Sample records for lead iodides

  1. Atomic force microscopy of lead iodide crystal surfaces

    NASA Astrophysics Data System (ADS)

    George, M. A.; Azoulay, M.; Jayatirtha, H. N.; Biao, Y.; Burger, A.; Collins, W. E.; Silberman, E.

    1994-03-01

    Atomic force microscopy (AFM) was used to characterize the surface of lead iodide crystals. The high vapor pressure of lead iodide prohibits the use of traditional high resolution surface study techniques that require high vacuum conditions. AFM was used to image numerous insulating surface in various ambients, with very little sample preparation techniques needed. Freshly cleaved and modified surfaces, including, chemical and vacuum etched, and air aged surfaces, were examined. Both intrinsic and induced defects were imaged with high resolution. The results were compared to a similar AFM study of mercuric iodide surfaces and it was found that, at ambient conditions, lead iodide is significantly more stable than mercuric iodide.

  2. Controllable deposition of regular lead iodide nanoplatelets and their photoluminescence at room temperature

    NASA Astrophysics Data System (ADS)

    Kong, Weimin; Li, Guohui; Liang, Qiangbing; Ji, Xingqi; Li, Gang; Ji, Ting; Che, Tao; Hao, Yuying; Cui, Yanxia

    2018-03-01

    In this work, the synthesis of regular single crystalline lead iodide nanoplatelets are carried out based on the physical vapor phase deposition method. Different lead iodide nanoplatelets are obtained by tuning the location of the mica substrate along with the temperature of the tube furnace. The rules of size, thickness, density of the lead iodide nanoplatelets at varied deposition conditions are analyzed according to the crystal growth principles. It was claimed in literature that the photoluminescence of lead iodide could be obtained only at a low temperature (lower than 200 K). Here, at room temperature, we successfully obtained the photoluminescence spectra of the prepared lead iodide nanoplatelets, which possess two apparent peaks due to the biexcitons and the inelastic scattering of excitons, respectively. Our present study contributes to the development of nanoscaled high performance optoelectronic devices.

  3. Crystal Growth and Dissolution of Methylammonium Lead Iodide Perovskite in Sequential Deposition: Correlation between Morphology Evolution and Photovoltaic Performance.

    PubMed

    Hsieh, Tsung-Yu; Huang, Chi-Kai; Su, Tzu-Sen; Hong, Cheng-You; Wei, Tzu-Chien

    2017-03-15

    Crystal morphology and structure are important for improving the organic-inorganic lead halide perovskite semiconductor property in optoelectronic, electronic, and photovoltaic devices. In particular, crystal growth and dissolution are two major phenomena in determining the morphology of methylammonium lead iodide perovskite in the sequential deposition method for fabricating a perovskite solar cell. In this report, the effect of immersion time in the second step, i.e., methlyammonium iodide immersion in the morphological, structural, optical, and photovoltaic evolution, is extensively investigated. Supported by experimental evidence, a five-staged, time-dependent evolution of the morphology of methylammonium lead iodide perovskite crystals is established and is well connected to the photovoltaic performance. This result is beneficial for engineering optimal time for methylammonium iodide immersion and converging the solar cell performance in the sequential deposition route. Meanwhile, our result suggests that large, well-faceted methylammonium lead iodide perovskite single crystal may be incubated by solution process. This offers a low cost route for synthesizing perovskite single crystal.

  4. A Colorful Experiment

    ERIC Educational Resources Information Center

    Hunter, C. Bruce

    1978-01-01

    This experiment, mixing solutions of potassium iodide and lead nitrate to give a bright yellow lead iodide precipitate, often leads students into other topics such as making paint from the precipitate. (BB)

  5. Evaluating iodide recycling inhibition as a novel molecular initiating event for thyroid axis disruption

    EPA Science Inventory

    The enzyme iodotyrosine deiodinase (dehalogenase, IYD) catalyzes iodide recycling and promotes iodide retention in thyroid follicular cells. Loss of function or chemical inhibition of IYD reduces available iodide for thyroid hormone synthesis, which leads to hormone insufficiency...

  6. Evolution of Iodoplumbate Complexes in Methylammonium Lead Iodide Perovskite Precursor Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharenko, Alexander; Mackeen, Cameron; Jewell, Leila

    Here in this study we investigate the local structure present in single-step precursor solutions of methylammonium lead iodide (MAPbI 3) perovskite as a function of organic and inorganic precursor ratio, as well as with hydriodic acid (HI), using X-ray absorption spectroscopy. An excess of organic precursor as well as the use of HI as a processing additive has been shown to lead to the formation of smooth, continuous, pinhole free MAPbI 3 films, whereas films produced from precursor solutions containing molar equivalents of methylammonium iodide (MAI) and PbI 2 lead to the formation of a discontinuous, needlelike morphology. We nowmore » show that as the amount of excess MAI in the precursor solution is increased, the iodide coordination of iodoplumbate complexes present in solution increases. The use of HI results in a similar increase in iodide coordination. We therefore offer insight into how solution chemistry can be used to control MAPbI 3 thin film morphology by revealing a strong correlation between the lead coordination chemistry in precursor solutions and the surface coverage and morphology of the resulting MAPbI 3 film.« less

  7. Evolution of Iodoplumbate Complexes in Methylammonium Lead Iodide Perovskite Precursor Solutions

    DOE PAGES

    Sharenko, Alexander; Mackeen, Cameron; Jewell, Leila; ...

    2017-02-02

    Here in this study we investigate the local structure present in single-step precursor solutions of methylammonium lead iodide (MAPbI 3) perovskite as a function of organic and inorganic precursor ratio, as well as with hydriodic acid (HI), using X-ray absorption spectroscopy. An excess of organic precursor as well as the use of HI as a processing additive has been shown to lead to the formation of smooth, continuous, pinhole free MAPbI 3 films, whereas films produced from precursor solutions containing molar equivalents of methylammonium iodide (MAI) and PbI 2 lead to the formation of a discontinuous, needlelike morphology. We nowmore » show that as the amount of excess MAI in the precursor solution is increased, the iodide coordination of iodoplumbate complexes present in solution increases. The use of HI results in a similar increase in iodide coordination. We therefore offer insight into how solution chemistry can be used to control MAPbI 3 thin film morphology by revealing a strong correlation between the lead coordination chemistry in precursor solutions and the surface coverage and morphology of the resulting MAPbI 3 film.« less

  8. Exocharmic Reactions up Close

    ERIC Educational Resources Information Center

    Ramette, R. W.

    2007-01-01

    The exocharmic reactions that can be observed microscopically are discussed. The students can discover the optimal concentration of an acidic lead nitrate solution, so that a crystal of potassium iodide, nudged to the edge of a drop, results in glinting golden hexagons of lead iodide.

  9. A fluorescence turn-on sensor for iodide based on a thymine-Hg(II)-thymine complex.

    PubMed

    Ma, Boling; Zeng, Fang; Zheng, Fangyuan; Wu, Shuizhu

    2011-12-23

    Iodide plays a vital role in many biological processes, including neurological activity and thyroid function. Due to its physiological relevance, a method for the rapid, sensitive, and selective detection of iodide in food, pharmaceutical products, and biological samples such as urine is of great importance. Herein, we demonstrate a novel and facile strategy for constructing a fluorescence turn-on sensor for iodide based on a T-Hg(II)-T complex (T=thymine). A fluorescent anthracene-thymine dyad (An-T) was synthesized, the binding of which to a mercury(II) ion lead to the formation of a An-T-Hg(II)-T-An complex, thereby quenching the fluorescent emission of this dyad. In this respect, the dyad An-T constituted a fluorescence turn-off sensor for mercury(II) ions in aqueous media. More importantly, it was found that upon addition of iodide, the mercury(II) ion was extracted from the complex due to the even stronger binding between mercury(II) ions and iodide, leading to the release of the free dyad and restoration of the fluorescence. By virtue of this fluorescence quenching and recovery process, the An-T-Hg(II)-T-An complex constitutes a fluorescence turn-on sensor for iodide with a detection limit of 126 nM. Moreover, this sensor is highly selective for iodide over other common anions, and can be used in the determination of iodide in drinking water and biological samples such as urine. This strategy may provide a new approach for sensing some other anions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide

    DOE PAGES

    Liao, Weiqiang; Zhao, Dewei; Yu, Yue; ...

    2016-09-13

    Mixed tin (Sn)-lead (Pb) perovskites with high Sn content exhibit low bandgaps suitable for fabricating the bottom cell of perovskite-based tandem solar cells. In this work, we report on the fabrication of efficient mixed Sn-Pb perovskite solar cells using precursors combining formamidinium tin iodide (FASnI 3) and methylammonium lead iodide (MAPbI 3). The best-performing cell fabricated using a (FASnI 3) 0.6(MAPbI 3) 0.4 absorber with an absorption edge of ~1.2 eV achieved a power conversion efficiency (PCE) of 15.08 (15.00)% with an open-circuit voltage of 0.795 (0.799) V, a short-circuit current density of 26.86(26.82) mA/cm 2, and a fill factormore » of 70.6(70.0)% when measured under forward (reverse) voltage scan. In conclusion, the average PCE of 50 cells we have fabricated is 14.39 ± 0.33%, indicating good reproducibility.« less

  11. Optical response of mixed methylammonium lead iodide and formamidinium tin iodide perovskite thin films

    DOE PAGES

    Ghimire, Kiran; Zhao, Dewei; Yan, Yanfa; ...

    2017-07-13

    Here, mixed tin (Sn) and lead (Pb) based perovskite thin films have been prepared by solution processing combining methylammonium lead iodide (MAPbI 3) and formamidinium tin iodide (FASnI 3) precursors. Optical response in the form of complex dielectric function (ε = ε 1 + iε 2) spectra and absorption coefficient (α) spectra of (FASnI 3) 1-x(MAPbI 3) x based perovskite films have been extracted over a spectral range 0.74 to 5.89 eV using spectroscopic ellipsometry. Absorption band edge energy changes as a function of composition for films including FASnI 3, MAPbI 3, and mixed x = 0.20, 0.35, 0.40, andmore » 0.6 (FASnI 3) 1-x(MAPbI 3) x perovskites. (FASnI 3) 0.60(MAPbI 3) 0.4 is found to have the minimum absorption band edge energy near ~1.2 eV.« less

  12. Real-Time Observation of Organic Cation Reorientation in Methylammonium Lead Iodide Perovskites.

    PubMed

    Bakulin, Artem A; Selig, Oleg; Bakker, Huib J; Rezus, Yves L A; Müller, Christian; Glaser, Tobias; Lovrincic, Robert; Sun, Zhenhua; Chen, Zhuoying; Walsh, Aron; Frost, Jarvist M; Jansen, Thomas L C

    2015-09-17

    The introduction of a mobile and polarized organic moiety as a cation in 3D lead-iodide perovskites brings fascinating optoelectronic properties to these materials. The extent and the time scales of the orientational mobility of the organic cation and the molecular mechanism behind its motion remain unclear, with different experimental and computational approaches providing very different qualitative and quantitative description of the molecular dynamics. Here we use ultrafast 2D vibrational spectroscopy of methylammonium (MA) lead iodide to directly resolve the rotation of the organic cations within the MAPbI3 lattice. Our results reveal two characteristic time constants of motion. Using ab initio molecular dynamics simulations, we identify these as a fast (∼300 fs) "wobbling-in-a-cone" motion around the crystal axis and a relatively slow (∼3 ps) jump-like reorientation of the molecular dipole with respect to the iodide lattice. The observed dynamics are essential for understanding the electronic properties of perovskite materials.

  13. High Chloride Doping Levels Stabilize the Perovskite Phase of Cesium Lead Iodide.

    PubMed

    Dastidar, Subham; Egger, David A; Tan, Liang Z; Cromer, Samuel B; Dillon, Andrew D; Liu, Shi; Kronik, Leeor; Rappe, Andrew M; Fafarman, Aaron T

    2016-06-08

    Cesium lead iodide possesses an excellent combination of band gap and absorption coefficient for photovoltaic applications in its perovskite phase. However, this is not its equilibrium structure under ambient conditions. In air, at ambient temperature it rapidly transforms to a nonfunctional, so-called yellow phase. Here we show that chloride doping, particularly at levels near the solubility limit for chloride in a cesium lead iodide host, provides a new approach to stabilizing the functional perovskite phase. In order to achieve high doping levels, we first co-deposit colloidal nanocrystals of pure cesium lead chloride and cesium lead iodide, thereby ensuring nanometer-scale mixing even at compositions that potentially exceed the bulk miscibility of the two phases. The resulting nanocrystal solid is subsequently fused into a polycrystalline thin film by chemically induced, room-temperature sintering. Spectroscopy and X-ray diffraction indicate that the chloride is further dispersed during sintering and a polycrystalline mixed phase is formed. Using density functional theory (DFT) methods in conjunction with nudged elastic band techniques, low-energy pathways for interstitial chlorine diffusion into a majority-iodide lattice were identified, consistent with the facile diffusion and fast halide exchange reactions observed. By comparison to DFT-calculated values (with the PBE exchange-correlation functional), the relative change in band gap and the lattice contraction are shown to be consistent with a Cl/I ratio of a few percent in the mixed phase. At these incorporation levels, the half-life of the functional perovskite phase in a humid atmosphere increases by more than an order of magnitude.

  14. Strategies for the removal of halides from drinking water sources, and their applicability in disinfection by-product minimisation: a critical review.

    PubMed

    Watson, K; Farré, M J; Knight, N

    2012-11-15

    The presence of bromide (Br(-)) and iodide (I(-)) in source waters leads to the formation of brominated and iodinated disinfection by-products (DBPs), which are often more toxic than their chlorinated analogues. The increasing scarcity of water resources in Australia is leading to use of impaired and alternative water supplies with high bromide and iodide levels, which may result in the production of more brominated and iodinated DBPs. This review aims to provide a summary of research into bromide and iodide removal from drinking water sources. Bromide and iodide removal techniques have been broadly classified into three categories, namely; membrane, electrochemical and adsorptive techniques. Reverse osmosis, nanofiltration and electrodialysis membrane techniques are reviewed. The electrochemical techniques discussed are electrolysis, capacitive deionization and membrane capacitive deionization. Studies on bromide and iodide removal using adsorptive techniques including; layered double hydroxides, impregnated activated carbons, carbon aerogels, ion exchange resins, aluminium coagulation and soils are also assessed. Halide removal techniques have been compared, and areas for future research have been identified. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Re-approaching global iodine emissions: A novel parameterisation for sea-surface iodide concentrations using a machine learning approach

    NASA Astrophysics Data System (ADS)

    Sherwen, T.; Evans, M. J.; Chance, R.; Tinel, L.; Carpenter, L.

    2017-12-01

    Halogens (Cl, Br, I) in the troposphere have been shown to play a profound role in determining the concentrations of ozone and OH. Iodine, which is essentially oceanic in source, exerts its largest impacts on composition in both the marine boundary layer, and in the upper troposphere. This chemistry has only recently been implemented into global models and significant uncertainties remain, particularly regarding the magnitude of iodine emissions. Iodine emissions are dominated by the inorganic oxidation of iodide in the sea surface by ozone, which leads to release of gaseous inorganic iodine (HOI, I2). Critical for calculation of these fluxes is the sea-surface concentration of iodide, which is poorly constrained by observations. Previous parameterizations for sea-surface iodide concentration have focused on simple regressive relationships with sea surface temperature and another single oceanographic variables. This leads to differences in iodine fluxes of approximately a factor of two, and leads to substantial differences in the modelled impact of iodine on atmospheric composition. Here we use an expanded dataset of oceanic iodide observations, which incorporates new data that has been targeted at areas with poor coverage previously. A novel approach of multivariate machine learning techniques is applied to this expanded dataset to generate a model that yields improved estimates of the global sea surface iodide distribution. We then use a global chemical transport model (GEOS-Chem) to explore the impact of this new parameterisation on the atmospheric budget of iodine and its impact on tropospheric composition.

  16. Iodide-ion-induced oscillations of the ferroin-catalyzed Belousov—Zhabotinskii reaction

    NASA Astrophysics Data System (ADS)

    Melicherčík, Milan; Treindl, Ľudovít

    1992-08-01

    Contrary to "classical" Belousov—Zhabotinskii (BZ) oscillatory systems, consisting of malonic acid, Ce(IV)—Ce(III) or Mn(III)—Mn(II) redox catalyst and KBrO 3 in solutions of H 2SO 4, where in an interval of added iodide initial concentrations 10 -4 mol dm -3 < [I -] 0 < 10 -3 mol dm -3 the oscillations have the same frequency and amplitude as in the absence of iodide, the effect of added iodide on the ferroin-catalyzed BZ system with methyl ester of 3-oxobutanoic acid leads to an increase in the number of oscillations and in the time of their duration. The dependence of this effect on substrate, bromate, iodide, sulfuric acid and ferroin concentrations has been studied. The observations may be explained by a mechanism involving direct reduction of ferroin by iodide, oxidation of iodide to iodate by bromate with a bromide production and eventual faster bromination and iodination of methyl ester of 3-oxobutanoic acid in relation to malonic acid.

  17. The effect of illumination on the formation of metal halide perovskite films

    NASA Astrophysics Data System (ADS)

    Ummadisingu, Amita; Steier, Ludmilla; Seo, Ji-Youn; Matsui, Taisuke; Abate, Antonio; Tress, Wolfgang; Grätzel, Michael

    2017-04-01

    Optimizing the morphology of metal halide perovskite films is an important way to improve the performance of solar cells when these materials are used as light harvesters, because film homogeneity is correlated with photovoltaic performance. Many device architectures and processing techniques have been explored with the aim of achieving high-performance devices, including single-step deposition, sequential deposition and anti-solvent methods. Earlier studies have looked at the influence of reaction conditions on film quality, such as the concentration of the reactants and the reaction temperature. However, the precise mechanism of the reaction and the main factors that govern it are poorly understood. The consequent lack of control is the main reason for the large variability observed in perovskite morphology and the related solar-cell performance. Here we show that light has a strong influence on the rate of perovskite formation and on film morphology in both of the main deposition methods currently used: sequential deposition and the anti-solvent method. We study the reaction of a metal halide (lead iodide) with an organic compound (methylammonium iodide) using confocal laser scanning fluorescence microscopy and scanning electron microscopy. The lead iodide crystallizes before the intercalation of methylammonium iodide commences, producing the methylammonium lead iodide perovskite. We find that the formation of perovskite via such a sequential deposition is much accelerated by light. The influence of light on morphology is reflected in a doubling of solar-cell efficiency. Conversely, using the anti-solvent method to form methyl ammonium lead iodide perovskite in a single step from the same starting materials, we find that the best photovoltaic performance is obtained when films are produced in the dark. The discovery of light-activated crystallization not only identifies a previously unknown source of variability in opto-electronic properties, but also opens up new ways of tuning morphology and structuring perovskites for various applications.

  18. From Morphology to Interfaces to Tandem Geometries: Enhancing the Performance of Perovskite/Polymer Solar Cells

    NASA Astrophysics Data System (ADS)

    Russell, Thomas

    We have taken a new approach to develop mesoporous lead iodide scaffolds, using the nucleation and growth of lead iodide crystallites in a wet film. A simple time-dependent growth control enabled the manipulation of the mesoporous lead iodide layer quality in a continuous manner. The morphology of lead iodide is shown to influence the subsequent crystallization of methyamoniumleadiodide film by using angle-dependent grazing incidence x-ray scattering. The morphology of lead iodide film can be fine-tuned, and thus the methyamoniumleadiodide film quality can be effectively controlled, leading to an optimization of the perovskite active layer. Using this strategy, perovskite solar cells with inverted PHJ structure showed a PCE of 15.7 per cent with little hysteresis. Interface engineering is critical for achieving efficient solar cells, yet a comprehensive understanding of the interface between metal electrode and electron transport layer (ETL) is lacking. A significant power conversion efficiency (PCE) improvement of fullerene/perovskite planar heterojunction solar cells was achieved by inserting a fulleropyrrolidine interlayer between the silver electrode and electron transport layer. The interlayer was found to enhance recombination resistance, increases electron extraction rate and prolongs free carrier lifetime. We also uncovered a facile solution-based fabrication of high performance tandem perovskite/polymer solar cells where the front sub-cell consists of perovskite and the back sub-cell is a polymer-based layer. A record maximum PCE of 15.96 per cent was achieved, demonstrating the synergy between the perovskite and semiconducting polymers. This design balances the absorption of the perovskite and the polymer, eliminates the adverse impact of thermal annealing during perovskite fabrication, and affords devices with no hysteresis. This work was performed in collaboration with Y. Liu, Z. Page, D. Venkataraman and T. Emrick (UMASS), F. Liu (LBNL) and Q. Hu and R. Zhu (Peking University) and was supported by the Office of Naval Research under contract N00014-15-1-2244xx.

  19. A tiered approach to evaluate an iodine recycling inhibition adverse outcome pathway (AOP) in amphibians

    EPA Science Inventory

    The enzyme iodotyrosine deiodinase (dehalogenase, IYD) catalyzes iodide recycling and promotes iodide retention in thyroid follicular cells. Loss of function or chemical inhibition of IYD reduces thyroid hormone synthesis, which leads to insufficiency in tissues and subsequent ne...

  20. Structure and interstitial iodide migration in hybrid perovskite methylammonium lead iodide

    NASA Astrophysics Data System (ADS)

    Minns, J. L.; Zajdel, P.; Chernyshov, D.; van Beek, W.; Green, M. A.

    2017-05-01

    Hybrid perovskites form an emerging family of exceptional light harvesting compounds. However, the mechanism underpinning their photovoltaic effect is still far from understood, which is impeded by a lack of clarity on their structures. Here we show that iodide ions in the methylammonium lead iodide migrate via interstitial sites at temperatures above 280 K. This coincides with temperature dependent static distortions resulting in pseudocubic local symmetry. Based on bond distance analysis, the migrating and distorted iodines are at lengths consistent with the formation of I2 molecules, suggesting a 2I--->I2+2e- redox couple. The actual formula of this compound is thus (CH3NH3)PbI3-2x(I2)x where x~0.007 at room temperature. A crucial feature of the tetragonal structure is that the methylammonium ions do not sit centrally in the A-site cavity, but disordered around two off-centre orientations that facilitate the interstitial ion migration via a gate opening mechanism.

  1. Ab-Initio Calculation of Electronic Structure of Lead Halide Perovskites with Formamidinium Cation as an Active Material for Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Indari, E. D.; Wungu, T. D. K.; Hidayat, R.

    2017-07-01

    Organic lead halide perovskite material based solar cells show impressive power conversion efficiencies, which can reach above 19 percent for perovskite solar cell with methyl-ammonium cations. These efficiencies are originated from efficient photoexcitation and charge carrier transport and not observed in conventional perovskite crystals. In this preliminary research work, we therefore performed Density Functional Theory (DFT) calculation of formamidinium lead iodide (FAPI), an alternative to methyl-ammonium lead iodide (MAPI), to predict their electronic structure and density of state (DOS). The calculation result at the most stable lattice parameters show a good agreement with the experiment results. The obtained band gap energy is 1.307 eV. The valence band is dominantly formed by the 5p orbitals of I- anions, while the conduction band is dominantly formed by the 6p orbitals of Pb2+ cations. The DOS of valence band of this perovskite seems smaller compared to the case of methyl-ammonium lead iodide perovskite, which then may explain the observation of smaller power conversion efficiencies in perovskite solar cells with this formamidinium cations.

  2. Effects of Perchlorate on Thyroidal Uptake of Iodide with Corresponding Hormonal Changes

    DTIC Science & Technology

    2000-07-01

    with iodide for uptake at this iodide-concentrating step (Goldman and Stanbury, 1973), potentially leading to hypothyroidism . As a result perchlorate...TSH can result in increased thyroid weight, goiter and hypothyroidism (Fukuda et al., 1975; Gerber et al., 1981). The objective of this study was to...2000) "• Canine T3 kits ( canine T3 calibrators batch # C3D3-8, expired July 31, 1999; 1251 canine T 3 batch #, TC32, expired July 31, 1999; canine T3

  3. Real-Time Observation of Exciton-Phonon Coupling Dynamics in Self-Assembled Hybrid Perovskite Quantum Wells.

    PubMed

    Ni, Limeng; Huynh, Uyen; Cheminal, Alexandre; Thomas, Tudor H; Shivanna, Ravichandran; Hinrichsen, Ture F; Ahmad, Shahab; Sadhanala, Aditya; Rao, Akshay

    2017-11-28

    Self-assembled hybrid perovskite quantum wells have attracted attention due to their tunable emission properties, ease of fabrication, and device integration. However, the dynamics of excitons in these materials, especially how they couple to phonons, remains an open question. Here, we investigate two widely used materials, namely, butylammonium lead iodide (CH 3 (CH 2 ) 3 NH 3 ) 2 PbI 4 and hexylammonium lead iodide (CH 3 (CH 2 ) 5 NH 3 ) 2 PbI 4 , both of which exhibit broad photoluminescence tails at room temperature. We performed femtosecond vibrational spectroscopy to obtain a real-time picture of the exciton-phonon interaction and directly identified the vibrational modes that couple to excitons. We show that the choice of the organic cation controls which vibrational modes the exciton couples to. In butylammonium lead iodide, excitons dominantly couple to a 100 cm -1 phonon mode, whereas in hexylammonium lead iodide, excitons interact with phonons with frequencies of 88 and 137 cm -1 . Using the determined optical phonon energies, we analyzed photoluminescence broadening mechanisms. At low temperatures (<100 K), the broadening is due to acoustic phonon scattering, whereas at high temperatures, LO phonon-exciton coupling is the dominant mechanism. Our results help explain the broad photoluminescence line shape observed in hybrid perovskite quantum wells and provide insights into the mechanism of exciton-phonon coupling in these materials.

  4. The BLI-3/TSP-15/DOXA-1 Dual Oxidase Complex Is Required for Iodide Toxicity in Caenorhabditis elegans

    PubMed Central

    Xu, Zhaofa; Luo, Jintao; Li, Yu; Ma, Long

    2014-01-01

    Iodine is an essential trace element for life. Iodide deficiency can lead to defective biosynthesis of thyroid hormones and is a major cause of hypothyroidism and mental retardation. Excess iodide intake, however, has been linked to different thyroidal diseases. How excess iodide causes harmful effects is not well understood. Here, we found that the nematode Caenorhabditis elegans exhibits developmental arrest and other pleiotropic defects when exposed to excess iodide. To identify the responsible genes, we performed a forward genetic screen and isolated 12 mutants that can survive in excess iodide. These mutants define at least four genes, two of which we identified as bli-3 and tsp-15. bli-3 encodes the C. elegans ortholog of the mammalian dual oxidase DUOX1 and tsp-15 encodes the tetraspanin protein TSP-15, which was previously shown to interact with BLI-3. The C. elegans dual oxidase maturation factor DOXA-1 is also required for the arresting effect of excess iodide. Finally, we detected a dramatically increased biogenesis of reactive oxygen species in animals treated with excess iodide, and this effect can be partially suppressed by bli-3 and tsp-15 mutations. We propose that the BLI-3/TSP-15/DOXA-1 dual oxidase complex is required for the toxic pleiotropic effects of excess iodide. PMID:25480962

  5. Evolution of Zinc Oxide Nanostructures from Non-Equilibrium Deposition Conditions

    DTIC Science & Technology

    2016-07-11

    pressure and temperature in the chamber by a rough estimation using PV = nRT. The deposition area is the internal surface of the tubular chamber, D...J. Wang, L. Zhang, T.L. Andrew, M.S. Arnold, X.D. Wang “Development of Lead Iodide Perovskite Solar Cells Using Three-Dimensional Titanium Dioxide...Andrew, M.S. Arnold, X.D. Wang "Development of Lead Iodide Perovskite Solar Cells Using Three-Dimensional Titanium Dioxide Nanowire Architectures" ACS

  6. Synthesis and Characterization of Methylammonium Lead Iodide Perovskite and its Application in Planar Hetero-junction Devices

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Aditi; Mohan Singh Negi, Chandra; Yadav, Anjali; Gupta, Saral K.; Singh Verma, Ajay

    2018-06-01

    The present paper reports on the synthesis and characterization of methylammonium lead iodide perovskite thin film and its applications in heterojunction devices. Perovskite thin films were deposited by a simple spin-coating method using a precursor solution including methyl ammonium iodide and lead iodide onto a glass substrate. The surface morphology study via field emission scanning electron microscopy of the perovskite thin film shows complete surface coverage on glass substrate with negligible pin-holes. UV–visible spectroscopy study revealed a broad absorption range and the exhibition of a band-gap of 1.6 eV. The dark current-voltage (I–V) characteristics of all the devices under study show rectifying behaviour similar to the Schottky diode. Various device parameters such as ideality factor and barrier height are extracted from the I–V curve. At low voltages the devices exhibit Ohmic behaviour, trap free space charge limited conduction governs the charge transport at an intermediate voltage range, while at much higher voltages the devices show trap controlled space charge limited conduction. Furthermore, impedance spectroscopy measurements enable us to extract the various internal parameters of the devices. Correlations between these parameters and I–V characteristics are discussed. The different capacitive process arising in the devices was discussed using the capacitance versus frequency curve.

  7. A G-quadruplex based fluorescent oligonucleotide turn-on probe towards iodides detection in real samples.

    PubMed

    Li, Qian; Li, Shuaihua; Chen, Xiu; Bian, Liujiao

    2017-09-01

    A basket-type G-quadruplex (GQ) fluorescent oligonucleotide (OND) probe is designed to detect iodides dependent on thymine-Hg(II)-thymine (T-Hg(II)-T) base pairs and the intrinsic fluorescence quenching capacity of GQ. In the presence of Hg(II) ions (Hg 2+ ), the two hexachloro-fluorescein-labeled ONDs form a hairpin structure and the fluorophores are dragged close to the GQ, leading to fluorescence quenching of the probe due to photoinduced electron transfer. Upon addition of iodide anions, Hg 2+ are extracted from T-Hg(II)-T complexes which attributes to the stronger binding with iodide anions, resulting in the fluorescence recovery. Through performing the fluorescence quenching and recovery processes, this probe developed a fluorescence turn-on sensor for iodide anions determination over a linear range of 20-200nmol/L with a limit of detection of 5nmol/L. The practical use of the turn-on technology was demonstrated by its application in determination of iodides in water, food, pharmaceutical products and biological samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Guanidinium-Formamidinium Lead Iodide: A Layered Perovskite-Related Compound with Red Luminescence at Room Temperature.

    PubMed

    Nazarenko, Olga; Kotyrba, Martin R; Yakunin, Sergii; Aebli, Marcel; Rainò, Gabriele; Benin, Bogdan M; Wörle, Michael; Kovalenko, Maksym V

    2018-03-21

    Two-dimensional hybrid organic-inorganic lead halides perovskite-type compounds have attracted immense scientific interest due to their remarkable optoelectronic properties and tailorable crystal structures. In this work, we present a new layered hybrid lead halide, namely [CH(NH 2 ) 2 ][C(NH 2 ) 3 ]PbI 4 , wherein puckered lead-iodide layers are separated by two small and stable organic cations: formamidinium, CH(NH 2 ) 2 + , and guanidinium, C(NH 2 ) 3 + . This perovskite is thermally stable up to 255 °C, exhibits room-temperature photoluminescence in the red region with a quantum yield of 3.5%, and is photoconductive. This study highlights a vast structural diversity that exists in the compositional space typically used in perovskite photovoltaics.

  9. Effects of meso-2,3-dimercaptosuccinic acid, potassium iodide and chlorophyll on lead accumulation in male mice.

    PubMed

    Xie, Ying; Zhou, Guifeng

    2017-02-21

    Lead (Pb) pollution is a serious public health problem all over the world, it especially plays severe damage role in children's health. Apart from reducing lead-induced damages, the decrease of lead accumulation is also critical. This study has been the first attempt to investigate effects of meso-2,3-dimercaptosuccinic acid (DMSA), potassium iodide (KI) and chlorophyll (Chl) on lead accumulation in male mice. Eighty healthy Kunming male mice were selected and divided randomly into 8 groups. They were treated with lead acetate (PbAc) intraperitoneally, individually and in combination with the DMSA, KI or Chl once daily for 5 days. Meanwhile, the control group was treated with normal saline during the whole exposure period. On 30th day, mice were sacrificed and lead concentrations were detected in the whole blood, livers, kidneys, and testicles of mice by means of the graphite furnace atomic absorption spectrometry. In comparison with the control group, lead concentrations increased in mice treated with the PbAc and DMSA, KI and Chl diminished lead accumulation in the whole blood, livers, and kidneys. Chl had specifically the same effects on lead concentrations in the testicles of male mice. Potassium iodide and Chl, as food additives, had the same effects as the DMSA to reduce lead accumulation in male mice effectively. Our results provided experimental evidence in vivo for the preventive measures of lead poisoning. Int J Occup Med Environ Health 2017;30(1):87-93. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  10. Phase Stability and Electronic Structure of Prospective Sb-Based Mixed Sulfide and Iodide 3D Perovskite (CH3NH3)SbSI2.

    PubMed

    Li, Tianyang; Wang, Xiaoming; Yan, Yanfa; Mitzi, David B

    2018-06-29

    Lead-free antimony-based mixed sulfide and iodide perovskite phases have recently been reported to be synthesized experimentally and to exhibit reasonable photovoltaic performance. Through a combination of experimental validation and computational analysis, we show no evidence of the formation of the mixed sulfide and iodide perovskite phase, MASbSI 2 (MA = CH 3 NH 3 + ), and instead that the main products are a mixture of the binary and ternary compounds (Sb 2 S 3 and MA 3 Sb 2 I 9 ). Density functional theory calculations also indicate that such a mixed sulfide and iodide perovskite phase should be thermodynamically less stable compared with binary/ternary anion-segregated secondary phases and less likely to be synthesized under equilibrium conditions. Additionally, band structure calculations show that this mixed sulfide and iodide phase, if possible to synthesize (e.g., under nonequilibrium conditions), should have a suitable direct band gap for photovoltaic application.

  11. Transparent and flexible photodetectors based on CH3NH3PbI3 perovskite nanoparticles

    NASA Astrophysics Data System (ADS)

    Jeon, Young Pyo; Woo, Sung Jun; Kim, Tae Whan

    2018-03-01

    Transparent and flexible photodetectors (PDs) based on CH3NH3PbI3 perovskite nanoparticles (NPs) were fabricated by using co-evaporation of methyl ammonium iodide and lead iodide. X-ray diffraction patterns and high-resolution transmission electron microscopy images demonstrated the formation of perovskite NPs. The optical transmittance of the perovskite NPs/glass was above 80% over the entire range of visible wavelengths, indicative of high transparency. The PDs based on CH3NH3PbI3 perovskite NPs were sensitive to a broad range of visible light from 450 to 650 nm. The currents in the PDs under exposure to red, green, and blue light-emitting diodes were enhanced to 5, 10, and 20 times that of the PD in the dark, respectively. The rise and the decay times of the PDs were 50 and 120 μs. The current in the perovskite NP PD on a polyethylene terephthalate substrate was enhanced by approximately 69% when the NP PD was exposed to a blue LED emitting at a wavelength of 459 nm. Despite multiple bending, the transparent and flexible PDs based on methyl ammonium iodide and lead iodide NPs showed reproducibility and high stability in performance.

  12. Ultrafast Extreme Ultraviolet Spectroscopy of Methylammonium Lead Iodide Perovskite for Carrier Specific Photophysics

    NASA Astrophysics Data System (ADS)

    Verkamp, Max A.; Lin, Ming-Fu; Ryland, Elizabeth S.; Benke, Kristin; Vura-Weis, Josh

    2017-06-01

    Methyl ammonium lead iodide (perovskite) is a leading candidate for next-generation solar cell devices. However, the fundamental photophysics responsible for its strong photovoltaic qualities are not fully understood. Ultrafast extreme ultraviolet (XUV) spectroscopy was used to investigate relaxation dynamics in perovskite with carrier specific signals arising from transitions from the common inner-shell level (I 4d) to the valence and conduction bands. Ultrashort (30 fs) pulses of XUV radiation in a broad spectrum (40-70 eV) were obtained using high-harmonic generation in a tabletop instrument. Transient absorption measurements with visible pump and XUV probe directly observed the dynamics of charge carriers after above-band and band-edge excitation.

  13. Characterization of thermally evaporated lead iodide films aimed for the detection of X-rays

    NASA Astrophysics Data System (ADS)

    Caldeira Filho, A. M.; Mulato, M.

    2011-04-01

    Some semiconductor materials such as lead iodide (PbI2) have applications in the detection of ionizing radiation at room temperature using the direct detection method. In this work we investigate lead iodide films deposited by thermal evaporation. The morphology, structure, and electric properties were investigated as a function of deposition height, i.e. the distance between evaporation-boat and substrates. The results show a morphology of vertical leaves and X-ray diffraction shows just one preferential orientation along the direction 110. Energy dispersive spectroscopy reveals that the films are not stoichiometric, with excess iodine atoms. Electrical resistivity of about 108 Ω cm was measured. This is smaller than for the bulk due to structural defects. The values of activation energy for electric transport increase from 0.52 up to 1.1 eV with decreasing deposition height, what indicates that the best film is the one deposited at the shortest distance. Exposure under X-ray mammographic energy shows a linear behavior up to 500 mR. No variation in sensibility was observed between 22 and 30 kVp.

  14. Temperature dependent energy levels of methylammonium lead iodide perovskite

    NASA Astrophysics Data System (ADS)

    Foley, Benjamin J.; Marlowe, Daniel L.; Sun, Keye; Saidi, Wissam A.; Scudiero, Louis; Gupta, Mool C.; Choi, Joshua J.

    2015-06-01

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.

  15. Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry

    PubMed Central

    Küpper, Frithjof C.; Carpenter, Lucy J.; McFiggans, Gordon B.; Palmer, Carl J.; Waite, Tim J.; Boneberg, Eva-Maria; Woitsch, Sonja; Weiller, Markus; Abela, Rafael; Grolimund, Daniel; Potin, Philippe; Butler, Alison; Luther, George W.; Kroneck, Peter M. H.; Meyer-Klaucke, Wolfram; Feiters, Martin C.

    2008-01-01

    Brown algae of the Laminariales (kelps) are the strongest accumulators of iodine among living organisms. They represent a major pump in the global biogeochemical cycle of iodine and, in particular, the major source of iodocarbons in the coastal atmosphere. Nevertheless, the chemical state and biological significance of accumulated iodine have remained unknown to this date. Using x-ray absorption spectroscopy, we show that the accumulated form is iodide, which readily scavenges a variety of reactive oxygen species (ROS). We propose here that its biological role is that of an inorganic antioxidant, the first to be described in a living system. Upon oxidative stress, iodide is effluxed. On the thallus surface and in the apoplast, iodide detoxifies both aqueous oxidants and ozone, the latter resulting in the release of high levels of molecular iodine and the consequent formation of hygroscopic iodine oxides leading to particles, which are precursors to cloud condensation nuclei. In a complementary set of experiments using a heterologous system, iodide was found to effectively scavenge ROS in human blood cells. PMID:18458346

  16. Purification and Crystal Growth of Lead Iodide by Physical Vapor Transport Method

    NASA Technical Reports Server (NTRS)

    Wright, G. W.; Cole, M.; Chen, Y.-F.; Chen, K.-T.; Chen, H.; Chattopadhyay, K.; Burger, A.

    1998-01-01

    Lead iodide (PbI2) is a layered compound semiconductor being developed as room temperature x- and gamma-ray detector. Compared to the more studied material, mercuric iodide, PbI2 has a higher melting temperature and no phase transition until liquid phase which are indications of better mechanical properties. In this study, the source material was purified by the zone-refining process, and the purest section was extracted from center of the the zone-refined ingot to be grown by physical vapor transport (PVT) method. The zone-refined material and as-grown crystals were characterized by optical microscopy and differential scanning calorimetry (DSC) to reveal the surface morphology, purity and stoichiometry. The results shows that both materials are near-stoichiometric composition, with the purity of the as-grown crystals higher than zone-refined materials. The resistivity of the as-grown crystal (10" Omega-cm) was derived from current-voltage (I-V) measurement, and is 10 times higher than the zone-refined materials. Detail results will be presented and discussed.

  17. Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution

    NASA Astrophysics Data System (ADS)

    Park, Sunghak; Chang, Woo Je; Lee, Chan Woo; Park, Sangbaek; Ahn, Hyo-Yong; Nam, Ki Tae

    2017-01-01

    The solar-driven splitting of hydrohalic acids (HX) is an important and fast growing research direction for H2 production. In addition to the hydrogen, the resulting chemicals (X2/X3-) can be used to propagate a continuous process in a closed cycle and are themselves useful products. Here we present a strategy for photocatalytic hydrogen iodide (HI) splitting using methylammonium lead iodide (MAPbI3) in an effort to develop a cost-effective and easily scalable process. Considering that MAPbI3 is a water-soluble ionic compound, we exploit the dynamic equilibrium of the dissolution and precipitation of MAPbI3 in saturated aqueous solutions. The I- and H+ concentrations of the aqueous solution are determined to be the critical parameters for the stabilization of the tetragonal MAPbI3 phase. Stable and efficient H2 production under visible light irradiation was demonstrated. The solar HI splitting efficiency of MAPbI3 was 0.81% when using Pt as a cocatalyst.

  18. Extending the Lifetime of Perovskite Solar Cells using a Perfluorinated Dopant.

    PubMed

    Salado, Manuel; Ramos, F Javier; Manzanares, Valentin M; Gao, Peng; Nazeeruddin, Mohammad Khaja; Dyson, Paul J; Ahmad, Shahzada

    2016-09-22

    The principle limitation of perovskite solar cells is related to their instability and, hence, their limited lifetime. Herein, we employ an imidazolium iodide dopant, 1-methyl-3-(1H,1H,2H,2H-nonafluorohexyl)-imidazolium iodide, containing a perfluorous appendage, which leads to prolonged (unencapsulated, under Ar atmosphere) device activities exceeding 100 days without compromising the power conversion efficiency and other photovoltaic parameters. The extended lifetime of the device can be attributed, at least in part, to the hydrophobic nature of the imidazolium iodide salt. The functionalization of the perovskite material was found to have negligible influence on the perovskite crystal structure. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A New Lead Iodide Perovskite based on Large Organic Cation for Solar Cell Application.

    PubMed

    Ma, Chunqing; Shen, Dong; Lo, Ming Fai; Lee, Chun-Sing

    2018-06-06

    Methylammonium (CH3NH3+) and formamidinium ((NH2)2CH+) based lead iodide perovskites are currently the two commonly used organic-inorganic lead iodide perovskites for solar cell application. Till now, there is still no alternative organic cations, which can produce perovskites with bandgaps spanning the visible spectrum (i.e. < 1.7 eV) for solar cell application. Here, a new perovskite using large propane-1,3-diammonium cation (n-Pr(NH3)22+) with a chemical structure of (n-Pr(NH3)2)0.5PbI3 is demonstrated. X-ray diffraction (XRD) result shows that the new perovskite exhibits a three-dimensional (3D), tetragonal phase. The bandgap of the new perovskite is ~ 1.6 eV, which is desirable for photovoltaic application. A (n-Pr(NH3)2)0.5PbI3 perovskite solar cell (PSC) yields a power conversion efficiency (PCE) of 5.1%. More importantly, this new perovskite is composed of larger hydrophobic cation that provides a better moisture resistance compared to CH3NH3PbI3 perovskite. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. High Photon-to-Current Conversion in Solar Cells Based on Light-Absorbing Silver Bismuth Iodide.

    PubMed

    Zhu, Huimin; Pan, Mingao; Johansson, Malin B; Johansson, Erik M J

    2017-06-22

    Here, a lead-free silver bismuth iodide (AgI/BiI 3 ) with a crystal structure with space group R3‾ m is investigated for use in solar cells. Devices based on the silver bismuth iodide deposited from solution on top of TiO 2 and the conducting polymer poly(3-hexylthiophene-2,5-diyl) (P3HT) as a hole-transport layer are prepared and the photovoltaic performance is very promising with a power conversion efficiency over 2 %, which is higher than the performance of previously reported bismuth-halide materials for solar cells. Photocurrent generation is observed between 350 and 700 nm, and the maximum external quantum efficiency is around 45 %. The results are compared to solar cells based on the previously reported material AgBi 2 I 7 , and we observe a clearly higher performance for the devices with the new silver and bismuth iodides composition and different crystal structure. The X-ray diffraction spectrum of the most efficient silver bismuth iodide material shows a hexagonal crystal structure with space group R3‾ m, and from the light absorption spectrum we obtain an indirect band gap energy of 1.62 eV and a direct band gap energy of 1.85 eV. This report shows the possibility for finding new structures of metal-halides efficient in solar cells and points out new directions for further exploration of lead-free metal-halide solar cells. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  1. The pathogenesis of iodide mumps: A case report.

    PubMed

    Zhang, Guilian; Li, Tao; Wang, Heying; Liu, Jiao

    2017-11-01

    Iodide mumps is an uncommon condition, induced by iodide-containing contrast, and is characterized by a rapid, painless enlargement of the bilateral or unilateral salivary gland. At present, the pathogenesis of iodide mumps is not yet clear. It may be related to an idiosyncratic reaction, a toxic accumulation of iodine in the gland duct, or renal function damage leading to an iodine excretion disorder. This paper reports the clinical manifestations and magnetic resonance imaging results of one case of iodide mumps, which occurred after digital subtraction angiography. A 66-year-old Chinese man presented to our department with a 1-month speech barrier and 1 day of vomiting. He had the history of high blood sugar, the history of high blood pressure and the history of Vitiligo. He had no history of allergies and had never previously received iodide-containing contrast. His renal function and other laboratory examinations were normal. During the digital subtraction angiography (DSA), the patient received approximately 130 mL of nonionic contrast agent (iodixanol). Five hours postsurgery, the patient experienced bilateral parotid enlargement with no other discomfort, such as pain, fever, skin redness, itching, hives, nausea, vomiting, or respiratory abnormalities. We thought the diagnosis was iodide mumps. Intravenous dexamethasone (5 mg) was administered. 20 hours post-DSA, after which the bilateral parotid shrunk. By 4 days postsurgery, the patient's bilateral parotid had recovered completely. We found no obvious abnormal sequence signal in diffusion magnetic resonance imaging or the corresponding apparent diffusion coefficient. Our findings suggest that vasogenic edema may play an important role in the pathogenesis of iodide mumps. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  2. Understanding charge transport in lead iodide perovskite thin-film field-effect transistors

    PubMed Central

    Senanayak, Satyaprasad P.; Yang, Bingyan; Thomas, Tudor H.; Giesbrecht, Nadja; Huang, Wenchao; Gann, Eliot; Nair, Bhaskaran; Goedel, Karl; Guha, Suchi; Moya, Xavier; McNeill, Christopher R.; Docampo, Pablo; Sadhanala, Aditya; Friend, Richard H.; Sirringhaus, Henning

    2017-01-01

    Fundamental understanding of the charge transport physics of hybrid lead halide perovskite semiconductors is important for advancing their use in high-performance optoelectronics. We use field-effect transistors (FETs) to probe the charge transport mechanism in thin films of methylammonium lead iodide (MAPbI3). We show that through optimization of thin-film microstructure and source-drain contact modifications, it is possible to significantly minimize instability and hysteresis in FET characteristics and demonstrate an electron field-effect mobility (μFET) of 0.5 cm2/Vs at room temperature. Temperature-dependent transport studies revealed a negative coefficient of mobility with three different temperature regimes. On the basis of electrical and spectroscopic studies, we attribute the three different regimes to transport limited by ion migration due to point defects associated with grain boundaries, polarization disorder of the MA+ cations, and thermal vibrations of the lead halide inorganic cages. PMID:28138550

  3. Mercuric iodide detector systems for identifying substances by x-ray energy dispersive diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwanczyk, J.S.; Patt, B.E.; Wang, Y.J.

    The use of mercuric iodide arrays for energy-dispersive x-ray diffraction (EDXRD) spectroscopy is now being investigated by the authors for inspection of specific crystalline powders in substances ranging from explosives to illicit drugs. Mercuric iodide has been identified as the leading candidate for replacing the Ge detectors previously employed in the development of this technique because HgI{sub 2} detectors: operate at or near room temperature; without the bulky apparatus associated with cryogenic cooling; and offer excellent spectroscopy performance with extremely high efficiency. Furthermore, they provide the practicality of constructing optimal array geometries necessary for these measurements. Proof of principle experimentsmore » have been performed using a single-HgI{sub 2} detector spectrometer. An energy resolution of 655 eV (FWHM) has been obtained for 60 keV gamma line from an {sup 241}Am source. The EDXRD signatures of various crystalline powdered compounds have been measured and the spectra obtained show the excellent potential of mercuric iodide for this application.« less

  4. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics.

    PubMed

    Wang, Gongming; Li, Dehui; Cheng, Hung-Chieh; Li, Yongjia; Chen, Chih-Yen; Yin, Anxiang; Zhao, Zipeng; Lin, Zhaoyang; Wu, Hao; He, Qiyuan; Ding, Mengning; Liu, Yuan; Huang, Yu; Duan, Xiangfeng

    2015-10-01

    Methylammonium lead iodide perovskite has attracted intensive interest for its diverse optoelectronic applications. However, most studies to date have been limited to bulk thin films that are difficult to implement for integrated device arrays because of their incompatibility with typical lithography processes. We report the first patterned growth of regular arrays of perovskite microplate crystals for functional electronics and optoelectronics. We show that large arrays of lead iodide microplates can be grown from an aqueous solution through a seeded growth process and can be further intercalated with methylammonium iodide to produce perovskite crystals. Structural and optical characterizations demonstrate that the resulting materials display excellent crystalline quality and optical properties. We further show that perovskite crystals can be selectively grown on prepatterned electrode arrays to create independently addressable photodetector arrays and functional field effect transistors. The ability to grow perovskite microplates and to precisely place them at specific locations offers a new material platform for the fundamental investigation of the electronic and optical properties of perovskite materials and opens a pathway for integrated electronic and optoelectronic systems.

  5. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics

    PubMed Central

    Wang, Gongming; Li, Dehui; Cheng, Hung-Chieh; Li, Yongjia; Chen, Chih-Yen; Yin, Anxiang; Zhao, Zipeng; Lin, Zhaoyang; Wu, Hao; He, Qiyuan; Ding, Mengning; Liu, Yuan; Huang, Yu; Duan, Xiangfeng

    2015-01-01

    Methylammonium lead iodide perovskite has attracted intensive interest for its diverse optoelectronic applications. However, most studies to date have been limited to bulk thin films that are difficult to implement for integrated device arrays because of their incompatibility with typical lithography processes. We report the first patterned growth of regular arrays of perovskite microplate crystals for functional electronics and optoelectronics. We show that large arrays of lead iodide microplates can be grown from an aqueous solution through a seeded growth process and can be further intercalated with methylammonium iodide to produce perovskite crystals. Structural and optical characterizations demonstrate that the resulting materials display excellent crystalline quality and optical properties. We further show that perovskite crystals can be selectively grown on prepatterned electrode arrays to create independently addressable photodetector arrays and functional field effect transistors. The ability to grow perovskite microplates and to precisely place them at specific locations offers a new material platform for the fundamental investigation of the electronic and optical properties of perovskite materials and opens a pathway for integrated electronic and optoelectronic systems. PMID:26601297

  6. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics

    DOE PAGES

    Wang, Gongming; Li, Dehui; Cheng, Hung -Chieh; ...

    2015-10-02

    Methylammonium lead iodide perovskite has attracted intensive interest for its diverse optoelectronic applications. However, most studies to date have been limited to bulk thin films that are difficult to implement for integrated device arrays because of their incompatibility with typical lithography processes. We report the first patterned growth of regular arrays of perovskite microplate crystals for functional electronics and optoelectronics. We show that large arrays of lead iodide microplates can be grown from an aqueous solution through a seeded growth process and can be further intercalated with methylammonium iodide to produce perovskite crystals. Structural and optical characterizations demonstrate that themore » resulting materials display excellent crystalline quality and optical properties. We further show that perovskite crystals can be selectively grown on prepatterned electrode arrays to create independently addressable photodetector arrays and functional field effect transistors. Furthermore, the ability to grow perovskite microplates and to precisely place them at specific locations offers a new material platform for the fundamental investigation of the electronic and optical properties of perovskite materials and opens a pathway for integrated electronic and optoelectronic systems.« less

  7. Nanocomposite scintillator, detector, and method

    DOEpatents

    Cooke, D Wayne [Santa Fe, NM; McKigney, Edward A [Los Alamos, NM; Muenchausen, Ross E [Los Alamos, NM; Bennett, Bryan L [Los Alamos, NM

    2009-04-28

    A compact includes a mixture of a solid binder and at least one nanopowder phosphor chosen from yttrium oxide, yttrium tantalate, barium fluoride, cesium fluoride, bismuth germanate, zinc gallate, calcium magnesium pyrosilicate, calcium molybdate, calcium chlorovanadate, barium titanium pyrophosphate, a metal tungstate, a cerium doped nanophosphor, a bismuth doped nanophosphor, a lead doped nanophosphor, a thallium doped sodium iodide, a doped cesium iodide, a rare earth doped pyrosilicate, or a lanthanide halide. The compact can be used in a radiation detector for detecting ionizing radiation.

  8. Synthetic Studies of Antimony Sulfur Iodide and Predictions/Synthesis of New Nitrogen Containing Crystal Structures.

    DTIC Science & Technology

    1983-02-01

    Okazaki, 2 it appeared likely that well-aligned SbSI would have extremely useful piezoelectric properties. It was appreciated that a source of high purity...which often facilitate this, and may also lead to special physical effects (as with the ferroelectric behavior of SbSI). In hydroxyapatite , there are two...Fabrication of Piezoelectric Cerdmics," Ferroelectrics 41, 77-69 (1982). 3. P.E.O. Morgan, "Synthetic Studies of Antimony Sulfur Iodide," Proposal to ONR from

  9. Layered structures of organic/inorganic hybrid halide perovskites

    NASA Astrophysics Data System (ADS)

    Huan, Tran Doan; Tuoc, Vu Ngoc; Minh, Nguyen Viet

    2016-03-01

    Organic-inorganic hybrid halide perovskites, in which the A cations of an ABX3 perovskite are replaced by organic cations, may be used for photovoltaic and solar thermoelectric applications. In this contribution, we systematically study three lead-free hybrid perovskites, i.e., methylammonium tin iodide CH3NH3SnI3 , ammonium tin iodide NH4SnI3 , and formamidnium tin iodide HC (NH2)2SnI3 by first-principles calculations. We find that in addition to the commonly known motif in which the corner-shared SnI6 octahedra form a three-dimensional network, these materials may also favor a two-dimensional (layered) motif formed by alternating layers of the SnI6 octahedra and the organic cations. These two motifs are nearly equal in free energy and are separated by low barriers. These layered structures features many flat electronic bands near the band edges, making their electronic structures significantly different from those of the structural phases composed of three-dimension networks of SnI6 octahedra. Furthermore, because the electronic structures of HC (NH2)2SnI3 are found to be rather similar to those of CH3NH3SnI3 , formamidnium tin iodide may also be promising for the applications of methylammonium tin iodide.

  10. Unifying Principles of the Reductive Covalent Graphene Functionalization.

    PubMed

    Abellán, Gonzalo; Schirowski, Milan; Edelthalhammer, Konstantin F; Fickert, Michael; Werbach, Katharina; Peterlik, Herwig; Hauke, Frank; Hirsch, Andreas

    2017-04-12

    Covalently functionalized graphene derivatives were synthesized via benchmark reductive routes using graphite intercalation compounds (GICs), in particular KC 8 . We have compared the graphene arylation and alkylation of the GIC using 4-tert-butylphenyldiazonium and bis(4-(tert-butyl)phenyl)iodonium salts, as well as phenyl iodide, n-hexyl iodide, and n-dodecyl iodide, as electrophiles in model reactions. We have put a particular focus on the evaluation of the degree of addition and the bulk functionalization homogeneity (H bulk ). For this purpose, we have employed statistical Raman spectroscopy (SRS), and a forefront characterization tool using thermogravimetric analysis coupled with FT-IR, gas chromatography, and mass spectrometry (TGA/FT-IR/GC/MS). The present study unambiguously shows that the graphene functionalization using alkyl iodides leads to the best results, in terms of both the degree of addition and the H bulk . Moreover, we have identified the reversible character of the covalent addition chemistry, even at temperatures below 200 °C. The thermally induced addend cleavage proceeds homolytically, which allows for the detection of dimeric cleavage products by TGA/FT-IR/GC/MS. This dimerization points to a certain degree of regioselectivity, leading to a low sheet homogeneity (H sheet ). Finally, we developed this concept by performing the reductive alkylation reaction in monolayer CVD graphene films. This work provides important insights into the understanding of basic principles of reductive graphene functionalization and will serve as a guide in the design of new graphene functionalization concepts.

  11. Ab initio calculation of transport properties between PbSe quantum dots facets with iodide ligands

    NASA Astrophysics Data System (ADS)

    Wang, B.; Patterson, R.; Chen, W.; Zhang, Z.; Yang, J.; Huang, S.; Shrestha, S.; Conibeer, G.

    2018-01-01

    The transport properties between Lead Selenide (PbSe) quantum dots decorated with iodide ligands has been studied using density functional theory (DFT). Quantum conductance at each selected energy levels has been calculated along with total density of states and projected density of states. The DFT calculation is carried on using a grid-based planar augmented wave (GPAW) code incorporated with the linear combination of atomic orbital (LCAO) mode and Perdew Burke Ernzerhof (PBE) exchange-correlation functional. Three iodide ligand attached low index facets including (001), (011), (111) are investigated in this work. P-orbital of iodide ligand majorly contributes to density of state (DOS) at near top valence band resulting a significant quantum conductance, whereas DOS of Pb p-orbital shows minor influence. Various values of quantum conductance observed along different planes are possibly reasoned from a combined effect electrical field over topmost surface and total distance between adjacent facets. Ligands attached to (001) and (011) planes possess similar bond length whereas it is significantly shortened in (111) plane, whereas transport between (011) has an overall low value due to newly formed electric field. On the other hand, (111) plane with a net surface dipole perpendicular to surface layers leading to stronger electron coupling suggests an apparent increase of transport probability. Apart from previously mentioned, the maximum transport energy levels located several eVs (1 2 eVs) from the edge of valence band top.

  12. Epitaxial Electrodeposition of Methylammonium Lead Iodide Perovskites

    DOE PAGES

    Koza, Jakub A.; Hill, James C.; Demster, Ashley C.; ...

    2015-12-16

    Here, an electrochemical/chemical route is introduced to deposit both textured and epitaxial films of methylammonium lead iodide (MAPbI 3) perovskites. The perovskite films are produced by chemical conversion of lead dioxide films that have been electrodeposited as either textured or epitaxial films onto [111]-textured Au and [100] and [111] single-crystal Au substrates. The epitaxial relationships for the MAPbI 3 films are MAPbI 3(001)[010]∥PbO 2(100)<001> and MAPbI 3(110)[111]∥PbO 2(100)<001> regardless of the Au substrate orientation, because the in-plane order of the converted film is controlled by the epitaxial PbO 2 precursor film. The textured and epitaxial MAPbI 3 films both havemore » trap densities lower than and photoluminescence intensities higher than those of polycrystalline films produced by spin coating.« less

  13. Effects of Organic Cation Length on Exciton Recombination in Two-Dimensional Layered Lead Iodide Hybrid Perovskite Crystals.

    PubMed

    Gan, Lu; Li, Jing; Fang, Zhishan; He, Haiping; Ye, Zhizhen

    2017-10-19

    In recent years, 2D layered organic-inorganic lead halide perovskites have attracted considerable attention due to the distinctive quantum confinement effects as well as prominent excitonic luminescence. Herein, we show that the recombination dynamics and photoluminescence (PL) of the 2D layered perovskites can be tuned by the organic cation length. 2D lead iodide perovskite crystals with increased length of the organic chains reveal blue-shifted PL as well as enhanced relative internal quantum efficiency. Furthermore, we provide experimental evidence that the formation of face-sharing [PbI 6 ] 4- octahedron in perovskites with long alkyls induces additional confinement for the excitons, leading to 1D-like recombination. As a result, the PL spectra show enhanced inhomogeneous broadening at low temperature. Our work provides physical understanding of the role of organic cation in the optical properties of 2D layered perovskites, and would benefit the improvement of luminescence efficiency of such materials.

  14. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.

    PubMed

    Kim, Hui-Seon; Lee, Chang-Ryul; Im, Jeong-Hyeok; Lee, Ki-Beom; Moehl, Thomas; Marchioro, Arianna; Moon, Soo-Jin; Humphry-Baker, Robin; Yum, Jun-Ho; Moser, Jacques E; Grätzel, Michael; Park, Nam-Gyu

    2012-01-01

    We report on solid-state mesoscopic heterojunction solar cells employing nanoparticles (NPs) of methyl ammonium lead iodide (CH(3)NH(3))PbI(3) as light harvesters. The perovskite NPs were produced by reaction of methylammonium iodide with PbI(2) and deposited onto a submicron-thick mesoscopic TiO(2) film, whose pores were infiltrated with the hole-conductor spiro-MeOTAD. Illumination with standard AM-1.5 sunlight generated large photocurrents (J(SC)) exceeding 17 mA/cm(2), an open circuit photovoltage (V(OC)) of 0.888 V and a fill factor (FF) of 0.62 yielding a power conversion efficiency (PCE) of 9.7%, the highest reported to date for such cells. Femto second laser studies combined with photo-induced absorption measurements showed charge separation to proceed via hole injection from the excited (CH(3)NH(3))PbI(3) NPs into the spiro-MeOTAD followed by electron transfer to the mesoscopic TiO(2) film. The use of a solid hole conductor dramatically improved the device stability compared to (CH(3)NH(3))PbI(3) -sensitized liquid junction cells.

  15. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%

    PubMed Central

    Kim, Hui-Seon; Lee, Chang-Ryul; Im, Jeong-Hyeok; Lee, Ki-Beom; Moehl, Thomas; Marchioro, Arianna; Moon, Soo-Jin; Humphry-Baker, Robin; Yum, Jun-Ho; Moser, Jacques E.; Grätzel, Michael; Park, Nam-Gyu

    2012-01-01

    We report on solid-state mesoscopic heterojunction solar cells employing nanoparticles (NPs) of methyl ammonium lead iodide (CH3NH3)PbI3 as light harvesters. The perovskite NPs were produced by reaction of methylammonium iodide with PbI2 and deposited onto a submicron-thick mesoscopic TiO2 film, whose pores were infiltrated with the hole-conductor spiro-MeOTAD. Illumination with standard AM-1.5 sunlight generated large photocurrents (JSC) exceeding 17 mA/cm2, an open circuit photovoltage (VOC) of 0.888 V and a fill factor (FF) of 0.62 yielding a power conversion efficiency (PCE) of 9.7%, the highest reported to date for such cells. Femto second laser studies combined with photo-induced absorption measurements showed charge separation to proceed via hole injection from the excited (CH3NH3)PbI3 NPs into the spiro-MeOTAD followed by electron transfer to the mesoscopic TiO2 film. The use of a solid hole conductor dramatically improved the device stability compared to (CH3NH3)PbI3 -sensitized liquid junction cells. PMID:22912919

  16. Genetic Factors That Might Lead to Different Responses in Individuals Exposed to Perchlorate

    PubMed Central

    Scinicariello, Franco; Murray, H. Edward; Smith, Lester; Wilbur, Sharon; Fowler, Bruce A.

    2005-01-01

    Perchlorate has been detected in groundwater in many parts of the United States, and recent detection in vegetable and dairy food products indicates that contamination by perchlorate is more widespread than previously thought. Perchlorate is a competitive inhibitor of the sodium iodide symporter, the thyroid cell–surface protein responsible for transporting iodide from the plasma into the thyroid. An estimated 4.3% of the U.S. population is subclinically hypothyroid, and 6.9% of pregnant women may have low iodine intake. Congenital hypothyroidism affects 1 in 3,000 to 1 in 4,000 infants, and 15% of these cases have been attributed to genetic defects. Our objective in this review is to identify genetic biomarkers that would help define subpopulations sensitive to environmental perchlorate exposure. We review the literature to identify genetic defects involved in the iodination process of the thyroid hormone synthesis, particularly defects in iodide transport from circulation into the thyroid cell, defects in iodide transport from the thyroid cell to the follicular lumen (Pendred syndrome), and defects of iodide organification. Furthermore, we summarize relevant studies of perchlorate in humans. Because of perchlorate inhibition of iodide uptake, it is biologically plausible that chronic ingestion of perchlorate through contaminated sources may cause some degree of iodine discharge in populations that are genetically susceptible to defects in the iodination process of the thyroid hormone synthesis, thus deteriorating their conditions. We conclude that future studies linking human disease and environmental perchlorate exposure should consider the genetic makeup of the participants, actual perchlorate exposure levels, and individual iodine intake/excretion levels. PMID:16263499

  17. TRPM7 is regulated by halides through its kinase domain

    PubMed Central

    Yu, Haijie; Zhang, Zheng; Lis, Annette; Penner, Reinhold; Fleig, Andrea

    2013-01-01

    Transient receptor potential melastatin 7 (TRPM7) is a divalent-selective cation channel fused to an atypical α-kinase. TRPM7 is a key regulator of cell growth and proliferation, processes accompanied by mandatory cell volume changes. Osmolarity-induced cell volume alterations regulate TRPM7 through molecular crowding of solutes that affect channel activity, including magnesium (Mg2+), Mg-nucleotides and a further unidentified factor. Here, we assess whether chloride and related halides can act as negative feedback regulators of TRPM7. We find that chloride and bromide inhibit heterologously expressed TRPM7 in synergy with intracellular Mg2+ ([Mg2+]i) and this is facilitated through the ATP-binding site of the channel’s kinase domain. The synergistic block of TRPM7 by chloride and Mg2+ is not reversed during divalent-free or acidic conditions, indicating a change in protein conformation that leads to channel inactivation. Iodide has the strongest inhibitory effect on TRPM7 at physiological [Mg2+]i. Iodide also inhibits endogenous TRPM7-like currents as assessed in MCF-7 breast cancer cells, where upregulation of SLC5A5 sodium-iodide symporter enhances iodide uptake and inhibits cell proliferation. These results indicate that chloride could be an important factor in modulating TRPM7 during osmotic stress and implicate TRPM7 as a possible molecular mechanism contributing to the anti-proliferative characteristics of intracellular iodide accumulation in cancer cells. PMID:23471296

  18. The Role of Connectivity on Electronic Properties of Lead Iodide Perovskite-Derived Compounds

    PubMed Central

    2017-01-01

    We use a layered solution crystal growth method to synthesize high-quality single crystals of two different benzylammonium lead iodide perovskite-like organic/inorganic hybrids. The well-known (C6H5CH2NH3)2PbI4 phase is obtained in the form of bright orange platelets, with a structure comprised of single ⟨100⟩-terminated sheets of corner-sharing PbI6 octahedra separated by bilayers of the organic cations. The presence of water during synthesis leads to formation of a novel minority phase that crystallizes in the form of nearly transparent, light yellow bar-shaped crystals. This phase adopts the monoclinic space group P21/n and incorporates water molecules, with structural formula (C6H5CH2NH3)4Pb5I14·2H2O. The crystal structure consists of ribbons of edge-sharing PbI6 octahedra separated by the organic cations. Density functional theory calculations including spin–orbit coupling show that these edge-sharing PbI6 octahedra cause the band gap to increase with respect to corner-sharing PbI6 octahedra in (C6H5CH2NH3)2PbI4. To gain systematic insight, we model the effect of the connectivity of PbI6 octahedra on the band gap in idealized lead iodide perovskite-derived compounds. We find that increasing the connectivity from corner-, via edge-, to face-sharing causes a significant increase in the band gap. This provides a new mechanism to tailor the optical properties in organic/inorganic hybrid compounds. PMID:28677956

  19. Recycling Perovskite Solar Cells To Avoid Lead Waste.

    PubMed

    Binek, Andreas; Petrus, Michiel L; Huber, Niklas; Bristow, Helen; Hu, Yinghong; Bein, Thomas; Docampo, Pablo

    2016-05-25

    Methylammonium lead iodide (MAPbI3) perovskite based solar cells have recently emerged as a serious competitor for large scale and low-cost photovoltaic technologies. However, since these solar cells contain toxic lead, a sustainable procedure for handling the cells after their operational lifetime is required to prevent exposure of the environment to lead and to comply with international electronic waste disposal regulations. Herein, we report a procedure to remove every layer of the solar cells separately, which gives the possibility to selectively isolate the different materials. Besides isolating the toxic lead iodide in high yield, we show that the PbI2 can be reused for the preparation of new solar cells with comparable performance and in this way avoid lead waste. Furthermore, we show that the most expensive part of the solar cell, the conductive glass (FTO), can be reused several times without any reduction in the performance of the devices. With our simple recycling procedure, we address both the risk of contamination and the waste disposal of perovskite based solar cells while further reducing the cost of the system. This brings perovskite solar cells one step closer to their introduction into commercial systems.

