Sample records for lead isotopes application

  1. Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: a review.

    PubMed

    Cheng, Hefa; Hu, Yuanan

    2010-05-01

    As the most widely scattered toxic metal in the world, the sources of lead (Pb) observed in contamination investigation are often difficult to identify. This review presents an overview of the principles, analysis, and applications of Pb isotopic fingerprinting in tracing the origins and transport pathways of Pb in the environment. It also summarizes the history and current status of lead pollution in China, and illustrates the power of Pb isotopic fingerprinting with examples of its recent applications in investigating the effectiveness of leaded gasoline phase-out on atmospheric lead pollution, and the sources of Pb found in various environmental media (plants, sediments, and aquatic organisms) in China. The limitations of Pb isotopic fingerprinting technique are discussed and a perspective on its development is also presented. Further methodological developments and more widespread instrument availability are expected to make isotopic fingerprinting one of the key tools in lead pollution investigation. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    NASA Astrophysics Data System (ADS)

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as 3He/4He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high 3He/4He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application.

  3. Natural isotope correction of MS/MS measurements for metabolomics and (13)C fluxomics.

    PubMed

    Niedenführ, Sebastian; ten Pierick, Angela; van Dam, Patricia T N; Suarez-Mendez, Camilo A; Nöh, Katharina; Wahl, S Aljoscha

    2016-05-01

    Fluxomics and metabolomics are crucial tools for metabolic engineering and biomedical analysis to determine the in vivo cellular state. Especially, the application of (13)C isotopes allows comprehensive insights into the functional operation of cellular metabolism. Compared to single MS, tandem mass spectrometry (MS/MS) provides more detailed and accurate measurements of the metabolite enrichment patterns (tandem mass isotopomers), increasing the accuracy of metabolite concentration measurements and metabolic flux estimation. MS-type data from isotope labeling experiments is biased by naturally occurring stable isotopes (C, H, N, O, etc.). In particular, GC-MS(/MS) requires derivatization for the usually non-volatile intracellular metabolites introducing additional natural isotopes leading to measurements that do not directly represent the carbon labeling distribution. To make full use of LC- and GC-MS/MS mass isotopomer measurements, the influence of natural isotopes has to be eliminated (corrected). Our correction approach is analyzed for the two most common applications; (13)C fluxomics and isotope dilution mass spectrometry (IDMS) based metabolomics. Natural isotopes can have an impact on the calculated flux distribution which strongly depends on the substrate labeling and the actual flux distribution. Second, we show that in IDMS based metabolomics natural isotopes lead to underestimated concentrations that can and should be corrected with a nonlinear calibration. Our simulations indicate that the correction for natural abundance in isotope based fluxomics and quantitative metabolomics is essential for correct data interpretation. © 2015 Wiley Periodicals, Inc.

  4. Natural Isotope Abundance in Metabolites: Techniques and Kinetic Isotope Effect Measurement in Plant, Animal, and Human Tissues.

    PubMed

    Tea, Illa; Tcherkez, Guillaume

    2017-01-01

    The natural isotope abundance in bulk organic matter or tissues is not a sufficient base to investigate physiological properties, biosynthetic mechanisms, and nutrition sources of biological systems. In fact, isotope effects in metabolism lead to a heterogeneous distribution of 2 H, 18 O, 13 C, and 15 N isotopes in metabolites. Therefore, compound-specific isotopic analysis (CSIA) is crucial to biological and medical applications of stable isotopes. Here, we review methods to implement CSIA for 15 N and 13 C from plant, animal, and human samples and discuss technical solutions that have been used for the conversion to CO 2 and N 2 for IRMS analysis, derivatization and isotope effect measurements. It appears that despite the flexibility of instruments used for CSIA, there is no universal method simply because the chemical nature of metabolites of interest varies considerably. Also, CSIA methods are often limited by isotope effects in sample preparation or the addition of atoms from the derivatizing reagents, and this implies that corrections must be made to calculate a proper δ-value. Therefore, CSIA has an enormous potential for biomedical applications, but its utilization requires precautions for its successful application. © 2017 Elsevier Inc. All rights reserved.

  5. Lead Isotope Characterization of Petroleum Fuels in Taipei, Taiwan

    PubMed Central

    Yao, Pei-Hsuan; Shyu, Guey-Shin; Chang, Ying-Fang; Chou, Yu-Chen; Shen, Chuan-Chou; Chou, Chi-Su; Chang, Tsun-Kuo

    2015-01-01

    Leaded gasoline in Taiwan was gradually phased out from 1983 to 2000. However, it is unclear whether unleaded gasoline still contributes to atmospheric lead (Pb) exposure in urban areas. In this study, Pb isotopic compositions of unleaded gasolines, with octane numbers of 92, 95, 98, and diesel from two local suppliers in Taipei were determined by multi-collector inductively coupled plasma mass spectrometry with a two-sigma uncertainty of ± 0.02 %. Lead isotopic ratios of vehicle exhaust (208Pb/207Pb: 2.427, 206Pb/207Pb: 1.148, as estimated from petroleum fuels) overlap with the reported aerosol data. This agreement indicates that local unleaded petroleum fuels, containing 10–45 ng·Pb·g−1, are merely one contributor among various sources to urban aerosol Pb. Additionally, the distinction between the products of the two companies is statistically significant in their individual 208Pb/206Pb ratios (p-value < 0.001, t test). Lead isotopic characterization appears to be applicable as a “fingerprinting” tool for tracing the sources of Pb pollution. PMID:25918913

  6. Successful application of lead isotopes in source apportionment, legal proceedings, remediation and monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulson, Brian, E-mail: brian.gulson@mq.edu.au; CSIRO Earth Science and Resource Engineering North Ryde, NSW 1670; Korsch, Michael

    In late 2006, the seaside community in Esperance Western Australia was alerted to thousands of native bird species dying. The source of the lead (Pb) was determined by Pb isotopes to derive from the handling of Pb carbonate concentrate through the Port, which began in July 2005. Concern was expressed for the impact of this on the community. Our objectives were to employ Pb isotope ratios to evaluate the source of Pb in environmental samples for use in legal proceedings, and for use in remediation and monitoring. Isotope measurements were undertaken of bird livers, plants, drinking water, soil, harbour sediments,more » air, bulk ceiling dust, gutter sludge, surface swabs and blood. The unique lead isotopic signature of the contaminating Pb carbonate enabled diagnostic apportionment of lead in samples. Apart from some soil and water samples, the proportion of contaminating Pb was >95% in the environmental samples. Lead isotopes were critical in resolving legal proceedings, are being used in the remediation of premises, were used in monitoring of workers involved in the decontamination of the storage facility, and monitoring transport of the concentrate through another port facility. Air samples show the continued presence of contaminant Pb, more than one year after shipping of concentrate ceased, probably arising from dust resuspension. Brief details of the comprehensive testing and cleanup of the Esperance community are provided along with the role of the Community. Lead isotopic analyses can provide significant benefits to regulatory agencies, interested parties, and the community where the signature is able to be characterised with a high degree of certainty. - Highlights: Black-Right-Pointing-Triangle Lead carbonate concentrate. Black-Right-Pointing-Triangle Successful use of Pb isotopes in identifying sources of Pb arising from transport and shipping. Black-Right-Pointing-Triangle Use of Pb isotopes in legal proceedings and their use in cleanup of residences. Black-Right-Pointing-Triangle Use of Pb isotopes in cleanup of a residual 9000 tonnes of Pb carbonate and in ongoing monitoring.« less

  7. Successful application of lead isotopes in source apportionment, legal proceedings, remediation and monitoring.

    PubMed

    Gulson, Brian; Korsch, Michael; Winchester, Wayne; Devenish, Matthew; Hobbs, Thad; Main, Cleve; Smith, Gerard; Rosman, Kevin; Howearth, Lynette; Burn-Nunes, Laurie; Seow, Jimmy; Oxford, Cameron; Yun, Gracie; Gillam, Lindsay; Crisp, Michelle

    2012-01-01

    In late 2006, the seaside community in Esperance Western Australia was alerted to thousands of native bird species dying. The source of the lead (Pb) was determined by Pb isotopes to derive from the handling of Pb carbonate concentrate through the Port, which began in July 2005. Concern was expressed for the impact of this on the community. Our objectives were to employ Pb isotope ratios to evaluate the source of Pb in environmental samples for use in legal proceedings, and for use in remediation and monitoring. Isotope measurements were undertaken of bird livers, plants, drinking water, soil, harbour sediments, air, bulk ceiling dust, gutter sludge, surface swabs and blood. The unique lead isotopic signature of the contaminating Pb carbonate enabled diagnostic apportionment of lead in samples. Apart from some soil and water samples, the proportion of contaminating Pb was >95% in the environmental samples. Lead isotopes were critical in resolving legal proceedings, are being used in the remediation of premises, were used in monitoring of workers involved in the decontamination of the storage facility, and monitoring transport of the concentrate through another port facility. Air samples show the continued presence of contaminant Pb, more than one year after shipping of concentrate ceased, probably arising from dust resuspension. Brief details of the comprehensive testing and cleanup of the Esperance community are provided along with the role of the Community. Lead isotopic analyses can provide significant benefits to regulatory agencies, interested parties, and the community where the signature is able to be characterised with a high degree of certainty. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  8. ENVIRONMENTAL APPLICATIONS OF NOVEL INSTRUMENTATION FOR MEASUREMENT OF LEAD ISOTOPE RATIOS IN ATMOSPHERIC POLLUTION SOURCE APPORTIONMENT STUDIES

    EPA Science Inventory

    In spite of the reduced flux of lead to the atmosphere from the combustion of leaded gasoline, anthropogenic sources still dominate the supply of lead to the atmosphere and the environment. Emissions from coal and oil combustion, industrial processes, and municipal incineration w...

  9. Transient competitive complexation in biological kinetic isotope fractionation explains non-steady isotopic effects: Theory and application to denitrification in soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maggi, F.M.; Riley, W.J.

    2009-06-01

    The theoretical formulation of biological kinetic reactions in isotopic applications often assume first-order or Michaelis-Menten-Monod kinetics under the quasi-steady-state assumption to simplify the system kinetics. However, isotopic e ects have the same order of magnitude as the potential error introduced by these simpli cations. Both formulations lead to a constant fractionation factor which may yield incorrect estimations of the isotopic effect and a misleading interpretation of the isotopic signature of a reaction. We have analyzed the isotopic signature of denitri cation in biogeochemical soil systems by Menyailo and Hungate [2006], where high {sup 15}N{sub 2}O enrichment during N{sub 2}O productionmore » and inverse isotope fractionation during N{sub 2}O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with the quasi-steady-state Michaelis-Menten-Monod kinetics. When the quasi-steady-state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observations and aided in interpretation of experimental isotopic signatures. These results may imply a substantial revision in using the Rayleigh equation for interpretation of isotopic signatures and in modeling biological kinetic isotope fractionation with first-order kinetics or quasi-steady-state Michaelis-Menten-Monod kinetics.« less

  10. A comparison of lead-isotope measurements on exploration-type samples using inductively coupled plasma and thermal ionization mass spectrometry

    USGS Publications Warehouse

    Gulson, B.L.; Meier, A.L.; Church, S.E.; Mizon, K.J.

    1989-01-01

    Thermal ionization mass spectrometry (TI-MS) has long been the method of choice for Pb-isotope determinations. More recently, however, inductively coupled plasma mass spectrometry (ICP-MS) has been used to determine Pb-isotope ratios for mineral exploration. The ICP-MS technique, although not as precise as TI-MS, may promote a wider application of Ph-isotope ratio methods because it allows individual isotopes to be determined more rapidly, generally without need for chemical separation (e.g., Smith et al., 1984; Hinners et al., 1987). To demonstrate the utility of the ICP-MS method, we have conducted a series of Pb-isotope measurements on several suites of samples using both TI-MS and ICP-MS. ?? 1989.

  11. Stable isotopes in mid-ocean ridge hydrothermal systems: Interactions between fluids, minerals, and organisms

    NASA Astrophysics Data System (ADS)

    Shanks, W. C., III; Böhlke, J. K.; Seal, R. R., II

    Studies of abundance variations of light stable isotopes in nature have had a tremendous impact on all aspects of geochemistry since the development, in 1947, of a gas source isotope ratio mass spectrometer capable of measuring small variations in stable isotope ratios [Nier, 1947] Stable isotope geochemistry is now a mature field, as witnessed by the proliferation of commercially available mass spectrometers installed at virtually every major academic, government, and private-sector research geochemistry laboratory. A recent search of a literature database revealed over 3,000 articles that utilized stable isotope geochemistry over the last 20 years. Nonetheless, many exciting new technical developments are leading to exciting new discoveries and applications. In particular, micro analytical techniques involving new generations of laser- and ion-microprobes are revolutionizing the types of analyses that can be done on spot sizes as small as a few tens of micrometers [Shanks and Criss, 1989]. New generations of conventional gas source and thermal ionization mass spectrometers, with high levels of automation and increased sensitivity and precision, are allowing analyses of large numbers of samples, like those needed for stable isotope stratigraphy in marine sediments, and are enabling the development and application of new isotopic systems.

  12. Stable isotopes in mid-ocean ridge hydrothermal systems: Interactions between fluids, minerals, and organisms

    USGS Publications Warehouse

    Shanks, Wayne C.; Böhlke, John Karl; Seal, Robert R.; Humphries, S.D.; Zierenberg, Robert A.; Mullineaux, Lauren S.; Thomson, Richard E.

    1995-01-01

    Studies of abundance variations of light stable isotopes in nature have had a tremendous impact on all aspects of geochemistry since the development, in 1947, of a gas source isotope ratio mass spectrometer capable of measuring small variations in stable isotope ratios (Nice, 1947]. Stable isotope geochemistry is now a mature field, as witnessed by the proliferation of commercially available mass spectrometers installed at virtually every major academic, government, and private-sector research geochemistry laboratory. A recent search of a literature database revealed over 3,000 articles that utilized stable isotope geochemistry over the last 20 years. Nonetheless, many exciting new technical developments are leading to exciting new discoveries and applications. In particular, micro-analytical techniques involving new generations of laser- and ion-microprobes are revolutionizing the types of analyses that can be done on spot sizes as small as a few tens of micrometers [Shanks and Criss, 1989]. New generations of conventional gas source and thermal ionization mass spectrometers, with high levels of automation and increased sensitivity and precision, are allowing analyses of large numbers of samples, like those needed for stable isotope stratigraphy in marine sediments, and are enabling the development and application of new isotopic systems.

  13. [High-precision in situ analysis of the lead isotopic composition in copper using femtosecond laser ablation MC-ICP-MS and the application in ancient coins].

    PubMed

    Chen, Kai-Yun; Fan, Chao; Yuan, Hong-Lin; Bao, Zhi-An; Zong, Chun-Lei; Dai, Meng-Ning; Ling, Xue; Yang, Ying

    2013-05-01

    In the present study we set up a femtosecond laser ablation MC-ICP-MS method for lead isotopic analysis. Pb isotopic composition of fifteen copper (brass, bronze) standard samples from the National Institute of Standards Material were analyzed using the solution method (MC-ICP-MS) and laser method (fLA-MC-ICPMS) respectively, the results showed that the Pb isotopic composition in CuPb12 (GBW02137) is very homogeneous, and can be used as external reference material for Pb isotopic in situ analysis. On CuPb12 112 fLA-MC-ICPMS Pb isotope analysis, the weighted average values of the Pb isotopic ratio are in good agreement with the results analyzed by bulk solution method within 2sigma error, the internal precision RSEs of the 208 Pb/204 Pb ratio and 207 Pb/206 Pb ratio are less than 90 and 40 ppm respectively, and the external precision RSDs of them are less than 60 and 30 ppm respectively. Pb isotope of thirteen ancient bronze coins was analyzed via fLA-MC-ICPMS, the results showed that the Pb isotopic composition of ancient coins of different dynasties is significantly different, and not all the Pb isotopic compositions in the coins even from the same dynasty are in agreement with each other.

  14. Calculation and mitigation of isotopic interferences in liquid chromatography-mass spectrometry/mass spectrometry assays and its application in supporting microdose absolute bioavailability studies.

    PubMed

    Gu, Huidong; Wang, Jian; Aubry, Anne-Françoise; Jiang, Hao; Zeng, Jianing; Easter, John; Wang, Jun-sheng; Dockens, Randy; Bifano, Marc; Burrell, Richard; Arnold, Mark E

    2012-06-05

    A methodology for the accurate calculation and mitigation of isotopic interferences in liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) assays and its application in supporting microdose absolute bioavailability studies are reported for the first time. For simplicity, this calculation methodology and the strategy to minimize the isotopic interference are demonstrated using a simple molecule entity, then applied to actual development drugs. The exact isotopic interferences calculated with this methodology were often much less than the traditionally used, overestimated isotopic interferences simply based on the molecular isotope abundance. One application of the methodology is the selection of a stable isotopically labeled internal standard (SIL-IS) for an LC-MS/MS bioanalytical assay. The second application is the selection of an SIL analogue for use in intravenous (i.v.) microdosing for the determination of absolute bioavailability. In the case of microdosing, the traditional approach of calculating isotopic interferences can result in selecting a labeling scheme that overlabels the i.v.-dosed drug or leads to incorrect conclusions on the feasibility of using an SIL drug and analysis by LC-MS/MS. The methodology presented here can guide the synthesis by accurately calculating the isotopic interferences when labeling at different positions, using different selective reaction monitoring (SRM) transitions or adding more labeling positions. This methodology has been successfully applied to the selection of the labeled i.v.-dosed drugs for use in two microdose absolute bioavailability studies, before initiating the chemical synthesis. With this methodology, significant time and cost saving can be achieved in supporting microdose absolute bioavailability studies with stable labeled drugs.

  15. Methods for determination of radioactive substances in water and fluvial sediments

    USGS Publications Warehouse

    Thatcher, Leland Lincoln; Janzer, Victor J.; Edwards, Kenneth W.

    1977-01-01

    Analytical methods for the determination of some of the more important components of fission or neutron activation product radioactivity and of natural radioactivity found in water are reported. The report for each analytical method includes conditions for application of the method, a summary of the method, interferences, required apparatus and reagents, analytical procedures, calculations, reporting of results, and estimation of precision. The fission product isotopes considered are cesium-137, strontium-90, and ruthenium-106. The natural radioelements and isotopes considered are uranium, lead-210, radium-226, radium-228, tritium, and carbon-14. A gross radioactivity survey method and a uranium isotope ratio method are given. When two analytical methods are in routine use for an individual isotope, both methods are reported with identification of the specific areas of application of each. Techniques for the collection and preservation of water samples to be analyzed for radioactivity are discussed.

  16. Isotope effect of mercury diffusion in air

    PubMed Central

    Koster van Groos, Paul G.; Esser, Bradley K.; Williams, Ross W.; Hunt, James R.

    2014-01-01

    Identifying and reducing impacts from mercury sources in the environment remains a considerable challenge and requires process based models to quantify mercury stocks and flows. The stable isotope composition of mercury in environmental samples can help address this challenge by serving as a tracer of specific sources and processes. Mercury isotope variations are small and result only from isotope fractionation during transport, equilibrium, and transformation processes. Because these processes occur in both industrial and environmental settings, knowledge of their associated isotope effects is required to interpret mercury isotope data. To improve the mechanistic modeling of mercury isotope effects during gas phase diffusion, an experimental program tested the applicability of kinetic gas theory. Gas-phase elemental mercury diffusion through small bore needles from finite sources demonstrated mass dependent diffusivities leading to isotope fractionation described by a Rayleigh distillation model. The measured relative atomic diffusivities among mercury isotopes in air are large and in agreement with kinetic gas theory. Mercury diffusion in air offers a reasonable explanation of recent field results reported in the literature. PMID:24364380

  17. Isotope effect of mercury diffusion in air.

    PubMed

    Koster van Groos, Paul G; Esser, Bradley K; Williams, Ross W; Hunt, James R

    2014-01-01

    Identifying and reducing impacts from mercury sources in the environment remains a considerable challenge and requires process based models to quantify mercury stocks and flows. The stable isotope composition of mercury in environmental samples can help address this challenge by serving as a tracer of specific sources and processes. Mercury isotope variations are small and result only from isotope fractionation during transport, equilibrium, and transformation processes. Because these processes occur in both industrial and environmental settings, knowledge of their associated isotope effects is required to interpret mercury isotope data. To improve the mechanistic modeling of mercury isotope effects during gas phase diffusion, an experimental program tested the applicability of kinetic gas theory. Gas-phase elemental mercury diffusion through small bore needles from finite sources demonstrated mass dependent diffusivities leading to isotope fractionation described by a Rayleigh distillation model. The measured relative atomic diffusivities among mercury isotopes in air are large and in agreement with kinetic gas theory. Mercury diffusion in air offers a reasonable explanation of recent field results reported in the literature.

  18. Source apportionment of lead in the blood of women of reproductive age living near tailings in Taxco, Guerrero, Mexico: An isotopic study.

    PubMed

    Vázquez Bahéna, Analine Berenice; Talavera Mendoza, Oscar; Moreno Godínez, Ma Elena; Salgado Souto, Sergio Adrián; Ruiz, Joaquín; Huerta Beristain, Gerardo

    2017-04-01

    The concentration and isotopic composition of lead in the blood of forty seven women of reproductive age (15-45y) exposed to multiple sources in two rural communities of the mining region of Taxco, Guerrero in southern Mexico were determined in order to identify specific contributing sources and their apportionment and to trace probable ingestion pathways. Our data indicate that >36% of the studied women have blood lead concentrations above 10μgdL -1 and up to 87% above 5μgdL -1 . Tailings contain between 2128 and 5988mgkg -1 of lead and represent the most conspicuous source in the area. Lead contents in indoor dust are largely variable (21.7-987mgkg -1 ) but only 15% of samples are above the Mexican Regulatory Guideline for urban soils (400mgkg -1 ). By contrast, 85% of glazed containers (range: 0.026-68.6mgkg -1 ) used for cooking and food storage are above the maximum 2mgL -1 of soluble lead established in the Mexican Guideline. The isotopic composition indicates that lead in the blood of 95% of the studied women can be modeled in terms of a mixing system between local ores (and derivatives), glazed pottery and Morelos bedrock, end-members, with the two former being largely the most important contributors. Only one sample shows influence of indoor paints. Indoor dust is dominated by ores and derivatives but some samples show evidence of contribution from a less radiogenic source very likely represented by interior paints. This study supports the application of lead isotopic ratios to identify potential sources and their apportionment in humans exposed to multiple sources of lead from both, natural and anthropogenic origin. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Stable lead isotopic analyses of historic and contemporary lead contamination of San Francisco Bay estuary

    USGS Publications Warehouse

    Ritson, P.I.; Bouse, R.M.; Flegal, A.R.; Luoma, S.N.

    1999-01-01

    Variations in stable lead isotopic composition (240Pb, 206Pb, 207Pb, 208Pb) in three sediment cores from the San Francisco Bay estuary document temporal changes in sources of lead during the past two centuries. Sediment, with lead from natural geologic sources, and relatively homogeneous lead isotopic compositions are overlain by sediments whose isotopic compositions indicate change in the sources of lead associated with anthropogenic modification of the estuary. The first perturbations of lead isotopic composition in the cores occur in the late 1800s concordant with the beginning of industrialization around the estuary. Large isotopic shifts, toward lower 206Pb/207Pb, occur after the turn of the century in both Richardson and San Pablo Bays. A similar relationship among lead isotopic compositions and lead concentrations in both Bays suggest contamination from the same source (a lead smelter). The uppermost sediments (post 1980) of all cores also have a relatively homogenous lead isotopic composition distinct from pre-anthropogenic and recent aerosol signatures. Lead isotopic compositions of leachates from fourteen surface sediments and five marsh samples from the estuary were also analyzed. These analyses suggest that the lead isotopic signature identified in the upper horizons of the cores is spatially homogeneous among recently deposited sediments throughout the estuary. Current aerosol lead isotopic compositions [Smith, D.R., Niemeyer, S., Flegal, A.R., 1992. Lead sources to California sea otters: industrial inputs circumvent natural lead biodepletion mechanisms. Environmental Research 57, 163-175] are distinct from the isotopic compositions of the surface sediments, suggesting that the major source of lead is cycling of historically contaminated sediments back through the water column. Both the upper core sediments and surface sediments apparently derive their lead predominantly from sources internal to the estuary. These results support the idea that geochemical cycling of lead between sediments and water accounts for persistently elevated lead concentrations in the water column despite 10-fold reduction of external source inputs to San Francisco Bay [Flegal, A.R., Rivera-Duarte, I., Ritson, P.I., Scelfo, G., Smith, G.J., Gordon, M., Sanudo-Wilhelmy, S.A., 1996. Metal contamination in San Francisco Waters: historic perturbations, contemporary concentrations, and future considerations in San Francisco Bay. In: Hollobaugh, J.T. (Ed.), The Ecosystem. AAAS, pp. 173-188].

  20. A Noninvasive Isotopic Approach to Estimate the Bone Lead Contribution to Blood in Children: Implications for Assessing the Efficacy of Lead Abatement

    PubMed Central

    Gwiazda, Roberto; Campbell, Carla; Smith, Donald

    2005-01-01

    Lead hazard control measures to reduce children’s exposure to household lead sources often result in only limited reductions in blood lead levels. This may be due to incomplete remediation of lead sources and/or to the remobilization of lead stores from bone, which may act as an endogenous lead source that buffers reductions in blood lead levels. Here we present a noninvasive isotopic approach to estimate the magnitude of the bone lead contribution to blood in children following household lead remediation. In this approach, lead isotopic ratios of a child’s blood and 5-day fecal samples are determined before and after a household intervention aimed at reducing the child’s lead intake. The bone lead contribution to blood is estimated from a system of mass balance equations of lead concentrations and isotopic compositions in blood at the different times of sample collection. The utility of this method is illustrated with three cases of children with blood lead levels in the range of 18–29 μg/dL. In all three cases, the release of lead from bone supported a substantial fraction of the measured blood lead level postintervention, up to 96% in one case. In general, the lead isotopic compositions of feces matched or were within the range of the lead isotopic compositions of the household dusts with lead loadings exceeding U.S. Environmental Protection Agency action levels. This isotopic agreement underscores the utility of lead isotopic measurements of feces to identify household sources of lead exposure. Results from this limited number of cases support the hypothesis that the release of bone lead into blood may substantially buffer the decrease in blood lead levels expected from the reduction in lead intake. PMID:15626656

  1. Observation of the 162Dy-164Dy Isotope Shift for the 0 → 16 717.79 cm-1 Optical Transition.

    PubMed

    Nardin Barreta, Luiz Felipe; Victor, Alessandro Rogério; Bueno, Patrícia; Dos Santos, Jhonatha Ricardo; da Silveira, Carlos Alberto Barbosa; Neri, José Wilson; Neto, Jonas Jakutis; Sbampato, Maria Esther; Destro, Marcelo Geraldo

    2017-08-01

    In this work, we report a newly observed isotope shift between 162 Dy and 164 Dy isotopes for the 0 → 16 717.79 cm -1 (598.003 nm) optical transition. We compared the newly observed results against two other lines (597.452 nm and 598.859 nm), which we measured in this work, and were already reported in the literature. The newly observed 162-164 Dy isotope shift, shows at least a 20% larger isotope shift than the isotope shifts for the other two lines investigated. The larger 162-164 isotope shift observed for the 598.003 nm line could lead to an increased isotope selectivity for atomic vapor laser isotope separation (AVLIS). Hence, this line could be a good choice for application in AVLIS. Experimental data available in the literature for the 597.452 nm and 598.859 nm lines, enabled us to perform simulations of spectra for both lines, in order to confirm the accuracy of our experimental measurements.

  2. Deformation properties of lead isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolokonnikov, S. V.; Borzov, I. N.; Lutostansky, Yu. S.

    2016-01-15

    The deformation properties of a long lead isotopic chain up to the neutron drip line are analyzed on the basis of the energy density functional (EDF) in the FaNDF{sup 0} Fayans form. The question of whether the ground state of neutron-deficient lead isotopes can have a stable deformation is studied in detail. The prediction of this deformation is contained in the results obtained on the basis of the HFB-17 and HFB-27 Skyrme EDF versions and reported on Internet. The present analysis reveals that this is at odds with experimental data on charge radii and magnetic moments of odd lead isotopes.more » The Fayans EDF version predicts a spherical ground state for all light lead isotopes, but some of them (for example, {sup 180}Pb and {sup 184}Pb) prove to be very soft—that is, close to the point of a phase transition to a deformed state. Also, the results obtained in our present study are compared with the predictions of some other Skyrme EDF versions, including SKM*, SLy4, SLy6, and UNE1. By and large, their predictions are closer to the results arising upon the application of the Fayans functional. For example, the SLy4 functional predicts, in just the same way as the FaNDF{sup 0} functional, a spherical shape for all nuclei of this region. The remaining three Skyrme EDF versions lead to a deformation of some light lead isotopes, but their number is substantially smaller than that in the case of the HFB-17 and HFB-27 functionals. Moreover, the respective deformation energy is substantially lower, which gives grounds to hope for the restoration of a spherical shape upon going beyond the mean-field approximation, which we use here. Also, the deformation properties of neutron-rich lead isotopes are studied up to the neutron drip line. Here, the results obtained with the FaNDF{sup 0} functional are compared with the predictions of the HFB-17, HFB-27, SKM*, and SLy4 Skyrme EDF versions. All of the EDF versions considered here predict the existence of a region where neutron-rich lead isotopes undergo deformations, but the size of this region is substantially different for the different functionals being considered. Once again, it is maximal for the HFB-17 and HFB-27 functionals, is substantially narrower for the FaNDF{sup 0} functional, and is still narrower for the SKM* and SLy4 functionals. The two-neutron drip line proved to be A{sub drip}{sup 2n} = 266 for all of the EDF versions considered here, with the exception of SKM*, for which it is shifted to A{sub drip}{sup 2n}(SKM*) = 272.« less

  3. Isotopic Resonance Hypothesis: Experimental Verification by Escherichia coli Growth Measurements

    NASA Astrophysics Data System (ADS)

    Xie, Xueshu; Zubarev, Roman A.

    2015-03-01

    Isotopic composition of reactants affects the rates of chemical and biochemical reactions. As a rule, enrichment of heavy stable isotopes leads to progressively slower reactions. But the recent isotopic resonance hypothesis suggests that the dependence of the reaction rate upon the enrichment degree is not monotonous. Instead, at some ``resonance'' isotopic compositions, the kinetics increases, while at ``off-resonance'' compositions the same reactions progress slower. To test the predictions of this hypothesis for the elements C, H, N and O, we designed a precise (standard error +/-0.05%) experiment that measures the parameters of bacterial growth in minimal media with varying isotopic composition. A number of predicted resonance conditions were tested, with significant enhancements in kinetics discovered at these conditions. The combined statistics extremely strongly supports the validity of the isotopic resonance phenomenon (p << 10-15). This phenomenon has numerous implications for the origin of life studies and astrobiology, and possible applications in agriculture, biotechnology, medicine, chemistry and other areas.

