of metals exposure in fish from lead-zinc mining areas of Southeastern Missouri, USA
Schmitt, C.J.; Whyte, J.J.; Roberts, A.P.; Annis, M.L.; May, T.W.; Tillitt, D.E.
2007-01-01
The potential effects of proposed lead-zinc mining in an ecologically sensitive area were assessed by studying a nearby mining district that has been exploited for about 30 y under contemporary environmental regulations and with modern technology. Blood and liver samples representing fish of three species (largescale stoneroller, Campostoma oligolepis, n=91; longear sunfish, Lepomis megalotis, n=105; and northern hog sucker, Hypentelium nigricans, n=20) from 16 sites representing a range of conditions relative to mining activities were collected. Samples were analyzed for metals (also reported in a companion paper) and for biomarkers of metals exposure [erythrocyte ??-aminolevulinic acid dehydratase (ALA-D) activity; concentrations of zinc protoporphyrin (ZPP), iron, and hemoglobin (Hb) in blood; and hepatic metallothionein (MT) gene expression and lipid peroxidation]. Blood lead concentrations were significantly higher and ALA-D activity significantly lower in all species at sites nearest to active lead-zinc mines and in a stream contaminated by historical mining than at reference or downstream sites. ALA-D activity was also negatively correlated with blood lead concentrations in all three species but not with other metals. Iron and Hb concentrations were positively correlated in all three species, but were not correlated with any other metals in blood or liver in any species. MT gene expression was positively correlated with liver zinc concentrations, but neither MT nor lipid peroxidase differences among fish grouped according to lead concentrations were statistically significant. ZPP was not detected by hematofluorometry in most fish, but fish with detectable ZPP were from sites affected by mining. Collectively, these results confirm that metals are released to streams from active lead-zinc mining sites and are accumulated by fish. ?? 2007 Elsevier Inc. All rights reserved.
Occupational exposure to airborne lead in Brazilian police officers.
Rocha, Ernesto Díaz; Sarkis, Jorge E Souza; Carvalho, Maria de Fátima H; Santos, Gerson Vechio Dos; Canesso, Claudemir
2014-07-01
Shooting with lead-containing ammunition in indoor firing ranges is a known source of lead exposure in adults. Police officers may be at risk of lead intoxication when regular training shooting exercises are yearly mandatory to law enforcement officers. Effects on health must be documented, even when low-level elemental (inorganic) lead exposure is detected. Forty police officers (nineteen cadets and twenty-one instructors) responded to a questionnaire about health, shooting habits, and potential lead exposure before a training curse. Blood samples were collected and analyzed for blood lead level (BLL) before and after a three days training curse. The mean BLL for the instructors' group was 5.5 μg/dL ± 0.6. The mean BLL for the cadets' group before the training was 3.3 μg/dL ± 0.15 and after the training the main BLL was 18.2 μg/d L± 1.5. Samples were analyzed by Inductively Coupled Plasma Mass Spectrometer (ICP-MS). All the participants in the training curse had significantly increased BLL (mean increment about 15 μg/dL) after the three days indoor shooting season. In conclusion, occupational lead exposure in indoor firing ranges is a source of lead exposure in Brazilian police officers, and appears to be a health risk, especially when heavy weapons with lead-containing ammunition are used in indoor environments during the firing training seasons. Copyright © 2013 Elsevier GmbH. All rights reserved.
Long-term high-intensity sound stimulation inhibits h current (Ih ) in CA1 pyramidal neurons.
Cunha, A O S; Ceballos, C C; de Deus, J L; Leão, R M
2018-05-19
Afferent neurotransmission to hippocampal pyramidal cells can lead to long-term changes to their intrinsic membrane properties and affect many ion currents. One of the most plastic neuronal currents is the hyperpolarization activated cationic current (I h ), which changes in CA1 pyramidal cells in response to many types of physiological and pathological processes, including auditory stimulation. Recently we demonstrated that long-term potentiation (LTP) in rat hippocampal Schaffer-CA1 synapses is depressed by high-intensity sound stimulation. Here we investigated if a long-term high-intensity sound stimulation could affect intrinsic membrane properties of rat CA1 pyramidal neurons. Our results showed that I h is depressed by long-term high intensity sound exposure (1 minute of 110 dB sound, applied two times per day for 10 days). This resulted in a decreased resting membrane potential, increased membrane input resistance and time constant, and decreased action potential threshold. In addition, CA1 pyramidal neurons from sound-exposed animals fired more action potentials than neurons from control animals; However, this effect was not caused by a decreased I h . Interestingly, a single episode (1 minute) of 110 dB sound stimulation which also inhibits hippocampal LTP did not affect I h and firing in pyramidal neurons, suggesting that effects on I h are long-term responses to high intensity sound exposure. Our results show that prolonged exposure to high-intensity sound affects intrinsic membrane properties of hippocampal pyramidal neurons, mainly by decreasing the amplitude of I h . This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Control of excessive lead exposure in radiator repair workers.
1991-03-01
In 1988, 83 automotive repair workers with blood lead levels (BLLs) greater than 25 micrograms/dL were reported to state health departments in the seven states that collaborated with CDC's National Institute for Occupational Safety and Health (NIOSH) in maintaining registries of elevated BLLs in adults. In 18 (22%) of these 83 persons, BLLs were greater than 50 micrograms/dL. Among automotive repair workers for whom a job category was specified, radiator repair work was the principal source of lead exposure. The major sources of exposure for radiator repair workers are lead fumes generated during soldering and lead dust produced during radiator cleaning. This report summarizes current BLL surveillance data for radiator repair workers and describes three control technologies that are effective in reducing lead exposures in radiator repair shops.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Chuanyun; Liu Bing; Wang Huili
Lead (Pb) exposure during development has been associated with impaired long-term potentiation (LTP). Hypothyroidism happening upon subjects with occupational exposure to Pb is suggestive of an adverse effect of Pb on thyroid homeostasis, leading to the hypothesis that Pb exposure may alter thyroid hormone homeostasis. Hippocampus is one of the targets of Pb exposure, and is sensitive to and dependent on thyroid hormones, leading us to explore whether levothyroxine (L-T{sub 4}) administration could alter the thyroid disequilibrium and impairment of LTP in rat hippocampus caused by Pb exposure. Our results show that Pb exposure caused a decrease in triiodothyronine (T{submore » 3}) and tetraiodothyronine (T{sub 4}) levels accompanied by a dramatic decrease of TSH and application of L-T{sub 4} restored these changes to about control levels. Hippocampal and blood Pb concentration were significantly reduced following L-T{sub 4} treatment. L-T{sub 4} treatment rescued the impairment of LTP induced by the Pb exposure. These results suggest that Pb exposure may lead to thyroid dysfunction and induce hypothyroidism and provide a direct electrophysiological proof that L-T{sub 4} relieves chronic Pb exposure-induced impairment of synaptic plasticity. - Highlights: > Lead may interfere with thyroid hormone homeostasis and induce hypothyroidism. > Levothyroxine decreases the hippocampal and blood Pb concentration. > Levothyroxine amends the T{sub 3}, T{sub 4} and TSH levels in blood. > Levothyroxine rescues the impaired LTP in CA1.« less
Recent Developments in Low-Level Lead Exposure and Intellectual Impairment in Children
Koller, Karin; Brown, Terry; Spurgeon, Anne; Levy, Len
2004-01-01
In the last decade children’s blood lead levels have fallen significantly in a number of countries, and current mean levels in developed countries are in the region of 3 μg/dL. Despite this reduction, childhood lead poisoning continues to be a major public health problem for certain at-risk groups of children, and concerns remain over the effects of lead on intellectual development in infants and children. The evidence for lowered cognitive ability in children exposed to lead has come largely from prospective epidemiologic studies. The current World Health Organization/Centers for Disease Control and Prevention blood level of concern reflects this and stands at 10 μg/dL. However, a recent study on a cohort of children whose lifetime peak blood levels were consistently < 10 μg/dL has extended the association of blood lead and intellectual impairment to lower levels of lead exposure and suggests there is no safety margin at existing exposures. Because of the importance of this finding, we reviewed this study in detail along with other recent developments in the field of low-level lead exposure and children’s cognitive development. We conclude that these findings are important scientifically, and efforts should continue to reduce childhood exposure. However, from a public health perspective, exposure to lead should be seen within the many other risk factors impacting on normal childhood development, in particular the influence of the learning environment itself. Current lead exposure accounts for a very small amount of variance in cognitive ability (1–4%), whereas social and parenting factors account for 40% or more. PMID:15198918
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobrakowski, Michał, E-mail: michal.dobrakowski@po
The aim of the study was to investigate the influence of a short-term exposure to lead on the blood morphology and the levels of selected cytokines related to hematopoiesis in occupationally exposed workers. The study population included 37 males occupationally exposed to lead for 36 to 44 days. Their blood lead level raised from 10.7 ± 7.67 μg/dl at baseline to the level of 49.1 ± 14.1 μg/dl at the end of the study. The level of hemoglobin and values of MCH and MCHC were decreased due to a short-term exposure to lead by 2%, 2%, and 1%, respectively. Themore » counts of WBC, LYM, and MXD increased significantly by 5%, 7%, and 35%. Similarly, the count of PLT increased by 7%, while PDW, MPV, and P-LCR decreased by 6%, 3%, and 9%, respectively. The levels of IL-7, G-CSF, HGF, PDGF AB/BB, SCF, and PECAM-1, decreased significantly by 30%, 33%, 8%, 30%, 25%, and 20%, respectively. A short-term occupational exposure to lead results in a decreased hemoglobin level and increased counts of WBC and PLT. Changes in counts and proportions of different types of leukocytes and decreased values of PLT indices, such as PDW, MPV, and P-LCR, due to the subacute lead-exposure may be associated with lead-induced decreased levels of cytokines related to hematopoiesis, including SCF, G-CSF, IL-7, and PDGF. - Highlights: • Subacute exposure to lead results in a decreased hemoglobin level. • Subacute exposure to lead results in increased counts of WBC and PLT. • Subacute exposure to lead decreases the levels of SCF, G-CSF, IL-7, and PDGF.« less
Early chronic lead exposure reduces exploratory activity in young C57BL/6J mice.