  20. Aqueous photochemical reactions of chloride, bromide, and iodide ions in a diode-array spectrophotometer. Autoinhibition in the photolysis of iodide ions.

    PubMed

    Kalmár, József; Dóka, Éva; Lente, Gábor; Fábián, István

    2014-03-28

    The aqueous photoreactions of three halide ions (chloride, bromide and iodide) were studied using a diode array spectrophotometer to drive and detect the process at the same time. The concentration and pH dependences of the halogen formation rates were studied in detail. The experimental data were interpreted by improving earlier models where the cage complex of a halogen atom and an electron has a central role. The triiodide ion was shown to exert a strong inhibiting effect on the reaction sequence leading to its own formation. An assumed chemical reaction between the triiodide ion and the cage complex interpreted the strong autoinhibition effect. It is shown that there is a real danger of unwanted interference from the photoreactions of halide ions when halide salts are used as supporting electrolytes in spectrophotometric experiments using a relatively high intensity UV light source.

  1. Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1987

    1987-01-01

    Describes 20 teaching activities and experiments appropriate for use with various secondary school science classes. Instructional activities include the study of catalase, raising bees, a game about equilibrium, spectrometers, lead iodide, resonance, graphing, and electromagnetic waves. (TW)

  2. Slow hot carrier cooling in cesium lead iodide perovskites

    NASA Astrophysics Data System (ADS)

    Shen, Qing; Ripolles, Teresa S.; Even, Jacky; Ogomi, Yuhei; Nishinaka, Koji; Izuishi, Takuya; Nakazawa, Naoki; Zhang, Yaohong; Ding, Chao; Liu, Feng; Toyoda, Taro; Yoshino, Kenji; Minemoto, Takashi; Katayama, Kenji; Hayase, Shuzi

    2017-10-01

    Lead halide perovskites are attracting a great deal of interest for optoelectronic applications such as solar cells, LEDs, and lasers because of their unique properties. In solar cells, heat dissipation by hot carriers results in a major energy loss channel responsible for the Shockley-Queisser efficiency limit. Hot carrier solar cells offer the possibility to overcome this limit and achieve energy conversion efficiency as high as 66% by extracting hot carriers. Therefore, fundamental studies on hot carrier relaxation dynamics in lead halide perovskites are important. Here, we elucidated the hot carrier cooling dynamics in all-inorganic cesium lead iodide (CsPbI3) perovskite using transient absorption spectroscopy. We observe that the hot carrier cooling rate in CsPbI3 decreases as the fluence of the pump light increases and the cooling is as slow as a few 10 ps when the photoexcited carrier density is 7 × 1018 cm-3, which is attributed to phonon bottleneck for high photoexcited carrier densities. Our findings suggest that CsPbI3 has a potential for hot carrier solar cell applications.

  3. Methylammonium Bismuth Iodide as a Lead-Free, Stable Hybrid Organic-Inorganic Solar Absorber.

    PubMed

    Hoye, Robert L Z; Brandt, Riley E; Osherov, Anna; Stevanović, Vladan; Stranks, Samuel D; Wilson, Mark W B; Kim, Hyunho; Akey, Austin J; Perkins, John D; Kurchin, Rachel C; Poindexter, Jeremy R; Wang, Evelyn N; Bawendi, Moungi G; Bulović, Vladimir; Buonassisi, Tonio

    2016-02-18

    Methylammonium lead halide (MAPbX3 ) perovskites exhibit exceptional carrier transport properties. But their commercial deployment as solar absorbers is currently limited by their intrinsic instability in the presence of humidity and their lead content. Guided by our theoretical predictions, we explored the potential of methylammonium bismuth iodide (MBI) as a solar absorber through detailed materials characterization. We synthesized phase-pure MBI by solution and vapor processing. In contrast to MAPbX3, MBI is air stable, forming a surface layer that does not increase the recombination rate. We found that MBI luminesces at room temperature, with the vapor-processed films exhibiting superior photoluminescence (PL) decay times that are promising for photovoltaic applications. The thermodynamic, electronic, and structural features of MBI that are amenable to these properties are also present in other hybrid ternary bismuth halide compounds. Through MBI, we demonstrate a lead-free and stable alternative to MAPbX3 that has a similar electronic structure and nanosecond lifetimes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. In situ nucleophilic substitutional growth of methylammonium lead iodide polycrystals.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acik, Muge; Alam, Todd M.; Guo, Fangmin

    2017-01-01

    Methylammonium lead iodide (MAPbIx) perovskites are organic-inorganic semiconductors that serve as the light-harvesting component of the photovoltaics, and are desirable with their long diffusion length yielding power conversion efficiencies of ≥22%. Conventional techniques grow perovskites by spin coating precursors on an oxide or a polymer substrate followed by annealing, however, use of high boiling point solvents and high temperatures hinder device stability and performance. Through a one-step, acid-catalyzed nucleophilic-substitutional crystal growth in polar protic solvents, we show evidence for the substrate- and annealing- free production of MAPbIx polycrystals that are metallic-lead-free with negligibly small amount of PbI2 precipitation (<10%). Onmore » the basis of this chemical composition, we have devised an in situ growth of highly air (upto ~1.5 months) and thermally-stable (≤300°C), tetragonal-phased, variable-sized polycrystals (~100 nm-10 μm) amendable for large-area deposition, and ultimately, large-scale manufacturing. This method is encouraging for stable optoelectronic devices, and leads to energy-efficient and low-cost processing.« less

  5. Substitutional Growth of Methylammonium Lead Iodide Perovskites in Alcohols

    DOE PAGES

    Acik, Muge; Alam, Todd M.; Guo, Fangmin; ...

    2017-09-29

    Methylammonium lead iodide (MAPbI 3) perovskites are organic–inorganic semiconductors with long carrier diffusion lengths serving as the light-harvesting component in optoelectronics. Through a substitutional growth of MAPbI 3 catalyzed by polar protic alcohols, evidence is shown in this paper for their substrate- and annealing-free production and use of toxic solvents and high temperature is prevented. The resulting variable-sized crystals (≈100 nm–10 µm) are found to be tetragonally single-phased in alcohols and precipitated as powders that are metallic-lead-free. A comparatively low MAPbI 3 yield in toluene supports the role of alcohol polarity and the type of solvent (protic vs aprotic). Themore » theoretical calculations suggest that overall Gibbs free energy in alcohols is lowered due to their catalytic impact. Based on this alcohol-catalyzed approach, MAPbI 3 is obtained, which is chemically stable in air up to ≈1.5 months and thermally stable (≤300 °C). Finally, this method is amendable to large-scale manufacturing and ultimately can lead to energy-efficient, low-cost, and stable devices.« less

  6. High resolution diffraction imaging of crystals grown in microgravity and closely related terrestrial crystals

    NASA Technical Reports Server (NTRS)

    Steiner, B.; Dobbyn, R.; Black, D.; Burdette, H.; Kuriyama, M.; Spal, R.; Vandenberg, L.; Fripp, A.; Simchick, R.; Lal, R.

    1991-01-01

    Irregularities found in three crystals grown in space, in four crystals grown entirely on the ground were examined and compared. Irregularities were observed in mercuric iodide, lead tin telluride, triglycine sulfate, and gallium arsenide by high resolution synchrotron x radiation diffraction imaging. Radiation detectors made from mercuric iodide crystals grown in microgravity were reported to perform far better than conventional detectors grown from the same material under full gravity. Effort is now underway to reproduce these 'space' crystals, optimize their properties, and extend comparable superiority to other types of materials.

  7. PEROXIDASE-MEDIATED MAMMALIAN CELL CYTOTOXICITY

    PubMed Central

    Edelson, Paul J.; Cohn, Zanvil A.

    1973-01-01

    Lactoperoxidase, in the presence of hydrogen peroxide and iodide is cytotoxic for human and mouse lymphoid cells, and human erythrocytes. Myeloperoxidase, in amounts equivalent to 1.5 x 106 neutrophils, readily replaces lactoperoxidase, and allows the substitution of the iodide ion by chloride. The myeloperoxidase-mediated reaction is rapid, and highly efficient, leading to 85–90% cell death in 90 min, as measured by 51chromium release and dye exclusion. The mixture of granulocytes. monocytes, and lymphocytes present in an inflammatory exudate, and the intimate cell-to-cell association characteristic of cytotoxic phenomena may provide the in vivo requirements for such a system. PMID:4717124

  8. Synthesis of formamidinium lead iodide perovskite bulk single crystal and its optical properties

    NASA Astrophysics Data System (ADS)

    Zheng, Hongge; Duan, Junjie; Dai, Jun

    2017-07-01

    Formamidinium lead iodide (FAPbI3) is a promising hybrid perovskite material for optoelectronic devices. We synthesized bulk single crystal FAPbI3 by a rapid solution crystallization method. X-ray diffraction (XRD) was performed to characterize the crystal structure. Temperature-dependent photoluminescence (PL) spectra of the bulk single crystal FAPbI3 were measured from 10 to 300 K to explain PL recombination mechanism. It shows that near band edge emission blueshifts with the temperature increasing from 10 to 120 K and from 140 K to room temperature, a sudden emission band redshift demonstrates near 140 K because of the phase transition from orthorhombic phase to cubic phase. From the temperature-dependent PL spectra, the temperature coefficients of the bandgap and thermal activation energies of FAPbI3 perovskite are fitted.

  9. Phonon Mode Transformation across the Orthohombic-Tetragonal Phase Transition in a Lead-Iodide Perovskite CH3NH3PbI3: a Terahertz Time-Domain Spectroscopy Approach

    NASA Astrophysics Data System (ADS)

    Chia, Elbert E. M.; La-O-Vorakiat, Chan; Kadro, Jeannette; Salim, Teddy; Zhao, Daming; Ahmed, Towfiq; Lam, Yeng Ming; Zhu, Jian-Xin; Marcus, Rudolph; Michel-Beyerle, Maria-Elisabeth

    Using terahertz time-domain spectroscopy (THz-TDS), we study the temperature-dependent phonon modes of the organometallic lead iodide perovskite CH3NH3PbI3 thin film across the terahertz (0.5-3 THz) and temperature (20-300 K) ranges. These modes are related to the vibration of the Pb-I bonds. We found that two phonon modes in the tetragonal phase at room temperature split into four modes in the low-temperature orthorhombic phase. By use of the Lorentz model fitting, we analyze the critical behavior of this phase transition. King Mongkut's University of Technology Thonburi (Grant No. SCI58-003), Singapore MOE Tier 1 (RG13/12, RG123/14), ONR, ARO, NTU Biophysics Center, LANL LDRD, LANL CINT.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nacapricha, D.; Taylor, C.

    Studies have been performed on potassium-iodide-impregnated charcoals of the type used in the nuclear industry for trapping radioiodine released during nuclear fission. The effects of various parameters on the trapping efficiency of methyl iodide have been investigated. A variation in particle size within a bulk charcoal caused poor precision in K value measurements because of differences in surface area, pore volume, and bed density, leading to differences in the deposition of the impregnant. Precision is improved by sieving the charcoal to a narrower size because smaller particles have a higher porosity. This finding is supported by surface area and poremore » measurements. Two methods of impregnation are compared by measuring K values and the deposition of potassium iodide. Charcoal impregnated by rotary evaporation exhibits both higher K values and higher potassium iodide contents than sprayed charcoal. Two designs of spraying drum are compared: a drum with helical vanes allows more efficient deposition and more uniform distribution of impregnant than a drum with axial vanes. A decrease in the K value with increasing humidity correlates with the available surface area. A similar correlation exists between water content and available pore volume. Aging of potassium-iodide-impregnated charcoal, caused by the formation of oxygen complexes on the surface, is associated with significant falls in K value. K values of charcoals also can be restored to at least their original values by heat treatment in the absence of air. 12 refs., 6 figs., 1 tab.« less

  11. Determination of silver, antimony, bismuth, copper, cadmium and indium in ores, concentrates and related materials by atomic-absorption spectrophotometry after methyl isobutyl ketone extraction as iodides.

    PubMed

    Donaldson, E M; Wang, M

    1986-03-01

    Methods for determining ~ 0.2 mug g or more of silver and cadmium, ~ 0.5 mug g or more of copper and ~ 5 mug g or more of antimony, bismuth and indium in ores, concentrates and related materials are described. After sample decomposition and recovery of antimony and bismuth retained by lead and calcium sulphates, by co-precipitation with hydrous ferric oxide at pH 6.20 +/- 0.05, iron(III) is reduced to iron(II) with ascorbic acid, and antimony, bismuth, copper, cadmium and indium are separated from the remaining matrix elements by a single methyl isobutyl ketone extraction of their iodides from ~2M sulphuric acid-0.1M potassium iodide. The extract is washed with a sulphuric acid-potassium iodide solution of the same composition to remove residual iron and co-extracted zinc, and the extracted elements are stripped from the extract with 20% v v nitric acid-20% v v hydrogen peroxide. Alternatively, after the removal of lead sulphate by filtration, silver, copper, cadmium and indium can be extracted under the same conditions and stripped with 40% v v nitric acid-25% v v hydrochloric acid. The strip solutions are treated with sulphuric and perchloric acids and ultimately evaporated to dry ness. The individual elements are determined in a 24% v v hydrochloric acid medium containing 1000 mug of potassium per ml by atomic-absorption spectrophotometry with an air-acetylene flame. Tin, arsenic and molybdenum are not co-extracted under the conditions above. Results obtained for silver, antimony, bismuth and indium in some Canadian certified reference materials by these methods are compared with those obtained earlier by previously published methods.

  12. Reentrant Structural and Optical Properties and Large Positive Thermal Expansion in Perovskite Formamidinium Lead Iodide.

    PubMed

    Fabini, Douglas H; Stoumpos, Constantinos C; Laurita, Geneva; Kaltzoglou, Andreas; Kontos, Athanassios G; Falaras, Polycarpos; Kanatzidis, Mercouri G; Seshadri, Ram

    2016-12-05

    The structure of the hybrid perovskite HC(NH 2 ) 2 PbI 3 (formamidinium lead iodide) reflects competing interactions associated with molecular motion, hydrogen bonding tendencies, thermally activated soft octahedral rotations, and the propensity for the Pb 2+ lone pair to express its stereochemistry. High-resolution synchrotron X-ray powder diffraction reveals a continuous transition from the cubic α-phase (Pm3‾ m, #221) to a tetragonal β-phase (P4/mbm, #127) at around 285 K, followed by a first-order transition to a tetragonal γ-phase (retaining P4/mbm, #127) at 140 K. An unusual reentrant pseudosymmetry in the β-to-γ phase transition is seen that is also reflected in the photoluminescence. Around room temperature, the coefficient of volumetric thermal expansion is among the largest for any extended crystalline solid. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Grain-Size-Limited Mobility in Methylammonium Lead Iodide Perovskite Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reid, Obadiah G.; Yang, Mengjin; Kopidakis, Nikos

    2016-09-09

    We report a systematic study of the gigahertz-frequency charge carrier mobility found in methylammonium lead iodide perovskite films as a function of average grain size using time-resolved microwave conductivity and a single processing chemistry. Our measurements are in good agreement with the Kubo formula for the AC mobility of charges confined within finite grains, suggesting (1) that the surface grains imaged via scanning electron microscopy are representative of the true electronic domain size and not substantially subdivided by twinning or other defects not visible by microscopy and (2) that the time scale of diffusive transport across grain boundaries is muchmore » slower than the period of the microwave field in this measurement (-100 ps). The intrinsic (infinite grain size) minimum mobility extracted form the model is 29 +/- 6 cm2 V-1 s-1 at the probe frequency (8.9 GHz).« less

  14. Substrate effects on photoluminescence and low temperature phase transition of methylammonium lead iodide hybrid perovskite thin films

    NASA Astrophysics Data System (ADS)

    Shojaee, S. A.; Harriman, T. A.; Han, G. S.; Lee, J.-K.; Lucca, D. A.

    2017-07-01

    We examine the effects of substrates on the low temperature photoluminescence (PL) spectra and phase transition in methylammonium lead iodide hybrid perovskite (CH3NH3PbI3) thin films. Structural characterization at room temperature with X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy indicated that while the chemical structure of films deposited on glass and quartz was similar, the glass substrate induced strain in the perovskite films and suppressed the grain growth. The luminescence response and phase transition of the perovskite thin films were studied by PL spectroscopy. The induced strain was found to affect both the room temperature and low temperature PL spectra of the hybrid perovskite films. In addition, it was found that the effects of the glass substrate inhibited a tetragonal to orthorhombic phase transition such that it occurred at lower temperatures.

  15. Radiative efficiency of lead iodide based perovskite solar cells

    PubMed Central

    Tvingstedt, Kristofer; Malinkiewicz, Olga; Baumann, Andreas; Deibel, Carsten; Snaith, Henry J.; Dyakonov, Vladimir; Bolink, Henk J.

    2014-01-01

    The maximum efficiency of any solar cell can be evaluated in terms of its corresponding ability to emit light. We herein determine the important figure of merit of radiative efficiency for Methylammonium Lead Iodide perovskite solar cells and, to put in context, relate it to an organic photovoltaic (OPV) model device. We evaluate the reciprocity relation between electroluminescence and photovoltaic quantum efficiency and conclude that the emission from the perovskite devices is dominated by a sharp band-to-band transition that has a radiative efficiency much higher than that of an average OPV device. As a consequence, the perovskite have the benefit of retaining an open circuit voltage ~0.14 V closer to its radiative limit than the OPV cell. Additionally, and in contrast to OPVs, we show that the photoluminescence of the perovskite solar cell is substantially quenched under short circuit conditions in accordance with how an ideal photovoltaic cell should operate. PMID:25317958

  16. The iodide space in rabbit brain

    PubMed Central

    Ahmed, Nawal; Van Harreveld, A.

    1969-01-01

    1. The iodide space in rabbit brain varies greatly depending on the conditions under which it is determined. 2. When 131I- only is used the iodide space 4 hr after administration of the marker is of the order of 2%. The iodide content of the cerebrospinal fluid (c.s.f.) is about 1% of that of the serum. 3. Depression of the active iodide transport by perchlorate increases the space to 8·2% and the iodide content of the c.s.f. to 26% of that of the serum. 4. The active iodide transport can also be depressed by saturation with unlabelled iodide. Up to a serum iodide concentration of 5 mM the space determined after 5 hr remained constant at 2·7%. The iodide space grew when the serum iodide content was enhanced from 5 to 20 mM, to become constant at a value of 10·6% on further increase of the serum iodide (up to 50 mM). The iodide content of the c.s.f. increased in a similar manner as the space with the iodide concentration of the serum to about 1/3 of the serum concentration. The iodide space of the muscle was independent of the plasma iodide content. 5. From 4 to 8 hr after administration of 131I- alone or with unlabelled iodide (to a serum concentration of 15 mM) the iodide space remained relatively constant. 6. When 131I- was administered in the fluid with which the ventricles were perfused an iodide space of about 7% was attained after about 5 hr. 7. In experiments in which 131I- was administered intravenously and the sink action of the c.s.f. was eliminated by perfusion of the ventricles with a perfusate containing as much 131I- as the plasma, the iodide space was 10·2%. When in addition active iodide transport was depressed by perchlorate the space increased to 16·8%. 8. Intravenous administration of labelled and unlabelled iodide (to a serum concentration of 20-40 mM) and ventricle perfusion with the same concentration of 131I- and unlabelled iodide as in the plasma yielded an iodide space of 20·8%. In similar experiments the iodide concentration of the perfusate was so adjusted that after 5 hr perfusion its iodide content hardly changed during the passage through the ventricles. Under these conditions the iodide concentration of the extracellular and perfusion fluids can be considered to be near equal. The iodide space computed on the basis of the iodide content of the outflowing fluid was 22·5%. 9. The large iodide space could be equated with the extracellular space if the iodide remained extracellular. This seems to be the case in the muscle where the iodide space is similar to the inulin space. 10. The large effects on the iodide space of perchlorate and saturation with unlabelled iodide in experiments in which the marker was administered intravenously and in the perfusate (7 and 8) suggests the presence of an active iodide transport from the brain extracellular fluid into the blood over the blood—brain barrier. PMID:4310942

  17. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells

    DOE PAGES

    Yuan, Yongbo; Chae, Jungseok; Shao, Yuchuan; ...

    2015-06-05

    In this study, long range electromigration of methylammonium ions (MA +) in methyl ammonium lead tri-iodide (MAPbI 3) film is observed directly using the photo­thermal induced resonance technique. The electromigration of MA + leads to the formation of a lateral p-i-n structure, which is the origin of the switchable photovoltaic effect in MAPbI 3 perovskite devices.

  18. High-Performance CH3NH3PbI3-Inverted Planar Perovskite Solar Cells with Fill Factor Over 83% via Excess Organic/Inorganic Halide.

    PubMed

    Jahandar, Muhammad; Khan, Nasir; Lee, Hang Ken; Lee, Sang Kyu; Shin, Won Suk; Lee, Jong-Cheol; Song, Chang Eun; Moon, Sang-Jin

    2017-10-18

    The reduction of charge carrier recombination and intrinsic defect density in organic-inorganic halide perovskite absorber materials is a prerequisite to achieving high-performance perovskite solar cells with good efficiency and stability. Here, we fabricated inverted planar perovskite solar cells by incorporation of a small amount of excess organic/inorganic halide (methylammonium iodide (CH 3 NH 3 I; MAI), formamidinium iodide (CH(NH 2 ) 2 I; FAI), and cesium iodide (CsI)) in CH 3 NH 3 PbI 3 perovskite film. Larger crystalline grains and enhanced crystallinity in CH 3 NH 3 PbI 3 perovskite films with excess organic/inorganic halide reduce the charge carrier recombination and defect density, leading to enhanced device efficiency (MAI+: 14.49 ± 0.30%, FAI+: 16.22 ± 0.38% and CsI+: 17.52 ± 0.56%) compared to the efficiency of a control MAPbI 3 device (MAI: 12.63 ± 0.64%) and device stability. Especially, the incorporation of a small amount of excess CsI in MAPbI 3 perovskite film leads to a highly reproducible fill factor of over 83%, increased open-circuit voltage (from 0.946 to 1.042 V), and short-circuit current density (from 18.43 to 20.89 mA/cm 2 ).

  19. Organizational Changes to Thyroid Regulation in Alligator mississippiensis: Evidence for Predictive Adaptive Responses

    PubMed Central

    Boggs, Ashley S. P.; Lowers, Russell H.; Cloy-McCoy, Jessica A.; Guillette, Louis J.

    2013-01-01

    During embryonic development, organisms are sensitive to changes in thyroid hormone signaling which can reset the hypothalamic-pituitary-thyroid axis. It has been hypothesized that this developmental programming is a ‘predictive adaptive response’, a physiological adjustment in accordance with the embryonic environment that will best aid an individual's survival in a similar postnatal environment. When the embryonic environment is a poor predictor of the external environment, the developmental changes are no longer adaptive and can result in disease states. We predicted that endocrine disrupting chemicals (EDCs) and environmentally-based iodide imbalance could lead to developmental changes to the thyroid axis. To explore whether iodide or EDCs could alter developmental programming, we collected American alligator eggs from an estuarine environment with high iodide availability and elevated thyroid-specific EDCs, a freshwater environment contaminated with elevated agriculturally derived EDCs, and a reference freshwater environment. We then incubated them under identical conditions. We examined plasma thyroxine and triiodothyronine concentrations, thyroid gland histology, plasma inorganic iodide, and somatic growth at one week (before external nutrition) and ten months after hatching (on identical diets). Neonates from the estuarine environment were thyrotoxic, expressing follicular cell hyperplasia (p = 0.01) and elevated plasma triiodothyronine concentrations (p = 0.0006) closely tied to plasma iodide concentrations (p = 0.003). Neonates from the freshwater contaminated site were hypothyroid, expressing thyroid follicular cell hyperplasia (p = 0.01) and depressed plasma thyroxine concentrations (p = 0.008). Following a ten month growth period under identical conditions, thyroid histology (hyperplasia p = 0.04; colloid depletion p = 0.01) and somatic growth (body mass p<0.0001; length p = 0.02) remained altered among the contaminated sites. This work supports the hypothesis that embryonic EDC exposure or iodide imbalance could induce adult metabolic disease states, thereby stressing the need to consider the multiple environmental variables present during development. PMID:23383213

  20. Effects of Caffeine and Chlorogenic Acid on Propidium Iodide Accessibility to DNA: Consequences on Genome Size Evaluation in Coffee Tree

    PubMed Central

    NOIROT, M.; BARRE, P.; DUPERRAY, C.; LOUARN, J.; HAMON, S.

    2003-01-01

    Estimates of genome size using flow cytometry can be biased by the presence of cytosolic compounds, leading to pseudo‐intraspecific variation in genome size. Two important compounds present in coffee trees—caffeine and chlorogenic acid—modify accessibility of the dye propidium iodide to Petunia DNA, a species used as internal standard in our genome size evaluation. These compounds could be responsible for intraspecific variation in genome size since their contents vary between trees. They could also be implicated in environmental variations in genome size, such as those revealed when comparing the results of evaluations carried out on different dates on several genotypes. PMID:12876189

  1. Iodine/iodide-free dye-sensitized solar cells.

    PubMed

    Yanagida, Shozo; Yu, Youhai; Manseki, Kazuhiro

    2009-11-17

    Dye-sensitized solar cells (DSSCs) are built from nanocrystalline anatase TiO(2) with a 101 crystal face (nc-TiO(2)) onto which a dye is absorbed, ruthenium complex sensitizers, fluid I(-)/I(3)(-) redox couples with electrolytes, and a Pt-coated counter electrode. DSSCs have now reached efficiencies as high as 11%, and G24 Innovation (Cardiff, U.K.) is currently manufacturing them for commercial use. These devices offer several distinct advantages. On the basis of the electron lifetime and diffusion coefficient in the nc-TiO(2) layer, DSSCs maintain a diffusion length on the order of several micrometers when the dyed-nc-TiO(2) porous layer is covered by redox electrolytes of lithium and/or imidazolium iodide and their polyiodide salts. The fluid iodide/iodine (I(-)/I(3)(-)) redox electrolytes can infiltrate deep inside the intertwined nc-TiO(2) layers, promoting the mobility of the nc-TiO(2) layers and serving as a hole-transport material of DSSCs. As a result, these materials eventually give a respectable photovoltaic performance. On the other hand, fluid I(-)/I(3)(-) redox shuttles have certain disadvantages: reduced performance control and long-term stability and incompatibility with some metallic component materials. The I(-)/I(3)(-) redox shuttle shows a significant loss in short circuit current density and a slight loss in open circuit voltage, particularly in highly viscous electrolyte-based DSSC systems. Iodine can also act as an oxidizing agent, corroding metals, such as the grid metal Ag and the Pt mediator on the cathode, especially in the presence of water and oxygen. In addition, the electrolytes (I(-)/I(3)(-)) can absorb visible light (lambda = approximately 430 nm), leading to photocurrent loss in the DSSC. Therefore, the introduction of iodide/iodine-free electrolytes or hole-transport materials (HTMs) could lead to cost-effective alternatives to TiO(2) DSSCs. In this Account, we discuss the iodide/iodine-free redox couple as a substitute for the fluid I(-)/I(3)(-) redox shuttle. We also review the adaptation of solid-state HTMs to the iodide/iodine-free solid-state DSSCs with an emphasis on their pore filling and charge mobility in devices and the relationship of those values to the performance of the resulting iodide/iodine-free DSSCs. We demonstrate how the structures of the sensitizing dye molecules and additives of lithium or imidazolium salts influence device performance. In addition, the self-organizing molecular interaction for electronic contact of HTMs to dye molecules plays an important role in unidirectional charge diffusion at interfaces. The poly(3,4-ethylenedioxythiophene) (PEDOT)-based DSSCs, which we obtain through photoelectrochemical polymerization (PEP) using 3-alkylthiophen-bearing ruthenium dye, HRS-1, and bis-EDOT, demonstrates the importance of nonbonding interface contact (e.g., pi-pi-stacking) for the successful inclusion of HTMs.

  2. Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites.

    PubMed

    Booker, Edward P; Thomas, Tudor H; Quarti, Claudio; Stanton, Michael R; Dashwood, Cameron D; Gillett, Alexander J; Richter, Johannes M; Pearson, Andrew J; Davis, Nathaniel J L K; Sirringhaus, Henning; Price, Michael B; Greenham, Neil C; Beljonne, David; Dutton, Siân E; Deschler, Felix

    2017-12-27

    We investigate the origin of the broadband visible emission in layered hybrid lead-halide perovskites and its connection with structural and photophysical properties. We study ⟨001⟩ oriented thin films of hexylammonium (HA) lead iodide, (C 6 H 16 N) 2 PbI 4 , and dodecylammonium (DA) lead iodide, (C 12 H 28 N) 2 PbI 4 , by combining first-principles simulations with time-resolved photoluminescence, steady-state absorption and X-ray diffraction measurements on cooling from 300 to 4 K. Ultrafast transient absorption and photoluminescence measurements are used to track the formation and recombination of emissive states. In addition to the excitonic photoluminescence near the absorption edge, we find a red-shifted, broadband (full-width at half-maximum of about 0.4 eV), emission band below 200 K, similar to emission from ⟨110⟩ oriented bromide 2D perovskites at room temperature. The lifetime of this sub-band-gap emission exceeds that of the excitonic transition by orders of magnitude. We use X-ray diffraction measurements to study the changes in crystal lattice with temperature. We report changes in the octahedral tilt and lattice spacing in both materials, together with a phase change around 200 K in DA 2 PbI 4 . DFT simulations of the HA 2 PbI 4 crystal structure indicate that the low-energy emission is due to interstitial iodide and related Frenkel defects. Our results demonstrate that white-light emission is not limited to ⟨110⟩ oriented bromide 2D perovskites but a general property of this class of system, and highlight the importance of defect control for the formation of low-energy emissive sites, which can provide a pathway to design tailored white-light emitters.

  3. Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals

    PubMed Central

    Li, Dehui; Wang, Gongming; Cheng, Hung-Chieh; Chen, Chih-Yen; Wu, Hao; Liu, Yuan; Huang, Yu; Duan, Xiangfeng

    2016-01-01

    Methylammonium lead iodide perovskite has attracted considerable recent interest for solution processable solar cells and other optoelectronic applications. The orthorhombic-to-tetragonal phase transition in perovskite can significantly alter its optical, electrical properties and impact the corresponding applications. Here, we report a systematic investigation of the size-dependent orthorhombic-to-tetragonal phase transition using a combined temperature-dependent optical, electrical transport and transmission electron microscopy study. Our studies of individual perovskite microplates with variable thicknesses demonstrate that the phase transition temperature decreases with reducing microplate thickness. The sudden decrease of mobility around phase transition temperature and the presence of hysteresis loops in the temperature-dependent mobility confirm that the orthorhombic-to-tetragonal phase transition is a first-order phase transition. Our findings offer significant fundamental insight on the temperature- and size-dependent structural, optical and charge transport properties of perovskite materials, and can greatly impact future exploration of novel electronic and optoelectronic devices from these materials. PMID:27098114

  4. Surface Plasmon Resonance Effect in Inverted Perovskite Solar Cells.

    PubMed

    Cui, Jin; Chen, Cheng; Han, Junbo; Cao, Kun; Zhang, Wenjun; Shen, Yan; Wang, Mingkui

    2016-03-01

    This work reports on incorporation of spectrally tuned gold/silica (Au/SiO 2 ) core/shell nanospheres and nanorods into the inverted perovskite solar cells (PVSC). The band gap of hybrid lead halide iodide (CH 3 NH 3 PbI 3 ) can be gradually increased by replacing iodide with increasing amounts of bromide, which can not only offer an appreciate solar radiation window for the surface plasmon resonance effect utilization, but also potentially result in a large open circuit voltage. The introduction of localized surface plasmons in CH 3 NH 3 PbI 2.85 Br 0.15 -based photovoltaic system, which occur in response to electromagnetic radiation, has shown dramatic enhancement of exciton dissociation. The synchronized improvement in photovoltage and photocurrent leads to an inverted CH 3 NH 3 PbI 2.85 Br 0.15 planar PVSC device with power conversion efficiency of 13.7%. The spectral response characterization, time resolved photoluminescence, and transient photovoltage decay measurements highlight the efficient and simple method for perovskite devices.

  5. Vapour-Deposited Cesium Lead Iodide Perovskites: Microsecond Charge Carrier Lifetimes and Enhanced Photovoltaic Performance

    PubMed Central

    2017-01-01

    Metal halide perovskites such as methylammonium lead iodide (MAPbI3) are highly promising materials for photovoltaics. However, the relationship between the organic nature of the cation and the optoelectronic quality remains debated. In this work, we investigate the optoelectronic properties of fully inorganic vapour-deposited and spin-coated black-phase CsPbI3 thin films. Using the time-resolved microwave conductivity technique, we measure charge carrier mobilities up to 25 cm2/(V s) and impressively long charge carrier lifetimes exceeding 10 μs for vapour-deposited CsPbI3, while the carrier lifetime reaches less than 0.2 μs in the spin-coated samples. Finally, we show that these improved lifetimes result in enhanced device performance with power conversion efficiencies close to 9%. Altogether, these results suggest that the charge carrier mobility and recombination lifetime are mainly dictated by the inorganic framework rather than the organic nature of the cation. PMID:28852710

  6. Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals

    DOE PAGES

    Li, Dehui; Wang, Gongming; Cheng, Hung -Chieh; ...

    2016-04-21

    Methylammonium lead iodide perovskite has attracted considerable recent interest for solution processable solar cells and other optoelectronic applications. The orthorhombic-to-tetragonal phase transition in perovskite can significantly alter its optical, electrical properties and impact the corresponding applications. Here, we report a systematic investigation of the size-dependent orthorhombic-to-tetragonal phase transition using a combined temperature-dependent optical, electrical transport and transmission electron microscopy study. Our studies of individual perovskite microplates with variable thicknesses demonstrate that the phase transition temperature decreases with reducing microplate thickness. The sudden decrease of mobility around phase transition temperature and the presence of hysteresis loops in the temperature-dependent mobility confirmmore » that the orthorhombic-to-tetragonal phase transition is a first-order phase transition. Lastly, our findings offer significant fundamental insight on the temperature-and size-dependent structural, optical and charge transport properties of perovskite materials, and can greatly impact future exploration of novel electronic and optoelectronic devices from these materials.« less

  7. Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films

    DOE PAGES

    Yang, Ye; Yang, Mengjin; Moore, David T.; ...

    2017-01-23

    Carrier recombination at defects is detrimental to the performance of solar energy conversion systems, including solar cells and photoelectrochemical devices. Point defects are localized within the bulk crystal while extended defects occur at surfaces and grain boundaries. If not properly managed, surfaces can be a large source of carrier recombination. Separating surface carrier dynamics from bulk and/or grain-boundary recombination in thin films is challenging. Here, we employ transient reflection spectroscopy to measure the surface carrier dynamics in methylammonium lead iodide perovskite polycrystalline films. We find that surface recombination limits the total carrier lifetime in perovskite polycrystalline thin films, meaning thatmore » recombination inside grains and/or at grain boundaries is less important than top and bottom surface recombination. As a result, the surface recombination velocity in polycrystalline films is nearly an order of magnitude smaller than that in single crystals, possibly due to unintended surface passivation of the films during synthesis.« less

  8. Efficiency Enhancement of Hybrid Perovskite Solar Cells with MEH-PPV Hole-Transporting Layers

    PubMed Central

    Chen, Hsin-Wei; Huang, Tzu-Yen; Chang, Ting-Hsiang; Sanehira, Yoshitaka; Kung, Chung-Wei; Chu, Chih-Wei; Ikegami, Masashi; Miyasaka, Tsutomu; Ho, Kuo-Chuan

    2016-01-01

    In this study, hybrid perovskite solar cells are fabricated using poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and poly(3-hexylthiophene-2,5-diyl) (P3HT) as dopant-free hole-transporting materials (HTMs), and two solution processes (one- and two-step methods, respectively) for preparing methylammonium lead iodide perovskite. By optimizing the concentrations and solvents of MEH-PPV solutions, a power conversion efficiency of 9.65% with hysteresis-less performance is achieved, while the device with 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′spirobifluorene (Spiro-OMeTAD) doped with lithium salts and tert-butylpyridine (TBP) exhibits an efficiency of 13.38%. This result shows that non-doped MEH-PPV is a suitable, low-cost HTM for efficient polymer-based perovskite solar cells. The effect of different morphologies of methylammonium lead iodide perovskite on conversion efficiency is also investigated by incident photon-to-electron conversion efficiency (IPCE) curves and electrochemical impedance spectroscopy (EIS). PMID:27698464

  9. Ionic and Optical Properties of Methylammonium Lead Iodide Perovskite across the Tetragonal-Cubic Structural Phase Transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoque, Md Nadim Ferdous; Islam, Nazifah; Li, Zhen

    Practical hybrid perovskite solar cells (PSCs) must endure temperatures above the tetragonal-cubic structural phase transition of methylammonium lead iodide (MAPbI3). However, the ionic and optical properties of MAPbI3 in such a temperature range, and particularly, dramatic changes in these properties resulting from a structural phase transition, are not well studied. Herein, we report a striking contrast at approximately 45 degrees C in the ionic/electrical properties of MAPbl3 owing to a change of the ion activation energy from 0.7 to 0.5 eV, whereas the optical properties exhibit no particular transition except for the steady increase of the bandgap with temperature. Thesemore » observations can be explained by the 'continuous' nature of perovskite phase transition. We speculate that the critical temperature at which the ionic/electrical properties change, although related to crystal symmetry variation, is not necessarily the same temperature as when tetragonal-cubic structural phase transition occurs.« less

  10. Pressure-Induced Polymorphic, Optical, and Electronic Transitions of Formamidinium Lead Iodide Perovskite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Pan; Guan, Jiwen; Galeschuk, Draven T. K.

    2017-04-28

    Formamidinium lead iodide (FAPbI3) perovskite as a superior solar cell material was investigated in two polymorphs at high pressures using in situ synchrotron X-ray diffraction, FTIR spectroscopy, photoluminescence (PL) spectroscopy, electrical conductivity (EC) measurements, and ab initio calculations. We identified two new structures (i.e., Imm2 and Immm) for α-FAPbI3 but only a structural distortion (in C2/c) for δ-FAPbI3 upon compression. A pressure-enhanced hydrogen bond plays a prominent role in structural modifications, as corroborated by FTIR spectroscopy. PL measurements and calculations consistently show the structure and pressure dependences of the band gap energies. Finally, EC measurements reveal drastically different transport propertiesmore » of α- and δ-FAPbI3 at low pressures but a common trend to metallic states at high pressures. All of these observations suggest strongly contrasting structural stabilities and pressure-tuned optoelectric properties of the two FAPbI3 polymorphs.« less

  11. Polarization and Dielectric Study of Methylammonium Lead Iodide Thin Film to Reveal its Nonferroelectric Nature under Solar Cell Operating Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoque, Md Nadim Ferdous; Yang, Mengjin; Li, Zhen

    2016-07-08

    Researchers have debated whether methylammonium lead iodide (MAPbI3), with a perovskite crystal structure, is ferroelectric and therefore contributes to the current--voltage hysteresis commonly observed in hybrid perovskite solar cells (PSCs). We thoroughly investigated temperature-dependent polarization, dielectric, and impedance spectroscopies, and we found no evidence of ferroelectric effect in a MAPbI3 thin film at normal operating conditions. Therefore, the effect does not contribute to the hysteresis in PSCs, whereas the large component of ionic migration observed may play a critical role. Our temperature-based polarization and dielectric studies find that MAPbI3 exhibits different electrical behaviors below and above ca. 45 degrees C,more » suggesting a phase transition around this temperature. In particular, we report the activation energies of ionic migration for the two phases and temperature-dependent permittivity of MAPbI3. This study contributes to the understanding of the material properties and device performance of hybrid perovskites.« less

  12. Lead iodide perovskite light-emitting field-effect transistor

    PubMed Central

    Chin, Xin Yu; Cortecchia, Daniele; Yin, Jun; Bruno, Annalisa; Soci, Cesare

    2015-01-01

    Despite the widespread use of solution-processable hybrid organic–inorganic perovskites in photovoltaic and light-emitting applications, determination of their intrinsic charge transport parameters has been elusive due to the variability of film preparation and history-dependent device performance. Here we show that screening effects associated to ionic transport can be effectively eliminated by lowering the operating temperature of methylammonium lead iodide perovskite (CH3NH3PbI3) field-effect transistors. Field-effect carrier mobility is found to increase by almost two orders of magnitude below 200 K, consistent with phonon scattering-limited transport. Under balanced ambipolar carrier injection, gate-dependent electroluminescence is also observed from the transistor channel, with spectra revealing the tetragonal to orthorhombic phase transition. This demonstration of CH3NH3PbI3 light-emitting field-effect transistors provides intrinsic transport parameters to guide materials and solar cell optimization, and will drive the development of new electro-optic device concepts, such as gated light-emitting diodes and lasers operating at room temperature. PMID:26108967

  13. Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free perovskite-based solar cells

    NASA Astrophysics Data System (ADS)

    Cohen, Bat-El; Gamliel, Shany; Etgar, Lioz

    2014-08-01

    Perovskite is a promising light harvester for use in photovoltaic solar cells. In recent years, the power conversion efficiency of perovskite solar cells has been dramatically increased, making them a competitive source of renewable energy. An important parameter when designing high efficiency perovskite-based solar cells is the perovskite deposition, which must be performed to create complete coverage and optimal film thickness. This paper describes an in-depth study on two-step deposition, separating the perovskite deposition into two precursors. The effects of spin velocity, annealing temperature, dipping time, and methylammonium iodide concentration on the photovoltaic performance are studied. Observations include that current density is affected by changing the spin velocity, while the fill factor changes mainly due to the dipping time and methylammonium iodide concentration. Interestingly, the open circuit voltage is almost unaffected by these parameters. Hole conductor free perovskite solar cells are used in this work, in order to minimize other possible effects. This study provides better understanding and control over the perovskite deposition through highly efficient, low-cost perovskite-based solar cells.

  14. Direct observation of mode-specific phonon-band gap coupling in methylammonium lead halide perovskites.

    PubMed

    Kim, Heejae; Hunger, Johannes; Cánovas, Enrique; Karakus, Melike; Mics, Zoltán; Grechko, Maksim; Turchinovich, Dmitry; Parekh, Sapun H; Bonn, Mischa

    2017-09-25

    Methylammonium lead iodide perovskite is an outstanding semiconductor for photovoltaics. One of its intriguing peculiarities is that the band gap of this perovskite increases with increasing lattice temperature. Despite the presence of various thermally accessible phonon modes in this soft material, the understanding of how precisely these phonons affect macroscopic material properties and lead to the peculiar temperature dependence of the band gap has remained elusive. Here, we report a strong coupling of a single phonon mode at the frequency of ~ 1 THz to the optical band gap by monitoring the transient band edge absorption after ultrafast resonant THz phonon excitation. Excitation of the 1 THz phonon causes a blue shift of the band gap over the temperature range of 185 ~ 300 K. Our results uncover the mode-specific coupling between one phonon and the optical properties, which contributes to the temperature dependence of the gap in the tetragonal phase.Methylammonium lead iodide perovskite, a promising material for efficient photovoltaics, shows a unique temperature dependence of its optical properties. Kim et al. quantify the coupling between the optical gap and a lattice phonon at 1 THz, which favorably contributes to the thermal variation of the gap.

  15. Connecting the solution chemistry of PbI2 and MAI: a cyclodextrin-based supramolecular approach to the formation of hybrid halide perovskites.

    PubMed

    Masi, Sofia; Aiello, Federica; Listorti, Andrea; Balzano, Federica; Altamura, Davide; Giannini, Cinzia; Caliandro, Rocco; Uccello-Barretta, Gloria; Rizzo, Aurora; Colella, Silvia

    2018-03-28

    The evolution from solvated precursors to hybrid halide perovskite films dictates most of the photophysical and optoelectronic properties of the final polycrystalline material. Specifically, the complex equilibria and the importantly different solubilities of lead iodide (PbI 2 ) and methylammonium iodide (MAI) induce inhomogeneous crystal growth, often leading to a defect dense film showing non-optimal optoelectronic properties and intrinsic instability. Here, we explore a supramolecular approach based on the use of cyclodextrins (CDs) to modify the underlying solution chemistry. The peculiar phenomenon demonstrated is a tunable complexation between different CDs and MA + cations concurrent to an out of cage PbI 2 intercalation, representing the first report of a connection between the solvation equilibria of the two perovskite precursors. The optimal conditions in terms of CD cavity size and polarity translate to a neat enhancement of PbI 2 solubility in the reaction media, leading to an equilibration of the availability of the precursors in solution. The macroscopic result of this is an improved nucleation process, leading to a perovskite material with higher crystallinity, better optical properties and improved moisture resistance. Remarkably, the use of CDs presents a great potential for a wide range of device-related applications, as well as for the development of tailored composite materials.

  16. Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momblona, C.; Malinkiewicz, O.; Soriano, A.

    2014-08-01

    Efficient methylammonium lead iodide perovskite-based solar cells have been prepared in which the perovskite layer is sandwiched in between two organic charge transporting layers that block holes and electrons, respectively. This configuration leads to stable and reproducible devices that do not suffer from strong hysteresis effects and when optimized lead to efficiencies close to 15%. The perovskite layer is formed by using a dual-source thermal evaporation method, whereas the organic layers are processed from solution. The dual-source thermal evaporation method leads to smooth films and allows for high precision thickness variations. Devices were prepared with perovskite layer thicknesses ranging frommore » 160 to 900 nm. The short-circuit current observed for these devices increased with increasing perovskite layer thickness. The main parameter that decreases with increasing perovskite layer thickness is the fill factor and as a result optimum device performance is obtained for perovskite layer thickness around 300 nm. However, here we demonstrate that with a slightly oxidized electron blocking layer the fill factor for the solar cells with a perovskite layer thickness of 900 nm increases to the same values as for the devices with thin perovskite layers. As a result the power conversion efficiencies for the cells with 300 and 900 nm are very similar, 12.7% and 12%, respectively.« less

  17. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells.

    PubMed

    Boschloo, Gerrit; Hagfeldt, Anders

    2009-11-17

    Dye-sensitized solar cells (DSCs) have gained widespread interest because of their potential for low-cost solar energy conversion. Currently, the certified record efficiency of these solar cells is 11.1%, and measurements of their durability and stability suggest lifetimes exceeding 10 years under operational conditions. The DSC is a photoelectrochemical system: a monolayer of sensitizing dye is adsorbed onto a mesoporous TiO(2) electrode, and the electrode is sandwiched together with a counter electrode. An electrolyte containing a redox couple fills the gap between the electrodes. The redox couple is a key component of the DSC. The reduced part of the couple regenerates the photo-oxidized dye. The formed oxidized species diffuses to the counter electrode, where it is reduced. The photovoltage of the device depends on the redox couple because it sets the electrochemical potential at the counter electrode. The redox couple also affects the electrochemical potential of the TiO(2) electrode through the recombination kinetics between electrons in TiO(2) and oxidized redox species. This Account focuses on the special properties of the iodide/triiodide (I(-)/I(3)(-)) redox couple in dye-sensitized solar cells. It has been the preferred redox couple since the beginning of DSC development and still yields the most stable and efficient DSCs. Overall, the iodide/triiodide couple has good solubility, does not absorb too much light, has a suitable redox potential, and provides rapid dye regeneration. But what distinguishes I(-)/I(3)(-) from most redox mediators is the very slow recombination kinetics between electrons in TiO(2) and the oxidized part of the redox couple, triiodide. Certain dyes adsorbed at TiO(2) catalyze this recombination reaction, presumably by binding iodine or triiodide. The standard potential of the iodide/triiodide redox couple is 0.35 V (versus the normal hydrogen electrode, NHE), and the oxidation potential of the standard DSC-sensitizer (Ru(dcbpy)(2)(NCS)(2)) is 1.1 V. The driving force for reduction of oxidized dye is therefore as large as 0.75 V. This process leads to the largest internal potential loss in DSC devices. We expect that overall efficiencies above 15% might be achieved if half of this internal potential loss could be gained. The regeneration of oxidized dye with iodide leads to the formation of the diiodide radical (I(2)(-*)). The redox potential of the I(2)(-*)/I(-) couple must therefore be considered when determining the actual driving force for dye regeneration. The formed I(2)(-*) disproportionates to I(3)(-) and I(-), which leads to a large loss in potential energy.

  18. 21 CFR 520.763a - Dithiazanine iodide tablets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dithiazanine iodide tablets. 520.763a Section 520... iodide tablets. (a) Chemical name. 3-Ethyl-2-[5-(3-ethyl - 2 - benzothiazolinylidene) - 1,3 - pentadienyl]-benzothiazolium iodide. (b) Specifications. Dithiazanine iodide tablets contain 10 milligrams, 50 milligrams, 100...

  19. 21 CFR 172.375 - Potassium iodide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium iodide. 172.375 Section 172.375 Food and... Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the following prescribed conditions: (a) Potassium iodide may be safely...

  20. Publisher Correction: Selective enhancement of optical nonlinearity in two-dimensional organic-inorganic lead iodide perovskites.

    PubMed

    Saouma, F O; Stoumpos, C C; Wong, J; Kanatzidis, M G; Jang, J I

    2017-11-23

    In the PDF version of this article, Eq. 5 is missing all elements after the equals sign. The correct version of Eq. 5 is given below. The HTML version of the paper was correct from the time of publication.[Formula: see text].

  1. Taming the Reactivity of Glycosyl Iodides To Achieve Stereoselective Glycosidation.

    PubMed

    Gervay-Hague, Jacquelyn

    2016-01-19

    Although glycosyl iodides have been known for more than 100 years, it was not until the 21st century that their full potential began to be harnessed for complex glycoconjugate synthesis. Mechanistic studies in the late 1990s probed glycosyl iodide formation by NMR spectroscopy and revealed important reactivity features embedded in protecting-group stereoelectronics. Differentially protected sugars having an anomeric acetate were reacted with trimethylsilyl iodide (TMSI) to generate the glycosyl iodides. In the absence of C-2 participation, generation of the glycosyl iodide proceeded by inversion of the starting anomeric acetate stereochemistry. Once formed, the glycosyl iodide readily underwent in situ anomerization, and in the presence of excess iodide, equilibrium concentrations of α- and β-iodides were established. Reactivity profiles depended upon the identity of the sugar and the protecting groups adorning it. Consistent with the modern idea of disarmed versus armed sugars, ester protecting groups diminished the reactivity of glycosyl iodides and ether protecting groups enhanced the reactivity. Thus, acetylated sugars were slower to form the iodide and anomerize than their benzylated analogues, and these disarmed glycosyl iodides could be isolated and purified, whereas armed ether-protected iodides could only be generated and reacted in situ. All other things being equal, the β-iodide was orders of magnitude more reactive than the thermodynamically more stable α-iodide, consistent with the idea of in situ anomerization introduced by Lemieux in the mid-20th century. Glycosyl iodides are far more reactive than the corresponding bromides, and with the increased reactivity comes increased stereocontrol, particularly when forming α-linked linear and branched oligosaccharides. Reactions with per-O-silylated glycosyl iodides are especially useful for the synthesis of α-linked glycoconjugates. Silyl ether protecting groups make the glycosyl iodide so reactive that even highly functionalized aglycon acceptors add. Following the coupling event, the TMS ethers are readily removed by methanolysis, and since all of the byproducts are volatile, multiple reactions can be performed in a single reaction vessel without isolation of intermediates. In this fashion, per-O-TMS monosaccharides can be converted to biologically relevant α-linked glycolipids in one pot. The stereochemical outcome of these reactions can also be switched to β-glycoside formation by addition of silver to chelate the iodide, thus favoring SN2 displacement of the α-iodide. While iodides derived from benzyl and silyl ether-protected oligosaccharides are susceptible to interglycosidic bond cleavage when treated with TMSI, the introduction of a single acetate protecting group prevents this unwanted side reaction. Partial acetylation of armed glycosyl iodides also attenuates HI elimination side reactions. Conversely, fully acetylated glycosyl iodides are deactivated and require metal catalysis in order for glycosidation to occur. Recent findings indicate that I2 activation of per-O-acetylated mono-, di-, and trisaccharides promotes glycosidation of cyclic ethers to give β-linked iodoalkyl glycoconjugates in one step. Products of these reactions have been converted into multivalent carbohydrate displays. With these synthetic pathways elucidated, chemical reactivity can be exquisitely controlled by the judicious selection of protecting groups to achieve high stereocontrol in step-economical processes.

  2. Enhancement of lanthanide evaporation by complexation: dysprosium tri-iodide mixed with indium iodide and thulium tri-iodide mixed with thallium iodide.

    PubMed

    Curry, J J; Estupiñán, E G; Henins, A; Lapatovich, W P; Shastri, S D; Hardis, J E

    2013-09-28

    The vapors in equilibrium with condensates of DyI3, DyI3/InI, TmI3, and TmI3/TlI were observed over the temperature range from 900 K to 1400 K using x-ray induced fluorescence. The total densities of each element (Dy, Tm, In, Tl, and I) in the vapor, summed over all atomic and molecular species, were determined. Dramatic enhancements in the total vapor densities of Dy and Tm were observed in the vapors over DyI3/InI and TmI3/TlI as compared to the vapors over pure DyI3 and pure TmI3, respectively. An enhancement factor exceeding 10 was observed for Dy at T ≈ 1020 K, decreasing to 0 at T ≈ 1250 K. An enhancement factor exceeding 20 was observed for Tm at T ≈ 1040 K, decreasing to 0 at T ≈ 1300 K. Such enhancements are expected from the formation of the vapor-phase hetero-complexes DyInI4 and TmTlI4. Numerical simulations of the thermo-chemical equilibrium suggest the importance of additional complexes in liquid phases. A description of the measurement technique is given. Improvements in the absolute calibration lead to an approximately 40% correction to previously reported preliminary results [J. J. Curry et al., Chem. Phys. Lett. 507, 52 (2011); Appl. Phys. Lett. 100, 083505 (2012)].

  3. Laccase-catalyzed oxidation of iodide and formation of organically bound iodine in soils.

    PubMed

    Seki, Miharu; Oikawa, Jun-ichi; Taguchi, Taro; Ohnuki, Toshihiko; Muramatsu, Yasuyuki; Sakamoto, Kazunori; Amachi, Seigo

    2013-01-02

    Laccase oxidizes iodide to molecular iodine or hypoiodous acid, both of which are easily incorporated into natural soil organic matter. In this study, iodide sorption and laccase activity in 2 types of Japanese soil were determined under various experimental conditions to evaluate possible involvement of this enzyme in the sorption of iodide. Batch sorption experiment using radioactive iodide tracer ((125)I(-)) revealed that the sorption was significantly inhibited by autoclaving (121 °C, 40 min), heat treatment (80 and 100 °C, 10 min), γ-irradiation (30 kGy), N(2) gas flushing, and addition of reducing agents and general laccase inhibitors (KCN and NaN(3)). Interestingly, very similar tendency of inhibition was observed in soil laccase activity, which was determined using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) as a substrate. The partition coefficient (K(d): mL g(-1)) for iodide and specific activity of laccase in soils (Unit g(-1)) showed significant positive correlation in both soil samples. Addition of a bacterial laccase with an iodide-oxidizing activity to the soils strongly enhanced the sorption of iodide. Furthermore, the enzyme addition partially restored iodide sorption capacity of the autoclaved soil samples. These results suggest that microbial laccase is involved in iodide sorption on soils through the oxidation of iodide.

  4. Dietary Iodine Sufficiency and Moderate Insufficiency in the Lactating Mother and Nursing Infant: A Computational Perspective

    PubMed Central

    Fisher, W.; Wang, Jian; George, Nysia I.; Gearhart, Jeffery M.; McLanahan, Eva D.

    2016-01-01

    The Institute of Medicine recommends that lactating women ingest 290 μg iodide/d and a nursing infant, less than two years of age, 110 μg/d. The World Health Organization, United Nations Children’s Fund, and International Council for the Control of Iodine Deficiency Disorders recommend population maternal and infant urinary iodide concentrations ≥ 100 μg/L to ensure iodide sufficiency. For breast milk, researchers have proposed an iodide concentration range of 150–180 μg/L indicates iodide sufficiency for the mother and infant, however no national or international guidelines exist for breast milk iodine concentration. For the first time, a lactating woman and nursing infant biologically based model, from delivery to 90 days postpartum, was constructed to predict maternal and infant urinary iodide concentration, breast milk iodide concentration, the amount of iodide transferred in breast milk to the nursing infant each day and maternal and infant serum thyroid hormone kinetics. The maternal and infant models each consisted of three sub-models, iodide, thyroxine (T4), and triiodothyronine (T3). Using our model to simulate a maternal intake of 290 μg iodide/d, the average daily amount of iodide ingested by the nursing infant, after 4 days of life, gradually increased from 50 to 101 μg/day over 90 days postpartum. The predicted average lactating mother and infant urinary iodide concentrations were both in excess of 100 μg/L and the predicted average breast milk iodide concentration, 157 μg/L. The predicted serum thyroid hormones (T4, free T4 (fT4), and T3) in both the nursing infant and lactating mother were indicative of euthyroidism. The model was calibrated using serum thyroid hormone concentrations for lactating women from the United States and was successful in predicting serum T4 and fT4 levels (within a factor of two) for lactating women in other countries. T3 levels were adequately predicted. Infant serum thyroid hormone levels were adequately predicted for most data. For moderate iodide deficient conditions, where dietary iodide intake may range from 50 to 150 μg/d for the lactating mother, the model satisfactorily described the iodide measurements, although with some variation, in urine and breast milk. Predictions of serum thyroid hormones in moderately iodide deficient lactating women (50 μg/d) and nursing infants did not closely agree with mean reported serum thyroid hormone levels, however, predictions were usually within a factor of two. Excellent agreement between prediction and observation was obtained for a recent moderate iodide deficiency study in lactating women. Measurements included iodide levels in urine of infant and mother, iodide in breast milk, and serum thyroid hormone levels in infant and mother. A maternal iodide intake of 50 μg/d resulted in a predicted 29–32% reduction in serum T4 and fT4 in nursing infants, however the reduced serum levels of T4 and fT4 were within most of the published reference intervals for infant. This biologically based model is an important first step at integrating the rapid changes that occur in the thyroid system of the nursing newborn in order to predict adverse outcomes from exposure to thyroid acting chemicals, drugs, radioactive materials or iodine deficiency. PMID:26930410

  5. Dietary Iodine Sufficiency and Moderate Insufficiency in the Lactating Mother and Nursing Infant: A Computational Perspective.

    PubMed

    Fisher, W; Wang, Jian; George, Nysia I; Gearhart, Jeffery M; McLanahan, Eva D

    2016-01-01

    The Institute of Medicine recommends that lactating women ingest 290 μg iodide/d and a nursing infant, less than two years of age, 110 μg/d. The World Health Organization, United Nations Children's Fund, and International Council for the Control of Iodine Deficiency Disorders recommend population maternal and infant urinary iodide concentrations ≥ 100 μg/L to ensure iodide sufficiency. For breast milk, researchers have proposed an iodide concentration range of 150-180 μg/L indicates iodide sufficiency for the mother and infant, however no national or international guidelines exist for breast milk iodine concentration. For the first time, a lactating woman and nursing infant biologically based model, from delivery to 90 days postpartum, was constructed to predict maternal and infant urinary iodide concentration, breast milk iodide concentration, the amount of iodide transferred in breast milk to the nursing infant each day and maternal and infant serum thyroid hormone kinetics. The maternal and infant models each consisted of three sub-models, iodide, thyroxine (T4), and triiodothyronine (T3). Using our model to simulate a maternal intake of 290 μg iodide/d, the average daily amount of iodide ingested by the nursing infant, after 4 days of life, gradually increased from 50 to 101 μg/day over 90 days postpartum. The predicted average lactating mother and infant urinary iodide concentrations were both in excess of 100 μg/L and the predicted average breast milk iodide concentration, 157 μg/L. The predicted serum thyroid hormones (T4, free T4 (fT4), and T3) in both the nursing infant and lactating mother were indicative of euthyroidism. The model was calibrated using serum thyroid hormone concentrations for lactating women from the United States and was successful in predicting serum T4 and fT4 levels (within a factor of two) for lactating women in other countries. T3 levels were adequately predicted. Infant serum thyroid hormone levels were adequately predicted for most data. For moderate iodide deficient conditions, where dietary iodide intake may range from 50 to 150 μg/d for the lactating mother, the model satisfactorily described the iodide measurements, although with some variation, in urine and breast milk. Predictions of serum thyroid hormones in moderately iodide deficient lactating women (50 μg/d) and nursing infants did not closely agree with mean reported serum thyroid hormone levels, however, predictions were usually within a factor of two. Excellent agreement between prediction and observation was obtained for a recent moderate iodide deficiency study in lactating women. Measurements included iodide levels in urine of infant and mother, iodide in breast milk, and serum thyroid hormone levels in infant and mother. A maternal iodide intake of 50 μg/d resulted in a predicted 29-32% reduction in serum T4 and fT4 in nursing infants, however the reduced serum levels of T4 and fT4 were within most of the published reference intervals for infant. This biologically based model is an important first step at integrating the rapid changes that occur in the thyroid system of the nursing newborn in order to predict adverse outcomes from exposure to thyroid acting chemicals, drugs, radioactive materials or iodine deficiency.

  6. Revealing the Self-Degradation Mechanisms in Methylammonium Lead Iodide Perovskites in Dark and Vacuum.

    PubMed

    Gunasekaran, Rajendra Kumar; Chinnadurai, Deviprasath; Selvaraj, Aravindha Raja; Rajendiran, Rajmohan; Senthil, Karuppanan; Prabakar, Kandasamy

    2018-06-19

    Organic-inorganic lead halide perovskite phases segregate (and their structures degrade) under illumination, exhibiting a poor stability with hysteresis and producing halide accumulation at the surface.In this work, we observed structural and interfacial dissociation in methylammonium lead iodide (CH 3 NH 3 PbI 3 ) perovskites even under dark and vacuum conditions. Here, we investigate the origin and consequences of self-degradation in CH 3 NH 3 PbI 3 perovskites stored in the dark under vacuum. Diffraction and photoelectron spectroscopic studies reveal the structural dissociation of perovskites into PbI 2 , which further dissociates into metallic lead (Pb 0 ) and I 2 - ions, collectively degrading the perovskite stability. Using TOF-SIMS analysis, AuI 2 - formation was directly observed, and it was found that an interplay between CH 3 NH 3 + , I 3 - , and mobile I - ions continuously regenerates more I 2 - ions, which diffuse to the surface even in the absence of light. Besides, halide diffusion causes a concentration gradient between Pb 0 and I 2 - and creates other ionic traps (PbI 2 - , PbI - ) that segregate as clusters at the perovskite/gold interface. A shift of the onset of the absorption band edge towards shorter wavelengths was also observed by absorption spectroscopy, indicating the formation of defect species upon aging in the dark under vacuum. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Critical Intermediate Structure That Directs the Crystalline Texture and Surface Morphology of Organo-Lead Trihalide Perovskite.

    PubMed

    Chia, Hao-Chung; Sheu, Hwo-Shuenn; Hsiao, Yu-Yun; Li, Shao-Sian; Lan, Yi-Kang; Lin, Chung-Yao; Chang, Je-Wei; Kuo, Yen-Chien; Chen, Chia-Hao; Weng, Shih-Chang; Su, Chun-Jen; Su, An-Chung; Chen, Chun-Wei; Jeng, U-Ser

    2017-10-25

    We have identified an often observed yet unresolved intermediate structure in a popular processing with dimethylformamide solutions of lead chloride and methylammonium iodide for perovskite solar cells. With subsecond time-resolved grazing-incidence X-ray scattering and X-ray photoemission spectroscopy, supplemental with ab initio calculation, the resolved intermediate structure (CH 3 NH 3 ) 2 PbI 2 Cl 2 ·CH 3 NH 3 I features two-dimensional (2D) perovskite bilayers of zigzagged lead-halide octahedra and sandwiched CH 3 NH 3 I layers. Such intermediate structure reveals a hidden correlation between the intermediate phase and the composition of the processing solution. Most importantly, the 2D perovskite lattice of the intermediate phase is largely crystallographically aligned with the [110] planes of the three-dimensional perovskite cubic phase; consequently, with sublimation of Cl ions from the organo-lead octahedral terminal corners in prolonged annealing, the zigzagged octahedral layers of the intermediate phase can merge with the intercalated methylammonium iodide layers for templated growth of perovskite crystals. Regulated by annealing temperature and the activation energies of the intermediate and perovskite, deduced from analysis of temperature-dependent structural kinetics, the intermediate phase is found to selectively mature first and then melt along the layering direction for epitaxial conversion into perovskite crystals. The unveiled epitaxial conversion under growth kinetics controls might be general for solution-processed and intermediate-templated perovskite formation.