  4. Linking cases of illegal shootings of the endangered California condor using stable lead isotope analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finkelstein, Myra E., E-mail: myraf@ucsc.edu; Kuspa, Zeka E.; Welch, Alacia

    Lead poisoning is preventing the recovery of the critically endangered California condor (Gymnogyps californianus) and lead isotope analyses have demonstrated that ingestion of spent lead ammunition is the principal source of lead poisoning in condors. Over an 8 month period in 2009, three lead-poisoned condors were independently presented with birdshot embedded in their tissues, evidencing they had been shot. No information connecting these illegal shooting events existed and the timing of the shooting(s) was unknown. Using lead concentration and stable lead isotope analyses of feathers, blood, and recovered birdshot, we observed that: i) lead isotope ratios of embedded shot frommore » all three birds were measurably indistinguishable from each other, suggesting a common source; ii) lead exposure histories re-constructed from feather analysis suggested that the shooting(s) occurred within the same timeframe; and iii) two of the three condors were lead poisoned from a lead source isotopically indistinguishable from the embedded birdshot, implicating ingestion of this type of birdshot as the source of poisoning. One of the condors was subsequently lead poisoned the following year from ingestion of a lead buckshot (blood lead 556 µg/dL), illustrating that ingested shot possess a substantially greater lead poisoning risk compared to embedded shot retained in tissue (blood lead ∼20 µg/dL). To our knowledge, this is the first study to use lead isotopes as a tool to retrospectively link wildlife shooting events. - Highlights: • We conducted a case-based analysis of illegal shootings of California condors. • Blood and feather Pb isotopes were used to reconstruct the illegal shooting events. • Embedded birdshot from the three condors had the same Pb isotope ratios. • Feather and blood Pb isotopes indicated that the condors were shot in a common event. • Ingested shot causes substantially greater lead exposure compared to embedded shot.« less

  5. Quantitative Fissile Assay In Used Fuel Using LSDS System

    NASA Astrophysics Data System (ADS)

    Lee, YongDeok; Jeon, Ju Young; Park, Chang-Je

    2017-09-01

    A quantitative assay of isotopic fissile materials (U235, Pu239, Pu241) was done at Korea Atomic Energy Research Institute (KAERI), using lead slowing down spectrometer (LSDS). The optimum design of LSDS was performed based on economics, easy maintenance and assay effectiveness. LSDS system consists of spectrometer, neutron source, detection and control. LSDS system induces fissile fission and fast neutrons are collected at fission chamber. The detected signal has a direct relation to the mass of existing fissile isotopes. Many current commercial assay technologies have a limitation in direct application on isotopic fissile assay of spent fuel, except chemical analysis. In the designed system, the fissile assay model was setup and the correction factor for self-shield was obtained. The isotopic fissile content assay was performed by changing the content of Pu239. Based on the fuel rod, the isotopic content was consistent with 2% uncertainty for Pu239. By applying the covering (neutron absorber), the effective shielding was obtained and the activation was calculated on the target. From the assay evaluation, LSDS technique is very powerful and direct to analyze the isotopic fissile content. LSDS is applicable for nuclear fuel cycle and spent fuel management for safety and economics. Additionally, an accurate fissile content will contribute to the international transparency and credibility on spent fuel.

  6. Discrimination of bullet types using analysis of lead isotopes deposited in gunshot entry wounds.

    PubMed

    Wunnapuk, Klintean; Minami, Takeshi; Durongkadech, Piya; Tohno, Setsuko; Ruangyuttikarn, Werawan; Moriwake, Yumi; Vichairat, Karnda; Sribanditmongkol, Pongruk; Tohno, Yoshiyuki

    2009-01-01

    In order to discriminate bullet types used in firearms, of which the victims died, the authors investigated lead isotope ratios in gunshot entry wounds from nine lead (unjacketed) bullets, 15 semi-jacketed bullets, and 14 full-jacketed bullets by inductively coupled plasma-mass spectrometry. It was found that the lead isotope ratio of 207/206 in gunshot entry wounds was the highest with lead bullets, and it decreased in order from full-jacketed to semi-jacketed bullets. Lead isotope ratios of 208/206 or 208/207 to 207/206 at the gunshot entry wound were able to discriminate semi-jacketed bullets from lead and full-jacketed ones, but it was difficult to discriminate between lead and full-jacketed bullets. However, a combination of element and lead isotope ratio analyses in gunshot entry wounds enabled discrimination between lead, semi-jacketed, and full-jacketed bullets.

  7. Lead-isotopic, sulphur-isotopic, and trace-element studies of galena from the Silesian-Cracow Zn-Pb ores, polymetallic veins from the Gory Swietokrzyskie MTS, and the Myszkow porphyry copper deposit, Poland

    USGS Publications Warehouse

    Church, S.E.; Vaughn, R.B.; Gent, C.A.; Hopkins, R.T.

    1996-01-01

    Lead-isotopic data on galena samples collected from a paragenetically constrained suite of samples from the Silesian-Cracow ore district show no regional or paragenetically controlled lead-isotopic trends within the analytical reproducibility of the measurements. Furthermore, the new lead-isotopic data agree with previously reported lead-isotopic results (R. E. Zartman et al., 1979). Sulfur-isotopic analyses of ores from the Silesian-Cracow district as well as from vein ore from the Gory Swietokrzyskie Mts. and the Myszkow porphyry copper deposit, when coupled with trace-element data from the galena samples, clearly discriminate different hydrothermal ore-forming events. Lead-isotopic data from the Permian and Miocene evaporite deposits in Poland indicate that neither of these evaporite deposits were a source of metals for the Silesian-Cracow district ores. Furthermore, lead-isotopic data from these evaporite deposits and the shale residues from the Miocene halite samples indicate that the crustal evolution of lead in the central and western European platform in southern Poland followed normal crustal lead-isotopic growth, and that the isotopic composition of crustal lead had progressed beyond the lead-isotopic composition of lead in the Silesian-Cracow ores by Permian time. Thus, Mesozoic and Tertiary sedimentary flysch rocks can be eliminated as viable source rocks for the metals in the Silesian-Cracow Mississippi Valley-type (MVT) deposits. The uniformity of the isotopic composition of lead in the Silesian-Cracow ores, when coupled with the geologic evidence that mineralization must post-date Late Jurassic faulting (E. Gorecka, 1991), constrains the geochemical nature of the source region. The source of the metals is probably a well-mixed, multi-cycle molasse sequence of sedimentary rocks that contains little if any Precambrian metamorphic or granitic clasts (S. E. Church, R. B. Vaughn, 1992). If ore deposition was post Late Jurassic (about 150 m. y.) or later as indicated by the geologic evidence, the source rocks probably contained elevated concentrations of Zn and Pb (75-100 ppm), and relatively low concentrations of U and Th (2 and 8 ppm or less, respectively). The Carboniferous coal-bearing molasse rocks of the Upper Silesian Coal Basin are a prime candidate for such a source region. The presence of ammonia and acetate in the fluid inclusions (Viets et al., 1996a) also indicate that the Carboniferous coal-bearing molasse sequence in the Upper Silesian Coal Basin may have been a suitable pathway for the MVT ore fluids. The lead-isotopic homogeneity, when coupled with the sulfur-isotopic heterogeneity of the ores suggests that mixing of a single metal-bearing fluid with waters from separate aquifers containing variable sulfur-isotopic compositions in karsts in the Muschelkalk Formation of Middle Triassic age may have been responsible for the precipitation of the ores of the Silesian-Cracow district.

  8. Origin of the mysterious Yin-Shang bronzes in China indicated by lead isotopes.

    PubMed

    Sun, Wei-dong; Zhang, Li-peng; Guo, Jia; Li, Cong-ying; Jiang, Yu-hang; Zartman, Robert E; Zhang, Zhao-feng

    2016-03-18

    Fine Yin-Shang bronzes containing lead with puzzlingly highly radiogenic isotopic compositions appeared suddenly in the alluvial plain of the Yellow River around 1400 BC. The Tongkuangyu copper deposit in central China is known to have lead isotopic compositions even more radiogenic and scattered than those of the Yin-Shang bronzes. Most of the Yin-Shang bronzes are tin-copper alloys with high lead contents. The low lead and tin concentrations, together with the less radiogenic lead isotopes of bronzes in an ancient smelting site nearby, however, exclude Tongkuangyu as the sole supplier of the Yin-Shang bronzes. Interestingly, tin ingots/prills and bronzes found in Africa also have highly radiogenic lead isotopes, but it remains mysterious as to how such African bronzes may have been transported to China. Nevertheless, these African bronzes are the only bronzes outside China so far reported that have lead isotopes similar to those of the Yin-Shang bronzes. All these radiogenic lead isotopes plot along ~2.0-2.5 Ga isochron lines, implying that deposits around Archean cratons are the most likely candidates for the sources. African cratons along the Nile and even micro-cratons in the Sahara desert may have similar lead signatures. These places were probably accessible by ancient civilizations, and thus are the most favorable suppliers of the bronzes.

  9. The use of lead isotope analysis to identify potential sources of lead toxicosis in a juvenile bald eagle (Haliaeetus leucocephalus) with ventricular foreign bodies

    USGS Publications Warehouse

    Franzen-Klein, Dana; McRuer, David; Slabe, Vincent; Katzner, Todd

    2018-01-01

    A male juvenile bald eagle (Haliaeetus leucocephalus) was admitted to the Wildlife Center of Virginia with a left humeral fracture a large quantity of anthropogenic debris in the ventriculus, a blood lead level of 0.616 ppm, and clinical signs consistent with chronic lead toxicosis. Because of the poor prognosis for recovery and release, the eagle was euthanatized. Lead isotope analysis was performed to identify potential anthropogenic sources of lead in this bird. The lead isotope ratios in the eagle's femur (0.8773), liver (0.8761), and kidneys (0.8686) were most closely related to lead paint (0.8925), leaded gasoline (0.8450), and zinc smelting (0.8240). The lead isotope ratios were dissimilar to lead ammunition (0.8179) and the anthropogenic debris in the ventriculus. This case report documents foreign body ingestion in a free-ranging bald eagle and demonstrates the clinical utility of lead isotope analysis to potentially identify or exclude anthropogenic sources of lead poisoning in wildlife patients.

  10. Origin of the mysterious Yin-Shang bronzes in China indicated by lead isotopes

    PubMed Central

    Sun, Wei-dong; Zhang, Li-peng; Guo, Jia; Li, Cong-ying; Jiang, Yu-hang; Zartman, Robert E.; Zhang, Zhao-feng

    2016-01-01

    Fine Yin-Shang bronzes containing lead with puzzlingly highly radiogenic isotopic compositions appeared suddenly in the alluvial plain of the Yellow River around 1400 BC. The Tongkuangyu copper deposit in central China is known to have lead isotopic compositions even more radiogenic and scattered than those of the Yin-Shang bronzes. Most of the Yin-Shang bronzes are tin-copper alloys with high lead contents. The low lead and tin concentrations, together with the less radiogenic lead isotopes of bronzes in an ancient smelting site nearby, however, exclude Tongkuangyu as the sole supplier of the Yin-Shang bronzes. Interestingly, tin ingots/prills and bronzes found in Africa also have highly radiogenic lead isotopes, but it remains mysterious as to how such African bronzes may have been transported to China. Nevertheless, these African bronzes are the only bronzes outside China so far reported that have lead isotopes similar to those of the Yin-Shang bronzes. All these radiogenic lead isotopes plot along ~2.0–2.5 Ga isochron lines, implying that deposits around Archean cratons are the most likely candidates for the sources. African cratons along the Nile and even micro-cratons in the Sahara desert may have similar lead signatures. These places were probably accessible by ancient civilizations, and thus are the most favorable suppliers of the bronzes. PMID:26988425

  11. Multi-element isotope fractionation concepts to characterize the biodegradation of hydrocarbons - from enzymes to the environment.

    PubMed

    Vogt, Carsten; Dorer, Conrad; Musat, Florin; Richnow, Hans-Hermann

    2016-10-01

    Multi-element compound-specific isotope fractionation (ME-CSIA) has become a state-of-the-art approach for identifying biotransformation reactions. In the last decade, several studies focused on the combined analysis of carbon and hydrogen stable isotopes upon biodegradation of hydrocarbons due to its widespread environmental occurrence as contaminants, often in high concentrations. Most known initial transformation reactions of hydrocarbons have been isotopically characterized in laboratory experiments using model cultures. The data suggest that several of these reactions - especially those occurring under anoxic conditions - can be identified by ME-CSIA, although a number of constraints have been realized which may lead to wrong ME-CSIA data interpretations in field studies. Generally, the applicability of ME-CSIA regarding hydrocarbon biodegradation needs to be corroborated in future field studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The identification of lead ammunition as a source of lead exposure in First Nations: the use of lead isotope ratios.

    PubMed

    Tsuji, Leonard J S; Wainman, Bruce C; Martin, Ian D; Sutherland, Celine; Weber, Jean-Philippe; Dumas, Pierre; Nieboer, Evert

    2008-04-15

    The use of lead shotshell to hunt water birds has been associated with lead-contamination in game meat. However, evidence illustrating that lead shotshell is a source of lead exposure in subsistence hunting groups cannot be deemed definitive. This study seeks to determine whether lead shotshell constitutes a source of lead exposure using lead isotope ratios. We examined stable lead isotope ratios for lichens, lead shotshell and bullets, and blood from residents of Fort Albany and Kashechewan First Nations, and the City of Hamilton, Ontario, Canada. Data were analyzed using ANOVA and regression analyses. ANOVA of isotope ratios for blood revealed significant differences with respect to location, but not sex. Hamilton differed from both Kashechewan and Fort Albany; however, the First Nations did not differ from each other. ANOVA of the isotope ratios for lead ammunition and lichens revealed no significant differences between lichen groups (north and south) and for the lead ammunition sources (pellets and bullets). A plot of (206)Pb/(204)Pb and (206)Pb/(207)Pb values illustrated that lichens and lead ammunition were distinct groupings and only the 95% confidence ellipse of the First Nations group overlapped that of lead ammunition. In addition, partial correlations between blood-lead levels (adjusted for age) and isotope ratios revealed significant (p<0.05) positive correlations for (206)Pb/(204)Pb and (206)Pb/(207)Pb, and a significant negative correlation for (208)Pb/(206)Pb, as predicted if leaded ammunition were the source of lead exposure. In conclusion, lead ammunition was identified as a source of lead exposure for First Nations people; however, the isotope ratios for lead shotshell pellets and bullets were indistinguishable. Thus, lead-contaminated meat from game harvested with lead bullets may also be contributing to the lead body burden.

  13. Lead isotope profiling in dairy calves.

    PubMed

    Buchweitz, John; McClure-Brinton, Kimberly; Zyskowski, Justin; Stensen, Lauren; Lehner, Andreas

    2015-03-01

    Lead (Pb) is a common cause of heavy metal poisonings in cattle. Sources of Pb on farms include crankcase oil, machinery grease, batteries, plumbing, and paint chips. Consequently, consumption of Pb from these sources may negatively impact animal health and Pb may be inadvertently introduced into the food supply. Therefore, the scope of poisoning incidents must be clearly assessed and sources of intoxication identified and strategies to mitigate exposure evaluated and implemented to prevent future exposures. Stable isotope analysis by inductively-coupled plasma mass spectrometry (ICP-MS) has proven itself of value in forensic investigations. We report on the extension of Pb stable isotope analysis to bovine tissues and profile comparisons with paint chips and soils collected from an affected dairy farm to elucidate the primary source. Pb occurs naturally as four stable isotopes: (204)Pb, (206)Pb, (207)Pb, and (208)Pb. Herein a case is reported to illustrate the use of (207)Pb/(206)Pb and (208)Pb/(206)Pb ratios to link environmental sources of exposure with tissues from a poisoned animal. Chemical Pb profiling provides a valuable tool for field investigative approaches to Pb poisoning in production agriculture and is applicable to subclinical exposures. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Application of laser ablation multicollector inductively coupled plasma mass spectrometry for the measurement of calcium and lead isotope ratios in packaging for discriminatory purposes.

    PubMed

    Santamaria-Fernandez, Rebeca; Wolff, Jean-Claude

    2010-07-30

    The potential of high-precision calcium and lead isotope ratio measurements using laser ablation coupled to multicollector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) to aid distinction between four genuine and five counterfeit pharmaceutical packaging samples and further classification of counterfeit packaging samples has been evaluated. We highlight the lack of reference materials for LA-MC-ICP-MS isotope ratio measurements in solids. In this case the problem is minimised by using National Institute of Standards and Technology Standard Reference Material (NIST SRM) 915a calcium carbonate (as solid pellets) and NIST SRM610 glass disc for sample bracketing external standardisation. In addition, a new reference material, NIST SRM915b calcium carbonate, has been characterised in-house for Ca isotope ratios and is used as a reference sample. Significant differences have been found between genuine and counterfeit samples; the method allows detection of counterfeits and aids further classification of packaging samples. Typical expanded uncertainties for measured-corrected Ca isotope ratio values ((43)Ca/(44)Ca and (42)Ca/(44)Ca) were found to be below 0.06% (k = 2, 95% confidence) and below 0.2% for measured-corrected Pb isotope ratios ((207)Pb/(206)Pb and (208)Pb/(206)Pb). This is the first time that Ca isotope ratios have been measured in packaging materials using LA coupled to a multicollector (MC)-ICP-MS instrument. The use of LA-MC-ICP-MS for direct measurement of Ca and Pb isotopic variations in cardboard/ink in packaging has definitive potential to aid counterfeit detection and classification. Copyright 2010 John Wiley & Sons, Ltd.

  15. The lead isotopic age of the Earth can be explained by core formation alone.

    PubMed

    Wood, Bernard J; Halliday, Alex N

    2010-06-10

    The meaning of the age of the Earth defined by lead isotopes has long been unclear. Recently it has been proposed that the age of the Earth deduced from lead isotopes reflects volatile loss to space at the time of the Moon-forming giant impact rather than partitioning into metallic liquids during protracted core formation. Here we show that lead partitioning into liquid iron depends strongly on carbon content and that, given a content of approximately 0.2% carbon, experimental and isotopic data both provide evidence of strong partitioning of lead into the core throughout the Earth's accretion. Earlier conclusions that lead is weakly partitioned into iron arose from the use of carbon-saturated (about 5% C) iron alloys. The lead isotopic age of the Earth is therefore consistent with partitioning into the core and with no significant late losses of moderately volatile elements to space during the giant impact.

  16. Lead (Pb) Isotope Baselines for Studies of Ancient Human Migration and Trade in the Maya Region.

    PubMed

    Sharpe, Ashley E; Kamenov, George D; Gilli, Adrian; Hodell, David A; Emery, Kitty F; Brenner, Mark; Krigbaum, John

    2016-01-01

    We examined the potential use of lead (Pb) isotopes to source archaeological materials from the Maya region of Mesoamerica. The main objectives were to determine if: 1) geologic terrains throughout the Maya area exhibit distinct lead isotope ratios (206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb), and 2) a combination of lead and strontium ratios can enhance sourcing procedures in the Mesoamerica region. We analyzed 60 rock samples for lead isotope ratios and a representative subset of samples for lead, uranium, and thorium concentrations across the Maya region, including the Northern Lowlands of the Mexican Yucatan Peninsula, the Southern Lowlands of Guatemala and Belize, the Volcanic Highlands, the Belizean Maya Mountains, and the Metamorphic Province/Motagua Valley. Although there is some overlap within certain sub-regions, particularly the geologically diverse Metamorphic Province, lead isotopes can be used to distinguish between the Northern Lowlands, the Southern Lowlands, and the Volcanic Highlands. The distinct lead isotope ratios in the sub-regions are related to the geology of the Maya area, exhibiting a general trend in the lowlands of geologically younger rocks in the north to older rocks in the south, and Cenozoic volcanic rocks in the southern highlands. Combined with other sourcing techniques such as strontium (87Sr/86Sr) and oxygen (δ18O), a regional baseline for lead isotope ratios can contribute to the development of lead isoscapes in the Maya area, and may help to distinguish among geographic sub-regions at a finer scale than has been previously possible. These isotope baselines will provide archaeologists with an additional tool to track the origin and movement of ancient humans and artifacts across this important region.

  17. Lead (Pb) Isotope Baselines for Studies of Ancient Human Migration and Trade in the Maya Region

    PubMed Central

    Kamenov, George D.; Gilli, Adrian; Hodell, David A.; Emery, Kitty F.; Brenner, Mark; Krigbaum, John

    2016-01-01

    We examined the potential use of lead (Pb) isotopes to source archaeological materials from the Maya region of Mesoamerica. The main objectives were to determine if: 1) geologic terrains throughout the Maya area exhibit distinct lead isotope ratios (206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb), and 2) a combination of lead and strontium ratios can enhance sourcing procedures in the Mesoamerica region. We analyzed 60 rock samples for lead isotope ratios and a representative subset of samples for lead, uranium, and thorium concentrations across the Maya region, including the Northern Lowlands of the Mexican Yucatan Peninsula, the Southern Lowlands of Guatemala and Belize, the Volcanic Highlands, the Belizean Maya Mountains, and the Metamorphic Province/Motagua Valley. Although there is some overlap within certain sub-regions, particularly the geologically diverse Metamorphic Province, lead isotopes can be used to distinguish between the Northern Lowlands, the Southern Lowlands, and the Volcanic Highlands. The distinct lead isotope ratios in the sub-regions are related to the geology of the Maya area, exhibiting a general trend in the lowlands of geologically younger rocks in the north to older rocks in the south, and Cenozoic volcanic rocks in the southern highlands. Combined with other sourcing techniques such as strontium (87Sr/86Sr) and oxygen (δ18O), a regional baseline for lead isotope ratios can contribute to the development of lead isoscapes in the Maya area, and may help to distinguish among geographic sub-regions at a finer scale than has been previously possible. These isotope baselines will provide archaeologists with an additional tool to track the origin and movement of ancient humans and artifacts across this important region. PMID:27806065

  18. Past leaded gasoline emissions as a nonpoint source tracer in riparian systems: A study of river inputs to San Francisco Bay

    USGS Publications Warehouse

    Dunlap, C.E.; Bouse, R.; Flegal, A.R.

    2000-01-01

    Variations in the isotopic composition of lead in 1995-1998 river waters flowing into San Francisco Bay trace the washout of lead deposited in the drainage basin from leaded gasoline combustion. At the confluence of the Sacramento and San Joaquin rivers where they enter the Bay, the isotopic compositions of lead in the waters define a linear trend away from the measured historical compositions of leaded gas in California. The river waters are shifted away from leaded gasoline values and toward an isotopic composition similar to Sierra Nevadan inputs which became the predominant source of sedimentation in San Francisco Bay following the onset of hydraulic gold mining in 1853. Using lead isotopic compositions of hydraulic mine sediments and average leaded gasoline as mixing end members, we calculate that more than 50% of the lead in the present river water originated from leaded gasoline combustion. The strong adsorption of lead (log K(d) > 7.4) to particulates appears to limit the flushing of gasoline lead from the drainage basin, and the removal of that lead from the system may have reached an asymptotic limit. Consequently, gasoline lead isotopes should prove to be a useful nonpoint source tracer of the environmental distribution of particle- reactive anthropogenic metals in freshwater systems.

  19. Lead isotope determinations from sulfide mineral occurrences--Russian Far East

    USGS Publications Warehouse

    Church, Stan E.; Goryachev, Nikolai A.; Shpikerman, Vladimir I.

    2013-01-01

    The lead isotope database for sulfide deposits and occurrences in the Russian Far East was funded by the Mineral Resources Program, U.S. Geological Survey (USGS) in conjunction with the collaborative studies of mineral resources by the Russian Academy of Sciences and the U. S. Geological Survey (Nokleberg and others, 1996). Comparisons of these data with similar lead isotope data from Alaska published in Church, Delevaux, and others (1987) and Gaccetta and Church (1989) provide a basis for the following three-fold project objectives: 1. To utilize lead isotope signatures, in conjunction with regional mapping, to assess the relative ages and to categorize the types of mineral deposits studied, 2. To relate the lead isotope and trace-element geochemical signatures of specific deposits and occurrences to ore-forming processes, and 3. To use the lead isotope data to correlate lithotectonic terranes within the northern Cordillera (Alaska, Yukon Territories and British Columbia in Canada, and the western Cordillera of the United States). The report by Church, Gray, and others (1987) shows how this fingerprinting methodology can be applied to trace the offset of lithotectonic (or lithostratigraphic as labeled by some authors) terranes.The lead isotope data presented in table 1 represent the work completed on sulfide mineral deposits located in the Russian Far East from 1993 to 1995, when this study was terminated due to lack of funding. The lead isotope data are reported here for use by investigators who may find them of value in mineral exploration. No attempt is made to summarize the voluminous literature on these mineral deposits.

  20. Surface dust wipes are the best predictors of blood leads in young children with elevated blood lead levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulson, Brian, E-mail: brian.gulson@mq.edu.au; CSIRO Earth Science and Resource Engineering, North Ryde NSW 2113; Anderson, Phil

    Background: As part of the only national survey of lead in Australian children, which was undertaken in 1996, lead isotopic and lead concentration measurements were obtained from children from 24 dwellings whose blood lead levels were ≥15 µg/dL in an attempt to determine the source(s) of their elevated blood lead. Comparisons were made with data for six children with lower blood lead levels (<10 µg/dL). Methods: Thermal ionisation and isotope dilution mass spectrometry were used to determine high precision lead isotopic ratios ({sup 208}Pb/{sup 206}Pb, {sup 207}Pb/{sup 206}Pb and {sup 206}Pb/{sup 204}Pb) and lead concentrations in blood, dust from floormore » wipes, soil, drinking water and paint (where available). Evaluation of associations between blood and the environmental samples was based on the analysis of individual cases, and Pearson correlations and multiple regression analyses based on the whole dataset. Results and discussion: The correlations showed an association for isotopic ratios in blood and wipes (r=0.52, 95% CI 0.19–0.74), blood and soil (r=0.33, 95% CI −0.05–0.62), and blood and paint (r=0.56, 95% CI 0.09–0.83). The regression analyses indicated that the only statistically significant relationship for blood isotopic ratios was with dust wipes (B=0.65, 95% CI 0.35–0.95); there were no significant associations for lead concentrations in blood and environmental samples. There is a strong isotopic correlation of soils and house dust (r=0.53, 95% CI 0.20–0.75) indicative of a common source(s) for lead in soil and house dust. In contrast, as with the regression analyses, no such association is present for bulk lead concentrations (r=−0.003, 95% CI −0.37–0.36), the most common approach employed in source investigations. In evaluation of the isotopic results on a case by case basis, the strongest associations were for dust wipes and blood. -- Highlights: • Children with elevated blood lead ≥15 µg/dL compared with a group with <10 µg/dL. • High precision lead isotopic ratios in blood, house dust wipes, soil, water, paint. • Associations for isotopic measures of blood and dust, blood and soil, blood and paint. • Regressions gave significance for isotopic measures of blood/dust and dust/soil.« less

  1. Stable lead isotopes reveal a natural source of high lead concentrations to gasoline-contaminated groundwater

    USGS Publications Warehouse

    Landmeyer, J.E.; Bradley, P.M.; Bullen, T.D.

    2003-01-01

    Concentrations of total lead as high as 1,600 ??g/L were detected in gasoline-contaminated and uncontaminated groundwater at three gasoline-release sites in South Carolina. Total lead concentrations were highest in turbid groundwater samples from gasoline-contaminated and uncontaminated wells, whereas lower turbidity groundwater samples (collected using low-flow methods) had lower total lead concentrations. Dissolved lead concentrations in all wells sampled, however, were less than 15 ??g total lead/L, the current United States Environmental Protection Agency (US EPA) maximum contaminant level (MCL). Because many total lead concentrations exceeded the MCL, the source of lead to the groundwater system at two of the three sites was investigated using a stable lead isotope ratio approach. Plots of the stable isotope ratios of lead (Pb) in groundwater as 207Pb/206Pb versus 208Pb/206Pb, and 208Pb/204Pb versus 206Pb/204Pb were similar to ratios characteristic of lead-based minerals in local rocks of the southeastern US, and were not similar to the stable lead isotopes ratios characteristic of distant lead ore deposits such as Broken Hill, Australia, used to produce tetraethyl lead in gasoline products prior to its phase-out and ban in the United States. Moreover, the isotopic composition of dissolved lead was equivalent to the isotopic composition of total lead in turbid samples collected from the same well, suggesting that the majority of the lead detected in the groundwater samples was associated with sediment particulates of indigenous aquifer material, rather than lead associated with spilled leaded gasoline. The results of this investigation indicate that (1) lead detected at some gasoline-release sites may be derived from the local aquifer material, rather than the gasoline release, and consequently may affect site-specific remediation goals; (2) non-low flow groundwater sampling methods, such as a disposable bailer, may result in turbid groundwater samples and high total lead concentrations, and; (3) stable lead isotopes can be used to clarify the source of lead detected above permissible levels in gasoline-contaminated groundwater systems.

  2. Seventh Annual V. M. Goldschmidt Conference

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Topics considered include: Subduction of the Aseismic Cocos Ridge Displaced Magma Sources Beneath the Cordillera de Talamanca, Costa Rica; Topography of Transition Zone Discontinuities: A Measure of 'Olivine' Content and Evidence for Deep Cratonic Roots; Uranium Enrichment in Lithospheric Mantle: Case Studies from French Massif Central; Rare-Earth-Element Anomalies in the Decollement Zone of the nankai Accretionary Prism, Japan: Evidence of Fluid Flow?; Rare Earth Elements in Japanese Mudrocks: The Influence of Provenance; The Evolution of Seawater Strontium Isotopes in the Last Hundred Million Years: Reinterpretation and Consequences for Erosion and Climate Models; From Pat to Tats: The Lead Isotope Legacy in the Studies of the Continental Crust-Upper Mantle System; Geochronology of the Jack Hills Detrital Zircons by Precise Uranium-Lead Isotope-Dilution Analysis of Crystal Fragments; Iridium in the Oceans; The Helium-Heat-Lead Paradox; Control of Distribution Patterns of Heavy Metals in Ganga Plain Around Kanpur Region, India, by Fluvial Geomorphic Domains; Geochemical and Isotopic Features of Ferrar Magmatic Provience (Victoria Land, Antarctica); Rare Earth Elements in Marine Fine-Grained Sediments from the Northwestern Portuguese Shelf (Atlantic); Aspects of Arc Fluxes; General Kinetic Model for Dolomite Precipitation Rate with Application to the Secular History of Seawater Composition; High-Precision Uranium-series Chronology from Speleothems; Trace-Element Modeling of Aqueous Fluid-Peridotite Interaction in the Mantle Wedge of Subduction Zones; Rainfall Variations in Southeastern Australia over the Last 500,000 Years from Speleothem Deposition; The Role of Water in High-Pressure Fluids; The Kinetic Conditions of Metamorphic Minearogenesis: Evidence from Minerals and Assemblages.