Flores-Montoya, Mayra Gisel; Sobin, Christina
2015-07-01
Research has suggested that chronic low-level lead exposure diminishes neurocognitive function in children. Tests that are sensitive to behavioral effects at lowest levels of lead exposure are needed for the development of animal models. In this study we investigated the effects of chronic low-level lead exposure on exploratory activity (unbaited nose poke task), exploratory ambulation (open field task) and motor coordination (Rotarod task) in pre-adolescent mice. C57BL/6J pups were exposed to 0 ppm (controls), 30 ppm (low-dose) or 230 ppm (high-dose) lead acetate via dams' drinking water administered from birth to postnatal day 28, to achieve a range of blood lead levels (BLLs) from not detectable to 14.84 µg dl(-1) ). At postnatal day 28, mice completed behavioral testing and were killed (n = 61). BLLs were determined by inductively coupled plasma mass spectrometry. The effects of lead exposure on behavior were tested using generalized linear mixed model analyses with BLL, sex and the interaction as fixed effects, and litter as the random effect. BLL predicted decreased exploratory activity and no threshold of effect was apparent. As BLL increased, nose pokes decreased. The C57BL/6J mouse is a useful model for examining effects of early chronic low-level lead exposure on behavior. In the C57BL/6J mouse, the unbaited nose poke task is sensitive to the effects of early chronic low-level lead exposure. This is the first animal study to show behavioral effects in pre-adolescent lead-exposed mice with BLL below 5 µg dl(-1). Copyright © 2014 John Wiley & Sons, Ltd.
Early chronic lead exposure reduces exploratory activity in young C57BL/6J mice
Flores-Montoya, Mayra Gisel; Sobin, Christina
2014-01-01
Research has suggested that chronic low-level lead exposure diminishes neurocognitive function in children. Tests that are sensitive to behavioral effects at lowest levels of lead exposure are needed for the development of animal models. In this study we investigated the effects of chronic low-level lead exposure on exploratory activity (unbaited nose poke task), exploratory ambulation (open field task) and motor coordination (Rotarod task) in pre-adolescent mice. C57BL/6J pups were exposed to 0 ppm (controls), 30 ppm (low-dose) or 230 ppm (high-dose) lead acetate via dams’ drinking water administered from birth to postnatal day 28, to achieve a range of blood lead levels (BLLs) from not detectable to 14.84 μg dl−1). At postnatal day 28, mice completed behavioral testing and were killed (n = 61). BLLs were determined by inductively coupled plasma mass spectrometry. The effects of lead exposure on behavior were tested using generalized linear mixed model analyses with BLL, sex and the interaction as fixed effects, and litter as the random effect. BLL predicted decreased exploratory activity and no threshold of effect was apparent. As BLL increased, nose pokes decreased. The C57BL/6J mouse is a useful model for examining effects of early chronic low-level lead exposure on behavior. In the C57BL/6J mouse, the unbaited nose poke task is sensitive to the effects of early chronic low-level lead exposure. This is the first animal study to show behavioral effects in pre-adolescent lead-exposed mice with BLL below 5 μg dl−1. PMID:25219894
E-Waste Informal Recycling: An Emerging Source of Lead Exposure in South America.
Pascale, Antonio; Sosa, Adriana; Bares, Cristina; Battocletti, Alejandra; Moll, María José; Pose, Darío; Laborde, Amalia; González, Hugo; Feola, Gabriella
2016-01-01
Primitive electronic waste (e-waste) recycling creates exposures to several hazardous substances including lead. In Uruguay, primitive recycling procedures are a significant source of lead exposure. The aim of this study was to examine lead exposure in blood lead levels (BLLs) in low-income children exposed to lead through burning cables. A sample of children and adolescents exposed to lead through burning cable activities were assessed at the Department of Toxicology in Montevideo, Uruguay, between 2010 and 2014. Soil lead levels of residences were taken shortly after their assessment. The final sample included 69 children and adolescents (mean age 7.89 years). More than 66% of participants had an additional source of lead exposure-manual gathering of metals-and <5% were exposed to lead through landfills or paint. Average BLLs at first consultation were 9.19 ug/dL and lower at the second measurement (5.86 μg/dL). Data from soil lead levels ranged from 650 to 19,000 mg of lead/kg of soil. The interventions conducted after the assessment included family education in the clinic and at home, indoor and outdoor remediation. We found a decrease in BLLs of 6.96 μg/dL. Older children had lower BLLs (r = -0.24; P = 0.05). Statistical analyses also showed that children living in areas with higher soil lead levels had significantly higher BLLs (r = 0.50; P < 0.01). Additionally, we found greater BLLs from burning cable activities when children had been exposed to lead-based paint (r = 0.23; P < 0.1). Among children exposed to e-waste recycling, the most common additional source of lead exposure was the manual gathering of metals. The average BLL among children and adolescents in this study is higher than the BLLs currently suggested in medical intervention. Future research should focus on exploring effective interventions to reduce lead exposure among this vulnerable group. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Unintentional and Sequential Lead Exposure from a Ceramic Mug and Maca (Lepidium meyenii).
Johnson-Arbor, Kelly; Vo, Kathy; Wong, Flavia; Gajek, Ryszard
2018-06-01
Although the incidence of lead poisoning has decreased in the USA over the last 30 years, human exposures to lead-containing products are still reported. We present a case of unintentional lead exposure from a store-bought ceramic mug and a nutritional supplement. A 32-year-old female was found to have a whole blood lead concentration of 44 μg/dL. Evaluation of her home, occupation, and hobbies initially did not identify a source of lead exposure. Further investigation revealed that the likely etiology of the exposure was lead leaching from a ceramic mug used by the patient to drink hot lemon water while she was pregnant. She stopped drinking from the mug and her blood lead levels decreased, but increased a year later after she began to ingest a maca root powder supplement. Upon discontinuation of maca root powder ingestion, her blood lead levels decreased further. Over time, the acidity and heat of the hot lemon water used in the ceramic mug enhanced the breakdown of its leaded glaze. Maca powder, which is available as a nutritional supplement and is used to treat fatigue and enhance fertility, may contain lead and other minerals. Consumers, particularly women of childbearing age, and their physicians should be aware that imported products available from commercial retailers and internet vendors may contain significant amounts of lead.