  8. Influence of Hybrid Perovskite Fabrication Methods on Film Formation, Electronic Structure, and Solar Cell Performance

    PubMed Central

    Schnier, Tobias; Emara, Jennifer; Olthof, Selina; Meerholz, Klaus

    2017-01-01

    Hybrid organic/inorganic halide perovskites have lately been a topic of great interest in the field of solar cell applications, with the potential to achieve device efficiencies exceeding other thin film device technologies. Yet, large variations in device efficiency and basic physical properties are reported. This is due to unintentional variations during film processing, which have not been sufficiently investigated so far. We therefore conducted an extensive study of the morphology and electronic structure of a large number of CH3NH3PbI3 perovskite where we show how the preparation method as well as the mixing ratio of educts methylammonium iodide and lead(II) iodide impact properties like film formation, crystal structure, density of states, energy levels, and ultimately the solar cell performance. PMID:28287555

  9. Evaluation of the antidepressant therapeutic potential of isocyanine and pseudoisocyanine analogues of the organic cation decynium-22.

    PubMed

    Krause-Heuer, Anwen M; Fraser-Spears, Rheaclare; Dobrowolski, Jeremy C; Ashford, Mark E; Wyatt, Naomi A; Roberts, Maxine P; Gould, Georgianna G; Cheah, Wai-Ching; Ng, Clarissa K L; Bhadbhade, Mohan; Zhang, Bo; Greguric, Ivan; Wheate, Nial J; Kumar, Naresh; Koek, Wouter; Callaghan, Paul D; Daws, Lynette C; Fraser, Benjamin H

    2017-09-08

    Herein we describe the synthesis and evaluation of antidepressant properties of seven analogues (1-7) of the low affinity/high capacity transporter blocker decynium-22 (D-22). All analogues (1-7) were synthesized via base promoted coupling reactions between N-alkylated-2-methylquinolinium iodides or N-alkylated-4-methylquinolinium iodides and electrophilic N-alkylated-2-iodoquinolinium iodides. All final compounds were purified by re-crystallization or preparative HPLC and initial evaluation studies included; 1) screening for in vitro α1-adrenoceptor activity (a property that can lead to unwanted side-effects), 2) measuring antidepressant-like activity in a mouse tail suspension test (TST), and 3) measuring effects upon mouse locomotion. The results showed some analogues have lower affinities at α1-adrenoceptors compared to D-22 and showed antidepressant-like activity without the need for co-administration of SSRIs. Additionally, many analogues did not affect mouse locomotion to the same extent as D-22. Plans for additional evaluations of these promising analogues, including measurement of antidepressant-like activity with co-administration of selective serotonin re-uptake inhibitors (SSRIs), are outlined. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Preliminary design and cost of a 1-megawatt solar-pumped iodide laser space-to-space transmission station

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Walker, G. H.; Williams, M. D.; Schuster, G. L.; Conway, E. J.

    1987-01-01

    A preliminary conceptual design of a space-based solar pumped iodide laser emitting 1 megawatt of laser power for space-to-space power transmission is described. A near parabolic solar collector focuses sunlight onto the t-C4F9I (perfluoro-t butyl iodide) lasant within a transverse flow optical cavity. Using waste heat, a thermal system was designed to supply compressor and auxiliary power. System components were designed with weight and cost estimates assigned. Although cost is very approximate, the cost comparison of individual system components leads to valuable insights for future research. In particular, it was found that laser efficiency was not a dominant cost or weight factor, the dominant factor being the laser cavity and laser transmission optics. The manufacturing cost was approx. two thirds of the total cost with transportation to orbit the remainder. The flowing nonrenewable lasant comprised 20% of the total life cycle cost of the system and thus was not a major cost factor. The station mass was 92,000 kg without lasant, requiring approx. four shuttle flights to low Earth orbit where an orbital transfer vehicle will transport it to the final altitude of 6378 km.

  11. Rationalizing the light-induced phase separation of mixed halide organic-inorganic perovskites.

    PubMed

    Draguta, Sergiu; Sharia, Onise; Yoon, Seog Joon; Brennan, Michael C; Morozov, Yurii V; Manser, Joseph S; Kamat, Prashant V; Schneider, William F; Kuno, Masaru

    2017-08-04

    Mixed halide hybrid perovskites, CH 3 NH 3 Pb(I 1-x Br x ) 3 , represent good candidates for low-cost, high efficiency photovoltaic, and light-emitting devices. Their band gaps can be tuned from 1.6 to 2.3 eV, by changing the halide anion identity. Unfortunately, mixed halide perovskites undergo phase separation under illumination. This leads to iodide- and bromide-rich domains along with corresponding changes to the material's optical/electrical response. Here, using combined spectroscopic measurements and theoretical modeling, we quantitatively rationalize all microscopic processes that occur during phase separation. Our model suggests that the driving force behind phase separation is the bandgap reduction of iodide-rich phases. It additionally explains observed non-linear intensity dependencies, as well as self-limited growth of iodide-rich domains. Most importantly, our model reveals that mixed halide perovskites can be stabilized against phase separation by deliberately engineering carrier diffusion lengths and injected carrier densities.Mixed halide hybrid perovskites possess tunable band gaps, however, under illumination they undergo phase separation. Using spectroscopic measurements and theoretical modelling, Draguta and Sharia et al. quantitatively rationalize the microscopic processes that occur during phase separation.

  12. Improved performance of colloidal CdSe quantum dot-sensitized solar cells by hybrid passivation.

    PubMed

    Huang, Jing; Xu, Bo; Yuan, Chunze; Chen, Hong; Sun, Junliang; Sun, Licheng; Agren, Hans

    2014-11-12

    A hybrid passivation strategy is employed to modify the surface of colloidal CdSe quantum dots (QDs) for quantum dot-sensitized solar cells (QDSCs), by using mercaptopropionic acid (MPA) and iodide anions through a ligand exchange reaction in solution. This is found to be an effective way to improve the performance of QDSCs based on colloidal QDs. The results show that MPA can increase the coverage of the QDs on TiO2 electrodes and facilitate the hole extraction from the photoxidized QDs, and simultaneously, that the iodide anions can remedy the surface defects of the CdSe QDs and thus reduce the recombination loss in the device. This hybrid passivation treatment leads to a significant enhancement of the power conversion efficiency of the QDSCs by 41%. Furthermore, an optimal ratio of iodide ions to MPA was determined for favorable hybrid passivation; results show that excessive iodine anions are detrimental to the loading of the QDs. This study demonstrates that the improvement in QDSC performance can be realized by using a combination of different functional ligands to passivate the QDs, and that ligand exchange in solution can be an effective approach to introduce different ligands.

  13. An Experiment to Illustrate the Hazards of Exothermic Reaction Scale-Up

    ERIC Educational Resources Information Center

    Clark, William; Lei, Melinda; Kirichenko, Erika; Dickerson, Kellie; Prytko, Robert

    2017-01-01

    Exothermic reactions can present safety hazards and there is a recognized need for reaction safety education at the undergraduate level. We present an experiment that illustrates the pitfall of direct scale-up of an exothermic reaction that can lead to thermal runaway. The iodide-catalyzed hydrogen peroxide decomposition reaction yields…

  14. Dipole Alignment at the Carbon Nanotube and Methyl Ammonium Lead Iodide Perovskite Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Przepioski, Joshua

    2015-08-28

    This work correlates resonant peaks from first principles calculation on ammonia (NH 3) Nitrogen 1s x-ray absorption spectroscopy (XAS) within the methyl ammonium lead iodide perovskite (CH 3NH 3PbI 3), and proposes a curve to determine the alignment of the methyl ammonium dipole if there exists angular dependence. The Nitrogen 1s XAS was performed at varying incident angles on the perovskite with and without a carbon nanotube (CNT) interface produced from an ultrasonic spray deposition. We investigated the peak contribution from PbI 2 and the poly(9,9-dioctylfluorene- 2,7-diyl) with bipyridine (PFO-BPy) wrapped around the CNT, and used normalization techniques to bettermore » identify the dipole alignment. There was angular dependence on samples containing the CNT interface suggesting an existing dipole alignment, but there was no angular dependence on the perovskite samples alone; however, more normalization techniques and experimental work must be performed in order to ensure its validity and to better describe its alignment, and possible controlling factors.« less

  15. Structures, Phase Transitions and Tricritical Behavior of the Hybrid Perovskite Methyl Ammonium Lead Iodide

    DOE PAGES

    Whitfield, P. S.; Herron, N.; Guise, W. E.; ...

    2016-10-21

    Here, we examine the crystal structures and structural phase transitions of the deuterated, partially deuterated and hydrogenous organic-inorganic hybrid perovskite methyl ammonium lead iodide (MAPbI 3) using time-of-flight neutron and synchrotron X-ray powder diffraction. Near 330 K the high temperature cubic phases transformed to a body-centered tetragonal phase. The variation of the order parameter Q for this transition scaled with temperature T as Q (T c-T) , where T c is the critical temperature and the exponent was close to , as predicted for a tricritical phase transition. We also observed coexistence of the cubic and tetragonal phases over amore » range of temperature in all cases, demonstrating that the phase transition was in fact first-order, although still very close to tricritical. Upon cooling further, all the tetragonal phases transformed into a low temperature orthorhombic phase around 160 K, again via a first-order phase transition. Finally, based upon these results, we discuss the impact of the structural phase transitions upon photovoltaic performance of MAPbI 3 based solar cells.« less

  16. Phonon Mode Transformation Across the Orthohombic–Tetragonal Phase Transition in a Lead Iodide Perovskite CH 3 NH 3 PbI 3 : A Terahertz Time-Domain Spectroscopy Approach

    DOE PAGES

    La-o-vorakiat, Chan; Xia, Huanxin; Kadro, Jeannette; ...

    2015-12-03

    Here, we study the temperature-dependent phonon modes of the organometallic lead iodide perovskite CH 3NH 3PbI 3 thin film across the terahertz (0.5–3 THz) and temperature (20–300 K) ranges. These modes are related to the vibration of the Pb–I bonds. We found that two phonon modes in the tetragonal phase at room temperature split into four modes in the low-temperature orthorhombic phase. By use of the Lorentz model fitting, we also analyze the critical behavior of this phase transition. The carrier mobility values calculated from the low-temperature phonon mode frequencies, via two theoretical approaches, are found to agree reasonably withmore » the experimental value (~2000 cm 2 V –1 s –1) from a previous time-resolved THz spectroscopy work. Thus, we have established a possible link between terahertz phonon modes and the transport properties of perovskite-based solar cells.« less

  17. Tunable ferroelectric polarization and its interplay with spin-orbit coupling in tin iodide perovskites

    NASA Astrophysics Data System (ADS)

    Stroppa, Alessandro; di Sante, Domenico; Barone, Paolo; Bokdam, Menno; Kresse, Georg; Franchini, Cesare; Whangbo, Myung-Hwan; Picozzi, Silvia

    2014-12-01

    Ferroelectricity is a potentially crucial issue in halide perovskites, breakthrough materials in photovoltaic research. Using density functional theory simulations and symmetry analysis, we show that the lead-free perovskite iodide (FA)SnI3, containing the planar formamidinium cation FA, (NH2CHNH2)+, is ferroelectric. In fact, the perpendicular arrangement of FA planes, leading to a ‘weak’ polarization, is energetically more stable than parallel arrangements of FA planes, being either antiferroelectric or ‘strong’ ferroelectric. Moreover, we show that the ‘weak’ and ‘strong’ ferroelectric states with the polar axis along different crystallographic directions are energetically competing. Therefore, at least at low temperatures, an electric field could stabilize different states with the polarization rotated by π/4, resulting in a highly tunable ferroelectricity appealing for multistate logic. Intriguingly, the relatively strong spin-orbit coupling in noncentrosymmetric (FA)SnI3 gives rise to a co-existence of Rashba and Dresselhaus effects and to a spin texture that can be induced, tuned and switched by an electric field controlling the ferroelectric state.

  18. Direct Laser Writing of δ- to α-Phase Transformation in Formamidinium Lead Iodide

    PubMed Central

    2017-01-01

    Organolead halide perovskites are increasingly considered for applications well beyond photovoltaics, for example, as the active regions within photonic devices. Herein, we report the direct laser writing (DLW: 458 nm cw-laser) of the formamidinium lead iodide (FAPbI3) yellow δ-phase into its high-temperature luminescent black α-phase, a remarkably easy and scalable approach that takes advantage of the material’s susceptibility to transition under ambient conditions. Through the DLW of α-FAPbI3 tracks on δ-FAPbI3 single-crystal surfaces, the controlled and rapid microfabrication of highly luminescent structures exhibiting long-term phase stability is detailed, offering an avenue toward the prototyping of complex perovskite-based optical devices. The dynamics and kinetics of laser-induced δ- to α-phase transformations are investigated in situ by Raman microprobe analysis, as a function of irradiation power, time, temperature, and atmospheric conditions, revealing an interesting connection between oxygen intercalation at the surface and the δ- to α-phase transformation dynamics, an insight that will find application within the wider context of FAPbI3 thermal phase relations. PMID:28763617

  19. Re-entrant relaxor ferroelectricity of methylammonium lead iodide

    DOE PAGES

    Guo, Haiyan; Liu, Peixue; Zheng, Shichao; ...

    2016-09-24

    In this paper, we have performed a piezoresponse force microscopy (PFM) study on methylammonium lead iodide (MAPbI 3) thin films in normal (non-resonance, non-band-excitation) contact mode. In contrast to the ferroelectric Pb 0.76Ca 0.24TiO 3 (PCT) control sample, a typical ferroelectric response was not observed. However, a nonlinear electric field dependence of the local PFM amplitude was found in MAPbI 3, similar to PCT. An analysis combining results on structure, dielectric dispersion, and weak ferroelectricity demonstrates that MAPbI 3 is actually a re-entrant relaxor ferroelectric which, upon cooling, enters into a relaxor phase below its ferroelectric phase transition at ~327more » K, due to the balance between the long range ferroelectric order and structural methylammonium group orientational disorder. The ferroelectricity at room temperature is compromised due to the re-entrant relaxor behavior, causing the poor polarization retention or weak ferroelectricity. Finally, our findings essentially conciliate the conflicting experimental results on MAPbI 3's ferroelectricity and are beneficial both for basic understanding as well as for device applications.« less

  20. Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells

    DOE PAGES

    Zhao, Dewei; Yu, Yue; Wang, Changlei; ...

    2017-03-01

    Tandem solar cells using only metal-halide perovskite sub-cells are an attractive choice for next-generation solar cells. However, the progress in developing efficient all-perovskite tandem solar cells has been hindered by the lack of high-performance low-bandgap perovskite solar cells. Here in this paper, we report efficient mixed tin-lead iodide low-bandgap (~1.25 eV) perovskite solar cells with open-circuit voltages up to 0.85 V and over 70% external quantum efficiencies in the infrared wavelength range of 700-900 nm, delivering a short-circuit current density of over 29 mA cm -2 and demonstrating suitability for bottom-cell applications in all-perovskite tandem solar cells. Our low-bandgap perovskitemore » solar cells achieve a maximum power conversion efficiency of 17.6% and a certified efficiency of 17.01% with a negligible current-voltage hysteresis. Finally, when mechanically stacked with a ~1.58 eV bandgap perovskite top cell, our best all-perovskite 4-terminal tandem solar cell shows a steady-state efficiency of 21.0%.« less

  1. Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Dewei; Yu, Yue; Wang, Changlei

    Tandem solar cells using only metal-halide perovskite sub-cells are an attractive choice for next-generation solar cells. However, the progress in developing efficient all-perovskite tandem solar cells has been hindered by the lack of high-performance low-bandgap perovskite solar cells. Here in this paper, we report efficient mixed tin-lead iodide low-bandgap (~1.25 eV) perovskite solar cells with open-circuit voltages up to 0.85 V and over 70% external quantum efficiencies in the infrared wavelength range of 700-900 nm, delivering a short-circuit current density of over 29 mA cm -2 and demonstrating suitability for bottom-cell applications in all-perovskite tandem solar cells. Our low-bandgap perovskitemore » solar cells achieve a maximum power conversion efficiency of 17.6% and a certified efficiency of 17.01% with a negligible current-voltage hysteresis. Finally, when mechanically stacked with a ~1.58 eV bandgap perovskite top cell, our best all-perovskite 4-terminal tandem solar cell shows a steady-state efficiency of 21.0%.« less

  2. Hydrogen peroxide inhibits iodide uptake and iodine organification in cultured porcine thyroid follicles.

    PubMed

    Fukayama, H; Murakami, S; Nasu, M; Sugawara, M

    1991-01-01

    We investigated the effect of hydrogen peroxide on the process of thyroid hormone formation in a physiologic culture system of porcine thyroid follicles that we recently established. Porcine thyroid follicles cultured in medium containing 1 mU/mL TSH were exposed to 0 to 500 microM hydrogen peroxide in the presence of 0.1 microCi carrier-free Na125 and sodium iodide for 2 h. Iodide uptake and iodine organification were measured in this incubation system. The kinetics of iodide uptake were used to explain the action of hydrogen peroxide. In addition, cAMP content and Na+,K(+)-ATPase activity (an enzyme necessary for iodide uptake) were measured to investigate the mechanism of hydrogen peroxide action. Hydrogen peroxide at concentrations of 100, 200, and 500 microM inhibited iodide uptake in a dose-dependent manner. Iodide organification was inhibited only when the concentration of hydrogen peroxide was greater than 200 microM. The kinetics of iodide uptake indicated that hydrogen peroxide was a noncompetitive inhibitor with iodide. Inhibition of iodide uptake and iodine organification by hydrogen peroxide were not mediated by alteration of cAMP content of Na+,K(+)-ATPase activity, since exposure to even 500 microM hydrogen peroxide did not change these parameters in the follicle when compared with those of control samples. Our results suggest that the iodide transport system in the thyroid follicle is inhibited at 200 microM hydrogen peroxide or greater.

  3. Production of Molecular Iodine and Tri-iodide in the Frozen Solution of Iodide: Implication for Polar Atmosphere.

    PubMed

    Kim, Kitae; Yabushita, Akihiro; Okumura, Masanori; Saiz-Lopez, Alfonso; Cuevas, Carlos A; Blaszczak-Boxe, Christopher S; Min, Dae Wi; Yoon, Ho-Il; Choi, Wonyong

    2016-02-02

    The chemistry of reactive halogens in the polar atmosphere plays important roles in ozone and mercury depletion events, oxidizing capacity, and dimethylsulfide oxidation to form cloud-condensation nuclei. Among halogen species, the sources and emission mechanisms of inorganic iodine compounds in the polar boundary layer remain unknown. Here, we demonstrate that the production of tri-iodide (I3(-)) via iodide oxidation, which is negligible in aqueous solution, is significantly accelerated in frozen solution, both in the presence and the absence of solar irradiation. Field experiments carried out in the Antarctic region (King George Island, 62°13'S, 58°47'W) also showed that the generation of tri-iodide via solar photo-oxidation was enhanced when iodide was added to various ice media. The emission of gaseous I2 from the irradiated frozen solution of iodide to the gas phase was detected by using cavity ring-down spectroscopy, which was observed both in the frozen state at 253 K and after thawing the ice at 298 K. The accelerated (photo-)oxidation of iodide and the subsequent formation of tri-iodide and I2 in ice appear to be related with the freeze concentration of iodide and dissolved O2 trapped in the ice crystal grain boundaries. We propose that an accelerated abiotic transformation of iodide to gaseous I2 in ice media provides a previously unrecognized formation pathway of active iodine species in the polar atmosphere.

  4. Iodide uptake by negatively charged clay interlayers?

    PubMed

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-09-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to discharges...

  6. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to discharges...

  7. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to discharges...

  8. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to discharges...

  9. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to discharges...

  10. Chlorine Doping Reduces Electron–Hole Recombination in Lead Iodide Perovskites: Time-Domain Ab Initio Analysis

    DOE PAGES

    Liu, Jin; Prezhdo, Oleg V.

    2015-10-27

    Rapid development in lead halide perovskites has led to solution-processable thin film solar cells with power conversion efficiencies close to 20%. Nonradiative electron–hole recombination within perovskites has been identified as the main pathway of energy losses, competing with charge transport and limiting the efficiency. Using nonadiabatic (NA) molecular dynamics, combined with time-domain density functional theory, we show that nonradiative recombination happens faster than radiative recombination and long-range charge transfer to an acceptor material. Doping of lead iodide perovskites with chlorine atoms reduces charge recombination. On the one hand, chlorines decrease the NA coupling because they contribute little to the wavemore » functions of the valence and conduction band edges. On the other hand, chlorines shorten coherence time because they are lighter than iodines and introduce high-frequency modes. Both factors favor longer excited-state lifetimes. The simulation shows good agreement with the available experimental data and contributes to the comprehensive understanding of electronic and vibrational dynamics in perovskites. The generated insights into design of higher-efficiency solar cells range from fundamental scientific principles, such as the role of electron–vibrational coupling and quantum coherence, to practical guidelines, such as specific suggestions for chemical doping.« less

  11. Use of an iodide-specific electrode to study lactoperoxidase-catalyzed iodination of l-tyrosine.

    PubMed

    Threatte, R M; Fregly, M J; Field, F P; Jones, P K

    1979-12-01

    An in vitro method employing an iodide-specific electrode for monitoring lactoperoxidase-catalyzed iodination is described. The method utilized lactoperoxidase, potassium iodide, and a glucose--glucose oxidase system for the generation of hydrogen peroxide and l-tyrosine. As iodination of l-tyrosine proceeded, the free iodide concentration in solution decreased and was monitored by an iodide-specific electrode. The iodide electrode was reliable when compared to a 131I-method for measuring free iodide changes in solution. Increasing concentrations of resorcinol, a well-known inhibitor of thyroid peroxidase-catalyzed iodination, in the reaction mixture resulted in graded inhibition of the initial rate of lactoperoxidase-catalyzed l-tyrosine iodination. This in vitro system can be used to assess inhibitory activity of various antithyroid substances.

  12. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soelberg, Nick; Watson, Tony

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methylmore » iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.« less

  13. Relationship of dietary iodide and drinking water disinfectants to thyroid function in experimental animals.

    PubMed Central

    Revis, N W; McCauley, P; Holdsworth, G

    1986-01-01

    The importance of dietary iodide on the reported hypothyroid effect of drinking water disinfectants on thyroid function was investigated. Previous studies have also showed differences in the relative sensitivity of pigeons and rabbits to chlorinated water. Pigeons and rabbits were exposed for 3 months to diets containing high (950 ppb) or low (300 ppb) levels of iodide and to drinking water containing two levels of chlorine. Results showed that the high-iodide diet prevented the hypothyroid effect observed in pigeons given the low-iodide diet and chlorinated drinking water. Similar trends were observed in rabbits exposed to the same treatment; however, significant hypothyroid effects were not observed in this animal model. The factor associated with the observed effect of dietary iodide on the chlorine-induced change in thyroid function is unknown, as is the relative sensitivity of rabbits and pigeons to the effect of chlorine. Several factors may explain the importance of dietary iodide and the relative sensitivity of these species. For example, the iodine formed by the known reaction of chlorine with iodide could result in a decrease in the plasma level of iodide because of the relative absorption rates of iodide and iodine in the intestinal tract, and the various types and concentrations of chloroorganics (metabolites) formed in the diet following the exposure of various dietary constituents to chlorine could affect the thyroid function. The former factor was investigated in the present studies. Results do not confirm a consistent, significant reduction in the plasma level of iodide in rabbits and pigeons exposed to chlorinated water and the low-iodide diet. The latter factor is being investigated. PMID:3816728

  14. Direct vapor/solid synthesis of mercuric iodide using compounds of mercury and iodine

    DOEpatents

    Skinner, Nathan L.

    1990-01-01

    A process is disclosed for producing high purity mercuric iodide by passing a gaseous source of a mercuric compound through a particulate bed of a low vapor pressure iodide compound which is maintained at an elevated temperature which is the lower of either: (a) just below the melting or volatilization temperature of the iodide compound (which ever is lower); or (b) just below the volatilization point of the other reaction product formed during the reaction; to cause the mercuric compound to react with the iodide compound to form mercuric iodide which then passes as a vapor out of the bed into a cooler condensation region.

  15. Iodide handling by the thyroid epithelial cell.

    PubMed

    Nilsson, M

    2001-01-01

    Iodination of thyroglobulin, the key event in the synthesis of thyroid hormone, is an extracellular process that takes place inside the thyroid follicles at the apical membrane surface that faces the follicular lumen. The supply of iodide involves two steps of TSH-regulated transport, basolateral uptake and apical efflux, that imprint the polarized phenotype of the thyroid cell. Iodide uptake is generated by the sodium/iodide symporter present in the basolateral plasma membrane. A candidate for the apical iodide-permeating mechanism is pendrin, a chloride/iodide transporting protein recently identified in the apical membrane. In physiological conditions, transepithelial iodide transport occurs without intracellular iodination, despite the presence of large amounts of thyroglobulin and thyroperoxidase inside the cells. The reason is that hydrogen peroxide, serving as electron acceptor in iodide-protein binding and normally produced at the apical cell surface, is rapidly degraded by cytosolic glutathione peroxidase once it enters the cells. Iodinated thyroglobulin in the lumen stores not only thyroid hormone but iodine incorporated in iodotyrosine residues as well. After endocytic uptake and degradation of thyroglobulin, intracellular deiodination provides a mechanism for recycling of iodide to participate in the synthesis of new thyroid hormone at the apical cell surface.

  16. Dry method for recycling iodine-loaded silver zeolite

    DOEpatents

    Thomas, Thomas R.; Staples, Bruce A.; Murphy, Llewellyn P.

    1978-05-09

    Fission product iodine is removed from a waste gas stream and stored by passing the gas stream through a bed of silver-exchanged zeolite until the zeolite is loaded with iodine, passing dry hydrogen gas through the bed to remove the iodine and regenerate the bed, and passing the hydrogen stream containing the hydrogen iodide thus formed through a lead-exchanged zeolite which adsorbs the radioactive iodine from the gas stream and permanently storing the lead-exchanged zeolite loaded with radioactive iodine.

  17. Demonstration of Iodide Transport Defect but Normal Iodide Organification in Nonfunctioning Nodules of Human Thyroid Glands

    PubMed Central

    Field, James B.; Larsen, P. Reed; Yamashita, Kamejiro; Mashiter, Keith; Dekker, Andrew

    1973-01-01

    Benign and malignant nodules in human thyroid glands, which did not concentrate iodide in vivo, were also unable to accumulate iodide in vitro. The mean thyroid-to-medium ratio (T/M) in seven benign nodules was 0.8±0.2 compared with 7±2 in adjacent normal thyroid tissue. In four malignant thyroid nodules, the mean T/M was 0.5±0.1 compared with 11±4 in adjacent normal thyroid. Despite the inability of such nodules to concentrate iodide, iodide organification was present but was only one-half to one-third as active as in surrounding normal thyroid. Thyroid-stimulating hormone (TSH) increased iodide organification equally in both benign nodules and normal thyroid although it had no effect in three of the four malignant lesions. The reduction in organification is probably related to the absence of iodide transport, since incubation of normal thyroid slices with perchlorate caused similar diminution in iodide incorporation but no change in the response to TSH. Monoiodotyrosine (MIT) and di-iodotyrosine (DIT) accounted for most of the organic iodide in both the nodules and normal tissue. The MIT/DIT ratio was similar in normal and nodule tissue. The normal tissue contained much more inorganic iodide than the nodules, consistent with the absence of the iodide trap in the latter tissue. The thyroxine content of normal thyroid was 149±17 μg/g wet wt and 18±4 μg/g wet wt in the nodules. The transport defect in the nodules was not associated with any reduction in total, Na+-K+- or Mg++-activated ATPase activities or the concentration of ATP. Basal adenylate cyclase was higher in nodules than normal tissue. Although there was no difference between benign and malignant nodules, the response of adenylate cyclase to TSH was greater in the benign lesions. These studies demonstrate that nonfunctioning thyroid nodules, both benign and malignant, have a specific defect in iodide transport that accounts for their failure to accumulate radioactive iodide in vivo. In benign nodules, iodide organification was increased by TSH while no such effect was found in three of four malignant lesions, suggesting additional biochemical defects in thyroid carcinomas. PMID:4353998

  18. In situ investigation of the formation and metastability of formamidinium lead tri-iodide perovskite solar cells

    DOE PAGES

    Aguiar, Jeffery A.; Wozny, Sarah; Holesinger, Terry George; ...

    2016-05-23

    Organic–inorganic perovskites have emerged as an important class of next generation solar cells due to their remarkably low cost, band gap, and sub-900 nm absorption onset. Here, we show a series of in situ observations inside electron microscopes and X-ray diffractometers under device-relevant synthesis conditions focused on revealing the crystallization process of the formamidinium lead-triiodide perovskite at the optimum temperature of 175 °C. Direct in situ observations of the structure and chemistry over relevant spatial, temporal, and temperature scales enabled identification of key perovskite formation and degradation mechanisms related to grain evolution and interface chemistry. The lead composition was observedmore » to fluctuate at grain boundaries, indicating a mobile lead-containing species, a process found to be partially reversible at a key temperature of 175 °C. Using low energy electron microscopy and valence electron energy loss spectroscopy, lead is found to be bonded in the grain interior with iodine in a tetrahedral configuration. At the grain boundaries, the binding energy associated with lead is consequently shifted by nearly 2 eV and a doublet peak is resolved due presumably to a greater degree of hybridization and the potential for several different bonding configurations. At the grain boundaries there is adsorption of hydrogen and OH¯ ions as a result of residual water vapor trapped as a non-crystalline material during formation. Lastly, insights into the relevant formation and decomposition reactions of formamidinium lead iodide at low to high temperatures, observed metastabilities, and relationship with the photovoltaic performance were obtained and used to optimize device processing resulting in conversion efficiencies of up to 17.09% within the stability period of the devices.« less

  19. In situ investigation of the formation and metastability of formamidinium lead tri-iodide perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguiar, Jeffery A.; Wozny, Sarah; Holesinger, Terry G.

    2016-01-01

    Organic-inorganic perovskites have emerged as an important class of next generation solar cells due to their remarkably low cost, band gap, and sub-900 nm absorption onset. Here, we show a series of in situ observations inside electron microscopes and X-ray diffractometers under device-relevant synthesis conditions focused on revealing the crystallization process of the formamidinium lead-triiodide perovskite at the optimum temperature of 175 degrees C. Direct in situ observations of the structure and chemistry over relevant spatial, temporal, and temperature scales enabled identification of key perovskite formation and degradation mechanisms related to grain evolution and interface chemistry. The lead composition wasmore » observed to fluctuate at grain boundaries, indicating a mobile lead-containing species, a process found to be partially reversible at a key temperature of 175 degrees C. Using low energy electron microscopy and valence electron energy loss spectroscopy, lead is found to be bonded in the grain interior with iodine in a tetrahedral configuration. At the grain boundaries, the binding energy associated with lead is consequently shifted by nearly 2 eV and a doublet peak is resolved due presumably to a greater degree of hybridization and the potential for several different bonding configurations. At the grain boundaries there is adsorption of hydrogen and OH- ions as a result of residual water vapor trapped as a non-crystalline material during formation. Insights into the relevant formation and decomposition reactions of formamidinium lead iodide at low to high temperatures, observed metastabilities, and relationship with the photovoltaic performance were obtained and used to optimize device processing resulting in conversion efficiencies of up to 17.09% within the stability period of the devices.« less

  20. Superoxide Production by a Manganese-Oxidizing Bacterium Facilitates Iodide Oxidation

    PubMed Central

    Li, Hsiu-Ping; Daniel, Benjamin; Creeley, Danielle; Grandbois, Russell; Zhang, Saijin; Xu, Chen; Ho, Yi-Fang; Schwehr, Kathy A.; Kaplan, Daniel I.; Santschi, Peter H.; Hansel, Colleen M.

    2014-01-01

    The release of radioactive iodine (i.e., iodine-129 and iodine-131) from nuclear reprocessing facilities is a potential threat to human health. The fate and transport of iodine are determined primarily by its redox status, but processes that affect iodine oxidation states in the environment are poorly characterized. Given the difficulty in removing electrons from iodide (I−), naturally occurring iodide oxidation processes require strong oxidants, such as Mn oxides or microbial enzymes. In this study, we examine iodide oxidation by a marine bacterium, Roseobacter sp. AzwK-3b, which promotes Mn(II) oxidation by catalyzing the production of extracellular superoxide (O2−). In the absence of Mn2+, Roseobacter sp. AzwK-3b cultures oxidized ∼90% of the provided iodide (10 μM) within 6 days, whereas in the presence of Mn(II), iodide oxidation occurred only after Mn(IV) formation ceased. Iodide oxidation was not observed during incubations in spent medium or with whole cells under anaerobic conditions or following heat treatment (boiling). Furthermore, iodide oxidation was significantly inhibited in the presence of superoxide dismutase and diphenylene iodonium (a general inhibitor of NADH oxidoreductases). In contrast, the addition of exogenous NADH enhanced iodide oxidation. Taken together, the results indicate that iodide oxidation was mediated primarily by extracellular superoxide generated by Roseobacter sp. AzwK-3b and not by the Mn oxides formed by this organism. Considering that extracellular superoxide formation is a widespread phenomenon among marine and terrestrial bacteria, this could represent an important pathway for iodide oxidation in some environments. PMID:24561582

  1. Superoxide production by a manganese-oxidizing bacterium facilitates iodide oxidation.

    PubMed

    Li, Hsiu-Ping; Daniel, Benjamin; Creeley, Danielle; Grandbois, Russell; Zhang, Saijin; Xu, Chen; Ho, Yi-Fang; Schwehr, Kathy A; Kaplan, Daniel I; Santschi, Peter H; Hansel, Colleen M; Yeager, Chris M

    2014-05-01

    The release of radioactive iodine (i.e., iodine-129 and iodine-131) from nuclear reprocessing facilities is a potential threat to human health. The fate and transport of iodine are determined primarily by its redox status, but processes that affect iodine oxidation states in the environment are poorly characterized. Given the difficulty in removing electrons from iodide (I(-)), naturally occurring iodide oxidation processes require strong oxidants, such as Mn oxides or microbial enzymes. In this study, we examine iodide oxidation by a marine bacterium, Roseobacter sp. AzwK-3b, which promotes Mn(II) oxidation by catalyzing the production of extracellular superoxide (O2(-)). In the absence of Mn(2+), Roseobacter sp. AzwK-3b cultures oxidized ∼90% of the provided iodide (10 μM) within 6 days, whereas in the presence of Mn(II), iodide oxidation occurred only after Mn(IV) formation ceased. Iodide oxidation was not observed during incubations in spent medium or with whole cells under anaerobic conditions or following heat treatment (boiling). Furthermore, iodide oxidation was significantly inhibited in the presence of superoxide dismutase and diphenylene iodonium (a general inhibitor of NADH oxidoreductases). In contrast, the addition of exogenous NADH enhanced iodide oxidation. Taken together, the results indicate that iodide oxidation was mediated primarily by extracellular superoxide generated by Roseobacter sp. AzwK-3b and not by the Mn oxides formed by this organism. Considering that extracellular superoxide formation is a widespread phenomenon among marine and terrestrial bacteria, this could represent an important pathway for iodide oxidation in some environments.

  2. Linking loss of sodium-iodide symporter expression to DNA damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyckesvärd, Madeleine Nordén; Department of Medical Chemistry and Cell Biology, University of Gothenburg, Göteborg; Kapoor, Nirmal

    Radiotherapy of thyroid cancer with I-131 is abrogated by inherent loss of radioiodine uptake due to loss of sodium iodide symporter (NIS) expression in poorly differentiated tumor cells. It is also known that ionizing radiation per se down-regulates NIS (the stunning effect), but the mechanism is unknown. Here we investigated whether loss of NIS-mediated iodide transport may be elicited by DNA damage. Calicheamicin, a fungal toxin that specifically cleaves double-stranded DNA, induced a full scale DNA damage response mediated by the ataxia-telangiectasia mutated (ATM) kinase in quiescent normal thyrocytes. At sublethal concentrations (<1 nM) calicheamicin blocked NIS mRNA expression andmore » transepithelial iodide transport as stimulated by thyrotropin; loss of function occurred at a much faster rate than after I-131 irradiation. KU-55933, a selective ATM kinase inhibitor, partly rescued NIS expression and iodide transport in DNA-damaged cells. Prolonged ATM inhibition in healthy cells also repressed NIS-mediated iodide transport. ATM-dependent loss of iodide transport was counteracted by IGF-1. Together, these findings indicate that NIS, the major iodide transporter of the thyroid gland, is susceptible to DNA damage involving ATM-mediated mechanisms. This uncovers novel means of poor radioiodine uptake in thyroid cells subjected to extrinsic or intrinsic genotoxic stress. - Highlights: • DNA damage inhibits polarized iodide transport in normal thyroid cells. • Down-regulation of NIS expression is mediated by activation of the ATM kinase. • Long-term ATM inhibition also represses NIS-mediated iodide transport. • IGF-1 rescues NIS expression and iodide transport in DNA-damaged cells.« less

  3. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent. (c...

  4. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium... reacting hydriodic acid (HI) with potassium bicarbonate (KHCO3). (b) The ingredient meets the...

  5. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent. (c...

  6. Terahertz Investigations of Extraordinarily Efficient Conduction in a Redox Active Ionic Liquid.

    NASA Astrophysics Data System (ADS)

    Thorsmolle, Verner; Brauer, Jan; Rothenberger, Guido; Kuang, Daibin; Zakeeruddin, Shaik; Grätzel, Michael; Moser, Jacques

    2009-03-01

    Iodine added to iodide-based ionic liquids leads to extraordinarily efficient charge transport, vastly exceeding expectancy for such viscous systems. Using terahertz time-domain spectroscopy, in conjunction with dc conductivity and viscosity measurements we unravel the conductivity pathways in 1-methyl-3-propylimidazolium iodide melts. Applying low temperatures, we demonstrate for the first time conduction entirely due to a Grotthus bond-exchange mechanism at iodine concentrations higher than 3.9 M. The terahertz and transport results are reconciled in a model providing a quantitative description of the conduction by physical diffusion and the Grotthus bond-exchange process. These novel results are of great importance for the fundamental understanding of conduction in molten salts and for applications where ionic liquids are used as charge-transporting media such as in batteries and dye-sensitized solar cells.

  7. Congenital hypothyroidism from complete iodide transport defect: long-term evolution with iodide treatment.

    PubMed Central

    Albero, R.; Cerdan, A.; Sanchez Franco, F.

    1987-01-01

    Hypothyroidism from iodide transport deficiency is a rare disease, especially when found in two affected siblings. Treatment with high doses of iodide has been recommended, but no long term results have been reported. Two siblings with congenital hypothyroidism due to total failure to transport iodide have been followed up during twelve and a half years of treatment with oral potassium iodide. Iodine doses varied between 10.3 and 22 mg/day, and serum total iodine concentrations between 100 and 210 micrograms/dl. Total triiodothyronine (T3), thyroxine (T4) and free T4 were in the normal range during the time of study. Basal thyroid stimulating hormones (TSH) and maximum TSH response to thyrotrophin releasing hormone (TRH) were also in the range of normal values. These data along with clinical findings confirmed the potential usefulness of iodine in hypothyroidism due to complete iodide transport defect. PMID:3451231

  8. Project Overview: Inhibition of the Sodium-Iodide Symporter by Perchlorate: Evaluation of Lifestage Sensitivity Using PBPK Modeling

    EPA Science Inventory

    Perchlorate (ClO4-) competitively inhibits uptake of iodide by the sodium-iodide symporter (NIS) in laboratory animals and humans. NIS is found in many tissues, but is primarily responsible for sequestering iodide into the thyroid, enabling biosynthesis of thyroid hormones. The N...

  9. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in salt...

  10. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in salt...

  11. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in salt...

  12. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in salt...

  13. Effects of Radiation and Temperature on Iodide Sorption by Surfactant-Modified Bentonite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choung, Sungwook; Kim, Min Kyung; Yang, Jungseok

    2014-08-04

    Bentonite, which is used as an engineered barrier in geological repositories, is ineffective for sorbing anionic radionuclides because of its negatively charged surface. This study modified raw bentonite using a cationic surfactant (i.e., hexadecyltrimethylammonium [HDTMA]-Br) to improve its sorption capability for radioactive iodide. The effects of temperature and radiation on the iodide sorption of surfactant-modified bentonite (SMB) were evaluated under alkaline pH condition similar to that found in repository environments. Different amounts of surfactant, equivalent to the 50, 100, and 200% cation-exchange capacity of the bentonite, were used to produce the HDTMA-SMB for iodide sorption. The sorption reaction of themore » SMB with iodide reached equilibrium rapidly within 10 min regardless of temperature and radiation conditions. The rate of iodide sorption increased as the amount of the added surfactant was increased and nonlinear sorption behavior was exhibited. However, high temperature and γ-irradiation (60Co) resulted in significantly (~2–10 times) lower iodide Kd values for the SMB. The results of Fourier transform infrared spectroscopy analysis suggested that the decrease in iodide sorption may be caused by weakened physical electrostatic force between the HDTMA and iodide, and by the surfactant becoming detached from the SMB during the heating and irradiation processes.« less

  14. Effects of Excess Fluoride and Iodide on Thyroid Function and Morphology.

    PubMed

    Jiang, Yaqiu; Guo, Xiujuan; Sun, Qiuyan; Shan, Zhongyan; Teng, Weiping

    2016-04-01

    Exposure to high levels of iodide in Cangzhou, Shandong Province, China has been associated with increased incidence of thyroid disease; however, whether fluoride can affect the thyroid remains controversial. To investigate the effects of excess fluoride, we evaluated thyroid gland structure and function in rats exposed to fluoride and iodide, either alone or in combination. Five-week-old Wistar rats (n = 160 total) were randomly divided into eight groups: three groups that were given excess fluoride (15, 30, or 60 ppm F); one group given excess iodide (1200 μg/L I); three groups given excess iodide plus fluoride (1200 μg/L I plus 15, 30, or 60 ppm F); and one control group. The serum concentrations of the thyroid hormones TT3 and TT4 on day 150 were significantly reduced for certain fluoride groups; however, no significant differences were observed in concentrations for the pituitary hormone TSH among any groups. Hematoxylin and eosin staining revealed that iodide causes an increase in the areas of the colloid lumens and a decrease in the diameters of epithelial cells and nuclei; however, fluoride causes an increase in nuclear diameters. The damage to follicular epithelial cells upon fluoride or iodide treatment was easily observed by transmission electron microscopy, but the effects were most dramatic upon treatment with both fluoride and iodide. These results suggest that iodide causes the most damage but that fluoride can promote specific changes in the function and morphology of the thyroid, either alone or in combination with iodide.

  15. Development of w/o microemulsion for transdermal delivery of iodide ions.

    PubMed

    Lou, Hao; Qiu, Ni; Crill, Catherine; Helms, Richard; Almoazen, Hassan

    2013-03-01

    The objective of this study was to develop a water-in-oil (w/o) microemulsion which can be utilized as a transdermal delivery for iodide ions. Several w/o microemulsion formulations were prepared utilizing Span 20, ethanol, Capryol 90®, and water. The selected formulations had 5%, 10%, 15%, 20%, and a maximum of 23% w/w water content. Potassium iodide (KI) was incorporated in all formulations at 5% w/v. Physicochemical characterizations were conducted to evaluate the structure and stability. These studies included: mean droplet size, pH, viscosity, conductivity, and chemical stability tests. In vitro human skin permeation studies were conducted to evaluate the diffusion of the iodide ion through human skin. The w/o microemulsion formulations were stable and compatible with iodide ions with water content ranging from 5% to 23% w/w. The addition of KI influenced the physicochemical properties of microemulsion as compared to blank microemulsion formulations. In vitro human skin permeation studies indicated that selected formulations improved iodide ion diffusion significantly as compared to control (KI solution; P value<0.05). Iodide ions were entrapped within the aqueous core of w/o microemulsion. Span 20, ethanol and Capryol 90 protected the iodide ions against oxidation and formed a stable microemulsion. It is worth to note that according to Hofmeister series, iodide ions tend to lower the interfacial tension between water and oil and consequently enhance overall stability. This work illustrates that microemulsion system can be utilized as a vehicle for the transdermal administration of iodide.

  16. Electrochemical quantification of iodide ions in synthetic urine using silver nanoparticles: a proof-of-concept.

    PubMed

    Toh, Her Shuang; Tschulik, Kristina; Batchelor-McAuley, Christopher; Compton, Richard G

    2014-08-21

    Typical urinary iodide concentrations range from 0.3 μM to 6.0 μM. The conventional analytical method is based on the Sandell-Kolthoff reaction. It involves the toxic reagent, arsenic acid, and a waiting time of 30 minutes for the iodide ions to reduce the cerium(iv) ions. In the presented work, an alternative fast electrochemical method based on a silver nanoparticle modified electrode is proposed. Cyclic voltammetry was performed with a freshly modified electrode in presence of iodide ions and the voltammetric peaks corresponding to the oxidation of silver to silver iodide and the reverse reaction were recorded. The peak height of the reduction signal of silver iodide was used to plot a calibration line for the iodide ions. Two calibration plots for the iodide ions were obtained, one in 0.1 M sodium nitrate (a chloride-ion free environment to circumvent any interference from the other halides) and another in synthetic urine (which contains 0.2 M KCl). In both of the calibration plots, linear relationships were found between the reduction peak height and the iodide ion concentration of 0.3 μM to 6.0 μM. A slope of 1.46 × 10(-2) A M(-1) and a R(2) value of 0.999 were obtained for the iodide detection in sodium nitrate. For the synthetic urine experiments, a slope of 3.58 × 10(-3) A M(-1) and a R(2) value of 0.942 were measured. A robust iodide sensor with the potential to be developed into a point-of-care system has been validated.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tseng, F.Y.; Rani, C.S.; Field, J.B.

    Since iodide (I-) inhibits TSH stimulation of cAMP formation, which mediates most of the effects of the hormone, it has been assumed that this accounts for the inhibitory action of iodide on the thyroid. However, TSH stimulation of 32P incorporation into phospholipids and stimulation of thyroid metabolism by other agonists, such as carbachol, phorbol esters, and ionophore A23187, is not cAMP mediated. The present studies examined the effect of iodide on stimulation of glucose oxidation and 32P incorporation into phospholipids by TSH and other agonists to determine if the inhibition of cAMP formation was responsible for the action of iodide.more » Preincubation of dog thyroid slices for 1 h with iodide (10(-4) M) inhibited TSH-, (Bu)2cAMP-, carbachol-, methylene blue-, 12-O-tetradecanoyl phorbol-13-acetate-, ionophore A23187-, prostaglandin E1-, and cholera toxin-stimulated glucose oxidation. I- also inhibited the stimulation by TSH, 12-O-tetradecanoyl phorbol-13-acetate, carbachol, and ionophore A23187 of 32P incorporation into phospholipids. The inhibition was similar whether iodide was added 2 h before or simultaneously with the agonist. I- itself sometimes stimulated basal glucose oxidation, but had no effect on basal 32P incorporation into phospholipids. The effects of iodide on basal and agonist-stimulated thyroid metabolism were blocked by methimazole (10(-3) M). When dog thyroid slices were preloaded with 32PO4 or (1-14C)glucose, the iodide inhibition of agonist stimulation disappeared, suggesting that the effect of iodide involves the transport process. In conclusion, I- inhibited stimulation of glucose oxidation and 32P incorporation into phospholipids by all agonists, indicating that the effect is independent of the cAMP system and that iodide autoregulation does not only involve this system. Oxidation and organification of iodide are necessary for the inhibition.« less

  18. Determination of iodide with 1,3-dibromo-5,5-dimethylhydantoin (DBH) in comparison with the ICl-method. Analytical methods of pharmacopeias with DBH in respect to environmental and economical concern. Part 3.

    PubMed

    Hilp, M; Senjuk, S

    2001-06-01

    USP 1995 (The United States Pharmacopeia, 23rd Edit., (1995), potassium iodide p. 1265, sodium iodide p. 1424), PH. EUR. 1997 (European Pharmacopoeia, third ed., Council of Europe, Strasbourg, (1997), potassium iodide p. 1367, sodium iodide p. 1493) and JAP 1996 (The Japanes Pharmacopoeia, 13th ed. (1996), potassium iodide p. 578, sodium iodide p. 630) determine iodide with the ICl-method (J. Am. Chem. Soc. 25 (1903) 756-761; Z. Anorg. Chem. 36 (1903) 76-83; Fresenius Z. Anal. Chem. 106 (1936) 12-23; Arzneibuch-Kommentar, Wissenschaftliche Erläuterungen zum Europäischen Arzneibuch, Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, Govi-Verlag - Pharmazeutischer Verlag GmbH, Eschborn, 12th suppl. (1999), K10 p. 2), using chloroform, which is toxic and hazardous to environment. Without the application of chlorinated hydrocarbons USP 2000 (The United State Pharmacopeia, 24th ed. (2000), potassium iodide p. 1368, sodium iodide p. 1535) and Brit 1999 (British Pharmacopoeia London, (1999), Appendix VIII C, p. A162) titrate iodide with the redox indicator amaranth. A titration with potentiometric indication giving two end-points at the step of I(2) and [ICl(2)](-) is described. Due to the high concentration of hydrochloric acid required for the ICl-method, the determination with DBH (1,3-dibromo-5,5-dimethylhydantoin; 1,3-dibromo-5,5-dimethyl-2,4-imidazolidinedione) can be recommended and is performed easily. Similarly, the iodide content of gallamine triethiodide may be analyzed with DBH by application of a visual two-phase titration in water and ethyl acetate or with potentiometric indication in a mixture of 2-propanol and water. During the removal of the excess of DBH 4-bromo-triethylgallamine (2,2',2"-[1-bromo-benzene-2,3,4-triyltris(oxy)]N,N,N-triethylethanium) is formed.

  19. A comparison between the gastric and salivary concentration of iodide, pertechnetate, and bromide in man

    PubMed Central

    Harden, R. McG.; Alexander, W. D.; Shimmins, J.; Chisholm, D.

    1969-01-01

    The concentration of iodide (I−) and pertechnetate (TcO4−) and bromide (Br−) has been measured simultaneously in gastric juice and parotid saliva. The combined gastric and salivary clearance for iodide and pertechnetate is more than twice the clearance of these ions by the thyroid gland. The concentration of the ions was in the order I−>TcO4−>Br− in both gastric juice and saliva. Differences exist between the secretion of iodide, pertechnetate, and bromide. Bromide, in contrast to iodide and pertechnetate, was found to be more concentrated in gastric juice than in saliva. The ratio of the iodide to pertechnetate clearance was greater in gastric juice than in saliva. PMID:5358585

  20. A tiered approach to evaluate an iodine recycling inhibition ...

    EPA Pesticide Factsheets

    The enzyme iodotyrosine deiodinase (dehalogenase, IYD) catalyzes iodide recycling and promotes iodide retention in thyroid follicular cells. Loss of function or chemical inhibition of IYD reduces thyroid hormone synthesis, which leads to insufficiency in tissues and subsequent negative developmental consequences. Iodide recycling by IYD is especially critical for low iodine diets and low iodine environments, including most freshwater ecosystems. We developed a putative adverse outcome pathway for IYD inhibition in amphibians and evaluated IYD inhibition with a tiered approach: 1) development of an in vitro IYD enzyme inhibition assay for chemical screening of compounds of interest to the US EPA, 2) ex vivo thyroid culture to establish thyroglobulin iodination as a biomarker of IYD inhibition, and 3) in vivo bioassays to characterize an organismal adverse outcome and test essentiality of IYD activity. An in vitro colorimetric assay was developed to measure activity of recombinant human IYD enzyme in a 96-well format, establishing the feasibility of medium to high throughput screening of chemicals for IYD inhibition. In ex vivo thyroid culture studies, thyroxine (T4), monoiodotyrosine (MIT), and diiodotyrosine (DIT) were quantified in individual thyroid glands and the media using a ultrahigh performance LC-MS/MS. In vivo exposure of developing Xenopus laevis to a suspected IYD inhibitor (3-L-nitro-tyrosine) resulted in markedly delayed metamorphosis and glandular

  1. Highly Efficient Spectrally Stable Red Perovskite Light-Emitting Diodes.

    PubMed

    Tian, Yu; Zhou, Chenkun; Worku, Michael; Wang, Xi; Ling, Yichuan; Gao, Hanwei; Zhou, Yan; Miao, Yu; Guan, Jingjiao; Ma, Biwu

    2018-05-01

    Perovskite light-emitting diodes (LEDs) have recently attracted great research interest for their narrow emissions and solution processability. Remarkable progress has been achieved in green perovskite LEDs in recent years, but not blue or red ones. Here, highly efficient and spectrally stable red perovskite LEDs with quasi-2D perovskite/poly(ethylene oxide) (PEO) composite thin films as the light-emitting layer are reported. By controlling the molar ratios of organic salt (benzylammonium iodide) to inorganic salts (cesium iodide and lead iodide), luminescent quasi-2D perovskite thin films are obtained with tunable emission colors from red to deep red. The perovskite/polymer composite approach enables quasi-2D perovskite/PEO composite thin films to possess much higher photoluminescence quantum efficiencies and smoothness than their neat quasi-2D perovskite counterparts. Electrically driven LEDs with emissions peaked at 638, 664, 680, and 690 nm have been fabricated to exhibit high brightness and external quantum efficiencies (EQEs). For instance, the perovskite LED with an emission peaked at 680 nm exhibits a brightness of 1392 cd m -2 and an EQE of 6.23%. Moreover, exceptional electroluminescence spectral stability under continuous device operation has been achieved for these red perovskite LEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Determination of iodide, iodate and organo-iodine in waters with a new total organic iodine measurement approach.

    PubMed

    Gong, Tingting; Zhang, Xiangru

    2013-11-01

    The dissolved iodine species that dominate aquatic systems are iodide, iodate and organo-iodine. These species may undergo transformation to one another and thus affect the formation of iodinated disinfection byproducts during disinfection of drinking waters or wastewater effluents. In this study, a fast, sensitive and accurate method for determining these iodine species in waters was developed by derivatizing iodide and iodate to organic iodine and measuring organic iodine with a total organic iodine (TOI) measurement approach. Within this method, organo-iodine was determined directly by TOI measurement; iodide was oxidized by monochloramine to hypoiodous acid and then hypoiodous acid reacted with phenol to form organic iodine, which was determined by TOI measurement; iodate was reduced by ascorbic acid to iodide and then determined as iodide. The quantitation limit of organo-iodine or sum of organo-iodine and iodide or sum of organo-iodine, iodide and iodate was 5 μg/L as I for a 40 mL water sample (or 2.5 μg/L as I for an 80 mL water sample, or 1.25 μg/L as I for a 160 mL water sample). This method was successfully applied to the determination of iodide, iodate and organo-iodine in a variety of water samples, including tap water, seawater, urine and wastewater. The recoveries of iodide, iodate and organo-iodine were 91-109%, 90-108% and 91-108%, respectively. The concentrations and distributions of iodine species in different water samples were obtained and compared. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Uptake mechanism for iodine species to black carbon.

    PubMed

    Choung, Sungwook; Um, Wooyong; Kim, Minkyung; Kim, Min-Gyu

    2013-09-17

    Natural organic matter (NOM) plays an important role in determining the fate and transport of iodine species such as iodide (I(-)) and iodate (IO3(-)) in groundwater system. Although NOM exists as diverse forms in environments, prior iodine studies have mainly focused on uptake processes of iodide and iodate to humic materials. This study was conducted to determine the iodide and iodate uptake potential for a particulate NOM (i.e., black carbon [BC]). A laboratory-produced BC and commercial humic acid were used for batch experiments to compare their iodine uptake properties. The BC exhibited >100 times greater uptake capability for iodide than iodate at low pH of ~3, while iodide uptake was negligible for the humic acid. The uptake properties of both solids strongly depend on the initial iodine aqueous concentrations. After uptake reaction of iodide to the BC, X-ray absorption fine structure spectroscopy results indicated that the iodide was converted to electrophilic species, and iodine was covalently bound to carbon atom in polycyclic aromatic hydrocarbons present in the BC. The computed distribution coefficients (i.e., Kd values) suggest that the BC materials retard significantly the transport of iodide at low pH in environmental systems containing even a small amount of BC.

  4. Electrodeposition as an alternate method for preparation of environmental samples for iodide by AMS

    DOE PAGES

    Adamic, M. L.; Lister, T. E.; Dufek, E. J.; ...

    2015-03-25

    This paper presents an evaluation of an alternate method for preparing environmental samples for 129I analysis by accelerator mass spectrometry (AMS) at Idaho National Laboratory. The optimal sample preparation method is characterized by ease of preparation, capability of processing very small quantities of iodide, and ease of loading into a cathode. Electrodeposition of iodide on a silver wire was evaluated using these criteria. This study indicates that the electrochemically-formed silver iodide deposits produce ion currents similar to those from precipitated silver iodide for the same sample mass. Furthermore, precipitated silver iodide samples are usually mixed with niobium or silver powdermore » prior to loading in a cathode. Using electrodeposition, the silver is already mixed with the sample and can simply be picked up with tweezers, placed in the sample die, and pressed into a cathode. The major advantage of this method is that the silver wire/electrodeposited silver iodide is much easier to load into a cathode.« less

  5. Methylammonium lead iodide grain boundaries exhibit depth-dependent electrical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, Gordon A.; Yang, Mengjin; Berweger, Samuel

    In this paper, the nanoscale through-film and lateral photo-response and conductivity of large-grained methylammonium lead iodide (MAPbI 3) thin films are studied. In perovskite solar cells (PSC), these films result in efficiencies >17%. The grain boundaries (GBs) show high resistance at the top surface of the film, and act as an impediment to photocurrent collection. However, lower resistance pathways between grains exist below the top surface of the film, indicating that there exists a depth-dependent resistance of GBs (R GB(z)). Furthermore, lateral conductivity measurements indicate that R GB(z) exhibits GB-to-GB heterogeneity. These results indicate that increased photocurrent collection along GBsmore » is not a prerequisite for high-efficiency PSCs. Rather, better control of depth-dependent GB electrical properties, and an improvement in the homogeneity of the GB-to-GB electrical properties, must be managed to enable further improvements in PSC efficiency. Finally, these results refute the implicit assumption seen in the literature that the electrical properties of GBs, as measured at the top surface of the perovskite film, necessarily reflect the electrical properties of GBs within the thickness of the film.« less

  6. Methylammonium lead iodide grain boundaries exhibit depth-dependent electrical properties

    DOE PAGES

    MacDonald, Gordon A.; Yang, Mengjin; Berweger, Samuel; ...

    2016-09-23

    In this paper, the nanoscale through-film and lateral photo-response and conductivity of large-grained methylammonium lead iodide (MAPbI 3) thin films are studied. In perovskite solar cells (PSC), these films result in efficiencies >17%. The grain boundaries (GBs) show high resistance at the top surface of the film, and act as an impediment to photocurrent collection. However, lower resistance pathways between grains exist below the top surface of the film, indicating that there exists a depth-dependent resistance of GBs (R GB(z)). Furthermore, lateral conductivity measurements indicate that R GB(z) exhibits GB-to-GB heterogeneity. These results indicate that increased photocurrent collection along GBsmore » is not a prerequisite for high-efficiency PSCs. Rather, better control of depth-dependent GB electrical properties, and an improvement in the homogeneity of the GB-to-GB electrical properties, must be managed to enable further improvements in PSC efficiency. Finally, these results refute the implicit assumption seen in the literature that the electrical properties of GBs, as measured at the top surface of the perovskite film, necessarily reflect the electrical properties of GBs within the thickness of the film.« less

  7. MAPbI2.9-xBrxCl0.1 hybrid halide perovskites: Shedding light on the effect of chloride and bromide ions on structural and photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Atourki, Lahoucine; Vega, Erika; Marí, Bernabé; Mollar, Miguel; Ait Ahsaine, Hassan; Bouabid, Khalid; Ihlal, Ahmed

    2016-12-01

    The optical and structural properties of CH3NH3PbI3 can be adjusted by introducing other extrinsic ions such as chloride and bromide. In this work, mixed bromide iodide lead perovskites with a 10% fraction of chloride were prepared from methylamine, lead nitrate and the corresponding hydro acid (X = I, Br, Cl). The effect of bromide and chloride incorporation on different properties of perovskite thin film was investigated. The Pawley fit method indicates the formation of the iodide halide MAPbI3 Pm-3 m cubic phase for x = 0 and the tetragonal P4/mmm phase for x ≥ 0.3. All deposited films showed a strong absorbance in the UV-vis range. The band gap values were estimated from absorbance measurements. It was found that the onset of the absorption edge for MAPbI2.9-xBrxCl0.1 thin film perovskites ranges between 1.60 and 1.80 eV. Moreover, it was found that both Cl and Br affect the PL emission of the mixed halide lead perovskite, the MAPbI2.9-xBrxCl0.1 films displayed intermediate values from 730 nm (MAPbI2.2Br0.7Cl0.1) to 770 nm (MAPbI2.6Br0.3Cl0.1).

  8. Growth of single crystals of mercuric iodide (HgI/sub 2/) in spacelab III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Den Berg, L.; Schnepple, W.F.

    1981-01-01

    Continued development of a system designed to grow crystals by physical vapor transport in the environment of Spacelab III will be described, with special emphasis on simulation of expected space conditions, adjustment of crystal growth parameters, and on board observation and control of the experiment by crew members and ground personnel. A critical factor in the use of mercuric iodide for semiconductor detectors of x-rays and gamma-rays is the crystalline quality of the material. The twofold purpose of the Spacelab III experiment is therefore to grow single crystals with superior electronic properties as an indirect result of the greatly reducedmore » gravity field during the growth, and to obtain data which will lead to improved understanding of the vapor transport mechanism. The experiments planned to evaluate the space crystals, including gamma-ray diffractometry and measurements of stoichiometry, lattice dimensions, mechanical strength, luminescense, and detector performance are discussed.« less

  9. A review of recent measurements of optical and thermal properties of alpha-mercuric iodide

    NASA Astrophysics Data System (ADS)

    Burger, A.; Morgan, S. H.; Silberman, E.; Nason, D.; Cheng, A. Y.

    The knowledge of the physical properties of a crystal and their relation to the nature and content of defects are essential for both applications and fundamental reasons. Alpha-mercuric iodide (alpha-HgI2) is a material which was found important applications as room temperature x ray and gamma ray detectors. Some recent thermal and optical measurements of this material, using the samples of improved crystallinity which are now available, are reviewed below. Heretofore, these properties have received less attention than the mechanical and electrical properties, particularly at elevated temperatures. In the technology of alpha-HgI2 where there is a continuing motivation to obtain larger single crystals without compromising the material quality, a better knowledge of the thermal and optical properties may lead to improvements in the processes of material purification, crystal growth, and device fabrication.

  10. The effect of porous lead iodide precursor film on perovskite film formation and its photovoltaic property after an effective pretreatment

    NASA Astrophysics Data System (ADS)

    Yan, Jian-Jun; Li, Yan; Chang, Yin; Jiang, Pan; Wang, Cheng-Wei

    2016-06-01

    An effective solvent sealed natural drying (SND) pretreatment was introduced for forming a satisfactory crystalline porous iodide (PbI2) precursor film, which could help to generate excellent CH3NH3PbI3 perovskite films for high performance of planar heterojunction perovskite solar cells. And the influence of SND pretreated time on the device performance was investigated in detail. We found that the PbI2 precursor film after 10 min pretreatment could make the perovskite device achieve the optimal power conversion efficiency (PCE) of 8.6%, significantly increased up to 95.5% and 28.4% compared to without pretreatment or traditional treatment. The results show that the time of SND pretreatment is critical to forming large grain size and good crystallinity for PbI2 precursor film, which would markedly improve the efficiency of planar heterojunction perovskite solar cells.

  11. Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Yangang; Zhang, Xiaohang; Gong, Yunhui

    2016-01-15

    We report on fabrication of organic-inorganic perovskite thin films using a hybrid method consisting of pulsed laser deposition (PLD) of lead iodide and spin-coating of methylammonium iodide. Smooth and highly crystalline CH{sub 3}NH{sub 3}PbI{sub 3} thin films have been fabricated on silicon and glass coated substrates with fluorine doped tin oxide using this PLD-based hybrid method. Planar perovskite solar cells with an inverted structure have been successfully fabricated using the perovskite films. Because of its versatility, the PLD-based hybrid fabrication method not only provides an easy and precise control of the thickness of the perovskite thin films, but also offersmore » a straightforward platform for studying the potential feasibility in using other metal halides and organic salts for formation of the organic-inorganic perovskite structure.« less

  12. The Rise of Highly Efficient and Stable Perovskite Solar Cells.

    PubMed

    Grätzel, Michael

    2017-03-21

    Recently, metal halide perovskite solar cells (PSCs) of the general formular ABX 3 where A is a monovalent cation, that is, methylammonium (MA) CH 3 NH 3 +• , formamidinium CH 2 (NH 2 ) 2 + , Cs + , or Rb + , B stands for Pb(II) or Sn(II), and X for iodide or bromide have achieved solar to electric power conversion efficiencies (PCEs) above 22%, exceeding the efficiency of the present market leader polycrystalline silicon while using 1000 times less light harvesting material and simple solution processing for their fabrication. The top performing devices all employ formulations containing a mixture of up to four A cations and iodide as well as a small fraction of bromide as anion, whose emergence will be described in this Commentary. Apart from leading the current PV efficiency race, these new perovskite materials exhibit intense electroluminescence and an extraordinarily high stability under heat and light stress.

  13. Palladium-Catalyzed Direct C–H Arylation of Cyclic Enaminones with Aryl Iodides

    PubMed Central

    Yu, Yi-Yun; Bi, Lei

    2013-01-01

    A ligand-free method for the Pd-catalyzed direct arylation of cyclic enaminones using aryl iodides was developed. This method can be applied to a wide range of cyclic enaminones and aryl iodides with excellent C5-regioselectivity. Using widely available aryl iodides, the generality of this transformation provides easy access to a variety of 3-arylpiperidine structural motifs. PMID:23750615

  14. Development of a mercuric iodide solid state spectrometer for X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Vallerga, J.

    1983-01-01

    Mercuric iodide detectors, experimental development for astronomical use, X ray observations of the 1980 Cygnus X-1 High State, astronomical had X ray detectors in current use, detector development, balloon flight of large area (1500 sq cm) Phoswich detectors, had X ray telescope design, shielded mercuric iodide background measurement, Monte Carlo analysis, measurements with a shielded mercuric iodide detector are discussed.