  3. Radiogenic Isotopes in Weathering and Hydrology

    NASA Astrophysics Data System (ADS)

    Blum, J. D.; Erel, Y.

    2003-12-01

    There are a small group of elements that display variations in their isotopic composition, resulting from radioactive decay within minerals over geological timescales. These isotopic variations provide natural fingerprints of rock-water interactions and have been widely utilized in studies of weathering and hydrology. The isotopic systems that have been applied in such studies are dictated by the limited number of radioactive parent-daughter nuclide pairs with half-lives and isotopic abundances that result in measurable differences in daughter isotope ratios among common rocks and minerals. Prior to their application to studies of weathering and hydrology, each of these isotopic systems was utilized in geochronology and petrology. As in the case of their original introduction into geochronology and petrology, isotopic systems with the highest concentrations of daughter isotopes in common rocks and minerals and systems with the largest observed isotopic variations were introduced first and have made the largest impact on our understanding of weathering and hydrologic processes. Although radiogenic isotopes have helped elucidate many important aspects of weathering and hydrology, it is important to note that in almost every case that will be discussed in this chapter, our fundamental understanding of these topics came from studies of variations in the concentrations of major cations and anions. This chapter is a "tools chapter" and thus it will highlight applications of radiogenic isotopes that have added additional insight into a wide spectrum of research areas that are summarized in almost all of the other chapters of this volume.The first applications of radiogenic isotopes to weathering processes were based on studies that sought to understand the effects of chemical weathering on the geochronology of whole-rock samples and geochronologically important minerals (Goldich and Gast, 1966; Dasch, 1969; Blaxland, 1974; Clauer, 1979, 1981; Clauer et al., 1982); as well as on the observation that radiogenic isotopes are sometimes preferentially released compared to nonradiogenic isotopes of the same element during acid leaching of rocks ( Hart and Tilton, 1966; Silver et al., 1984; Erel et al., 1991). A major finding of these investigations was that weathering often results in anomalously young Rb-Sr isochron ages, and discordant Pb-Pb ages. Rubidium is generally retained relative to strontium in whole-rock samples, and in some cases radiogenic strontium and lead are lost preferentially to common strontium and lead from weathered minerals.The most widely utilized of these isotopic systems is Rb-Sr, followed by U-Pb. The K-Ar system is not directly applicable to most studies of rock-water interaction, because argon is a noble gas, and upon release during mineral weathering mixes with atmospheric argon, limiting its usefulness as a tracer in most weathering applications. Argon and other noble gas isotopes have, however, found important applications in hydrology (see Chapter 5.15). Three other isotopic systems commonly used in geochronology and petrology include Sm-Nd, Lu-Hf, and Re-Os. These parent and daughter elements are in very low abundance and concentrated in trace mineral phases. Sm-Nd, Lu-Hf, and Re-Os have been used in a few weathering studies but have not been utilized extensively in investigations of weathering and hydrology.The decay of 87Rb to 87Sr has a half-life of 48.8 Gyr, and this radioactive decay results in natural variability in the 87Sr/86Sr ratio in rubidium-bearing minerals (e.g., Blum, 1995). The trace elements rubidium and strontium are geochemically similar to the major elements potassium and calcium, respectively. Therefore, minerals with high K/Ca ratios develop high 87Sr/86Sr ratios over geologic timescales. Once released into the hydrosphere, strontium retains its isotopic composition without significant fractionation by geochemical or biological processes, and is therefore a good tracer for sources and cycling of calcium. The decay of 235U to 207Pb, 238U to 206Pb, and 232Th to 208Pb have half-lives of 0.704 Gyr, 4.47 Gyr, and 14.0 Gyr, respectively, and result in variations in the 207Pb/204Pb, 206Pb/204Pb, and 208Pb/204Pb ratios (e.g., Blum, 1995). Uranium-234 has a half-life of 0.25 Myr and the ratio 234U/238U approaches a constant secular equilibrium value in rocks and minerals if undisturbed for ˜1 Myr. Differences in this ratio are often observed in solutions following rock-water interaction and have been used in studies of weathering and hydrology. Uranium and thorium tend to be highly concentrated in the trace accessory minerals such as zircon, monazite, apatite, and sphene, which therefore develop high 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios. Once released into the hydrosphere, lead retains its isotopic composition without significant geochemical or biological fractionation and tends to generally follow the chemistry of iron in soils and aqueous systems (Erel and Morgan, 1992). The use of the U-Th disequilibrium series as a dating tool falls outside the scope of this chapter and is reviewed in Chapters 6.14 and 6.17 as well as Chapter 3.15. The decay of 147Sm to 143Nd, 176Lu to 176Hf, and 187Re to 187Os have half-lives of 106 Gyr, 35.7 Gyr, and 42.3 Gyr, respectively, and result in natural variability in the 144Nd/143Nd, 176Hf/177Hf, and 187Os/188Os ratios (e.g., Blum, 1995). Neodymium is a rare earth element (REE), hafnium is a transition metal with chemical similarities to zirconium, and osmium is a platinum group element. The geochemical behaviors of these elements in the hydrosphere are largely determined by these chemical affinities.

  4. Illuminating hydrological processes at the soil-vegetation-atmosphere interface with water stable isotopes

    NASA Astrophysics Data System (ADS)

    Sprenger, Matthias; Leistert, Hannes; Gimbel, Katharina; Weiler, Markus

    2016-09-01

    Water stable isotopes (18O and 2H) are widely used as ideal tracers to track water through the soil and to separate evaporation from transpiration. Due to the technical developments in the last two decades, soil water stable isotope data have become easier to collect. Thus, the application of isotope methods in soils is growing rapidly. Studies that make use of soil water stable isotopes often have a multidisciplinary character since an interplay of processes that take place in the vadose zone has to be considered. In this review, we provide an overview of the hydrological processes that alter the soil water stable isotopic composition and present studies utilizing pore water stable isotopes. The processes that are discussed include the water input as precipitation or throughfall, the output as evaporation, transpiration, or recharge, and specific flow and transport processes. Based on the review and supported by additional data and modeling results, we pose a different view on the recently proposed two water world hypothesis. As an alternative to two distinct pools of soil water, where one pool is enriched in heavy isotopes and used by the vegetation and the other pool does not undergo isotopic fractionation and becomes recharge, the water gets successively mixed with newly introduced rainwater during the percolation process. This way, water initially isotopically enriched in the topsoil loses the fractionation signal with increasing infiltration depth, leading to unfractionated isotopic signals in the groundwater.

  5. The use of Pb isotopes to differentiate between contemporary and ancient sources of pollution in Greece

    NASA Astrophysics Data System (ADS)

    Åberg, G.; Charalampides, G.; Fosse, G.; Hjelmseth, H.

    Stable lead isotopes are used to illustrate the relation source-receptor and to differentiate between sources of pollution in Greece. Air filters collected in the Kozani-Ptolemais lignite mining area, West Macedonia, point to an impact from gasoline lead as well as lead from the combustion of lignite. This is supported by lead isotope data of wheat grown on reclaimed land. Lead isotope analyses of contemporary teeth from the Lavrio sulphide mining area, southeast of Greece, show the imprint of previous mining activities as well as traffic emissions. Moreover, the Lavrio teeth can be distinguished from one tooth from Athens; the Athens tooth show a stronger impact of gasoline lead. Lead data also imply that the Greek top soil is contaminated by air pollution from earlier sulphide mining and smelting since Hellenic and Roman times.

  6. Application of computational fluid dynamics for the simulation of cryogenic molecular sieve bed absorber of hydrogen isotopes recovery system for Indian LLCB-TBM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gayathri Devi, V.; Sircar, A.; Sarkar, B.

    One of the most challenging tasks in the design of the fuel cycle system lies in the effective design of Tritium Extraction System (TES) which involves proper extraction and purification of tritium in the fuel cycle of the fusion reactor. Indian Lead Lithium cooled Ceramic Breeder Test Blanket Module (LLCB-TBM) would extract hydrogen isotopes through Cryogenic Molecular Sieve Bed (CMSB) adsorber system. A prototype Hydrogen Isotopes Recovery System (HIRS) is being developed to validate the concepts for tritium extraction by adsorption mass transfer mechanism. In this study, a design model has been developed and analyzed to simulate the adsorption massmore » transfer kinetics in a fixed bed adsorption column. The simulation leads primarily to effective design of HIRS, which is a state-of-the-art technology. The paper describes the process simulation approach and the results of Computational Fluid Dynamics (CFD) analysis. The effects of different operating conditions are studied to investigate their influence on the hydrogen isotopes adsorption capacity. The results of the present simulation study would be used to understand the best optimized transport phenomenon before realizing the TES as a system for LLCB-TBM. (authors)« less

  7. Preliminary lead isotope investigations of brine from the Red Sea, Galena from the Kingdom of Saudi Arabia, and galena from United Arab Republic (Egypt)

    USGS Publications Warehouse

    Delevaux, M.H.; Doe, B.R.; Brown, G.F.

    1967-01-01

    The isotopic composition of lead in Red Sea chloride brine containing 0.5 ppm Pb is found to be similar to that of some Cenozoic ore leads such as galena at Rabigh in Saudi Arabia that may have formed during mineralization accompanying Tertiary rifting. Bir Ranga galena in Miocene sediments from United Arab Republic (Egypt) is also isotopically similar to lead in Red Sea brine. The chlorine brine must be considered a possible mineralizing fluid. Lead isotopes show promise for use in mineral prospect evaluation in that galena from Samrah is isotopically similar to that from Mahd adh Dhahab, which has been the only ore producer in Saudi Arabia since 1945. Drilling at Samrah does indicate a possible economic mineralization. The lead isotope data coupled with available geologic knowledge and geochronometry are used to tentatively divide the ore prospects of the Kingdom of Saudi Arabia into relative categories of mineralization age. Two Mesozoic and Cenozoic mineralizations are distinguished on the basis of a 207Pb/204Pb difference; an early Paleozoic mineralization grouping is outlined; and a late Precambrian mineralization period is suggested. ?? 1967.

  8. Spectroscopic Measurement of LEAD-204 Isotope Shift and LEAD-205 Nuclear Spin.

    NASA Astrophysics Data System (ADS)

    Schonberger, Peter

    The isotope shift of ('204)Pb and the nuclear spin of 1.4 x 10('7)-y ('205)Pb was determined from a high -resolution optical measurement of the 6p('2) ('3)P(,o) -6p7s('3)P(,1)('o) 283.3-nm resonance line. The value of the shift, relative to ('208)Pb is -140.2(8) x 10('-3)cm(' -1), the negative sign indicating a shift to lower wave numbers. The precision is 3-4 times greater than that of previous measurements. The spin of ('205)Pb l = 5/2 was obtained from the measurement of the relative intensities of its three hyperfine components. This method of absorption spectroscopy determination of ground state nuclear spin is applicable to any stable or longlived isotope. High resolution optical absorption spectra were obtained with a 25.4cm diffraction grating in a 9.1m focal length Czerny-Turner spectrometer. A signal-averaging scanning technique was used to record the spectra. Increased precision in the isotope shift measurement was attained by using separated isotope samples of ('204)Pb and ('207)Pb. A controlled amount of the later was incorporated in the absorption cell to provide internal calibration by its 6p7s ('3)P(,1)('o) hfs separation. Absorption spectra were recorded for several optical thicknesses of the absorber. A single spin value of increased precision was derived from the entire set of combined data.

  9. On the interrelationship between temporal trends in. delta. sup 13 C,. delta. sup 18 O, and. delta. sup 34 S in the world ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, A.; Gruszczynski, M.; Malkowski, K.

    1991-05-01

    The phenomena of (i) inverse correlation between the oceanic carbon and sulfur isotopic curves, and (ii) covariation between the oceanic carbon and oxygen isotopic curves at all their major excursions appear as paradoxes in the current paradigm of global biogeochemical cycles. These phenomena, however, are fully explicable by a model proposing that the ocean alternates between two general modes: stagnant, stratified, and net autotrophic (overfed) ocean, on the one hand, and vigorously mixed and net heterotrophic (hungry) ocean, on the other. This model is in fact strongly supported by the carbon isotopic evidence. The directions of change in the isotopicmore » ratios of carbon, oxygen, and sulfur should be different in the lower, anoxic box of a stratified ocean than in the upper, oxic box; whereas ocean destratification and mixing of the two boxes should lead to coeval shifts in the oceanic isotopic curves of these elements. The model has far-reaching implications for (i) the causal explanation of both secular trends and major shifts in the oceanic isotopic curves, and (ii) for the application of oxygen isotopic data for paleotemperature and paleoenvironment determinations.« less

  10. High precision tungsten isotope analysis using MC-ICP-MS and application for terrestrial samples

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Takamasa, A.

    2017-12-01

    Tungsten has five isotopes (M = 180, 182, 183, 184, 186), and 182W isotope is a rediogenic isotope produced by b-decay of 182Hf. Its half life is short (8.9 m.y.), and 182W isotope has been investigated to understand the early Earth geochemical evolution. Both Hf and W are highly refractory elements. As Hf is a lithophile and W is a siderophile elements, 182Hf-182W system could give constraints on metal-silicate (core-mantle) differentiation such as especially early Earth system because of its larege fractionation betwenn core-mantle and short half life. Improvement of analytical techniques of W isotope analyses leads to findings of W isotope anomaly (mostly positive) in old komatiites (2.4 - 3.8 Ga) and young volcanic rocks (12 Ma Ontong Java Plateau and 6 Ma Baffin Bay). In our study, high-precision W isotope ratio measurement with MC-ICP-MS (Thermo co. Ltd., NEPTUNE PLUS). We have measured W standard solution (SRM 3163) and obtained the isotopic compositions with an precision of ± 5ppm. However, the standard solution, which separated by cation or anion exchange resin, has systematical 183W/184W drift to -5ppm. These phenomena was also reported by Willbold et al. (2011). Therefore, we used the standard solution for correction of isotopic fractionation of samples which was processed by the same method as that of the samples. We will present the data of terrestrial samples obtained by the technique dveloped in this study.

  11. Development of a Method to Isolate Glutamic Acid from Foodstuffs for a Precise Determination of Their Stable Carbon Isotope Ratio.

    PubMed

    Kobayashi, Kazuhiro; Tanaka, Masaharu; Yatsukawa, Yoichi; Tanabe, Soichi; Tanaka, Mitsuru; Ohkouchi, Naohiko

    2018-01-01

    Recent growing health awareness is leading to increasingly conscious decisions by consumers regarding the production and traceability of food. Stable isotopic compositions provide useful information for tracing the origin of foodstuffs and processes of food production. Plants exhibit different ratios of stable carbon isotopes (δ 13 C) because they utilized different photosynthetic (carbon fixation) pathways and grow in various environments. The origins of glutamic acid in foodstuffs can be differentiated on the basis of these photosynthetic characteristics. Here, we have developed a method to isolate glutamic acid in foodstuffs for determining the δ 13 C value by elemental analyzer-isotope-ratio mass spectrometry (EA/IRMS) without unintended isotopic fractionation. Briefly, following acid-hydrolysis, samples were defatted and passed through activated carbon and a cation-exchange column. Then, glutamic acid was isolated using preparative HPLC. This method is applicable to measuring, with a low standard deviation, the δ 13 C values of glutamic acid from foodstuffs derived from C3 and C4 plants and marine algae.

  12. Historical perspective on lead biokinetic models.

    PubMed Central

    Rabinowitz, M

    1998-01-01

    A historical review of the development of biokinetic model of lead is presented. Biokinetics is interpreted narrowly to mean only physiologic processes happening within the body. Proceeding chronologically, for each epoch, the measurements of lead in the body are presented along with mathematical models in an attempt to trace the convergence of observations from two disparate fields--occupational medicine and radiologic health--into some unified models. Kehoe's early balance studies and the use of radioactive lead tracers are presented. The 1960s saw the joint application of radioactive lead techniques and simple compartmental kinetic models used to establish the exchange rates and residence times of lead in body pools. The applications of stable isotopes to questions of the magnitudes of respired and ingested inputs required the development of a simple three-pool model. During the 1980s more elaborate models were developed. One of their key goals was the establishment of the dose-response relationship between exposure to lead and biologic precursors of adverse health effects. PMID:9860905

  13. Lead isotope relations in oceanic Ridge basalts from the Juan de Fuca-Gorda Ridge area N.E. Pacific Ocean

    USGS Publications Warehouse

    Church, S.E.; Tatsumoto, M.

    1975-01-01

    Lead isotopic analyses of a suite of basaltic rocks from the Juan de Fuca-Gorda Ridge and nearby seamounts confirm an isotopically heterogeneous mantle known since 1966. The process of mixing during partial melting of a heterogeneous mantle necessarily produces linear data arrays that can be interpreted as secondary isochrons. Moreover, the position of the entire lead isotope array, with respect to the geochron, requires that U/Pb and Th/Pb values are progressively increased over the age of the earth. Partial melting theory also dictates analogous behavior for the other incompatible trace elements. This process explains not only the LIL element character of MOR basalts, but also duplicates the spread of radiogenic lead data collected from alkali-rich oceanic basalts. This dynamic, open-system model of lead isotopic and chemical evolution of the mantle is believed to be the direct result of tectonic flow and convective overturn within the mantle and is compatible with geophysical models of a dynamic earth. ?? 1975 Springer-Verlag.

  14. High-precision Pb isotopic measurements of teeth and environmental samples from Sofia (Bulgaria): insights for regional lead sources and possible pathways to the human body

    NASA Astrophysics Data System (ADS)

    Kamenov, George D.

    2008-08-01

    High-precision Pb isotopic measurements on teeth and possible sources in a given area can provide important insights for the lead (Pb) sources and pathways in the human body. Pb isotopic analyses on soils from the area of Sofia, Bulgaria show that Pb is contributed by three end-members represented by two natural sources and leaded gasoline. Sequential leaching experiments reveal that the alumosilicate fraction of the soils is mainly controlled by natural Pb derived from two mountain massifs bordering the city. Around 1/3 to a half of the Pb in the soil leachates, however, can be explained by contamination from leaded gasoline. Contemporary teeth from Sofia residents show very similar Pb isotopic compositions to the soil leachates, also indicating that around 1/3 to a half of the Pb can be explained by derivation from leaded gasoline. The remarkable isotopic similarities between the teeth and the most labile fractions of the local soils suggest that the lead can be derived from the latter. Pb incorporation in the human body via soil-plant-human or soil-plant-animal-human chains is unlikely due to the fact that no significant farming occurs in the city area. The isotopic compositions of the local soil labile fractions can be used as approximation of the bioaccessible lead for humans. Considering all possible scenarios it appears that soil and/or soil-born dust inhalation and/or ingestion is the most probable pathway for incorporation of local soil lead in the local population. The high-precision Pb isotope data presented in this work indicate that apparently the local soil is what plays major role in the human Pb exposure.

  15. Geochemical and isotopic study of soils and waters from an Italian contaminated site: Agro Aversano (Campania)

    USGS Publications Warehouse

    Bove, M.A.; Ayuso, R.A.; de Vivo, B.; Lima, A.; Albanese, S.

    2011-01-01

    Lead isotope applications have been widely used in recent years in environmental studies conducted on different kinds of sampled media. In the present paper, Pb isotope ratios have been used to determine the sources of metal pollution in soils and waters in the Agro Aversano area. During three different sampling phases, a total of 113 surface soils (5-20. cm), 20 samples from 2 soil profiles (0-1. m), 11 stream waters and 4 groundwaters were collected. Major element concentrations in sampled media have been analyzed by the ICP-MS technique. Surface soils (20 samples), all soil profiles and all waters have been also analyzed for Pb isotope compositions by thermal ionization (TIMS). The geochemical data were assessed using statistic methods and cartographically elaborated in order to have a clear picture of the level of disturbance of the area. Pb isotopic data were studied to discriminate between anthropogenic and geologic sources. Our results show that As (5.6-25.6. mg/kg), Cu (9-677. mg/kg), Pb (22-193. mg/kg), Tl (0.53-3.62. mg/kg), V (26-142. mg/kg) and Zn (34-215. mg//kg) contents in analyzed soils, exceed the intervention limits fixed by the Italian Environmental Law for residential areas in some of the sampled sites, while intervention limit for industrial areas is exceeded only for Cu concentrations. Lead isotopic data, show that there is a high similarity between the ratios measured in the leached soil samples and those deriving from anthropic activities. This similarity with anthropogenic Pb is also evident in the ratios measured in both groundwater and stream water samples. ?? 2010 Elsevier B.V.

  16. Effective operators in a single-j orbital

    NASA Astrophysics Data System (ADS)

    Derbali, E.; Van Isacker, P.; Tellili, B.; Souga, C.

    2018-03-01

    We present an analysis of effective operators in the shell model with up to three-body interactions in the Hamiltonian and two-body terms in electromagnetic transition operators when the nucleons are either neutrons or protons occupying a single-j orbital. We first show that evidence for an effective three-body interaction exists in the N = 50 isotones and in the lead isotopes but that the separate components of such interaction are difficult to obtain empirically. We then determine higher-order terms on more microscopic grounds. The starting point is a realistic two-body interaction in a large shell-model space together with a standard one-body transition operator, which, after restriction to the dominant orbital and with use of stationary perturbation theory, are transformed into effective versions with higher-order terms. An application is presented for the lead isotopes with neutrons in the 1{g}9/2 orbital.

  17. Historical record of lead accumulation and source in the tidal flat of Haizhou Bay, Yellow Sea: Insights from lead isotopes.

    PubMed

    Zhang, Rui; Guan, Minglei; Shu, Yujie; Shen, Liya; Chen, Xixi; Zhang, Fan; Li, Tiegang

    2016-05-15

    In order to investigate the historical records of lead contamination and source in coastal region of Haizhou Bay, Yellow Sea, a sediment core was collected from tidal flat, dated by (210)Pb and (137)Cs. Lead and its stable isotopic ratios were determined. The profiles of enrichment factor (EF) and Pb isotope ratios showed increasing trend upward throughout the core, correlating closely with the experience of a rapid economic and industrial development of the catchment. According to Pb isotopic ratios, coal combustion emission mainly contributed to the Pb burden in sediments. Based on end-member model, coal combustion emission dominated anthropogenic Pb sources in recent decades contributing from 48% to 67% in sediment. And the contribution of leaded gasoline was lower than 20%. A stable increase of coal combustion source was found in sediment core, while the contribution of leaded gasoline had declined recently, with the phase-out of leaded gasoline in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. INTERLABORATORY COMPARISON OF MASS SPECTROMETRIC METHODS FOR LEAD ISOTOPES AND TRACE ELEMENTS IN NIST SRM 1400 BONE ASH

    EPA Science Inventory

    The results of an interlaboratory comparison are reported for he lead isotope composition and for trace element concentrations in NIST SRM 1400 Bone Ash obtained using quadrupole and magnetic-sector inductively coupled plasma mass spectrometry (ICP-MS) and (for the Pb isotopes on...

  19. Containing arsenic-enriched groundwater tracing lead isotopic compositions of common arsenical pesticides in a coastal Maine watershed

    USGS Publications Warehouse

    Ayuso, Robert A.; Foley, Nora K.; Robinson, Glipin R.; Colvin, A.S.; Lipfert, G.; Reeve, A.S.

    2006-01-01

    Arsenical pesticides and herbicides were extensively used on apple, blueberry, and potato crops in New England during the first half of the twentieth century. Lead arsenate was the most heavily used arsenical pesticide until it was officially banned. Lead arsenate, calcium arsenate, and sodium arsenate have similar Pb isotope compositions: 208Pb207Pb = 2.3839-2.4722, and 206Pb207Pb = 1.1035-1.2010. Other arsenical pesticides such as copper acetoarsenite (Paris green), methyl arsonic acid and methane arsonic acid, as well as arsanilic acid are widely variable in isotope composition. Although a complete understanding of the effects of historical use of arsenical pesticides is not available, initial studies indicate that arsenic and lead concentrations in stream sediments in New England are higher in agricultural areas that intensely used arsenical pesticides than in other areas. The Pb isotope compositions of pesticides partially overlap values of stream sediments from areas with the most extensive agricultural use. The lingering effects of arsenical pesticide use were tested in a detailed geochemical and isotopic study of soil profiles from a watershed containing arsenic-enriched ground water in coastal Maine. Acid-leach compositions of the soils represent lead adsorbed to mineral surfaces or held in soluble minerals (Fe- and Mn-hydroxides, carbonate, and some micaceous minerals), whereas residue compositions likely reflect bedrock compositions. The soil profiles contain labile Pb (acid-leach) showing a moderate range in 206Pb 207Pb (1.1870-1.2069), and 208Pb207Pb (2.4519-2.4876). Isotope values vary as a function of depth: the lowest Pb isotope ratios (e.g.,208Pb206Pb) representing labile lead are in the uppermost soil horizons. Lead contents decrease with depth in the soil profiles. Arsenic contents show no clear trend with depth. A multi-component mixing scheme that included lead from the local parent rock (Penobscot Formation), lead derived from combustion of fossil fuels, and possibly lead from other anthropogenic sources (e.g., pesticides), could account for Pb isotope variations in the soil profiles. In agricultural regions, our preliminary data show that the extensive use of arsenical pesticides and herbicides can be a significant anthropogenic source of arsenic and lead to stream sediments and soils.

  20. Lead isotopes in soils and groundwaters as tracers of the impact of human activities on the surface environment: The Domizio-Flegreo Littoral (Italy) case study

    USGS Publications Warehouse

    Grezzi, G.; Ayuso, R.A.; de Vivo, B.; Lima, A.; Albanese, S.

    2011-01-01

    The isotopic signature of geogenic and anthropogenic materials, in combination with concentration data for pollutants, can help trace the origin and the extent of contamination in the environment. This approach is particularly effective if naturally occurring and anthropogenically introduced metals have different isotopic ratios. Lead isotope analysis on soils from 7 profiles (1. m depth) and on groundwaters from 8 wells have been used to determine the impact of human activities on the surface environment of Domizio-Flegreo Littoral. Result obtained show that in sub-rural areas the isotopic composition of the samples collected along the soil profiles of Domizio-Flegreo Littoral is likely mostly controlled by the nature of the parent geologic material (natural) while in more urbanized areas (Giugliano) Pb isotopic composition in superficial soils is mostly influenced by anthropic sources such as motor vehicles. Lead isotopic ratios in groundwaters also show that the use of pesticides and, probably, the influence of aerosols and the presence of illegal waste disposal can influence water quality. ?? 2010 Elsevier B.V.

  1. Getting the Lead Out of Bermuda; The Legacy of a Forty Year Record in the North Atlantic Using a Transient Experiment in the Atmosphere and Water

    NASA Astrophysics Data System (ADS)

    Church, T. M.; Alleman, L. Y.; Veron, A. J. J.; Boyle, E. A.; Zurbrick, C.; Patterson, C. C.; Flegal, A. R., Jr.

    2015-12-01

    Some forty years ago, Schaule and Patterson established the first accurate profile of lead in waters off Bermuda. In evidence was a massive environmental insult from lead emissions being carried seaward by the atmosphere over the Sargasso Sea. Further documentation was possible using contiguous time series in the atmosphere on Bermuda, surface sea water nearby and recorded in local corals. Lead had then an overwhelming source from the combustion of gasoline, primarily in the USA and secondarily in Europe. These were carried to Bermuda on seasonally alternating temperate and trade winds from the west and east, respectively. The anthropogenic sources were well distinguished based on the unique radiogenic nature of stable lead isotopes in the gasoline being used by these countries. Subsequently, decreasing use in the west (USA) followed by that in the east (Europe) was isotopically evident. As such, the two signatures were subjected to transient mixing in the atmosphere and subsequently with depth in ocean. A transient experiment uses data during 1996-1998, a period of transition in leaded gasoline use in the USA and Europe. Here are complimentary records of lead concentration and stable isotopes in atmospheric deposition and surface waters. The results allow an isotopic mass balance, indicating much of the lead in Bermuda surface water at that time may not have been deposited locally. As such, it may be presumed to reflect easterly advection of some lead at the surface under limited scavenging via the prevailing subtropical gyre circulation. These annual circulation periods are consistent with both physical data and another lead isotopic mass balance in the east. Going forward, Bermuda time series of trace elements and isotopes such as lead could continue to record climatological (e.g. NAO) transients in atmospheric scavenging, potential impact on surface ecosystems, and changes in mixing into deeper waters of the Sargasso Sea and points further afield.

  2. Separation of Bismuth from Lead with (Ethylenediamine)tetraacetic Acid. Application to Radiochemistry; SEPARACAO DE BISMUTO DO CHUMBO COM ACIDO ETILENODIAMINOTETRAACETICO APLICACAO PARA RADIOQUIMICA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lima, F.W.; Abrao, A.

    1958-09-01

    Bismuth can be separated from lead radiochemically by using (ethylenediamine)tetraacetic acid. The separation is successful when both elements are in trace concentration when one is in trace concentrations and other in macroconcentrations, and when both are in macroconcentrations. A single separation gives more than 90% of both elements. The process involves simple manipulations and can be done in less than fifteen minutes, which is of importance in the separation of short-lived isotopes. (tr-auth)

  3. Use of Lead Isotopes to Identify Sources of Metal and Metalloid Contaminants in Atmospheric Aerosol from Mining Operations

    PubMed Central

    Félix, Omar I.; Csavina, Janae; Field, Jason; Rine, Kyle P.; Sáez, A. Eduardo; Betterton, Eric A.

    2014-01-01

    Mining operations are a potential source of metal and metalloid contamination by atmospheric particulate generated from smelting activities, as well as from erosion of mine tailings. In this work, we show how lead isotopes can be used for source apportionment of metal and metalloid contaminants from the site of an active copper mine. Analysis of atmospheric aerosol shows two distinct isotopic signatures: one prevalent in fine particles (< 1 μm aerodynamic diameter) while the other corresponds to coarse particles as well as particles in all size ranges from a nearby urban environment. The lead isotopic ratios found in the fine particles are equal to those of the mine that provides the ore to the smelter. Topsoil samples at the mining site show concentrations of Pb and As decreasing with distance from the smelter. Isotopic ratios for the sample closest to the smelter (650 m) and from topsoil at all sample locations, extending to more than 1 km from the smelter, were similar to those found in fine particles in atmospheric dust. The results validate the use of lead isotope signatures for source apportionment of metal and metalloid contaminants transported by atmospheric particulate. PMID:25496740

  4. Genetic relations of oceanic basalts as indicated by lead isotopes

    USGS Publications Warehouse

    Tatsumoto, M.