ERIC Educational Resources Information Center
Needleman, Herbert L.
Despite years of concern about the toxic effects of high lead exposure and recent knowledge about the less apparent effects of exposure to low doses of lead, a total of 3 to 4 million children in the United States are still being exposed to concentrations of lead that could compromise their cognitive and social development. This paper discusses:…
Environmental lead toxicity: Nutrition as a component of intervention
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahaffey, K.R.
The influence of nutritional status on susceptibility to the toxicity of lead is discussed. Emphasis is given to dietary factors of substantial clinical importance. Subtle changes in susceptibility are difficult to evaluate under conditions of overwhelming lead exposure. It is clear that subtle effects of lead exposure on neurobehavioral and cognitive development are a major concern. The role of nutrition is considered to be an adjunct to reduction of environmental lead exposure, which is the primary means of reducing adverse health effects of lead. Nutrition should be evaluated as a component of strategies to address this broad societal issue.
Multimedia lead exposure and associated risk assessment in Dhaka, Bangladesh
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarwar, M.
1998-12-31
Motor vehicles consume the largest amount of leaded gasoline in Bangladesh. The number of vehicles and fuel consumption have increased significantly in recent years. These vehicles, which are believed to be the major sources of lead emissions in Dhaka, may cause an excessive level of lead exposure in children. The paper describes the results of a study conducted to determine risk associated with the multimedia lead exposure for children in Dhaka. Specifically, data related to lead content in air and soil in Dhaka were collected and used to estimate the blood lead levels in children. The Integrated Exposure Uptake Biokineticsmore » Model, developed by the United States Environmental Protection Agency (USEPA), was used. Bangladesh is yet to adopt any blood lead standards. The results of the study indicated that the model predicted geometric blood lead levels in children in Dhaka are significantly below the blood lead standard recommended by the World Health Organization (WHO). It was also found that children in Dhaka are not expected to contain blood lead levels higher than the WHO recommended standard.« less
Neonatal Cranial Ultrasound: Are Current Safety Guidelines Appropriate?
Lalzad, Assema; Wong, Flora; Schneider, Michal
2017-03-01
Ultrasound can lead to thermal and mechanical effects in interrogated tissues. We reviewed the literature to explore the evidence on ultrasound heating on fetal and neonatal neural tissue. The results of animal studies have suggested that ultrasound exposure of the fetal or neonatal brain may lead to a significant temperature elevation at the bone-brain interface above current recommended safety thresholds. Temperature increases between 4.3 and 5.6°C have been recorded. Such temperature elevations can potentially affect neuronal structure and function and may also affect behavioral and cognitive function, such as memory and learning. However, the majority of these studies were carried out more than 25 y ago using non-diagnostic equipment with power outputs much lower than those of modern machines. New studies to address the safety issues of cranial ultrasound are imperative to provide current clinical guidelines and safety recommendations. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gens, Alexandra; Hurley, J. Fintan; Tuomisto, Jouni T.; Friedrich, Rainer
2014-02-01
The insulation of residential buildings affects human exposure to fine particles. According to current EU guidelines, insulation is regulated for energy saving reasons. As buildings become tighter, the air exchange rate is reduced and, thus, the indoor concentration of pollutants is increased if there are significant indoor sources. While usually the effects of heat insulation and increase of the air-tightness of buildings on greenhouse gas emissions are highlighted, the negative impacts on human health due to higher indoor concentrations are not addressed. Thus, we investigated these impacts using scenarios in three European countries, i. e. Czech Republic, Switzerland and Greece. The assessment was based on modelling the human exposure to fine particles originating from sources of particles within outdoor and indoor air, including environmental tobacco smoke. Exposure response relationships were derived to link (adverse) health effects to the exposure. Furthermore, probable values for the parameters influencing the infiltration of fine particles into residential buildings were modelled. Results show that the insulation and increase of the air-tightness of residential buildings leads to an overall increase of the mean population exposure - and consequently adverse health effects - in all considered countries (ranging for health effects from 0.4% in Czech Republic to 11.8% in Greece for 100% insulated buildings) due to an accumulation of particles indoors, especially from environmental tobacco smoke. Considering only the emission reductions in outdoor air (omitting changes in infiltration parameters) leads to a decrease of adverse health effects. This study highlights the importance of ensuring a sufficient air exchange rate when insulating buildings, e. g. by prescribing heat ventilation and air conditioning systems in new buildings and information campaigns on good airing practice in renovated buildings. It also shows that assessing policy measures based on the exposure may provide different recommendations compared to an assessment based on only the outdoor air concentration.
Hearing loss in children with e-waste lead and cadmium exposure.
Liu, Yu; Huo, Xia; Xu, Long; Wei, Xiaoqin; Wu, Wengli; Wu, Xianguang; Xu, Xijin
2018-05-15
Environmental chemical exposure can cause neurotoxicity and has been recently linked to hearing loss in general population, but data are limited in early life exposure to lead (Pb) and cadmium (Cd) especially for children. We aimed to evaluate the association of their exposure with pediatric hearing ability. Blood Pb and urinary Cd were collected form 234 preschool children in 3-7years of age from an electronic waste (e-waste) recycling area and a reference area matched in Shantou of southern China. Pure-tone air conduction (PTA) was used to test child hearing thresholds at frequencies of 0.25, 0.5, 1, 2, 4 and 8kHz. A PTA≥25dB was defined as hearing loss. A higher median blood Pb level was found in the exposed group (4.94±0.20 vs 3.85±1.81μg/dL, p<0.001), while no significance was found for creatinine-adjusted Cd. Compared with the reference group, the exposed group had a higher prevalence of hearing loss (28.8% vs 13.6%, p<0.001). The PTA in the left, right and both ears, and hearing thresholds at average low and high frequency, and single frequency of 0.5, 1 and 2kHz were all increased in the exposed group. Positive correlations of child age and nail biting habit with Pb, and negative correlations of parent education level and child washing hands before dinner with Pb and Cd exposure were observed. Logistic regression analyses showed the adjusted OR of hearing loss for Pb exposure was 1.24 (95% CI: 1.029, 1.486). Our data suggest that early childhood exposure to Pb may be an important risk factor for hearing loss, and the developmental auditory system might be affected in e-waste polluted areas. Copyright © 2017 Elsevier B.V. All rights reserved.
Characterizing Golden Eagle risk to lead and anticoagulant rodenticide exposure: A review
Herring, Garth; Eagles-Smith, Collin A.; Buck, Jeremy A.
2017-01-01
Contaminant exposure is among the many threats to Golden Eagle (Aquila chrysaetos) populations throughout North America, particularly lead poisoning and anticoagulant rodenticides (AR). These threats may act in concert with others (e.g., lead poisoning and trauma associated with striking objects) to exacerbate risk. Golden Eagles are skilled hunters but also exploit scavenging opportunities, making them particularly susceptible to contaminant exposure from ingesting tissues of poisoned or shot animals. Lead poisoning has long been recognized as an important source of mortality for Golden Eagles throughout North America. More recently, ARs have been associated with both sublethal and lethal effects in raptor species worldwide. In this review, we examine the current state of knowledge for lead and AR exposure in Golden Eagles, drawing from the broader raptor contaminant ecology literature. We examine lead and AR sources within Golden Eagle habitats, exposure routes and toxicity, effects on individuals and populations, synergistic effects, and data and information needs. Continued research addressing data needs and information gaps will help with Golden Eagle conservation planning.