  15. Flavonoid Rutin Increases Thyroid Iodide Uptake in Rats

    PubMed Central

    Lima Gonçalves, Carlos Frederico; de Souza dos Santos, Maria Carolina; Ginabreda, Maria Gloria; Soares Fortunato, Rodrigo; Pires de Carvalho, Denise; Freitas Ferreira, Andrea Claudia

    2013-01-01

    Thyroid iodide uptake through the sodium-iodide symporter (NIS) is not only an essential step for thyroid hormones biosynthesis, but also fundamental for the diagnosis and treatment of different thyroid diseases. However, part of patients with thyroid cancer is refractory to radioiodine therapy, due to reduced ability to uptake iodide, which greatly reduces the chances of survival. Therefore, compounds able to increase thyroid iodide uptake are of great interest. It has been shown that some flavonoids are able to increase iodide uptake and NIS expression in vitro, however, data in vivo are lacking. Flavonoids are polyhydroxyphenolic compounds, found in vegetables present in human diet, and have been shown not only to modulate NIS, but also thyroperoxidase (TPO), the key enzyme in thyroid hormones biosynthesis, besides having antiproliferative effect in thyroid cancer cell lines. Therefore, we aimed to evaluate the effect of some flavonoids on thyroid iodide uptake in Wistar rats in vivo. Among the flavonoids tested, rutin was the only one able to increase thyroid iodide uptake, so we decided to evaluate the effect of this flavonoid on some aspects of thyroid hormones synthesis and metabolism. Rutin led to a slight reduction of serum T4 and T3 without changes in serum thyrotropin (TSH), and significantly increased hypothalamic, pituitary and brown adipose tissue type 2 deiodinase and decreased liver type 1 deiodinase activities. Moreover, rutin treatment increased thyroid iodide uptake probably due to the increment of NIS expression, which might be secondary to increased response to TSH, since TSH receptor expression was increased. Thus, rutin might be useful as an adjuvant in radioiodine therapy, since this flavonoid increased thyroid iodide uptake without greatly affecting thyroid function. PMID:24023911

  16. Evaluation of perturbations in serum thyroid hormones during human pregnancy due to dietary iodide and perchlorate exposure using a biologically based dose-response model.

    PubMed

    Lumen, Annie; Mattie, David R; Fisher, Jeffrey W

    2013-06-01

    A biologically based dose-response model (BBDR) for the hypothalamic pituitary thyroid (HPT) axis was developed in the near-term pregnant mother and fetus. This model was calibrated to predict serum levels of iodide, total thyroxine (T4), free thyroxine (fT4), and total triiodothyronine (T3) in the mother and fetus for a range of dietary iodide intake. The model was extended to describe perchlorate, an environmental and food contaminant, that competes with the sodium iodide symporter protein for thyroidal uptake of iodide. Using this mode-of-action framework, simulations were performed to determine the daily ingestion rates of perchlorate that would be associated with hypothyroxinemia or onset of hypothyroidism for varying iodide intake. Model simulations suggested that a maternal iodide intake of 75 to 250 µg/day and an environmentally relevant exposure of perchlorate (~0.1 µg/kg/day) did not result in hypothyroxinemia or hypothyroidism. For a daily iodide-sufficient intake of 200 µg/day, the dose of perchlorate required to reduce maternal fT4 levels to a hypothyroxinemic state was estimated at 32.2 µg/kg/day. As iodide intake was lowered to 75 µg/day, the model simulated daily perchlorate dose required to cause hypothyroxinemia was reduced by eightfold. Similarly, the perchlorate intake rates associated with the onset of subclinical hypothyroidism ranged from 54.8 to 21.5 µg/kg/day for daily iodide intake of 250-75 µg/day. This BBDR-HPT axis model for pregnancy provides an example of a novel public health assessment tool that may be expanded to address other endocrine-active chemicals found in food and the environment.

  17. Analysis of iodide and iodate in Lake Mead, Nevada using a headspace derivatization gas chromatography-mass spectrometry.

    PubMed

    Dorman, James W; Steinberg, Spencer M

    2010-02-01

    We report here a derivatization headspace method for the analysis of inorganic iodine in water. Samples from Lake Mead, the Las Vegas Wash, and from Las Vegas tap water were examined. Lake Mead and the Las Vegas Wash contained a mixture of both iodide and iodate. The average concentration of total inorganic iodine (TII) for Lake Mead was approximately 90 nM with an iodide-to-iodate ratio of approximately 1. The TII concentration (approximately 160 nM) and the ratio of iodide to iodate were higher for the Las Vegas Wash (approximately 2). The TII concentration for tap water was close to that of Lake Mead (approximately 90 nM); however, tap water contained no detectable iodide as a result of ozonation and chlorine treatment which converts all of the iodide to iodate.

  18. Identification of Potential Sodium Iodide Symporter (NIS) Inhibitors in ToxCast Phase1_v2 Chemical Library Using in vitro Radioactive Iodide Uptake (RAIU) Assay

    EPA Science Inventory

    Identification of Potential Sodium Iodide Symporter (NIS) Inhibitors in ToxCast Phase1_v2 Chemical Library Using in vitro Radioactive Iodide Uptake (RAIU) Assay Jun Wang1,2, Daniel R. Hallinger2, Ashley S. Murr2, Angela R. Buckalew1, Tammy E. Stoker2, Susan C. Laws21Oak Ridge In...

  19. Testing iodized activated carbon filters with non-radioactive methyl iodide. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deitz, V.R.; Romans, J.B.

    1980-05-30

    Iodized carbons, impregnated with KIx(KI + xI2), were evaluated for trapping methyl iodide-127. In this method the complete effluent of the carbon is sampled and analyzed continuously. In contrast, the RDT-M16 test procedure counts the carbon and the back-up beds for the accumulated 131 species and no information is obtained for the interaction of the large amount of carrier methyl iodide-127 with the iodized charcoal. The test apparatus to measure the penetration of methyl iodide-127 is described and the calibration procedures are detailed. Results are given for the penetration of methyl iodide-127 through new activated carbons, carbons in service, andmore » exhausted carbons withdrawn from service. The reduction in trapping efficiency with service is accompanied by the development of a maximum in the concentration of methyl iodide-127 during the air purge after the dose period. This behavior has escaped notice with methyl iodide-131 due to the way that test is made. The chromatographic holdup of methyl iodide-127 by carbons in service, together with the subsequent slow desorption step, could result in a dilution of the penetration iodine to acceptable levels under some conditions encountered in plant filter operations.« less

  20. An Efficient Process for Pd-Catalyzed C–N Cross-Coupling Reactions of Aryl Iodides: Insight Into Controlling Factors

    PubMed Central

    Fors, Brett P.; Davis, Nicole R.; Buchwald, Stephen L.

    2009-01-01

    An investigation into Pd-catalyzed C–N cross-coupling reactions of aryl iodides is described. NaI is shown to have a significant inhibitory effect on these processes. By switching to a solvent system in which the iodide byproduct was insoluble, reactions of aryl iodides were accomplished with the same efficiencies as aryl chlorides and bromides. Using catalyst systems based on certain biarylphosphine ligands, aryl iodides were successfully reacted with an array of primary and secondary amines in high yields. Lastly, reactions of heteroarylamines and heteroaryliodides were also conducted in high yields. PMID:19348431

  1. Potassium Iodide

    MedlinePlus

    ... iodide you should take or give to your child depends on your age or your child's age. If potassium iodide is taken by a ... you should take yourself or give to your child. Ask your doctor, pharmacist, or public official if ...

  2. Comparison of two novel in-syringe dispersive liquid-liquid microextraction techniques for the determination of iodide in water samples using spectrophotometry.

    PubMed

    Kaykhaii, Massoud; Sargazi, Mona

    2014-01-01

    Two new, rapid methodologies have been developed and applied successfully for the determination of trace levels of iodide in real water samples. Both techniques are based on a combination of in-syringe dispersive liquid-liquid microextraction (IS-DLLME) and micro-volume UV-Vis spectrophotometry. In the first technique, iodide is oxidized with nitrous acid to the colorless anion of ICl2(-) at high concentration of hydrochloric acid. Rhodamine B is added and by means of one step IS-DLLME, the ion-pair formed was extracted into toluene and measured spectrophotometrically. Acetone is used as dispersive solvent. The second method is based on the IS-DLLME microextraction of iodide as iodide/1, 10-phenanthroline-iron((II)) chelate cation ion-pair (colored) into nitrobenzene. Methanol was selected as dispersive solvent. Optimal conditions for iodide extraction were determined for both approaches. Methods are compared in terms of analytical parameters such as precision, accuracy, speed and limit of detection. Both methods were successfully applied to determining iodide in tap and river water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics

    DOE PAGES

    Prasanna, Rohit; Gold-Parker, Aryeh; Leijtens, Tomas; ...

    2017-07-13

    Tin and lead iodide perovskite semiconductors of the composition AMX 3, where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX 6 octahedra or by simply contracting the lattice isotropically. The former effect tendsmore » to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend: they show no octahedral tilting upon Cs-substitution but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, we demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. In conclusion, the mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites and will be useful in further development of perovskite semiconductors for optoelectronic applications.« less

  4. Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasanna, Rohit; Gold-Parker, Aryeh; Leijtens, Tomas

    Tin and lead iodide perovskite semiconductors of the composition AMX 3, where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX 6 octahedra or by simply contracting the lattice isotropically. The former effect tendsmore » to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend: they show no octahedral tilting upon Cs-substitution but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, we demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. In conclusion, the mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites and will be useful in further development of perovskite semiconductors for optoelectronic applications.« less

  5. Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics.

    PubMed

    Prasanna, Rohit; Gold-Parker, Aryeh; Leijtens, Tomas; Conings, Bert; Babayigit, Aslihan; Boyen, Hans-Gerd; Toney, Michael F; McGehee, Michael D

    2017-08-16

    Tin and lead iodide perovskite semiconductors of the composition AMX 3 , where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX 6 octahedra or by simply contracting the lattice isotropically. The former effect tends to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend: they show no octahedral tilting upon Cs-substitution but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, we demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. The mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites and will be useful in further development of perovskite semiconductors for optoelectronic applications.

  6. IODIDE DEFICIENCY, THYROID HORMONES, AND NEURODEVELOPMENT

    EPA Science Inventory

    ABSTRACT BODY: Iodide is an essential nutrient for thyroid hormone synthesis. Severe iodide insufficiency during early development is associated with cognitive deficits. Environmental contaminants can perturb the thyroid axis and this perturbation may be more acute under conditio...

  7. New iodide-based molten salt systems for high temperature molten salt batteries

    NASA Astrophysics Data System (ADS)

    Fujiwara, Syozo; Kato, Fumio; Watanabe, Syouichiro; Inaba, Minoru; Tasaka, Akimasa

    Novel multi-component molten salt systems containing iodides, LiF-LiBr-LiI, LiF-NaBr-LiI, and LiF-LiCl-LiBr-LiI, were investigated for use as electrolytes in high temperature molten salt batteries to improve the discharge rate-capability. The iodide-based molten salts showed higher ionic conductivity (∼3 S cm -1 at 500 °C) than conventional LiCl-KCl, and had low enough melting points (below 400 °C) that can be used in practical high temperature molten salt batteries. The iodide-based salts showed instability at temperatures higher than 280 °C in dried air. The decomposition mechanism of iodide-based molten salts was discussed, and it was found that elimination of oxygen from the environment is effective to stabilize the iodide-based molten salts at high temperatures.

  8. Barium iodide and strontium iodide crystals andd scintillators implementing the same

    DOEpatents

    Payne, Stephen A; Cherepy, Nerine J; Hull, Giulia E; Drobshoff, Alexander D; Burger, Arnold

    2013-11-12

    In one embodiment, a material comprises a crystal comprising strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector according to another embodiment includes a scintillator optic comprising europium-doped strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector in yet another embodiment includes a scintillator optic comprising SrI.sub.2 and BaI.sub.2, wherein a ratio of SrI.sub.2 to BaI.sub.2 is in a range of between 0:1 A method for manufacturing a crystal suitable for use in a scintillator includes mixing strontium iodide-containing crystals with a source of Eu.sup.2+, heating the mixture above a melting point of the strontium iodide-containing crystals, and cooling the heated mixture near the seed crystal for growing a crystal. Additional materials, systems, and methods are presented.

  9. Electrical Transport Mechanisms and Photoconduction in Undoped Crystalline Flash-Evaporated Lead Iodide Thin Films

    NASA Astrophysics Data System (ADS)

    Al-Daraghmeh, Tariq M.; Saleh, Mahmoud H.; Ahmad, Mais Jamil A.; Bulos, Basim N.; Shehadeh, Khawla M.; Jafar, Mousa M. Abdul-Gader

    2018-03-01

    The flash-evaporation technique was utilized to fabricate undoped 1.35-μm and 1.2-μm thick lead iodide films at substrate temperatures T_{{s}} = 150 °C and 200°C, respectively. The films were deposited onto a coplanar comb-like copper (Cu-) electrode pattern, previously coated on glass substrates to form lateral metal-semiconductor-metal (MSM-) structures. The as-measured constant- temperature direct-current (dc)-voltage ( I( {V;T} ) - V ) curves of the obtained lateral coplanar Cu-PbI2-Cu samples (film plus electrode) displayed remarkable ohmic behavior at all temperatures ( T = 18 - 90°C). Their dc electrical resistance R_{{dc}} (T ) revealed a single thermally-activated conduction mechanism over the temperature range with activation energy E_{{act}} ≈ 0.90 - 0.98 {eV} , slightly less than half of room-temperature bandgap energy E_{{g}} ( ≈ 2.3 {eV} ) of undoped 2H-polytype PbI2 single crystals. The undoped flash-evaporated {PbI}_{{x}} thin films were homogeneous and almost stoichiometric ( x ≈ 1.87 ), in contrast to findings on lead iodide films prepared by other methods, and were highly crystalline hexagonal 2H-polytypic structure with c-axis perpendicular to the surface of substrates maintained at T_{s} ≳ 150°C. Photoconductivity measurements made on these lateral Cu-PbI2-Cu-structures under on-off visible-light illumination reveal a feeble photoresponse for long wavelengths ( λ > 570 {nm} ), but a strong response to blue light of photon energy E_{{ph}} ≈ 2.73 {eV} ( > E_{{g}} ), due to photogenerated electron-hole (e-h) pairs via direct band-to-band electronic transitions. The constant-temperature/dc voltage current-time I( {T,V} ) - t curves of the studied lateral PbI2 MSM-structures at low ambient temperatures ( T < 50°C), after cutting off the blue-light illumination, exhibit two trapping mechanisms with different relaxation times. These strongly depend on V and T , with thermally generated charge carriers in the PbI2 mask photogenerated (e-h) pairs at higher temperatures.

  10. Potassium doped methylammonium lead iodide (MAPbI3) thin films as a potential absorber for perovskite solar cells; structural, morphological, electronic and optoelectric properties

    NASA Astrophysics Data System (ADS)

    Muzammal uz Zaman, Muhammad; Imran, Muhammad; Saleem, Abida; Kamboh, Afzal Hussain; Arshad, Muhammad; Khan, Nawazish Ali; Akhter, Parvez

    2017-10-01

    In this article, we have demonstrated the doping of K in the light absorbing CH3NH3PbI3 perovskite i.e. (M = CH3, A = NH3; x = 0-1). One of the major merits of methylammonium lead iodide (CH3NH3PbI3) perovskites is that they act as efficient absorbing material of light in photovoltaic cell imparting long carrier lifetime and optimum band gap. The structural, morphological, electronic and optoelectric properties of potassium (K) doped light absorber methylammonium lead iodide (CH3NH3PbI3) perovskites are reported here i.e. Kx(MA)1-xPbI3 (M = CH3, A =NH3; x = 0-1). The thin films of perovskites (x = 0-1) were deposited by spin coating on cleaned FTO substrates and characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), current-voltage (IV), X-ray photoelectron spectroscopy (XPS) and Diffused reflectance spectroscopy (DRS) analysis. The organic constituents i.e. MA = CH3NH3, in perovskites solar cells induce instability even at the room temperature. To overcome such instabilities we have replaced the organic constituents by K because both of them have electropositive nature. Potassium successfully replaces the CH3NH3. Initially, this compound grows in a tetragonal crystal structure, however, beyond 30% doping of potassium orthorhombic distortions are induced in the parent tetragonal unit cell. Such phase transformation is microscopically visible in the electron micrographs of doped samples; cubic grains for MAPbI3 begin to transform into strip like structures in K-doped samples. The resistance of the samples is decreased for partial K-doping, which we suggested to be arising due to the electropositive nature of K. It is observed that the binding energy difference between Pb4f and I3d core levels are very similar in all the investigated systems and show formal oxidation states. Also, the partially doped samples showed increased absorption and bandgaps around 1.5 eV which is an optimum value for solar absorption.

  11. Connecting the solution chemistry of PbI2 and MAI: a cyclodextrin-based supramolecular approach to the formation of hybrid halide perovskites† †Electronic supplementary information (ESI) available: Experimental section; Section 1: solution characterization; Section 2: solar cell optimization and characterization; Section 3: thin film characterization; Section 4: advanced structural characterization. See DOI: 10.1039/c7sc05095j

    PubMed Central

    Masi, Sofia; Aiello, Federica; Listorti, Andrea; Balzano, Federica; Altamura, Davide; Giannini, Cinzia; Caliandro, Rocco; Uccello-Barretta, Gloria

    2018-01-01

    The evolution from solvated precursors to hybrid halide perovskite films dictates most of the photophysical and optoelectronic properties of the final polycrystalline material. Specifically, the complex equilibria and the importantly different solubilities of lead iodide (PbI2) and methylammonium iodide (MAI) induce inhomogeneous crystal growth, often leading to a defect dense film showing non-optimal optoelectronic properties and intrinsic instability. Here, we explore a supramolecular approach based on the use of cyclodextrins (CDs) to modify the underlying solution chemistry. The peculiar phenomenon demonstrated is a tunable complexation between different CDs and MA+ cations concurrent to an out of cage PbI2 intercalation, representing the first report of a connection between the solvation equilibria of the two perovskite precursors. The optimal conditions in terms of CD cavity size and polarity translate to a neat enhancement of PbI2 solubility in the reaction media, leading to an equilibration of the availability of the precursors in solution. The macroscopic result of this is an improved nucleation process, leading to a perovskite material with higher crystallinity, better optical properties and improved moisture resistance. Remarkably, the use of CDs presents a great potential for a wide range of device-related applications, as well as for the development of tailored composite materials. PMID:29732103

  12. Two-Dimensional Lead Halide Perovskites Templated by a Conjugated Asymmetric Diammonium.

    PubMed

    Hautzinger, Matthew P; Dai, Jun; Ji, Yujin; Fu, Yongping; Chen, Jie; Guzei, Ilia A; Wright, John C; Li, Youyong; Jin, Song

    2017-12-18

    We report novel two-dimensional lead halide perovskite structures templated by a unique conjugated aromatic dication, N,N-dimethylphenylene-p-diammonium (DPDA). The asymmetrically substituted primary and tertiary ammoniums in DPDA facilitate the formation of two-dimensional network (2DN) perovskite structures incorporating a conjugated dication between the PbX 4 2- (X = Br, I) layers. These 2DN structures of (DPDA)PbI 4 and (DPDA)PbBr 4 were characterized by single-crystal X-ray diffraction, showing uniquely low distortions in the Pb-X-Pb bond angle for 2D perovskites. The Pb-I-Pb bond angle is very close to ideal (180°) for a 2DN lead iodide perovskite, which can be attributed to the ability of the rigid diammonium DPDA to insert into the PbX 6 2- octahedral pockets. Optical characterization of (DPDA)PbI 4 shows an excitonic absorption peak at 2.29 eV (541 nm), which is red-shifted in comparison to similar 2DN lead iodide structures. Temperature-dependent photoluminescence of both compounds reveals both a self-trapped exciton and free exciton emission feature. The reduced exciton absorption energy and emission properties are attributed to the dication-induced structural order of the inorganic PbX 4 2- layers. DFT calculation results suggest mixing of the conjugated organic orbital component in the valence band of these 2DN perovskites. These results demonstrate a rational new strategy to incorporate conjugated organic dications into hybrid perovskites and will spur spectroscopic investigations of these compounds as well as optoelectronic applications.

  13. Permeation of iodide from iodine-enriched yeast through porcine intestine.

    PubMed

    Ryszka, Florian; Dolińska, Barbara; Zieliński, Michał; Chyra, Dagmara; Dobrzański, Zbigniew

    2013-01-01

    Iodine deficiency is a common phenomenon, threatening the whole global human population. Recommended daily intake of iodine is 150 μg for adults and 250 μg for pregnant and breastfeeding women. About 50% of human population can be at risk of moderate iodine deficiency. Due to this fact, increased iodine supplementation is recommended, through intake of iodized mineral water and salt iodization. The aim of this study was to investigate permeation and absorption of iodide from iodine bioplex (experimental group) in comparison with potassium iodide (controls). Permeation and absorption processes were investigated in vitro using a porcine intestine. The experimental model was based on a standard Franz diffusion cell (FD-Cell). The iodine bioplex was produced using Saccharomyces cerevisiae yeast and whey powder: iodine content - 388 μg/g, total protein - 28.5%, total fat - 0.9%., glutamic acid - 41.2%, asparaginic acid - 29.4%, lysine - 24.8%; purchased from: F.Z.N.P. Biochefa, Sosnowiec, Poland. Potassium iodide was used as controls, at 388 μg iodine concentration, which was the same as in iodine-enriched yeast bioplex. A statistically significant increase in iodide permeation was observed for iodine-enriched yeast bioplex in comparison with controls - potassium iodide. After 5h the total amount of permeated iodide from iodine-enriched yeast bioplex was 85%, which is ~ 2-fold higher than controls - 37%. Iodide absorption was by contrast statistically significantly higher in controls - 7.3%, in comparison with 4.5% in experimental group with iodine-enriched yeast bioplex. Presented results show that iodide permeation process dominates over absorption in case of iodine-enriched yeast bioplex.

  14. Cesium iodide alloys

    DOEpatents

    Kim, H.E.; Moorhead, A.J.

    1992-12-15

    A transparent, strong CsI alloy is described having additions of monovalent iodides. Although the preferred iodide is AgI, RbI and CuI additions also contribute to an improved polycrystalline CsI alloy with outstanding multispectral infrared transmittance properties. 6 figs.

  15. Optical properties and surface morphology studies of palladium contacts on mercuric iodide single crystals

    NASA Astrophysics Data System (ADS)

    George, M. A.; Azoulay, M.; Burger, A.; Biao, Y.; Silberman, E.; Nason, D.

    1993-04-01

    Palladium is chemically suitable for electric contacts on mercuric iodide detectors for photon and nuclear radiation detection, so the understanding of palladium contacts is important for fundamental and practical scientific purposes. A study has been conducted on the surface morphology of evaporated contacts using atomic force microscopy (AFM) and optical transmission and reflection. Evaporated palladium coatings are typically nonuniform and may deposit selectively on mercuric iodide surface defects. Reflection measurements show that coating thickness and surface treatment affect intensity, position, and shape of a reflected peak characteristic of the mercuric iodide structure. Results indicate that the band gap energy in the surface of the mercuric iodide is lowered by palladium contacts.

  16. Engineering and design properties of thallium-doped sodium iodide and selected properties of sodium-doped cesium iodide

    NASA Technical Reports Server (NTRS)

    Forrest, K.; Haehner, C.; Heslin, T.; Magida, M.; Uber, J.; Freiman, S.; Hicho, G.; Polvani, R.

    1984-01-01

    Mechanical and thermal properties, not available in the literature but necessary to structural design, using thallium doped sodium iodide and sodium doped cesium iodide were determined to be coefficient of linear thermal expansion, thermal conductivity, thermal shock resistance, heat capacity, elastic constants, ultimate strengths, creep, hardness, susceptibility to subcritical crack growth, and ingot variation of strength. These properties were measured for single and polycrystalline materials at room temperature.

  17. In Vivo Evaluation of Transdermal Iodide Microemulsion for Treating Iodine Deficiency Using Sprague Dawley Rats.

    PubMed

    Alayoubi, Alaadin; Sullivan, Ryan D; Lou, Hao; Patel, Hemlata; Mandrell, Timothy; Helms, Richard; Almoazen, Hassan

    2016-06-01

    The objective of this study was to evaluate the transdermal efficiency of iodide microemulsion in treating iodine deficiency using rats as an animal model. Animals were fed either iodine-deficient diet (20 μg/kg iodide) or control diet (200 μg/kg iodide) over a 17-month period. At month 14, iodide microemulsion was applied topically in iodine-deficient group and physiological evaluations of thyroid gland functions were characterized by monitoring the thyroid hormones (T3, T4), thyroid-stimulating hormone (TSH), iodide ion excretion in urine, and the overall rat body weights in both groups. Moreover, morphological evaluations of thyroid gland before and after treatment were performed by ultrasound imaging and through histological assessment. Prior to microemulsion treatment, the levels of T3, T4, and TSH in iodine-deficient group were statistically significant as compared to that in the control group. The levels of T3 and T4 increased while TSH level decreased significantly in iodine-deficient group within the first 4 weeks of treatment. After treatment, iodide concentration in urine increased significantly. There was no statistical difference in weight between the two groups. Ultrasound imaging and histological evaluations showed evidence of hyperplasia in iodine-deficient group. Topical iodide microemulsion has shown a promising potential as a novel delivery system to treat iodine deficiency.

  18. Perchlorate and iodide in whole blood samples from infants, children, and adults in Nanchang, China.

    PubMed

    Zhang, Tao; Wu, Qian; Sun, Hong Wen; Rao, Jia; Kannan, Kurunthachalam

    2010-09-15

    Perchlorate, ClO(4)(-), interferes with iodide (I(-)) uptake by the sodium-iodide symporter (NIS) and thereby affects thyroid hormone production in the body. Studies have reported human exposures to perchlorate based on measurements in urine, but little is known about the levels in blood. In this study, we determined concentrations of perchlorate, iodide, and other anions (e.g., chlorate [ClO(3)(-)], bromate [BrO(3)(-)], bromide [Br(-)]) in 131 whole blood samples collected from Chinese donors aged 0.4 to 90 yr, in Nanchang, China. Perchlorate, iodide, and bromide were detected in all of the samples analyzed, whereas chlorate was found in only 27% of the samples and bromate was found in only 2%. The mean (range) concentrations of perchlorate, iodide, and bromide were 2.68 (0.51-10.5), 42.6 (1.58-812), and 2120 (1050-4850) ng/mL, respectively. Perchlorate levels in blood from Nanchang adults were 10-fold greater than levels that have been previously reported for U.S. adults. The iodide/perchlorate molar ratio ranged from 3.05 to 15.3 for all age groups, and the ratio increased with age (r = 0.732, p < 0.01). Perchlorate and bromide concentrations decreased significantly with age, whereas iodide concentrations increased with age. No significant gender-related differences in blood perchlorate, iodide, or bromide levels were found. A significant negative correlation was found between the concentrations of perchlorate and iodide in blood. Exposure doses of perchlorate were estimated for infants, toddlers, children, adolescents, and adults based on the measured concentrations in blood, using a simple pharmacokinetic model. The mean exposure doses of perchlorate for our age groups ranged from 1.12 (adults) to 2.22 μg/kg bw/day (infants), values higher than the United States Environmental Protection Agency's (USEPA) reference dose (RfD: 0.7 μg/kg bw/day). This is the first study on perchlorate and iodide levels in whole blood from infants, toddlers, children, adolescents, and adults from a city in China with known high perchlorate levels.

  19. Chemical Controls of Ozone Dry Deposition to the Sea Surface Microlayer

    NASA Astrophysics Data System (ADS)

    Carpenter, L.; Chance, R.; Tinel, L.; Saint, A.; Sherwen, T.; Loades, D.; Evans, M. J.; Boxhall, P.; Hamilton, J.; Stolle, C.; Wurl, O.; Ribas-Ribas, M.; Pereira, R.

    2017-12-01

    Oceanic dry deposition of atmospheric ozone (O3) is both the largest and most uncertain O3 depositional sink, and is widely acknowledged to be controlled largely by chemical reactions in the sea surface microlayer (SML) involving iodide (I-) and dissolved organic material (DOM). These reactions not only determine how quickly O3 can be removed from the atmosphere, but also result in emissions of trace gases including volatile organic compounds and may constitute a source of secondary organic aerosols to the marine atmosphere. Iodide concentrations at the sea surface vary by approximately an order of magnitude spatially, leading to more than fivefold variation in ozone deposition velocities (and volatile iodine fluxes). Sea-surface temperature is a reasonable predictor of [I-], however two recent parameterisations for surface I- differ by a factor of two at low latitudes. The nature and reactivity of marine DOM to O3 is almost completely unknown, although studies have suggested approximately equivalent chemical control of I- and DOM on ozone deposition. Here we present substantial new measurements of oceanic I- in both bulk seawater and the overlying SML, and show improved estimates of the global sea surface iodide distribution. We also present analyses of water-soluble DOM isolated from the SML and bulk seawater, and corresponding laboratory studies of ozone uptake to bulk and SML seawater, with the aim of characterizing the reactivity of O3 towards marine DOM.

  20. Metallothionein-I/II Knockout Mice Aggravate Mitochondrial Superoxide Production and Peroxiredoxin 3 Expression in Thyroid after Excessive Iodide Exposure

    PubMed Central

    Zhang, Na; Wang, Lingyan; Duan, Qi; Lin, Laixiang; Ahmed, Mohamed; Wang, Tingting; Yao, Xiaomei

    2015-01-01

    Purpose. We aim to figure out the effect of metallothioneins on iodide excess induced oxidative stress in the thyroid. Methods. Eight-week-old MT-I/II knockout (MT-I/II KO) mice and background-matched wild-type (WT) mice were used. Mitochondrial superoxide production and peroxiredoxin (Prx) 3 expression were measured. Results. In in vitro study, more significant increases in mitochondrial superoxide production and Prx 3 expression were detected in the MT-I/II KO groups. In in vivo study, significantly higher concentrations of urinary iodine level were detected in MT-I/II KO mice in 100 HI group. Compared to the NI group, there was no significant difference existing in serum thyroid hormones level in either groups (P > 0.05), while the mitochondrial superoxide production was significantly increased in 100 HI groups with significantly increased LDH activity and decreased relative cell viability. Compared to WT mice, more significant changes were detected in MT-I/II KO mice in 100 HI groups. No significant differences were detected between the NI group and 10 HI group in both the MT-I/II KO and WT mice groups (P > 0.05). Conclusions. Iodide excess in a thyroid without MT I/II protection may result in strong mitochondrial oxidative stress, which further leads to the damage of thyrocytes. PMID:26101557

  1. An extremely high dietary iodide supply forestalls severe hypothyroidism in Na+/I- symporter (NIS) knockout mice.

    PubMed

    Ferrandino, Giuseppe; Kaspari, Rachel R; Reyna-Neyra, Andrea; Boutagy, Nabil E; Sinusas, Albert J; Carrasco, Nancy

    2017-07-13

    The sodium/iodide symporter (NIS) mediates active iodide (I - ) accumulation in the thyroid, the first step in thyroid hormone (TH) biosynthesis. Mutations in the SLC5A5 gene encoding NIS that result in a non-functional protein lead to congenital hypothyroidism due to I - transport defect (ITD). ITD is a rare autosomal disorder that, if not treated promptly in infancy, can cause mental retardation, as the TH decrease results in improper development of the nervous system. However, in some patients, hypothyroidism has been ameliorated by unusually large amounts of dietary I - . Here we report the first NIS knockout (KO) mouse model, obtained by targeting exons 6 and 7 of the Slc5a5 gene. In NIS KO mice, in the thyroid, stomach, and salivary gland, NIS is absent, and hence there is no active accumulation of the NIS substrate pertechnetate ( 99m TcO 4 - ). NIS KO mice showed undetectable serum T 4 and very low serum T 3 levels when fed a diet supplying the minimum I - requirement for rodents. These hypothyroid mice displayed oxidative stress in the thyroid, but not in the brown adipose tissue or liver. Feeding the mice a high-I - diet partially rescued TH biosynthesis, demonstrating that, at high I - concentrations, I - enters the thyroid through routes other than NIS.

  2. Real-Time Observation of Iodide Ion Migration in Methylammonium Lead Halide Perovskites.

    PubMed

    Li, Cheng; Guerrero, Antonio; Zhong, Yu; Gräser, Anna; Luna, Carlos Andres Melo; Köhler, Jürgen; Bisquert, Juan; Hildner, Richard; Huettner, Sven

    2017-11-01

    Organic-inorganic metal halide perovskites (e.g., CH 3 NH 3 PbI 3- x Cl x ) emerge as a promising optoelectronic material. However, the Shockley-Queisser limit for the power conversion efficiency (PCE) of perovskite-based photovoltaic devices is still not reached. Nonradiative recombination pathways may play a significant role and appear as photoluminescence (PL) inactive (or dark) areas on perovskite films. Although these observations are related to the presence of ions/defects, the underlying fundamental physics and detailed microscopic processes, concerning trap/defect status, ion migration, etc., still remain poorly understood. Here correlated wide-field PL microscopy and impedance spectroscopy are utilized on perovskite films to in situ investigate both the spatial and the temporal evolution of these PL inactive areas under external electric fields. The formation of PL inactive domains is attributed to the migration and accumulation of iodide ions under external fields. Hence, we are able to characterize the kinetic processes and determine the drift velocities of these ions. In addition, it is shown that I 2 vapor directly affects the PL quenching of a perovskite film, which provides evidence that the migration/segregation of iodide ions plays an important role in the PL quenching and consequently limits the PCE of organometal halide-based perovskite photovoltaic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A perchlorate sensitive iodide transporter in frogs

    PubMed Central

    Carr, Deborah L.; Carr, James A.; Willis, Ray E.; Pressley, Thomas A.

    2008-01-01

    Nucleotide sequence comparisons have identified a gene product in the genome database of African clawed frogs (Xenopus laevis) as a probable member of the solute carrier family of membrane transporters. To confirm its identity as a putative iodide transporter, we examined the function of this sequence after heterologous expression in mammalian cells. A green monkey kidney cell line transfected with the Xenopus nucleotide sequence had significantly greater 125I uptake than sham-transfected control cells. The uptake in carrier-transfected cells was significantly inhibited in the presence of perchlorate, a competitive inhibitor of mammalian Na+/iodide symporter. Tissue distributions of the sequence were also consistent with a role in iodide uptake. The mRNA encoding the carrier was found to be expressed in the thyroid gland, stomach, and kidney of tadpoles from X. laevis, as well as the bullfrog Rana catesbeiana. The ovaries of adult X. laevis also were found to express the carrier. Phylogenetic analysis suggested that the putative X. laevis iodide transporter is orthologous to vertebrate Na+-dependent iodide symporters. We conclude that the amphibian sequence encodes a protein that is indeed a functional Na+/iodide symporter in Xenopus laevis, as well as Rana catesbeiana. PMID:18275962

  4. A selective iodide ion sensor electrode based on functionalized ZnO nanotubes.

    PubMed

    Ibupoto, Zafar Hussain; Khun, Kimleang; Willander, Magnus

    2013-02-04

    In this research work, ZnO nanotubes were fabricated on a gold coated glass substrate through chemical etching by the aqueous chemical growth method. For the first time a nanostructure-based iodide ion selective electrode was developed. The ZnO nanotubes were functionalized with miconazole ion exchanger and the electromotive force (EMF) was measured by the potentiometric method. The iodide ion sensor exhibited a linear response over a wide range of concentrations (1 × 10-6 to 1 × 10-1 M) and excellent sensitivity of -62 ± 1 mV/decade. The detection limit of the proposed sensor was found to be 5 × 10-7 M. The effects of pH, temperature, additive, plasticizer and stabilizer on the potential response of iodide ion selective electrode were also studied. The proposed iodide ion sensor demonstrated a fast response time of less than 5 s and high selectivity against common organic and the inorganic anions. All the obtained results revealed that the iodide ion sensor based on functionalized ZnO nanotubes may be used for the detection of iodide ion in environmental water samples, pharmaceutical products and other real samples.

  5. A Selective Iodide Ion Sensor Electrode Based on Functionalized ZnO Nanotubes

    PubMed Central

    Ibupoto, Zafar Hussain; Khun, Kimleang; Willander, Magnus

    2013-01-01

    In this research work, ZnO nanotubes were fabricated on a gold coated glass substrate through chemical etching by the aqueous chemical growth method. For the first time a nanostructure-based iodide ion selective electrode was developed. The ZnO nanotubes were functionalized with miconazole ion exchanger and the electromotive force (EMF) was measured by the potentiometric method. The iodide ion sensor exhibited a linear response over a wide range of concentrations (1 × 10−6 to 1 × 10−1 M) and excellent sensitivity of −62 ± 1 mV/decade. The detection limit of the proposed sensor was found to be 5 × 10−7 M. The effects of pH, temperature, additive, plasticizer and stabilizer on the potential response of iodide ion selective electrode were also studied. The proposed iodide ion sensor demonstrated a fast response time of less than 5 s and high selectivity against common organic and the inorganic anions. All the obtained results revealed that the iodide ion sensor based on functionalized ZnO nanotubes may be used for the detection of iodide ion in environmental water samples, pharmaceutical products and other real samples. PMID:23385412

  6. 21 CFR 172.375 - Potassium iodide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be...

  7. Iron-catalyzed 1,2-addition of perfluoroalkyl iodides to alkynes and alkenes.

    PubMed

    Xu, Tao; Cheung, Chi Wai; Hu, Xile

    2014-05-05

    Iron catalysis has been developed for the intermolecular 1,2-addition of perfluoroalkyl iodides to alkynes and alkenes. The catalysis has a wide substrate scope and high functional-group tolerance. A variety of perfluoroalkyl iodides including CF3 I can be employed. The resulting perfluoroalkylated alkyl and alkenyl iodides can be further functionalized by cross-coupling reactions. This methodology provides a straightforward and streamlined access to perfluoroalkylated organic molecules. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Palladium-catalyzed Heck-type cross-couplings of unactivated alkyl iodides.

    PubMed

    McMahon, Caitlin M; Alexanian, Erik J

    2014-06-02

    A palladium-catalyzed, intermolecular Heck-type coupling of alkyl iodides and alkenes is described. This process is successful with a variety of primary and secondary unactivated alkyl iodides as reaction partners, including those with hydrogen atoms in the β position. The mild catalytic conditions enable intermolecular C-C bond formations with a diverse set of alkyl iodides and alkenes, including substrates containing base- or nucleophile-sensitive functionality. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Recent progress in efficient hybrid lead halide perovskite solar cells

    PubMed Central

    Cui, Jin; Yuan, Huailiang; Li, Junpeng; Xu, Xiaobao; Shen, Yan; Lin, Hong; Wang, Mingkui

    2015-01-01

    The efficiency of perovskite solar cells (PSCs) has been improved from 9.7 to 19.3%, with the highest value of 20.1% achieved in 2014. Such a high photovoltaic performance can be attributed to optically high absorption characteristics and balanced charge transport properties with long diffusion lengths of the hybrid lead halide perovskite materials. In this review, some fundamental details of hybrid lead iodide perovskite materials, various fabrication techniques and device structures are described, aiming for a better understanding of these materials and thus highly efficient PSC devices. In addition, some advantages and open issues are discussed here to outline the prospects and challenges of using perovskites in commercial photovoltaic devices. PMID:27877815

  10. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent. (c... salt as a source of dietary iodine in accordance with good manufacturing or feeding practice. ...

  11. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent. (c... salt as a source of dietary iodine in accordance with good manufacturing or feeding practice. ...

  12. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent. (c... salt as a source of dietary iodine in accordance with good manufacturing or feeding practice. ...

  13. 21 CFR 172.375 - Potassium iodide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the...

  14. Efficient Lead-Free Solar Cells Based on Hollow {en}MASnI3 Perovskites.

    PubMed

    Ke, Weijun; Stoumpos, Constantinos C; Spanopoulos, Ioannis; Mao, Lingling; Chen, Michelle; Wasielewski, Michael R; Kanatzidis, Mercouri G

    2017-10-18

    Tin-based perovskites have very comparable electronic properties to lead-based perovskites and are regarded as possible lower toxicity alternates for solar cell applications. However, the efficiency of tin-based perovskite solar cells is still low and they exhibit poor air stability. Here, we report lead-free tin-based solar cells with greatly enhanced performance and stability using so-called "hollow" ethylenediammonium and methylammonium tin iodide ({en}MASnI 3 ) perovskite as absorbers. Our results show that en can improve the film morphology and most importantly can serve as a new cation to be incorporated into the 3D MASnI 3 lattice. When the cation of en becomes part of the 3D structure, a high density of SnI 2 vacancies is created resulting in larger band gap, larger unit cell volume, lower trap-state density, and much longer carrier lifetime compared to classical MASnI 3 . The best-performing {en}MASnI 3 solar cell has achieved a high efficiency of 6.63% with an open circuit voltage of 428.67 mV, a short-circuit current density of 24.28 mA cm -2 , and a fill factor of 63.72%. Moreover, the {en}MASnI 3 device shows much better air stability than the neat MASnI 3 device. Comparable performance is also achieved for cesium tin iodide solar cells with en loading, demonstrating the broad scope of this approach.

  15. An iodine supplementation of tomato fruits coated with an edible film of the iodide-doped chitosan.

    PubMed

    Limchoowong, Nunticha; Sricharoen, Phitchan; Techawongstien, Suchila; Chanthai, Saksit

    2016-06-01

    In general, the risk of numerous thyroid cancers inevitably increases among people with iodine deficiencies. An iodide-doped chitosan (CT-I) solution was prepared for dipping tomatoes to coat the fresh surface with an edible film (1.5 μm), thereby providing iodine-rich fruits for daily intake. Characterisation of the thin film was conducted by FTIR and SEM. Stability of the CT-I film was studied via water immersion at various time intervals, and no residual iodide leached out due to intrinsic interactions between the cationic amino group of chitosan and iodide ions. Moreover, the iodide supplement exhibited no effect on the antioxidant activity of tomatoes. The iodine content in the film-coated tomato was determined by ICP-OES. The tomato coating with 1.5% (w/v) CT-I contained approximately 0.4 μg iodide per gram fresh weight. In addition, the freshness and storability of iodine-doped tomatoes were also maintained for shelf-life concerns. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Phase 1 Methyl Iodide Deep-Bed Adsorption Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soelberg, Nick; Watson, Tony

    2014-08-22

    Nuclear fission results in the production of fission products (FPs) and activation products including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent [Jubin 2012b]. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing hasmore » progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the first phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during Fiscal Year (FY) 2013 and early FY-2014. Testing has been performed to address questions posed in the test plan, and followed the testing outline in the test plan. Tests established detection limits, developed procedures for sample analysis with minimal analytical interferences, and confirmed earlier results that show that the methyl iodide reacts when in contact with the AgZ sorbent, and not significantly in the gas flow upstream of the sorbent. The reaction(s) enable separation of the iodine from the organic moiety, so that the iodine can chemisorb onto the sorbent. The organic moiety can form other compounds, some of which are organic compounds that are detected and can be tentatively identified using GC-FID and GCMS. Test results also show that other gas constituents (NOx and/or H2O) can affect the methyl iodide reactions. With NOx and H2O present in the gas stream, the majority of uncaptured iodine exiting iodine-laden sorbent beds is in the form of I2 or HI, species that are soluble in NaOH scrubbing solution for iodine analysis. But when NOx and H2O are not present, then the majority of the uncaptured iodine exiting iodine-laden sorbent is in the form of methyl iodide. Methyl iodide adsorption efficiencies have been high enough so that initial DFs exceed 1,000 to 10,000. The methyl iodide mass transfer zone depths are estimated at 4-8 inches, possibly deeper than mass transfer zone depths estimated for I2 adsorption on AgZ. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.« less

  17. The role of the IRE1 pathway in excessive iodide- and/or fluoride-induced apoptosis in Nthy-ori 3-1 cells in vitro.

    PubMed

    Liu, Hongliang; Zeng, Qiang; Cui, Yushan; Zhao, Liang; Zhang, Lei; Fu, Gang; Hou, Changchun; Zhang, Shun; Yu, Linyu; Jiang, Chunyang; Wang, Zhenglun; Chen, Xuemin; Wang, Aiguo

    2014-01-30

    Excessive iodide and fluoride coexist in the groundwater in many regions, causing a potential risk to the human thyroid. To investigate the mechanism of iodide- and fluoride-induced thyroid cytotoxicity, human thyroid follicular epithelial cells (Nthy-ori 3-1) were treated with different concentrations of potassium iodide (KI), with or without sodium fluoride (NaF). Cell morphology, viability, lactate dehydrogenase (LDH) leakage, apoptosis, and expression of inositol-requiring enzyme 1 (IRE1) pathway-related molecules were assessed. Results showed 50 mM of KI, 1 mM of NaF, and 50 mM of KI +1 mM of NaF changed cellular morphology, decreased viability, and increased LDH leakage and apoptosis. Elevated expression of binding protein (BiP), IRE1, and C/EBP homologous protein (CHOP) mRNA and protein, as well as spliced X-box-binding protein-1 (sXBP-1) mRNA, were observed in the 1 mM NaF and 50 mM KI +1 mM NaF groups. Collectively, excessive iodide and/or fluoride is cytotoxic to the human thyroid. Although these data do not manifest iodide could induce the IRE1 pathway, the cytotoxicity followed by exposure to fluoride alone or in combination with iodide may be related to IRE1 pathway-induced apoptosis. Furthermore, exposure to the combination of excessive iodide and fluoride may cause interactive effects on thyroid cytotoxicity. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Electron–Rotor Interaction in Organic–Inorganic Lead Iodide Perovskites Discovered by Isotope Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Jue; Yang, Mengjin; Ma, Xiangchao

    We report on the carrier-rotor coupling effect in perovskite organic-inorganic hybrid lead iodide (CH3NH3PbI3) compounds discovered by isotope effects. Deuterated organic-inorganic perovskite compounds including CH3ND3PbI3, CD3NH3PbI3, and CD3ND3PbI3 were synthesized. Devices made from regular CH3NH3PbI3 and deuterated CH3ND3PbI3 exhibit comparable performance in band gap, current-voltage, carrier mobility, and power conversion efficiency. However, a time-resolved photoluminescence (TRPL) study reveals that CH3NH3PbI3 exhibits notably longer carrier lifetime than that of CH3ND3PbI3, in both thin-film and single crystal formats. Furthermore, the comparison in carrier lifetime between CD3NH3PbI3 and CH3ND3PbI3 single crystals suggests that vibrational modes in methylammonium (MA(+)) have little impact on carriermore » lifetime. In contrast, the fully deuterated compound CD3ND3PbI3 reconfirmed the trend of decreasing carrier lifetime upon the increasing moment of inertia of cationic MA(+). Polaron model elucidates the electron-rotor interaction.« less

  19. Electron–Rotor Interaction in Organic–Inorganic Lead Iodide Perovskites Discovered by Isotope Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Jue; Yang, Mengjin; Ma, Xiangchao

    We report on the carrier-rotor coupling effect in perovskite organic-inorganic hybrid lead iodide (CH3NH3PbI3) compounds discovered by isotope effects. Deuterated organic-inorganic perovskite compounds including CH3ND3PbI3, CD3NH3PbI3, and CD3ND3PbI3 were synthesized. Devices made from regular CH3NH3PbI3 and deuterated CH3ND3PbI3 exhibit comparable performance in band gap, current-voltage, carrier mobility, and power conversion efficiency. However, a time-resolved photoluminescence (TRPL) study reveals that CH3NH3PbI3 exhibits notably longer carrier lifetime than that of CH3ND3PbI3, in both thin-film and single-crystal formats. Furthermore, the comparison in carrier lifetime between CD3NH3PbI3 and CH3ND3PbI3 single crystals suggests that vibrational modes in methylammonium (MA+) have little impact on carrier lifetime.more » In contrast, the fully deuterated compound CD3ND3PbI3 reconfirmed the trend of decreasing carrier lifetime upon the increasing moment of inertia of cationic MA+. Polaron model elucidates the electron-rotor interaction.« less

  20. Improvements to the Hunter Dose tracking system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteside, T. S.; Aucott, T. J.; Brand, A. D.

    Since 1965, the Savannah River Site (SRS) has conducted deer hunts which are open to the general public. SRS performs field monitoring for cesium-137 (Cs-137) of each harvested animal to determine whether the animal may be released to the hunter. A new field system for measuring Cs-137 in the harvested animals has been developed. The system incorporates numerous enhancements compared to the original system. The original system was composed of two Ludlum Measurements scalar-driven 2 inch x 2 inch sodium iodide counters, while the new system is based on a single Ametek Ortec Digibase-driven 2 inch x 4 inch xmore » 16 inch sodium iodide gamma spectrometer. The new system includes a series of easy-to-assemble stainless steel encapsulated lead shields. The combination of the larger detector size and lead shielding improved the detection limit of the new system by a factor of approximately three compared to the original system. This lower detection limit allows for a larger number of measurements to be directly compared to the laboratory results, in cases where animal portions have been sampled. The results from developing and using this system are presented as well as recommendations on improvements to the overall field monitoring of the SRS hunts.« less

  1. Formation Dynamics of CH3NH3PbI3 Perovskite Following Two-Step Layer Deposition.

    PubMed

    Patel, Jay B; Milot, Rebecca L; Wright, Adam D; Herz, Laura M; Johnston, Michael B

    2016-01-07

    Hybrid metal-halide perovskites have emerged as a leading class of semiconductors for optoelectronic devices because of their desirable material properties and versatile fabrication methods. However, little is known about the chemical transformations that occur in the initial stages of perovskite crystal formation. Here we follow the real-time formation dynamics of MAPbI3 from a bilayer of lead iodide (PbI2) and methylammonium iodide (MAI) deposited through a two-step thermal evaporation process. By lowering the substrate temperature during deposition, we are able to initially inhibit intermixing of the two layers. We subsequently use infrared and visible light transmission, X-ray diffraction, and photoluminescence lifetime measurements to reveal the room-temperature transformations that occur in vacuum and ambient air, as MAI diffuses into the PbI2 lattice to form MAPbI3. In vacuum, the transformation to MAPbI3 is incomplete as unreacted MAI is retained in the film. However, exposure to moist air allows for conversion of the unreacted MAI to MAPbI3, demonstrating that moisture is essential in making MAI more mobile and thus aiding perovskite crystallization. These dynamic processes are reflected in the observed charge-carrier lifetimes, which strongly fluctuate during periods of large ion migration but steadily increase with improving crystallinity.

  2. Electron-Rotor Interaction in Organic-Inorganic Lead Iodide Perovskites Discovered by Isotope Effects.

    PubMed

    Gong, Jue; Yang, Mengjin; Ma, Xiangchao; Schaller, Richard D; Liu, Gang; Kong, Lingping; Yang, Ye; Beard, Matthew C; Lesslie, Michael; Dai, Ying; Huang, Baibiao; Zhu, Kai; Xu, Tao

    2016-08-04

    We report on the carrier-rotor coupling effect in perovskite organic-inorganic hybrid lead iodide (CH3NH3PbI3) compounds discovered by isotope effects. Deuterated organic-inorganic perovskite compounds including CH3ND3PbI3, CD3NH3PbI3, and CD3ND3PbI3 were synthesized. Devices made from regular CH3NH3PbI3 and deuterated CH3ND3PbI3 exhibit comparable performance in band gap, current-voltage, carrier mobility, and power conversion efficiency. However, a time-resolved photoluminescence (TRPL) study reveals that CH3NH3PbI3 exhibits notably longer carrier lifetime than that of CH3ND3PbI3, in both thin-film and single-crystal formats. Furthermore, the comparison in carrier lifetime between CD3NH3PbI3 and CH3ND3PbI3 single crystals suggests that vibrational modes in methylammonium (MA(+)) have little impact on carrier lifetime. In contrast, the fully deuterated compound CD3ND3PbI3 reconfirmed the trend of decreasing carrier lifetime upon the increasing moment of inertia of cationic MA(+). Polaron model elucidates the electron-rotor interaction.

  3. Dose-Response Analysis of Developmental Iodide Deficiency: Reductions in Thyroid Hormones and Impaired Hippocampal Synaptic Transmission

    EPA Science Inventory

    Iodide is an essential nutrient for thyroid hormone synthesis and severe iodide deficiency (ID) during early development is associated with neurological impairments. Several environmental contaminants can perturb the thyroid axis and this perturbation may be more acute under cond...

  4. Oxygen-hydrogen fuel cell with an iodine-iodide cathode - A concept

    NASA Technical Reports Server (NTRS)

    Javet, P.

    1970-01-01

    Fuel cell uses a porous cathode through which is fed a solution of iodine in aqueous iodide solution, the anode is a hydrogen electrode. No activation polarization appears on the cathode because of the high exchange-current density of the iodine-iodide electrode.

  5. Development of a Screening Approach to Detect Thyroid Disrupting Chemicals that Inhibit the Human Sodium/Iodide Symporter (NIS)

    EPA Science Inventory

    Thyroid hormone synthesis requires active iodide uptake mediated by the sodium/iodide symporter (NIS). Monovalent anions, such as the environmental contaminant perchlorate, have been well characterized as competitive inhibitors of NIS, yet limited information exists for more stru...

  6. 21 CFR 172.375 - Potassium iodide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be..., will not result in daily ingestion of the additive so as to provide a total amount of iodine in excess...

  7. 21 CFR 172.375 - Potassium iodide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be..., will not result in daily ingestion of the additive so as to provide a total amount of iodine in excess...

  8. The oxidation of reduced nicotinamide nucleotides by hydrogen peroxide in the presence of lactoperoxidase and thiocyanate, iodide or bromide

    PubMed Central

    McC. Hogg, D.; Jago, G. R.

    1970-01-01

    Lactoperoxidase (EC 1.11.1.7) catalysed the oxidation of NADH by hydrogen peroxide in the presence of either thiocyanate, iodide or bromide. In the presence of thiocyanate, net oxidation of thiocyanate occurred simultaneously with the oxidation of NADH, but in the presence of iodide or bromide, only the oxidation of NADH occurred to a significant extent. In the presence of thiocyanate or bromide, NADH was oxidized to NAD+ but in the presence of iodide, an oxidation product with spectral and chemical properties distinct from NAD+ was formed. Thiocyanate, iodide and bromide appeared to function in the oxidation of NADH by themselves being oxidized to products which in turn oxidized NADH, rather than by activating the enzyme. Iodine, which oxidized NADH non-enzymically, appeared to be an intermediate in the oxidation of NADH in the presence of iodide. NADPH was oxidized similarly under the same conditions. An assessment was made of the rates of these oxidation reactions, together with the rates of other lactoperoxidase-catalysed reactions, at physiological concentrations of thiocyanate, iodide and bromide. The results indicated that in milk and saliva the oxidation of thiocyanate to a bacterial inhibitor was likely to predominate over the oxidation of NADH. PMID:4317722

  9. Catalytic determination of molybdenum(VI) by means of an iodide ion-selective electrode and a landolt-type hydrogen peroxide-iodide reaction.

    PubMed

    Kataoka, M; Nishimura, K; Kambara, T

    1983-12-01

    A trace amount of molybdenum(VI) can be determined by using its catalytic effect on the oxidation of iodide to iodine by hydrogen peroxide in acidic medium. Addition of ascorbic acid added to the reaction mixture produces the Landolt effect, i.e., the iodine produced by the indicator reaction is reduced immediately by the ascorbic add. Hence the concentration of iodide begins to decrease once all the ascorbic acid has been consumed. The induction period is measured by monitoring the concentration of iodide ion with an iodide ion-selective electrode. The reciprocal of the induction period varies linearly with the concentration of molybdenum(VI). The most suitable pH and concentrations of hydrogen peroxide and potassium iodide are found to be 1.5, 5 and 10mM, respectively. An appropriate amount of ascorbic acid is added to the reaction mixture according to the concentration of molybdenum(VI) in the sample solution. A calibration graph with good proportionality is obtained for the molybdenum(VI) concentration range from 0.1 to 160 muM. Iron(III), vanadium(IV), zirconium(IV), tungsten(VI), copper(II) and chromium(VI) interfere, but iron(III) and copper(II) can be masked with EDTA.

  10. Activation of the Nrf2-Keap 1 Pathway in Short-Term Iodide Excess in Thyroid in Rats

    PubMed Central

    Liang, Xue

    2017-01-01

    Wistar rats were randomly divided into groups of varying iodide intake: normal iodide; 10 times high iodide; and 100 times high iodide on Days 7, 14, and 28. Insignificant changes were observed in thyroid hormone levels (p > 0.05). Urinary iodine concentration and iodine content in the thyroid glands increased after high consumption of iodide from NI to 100 HI (p < 0.05). The urinary iodine concentration of the 100 HI group on Days 7, 14, and 28 was 60–80 times that of the NI group. The mitochondrial superoxide production and expressions of Nrf2, Srx, and Prx 3 all significantly increased, while Keap 1 significantly decreased in the 100 HI group when compared to the NI or 10 HI group on Days 7, 14, and 28 (p < 0.05). Immunofluorescence staining results showed that Nrf2 was localized in the cytoplasm in NI group. Although Nrf2 was detected in both cytoplasm and nucleus in 10 HI and 100 HI groups, a stronger positive staining was found in the nucleus. We conclude that the activation of the Nrf2-Keap 1 antioxidative defense mechanism may play a crucial role in protecting thyroid function from short-term iodide excess in rats. PMID:28133506

  11. Flavonoids, Thyroid Iodide Uptake and Thyroid Cancer—A Review

    PubMed Central

    Gonçalves, Carlos F. L.; de Freitas, Mariana L.; Ferreira, Andrea C. F.

    2017-01-01

    Thyroid cancer is the most common malignant tumor of the endocrine system and the incidence has been increasing in recent years. In a great part of the differentiated carcinomas, thyrocytes are capable of uptaking iodide. In these cases, the main therapeutic approach includes thyroidectomy followed by ablative therapy with radioiodine. However, in part of the patients, the capacity to concentrate iodide is lost due to down-regulation of the sodium-iodide symporter (NIS), the protein responsible for transporting iodide into the thyrocytes. Thus, therapy with radioiodide becomes ineffective, limiting therapeutic options and reducing the life expectancy of the patient. Excessive ingestion of some flavonoids has been associated with thyroid dysfunction and goiter. Nevertheless, studies have shown that some flavonoids can be beneficial for thyroid cancer, by reducing cell proliferation and increasing cell death, besides increasing NIS mRNA levels and iodide uptake. Recent data show that the flavonoids apingenin and rutin are capable of increasing NIS function and expression in vivo. Herein we review literature data regarding the effect of flavonoids on thyroid cancer, besides the effect of these compounds on the expression and function of the sodium-iodide symporter. We will also discuss the possibility of using flavonoids as adjuvants for therapy of thyroid cancer. PMID:28604619

  12. Halogens in oil and gas production-associated wastewater.

    NASA Astrophysics Data System (ADS)

    Harkness, J.; Warner, N. R.; Dwyer, G. S.; Mitch, W.; Vengosh, A.

    2014-12-01

    Elevated chloride and bromide in oil and gas wastewaters that are released to the environment are one of the major environmental risks in areas impacted by shale gas development [Olmstead et al.,2013]. In addition to direct contamination of streams, the potential for formation of highly toxic disinfection by-products (DBPs) in drinking water in utilities located downstream from disposal sites poses a serious risk to human health. Here we report on the occurrence of iodide in oil and gas wastewater. We conducted systematic measurements of chloride, bromide, and iodide in (1) produced waters from conventional oil and gas wells from the Appalachian Basin; (2) hydraulic fracturing flowback fluids from unconventional Marcellus and Fayetteville shale gas, (3) effluents from a shale gas spill site in West Virginia; (4) effluents of oil and gas wastewater disposed to surface water from three brine treatment facilities in western Pennsylvania; and (5) surface waters downstream from the brine treatment facilities. Iodide concentration was measured by isotope dilution-inductively coupled plasma-mass spectrometry, which allowed for a more accurate measurement of iodide in a salt-rich matrix. Iodide in both conventional and unconventional oil and gas produced and flowback waters varied from 1 mg/L to 55 mg/L, with no systematic enrichment in hydraulic fracturing fluids. The similarity in iodide content between the unconventional Marcellus flowback waters and the conventional Appalachian produced waters clearly indicate that the hydraulic fracturing process does not induce additional iodide and the iodide content is related to natural variations in the host formations. Our data show that effluents from the brine treatment facilities have elevated iodide (mean = 20.9±1 mg/L) compared to local surface waters (0.03± 0.1 mg/L). These results indicate that iodide, in addition to chloride and bromide in wastewater from oil and gas production, poses an additional risk to downstream surface water quality and drinking water utilities given the potential of formation of iodate-DBPs in drinking water. Olmstead, S.M. et al. (2013). Shale gas development impacts on surface water quality in Pennsylvania, PNAS, 110, 4962-4967.

  13. Photoemission Spectroscopy Studies of Methylammonium Lead Iodide Perovskite Thin Films and Interfaces

    NASA Astrophysics Data System (ADS)

    Thibau, Emmanuel S.

    Organometal halide perovskites have recently emerged as promising materials for fundamentally low-cost, high-performance optoelectronics. In this thesis, we utilize thermal co-evaporation of PbI2 and CH3NH 3 I to fabricate thin films of CH3NH3PbI 3. We first investigate the effect of stoichiometry on some of its structural, optical and electronic properties. Then, we study the energy level alignment of CH3NH3PbI3 with 6 organic semiconductors, revealing good agreement between the data and the theory of vacuum level alignment. Finally, the interface formed between CH3NH 3PbI3 and MoO3 is examined. The findings suggest migration of iodide species into the oxide layer, resulting in deterioration of its chemical and electronic properties. Insertion of an organic interlayer is shown to mitigate these undesirable effects. The results of this work could be of use in device engineering, where knowledge of such interfacial phenomena is of utmost importance in achieving optimized device structures.

  14. Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draguta, Sergiu; Sharia, Onise; Yoon, Seog Joon

    Mixed halide hybrid perovskites, CH 3NH 3Pb(I 1-xBrx) 3' represent good candidates for lowcost, high efficiency photovoltaic, and light-emitting devices. Their band gaps can be tuned from 1.6 to 2.3 eV, by changing the halide anion identity. Unfortunately, mixed halide perovskites undergo phase separation under illumination. This leads to iodide- and bromide-rich domains along with corresponding changes to the material’s optical/electrical response. Here, using combined spectroscopic measurements and theoretical modeling, we quantitatively rationalize all microscopic processes that occur during phase separation. Our model suggests that the driving force behind phase separation is the bandgap reduction of iodiderich phases. It additionallymore » explains observed non-linear intensity dependencies, as well as self-limited growth of iodide-rich domains. Most importantly, our model reveals that mixed halide perovskites can be stabilized against phase separation by deliberately engineering carrier diffusion lengths and injected carrier densities.« less

  15. Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites

    DOE PAGES

    Draguta, Sergiu; Sharia, Onise; Yoon, Seog Joon; ...

    2017-08-04

    Mixed halide hybrid perovskites, CH 3NH 3Pb(I 1-xBrx) 3' represent good candidates for lowcost, high efficiency photovoltaic, and light-emitting devices. Their band gaps can be tuned from 1.6 to 2.3 eV, by changing the halide anion identity. Unfortunately, mixed halide perovskites undergo phase separation under illumination. This leads to iodide- and bromide-rich domains along with corresponding changes to the material’s optical/electrical response. Here, using combined spectroscopic measurements and theoretical modeling, we quantitatively rationalize all microscopic processes that occur during phase separation. Our model suggests that the driving force behind phase separation is the bandgap reduction of iodiderich phases. It additionallymore » explains observed non-linear intensity dependencies, as well as self-limited growth of iodide-rich domains. Most importantly, our model reveals that mixed halide perovskites can be stabilized against phase separation by deliberately engineering carrier diffusion lengths and injected carrier densities.« less

  16. Measurement of cell death by oxidative stress in three-dimensional spheroids from trophoblast and in fragments of decidua tissue.

    PubMed

    Theuerkauf, Regine-Susanne; Ahammer, Helmut; Siwetz, Monika; Helige, Christine; Dohr, Gottfried; Walcher, Wolfgang; Palacio, José Ramón; Martinez, Paz; Sedlmayr, Peter

    2010-05-01

    We report a new morphometric method for measurement of the amount of cell death in three-dimensional multicellular spheroids of the trophoblast-like cell line AC1-M59 and of cultured pieces of decidua tissue (decidua spheroids) in response to a cytotoxic agent. The viability of the spheroids was assessed by adding propidium iodide to the culture medium at the end of the toxic treatment. On fluorescence and brightfield images of serial cryosections the areas of propidium iodide fluorescence and the entire corresponding spheroids were measured by applying digital image processing and ratiometrical quantification. As an example, we evaluated the cytotoxic effect of hydrogen peroxide on both types of spheroids. The relative potency of hydrogen peroxide to induce tissue damage was assessed quantitatively for determination of the minimal concentration that leads to an increase in cytotoxicity. The method presented suggests general applicability for in vitro determination of toxicity against tissues. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Influence of methyl and propyl groups on the vibrational spectra of two imidazolium ionic liquids and their non-ionic precursors

    NASA Astrophysics Data System (ADS)

    Haddad, Boumediene; Mokhtar, Drai; Goussem, Mimanne; Belarbi, El-habib; Villemin, Didier; Bresson, Serge; Rahmouni, Mustapha; Dhumal, Nilesh R.; Kim, Hyung J.; Kiefer, Johannes

    2017-04-01

    Imidazolium-based ionic liquids (ILs) are usually synthesized using non-ionic imidazole compounds as precursors. While the ILs have been extensively studied in the past, the precursors was not paid much attention to. The structural analysis of the precursors, however, may offer an opportunity to better understand the behavior of the ionic compounds of interest. In this paper, a comparative study of two ionic liquids and their imidazole precursors is presented. The precursors 1-methylimidazole [1-MIM] and 1,2-dimethylimidazole [1,2-DMIM] are compared in order to explain the influences of the methyl group at the C(2) position (methylation). Since the imidazole compounds are non-ionic, the spectroscopic properties of [1-MIM] and [1,2-DMIM] are not affected by cation-anion interactions. In addition, the products obtained by alkylation using propyl iodide leading to the corresponding IL compounds 1-methyl-3-propylimidazolium iodide [1-MPrIM+][I-] and 1,2-dimethyl-3-propylimidazolium iodide [1,2-DMPrIM+][I-] were studied. For this purpose, vibrational spectroscopy in terms of FT-Raman and FTIR in the wavenumber range from [45 to 3500 cm-1] and from [600 to 4000 cm-1], respectively, was performed. Moreover, to aid the spectral assignment, density functional theory (DFT) calculations were carried out. The aim was to investigate the vibrational structure, to understand the effects of the propyl group at the N(3) and of the methyl group at the C(2) position, and to analyze the resulting cation-anion interactions. The data indicate that the iodide ion predominantly interacts with the C(2)sbnd H group via hydrogen bonding. Upon methylation, the C(4/5)sbnd H moiety becomes the main interaction site. However, an interaction takes place only with one of the two hydrogen atoms resulting in a split of the initially degenerate CH stretching modes.