    1966-01-01

    The isotopic compositions of lead and the concentrations of lead, uranium, and thorium in samples of oceanic tholeiite and alkali suites are determined, and the genetic relations of the oceanic basalts are discussed. Lead of the oceanic tholeiites has a varying lead-206 : lead-204 ratio between 17.8 and 18.8, while leads of the alkali basalt suites from Easter Island and Guadalupe Island are very radiogenic with lead-206 : lead-204 ratios between 19.3 and 20.4. It is concluded that (i) the isotopic composition of lead in oceanic tholeiite suggests that the upper mantle source region of the tholeiite was differentiated from an original mantle material more than 1 billion years ago and that the upper mantle is not homogeneous at the present time, (ii) less than 20 million years was required for the crystal differentiation within the alkali suite from Easter Island, (iii) no crustal contamination was involved in the course of differentiation of rocks from Easter Island; however, some crustal contamination may have affected Guadalupe Island rocks, and (iv) alkali basalt may be produced from the tholeiite in the oceanic region by crystal differentiation. Alternatively the difference in the isotopic composition of lead in oceanic basalts may be produced by partial melting at different depths of a differentiated upper mantle.

  5. The Use of Lead Isotope and Rare Earth Element Geochemistry for Forensic Geographic Provenancing

    NASA Astrophysics Data System (ADS)

    Carey, A.; Darrah, T.; Harrold, Z.; Prutsman-Pfeiffer, J.; Poreda, R.

    2008-12-01

    Lead isotope and rare earth element composition of modern human bones are analyzed to explore their utility for geographical provenancing. DNA analysis is the standard for identification of individuals. DNA analysis requires a DNA match for comparison. Thus, DNA analysis is of limited use in cases involving unknown remains. Trace elements are incorporated into bones and teeth during biomineralization, recording the characteristics of an individual's geochemical environment. Teeth form during adolescence, recording the geochemical environment of an individual's youth. Bones remodel throughout an individual's lifetime. Bones consist of two types of bone tissue (cortical and trabecular) that remodel at different rates, recording the geochemical environment at the time of biomineralization. Cortical bone tissue, forming the outer surface of bones, is dense, hard tissue that remodels in 25-30 yrs. Conversely, trabecular bone tissue, the inner cavity of bones, is low density, porous and remodels in 2-5 years. Thus, analyzing teeth and both bone tissues allows for the development of a geographical time line capable of tracking immigration patterns through time instead of only an individual's youth. Geochemical isotopic techniques (Sr, O, C, N) have been used for geographical provenancing in physical anthropology. The isotopic values of Sr, C, O, N are predominantly a function of soil compositions in areas where food is grown or water is consumed. Application of these provenancing techniques has become difficult as an individual's diet may reflect the isotopic composition of foods obtained at the local grocer as opposed to local soil compositions. Thus, we explore the use of REEs and Pb isotopes for geographical provenancing. Pb and REEs are likely more reliable indicators of modern geographical location as their composition are high in bio-available sources such as local soils, atmospheric aerosols, and dust as opposed to Sr, C, O, N that are controlled by food and drinking water. Lead isotope and REE analysis of trabecular and cortical bone tissue of 60 femoral heads resected during hip replacement surgery at the Univ. of Roch. Medical Center were analyzed by a combination of TIMS and ICP-MS. Results show that Pb compositions are consistent with local soil with variable inputs from known environmental sources. Several samples demonstrate inputs from known environmental sources (e.g. Mississippi Valley ore) that was used in paint, solder, and US gasoline. Additionally, results suggest bioincorporation of Pb with isotopic composition consistent with that observed for Canadian gasoline aerosols. Immigrants included in the study show Pb compositions distinctly different than local residents.

  6. Evaluation of the combined measurement uncertainty in isotope dilution by MC-ICP-MS.

    PubMed

    Fortunato, G; Wunderli, S

    2003-09-01

    The combination of metrological weighing, the measurement of isotope amount ratios by a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS) and the use of high-purity reference materials are the cornerstones to achieve improved results for the amount content of lead in wine by the reversed isotope dilution technique. Isotope dilution mass spectrometry (IDMS) and reversed IDMS have the potential to be a so-called primary method, with which close comparability and well-stated combined measurement uncertainties can be obtained. This work describes the detailed uncertainty budget determination using the ISO-GUM approach. The traces of lead in wine were separated from the matrix by ion exchange chromatography after HNO(3)/H(2)O(2) microwave digestion. The thallium isotope amount ratio ( n((205)Tl)/ n((203)Tl)) was used to correct for mass discrimination using an exponential model approach. The corrected lead isotope amount ratio n((206)Pb)/ n((208)Pb) for the isotopic standard SRM 981 measured in our laboratory was compared with ratio values considered to be the least uncertain. The result has been compared in a so-called pilot study "lead in wine" organised by the CCQM (Comité Consultatif pour la Quantité de Matière, BIPM, Paris; the highest measurement authority for analytical chemical measurements). The result for the lead amount content k(Pb) and the corresponding expanded uncertainty U given by our laboratory was:k(Pb)=1.329 x 10-10mol g-1 (amount content of lead in wine)U[k(Pb)]=1.0 x 10-12mol g-1 (expanded uncertainty U=kxuc, k=2)The uncertainty of the main influence parameter of the combined measurement uncertainty was determined to be the isotope amount ratio R(206,B) of the blend between the enriched spike and the sample.

  7. Stable isotope-resolved metabolomics and applications for drug development

    PubMed Central

    Fan, Teresa W-M.; Lorkiewicz, Pawel; Sellers, Katherine; Moseley, Hunter N.B.; Higashi, Richard M.; Lane, Andrew N.

    2012-01-01

    Advances in analytical methodologies, principally nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS), during the last decade have made large-scale analysis of the human metabolome a reality. This is leading to the reawakening of the importance of metabolism in human diseases, particularly cancer. The metabolome is the functional readout of the genome, functional genome, and proteome; it is also an integral partner in molecular regulations for homeostasis. The interrogation of the metabolome, or metabolomics, is now being applied to numerous diseases, largely by metabolite profiling for biomarker discovery, but also in pharmacology and therapeutics. Recent advances in stable isotope tracer-based metabolomic approaches enable unambiguous tracking of individual atoms through compartmentalized metabolic networks directly in human subjects, which promises to decipher the complexity of the human metabolome at an unprecedented pace. This knowledge will revolutionize our understanding of complex human diseases, clinical diagnostics, as well as individualized therapeutics and drug response. In this review, we focus on the use of stable isotope tracers with metabolomics technologies for understanding metabolic network dynamics in both model systems and in clinical applications. Atom-resolved isotope tracing via the two major analytical platforms, NMR and MS, has the power to determine novel metabolic reprogramming in diseases, discover new drug targets, and facilitates ADME studies. We also illustrate new metabolic tracer-based imaging technologies, which enable direct visualization of metabolic processes in vivo. We further outline current practices and future requirements for biochemoinformatics development, which is an integral part of translating stable isotope-resolved metabolomics into clinical reality. PMID:22212615

  8. Lead isotopes in the western North Atlantic: Transient tracers of pollutant lead inputs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veron, A.J.; Church, T.M.; Flegal, A.R.

    1998-08-01

    In the early 1980s, Patterson and colleagues demonstrated that most lead in oceanic surface waters had an anthropogenic origin. Their discovery occurred during the phasing out of leaded gasoline in North America initiated in the previous decade. The corresponding decrease in anthropogenic lead emissions, verified by Pb/{sup 210}Pb ratios, accounted for the systematic decline in lead concentrations in surface waters of the western Sargasso Sea. Subsequent changes in anthropogenic lead inputs to the western Sargasso Sea surface waters have been documented by measurements of lead concentrations, isotopic compositions ({sup 206}Pb/{sup 207}Pb, {sup 208}Pb/{sup 206}Pb), and Pb/{sup 210}Pb ratios in precipitationmore » and seawater for the period of 1981 to 1994. These data indicate the easterly trade winds are now the primary source of atmospheric lead in Bermuda, and they confirm that the decline of lead concentrations in the North Atlantic is associated with the phasing out of leaded gasoline in North America and western Europe over the past decade. Moreover, temporal variations in the relative contribution of industrial lead inputs from the two sides of the North Atlantic over that period can be quantified based on differences in their isotopic composition. The transient character of those isotopic signatures also allows calculations of pollutant lead penetration rates into the mixed layer and upper thermocline of the western Sargasso Sea.« less

  9. Tables for determining lead, uranium, and thorium isotope ages

    NASA Technical Reports Server (NTRS)

    Schonfeld, E.

    1974-01-01

    Tables for determining lead, uranium, and thorium isotope ages are presented in the form of computer printouts. Decay constants, analytical expressions for the functions evaluated, and the precision of the calculations are briefly discussed.

  10. Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis

    NASA Astrophysics Data System (ADS)

    Harilal, S. S.; Brumfield, B. E.; LaHaye, N. L.; Hartig, K. C.; Phillips, M. C.

    2018-06-01

    Rapid, in-field, and non-contact isotopic analysis of solid materials is extremely important to a large number of applications, such as nuclear nonproliferation monitoring and forensics, geochemistry, archaeology, and biochemistry. Presently, isotopic measurements for these and many other fields are performed in laboratory settings. Rapid, in-field, and non-contact isotopic analysis of solid material is possible with optical spectroscopy tools when combined with laser ablation. Laser ablation generates a transient vapor of any solid material when a powerful laser interacts with a sample of interest. Analysis of atoms, ions, and molecules in a laser-produced plasma using optical spectroscopy tools can provide isotopic information with the advantages of real-time analysis, standoff capability, and no sample preparation requirement. Both emission and absorption spectroscopy methods can be used for isotopic analysis of solid materials. However, applying optical spectroscopy to the measurement of isotope ratios from solid materials presents numerous challenges. Isotope shifts arise primarily due to variation in nuclear charge distribution caused by different numbers of neutrons, but the small proportional nuclear mass differences between nuclei of various isotopes lead to correspondingly small differences in optical transition wavelengths. Along with this, various line broadening mechanisms in laser-produced plasmas and instrumental broadening generated by the detection system are technical challenges frequently encountered with emission-based optical diagnostics. These challenges can be overcome by measuring the isotope shifts associated with the vibronic emission bands from molecules or by using the techniques of laser-based absorption/fluorescence spectroscopy to marginalize the effect of instrumental broadening. Absorption and fluorescence spectroscopy probe the ground state atoms existing in the plasma when it is cooler, which inherently provides narrower lineshapes, as opposed to emission spectroscopy which requires higher plasma temperatures to be able to detect thermally excited emission. Improvements in laser and detection systems and spectroscopic techniques have allowed for isotopic measurements to be carried out at standoff distances under ambient atmospheric conditions, which have expanded the applicability of optical spectroscopy-based isotopic measurements to a variety of scientific fields. These technological advances offer an in-situ measurement capability that was previously not available. This review will focus on isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Finally, concluding remarks will be made on the existing knowledge/technological gaps identified from the current literature and suggestions for the future work.

  11. Re-Os isotopic evidence for an enriched-mantle source for the Noril'sk-type, ore-bearing intrusions, Siberia

    USGS Publications Warehouse

    Walker, R.J.; Morgan, J.W.; Horan, M.F.; Czamanske, G.K.; Krogstad, E.J.; Fedorenko, V.A.; Kunilov, V.E.

    1994-01-01

    Magmatic Cu-Ni sulfide ores and spatially associated ultramafic and mafic rocks from the Noril'sk I, Talnakh, and Kharaelakh intrusions are examined for Re-Os isotopic systematics. Neodymium and lead isotopic data also are reported for the ultramafic and mafic rocks. The Re-Os data for most samples indicate closed-system behavior since the ca. 250 Ma igneous crystallization age of the intrusions. There are small but significant differences in the initial osmium isotopic compositions of samples from the three intrusions. Ores from the Noril'sk I intrusion have ??Os values that vary from +0.4 to +8.8, but average +5.8. Ores from the Talnakh intrusion have ??Os values that range from +6.7 to +8.2, averaging +7.7. Ores from the Kharaelakh intrusion have ??Os values that range from +7.8 to +12.9, with an average value of +10.4. The osmium isotopic compositions of the ore samples from the Main Kharaelakh orebody exhibit minimal overlap with those for the Noril'sk I and Talnakh intrusions, indicating that these Kharaelakh ores were derived from a more radiogenic source of osmium than the other ores. Combined osmium and lead data for major orebodies in the three intrusions plot in three distinct fields, indicating derivation of osmium and lead from at least three isotopically distinct sources. Some of the variation in lead isotopic compositions may be the result of minor lower-crustal contamination. However, in contrast to most other isotopic and trace element data, Os-Pb variations are generally inconsistent with significant crustal contamination or interaction with the subcontinental lithosphere. Thus, the osmium and lead isotopic compositions of these intrusions probably reflect quite closely the compositions of their mantle source, and suggest that these two isotope systems were insensitive to lithospheric interaction. Ultramafic and mafic rocks have osmium and lead isotopic compositions that range only slightly beyond the compositions of the ores. These rocks also have relatively uniform ??{lunate}Nd values that range only from -0.8 to + 1.1. This limited variation in neodymium isotopic composition may reflect the characteristics of the mantle sources of the rocks, or it may indicate that somehow similar proportions of crust contaminated the parental melts. The osmium, lead, and neodymium isotopic data for these rocks most closely resemble the mantle sources of certain ocean island basalts (OIB), such as some Hawaiian basalts. Hence, these data are consistent with derivation of primary melts from a mantle source similar to that of some types of hotspot activity. The long-term Re/Os enrichment of this and similar mantle sources, relative to chondritic upper mantle, may reflect 1. (1) incorporation of recycled oceanic crust into the source more than 1 Ga ago, 2. (2) derivation from a mantle plume that originated at the outer core-lower mantle interface, or 3. (3) persistence of primordial stratification of rhenium and osmium in the mantle. ?? 1994.

  12. The lead isotopic composition of dust in the vicinity of a uranium mine in northern Australia and its use for radiation dose assessment.

    PubMed

    Bollhöfer, Andreas; Honeybun, Russell; Rosman, Kevin; Martin, Paul

    2006-08-01

    Airborne lead isotope ratios were measured via Thermal Ionisation Mass Spectrometry in samples from the vicinity of Ranger uranium mine in northern Australia. Dust deposited on leaves of Acacia spp. was washed off and analysed to gain a geographical snapshot of lead isotope ratios in the region. Aerosols were also collected on Teflon filters that were changed monthly over one seasonal cycle using a low volume diaphragm pump. Lead isotope ratios in dust deposited on leaves overestimate the relative amount of mine origin airborne lead, most likely due to a difference of the size distribution of particles collected on leaves and true aerosol size distribution. Seasonal measurements show that the annual average mine contribution to airborne lead concentrations in Jabiru East, approximately 2.5 km northwest of the mine, amounted to 13%, with distinct differences between the wet and dry season. The relative contribution of mine origin lead deposited on leaves in the dry season drops to less than 1% at a distance of 12.5 km from the mine along the major wind direction. An approach is outlined, in which lead isotope ratios are used to estimate the effective radiation dose received from the inhalation of mine origin radioactivity trapped in or on dust. Using the data from our study, this dose has been calculated to be approximately 2 microSv year(-1) for people living and working in the area.

  13. Lead isotopes reveal different sources of lead in balsamic and other vinegars.

    PubMed

    Ndung'u, Kuria; Hibdon, Sharon; Véron, Alain; Flegal, A Russell

    2011-06-15

    Fifty-eight brands of balsamic vinegars were analyzed for lead concentrations and isotopic compositions ((204)Pb, (206)Pb, (207)Pb, and (208)Pb) to test the findings of a previous study indicating relatively high levels of lead contamination in some of those vinegars--more than two thirds (70%) of them exceeded California's State Maximum Level (34 μg/L) based on consumption rates ≥0.5 μg Pb per day. The lead isotopic fingerprints of all those vinegars with high lead concentrations were then found to be primarily anthropogenic. This isotopic analysis unquestionably reveals multiple contamination sources including atmospheric pollutant Pb and an unidentified contamination source, likely occurring after grape harvest. Organically grown grape vinegars display the same Pb content and isotopic signatures as other vinegars. This implies that pesticides might not be a significant source of pollutant Pb in vinegars. A significant post-harvest contamination would be inherited from chemicals added during production and/or material used during transport, processing or storage of these vinegars. This is consistent with the highest Pb levels being found in aged vinegars (112±112 μg/L) in contrast to other vinegars (41.6±28.9 μg/L) suggesting contamination during storage. It is, therefore, projected that lead levels in most vinegars, especially aged balsamic and wine vinegars, will decrease with improvements in their manufacture and storage processes consequential to recent concerns of elevated levels of lead in some vinegars. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Lead-isotopic evidence for distinct source of granite and for distinct basement in the northern Appalachians, Maine.

    USGS Publications Warehouse

    Ayuso, R.A.

    1986-01-01

    Lead-isotopic compositions of feldspars in high-level Devonian granitic plutons across the northern Appalachians were measured. The presence of three fundamentally different sources of granites was indicated by three distinct lead-isotope groups. Plutons in the coastal lithotectonic block are the most radiogenic (206Pb/204Pb) 18.25-19.25; 207Pb/204Pb 15.59-15.67; 208Pb/204Pb 38.00-38.60); plutons in northern Maine are the least radiogenic (206Pb/204Pb 18.00-18.50; 207Pb/204Pb 15.51-15.55; 208Pb/204Pb 37.80-38.38). Intermediate lead-isotope values characterize the plutons in central Maine. All plutons show relatively radiogenic lead values for their ages and suggest the imprint of continental crustal sources, particularly in the coastal block. These plutons were formed in different crustal fragments in a continental environment, that were juxtaposed after emplacement of the granites.-L.C.H.

  15. Isotopic identification of natural vs. anthropogenic lead sources in marine sediments from the inner Ría de Vigo (NW Spain).

    PubMed

    Álvarez-Iglesias, P; Rubio, B; Millos, J

    2012-10-15

    San Simón Bay, the inner part of the Ría de Vigo (NW Spain), an area previously identified as highly polluted by Pb, was selected for the application of Pb stable isotope ratios as a fingerprinting tool in subtidal and intertidal sediment cores. Lead isotopic ratios were determined by inductively coupled plasma mass spectrometry on extracts from bulk samples after total acid digestion. Depth-wise profiles of (206)Pb/(207)Pb, (206)Pb/(204)Pb, (207)Pb/(204)Pb, (208)Pb/(204)Pb and (208)Pb/(207)Pb ratios showed, in general, an upward decrease for both intertidal and subtidal sediments as a consequence of the anthropogenic activities over the last century, or centuries. Waste channel samples from a nearby ceramic factory showed characteristic Pb stable isotope ratios different from those typical of coal and petrol. Natural isotope ratios from non-polluted samples were established for the study area, differentiating sediments from granitic or schist-gneiss sources. A binary mixing model employed on the polluted samples allowed estimating the anthropogenic inputs to the bay. These inputs represented between 25 and 98% of Pb inputs in intertidal samples, and 9-84% in subtidal samples, their contributions varying with time. Anthropogenic sources were apportioned according to a three-source model. Coal combustion-related emissions were the main anthropogenic source Pb to the bay (60-70%) before the establishment of the ceramic factory in the area (in the 1970s) which has since constituted the main source (95-100%), followed by petrol-related emissions. The Pb inputs history for the intertidal area was determined for the 20th century, and, for the subtidal area, the 19th and 20th centuries. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Copper-catalyzed oxidative desulfurization-oxygenation of thiocarbonyl compounds using molecular oxygen: an efficient method for the preparation of oxygen isotopically labeled carbonyl compounds.

    PubMed

    Shibahara, Fumitoshi; Suenami, Aiko; Yoshida, Atsunori; Murai, Toshiaki

    2007-06-21

    A novel copper-catalyzed oxidative desulfurization reaction of thiocarbonyl compounds, using molecular oxygen as an oxidant and leading to formation of carbonyl compounds, has been developed, and the utility of the process is demonstrated by its application to the preparation of a carbonyl-18O labeled sialic acid derivative.

  17. Characteristics of lead isotope ratios and elemental concentrations in PM 10 fraction of airborne particulate matter in Shanghai after the phase-out of leaded gasoline

    NASA Astrophysics Data System (ADS)

    Zheng, Jian; Tan, Mingguang; Shibata, Yasuyuki; Tanaka, Atsushi; Li, Yan; Zhang, Guilin; Zhang, Yuanmao; Shan, Zuci

    The stable lead (Pb) isotope ratios and the concentrations of 23 elements, including heavy metals and toxic elements, were measured in the PM 10 airborne particle samples collected at seven monitoring sites in Shanghai, China, to evaluate the current elemental compositions and local airborne Pb isotope ratio characteristics. Some source-related samples, such as cement, coal and oil combustion dust, metallurgic dust, vehicle exhaust particles derived from leaded gasoline and unleaded gasoline, and polluted soils were analyzed for their Pb content and isotope ratio and compared to those observed in PM 10 samples. Airborne Pb concentration ranged from 167 to 854 ng/m 3 in the seven monitored sites with an average of 515 ng/m 3 in Shanghai, indicating that a high concentration of Pb remains in the air after the phasing out of leaded gasoline. Lead isotopic compositions in airborne particles ( 207Pb/ 206Pb, 0.8608±0.0018; 208Pb/ 206Pb, 2.105±0.005) are clearly distinct from the vehicle exhaust particles ( 207Pb/ 206Pb, 0.8854±0.0075; 208Pb/ 206Pb, 2.145±0.006), suggesting that the automotive lead is not currently the major component of Pb in the air. By using a binary mixing equation, a source apportionment based on 207Pb/ 206Pb ratios, indicates that the contribution from automotive emission to the airborne Pb is around 20%. The Pb isotope ratios obtained in the source-related samples confirmed that the major emission sources are metallurgic dust, coal combustion, and cement.

  18. Isotope-ratio measurements of lead in NIST standard reference materials by multiple-collector inductively coupled plasma mass spectrometry.

    PubMed

    Platzner, I; Ehrlich, S; Halicz, L

    2001-07-01

    The capability of a second-generation Nu Instruments multiple collector inductively coupled plasma mass spectrometer (MC-ICP-MS) has been evaluated for precise and accurate isotope-ratio determinations of lead. Essentially the mass spectrometer is a double-focusing instrument of Nier-Johnson analyzer geometry equipped with a newly designed variable-dispersion ion optical device, enabling the measured ion beams to be focused into a fixed array of Faraday collectors and an ion-counting assembly. NIST SRM Pb 981, 982, and 983 isotopic standards were used. Addition of thallium to the lead standards and subsequent simultaneous measurement of the thallium and lead isotopes enabled correction for mass discrimination, by use of the exponential correction law and 205Tl/203Tl = 2.3875. Six measurements of SRM Pb-982 furnished the results 206Pb/204Pb = 36.7326(68), 207Pb/204Pb = 17.1543(30), 208Pb/204Pb = 36.7249(69), 207Pb/206Pb = 0.46700(1), and 208Pb/206Pb = 0.99979(2); the NIST-certified values were 36.738(37), 17.159(25), 36.744(50), 0.46707(20), and 1.00016(36), respectively. Direct isotope lead analysis in silicates can be performed without any chemical separation. NIST SRM 610 glass was dissolved and introduced into the MC-ICP-MS by means of a micro concentric nebulizer. The ratios observed were in excellent agreement with previously reported data obtained by TIMS and laser ablation MC-ICP-MS, despite the high Ca/Pb concentration ratio (200/1) and the presence of many other elements at levels comparable with that of lead. Approximately 0.2 microg lead are sufficient for isotope analysis with ratio uncertainties between 240 and 530 ppm.

  19. Lead concentrations and isotope ratios in street dust determined by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry.

    PubMed

    Nageotte, S M; Day, J P

    1998-01-01

    A major source of environmental lead, particularly in urban areas, has been from the combustion of leaded petrol. Street dust has previously been used to assess urban lead contamination, and the dust itself can also be a potential source of lead ingestion, particularly to children. The progressive reduction of lead in petrol, in recent years, would be expected to have been reflected in a reduction of lead in urban dust. We have tested this hypothesis by repeating an earlier survey of Manchester street dust and carrying out a comparable survey in Paris. Samples were collected from streets and parks, lead was extracted by digestion with concentrated nitric acid and determined by electrothermal atomic absorption spectrometry. Lead isotope ratios were measured by inductively coupled plasma mass spectrometry. Results for Manchester show that lead concentrations have fallen by about 40% (street dust averages, 941 micrograms g-1 (ppm) in 1975 down to 569 ppm in 1997). In Paris, the lead levels in street dust are much higher and significant differences were observed between types of street (not seen in Manchester). Additionally, lead levels in parks were much lower than in Manchester. Samples collected under the Eiffel Tower had very high concentrations and lead isotope ratios showed that this was unlikely to be fallout from motor vehicles but could be due to the paint used on the tower. Isotope ratios measurements also revealed that lead additives used in France and the UK come from different sources.

  20. Microscopic model for the isotope effect in the high-Tc oxides

    NASA Astrophysics Data System (ADS)

    Kresin, V. Z.; Wolf, S. A.

    1994-02-01

    An unconventional microscopic mechanism relating Tc and the isotope substitution for the doped superconductors such as the high-Tc oxides is proposed. Strong nonadiabaticity, when it is impossible, strictly speaking, to separate fully the nuclear and electronic degrees of freedom, leads to a peculiar dependence of the carrier concentration n on the ionic mass M. This case corresponds, for example, to the isotopic substitution of the axial oxygen in YBa2Cu3O7-x. Because of the dependence of Tc on n, this leads to the dependence of Tc on M, that is to the isotope effect. The minimum value of the isotope coefficient corresponds to Tc=Tmaxc.

  1. Lead isotopic compositions of soil and near-surface till profiles from a watershed containing arsenic-enriched groundwater in coastal Maine

    USGS Publications Warehouse

    Ayuso, Robert; Foley, Nora; Wandless, Gregory; Dillingham, Jeremy; Colvin, Anna

    2005-01-01

    Lead isotope compositions of soils and near-surface tills from an area of coastal Maine known to have groundwater with anomalously high arsenic contents were measured in order to determine the source of the lead and, by inference, possible sources of arsenic. Five soil and till sites were selected for detailed chemical and isotopic analysis. To construct profiles of the soil and till horizons, five samples were collected at 10-cm intervals from the surface to the base of each horizon. Total lead and arsenic concentrations and lead isotopic compositions were measured for 48 leaches and bulk residues. The soils and tills are underlain by sulfidic schists of the Penobscot Formation. Several generations of minerals containing arsenic and lead exist in the regional bedrock, including rock-forming silicates (feldspar and micas), sulfide minerals formed during diagenesis (for example, arsenic-rich pyrite), and sulfide and oxide minerals that formed as a result of Silurian metamorphic and igneous events (for example, arsenopyrite, galena, iron-oxides, and arsenic-sulfides). A young group of secondary minerals (for example, iron-hydroxides, arsenic-hydroxides, lead-sulfate, and arsenic-jarosite) formed from recent weathering and pedogenic processes.

  2. Combined oxygen-isotope and U-Pb zoning studies of titanite: New criteria for age preservation

    DOE PAGES

    Bonamici, Chloe E.; Fanning, C. Mark; Kozdon, Reinhard; ...

    2015-02-11

    Here, titanite is an important U-Pb chronometer for dating geologic events, but its high-temperature applicability depends upon its retention of radiogenic lead (Pb). Experimental data predict similar rates of diffusion for lead (Pb) and oxygen (O) in titanite at granulite-facies metamorphic conditions (T = 650-800°C). This study therefore investigates the utility of O-isotope zoning as an indicator for U-Pb zoning in natural titanite samples from the Carthage-Colton Mylonite Zone of the Adirondack Mountains, New York. Based on previous field, textural, and microanalytical work, there are four generations (types) of titanite in the study area, at least two of which preservemore » diffusion-related δ 18O zoning. U-Th-Pb was analyzed by SIMS along traverses across three grains of type-2 titanite, which show well-developed diffusional δ 18O zoning, and one representative grain from each of the other titanite generations.« less

  3. Introduction to chemistry and applications in nature of mass independent isotope effects special feature.

    PubMed

    Thiemens, Mark H

    2013-10-29

    Stable isotope ratio variations are regulated by physical and chemical laws. These rules depend on a relation with mass differences between isotopes. New classes of isotope variation effects that deviate from mass dependent laws, termed mass independent isotope effects, were discovered in 1983 and have a wide range of applications in basic chemistry and nature. In this special edition, new applications of these effects to physical chemistry, solar system origin models, terrestrial atmospheric and biogenic evolution, polar paleo climatology, snowball earth geology, and present day atmospheric sciences are presented.

  4. Isotopic Zonation Within Sulfate Evaporite Mineral Crystals Reveal Quantitative Paleoenvironment Details

    NASA Astrophysics Data System (ADS)

    Coleman, M.; Rhorssen, M.; Mielke, R. E.

    2008-12-01

    Isotopic variations measured within a single crystal of hydrated magnesium sulfate are greater than 30 permil for delta 2-H, almost 10 permil for δ18O in water of hydration; and greater than 3 permil in sulfate oxygen. These results are interpreted to indicate the relative humidity of the system during evaporation (15 to 20 percent in this test case) and constrain the volume of water involved. The theoretical basis of this system is the isotopic fractionation between the species in solution and those precipitated as evaporite salts. Precipitation preferentially accumulates more of the heavy isotopes of sulfur and oxygen in mineral sulfate, relative to sulfate in solution. During the course of mineral growth this leads to successive depletion of the respective heavier isotopes in the residual brine reflected in a parallel trend in successive precipitates or even in successive zones within a single crystal. The change in isotopic composition at any one time during the process, relative to the initial value, can be described by an isotopic version of the Rayleigh Fractionation equation, depending only on the extent of the completion of the process and the relevant fractionation factor. Evaporation preferentially removes isotopically lighter hydrogen and oxygen leading to successive extents of enrichment in the respective heavier isotopes in the residual water. However, the relative effects on hydrogen and oxygen isotopes differs as function of relative humidity [1]. ALL OF THESE CHANGES ARE PRESERVED IN THE MINERAL ISOTOPE COMPOSITIONS. We precipitated barium sulfate from epsomite or gypsum samples, which was reduced at 1450°C in the presence of graphite and glassy carbon in a Finnigan TC/EA to produce CO for O isotopic analysis in a Finnigan 253 mass spectrometer, while a separate subsample was oxidized to SO2 in a Costech Elemental Analyzer. However, to make progress with this approach we needed to make a large number of measurements of hydration water and so we developed a new analytical method [2]. We use a modification of the standard TC/EA continuous-flow protocol to measure both hydrogen and oxygen of water of hydration from the same small sample. We have proved the concept of this new approach by analyzing zones within crystals and individual grains, growing epsomite (magnesium sulfate heptahydrate) in the laboratory and by analysis of natural gypsum evaporites. We are now exploring the effects of varying the controlling parameters. Eventual application to Martian sulfates will reveal amount of water involved in sulfate formation, its isotopic composition(s) and details of the paleo-atmospheric humidity. [1] Gat JR and Gonfiantini R, (Eds) (1981) IAEA Technical Report Series. [2] Rohrssen MK, Brunner B Mielke RE and Coleman M (2008) Analyt. Chem. (in press).

  5. Levels and source apportionment of children's lead exposure: could urinary lead be used to identify the levels and sources of children's lead pollution?