Jin, Yong-Ming; Godfrey, Donald A; Wang, Jie; Kaltenbach, James A
2006-01-01
Choline acetyltransferase (ChAT) activity has been mapped in the cochlear nucleus (CN) of control hamsters and hamsters that had been exposed to an intense tone. ChAT activity in most CN regions of hamsters was only a third or less of the activity in rat CN, but in granular regions ChAT activity was similar in both species. Eight days after intense tone exposure, average ChAT activity increased on the tone-exposed side as compared to the opposite side, by 74% in the anteroventral CN (AVCN), by 55% in the granular region dorsolateral to it, and by 74% in the deep layer of the dorsal CN (DCN). In addition, average ChAT activity in the exposed-side AVCN and fusiform soma layer of DCN was higher than in controls, by 152% and 67%, respectively. Two months after exposure, average ChAT activity was still 53% higher in the exposed-side deep layer of DCN as compared to the opposite side. Increased ChAT activity after intense tone exposure may indicate that this exposure leads to plasticity of descending cholinergic innervation to the CN, which might affect spontaneous activity in the DCN that has been associated with tinnitus.
Exposures associated with blood lead levels greater than 40 ug/dl in young children who live in lead-contaminated homes have been well documented. As the action level for lead is reduced, activities that contribute to lower levels of lead exposure must be identified. A child's ea...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Royland, Joyce E.; Kodavanti, Prasada Rao S.
2008-09-01
Epidemiological studies indicate that low levels of polychlorinated biphenyl (PCB) exposure can adversely affect neurocognitive development. In animal models, perturbations in calcium signaling, neurotransmitters, and thyroid hormones have been postulated as potential mechanisms for PCB-induced developmental neurotoxicity. In order to understand the role of these proposed mechanisms and to identify other mechanisms in PCB-induced neurotoxicity, we have chosen a global approach utilizing oligonucleotide microarrays to examine gene expression profiles in the brain following developmental exposure to Aroclor 1254 (0 or 6 mg/kg/day from gestation day 6 through postnatal day (PND) 21) in Long-Evans rats. Gene expression levels in the cerebellummore » and hippocampus from PNDs 7 and 14 animals were determined on Affymetrix rat 230A{sub 2}.0 chips. In the cerebellum, 87 transcripts were altered at PND7 compared to 27 transcripts at PND14 by Aroclor 1254 exposure, with only one transcript affected at both ages. In hippocampus, 175 transcripts and 50 transcripts were altered at PND7 and PND14, respectively, by Aroclor 1254 exposure with five genes commonly affected. Functional analysis suggests that pathways related to calcium homeostasis (Gng3, Ryr2, Trdn, Cacna1a), intracellular signaling (Camk2d, Stk17b, Pacsin2, Ryr2, Trio, Fert2, Ptk2b), axonal guidance (Lum, Mxd3, Akap11, Gucy1b3), aryl hydrocarbon receptor signaling (Nfia, Col1a2), and transcripts involved in cell proliferation (Gspt2, Cdkn1c, Ptk2b) and differentiation (Ifitm31, Hpca, Zfp260, Igsf4a, Hes5) leading to the development of nervous system were significantly altered by Aroclor 1254 exposure. Of the two brain regions examined, Aroclor 1254-induced genomic changes were greater in the hippocampus than the cerebellum. The genomic data suggests that PCB-induced neurotoxic effects were due to disruption of normal ontogenetic pattern of nervous system growth and development by altering intracellular signaling pathways but not by endocrine disruption.« less
Second hand tobacco smoke adversely affects the bone of immature rats.
Rosa, Rodrigo César; Pereira, Sângela Cunha; Cardoso, Fabrizio Antônio Gomide; Caetano, Abadio Gonçalves; Santiago, Hildemberg Agostinho Rocha de; Volpon, José Batista
2017-12-01
To evaluate the influence of secondhand cigarette smoke exposure on longitudinal growth of the tibia of growing rats and some parameters of bone quality. Forty female rats were randomly divided into four groups: control: rats were sham exposed; 30 days: rats were exposed to tobacco smoke for 30 days; 45 days: rats were exposed to tobacco smoke for 45 days; and 60 days: rats were exposed to tobacco smoke for 60 days. Blood samples were collected to evaluate the levels of cotinine and alkaline phosphatase. Both tibias were dissected and weighed; the lengths were measured, and the bones were then stored in a freezer for analysis of bone mineral content and mechanical resistance (maximal load and stiffness). Exposure of rats to tobacco smoke significantly compromised bone health, suggesting that the harmful effects may be time dependent. Harmful effects on bone growth were detected and were more pronounced at 60-day follow-ups with a 41.8% reduction in alkaline phosphatase levels (p<0.01) and a decrease of 11.25% in tibia length (p<0.001). Furthermore, a 41.5% decrease in bone mineral density was observed (p<0.001), leading to a 42.8% reduction in maximum strength (p<0.001) and a 56.7% reduction in stiffness (p<0.001). Second hand cigarette smoke exposure in rats affected bones that were weaker, deforming them and making them osteopenic. Additionally, the long bone was shorter, suggesting interference with growth. Such events seem to be related to time of exposure.
Environmentally relevant microplastic exposure affects sediment-dwelling bivalves.
Bour, Agathe; Haarr, Ane; Keiter, Steffen; Hylland, Ketil
2018-05-01
Most microplastics are expected to sink and end up in marine sediments. However, very little is known concerning their potential impact on sediment-dwelling organisms. We studied the long-term impact of microplastic exposure on two sediment-dwelling bivalve species. Ennucula tenuis and Abra nitida were exposed to polyethylene microparticles at three concentrations (1; 10 and 25 mg/kg of sediment) for four weeks. Three size classes (4-6; 20-25 and 125-500 μm) were used to study the influence of size on microplastic ecotoxicity. Microplastic exposure did not affect survival, condition index or burrowing behaviour in either bivalve species. However, significant changes in energy reserves were observed. No changes were observed in protein, carbohydrate or lipid contents in E. tenuis, with the exception of a decrease in lipid content for one condition. However, total energy decreased in a dose-dependent manner for bivalves exposed to the largest particles. To the contrary, no significant changes in total energy were observed for A. nitida, although a significant decrease of protein content was observed for individuals exposed to the largest particles, at all concentrations. Concentration and particle size significantly influenced microplastic impacts on bivalves, the largest particles and higher concentrations leading to more severe effects. Several hypotheses are presented to explain the observed modulation of energy reserves, including the influence of microplastic size and concentration. Our results suggest that long-term exposure to microplastics at environmentally relevant concentrations can impact marine benthic biota. Copyright © 2018 Elsevier Ltd. All rights reserved.
A Case Study of Environmental Injustice: The Failure in Flint
Campbell, Carla; Greenberg, Rachael; Mankikar, Deepa; Ross, Ronald D.
2016-01-01
The failure by the city of Flint, Michigan to properly treat its municipal water system after a change in the source of water, has resulted in elevated lead levels in the city’s water and an increase in city children’s blood lead levels. Lead exposure in young children can lead to decrements in intelligence, development, behavior, attention and other neurological functions. This lack of ability to provide safe drinking water represents a failure to protect the public’s health at various governmental levels. This article describes how the tragedy happened, how low-income and minority populations are at particularly high risk for lead exposure and environmental injustice, and ways that we can move forward to prevent childhood lead exposure and lead poisoning, as well as prevent future Flint-like exposure events from occurring. Control of the manufacture and use of toxic chemicals to prevent adverse exposure to these substances is also discussed. Environmental injustice occurred throughout the Flint water contamination incident and there are lessons we can all learn from this debacle to move forward in promoting environmental justice. PMID:27690065
A Case Study of Environmental Injustice: The Failure in Flint.