  18. Comparison of diffusivity data derived from electrochemical and NMR investigations of the SeCN¯/(SeCN)2/(SeCN)3¯ system in ionic liquids.

    PubMed

    Solangi, Amber; Bond, Alan M; Burgar, Iko; Hollenkamp, Anthony F; Horne, Michael D; Rüther, Thomas; Zhao, Chuan

    2011-06-02

    Electrochemical studies in room temperature ionic liquids are often hampered by their relatively high viscosity. However, in some circumstances, fast exchange between participating electroactive species has provided beneficial enhancement of charge transport. The iodide (I¯)/iodine (I(2))/triiodide (I(3)¯) redox system that introduces exchange via the I¯ + I(2) ⇌ I(3)¯ process is a well documented example because it is used as a redox mediator in dye-sensitized solar cells. To provide enhanced understanding of ion movement in RTIL media, a combined electrochemical and NMR study of diffusion in the {SeCN¯-(SeCN)(2)-(SeCN)(3)¯} system has been undertaken in a selection of commonly used RTILs. In this system, each of the Se, C and N nuclei is NMR active. The electrochemical behavior of the pure ionic liquid, [C(4)mim][SeCN], which is synthesized and characterized here for the first time, also has been investigated. Voltammetric studies, which yield readily interpreted diffusion-limited responses under steady-state conditions by means of a Random Assembly of Microdisks (RAM) microelectrode array, have been used to measure electrochemically based diffusion coefficients, while self-diffusion coefficients were measured by pulsed field gradient NMR methods. The diffusivity data, derived from concentration and field gradients respectively, are in good agreement. The NMR data reveal that exchange processes occur between selenocyanate species, but the voltammetric data show the rates of exchange are too slow to enhance charge transfer. Thus, a comparison of the iodide and selenocyanate systems is somewhat paradoxical in that while the latter give RTILs of low viscosity, sluggish exchange kinetics prevent any significant enhancement of charge transfer through direct electron exchange. In contrast, faster exchange between iodide and its oxidation products leads to substantial electron exchange but this effect does not compensate sufficiently for mass transport limitations imposed by the higher viscosity of iodide RTILs.

  19. Catalytic spectrophotometric determination of iodide in pharmaceutical preparations and edible salt.

    PubMed

    El-Ries, M A; Khaled, Elmorsy; Zidane, F I; Ibrahim, S A; Abd-Elmonem, M S

    2012-02-01

    The catalytic effect of iodide on the oxidation of four dyes: viz. variamine blue (VB), methylene blue (MB), rhodamine B (RB), and malachite green (MG) with different oxidizing agents was investigated for the kinetic spectrophotometric determination of iodide. The above catalyzed reactions were monitored spectrophotometrically by following the change in dye absorbances at 544, 558, 660, or 617 nm for the VB, RB, MB, or MG catalyzed reactions, respectively. Under optimum conditions, iodide can be determined within the concentration levels 0.064-1.27 µg mL(-1) for VB method, 3.20-9.54 µg mL(-1) for RB method, 5.00-19.00 µg mL(-1) for the MB method, and 6.4-19.0 µg mL(-1) for the MG one, with detection limit reaching 0.004 µg mL(-1) iodide. The reported methods were highly sensitive, selective, and free from most interference. Applying the proposed procedures, trace amounts of iodide in pharmaceutical and edible salt samples were successfully determined without separation or pretreatment steps. Copyright © 2011 John Wiley & Sons, Ltd.

  20. A glucose bio-battery prototype based on a GDH/poly(methylene blue) bioanode and a graphite cathode with an iodide/tri-iodide redox couple.

    PubMed

    Wang, Jen-Yuan; Nien, Po-Chin; Chen, Chien-Hsiao; Chen, Lin-Chi; Ho, Kuo-Chuan

    2012-07-01

    A glucose bio-battery prototype independent of oxygen is proposed based on a glucose dehydrogenase (GDH) bioanode and a graphite cathode with an iodide/tri-iodide redox couple. At the bioanode, a NADH electrocatalyst, poly(methylene blue) (PMB), which can be easily grown on the electrode (screen-printed carbon paste electrode, SPCE) by electrodeposition, is harnessed and engineered. We find that carboxylated multi-walled carbon nanotubes (MWCNTs) are capable of significantly increasing the deposition amount of PMB and thus enhancing the PMB's electrocatalysis of NADH oxidation and the glucose bio-battery's performance. The choice of the iodide/tri-iodide redox couple eliminates the dependence of oxygen for this bio-battery, thus enabling the bio-battery with a constant current-output feature similar to that of the solar cells. The present glucose bio-battery prototype can attain a maximum power density of 2.4 μW/cm(2) at 25 °C. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  1. The value of iodide as a parameter in the chemical characterisation of groundwaters

    NASA Astrophysics Data System (ADS)

    Lloyd, J. W.; Howard, K. W. F.; Pacey, N. R.; Tellam, J. H.

    1982-06-01

    Brackish and saline groundwaters can severely constrain the use of fresh groundwaters. Their chemical characterisation is important in understanding the hydraulic conditions controlling their presence in an aquifer. Major ions are frequently of limited value but minor ions can be used. Iodide in groundwater is particularly significant in many environments due to the presence of soluble iodine in aquifer matrix materials. Iodide is found in groundwaters in parts of the English Chalk aquifer in concentrations higher than are present in modern seawater. Its presence is considered as a indication of groundwater residence and is of use in the characterisation of fresh as well as saline waters. Under certain circumstances modern seawater intrusion into aquifers along English estuaries produces groundwaters which are easily identified due to iodide enrichment from estuarine muds. In other environments iodide concentrations are of value in distinguishing between groundwaters in limestones and shaly gypsiferous rocks as shown by a study in Qatar, while in an alluvial aquifer study in Peru iodide has been used to identify groundwaters entering the aquifer from adjacent granodiorites.

  2. Draft Genome Sequence of Roseovarius sp. A-2, an Iodide-Oxidizing Bacterium Isolated from Natural Gas Brine Water, Chiba, Japan.

    PubMed

    Yuliana, Tri; Nakajima, Nobuyoshi; Yamamura, Shigeki; Tomita, Masaru; Suzuki, Haruo; Amachi, Seigo

    2017-01-01

    Roseovarius sp. A-2 is a heterotrophic iodide (I - )-oxidizing bacterium isolated from iodide-rich natural gas brine water in Chiba, Japan. This strain oxidizes iodide to molecular iodine (I 2 ) by means of an extracellular multicopper oxidase. Here we report the draft genome sequence of strain A-2. The draft genome contained 46 tRNA genes, 1 copy of a 16S-23S-5S rRNA operon, and 4,514 protein coding DNA sequences, of which 1,207 (27%) were hypothetical proteins. The genome contained a gene encoding IoxA, a multicopper oxidase previously found to catalyze the oxidation of iodide in Iodidimonas sp. Q-1. This draft genome provides detailed insights into the metabolism and potential application of Roseovarius sp. A-2.

  3. ISOTOPIC COMPOSITION OF THE COMMON LEAD OF JAPAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, H.; Sato, K.

    1958-11-01

    Lead tetramethyl was synthesized from lead iodide isolated from 14 galenas, 2 anglesites, and 6 pyromorphites of Japan. The mass spectrometric analysis was carried out for the peaks of lead and lead hydride ions. The isotopic compositions of leads from these minerais lie wiyhn a narrow range. The average values for gnlanas are 18.51 O 0.05 for Pb/sup 238//Pb/sup 204/ 15.60 plus or minus 0.05 for Pb/sup 207//Pb/sup 204/8.76 plus or minus 0.15 forPb/ sup 208//Pb/sup 204/ For lead of secondary minerals they are 18.52 plus or minus 0.05, 15.62 plus or minus 0.05, and 38.78 plus or minus 0.15,more » respectively. No detectabla difference was observed between the isotopic compositions of primary and secondary lead ores. The ratios, U/sub 238/Pb/sup 204, and Th/sup 232/ U/sup 238/, in the source magma are estimated from the lead abundances. They are« less

  4. Iodide transport: implications for health and disease

    PubMed Central

    2014-01-01

    Disorders of the thyroid gland are among the most common conditions diagnosed and managed by pediatric endocrinologists. Thyroid hormone synthesis depends on normal iodide transport and knowledge of its regulation is fundamental to understand the etiology and management of congenital and acquired thyroid conditions such as hypothyroidism and hyperthyroidism. The ability of the thyroid to concentrate iodine is also widely used as a tool for the diagnosis of thyroid diseases and in the management and follow up of the most common type of endocrine cancers: papillary and follicular thyroid cancer. More recently, the regulation of iodide transport has also been the center of attention to improve the management of poorly differentiated thyroid cancer. Iodine deficiency disorders (goiter, impaired mental development) due to insufficient nutritional intake remain a universal public health problem. Thyroid function can also be influenced by medications that contain iodide or interfere with iodide metabolism such as iodinated contrast agents, povidone, lithium and amiodarone. In addition, some environmental pollutants such as perchlorate, thiocyanate and nitrates may affect iodide transport. Furthermore, nuclear accidents increase the risk of developing thyroid cancer and the therapy used to prevent exposure to these isotopes relies on the ability of the thyroid to concentrate iodine. The array of disorders involving iodide transport affect individuals during the whole life span and, if undiagnosed or improperly managed, they can have a profound impact on growth, metabolism, cognitive development and quality of life. PMID:25009573

  5. Direct synthesis of alkenyl iodides via indium-catalyzed iodoalkylation of alkynes with alcohols and aqueous HI.

    PubMed

    Wu, Chao; Wang, Zheng; Hu, Zhan; Zeng, Fei; Zhang, Xing-Yu; Cao, Zhong; Tang, Zilong; He, Wei-Min; Xu, Xin-Hua

    2018-05-02

    A convenient and efficient indium-catalyzed approach to synthesize alkenyl iodides has been developed through direct iodoalkylation of alkynes with alcohols and aqueous HI under mild conditions. This catalytic protocol offers an attractive approach for the synthesis of a diverse range of alkenyl iodides in good to excellent yields.

  6. Iodide Residues in Milk Vary between Iodine-Based Teat Disinfectants.

    PubMed

    French, Elizabeth A; Mukai, Motoko; Zurakowski, Michael; Rauch, Bradley; Gioia, Gloria; Hillebrandt, Joseph R; Henderson, Mark; Schukken, Ynte H; Hemling, Thomas C

    2016-07-01

    Majority of iodine found in dairy milk comes from the diet and teat disinfection products used during milking process. The objective of this study was to evaluate the effects of 4 iodine-based teat dips on milk iodide concentrations varying in iodine level (0.25% vs. 0.5%, w/w), normal low viscosity dip versus barrier dip, and application method (dip vs. spray) to ensure safe iodine levels in dairy milk when these products are used. The iodine exposure study was performed during a 2-wk period. The trial farm was purged of all iodine-based disinfection products for 21 d during a prestudy "washout period," which resulted in baseline milk iodide range of 145 to 182 ppb. During the experiment, iodine-based teat dips were used as post-milking teat disinfectants and compared to a non-iodine control disinfectant. Milk iodide residue levels for each treatment was evaluated from composited group samples. Introduction of different iodine-based teat disinfectants increased iodide residue content in milk relative to the control by between 8 and 29 μg/L when averaged across the full trial period. However, residues levels for any treatment remained well below the consumable limit of 500 μg/L. The 0.5% iodine disinfectant increased milk iodide levels by 20 μg/L more compared to the 0.25% iodine. Compared to dip-cup application, spray application significantly increased milk iodide residue by 21 μg/L and utilized approximately 23% more teat dip. This carefully controlled study demonstrated an increase in milk iodide concentrations from iodine disinfectants, but increases were small and within acceptable limits. © 2016 Institute of Food Technologists®

  7. Potassium iodide capsule treatment of feline sporotrichosis.

    PubMed

    Reis, Erica G; Gremião, Isabella D F; Kitada, Amanda A B; Rocha, Raphael F D B; Castro, Verônica S P; Barros, Mônica B L; Menezes, Rodrigo C; Pereira, Sandro A; Schubach, Tânia M P

    2012-06-01

    Sporotrichosis is a mycosis caused by Sporothrix schenckii. The most affected animal is the cat; it has played an important role in the zoonotic transmission of this disease, especially in Rio de Janeiro, Brazil, since 1998. In order to evaluate the treatment of feline sporotrichosis with potassium iodide, an observational cohort was conducted in 48 cats with sporotrichosis at Instituto de Pesquisa Clínica Evandro Chagas, Fiocruz. All cats received potassium iodide capsules, 2.5 mg/kg to 20 mg/kg q24h. The cure rate was 47.9%, treatment failure was 37.5%, treatment abandonment was 10.4% and death was 4.2%. Clinical adverse effects were observed in 52.1% of the cases. Thirteen cats had a mild increase in hepatic transaminase levels during the treatment, six of them presented clinical signs suggestive of hepatotoxicity. Compared to previous studies with itraconazole and iodide in saturated solution, potassium iodide capsules are an alternative for feline sporotrichosis treatment.

  8. Spatial Electron-hole Separation in a One Dimensional Hybrid Organic-Inorganic Lead Iodide

    NASA Astrophysics Data System (ADS)

    Savory, Christopher N.; Palgrave, Robert G.; Bronstein, Hugo; Scanlon, David O.

    2016-02-01

    The increasing efficiency of the inorganic-organic hybrid halides has revolutionised photovoltaic research. Despite this rapid progress, the significant issues of poor stability and toxicity have yet to be suitably overcome. In this article, we use Density Functional Theory to examine (Pb2I6) · (H2DPNDI) · (H2O) · (NMP), an alternative lead-based hybrid inorganic-organic solar absorber based on a photoactive organic cation. Our results demonstrate that optical properties suitable for photovoltaic applications, in addition to spatial electron-hole separation, are possible but efficient charge transport may be a limiting factor.

  9. Spatial Electron-hole Separation in a One Dimensional Hybrid Organic–Inorganic Lead Iodide

    PubMed Central

    Savory, Christopher N.; Palgrave, Robert G.; Bronstein, Hugo; Scanlon, David O.

    2016-01-01

    The increasing efficiency of the inorganic-organic hybrid halides has revolutionised photovoltaic research. Despite this rapid progress, the significant issues of poor stability and toxicity have yet to be suitably overcome. In this article, we use Density Functional Theory to examine (Pb2I6) · (H2DPNDI) · (H2O) · (NMP), an alternative lead-based hybrid inorganic-organic solar absorber based on a photoactive organic cation. Our results demonstrate that optical properties suitable for photovoltaic applications, in addition to spatial electron-hole separation, are possible but efficient charge transport may be a limiting factor. PMID:26858147

  10. High-work-function molybdenum oxide hole extraction contacts in hybrid organic–inorganic perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, Philip; Tiepelt, Jan O.; Christians, Jeffrey A.

    2016-11-08

    Here, we investigate the effect of high work function contacts in halide perovskite absorber-based photovoltaic devices. Photoemission spectroscopy measurements reveal that band bending is induced in the absorber by the deposition of the high work function molybdenum trioxide (MoO 3). We find that direct contact between MoO 3 and the perovskite leads to a chemical reaction, which diminishes device functionality. Introducing an ultrathin spiro-MeOTAD buffer layer prevents the reaction, yet the altered evolution of the energy levels in the methylammonium lead iodide (MAPbI 3) layer at the interface still negatively impacts device performance.

  11. Effect of Rubidium Incorporation on the Structural, Electrical, and Photovoltaic Properties of Methylammonium Lead Iodide-Based Perovskite Solar Cells.

    PubMed

    Park, Ik Jae; Seo, Seongrok; Park, Min Ah; Lee, Sangwook; Kim, Dong Hoe; Zhu, Kai; Shin, Hyunjung; Kim, Jin Young

    2017-12-06

    We report the electrical properties of rubidium-incorporated methylammonium lead iodide ((Rb x MA 1-x )PbI 3 ) films and the photovoltaic performance of (Rb x MA 1-x )PbI 3 film-based p-i-n-type perovskite solar cells (PSCs). The incorporation of a small amount of Rb + (x = 0.05) increases both the open circuit voltage (V oc ) and the short circuit photocurrent density (J sc ) of the PSCs, leading to an improved power conversion efficiency (PCE). However, a high fraction of Rb + incorporation (x = 0.1 and 0.2) decreases the J sc and thus the PCE, which is attributed to the phase segregation of the single tetragonal perovskite phase to a MA-rich tetragonal perovskite phase and a RbPbI 3 orthorhombic phase at high Rb fractions. Conductive atomic force microscopic and admittance spectroscopic analyses reveal that the single-phase (Rb 0.05 MA 0.95 )PbI 3 film has a high electrical conductivity because of a reduced deep-level trap density. We also found that Rb substitution enhances the diode characteristics of the PSC, as evidenced by the reduced reverse saturation current (J 0 ). The optimized (Rb x MA 1-x )PbI 3 PSCs exhibited a PCE of 18.8% with negligible hysteresis in the photocurrent-voltage curve. The results from this work enhance the understanding of the effect of Rb incorporation into organic-inorganic hybrid halide perovskites and enable the exploration of Rb-incorporated mixed perovskites for various applications, such as solar cells, photodetectors, and light-emitting diodes.

  12. Fire extinguishant materials

    NASA Technical Reports Server (NTRS)

    Altman, R. L.; Mayer, L. A.; Ling, A. C. (Inventor)

    1983-01-01

    Fire extinguishant composition comprising a mixture of a finely divided aluminum compound and alkali metal, stannous or plumbous halide is provided. Aluminum compound may be aluminum hydroxide, alumina or boehmite but preferably it is an alkali metal dawsonite. The metal halide may be an alkali metal, e.g. potassium iodide, bromide or chloride or stannous or plumbous iodide, bromide or chloride. Potassium iodide is preferred.

  13. Mercuric iodide light detector and related method

    DOEpatents

    Iwanczyk, Jan S.; Barton, Jeff B.; Dabrowski, Andrzej J.; Schnepple, Wayne F.

    1986-01-01

    Apparatus and method for detecting light involve applying a substantially uniform electrical potential difference between first and second spaced surfaces of a body of mercuric iodide, exposing the first surface to light and measuring an electrical current passed through the body in response to the light. The mercuric iodide may be substantially monocrystalline and the potential may be applied between a substantially transparent conductive layer at the first surface and a second conductive layer at the second surface. In a preferred embodiment, the detector is coupled to a scintillator for passage of light to the mercuric iodide in response to ionizing radiation incident on the scintillator.

  14. Mercuric iodide light detector and related method

    DOEpatents

    Iwanczyk, J.S.; Barton, J.B.; Dabrowski, A.J.; Schnepple, W.F.

    1986-09-23

    Apparatus and method for detecting light involve applying a substantially uniform electrical potential difference between first and second spaced surfaces of a body of mercuric iodide, exposing the first surface to light and measuring an electrical current passed through the body in response to the light. The mercuric iodide may be substantially monocrystalline and the potential may be applied between a substantially transparent conductive layer at the first surface and a second conductive layer at the second surface. In a preferred embodiment, the detector is coupled to a scintillator for passage of light to the mercuric iodide in response to ionizing radiation incident on the scintillator. 7 figs.

  15. Iodide Protects Heart Tissue from Reperfusion Injury

    PubMed Central

    Iwata, Akiko; Morrison, Michael L.; Roth, Mark B.

    2014-01-01

    Iodine is an elemental nutrient that is essential for mammals. Here we provide evidence for an acute therapeutic role for iodine in ischemia reperfusion injury. Infusion of the reduced form, iodide, but not the oxidized form iodate, reduces heart damage by as much as 75% when delivered intravenously following temporary loss of blood flow but prior to reperfusion of the heart in a mouse model of acute myocardial infarction. Normal thyroid function may be required because loss of thyroid activity abrogates the iodide benefit. Given the high degree of protection and the high degree of safety, iodide should be explored further as a therapy for reperfusion injury. PMID:25379708

  16. Process for the thermochemical production of hydrogen

    DOEpatents

    Norman, John H.; Russell, Jr., John L.; Porter, II, John T.; McCorkle, Kenneth H.; Roemer, Thomas S.; Sharp, Robert

    1978-01-01

    Hydrogen is thermochemically produced from water in a cycle wherein a first reaction produces hydrogen iodide and H.sub.2 SO.sub.4 by the reaction of iodine, sulfur dioxide and water under conditions which cause two distinct aqueous phases to be formed, i.e., a lighter sulfuric acid-bearing phase and a heavier hydrogen iodide-bearing phase. After separation of the two phases, the heavier phase containing most of the hydrogen iodide is treated, e.g., at a high temperature, to decompose the hydrogen iodide and recover hydrogen and iodine. The H.sub.2 SO.sub.4 is pyrolyzed to recover sulfur dioxide and produce oxygen.

  17. Stable iodide doping induced by photonic curing for carbon nanotube transparent conductive films

    NASA Astrophysics Data System (ADS)

    Wachi, Atsushi; Nishikawa, Hiroyuki; Zhou, Ying; Azumi, Reiko

    2018-06-01

    Doping has become crucial for achieving stable and high-performance conductive transparent carbon nanotube (CNT) films. In this study, we systematically investigate the doping effects of a few materials including alkali metal iodides, nonmetal iodide, and metals. We demonstrate that photonic curing can enhance the doping effects, and correspondingly improve the conductivity of CNT films, and that such iodides have better doping effects than metals. In particular, doping with a nonmetal compound (NH4I) shows the largest potential to improve the conductivity of CNT films. Typically, doping with metal iodides reduces the sheet resistance (R S) of CNT films with 70–80% optical transmittances at λ = 550 nm from 600–2400 to 250–440 Ω/square, whereas doping with NH4I reduces R S to 57 and 84 Ω/square at 74 and 84% optical transmittances, respectively. Interestingly, such a doped CNT film exhibits only a slight increase in sheet resistance under an extreme environment of high temperature (85 °C) and high relative humidity (85%) for 350 h. The results suggest that photonic-curing-induced iodide doping is a promising approach to producing high-performance conductive transparent CNT films.

  18. Immobilization of Iodate and Iodide using Iron Oxides through Sorption and Co-precipitation at Hanford Site

    NASA Astrophysics Data System (ADS)

    Wang, G.; Qafoku, N. P.; Truex, M. J.; Strickland, C. E.; Freedman, V. L.

    2017-12-01

    Isotopes of iodine were generated during plutonium production at the U.S. Department of Energy (DOE) Hanford Site. The long half-life 129I generated during reactor operations has been released into the subsurface, resulting in several large plumes at the Hanford subsurface. We studied the interaction of iodate (IO3-) and iodide (I-) with Fe oxides. A series of batch experiments were conducted to investigate adsorption and co-precipitation of iodine species in the presence of a variety of Fe oxides, such as ferrihydrite, goethite, hematite and magnetite. In the sorption experiments, each Fe oxide was added to an artificial groundwater containing either iodate or iodide, and reacted at room temperature. The sorption batch experiments for each mineral were conducted at varied initial iodate or iodide concentrations under 3 different pH conditions (pH 5, 7, and 9). In the co-precipitation batch experiments, the initial Fe-mineral-forming solutions were prepared in artificial groundwater containing iodate or iodide. Our results indicate that both sorption and co-precipitation are viable mechanisms of the attenuation of the liquid phase iodine. Species Fe oxides could serve as hosts of iodate and iodide that are present at the Hanford subsurface.

  19. Terahertz Emission from Hybrid Perovskites Driven by Ultrafast Charge Separation and Strong Electron-Phonon Coupling.

    PubMed

    Guzelturk, Burak; Belisle, Rebecca A; Smith, Matthew D; Bruening, Karsten; Prasanna, Rohit; Yuan, Yakun; Gopalan, Venkatraman; Tassone, Christopher J; Karunadasa, Hemamala I; McGehee, Michael D; Lindenberg, Aaron M

    2018-03-01

    Unusual photophysical properties of organic-inorganic hybrid perovskites have not only enabled exceptional performance in optoelectronic devices, but also led to debates on the nature of charge carriers in these materials. This study makes the first observation of intense terahertz (THz) emission from the hybrid perovskite methylammonium lead iodide (CH 3 NH 3 PbI 3 ) following photoexcitation, enabling an ultrafast probe of charge separation, hot-carrier transport, and carrier-lattice coupling under 1-sun-equivalent illumination conditions. Using this approach, the initial charge separation/transport in the hybrid perovskites is shown to be driven by diffusion and not by surface fields or intrinsic ferroelectricity. Diffusivities of the hot and band-edge carriers along the surface normal direction are calculated by analyzing the emitted THz transients, with direct implications for hot-carrier device applications. Furthermore, photogenerated carriers are found to drive coherent terahertz-frequency lattice distortions, associated with reorganizations of the lead-iodide octahedra as well as coupled vibrations of the organic and inorganic sublattices. This strong and coherent carrier-lattice coupling is resolved on femtosecond timescales and found to be important both for resonant and far-above-gap photoexcitation. This study indicates that ultrafast lattice distortions play a key role in the initial processes associated with charge transport. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. CH3NH3PbI3 and CsPbI3 Supramolecular Clusters in 1D: Do They Evolve with the Same Principle of Cooperative Binding?

    NASA Astrophysics Data System (ADS)

    Varadwaj, Arpita; Varadwaj, Pradeep R.; Yamashita, Koichi

    Development of novel semiconductor-based photo-catalytic and -voltaic systems is a major area of research in nanoscience and technologies, and engineering. The process can be either direct or indirect in converting the light energy into electricity. Some of the photovoltaics include the organic, dye-sensitized, and halide perovskite solar cells, among others. Methylammonium lead iodide (CH3NH3PbI3) inorganic-organic hybrid perovskite is one among the many highly valued semiconductors reported till date, comparable with the inorganic cesium lead iodide (CsPbI3) perovskite. These are competitive candidates in the solar energy race. Nevertheless, this study was concentrated on the fundamental understanding of the rational designs of the CH3NH3PbI3 and CsPbI3 supramolecular materials using first-principles calculations, emerged though the self-assembly of the respective building blocks. It therefore addresses the question whether the (CH3NH3PbI3)n and (CsPbI3)n (n =1-10) supramolecular clusters are the consequences of additivity, or non-additive cooperative binding? For addressing this question, the supramolecular properties such as the polarizability, the intermolecular charge transfer, and the binding energy, etc., all w.r.t the cluster size n, are exploited. CREST-JST, 7 Gobancho, Chiyoda-ku, Tokyo, Japan 102-0076.

  1. The Impact of Atmosphere on the Local Luminescence Properties of Metal Halide Perovskite Grains.

    PubMed

    Brenes, Roberto; Eames, Christopher; Bulović, Vladimir; Islam, M Saiful; Stranks, Samuel D

    2018-04-01

    Metal halide perovskites are exceptional candidates for inexpensive yet high-performing optoelectronic devices. Nevertheless, polycrystalline perovskite films are still limited by nonradiative losses due to charge carrier trap states that can be affected by illumination. Here, in situ microphotoluminescence measurements are used to elucidate the impact of light-soaking individual methylammonium lead iodide grains in high-quality polycrystalline films while immersing them with different atmospheric environments. It is shown that emission from each grain depends sensitively on both the environment and the nature of the specific grain, i.e., whether it shows good (bright grain) or poor (dark grain) luminescence properties. It is found that the dark grains show substantial rises in emission, while the bright grain emission is steady when illuminated in the presence of oxygen and/or water molecules. The results are explained using density functional theory calculations, which reveal strong adsorption energies of the molecules to the perovskite surfaces. It is also found that oxygen molecules bind particularly strongly to surface iodide vacancies which, in the presence of photoexcited electrons, lead to efficient passivation of the carrier trap states that arise from these vacancies. The work reveals a unique insight into the nature of nonradiative decay and the impact of atmospheric passivation on the microscale properties of perovskite films. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Full coverage of perovskite layer onto ZnO nanorods via a modified sequential two-step deposition method for efficiency enhancement in perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Ruankham, Pipat; Wongratanaphisan, Duangmanee; Gardchareon, Atcharawon; Phadungdhitidhada, Surachet; Choopun, Supab; Sagawa, Takashi

    2017-07-01

    Full coverage of perovskite layer onto ZnO nanorod substrates with less pinholes is crucial for achieving high-efficiency perovskite solar cells. In this work, a two-step sequential deposition method is modified to achieve an appropriate property of perovskite (MAPbI3) film. Surface treatment of perovskite layer and its precursor have been systematically performed and their morphologies have been investigated. By pre-wetting of lead iodide (PbI2) and letting it dry before reacting with methylammonium iodide (MAI) provide better coverage of perovskite film onto ZnO nanorod substrate than one without any treatment. An additional MAI deposition followed with toluene drop-casting technique on the perovskite film is also found to increase the coverage and enhance the transformation of PbI2 to MAPbI3. These lead to longer charge carrier lifetime, resulting in an enhanced power conversion efficiency (PCE) from 1.21% to 3.05%. The modified method could been applied to a complex ZnO nanorods/TiO2 nanoparticles substrate. The enhancement in PCE to 3.41% is observed. These imply that our introduced method provides a simple way to obtain the full coverage and better transformation to MAPbI3 phase for enhancement in performances of perovskite solar cells.

  3. Revisiting History: Encountering Iodine Then and Now--A General Chemistry Laboratory to Observe Iodine from Seaweed

    ERIC Educational Resources Information Center

    Wahab, M. Farooq

    2009-01-01

    The history of the discovery of iodine is retold using brown-colored seaweed found commonly along the ocean shore. The seaweed is ashed at a low temperature and the iodides are extracted into boiling water. The iodides are oxidized in acidic medium. Solvent extraction of iodine by oxidation of iodides as well as simple aqueous extraction of iodide…

  4. Studying Equilibrium in the Chemical Reaction between Ferric and Iodide Ions in Solution Using a Simple and Inexpensive Approach

    ERIC Educational Resources Information Center

    Nikolaychuk, Pavel Anatolyevich; Kuvaeva, Alyona Olegovna

    2016-01-01

    A laboratory experiment on the study of the chemical equilibrium based on the reaction between ferric and iodide ions in solution with the formation of ferrous ions, free iodine, and triiodide ions is developed. The total concentration of iodide and triiodide ions in the reaction mixture during the reaction is determined by the argentometric…

  5. The biogeochemical effect of seaweeds upon close-to natural concentrations of dissolved iodate and iodide in seawater Preliminary study with Laminaria digitata and Fucus serratus

    NASA Astrophysics Data System (ADS)

    Truesdale, Victor W.

    2008-06-01

    Toward assessing the biogeochemical significance of seaweeds in relation to dissolved iodine in seawater, the effect of whole seaweeds ( Laminaria digitata and Fucus serratus) upon iodide and iodate, at essentially natural concentrations, has been studied. The weeds were carefully removed from the sub-littoral zone of the Menai Straits and exposed to iodide and iodate at their natural temperature (6 °C), but under continuous illumination. Laminaria digitata was found to decrease the concentration of iodate with an exponential rate constant of 0.008-0.24 h -1. This is a newly discovered process which, if substantiated, will require an entirely new mechanism. Generally, apparent iodide concentration increased except in a run with seawater augmented with iodide, where it first decreased. The rate constant for loss of iodide was 0.014-0.16 h -1. Meanwhile, F. serratus was found not to decrease iodate concentrations, as did L. digitata. Indeed, after ˜30 h iodate concentrations increased, suggesting that the weed may take in iodide before oxidising and releasing it. If substantiated, this finding may offer a way into one of the most elusive of processes within the iodine cycle - iodide oxidation. With both seaweeds sustained long-term increases of apparent iodide concentration are most easily explained as a secretion by the weeds of organic matter which is capable of reducing the Ce(IV) reagent used in determination of total iodine. Modelling of the catalytic method used is provided to support this contention. The possibility of developing this to measure the strain that seaweeds endure in this kind of biogeochemical flux experiment is discussed. A Chemical Oxygen Demand type of approach is applied using Ce(IV) as oxidant. The results of the iodine experiments are contrasted with the several investigations of 131I interaction with seaweeds, which have routinely used discs of weed cut from the frond. It is argued that experiments conducted with stable iodine may measure a different variable to that measured in radio-iodine experiments.

  6. The Purity of Radioiodide-I131 Assessed by in Vivo and in Vitro Methods

    PubMed Central

    Fawcett, D. M.; Olde, G. L.; McLeod, L. E.

    1962-01-01

    Between 41 and 94% of the radioactivity of 24 preparations of I131 supplied without cysteine preservative was non-iodide on chromatographic analysis. Extraneous radio-activity was essentially absent from I131 supplied with cysteine. It was converted to iodide-I131 by 10-3 M cysteine or iodide but not by incubation at pH 2. The average thyroid uptake of I131 containing extraneous radioactivity was significantly lower than the uptake of I131 free from non-iodide impurity in 16 human subjects measured under controlled conditions and in a random group of 669 patients. Incubation of samples of I131 containing non-iodide radioactivity with tyrosine and cupric chloride resulted in the non-enzymatic formation of monoiodotyrosine-I131 either in the presence or absence of thyroid homogenate. Enzymatic formation of monoiodotyrosine-I131 by thyroid homogenates could be demonstrated only when I131 free from extraneous activity was used. ImagesFig. 1Fig. 2 PMID:13891874

  7. Application of direct thermometric analysis in iodometry.

    PubMed

    Marik-Korda, P; Erdey, L

    1970-12-01

    Elementary chlorine was determined by a thermometric method using potassium iodide as reagent. The temperature rise corresponding to the heat of reaction was proportional to the chlorine content. Iodine formed in the reaction was also determined with sodium thiosulphate. The heat of the chlorine-iodide reaction is about five times that of the iodine-thiosulphate reaction. Direct determination with potassium iodide is simpler and more rapid than the indirect one.

  8. Passivation Of High-Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P.

    1991-01-01

    Surfaces of high-temperature superconductors passivated with native iodides, sulfides, or sulfates formed by chemical treatments after superconductors grown. Passivating compounds nearly insoluble in and unreactive with water and protect underlying superconductors from effects of moisture. Layers of cuprous iodide and of barium sulfate grown. Other candidate passivating surface films: iodides and sulfides of bismuth, strontium, and thallium. Other proposed techniques for formation of passivating layers include deposition and gas-phase reaction.

  9. Synthesis of Derivatives of Alpha, Omega Difunctional Perfluoroaliphatic Compounds for Low Dielectric Constant Resins

    DTIC Science & Technology

    1992-03-06

    coupling reactions of perfluoroalkyl iodides with certain aryl iodides have been studied. Simple trial tests were carried out between perfluorooctyl iodide...omega Difunctional Perfluoroaliphatic Compounds for Low Dielectric Constant Resins by Robert L. Soulen Department of Chemistry Southwestern University...Difunctional Perfluoroaliphatic Compounds for Low Dielectric Resins 12 PERSONAL AUTHOR(S) Robert L. Soulen 1Ja TYPE OF REPORT 73b TIME COVERED FI DATE OF

  10. Mechanistic aspects of ingested chlorine dioxide on thyroid function: impact of oxidants on iodide metabolism.

    PubMed Central

    Bercz, J P; Jones, L L; Harrington, R M; Bawa, R; Condie, L

    1986-01-01

    Toxicological studies dealing with recent findings of health effects of drinking water disinfectants are reviewed. Experiments with monkeys and rodents indicate that the biological activity of ingested disinfectants is expressed via their chemical interaction with the mucosal epithelia, secretory products, and nutritional contents of the alimentary tract. Evidence exists that a principal partner of this redox interaction is the iodide of nutritional origin that is ubiquitous in the gastrointestinal tract. Thus the observation that subchronic exposure to chlorine dioxide (ClO2) in drinking water decreases serum thyroxine levels in mammalian species can be best explained with changes produced in the chemical form of the bioavailable iodide. Ongoing and previously reported mechanistic studies indicate that oxidizing agents such as chlorine-based disinfectants oxidize the basal iodide content of the gastrointestinal tract. The resulting reactive iodine species readily attaches to organic matter by covalent bonding. Evidence suggests that the extent to which such iodinated organics are formed is proportional to the magnitude of the electromotive force and stoichiometry of the redox couple between iodide and the disinfectant. Because the extent of thyroid uptake of the bioavailable iodide does not decrease during ClO2 ingestion, it seems that ClO2 does not cause iodide deficiency of sufficient magnitude to account for the decrease in hormonogenesis. Absorption of one or more of iodinated molecules, e.g., nutrients, hormones, or cellular constituents of the alimentary tract having thyromimetic or thyroid inhibitory properties, is a better hypothesis for the effects seen. Images FIGURE 1. a FIGURE 1. b FIGURE 1. c PMID:3816729

  11. Impact of humic acid on the photoreductive degradation of perfluorooctane sulfonate (PFOS) by UV/Iodide process.

    PubMed

    Sun, Zhuyu; Zhang, Chaojie; Chen, Pei; Zhou, Qi; Hoffmann, Michael R

    2017-12-15

    Iodide photolysis under UV illumination affords an effective method to produce hydrated electrons (e aq - ) in aqueous solution. Therefore, UV/Iodide photolysis can be utilized for the reductive degradation of many recalcitrant pollutants. However, the effect of naturally occurring organic matter (NOM) such as humic and fulvic acids (HA/FA), which may impact the efficiency of UV/Iodide photoreduction, is poorly understood. In this study, the UV photoreductive degradation of perfluorooctane sulfonate (PFOS) in the presence of I - and HA is studied. PFOS undergoes a relatively slow direct photoreduction in pure water, a moderate level of degradation via UV/Iodide, but a rapid degradation via UV/Iodide/HA photolysis. After 1.5 h of photolysis, 86.0% of the initial [PFOS] was degraded in the presence of both I - and HA with a corresponding defluorination ratio of 55.6%, whereas only 51.7% of PFOS was degraded with a defluorination ratio of 4.4% via UV/Iodide illumination in the absence of HA. The relative enhancement in the presence of HA in the photodegradation of PFOS can be attributed to several factors: a) HA enhances the effective generation of e aq - due to the reduction of I 2 , HOI, IO 3 - and I 3 - back to I - ; b) certain functional groups of HA (i.e., quinones) enhance the electron transfer efficiency as electron shuttles; c) a weakly-bonded association of I - and PFOS with HA increases the reaction probability; and d) absorption of UV photons by HA itself produces e aq - . The degradation and defluorination efficiency of PFOS by UV/Iodide/HA process is dependent on pH and HA concentration. As pH increases from 7.0 to 10.0, the enhancement effect of HA improves significantly. The optimal HA concentration for the degradation of 0.03 mM PFOS is 1.0 mg L -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Managing terrorism or accidental nuclear errors, preparing for iodine-131 emergencies: a comprehensive review.

    PubMed

    Braverman, Eric R; Blum, Kenneth; Loeffke, Bernard; Baker, Robert; Kreuk, Florian; Yang, Samantha Peiling; Hurley, James R

    2014-04-15

    Chernobyl demonstrated that iodine-131 (131I) released in a nuclear accident can cause malignant thyroid nodules to develop in children within a 300 mile radius of the incident. Timely potassium iodide (KI) administration can prevent the development of thyroid cancer and the American Thyroid Association (ATA) and a number of United States governmental agencies recommend KI prophylaxis. Current pre-distribution of KI by the United States government and other governments with nuclear reactors is probably ineffective. Thus we undertook a thorough scientific review, regarding emergency response to 131I exposures. We propose: (1) pre-distribution of KI to at risk populations; (2) prompt administration, within 2 hours of the incident; (3) utilization of a lowest effective KI dose; (4) distribution extension to at least 300 miles from the epicenter of a potential nuclear incident; (5) education of the public about dietary iodide sources; (6) continued post-hoc analysis of the long-term impact of nuclear accidents; and (7) support for global iodine sufficiency programs. Approximately two billion people are at risk for iodine deficiency disorder (IDD), the world's leading cause of preventable brain damage. Iodide deficient individuals are at greater risk of developing thyroid cancer after 131I exposure. There are virtually no studies of KI prophylaxis in infants, children and adolescents, our target population. Because of their sensitivity to these side effects, we have suggested that we should extrapolate from the lowest effective adult dose, 15-30 mg or 1-2 mg per 10 pounds for children. We encourage global health agencies (private and governmental) to consider these critical recommendations.

  13. Highly Efficient 2D/3D Hybrid Perovskite Solar Cells via Low-Pressure Vapor-Assisted Solution Process.

    PubMed

    Li, Ming-Hsien; Yeh, Hung-Hsiang; Chiang, Yu-Hsien; Jeng, U-Ser; Su, Chun-Jen; Shiu, Hung-Wei; Hsu, Yao-Jane; Kosugi, Nobuhiro; Ohigashi, Takuji; Chen, Yu-An; Shen, Po-Shen; Chen, Peter; Guo, Tzung-Fang

    2018-06-08

    The fabrication of multidimensional organometallic halide perovskite via a low-pressure vapor-assisted solution process is demonstrated for the first time. Phenyl ethyl-ammonium iodide (PEAI)-doped lead iodide (PbI 2 ) is first spin-coated onto the substrate and subsequently reacts with methyl-ammonium iodide (MAI) vapor in a low-pressure heating oven. The doping ratio of PEAI in MAI-vapor-treated perovskite has significant impact on the crystalline structure, surface morphology, grain size, UV-vis absorption and photoluminescence spectra, and the resultant device performance. Multiple photoluminescence spectra are observed in the perovskite film starting with high PEAI/PbI 2 ratio, which suggests the coexistence of low-dimensional perovskite (PEA 2 MA n -1 Pb n I 3 n +1 ) with various values of n after vapor reaction. The dimensionality of the as-fabricated perovskite film reveals an evolution from 2D, hybrid 2D/3D to 3D structure when the doping level of PEAI/PbI 2 ratio varies from 2 to 0. Scanning electron microscopy images and Kelvin probe force microscopy mapping show that the PEAI-containing perovskite grain is presumably formed around the MAPbI 3 perovskite grain to benefit MAPbI 3 grain growth. The device employing perovskite with PEAI/PbI 2 = 0.05 achieves a champion power conversion efficiency of 19.10% with an open-circuit voltage of 1.08 V, a current density of 21.91 mA cm -2 , and a remarkable fill factor of 80.36%. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Limitations of the Weissler reaction as a model reaction for measuring the efficiency of hydrodynamic cavitation.

    PubMed

    Morison, K R; Hutchinson, C A

    2009-01-01

    The Weissler reaction in which iodide is oxidised to a tri-iodide complex (I(3)(-)) has been widely used for measurement of the intensity of ultrasonic and hydrodynamic cavitation. It was used in this work to compare ultrasonic cavitation at 24 kHz with hydrodynamic cavitation using two different devices, one a venturi and the other a sudden expansion, operated up to 8.7 bar. Hydrodynamic cavitation had a maximum efficiency of about 5 x 10(-11) moles of I(3)(-) per joule of energy compared with the maximum of almost 8 x 10(-11) mol J(-1) for ultrasonic cavitation. Hydrodynamic cavitation was found to be most effective at 10 degrees C compared with 20 degrees C and 30 degrees C and at higher upstream pressures. However, it was found that in hydrodynamic conditions, even without cavitation, I(3)(-) was consumed at a rapid rate leading to an equilibrium concentration. It was concluded that the Weissler reaction was not a good model reaction for the assessment of the effectiveness of hydrodynamic cavitation.

  15. Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells.

    PubMed

    Zhang, Wei; Saliba, Michael; Moore, David T; Pathak, Sandeep K; Hörantner, Maximilian T; Stergiopoulos, Thomas; Stranks, Samuel D; Eperon, Giles E; Alexander-Webber, Jack A; Abate, Antonio; Sadhanala, Aditya; Yao, Shuhua; Chen, Yulin; Friend, Richard H; Estroff, Lara A; Wiesner, Ulrich; Snaith, Henry J

    2015-01-30

    To date, there have been a plethora of reports on different means to fabricate organic-inorganic metal halide perovskite thin films; however, the inorganic starting materials have been limited to halide-based anions. Here we study the role of the anions in the perovskite solution and their influence upon perovskite crystal growth, film formation and device performance. We find that by using a non-halide lead source (lead acetate) instead of lead chloride or iodide, the perovskite crystal growth is much faster, which allows us to obtain ultrasmooth and almost pinhole-free perovskite films by a simple one-step solution coating with only a few minutes annealing. This synthesis leads to improved device performance in planar heterojunction architectures and answers a critical question as to the role of the anion and excess organic component during crystallization. Our work paves the way to tune the crystal growth kinetics by simple chemistry.

  16. Standard free energy of formation of iron iodide

    NASA Technical Reports Server (NTRS)

    Khandkar, A.; Tare, V. B.; Wagner, J. B., Jr.

    1983-01-01

    An experiment is reported where silver iodide is used to determine the standard free energy of formation of iron iodide. By using silver iodide as a solid electrolyte, a galvanic cell, Ag/AgI/Fe-FeI2, is formulated. The standard free energy of formation of AgI is known, and hence it is possible to estimate the standard free energy of formation of FeI2 by measuring the open-circuit emf of the above cell as a function of temperature. The free standard energy of formation of FeI2 determined by this method is -38784 + 24.165T cal/mol. It is estimated that the maximum error associated with this method is plus or minus 2500 cal/mol.

  17. Study on gold concentrate leaching by iodine-iodide

    NASA Astrophysics Data System (ADS)

    Wang, Hai-xia; Sun, Chun-bao; Li, Shao-ying; Fu, Ping-feng; Song, Yu-guo; Li, Liang; Xie, Wen-qing

    2013-04-01

    Gold extraction by iodine-iodide solution is an effective and environment-friendly method. In this study, the method using iodine-iodide for gold leaching is proved feasible through thermodynamic calculation. At the same time, experiments on flotation gold concentrates were carried out and encouraging results were obtained. Through optimizing the technological conditions, the attained high gold leaching rate is more than 85%. The optimum process conditions at 25°C are shown as follows: the initial iodine concentration is 1.0%, the iodine-to-iodide mole ratio is 1:8, the solution pH value is 7, the liquid-to-solid mass ratio is 4:1, the leaching time is 4 h, the stirring intensity is 200 r/mim, and the hydrogen peroxide consumption is 1%.

  18. National surveillance for radiological exposures and intentional potassium iodide and iodine product ingestions in the United States associated with the 2011 Japan radiological incident

    PubMed Central

    LAW, ROYAL K.; SCHIER, JOSH G.; MARTIN, COLLEEN A.; OLIVARES, DAGNY E.; THOMAS, RICHARD G.; BRONSTEIN, ALVIN C.; CHANG, ARTHUR S.

    2015-01-01

    Background In March of 2011, an earthquake struck Japan causing a tsunami that resulted in a radiological release from the damaged Fukushima Daiichi nuclear power plant. Surveillance for potential radiological and any iodine/iodide product exposures was initiated on the National Poison Data System (NPDS) to target public health messaging needs within the United States (US). Our objectives are to describe self-reported exposures to radiation, potassium iodide (KI) and other iodine/iodide products which occurred during the US federal response and discuss its public health impact. Methods All calls to poison centers associated with the Japan incident were identified from March 11, 2011 to April 18, 2011 in NPDS. Exposure, demographic and health outcome information were collected. Calls about reported radiation exposures and KI or other iodine/iodide product ingestions were then categorized with regard to exposure likelihood based on follow-up information obtained from the PC where each call originated. Reported exposures were subsequently classified as probable exposures (high likelihood of exposure), probable non-exposures (low likelihood of exposure), and suspect exposure (unknown likelihood of exposure). Results We identified 400 calls to PCs associated with the incident, with 340 information requests (no exposure reported) and 60 reported exposures. The majority (n = 194; 57%) of the information requests mentioned one or more substances. Radiation was inquired about most frequently (n = 88; 45%), followed by KI (n = 86; 44%) and other iodine/iodide products (n = 47; 24%). Of the 60 reported exposures, KI was reported most frequently (n = 25; 42%), followed by radiation (n = 22; 37%) and other iodine/iodide products (n = 13; 22%). Among reported KI exposures, most were classified as probable exposures (n = 24; 96%); one was a probable non-exposure. Among reported other iodine/iodide product exposures, most were probable exposures (n = 10, 77%) and the rest were suspect exposures (n = 3; 23%). The reported radiation exposures were classified as suspect exposures (n = 16, 73%) or probable non-exposures (n = 6; 27%). No radiation exposures were classified as probable exposures. A small number of the probable exposures to KI and other iodide/iodine products reported adverse signs or symptoms (n = 9; 26%). The majority of probable exposures had no adverse outcomes (n = 28; 82%). These data identified a potential public health information gap regarding KI and other iodine/iodide products which was then addressed through public health messaging activities. Conclusion During the Japan incident response, surveillance activities using NPDS identified KI and other iodine/iodide products as potential public health concerns within the US, which guided CDC’s public health messaging and communication activities. Regional PCs can provide timely and additional information during a public health emergency to enhance data collected from surveillance activities, which in turn can be used to inform public health decision-making. PMID:23043524

  19. National surveillance for radiological exposures and intentional potassium iodide and iodine product ingestions in the United States associated with the 2011 Japan radiological incident.

    PubMed

    Law, Royal K; Schier, Josh G; Martin, Colleen A; Olivares, Dagny E; Thomas, Richard G; Bronstein, Alvin C; Chang, Arthur S

    2013-01-01

    In March of 2011, an earthquake struck Japan causing a tsunami that resulted in a radiological release from the damaged Fukushima Daiichi nuclear power plant. Surveillance for potential radiological and any iodine/iodide product exposures was initiated on the National Poison Data System (NPDS) to target public health messaging needs within the United States (US). Our objectives are to describe self-reported exposures to radiation, potassium iodide (KI) and other iodine/iodide products which occurred during the US federal response and discuss its public health impact. All calls to poison centers associated with the Japan incident were identified from March 11, 2011 to April 18, 2011 in NPDS. Exposure, demographic and health outcome information were collected. Calls about reported radiation exposures and KI or other iodine/iodide product ingestions were then categorized with regard to exposure likelihood based on follow-up information obtained from the PC where each call originated. Reported exposures were subsequently classified as probable exposures (high likelihood of exposure), probable non-exposures (low likelihood of exposure), and suspect exposure (unknown likelihood of exposure). We identified 400 calls to PCs associated with the incident, with 340 information requests (no exposure reported) and 60 reported exposures. The majority (n = 194; 57%) of the information requests mentioned one or more substances. Radiation was inquired about most frequently (n = 88; 45%), followed by KI (n = 86; 44%) and other iodine/iodide products (n = 47; 24%). Of the 60 reported exposures, KI was reported most frequently (n = 25; 42%), followed by radiation (n = 22; 37%) and other iodine/iodide products (n = 13; 22%). Among reported KI exposures, most were classified as probable exposures (n = 24; 96%); one was a probable non-exposure. Among reported other iodine/iodide product exposures, most were probable exposures (n = 10, 77%) and the rest were suspect exposures (n = 3; 23%). The reported radiation exposures were classified as suspect exposures (n = 16, 73%) or probable non-exposures (n = 6; 27%). No radiation exposures were classified as probable exposures. A small number of the probable exposures to KI and other iodide/iodine products reported adverse signs or symptoms (n = 9; 26%). The majority of probable exposures had no adverse outcomes (n = 28; 82%). These data identified a potential public health information gap regarding KI and other iodine/iodide products which was then addressed through public health messaging activities. During the Japan incident response, surveillance activities using NPDS identified KI and other iodine/iodide products as potential public health concerns within the US, which guided CDC's public health messaging and communication activities. Regional PCs can provide timely and additional information during a public health emergency to enhance data collected from surveillance activities, which in turn can be used to inform public health decision-making.

  20. Effect of Rubidium Incorporation on the Structural, Electrical, and Photovoltaic Properties of Methylammonium Lead Iodide-Based Perovskite Solar Cells

    DOE PAGES

    Park, Ik Jae; Seo, Seongrok; Park, Min Ah; ...

    2017-11-10

    We report the electrical properties of rubidium-incorporated methylammonium lead iodide ((Rb xMA 1-x)PbI 3) films and the photovoltaic performance of (Rb xMA 1-x)PbI 3 film-based p-i-n-type perovskite solar cells (PSCs). The incorporation of a small amount of Rb + (x = 0.05) increases both the open circuit voltage (V oc) and the short circuit photocurrent density (J sc) of the PSCs, leading to an improved power conversion efficiency (PCE). However, a high fraction of Rb + incorporation (x = 0.1 and 0.2) decreases the J sc and thus the PCE, which is attributed to the phase segregation of the singlemore » tetragonal perovskite phase to a MA-rich tetragonal perovskite phase and a RbPbI 3 orthorhombic phase at high Rb fractions. Conductive atomic force microscopic and admittance spectroscopic analyses reveal that the single-phase (Rb 0.05MA 0.95)PbI 3 film has a high electrical conductivity because of a reduced deep-level trap density. We also found that Rb substitution enhances the diode characteristics of the PSC, as evidenced by the reduced reverse saturation current (J 0). The optimized (Rb xMA 1-x)PbI 3 PSCs exhibited a PCE of 18.8% with negligible hysteresis in the photocurrent-voltage curve. The results from this work enhance the understanding of the effect of Rb incorporation into organic-inorganic hybrid halide perovskites and enable the exploration of Rb-incorporated mixed perovskites for various applications, such as solar cells, photodetectors, and light-emitting diodes.« less

  1. Effect of Rubidium Incorporation on the Structural, Electrical, and Photovoltaic Properties of Methylammonium Lead Iodide-Based Perovskite Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Ik Jae; Seo, Seongrok; Park, Min Ah

    We report the electrical properties of rubidium-incorporated methylammonium lead iodide ((Rb xMA 1-x)PbI 3) films and the photovoltaic performance of (Rb xMA 1-x)PbI 3 film-based p-i-n-type perovskite solar cells (PSCs). The incorporation of a small amount of Rb + (x = 0.05) increases both the open circuit voltage (V oc) and the short circuit photocurrent density (J sc) of the PSCs, leading to an improved power conversion efficiency (PCE). However, a high fraction of Rb + incorporation (x = 0.1 and 0.2) decreases the J sc and thus the PCE, which is attributed to the phase segregation of the singlemore » tetragonal perovskite phase to a MA-rich tetragonal perovskite phase and a RbPbI 3 orthorhombic phase at high Rb fractions. Conductive atomic force microscopic and admittance spectroscopic analyses reveal that the single-phase (Rb 0.05MA 0.95)PbI 3 film has a high electrical conductivity because of a reduced deep-level trap density. We also found that Rb substitution enhances the diode characteristics of the PSC, as evidenced by the reduced reverse saturation current (J 0). The optimized (Rb xMA 1-x)PbI 3 PSCs exhibited a PCE of 18.8% with negligible hysteresis in the photocurrent-voltage curve. The results from this work enhance the understanding of the effect of Rb incorporation into organic-inorganic hybrid halide perovskites and enable the exploration of Rb-incorporated mixed perovskites for various applications, such as solar cells, photodetectors, and light-emitting diodes.« less

  2. Iodide Ion Pairing with Highly Charged Ruthenium Polypyridyl Cations in CH3CN.

    PubMed

    Swords, Wesley B; Li, Guocan; Meyer, Gerald J

    2015-05-04

    A series of three highly charged cationic ruthenium(II) polypyridyl complexes of the general formula [Ru(deeb)3-x(tmam)x](PF6)2x+2, where deeb is 4,4'-diethyl ester-2,2'-bipyridine and tmam is 4,4'-bis[(trimethylamino)methyl]-2,2'-bipyridine, were synthesized and characterized and are referred to as 1, 2, or 3 based on the number of tmam ligands. Crystals suitable for X-ray crystallography were obtained for the homoleptic complex 3, which was found to possess D3 symmetry over the entire ruthenium complex. The complexes displayed visible absorption spectra typical of metal-to-ligand charge-transfer (MLCT) transitions. In acetonitrile, quasi-reversible waves were assigned to Ru(III/II) electron transfer, with formal reduction potentials that shifted negative as the number of tmam ligands was increased. Room temperature photoluminescence was observed in acetonitrile with quantum yields of ϕ ∼ 0.1 and lifetimes of τ ∼ 2 μs. The spectroscopic and electrochemical data were most consistent with excited-state localization on the deeb ligand for 1 and 2 and on the tmam ligand for 3. The addition of tetrabutylammonium iodide to the complexes dissolved in a CH3CN solution led to changes in the UV-vis absorption spectra consistent with ion pairing. A Benesi-Hildebrand-type analysis of these data revealed equilibrium constants that increased with the cationic charge 1 < 2 < 3 with K = 4000, 4400, and 7000 M(-1). (1)H NMR studies in CD3CN also revealed evidence for iodide ion pairs and indicated that they occur predominantly with iodide localization near the tmam ligand(s). The diastereotopic H atoms on the methylene carbon that link the amine to the bipyridine ring were uniquely sensitive to the presence of iodide; analysis revealed that an iodide "binding pocket" exists wherein iodide forms an adduct with the 3 and 3' bipyridyl H atoms and the quaternized amine. The MLCT excited states were efficiently quenched by iodide. Time-resolved photoluminescence measurements of 1 revealed a static component consistent with rapid electron transfer from iodide in the "binding pocket" to the Ru metal center in the excited state, ket > 10(8) s(-1). The possible relevance of this work to solar energy conversion and dye-sensitized solar cells is discussed.

  3. Evaluation of anion exchange resins Tulsion A-30 and Indion-930A by application of radioanalytical technique

    NASA Astrophysics Data System (ADS)

    Singare, P. U.

    2014-07-01

    Radioanalytical technique using 131I and 82Br was employed to evaluate organic based anion exchange resins Tulsion A-30 and Indion-930A. The evaluation was based on performance of these resins during iodide and bromide ion-isotopic exchange reactions. It was observed that for iodide ion-isotopic exchange reaction by using Tulsion A-30 resin, the values of specific reaction rate (min-1), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log K d were 0.238, 0.477, 0.114, and 11.0, respectively, which was higher than 0.155, 0.360, 0.056, and 7.3, respectively as that obtained by using Indion-930A resins under identical experimental conditions of 40.0°C, 1.000 g of ion exchange resins and 0.003 M labeled iodide ion solution. Also at a constant temperature of 40.0°C, as the concentration of labeled iodide ion solution increases 0.001 to 0.004 M, for Tulsion A-30 resins the percentage of iodide ions exchanged increases from 59.0 to 65.1%, and from 46.4 to 48.8% for Indion-930A resins under identical experimental conditions. The identical trend was observed for both the resins during bromide ion-isotopic exchange reactions. The overall results indicate that under identical experimental conditions, Tulsion A-30 show superior performance over Indion-930A resins. The results of present experimental work have demonstrated that the radioanalytical technique used here can be successfully applied for characterization of different ion exchange resins so as to evaluate their performance under various process parameters.

  4. Propylthiouracil, Perchlorate, and Thyroid-Stimulating Hormone Modulate High Concentrations of Iodide Instigated Mitochondrial Superoxide Production in the Thyroids of Metallothionein I/II Knockout Mice

    PubMed Central

    Duan, Qi; Wang, Tingting; Zhang, Na; Perera, Vern; Liang, Xue; Abeysekera, Iruni Roshanie

    2016-01-01

    Background Increased oxidative stress has been suggested as one of the underlying mechanisms in iodide excess-induced thyroid disease. Metallothioneins (MTs) are regarded as scavengers of reactive oxygen species (ROS) in oxidative stress. Our aim is to investigate the effects of propylthiouracil (PTU), a thyroid peroxidase inhibitor, perchlorate (KClO4), a competitive inhibitor of iodide transport, and thyroid stimulating hormone (TSH) on mitochondrial superoxide production instigated by high concentrations of iodide in the thyroids of MT-I/II knockout (MT-I/II KO) mice. Methods Eight-week-old 129S7/SvEvBrd-Mt1tm1Bri Mt2tm1Bri/J (MT-I/II KO) mice and background-matched wild type (WT) mice were used. Results By using a mitochondrial superoxide indicator (MitoSOX Red), lactate dehydrogenase (LDH) release, and methyl thiazolyl tetrazolium (MTT) assay, we demonstrated that the decreased relative viability and increased LDH release and mitochondrial superoxide production induced by potassium iodide (100 µM) can be relieved by 300 µM PTU, 30 µM KClO4, or 10 U/L TSH in the thyroid cell suspensions of both MT-I/II KO and WT mice (P<0.05). Compared to the WT mice, a significant decrease in the relative viability along with a significant increase in LDH release and mitochondrial superoxide production were detected in MT-I/II KO mice(P<0.05). Conclusion We concluded that PTU, KClO4, or TSH relieved the mitochondrial oxidative stress induced by high concentrations of iodide in the thyroids of both MT-I/II KO and WT mice. MT-I/II showed antioxidant effects against high concentrations of iodide-induced mitochondrial superoxide production in the thyroid. PMID:26754589

  5. Identification of Multiple Water-Iodide Species in Concentrated NaI Solutions Based on the Raman Bending Vibration of Water.

    PubMed

    Besemer, Matthieu; Bloemenkamp, Rob; Ariese, Freek; van Manen, Henk-Jan

    2016-02-11

    The influence of aqueous electrolytes on the water bending vibration was studied with Raman spectroscopy. For all salts investigated (NaI, NaBr, NaCl, and NaSCN), we observed a nonlinear intensity increase of the water bending vibration with increasing concentration. Different lasers and a tunable frequency-doubled optical parametric oscillator system were used to achieve excitation wavelengths between 785 and 374 nm. Focusing on NaI solutions, the relative enhancement of the water bending vibration was found to increase strongly with excitation photon energy, in line with a preresonance effect from the iodide-water charge-transfer transition. We used multivariate curve resolution (MCR) to decompose the measured Raman spectra of NaI solutions into three interconverting spectral components assigned to bulk water and water molecules interacting with one (X···H-O-H···O) and two (X···H-O-H···X) iodide ions (X = I(-)). The Raman spectrum of solid sodium iodide dihydrate supports the assignment of the latter. Using the MCR results, relative Raman scattering cross sections of 4.0 ± 0.6 and 14.0 ± 0.1 were calculated for the mono- and di-iodide species, respectively (compared to that of bulk water set to unity). In addition, it was found that at relatively low concentrations each iodide ion affects the Raman spectrum of roughly 22 surrounding water molecules, indicating that the influence of iodide extends beyond the first solvation shell. Our results demonstrate that the Raman bending vibration of water is a sensitive probe, providing new insights into anion solvation in aqueous environments.

  6. Analysis of heterogeneous water vapor uptake by metal iodide cluster ions via differential mobility analysis-mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oberreit, Derek; Fluid Measurement Technologies, Inc., Saint Paul, Minnesota 55110; Rawat, Vivek K.

    The sorption of vapor molecules onto pre-existing nanometer sized clusters is of importance in understanding particle formation and growth in gas phase environments and devising gas phase separation schemes. Here, we apply a differential mobility analyzer-mass spectrometer based approach to observe directly the sorption of vapor molecules onto iodide cluster ions of the form (MI){sub x}M{sup +} (x = 1-13, M = Na, K, Rb, or Cs) in air at 300 K and with water saturation ratios in the 0.01-0.64 range. The extent of vapor sorption is quantified in measurements by the shift in collision cross section (CCS) for eachmore » ion. We find that CCS measurements are sensitive enough to detect the transient binding of several vapor molecules to clusters, which shift CCSs by only several percent. At the same time, for the highest saturation ratios examined, we observed CCS shifts of up to 45%. For x < 4, cesium, rubidium, and potassium iodide cluster ions are found to uptake water to a similar extent, while sodium iodide clusters uptake less water. For x ≥ 4, sodium iodide cluster ions uptake proportionally more water vapor than rubidium and potassium iodide cluster ions, while cesium iodide ions exhibit less uptake. Measured CCS shifts are compared to predictions based upon a Kelvin-Thomson-Raoult (KTR) model as well as a Langmuir adsorption model. We find that the Langmuir adsorption model can be fit well to measurements. Meanwhile, KTR predictions deviate from measurements, which suggests that the earliest stages of vapor uptake by nanometer scale species are not well described by the KTR model.« less

  7. Laccase Catalyzed Synthesis of Iodinated Phenolic Compounds with Antifungal Activity

    PubMed Central

    Ihssen, Julian; Schubert, Mark; Thöny-Meyer, Linda; Richter, Michael

    2014-01-01

    Iodine is a well known antimicrobial compound. Laccase, an oxidoreductase which couples the one electron oxidation of diverse phenolic and non-phenolic substrates to the reduction of oxygen to water, is capable of oxidizing unreactive iodide to reactive iodine. We have shown previously that laccase-iodide treatment of spruce wood results in a wash-out resistant antimicrobial surface. In this study, we investigated whether phenolic compounds such as vanillin, which resembles sub-structures of softwood lignin, can be directly iodinated by reacting with laccase and iodide, resulting in compounds with antifungal activity. HPLC-MS analysis showed that vanillin was converted to iodovanillin by laccase catalysis at an excess of potassium iodide. No conversion of vanillin occurred in the absence of enzyme. The addition of redox mediators in catalytic concentrations increased the rate of iodide oxidation ten-fold and the yield of iodovanillin by 50%. Iodinated phenolic products were also detected when o-vanillin, ethyl vanillin, acetovanillone and methyl vanillate were incubated with laccase and iodide. At an increased educt concentration of 0.1 M an almost one to one molar ratio of iodide to vanillin could be used without compromising conversion rate, and the insoluble iodovanillin product could be recovered by simple centrifugation. The novel enzymatic synthesis procedure fulfills key criteria of green chemistry. Biocatalytically produced iodovanillin and iodo-ethyl vanillin had significant growth inhibitory effects on several wood degrading fungal species. For Trametes versicolor, a species causing white rot of wood, almost complete growth inhibition and a partial biocidal effect was observed on agar plates. Enzymatic tests indicated that the iodinated compounds acted as enzyme responsive, antimicrobial materials. PMID:24594755

  8. Crystal structures of five 1-alkyl-4-aryl-1,2,4-triazol-1-ium halide salts.

    PubMed

    Guino-O, Marites A; Talbot, Meghan O; Slitts, Michael M; Pham, Theresa N; Audi, Maya C; Janzen, Daron E

    2015-06-01

    The asymmetric units for the salts 4-(4-fluoro-phen-yl)-1-isopropyl-1,2,4-triazol-1-ium iodide, C11H13FN3 (+)·I(-), (1), 1-isopropyl-4-(4-methyl-phen-yl)-1,2,4-triazol-1-ium iodide, C12H16N3 (+)·I(-), (2), 1-isopropyl-4-phenyl-1,2,4-triazol-1-ium iodide, C11H14N3 (+)·I(-), (3), and 1-methyl-4-phenyl-1,2,4-triazol-1-ium iodide, C9H10N3 (+)·I(-), (4), contain one cation and one iodide ion, whereas in 1-benzyl-4-phenyl-1,2,4-triazol-1-ium bromide monohydrate, C15H14N3 (+)·Br(-)·H2O, (5), there is an additional single water mol-ecule. There is a predominant C-H⋯X(halide) inter-action for all salts, resulting in a two-dimensional extended sheet network between the triazolium cation and the halide ions. For salts with para-substitution on the aryl ring, there is an additional π-anion inter-action between a triazolium carbon and iodide displayed by the layers. For salts without the para-substitution on the aryl ring, the π-π inter-actions are between the triazolium and aryl rings. The melting points of these salts agree with the predicted substituent inductive effects.