    PubMed

    Cao, Suzhen; Duan, Xiaoli; Zhao, Xiuge; Wang, Beibei; Ma, Jin; Fan, Delong; Sun, Chengye; He, Bin; Wei, Fusheng; Jiang, Guibin

    2015-04-01

    As a highly toxic heavy metal, the pollution and exposure risks of lead are of widespread concern for human health. However, the collection of blood samples for use as an indicator of lead pollution is not always feasible in most cohort or longitudinal studies, especially those involving children health. To evaluate the potential use of urinary lead as an indicator of exposure levels and source apportionment, accompanying with environmental media samples, lead concentrations and isotopic measurements (expressed as (207)Pb/(206)Pb, (208)Pb/(206)Pb and (204)Pb/(206)Pb) were investigated and compared between blood and urine from children living in the vicinities of a typical coking plant and lead-acid battery factory. The results showed urinary lead might not be a preferable proxy for estimating blood lead levels. Fortunately, urinary lead isotopic measurements could be used as an alternative for identifying the sources of children's lead exposure, which coincided well with the blood lead isotope ratio analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Characterization of a new candidate isotopic reference material for natural Pb using primary measurement method.

    PubMed

    Nonose, Naoko; Suzuki, Toshihiro; Shin, Ki-Cheol; Miura, Tsutomu; Hioki, Akiharu

    2017-06-29

    A lead isotopic standard solution with natural abundance has been developed by applying a mixture of a solution of enriched 208 Pb and a solution of enriched 204 Pb ( 208 Pb- 204 Pb double spike solution) as bracketing method. The amount-of-substance ratio of 208 Pb: 204 Pb in this solution is accurately measured by applying EDTA titrimetry, which is one of the primary measurement methods, to each enriched Pb isotope solution. Also metal impurities affecting EDTA titration and minor lead isotopes contained in each enriched Pb isotope solution are quantified by ICP-SF-MS. The amount-of-substance ratio of 208 Pb: 204 Pb in the 208 Pb- 204 Pb double spike solution is 0.961959 ± 0.000056 (combined standard uncertainty; k = 1). Both the measurement of lead isotope ratios in a candidate isotopic standard solution and the correction of mass discrimination in MC-ICP-MS are carried out by coupling of a bracketing method with the 208 Pb- 204 Pb double spike solution and a thallium internal addition method, where thallium solution is added to the standard and the sample. The measured lead isotope ratios and their expanded uncertainties (k = 2) in the candidate isotopic standard solution are 18.0900 ± 0.0046 for 206 Pb: 204 Pb, 15.6278 ± 0.0036 for 207 Pb: 204 Pb, 38.0626 ± 0.0089 for 208 Pb: 204 Pb, 2.104406 ± 0.00013 for 208 Pb: 206 Pb, and 0.863888 ± 0.000036 for 207 Pb: 206 Pb. The expanded uncertainties are about one half of the stated uncertainty for NIST SRM 981, for 208 Pb: 204 Pb, 207 Pb: 204 Pb and 206 Pb: 204 Pb, or one eighth, for 208 Pb: 206 Pb and 207 Pb: 206 Pb, The combined uncertainty consists of the uncertainties due to lead isotope ratio measurements and the remaining time-drift effect of mass discrimination in MC-ICP-MS, which is not removed by the coupled correction method. In the measurement of 208 Pb: 204 Pb, 207 Pb: 204 Pb and 206 Pb: 204 Pb, the latter contribution is two or three times larger than the former. When the coupling of a bracketing method with the 208 Pb- 204 Pb double spike solution and a thallium internal addition method is applied to the analysis of NIST SRM 981, the measured lead isotope ratios are in good agreement with its certified values. This proves that the developed method is not only consistent with the conventional one by NIST SRM 981 but also enables measurement of the lead isotope ratios with higher precision. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. ISOTOPIC COMPOSITION OF THE COMMON LEAD OF JAPAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, H.; Sato, K.

    1958-11-01

    Lead tetramethyl was synthesized from lead iodide isolated from 14 galenas, 2 anglesites, and 6 pyromorphites of Japan. The mass spectrometric analysis was carried out for the peaks of lead and lead hydride ions. The isotopic compositions of leads from these minerais lie wiyhn a narrow range. The average values for gnlanas are 18.51 O 0.05 for Pb/sup 238//Pb/sup 204/ 15.60 plus or minus 0.05 for Pb/sup 207//Pb/sup 204/8.76 plus or minus 0.15 forPb/ sup 208//Pb/sup 204/ For lead of secondary minerals they are 18.52 plus or minus 0.05, 15.62 plus or minus 0.05, and 38.78 plus or minus 0.15,more » respectively. No detectabla difference was observed between the isotopic compositions of primary and secondary lead ores. The ratios, U/sub 238/Pb/sup 204, and Th/sup 232/ U/sup 238/, in the source magma are estimated from the lead abundances. They are« less

  8. Lead mobilization during tectonic reactivation of the western Baltic Shield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romer, R.L.; Wright, J.E.

    Lead isotope data from sulfide deposits of the western part of the Baltic Shield define mixing lines in the [sup 206]Pb/[sup 204]Pb-[sup 207]Pb/[sup 204]Pb diagram. Lead from two types of sulfide deposits have been investigated: (1) Exhalative and volcanogenic deposits that are syngenetic with their host rocks; and (2) vein deposits. The syngenetic deposits locally show a very wide range of lead isotopic compositions that reflect a variable addition of highly radiogenic lead, while the vein deposits, although they have radiogenic lead isotopic compositions, exhibit only limited isotopic variations. In different provinces of the shield, both types of deposits fallmore » on the same lead mixing array. The slope of the lead mixing lines varies as a function of the age of basement rocks and the age of the tectonic event which produced the lead mobilization and therefore relates the source rock age with the age of lead mobilization. Calculated mixing ages fall into several short time periods that correspond either to orogenic events or to major phases of continental rifting. The orogenic events are the ca 360--430 Ma Caledonian, ca 900--1100 Ma Sveconorwegian, and the ca 1800--1900 Ma Svecofennian orogenic cycles. The rifting events correspond to the formation of the ca 280 Ma Oslo rift and the Ordovician (ca 450 Ma) graben system in the area of the present Gulf of Bothnia. Each mixing age indicates that lead was mobilized, probably as a consequence of mild thermal disturbances, and that the crust was permeable to lead migration. The data show that the geographic distribution of sulfide deposits with highly radiogenic lead isotopic compositions coincides with old graben systems, orogenic belts, and orogenic forelands on the Baltic Shield. The ages of vein deposits and their geographic distribution demonstrate multiple tectonic reactivation of the interior of the Baltic Shield in response to orogenic events at its margin. 68 refs., 6 refs., 4 tabs.« less

  9. An overview of methods using (13)C for improved compound identification in metabolomics and natural products.

    PubMed

    Clendinen, Chaevien S; Stupp, Gregory S; Ajredini, Ramadan; Lee-McMullen, Brittany; Beecher, Chris; Edison, Arthur S

    2015-01-01

    Compound identification is a major bottleneck in metabolomics studies. In nuclear magnetic resonance (NMR) investigations, resonance overlap often hinders unambiguous database matching or de novo compound identification. In liquid chromatography-mass spectrometry (LC-MS), discriminating between biological signals and background artifacts and reliable determination of molecular formulae are not always straightforward. We have designed and implemented several NMR and LC-MS approaches that utilize (13)C, either enriched or at natural abundance, in metabolomics applications. For LC-MS applications, we describe a technique called isotopic ratio outlier analysis (IROA), which utilizes samples that are isotopically labeled with 5% (test) and 95% (control) (13)C. This labeling strategy leads to characteristic isotopic patterns that allow the differentiation of biological signals from artifacts and yield the exact number of carbons, significantly reducing possible molecular formulae. The relative abundance between the test and control samples for every IROA feature can be determined simply by integrating the peaks that arise from the 5 and 95% channels. For NMR applications, we describe two (13)C-based approaches. For samples at natural abundance, we have developed a workflow to obtain (13)C-(13)C and (13)C-(1)H statistical correlations using 1D (13)C and (1)H NMR spectra. For samples that can be isotopically labeled, we describe another NMR approach to obtain direct (13)C-(13)C spectroscopic correlations. These methods both provide extensive information about the carbon framework of compounds in the mixture for either database matching or de novo compound identification. We also discuss strategies in which (13)C NMR can be used to identify unknown compounds from IROA experiments. By combining technologies with the same samples, we can identify important biomarkers and corresponding metabolites of interest.

  10. Lead isotopic compositions of common arsenical pesticides used in New England

    USGS Publications Warehouse

    Ayuso, Robert; Foley, Nora; Robinson, Gilpin; Wandless, Gregory; Dillingham, Jeremy

    2004-01-01

    The three most important arsenical pesticides and herbicides that were extensively used on apple, blueberry, and potato crops in New England from mid-1800s to recent times are lead arsenate, calcium arsenate, and sodium arsenate. Lead arsenate was probably the most heavily used of the arsenical pesticides until it was banned in 1988. Other metal-arsenic pesticides were also used but in lesser amounts. A recent report identified areas in New England where arsenical pesticides were used extensively (Robinson and Ayuso, 2004). On the basis of factor analysis of metal concentrations in stream sediment samples, a positive correlation with pesticide use was shown in regions having stream sediment sample populations that contained concentrations of high arsenic and lead. Lead isotope compositions of stream sediments from areas with heavy use of the pesticides could not be entirely explained by lead originating from rock sulfides and their weathering products. An industrial lead contribution (mostly from atmospheric deposition of lead) was suggested in general to explain the lead isotopic distributions of the stream sediments that could not be accounted for by the natural lead in the environment. We concluded that when agricultural land previously contaminated with arsenical pesticides is urbanized, pesticide residues in the soils and stream sediments could be released into the groundwater. No lead isotopic data characterizing the compositions of pesticides were available for comparison. We have determined the lead isotopic compositions of commonly used pesticides in New England, such as lead arsenate, sodium metaarsenite, and calcium arsenate, in order to assist in future isotopic comparisons and to better establish anthropogenic sources of Pb and As. New data are also presented for copper acetoarsenite (or Paris green), methyl arsonic acid and methane arsonic acid, as well as for arsanilic acid, all of which are used as feed additives to promote swine and poultry growth. The new data characterize these anthropogenic sources. The data show that the arsenical pesticides have similar compositions: 208Pb/207Pb = 2.3839-2.4721, 206Pb/207Pb = 1.1035-1.2010, and 206Pb/204Pb = 17.070-18.759 and, more importantly, that the pesticides overlap the composition of the stream sediments that represent the areas with the most extensive agricultural use. Copper acetoarsenite (Paris green), arsenic oxide, methyl arsonic acid, methane arsonic acid, and arsanilic acid were also analyzed and have lead isotope compositions that range widely. An important source of arsenic and metals to most of the stream sediment samples in New England appears to be weathering products from rocks and industrial lead, but the extensive use of arsenical pesticides and herbicides up to about the 1960s can also be a significant anthropogenic source in agricultural regions.

  11. Sr - an element shows the way - Applications of Sr isotopes for provenance, tracing and migration (Invited)

    NASA Astrophysics Data System (ADS)

    Prohaska, T.; Irrgeher, J.; Zitek, A.; Teschler Nicola, M.

    2010-12-01

    Strontium - named after the small Scottish town Strontian - as such is an element with little popularity. Firstly described by Martin Heinrich Klaproth in 1798, the metal is used in metallurgy to some extent whereas its compounds are interesting in glass industries, electronics and pyrotechnics. The element has chemical similarity to Ca and makes up 1/60 of the earth’s amount of the latter. Nonetheless, it is its isotopic composition which makes Sr so interesting for a large number of scientists. The natural composition of the four naturally occurring isotopes (84Sr, 86Sr 87Sr and 88Sr) varies in nature due to the radioactive decay of 87Rb to 87Sr. Thus, it was early recognized as geochronometer especially in Ca rich matrices. With increasing precision of applied methodology, the natural variation of the 87Sr/86Sr isotope ratio (analyzed at first mainly by thermal ionization mass spectrometry (TIMS)) became more and more popular in provenance studies. The natural variation of the ratio is mainly determined by the geological age and the original composition of the rock and can be used therefore as fingerprint of the local geology. The ratio is transferred with no significant fractionation via the water into plants and finally via the food chain into animal and human tissues (especially bones and teeth). As the element is chemically similar to Ca, it appears in most matrices. The use for provenance studies is supported by the fact that the long half life (4.8 x 1010 years) does not lead to an alteration during the time scales which are investigated (from recent samples to human or animal skeletal remains which date back up to 30.000 BC). The uniqueness of the system besides the natural variation is defined by the ubiquity in nature and the relatively high (and thus measurable) elemental concentration in most tissues. It was finally the advent of multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) which augmented the number of applications presented for Sr isotope ratios simply supported by the fact that a higher statistical number of samples could be analyzed. Further supported by direct introductions systems such as laser ablation, the popularity of Sr in science has increased steadily. A number of fields of applications make nowadays use of the system so far: anthropology and archaeology as well as food science, chemical technology, forensic science, medicine or biology. The Sr isotope system will be presented along with analytical techniques applied. Selected examples making use of the natural Sr isotopic variation will be reported: Proof of provenance of food, forensic applications and migration studies on prehistoric cultures or modern biological systems. In addition, the application of enriched Sr isotope spikes will be presented. The spikes are administered in order to investigate Sr turnovers (e.g. as proxy for Ca in biomedical studies), marking tissues for tracing and migration experiments and investigating environmental processes.

  12. Changes in the lead isotopic composition of blood, diet and air in Australia over a decade: Globalization and implications for future isotopic studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulson, Brian; Mizon, Karen; Korsch, Michael

    2006-01-15

    Source apportionment in biological or environmental samples using the lead isotope method, where there are diverse sources of lead, relies on a significant difference between the isotopic composition in the target media and the sources. Because of the unique isotopic composition of Australian lead, source apportionment has been relatively successful in the past. Over the period of a decade, the {sup 206}Pb/{sup 204}Pb ratio for Australian (mainly female) adults has shown an increase from a geometric mean of 16.8-17.3. Associated with this increase, there has been a decrease in mean blood lead concentration from 4.7 to 2.3 {mu}g/dL, or aboutmore » 5% per year, similar to that observed in other countries. Lead in air, which up until 2000 was derived largely from the continued use of leaded gasoline, showed an overall increase in the {sup 206}Pb/{sup 204}Pb ratio during 1993-2000 from 16.5 to 17.2. Since 1998 the levels of lead in air were less than 0.2 {mu}g/m{sup 3} and would contribute negligibly to blood lead. Over the 10-year period, the {sup 206}Pb/{sup 204}Pb ratio in diet, based mainly on quarterly 6-day duplicate diets, increased from 16.9 to 18.3. The lead concentration in diet showed a small decrease from 8.7 to 6.4 {mu}g Pb/kg although the daily intake increased markedly from 7.4 to 13.9 {mu}g Pb/day during the latter part of the decade probably reflecting differences in demographics. The changes in blood lead from sources such as lead in bone or soil or dust is not dominant because of the low {sup 206}Pb/{sup 204}Pb ratios in these media. Unless there are other sources not identified and analysed for these adults, it would appear that in spite of our earlier conclusions to the contrary, diet does make an overall contribution to blood lead, and this is certainly the case for specific individuals. Certain population groups from south Asia, south-east Asia, the Middle East and Europe (e.g. UK) are unsuitable for some studies as their isotopic ratios in blood are converging towards the increasing Australian values. The increases in blood {sup 206}Pb/{sup 204}Pb ratio combined with globalization, which has resulted in the increases in {sup 206}Pb/{sup 204}Pb ratio for diet, means that isotopic studies undertaken with a high degree of certainty of outcomes over a decade ago, are now considerably more difficult, not only in Australia but also in other countries where the isotopic differences are even less than in Australia.« less

  13. Introduction to Chemistry and Applications in Nature of Mass Independent Isotope Effects Special Feature

    PubMed Central

    Thiemens, Mark H.

    2013-01-01

    Stable isotope ratio variations are regulated by physical and chemical laws. These rules depend on a relation with mass differences between isotopes. New classes of isotope variation effects that deviate from mass dependent laws, termed mass independent isotope effects, were discovered in 1983 and have a wide range of applications in basic chemistry and nature. In this special edition, new applications of these effects to physical chemistry, solar system origin models, terrestrial atmospheric and biogenic evolution, polar paleo climatology, snowball earth geology, and present day atmospheric sciences are presented. PMID:24167299

  14. Reconciling Isotopic Partitioning Estimates of Moisture Fluxes in Semi-arid Landscapes Through a New Modeling Approach for Evaporation

    NASA Astrophysics Data System (ADS)

    Kaushik, A.; Berkelhammer, M. B.; O'Neill, M.; Noone, D.

    2017-12-01

    The partitioning of land surface latent heat flux into evaporation and transpiration remains a challenging problem despite a basic understanding of the underlying mechanisms. Water isotopes are useful tracers for separating evaporation and transpiration contributions because E and T have distinct isotopic ratios. Here we use the isotope-based partitioning method at a semi-arid grassland tall-tower site in Colorado. Our results suggest that under certain conditions evaporation cannot be isotopically distinguished from transpiration without modification of existing partitioning techniques. Over a 4-year period, we measured profiles of stable oxygen and hydrogen isotope ratios of water vapor from the surface to 300 m and soil water down to 1 m along with standard meteorological fluxes. Using these data, we evaluated the contributions of rainfall, equilibration, surface water vapor exchange and sub-surface vapor diffusion to the isotopic composition of evapotranspiration (ET). Applying the standard isotopic approach to find the transpiration portion of ET (i.e., T/ET), we see a significant discrepancy compared with a method to constrain T/ET based on gross primary productivity (GPP). By evaluating the kinetic fractionation associated with soil evaporation and vapor diffusion we find that a significant proportion (58-84%) of evaporation following precipitation is non-fractionating. This is possible when water from isolated soil layers is being nearly completely evaporated. Non-fractionating evaporation looks isotopically like transpiration and therefore leads to an overestimation of T/ET. Including non-fractionating evaporation reconciles the isotope-based partitioning estimates of T/ET with the GPP method, and may explain the overestimation of T/ET from isotopes compared to other methods. Finally, we examine the application of non-fractionating evaporation to other boundary layer moisture flux processes such as rain evaporation, where complete evaporation of smaller drop pools may produce a similarly weaker kinetic effect.

  15. Post-17th-century changes of European lead emissions recorded in high-altitude alpine snow and ice.

    PubMed

    Schwikowski, Margit; Barbante, Carlo; Doering, Thomas; Gaeggeler, Heinz W; Boutron, Claude; Schotterer, Ulrich; Tobler, Leo; van de Velde, Katja; Ferrari, Christophe; Cozzi, Giulio; Rosman, Kevin; Cescon, Paolo

    2004-02-15

    Lead concentrations and lead isotope ratios were analyzed in two firn/ice cores covering the period from 1650 to 1994, which were obtained from the 4450 m high glacier saddle Colle Gnifetti located in the Monte Rosa massif at the Swiss-Italian border. This study presents the first glaciochemical time series with annual resolution, spanning several centuries of lead concentrations and lead isotopic compositions in precipitation in Europe. Lead concentrations in firn dated from the 1970s are approximately 25 times higher than in ice dated from the 17th century, confirming the massive rise in lead pollution in Europe during the last few centuries. A decline of the lead concentration is then observed during the last two decades, i.e., from 1975 to 1994. The lead isotope ratio 206Pb/207Pb decreased from about 1.18 in the 17th and 18th centuries to about 1.12 in the 1970s. These variations are in good agreement with available information on variations in anthropogenic lead emissions from West European countries, especially from the use of lead additives in gasoline.

  16. Lead isotope studies of the Guerrero composite terrane, west-central Mexico: implications for ore genesis

    NASA Astrophysics Data System (ADS)

    Potra, Adriana; Macfarlane, Andrew W.

    2014-01-01

    New thermal ionization mass spectrometry and multi-collector inductively coupled plasma mass spectrometry Pb isotope analyses of three Cenozoic ores from the La Verde porphyry copper deposit located in the Zihuatanejo-Huetamo subterrane of the Guerrero composite terrane are presented and the metal sources are evaluated. Lead isotope ratios of 3 Cenozoic ores from the El Malacate and La Esmeralda porphyry copper deposits located in the Zihuatanejo-Huetamo subterrane and of 14 ores from the Zimapan and La Negra skarn deposits from the adjoining Sierra Madre terrane are also presented to look for systematic differences in the lead isotope trends and ore metal sources among the proposed exotic tectonostratigraphic terranes of southern Mexico. Comparison among the isotopic signatures of ores from the Sierra Madre terrane and distinct subterranes of the Guerrero terrane supports the idea that there is no direct correlation between the distinct suspect terranes of Mexico and the isotopic signatures of the associated Cenozoic ores. Rather, these Pb isotope patterns are interpreted to reflect increasing crustal contribution to mantle-derived magmas as the arc advanced eastward onto a progressively thicker continental crust. The lead isotope trend observed in Cenozoic ores is not recognized in the ores from Mesozoic volcanogenic massive sulfide and sedimentary exhalative deposits. The Mesozoic ores formed prior to the amalgamation of the Guerrero composite terrane to the continental margin, which took place during the Late Cretaceous, in intraoceanic island arc and intracontinental marginal basin settings, while the Tertiary deposits formed after this event in a continental arc setting. Lead isotope ratios of the Mesozoic and Cenozoic ores appear to reflect these differences in tectonic setting of ore formation. Most Pb isotope values of ores from the La Verde deposit (206Pb/204Pb = 18.674-18.719) are less radiogenic than those of the host igneous rocks, but plot within the field defined by the Huetamo Sequence, suggesting that these ores may also contain metals from the sedimentary rocks. The Pb isotope ratios of ore samples from the Zimapan deposit (206Pb/204Pb = 18.771-18.848) are substantially higher than the whole-rock Pb isotope compositions of the basement rocks. The similarity of ore Pb to igneous rock Pb in the Zimapan district (206Pb/204Pb = 18.800-18.968) may indicate that the proximal source of ore metals in the hydrothermal system was the igneous activity.

  17. Kinetically Relevant Steps and H2/D2 Isotope Effects in Fischer-Tropsch Synthesis on Fe and Co Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ojeda, Manuel; Li, Anwu; Nabar, Rahul P.

    2010-11-25

    H2/D2 isotope effects on Fischer-Tropsch synthesis (FTS) rate and selectivity are examined here by combining measured values on Fe and Co at conditions leading to high C5+ yields with theoretical estimates on model Fe(110) and Co(0001) surfaces with high coverages of chemisorbed CO (CO*). Inverse isotope effects (rH/rD < 1) are observed on Co and Fe catalysts as a result of compensating thermodynamic (H2 dissociation to H*; H* addition to CO* species to form HCO*) and kinetic (H* reaction with HCO*) isotope effects. These isotopic effects and their rigorous mechanistic interpretation confirm the prevalence of H-assisted CO dissociation routes onmore » both Fe and Co catalysts, instead of unassisted pathways that would lead to similar rates with H2 and D2 reactants. The small contributions from unassisted pathways to CO conversion rates on Fe are indeed independent of the dihydrogen isotope, as is also the case for the rates of primary reactions that form CO2 as the sole oxygen rejection route in unassisted CO dissociation paths. Isotopic effects on the selectivity to C5+ and CH4 products are small, and D2 leads to a more paraffinic product than does H2, apparently because it leads to preference for chain termination via hydrogen addition over abstraction. These results are consistent with FTS pathways limited by H-assisted CO dissociation on both Fe and Co and illustrate the importance of thermodynamic contributions to inverse isotope effects for reactions involving quasi-equilibrated H2 dissociation and the subsequent addition of H* in hydrogenation catalysis, as illustrated here by theory and experiment for the specific case of CO hydrogenation.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magi, F.; Facchetti, S.; Garibaldi, P.

    An experiment is proposed aimed at determining the role of motor traffic in the pollution of the environment by lead, in particular of air, soil, vegetation, food and the human body. The technique of determining the isotopic composition of lead, used in the right way, should enable the whole problem to be solved. It is intended to add lead with a constant isotopic composition different from that of normally occurring lead, whether natural in origin or otherwise, to petrol in at least two regions of Italy. Analyses of lead samples taken from the principal mines have shown that Australian leadmore » (Broken Hill Mine) has quite a different isotopic composition. This lead will therefore be used to prepare the antiknock additives for petrol sold in the regions in question. Adequate sampling should make it possible to determine the contribution to pollution of lead from motor vehicle exhausts. The regions chosen for the experiment are Piedmont (city and province of Cagliari)--the first because of its high traffic density and level of industrialization, the second because of its remoteness and the lead content of the soil, which may affect food. Both regions present favourable conditions for supplying petrol of the intended type. The experiment is intended to last three years; the petrol with Australian lead will be marketed for a period of 18 months. The first results of analyses of the isotopic composition of lead contained in atmospheric dust in the city of Turin and of lead from a number of blood samples are reported in the paper. (auth)« less

  19. Modeling of isotope fractionation at the catchment scale: How promising is compound specific isotope analysis (CSIA) as a tool for analyzing diffuse pollution by agrochemicals?

    NASA Astrophysics Data System (ADS)

    Lutz, S. R.; van Meerveld, H. J.; Waterloo, M. J.; Broers, H. P.; van Breukelen, B. M.

    2012-04-01

    Concentration measurements are indispensable for the assessment of subsurface and surface water pollution by agrochemicals such as pesticides. However, monitoring data is often ambiguous and easily misinterpreted as a decrease in concentration could be caused by transformation, dilution or changes in the application of the pesticide. In this context, compound specific isotope analysis (CSIA) has recently emerged as a complementary monitoring technique. It is based on the measurement of the isotopic composition (e.g. δ13C and δ2H) of the contaminant. Since transformation processes are likely accompanied by isotope fractionation, thus a change in this composition, CSIA offers the opportunity to gain additional knowledge about transport and degradation processes as well as to track pollutants back to their sources. Isotopic techniques have not yet been applied in a comprehensive way in the analysis of catchment-wide organic pollution. We therefore incorporated fractionation processes associated with the fate of pesticides into the numerical flow and solute transport model HydroGeoSphere in order to assess the feasibility of CSIA within the context of catchment monitoring. The model was set up for a hypothetical hillslope transect which drains into a river. Reactive solute transport was driven by two pesticides applications within one year and actual data for rainfall and potential evapotranspiration from a meteorological station in the Netherlands. Degradation of the pesticide was assumed to take place at a higher rate under the prevailing oxic conditions in the topsoil than in deeper, anoxic subsurface layers. In terms of CSIA, these two degradation pathways were associated with different strengths of isotope fractionation for both hydrogen and carbon atoms. By simulating changes in δ13C and δ2H, the share of the oxic and the anoxic reaction on the overall degradation could be assessed. Model results suggest that CSIA is suitable for assessing degradation of diffuse agrochemical pollutants in a relatively simple hydrological system. The simulated shifts in isotopic signals are within a range that could be detected with current isotope analytics. Concentrations in the stream vary significantly only for a short period during and after intense rainfall events. In contrast, CSIA values reveal longer response times such that isotopic shifts are likely to be detected in samples with a coarser temporal resolution. Rainfall events which result in fast lateral subsurface transport from the pollution source to the stream can be separated from those that lead to pollution migration through deeper subsurface zones with much longer travel times. Two-dimensional CSIA highlights an increasing importance of the oxic reaction in the topsoil during the wetter period of the year. In order to examine to which extent CSIA is applicable for more complex hydrological systems, it is projected to simulate isotope fractionation in a 3-dimensional catchment featuring additional processes such as migration from several pollution sources or in-stream degradation.

  20. Comparisons among Equations Used for Retinol Isotope Dilution in the Assessment of Total Body Stores and Total Liver Reserves.

    PubMed

    Gannon, Bryan M; Tanumihardjo, Sherry A

    2015-05-01

    Vitamin A plays an essential role in animal biology and has negative effects associated with both hypo- and hypervitaminosis A. Many notable interventions are being done globally to eliminate vitamin A deficiency, including supplementation, fortification, and biofortification. At the same time, it is important to monitor vitamin A status in nations where preformed vitamin A intake is high because of consumption of animal source foods (e.g., liver, dairy, eggs), fortified foods (e.g., milk, cereals, oil, sugar, margarine), or vitamin supplements (e.g., one-a-day multivitamins) to ensure the population does not reach hypervitaminosis A. To accurately assess population status and evaluate interventions aimed at improving vitamin A status, accurate assessment methods are needed. The primary storage site of vitamin A is the liver; however, routinely obtaining liver samples from humans is impractical and unethical. Isotope dilution using deuterium- or (13)C-labeled retinol is currently the most sensitive indirect biomarker of vitamin A status across a wide range of liver reserves. The major drawback to its application is the increased technicality in sample analysis and data calculations when compared to less sensitive methodology, such as serum retinol concentrations and dose response tests. Two main equations have emerged for calculating vitamin A body pool size or liver concentrations from isotope dilution data: the "Olson equation" and the "mass balance equation." Different applications of these equations can lead to confusion and lack of consistency if the underlying principles and assumptions used are not clarified. The purpose of this focused review is to describe the evolution of the equations used in retinol stable-isotope work and the assumptions appropriate to different applications of the test. Ultimately, the 2 main equations are shown to be fundamentally the same and differ only in assumptions made for each specific research application. © 2015 American Society for Nutrition.

  1. Coral-based history of lead and lead isotopes of the surface Indian Ocean since the mid-20th century

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Mi; Boyle, Edward A.; Suci Nurhati, Intan; Pfeiffer, Miriam; Meltzner, Aron J.; Suwargadi, Bambang

    2014-07-01

    Anthropogenic lead (Pb) from industrial activities has greatly altered the distribution of Pb in the present-day oceans, but no continuous temporal Pb evolution record is available for the Indian Ocean despite rapidly emerging industries around the region. Here, we present the coral-inferred annual history of Pb concentration and isotope ratios in the surface Indian Ocean since the mid-20th century (1945-2010). We analyzed Pb in corals from the Chagos Archipelago, western Sumatra and Strait of Singapore - which represent the central Indian Ocean via nearshore sites. Overall, coral Pb/Ca increased in the mid-1970s at all the sites. However, coral Pb isotope ratios evolve distinctively at each site, suggesting Pb contamination arises from different sources in each case. The major source of Pb in the Chagos coral appears to be India's Pb emission from leaded gasoline combustion and coal burning, whereas Pb in western Sumatra seems to be largely affected by Indonesia's gasoline Pb emission with additional Pb inputs from other sources. Pb in the Strait of Singapore has complex sources and its isotopic composition does not reflect Pb from leaded gasoline combustion. Higher 206Pb/207Pb and 208Pb/207Pb ratios found at this site may reflect the contribution of Pb from coals and ores from southern China, Indonesia, and Australia, and local Pb sources in the Strait of Singapore. It is also possible that the Pb isotope ratios of Singapore seawater were elevated through isotope exchange with natural fluvial particles considering its delta setting.