Campbell, Carla; Greenberg, Rachael; Mankikar, Deepa; Ross, Ronald D
2016-09-27
The failure by the city of Flint, Michigan to properly treat its municipal water system after a change in the source of water, has resulted in elevated lead levels in the city's water and an increase in city children's blood lead levels. Lead exposure in young children can lead to decrements in intelligence, development, behavior, attention and other neurological functions. This lack of ability to provide safe drinking water represents a failure to protect the public's health at various governmental levels. This article describes how the tragedy happened, how low-income and minority populations are at particularly high risk for lead exposure and environmental injustice, and ways that we can move forward to prevent childhood lead exposure and lead poisoning, as well as prevent future Flint-like exposure events from occurring. Control of the manufacture and use of toxic chemicals to prevent adverse exposure to these substances is also discussed. Environmental injustice occurred throughout the Flint water contamination incident and there are lessons we can all learn from this debacle to move forward in promoting environmental justice.
Lead in school drinking water: Canada can and should address this important ongoing exposure source.
Barn, Prabjit; Kosatsky, Tom
2011-01-01
Reducing all preventable lead exposures in children should be a public health priority given that blood lead levels in children that were once considered "safe" have since been associated with important neuro-developmental deficits. Limited Canadian data indicate that school drinking water can be an important component of children's overall exposure to lead. Outside of Ontario, however, Canadian schools are not required to test for lead in water; in most of Canada, school testing is case by case, typically initiated by parental concerns. Provinces and territories are encouraged to follow Ontario's example by instituting a routine school water lead testing program in order to identify facilities where action can result in a decrease in students' exposure to lead. Testing and remediation frameworks developed by the US Environmental Protection Agency, Health Canada, and the province of Ontario provide direction to school boards and local and provincial/territorial health authorities.
Cortese, Antonio; Pantaleo, Giuseppe; Borri, Antonio; Amato, Massimo; Claudio, Pier Paolo
2017-02-01
Necrotizing fasciitis (NF) of odontogenic origin affecting the head and neck region is a rare but serious clinical condition, which, if diagnosed late, can lead to a fatal outcome. The early diagnosis of necrotizing fasciitis can be difficult. Delay in diagnosis leads to increase in the area of necrosis with a resulting increase in cosmetic deformity and life-threatening complication. In this study, we present two cases of elderly patients with aggressive NF affecting the neck and anterior mediastinum, which were of odontogenic origin. In the two patients selected necrotic skin and soft tissue were removed and wide exposure was achieved with debridement of the neck at the level of the affected layer of superficial cervical fascia. Saline solution was used as irrigation to treat the patients with acute necrotizing fasciitis. Difficulties in managing this condition with NF extent to deep anterior mediastinum is related to clavicle osteotomy or thoracotomy need with high surgical risks. In our technique, by gentle suction in anterior mediastinum, necrotic tissue resection was possible without any osteotomy need. Suctioning resection technique associated with hyperbaric, metabolic rebalance, and amino acid support in association with three types antibiotic therapy are fundamental points for correct therapy strategy, leading to full recovery and healing of NF patients even if in very unfavorable conditions. Multidisciplinary approach is paramount for proper treatment of this disease.
McGree, M.M.; Winkelman, D.L.; Vieira, N.K.M.; Vajda, A.M.
2010-01-01
Endocrine disrupting chemicals (EDCs) have been detected in surface waters worldwide and can lead to developmental and reproductive disruption in exposed fishes. In the US Great Plains, EDCs are impacting streams and rivers and may be causing adverse reproductive effects. To examine how estrogenic EDCs might affect reproductive success of plains fishes, we experimentally exposed male red shiners (Cyprinella lutrensis) to exogenous 17b-estradiol. We characterized the effects of estradiol on male gonadal histology and secondary sexual characteristics, determined whether exposure reduced reproductive success, and examined the effects of depuration. Adults were exposed to a mean concentration of 70 ng L-1 estradiol, a solvent control, or a water control for at least 83 days. Male exposure to estradiol resulted in elevated plasma vitellogenin concentrations, changes in spermatogenesis, reduced mating coloration and tubercles, altered mating behaviors, and reduced reproductive success with no viable progeny produced. Reproductive endpoints improved upon depuration (28 days). Exposure to estradiol had significant adverse effects on red shiners, indicating that wild populations may face developmental and reproductive difficulties if they are chronically exposed to estradiol.
Boland, Elaine M; Stange, Jonathan P; Labelle, Denise R; Shapero, Benjamin G; Weiss, Rachel B; Abramson, Lyn Y; Alloy, Lauren B
2016-05-01
The Behavioral Approach System (BAS)/Reward Hypersensitivity Theory and the Social Zeitgeber Theory are two biopsychosocial theories of bipolar spectrum disorders (BSD) that may work together to explain affective dysregulation. The present study examined whether BAS sensitivity is associated with affective symptoms via a) increased social rhythm disruption in response to BAS-relevant life events, or b) greater exposure to BAS events leading to social rhythm disruption and subsequent symptoms. Results indicated that high BAS individuals were more likely to experience social rhythm disruption following BAS-relevant events. Social rhythm disruption mediated the association between BAS-relevant events and symptoms (hypothesis a). High BAS individuals experienced significantly more BAS-relevant events, which predicted greater social rhythm disruption, which predicted greater levels of affective symptoms (hypothesis b). Individuals at risk for BSD may be sensitive to BAS-relevant stimuli, experience more BAS-relevant events, and experience affective dysregulation due to the interplay of the BAS and circadian rhythms.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Committee on Energy and Commerce.
This two-part report deals with the Lead Exposure Reduction Act of 1992 (H.R. 5730), an amendment to the Toxic Substances Control Act and the Federal Food, Drug, and Cosmetic Act. The amendment is intended to lead to the reduction of levels of lead in the environment and to lower the degree of childhood exposure to lead. The bill provides for a…
2011-01-01
Background Lead exposure remains a public health concern due to its serious adverse effects, such as cognitive and behavioral impairment: children younger than six years of age being the most vulnerable population. In Europe, the lead-related economic impacts have not been examined in detail. We estimate the annual costs in France due to childhood exposure and, through a cost benefit analysis (CBA), aim to assess the expected social and economic benefits of exposure abatement. Methods Monetary benefits were assessed in terms of avoided national costs. We used results from a 2008 survey on blood-lead (B-Pb) concentrations in French children aged one to six years old. Given the absence of a threshold concentration being established, we performed a sensitivity analysis assuming different hypothetical threshold values for toxicity above 15 μg/L, 24 μg/L and 100 μg/L. Adverse health outcomes of lead exposure were translated into social burden and economic costs based on literature data from literature. Direct health benefits, social benefits and intangible avoided costs were included. Costs of pollutant exposure control were partially estimated in regard to homes lead-based paint decontamination, investments aiming at reducing industrial lead emissions and removal of all lead drinking water pipes. Results The following overall annual benefits for the three hypothetical thresholds values in 2008 are: €22.72 billion, €10.72 billion and €0.44 billion, respectively. Costs from abatement ranged from €0.9 billion to 2.95 billion/year. Finally, from a partial CBA of lead control in soils and dust the estimates of total net benefits were € 3.78 billion, € 1.88 billion and €0.25 billion respectively for the three hypothesized B-Pb effect values. Conclusions Prevention of childhood lead exposure has a high social benefit, due to reduction of B-Pb concentrations to levels below 15 μg/L or 24 μg/L, respectively. Reducing only exposures above 100 μg/L B-Pb has little economic impact due to the small number of children who now exhibit such high exposure levels. Prudent public policies would help avoiding future medical interventions, limit the need for special education and increase future productivity, and hence lifetime income for children exposed to lead. PMID:21599937
Occupational exposures to leaded and unleaded gasoline engine emissions and lung cancer risk.