  9. Role of endoplasmic reticulum stress-induced apoptosis in rat thyroid toxicity caused by excess fluoride and/or iodide.

    PubMed

    Liu, Hongliang; Hou, Changchun; Zeng, Qiang; Zhao, Liang; Cui, Yushan; Yu, Linyu; Wang, Lingzhi; Zhao, Yang; Nie, Junyan; Zhang, Bin; Wang, Aiguo

    2016-09-01

    Excess fluoride and iodide coexist in drinking water in many regions, but few studies have investigated the single or interactive effects on thyroid in vivo. In our study, Wistar rats were exposed to excess fluoride and/or iodide through drinking water for 2 or 8 months. The structure and function of the thyroid, cells apoptosis and the expression of inositol-requiring enzyme 1 (IRE1) pathway-related factors were analyzed. Results demonstrated that excess fluoride and/or iodide could change thyroid follicular morphology and alter thyroid hormone levels in rats. After 8 months treatment, both single and co-exposure of the two microelements could raise the thyroid cells apoptosis. However, the expressions of IRE1-related factors were only increased in fluoride-alone and the combined groups. In conclusion, thyroid structure and thyroid function were both affected by excess fluoride and/or iodide. IRE1-induced apoptosis were involved in this cytotoxic process caused by fluoride or the combination of two microelements. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Modulated photophysics of a cationic DNA-staining dye inside protein bovine serum albumin: Study of binding interaction and structural changes of protein

    NASA Astrophysics Data System (ADS)

    Samanta, Anuva; Jana, Sankar; Ray, Debarati; Guchhait, Nikhil

    2014-03-01

    The binding affinity of cationic DNA-staining dye, propidium iodide, with transport protein, bovine serum albumin, has been explored using UV-vis absorption, fluorescence, and circular dichroism spectroscopy. Steady state and time resolved fluorescence studies authenticate that fluorescence quenching of bovine serum albumin by propidium iodide is due to bovine serum albumin-propidium iodide complex formation. Thermodynamic parameters obtained from temperature dependent spectral studies cast light on binding interaction between the probe and protein. Site marker competitive binding has been encountered using phenylbutazone and flufenamic acid for site I and site II, respectively. Energy transfer efficiency and distance between bovine serum albumin and propidium iodide have been determined using Förster mechanism. Structural stabilization or destabilization of protein by propidium iodide has been investigated by urea denaturation study. The circular dichroism study as well as FT-IR measurement demonstrates some configurational changes of the protein in presence of the dye. Docking studies support the experimental data thereby reinforcing the binding site of the probe to the subdomain IIA of bovine serum albumin.

  11. Barium iodide and strontium iodide crystals and scintillators implementing the same

    DOEpatents

    Payne, Stephen A.; Cherepy, Nerine J.; Hull, Giulia E.; Drobshoff, Alexander D.; Burger, Arnold

    2016-11-29

    In one embodiment, a material comprises a crystal comprising strontium iodide providing at least 50,000 photons per MeV, where the strontium iodide material is characterized by a volume not less than 1 cm.sup.3. In another embodiment, a scintillator optic includes europium-doped strontium iodide providing at least 50,000 photons per MeV, where the europium in the crystal is primarily Eu.sup.2+, and the europium is present in an amount greater than about 1.6%. A scintillator radiation detector in yet another embodiment includes a scintillator optic comprising SrI.sub.2 and BaI.sub.2, where a ratio of SrI.sub.2 to BaI.sub.2 is in a range of between 0:1 and 1.0, the scintillator optic is a crystal that provides at least 50,000 scintillation photons per MeV and energy resolution of less than about 5% at 662 keV, and the crystal has a volume of 1 cm.sup.3 or more; the scintillator optic contains more than about 2% europium.

  12. A Selective Organic-Based Corrosion Inhibitors Containing Iodide Ion as Enhancer for Protection of Carbon Steel: A Review

    NASA Astrophysics Data System (ADS)

    Ibrahim, I. M.; Kassim, E. S. Mohd; Husin, H.; Jai, J.; Daud, M.; Hashim, M. A.

    2018-05-01

    This paper contains a review on the effect of halide ion with a selected inhibitor which is imidazole derivatives on the efficiency of corrosion inhibition. The paper first describes the mechanism of synergistic inhibition effect among halide ions enhancer with inhibitor on the steel surface. Then the paper describes the measured inhibition efficiency and summarizes the synergistic inhibition condition of imidazoline derivatives inhibitor with iodide ions. The characteristic of synergistic inhibition effect and the relationship between the amount of iodide ion consumption and the amount of organic inhibitor consumption are also discussed. It has been shown that, the synergistic effect between imidazole derivative and iodide ion is an effective method to improve the inhibitive performance in different aqueous media.

  13. Propidium iodide competes with Ca(2+) to label pectin in pollen tubes and Arabidopsis root hairs.

    PubMed

    Rounds, Caleb M; Lubeck, Eric; Hepler, Peter K; Winship, Lawrence J

    2011-09-01

    We have used propidium iodide (PI) to investigate the dynamic properties of the primary cell wall at the apex of Arabidopsis (Arabidopsis thaliana) root hairs and pollen tubes and in lily (Lilium formosanum) pollen tubes. Our results show that in root hairs, as in pollen tubes, oscillatory peaks in PI fluorescence precede growth rate oscillations. Pectin forms the primary component of the cell wall at the tip of both root hairs and pollen tubes. Given the electronic structure of PI, we investigated whether PI binds to pectins in a manner analogous to Ca(2+) binding. We first show that Ca(2+) is able to abrogate PI growth inhibition in a dose-dependent manner. PI fluorescence itself also relies directly on the amount of Ca(2+) in the growth solution. Exogenous pectin methyl esterase treatment of pollen tubes, which demethoxylates pectins, freeing more Ca(2+)-binding sites, leads to a dramatic increase in PI fluorescence. Treatment with pectinase leads to a corresponding decrease in fluorescence. These results are consistent with the hypothesis that PI binds to demethoxylated pectins. Unlike other pectin stains, PI at low yet useful concentration is vital and specifically does not alter the tip-focused Ca(2+) gradient or growth oscillations. These data suggest that pectin secretion at the apex of tip-growing plant cells plays a critical role in regulating growth, and PI represents an excellent tool for examining the role of pectin and of Ca(2+) in tip growth.

  14. Hybrid Dion-Jacobson 2D Lead Iodide Perovskites.

    PubMed

    Mao, Lingling; Ke, Weijun; Pedesseau, Laurent; Wu, Yilei; Katan, Claudine; Even, Jacky; Wasielewski, Michael R; Stoumpos, Constantinos C; Kanatzidis, Mercouri G

    2018-03-14

    The three-dimensional hybrid organic-inorganic perovskites have shown huge potential for use in solar cells and other optoelectronic devices. Although these materials are under intense investigation, derivative materials with lower dimensionality are emerging, offering higher tunability of physical properties and new capabilities. Here, we present two new series of hybrid two-dimensional (2D) perovskites that adopt the Dion-Jacobson (DJ) structure type, which are the first complete homologous series reported in halide perovskite chemistry. Lead iodide DJ perovskites adopt a general formula A'A n-1 Pb n I 3 n+1 (A' = 3-(aminomethyl)piperidinium (3AMP) or 4-(aminomethyl)piperidinium (4AMP), A = methylammonium (MA)). These materials have layered structures where the stacking of inorganic layers is unique as they lay exactly on top of another. With a slightly different position of the functional group in the templating cation 3AMP and 4AMP, the as-formed DJ perovskites show different optical properties, with the 3AMP series having smaller band gaps than the 4AMP series. Analysis on the crystal structures and density functional theory (DFT) calculations suggest that the origin of the systematic band gap shift is the strong but indirect influence of the organic cation on the inorganic framework. Fabrication of photovoltaic devices utilizing these materials as light absorbers reveals that (3AMP)(MA) 3 Pb 4 I 13 has the best power conversion efficiency (PCE) of 7.32%, which is much higher than that of the corresponding (4AMP)(MA) 3 Pb 4 I 13 .

  15. Microgravity

    NASA Image and Video Library

    1992-02-21

    Vapor Crystal Growth System developed in IML-1, Mercuric Iodide Crystal grown in microgravity FES/VCGS (Fluids Experiment System/Vapor Crystal Growth Facility). During the mission, mercury iodide source material was heated, vaporized, and transported to a seed crystal where the vapor condensed. Mercury iodide crystals have practical uses as sensitive X-ray and gamma-ray detectors. In addition to their excellent optical properties, these crystals can operate at room temperature, which makes them useful for portable detector devices for nuclear power plant monitoring, natural resource prospecting, biomedical applications, and astronomical observing.

  16. Bridgman-Stockbarger growth of SrI2:Eu2+ single crystal

    NASA Astrophysics Data System (ADS)

    Raja, A.; Daniel, D. Joseph; Ramasamy, P.; Singh, S. G.; Sen, S.; Gadkari, S. C.

    2018-05-01

    Strontium Iodide (SrI2): Europium Iodide (EuI2) was purified by Zone-refinement process. Europium doped strontium iodide (SrI2:Eu2+) single crystal was grown by modified vertical Bridgman - Stockbarger technique. Photoluminescence (PL) excitation and emission (PLE) spectra were measured for Eu2+ doped SrI2 crystal. The sharp emission was recorded at 432 nm. Scintillation properties of the SrI2:Eu2+ crystal were checked by the gamma ray spectrometer using 137Cs gamma source.

  17. Tetrabutylammonium Iodide-Promoted Thiolation of Oxindoles Using Sulfonyl Chlorides as Sulfenylation Reagents.

    PubMed

    Zhao, Xia; Wei, Aoqi; Lu, Xiaoyu; Lu, Kui

    2017-08-01

    3-Sulfanyloxindoles were synthesised by triphenylphosphine-mediated transition-metal-free thiolation of oxindoles using sulfonyl chlorides as sulfenylation reagents. The above reaction was promoted by iodide anions, which was ascribed to the in situ conversion of sulfenyl chlorides into the more reactive sulfenyl iodides. Moreover, the thiolation of 3-aryloxindoles was facilitated by bases. The use of a transition-metal-free protocol, readily available reagents, and mild reaction conditions make this protocol more practical for preparing 3-sulfanyloxindoles than traditional methods.

  18. Atomic absorption spectrometric determination of copper, zinc, and lead in geological materials

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.

    1976-01-01

    An atomic absorption spectrometric method is described for the determination of copper, zinc, and lead in geological materials. The sample is digested with HF-HCl-H2O2; the final solution for analysis is in 10 % (v/v) HCl. Copper and zinc are determined directly by aspirating the solution into an air-acetylene flame. A separate aliquot of the solution is used for determination of lead; lead is extracted into TOPO-MIBK from the acidic solution in the presence of iodide and ascorbic acid. For a 0.50-g sample, the limits of determination are 10-2000 p.p.m. for Cu and Zn, and 5-5000 p.p.m. for Pb. As much as 40 % Fe or Ca. and 10 % Al, Mg, or Mn in the sample do not interfere. The proposed method can be applied to the determination of copper, zinc, and lead in a wide range of geological materials including iron- and manganese-rich, calcareous and carbonate samples. ?? 1976.

  19. Synergistic effects of lead thiocyanate additive and solvent annealing on the performance of wide-bandgap perovskite solar cells

    DOE PAGES

    Yu, Yue; Wang, Changlei; Grice, Corey R.; ...

    2017-04-26

    Here, we show that the cooperation of lead thiocyanate additive and a solvent annealing process can effectively increase the grain size of mixed-cation lead mixed-halide perovskite thin films while avoiding excess lead iodide formation. As a result, the average grain size of the wide-bandgap mixed-cation lead perovskite thin films increases from 66 ± 24 to 1036 ± 111 nm, and the mean carrier lifetime shows a more than 3-fold increase, from 330 ns to over 1000 ns. Consequently, the average open-circuit voltage of wide-bandgap perovskite solar cells increases by 80 (70) mV, and the average power conversion efficiency (PCE) increasesmore » from 13.44 ± 0.48 (11.75 ± 0.34) to 17.68 ± 0.36 (15.58 ± 0.55)% when measured under reverse (forward) voltage scans. The best-performing wide-bandgap perovskite solar cell, with a bandgap of 1.75 eV, achieves a stabilized PCE of 17.18%.« less

  20. 40 CFR 415.364 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sulfate, copper chloride, copper iodide, or copper nitrate which introduces pollutants into a publicly... for existing sources (PSES): Subpart AJ—Copper Sulfate, Copper Chloride, Copper Iodide, Copper Nitrate...

  1. 40 CFR 415.364 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sulfate, copper chloride, copper iodide, or copper nitrate which introduces pollutants into a publicly... for existing sources (PSES): Subpart AJ—Copper Sulfate, Copper Chloride, Copper Iodide, Copper Nitrate...

  2. 40 CFR 415.364 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sulfate, copper chloride, copper iodide, or copper nitrate which introduces pollutants into a publicly... for existing sources (PSES): Subpart AJ—Copper Sulfate, Copper Chloride, Copper Iodide, Copper Nitrate...

  3. 40 CFR 415.364 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sulfate, copper chloride, copper iodide, or copper nitrate which introduces pollutants into a publicly... for existing sources (PSES): Subpart AJ—Copper Sulfate, Copper Chloride, Copper Iodide, Copper Nitrate...

  4. Cesium iodide crystals fused to vacuum tube faceplates

    NASA Technical Reports Server (NTRS)

    Fleck, H. G.

    1964-01-01

    A cesium iodide crystal is fused to the lithium fluoride faceplate of a photon scintillator image tube. The conventional silver chloride solder is then used to attach the faceplate to the metal support.

  5. Iodine addition using triiodide solutions

    NASA Technical Reports Server (NTRS)

    Rutz, Jeffrey A.; Muckle, Susan V.; Sauer, Richard L.

    1992-01-01

    The study develops: a triiodide solution for use in preparing ground service equipment (GSE) water for Shuttle support, an iodine dissolution method that is reliable and requires minimal time and effort to prepare, and an iodine dissolution agent with a minimal concentration of sodium salt. Sodium iodide and hydriodic acid were both found to dissolve iodine to attain the desired GSE iodine concentrations of 7.5 +/- 2.5 mg/L and 25 +/- 5 mg/L. The 1.75:1 and 2:1 sodium iodide solutions produced higher iodine recoveries than the 1.2:1 hydriodic acid solution. A two-hour preparation time is required for the three sodium iodide solutions. The 1.2:1 hydriodic acid solution can be prepared in less than 5 min. Two sodium iodide stock solutions (2.5:1 and 2:1) were found to dissolve iodine without undergoing precipitation.

  6. Design and chemical synthesis of iodine-containing molecules for application to solar-pumped I* lasers

    NASA Technical Reports Server (NTRS)

    Shiner, C. S.

    1985-01-01

    This work is directed toward the design and chemical synthesis of new media for solar-pumped I* lasers. In view of the desirability of preparing a perfluoroalkyl iodide absorbing strongly at 300 nm, the relationship betwen perfluoroalkyl iodide structure and the corresponding absorption wavelength was reexamined. Analysis of existing data suggests that, in this family of compounds, the absorption maximum shifts to longer wavelength, as desired, as the C-I bond in the lasant is progressively weakened. Weakening of the C-I bond correlates, in turn, with increasing stability of the perfluoroalkyl radical formed upon photodissociation of the iodide. The extremely promising absorption characteristics of perfluoro-tert-butyl iodide can be accounted for on this basis. A new technique of diode laser probing to obtain precise yields of I* atoms in photodissociation was also developed.

  7. Crystal structures of five 1-alkyl-4-aryl-1,2,4-triazol-1-ium halide salts

    PubMed Central

    Guino-o, Marites A.; Talbot, Meghan O.; Slitts, Michael M.; Pham, Theresa N.; Audi, Maya C.; Janzen, Daron E.

    2015-01-01

    The asymmetric units for the salts 4-(4-fluoro­phen­yl)-1-isopropyl-1,2,4-triazol-1-ium iodide, C11H13FN3 +·I−, (1), 1-isopropyl-4-(4-methyl­phen­yl)-1,2,4-triazol-1-ium iodide, C12H16N3 +·I−, (2), 1-isopropyl-4-phenyl-1,2,4-triazol-1-ium iodide, C11H14N3 +·I−, (3), and 1-methyl-4-phenyl-1,2,4-triazol-1-ium iodide, C9H10N3 +·I−, (4), contain one cation and one iodide ion, whereas in 1-benzyl-4-phenyl-1,2,4-triazol-1-ium bromide monohydrate, C15H14N3 +·Br−·H2O, (5), there is an additional single water mol­ecule. There is a predominant C—H⋯X(halide) inter­action for all salts, resulting in a two-dimensional extended sheet network between the triazolium cation and the halide ions. For salts with para-substitution on the aryl ring, there is an additional π–anion inter­action between a triazolium carbon and iodide displayed by the layers. For salts without the para-substitution on the aryl ring, the π–π inter­actions are between the triazolium and aryl rings. The melting points of these salts agree with the predicted substituent inductive effects. PMID:26090137

  8. Iodine uptake by spinach (Spinacia oleracea L.) plants grown in solution culture: effects of iodine species and solution concentrations.

    PubMed

    Zhu, Y-G; Huang, Y-Z; Hu, Y; Liu, Y-X

    2003-04-01

    A hydroponic experiment was carried out to investigate the effects of iodine species and solution concentrations on iodine uptake by spinach (Spinacia oleracea L.). Five iodine concentrations (0, 1, 10, 50 and 100 microM) for iodate (IO(3)(-)) and iodide (I(-)) were used. Results show that higher concentrations of I(-) (> or =10 microM) had some detrimental effect on plant growth, while IO(3)(-) had little effect on the biomass production of spinach plants. Increases in iodine concentration in the growth solution significantly enhanced I concentrations in plant tissues. The detrimental effect of I(-) on plant growth was probably due to the excessively high accumulation of I in plant tissues. The solution-to-spinach leaf transfer factors (TF(leaf), fresh weight basis) for plants treated with iodide were between 14.2 and 20.7 at different solution concentrations of iodide; TF(leaf) for plants treated with iodate decreased gradually from 23.7 to 2.2 with increasing solution concentrations of iodate. The distribution coefficients (DCs) of I between leaves and roots were constantly higher for plants treated with iodate than those treated with iodide. DCs for plants treated with iodide increased with increasing solution concentrations of iodide, while DCs for plants treated with iodate (around 5.5) were similar across the range of solution concentrations of iodate used in this experiment. The implications of iodine accumulation in leafy vegetables in human iodine nutrition are also discussed. Copyright 2002 Elsevier Science Ltd.

  9. Factors affecting the formation of iodo-trihalomethanes during oxidation with chlorine dioxide.

    PubMed

    Guo, Wanhong; Shan, Yingchun; Yang, Xin

    2014-01-15

    Effects of water characteristics, reaction time, temperature, bromide and iodide ion concentrations, oxidant doses, and pH on formation of iodinated trihalomethanes (I-THM) during oxidation of iodide-containing water with chlorine dioxide (ClO2) were investigated. Among the water samples collected from ten water sources, iodoform (CHI3) was the predominant I-THM and trace amount of chlorodiiodomethane (CHClI2) was occasionally found. CHI3 yields correlated moderately with specific UV absorbance (SUVA) (R(2)=0.79), indicating that hydrophobic aromatic content were important precursors. Longer reaction time led to continued formation of CHI3. I-THM containing bromide was also found in waters containing both bromide and iodide, but CHI3 was dominant. The formation of CHI3 was higher at 25°C than 5°C and 35°C. CHI3 formation showed an increase followed by a decrease trend with increasing ClO2 doses and iodide concentrations and the highest yields occurred at iodide to ClO2 molar ratios of 1-2. pH 8 resulted in the highest CHI3 formation. It should be noted that a high iodide concentration was spiked to waters before adding ClO2 and the results may not reflect the formation yields of iodinated THMs in real conditions, but they provide information about formation trend of I-THM during oxidation of ClO2. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Managing Terrorism or Accidental Nuclear Errors, Preparing for Iodine-131 Emergencies: A Comprehensive Review

    PubMed Central

    Braverman, Eric R.; Blum, Kenneth; Loeffke, Bernard; Baker, Robert; Kreuk, Florian; Yang, Samantha Peiling; Hurley, James R.

    2014-01-01

    Chernobyl demonstrated that iodine-131 (131I) released in a nuclear accident can cause malignant thyroid nodules to develop in children within a 300 mile radius of the incident. Timely potassium iodide (KI) administration can prevent the development of thyroid cancer and the American Thyroid Association (ATA) and a number of United States governmental agencies recommend KI prophylaxis. Current pre-distribution of KI by the United States government and other governments with nuclear reactors is probably ineffective. Thus we undertook a thorough scientific review, regarding emergency response to 131I exposures. We propose: (1) pre-distribution of KI to at risk populations; (2) prompt administration, within 2 hours of the incident; (3) utilization of a lowest effective KI dose; (4) distribution extension to at least 300 miles from the epicenter of a potential nuclear incident; (5) education of the public about dietary iodide sources; (6) continued post-hoc analysis of the long-term impact of nuclear accidents; and (7) support for global iodine sufficiency programs. Approximately two billion people are at risk for iodine deficiency disorder (IDD), the world’s leading cause of preventable brain damage. Iodide deficient individuals are at greater risk of developing thyroid cancer after 131I exposure. There are virtually no studies of KI prophylaxis in infants, children and adolescents, our target population. Because of their sensitivity to these side effects, we have suggested that we should extrapolate from the lowest effective adult dose, 15–30 mg or 1–2 mg per 10 pounds for children. We encourage global health agencies (private and governmental) to consider these critical recommendations. PMID:24739768

  11. Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells

    NASA Astrophysics Data System (ADS)

    Jodlowski, Alexander D.; Roldán-Carmona, Cristina; Grancini, Giulia; Salado, Manuel; Ralaiarisoa, Maryline; Ahmad, Shahzada; Koch, Norbert; Camacho, Luis; de Miguel, Gustavo; Nazeeruddin, Mohammad Khaja

    2017-12-01

    Organic-inorganic lead halide perovskites have shown photovoltaic performances above 20% in a range of solar cell architectures while offering simple and low-cost processability. Despite the multiple ionic compositions that have been reported so far, the presence of organic constituents is an essential element in all of the high-efficiency formulations, with the methylammonium and formamidinium cations being the sole efficient options available to date. In this study, we demonstrate improved material stability after the incorporation of a large organic cation, guanidinium, into the MAPbI3 crystal structure, which delivers average power conversion efficiencies over 19%, and stabilized performance for 1,000 h under continuous light illumination, a fundamental step within the perovskite field.

  12. Exciton-Dominated Core-Level Absorption Spectra of Hybrid Organic-Inorganic Lead Halide Perovskites.

    PubMed

    Vorwerk, Christian; Hartmann, Claudia; Cocchi, Caterina; Sadoughi, Golnaz; Habisreutinger, Severin N; Félix, Roberto; Wilks, Regan G; Snaith, Henry J; Bär, Marcus; Draxl, Claudia

    2018-04-19

    In a combined theoretical and experimental work, we investigate X-ray absorption near-edge structure spectroscopy of the I L 3 and the Pb M 5 edges of the methylammonium lead iodide (MAPbI 3 ) hybrid inorganic-organic perovskite and its binary phase PbI 2 . The absorption onsets are dominated by bound excitons with sizable binding energies of a few hundred millielectronvolts and pronounced anisotropy. The spectra of both materials exhibit remarkable similarities, suggesting that the fingerprints of core excitations in MAPbI 3 are essentially given by its inorganic component, with negligible influence from the organic groups. The theoretical analysis complementing experimental observations provides the conceptual insights required for a full characterization of this complex material.

  13. Modulated photophysics of a cationic DNA-staining dye inside protein bovine serum albumin: study of binding interaction and structural changes of protein.

    PubMed

    Samanta, Anuva; Jana, Sankar; Ray, Debarati; Guchhait, Nikhil

    2014-01-01

    The binding affinity of cationic DNA-staining dye, propidium iodide, with transport protein, bovine serum albumin, has been explored using UV-vis absorption, fluorescence, and circular dichroism spectroscopy. Steady state and time resolved fluorescence studies authenticate that fluorescence quenching of bovine serum albumin by propidium iodide is due to bovine serum albumin-propidium iodide complex formation. Thermodynamic parameters obtained from temperature dependent spectral studies cast light on binding interaction between the probe and protein. Site marker competitive binding has been encountered using phenylbutazone and flufenamic acid for site I and site II, respectively. Energy transfer efficiency and distance between bovine serum albumin and propidium iodide have been determined using Förster mechanism. Structural stabilization or destabilization of protein by propidium iodide has been investigated by urea denaturation study. The circular dichroism study as well as FT-IR measurement demonstrates some configurational changes of the protein in presence of the dye. Docking studies support the experimental data thereby reinforcing the binding site of the probe to the subdomain IIA of bovine serum albumin. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Intrathyroidal iodine metabolism in the rat. The influence of diet and the administration of thyroid-stimulating hormone

    PubMed Central

    Barnaby, C. F.; Davidson, Ailsa M.; Plaskett, L. G.

    1965-01-01

    1. Ratios of mono[131I]iodotyrosine and di[131I]iodotyrosine (R values) and the incorporation of 131I into iodothyronines have been estimated in rat thyroid glands from 30min. to 38hr. after the administration of [131I]iodide. 2. In rats receiving a powdered low-iodine diet the R values were close to unity and did not change with time after the administration of [131I]iodide. In rats receiving a commercial pellet diet the R values fell from a mean of 0·8 at 30min. after [131I]iodide administration to 0·49 at 38hr. 3. Administration of 0·5–2·0i.u. of thyroid-stimulating hormone before giving the injection of [131I]iodide caused a small diminution in the R value when the time between injecting [131I]iodide and killing the animal was 16hr. or more. 4. Iodothyronines represented a greater percentage of the total thyroid-gland radioactivity in the iodine-deficient animals than in animals fed on the pellet diet. Thyroid-stimulating hormone had little effect, if any, on the iodothyronine contents. PMID:14342520

  15. Homology of pendrin, sodium-iodide symporter and apical iodide transporter.

    PubMed

    Benvenga, Salvatore; Guarneri, Fabrizio

    2018-06-01

    We observed local homology between human pendrin and sodium/iodide symporter (NIS), that was absent in the NIS-homologous sodium/monocarboxylate transporter or apical iodide transporter (AIT) which, however, does not transport iodide. Thus, we analyzed the full proteins. They shared 63 identical and 66 similar residues (overall homology 14.4%, but 21% when omitting intervening sequences of 15 or more residues). Pendrin was more homologous to NIS (25%) than AIT (20%), particularly in the STAS domain (sulfate transporter and antisigma factor antagonist). Homology was concentrated in 11 segments, with 3/11 involving the STAS domain. In 9/11, homology was greater with NIS (45-58.3%) than with AIT (8.3-42.3%); in 4 of these 9 segments, homology was comparable to or greater than that between NIS and AIT (8.3-52.6%). Pendrin residues which are mutated in Pendred's syndrome are identical to those in the aligned position of NIS and AIT. Hypothyroidism-associated pendrin mutations almost always fall within 4/11 segments. These are the first data that show homology between pendrin and NIS, and topographic relationships between pendrin mutations and the hypothyroid phenotype of PDS.

  16. Sustained ERK inhibition maximizes responses of BrafV600E thyroid cancers to radioiodine

    PubMed Central

    Nagarajah, James; Le, Mina; Montero-Conde, Cristina; Pillarsetty, Nagavarakishore; Bolaender, Alexander; Irwin, Christopher; Krishnamoorthy, Gnana Prakasam; Larson, Steven M.; Ho, Alan L.; Seshan, Venkatraman; Ishii, Nobuya; Carrasco, Nancy; Rosen, Neal; Weber, Wolfgang A.; Fagin, James A.

    2016-01-01

    Radioiodide (RAI) therapy of thyroid cancer exploits the relatively selective ability of thyroid cells to transport and accumulate iodide. Iodide uptake requires expression of critical genes that are involved in various steps of thyroid hormone biosynthesis. ERK signaling, which is markedly increased in thyroid cancer cells driven by oncogenic BRAF, represses the genetic program that enables iodide transport. Here, we determined that a critical threshold for inhibition of MAPK signaling is required to optimally restore expression of thyroid differentiation genes in thyroid cells and in mice with BrafV600E-induced thyroid cancer. Although the MEK inhibitor selumetinib transiently inhibited ERK signaling, which subsequently rebounded, the MEK inhibitor CKI suppressed ERK signaling in a sustained manner by preventing RAF reactivation. A small increase in ERK inhibition markedly increased the expression of thyroid differentiation genes, increased iodide accumulation in cancer cells, and thereby improved responses to RAI therapy. Only a short exposure to the drug was necessary to obtain a maximal response to RAI. These data suggest that potent inhibition of ERK signaling is required to adequately induce iodide uptake and indicate that this is a promising strategy for the treatment of BRAF-mutant thyroid cancer. PMID:27669459

  17. Sustained ERK inhibition maximizes responses of BrafV600E thyroid cancers to radioiodine.

    PubMed

    Nagarajah, James; Le, Mina; Knauf, Jeffrey A; Ferrandino, Giuseppe; Montero-Conde, Cristina; Pillarsetty, Nagavarakishore; Bolaender, Alexander; Irwin, Christopher; Krishnamoorthy, Gnana Prakasam; Saqcena, Mahesh; Larson, Steven M; Ho, Alan L; Seshan, Venkatraman; Ishii, Nobuya; Carrasco, Nancy; Rosen, Neal; Weber, Wolfgang A; Fagin, James A

    2016-11-01

    Radioiodide (RAI) therapy of thyroid cancer exploits the relatively selective ability of thyroid cells to transport and accumulate iodide. Iodide uptake requires expression of critical genes that are involved in various steps of thyroid hormone biosynthesis. ERK signaling, which is markedly increased in thyroid cancer cells driven by oncogenic BRAF, represses the genetic program that enables iodide transport. Here, we determined that a critical threshold for inhibition of MAPK signaling is required to optimally restore expression of thyroid differentiation genes in thyroid cells and in mice with BrafV600E-induced thyroid cancer. Although the MEK inhibitor selumetinib transiently inhibited ERK signaling, which subsequently rebounded, the MEK inhibitor CKI suppressed ERK signaling in a sustained manner by preventing RAF reactivation. A small increase in ERK inhibition markedly increased the expression of thyroid differentiation genes, increased iodide accumulation in cancer cells, and thereby improved responses to RAI therapy. Only a short exposure to the drug was necessary to obtain a maximal response to RAI. These data suggest that potent inhibition of ERK signaling is required to adequately induce iodide uptake and indicate that this is a promising strategy for the treatment of BRAF-mutant thyroid cancer.

  18. Synergistic effect of iodide ions on the corrosion inhibition of steel in 0.5 M H 2SO 4 by new chalcone derivatives

    NASA Astrophysics Data System (ADS)

    Bouklah, M.; Hammouti, B.; Aouniti, A.; Benkaddour, M.; Bouyanzer, A.

    2006-07-01

    The effect of addition of 4',4-dihydroxychalcone (P 1), 4-aminochalcone (P 2) and 4-bromo, 4'-methoxychalcone (P 3) on the corrosion of steel in 0.5 M sulphuric acid has been studied by weight loss measurements, potentiodynamic and EIS measurements. We investigate the synergistic effect of iodide ions on the corrosion inhibition of steel in the presence of chalcone derivatives. The corrosion rates of the steel decrease with the increase of the chalcones concentration, while the inhibition efficiencies increase. The addition of iodide ions enhances the inhibition efficiency considerably. The presence of iodide ions increases the degree of surface coverage. The synergism parameters SΘ and SI, calculated from surface coverage and the values of inhibition efficiency, in the case of chalcone derivatives are found to be larger than unity. The enhanced inhibition efficiency in the presence of iodide ions is only due to synergism and there is a definite contribution from the inhibitors molecules. E (%) obtained from the various methods is in good agreement. Polarisation measurements show also that the compounds act as cathodic inhibitors.

  19. Provisional Peer-Reviewed Toxicity Values for Rubidium Compounds (Rubidium Iodide)

    EPA Science Inventory

    This is a PPRTV for Rubidium Compounds submitted to the Superfund Program.This assessment supports multiple isomers (see related links) and this page is about the chemical rubidium iodide, CASRN 7790-29-6.

  20. β-Selective C-H arylation of pyrroles leading to concise syntheses of lamellarins C and I.

    PubMed

    Ueda, Kirika; Amaike, Kazuma; Maceiczyk, Richard M; Itami, Kenichiro; Yamaguchi, Junichiro

    2014-09-24

    The first general β-selective C-H arylation of pyrroles has been developed by using a rhodium catalyst. This C-H arylation reaction, which is retrosynthetically straightforward but results in unusual regioselectivity, could result in de novo syntheses of pyrrole-derived natural products and pharmaceuticals. As such, we have successfully synthesized polycyclic marine pyrrole alkaloids, lamellarins C and I, by using this β-selective arylation of pyrroles with aryl iodides (C-H/C-I coupling) and a new double C-H/C-H coupling as key steps.

  1. A Palladium Iodide-Catalyzed Cyclocarbonylation Approach to Thiadiazafluorenones.

    PubMed

    Veltri, Lucia; Paladino, Veronica; Plastina, Pierluigi; Gabriele, Bartolo

    2016-07-15

    The first example of an additive cyclocarbonylation process leading to 1-thia-4a,9-diazafluoren-4-ones is reported. This process is based on the reaction of readily available 2-(propynylthio)benzimidazoles with carbon monoxide carried out in EtOH at 100 °C under a 5/2 mixture of CO-CO2 at 70 atm in the presence of the PdI2/KI catalytic system. Experimental evidence suggests a mechanistic pathway involving N-palladation of the substrate followed by CO insertion, triple bond insertion, protonolysis, and isomerization.

  2. Process for the extemporaneous preparation of an injectable fatty acid tagged in the omega position by means of radioactive iodine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardy, A.; Comet, M.; Coornaert, S.

    1984-10-09

    A process is claimed for the preparation of a fatty acid tagged with radioactive iodine, where a brominated or iodized fatty acid is reacted, preferably in the omega position, with radioactive iodide in the dry state or with an aqueous solution of radioactive iodide, in the presence of vehicling iodide, to exchange the bromine or iodine of the fatty acid for radioactive iodine. Application to use as radio-pharmaceutical products for studying cardiac metabolism troubles in human beings by scintigraphy is mentioned.

  3. Occurrence of perchlorate and thiocyanate in human serum from e-waste recycling and reference sites in Vietnam: association with thyroid hormone and iodide levels.

    PubMed

    Eguchi, Akifumi; Kunisue, Tatsuya; Wu, Qian; Trang, Pham Thi Kim; Viet, Pham Hung; Kannan, Kurunthachalam; Tanabe, Shinsuke

    2014-07-01

    Perchlorate (ClO4 (-)) and thiocyanate (SCN(-)) interfere with iodide (I(-)) uptake by the sodium/iodide symporter, and thereby these anions may affect the production of thyroid hormones (THs) in the thyroid gland. Although human exposure to perchlorate and thiocyanate has been studied in the United States and Europe, few investigations have been performed in Asian countries. In this study, we determined concentrations of perchlorate, thiocyanate, and iodide in 131 serum samples collected from 2 locations in Northern Vietnam, Bui Dau (BD; electrical and electronic waste [e-waste] recycling site) and Doung Quang (DQ; rural site) and examined the association between serum levels of these anions with levels of THs. The median concentrations of perchlorate, thiocyanate, and iodide detected in the serum of Vietnamese subjects were 0.104, 2020, and 3.11 ng mL(-1), respectively. Perchlorate levels were significantly greater in serum of the BD population (median 0.116 ng mL(-1)) than those in the DQ population (median 0.086 ng mL(-1)), which indicated greater exposure from e-waste recycling operations by the former. Serum concentrations of thiocyanate were not significantly different between the BD and DQ populations, but increased levels of this anion were observed among smokers. Iodide was a significant positive predictor of serum levels of FT3 and TT3 and a significant negative predictor of thyroid-stimulating hormone in males. When the association between serum levels of perchlorate or thiocyanate and THs was assessed using a stepwise multiple linear regression model, no significant correlations were found. In addition to greater concentrations of perchlorate detected in the e-waste recycling population, however, given that lower concentrations of iodide were observed in the serum of Vietnamese females, detailed risk assessments on TH homeostasis for females inhabiting e-waste recycling sites, especially for pregnant women and their neonates, are required.

  4. Thyroid function alterations attributed to high iodide supplementation in maternal rats and their offspring.

    PubMed

    Liang, Xue; Feng, Yanni; Lin, Laixiang; Abeysekera, Iruni Roshanie; Iqbal, Umar; Wang, Tingting; Wang, Ying; Yao, Xiaomei

    2018-05-01

    Our aim was to investigate thyroid function alterations attributed to high iodide supplementation in maternal rats and their offspring. Depending on their iodide intake, the pregnant rats were randomly divided into three groups: normal iodide intake (NI), 10 times high iodide intake (10 HI) and 100 times high iodide intake (100 HI) groups. Iodine concentration in the urine and maternal milk; iodine content and mitochondrial superoxide production; expression of TRα1, TRβ1, NIS and Dio1 in both the thyroid and mammary glands were all measured. The offspring were exposed to different iodide-containing water (NI, 10 HI and 100 HI) from weaning to postnatal day 180 (PN180). Serum thyroid hormone levels were measured in both maternal rats and their offspring. Iodine concentration in the urine and maternal milk, as well as iodine content in the thyroid and mammary glands was significantly increased in both the 10 HI and 100 HI groups (p < .05). In the 100 HI group of maternal rats, low FT3 levels, high FT4, TPOAb and TgAb levels were detected. In addition, an increased mitochondrial superoxide production and decreased expression of TRα1, TRβ1, NIS and Dio1 in the thyroid and mammary glands was found (p < .05). A positive staining of CD4 + that co-localized with TRβ1 in the infiltrated cells within the thyroid follicles was observed. At PN180 in the offspring, the FT3 and FT4 levels showed a significant decrease, while the levels of serum TSH, TPOAb and TgAb were significantly increased in both 10 HI and 100 HI groups (p < .05). In maternal rats, although normal thyroid function can be maintained following 10 HI, thyroiditis can be induced following 100 HI on lactation days 7, 14, and 21. In the offspring at PN180, hypothyroidism complicated with thyroiditis can occur in both the 10 HI and 100 HI groups. Copyright © 2018 Elsevier GmbH. All rights reserved.

  5. Multicompartmental model for iodide, thyroxine, and triiodothyronine metabolism in normal and spontaneously hyperthyroid cats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hays, M.T.; Broome, M.R.; Turrel, J.M.

    A comprehensive multicompartmental kinetic model was developed to account for the distribution and metabolism of simultaneously injected radioactive iodide (iodide*), T3 (T3*), and T4 (T4*) in six normal and seven spontaneously hyperthyroid cats. Data from plasma samples (analyzed by HPLC), urine, feces, and thyroid accumulation were incorporated into the model. The submodels for iodide*, T3*, and T4* all included both a fast and a slow exchange compartment connecting with the plasma compartment. The best-fit iodide* model also included a delay compartment, presumed to be pooling of gastrosalivary secretions. This delay was 62% longer in the hyperthyroid cats than in themore » euthyroid cats. Unexpectedly, all of the exchange parameters for both T4 and T3 were significantly slowed in hyperthyroidism, possibly because the hyperthyroid cats were older. None of the plasma equivalent volumes of the exchange compartments of iodide*, T3*, or T4* was significantly different in the hyperthyroid cats, although the plasma equivalent volume of the fast T4 exchange compartments were reduced. Secretion of recycled T4* from the thyroid into the plasma T4* compartment was essential to model fit, but its quantity could not be uniquely identified in the absence of multiple thyroid data points. Thyroid secretion of T3* was not detectable. Comparing the fast and slow compartments, there was a shift of T4* deiodination into the fast exchange compartment in hyperthyroidism. Total body mean residence times (MRTs) of iodide* and T3* were not affected by hyperthyroidism, but mean T4* MRT was decreased 23%. Total fractional T4 to T3 conversion was unchanged in hyperthyroidism, although the amount of T3 produced by this route was increased nearly 5-fold because of higher concentrations of donor stable T4.« less

  6. Sorption of radioiodide in an acidic, nutrient-poor boreal bog: insights into the microbial impact.

    PubMed

    Lusa, M; Bomberg, M; Aromaa, H; Knuutinen, J; Lehto, J

    2015-05-01

    Batch sorption experiments were conducted to evaluate the sorption behaviour of iodide and the microbial impact on iodide sorption in the surface moss, subsurface peat, gyttja, and clay layers of a nutrient-poor boreal bog. The batch distribution coefficient (Kd) values of iodide decreased as a function of sampling depth. The highest Kd values, 4800 L/Kg dry weight (DW) (geometric mean), were observed in the fresh surface moss and the lowest in the bottom clay (geometric mean 90 mL/g DW). In the surface moss, peat and gyttja layers, which have a high organic matter content (on average 97%), maximum sorption was observed at a pH between ∼ 4 and 5 and in the clay layer at pH 2. The Kd values were significantly lower in sterilized samples, being 20-fold lower than the values found for the unsterilized samples. In addition, the recolonization of sterilized samples with a microbial population from the fresh samples restored the sorption capacity of surface moss, peat and gyttja samples, indicating that the decrease in the sorption was due to the destruction of microbes and supporting the hypothesis that microbes are necessary for the incorporation of iodide into the organic matter. Anoxic conditions reduced the sorption of iodide in fresh, untreated samples, similarly to the effect of sterilization, which supports the hypothesis that iodide is oxidized into I2/HIO before incorporation into the organic matter. Furthermore, the Kd values positively correlated with peroxidase activity in surface moss, subsurface peat and gyttja layers at +20 °C, and with the bacterial cell counts obtained from plate count agar at +4 °C. Our results demonstrate the importance of viable microbes for the sorption of iodide in the bog environment, having a high organic matter content and a low pH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Radiochemical purity of iodine-131 labelled metaiodobenzylguanidine infusion fluids: a report from clinical practice.

    PubMed

    Wafelman, A R; Suchi, R; Hoefnagel, C A; Beijnen, J H

    1993-07-01

    Iodine-131 labelled metaiodobenzylguanidine ([131I]MIBG) has a diagnostic and therapeutic role in the management of neural crest tumours, particularly neuroblastoma, malignant phaeochromocytoma and paraganglioma. With therapeutic amounts of [131I]MIBG it is essential that the amount of free [131I]iodide, the most important impurity, is known. In clinical practice the percentage of free [131I]iodide seen in a [131I]MIBG infusion concentrate increased from 2.2% +/- 0.67% to 3.6% +/- 0.39% (mean +/- SD; n = 23) 1 day after production. At the time of use the percentage of free [131I]iodide was always below our upper limit of acceptance of 5%. Since 5% of free [131I]iodide is within practical reach in our environment, a higher percentage at the time of preadministration quality control is not accepted in the Netherlands Cancer Institute.

  8. A comparison of TO-PRO-1 iodide and 5-CFDA-AM staining methods for assessing viability of planktonic algae with epifluorescence microscopy.

    PubMed

    Gorokhova, Elena; Mattsson, Lisa; Sundström, Annica M

    2012-06-01

    Two fluorescent dyes, TO-PRO-1 iodide and 5-CFDA-AM, were evaluated for LIVE/DEAD assessment of unicellular marine algae Brachiomonas submarina and Tetraselmis suecica. Epifluorescence microscopy was used to estimate cell viability in predetermined mixtures of viable and non-viable algal cells and validated using microplate growth assay as reference measurements. On average, 5-CFDA-AM underestimated live cell abundance by ~25% compared with viability estimated by the growth assay, whereas TO-PRO-1 iodide provided accurate viability estimates. Furthermore, viability estimates based on staining with TO-PRO-1 iodide were not affected by a storage period of up to one month in -80°C, making the assay a good candidate for routine assessment of phytoplankton populations in field and laboratory studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Antifungal effects of peroxidase systems.

    PubMed

    Lehrer, R I

    1969-08-01

    In the presence of hydrogen peroxide and either potassium iodide, sodium chloride, or potassium bromide, purified human myeloperoxidase was rapidly lethal to several species of Candida. Its candidacidal activity was inhibited by cyanide, fluoride, and azide, and by heat inactivation of the enzyme. A hydrogen peroxidegenerating system consisting of d-amino acid oxidase, flavine-adenine dinucleotide, and d-alanine could replace hydrogen peroxide in the candidacidal system. Horseradish peroxidase and human eosinophil granules also exerted candidacidal activity in the presence of iodide and hydrogen peroxide; however, unlike myeloperoxidase or neutrophil granules, these peroxidase sources were inactive when chloride replaced iodide. Cells of Saccharomyces, Geotrichum, and Rhodotorula species, and spores of Aspergillus fumigatus and A. niger were also killed by the combination of myeloperoxidase, iodide, and hydrogen peroxide. Peroxidases, functionally linked to hydrogen peroxide-generating systems, could provide phagocytic cells with the ability to kill many fungal species.

  10. Potentiation of antimicrobial photodynamic inactivation mediated by a cationic fullerene by added iodide: in vitro and in vivo studies

    PubMed Central

    Zhang, Yunsong; Dai, Tianhong; Wang, Min; Vecchio, Daniela; Chiang, Long Y; Hamblin, Michael R

    2016-01-01

    Background Antimicrobial photodynamic inactivation with fullerenes bearing cationic charges may overcome resistant microbes. Methods & results We synthesized C60-fullerene (LC16) bearing decaquaternary chain and deca-tertiary-amino groups that facilitates electron-transfer reactions via the photoexcited fullerene. Addition of the harmless salt, potassium iodide (10 mM) potentiated the ultraviolet A (UVA) or white light-mediated killing of Gram-negative bacteria Acinetobacter baumannii, Gram-positive methicillin-resistant Staphylococcus aureus and fungal yeast Candida albicans by 1–2+ logs. Mouse model infected with bioluminescent Acinetobacter baumannii gave increased loss of bioluminescence when iodide (10 mM) was combined with LC16 and UVA/white light. Conclusion The mechanism may involve photoinduced electron reduction of 1(C60>)* or 3(C60>)* by iodide producing I· or I2 followed by subsequent intermolecular electron-transfer events of (C60>)−· to produce reactive radicals. PMID:25723093

  11. Simultaneous detection of iodine and iodide on boron doped diamond electrodes.

    PubMed

    Fierro, Stéphane; Comninellis, Christos; Einaga, Yasuaki

    2013-01-15

    Individual and simultaneous electrochemical detection of iodide and iodine has been performed via cyclic voltammetry on boron doped diamond (BDD) electrodes in a 1M NaClO(4) (pH 8) solution, representative of typical environmental water conditions. It is feasible to compute accurate calibration curve for both compounds using cyclic voltammetry measurements by determining the peak current intensities as a function of the concentration. A lower detection limit of about 20 μM was obtained for iodide and 10 μM for iodine. Based on the comparison between the peak current intensities reported during the oxidation of KI, it is probable that iodide (I(-)) is first oxidized in a single step to yield iodine (I(2)). The latter is further oxidized to obtain IO(3)(-). This technique, however, did not allow for a reasonably accurate detection of iodate (IO(3)(-)) on a BDD electrode. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Colorimetric Solid Phase Extraction for the Measurement of Total I (Iodine, Iodide, and Triiodide) in Spacecraft Drinking Water

    NASA Technical Reports Server (NTRS)

    Lipert, Robert J.; Porter, Marc D.; Siperko, Lorraine M.; Gazda, Daniel B.; Rutz, Jeff A.; Schultz, John R.; Carrizales, Stephanie M.; McCoy, J. Torin

    2009-01-01

    An experimental drinking water monitoring kit for the measurement of iodine and silver(I) was recently delivered to the International Space Station (ISS). The kit is based on Colorimetric Solid Phase Extraction (CSPE) technology, which measures the change in diffuse reflectance of indicator disks following exposure to a water sample. To satisfy additional spacecraft water monitoring requirements, CSPE has now been extended to encompass the measurement of total I (iodine, iodide, and triiodide) through the introduction of an oxidizing agent, which converts iodide and triiodide to iodine, for measurement using the same indicator disks currently being tested on ISS. These disks detect iodine, but are insensitive to iodide and triiodide. We report here the operational considerations, design, and ground-based performance of the CSPE method for total I. The results demonstrate that CSPE technology is poised to meet NASA's total I monitoring requirements.

  13. Thyroid effects of iodine and iodide in potable water

    NASA Technical Reports Server (NTRS)

    Bull, Richard J.; Thrall, Karla D.; Sherer, Todd T.

    1991-01-01

    Experiments are reviewed which examine the comparative toxicological effects of iodide (I) and iodine (I2) when used to disinfect drinking water. References are made to a subchronic study in rats, a comparison of the distribution of radiolabeled I and I2, and a demonstration of thyroxine formation in the gastrointestinal tract. The results of the study of the rats are examined in detail; the findings show that I and I2 have opposite effects on the concentrations of thyroid hormones in blood. Iodide slightly decreases circulating thyroxine, while I2 significantly increases the thyroxine concentrations, decreases triiodothyronine levels, and does not change the weight of the thyroid gland. The related effects of I2 ingestion are set forth in detail and are shown to be unique to I2 contamination. Iodine can counteract the effects of iodide and should therefore be used as a disinfectant in drinking water.

  14. Differentially pumped spray deposition as a rapid screening tool for organic and perovskite solar cells.

    PubMed

    Jung, Yen-Sook; Hwang, Kyeongil; Scholes, Fiona H; Watkins, Scott E; Kim, Dong-Yu; Vak, Doojin

    2016-02-08

    We report a spray deposition technique as a screening tool for solution processed solar cells. A dual-feed spray nozzle is introduced to deposit donor and acceptor materials separately and to form blended films on substrates in situ. Using a differential pump system with a motorised spray nozzle, the effect of film thickness, solution flow rates and the blend ratio of donor and acceptor materials on device performance can be found in a single experiment. Using this method, polymer solar cells based on poly(3-hexylthiophene) (P3HT):(6,6)-phenyl C61 butyric acid methyl ester (PC61BM) are fabricated with numerous combinations of thicknesses and blend ratios. Results obtained from this technique show that the optimum ratio of materials is consistent with previously reported values confirming this technique is a very useful and effective screening method. This high throughput screening method is also used in a single-feed configuration. In the single-feed mode, methylammonium iodide solution is deposited on lead iodide films to create a photoactive layer of perovskite solar cells. Devices featuring a perovskite layer fabricated by this spray process demonstrated a power conversion efficiencies of up to 7.9%.

  15. Anions in Electrothermal Supercharging of Proteins with Electrospray Ionization Follow a Reverse Hofmeister Series

    PubMed Central

    2015-01-01

    The effects of different anions on the extent of electrothermal supercharging of proteins from aqueous ammonium and sodium salt solutions were investigated. Sulfate and hydrogen phosphate are the most effective anions at producing high charge state protein ions from buffered aqueous solution, whereas iodide and perchlorate are ineffective with electrothermal supercharging. The propensity for these anions to produce high charge state protein ions follows the following trend: sulfate > hydrogen phosphate > thiocyanate > bicarbonate > chloride > formate ≈ bromide > acetate > iodide > perchlorate. This trend correlates with the reverse Hofmeister series over a wide range of salt concentrations (1 mM to 2 M) and with several physical properties, including solvent surface tension, anion viscosity B-coefficient, and anion surface/bulk partitioning coefficient, all of which are related to the Hofmeister series. The effectiveness of electrothermal supercharging does not depend on bubble formation, either from thermal degradation of the buffer or from coalescence of dissolved gas. These results provide evidence that the effect of different ions in the formation of high charge state ions by electrothermal supercharging is largely a result of Hofmeister effects on protein stability leading to protein unfolding in the heated ESI droplet. PMID:24410546

  16. Mesophase stabilization in ionic liquid crystals through pairing equally shaped mesogenic cations and anions

    DOE PAGES

    Stappert, Kathrin; Lipinski, Gregor; Kopiec, Gabriel; ...

    2015-07-23

    The synthesis and properties of a set of novel ionic liquid crystals with congruently shaped cations and anions are reported to check whether pairing mesogenic cations with mesogenic anions leads to a stabilization of a liquid crystalline phase. To that avail 1-alkyl-3-methyl-triazolium cations with an alkyl chain length of 10, 12, and 14 carbon atoms have been combined with p-alkyloxy-benzenesulfonate anions with different alkyl chain lengths (n = 10, 12, and 14). The corresponding triazolium iodides have been synthesized as reference compounds where the cation and anion have strong size and shape mismatch. The mesomorphic behavior of all compounds ismore » studied by differential scanning calorimetry and polarizing optical microscopy. All compounds except 1-methyl-3-decyltriazolium iodide, which qualifies as an ionic liquid, are thermotropic ionic liquid crystals. All other compounds adopt smectic A phases. As a result, a comparison of the thermal phase behavior of the 1-methyl-3-decyltriazolium bromides to the corresponding p-alkoxy-benzensulfonates reveals that definitely the mesophase is stabilized by pairing the rod-shaped 1-alkyl-3-methyltriazolium cation with a rod-like anion of similar size.« less

  17. Development of a mercuric iodide detector array for in-vivo x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, B.E.; Iwanczyk, J.S.; Tornai, M.P.

    A nineteen element mercuric iodide (HgI{sub 2}) detector array has been developed in order to investigate the potential of using this technology for in-vivo x-ray and gamma-ray imaging. A prototype cross-grid detector array was constructed with hexagonal pixels of 1.9 mm diameter (active area = 3.28 mm{sup 2}) and 0.2 mm thick septa. The overall detector active area is roughly 65 mm{sup 2}. A detector thickness of 1.2 mm was used to achieve about 100% efficiency at 60 keV and 67% efficiency at 140 keV The detector fabrication, geometry and structure were optimized for charge collection and to minimize crosstalkmore » between elements. A section of a standard high resolution cast-lead gamma-camera collimator was incorporated into the detector to provide collimation matching the discrete pixel geometry. Measurements of spectral and spatial performance of the array were made using 241-Am and 99m-Tc sources. These measurements were compared with similar measurements made using an optimized single HgI{sub 2} x-ray detector with active area of about 3 mm{sup 2} and thickness of 500 {mu}m.« less

  18. Effects of repeated potassium iodide administration on genes involved in synthesis and secretion of thyroid hormone in adult male rat.

    PubMed

    Lebsir, Dalila; Manens, Line; Grison, Stephane; Lestaevel, Philippe; Ebrahimian, Teni; Suhard, David; Phan, Guillaume; Dublineau, Isabelle; Tack, Karine; Benderitter, Marc; Pech, Annick; Jourdain, Jean-Rene; Souidi, Maâmar

    2018-02-26

    A single dose of potassium iodide (KI) is recommended to reduce the risk of thyroid cancer during nuclear accidents. However in case of prolonged radioiodine exposure, more than one dose of KI may be necessary. This work aims to evaluate the potential toxic effect of repeated administration of KI. Adult Wistar rats received an optimal dose of KI 1 mg/kg over a period of 1, 4 or 8 days. hormonal status (TSH, FT4) of treated rats was unaffected. Contrariwise, a sequential Wolff-Chaikoff effect was observed, resulting in a prompt decrease of NIS and MCT8 mRNA expression (-58% and -26% respectively), followed by a delayed decrease of TPO mRNA expression (-33%) in conjunction with a stimulation of PDS mRNA expression (+62%). we show for the first time that repeated administration of KI at 1 mg/kg/24h doesn't cause modification of thyroid hormones level, but leads to a reversible modification of the expression of genes involved in the synthesis and secretion of thyroid hormones. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Differentially pumped spray deposition as a rapid screening tool for organic and perovskite solar cells

    PubMed Central

    Jung, Yen-Sook; Hwang, Kyeongil; Scholes, Fiona H.; Watkins, Scott E.; Kim, Dong-Yu; Vak, Doojin

    2016-01-01

    We report a spray deposition technique as a screening tool for solution processed solar cells. A dual-feed spray nozzle is introduced to deposit donor and acceptor materials separately and to form blended films on substrates in situ. Using a differential pump system with a motorised spray nozzle, the effect of film thickness, solution flow rates and the blend ratio of donor and acceptor materials on device performance can be found in a single experiment. Using this method, polymer solar cells based on poly(3-hexylthiophene) (P3HT):(6,6)-phenyl C61 butyric acid methyl ester (PC61BM) are fabricated with numerous combinations of thicknesses and blend ratios. Results obtained from this technique show that the optimum ratio of materials is consistent with previously reported values confirming this technique is a very useful and effective screening method. This high throughput screening method is also used in a single-feed configuration. In the single-feed mode, methylammonium iodide solution is deposited on lead iodide films to create a photoactive layer of perovskite solar cells. Devices featuring a perovskite layer fabricated by this spray process demonstrated a power conversion efficiencies of up to 7.9%. PMID:26853266

  20. Giant photostriction in organic–inorganic lead halide perovskites

    PubMed Central

    Zhou, Yang; You, Lu; Wang, Shiwei; Ku, Zhiliang; Fan, Hongjin; Schmidt, Daniel; Rusydi, Andrivo; Chang, Lei; Wang, Le; Ren, Peng; Chen, Liufang; Yuan, Guoliang; Chen, Lang; Wang, Junling

    2016-01-01

    Among the many materials investigated for next-generation photovoltaic cells, organic–inorganic lead halide perovskites have demonstrated great potential thanks to their high power conversion efficiency and solution processability. Within a short period of about 5 years, the efficiency of solar cells based on these materials has increased dramatically from 3.8 to over 20%. Despite the tremendous progress in device performance, much less is known about the underlying photophysics involving charge–orbital–lattice interactions and the role of the organic molecules in this hybrid material remains poorly understood. Here, we report a giant photostrictive response, that is, light-induced lattice change, of >1,200 p.p.m. in methylammonium lead iodide, which could be the key to understand its superior optical properties. The strong photon-lattice coupling also opens up the possibility of employing these materials in wireless opto-mechanical devices. PMID:27044485

  1. Determination of silver, bismuth, cadmium, copper, lead, and zinc in geologic materials by atomic absorption spectrometry with tricaprylylmethylammonium chloride

    USGS Publications Warehouse

    Viets, J.G.

    1978-01-01

    Interferences commonly encountered in the determination of silver, bismuth, cadmium, copper, lead, and zinc at crustal abundance levels are effectively eliminated using a rapid, sensitive, organic extraction technique. A potassium chlorate-hydrochloric acid digestion solubilizes the metals not tightly bound in the silicate lattice of rocks, soils, and stream sediments. The six metals are selectively extracted into a 10% Aliquat 336-MIBK organic phase in the presence of ascorbic acid and potassium iodide. Metals in the organic extract are determined by flame atomic absorption spectrometry to the 0.02-ppm level for silver, cadmium, copper, and zinc and to the 0.2-ppm level for bismuth and lead with a maximum relative standard deviation of 18.8% for known reference samples. An additional hydrofluoric acid digestion may be used to determine metals substituted in the silicate lattice.

  2. Iodine from bacterial iodide oxidization by Roseovarius spp. inhibits the growth of other bacteria.

    PubMed

    Zhao, Dan; Lim, Choon-Ping; Miyanaga, Kazuhiko; Tanji, Yasunori

    2013-03-01

    Microbial activities in brine, seawater, or estuarine mud are involved in iodine cycle. To investigate the effects of the microbiologically induced iodine on other bacteria in the environment, a total of 13 bacteria that potentially participated in the iodide-oxidizing process were isolated from water or biofilm at a location containing 131 μg ml(-1) iodide. Three distinct strains were further identified as Roseovarius spp. based on 16 S rRNA gene sequences after being distinguished by restriction fragment length polymorphism analysis. Morphological characteristics of these three Roseovarius spp. varied considerably across and within strains. Iodine production increased with Roseovarius spp. growth when cultured in Marine Broth with 200 μg ml(-1) iodide (I(-)). When 10(6) CFU/ml Escherichia coli, Pseudomonas aeruginosa, and Bacillus pumilus were exposed to various concentrations of molecular iodine (I(2)), the minimum inhibitory concentrations (MICs) were 0.5, 1.0, and 1.0 μg ml(-1), respectively. However, fivefold increases in the MICs for Roseovarius spp. were obtained. In co-cultured Roseovarius sp. IOB-7 and E. coli in Marine Broth containing iodide (I(-)), the molecular iodine concentration was estimated to be 0.76 μg ml(-1) after 24 h and less than 50 % of E. coli was viable compared to that co-cultured without iodide. The growth inhibition of E. coli was also observed in co-cultures with the two other Roseovarius spp. strains when the molecular iodine concentration was assumed to be 0.52 μg ml(-1).

  3. Regulation of Iodide Uptake in Placental Primary Cultures

    PubMed Central

    Burns, R.; O'Herlihy, C.; Smyth, P.P.A.

    2013-01-01

    Background Maintenance of adequate iodide supply to the developing fetus is dependent not only on maternal dietary iodine intake but also on placental iodide transport. The objective of this study was to examine the effects of different pregnancy-associated hormones on the uptake of radioiodide by the placenta and to determine if iodide transporter expression is affected by hormone incubation. Methods Primary cultures of placental trophoblast cells were established from placentas obtained at term from pre-labor caesarean sections. They were pre-incubated with 17β-estradiol, prolactin, oxytocin, human chorionic gonadotropin (hCG) and progesterone either singly or in combination over 12 h with 125I uptake being measured after 6 h. RNA was isolated from placental trophoblasts and real-time RT-PCR performed using sodium iodide symporter (NIS) and pendrin (PDS) probes. Results Significant dose response increments in 125I uptake by trophoblast cells (p < 0.01) were observed following incubation with hCG (60% increase), oxytocin (45% increase) and prolactin (32% increase). Although progesterone (50-200 ng/ml) and 17β-estradiol (1,000-15,000 pg/ml) alone produced no significant differences in uptake, they facilitated increased uptake when combined with prolactin or oxytocin, with a combination of all four hormones producing the greatest increase (82%). Increased 125I uptake was accompanied by corresponding increments in NIS mRNA (ratio 1.52) compared to untreated control cells. No significantly increased expression levels of PDS were observed. Conclusions Pregnancy-associated hormones, particularly oxytocin and hCG, have a role in promoting placental iodide uptake which may protect the fetus against iodine deficiency. PMID:24783055

  4. Spatial distribution of perchlorate, iodide and thiocyanate in the aquatic environment of Tianjin, China: environmental source analysis.

    PubMed

    Qin, Xiaolei; Zhang, Tao; Gan, Zhiwei; Sun, Hongwen

    2014-09-01

    Although China is the largest producer of fireworks (perchlorate-containing products) in the world, the pathways through which perchlorate enters the environment have not been characterized completely in this country. In this study, perchlorate, iodide and thiocyanate were measured in 101 water samples, including waste water, surface water, sea water and paired samples of rain water and surface runoff collected in Tianjin, China. The concentrations of the target anions were generally on the order of rain>surface water≈waste water treatment plant (WWTP) influent>WWTP effluent. High concentrations of perchlorate, iodide and thiocyanate were detected in rain samples, ranging from 0.35 to 27.3 (median: 4.05), 0.51 to 8.33 (2.92), and 1.31 to 107 (5.62) ngmL(-)(1), respectively. Furthermore, the concentrations of the target anions in rain samples were significantly (r=0.596-0.750, p<0.01) positively correlated with the concentrations obtained in the paired surface runoff samples. The anions tested showed a clear spatial distribution, and higher concentrations were observed in the upper reaches of rivers, sea waters near the coast, and rain-surface runoff pairs sampled in urban areas. Our results revealed that precipitation may act as an important source of perchlorate, iodide and thiocyanate in surface water. Moreover, iodide concentrations in the Haihe River and Dagu Drainage Canal showed a good correlation with an ideal marker (acesulfame) of domestic waste water, indicating that input from domestic waste water was an important source of iodide in the surface waters of Tianjin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Methyl iodide

    Integrated Risk Information System (IRIS)

    Methyl iodide ; CASRN 74 - 88 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effe

  6. 27 CFR 21.78 - Formula No. 42.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Eighty grams of potassium iodide, U.S.P., and 109 grams of red mercuric iodide, N.F. XI; or (2) Ninety-five grams of thimerosal, U.S.P.; or (3) Seventy-six grams of any of the following: phenyl mercuric...

  7. 27 CFR 21.78 - Formula No. 42.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Eighty grams of potassium iodide, U.S.P., and 109 grams of red mercuric iodide, N.F. XI; or (2) Ninety-five grams of thimerosal, U.S.P.; or (3) Seventy-six grams of any of the following: phenyl mercuric...

  8. 27 CFR 21.78 - Formula No. 42.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Eighty grams of potassium iodide, U.S.P., and 109 grams of red mercuric iodide, N.F. XI; or (2) Ninety-five grams of thimerosal, U.S.P.; or (3) Seventy-six grams of any of the following: phenyl mercuric...

  9. 27 CFR 21.78 - Formula No. 42.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Eighty grams of potassium iodide, U.S.P., and 109 grams of red mercuric iodide, N.F. XI; or (2) Ninety-five grams of thimerosal, U.S.P.; or (3) Seventy-six grams of any of the following: phenyl mercuric...

  10. 27 CFR 21.78 - Formula No. 42.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Eighty grams of potassium iodide, U.S.P., and 109 grams of red mercuric iodide, N.F. XI; or (2) Ninety-five grams of thimerosal, U.S.P.; or (3) Seventy-six grams of any of the following: phenyl mercuric...

  11. 27 CFR 21.50 - Formula No. 25.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... pounds of iodine, U.S.P., and 15 pounds of either potassium iodide, U.S.P., or sodium iodide, U.S.P. (b) Authorized uses. (1) As a solvent: 230.Tinctures of iodine. 249.Miscellaneous external pharmaceuticals, U.S.P...

  12. 27 CFR 21.50 - Formula No. 25.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... pounds of iodine, U.S.P., and 15 pounds of either potassium iodide, U.S.P., or sodium iodide, U.S.P. (b) Authorized uses. (1) As a solvent: 230.Tinctures of iodine. 249.Miscellaneous external pharmaceuticals, U.S.P...

  13. Laser-Induced Molecular Fluorescence: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    1981-01-01

    Describes a companion experiment to the experimental study of the di-iodide visible absorption spectrum. Experimental details, interpretation, and data analysis are provided for an analysis of the di-iodide fluorescence excited by a visible laser, using a Raman instrument. (CS)

  14. 21 CFR 178.2010 - Antioxidants and/or stabilizers for polymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... § 176.170(c) of this chapter. Cupric acetate and lithium iodide For use at levels not exceeding 0.025 percent cupric acetate and 0.065 percent lithium iodide by weight of nylon 66 resins complying with § 177...