  2. Quantitative assessment of Pb sources in isotopic mixtures using a Bayesian mixing model.

    PubMed

    Longman, Jack; Veres, Daniel; Ersek, Vasile; Phillips, Donald L; Chauvel, Catherine; Tamas, Calin G

    2018-04-18

    Lead (Pb) isotopes provide valuable insights into the origin of Pb within a sample, typically allowing for reliable fingerprinting of their source. This is useful for a variety of applications, from tracing sources of pollution-related Pb, to the origins of Pb in archaeological artefacts. However, current approaches investigate source proportions via graphical means, or simple mixing models. As such, an approach, which quantitatively assesses source proportions and fingerprints the signature of analysed Pb, especially for larger numbers of sources, would be valuable. Here we use an advanced Bayesian isotope mixing model for three such applications: tracing dust sources in pre-anthropogenic environmental samples, tracking changing ore exploitation during the Roman period, and identifying the source of Pb in a Roman-age mining artefact. These examples indicate this approach can understand changing Pb sources deposited during both pre-anthropogenic times, when natural cycling of Pb dominated, and the Roman period, one marked by significant anthropogenic pollution. Our archaeometric investigation indicates clear input of Pb from Romanian ores previously speculated, but not proven, to have been the Pb source. Our approach can be applied to a range of disciplines, providing a new method for robustly tracing sources of Pb observed within a variety of environments.

  3. Lead isotope systematics of some igneous rocks from the Egyptian Shield

    NASA Technical Reports Server (NTRS)

    Gillespie, J. G.; Dixon, T. H.

    1983-01-01

    Lead isotope data on whole-rock samples and two feldspar separates for a variety of Pan-African (late Precambrian) igneous rocks for the Egyptian Shield are presented. It is pointed out that the eastern desert of Egypt is a Late Precambrian shield characterized by the widespread occurrence of granitic plutons. The lead isotope ratios may be used to delineate boundaries between Late Precambrian oceanic and continental environments in northeastern Africa. The samples belong to three groups. These groups are related to a younger plutonic sequence of granites and adamellites, a plutonic group consisting of older tonalites to granodiorites, and the Dokhan volcanic suite.

  4. Modeling Non-Steady Isotopologue and Isotopomer Speciation and Fractionation during Denitrification in Soils

    NASA Astrophysics Data System (ADS)

    Maggi, F.; Riley, W. J.

    2009-12-01

    The composition and location of 15N atoms on N2O isotopomers and isotopologues during isotope speciation has been used to characterize soil biological N cycling and N2O surface emissions. Although there exist few experimental observations, no attempt has been made to model N2O isotopomer speciation. The mathematical treatment of biological kinetic reactions in isotopic applications normally makes use of first-order and quasi steady-state complexation assumptions without taking into account changes in enzyme concentration, reaction stoichiometry, and isotopologue and isotopomer speciation. When multiatomic isotopically-labeled reactants are used in a multi-molecurar reaction, these assumptions may fail since they always lead to a constant fractionation factor and cannot describe speciation of isotopologues and isotopomers. We have developed a mathematical framework that is capable of describing isotopologue and isotopmer speciation and fractionation under the assumption of non-steady complexation during biological kinetic reactions that overcome the limitations mentioned above. This framework was applied to a case study of non-steady (variable and inverse) isotopic effects observed during N2O production and consumption in soils. Our mathematical treatment has led to generalized kinetic equations which replicate experimental observations with high accuracy and help interpret non-steady isotopic effects and isotopologue and isotopomer speciation. The kinetic equations introduced and applied here have general validity in describing isotopic effects in any biochemical reactions by considering: changing enzyme concentrations, mass and isotope conservation, and reaction stoichiometry. The equations also describe speciation of any isotopologue and isotopomer product from any isotopologue and isotopmer reactant.

  5. Monitoring steel bridge renovation using lead isotopic tracing.

    PubMed

    Salome, Fred; Gulson, Brian; Chiaradia, Massimo; Davis, Jeffrey; Morris, Howard

    2017-05-01

    Monitoring removal of lead (Pb) paint from steel structures usually involves analysis of environmental samples for total lead and determination of blood Pb levels of employees involved in the Pb paint removal. We used high precision Pb isotopic tracing for a bridge undergoing Pb paint removal to determine if Pb in the environmental and blood samples originated from the bridge paint. The paint system on the bridge consisted of an anti-corrosive red Pb primer top-coated with a Micaceous Iron Oxide (MIO) alkyd. Analysis of the red Pb primer gave uniform isotopic ratios indicative of Pb from the geologically-ancient Broken Hill mines in western New South Wales, Australia. Likewise waste abrasive material, as anticipated, had the same isotopic composition as the paint. The isotopic ratios for other samples lay on 2 separate linear arrays on a 207 Pb/ 204 Pb versus 206 Pb/ 204 Pb diagram, one largely defined by gasoline and the majority of the ambient air data, and the other by data for one sample each of gasoline and ambient air and underwater sediments. Isotopic ratios in background ambient air samples for the project were characteristic of leaded gasoline. Air sampling during paint removal showed a contribution of paint Pb ranging from about 20 to 40%. Isotopic ratios in the blood of 8 employees prior to the commencement of work showed that 6 of these had been previously exposed to the Broken Hill Pb possibly from earlier bridge paint removal projects. One subject appeared to have increased exposure to Pb probably from the paint renovations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Lead contamination in cocoa and cocoa products: isotopic evidence of global contamination.

    PubMed

    Rankin, Charley W; Nriagu, Jerome O; Aggarwal, Jugdeep K; Arowolo, Toyin A; Adebayo, Kola; Flegal, A Russell

    2005-10-01

    In this article we present lead concentrations and isotopic compositions from analyses of cocoa beans, their shells, and soils from six Nigerian cocoa farms, and analyses of manufactured cocoa and chocolate products. The average lead concentration of cocoa beans was

  7. Lead Contamination in Cocoa and Cocoa Products: Isotopic Evidence of Global Contamination

    PubMed Central

    Rankin, Charley W.; Nriagu, Jerome O.; Aggarwal, Jugdeep K.; Arowolo, Toyin A.; Adebayo, Kola; Flegal, A. Russell

    2005-01-01

    In this article we present lead concentrations and isotopic compositions from analyses of cocoa beans, their shells, and soils from six Nigerian cocoa farms, and analyses of manufactured cocoa and chocolate products. The average lead concentration of cocoa beans was ≤ 0.5 ng/g, which is one of the lowest reported values for a natural food. In contrast, lead concentrations of manufactured cocoa and chocolate products were as high as 230 and 70 ng/g, respectively, which are consistent with market-basket surveys that have repeatedly listed lead concentrations in chocolate products among the highest reported for all foods. One source of contamination of the finished products is tentatively attributed to atmospheric emissions of leaded gasoline, which is still being used in Nigeria. Because of the high capacity of cocoa bean shells to adsorb lead, contamination from leaded gasoline emissions may occur during the fermentation and sun-drying of unshelled beans at cocoa farms. This mechanism is supported by similarities in lead isotopic compositions of cocoa bean shells from the different farms (206Pb/207Pb = 1.1548–1.1581; 208Pb/207Pb = 2.4344–2.4394) with those of finished cocoa products (206Pb/207Pb = 1.1475–1.1977; 208Pb/207Pb = 2.4234–2.4673). However, the much higher lead concentrations and larger variability in lead isotopic composition of finished cocoa products, which falls within the global range of industrial lead aerosols, indicate that most contamination occurs during shipping and/or processing of the cocoa beans and the manufacture of cocoa and chocolate products. PMID:16203244

  8. Ammunition is the principal source of lead accumulated by California condors re-introduced to the wild.

    PubMed

    Church, Molly E; Gwiazda, Roberto; Risebrough, Robert W; Sorenson, Kelly; Chamberlain, C Page; Farry, Sean; Heinrich, William; Rideout, Bruce A; Smith, Donald R

    2006-10-01

    The endangered California Condor (Gymnogyps californianus) was reduced to a total population of 22 birds by the end of 1982. Their captive-bred descendants are now being released back into the wild in California, Arizona, and Baja California, where monitoring indicates they may accumulate lead to toxic levels. Fragments of ammunition in the carcasses of game animals such as deer, elk, and feral pigs not retrieved by hunters or in gut piles left in the field have been considered a plausible source of the lead, though little direct evidence is available to support this hypothesis. Here, we measured lead concentrations and isotope ratios in blood from 18 condors living in the wild in central California, in 8 pre-release birds, and in diet and ammunition samples to determine the importance of ammunition as a source of exposure. Blood lead levels in pre-release condors were low (average 27.7 ng/mL, SD 4.9 ng/ mL) and isotopically similar to dietary and background environmental lead in California. In contrast, blood lead levels in free-flying condors were substantially higher (average 246 ng/mL, SD 229 ng/mL) with lead isotopic compositions that approached or matched those of the lead ammunition. A two-endmember mixing model defined by the background 207Pb/206Pb ratio of representative condor diet samples (0.8346) and the upper 207Pb/206Pb ratio of the ammunition samples (0.8184) was able to account for the blood lead isotopic compositions in 20 out of the 26 live condors sampled in this study (i.e., 77%). Finally, lead in tissues and in a serially sampled growing feather recovered postmortem from a lead-poisoned condor in Arizona evidence acute exposure from an isotopically distinct lead source. Together, these data indicate that incidental ingestion of ammunition in carcasses of animals killed by hunters is the principal source of elevated lead exposure that threatens the recovery in the wild of this endangered species.

  9. Radiogenic Isotopes As Paleoceanographic Tracers in Deep-Sea Corals: Advances in TIMS Measurements of Pb Isotopes and Application to Southern Ocean Corals

    NASA Astrophysics Data System (ADS)

    Wilson, D. J.; van de Flierdt, T.; Bridgestock, L. J.; Paul, M.; Rehkamper, M.; Robinson, L. F.; Adkins, J. F.

    2014-12-01

    Deep-sea corals have emerged as a valuable archive of deep ocean paleoceanographic change, with uranium-series dating providing absolute ages and the potential for centennial resolution. In combination with measurements of radiocarbon, neodymium isotopes and clumped isotopes, this archive has recently been exploited to reconstruct changes in ventilation, water mass sourcing and temperature in relation to millennial climate change. Lead (Pb) isotopes in both corals and seawater have also been used to track anthropogenic inputs through space and time and to trace transport pathways within the oceans. Better understanding of the oceanic Pb cycle is emerging from the GEOTRACES programme. However, while Pb isotopes have been widely used in environmental studies, their full potential as a (pre-anthropogenic) paleoceanographic tracer remains to be exploited. In deep-sea corals, challenges exist from low Pb concentrations in aragonite in comparison to secondary coatings, the potential for contamination, and the efficient elemental separation required for measurement by thermal ionisation mass spectrometry (TIMS). Here we discuss progress in measuring Pb isotopes in coral aragonite using a 207Pb-204Pb double spike on a ThermoFinnigan Triton TIMS. For a 2 ng NIST-981 Pb standard, the long term reproducibility (using 1011 Ω resistors) is ~1000 ppm (2 s.d.) on 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios. We now show that using a new 1012 Ω resistor to measure the small 204Pb beam improves the internal precision on these ratios from ~500 ppm (2 s.e.) to ~250 ppm (2 s.e.) and we envisage a potential improvement in the long term reproducibility as a consequence. We further assess the internal precision and external reproducibility of our method using a BCR-2 rock standard and an in-house coral standard. Preliminary evidence on the application of this method to natural samples is derived from cleaning experiments and replication tests on deep-sea corals from the Southern Ocean.

  10. Realizing the potential of the Actinium-225 radionuclide generator in targeted alpha-particle therapy applications

    PubMed Central

    Miederer, Matthias; Scheinberg, David A.; McDevitt, Michael R.

    2013-01-01

    Alpha particle-emitting isotopes have been proposed as novel cytotoxic agents for augmenting targeted therapy. Properties of alpha particle radiation such as their limited range in tissue of a few cell diameters and their high linear energy transfer leading to dense radiation damage along each alpha track are promising in the treatment of cancer, especially when single cells or clusters of tumor cells are targeted. Actinium-225 (225Ac) is an alpha particle-emitting radionuclide that generates 4 net alpha particle isotopes in a short decay chain to stable 209Bi, and as such can be described as an alpha particle nanogenerator. This article reviews the literature pertaining to the research, development, and utilization of targeted 225Ac to potently and specifically affect cancer. PMID:18514364

  11. Lead isotope ratios in tree bark pockets: an indicator of past air pollution in the Czech Republic.

    PubMed

    Conkova, M; Kubiznakova, J

    2008-10-15

    Tree bark pockets were collected at four sites in the Czech Republic with differing levels of lead (Pb) pollution. The samples, spanning 1923-2005, were separated from beech (Fagus sylvatica) and spruce (Picea abies). Elevated Pb content (0.1-42.4 microg g(-1)) reflected air pollution in the city of Prague. The lowest Pb content (0.3-2.6 microg g(-1)) was found at the Kosetice EMEP "background pollution" site. Changes in (206)Pb/(207)Pb and (208)Pb/(206)Pb isotope ratios were in agreement with operation times of the Czech main anthropogenic Pb sources. Shortly after the Second World War, the (206)Pb/(207)Pb isotope ratio in bark pockets decreased from 1.17 to 1.14 and the (208)Pb/(206)Pb isotope ratio increased from 2.12 to 2.16. Two dominant emission sources responsible for these changes, lignite and leaded petrol combustion, contributed to the shifts in Pb isotope ratios. Low-radiogenic petrol Pb ((206)Pb/(207)Pb of 1.11) lead to lower (206)Pb/(207)Pb in bark pockets over time. High-radiogenic lignite-derived Pb ((206)Pb/(207)Pb of 1.18 to 1.19) was detected in areas affected by coal combustion rather than by traffic.

  12. Application of stable isotope tools for evaluating natural and stimulated biodegradation of organic pollutants in field studies.

    PubMed

    Fischer, Anko; Manefield, Mike; Bombach, Petra

    2016-10-01

    Stable isotope tools are increasingly applied for in-depth evaluation of biodegradation of organic pollutants at contaminated field sites. They can be divided into three methods i) determination of changes in natural abundance of stable isotopes using compound-specific stable isotope analysis (CSIA), ii) detection of incorporation of stable-isotope label from a stable-isotope labelled target compound into degradation and/or mineralisation products and iii) determination of stable-isotope label incorporation into biomarkers using stable isotope probing (SIP). Stable isotope tools have been applied as key monitoring tools for multiple-line-of-evidence-approaches (MLEA) for sensitive evaluation of pollutant biodegradation. This review highlights the application of CSIA, SIP and MLEA including stable isotope tools for assessing natural and stimulated biodegradation of organic pollutants in field studies dealing with soil and groundwater contaminations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Contaminated lead environments of man: reviewing the lead isotopic evidence in sediments, peat, and soils for the temporal and spatial patterns of atmospheric lead pollution in Sweden.

    PubMed

    Bindler, Richard

    2011-08-01

    Clair Patterson and colleagues demonstrated already four decades ago that the lead cycle was greatly altered on a global scale by humans. Moreover, this change occurred long before the implementation of monitoring programs designed to study lead and other trace metals. Patterson and colleagues also developed stable lead isotope analyses as a tool to differentiate between natural and pollution-derived lead. Since then, stable isotope analyses of sediment, peat, herbaria collections, soils, and forest plants have given us new insights into lead biogeochemical cycling in space and time. Three important conclusions from our studies of lead in the Swedish environment conducted over the past 15 years, which are well supported by extensive results from elsewhere in Europe and in North America, are: (1) lead deposition rates at sites removed from major point sources during the twentieth century were about 1,000 times higher than natural background deposition rates a few thousand years ago (~10 mg Pb m(-2) year(-1) vs. 0.01 mg Pb m(-2) year(-1)), and even today (~1 mg Pb m(-2) year(-1)) are still almost 100 times greater than natural rates. This increase from natural background to maximum fluxes is similar to estimated changes in body burdens of lead from ancient times to the twentieth century. (2) Stable lead isotopes ((206)Pb/(207)Pb ratios shown in this paper) are an effective tool to distinguish anthropogenic lead from the natural lead present in sediments, peat, and soils for both the majority of sites receiving diffuse inputs from long range and regional sources and for sites in close proximity to point sources. In sediments >3,500 years and in the parent soil material of the C-horizon, (206)Pb/(207)Pb ratios are higher, 1.3 to >2.0, whereas pollution sources and surface soils and peat have lower ratios that have been in the range 1.14-1.18. (3) Using stable lead isotopes, we have estimated that in southern Sweden the cumulative anthropogenic burden of atmospherically deposited lead is ~2-5 g Pb m(-2) and ~1 g Pb m(-2) in the "pristine" north. Half of this cumulative total was deposited before industrialization. (4) In the vicinity of the Rönnskär smelter in northern Sweden, a major point source during the twentieth century, there is an isotopic pattern that deviates from the general trends elsewhere, reflecting the particular history of ore usage at Rönnskär, which further demonstrates the chronological record of lead loading recorded in peat and in soil mor horizons.

  14. Converting isotope ratios to diet composition - the use of mixing models - June 2010

    EPA Science Inventory

    One application of stable isotope analysis is to reconstruct diet composition based on isotopic mass balance. The isotopic value of a consumer’s tissue reflects the isotopic values of its food sources proportional to their dietary contributions. Isotopic mixing models are used ...

  15. Applications of stable isotopes in clinical pharmacology

    PubMed Central

    Schellekens, Reinout C A; Stellaard, Frans; Woerdenbag, Herman J; Frijlink, Henderik W; Kosterink, Jos G W

    2011-01-01

    This review aims to present an overview of the application of stable isotope technology in clinical pharmacology. Three main categories of stable isotope technology can be distinguished in clinical pharmacology. Firstly, it is applied in the assessment of drug pharmacology to determine the pharmacokinetic profile or mode of action of a drug substance. Secondly, stable isotopes may be used for the assessment of drug products or drug delivery systems by determination of parameters such as the bioavailability or the release profile. Thirdly, patients may be assessed in relation to patient-specific drug treatment; this concept is often called personalized medicine. In this article, the application of stable isotope technology in the aforementioned three areas is reviewed, with emphasis on developments over the past 25 years. The applications are illustrated with examples from clinical studies in humans. PMID:21801197

  16. Determining tissue-lead levels in large game mammals harvested with lead bullets: human health concerns.

    PubMed

    Tsuji, L J S; Wainman, B C; Jayasinghe, R K; VanSpronsen, E P; Liberda, E N

    2009-04-01

    Recently, the use of lead isotope ratios has definitively identified lead ammunition as a source of lead exposure for First Nations people, but the isotope ratios for lead pellets and bullets were indistinguishable. Thus, lead-contaminated meat from game harvested with lead bullets may also be contributing to the lead body burden; however, few studies have determined if lead bullet fragments are present in big game carcasses. We found elevated tissue-lead concentrations (up to 5,726.0 microg/g ww) in liver (5/9) and muscle (6/7) samples of big game harvested with lead bullets and radiographic evidence of lead fragments. Thus, we would advise that the tissue surrounding the wound channel be removed and discarded, as this tissue may be contaminated by lead bullet fragments.

  17. Modeling non-steady state radioisotope transport in the vadose zone - A case study using uranium isotopes at Peña Blanca, Mexico

    NASA Astrophysics Data System (ADS)

    Ku, T. L.; Luo, S.; Goldstein, S. J.; Murrell, M. T.; Chu, W. L.; Dobson, P. F.

    2009-10-01

    Current models using U- and Th-series disequilibria to study radioisotope transport in groundwater systems mostly consider a steady-state situation. These models have limited applicability to the vadose zone (UZ) where the concentration and migratory behavior of radioisotopes in fluid are often transitory. We present here, as a first attempt of its kind, a model simulating the non-steady state, intermittent fluid transport in vadose layers. It provides quantitative constraints on in-situ migration of dissolved and colloidal radioisotopes in terms of retardation factor and rock-water interaction (or water transit) time. For uranium, the simulation predicts that intermittent flushing in the UZ leads to a linear relationship between reciprocal U concentration and 234U/ 238U ratio in percolating waters, with the intercept and slope bearing information on the rates of dissolution and α-recoil of U isotopes, respectively. The general validity of the model appears to be borne out by the measurement of uranium isotopes in UZ waters collected at various times over a period during 1995-2006 from a site in the Peña Blanca mining district, Mexico, where the Nopal I uranium deposit is located. Enhanced 234U/ 238U ratios in vadose-zone waters resulting from lengthened non-flushing time as prescribed by the model provide an interpretative basis for using 234U/ 238U in cave calcites to reconstruct the regional changes in hydrology and climate. We also provide a theoretical account of the model's potential applications using radium isotopes.

  18. Tracing fetal and childhood exposure to lead using isotope analysis of deciduous teeth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepherd, Thomas J.; British Geological Survey, Keyworth, Nottingham; Dirks, Wendy

    We report progress in using the isotopic composition and concentration of Pb in the dentine and enamel of deciduous teeth to provide a high resolution time frame of exposure to Pb during fetal development and early childhood. Isotope measurements (total Pb and {sup 208}Pb/{sup 206}Pb, {sup 207}Pb/{sup 206}Pb ratios) were acquired by laser ablation inductively coupled mass spectrometry at contiguous 100 micron intervals across thin sections of the teeth; from the outer enamel surface to the pulp cavity. Teeth samples (n=10) were selected from two cohorts of children, aged 5–8 years, living in NE England. By integrating the isotope datamore » with histological analysis of the teeth, using the daily incremental lines in dentine, we were able to assign true estimated ages to each ablation point (first 2–3 years for molars, first 1–2 years for incisors+pre-natal growth). Significant differences were observed in the isotope composition and concentration of Pb between children, reflecting differences in the timing and sources of exposure during early childhood. Those born in 2000, after the withdrawal of leaded petrol in 1999, have the lowest dentine Pb levels (<0.2 µg Pb/g) with {sup 208}Pb/{sup 206}Pb (mean ±2σ: 2.126–2.079) {sup 208}Pb/{sup 206}Pb (mean ±2σ: 0.879–0.856) ratios that correlate very closely with modern day Western European industrial aerosols (PM{sub 10}, PM{sub 2.5}) suggesting that diffuse airborne pollution was probably the primary source and exposure pathway. Legacy lead, if present, is insignificant. For those born in 1997, dentine lead levels are typically higher (>0.4 µgPb/g) with {sup 208}Pb/{sup 206}Pb (mean ±2σ: 2.145–2.117) {sup 208}Pb/{sup 206}Pb (mean ±2σ: 0.898–0.882) ratios that can be modelled as a binary mix between industrial aerosols and leaded petrol emissions. Short duration, high intensity exposure events (1–2 months) were readily identified, together with evidence that dentine provides a good proxy for childhood changes in the isotope composition of blood Pb. Our pilot study confirms that laser ablation Pb isotope analysis of deciduous teeth, when carried out in conjunction with histological analysis, permits a reconstruction of the timing, duration and source of exposure to Pb during early childhood. With further development, this approach has the potential to study larger cohorts and appraise environments where the levels of exposure to Pb are much higher. - Highlights: • Reconstructing a high resolution chronology of early childhood exposure to lead. • Combined laser ablation lead isotope – histological analysis of children's teeth. • Using dentine to recover information on the intensity, duration and source of lead. • Importance of industrial airborne lead pollution in a post-leaded petrol era.« less

  19. ISOTOPIC EVIDENCE ON THE ORIGIN AND AGE OF THE BLIND RIVER URANIUM DEPOSITS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mair, J.A.; Maynes, A.D.; Patchett, J.E.

    Isotopic analyses of lead extracted from a variety of minerals from Blind River. Ontario, are repeated. The detrital minerals monazite and zircon both give leadratio ages of 2500 million years. The uraainite ore gives a lead- ratio age of 1700 m a. Other isotopic evidence is quoted to suggest that the age of the sediment in which the uranium is found may also be approximately 1700 m y, or older. The lead found in pyrite, pyrrhotite, sericite, and feldspar has anomalous isotopic ratios which can be explained by the hypothesis that they received additions of radiogenic lead from the uraninitesmore » (presumed to be 1700 m y old) 1200 to 1300 m y ago. In any case the age of these minerals, in the sense of time of last chemical alteration, is not greater than 1450 plus or minus 150 m y. All our measurements can be interpreted without asauming a major period of mineralization more recent than 1000 m y ago, although we are unable to rule out such a possibility from our evidence. (auth)« less

  20. Lead isotopic fingerprinting of aerosols to characterize the sources of atmospheric lead in an industrial city of India

    NASA Astrophysics Data System (ADS)

    Sen, Indra S.; Bizimis, Michael; Tripathi, Sachchida Nand; Paul, Debajyoti

    2016-03-01

    Anthropogenic Pb in the environment is primarily sourced from combustion of fossil fuel and high-temperature industries such as smelters. Identifying the sources and pathways of anthropogenic Pb in the environment is important because Pb toxicity is known to have adverse effects on human health. Pb pollution sources for America, Europe, and China are well documented. However, sources of atmospheric Pb are unknown in India, particularly after leaded gasoline was phased out in 2000. India has a developing economy with a rapidly emerging automobile and high temperature industry, and anthropogenic Pb emission is expected to rise in the next decade. In this study, we report on the Pb-isotope compositions and trace metal ratios of airborne particulates collected in Kanpur, a large city in northern part of India. The study shows that the PM10 aerosols had elevated concentration of Cd, Pb, Zn, As, and Cu in the Kanpur area, however their concentrations are well below the United States Environmental Protection Agency chronic exposure limit. Lead isotopic and trace metal data reveal industrial emission as the plausible source of anthropogenic Pb in the atmosphere in Kanpur. However, Pb isotopic compositions of potential source end-members are required to fully evaluate Pb contamination in India over time. This is the first study that characterizes the isotopic composition of atmospheric Pb in an Indian city after leaded gasoline was phased out by 2000.

  1. Lead isotope compositions of Late Cretaceous and early Tertiary igneous rocks and sulfide minerals in Arizona: Implications for the sources of plutons and metals in porphyry copper deposits

    USGS Publications Warehouse

    Bouse, R.M.; Ruiz, J.; Titley, S.R.; Tosdal, R.M.; Wooden, J.L.

    1999-01-01

    Porphyry copper deposits in Arizona are genetically associated with Late Cretaceous and early Tertiary igneous complexes that consist of older intermediate volcanic rocks and younger intermediate to felsic intrusions. The igneous complexes and their associated porphyry copper deposits were emplaced into an Early Proterozoic basement characterized by different rocks, geologic histories, and isotopic compositions. Lead isotope compositions of the Proterozoic basement rocks define, from northwest to southeast, the Mojave, central Arizona, and southeastern Arizona provinces. Porphyry copper deposits are present in each Pb isotope province. Lead isotope compositions of Late Cretaceous and early Tertiary plutons, together with those of sulfide minerals in porphyry copper deposits and of Proterozoic country rocks, place important constraints on genesis of the magmatic suites and the porphyry copper deposits themselves. The range of age-corrected Pb isotope compositions of plutons in 12 Late Cretaceous and early Tertiary igneous complexes is 206Pb/204Pb = 17.34 to 22.66, 207Pb/204Pb = 15.43 to 15.96, and 208Pb/204Pb = 37.19 to 40.33. These Pb isotope compositions and calculated model Th/U are similar to those of the Proterozoic rocks in which the plutons were emplaced, thereby indicating that Pb in the younger rocks and ore deposits was inherited from the basement rocks and their sources. No Pb isotope differences distinguish Late Cretaceous and early Tertiary igneous complexes that contain large economic porphyry copper deposits from less rich or smaller deposits that have not been considered economic for mining. Lead isotope compositions of Late Cretaceous and early Tertiary plutons and sulfide minerals from 30 metallic mineral districts, furthermore, require that the southeastern Arizona Pb province be divided into two subprovinces. The northern subprovince has generally lower 206Pb/204Pb and higher model Th/U, and the southern subprovince has higher 206Pb/204Pb and lower model Th/U. These Pb isotope differences are inferred to result from differences in their respective post-1.7 Ga magmatic histories. Throughout Arizona, Pb isotope compositions of Late Cretaceous and early Tertiary plutons and associated sulfide minerals are distinct from those of Jurassic plutons and also middle Tertiary igneous rocks and sulfide minerals. These differences most likely reflect changes in tectonic setting and magmatic sources. Within Late Cretaceous and early Tertiary igneous complexes that host economic porphyry copper deposits, there is commonly a decrease in Pb isotope composition from older to younger plutons. This decrease in Pb isotope values with time suggests an increasing involvement of crust with lower U/Pb than average crust in the source(s) of Late Cretaceous and early Tertiary magmas. Lead isotope compositions of the youngest porphyries in the igneous complexes are similar to those in most sulfide minerals within the associated porphyry copper deposit. This Pb isotope similarity argues for a genetic link between them. However, not all Pb in the sulfide minerals in porphyry copper deposits is magmatically derived. Some sulfide minerals, particularly those that are late stage, or distal to the main orebody, or in Proterozoic or Paleozoic rocks, have elevated Pb isotope compositions displaced toward the gross average Pb isotope composition of the local country rocks. The more radiogenic isotopic compositions argue for a contribution of Pb from those rocks at the site of ore deposition. Combining the Pb isotope data with available geochemical, isotopic, and petrologic data suggests derivation of the young porphyry copper-related plutons, most of their Pb, and other metals from a hybridized lower continental crustal source. Because of the likely involvement of subduction-related mantle-derived basaltic magma in the hybridized lower crustal source, an indiscernible mantle contribution is probable in the porphyry magmas. Clearly, in addition

  2. DISSOLUTION AND ANALYSIS OF YELLOWCAKE COMPONENTS FOR FINGERPRINTING UOC SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hexel, Cole R; Bostick, Debra A; Kennedy, Angel K

    2012-01-01

    There are a number of chemical and physical parameters that might be used to help elucidate the ore body from which uranium ore concentrate (UOC) was derived. It is the variation in the concentration and isotopic composition of these components that can provide information as to the identity of the ore body from which the UOC was mined and the type of subsequent processing that has been undertaken. Oak Ridge National Laboratory (ORNL) in collaboration with Lawrence Livermore and Los Alamos National Laboratories is surveying ore characteristics of yellowcake samples from known geologic origin. The data sets are being incorporatedmore » into a national database to help in sourcing interdicted material, as well as aid in safeguards and nonproliferation activities. Geologic age and attributes from chemical processing are site-specific. Isotopic abundances of lead, neodymium, and strontium provide insight into the provenance of geologic location of ore material. Variations in lead isotopes are due to the radioactive decay of uranium in the ore. Likewise, neodymium isotopic abundances are skewed due to the radiogenic decay of samarium. Rubidium decay similarly alters the isotopic signature of strontium isotopic composition in ores. This paper will discuss the chemical processing of yellowcake performed at ORNL. Variations in lead, neodymium, and strontium isotopic abundances are being analyzed in UOC from two geologic sources. Chemical separation and instrumental protocols will be summarized. The data will be correlated with chemical signatures (such as elemental composition, uranium, carbon, and nitrogen isotopic content) to demonstrate the utility of principal component and cluster analyses to aid in the determination of UOC provenance.« less

  3. Lead isotope systematics of some Apollo 17 soils and some separated components from 76501

    NASA Technical Reports Server (NTRS)

    Church, S. E.; Tilton, G. R.