Xu, Mengting; Siemiatycki, Jack; Lavoué, Jérôme; Pasquet, Romain; Pintos, Javier; Rousseau, Marie-Claude; Richardson, Lesley; Ho, Vikki
2018-04-01
To determine whether occupational exposure to gasoline engine emissions (GEE) increased the risk of lung cancer and more specifically whether leaded or unleaded GEE increased the risk. Two population-based case-control studies were conducted in Montreal, Canada. The first was conducted in the early 1980s and included many types of cancer including lung cancer. The second was conducted in the late 1990s and focused on lung cancer. Population controls were used in both studies. Altogether, there were 1595 cases and 1432 population controls. A comprehensive expert-based exposure assessment procedure was implemented and exposure was assessed for 294 agents, including unleaded GEE, leaded GEE and diesel engine emissions (DEE). Logistic regression analyses were conducted to estimate ORs between various metrics of GEE exposure and lung cancer, adjusting for smoking, DEE and other potential confounders. About half of all controls were occupationally exposed to GEE. Irrespective of the metrics of exposure (any exposure, duration of exposure and cumulative exposure) and the type of lung cancer, and the covariates included in models, none of the point estimates of the ORs between occupational exposure to leaded or unleaded GEE and lung cancer were above 1.0. Pooling two studies, the OR for any exposure to leaded GEE was 0.82 (0.68-1.00). Our results do not support the hypothesis that occupational exposure to GEE increases the risk of lung cancer. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Han, S; Pfizenmaier, D H; Garcia, E; Eguez, M L; Ling, M; Kemp, F W; Bogden, J D
2000-01-01
Millions of women of child-bearing age have substantial bone lead stores due to lead exposure as children. Dietary calcium ingested simultaneously with lead exposure can reduce lead absorption and accumulation. However, the effects of dietary calcium on previously accumulated maternal lead stores and transfer to the fetus have not been investigated. We studied the effects of lead exposure of female rats at an early age on fetal development during a subsequent pregnancy. We gave 5-week-old female Sprague-Dawley rats lead as the acetate in their drinking water for 5 weeks; controls received equimolar sodium acetate. This was followed by a 1-month period without lead exposure before mating. We randomly assigned pregnant rats (n = 39) to diets with a deficient (0.1%) or normal (0.5%) calcium content during pregnancy. A total of 345 pups were delivered alive. Lead-exposed dams and their pups had significantly higher blood lead concentrations than controls, but the concentrations were in the range of those found in many pregnant women. Pups born to dams fed the calcium-deficient diet during pregnancy had higher blood and organ lead concentrations than pups born to dams fed the 0. 5% calcium diet. Pups born to lead-exposed dams had significantly (p<0.0001) lower mean birth weights and birth lengths than controls. There were significant inverse univariate associations between dam or pup organ lead concentrations and birth weight or length. The 0.5% calcium diet did not increase in utero growth. Stepwise regression analysis demonstrated that greater litter size and female sex were significantly associated with reduced pup birth weight and length. However, lead exposure that ended well before pregnancy was significantly (p<0.0001) associated with reduced birth weight and length, even after litter size, pup sex, and dam weight gain during pregnancy were included in the regression analysis. The data demonstrate that an increase in dietary calcium during pregnancy can reduce fetal lead accumulation but cannot prevent lead-induced decreases in birth weight and length. The results provide evidence that dietary nutrients can influence the transfer of toxins to the fetus during pregnancy. If these results are applicable to women, an increase in diet calcium during pregnancy could reduce the transfer of lead from prepregnancy maternal exposures to the fetus. Images Figure 3 Figure 4 Figure 1 Figure 2 PMID:10856026
E-Waste Informal Recycling: An Emerging Source of Lead Exposure in South America
Pascale, Antonio; Sosa, Adriana; Bares, Cristina; Battocletti, Alejandra; Moll, María José; Pose, Darío; Laborde, Amalia; González, Hugo; Feola, Gabriella
2016-01-01
BACKGROUND Primitive electronic waste (e-waste) recycling creates exposures to several hazardous substances including lead. In Uruguay, primitive recycling procedures are a significant source of lead exposure. OBJECTIVES The aim of this study was to examine lead exposure in blood lead levels (BLLs) in low-income children exposed to lead through burning cables. METHODS A sample of children and adolescents exposed to lead through burning cable activities were assessed at the Department of Toxicology in Montevideo, Uruguay, between 2010 and 2014. Soil lead levels of residences were taken shortly after their assessment. FINDINGS The final sample included 69 children and adolescents (mean age 7.89 years). More than 66% of participants had an additional source of lead exposure—manual gathering of metals—and <5% were exposed to lead through landfills or paint. Average BLLs at first consultation were 9.19 ug/dL and lower at the second measurement (5.86 μg/dL). Data from soil lead levels ranged from 650 to 19,000 mg of lead/kg of soil. The interventions conducted after the assessment included family education in the clinic and at home, indoor and outdoor remediation. We found a decrease in BLLs of 6.96 μg/dL. Older children had lower BLLs (r = −0.24; P =0.05). Statistical analyses also showed that children living in areas with higher soil lead levels had significantly higher BLLs (r = 0.50; P < 0.01). Additionally, we found greater BLLs from burning cable activities when children had been exposed to lead-based paint (r = 0.23; P < 0.1). CONCLUSION Among children exposed to e-waste recycling, the most common additional source of lead exposure was the manual gathering of metals. The average BLL among children and adolescents in this study is higher than the BLLs currently suggested in medical intervention. Future research should focus on exploring effective interventions to reduce lead exposure among this vulnerable group. PMID:27325077
Desired response to phototherapy vs photoaggravation in psoriasis: what makes the difference?
Wolf, Peter; Weger, Wolfgang; Patra, VijayKumar; Gruber-Wackernagel, Alexandra; Byrne, Scott N
2016-12-01
Psoriasis commonly responds beneficially to UV radiation from natural sunlight or artificial sources. Therapeutic mechanisms include the proapoptotic and immunomodulating effects of UV, affecting many cells and involving a variety of pro- and anti-inflammatory cytokines, downregulating the Th17/IL-23 response with simultaneous induction of regulatory immune cells. However, exposure to UV radiation in a subset of psoriasis patients leads to exacerbation of the disease. We herein shed light on the predisposing factors of photosensitive psoriasis, including genetics (such as HLA-Cw*0602 or CARD14), gender and coexisting photodermatoses such as polymorphic light eruption (PLE) in the context of potential molecular mechanisms behind therapeutic photoresponsiveness or photoaggravation. UV-induced damage/pathogen-associated molecular patterns, damage to self-coding RNA (signalling through Toll-like receptors), certain antimicrobial peptides and/or inflammasome activation may induce innate immunity, leading to psoriasis at the site of UV exposure when there is concomitant, predisposing resistance against UV-induced suppression of the adaptive immune response (like in PLE) that otherwise would act to reduce psoriasis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
End-stage renal disease after occupational lead exposure: 20 years of follow-up.