  15. 21 CFR 178.2010 - Antioxidants and/or stabilizers for polymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... § 176.170(c) of this chapter. Cupric acetate and lithium iodide For use at levels not exceeding 0.025 percent cupric acetate and 0.065 percent lithium iodide by weight of nylon 66 resins complying with § 177...

  16. 21 CFR 178.2010 - Antioxidants and/or stabilizers for polymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... § 176.170(c) of this chapter. Cupric acetate and lithium iodide For use at levels not exceeding 0.025 percent cupric acetate and 0.065 percent lithium iodide by weight of nylon 66 resins complying with § 177...

  17. 27 CFR 21.51 - Formula No. 25-A.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... solution composed of 20 pounds of iodine, U.S.P.; 15 pounds of either potassium iodide, U.S.P., or sodium iodide, U.S.P.; and 15 pounds of water. (b) Authorized uses. (1) As a solvent: 230.Tinctures of iodine...

  18. A review of recent measurements of optical and thermal properties of α-mercuric iodide

    NASA Astrophysics Data System (ADS)

    Burger, A.; Morgan, S. H.; Silberman, E.; Nason, D.; Cheng, A. Y.

    1992-11-01

    The band gap energy of α-mercuric iodide was measured recently at elevated temperatures using optical absorption and reflection methods. In addition, reflection spectral measurements indicate that the temperature dependence of the exciton peak can provide a means of measuring, in a nondisturbing and remote manner, the local surface temperature of an α-mercuric iodide crystal during its growth from the vapor. Recent measurements of the thermal diffusivity and thermal expansion tensors have confirmed the anisotropy of this material and have implications for growth morphology and the generation of lattice defects.

  19. Enhancement of photoisomerization of polymethine dyes in complexes with biomacromolecules

    NASA Astrophysics Data System (ADS)

    Tatikolov, Alexander S.; Akimkin, Timofei M.; Pronkin, Pavel G.; Yarmoluk, Sergiy M.

    2013-01-01

    Photochemical processes (photoisomerization and generation of the triplet state) of the thiacarbocyanine dyes 3,3',9-trimethylthiacarbocyanine iodide (Cyan 2), 3,3'-diethyl-9-methylthiacarbocyanine iodide (DMTC), and 3,3',9-triethylthiacarbocyanine iodide (TETC) in complexes with biomacromolecules—DNA and chondroitin-4-sulfate—were studied by flash photolysis. It has been shown that, along with generation of the triplet state, enhancement of the photoisomer formation is observed for Cyan 2 and DMTC complexed with the biomolecules. This effect can be explained by the influence of the biopolymer matrix on the potential energy curves of the photoisomerization process.

  20. Ligand-Free Pd-Catalyzed Double Carbonylation of Aryl Iodides with Amines to α-Ketoamides under Atmospheric Pressure of Carbon Monoxide and at Room Temperature.

    PubMed

    Du, Hongyan; Ruan, Qing; Qi, Minghao; Han, Wei

    2015-08-07

    A general Pd-catalyzed double carbonylation of aryl iodides with secondary or primary amines to produce α-ketoamides at atmospheric CO pressure has been developed. This transformation proceeds successfully even at room temperature and in the absence of any ligand and additive. A wide range of aryl iodides and amines can be coupled to the desired α-ketoamides in high yields with excellent chemoselectivities. Importantly, the current methodology has been demonstrated to be applied in the synthesis of bioactive molecules and chiral α-ketoamides.

  1. Mild and Low-Pressure fac-Ir(ppy)3 -Mediated Radical Aminocarbonylation of Unactivated Alkyl Iodides through Visible-Light Photoredox Catalysis.

    PubMed

    Chow, Shiao Y; Stevens, Marc Y; Åkerbladh, Linda; Bergman, Sara; Odell, Luke R

    2016-06-27

    A novel, mild and facile preparation of alkyl amides from unactivated alkyl iodides employing a fac-Ir(ppy)3 -catalyzed radical aminocarbonylation protocol has been developed. Using a two-chambered system, alkyl iodides, fac-Ir(ppy)3 , amines, reductants, and CO gas (released ex situ from Mo(CO)6 ), were combined and subjected to an initial radical reductive dehalogenation generating alkyl radicals, and a subsequent aminocarbonylation with amines affording a wide range of alkyl amides in moderate to excellent yields. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Efficient photoreductive decomposition of N-nitrosodimethylamine by UV/iodide process.

    PubMed

    Sun, Zhuyu; Zhang, Chaojie; Zhao, Xiaoyun; Chen, Jing; Zhou, Qi

    2017-05-05

    N-nitrosodimethylamine (NDMA) has aroused extensive concern as a disinfection byproduct due to its high toxicity and elevated concentration levels in water sources. This study investigates the photoreductive decomposition of NDMA by UV/iodide process. The results showed that this process is an effective strategy for the treatment of NDMA with 99.2% NDMA removed within 10min. The depletion of NDMA by UV/iodide process obeyed pseudo-first-order kinetics with a rate constant (k 1 ) of 0.60±0.03min -1 . Hydrated electrons (e aq - ) generated by the UV irradiation of iodide were proven to play a critical role. Dimethylamine (DMA) and nitrite (NO 2 - ) were formed as the main intermediate products, which completely converted to formate (HCOO - ), ammonium (NH 4 + ) and nitrogen (N 2 ). Therefore, not only the high efficiencies in NDMA destruction, but the elimination of toxic intermediates make UV/iodide process advantageous. A photoreduction mechanism was proposed: NDMA initially absorbed photons to a photoexcited state, and underwent a cleavage of NNO bond under the attack of e aq - . The solution pH had little impact on NDMA removal. However, alkaline conditions were more favorable for the elimination of DMA and NO 2 - , thus effectively reducing the secondary pollution. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Potentiation of antimicrobial photodynamic inactivation by inorganic salts.

    PubMed

    Hamblin, Michael R

    2017-11-01

    Antimicrobial photodynamic inactivation (aPDI) involves the use of non-toxic dyes excited with visible light to produce reactive oxygen species (ROS) that can destroy all classes of microorganisms including bacteria, fungi, parasites, and viruses. Selectivity of killing microbes over host mammalian cells allows this approach (antimicrobial photodynamic therapy, aPDT) to be used in vivo as an alternative therapeutic approach for localized infections especially those that are drug-resistant. Areas covered: We have discovered that aPDI can be potentiated (up to 6 logs of extra killing) by the addition of simple inorganic salts. The most powerful and versatile salt is potassium iodide, but potassium bromide, sodium thiocyanate, sodium azide and sodium nitrite also show potentiation. The mechanism of potentiation with iodide is likely to be singlet oxygen addition to iodide to form iodine radicals, hydrogen peroxide and molecular iodine. Another mechanism involves two-electron oxidation of iodide/bromide to form hypohalites. A third mechanism involves a one-electron oxidation of azide anion to form azide radical. Expert commentary: The addition of iodide has been shown to improve the performance of aPDT in several animal models of localized infection. KI is non-toxic and is an approved drug for antifungal therapy, so its transition to clinical use in aPDT should be straightforward.

  4. Effect of Excess Iodide Intake on Salivary Glands in a Swiss Albino Mice Model

    PubMed Central

    Ross, Gloria Romina; Fabersani, Emanuel; Russo, Matías; Gómez, Alba; Japaze, Hugo; González, Silvia Nelina

    2017-01-01

    Iodine is an important micronutrient required for nutrition. Excess iodine has adverse effects on thyroid, but there is not enough information regarding its effect on salivary glands. In addition to food and iodized salt, skin disinfectants and maternal nutritional supplements contain iodide, so its intake could be excessive during pregnancy, lactation, and infancy. The aim of this work was to evaluate the effect of excess iodide ingestion on salivary glands during mating, gestation, lactation, and postweaning period in mouse. During assay, mice were allocated into groups: control and treatment groups (received distilled water with NaI 1 mg/mL). Water intake, glandular weight, and histology were analyzed. Treatment groups showed an increase in glandular weight and a significantly (p < 0.05) higher water intake than control groups. Lymphocyte infiltration was observed in animals of treatment groups, while there was no infiltration in glandular sections of control groups. Results demonstrated that a negative relationship could exist between iodide excess and salivary glands. This work is novel evidence that high levels of iodide intake could induce mononuclear infiltration in salivary glands. These results should be considered, especially in pregnant/lactating women, to whom a higher iodine intake is usually recommended. PMID:29250546

  5. Oxidation of iodide and iodine on birnessite (delta-MnO2) in the pH range 4-8.

    PubMed

    Allard, Sébastien; von Gunten, Urs; Sahli, Elisabeth; Nicolau, Rudy; Gallard, Hervé

    2009-08-01

    The oxidation of iodide by synthetic birnessite (delta-MnO(2)) was studied in perchlorate media in the pH range 4-8. Iodine (I(2)) was detected as an oxidation product that was subsequently further oxidized to iodate (IO(3)(-)). The third order rate constants, second order on iodide and first order on manganese oxide, determined by extraction of iodine in benzene decreased with increasing pH (6.3-7.5) from 1790 to 3.1M(-2) s(-1). Both iodine and iodate were found to adsorb significantly on birnessite with an adsorption capacity of 12.7 microM/g for iodate at pH 5.7. The rate of iodine oxidation by birnessite decreased with increasing ionic strength, which resulted in a lower rate of iodate formation. The production of iodine in iodide-containing waters in contact with manganese oxides may result in the formation of undesired iodinated organic compounds (taste and odor, toxicity) in natural and technical systems. The probability of the formation of such compounds is highest in the pH range 5-7.5. For pH <5 iodine is quickly oxidized to iodate, a non-toxic and stable sink for iodine. At pH >7.5, iodide is not oxidized to a significant extent.

  6. Feasibility study of a lead(II) iodide-based dosimeter for quality assurance in therapeutic radiology

    NASA Astrophysics Data System (ADS)

    Heo, Y. J.; Kim, K. T.; Oh, K. M.; Lee, Y. K.; Ahn, K. J.; Cho, H. L.; Kim, J. Y.; Min, B. I.; Mun, C. W.; Park, S. K.

    2017-09-01

    The most widely used form of radiotherapy to treat tumors uses a linear accelerator, and the apparatus requires regular quality assurance (QA). QA for a linear accelerator demands accuracy throughout, from mock treatment and treatment planning, up to treatment itself. Therefore, verifying a radiation dose is essential to ensure that the radiation is being applied as planned. In current clinical practice, ionization chambers and diodes are used for QA. However, using conventional gaseous ionization chambers presents drawbacks such as complex analytical procedures, difficult measurement procedures, and slow response time. In this study, we discuss the potential of a lead(II) iodide (PbI2)-based radiation dosimeter for radiotherapy QA. PbI2 is a semiconductor material suited to measurements of X-rays and gamma rays, because of its excellent response properties to radiation signals. Our results show that the PbI2-based dosimeter offers outstanding linearity and reproducibility, as well as dose-independent characteristics. In addition, percentage depth dose (PDD) measurements indicate that the error at a fixed reference depth Dmax was 0.3%, very similar to the measurement results obtained using ionization chambers. Based on these results, we confirm that the PbI2-based dosimeter has all the properties required for radiotherapy: stable dose detection, dose linearity, and rapid response time. Based on the evidence of this experimental verification, we believe that the PbI2-based dosimeter could be used commercially in various fields for precise measurements of radiation doses in the human body and for measuring the dose required for stereotactic radiosurgery or localized radiosurgery.

  7. Propidium Iodide Competes with Ca2+ to Label Pectin in Pollen Tubes and Arabidopsis Root Hairs1[W][OA

    PubMed Central

    Rounds, Caleb M.; Lubeck, Eric; Hepler, Peter K.; Winship, Lawrence J.

    2011-01-01

    We have used propidium iodide (PI) to investigate the dynamic properties of the primary cell wall at the apex of Arabidopsis (Arabidopsis thaliana) root hairs and pollen tubes and in lily (Lilium formosanum) pollen tubes. Our results show that in root hairs, as in pollen tubes, oscillatory peaks in PI fluorescence precede growth rate oscillations. Pectin forms the primary component of the cell wall at the tip of both root hairs and pollen tubes. Given the electronic structure of PI, we investigated whether PI binds to pectins in a manner analogous to Ca2+ binding. We first show that Ca2+ is able to abrogate PI growth inhibition in a dose-dependent manner. PI fluorescence itself also relies directly on the amount of Ca2+ in the growth solution. Exogenous pectin methyl esterase treatment of pollen tubes, which demethoxylates pectins, freeing more Ca2+-binding sites, leads to a dramatic increase in PI fluorescence. Treatment with pectinase leads to a corresponding decrease in fluorescence. These results are consistent with the hypothesis that PI binds to demethoxylated pectins. Unlike other pectin stains, PI at low yet useful concentration is vital and specifically does not alter the tip-focused Ca2+ gradient or growth oscillations. These data suggest that pectin secretion at the apex of tip-growing plant cells plays a critical role in regulating growth, and PI represents an excellent tool for examining the role of pectin and of Ca2+ in tip growth. PMID:21768649

  8. 21 CFR 582.80 - Trace minerals added to animal feeds.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper... pyrophosphate. Copper sulfate. Iodine Calcium iodate. Calcium iodobehenate. Cuprous iodide. 3,5-Diiodosalicylic.... Thymol iodide. Iron Iron ammonium citrate. Iron carbonate. Iron chloride. Iron gluconate. Iron oxide...

  9. 21 CFR 582.80 - Trace minerals added to animal feeds.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper... pyrophosphate. Copper sulfate. Iodine Calcium iodate. Calcium iodobehenate. Cuprous iodide. 3,5-Diiodosalicylic.... Thymol iodide. Iron Iron ammonium citrate. Iron carbonate. Iron chloride. Iron gluconate. Iron oxide...

  10. 21 CFR 582.80 - Trace minerals added to animal feeds.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper... pyrophosphate. Copper sulfate. Iodine Calcium iodate. Calcium iodobehenate. Cuprous iodide. 3,5-Diiodosalicylic.... Thymol iodide. Iron Iron ammonium citrate. Iron carbonate. Iron chloride. Iron gluconate. Iron oxide...

  11. Exciton-Dominated Core-Level Absorption Spectra of Hybrid Organic–Inorganic Lead Halide Perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorwerk, Christian; Hartmann, Claudia; Cocchi, Caterina

    In a combined theoretical and experimental work, we investigate X-ray absorption near-edge structure spectroscopy of the I L 3 and the Pb M 5 edges of the methylammonium lead iodide (MAPbI 3) hybrid inorganic-organic perovskite and its binary phase PbI 2. The absorption onsets are dominated by bound excitons with sizable binding energies of a few hundred millielectronvolts and pronounced anisotropy. The spectra of both materials exhibit remarkable similarities, suggesting that the fingerprints of core excitations in MAPbI 3 are essentially given by its inorganic component, with negligible influence from the organic groups. Furthermore, the theoretical analysis complementing experimental observationsmore » provides the conceptual insights required for a full characterization of this complex material.« less

  12. Exciton-Dominated Core-Level Absorption Spectra of Hybrid Organic–Inorganic Lead Halide Perovskites

    DOE PAGES

    Vorwerk, Christian; Hartmann, Claudia; Cocchi, Caterina; ...

    2018-03-23

    In a combined theoretical and experimental work, we investigate X-ray absorption near-edge structure spectroscopy of the I L 3 and the Pb M 5 edges of the methylammonium lead iodide (MAPbI 3) hybrid inorganic-organic perovskite and its binary phase PbI 2. The absorption onsets are dominated by bound excitons with sizable binding energies of a few hundred millielectronvolts and pronounced anisotropy. The spectra of both materials exhibit remarkable similarities, suggesting that the fingerprints of core excitations in MAPbI 3 are essentially given by its inorganic component, with negligible influence from the organic groups. Furthermore, the theoretical analysis complementing experimental observationsmore » provides the conceptual insights required for a full characterization of this complex material.« less

  13. Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition

    NASA Astrophysics Data System (ADS)

    Kim, Gee Yeong; Senocrate, Alessandro; Yang, Tae-Youl; Gregori, Giuliano; Grätzel, Michael; Maier, Joachim

    2018-05-01

    In the same way as electron transport is crucial for information technology, ion transport is a key phenomenon in the context of energy research. To be able to tune ion conduction by light would open up opportunities for a wide realm of new applications, but it has been challenging to provide clear evidence for such an effect. Here we show through various techniques, such as transference-number measurements, permeation studies, stoichiometric variations, Hall effect experiments and the use of blocking electrodes, that light excitation enhances by several orders of magnitude the ionic conductivity of methylammonium lead iodide, the archetypal metal halide photovoltaic material. We provide a rationale for this unexpected phenomenon and show that it straightforwardly leads to a hitherto unconsidered photodecomposition path of the perovskite.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Seog Joon; Kuno, Masaru; Kamat, Prashant V.

    Minimizing photoinduced segregation in mixed halide lead perovskites is important for achieving stable photovoltaic performance. The shift in the absorption and the rate of formation of iodide- and bromide-rich regions following visible excitation of mixed halide lead perovskites is found to strongly depend on the halide ion concentration. Slower formation and recovery rates observed in halide-deficient films indicate the involvement of defect sites in influencing halide phase segregation. At higher halide concentrations (in stoichiometric excess), segregation effects become less prominent, as evidenced by faster recovery kinetics. These results suggest that light-induced compositional segregation can be minimized in mixed halide perovskitemore » films by using excess halide ions. In conclusion, the findings from this study further reflect the importance of halide ion post-treatment of perovskite films to improve their solar cell performance.« less

  15. Assessment of underground gamma ray fluxes at a depth of 1230 m

    NASA Astrophysics Data System (ADS)

    Bakich, A. M.; Omori, M.; Peak, L. S.; Wearne, N. T.

    1984-10-01

    A sodium iodide crystal detector has been used to measure gamma ray spectra at a depth of 1230 m underground in a silver, lead and zinc mine. Both unshielded and shielded runs using blocks of lead and paraffin were taken. The results are considered in three different energy ranges, 0-3 MeV, 3-6 MeV and greater than 6 MeV. The low energy results are predictable in terms of the familiar isotopes to be expected in the ore body around the detector. The intermediate energy results indicate some residual alpha activity in the crystal assembly whilst the high energy results show a flux of gammas extending well past 10 MeV. Very pure shielding would be required to substantially reduce this flux.

  16. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment.

    PubMed

    Xiu, Fu-Rong; Qi, Yingying; Zhang, Fu-Shen

    2015-07-01

    Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercritical water oxidation (SCWO) pre-treatment combined with iodine-iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine-iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO+HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420°C and 60min for Au and Pd, and 410°C and 30min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO+HL)-treated PCBs with iodine-iodide system were leaching time of 120min (90min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10g/mL (1:8g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine-iodide leaching process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soelberg, Nicholas Ray; Watson, Tony Leroy

    2015-09-30

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO 3 and increased NO 2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reducedmore » silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO 2, very low H 2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I 2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.« less

  18. Reduction of iodate in iodated salt to iodide during cooking with iodine as measured by an improved HPLC/ICP-MS method.

    PubMed

    Liu, Liejun; Li, Xiuwei; Wang, Haiyan; Cao, Xiaoxiao; Ma, Wei

    2017-04-01

    Iodate is a strong oxidant, and some animal studies indicate that iodate intake may cause adverse effects. A key focus of the safety assessment of potassium iodate as a salt additive is determining whether iodate is safely reduced to iodide in food. To study the reduction of iodate in table salt to iodide and molecular iodine during cooking. Fifteen food samples cooked with and without iodated salt were prepared in duplicate. The iodine in the cooked food was extracted with deionized water. The iodine species in the extracts were determined by using an improved high-performance liquid chromatography/inductively coupled plasma-mass spectrometry (HPLC/ICP-MS). The cooking temperature and the pH of the food were determined. The conversion rate of iodate in iodated salt to iodide and molecular iodine was 96.4%±14.7% during cooking, with 86.8%±14.5% of the iodate converted to iodide ions and 9.6% ±6.2% converted to molecular iodine to lose. The limit of detection, limit of quantification, relative standard deviation and recovery rate of the method HPLC/ICP-MS were 0.70 μg/L for I - (0.69 μg/L for IO 3 - ), 2.10 μg/L for I - (2.06 μg/L for IO 3 - ), 2.6% and 101.6%±2.6%, respectively. Almost all iodate added to food was converted into iodide and molecular iodine during cooking. The improved HPLC/ICP-MS was reliable in the determination of iodine species in food extracts. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Iodine chemistry in the water column of the Chesapeake Bay: Evidence for organic iodine forms

    NASA Astrophysics Data System (ADS)

    Luther, George W.; Ferdelman, Timothy; Culberson, Charles H.; Kostka, Joel; Wu, Jingfeng

    1991-03-01

    During the summer of 1987, we collected and analysed Chesapeake Bay water samples for the inorganic iodine species: iodide (by cathodic-stripping squarewave voltammetry) and iodate (by differential pulse polarography); and total iodine (by hypochlorite oxidation of the seawater sample to iodate). The difference between the sum of the inorganic iodine species and the total iodine was significant for about one-third of the samples collected from the Bay. Thus, in these samples, a third (or more) 'new' form(s) of iodine was present. These samples were primarily from oxygen-saturated surface waters of high biological activity (primary productivity and bacterial processes). This 'new' form can make up as much as 70% of the total iodine. Waters containing low oxygen concentrations showed less of this 'new' form of iodine whereas anoxic and sulphidic bottom waters contained only iodide. This 'new' form of iodine is organic in nature and probably non-volatile. It may reside in the peptide and humic fractions. Only reduced iodine (iodide and organic iodine) was detected in waters from the northern section of the Bay, whereas only iodide and iodate were detected in the southern section of the Bay. In only two samples were iodide, iodate and the 'new' form of iodine found to coexist. Iodide and organic iodine are probably cycled in the surface waters of the northern section of the Bay via a combination of biogeochemical and photochemical processes which produce the reactive intermediates, molecular iodine and hypoiodous acid. These react quickly with reduced inorganic and organic compounds to maintain the reduced forms of iodine in the water column. Only total iodine is conservative throughout the estuary. The inorganic iodine forms can be used as geochemical tracers.

  20. Screening the ToxCast Phase 1 chemical library for inhibition of deiodinase type 1 activity

    EPA Science Inventory

    Thyroid hormone (TH) homeostasis is dependent upon coordination of multiple key events including iodide uptake, hormone synthesis, metabolism and elimination, to maintain proper TH signaling. Deiodinase enzymes catalyze iodide release from THs to interconvert THs between active a...

  1. Highly Reactive, General and Long-Lived Catalysts for Palladium-Catalyzed Amination of Heteroaryl and Aryl Chlorides, Bromides and Iodides: Scope and Structure-Activity Relationships

    PubMed Central

    Shen, Qilong; Ogata, Tokutaro; Hartwig, John F.

    2010-01-01

    We describe a systematic study of the scope and relationship between ligand structure and activity for a highly efficient and selective class of catalysts for the amination of heteroaryl and aryl chlorides, bromides and iodides containing sterically hindered chelating alkylphosphines. In the presence of this catalyst, aryl and heteroaryl chlorides, bromides and iodides react with many primary amines in high yields with part-per-million quantities of palladium precursor and ligand. Many reactions of primary amines with both heteroaryl and aryl chlorides, bromides and iodides occur to completion with 0.0005-0.05 mol % catalysts. A comparison of the reactivity of this catalyst for coupling of primary amines at these loadings is made with catalysts generated from hindered monophosphines and carbenes, and these data illustrate the benefits of chelation. Thus, these complexes constitute a fourth-generation catalyst for the amination of aryl halides, whose activity complements catalysts based on monophosphines and carbenes. PMID:18444639

  2. Chemical and physical investigations on the charge transfer interaction of organic donors with iodine and its application as non-traditional organic conductors

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Sharshar, T.; Adam, Abdel Majid A.; Elsabawy, Khaled M.; Hemeda, O. M.

    2014-09-01

    The iso-leucine-iodide and methionine-iodide charge-transfer complexes were prepared and characterized using different spectroscopic techniques. The iodide charge-transfer complexes were synthesized by grinding KI-I2-amino acid with 1:1:1 M ratio in presence of few drops of methanol solvent. The structures of both solid amino acid iodide charge-transfer complexes are discussed with the help of the obtained results of the infrared and Raman laser spectra, Uv-vis. electronic spectra and thermal analyses. The electrical properties (AC resistivity and dielectric constant) of both complexes were investigated. The positron annihilation Doppler broadening (PADB) spectroscopies were also used to probe the structural changes of both complexes. The PADB line-shape parameters (S and W) were found to be dependent on the structure, electronic configuration of the charge transfer complex. The PADB technique is a powerful tool to probe the structural features of the KI-I2-amino acid complexes.

  3. Palladium-catalyzed one-pot three- or four-component coupling of aryl iodides, alkynes, and amines through C-N bond cleavage: efficient synthesis of indole derivatives.

    PubMed

    Hao, Wei; Geng, Weizhi; Zhang, Wen-Xiong; Xi, Zhenfeng

    2014-02-24

    An efficient synthesis of N-substituted indole derivatives was realized by combining the Pd-catalyzed one-pot multicomponent coupling approach with cleavage of the C(sp(3))-N bonds. Three or four components of aryl iodides, alkynes, and amines were involved in this coupling process. The cyclopentadiene-phosphine ligand showed high efficiency. A variety of aryl iodides, including cyclic and acyclic tertiary amino aryl iodides, and substituted 1-bromo-2-iodobenzene derivatives could be used. Both symmetric and unsymmetric alkynes substituted with alkyl, aryl, or trimethylsilyl groups could be applied. Cyclic secondary amines such as piperidine, morpholine, 4-methylpiperidine, 1-methylpiperazine, 2-methylpiperidine, and acyclic amines including secondary and primary amines all showed good reactivity. Further application of the resulting indole derivatives was demonstrated by the synthesis of benzosilolo[2,3-b]indole. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Competitive inhibition of thyroidal uptake of dietary iodide by perchlorate does not describe perturbations in rat serum total T4 and TSH.

    PubMed

    McLanahan, Eva D; Andersen, Melvin E; Campbell, Jerry L; Fisher, Jeffrey W

    2009-05-01

    Perchlorate (ClO4(-)) is an environmental contaminant known to disrupt the thyroid axis of many terrestrial and aquatic species. ClO4(-) competitively inhibits iodide uptake into the thyroid at the sodium/iodide symporter and disrupts hypothalamic-pituitary-thyroid (HPT) axis homeostasis in rodents. We evaluated the proposed mode of action for ClO4(-)-induced rat HPT axis perturbations using a biologically based dose-response (BBDR) model of the HPT axis coupled with a physiologically based pharmacokinetic model of ClO4(-). We configured a BBDR-HPT/ClO4(-) model to describe competitive inhibition of thyroidal uptake of dietary iodide by ClO4(-) and used it to simulate published adult rat drinking water studies. We compared model-predicted serum thyroid-stimulating hormone (TSH) and total thyroxine (TT4) concentrations with experimental observations reported in these ClO4(-) drinking water studies. The BBDR-HPT/ClO4(-) model failed to predict the ClO4(-)-induced onset of disturbances in the HPT axis. Using ClO4(-) inhibition of dietary iodide uptake into the thyroid, the model underpredicted both the rapid decrease in serum TT4 concentrations and the rise in serum TSH concentrations. Assuming only competitive inhibition of thyroidal uptake of dietary iodide, BBDR-HPT/ClO4(-) model calculations were inconsistent with the rapid decrease in serum TT4 and the corresponding increase in serum TSH. Availability of bound iodide in the thyroid gland governed the rate of hormone secretion from the thyroid. ClO4(-) is translocated into the thyroid gland, where it may act directly or indirectly on thyroid hormone synthesis/secretion in the rat. The rate of decline in serum TT4 in these studies after 1 day of treatment with ClO4(-) appeared consistent with a reduction in thyroid hormone production/secretion. This research demonstrates the utility of a biologically based model to evaluate a proposed mode of action for ClO4(-) in a complex biological process.

  5. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiu, Fu-Rong, E-mail: xiu_chem@hotmail.com; Qi, Yingying; Zhang, Fu-Shen

    Highlights: • We report a novel process for recovering Au, Ag, and Pd from waste PCBs. • The effect of SCWO on the leaching of Au, Ag, and Pd in waste PCBs was studied. • SCWO was highly efficient for enhancing the leaching of Au, Ag, and Pd. • The optimum leaching parameters for Au, Ag, and Pd in iodine–iodide were studied. - Abstract: Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercriticalmore » water oxidation (SCWO) pre-treatment combined with iodine–iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine–iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO + HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420 °C and 60 min for Au and Pd, and 410 °C and 30 min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO + HL)-treated PCBs with iodine–iodide system were leaching time of 120 min (90 min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10 g/mL (1:8 g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine–iodide leaching process.« less

  6. Merging Photoredox with 1,2-Metallate Rearrangements: The Photochemical Alkylation of Vinyl Boronate Complexes.

    PubMed

    Silvi, Mattia; Sandford, Christopher; Aggarwal, Varinder K

    2017-04-26

    Vinyl boronates react with electron-deficient alkyl iodides in the presence of visible light to give boronic esters in which two new C-C bonds have been created. The reaction occurs by radical addition of an electron-deficient alkyl radical to the vinyl boronate followed by electron transfer with another molecule of alkyl iodide, continuing the chain, and triggering a 1,2-metalate rearrangement. In a number of cases, the use of a photoredox catalyst enhances yields significantly. The scope of the radical precursor includes α-iodo ketones, esters, nitriles, primary amides, α-fluorinated halo-acetates and perfluoroalkyl iodides.

  7. A simple thermometric technique for reaction-rate determination of inorganic species, based on the iodide-catalysed cerium(IV)-arsenic(III) reaction.

    PubMed

    Grases, F; Forteza, R; March, J G; Cerda, V

    1985-02-01

    A very simple reaction-rate thermometric technique is used for determination of iodide (5-20 ng ml ), based on its catalytic action on the cerium(IV)-arsenic(III) reaction, and for determination of mercury(II) (1.5-10 ng ml ) and silver(I) (2-10 ng ml ), based on their inhibitory effect on this reaction. The reaction is followed by measuring the rate of temperature increase. The method suffers from very few interferences and is applied to determination of iodide in biological and inorganic samples, and Hg(II) and Ag(I) in pharmaceutical products.

  8. Processing α-mercuric iodide by zone refining

    NASA Astrophysics Data System (ADS)

    Burger, A.; Morgan, S. H.; Henderson, D. O.; Biao, Y.; Zhang, K.; Silberman, E.; Nason, D.; van den Berg, L.; Ortale-Baccash, C.; Cross, E.

    1993-03-01

    An investigation is being conducted on zone refining α-mercuric iodide. Analytical studies using differential scanning calorimetry and anion chromatography indicate that impurities are accumulated mainly at the end where zone travel terminates. Early results indicate that single crystals can be readily grown from zone-refined material.

  9. High-pressure behavior of methylammonium lead iodide (MAPbI3) hybrid perovskite

    NASA Astrophysics Data System (ADS)

    Capitani, Francesco; Marini, Carlo; Caramazza, Simone; Postorino, Paolo; Garbarino, Gaston; Hanfland, Michael; Pisanu, Ambra; Quadrelli, Paolo; Malavasi, Lorenzo

    2016-05-01

    In this paper we provide an accurate high-pressure structural and optical study of the MAPbI3 hybrid perovskite. Structural data show the presence of a phase transition toward an orthorhombic structure around 0.3 GPa followed by full amorphization of the system above 3 GPa. After releasing the pressure, the system keeps the high-pressure orthorhombic phase. The occurrence of these structural transitions is further confirmed by pressure induced variations of the photoluminescence signal at high pressure. These variations clearly indicate that the bandgap value and the electronic structure of MAPI change across the phase transition.

  10. A Study on Organic-Metal Halide Perovskite Film Morphology, Interfacial Layers, Tandem Applications, and Encapsulation

    NASA Astrophysics Data System (ADS)

    Fisher, Dallas A.

    Organic-metal halide perovskites have brought about a new wave of research in the photovoltaic community due to their ideally suited optical and electronic parameters. In less than a decade, perovskite solar cell performance has skyrocketed to unprecedented efficiencies with numerous reported methodologies. Perovskites face many challenges with high-quality film morphology, interfacial layers, and long-term stability. In this work, these active areas are explored through a combination of studies. First, the importance of perovskite film precursor ratios is explored with an in-depth study of carrier lifetime and solvent-grain effects. It was found that excess lead iodide precursor greatly improves the film morphology by reducing pinholes in the solar absorber. Dimethyl sulfoxide (DMSO) solvent was found to mend grains, as well as improve carrier lifetime and device performance, possibly by passivation of grain boundary traps. Second, applications of perovskite with tandem cells is investigated, with an emphasis for silicon devices. Perovskites can easily be integrated with silicon, which already has strong market presence. Additionally, both materials' bandgaps are ideally suited for maximum tandem efficiency. The silicon/perovskite tandem device structure necessitated the optimization of inverted (p-i-n) structure devices. PEDOT:PSS, copper oxide, and nickel oxide p-type layers were explored through a combination of photoluminescent, chemical reactivity, and solar simulation results. Results were hindered due to resistive ITO and rough silicon substrates, but tandem devices displayed Voc indicative of proper monolithic performance. Third, replacement of titanium dioxide n-type layer with iron oxide (Fe 2O3, common rust) was studied. Iron oxide experiences less ultraviolet instability than that of titanium dioxide under solar illumination. It was found that current density slightly decreased due to parasitic absorption from the rust, but that open circuit voltage decreased drastically due to poor band alignment. Fe2O3 appears to be better suited to a narrower band gap material than methylammonium lead iodide perovskite. Finally, encapsulation of perovskite devices with epoxy coatings is explored as a method to improve long-term stability. Perovskites are sensitive to a variety of conditions, but most importantly water and polar molecules. Encapsulants act as a moisture/oxygen barrier, but also prevent outgassing of the organic components. Three epoxies were tested in high heat and high humidity conditions. Important factors in the curing process were uncovered such as the sensitivity of UV-epoxies to amine functional groups found in common p-type dopants and perovskite layers. Moisture ingress was the failure point for high-humidity/heat devices which was confirmed through conversion to yellow lead iodide. A revised device fabrication method is proposed to reduce moisture ingress for future experiments.

  11. Radiochemical purity, at expiry, and radiochemical stability of iodine-131 labelled meta-iodobenzylguanidine concentrates for intravenous infusion.

    PubMed

    Wafelman, A R; Hoefnagel, C A; Maes, R A; Beijnen, J H

    1996-08-01

    The determination of the amount of free [131I]iodide in [131I]metaiodobenzylguanidine ([131I]MIBG) concentrates for intravenous infusion under different storage conditions derived from daily practice. The percentage of free [131I]iodide was determined in [131I]MIBG concentrates (1.6-3.9 GBq in 7.5 ml), kept on dry ice (up to expiry, 3 days after production) or, after thawing, at room temperature (up to 24 h). A validated solid phase extraction (SPE) assay was used. Free [131I]iodide increased from 1.9% +/- 0.34% at production to 4.4% +/- 0.67% (mean +/- SD; n = 5) at expiry in 3.7 GBq per 7.5 ml [131I]MIBG infusion concentrates stored on dry ice (-78 degrees C). At room temperature, formation of free [131I]iodide was found to be dependent on the radioactive concentration of the fluid. [131I]iodide levels increased from 3.1%, immediately after thawing, to 6.6% and 16.6% at t = 5 and 24 h, respectively, for a 3.9 GBq per 7.5 ml concentrate. The investigated formulation of [131I]MIBG concentrates, stored in its original packing containing dry ice, can generally be used up to expiry. After thawing, the undiluted concentrates should be administered to a patient within 3.5 h.

  12. Time-resolved photoelectron imaging of iodide-nitromethane (I-·CH3NO2) photodissociation dynamics.

    PubMed

    Kunin, Alice; Li, Wei-Li; Neumark, Daniel M

    2016-12-07

    Femtosecond time-resolved photoelectron spectroscopy is used to probe the decay channels of iodide-nitromethane (I - ·CH 3 NO 2 ) binary clusters photoexcited at 3.56 eV, near the vertical detachment energy (VDE) of the cluster. The production of I - is observed, and its photoelectron signal exhibits a mono-exponential rise time of 21 ± 1 ps. Previous work has shown that excitation near the VDE of the I - ·CH 3 NO 2 complex transfers an electron from iodide to form a dipole-bound state of CH 3 NO 2 - that rapidly converts to a valence bound (VB) anion. The long appearance time for the I - fragment suggests that the VB anion decays by back transfer of the excess electron to iodide, reforming the I - ·CH 3 NO 2 anion and resulting in evaporation of iodide. Comparison of the measured lifetime to that predicted by RRKM theory suggests that the dissociation rate is limited by intramolecular vibrational energy redistribution in the re-formed anion between the high frequency CH 3 NO 2 vibrational modes and the much lower frequency intermolecular I - ·CH 3 NO 2 stretch and bends, the predominant modes involved in cluster dissociation to form I - . Evidence for a weak channel identified as HI + CH 2 NO 2 - is also observed.

  13. Mechanisms of Exchange Reactions of Primary and Secondary Alkyl Iodides with Elementary Iodine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bujake, John E.; Pratt, M. W. T.; Noyes, Richard M.

    1961-04-01

    Several primary and secondary alkyl iodides exchange thermally with I/ sup 131/ in hexachlorobutadiene between 130 and 200 deg . If the solutions are saturated with oxygen at one atmosphere, rates of exchange fit the kinetic expression k/sub b/STARI! STAl/sub 2/!1/2. Degassed solutions always exchange faster than oxygen saturated ones, but methyl, ethyl, and n-propyl iodides show the same kinetics as with oxygen. Exchange rates of degassed isopropyl and neopentyl iodides also show contributions from a k/sub a/STARI! term. Exchange in degassed ethylene dichloride is 3 to 4 times as fast as in degassed hexachlorobutadiene. Activation energies for k/sub b/more » are usually about 27 to 31 kcal/mole. Effects of substitution on alpha carbon are illustrated by the rate sequence methyl < ethyl < i-propyl = sec-butyl. Effects of substitution on beta carbon are illustrated by the rate sequence ethyl < npropyl>> neopentyl. Since the rates of exchange of methyl, ethyl, and i-propyl iodides vary in the opposite direction from the sequence for bimolecular nucleophilic substitution, the explanation proposed suggests that for nucleophilic substitution the effect of added methyl groups on an alpha carbon is a steric hindrance to solvation by solvent dipoles rather than a steric hindrance to the group attacking the carbon atom itself.« less

  14. Corrosion of iron by iodide-oxidizing bacteria isolated from brine in an iodine production facility.

    PubMed

    Wakai, Satoshi; Ito, Kimio; Iino, Takao; Tomoe, Yasuyoshi; Mori, Koji; Harayama, Shigeaki

    2014-10-01

    Elemental iodine is produced in Japan from underground brine (fossil salt water). Carbon steel pipes in an iodine production facility at Chiba, Japan, for brine conveyance were found to corrode more rapidly than those in other facilities. The corroding activity of iodide-containing brine from the facility was examined by immersing carbon steel coupons in "native" and "filter-sterilized" brine samples. The dissolution of iron from the coupons immersed in native brine was threefold to fourfold higher than that in the filter-sterilized brine. Denaturing gradient gel electrophoresis analyses revealed that iodide-oxidizing bacteria (IOBs) were predominant in the coupon-containing native brine samples. IOBs were also detected in a corrosion deposit on the inner surface of a corroded pipe. These results strongly suggested the involvement of IOBs in the corrosion of the carbon steel pipes. Of the six bacterial strains isolated from a brine sample, four were capable of oxidizing iodide ion (I(-)) into molecular iodine (I(2)), and these strains were further phylogenetically classified into two groups. The iron-corroding activity of each of the isolates from the two groups was examined. Both strains corroded iron in the presence of potassium iodide in a concentration-dependent manner. This is the first report providing direct evidence that IOBs are involved in iron corrosion. Further, possible mechanisms by which IOBs corrode iron are discussed.

  15. Preparation and Luminescence Thermochromism of Tetranuclear Copper(I)-Pyridine-Iodide Clusters

    ERIC Educational Resources Information Center

    Parmeggiani, Fabio; Sacchetti, Alessandro

    2012-01-01

    A simple and straightforward synthesis of a tetranuclear copper(I)-pyridine-iodide cluster is described as a laboratory experiment for advanced inorganic chemistry undergraduate students. The product is used to demonstrate the fascinating and visually impressive phenomenon of luminescence thermochromism: exposed to long-wave UV light, the…

  16. Potassium Iodide ("KI"): Instructions to Make Potassium Iodide Solution for Use During a Nuclear Emergency (Liquid Form)

    MedlinePlus

    ... high capacity to mask the saltiness while low fat milk has little capacity to cover the saltiness of KI. This work was completed through a FDA contract with the Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee, Memphis, TN ...

  17. Iodide-catalyzed synthesis of N-nitrosamines via C-N cleavage of nitromethane.

    PubMed

    Zhang, Jie; Jiang, Jiewen; Li, Yuling; Wan, Xiaobing

    2013-11-15

    An iodide-catalyzed process to synthesize N-nitrosamines has been developed using TBHP as the oxidant. The mild catalytic system succeeded in cleaving the carbon-nitrogen bond in nitromethane. This methodology uses commercially available, inexpensive catalysts and oxidants and has a wide substrate scope and operational simplicity.

  18. 21 CFR 184.1265 - Cuprous iodide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the following specific limitations: Category of food Maximum treatment level in food Functional use... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cuprous iodide. 184.1265 Section 184.1265 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...

  19. 21 CFR 184.1265 - Cuprous iodide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the following specific limitations: Category of food Maximum treatment level in food Functional use... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Cuprous iodide. 184.1265 Section 184.1265 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...

  20. A self-cleaning Li-S battery enabled by a bifunctional redox mediator

    NASA Astrophysics Data System (ADS)

    Ren, Y. X.; Zhao, T. S.; Liu, M.; Zeng, Y. K.; Jiang, H. R.

    2017-09-01

    The polysulfide shuttle effect and lithium dendrite growth in lithium-sulfur (Li-S) batteries can repeatedly breach the anodic solid electrolyte interphase (SEI) over cycling. As a result, irreversible short-chain sulfide side products (Li2Sx, x = 1, 2) keep depositing on the Li anode, leading to the active material loss, increasing the Li+ transport resistance, and thereby reducing the cycle life. In this work, indium iodide (InI3) is investigated as a bifunctional electrolyte additive for Li-S batteries to protect the Li anode and decompose the side products spontaneously. On the one hand, Indium (In) is electrodeposited onto the Li anode prior to Li plating during the initial charging process, forming a chemically and mechanically stable SEI to prevent the Li anode from reacting with soluble polysulfide species to form Li2Sx (x = 1, 2) side products. On the other hand, by adequately overcharging the battery, the triiodide/iodide redox mediator is capable of chemically transforming side products deposited on the Li anode and separator into soluble polysulfides, which can be recycled by the cathode. It is shown that the battery with the InI3 additive exhibits a prolonged cycle life, and is capable of retrieving its capacity by a facile overcharging process.

  1. N-n-butyl haloperidol iodide ameliorates hypoxia/reoxygenation injury through modulating the LKB1/AMPK/ROS pathway in cardiac microvascular endothelial cells.

    PubMed

    Lu, Binger; Wang, Bin; Zhong, Shuping; Zhang, Yanmei; Gao, Fenfei; Chen, Yicun; Zheng, Fuchun; Shi, Ganggang

    2016-06-07

    Endothelial cells are highly sensitive to hypoxia and contribute to myocardial ischemia/reperfusion injury. We have reported that N-n-butyl haloperidol iodide (F2) can attenuate hypoxia/reoxygenation (H/R) injury in cardiac microvascular endothelial cells (CMECs). However, the molecular mechanisms remain unclear. Neonatal rat CMECs were isolated and subjected to H/R. Pretreatment of F2 leads to a reduction in H/R injury, as evidenced by increased cell viability, decreased lactate dehydrogenase (LDH) leakage and apoptosis, together with enhanced AMP-activated protein kinase (AMPK) and liver kinase B1 (LKB1) phosphorylation in H/R ECs. Blockade of AMPK with compound C reversed F2-induced inhibition of H/R injury, as evidenced by decreased cell viability, increased LDH release and apoptosis. Moreover, compound C also blocked the ability of F2 to reduce H/R-induced reactive oxygen species (ROS) generation. Supplementation with the ROS scavenger N-acetyl-L-cysteine (NAC) reduced ROS levels, increased cell survival rate, and decreased both LDH release and apoptosis after H/R. In conclusion, our data indicate that F2 may mitigate H/R injury by stimulating LKB1/AMPK signaling pathway and subsequent suppression of ROS production in CMECs.

  2. The Impact of Iodide-Mediated Ozone Deposition and ...

    EPA Pesticide Factsheets

    The air quality of many large coastal areas in the United States is affected by the confluence of polluted urban and relatively clean marine airmasses, each with distinct atmospheric chemistry. In this context, the role of iodide-mediated ozone (O3) deposition over seawater and marine halogen chemistry accounted for in both the lateral boundary conditions and coastal waters surrounding the continental U.S. is examined using the Community Multiscale Air Quality (CMAQ) model. Several nested simulations are conducted in which these halogen processes are implemented separately in the continental U.S. and hemispheric CMAQ domains, the latter providing lateral boundary conditions for the former. Overall, it is the combination of these processes within both the continental U.S. domain and from lateral boundary conditions that lead to the largest reductions in modeled surface O3 concentrations. Predicted reductions in surface O3 concentrations occur mainly along the coast where CMAQ typically has large overpredictions. These results suggest that a realistic representation of halogen processes in marine regions can improve model prediction of O3 concentrations near the coast. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and

  3. Lysozyme amyloid oligomers and fibrils induce cellular death via different apoptotic/necrotic pathways.

    PubMed

    Gharibyan, Anna L; Zamotin, Vladimir; Yanamandra, Kiran; Moskaleva, Olesya S; Margulis, Boris A; Kostanyan, Irina A; Morozova-Roche, Ludmilla A

    2007-02-02

    Among the newly discovered amyloid properties, its cytotoxicity plays a key role. Lysozyme is a ubiquitous protein involved in systemic amyloidoses in vivo and forming amyloid under destabilising conditions in vitro. We characterized both oligomers and fibrils of hen lysozyme by atomic force microscopy and demonstrated their dose (5-50 microM) and time-dependent (6-48 h) effect on neuroblastoma SH-SY5Y cell viability. We revealed that fibrils induce a decrease of cell viability after 6 h due to membrane damage shown by inhibition of WST-1 reduction, early lactate dehydrogenase release, and propidium iodide intake; by contrast, oligomers activate caspases after 6 h but cause the cell viability to decline only after 48 h, as shown by fluorescent-labelled annexin V binding to externalized phosphatidylserine, propidium iodide DNA staining, lactate dehydrogenase release, and by typical apoptotic shrinking of cells. We conclude that oligomers induce apoptosis-like cell death, while the fibrils lead to necrosis-like death. As polymorphism is a common property of an amyloid, we demonstrated that it is not a single uniform species but rather a continuum of cross-beta-sheet-containing amyloids that are cytotoxic. An abundance of lysozyme highlights a universal feature of this phenomenon, indicating that amyloid toxicity should be assessed in all clinical applications involving proteinaceous materials.

  4. Lymphocutaneous Sporotrichosis Treated with Potassium Iodide with Development of Subclinical Hypothyroidism: Wolff-Chaikoff Effect?

    PubMed

    Arora, Pooja; Raihan, M; Kubba, Asha; Gautam, Ram K

    2017-01-01

    Sporotrichosis is a subcutaneous mycotic infection caused by Sporothrix schenckii that is acquired by traumatic implantation. The diagnosis is established by demonstration of fungal elements on histopathology and culture. Potassium iodide, azole antifungals, and terbinafine are the treatment options available. In this article, we report a 60-year-old female with lymphocutaneous sporotrichosis that responded well to potassium iodide. However, subclinical hypothyroidism (Wolff-Chaikoff effect) was encountered as a side effect of therapy which was managed with thyroxine replacement. Knowledge about the Wolff-Chaikoff effect (WCE) is important for the dermatologist and reinforces the need for screening and monitoring of thyroid stimulating hormone (TSH) in patients where long duration therapy is being planned.

  5. Copper-catalyzed direct synthesis of diaryl 1,2-diketones from aryl iodides and propiolic acids.

    PubMed

    Min, Hongkeun; Palani, Thiruvengadam; Park, Kyungho; Hwang, Jinil; Lee, Sunwoo

    2014-07-03

    Benzil derivatives such as diaryl 1,2-diketones are synthesized via the direct decarboxylative coupling reaction of aryl propiolic acids and their oxidation. The optimized conditions are that the reaction of aryl propiolic acids and aryl iodides is conducted at 140 °C for 6 h in the presence of 10 mol % CuI/Cu(OTf)2 and Cs2CO3, after which HI (aq) is added and further reacted. The method shows good functional group tolerance toward ester, aldehyde, cyano, and nitro groups. In addition, symmetrical diaryl 1,2-diketones are obtained from aryl iodides and propiolic acid in the presence of palladium and copper catalysts.

  6. Bacteria Mediate Methylation of Iodine in Marine and Terrestrial Environments

    PubMed Central

    Amachi, Seigo; Kamagata, Yoichi; Kanagawa, Takahiro; Muramatsu, Yasuyuki

    2001-01-01

    Methyl iodide (CH3I) plays an important role in the natural iodine cycle and participates in atmospheric ozone destruction. However, the main source of this compound in nature is still unclear. Here we report that a wide variety of bacteria including terrestrial and marine bacteria are capable of methylating the environmental level of iodide (0.1 μM). Of the strains tested, Rhizobium sp. strain MRCD 19 was chosen for further analysis, and it was found that the cell extract catalyzed the methylation of iodide with S-adenosyl-l-methionine as the methyl donor. These results strongly indicate that bacteria contribute to iodine transfer from the terrestrial and marine ecosystems into the atmosphere. PMID:11375186

  7. Fast iodide-SAD phasing for high-throughput membrane protein structure determination.

    PubMed

    Melnikov, Igor; Polovinkin, Vitaly; Kovalev, Kirill; Gushchin, Ivan; Shevtsov, Mikhail; Shevchenko, Vitaly; Mishin, Alexey; Alekseev, Alexey; Rodriguez-Valera, Francisco; Borshchevskiy, Valentin; Cherezov, Vadim; Leonard, Gordon A; Gordeliy, Valentin; Popov, Alexander

    2017-05-01

    We describe a fast, easy, and potentially universal method for the de novo solution of the crystal structures of membrane proteins via iodide-single-wavelength anomalous diffraction (I-SAD). The potential universality of the method is based on a common feature of membrane proteins-the availability at the hydrophobic-hydrophilic interface of positively charged amino acid residues with which iodide strongly interacts. We demonstrate the solution using I-SAD of four crystal structures representing different classes of membrane proteins, including a human G protein-coupled receptor (GPCR), and we show that I-SAD can be applied using data collection strategies based on either standard or serial x-ray crystallography techniques.

  8. 76 FR 16770 - Petition To Suspend and Cancel All Registrations for the Soil Fumigant Iodomethane (Methyl Iodide...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2010-0541; FRL-8841-7] Petition To Suspend and Cancel All Registrations for the Soil Fumigant Iodomethane (Methyl Iodide); Notice of Availability AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: On March 31, 2010, EPA received a petition from...

  9. Evaluation of iodide deficiency in the lactating rat and pup using a biologically based dose-response model

    EPA Science Inventory

    A biologically-based dose response (BBDR) model for the hypothalamic-pituitary thyroid (BPT) axis in the lactating rat and nursing pup was developed to describe the perturbations caused by iodide deficiency on the HPT axis. Model calibrations, carried out by adjusting key model p...

  10. 21 CFR 520.763a - Dithiazanine iodide tablets.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Dithiazanine iodide tablets. 520.763a Section 520.763a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.763a Dithiazanine...

  11. 21 CFR 520.763b - Dithiazanine iodide powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Dithiazanine iodide powder. 520.763b Section 520.763b Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.763b Dithiazanine...

  12. 21 CFR 520.763c - Dithiazanine iodide and piperazine citrate suspension.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Dithiazanine iodide and piperazine citrate suspension. 520.763c Section 520.763c Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS...

  13. 21 CFR 520.763a - Dithiazanine iodide tablets.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Dithiazanine iodide tablets. 520.763a Section 520.763a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.763a Dithiazanine...

  14. 21 CFR 520.763 - Dithiazanine iodide oral dosage forms.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Dithiazanine iodide oral dosage forms. 520.763 Section 520.763 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.763...

  15. 21 CFR 520.763c - Dithiazanine iodide and piperazine citrate suspension.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Dithiazanine iodide and piperazine citrate suspension. 520.763c Section 520.763c Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS...

  16. 21 CFR 520.763 - Dithiazanine iodide oral dosage forms.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Dithiazanine iodide oral dosage forms. 520.763 Section 520.763 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.763...

  17. 21 CFR 520.763b - Dithiazanine iodide powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Dithiazanine iodide powder. 520.763b Section 520.763b Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.763b Dithiazanine...

  18. 21 CFR 520.763a - Dithiazanine iodide tablets.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Dithiazanine iodide tablets. 520.763a Section 520.763a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.763a Dithiazanine...

  19. 21 CFR 520.763 - Dithiazanine iodide oral dosage forms.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Dithiazanine iodide oral dosage forms. 520.763 Section 520.763 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.763...

  20. 21 CFR 520.763c - Dithiazanine iodide and piperazine citrate suspension.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Dithiazanine iodide and piperazine citrate suspension. 520.763c Section 520.763c Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS...

  1. 21 CFR 520.763 - Dithiazanine iodide oral dosage forms.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dithiazanine iodide oral dosage forms. 520.763 Section 520.763 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.763...

  2. 21 CFR 520.763 - Dithiazanine iodide oral dosage forms.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Dithiazanine iodide oral dosage forms. 520.763 Section 520.763 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.763...

  3. 21 CFR 520.763c - Dithiazanine iodide and piperazine citrate suspension.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Dithiazanine iodide and piperazine citrate suspension. 520.763c Section 520.763c Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS...

  4. 21 CFR 520.763b - Dithiazanine iodide powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Dithiazanine iodide powder. 520.763b Section 520.763b Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.763b Dithiazanine...

  5. 21 CFR 520.763a - Dithiazanine iodide tablets.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Dithiazanine iodide tablets. 520.763a Section 520.763a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.763a Dithiazanine...

  6. 21 CFR 520.763c - Dithiazanine iodide and piperazine citrate suspension.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dithiazanine iodide and piperazine citrate suspension. 520.763c Section 520.763c Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS...

  7. 21 CFR 520.763b - Dithiazanine iodide powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dithiazanine iodide powder. 520.763b Section 520.763b Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.763b Dithiazanine...

  8. 21 CFR 520.763b - Dithiazanine iodide powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Dithiazanine iodide powder. 520.763b Section 520.763b Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.763b Dithiazanine...

  9. Powder Extinguishants for Jet-Fuel Fires

    NASA Technical Reports Server (NTRS)

    Altman, R. L.; Mayer, L. A.; Ling, A. C.

    1986-01-01

    Mixtures of alkali metal dawsonite and metal halide show superior performance. In tests of new dry powder fire extinguishants, mixtures of potassium dawsonite with either stannous iodide or potassium iodide found effective for extinguishing jet-fuel fires on hot metal surfaces (up to 900 degrees C). Mixtures performed more effectively than either compound alone.

  10. Developments in mercuric iodide gamma ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, B.E.; Beyerle, A.G.; Dolin, R.C.

    A mercuric iodide gamma-ray imaging array and camera system previously described has been characterized for spatial and energy resolution. Based on this data a new camera is being developed to more fully exploit the potential of the array. Characterization results and design criterion for the new camera will be presented. 2 refs., 7 figs.

  11. High-Throughput Screening and Quantitative Chemical Ranking for Sodium Iodide Symporter Inhibitors in ToxCast Phase 1 Chemical Library

    EPA Science Inventory

    The U.S. EPA’s Endocrine Disruptor Screening Program (EDSP) and Office of Research and Development (ORD) are currently developing high throughput assays to screen chemicals that may alter the thyroid hormone pathway. One potential target in this pathway is the sodium iodide...

  12. The Reaction between Iron(II) Iodide and Potassium Dichromate(VI) in Acidified Aqueous Solution

    ERIC Educational Resources Information Center

    Talbot, Christopher

    2013-01-01

    This "Science note" teaching lesson explores the possible reaction between the ions in a reaction mixture consisting of iron(II) iodide and potassium dichromate(VI) in acidified aqueous solution. The electrode potentials will be used to deduce any spontaneous reactions under standard thermodynamic conditions (298 K, 1 bar (approximately…

  13. High-Throughput Screening and Quantitative Chemical Ranking for Sodium Iodide Symporter Inhibitors in ToxCast Phase 1 Chemical Library

    EPA Science Inventory

    The U.S. EPA’s Endocrine Disruptor Screening Program (EDSP) and Office of Research and Development (ORD) are currently developing high throughput assays to screen chemicals that may alter the thyroid hormone pathway. One potential target in this pathway is the sodium iodide sympo...

  14. Evaluation of iodide deficiency in the lactating rat and pup using a biologically based dose response (BBDR) Model***

    EPA Science Inventory

    A biologically-based dose response (BBDR) model for the hypothalamic-pituitary thyroid (HPT) axis in the lactating rat and nursing pup was developed to describe the perturbations caused by iodide deficiency on the 1-IPT axis. Model calibrations, carried out by adjusting key model...

  15. Room temperature fluorescence and phosphorescence study on the interactions of iodide ions with single tryptophan containing serum albumins

    NASA Astrophysics Data System (ADS)

    Gałęcki, Krystian; Kowalska-Baron, Agnieszka

    2016-12-01

    In this study, the influence of heavy-atom perturbation, induced by the addition of iodide ions, on the fluorescence and phosphorescence decay parameters of some single tryptophan containing serum albumins isolated from: human (HSA), equine (ESA) and leporine (LSA) has been studied. The obtained results indicated that, there exist two distinct conformations of the proteins with different exposure to the quencher. In addition, the Stern-Volmer plots indicated saturation of iodide ions in the binding region. Therefore, to determine quenching parameter, we proposed alternative quenching model and we have performed a global analysis of each conformer to define the effect of iodide ions in the cavity by determining the value of the association constant. The possible quenching mechanism may be based on long-range through-space interactions between the buried chromophore and quencher in the aqueous phase. The discrepancies of the decay parameters between the albumins studied may be related with the accumulation of positive charge at the main and the back entrance to the Drug Site 1 where tryptophan residue is located.

  16. The influence of different factors on in vitro enamel erosion.

    PubMed

    Lussi, A; Jäggi, T; Schärer, S

    1993-01-01

    The aim of this study was to use two demineralization test methods to analyze the erosive potential of beverages and foodstuffs. In addition, the surface microhardness test and the iodide permeability test were compared. Surface microhardness and iodide permeability were measured before and after exposure. To characterize the beverages and foodstuffs the content of phosphate, calcium and fluoride, pH, the titrable amount of base to pH 5.5 and 7.0 as well as the buffer capacity at pH 5.5 were determined. Sprite light showed the highest significant decrease in surface microhardness (p < or = 0.05) followed by grapefruit juice, apple juice and salad dressing. The highest significant increase in iodide permeability (p < or = 0.05) was caused by exposure to grapefruit juice followed by apple juice (Sprite light was not tested). Multiple linear regression analyses revealed that the erosive capacity of different drinks, juices and foodstuffs are statistically significantly associated with their acidity, pH values, phosphate and fluoride contents as well as the baseline surface microhardness or iodide permeability values of the exposed enamel.

  17. Conversion of aryl iodides into aryliodine(III) dichlorides by an oxidative halogenation strategy using 30% aqueous hydrogen peroxide in fluorinated alcohol.

    PubMed

    Podgorsek, Ajda; Iskra, Jernej

    2010-04-20

    Oxidative chlorination with HCl/H2O2 in 1,1,1-trifluoroethanol was used to transform aryl iodides into aryliodine(III) dihalides. In this instance 1,1,1-trifluoroethanol is not only the reaction medium, but is also an activator of hydrogen peroxide for the oxidation of hydrochloric acid to molecular chlorine. Aryliodine(III) dichlorides were formed in 72-91% isolated yields in the reaction of aryl iodides with 30% aqueous hydrogen peroxide and hydrochloric acid at ambient temperature. A study of the effect that substituents on the aromatic ring have on the formation and stability of aryliodine(III) dichlorides shows that the transformation is easier to achieve in the presence of the electron-donating groups (i.e. methoxy), but in this case the products rapidly decompose under the reported reaction conditions to form chlorinated arenes. The results suggest that oxidation of hydrogen chloride with hydrogen peroxide is the initial reaction step, while direct oxidation of aryl iodide with hydrogen peroxide is less likely to occur.

  18. Reactions of vitamin A with acceptors of electrons. Interactions with iodine and the formation of iodide

    PubMed Central

    Lucy, J. A.; Lichti, F. Ulrike

    1969-01-01

    1. The reactions of retinol and retinoic acid with iodine were investigated since knowledge of the chemical reactions of vitamin A with acceptors of electrons may shed light on its biochemical mode of action. 2. Colloidal retinol, but not retinoic acid, reacts with iodine to yield a blue–green complex that rapidly decomposes, giving iodide and an unknown species with λmax. at 870mμ. 3. In addition, both retinol and retinoic acid reduce iodine to iodide by a reaction that does not involve an intermediate coloured complex; this reaction appears to yield unstable carbonium ion derivatives of the vitamin. 4. The presence of water greatly facilitates the production of iodide from vitamin A and iodine. 5. Possible chemical pathways involved in these reactions are discussed. 6. It is suggested that the chemical properties of retinol and retinoic acid that underlie their biochemical behaviour might be apparent only when the molecules are at a lipid–water interface, and that vitamin A might be expected to react with a number of different electron acceptors in vivo. PMID:5801297

  19. EPR investigation of zinc/iodine exchange between propargyl iodides and diethylzinc: detection of propargyl radical by spin trapping.

    PubMed

    Maury, Julien; Jammi, Suribabu; Vibert, François; Marque, Sylvain R A; Siri, Didier; Feray, Laurence; Bertrand, Michèle

    2012-10-19

    The production of propargyl radicals in the reaction of dialkylzincs with propargyl iodides in nondegassed medium was investigated by EPR using tri-tert-butylnitrosobenzene (TTBNB) as a spin trap. The radical mechanism and the nature of the observed species were confirmed by the trapping of propargyl radicals generated by an alternative pathway: i.e., upon irradiation of propargyl iodides in the presence of hexa-n-butyldistannane. In dialkylzinc-mediated experiments a high concentration of adduct was instantaneously observed, whereas no spontaneous production of spin adduct was detected in a blank experiment performed with the propargylic iodide and TTBNB in the absence of diethylzinc. Under irradiation in the presence of distannane, two different species were observed at the very beginning of the irradiation; the nitroxide resulting from the trapping of propargyl radical at the propargyl carbon remained the only species detected after irradiating for several minutes. The absence of adducts resulting from the trapping of allenyl canonical forms was supported by DFT calculations and by the preparation of an authentic sample.

  20. Photoluminescence and anti-deliquesce of cesium iodide and its sodium-doped films deposited by thermal evaporation at high deposition rates

    NASA Astrophysics Data System (ADS)

    Hsu, Jin-Cherng; Chiang, Yueh-Sheng; Ma, Yu-Sheng

    2013-03-01

    Cesium iodide (CsI) and sodium iodide (NaI) are good scintillators due to their high luminescence efficiency. These alkali halides can be excited by ultra-violet or by ionizing radiation. In this study, CsI and its Na-doped films about 8 μm thick were deposited by thermal evaporation boat without heating substrates at high deposition rates of 30, 50, 70, 90, and 110 nm/sec, respectively. The as-deposited films were sequentially deposited a silicon dioxide film to protect from deliquesce. And, the films were also post-annealed in vacuum at 150, 200, 250, and 300 °C, respectively. We calculated the packing densities of the samples according to the measurements of Fourier transform infrared spectroscopy (FTIR) and observed the luminescence properties by photoluminescence (PL) system. The surfaces and cross sections of the films were investigated by scanning electron microscope (SEM). From the above measurements we can find the optimal deposition rate of 90 nm/sec and post-annealing temperature of 250 °C in vacuum for the asdeposited cesium iodide and its sodium-doped films.

  1. Longitudinal Assessment of Lung Cancer Progression in Mice Using the Sodium Iodide Symporter Reporter Gene and SPECT/CT Imaging.

    PubMed

    Price, Dominique N; McBride, Amber A; Anton, Martina; Kusewitt, Donna F; Norenberg, Jeffrey P; MacKenzie, Debra A; Thompson, Todd A; Muttil, Pavan

    2016-01-01

    Lung cancer has the highest mortality rate of any tissue-specific cancer in both men and women. Research continues to investigate novel drugs and therapies to mitigate poor treatment efficacy, but the lack of a good descriptive lung cancer animal model for preclinical drug evaluation remains an obstacle. Here we describe the development of an orthotopic lung cancer animal model which utilizes the human sodium iodide symporter gene (hNIS; SLC5A5) as an imaging reporter gene for the purpose of non-invasive, longitudinal tumor quantification. hNIS is a glycoprotein that naturally transports iodide (I-) into thyroid cells and has the ability to symport the radiotracer 99mTc-pertechnetate (99mTcO4-). A549 lung adenocarcinoma cells were genetically modified with plasmid or lentiviral vectors to express hNIS. Modified cells were implanted into athymic nude mice to develop two tumor models: a subcutaneous and an orthotopic xenograft tumor model. Tumor progression was longitudinally imaged using SPECT/CT and quantified by SPECT voxel analysis. hNIS expression in lung tumors was analyzed by quantitative real-time PCR. Additionally, hematoxylin and eosin staining and visual inspection of pulmonary tumors was performed. We observed that lentiviral transduction provided enhanced and stable hNIS expression in A549 cells. Furthermore, 99mTcO4- uptake and accumulation was observed within lung tumors allowing for imaging and quantification of tumor mass at two-time points. This study illustrates the development of an orthotopic lung cancer model that can be longitudinally imaged throughout the experimental timeline thus avoiding inter-animal variability and leading to a reduction in total animal numbers. Furthermore, our orthotopic lung cancer animal model is clinically relevant and the genetic modification of cells for SPECT/CT imaging can be translated to other tissue-specific tumor animal models.