    1974-01-01

    Isotopic lead data from bulk samples of Apollo 17 soils were analyzed, and they define a chord in a concordia diagram, showing the presence of a component or components containing excess radiogenic lead with Pb-207/Pb-206 equal to about 1.32. The chord is distinctly different from the cataclysm chord, for which Pb-207/Pb-206 is approximately 1.45. Nitric acid analysis of plagioclase indicates lead ages of around 4.35 AE, in agreement with previous findings. Agglutinates from soil 76501,34 show loss of approximately 15% of lead.

  4. Stable Isotopes in Evaluation of Greenhouse Gas Emissions

    USDA-ARS?s Scientific Manuscript database

    Isotopes offer a unique way to have natural tracers present in the ecosystem to track produced greenhouse gases (GHG) through multiple scales. Isotopes are simply atoms of the same element (same number of protons) with differing number of neutrons. This differing number of neutrons leads to differen...

  5. Radiogenic lead as coolant, reflector and moderator in advanced fast reactors

    NASA Astrophysics Data System (ADS)

    Kulikov, E. G.

    2017-01-01

    Main purpose of the study is assessing reasonability for recovery, production and application of radiogenic lead as a coolant, neutron moderator and neutron reflector in advanced fast reactors. When performing the study, thermal, physical and neutron-physical properties of natural and radiogenic lead were analyzed. The following results were obtained: 1. Radiogenic lead with high content of isotope 208Pb can be extracted from thorium or mixed thorium-uranium ores because 208Pb is a final product of 232Th natural decay chain. 2. The use of radiogenic lead with high 208Pb content in advanced fast reactors and accelerator-driven systems (ADS) makes it possible to improve significantly their neutron-physical and thermal-hydraulic parameters. 3. The use of radiogenic lead with high 208Pb content in advanced fast reactors as a coolant opens the possibilities for more intense fuel breeding and for application of well-known oxide fuel instead of the promising but not tested enough nitride fuel under the same safety parameters. 4. The use of radiogenic lead with high 208Pb content in ADS as a coolant can upgrade substantially the level of neutron flux in the ADS blanket, which enables effective transmutation of radioactive wastes with low cross-sections of radiative neutron capture.

  6. Coupling lead isotopes and element concentrations in epiphytic lichens to track sources of air emissions in the Alberta Oil Sands Region

    EPA Science Inventory

    A study was conducted that coupled use of element concentrations and lead (Pb) isotope ratios in the lichen Hypogymnia physodes collected during 2002 and 2008, to assess the impacts of air emissions from the Alberta Oil Sands Region (AOSR, Canada) mining and processing operations...

  7. Radiocarbon as a Novel Tracer of Extra-Antarctic Feeding in Southern Hemisphere Humpback Whales.

    PubMed

    Eisenmann, Pascale; Fry, Brian; Mazumder, Debashish; Jacobsen, Geraldine; Holyoake, Carlysle Sian; Coughran, Douglas; Bengtson Nash, Susan

    2017-06-29

    Bulk stable isotope analysis provides information regarding food web interactions, and has been applied to several cetacean species for the study of migration ecology. One limitation in bulk stable isotope analysis arises when a species, such as Southern hemisphere humpback whales, utilises geographically distinct food webs with differing isotopic baselines. Migrations to areas with different baselines can result in isotopic changes that mimic changes in feeding relations, leading to ambiguous food web interpretations. Here, we demonstrate the novel application of radiocarbon measurement for the resolution of such ambiguities. Radiocarbon was measured in baleen plates from humpback whales stranded in Australia between 2007 and 2013, and in skin samples collected in Australia and Antarctica from stranded and free-ranging animals. Radiocarbon measurements showed lower values for Southern Ocean feeding than for extra-Antarctic feeding in Australian waters. While the whales mostly relied on Antarctic-derived energy stores during their annual migration, there was some evidence of feeding within temperate zone waters in some individuals. This work, to our knowledge, provides the first definitive biochemical evidence for supplementary feeding by southern hemisphere humpback whales within temperate waters during migration. Further, the work contributes a powerful new tool (radiocarbon) for tracing source regions and geographical feeding.

  8. Reconstruction of historical lead contamination and sources in Lake Hailing, Eastern China: a Pb isotope study.

    PubMed

    Zhang, Rui; Guan, Minglei; Shu, Yujie; Shen, Liya; Chen, Xixi; Zhang, Fan; Li, Tiegang; Jiang, Tingchen

    2016-05-01

    The history records of lead and its stable isotopic ratios were determined in a sediment core to receive anthropogenic impacts on the Lake Hailing in eastern China. The sediment core was dated based on (210)Pb, (137)Cs, and (239+240)Pu. The historical changes of Pb/Al and Pb isotope ratios showed increasing trend upward throughout the core, suggesting changes in energy usage and correlating closely with the experience of a rapid economic and industrial development of the catchment, Linyi City, in eastern China. Based on the mixing end member model of Pb isotope ratios, coal combustion emission dominated anthropogenic Pb sources in the half part of the century contributing 13 to 43 % of total Pb in sediment. Moreover, contributions of chemical and organic fertilizer were 1-13 and 5-14 %, respectively. In contrast, the contribution of leaded gasoline was low than 8 %. The results indicated that historical records of Pb contamination predominantly sourced from coal combustion and chemical and organic fertilizer in the catchment. In addition, an increase of coal combustion source and fertilizers was found throughout the sediment core, whereas the contribution of leaded gasoline had declined after 2000s, which is attributed to the phaseout of leaded gasoline in China.

  9. A modified lead-matrix separation procedure shown for lead isotope analysis in Trojan silver artefacts as an example.

    PubMed

    Vogl, Jochen; Paz, Boaz; Koenig, Maren; Pritzkow, Wolfgang

    2013-03-01

    A modified Pb-matrix separation procedure using NH4HCO3 solution as eluent has been developed and validated for determination of Pb isotope amount ratios by thermal ionization mass spectrometry. The procedure is based on chromatographic separation using the Pb·Spec resin and an in-house-prepared NH4HCO3 solution serving as eluent. The advantages of this eluent are low Pb blanks (<40 pg mL(-1)) and the property that NH4HCO3 can be easily removed by use of a heating step (>60 °C). Pb recovery is >95 % for water samples. For archaeological silver samples, however, the Pb recovery is reduced to approximately 50 %, but causes no bias in the determination of Pb isotope amount ratios. The validated procedure was used to determine lead isotope amount ratios in Trojan silver artefacts with expanded uncertainties (k = 2) <0.09 %.

  10. Lead spatio-temporal pattern identification in urban microenvironments using moss bags and the Kohonen self-organizing maps

    NASA Astrophysics Data System (ADS)

    Deljanin, Isidora; Antanasijević, Davor; Vuković, Gordana; Urošević, Mira Aničić; Tomašević, Milica; Perić-Grujić, Aleksandra; Ristić, Mirjana

    2015-09-01

    The first investigation of the use of the Kohonen self-organizing map (SOM) which includes lead concentration and its isotopic composition in moss bags to assess the spatial and temporal patterns of lead in the urban microenvironments is presented in this paper. The moss bags experiment was carried out during 2011 in the city tunnel in Belgrade, as well as in street canyons at different heights (4, 8 and 16 m) and in public garages. The moss bags were exposed for 5 and 10 weeks. The results revealed that the 10 weeks period represents suitable exposure time in screening Pb isotopic composition in active biomonitoring analysis. The obtained results showed that the SOM analysis, by recognizing slight differences among moss samples regarding exposure time, horizontal and vertical spatial distribution, with both, contribution of stable lead isotopes and Pb concentration, could be recommended in biomonitoring analysis of lead distribution in urban microenvironments.

  11. Isotope dilution inductively coupled plasma mass spectrometry (ID ICP-MS) for the certification of lead and cadmium in environmental standard reference materials.

    PubMed

    Murphy, K E; Beary, E S; Rearick, M S; Vocke, R D

    2000-10-01

    Lead (Pb) and cadmium (Cd) have been determined in six new environmental standard reference materials (SRMs) using isotope dilution inductively coupled plasma mass spectrometry (ID ICP-MS). The SRMs are the following: SRM 1944, New York-New Jersey Waterway Sediment, SRMs 2583 and 2584, Trace Elements in Indoor Dust, Nominal 90 mg/kg and 10,000 mg/kg Lead, respectively, SRMs 2586 and 2587, Trace Elements in Soil Containing Lead from Paint, Nominal 500 mg/kg and 3,000 mg/kg Lead, respectively, and SRM 2782, Industrial Sludge. The capabilities of ID ICP-MS for the certification of Pb and Cd in these materials are assessed. Sample preparation and ratio measurement uncertainties have been evaluated. Reproducibility and accuracy of the established procedures are demonstrated by determination of gravimetrically prepared primary standard solutions and by comparison with isotope dilution thermal ionization mass spectrometry (ID TIMS). Material heterogeneity was readily demonstrated to be the dominant source of uncertainty in the certified values.

  12. Laser photochemical lead isotopes separation for harmless nuclear power engineering

    NASA Astrophysics Data System (ADS)

    Bokhan, P. A.; Fateev, N. V.; Kim, V. A.; Zakrevsky, D. E.

    2016-09-01

    The collisional quenching of the metastable 3 P 1,2 and 1 D 2 lead atoms is studied experimentally in the gas flow of the lead atoms, reagent-molecules and a carrier gas Ar. The experimental parameters were similar to the conditions that are required in the operation of the experimental setup for photochemical isotope separation. Excited atoms are generated under electron impact conditions created by a gas glow discharge through the mixture of gases and monitored photoelectrically by attenuation of atomic resonance radiation from hollow cathode 208Pb lamp. The decay of the excited atoms has been studied in the presence various molecules and total cross section data are reported. The flow tube measurements has allowed to separate the physical and chemical quenching channels and measure the rates of the chemical reaction excited lead with N2O, CH2Cl2, SF6 and CuBr molecules. These results are discussed in the prospects of the obtaining isotopically modified lead as a promising coolant in the reactors on the fast-neutron.

  13. Modeling of water isotopes in polar regions and application to ice core studies

    NASA Astrophysics Data System (ADS)

    Jouzel, J.

    2012-04-01

    Willi Dansgaard spear-headed the use of the stable isotopes of water in climatology and palaeoclimatology especially as applied to deep ice cores for which measurements of the oxygen and hydrogen isotope ratios remain the key tools for reconstructing continuous palaeotemperature records. In the line of his pioneering work on "Stable isotopes in precipitation" published in Tellus in 1964, I will review how isotopic models, either Rayleigh type or based on the implementation of water isotopes in General Circulation Models, have developed and been used for applications in polar ice core studies. This will include a discussion of the conventional approach for interpreting water isotopes in ice cores and of additional information provided by measurements of the deuterium excess and more recently of the 17O-excess.

  14. Pb isotope systematics in volcanic river system: Constraints about weathering processes

    NASA Astrophysics Data System (ADS)

    Negrel, P. J.; Millot, R.; Petelet-Giraud, E.; Guerrot, C.

    2012-12-01

    We present a series of lead isotopes in soils and sediments developed on volcanic rocks forming a small watershed flowing through the Massif Central (France). The Massif Central volcanic province is a widespread area of Tertiary to Recent continental alkaline volcanism comprising alkali basalts and basanites. The Allanche watershed has an area of 160 km2, a maximum altitude in the watershed of 1400 m (a.s.l.) and the relief between the extreme sampling points of 340 m The river is 29 km long from headwaters to the outlet and from its origin in the Cézallier area to its mouth in the Allagnon river (a tributary of the Allier river), the Allanche river flows through the volcanic terrains of the lava plateau (11 to 2.5 Ma). Main bedrocks are basanites (nepheline or leucitic basalts), with SiO2 around 41-45%, low Na2O + K2O (<5%), and with modal or normative nepheline or leucite and a ground mass of clinopyroxene and plagioclase. Surrounding rocks are feldspatic basalts with SiO2 close to 46-49%, low Na2O + K2O (<5%). The main phase in these basalts is plagioclase with normative nepheline, hyperstene and olivine. Crustal contamination (e.g. by granite, gneiss or metasedimentary granulite, as stated by Downes, 1987, doi: 10.1144/GSL.SP.1987.030.01.25) has occurred in the differentiated magmas of both series, as witnessed by lead isotopic variations in conjunction with Rb/La ratios and lead contents. Using Pb isotope ratios, major and trace elements (from Négrel and Deschamps, 1996, Aquatic Geochemistry, 2, 1-27) we therefore compare sediments and soils evolution over the Allanche river watershed. K and Ca are considered as mobile reference elements and illustrate the weathering state of soils and sediments relative to parent rocks through a large decrease in K and Ca content when compared to Si; the sediments being less depleted than soils. Lead, with regards to Si shows three behaviour with depleted Si content- same lead content that bedrock, depleted Si content- less lead content and depleted Si content - high lead content that bedrock. The comparison of 1000Pb/K versus Si/K ratio evidenced the evolution line from weathering processes and the lead enrichment from atmospheric deposition as a major contributor to explain the deviation of several points from this line. Lead isotopes decrease from bedrock to sediments-soils without any clear relationship when compared to lead contents. The use of Pb-isotopic compositions showed that most of the lead budget in sediments and soils result from bedrock weathering with an influence of gasoline additive-lead derived inputs and a lack of lead input from agricultural activities.

  15. Tracking the weathering of basalts on Mars using lithium isotope fractionation models

    PubMed Central

    Losa‐Adams, Elisabeth; Gil‐Lozano, Carolina; Gago‐Duport, Luis; Uceda, Esther R.; Squyres, Steven W.; Rodríguez, J. Alexis P.; Davila, Alfonso F.; McKay, Christopher P.

    2015-01-01

    Abstract Lithium (Li), the lightest of the alkali elements, has geochemical properties that include high aqueous solubility (Li is the most fluid mobile element) and high relative abundance in basalt‐forming minerals (values ranking between 0.2 and 12 ppm). Li isotopes are particularly subject to fractionation because the two stable isotopes of lithium—7Li and 6Li—have a large relative mass difference (∼15%) that results in significant fractionation between water and solid phases. The extent of Li isotope fractionation during aqueous alteration of basalt depends on the dissolution rate of primary minerals—the source of Li—and on the precipitation kinetics, leading to formation of secondary phases. Consequently, a detailed analysis of Li isotopic ratios in both solution and secondary mineral lattices could provide clues about past Martian weathering conditions, including weathering extent, temperature, pH, supersaturation, and evaporation rate of the initial solutions in contact with basalt rocks. In this paper, we discuss ways in which Martian aqueous processes could have lead to Li isotope fractionation. We show that Li isotopic data obtained by future exploration of Mars could be relevant to highlighting different processes of Li isotopic fractionation in the past, and therefore to understanding basalt weathering and environmental conditions early in the planet's history. PMID:27642264

  16. New Isotopic Tracers for Shale Gas and Hydraulic Fracturing Fluids

    EPA Pesticide Factsheets

    The combined application of geochemistry, stable isotopes (δ18O, δ2H), strontium isotopes (87Sr/86Sr), boron isotopes (δ11B), and radium isotopes (228Ra/226Ra) provides a unique methodology for tracing and monitoring shale gas and fracking fluids in the environment.

  17. Tracing changes in atmospheric sources of lead contamination using lead isotopic compositions in Australian red wine.

    PubMed

    Kristensen, Louise Jane; Taylor, Mark Patrick; Evans, Andrew James

    2016-07-01

    Air quality data detailing changes to atmospheric composition from Australia's leaded petrol consumption is spatially and temporally limited. In order to address this data gap, wine was investigated as a potential proxy for atmospheric lead conditions. Wine spanning sixty years was collected from two wine regions proximal to the South Australian capital city, Adelaide, and analysed for lead concentration and lead and strontium isotopic composition for source apportionment. Maximum wine lead concentrations (328 μg/L) occur prior to the lead-in-air monitoring in South Australia in the later 1970s. Wine lead concentrations mirror available lead-in-air measurements and show a declining trend reflecting parallel reductions in leaded petrol emissions. Lead from petrol dominated the lead in wine ((206)Pb/(207)Pb: 1.086; (208)Pb/(207)Pb: 2.360) until the introduction of unleaded petrol, which resulted in a shift in the wine lead isotopic composition closer to vineyard soil ((206)Pb/(207)Pb: 1.137; (208)Pb/(207)Pb: 2.421). Current mining activities or vinification processes appear to have no impact with recent wine samples containing less than 4 μg/L of lead. This study demonstrates wine can be used to chronicle changes in environmental lead emissions and is an effective proxy for atmospherically sourced depositions of lead in the absence of air quality data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Tracing lead pollution sources in abandoned mine areas using stable Pb isotope ratios.

    PubMed

    Yoo, Eun-Jin; Lee, Jung-A; Park, Jae-Seon; Lee, Khanghyun; Lee, Won-Seok; Han, Jin-Seok; Choi, Jong-Woo

    2014-02-01

    This study focused on Pb isotope ratios of sediments in areas around an abandoned mine to determine if the ratios can be used as a source tracer. For pretreatment, sediment samples were dissolved with mixed acids, and a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS, Nu plasma II) was used to investigate the Pb isotopic composition of the samples. The measured isotope ratios were then corrected for instrumental mass fractionation by measuring the (203)Tl/(205)Tl ratio. Repeated measurements with the NIST SRM 981 reference material showed that the precision of all ratios was below 104 ppm (±2σ) for 50 ng/g. The isotope ratios ((207)Pb/(206)Pb) found were 0.85073 ± 0.0004~0.85373 ± 0.0003 for the main stream, while they were 0.83736 ± 0.0010 for the tributary and 0.84393 ± 0.0002 for the confluence. A binary mixing equation for isotope ratios showed that the contributions of mine lead to neighboring areas were up to 60%. Therefore, Pb isotope ratios can be a good source tracer for areas around abandoned mines.

  19. Evaluation of Pharmacokinetic Models for the Disposition of Lead (Pb) in Humans, in Support of Application to Occupational Exposure Limit Derivation

    DTIC Science & Technology

    2015-11-09

    as biokinetic or physiologically-based pharmacokinetic (PBPK) models, can readily incorporate multiple routes of exposure (e.g., baseline dietary ...1998) and in the code provided as a supplement to O’Flaherty (2000), as noted above. An aspect of the O’Flaherty model that contrasts to the... dietary Pb; a stable Pb isotope was substituted for some of the dietary Pb for limited periods. Tracer Pb concentrations were measured in blood

  20. Historic and Industrial Lead within the Northwest Pacific Ocean Evidenced by Lead Isotopes in Seawater.

    PubMed

    Zurbrick, Cheryl M; Gallon, Céline; Flegal, A Russell

    2017-02-07

    We report the continued lead (Pb) contamination of the Northwest Pacific Ocean in 2002 and present the first comprehensive Pb isotope data set for that region. In the upper ocean, a Pb concentration maxima (64-113 pmol kg -1 ) extended throughout the entire North Pacific Subtropical Gyre (NPSG). We determined most of the Pb in this feature was from industrial emissions by many nations in the 1980s and 1990s, with the largest contributions from leaded gasoline emissions. In contrast, the deep water (>1000 m) Pb concentrations were lower (6-37 pmol kg -1 ), and constituted a mix of background (natural) Pb and anthropogenic Pb inputs from preceding decades. Deep water below the Western Subarctic Gyre (WSAG) contained more industrial Pb than below the NPSG, which was attributed to a calculated 60-fold greater flux of particulate Pb to abyssal waters near the Asian continent. Assuming Pb isotope compositions in the North Pacific Ocean were homogeneous prior to large-scale 20th century anthropogenic inputs, this evidence suggests a relatively faster change in Pb isotope ratios of North Pacific deep water below the WSAG versus the NPSG.

  1. Concerns about Quadrupole ICP-MS Lead Isotopic Data and Interpretations in the Environment and Health Fields.

    PubMed

    Gulson, Brian; Kamenov, George D; Manton, William; Rabinowitz, Michael

    2018-04-11

    There has been a massive increase in recent years of the use of lead (Pb) isotopes in attempts to better understand sources and pathways of Pb in the environment and in man or experimental animals. Unfortunately, there have been many cases where the quality of the isotopic data, especially that obtained by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS), are questionable, resulting in questionable identification of potential sources, which, in turn, impacts study interpretation and conclusions. We present several cases where the isotopic data have compromised interpretation because of the use of only the major isotopes 208 Pb/ 206 Pb and 207 Pb/ 206 Pb, or their graphing in other combinations. We also present some examples comparing high precision data from thermal ionization (TIMS) or multi-collector plasma mass spectrometry (MC-ICP-MS) to illustrate the deficiency in the Q-ICP-MS data. In addition, we present cases where Pb isotopic ratios measured on Q-ICP-MS are virtually impossible for terrestrial samples. We also evaluate the Pb isotopic data for rat studies, which had concluded that Pb isotopic fractionation occurs between different organs and suggest that this notion of biological fractionation of Pb as an explanation for isotopic differences is not valid. Overall, the brief review of these case studies shows that Q-ICP-MS as commonly practiced is not a suitable technique for precise and accurate Pb isotopic analysis in the environment and health fields.

  2. Concerns about Quadrupole ICP-MS Lead Isotopic Data and Interpretations in the Environment and Health Fields

    PubMed Central

    Gulson, Brian; Manton, William; Rabinowitz, Michael

    2018-01-01

    There has been a massive increase in recent years of the use of lead (Pb) isotopes in attempts to better understand sources and pathways of Pb in the environment and in man or experimental animals. Unfortunately, there have been many cases where the quality of the isotopic data, especially that obtained by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS), are questionable, resulting in questionable identification of potential sources, which, in turn, impacts study interpretation and conclusions. We present several cases where the isotopic data have compromised interpretation because of the use of only the major isotopes 208Pb/206Pb and 207Pb/206Pb, or their graphing in other combinations. We also present some examples comparing high precision data from thermal ionization (TIMS) or multi-collector plasma mass spectrometry (MC-ICP-MS) to illustrate the deficiency in the Q-ICP-MS data. In addition, we present cases where Pb isotopic ratios measured on Q-ICP-MS are virtually impossible for terrestrial samples. We also evaluate the Pb isotopic data for rat studies, which had concluded that Pb isotopic fractionation occurs between different organs and suggest that this notion of biological fractionation of Pb as an explanation for isotopic differences is not valid. Overall, the brief review of these case studies shows that Q-ICP-MS as commonly practiced is not a suitable technique for precise and accurate Pb isotopic analysis in the environment and health fields. PMID:29641487

  3. Fate of Cd in Agricultural Soils: A Stable Isotope Approach to Anthropogenic Impact, Soil Formation, and Soil-Plant Cycling.

    PubMed

    Imseng, Martin; Wiggenhauser, Matthias; Keller, Armin; Müller, Michael; Rehkämper, Mark; Murphy, Katy; Kreissig, Katharina; Frossard, Emmanuel; Wilcke, Wolfgang; Bigalke, Moritz

    2018-02-20

    The application of mineral phosphate (P) fertilizers leads to an unintended Cd input into agricultural systems, which might affect soil fertility and quality of crops. The Cd fluxes at three arable sites in Switzerland were determined by a detailed analysis of all inputs (atmospheric deposition, mineral P fertilizers, manure, and weathering) and outputs (seepage water, wheat and barley harvest) during one hydrological year. The most important inputs were mineral P fertilizers (0.49 to 0.57 g Cd ha -1 yr -1 ) and manure (0.20 to 0.91 g Cd ha -1 yr -1 ). Mass balances revealed net Cd losses for cultivation of wheat (-0.01 to -0.49 g Cd ha -1 yr -1 ) but net accumulations for that of barley (+0.18 to +0.71 g Cd ha -1 yr -1 ). To trace Cd sources and redistribution processes in the soils, we used natural variations in the Cd stable isotope compositions. Cadmium in seepage water (δ 114/110 Cd = 0.39 to 0.79‰) and plant harvest (0.27 to 0.94‰) was isotopically heavier than in soil (-0.21 to 0.14‰). Consequently, parent material weathering shifted bulk soil isotope compositions to lighter signals following a Rayleigh fractionation process (ε ≈ 0.16). Furthermore, soil-plant cycling extracted isotopically heavy Cd from the subsoil and moved it to the topsoil. These long-term processes and not anthropogenic inputs determined the Cd distribution in our soils.

  4. Cs-Ba separation using N 2O as a reactant gas in a Multiple Collector-Inductively Coupled Plasma Mass Spectrometer collision-reaction cell: Application to the measurements of Cs isotopes in spent nuclear fuel samples

    NASA Astrophysics Data System (ADS)

    Granet, M.; Nonell, A.; Favre, G.; Chartier, F.; Isnard, H.; Moureau, J.; Caussignac, C.; Tran, B.

    2008-11-01

    In the general frameworks of the nuclear fuel cycle and environmental research field, the Cs isotopic composition must be known with high precision and accuracy. The direct determination of Cs isotopes by mass spectrometry techniques is generally hampered by the presence of Ba isobaric interferences however. Here we present a new method which takes advantage of the collision-reaction cell based Multiple Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) and allows to analyse Cs isotopes in the presence of Ba without prior separation step. The addition of N 2O gas in the cell leads to an antagonistic behavior of Cs + and Ba + as the latter reacts with the gas to form BaO + and BaOH + products whereas Cs + remains unreactive. The efficiency of the method was demonstrated for an UOx sample by comparing the results obtained (1) from the measurements of pure Cs fractions and (2) from Fission Products fractions containing more than 30 ionisable elements in addition to Cs, Ba, and where U and Pu were previously removed by using ion exchange resin. An excellent agreement is achieved between each set of experiments with an external reproducibility always better than 0.5% (RSD, k = 2). This study confirms the strong potential of collision-reaction cell to measure Cs isotopes in presence of interfering Ba, precluding therefore former systematic chemical separations.

  5. Application of non-traditional stable isotopes in analytical ecogeochemistry assessed by MC ICP-MS--A critical review.

    PubMed

    Irrgeher, Johanna; Prohaska, Thomas

    2016-01-01

    Analytical ecogeochemistry is an evolving scientific field dedicated to the development of analytical methods and tools and their application to ecological questions. Traditional stable isotopic systems have been widely explored and have undergone continuous development during the last century. The variations of the isotopic composition of light elements (H, O, N, C, and S) have provided the foundation of stable isotope analysis followed by the analysis of traditional geochemical isotope tracers (e.g., Pb, Sr, Nd, Hf). Questions in a considerable diversity of scientific fields have been addressed, many of which can be assigned to the field of ecogeochemistry. Over the past 15 years, other stable isotopes (e.g., Li, Zn, Cu, Cl) have emerged gradually as novel tools for the investigation of scientific topics that arise in ecosystem research and have enabled novel discoveries and explorations. These systems are often referred to as non-traditional isotopes. The small isotopic differences of interest that are increasingly being addressed for a growing number of isotopic systems represent a challenge to the analytical scientist and push the limits of today's instruments constantly. This underlines the importance of a metrologically sound concept of analytical protocols and procedures and a solid foundation of data processing strategies and uncertainty considerations before these small isotopic variations can be interpreted in the context of applied ecosystem research. This review focuses on the development of isotope research in ecogeochemistry, the requirements for successful detection of small isotopic shifts, and highlights the most recent and innovative applications in the field.

  6. Applications of stable isotope analysis in mammalian ecology.

    PubMed

    Walter, W David; Kurle, Carolyn M; Hopkins, John B

    2014-01-01

    In this editorial, we provide a brief introduction and summarize the 10 research articles included in this Special Issue on Applications of stable isotope analysis in mammalian ecology. The first three articles report correction and discrimination factors that can be used to more accurately estimate the diets of extinct and extant mammals using stable isotope analysis. The remaining seven applied research articles use stable isotope analysis to address a variety of wildlife conservation and management questions from the oceans to the mountains.

  7. ENVIRONMENTAL ISOTOPES FOR RESOLUTION OF HYDROLOGY PROBLEMS

    EPA Science Inventory

    The use of environmental isotopes as tracers in the hydrosphere is increasing as analytical instrumentation improves and more applications are discovered. There exists still misconceptions on the role of isotopes in resolving hydrology problems. Naturally occurring isotopes in th...

  8. IsoNose - Isotopic Tools as Novel Sensors of Earth Surfaces Resources - A new Marie Curie Initial Training Network

    NASA Astrophysics Data System (ADS)

    von Blanckenburg, Friedhelm; Bouchez, Julien; Bouman, Caludia; Kamber, Balz; Gaillardet, Jérôme; Gorbushina, Anna; James, Rachael; Oelkers, Eric; Tesmer, Maja; Ashton, John

    2015-04-01

    The Marie Curie Initial Training Network »Isotopic Tools as Novel Sensors of Earth Surfaces Resources - IsoNose« is an alliance of eight international partners and five associated partners from science and industry. The project is coordinated at the Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences and will run until February 2018. In the last 15 years advances in novel mass-spectrometric methods have opened opportunities to identify "isotopic fingerprints" of virtually all metals and to make use of the complete information contained in these fingerprints. The understanding developed with these new tools will ultimately guide the exploitation of Earth surface environments. However, progress in bringing these methods to end-users depends on a multi transfer of knowledge between (1) isotope Geochemistry and Microbiology, Environmental Sciences (2), Economic Geology and (3) instrument developers and users in the development of user-friendly and new mass spectrometric methods. IsoNose will focus on three major Earth surface resources: soil, water and metals. These resources are currently being exploited to an unprecedented extent and their efficient management is essential for future sustainable development. Novel stable isotope techniques will disclose the processes generating (e.g. weathering, mineral ore formation) and destroying (e.g. erosion, pollution) these resources. Within this field the following questions will be addressed and answered: - How do novel stable isotope signatures characterize weathering processes? - How do novel stable isotope signatures trace water transport? - How to use novel stable isotope as environmental tracers? - How to use novel stable isotope for detecting and exploring metal ores? - How to improve analytical capabilities and develop robust routine applications for novel stable isotopes? Starting from the central questions mentioned above the IsoNose activities are organized in five scientific work packages: 1. Making soil from rock 2. Dissolved metals in the global water cycle 3. Human influence on metal cycling 4. Innovations in metal ore exploration 5. New analytical tools Acknowledgement: The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/ under REA grant agreement n° [608069].

  9. Evaluation of Drosophila metabolic labeling strategies for in vivo quantitative proteomic analyses with applications to early pupa formation and amino acid starvation.