Evans, Marie; Discacciati, Andrea; Quershi, Abdul Rashid; Åkesson, Agneta; Elinder, Carl-Gustaf
2017-06-01
Whether low-level exposure to lead may give rise to chronic kidney disease or end-stage renal disease (ESRD) is debated. In this study, we aimed to specifically investigate if low-level occupational exposure to lead was associated with increased incidence of ESRD. The incidence of starting renal replacement therapy as a result of ESRD was examined in a cohort of10 303 lead-workers who had controlled blood lead concentrations due to a compulsory occupational health surveillance programme in Sweden during the time period 1977-1990. The ESRD incidence (obtained through register-linkage) among the lead-exposed workers was compared with the age, sex and calendar period-adjusted expected incidence based on data from the Swedish renal registry. Dose-response association was evaluated in external (general population) and internal (within the occupational cohort) comparisons by highest achieved blood lead level. There were 30 (0.29%) individuals in the cohort who developed ESRD during the median follow-up period of 26.3 years. The standardised incidence ratio (SIR) for ESRD incidence was 0.79 (95% CI 0.54 to 1.13). Among those who achieved the highest blood lead (>41.4 µg/dL), the SIR was 1.01 (0.44 to 1.99). There was no evidence of a dose-response relationship between the maximum achieved blood lead or the cumulative blood lead exposure and ESRD in external or internal comparisons. This study of workers with documented occupational lead exposures followed for 20 years shows no statistically significant association between lead exposure (following the current occupational recommendations for Sweden) and ESRD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Graber, Lauren K.; Asher, Daniel; Anandaraja, Natasha; Bopp, Richard F.; Merrill, Karen; Cullen, Mark R.; Luboga, Samuel; Trasande, Leonardo
2010-01-01
Background Tetraethyl lead was phased out of gasoline in Uganda in 2005. Recent mitigation of an important source of lead exposure suggests examination and re-evaluation of the prevalence of childhood lead poisoning in this country. Ongoing concerns persist about exposure from the Kiteezi landfill in Kampala, the country’s capital. Objectives We determined blood lead distributions among Kampala schoolchildren and identified risk factors for elevated blood lead levels (EBLLs; ≥ 10 μg/dL). Analytical approach Using a stratified, cross-sectional design, we obtained blood samples, questionnaire data, and soil and dust samples from the homes and schools of 163 4- to 8-year-old children representing communities with different risks of exposure. Results The mean blood lead level (BLL) was 7.15 μg/dL; 20.5% of the children were found to have EBLL. Multivariable analysis found participants whose families owned fewer household items, ate canned food, or used the community water supply as their primary water source to have higher BLLs and likelihood of EBLLs. Distance < 0.5 mi from the landfill was the factor most strongly associated with increments in BLL (5.51 μg/dL, p < 0.0001) and likelihood of EBLL (OR = 4.71, p = 0.0093). Dust/soil lead was not significantly predictive of BLL/EBLL. Conclusions Lead poisoning remains highly prevalent among school-age children in Kampala. Confirmatory studies are needed, but further efforts are indicated to limit lead exposure from the landfill, whether through water contamination or through another mechanism. Although African nations are to be lauded for the removal of lead from gasoline, this study serves as a reminder that other sources of exposure to this potent neurotoxicant merit ongoing attention. PMID:20194080
Cumulative Lead Exposure and Age-related Hearing Loss: The VA Normative Aging Study
Park, Sung Kyun; Elmarsafawy, Sahar; Mukherjee, Bhramar; Spiro, Avron; Vokonas, Pantel S.; Nie, Huiling; Weisskopf, Marc G.; Schwartz, Joel; Hu, Howard
2010-01-01
Although lead has been associated with hearing loss in occupational settings and in children, little epidemiologic research has been conducted on the impact of cumulative lead exposure on age-related hearing loss in the general population. We determined whether bone lead levels, a marker of cumulative lead exposure, are associated with decreased hearing ability in 448 men from the Normative Aging Study, seen between 1962 and 1996 (2,264 total observations). Air conduction hearing thresholds were measured at 0.25 to 8 kHz and pure tone averages (PTA) (mean of 0.5, 1, 2 and 4 kHz) were computed. Tibia and patella lead levels were measured using K x-ray fluorescence between 1991 and 1996. In cross-sectional analyses, after adjusting for potential confounders including occupational noise, patella lead levels were significantly associated with poorer hearing thresholds at 2, 3, 4, 6 and 8 kHz and PTA. The odds of hearing loss significantly increased with patella lead levels. We also found significant positive associations between tibia lead and the rate change in hearing thresholds at 1, 2, and 8 kHz and PTA in longitudinal analyses. Our results suggest that chronic low-level lead exposure may be an important risk factor for age-related hearing loss and reduction of lead exposure could help prevent or delay development of age-related hearing loss. PMID:20638461
Occupational lead exposure aboard a tall ship.
Landrigan, P J; Straub, W E
1985-01-01
To evaluate occupational exposures to lead in shipfitters cutting and riveting lead-painted iron plates aboard an iron-hulled sailing vessel, we conducted an environmental and medical survey. Lead exposures in seven personal (breathing zone) air samples ranged from 108 to 500 micrograms/m3 (mean 257 micrograms/m3); all were above the Occupational Safety and Health Administration (OSHA) standard of 50 micrograms/m3. In two short-term air samples obtained while exhaust ventilation was temporarily disconnected, mean lead exposure rose to 547 micrograms/m3. Blood lead levels in ten shipfitters ranged from 25 to 53 micrograms/dl (mean, 37.8 micrograms/dl); levels in three of these workers exceeded the upper normal limit of 40 micrograms/dl. Blood lead levels in shipfitters were significantly higher than in other shipyard workers (mean 10.0 micrograms/dl; p less than 0.001). Smoking shipfitters (mean, 47 micrograms/dl) had significantly higher lead levels than nonsmokers (mean, 32 micrograms/dl; p = 0.03). Lead levels in shipfitters who wore respirators were not lower than in those who wore no protective gear (p = 0.68). Four shipfitters had erythrocyte protoporphyrin (EP) concentrations above the adult upper normal limit of 50 micrograms/dl. A close correlation was found between blood lead and EP levels (r = 0.70). Prevalence of lead-related symptoms was no higher in shipfitters than in other workers. No cases of symptomatic lead poisoning were noted. These data indicate that serious occupational exposure to lead can occur in a relatively small boatyard.
Olfactory recognition memory is disrupted in young mice with chronic low-level lead exposure.
Flores-Montoya, Mayra Gisel; Alvarez, Juan Manuel; Sobin, Christina
2015-07-02
Chronic developmental lead exposure yielding very low blood lead burden is an unresolved child public health problem. Few studies have attempted to model neurobehavioral changes in young animals following very low level exposure, and studies are needed to identify tests that are sensitive to the neurobehavioral changes that may occur. Mechanisms of action are not yet known however results have suggested that hippocampus/dentate gyrus may be uniquely vulnerable to early chronic low-level lead exposure. This study examined the sensitivity of a novel odor recognition task to differences in pre-adolescent C57BL/6J mice chronically exposed from birth to PND 28, to 0 ppm (control), 30 ppm (low-dose), or 330 ppm (higher-dose) lead acetate (N=33). Blood lead levels (BLLs) determined by ICP-MS ranged from 0.02 to 20.31 μg/dL. Generalized linear mixed model analyses with litter as a random effect showed a significant interaction of BLL×sex. As BLLs increased olfactory recognition memory decreased in males. Among females, non-linear effects were observed at lower but not higher levels of lead exposure. The novel odor detection task is sensitive to effects associated with early chronic low-level lead exposure in young C57BL/6J mice. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Chartrand, Tanya L; van Baaren, Rick B; Bargh, John A
2006-02-01
According to the feelings-as-information account, a person's mood state signals to him or her the valence of the current environment (N. Schwarz & G. Clore, 1983). However, the ways in which the environment automatically influences mood in the first place remain to be explored. The authors propose that one mechanism by which the environment influences affect is automatic evaluation, the nonconscious evaluation of environmental stimuli as good or bad. A first experiment demonstrated that repeated brief exposure to positive or negative stimuli (which leads to automatic evaluation) induces a corresponding mood in participants. In 3 additional studies, the authors showed that automatic evaluation affects information processing style. Experiment 4 showed that participants' mood mediates the effect of valenced brief primes on information processing. ((c) 2006 APA, all rights reserved).
Chartrand, Tanya L.; van Baaren, Rick B.; Bargh, John A.