  2. Longitudinal Assessment of Lung Cancer Progression in Mice Using the Sodium Iodide Symporter Reporter Gene and SPECT/CT Imaging

    PubMed Central

    Anton, Martina; Kusewitt, Donna F.; Norenberg, Jeffrey P.; MacKenzie, Debra A.; Thompson, Todd A.; Muttil, Pavan

    2016-01-01

    Lung cancer has the highest mortality rate of any tissue-specific cancer in both men and women. Research continues to investigate novel drugs and therapies to mitigate poor treatment efficacy, but the lack of a good descriptive lung cancer animal model for preclinical drug evaluation remains an obstacle. Here we describe the development of an orthotopic lung cancer animal model which utilizes the human sodium iodide symporter gene (hNIS; SLC5A5) as an imaging reporter gene for the purpose of non-invasive, longitudinal tumor quantification. hNIS is a glycoprotein that naturally transports iodide (I-) into thyroid cells and has the ability to symport the radiotracer 99mTc-pertechnetate (99mTcO4-). A549 lung adenocarcinoma cells were genetically modified with plasmid or lentiviral vectors to express hNIS. Modified cells were implanted into athymic nude mice to develop two tumor models: a subcutaneous and an orthotopic xenograft tumor model. Tumor progression was longitudinally imaged using SPECT/CT and quantified by SPECT voxel analysis. hNIS expression in lung tumors was analyzed by quantitative real-time PCR. Additionally, hematoxylin and eosin staining and visual inspection of pulmonary tumors was performed. We observed that lentiviral transduction provided enhanced and stable hNIS expression in A549 cells. Furthermore, 99mTcO4- uptake and accumulation was observed within lung tumors allowing for imaging and quantification of tumor mass at two-time points. This study illustrates the development of an orthotopic lung cancer model that can be longitudinally imaged throughout the experimental timeline thus avoiding inter-animal variability and leading to a reduction in total animal numbers. Furthermore, our orthotopic lung cancer animal model is clinically relevant and the genetic modification of cells for SPECT/CT imaging can be translated to other tissue-specific tumor animal models. PMID:28036366

  3. Peracetic acid oxidation of saline waters in the absence and presence of H ₂O ₂: secondary oxidant and disinfection byproduct formation.

    PubMed

    Shah, Amisha D; Liu, Zheng-Qian; Salhi, Elisabeth; Höfer, Thomas; von Gunten, Urs

    2015-02-03

    Peracetic acid (PAA) is a disinfectant considered for use in ballast water treatment, but its chemical behavior in such systems (i.e., saline waters) is largely unknown. In this study, the reactivity of PAA with halide ions (chloride and bromide) to form secondary oxidants (HOCl, HOBr) was investigated. For the PAA-chloride and PAA-bromide reactions, second-order rate constants of (1.47 ± 0.58) × 10(-5) and 0.24 ± 0.02 M(-1) s(-1) were determined for the formation of HOCl or HOBr, respectively. Hydrogen peroxide (H2O2), which is always present in PAA solutions, reduced HOCl or HOBr to chloride or bromide, respectively. As a consequence, in PAA-treated solutions with [H2O2] > [PAA], the HOBr (HOCl) steady-state concentrations were low with a limited formation of brominated (chlorinated) disinfection byproducts (DBPs). HOI (formed from the PAA-iodide reaction) affected this process because it can react with H2O2 back to iodide. H2O2 is thus consumed in a catalytic cycle and leads to less efficient HOBr scavenging at even low iodide concentrations (<1 μM). In PAA-treated solutions with [H2O2] < [PAA] and high bromide levels, mostly brominated DBPs are formed. In synthetic water, bromate was formed from the oxidation of bromide. In natural brackish waters, bromoform (CHBr3), bromoacetic acid (MBAA), dibromoacetic acid (DBAA), and tribromoacetic acid (TBAA) formed at up to 260, 106, 230, and 89 μg/L, respectively for doses of 2 mM (ca. 150 mg/L) PAA and [H2O2] < [PAA]. The same brackish waters, treated with PAA with [H2O2] ≫ [PAA], similar to conditions found in commercial PAA solutions, resulted in no trihalomethanes and only low haloacetic acid concentrations.

  4. Lithium Sensitivity of Store Operated Ca2+ Entry and Survival of Fibroblasts Isolated from Chorea-Acanthocytosis Patients.

    PubMed

    Pelzl, Lisann; Elsir, Bhaeldin; Sahu, Itishri; Bissinger, Rosi; Singh, Yogesh; Sukkar, Basma; Honisch, Sabina; Schoels, Ludger; Jemaà, Mohamed; Lang, Elisabeth; Storch, Alexander; Hermann, Andreas; Stournaras, Christos; Lang, Florian

    2017-01-01

    The widely expressed protein chorein fosters activation of the phosphoinositide 3 kinase (PI3K) pathway thus supporting cell survival. Loss of function mutations of the chorein encoding gene VPS13A (vacuolar protein sorting-associated protein 13A) causes chorea-acanthocytosis (ChAc), a neurodegenerative disorder paralleled by deformations of erythrocytes. In mice, genetic knockout of chorein leads to enhanced neuronal apoptosis. PI3K dependent signalling upregulates Orai1, a pore forming channel protein accomplishing store operated Ca2+ entry (SOCE). Increased Orai1 expression and SOCE have been shown to confer survival of tumor cells. SOCE could be up-regulated by lithium. The present study explored, whether SOCE and/or apoptosis are altered in ChAc fibroblasts and could be modified by lithium treatment. Fibroblasts were isolated from ChAc patients and age-matched healthy volunteers. Cytosolic Ca2+ activity ([Ca2+]i) was estimated from Fura-2-fluorescence, SOCE from increase of [Ca2+]i following Ca2+ re-addition after Ca2+-store depletion with sarcoendoplasmatic Ca2+-ATPase (SERCA) inhibitor thapsigargin (1 µM), and apoptosis from annexin-V/propidium iodide staining quantified in flow cytometry. SOCE was significantly smaller in ChAc fibroblasts than in control fibroblasts. Lithium (2 mM, 24 hours) significantly increased and Orai1 blocker 2-Aminoethoxydiphenyl Borate (2-APB, 50 µM, 24 hours) significantly decreased SOCE. Annexin-V-binding and propidium iodide staining were significantly higher in ChAc fibroblasts than in control fibroblasts. In ChAc fibroblasts annexin-V-binding and propidium iodide staining were significantly decreased by lithium treatment, significantly increased by 2-APB and virtually lithium insensitive in the presence of 2-APB. In ChAc fibroblasts, downregulation of SOCE contributes to enhanced susceptibility to apoptosis. Both, decreased SOCE and enhanced apoptosis of ChAc fibroblasts can be reversed by lithium treatment. © 2017 The Author(s). Published by S. Karger AG, Basel.

  5. A novel enzyme-based antimicrobial system comprising iodide and a multicopper oxidase isolated from Alphaproteobacterium strain Q-1.

    PubMed

    Yuliana, Tri; Ebihara, Kyota; Suzuki, Mio; Shimonaka, Chie; Amachi, Seigo

    2015-12-01

    Alphaproteobacterium strain Q-1 produces an extracellular multicopper oxidase (IOX), which catalyzes iodide (I-) oxidation to form molecular iodine (I2). In this study, the antimicrobial activity of the IOX/iodide system was determined. Both Gram-positive and Gram-negative bacteria tested were killed completely within 5 min by 50 mU mL(-1) of IOX and 10 mM iodide. The sporicidal activity of the system was also tested and compared with a common iodophor, povidone-iodine (PVP-I). IOX (300 mU mL(-1)) killed Bacillus cereus, B. subtilis, and Geobacillus stearothermophilus spores with decimal reduction times of 2.58, 7.62, and 40.9 min, respectively. However, 0.1% PVP-I killed these spores with much longer decimal reduction times of 5.46, 38.0, and 260 min, respectively. To evaluate the more superior sporicidal activity of the IOX system over PVP-I, the amount of free iodine (non-complexed I2) was determined by an equilibrium dialysis technique. The IOX system included more than 40 mg L(-1) of free iodine, while PVP-I included at most 25 mg L(-1) free iodine. Our results suggest that the new enzyme-based antimicrobial system is effective against a wide variety of microorganisms and bacterial spores, and that its strong biocidal activity is due to its high free iodine content, which is probably maintained by re-oxidation of iodide released after oxidation of cell components by I2.

  6. Mercuric iodide medical imagers for low-exposure radiography and fluoroscopy

    NASA Astrophysics Data System (ADS)

    Zentai, George; Partain, Larry; Pavlyuchkova, Raisa; Proano, Cesar; Breen, Barry N.; Taieb, A.; Dagan, Ofer; Schieber, Michael; Gilboa, Haim; Thomas, Jerry

    2004-05-01

    Photoconductive polycrystalline mercuric iodide deposited on flat panel thin film transistor (TFT) arrays is being developed for direct digital X-ray detectors that can perform both radiographic and fluoroscopic medical imaging. The mercuric iodide is either vacuum deposited by Physical Vapor Deposition (PVD) or coated onto the array by a wet Particle-In-Binder (PIB) process. The PVD deposition technology has been scaled up to the 20 cm x 25 cm size required in common medical imaging applications. A TFT array with a pixel pitch of 127 microns is used for these imagers. Arrays of 10 cm x 10 cm size have been used to evaluate performance of mercuric iodide imagers. Radiographic and fluoroscopic images of diagnostic quality at up to 15 pulses per second were demonstrated. As we previously reported, the resolution is limited to the TFT array Nyquist frequency of ~3.9 lp/mm (127 micron pixel pitch). Detective Quantum Efficiency (DQE) has been measured as a function of spatial frequency for these imagers. The DQE is lower than the theoretically calculated value due to some additional noise sources of the electronics and the array. We will retest the DQE after eliminating these noise sources. Reliability and stress testing was also began for polycrystalline mercuric iodide PVD and PIB detectors. These are simplified detectors based upon a stripe electrode or circular electrode structure. The detectors were stressed under various voltage bias, temperature and time conditions. The effects of the stress tests on the detector dark current and sensitivity were determined.

  7. Determination of iodine in bread and fish using the iodide ion-selective electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, J.B.

    The purpose of this study was to assess the potential for use of the ion-selective electrode (ISE) as a method for measuring the iodine content in bread and fish. Ashing methods, sample preparation and electrode responses were evaluated. The iodine values obtained using the iodide electrode were compared to iodine values obtained by the arsenic-cerium method (As-Ce). Ashing methods were used in preparing bread and haddock for iodine analysis by the ISE. The values were compared to unashed samples measured by the ISE. Electrode response to iodide was examined by varying the sample pH, measuring electrode equilibrium times, and comparingmore » direct measurement in ppm to iodide values obtained by the method of known addition. Oyster reference tissue with a known iodine concentration was used to determine rates of recovery. For the As-Ce procedure, an alkaline dry ash for two hour followed by colorimetric analysis at 320 nm was recommended. The study showed that the pre-treatment of bread and fish was necessary for ISE measurement. The iodine values obtained by the ISE in the analysis of oyster reference tissue, haddock and bread were not in agreement with their corresponding As-Ce values. Further work needs to be done to determine an ashing procedure that has minimal iodide loss an/or develop sample treatments that will improve the reliability and precision of iodine values obtained using the ion-selective electrode.« less

  8. Mechanism of iodide-dependent catalatic activity of thyroid peroxidase and lactoperoxidase.

    PubMed

    Magnusson, R P; Taurog, A; Dorris, M L

    1984-01-10

    Mechanisms that have been proposed for peroxidase-catalyzed iodination require the utilization of 1 mol of H2O2 for organic binding of 1 mol of iodide. When we measured the stoichiometry of this reaction using thyroid peroxidase or lactoperoxidase at pH 7.0, we consistently obtained a ratio less than 1.0. This was shown to be attributable to catalase-like activity of these enzymes, resulting in unproductive cleavage of H2O2. This catalatic activity was completely iodide-dependent. To elucidate the mechanism of the iodide-dependent catalatic activity, the effects of various agents were investigated. The major observations may be summarized as follows: 1) The catalatic activity was inhibited in the presence of an iodine acceptor such as tyrosine. 2) The pseudohalide, SCN-, could not replace I- as a promoter of catalatic activity. 3) The inhibitory effects of the thioureylene drugs, methimazole and carbimazole, on the iodide-dependent catalatic activity were very similar to those reported previously for thyroid peroxidase-catalyzed iodination. 4) High concentrations of I- inhibited the catalatic activity of thyroid peroxidase and lactoperoxidase in a manner similar to that described previously for peroxidase-catalyzed iodination. On the basis of these observations and other findings, we have proposed a scheme which offers a possible explanation for iodide-dependent catalatic activity of thyroid peroxidase and lactoperoxidase. Compound I of the peroxidases is represented as EO, and oxidation of I- by EO is postulated to form enzyme-bound hypoiodite, represented in our scheme as [EOI]-. We suggest that the latter can react with H2O2 in a catalase-like reaction, with evolution of O2. We postulate further that the same form of oxidized iodine is also involved in iodination of tyrosine, oxidation of thioureylene drugs, and oxidation of I-, and that inhibition of catalatic activity by these agents occurs through competition with H2O2 for oxidized iodine.

  9. Diode-Pumped Organo-Lead Halide Perovskite Lasing in a Metal-Clad Distributed Feedback Resonator.

    PubMed

    Jia, Yufei; Kerner, Ross A; Grede, Alex J; Brigeman, Alyssa N; Rand, Barry P; Giebink, Noel C

    2016-07-13

    Organic-inorganic lead halide perovskite semiconductors have recently reignited the prospect of a tunable, solution-processed diode laser, which has the potential to impact a wide range of optoelectronic applications. Here, we demonstrate a metal-clad, second-order distributed feedback methylammonium lead iodide perovskite laser that marks a significant step toward this goal. Optically pumping this device with an InGaN diode laser at low temperature, we achieve lasing above a threshold pump intensity of 5 kW/cm(2) for durations up to ∼25 ns at repetition rates exceeding 2 MHz. We show that the lasing duration is not limited by thermal runaway and propose instead that lasing ceases under continuous pumping due to a photoinduced structural change in the perovskite that reduces the gain on a submicrosecond time scale. Our results indicate that the architecture demonstrated here could provide the foundation for electrically pumped lasing with a threshold current density Jth < 5 kA/cm(2) under sub-20 ns pulsed drive.

  10. Excitonic Effects in Methylammonium Lead Halide Perovskites.

    PubMed

    Chen, Xihan; Lu, Haipeng; Yang, Ye; Beard, Matthew C

    2018-05-17

    The exciton binding energy in methylammonium lead iodide (MAPbI 3 ) is about 10 meV, around 1/3 of the available thermal energy ( k B T ∼ 26 meV) at room temperature. Thus, exciton populations are not stable at room temperature at moderate photoexcited carrier densities. However, excitonic resonances dominate the absorption onset. Furthermore, these resonances determine the transient absorbance and transient reflectance spectra. The exciton binding energy is a reflection of the Coulomb interaction energy between photoexcited electrons and holes. As such, it serves as a marker for the strength of electron/hole interactions and impacts a variety of phenomena, such as, absorption, radiative recombination, and Auger recombination. In this Perspective, we discuss the role of excitons and excitonic resonances in the optical properties of lead-halide perovskite semiconductors. Finally, we discuss how the strong light-matter interactions induce an optical stark effect splitting the doubly spin degenerate ground exciton states and are easily observed at room temperature.

  11. Light-induced defects in hybrid lead halide perovskite

    NASA Astrophysics Data System (ADS)

    Sharia, Onise; Schneider, William

    One of the main challenges facing organohalide perovskites for solar application is stability. Solar cells must last decades to be economically viable alternatives to traditional energy sources. While some causes of instability can be avoided through engineering, light-induced defects can be fundamentally limiting factor for practical application of the material. Light creates large numbers of electron and hole pairs that can contribute to degradation processes. Using ab initio theoretical methods, we systematically explore first steps of light induced defect formation in methyl ammonium lead iodide, MAPbI3. In particular, we study charged and neutral Frenkel pair formation involving Pb and I atoms. We find that most of the defects, except negatively charged Pb Frenkel pairs, are reversible, and thus most do not lead to degradation. Negative Pb defects create a mid-gap state and localize the conduction band electron. A minimum energy path study shows that, once the first defect is created, Pb atoms migrate relatively fast. The defects have two detrimental effects on the material. First, they create charge traps below the conduction band. Second, they can lead to degradation of the material by forming Pb clusters.

  12. Sterol regulatory element-binding proteins are regulators of the sodium/iodide symporter in mammary epithelial cells.

    PubMed

    Wen, G; Pachner, L I; Gessner, D K; Eder, K; Ringseis, R

    2016-11-01

    The sodium/iodide symporter (NIS), which is essential for iodide concentration in the thyroid, is reported to be transcriptionally regulated by sterol regulatory element-binding proteins (SREBP) in rat FRTL-5 thyrocytes. The SREBP are strongly activated after parturition and throughout lactation in the mammary gland of cattle and are important for mammary epithelial cell synthesis of milk lipids. In this study, we tested the hypothesis that the NIS gene is regulated also by SREBP in mammary epithelial cells, in which NIS is functionally expressed during lactation. Regulation of NIS expression and iodide uptake was investigated by means of inhibition, silencing, and overexpression of SREBP and by reporter gene and DNA-binding assays. As a mammary epithelial cell model, the human MCF-7 cell line, a breast adenocarcinoma cell line, which shows inducible expression of NIS by all-trans retinoic acid (ATRA), and unlike bovine mammary epithelial cells, is widely used to investigate the regulation of mammary gland NIS and NIS-specific iodide uptake, was used. Inhibition of SREBP maturation by treatment with 25-hydroxycholesterol (5 µM) for 48h reduced ATRA (1 µM)-induced mRNA concentration of NIS and iodide uptake in MCF-7 cells by approximately 20%. Knockdown of SREBP-1c and SREBP-2 by RNA interference decreased the mRNA and protein concentration of NIS by 30 to 50% 48h after initiating knockdown, whereas overexpression of nuclear SREBP (nSREBP)-1c and nSREBP-2 increased the expression of NIS in MCF-7 cells by 45 to 60%, respectively, 48h after initiating overexpression. Reporter gene experiments with varying length of NIS promoter reporter constructs revealed that the NIS 5'-flanking region is activated by nSREBP-1c and nSREBP-2 approximately 1.5- and 4.5-fold, respectively, and activation involves a SREBP-binding motif (SRE) at -38 relative to the transcription start site of the NIS gene. Gel shift assays using oligonucleotides spanning either the wild-type or the mutated SRE at -38 of the NIS 5'-flanking region showed that in vitro-translated nSREBP-1c and nSREBP-2 bind only the wild-type but not the mutated SRE at -38 of NIS. Collectively, the present results from cell culture experiments with human mammary epithelial MCF-7 cells and from genetic studies show for the first time that the NIS gene and iodide uptake are regulated by SREBP in cultured human mammary epithelial cells. Future studies are necessary to clarify if the regulation of NIS expression and iodide uptake by SREBP also applies to the lactating bovine mammary epithelium. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. The Impact of Iodide-Mediated Ozone Deposition and Halogen Chemistry on Surface Ozone Concentrations Across the Continental United States

    EPA Science Inventory

    The air quality of many large coastal areas in the United States is affected by the confluence of polluted urban and relatively clean marine airmasses, each with distinct atmospheric chemistry. In this context, the role of iodide-mediated ozone (O3) deposition over seawater and m...

  14. Physical property measurements of doped cesium iodide crystals

    NASA Technical Reports Server (NTRS)

    Synder, R. S.; Clotfelter, W. N.

    1974-01-01

    Mechanical and thermal property values are reported for crystalline cesium iodide doped with sodium and thallium. Young's modulus, bulk modulus, shear modulus, and Poisson's ratio were obtained from ultrasonic measurements. Young's modulus and the samples' elastic and plastic behavior were also measured under tension and compression. Thermal expansion and thermal conductivity were the temperature dependent measurements that were made.

  15. DEVELOPMENT OF AN IN VITRO RADIOACTIVE IODIDE UPTAKE ASSAY (RAIU) WITH HUMAN NIS-EXPRESSING HEK293T-EPA CELL LINE

    EPA Science Inventory

    Many high-throughput screening (HTPS) assays are available in the US EPA ToxCast program for estrogen and androgen pathways; only a limited number of assays exist for thyroid pathways. One potential target of thyroid-disrupting chemicals is the active uptake of iodide into the t...

  16. Iodide-induced organothiol desorption and photochemical reaction, gold nanoparticle (AuNP) fusion, and SERS signal reduction in organothiol-containing AuNP aggregates

    USDA-ARS?s Scientific Manuscript database

    Gold nanoparticles (AuNPs) have been used extensively as surface-enhanced Raman spectroscopic (SERS) substrates for their large SERS enhancements and widely believed chemical stability. Presented is the finding that iodide can rapidly reduce the SERS intensity of the ligands, including organothiols ...

  17. Use of FRTL-5 Cell Line as a Complementary Assay for Chemicals Identified During High-Throughput Screening as Sodium/Iodide Symporter (NIS) Inhibitors

    EPA Science Inventory

    Confirmation of Test Chemicals Identified by a High-Throughput Screen (HTPS) as Sodium Iodide Symporter (NIS) Inhibitors in FRTL-5 Model S. Laws1, A. Buckalew1, J. Wang2, D. Hallinger1, A. Murr1, and T. Stoker1. 1Endocrin...

  18. Efficient Method for the Determination of the Activation Energy of the Iodide-Catalyzed Decomposition of Hydrogen Peroxide

    ERIC Educational Resources Information Center

    Sweeney, William; Lee, James; Abid, Nauman; DeMeo, Stephen

    2014-01-01

    An experiment is described that determines the activation energy (E[subscript a]) of the iodide-catalyzed decomposition reaction of hydrogen peroxide in a much more efficient manner than previously reported in the literature. Hydrogen peroxide, spontaneously or with a catalyst, decomposes to oxygen and water. Because the decomposition reaction is…

  19. Colloidal Nanocrystals of Lead-Free Double-Perovskite (Elpasolite) Semiconductors: Synthesis and Anion Exchange To Access New Materials.

    PubMed

    Creutz, Sidney E; Crites, Evan N; De Siena, Michael C; Gamelin, Daniel R

    2018-02-14

    Concerns about the toxicity and instability of lead-halide perovskites have driven a recent surge in research toward alternative lead-free perovskite materials, including lead-free double perovskites with the elpasolite structure and visible bandgaps. Synthetic approaches to this class of materials remain limited, however, and no examples of heterometallic elpasolites as nanomaterials have been reported. Here, we report the synthesis and characterization of colloidal nanocrystals of Cs 2 AgBiX 6 (X = Cl, Br) elpasolites using a hot-injection approach. We further show that postsynthetic modification through anion exchange and cation extraction can be used to convert these nanocrystals to new materials including Cs 2 AgBiI 6 , which was previously unknown experimentally. Nanocrystals of Cs 2 AgBiI 6 , synthesized via a novel anion-exchange protocol using trimethylsilyl iodide, have strong absorption throughout the visible region, confirming theoretical predictions that this material could be a promising photovoltaic absorber. The synthetic methodologies presented here are expected to be broadly generalizable. This work demonstrates that nanocrystal ion-exchange reactivity can be used to discover and develop new lead-free halide perovskite materials that may be difficult or impossible to access through direct synthesis.

  20. High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2 PbI3.

    PubMed

    Lee, Jin-Wook; Seol, Dong-Jin; Cho, An-Na; Park, Nam-Gyu

    2014-08-06

    Perovskite solar cells with power conversion efficiencies exceeding 16% at AM 1.5 G one sun illumination are developed using the black polymorph of formamidnium lead iodide, HC(NH2)2 PbI3 . Compared with CH3 NH3 PbI3 , HC(NH2 )2 PbI3 extends its absoprtion to 840 nm and shows no phase transition between 296 and 423 K. Moreover, a solar cell based on HC(NH2 )2 PbI3 exhibits photostability and little I-V hysteresis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Self-regulation mechanism for charged point defects in hybrid halide perovskites

    DOE PAGES

    Walsh, Aron; Scanlon, David O.; Chen, Shiyou; ...

    2014-12-11

    Hybrid halide perovskites such as methylammonium lead iodide (CH 3NH 3PbI 3) exhibit unusually low free-carrier concentrations despite being processed at low-temperatures from solution. We demonstrate, through quantum mechanical calculations, that an origin of this phenomenon is a prevalence of ionic over electronic disorder in stoichiometric materials. Schottky defect formation provides a mechanism to self-regulate the concentration of charge carriers through ionic compensation of charged point defects. The equilibrium charged vacancy concentration is predicted to exceed 0.4 % at room temperature. Furthermore, this behavior, which goes against established defect conventions for inorganic semiconductors, has implications for photovoltaic performance.

  2. Role of organic and inorganic cations on thermal behavior of lead iodide perovskites

    NASA Astrophysics Data System (ADS)

    Singh, Rajan Kumar; Dash, Saumya R.; Kumar, Ranveer; Jain, Neha; Singh, Jai

    2018-04-01

    Recently, organic-inorganic perovskite materials have attracted much attention due to their enormous potential for use in future of new sustainable energy sources. However, fabrication of environmental friendly perovskite and achieving better stability is a major concern towards the commercialization. Here we study the role of cations in the perovskite powder and their influence upon thermodynamic stability. In this study we find, inorganic (cesium, Cs+) cation is shown to be more efficient in the thermal stabilization of the perovskite material than organic (methylamine, CH3NH2+) cation. This study reviles that stability of perovskite can be improved by incorporation of inorganic cation.

  3. Revealing the halide effect on the kinetics of the aerobic oxidation of Cu(I) to Cu(II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Yi; Zhang, Guanghui; Qi, Xiaotian

    2015-01-01

    In situ infrared (IR) and X-ray absorption near-edge structure (XANES) spectroscopic investigations reveal that different halide ligands have distinct effects on the aerobic oxidation of Cu(I) to Cu(II) in the presence of TMEDA (tetramethylethylenediamine). The iodide ligand gives the lowest rate and thus leads to the lowest catalytic reaction rate of aerobic oxidation of hydroquinone to benzoquinone. Further DFT calculations suggest that oxidation of CuI–TMEDA involves a side-on transition state, while oxidation of CuCl–TMEDA involves an end-on transition state which has a lower activation energy.

  4. Dynamics of dipole- and valence bound anions in iodide-adenine binary complexes: A time-resolved photoelectron imaging and quantum mechanical investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephansen, Anne B.; King, Sarah B.; Li, Wei-Li

    2015-09-14

    Dipole bound (DB) and valence bound (VB) anions of binary iodide-adenine complexes have been studied using one-color and time-resolved photoelectron imaging at excitation energies near the vertical detachment energy. The experiments are complemented by quantum chemical calculations. One-color spectra show evidence for two adenine tautomers, the canonical, biologically relevant A9 tautomer and the A3 tautomer. In the UV-pump/IR-probe time-resolved experiments, transient adenine anions can be formed by electron transfer from the iodide. These experiments show signals from both DB and VB states of adenine anions formed on femto- and picosecond time scales, respectively. Analysis of the spectra and comparison withmore » calculations suggest that while both the A9 and A3 tautomers contribute to the DB signal, only the DB state of the A3 tautomer undergoes a transition to the VB anion. The VB anion of A9 is higher in energy than both the DB anion and the neutral, and the VB anion is therefore not accessible through the DB state. Experimental evidence of the metastable A9 VB anion is instead observed as a shape resonance in the one-color photoelectron spectra, as a result of UV absorption by A9 and subsequent electron transfer from iodide into the empty π-orbital. In contrast, the iodide-A3 complex constitutes an excellent example of how DB states can act as doorway state for VB anion formation when the VB state is energetically available.« less

  5. In vivo speciation studies and antioxidant properties of bromine in Laminaria digitata reinforce the significance of iodine accumulation for kelps

    PubMed Central

    Küpper, Frithjof C.; Carpenter, Lucy J.; Leblanc, Catherine; Toyama, Chiaki; Uchida, Yuka; Maskrey, Benjamin H.; Robinson, Joanne; Verhaeghe, Elodie F.; Malin, Gill; Luther, George W.; Kroneck, Peter M. H.; Kloareg, Bernard; Meyer-Klaucke, Wolfram; Muramatsu, Yasuyuki; Megson, Ian L.; Potin, Philippe; Feiters, Martin C.

    2013-01-01

    The metabolism of bromine in marine brown algae remains poorly understood. This contrasts with the recent finding that the accumulation of iodide in the brown alga Laminaria serves the provision of an inorganic antioxidant – the first case documented from a living system. The aim of this study was to use an interdisciplinary array of techniques to study the chemical speciation, transformation, and function of bromine in Laminaria and to investigate the link between bromine and iodine metabolism, in particular in the antioxidant context. First, bromine and iodine levels in different Laminaria tissues were compared by inductively coupled plasma MS. Using in vivo X-ray absorption spectroscopy, it was found that, similarly to iodine, bromine is predominantly present in this alga in the form of bromide, albeit at lower concentrations, and that it shows similar behaviour upon oxidative stress. However, from a thermodynamic and kinetic standpoint, supported by in vitro and reconstituted in vivo assays, bromide is less suitable than iodide as an antioxidant against most reactive oxygen species except superoxide, possibly explaining why kelps prefer to accumulate iodide. This constitutes the first-ever study exploring the potential antioxidant function of bromide in a living system and other potential physiological roles. Given the tissue-specific differences observed in the content and speciation of bromine, it is concluded that the bromide uptake mechanism is different from the vanadium iodoperoxidase-mediated uptake of iodide in L. digitata and that its function is likely to be complementary to the iodide antioxidant system for detoxifying superoxide. PMID:23606364

  6. Rapid, specific determination of iodine and iodide by combined solid-phase extraction/diffuse reflectance spectroscopy

    NASA Technical Reports Server (NTRS)

    Arena, Matteo P.; Porter, Marc D.; Fritz, James S.

    2002-01-01

    A new, rapid methodology for trace analysis using solid-phase extraction is described. The two-step methodology is based on the concentration of an analyte onto a membrane disk and on the determination by diffuse reflectance spectroscopy of the amount of analyte extracted on the disk surface. This method, which is adaptable to a wide range of analytes, has been used for monitoring ppm levels of iodine and iodide in spacecraft water. Iodine is used as a biocide in spacecraft water. For these determinations, a water sample is passed through a membrane disk by means of a 10-mL syringe that is attached to a disk holder assembly. The disk, which is a polystyrene-divinylbenzene composite, is impregnated with poly(vinylpyrrolidone) (PVP), which exhaustively concentrates iodine as a yellow iodine-PVP complex. The amount of concentrated iodine is then determined in only 2 s by using a hand-held diffuse reflectance spectrometer by comparing the result with a calibration curve based on the Kubelka-Munk function. The same general procedure can be used to determine iodide levels after its facile and exhaustive oxidation to iodine by peroxymonosulfate (i.e., Oxone reagent). For samples containing both analytes, a two-step procedure can be used in which the iodide concentration is calculated from the difference in iodine levels before and after treatment of the sample with peroxymonosulfate. With this methodology, iodine and iodide levels in the 0.1-5.0 ppm range can be determined with a total workup time of approximately 60 s with a RSD of approximately 6%.

  7. Crystal growth and characterization of europium doped lithium strontium iodide scintillator as an ionizing radiation detector

    NASA Astrophysics Data System (ADS)

    Uba, Samuel

    High performance detectors used in the detection of ionizing radiation is critical to nuclear nonproliferation applications and other radiation detectors applications. In this research we grew and tested Europium doped Lithium Strontium Iodide compound. A mixture of lithium iodide, strontium iodide and europium iodide was used as the starting materials for this research. Congruent melting and freezing temperature of the synthesized compound was determined by differential scanning calorimetry (DSC) using a Setaram Labsys Evo DSC-DTA instrument. The melting temperatures were recorded at 390.35°C, 407.59°C and freezing temperature was recorded at 322.84°C from a graph of heat flow plotted against temperature. The synthesized material was used as the charge for the vertical Bridgeman growth, and a 6.5 cm and 7.7cm length boule were grown in a multi-zone transparent Mullen furnace. A scintillating detector of thickness 2.53mm was fabricated by mechanical lapping in mineral oil, and scintillating response and timing were obtained to a cesium source using CS-137 isotope. An energy resolution (FWHM over peak position) of 12.1% was observed for the 662keV full absorption peak. Optical absorption in the UV-Vis wavelength range was recorded for the grown crystal using a U-2900 UV/VIS Spectrophotometer. Absorption peaks were recorded at 194nm, 273nm, and 344nm from the absorbance spectrum, various optical parameters such as absorption coefficient, extinction coefficient, refractive index, and optical loss were derived. The optical band gap energy was calculated using Tauc relation expression at 1.79eV.

  8. Evaluation of respiratory parameters in rats and rabbits exposed to methyl iodide.

    PubMed

    DeLorme, Michael P; Himmelstein, Mathew W; Kemper, Raymond A; Kegelman, Thomas A; Gargas, Michael L; Kinzell, John H

    2009-05-01

    Laboratory animals exposed to methyl iodide (MeI) have previously demonstrated lesions of the olfactory epithelium that were associated with local metabolism in the nasal tissues. Interactions of MeI in the nasal passage may, therefore, alter systemic toxicokinetics. The current study used unrestrained plethysmographs to determine the MeI effect on the breathing frequency and minute volume (MV) in rats and rabbits. Groups of 4 rats each were exposed to 0, 25, or 100 ppm and groups of 4 rabbits each were exposed to 0 and 20 ppm MeI for 6 h. Breathing frequency and MV were measured and recorded during the exposure. Blood samples were collected for inorganic serum iodide and the globin adduct S-methylcysteine (SMC) as biomarkers of systemic kinetics immediately following exposure. No significant reductions in breathing frequency were observed for either rats or rabbits. Significant changes in minute volume were demonstrated by both rats and rabbits; however, the changes observed in rats were not concentration dependent. The MeI-induced changes in MV resulted in significant differences in the total volume of test substance atmosphere inhaled over the 6-h period. Rats demonstrated a concentration-dependent increase in both inorganic serum iodide and SMC. Rabbits exposed to 20 ppm MeI demonstrated a significant increase of inorganic serum iodide; SMC was also increased but was not statistically significant. The results of this study are consistent with previous kinetic studies with MeI, and the data presented here can be integrated into a computational fluid dynamics physiologically based pharmacokinetic model for both rats and rabbits.

  9. Scintillator handbook with emphasis on cesium iodide

    NASA Technical Reports Server (NTRS)

    Tidd, J. L.; Dabbs, J. R.; Levine, N.

    1973-01-01

    This report provides a background of reasonable depth and reference material on scintillators in general. Particular attention is paid to the cesium iodide scintillators as used in the High Energy Astronomy Observatory (HEAO) experiments. It is intended especially for use by persons such as laboratory test personnel who need to obtain a working knowledge of these materials and their characteristics in a short time.

  10. Kinetics and Mechanism of Iodide Oxidation by Iron(III): A Clock Reaction Approach

    ERIC Educational Resources Information Center

    Bauer, Jurica; Tomisic, Vladislav; Vrkljan, Petar B. A.

    2008-01-01

    A simple method for studying the kinetics of a chemical reaction is described and the significance of reaction orders in deducing reaction mechanisms is demonstrated. In this student laboratory experiment, oxidation of iodide by iron(III) ions in an acidic medium is transformed into a clock reaction. By means of the initial rates method, it is…

  11. Preparation and Degradation of Polysilylenes

    DTIC Science & Technology

    1991-05-02

    Grignard reagent formation from Mg and alkyl iodides in comparison with less reactive alkyl chlorides 2 3 . Electron transfer to the chlorides occur at...stoichiometric balance of reagents and nearly complete conversions (e.g. DPN-100 at 99% conversion in a homogeneous polycondensation with exact stoichiometric...the magnesium surface, whereas alkyl iodides accept electrons through Ŝ. larger distance and could not efficiently form organomagneslum reagents but

  12. Perfluoroalkylation of Aryl-N,N-dimethyl Hydrazones Using Hypervalent Iodine(III) Reagents or Perfluoroalkyl Iodides.

    PubMed

    Janhsen, Benjamin; Studer, Armido

    2017-11-17

    Radical trifluoromethylation of aryl N,N-dimethyl hydrazones using TBAI as an initiator and Togni's reagent as a trifluoromethyl radical source is described. Cascades proceed via electron-catalysis; this approach is generally more applicable to hydrazone perfluoroalkylation using perfluoroalkyl iodides as the radical precursors in combination with a base under visible-light initiation.

  13. Grotthuss Transport of Iodide in EMIM/I3 Ionic Crystal.

    PubMed

    McDaniel, Jesse G; Yethiraj, Arun

    2018-01-11

    Highly ionic environments can mediate unusual chemical reactions that would otherwise be considered impossible based on chemical intuition. For example, the formation of a chemical bond between two iodide anions to form a divalent polyiodide anion is seemingly prohibited due to Coulombic repulsion. Using ab initio molecular dynamics simulations, we show that in the 1-ethyl-3-methylimidazolium (EMIM)/I 3 ionic crystal, the reactive formation of divalent and even trivalent polyiodide anions occurs with extremely small energetic barriers, due to the electrostatic field of the ionic lattice. A practical consequence of this anomalous reactivity is that iodide anions are efficiently transported within the crystal through a "Grotthuss-exchange" mechanism involving bond-breaking and forming events. We characterize two distinct transport pathways, involving both I 4 2- and I 7 3- intermediates, with fast transport of iodide resulting from the release of an I - anion on the opposite side of the intermediate species from the initial bond formation. The ordered cation arrangement in the crystal provides the necessary electrostatic screening for close approach of anions, suggesting a new counterintuitive approach to obtain high ionic conductivity. This new design principle could be used to develop better solid-state electrolytes for batteries, fuel cells, and supercapacitors.

  14. Distribution of iodine into blood components of the Sprague-Dawley rat differs with the chemical form administered

    NASA Technical Reports Server (NTRS)

    Thrall, K. D.; Bull, R. J.; Sauer, R. L.

    1992-01-01

    It has been reported previously that radioactivity derived from iodine distributes differently in the Sprague-Dawley rat depending on the chemical form administered (Thrall and Bull, 1990). In the present communication we report the differential distribution of radioactivity derived from iodine (I2) and iodide (I-) into blood components. Twice as much radioiodine is in the form of I- in the plasma of animals treated with 125I- compared to 125I2-treated rats. No I2 could be detected in the plasma. With an increase in dose, increasing amounts of radioactivity derived from 125I2-treated animals distribute to whole blood compared to equivalent doses of 125I-, reaching a maxima at a dose of 15.8 mumol I/kg body weight. Most of the radioactivity derived from I2 associates with serum proteins and lipids, in particular with albumin and cholesteryl iodide. These data indicate a differential distribution of radioactivity depending on whether it is administered as iodide or iodine. This is inconsistent with the commonly held view that iodine (I2) is reduced to iodide (I-) before it is absorbed systemically from the gastrointestinal tract.

  15. Role of Spatial Ionic Distribution on the Energetics of Hydrophobic Assembly and Properties of the Water/Hydrophobe Interface†

    PubMed Central

    Bauer, Brad A.; Ou, Shuching; Patel, Sandeep

    2014-01-01

    We present results from all-atom molecular dynamics simulations of large-scale hydrophobic plates solvated in NaCl and NaI salt solutions. As observed in studies of ions at the air-water interface, the density of iodide near the water-plate interface is significantly enhanced relative to chloride and in the bulk. This allows for the partial hydration of iodide while chloride remains more fully hydrated. In 1M solutions, iodide directly pushes the hydrophobes together (contributing −2.51 kcal/mol) to the PMF. Chloride, however, strengthens the water-induced contribution to the PMF by ~ −2.84 kcal/mol. These observations are enhanced in 3M solutions, consistent with the increased ion density in the vicinity of the hydrophobes. The different salt solutions influence changes in the critical hydrophobe separation distance and characteristic wetting/dewetting transitions. These differences are largely influenced by the ion-specific expulsion of iodide from bulk water. Results of this study are of general interest to the study of ions at interfaces and may lend insight to the mechanisms underlying the Hofmeister series. PMID:22231014

  16. Toxic impact of bromide and iodide on drinking water disinfected with chlorine or chloramines.

    PubMed

    Yang, Yang; Komaki, Yukako; Kimura, Susana Y; Hu, Hong-Ying; Wagner, Elizabeth D; Mariñas, Benito J; Plewa, Michael J

    2014-10-21

    Disinfectants inactivate pathogens in source water; however, they also react with organic matter and bromide/iodide to form disinfection byproducts (DBPs). Although only a few DBP classes have been systematically analyzed for toxicity, iodinated and brominated DBPs tend to be the most toxic. The objectives of this research were (1) to determine if monochloramine (NH2Cl) disinfection generated drinking water with less toxicity than water disinfected with free chlorine (HOCl) and (2) to determine the impact of added bromide and iodide in conjunction with HOCl or NH2Cl disinfection on mammalian cell cytotoxicity and genomic DNA damage induction. Water disinfected with chlorine was less cytotoxic but more genotoxic than water disinfected with chloramine. For both disinfectants, the addition of Br(-) and I(-) increased cytotoxicity and genotoxicity with a greater response observed with NH2Cl disinfection. Both cytotoxicity and genotoxicity were highly correlated with TOBr and TOI. However, toxicity was weakly and inversely correlated with TOCl. Thus, the forcing agents for cytotoxicity and genotoxicity were the generation of brominated and iodinated DBPs rather than the formation of chlorinated DBPs. Disinfection practices need careful consideration especially when using source waters containing elevated bromide and iodide.

  17. Iodine speciation in coastal and inland bathing waters and seaweeds extracts using a sequential injection standard addition flow-batch method.

    PubMed

    Santos, Inês C; Mesquita, Raquel B R; Bordalo, Adriano A; Rangel, António O S S

    2015-02-01

    The present work describes the development of a sequential injection standard addition method for iodine speciation in bathing waters and seaweeds extracts without prior sample treatment. Iodine speciation was obtained by assessing the iodide and iodate content, the two inorganic forms of iodine in waters. For the determination of iodide, an iodide ion selective electrode (ISE) was used. The indirect determination of iodate was based on the spectrophotometric determination of nitrite (Griess reaction). For the iodate measurement, a mixing chamber was employed (flow batch approach) to explore the inherent efficient mixing, essential for the indirect determination of iodate. The application of the standard addition method enabled detection limits of 0.14 µM for iodide and 0.02 µM for iodate, together with the direct introduction of the target water samples, coastal and inland bathing waters. The results obtained were in agreement with those obtained by ICP-MS and a colorimetric reference procedure. Recovery tests also confirmed the accuracy of the developed method which was effectively applied to bathing waters and seaweed extracts. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Large polarization-dependent exciton optical Stark effect in lead iodide perovskites

    PubMed Central

    Yang, Ye; Yang, Mengjin; Zhu, Kai; Johnson, Justin C.; Berry, Joseph J.; van de Lagemaat, Jao; Beard, Matthew C.

    2016-01-01

    A strong interaction of a semiconductor with a below-bandgap laser pulse causes a blue-shift of the bandgap transition energy, known as the optical Stark effect. The energy shift persists only during the pulse duration with an instantaneous response time. The optical Stark effect has practical relevance for applications, including quantum information processing and communication, and passively mode-locked femtosecond lasers. Here we demonstrate that solution-processable lead-halide perovskites exhibit a large optical Stark effect that is easily resolved at room temperature resulting from the sharp excitonic feature near the bandedge. We also demonstrate that a polarized pump pulse selectively shifts one spin state producing a spin splitting of the degenerate excitonic states. Such selective spin manipulation is an important prerequisite for spintronic applications. Our result implies that such hybrid semiconductors may have great potential for optoelectronic applications beyond photovoltaics. PMID:27577007

  19. Determination of arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc in geological materials by atomic-absorption spectrometry

    USGS Publications Warehouse

    Viets, J.G.; O'Leary, R. M.; Clark, Robert J.

    1984-01-01

    Arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc are very useful elements in geochemical exploration. In the proposed method, geological samples are fused with potassium pyrosulphate and the fusate is dissolved in a solution of hydrochloric acid, ascorbic acid and potassium iodide. When this solution is shaken with a 10% V/V Aliquat 336 - isobutyl methyl ketone organic phase, the nine elements of interest are selectively partitioned in the organic phase. All nine elements can then be determined in the organic phase using flame atomic-absorption spectrometry. The method is rapid and allows the determination of Ag and Cd at levels down to 0.1 p.p.m., Cu, Mo, and Zn down to 0.5 p.p.m., Pb, Bi and Sb down to 1 p.p.m. and As down to 5 p.p.m. in geological materials.

  20. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites

    NASA Astrophysics Data System (ADS)

    Xiao, Zhengguo; Kerner, Ross A.; Zhao, Lianfeng; Tran, Nhu L.; Lee, Kyung Min; Koh, Tae-Wook; Scholes, Gregory D.; Rand, Barry P.

    2017-01-01

    Organic-inorganic hybrid perovskite materials are emerging as highly attractive semiconductors for use in optoelectronics. In addition to their use in photovoltaics, perovskites are promising for realizing light-emitting diodes (LEDs) due to their high colour purity, low non-radiative recombination rates and tunable bandgap. Here, we report highly efficient perovskite LEDs enabled through the formation of self-assembled, nanometre-sized crystallites. Large-group ammonium halides added to the perovskite precursor solution act as a surfactant that dramatically constrains the growth of 3D perovskite grains during film forming, producing crystallites with dimensions as small as 10 nm and film roughness of less than 1 nm. Coating these nanometre-sized perovskite grains with longer-chain organic cations yields highly efficient emitters, resulting in LEDs that operate with external quantum efficiencies of 10.4% for the methylammonium lead iodide system and 9.3% for the methylammonium lead bromide system, with significantly improved shelf and operational stability.

  1. Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells

    PubMed Central

    Brinkmann, K.O.; Zhao, J.; Pourdavoud, N.; Becker, T.; Hu, T.; Olthof, S.; Meerholz, K.; Hoffmann, L.; Gahlmann, T.; Heiderhoff, R.; Oszajca, M. F.; Luechinger, N. A.; Rogalla, D.; Chen, Y.; Cheng, B.; Riedl, T

    2017-01-01

    The area of thin-film photovoltaics has been overwhelmed by organometal halide perovskites. Unfortunately, serious stability concerns arise with perovskite solar cells. For example, methyl-ammonium lead iodide is known to decompose in the presence of water and, more severely, even under inert conditions at elevated temperatures. Here, we demonstrate inverted perovskite solar cells, in which the decomposition of the perovskite is significantly mitigated even at elevated temperatures. Specifically, we introduce a bilayered electron-extraction interlayer consisting of aluminium-doped zinc oxide and tin oxide. We evidence tin oxide grown by atomic layer deposition does form an outstandingly dense gas permeation barrier that effectively hinders the ingress of moisture towards the perovskite and—more importantly—it prevents the egress of decomposition products of the perovskite. Thereby, the overall decomposition of the perovskite is significantly suppressed, leading to an outstanding device stability. PMID:28067308

  2. Origin of long lifetime of band-edge charge carriers in organic–inorganic lead iodide perovskites

    PubMed Central

    Chen, Tianran; Chen, Wei-Liang; Foley, Benjamin J.; Lee, Jooseop; Ruff, Jacob P. C.; Ko, J. Y. Peter; Brown, Craig M.; Harriger, Leland W.; Zhang, Depei; Park, Changwon; Yoon, Mina; Chang, Yu-Ming; Choi, Joshua J.; Lee, Seung-Hun

    2017-01-01

    Long carrier lifetime is what makes hybrid organic–inorganic perovskites high-performance photovoltaic materials. Several microscopic mechanisms behind the unusually long carrier lifetime have been proposed, such as formation of large polarons, Rashba effect, ferroelectric domains, and photon recycling. Here, we show that the screening of band-edge charge carriers by rotation of organic cation molecules can be a major contribution to the prolonged carrier lifetime. Our results reveal that the band-edge carrier lifetime increases when the system enters from a phase with lower rotational entropy to another phase with higher entropy. These results imply that the recombination of the photoexcited electrons and holes is suppressed by the screening, leading to the formation of polarons and thereby extending the lifetime. Thus, searching for organic–inorganic perovskites with high rotational entropy over a wide range of temperature may be a key to achieve superior solar cell performance. PMID:28673975

  3. Origin of long lifetime of band-edge charge carriers in organic-inorganic lead iodide perovskites.

    PubMed

    Chen, Tianran; Chen, Wei-Liang; Foley, Benjamin J; Lee, Jooseop; Ruff, Jacob P C; Ko, J Y Peter; Brown, Craig M; Harriger, Leland W; Zhang, Depei; Park, Changwon; Yoon, Mina; Chang, Yu-Ming; Choi, Joshua J; Lee, Seung-Hun

    2017-07-18

    Long carrier lifetime is what makes hybrid organic-inorganic perovskites high-performance photovoltaic materials. Several microscopic mechanisms behind the unusually long carrier lifetime have been proposed, such as formation of large polarons, Rashba effect, ferroelectric domains, and photon recycling. Here, we show that the screening of band-edge charge carriers by rotation of organic cation molecules can be a major contribution to the prolonged carrier lifetime. Our results reveal that the band-edge carrier lifetime increases when the system enters from a phase with lower rotational entropy to another phase with higher entropy. These results imply that the recombination of the photoexcited electrons and holes is suppressed by the screening, leading to the formation of polarons and thereby extending the lifetime. Thus, searching for organic-inorganic perovskites with high rotational entropy over a wide range of temperature may be a key to achieve superior solar cell performance.

  4. Shift Happens. How Halide Ion Defects Influence Photoinduced Segregation in Mixed Halide Perovskites

    DOE PAGES

    Yoon, Seog Joon; Kuno, Masaru; Kamat, Prashant V.

    2017-06-01

    Minimizing photoinduced segregation in mixed halide lead perovskites is important for achieving stable photovoltaic performance. The shift in the absorption and the rate of formation of iodide- and bromide-rich regions following visible excitation of mixed halide lead perovskites is found to strongly depend on the halide ion concentration. Slower formation and recovery rates observed in halide-deficient films indicate the involvement of defect sites in influencing halide phase segregation. At higher halide concentrations (in stoichiometric excess), segregation effects become less prominent, as evidenced by faster recovery kinetics. These results suggest that light-induced compositional segregation can be minimized in mixed halide perovskitemore » films by using excess halide ions. In conclusion, the findings from this study further reflect the importance of halide ion post-treatment of perovskite films to improve their solar cell performance.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beard, Matthew C; Chen, Xihan; Lu, Haipeng

    The exciton binding energy in methylammonium lead iodide (MAPbI3) is about 10 meV, around 1/3 of the available thermal energy (kBT ~ 26 meV) at room temperature. Thus, exciton populations are not stable at room temperature at moderate photoexcited carrier densities. However, excitonic resonances dominate the absorption onset. Furthermore, these resonances determine the transient absorbance and transient reflectance spectra. The exciton binding energy is a reflection of the Coulomb interaction energy between photoexcited electrons and holes. As such, it serves as a marker for the strength of electron/hole interactions and impacts a variety of phenomena, such as, absorption, radiative recombination,more » and Auger recombination. In this Perspective, we discuss the role of excitons and excitonic resonances in the optical properties of lead-halide perovskite semiconductors. Finally, we discuss how the strong light-matter interactions induce an optical stark effect splitting the doubly spin degenerate ground exciton states and are easily observed at room temperature.« less

  6. Large polarization-dependent exciton optical Stark effect in lead iodide perovskites

    DOE PAGES

    Yang, Ye; Yang, Mengjin; Zhu, Kai; ...

    2016-08-31

    A strong interaction of a semiconductor with a below-bandgap laser pulse causes a blue-shift of the bandgap transition energy, known as the optical Stark effect. The energy shift persists only during the pulse duration with an instantaneous response time. The optical Stark effect has practical relevance for applications, including quantum information processing and communication, and passively mode-locked femtosecond lasers. Here we demonstrate that solution-processable lead-halide perovskites exhibit a large optical Stark effect that is easily resolved at room temperature resulting from the sharp excitonic feature near the bandedge. We also demonstrate that a polarized pump pulse selectively shifts one spinmore » state producing a spin splitting of the degenerate excitonic states. Such selective spin manipulation is an important prerequisite for spintronic applications. Lastly, our result implies that such hybrid semiconductors may have great potential for optoelectronic applications beyond photovoltaics.« less

  7. Thermally Induced Structural Evolution and Performance of Mesoporous Block Copolymer-Directed Alumina Perovskite Solar Cells

    PubMed Central

    2015-01-01

    Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI3–xClx) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI3–xClx material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance. PMID:24684494

  8. Purification and deposition of silicon by an iodide disproportionation reaction

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2002-01-01

    Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.

  9. Remarkable rate acceleration of SmI3-mediated iodination of acetates of Baylis-Hillman adducts in ionic liquid: facile synthesis of (Z)-allyl iodides*

    PubMed Central

    Liu, Yun-Kui; Zheng, Hui; Xu, Dan-Qian; Xu, Zhen-Yuan; Zhang, Yong-Min

    2006-01-01

    Stereoselective transformation of Baylis-Hillman acetates 1 into corresponding (Z)-allyl iodides 2 has been achieved by treatment of 1 with samarium triiodide in THF. Remarkable rate acceleration of samarium triiodide-mediated iodination of 1 was found when ionic liquid 1-n-butyl-3-methyl-imidazolium tetrafluroborate ([bmim]BF4) was used as reaction media in stead of THF. This novel approach proceeds readily at 50 °C within a few minutes to afford (Z)-allyl iodides 2 in excellent yields. A mechanism involving stereoselective iodination of the acetates of Baylis-Hillman adducts by samarium triiodide is described, in which a six-membered ring transition state played a key role in the stereoselective formation of 2. PMID:16502505

  10. Auger recombination in sodium iodide

    NASA Astrophysics Data System (ADS)

    McAllister, Andrew; Kioupakis, Emmanouil; Åberg, Daniel; Schleife, André

    2014-03-01

    Scintillators are an important tool used to detect high energy radiation - both in the interest of national security and in medicine. However, scintillator detectors currently suffer from lower energy resolutions than expected from basic counting statistics. This has been attributed to non-proportional light yield compared to incoming radiation, but the specific mechanism for this non-proportionality has not been identified. Auger recombination is a non-radiative process that could be contributing to the non-proportionality of scintillating materials. Auger recombination comes in two types - direct and phonon-assisted. We have used first-principles calculations to study Auger recombination in sodium iodide, a well characterized scintillating material. Our findings indicate that phonon-assisted Auger recombination is stronger in sodium iodide than direct Auger recombination. Computational resources provided by LLNL and NERSC. Funding provided by NA-22.

  11. Optical and structural properties of CsI thin film photocathode

    NASA Astrophysics Data System (ADS)

    Triloki; Rai, R.; Singh, B. K.

    2015-06-01

    In the present work, the performance of a cesium iodide thin film photocathode is studied in detail. The optical absorbance of cesium iodide films has been analyzed in the spectral range from 190 nm to 900 nm. The optical band gap energy of 500 nm thick cesium iodide film is calculated from the absorbance data using a Tauc plot. The refractive index is estimated from the envelope plot of transmittance data using Swanepoel's method. The absolute quantum efficiency measurement has been carried out in the wavelength range from 150 nm to 200 nm. The crystallographic nature and surface morphology are investigated by X-ray diffraction and transmission electron microscopy techniques. In addition, the elemental composition result obtained by energy dispersive X-ray analysis is also reported in the present work.

  12. Phase Segregation in Potassium-Doped Lead Halide Perovskites from 39K Solid-State NMR at 21.1 T.

    PubMed

    Kubicki, Dominik J; Prochowicz, Daniel; Hofstetter, Albert; Zakeeruddin, Shaik M; Grätzel, Michael; Emsley, Lyndon

    2018-06-13

    Organic-inorganic lead halide perovskites are a promising family of light absorbers for a new generation of solar cells, with reported efficiencies currently exceeding 22%. A common problem of solar cells fabricated using these materials is that their efficiency depends on their cycling history, an effect known as current-voltage ( J- V) hysteresis. Potassium doping has recently emerged as a universal way to overcome this adverse phenomenon. While the atomistic origins of J- V hysteresis are still not fully understood, it is essential to rationalize the atomic-level effect of protocols that lead to its suppression. Here, using 39 K MAS NMR at 21.1 T we provide for the first time atomic-level characterization of the potassium-containing phases that are formed upon KI doping of multication and multianion lead halide perovskites. We find no evidence of potassium incorporation into 3D perovskite lattices of the recently reported materials. Instead, we observe formation of a mixture of potassium-rich phases and unreacted KI. In the case of Br-containing lead halide perovskites doped with KI, a mixture of KI and KBr ensues, leading to a change in the Br/I ratio in the perovskite phase with respect to the undoped perovskite. Simultaneous Cs and K doping leads to the formation of nonperovskite Cs/K lead iodide phases.

  13. 1,4-Hydroiodination of dienyl alcohols with TMSI to form homoallylic alcohols containing a multisubstituted Z-alkene and application to Prins cyclization.

    PubMed

    Xu, Yongjin; Yin, Zhiping; Lin, Xinglong; Gan, Zubao; He, Yanyang; Gao, Lu; Song, Zhenlei

    2015-04-17

    A regioselective 1,4-hydroiodination of dienyl alcohols has been developed using trimethylsilyl iodide as Lewis acid and iodide source. A range of homoallylic alcohols containing a multisubstituted Z-alkene was synthesized with good to excellent configurational control. The approach was applied in sequential hydroiodination/Prins cyclization to afford multisubstituted tetrahydropyrans diastereoselectively.

  14. Iodine

    USGS Publications Warehouse

    Krukowski, S.T.

    2006-01-01

    In descending order, Chile, Japan and the United States have the largest iodine reserves. Chile produces iodine from iodate minerals while Japan and the United States produce it from sodium iodide solutions found in underground iodide solutions. Iodine is also produced from subterranean brines in Azerbaijan, Russia, Turkmenista, Indonesia and Uzbekistan. In 2005, iodine prices increased sharply to US$19 to US$23 then leveled off at US$23 to US$25.

  15. Characterisation of a proposed internet synthesis of N,N-dimethyltryptamine using liquid chromatography/electrospray ionisation tandem mass spectrometry.

    PubMed

    Martins, Cláudia P B; Freeman, Sally; Alder, John F; Brandt, Simon D

    2009-08-14

    The psychoactive properties of N,N-dimethyltryptamine (DMT) are known to induce altered states of consciousness in humans. These properties attract great interest from clinical, neuroscientific, clandestine and forensic communities. The Breath of Hope Synthesis was reported on an internet website as a convenient two-step methodology for the preparation of DMT. The analytical characterisation of the first stage was the subject of previous publications by the authors and involved the thermal decarboxylation of tryptophan and the formation of tryptamine. The present study reports on the characterisation of the second step of this procedure which was based on the methylation of tryptamine. This employed methyl iodide and benzyltriethylammonium chloride/sodium hydroxide as a phase transfer catalyst. The reaction product was characterised by liquid chromatography/electrospray ionisation tandem mass spectrometry and orthogonal acceleration time-of-flight mass spectrometry. Quantitative evaluation was carried out in positive multiple reaction monitoring mode (MRM), which included synthesis of the identified reaction products. MRM screening of the product did not lead to the detection of DMT. Instead, 11.1% tryptamine starting material, 21.0% N,N,N-trimethyltryptammonium iodide (TMT) and 47.4% 1-N-methyl-TMT were detected. A 0.5% trace of the monomethylated N-methyltryptamine was also detected. This study demonstrated the impact on product purity of doubtful synthetic methodologies discussed on the internet.

  16. Effects of potassium iodide in concentrations of TSH, tT3 and tT4 in serum of subjects with sporotrichosis.

    PubMed

    Ramírez Soto, Max Carlos

    2014-08-01

    The saturated potassium iodide solution (SSKI) as treatment for sporotrichosis may cause hypothyroidism by suppressing the synthesis of thyroid hormones (tT3 and tT4 ) and the iodine excess could lead to thyrotoxicosis. Evaluating the changes in serum levels of TSH, tT3 and tT4 in euthyroid patients with sporotrichosis treated with SSKI. For the selection of euthyroid patients, TSH, tT3 and tT4 concentrations were measured for those adults and children diagnosed with sporotrichosis. Each paediatric patient was administered SSKI orally in increasing doses of 2-20 drops/3 times/day and 4-40 drops/3 times/day in adults. Serum concentrations of TSH, tT3 and tT4 were measured 20 days after started the treatment and 15 days posttreatment. Eight euthyroid patients aged between 2 to 65 years old were included. After 20 days of treatment, two suffered subclinical hypothyroidism, one developed subclinical hyperthyroidism, and one hyperthyroxinaemia euthyroid. At 15 days posttreatment only four patients were evaluated and all serum levels of TSH, tT3 and tT4 were normal. Some euthyroid patients with sporotrichosis can develop hyperthyroidism or subclinical iodine-induced hypothyroidism, during the administration of 3 or 6 g SSKI/day. © 2014 Blackwell Verlag GmbH.

  17. Terahertz Emission from Hybrid Perovskites Driven by Ultrafast Charge Separation and Strong Electron-Phonon Coupling

    DOE PAGES

    Guzelturk, Burak; Belisle, Rebecca A.; Smith, Matthew D.; ...

    2018-01-23

    Unusual photophysical properties of organic–inorganic hybrid perovskites have not only enabled exceptional performance in optoelectronic devices, but also led to debates on the nature of charge carriers in these materials. This study makes the first observation of intense terahertz (THz) emission from the hybrid perovskite methylammonium lead iodide (CH 3NH 3PbI 3) following photoexcitation, enabling an ultrafast probe of charge separation, hot–carrier transport, and carrier–lattice coupling under 1–sun–equivalent illumination conditions. Using this approach, the initial charge separation/transport in the hybrid perovskites is shown to be driven by diffusion and not by surface fields or intrinsic ferroelectricity. Diffusivities of the hotmore » and band–edge carriers along the surface normal direction are calculated by analyzing the emitted THz transients, with direct implications for hot–carrier device applications. Furthermore, photogenerated carriers are found to drive coherent terahertz–frequency lattice distortions, associated with reorganizations of the lead–iodide octahedra as well as coupled vibrations of the organic and inorganic sublattices. This strong and coherent carrier–lattice coupling is resolved on femtosecond timescales and found to be important both for resonant and far–above–gap photoexcitation. As a result, this study indicates that ultrafast lattice distortions play a key role in the initial processes associated with charge transport.« less

  18. Photochemical versus biological production of methyl iodide during Meteor 55

    NASA Astrophysics Data System (ADS)

    Richter, U.; Wallace, D.

    2003-04-01

    The flux of methyl iodide from sea to air represents the largest flux of iodine from the ocean to the atmosphere. Surface water concentrations and hence fluxes are particularly high in tropical regions. This flux may be responsible for the enrichment of iodine in the marine aerosol and may contribute to important processes in the marine boundary layer, including particle formation. Methyl iodide is commonly referred to as a biogenic gas, with both macroalgae and phytoplankton identified as important sources. On the other hand experimental and field data have shown the importance of photochemical production that is not necessarily associated directly with biological activity. During the Meteor cruise 55 along 11°N in the tropical Atlantic Ocean, a series of experiments were conducted to examine the biological vs. photochemical production of methyl iodide. A total of eight separate experiments were conducted. Production of CH3I in quartz glass flasks during 24 hour incubations (dark and natural sunlight) was measured under three experimental treatments: untreated seawater, filtered seawater (0.1 um pore size filter to exclude most phytoplankton and bacteria), and seawater that was poisoned with mercuric chloride. There were two clear findings from these experiments: (1) methyl iodide production was significantly higher in all the incubations that were exposed to the light than in the dark incubations; (2) there was no significant difference between CH3I production under the three experimental treatments. These results argue very strongly for the primary importance of photochemical production of CH3I as opposed to biogenic production at least for the tropical open ocean surface waters. Further experiments are required to investigate the reactants involved, their sources, the wavelength and depth dependence of production, etc. as well as (possibly related) sink processes.

  19. Radioactive iodide (131 I-) excretion profiles in response to potassium iodide (KI) and ammonium perchlorate (NH4ClO4) prophylaxis.

    PubMed

    Harris, Curtis; Dallas, Cham; Rollor, Edward; White, Catherine; Blount, Benjamin; Valentin-Blasini, Liza; Fisher, Jeffrey

    2012-08-01

    Radioactive iodide ((131)I-) protection studies have focused primarily on the thyroid gland and disturbances in the hypothalamic-pituitary-thyroid axis. The objective of the current study was to establish (131)I- urinary excretion profiles for saline, and the thyroid protectants, potassium iodide (KI) and ammonium perchlorate over a 75 hour time-course. Rats were administered (131)I- and 3 hours later dosed with either saline, 30 mg/kg of NH(4)ClO(4) or 30 mg/kg of KI. Urinalysis of the first 36 hours of the time-course revealed that NH(4)ClO(4) treated animals excreted significantly more (131)I- compared with KI and saline treatments. A second study followed the same protocol, but thyroxine (T(4)) was administered daily over a 3 day period. During the first 6-12 hour after (131)I- dosing, rats administered NH(4)ClO(4) excreted significantly more (131)I- than the other treatment groups. T(4) treatment resulted in increased retention of radioiodide in the thyroid gland 75 hour after (131)I- administration. We speculate that the T(4) treatment related reduction in serum TSH caused a decrease synthesis and secretion of thyroid hormones resulting in greater residual radioiodide in the thyroid gland. Our findings suggest that ammonium perchlorate treatment accelerates the elimination rate of radioiodide within the first 24 to 36 hours and thus may be more effective at reducing harmful exposure to (131)I- compared to KI treatment for repeated dosing situations. Repeated dosing studies are needed to compare the effectiveness of these treatments to reduce the radioactive iodide burden of the thyroid gland.

  20. Photoelectron spectroscopy of color centers in negatively charged cesium iodide nanocrystals

    NASA Astrophysics Data System (ADS)

    Sarkas, Harry W.; Kidder, Linda H.; Bowen, Kit H.

    1995-01-01

    We present the photoelectron spectra of negatively charged cesium iodide nanocrystals recorded using 2.540 eV photons. The species examined were produced using an inert gas condensation cluster ion source, and they ranged in size from (CsI)-n=13 to nanocrystal anions comprised of 330 atoms. Nanocrystals showing two distinct types of photoemission behavior were observed. For (CsI)-n=13 and (CsI)-n=36-165, a plot of cluster anion photodetachment threshold energies vs n-1/3 gives a straight line extrapolating (at n-1/3=0, i.e., n=∞) to 2.2 eV, the photoelectric threshold energy for F centers in bulk cesium iodide. The linear extrapolation of the cluster anion data to the corresponding bulk property implies that the electron localization in these gas-phase nanocrystals is qualitatively similar to that of F centers in extended alkali halide crystals. These negatively charged cesium iodide nanocrystals are thus shown to support embryonic forms of F centers, which mature with increasing cluster size toward condensed phase impurity centers. Under an alternative set of source conditions, nanocrystals were produced which showed significantly lower photodetachment thresholds than the aforementioned F-center cluster anions. For these species, containing 83-131 atoms, a plot of their cluster anion photodetachment threshold energies versus n-1/3 gives a straight line which extrapolates to 1.4 eV. This value is in accord with the expected photoelectric threshold energy for F' centers in bulk cesium iodide, i.e., color centers with two excess electrons in a single defect site. These nanocrystals are interpreted to be the embryonic F'-center containing species, Cs(CsI)-n=41-65.

Top