2009-01-01
According to the feelings-as-information account, a person’s mood state signals to him or her the valence of the current environment (N. Schwarz & G. Clore, 1983). However, the ways in which the environment automatically influences mood in the first place remain to be explored. The authors propose that one mechanism by which the environment influences affect is automatic evaluation, the nonconscious evaluation of environmental stimuli as good or bad. A first experiment demonstrated that repeated brief exposure to positive or negative stimuli (which leads to automatic evaluation) induces a corresponding mood in participants. In 3 additional studies, the authors showed that automatic evaluation affects information processing style. Experiment 4 showed that participants’ mood mediates the effect of valenced brief primes on information processing. PMID:16478316
Rubio, Marina; McHugh, Douglas; Fernández-Ruiz, Javier; Bradshaw, Heather; Walker, J. Michael
2010-01-01
Chronic alcohol exposure leads to significant changes in the levels of endocannabinoids and their receptors in the brains of humans and laboratory animals, as well as in cultured neuronal cells. However, little is known about the effects of short-term periods of alcohol exposure. In the present study, we examined the changes in endocannabinoid levels (anandamide and 2-arachidonoylglycerol), as well as four additional N-acylethanolamines, in four brain regions of rats exposed to alcohol through the liquid diet for a period of 24 hours. The levels of N-acylethanolamines were diminished 24 hours after the onset of alcohol exposure. This was particularly evident for anandamide in the hypothalamus, amygdala and caudate-putamen, for N-palmitoylethanolamine in the caudate-putamen, for N-oleoylethanolamine in the hypothalamus, caudate-putamen and prefrontal cortex, and for N-stearoylethanolamine in the amygdala. The only exception was N-linoleoylethanolamine for which the levels increased in the amygdala after the exposure to alcohol. The levels of the other major endocannabinoid, 2-arachidonoylglycerol, were also reduced with marked effects in the prefrontal cortex. These results support the notion that short-term alcohol exposure reduces endocannabinoid levels in the brain accompanied by a reduction in several related N-acylethanolamines. PMID:17574742
NASA Astrophysics Data System (ADS)
Kelly, Michael William
This research was primarily motivated to determine the retinal injury mechanism from ultra-short pulse (<1ns) lasers. The American National Standards Institute, ANSI, standards for safe retinal exposures, and mechanisms for injury, are established for pulse durations longer than 1 ns. Little data exists for shorter pulse durations. High temperatures and pressures, generated within pigmented melanosomes, leads to mechanically mediated injury for such exposures. We used nanosecond time resolved imaging to evaluate transient photo-mechanical effects on isolated melanosomes, pigmented cell cultures, and the retinal pigment epithelium, RPE, ex-vivo. Exposures between 20 ns and 100 fs were performed. We developed a unique ex-vivo model to examine transient events directly on the RPE. Evaluation of cell viability was accomplished in real time, minutes after the exposure. The threshold for cavitation (bubble formation) around single melanosomes corresponded with the threshold for intracellular cavitation and cell killing, in the nanosecond and picosecond domain. Shock waves, formed around melanosomes following sub-nanosecond exposures, did not affect the mechanism for cell killing at threshold. Although the wavelength was increased for shorter exposures (3 ps, 300 fs, and 100 fs) the threshold for intracellular cavitation decreased. All results were compared with data collected by others, using live animal models.
With or without pheromone habituation: possible differences between insect orders?
Suckling, David Maxwell; Stringer, Lloyd D; Jiménez-Pérez, Alfredo; Walter, Gimme H; Sullivan, Nicola; El-Sayed, Ashraf M
2018-06-01
Habituation to sex pheromones is one of the key mechanisms in mating disruption, an insect control tactic. Male moths often show reduced sexual response after pre-exposure to female sex pheromone. Mating disruption is relatively rare in insect orders other than Lepidoptera. As a positive control we confirmed habituation in a moth (Epiphyas postvittana) using 24 h pre-exposure to sex pheromone to reduce subsequent activation behaviour. We then tested the impact of pre-exposure to sex or trail pheromone on subsequent behavioural response with insects from three other orders. Similar pre-exposure for 24 h to either sex pheromone [Pseudococcus calceolariae (Homoptera) and apple leaf curling midge Dasineura mali (Diptera), or trail pheromone of Argentine ants (Linepithema humile (Hymenoptera)], followed by behavioural assay in clean air provided no evidence of habituation after pre-exposure in these latter cases. The moths alone were affected by pre-exposure to pheromone. For pests without habituation, sustained attraction to a point source may make lure and kill more economical. Improved knowledge of behavioural processes should lead to better success in pest management and mechanisms should be investigated further to inform studies and practical efforts generally enhancing effectiveness of pheromone-based management. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Wyszkowska, Joanna; Shepherd, Sebastian; Sharkh, Suleiman; Jackson, Christopher W.; Newland, Philip L.
2016-01-01
Electromagnetic fields (EMFs) are present throughout the modern world and are derived from many man-made sources including overhead transmission lines. The risks of extremely-low frequency (ELF) electromagnetic fields are particularly poorly understood especially at high field strengths as they are rarely encountered at ground level. Flying insects, however, can approach close to high field strength transmission lines prompting the question as to how these high levels of exposure affect behaviour and physiology. Here we utilise the accessible nervous system of the locust to ask how exposure to high levels of ELF EMF impact at multiple levels. We show that exposure to ELF EMFs above 4 mT leads to reduced walking. Moreover, intracellular recordings from an identified motor neuron, the fast extensor tibiae motor neuron, show increased spike latency and a broadening of its spike in exposed animals. In addition, hind leg kick force, produced by stimulating the extensor tibiae muscle, was reduced following exposure, while stress-protein levels (Hsp70) increased. Together these results suggest that ELF EMF exposure has the capacity to cause dramatic effects from behaviour to physiology and protein expression, and this study lays the foundation to explore the ecological significance of these effects in other flying insects. PMID:27808167
Dynamic Exposure to Alcohol Advertising in a Sports Context Influences Implicit Attitudes.
Zerhouni, Oulmann; Bègue, Laurent; Duke, Aaron A; Flaudias, Valentin
2016-02-01
Experimental studies investigating the impact of advertising with ecological stimuli on alcohol-related cognition are scarce. This research investigated the cognitive processes involved in learning implicit attitudes toward alcohol after incidental exposure to alcohol advertisements presented in a dynamic context. We hypothesized that incidental exposure to a specific alcohol brand would lead to heightened positive implicit attitudes toward alcohol due to a mere exposure effect. In total, 108 participants were randomly exposed to dynamic sporting events excerpts with and without advertising for a specific brand of alcohol, after completing self-reported measures of alcohol-related expectancies, alcohol consumption, and attitudes toward sport. Participants then completed a lexical decision task and an affective priming task. We showed that participants were faster to detect brand name after being exposed to advertising during a sports game, and that implicit attitudes of participants toward the brand were more positive after they were exposed to advertising, even when alcohol usage patterns were controlled for. Incidental exposure to alcohol sponsorship in sport events impacts implicit attitudes toward the advertised brand and alcohol in general. The effect of incidental advertising on implicit attitudes is also likely to be due to a mere exposure effect. However, further studies should address this point specifically. Copyright © 2016 by the Research Society on Alcoholism.
Chaube, Radha; Gautam, Geeta J; Joy, Keerikattil P
2013-05-01
Alkylphenol polyethoxylates (APEs), which are widely used in detergents, paints, herbicides, insecticides, and in many other formulations, have been widely detected in aquatic environments. 4-Nonylphenol (NP) is an important APE detected at microgram levels per litre (0.1-336 μg/L) in water. The objective of the present study was to evaluate NP's toxic effects at low and high sublethal concentrations (0.1 and 1 μg/L) on embryonic development of the catfish Heteropneustes fossilis at different time intervals. The data show that fertilization rate was decreased and cleavage and blastula were severely affected leading to complete mortality of embryos. NP exposure resulted in various body malformations in larvae, such as vertebral deformations, e.g., fin blistering/necrosis, axial deformities (lordosis, kyphosis, and scoliosis) of the spine in the abdominal and caudal region, tail curved completely backward, shortened body, severe spinal and yolk sac malformations, C-shaped severe spinal curvature, cranial malformation with undeveloped head, and failure of eye development. The level of body malformations increased with the concentration and exposure time. After 72 h of exposure, all larvae were dead at both concentrations. Scanning electron microscope study showed that epidermal cells (keratinocytes) were severely damaged in both low- and high-dose treatments throughout development, leading to development of numerous depressions representing sinking holes on the skin. Mucous glands increased significantly in treatment groups compared with control groups. The present study highlights the severe teratogenic effects of NP. The prevalence of the contaminant, if not checked, can lead to decreased population and ultimate disappearance of the species.