    PubMed

    Chang, Ying-Che; Tang, Hong-Wen; Liang, Suh-Yuen; Pu, Tsung-Hsien; Meng, Tzu-Ching; Khoo, Kay-Hooi; Chen, Guang-Chao

    2013-05-03

    Although stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics was first developed as a cell culture-based technique, stable isotope-labeled amino acids have since been successfully introduced in vivo into select multicellular model organisms by manipulating the feeding diets. An earlier study by others has demonstrated that heavy lysine labeled Drosophila melanogaster can be derived by feeding with an exclusive heavy lysine labeled yeast diet. In this work, we have further evaluated the use of heavy lysine and/or arginine for metabolic labeling of fruit flies, with an aim to determine its respective quantification accuracy and versatility. In vivo conversion of heavy lysine and/or heavy arginine to several nonessential amino acids was observed in labeled flies, leading to distorted isotope pattern and underestimated heavy to light ratio. These quantification defects can nonetheless be rectified at protein level using the normalization function. The only caveat is that such a normalization strategy may not be suitable for every biological application, particularly when modified peptides need to be individually quantified at peptide level. In such cases, we showed that peptide ratios calculated from the summed intensities of all isotope peaks are less affected by the heavy amino acid conversion and therefore less sequence-dependent and more reliable. Applying either the single Lys8 or double Lys6/Arg10 metabolic labeling strategy to flies, we quantitatively mapped the proteomic changes during the onset of metamorphosis and upon amino acid deprivation. The expression of a number of steroid hormone 20-hydroxyecdysone regulated proteins was found to be changed significantly during larval-pupa transition, while several subunits of the V-ATPase complex and components regulating actomyosin were up-regulated under starvation-induced autophagy conditions.

  10. Physics overview of AVLIS

    NASA Astrophysics Data System (ADS)

    Solarz, R. W.

    1985-02-01

    Atomic vapor laster isotope separation (AVLIS) represents the largest-scale potential application of tunable lasers that has received serious attention. The underlying physical principles were identified and optimized, the major technology components were developed, and the integrated enrichment performance of the process was tested. The central physical processes are outlined, progress to date on the technology elements is reviewed, and scaling laws are fomulated. Two primary applications are the production of light-water reactor fuel and the conversion of fuel-grade plutonium to weapons-grade material. A variety of applications exist that all potentially use a common base of AVLIS technology. These include missions such as the enrichment of mercury isotopes to improve fluorescent lamp efficiency, the enrichment of iodine isotopes for medical isotope use, and the cleanup of strontium from defense waste for recovering strontium isotopes for radiothermal mechanical generators. The ability to radidly assess the economic and technical feasibility of each mission is derived from the general applicability of AVLIS physics and AVLIS technology.

  11. The isotope mass effect on chlorine diffusion in dacite melt, with implications for fractionation during bubble growth

    NASA Astrophysics Data System (ADS)

    Fortin, Marc-Antoine; Watson, E. Bruce; Stern, Richard

    2017-12-01

    Previous experimental studies have revealed that the difference in diffusivity of two isotopes can be significant in some media and can lead to an observable fractionation effect in silicate melts based on isotope mass. Here, we report the first characterization of the difference in diffusivities of stable isotopes of Cl (35Cl and 37Cl). Using a piston-cylinder apparatus, we generated quenched melts of dacitic composition enriched in Cl; from these we fabricated diffusion couples in which Cl atoms were induced to diffuse in a chemical gradient at 1200 to 1350 °C and 1 GPa. We analyzed the run products by secondary ion mass spectrometry (SIMS) for their isotopic compositions along the diffusion profiles, and we report a diffusivity ratio for 37Cl/35Cl of 0.995 ± 0.001 (β = 0.09 ± 0.02). No significant effect of temperature on the diffusivity ratio was discernable over the 150 °C range covered by our experiments. The observed 0.5% difference in diffusivity of the two isotopes could affect our interpretation of isotopic measurements of Cl isotopes in bubble-bearing or degassed magmas, because bubble growth is regulated in part by the diffusive supply of volatiles to the bubble from the surrounding melt. Through numerical simulations, we constrain the extent of Cl isotopic fractionation between bubble and host melt during this process. Bubble growth rates vary widely in nature-which implies a substantial range in the expected magnitude of isotopic fractionation-but plausible growth scenarios lead to Cl isotopic fractionations up to about 5‰ enrichment of 35Cl relative to 37Cl in the bubble. This effect should be considered when interpreting Cl isotopic measurements of systems that have experienced vapor exsolution.

  12. Lead-isotopic data from sulfide minerals from the Cascade Range, Oregon and Washington

    USGS Publications Warehouse

    Church, S.E.; LeHuray, A.P.; Grant, A.R.; Delevaux, M.H.; Gray, J.E.

    1986-01-01

    Lead-isotopic studies of mineral deposits associated with Tertiary plutons found in the Cascade Range of Oregon and Washington demonstrate a rather uniform isotopic composition in various sulfide minerals ( 206Pb 204Pb = 18.84 to 19.05; 207Pb 204Pb = 15.57 to 15.62; 208Pb 204Pb = 38.49 to 38.74), show less variation than data from the volcanic rocks of the Cascade Range and fall within the mixing array defined by the MORB regression line and continental sediments. An evaluation of the role of crustal assimilation by hydrothermal convection during emplacement was made on five sulfide deposits associated with a single composite batholith, the Cloudy Pass pluton. The Pb-isotopic data and mass balance calculations suggest that only minor amounts of the lead were derived from the overlying Precambrian (?) Swakane Biotite Gneiss during emplacement. The bulk of the metal that occurs in sulfide deposits in the Cascade mineral belt appears to have been derived from subducted continental detritus. The variation of the Pb-isotopic signature of Sulfides from specific districts or deposits suggests that there is a correlation with age and structure of the crust. 206Pb 204Pb is greater than 18.92 in northern Washington and southern Oregon where deposits have intruded Mesozoic or older crust. However, the ore deposits between the northern Oregon border and central Oregon, south of Eugene, have intruded younger crust composed largely of mafic and andesitic volcanic rocks and 206Pb 204Pb lies between 18.84 and 18.92. This region, previously called the Columbia embayment, appears to be underlain by Tertiary volcanic rocks. Lead-isotopic data may be used to define the boundaries between discontinuous blocks of Mesozoic crust and Tertiary volcanic cover. ?? 1986.

  13. Lead concentration and isotope chronology in two coastal environments in Western and South East Asia

    NASA Astrophysics Data System (ADS)

    Carrasco, G. G.; Chen, M.; Boyle, E. A.; Zhao, N.; Nurhati, I. S.; Gevao, B.; al Ghadban, A.; Switzer, A.; Lee, J. M.

    2014-12-01

    Lead is a trace metal that is closely related to anthropogenic activity, mainly via leaded gasoline and coal combustion. The study of lead concentrations and isotopes in seawater, sediments, corals and aerosols allows for a systematic look at its sources and their time evolution in a natural environment. We will discuss results from two projects in Western and South East Asia, regions that have seen dramatic socio-economical changes over the past half-century that may have left environmental signals. These results highlight the usefulness of the method, indicate the degree of complexity of these systems, and point to the need for a continuous monitoring of anthropogenic trace metals in the small-medium coastal scale to be able to asses the larger scale effects of human activity. On the one hand, coastal Kuwait is heavily influenced by the Shat al-Arab river and shows a clear anthropogenic signature from Kuwait city. A mix of two sources can be tracked through the coral and sediment chronological records, with Pb206/Pb207 ratios (1.202 and 1.151) that approach the suspected source values (1.21 and 1.12) and eliminate the possibility of other sources. Through a wide sediment geographic distribution, the strength of the anthropogenic signature is modulated. On the other hand, Singapore offers a more complex system, where an apparent mix of two sources (extreme isotope ratios 1.215 and ~1.14) occurs also, but where either an unresolved potentially important third source (isotope ratio ~1.18), or an isotope exchange process should be invoked. The sediment and coral records allows us to track the changes through time; however, there seems to be incongruence with the aerosol isotope record. Further potential sources are being explored currently and will be discussed.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Facchetti, S.

    Many studies were dedicated to the evaluation of the impact of automotive lead on the environment and to the assessment of its absorption in the human population. They can be subdivided into two groups, those based on changes of air and blood lead concentrations and those based on changes of air and blood lead isotopic compositions. According to various authors, 50-66% of the lead added to petrol is mobilized in the atmosphere, while most of the remainder adheres to the walls of the exhaust system from which it is expelled by mechanical and thermal shocks in the forms of easilymore » sedimented particles. The fraction directly emitted by engine exhaust fumes is found in the form of fine particles, which can be transferred a long way from the emitting sources. However important the contribution of petrol lead to the total airborne lead may be, our knowledge does not permit a straightforward calculation of the percentage of petrol lead in total blood lead, which of course can also originate from other sources (e.g., industrial, natural). To evaluate this percentage in 1973, the idea of the Isotopic Lead Experiment (ILE project) was conceived to label, on a regional scale, petrol with a nonradioactive lead of an isotopic composition sufficiently different from that of background lead and sufficiently stable in time. This Account summarizes the main results obtained by the ILE project.« less

  15. Isotope separation by photochromatography

    DOEpatents

    Suslick, Kenneth S.

    1977-01-01

    An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.

  16. Geochronological and lead-isotope evidences for rapid crust formation in middle-proterozoic time: The Labrador example

    NASA Technical Reports Server (NTRS)

    Schaerer, Urs

    1988-01-01

    Extensive U-Pb geochronological studies in the Grenville and Makkovik provinces have shown that eastern Labrador is underlain by two distinct crustal blocks. In order to substantiate the juvenile character of the middle-Proterozoic crustal block, the isotopic compositon of lead in leached k-feldspars from the same rocks were analyzed. The results of the analysis are briefly discussed.

  17. Review: Current applications and challenges for liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS).

    PubMed

    Godin, Jean-Philippe; McCullagh, James S O

    2011-10-30

    High-precision isotope analysis is recognized as an essential research tool in many fields of study. Until recently, continuous flow isotope ratio mass spectrometry (CF-IRMS) was available via an elemental analyzer or a gas chromatography inlet system for compound-specific analysis of light stable isotopes. In 2004, however, an interface that coupled liquid chromatography with IRMS (LC/IRMS) became commercially available for the first time. This brought the capability for new areas of application, in particular enabling compound-specific δ(13)C analysis of non-volatile, aqueous soluble, compounds from complex mixtures. The interface design brought with it several analytical constraints, however, in particular a lack of compatibility with certain types of chromatography as well as limited flow rates and mobile phase compositions. Routine LC/IRMS methods have, however, been established for measuring the δ(13)C isotopic ratios of underivatized individual compounds for application in archeology, nutrition and physiology, geochemistry, hydrology, soil science and food authenticity. Seven years after its introduction, we review the technical advances and constraints, methodological developments and new applications of liquid chromatography coupled to isotope ratio mass spectrometry. Copyright © 2011 John Wiley & Sons, Ltd.

  18. U.S. Department of Energy Isotope Program

    ScienceCinema

    None

    2018-01-16

    The National Isotope Development Center (NIDC) interfaces with the User Community and manages the coordination of isotope production across the facilities and business operations involved in the production, sale, and distribution of isotopes. A virtual center, the NIDC is funded by the Isotope Development and Production for Research and Applications (IDPRA) subprogram of the Office of Nuclear Physics in the U.S. Department of Energy Office of Science. PNNL’s Isotope Program operates in a multi-program category-2 nuclear facility, the Radiochemical Processing Laboratory (RPL), that contains 16 hot cells and 20 gloveboxes. As part of the DOE Isotope Program, the Pacific Northwest National Laboratory dispenses strontium-90, neptunium-237, radium-223, and thorium-227. PNNL’s Isotope Program uses a dedicated hot-cell for strontium-90 dispensing and a dedicated glovebox for radium-223 and thorium-227 dispensing. PNNL’s Isotope Program has access to state of the art analytical equipment in the RPL to support their research and production activities. DOE Isotope Program funded research at PNNL has advanced the application of automated radiochemistry for isotope such as zirconium-89 and astatine-211 in partnership with the University of Washington.

  19. U.S. Department of Energy Isotope Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The National Isotope Development Center (NIDC) interfaces with the User Community and manages the coordination of isotope production across the facilities and business operations involved in the production, sale, and distribution of isotopes. A virtual center, the NIDC is funded by the Isotope Development and Production for Research and Applications (IDPRA) subprogram of the Office of Nuclear Physics in the U.S. Department of Energy Office of Science. PNNL’s Isotope Program operates in a multi-program category-2 nuclear facility, the Radiochemical Processing Laboratory (RPL), that contains 16 hot cells and 20 gloveboxes. As part of the DOE Isotope Program, the Pacific Northwestmore » National Laboratory dispenses strontium-90, neptunium-237, radium-223, and thorium-227. PNNL’s Isotope Program uses a dedicated hot-cell for strontium-90 dispensing and a dedicated glovebox for radium-223 and thorium-227 dispensing. PNNL’s Isotope Program has access to state of the art analytical equipment in the RPL to support their research and production activities. DOE Isotope Program funded research at PNNL has advanced the application of automated radiochemistry for isotope such as zirconium-89 and astatine-211 in partnership with the University of Washington.« less

  20. Evolving Pb isotope signatures of London airborne particulate matter (PM 10)-constraints from on-filter and solution-mode MC-ICP-MS.

    PubMed

    Noble, Stephen R; Horstwood, Matthew S A; Davy, Pamela; Pashley, Vanessa; Spiro, Baruch; Smith, Steve

    2008-07-01

    Pb isotope compositions of biologically significant PM(10) atmospheric particulates from a busy roadside location in London UK were measured using solution- and laser ablation-mode MC-ICP-MS. The solution-mode data for PM(10) sampled between 1998-2001 document a dramatic shift to increasingly radiogenic compositions as leaded petrol was phased out. LA-MC-ICP-MS isotope analysis, piloted on a subset of the available samples, is shown to be a potential reconnaissance analytical technique. PM(10) particles trapped on quartz filters were liberated from the filter surface, without ablating the filter substrate, using a 266 nm UV laser and a dynamic, large diameter, low-fluence ablation protocol. The Pb isotope evolution noted in the London data set obtained by both analytical protocols is similar to that observed elsewhere in Western Europe following leaded petrol elimination. The data therefore provide important baseline isotope composition information useful for continued UK atmospheric monitoring through the early 21(st) century.

  1. Diverging effects of isotopic fractionation upon molecular diffusion of noble gases in water: mechanistic insights through ab initio molecular dynamics simulations.

    PubMed

    Pinto de Magalhães, Halua; Brennwald, Matthias S; Kipfer, Rolf

    2017-03-22

    Atmospheric noble gases are routinely used as natural tracers to analyze gas transfer processes in aquatic systems. Their isotopic ratios can be employed to discriminate between different physical transport mechanisms by comparison to the unfractionated atmospheric isotope composition. In many applications of aquatic systems molecular diffusion was thought to cause a mass dependent fractionation of noble gases and their isotopes according to the square root ratio of their masses. However, recent experiments focusing on isotopic fractionation within a single element challenged this broadly accepted assumption. The determined fractionation factors of Ne, Ar, Kr and Xe isotopes revealed that only Ar follows the prediction of the so-called square root relation, whereas within the Ne, Kr and Xe elements no mass-dependence was found. The reason for this unexpected divergence of Ar is not yet understood. The aim of our computational exercise is to establish the molecular-resolved mechanisms behind molecular diffusion of noble gases in water. We make the hypothesis that weak intermolecular interactions are relevant for the dynamical properties of noble gases dissolved in water. Therefore, we used ab initio molecular dynamics to explicitly account for the electronic degrees of freedom. Depending on the size and polarizability of the hydrophobic particles such as noble gases, their motion in dense and polar liquids like water is subject to different diffusive regimes: the inter-cavity hopping mechanism of small particles (He, Ne) breaks down if a critical particle size achieved. For the case of large particles (Kr, Xe), the motion through the water solvent is governed by mass-independent viscous friction leading to hydrodynamical diffusion. Finally, Ar falls in between the two diffusive regimes, where particle dispersion is propagated at the molecular collision time scale of the surrounding water molecules.

  2. Isotope-coded ESI-enhancing derivatization reagents for differential analysis, quantification and profiling of metabolites in biological samples by LC/MS: A review.

    PubMed

    Higashi, Tatsuya; Ogawa, Shoujiro

    2016-10-25

    The analysis of the qualitative and quantitative changes of metabolites in body fluids and tissues yields valuable information for the diagnosis, pathological analysis and treatment of many diseases. Recently, liquid chromatography/electrospray ionization-(tandem) mass spectrometry [LC/ESI-MS(/MS)] has been widely used for these purposes due to the high separation capability of LC, broad coverage of ESI for various compounds and high specificity of MS(/MS). However, there are still two major problems to be solved regarding the biological sample analysis; lack of sensitivity and limited availability of stable isotope-labeled analogues (internal standards, ISs) for most metabolites. Stable isotope-coded derivatization (ICD) can be the answer for these problems. By the ICD, different isotope-coded moieties are introduced to the metabolites and one of the resulting derivatives can serve as the IS, which minimize the matrix effects. Furthermore, the derivatization can improve the ESI efficiency, fragmentation property in the MS/MS and chromatographic behavior of the metabolites, which lead to a high sensitivity and specificity in the various detection modes. Based on this background, this article reviews the recently-reported isotope-coded ESI-enhancing derivatization (ICEED) reagents, which are key components for the ICD-based LC/MS(/MS) studies, and their applications to the detection, identification, quantification and profiling of metabolites in human and animal samples. The LC/MS(/MS) using the ICEED reagents is the powerful method especially for the differential analysis (relative quantification) of metabolites in two comparative samples, simultaneous quantification of multiple metabolites whose stable isotope-labeled ISs are not available, and submetabolome profiling. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Lead isotopic studies of lunar soils - Their bearing on the time scale of agglutinate formation

    NASA Technical Reports Server (NTRS)

    Church, S. E.; Tilton, G. R.; Chen, J. H.

    1976-01-01

    Fines (smaller than 75 microns) and bulk soil were studied to analyze loss of volatile lead; losses of the order of 10% to 30% radiogenic lead during the production of agglutinates are assessed. Lead isotope data from fine-agglutinate pairs are analyzed for information on the time scale of micrometeorite bombardment, from the chords generated by the data in concordia diagrams. Resulting mean lead loss ages were compared to spallogenic gas exposure ages for all samples. Labile parentless radiogenic Pb residing preferentially on or in the fines is viewed as possibly responsible for aberrant lead loss ages. Bulk soils plot above the concordia curve (in a field of excess radiogenic Pb) for all samples with anomalous ages.

  4. Precambrian ophiolites of Arabia; a summary of geologic settings, U-Pb geochronology, lead isotope characteristics, and implications for microplate accretion, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Pallister, John S.; Stacey, J.S.; Fischer, L.B.; Premo, W.R.

    1988-01-01

    Feldspar lead-isotope data are of three types: 1) lead from the ophiolitic rocks and arc tonalites of the northwestern Arabian Shield and ophiolitic rocks of the Nabitah suture zone is similar to lead in present midocean ridge basalt, 2) anomalous radiogenic data from the Thurwah ophiolite are from rocks that contain zircons from pre-late Proterozoic continental crust, and 3) feldspar from the Urd ophiolite shows retarded uranogenic lead growth and is related either to an anomalous oceanic mantle source, or in an unknown manner to ancient continental mantle or lower crust of the eastern Arabian Shield.

  5. Water Isotopes in the GISS GCM: History, Applications and Potential

    NASA Astrophysics Data System (ADS)

    Schmidt, G. A.; LeGrande, A. N.; Field, R. D.; Nusbaumer, J. M.

    2017-12-01

    Water isotopes have been incorporated in the GISS GCMs since the pioneering work of Jean Jouzel in the 1980s. Since 2005, this functionality has been maintained within the master branch of the development code and has been usable (and used) in all subsequent versions. This has allowed a wide variety of applications, across multiple time-scales and interests, to be tackled coherently. Water isotope tracers have been used to debug the atmospheric model code, tune parameterisations of moist processes, assess the isotopic fingerprints of multiple climate drivers, produce forward models for remotely sensed isotope products, and validate paleo-climate interpretations from the last millennium to the Eocene. We will present an overview of recent results involving isotope tracers, including improvements in models for the isotopic fractionation processes themselves, and demonstrate the potential for using these tracers and models more systematically in paleo-climate reconstructions and investigations of the modern hydrological cycle.

  6. Determination of 210Pb concentration in NORM waste - An application of the transmission method for self-attenuation corrections for gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Bonczyk, Michal

    2018-07-01

    This article deals with the problem of the self-attenuation of low-energy gamma-rays from the isotope of lead 210Pb (46.5 keV) in industrial waste. The 167 samples of industrial waste, belonging to nine categories, were tested by means of gamma spectrometry in order to determine 210Pb activity concentration. The experimental method for self-attenuation corrections for gamma rays emitted by lead isotope was applied. Mass attenuation coefficients were determined for energy of 46.5 keV. Correction factors were calculated based on mass attenuation coefficients, sample density and thickness. A mathematical formula for correction calculation was evaluated. The 210Pb activity concentration obtained varied in the range from several Bq·kg-1 up to 19,810 Bq kg-1. The mass attenuation coefficients varied across the range of 0.19-4.42 cm2·g-1. However, the variation of mass attenuation coefficient within some categories of waste was relatively small. The calculated corrections for self-attenuation were 0.98 - 6.97. The high value of correction factors must not be neglect in radiation risk assessment.

  7. Production of medically useful bromine isotopes via alpha-particle induced nuclear reactions

    NASA Astrophysics Data System (ADS)

    Breunig, Katharina; Scholten, Bernhard; Spahn, Ingo; Hermanne, Alex; Spellerberg, Stefan; Coenen, Heinz H.; Neumaier, Bernd

    2017-09-01

    The cross sections of α-particle induced reactions on arsenic leading to the formation of 76,77,78Br were measured from their respective thresholds up to 37 MeV. Thin sediments of elemental arsenic powder were irradiated together with Al degrader and Cu monitor foils using the established stacked-foil technique. For determination of the effective α-particle energies and of the effective beam current through the stacks the cross-section ratios of the monitor nuclides 67Ga/66Ga were used. This should help resolve discrepancies in existing literature data. Comparison of the data with the available excitation functions shows some slight energy shifts as well as some differences in curve shapes. The calculated thick target yields indicate, that 77Br can be produced in the energy range Eα = 25 → 17 MeV free of isotopic impurities in quantities sufficient for medical application.

  8. NMR Studies of Low-Gamma Nuclei in Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasylishen, Roderick E.; Forgeron, Michelle A.; Siegel, Renee

    2006-07-24

    Over the past five years we have devoted considerable time to solid-state NMR investigaitons of nuclei, which are traditionally known as "difficult" because of their small magnetic moments. These include quadrupolar nuclei such as 35Cl, 53 Cr, 91Zr, 95Mo, 99Ru, 131 Xe, as well as spin-1/2 nuclei such as 109Ag. While NMR studies of such isotopes remain challenging, the use of moderate to high magnetic field strengths together with a variety of enhancement techniques is leading to many interesting applications. In this talk some of our successes in studying these isotopes will be presented. For example, we will present preliminarymore » results of 131Xe NMR studies of solid sodium perxenate, as well as 109Ag NMR studies of silver dialkylphosphites. Our experience using population enhancement techniques that utilize hyperbolic secant pulses will also be discussed.« less

  9. Lead isotope ratio measurements as indicators for the source of lead poisoning in Mute swans (Cygnus olor) wintering in Puck Bay (northern Poland).

    PubMed

    Binkowski, Łukasz J; Meissner, Włodzimierz; Trzeciak, Marta; Izevbekhai, Kelvin; Barker, James

    2016-12-01

    Lead (Pb) poisoning is most commonly linked amongst anthropogenically-caused deaths in waterfowl and this is often associated with hunting and fishing activities. However, the exact identification of the source may be difficult with commonly-used techniques. We have studied isotope ratios using Inductively-Coupled Plasma Mass Spectrometry (ICP-MS) to investigate the source of Pb in the blood of Mute swans (n = 49) wintering in northern Poland. We compared the values of isotopic ratios from blood and ammunition pellets available on the Polish market. The mean Pb concentrations found was 0.241 μg/g (w/w) and nearly half of the blood specimens had elevated Pb levels (higher than the cited 0.23 μg/g w/w threshold of poisoning). Only the mean 208/206 Pb isotope ratio was similar in blood and pellet samples. Mean ratios of isotopes 206/204, 206/207 and 208/207 in swans' blood and in pellets differed significantly. Moreover, coefficients of variation were higher in blood samples than in pellets. These discrepancies and significant differences in abundance of 204 Pb and 207 Pb isotopes in both materials indicated that pellets available today on the Polish market were not the source of Pb in the blood of Mute swans wintering in northern Poland. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Isotope separation by photochromatography

    DOEpatents

    Suslick, K.S.

    1975-10-03

    A photochromatographic method for isotope separation is described. An isotopically mixed molecular species is adsorbed on an adsorptive surface, and the adsorbed molecules are irradiated with radiation of a predetermined wavelength which will selectively excite desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thus separate them from the undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes. (BLM)

  11. Forensic analysis of explosives using isotope ratio mass spectrometry (IRMS)--preliminary study on TATP and PETN.

    PubMed

    Benson, Sarah J; Lennard, Christopher J; Maynard, Philip; Hill, David M; Andrew, Anita S; Roux, Claude

    2009-06-01

    The application of isotopic techniques to investigations requiring the provision of evidence to a Court is limited. The objective of this research was to investigate the application of light stable isotopes and isotope ratio mass spectrometry (IRMS) to solve complex forensic cases by providing a level of discrimination not achievable utilising traditional forensic techniques. Due to the current threat of organic peroxide explosives, such as triacetone triperoxide (TATP), research was undertaken to determine the potential of IRMS to differentiate samples of TATP that had been manufactured utilising different starting materials and/or manufacturing processes. In addition, due to the prevalence of pentaerythritoltetranitrate (PETN) in detonators, detonating cord, and boosters, the potential of the IRMS technique to differentiate PETN samples from different sources was also investigated. Carbon isotope values were measured in fourteen TATP samples, with three definite groups appearing in the initial sample set based on the carbon data alone. Four additional TATP samples (in a second set of samples) were distinguishable utilising the carbon and hydrogen isotopic compositions individually, and also in combination with the oxygen isotope values. The 3D plot of the carbon, oxygen and hydrogen data demonstrated the clear discrimination of the four samples of TATP. The carbon and nitrogen isotope values measured from fifteen PETN samples, allowed samples from different sources to be readily discriminated. This paper demonstrates the successful application of IRMS to the analysis of explosives of forensic interest to assist in discriminating samples from different sources. This research represents a preliminary evaluation of the IRMS technique for the measurement of stable isotope values in TATP and PETN samples, and supports the dedication of resources for a full evaluation of this application in order to achieve Court reportable IRMS results.

  12. Seawater osmium isotope evidence for a middle Miocene flood basalt event in ferromanganese crust records

    USGS Publications Warehouse

    Klemm, V.; Frank, M.; Levasseur, S.; Halliday, A.N.; Hein, J.R.

    2008-01-01

    Three ferromanganese crusts from the northeast, northwest and central Atlantic were re-dated using osmium (Os) isotope stratigraphy and yield ages from middle Miocene to the present. The three Os isotope records do not show evidence for growth hiatuses. The reconstructed Os isotope-based growth rates for the sections older than 10??Ma are higher than those determined previously by the combined beryllium isotope (10Be/9Be) and cobalt (Co) constant-flux methods, which results in a decrease in the maximum age of each crust. This re-dating does not lead to significant changes to the interpretation of previously determined radiogenic isotope neodymium, lead (Nd, Pb) time series because the variability of these isotopes was very small in the records of the three crusts prior to 10??Ma. The Os isotope record of the central Atlantic crust shows a pronounced minimum during the middle Miocene between 15 and 12??Ma, similar to a minimum previously observed in two ferromanganese crusts from the central Pacific. For the other two Atlantic crusts, the Os isotope records and their calibration to the global seawater curve for the middle Miocene are either more uncertain or too short and thus do not allow for a reliable identification of an isotopic minimum. Similar to pronounced minima reported previously for the Cretaceous/Tertiary and Eocene/Oligocene boundaries, possible interpretations for the newly identified middle Miocene Os isotope minimum include changes in weathering intensity and/or a meteorite impact coinciding with the formation of the No??rdlinger Ries Crater. It is suggested that the eruption and weathering of the Columbia River flood basalts provided a significant amount of the unradiogenic Os required to produce the middle Miocene minimum. ?? 2008 Elsevier B.V.

  13. Application of Stable Isotope-Assisted Metabolomics for Cell Metabolism Studies

    PubMed Central

    You, Le; Zhang, Baichen; Tang, Yinjie J.

    2014-01-01

    The applications of stable isotopes in metabolomics have facilitated the study of cell metabolisms. Stable isotope-assisted metabolomics requires: (1) properly designed tracer experiments; (2) stringent sampling and quenching protocols to minimize isotopic alternations; (3) efficient metabolite separations; (4) high resolution mass spectrometry to resolve overlapping peaks and background noises; and (5) data analysis methods and databases to decipher isotopic clusters over a broad m/z range (mass-to-charge ratio). This paper overviews mass spectrometry based techniques for precise determination of metabolites and their isotopologues. It also discusses applications of isotopic approaches to track substrate utilization, identify unknown metabolites and their chemical formulas, measure metabolite concentrations, determine putative metabolic pathways, and investigate microbial community populations and their carbon assimilation patterns. In addition, 13C-metabolite fingerprinting and metabolic models can be integrated to quantify carbon fluxes (enzyme reaction rates). The fluxome, in combination with other “omics” analyses, may give systems-level insights into regulatory mechanisms underlying gene functions. More importantly, 13C-tracer experiments significantly improve the potential of low-resolution gas chromatography-mass spectrometry (GC-MS) for broad-scope metabolism studies. We foresee the isotope-assisted metabolomics to be an indispensable tool in industrial biotechnology, environmental microbiology, and medical research. PMID:24957020

  14. U-Pb isotopic systematics of shock-loaded and annealed baddeleyite: Implications for crystallization ages of Martian meteorite shergottites

    NASA Astrophysics Data System (ADS)

    Niihara, Takafumi; Kaiden, Hiroshi; Misawa, Keiji; Sekine, Toshimori; Mikouchi, Takashi

    2012-08-01

    Shock-recovery and annealing experiments on basalt-baddeleyite mixtures were undertaken to evaluate shock effects on U-Pb isotopic systematics of baddeleyite. Shock pressures up to 57 GPa caused fracturing of constituent phases, mosaicism of olivine, maskelynitization of plagioclase, and melting, but the phase transition from monoclinic baddeleyite structure to high-pressure/temperature polymorphs of ZrO2 was not confirmed. The U-Pb isotopic systems of the shock-loaded baddeleyite did not show a large-scale isotopic disturbance. The samples shock-recovered from 47 GPa were then employed for annealing experiments at 1000 or 1300 °C, indicating that the basalt-baddeleyite mixture was almost totally melted except olivine and baddeleyite. Fine-grained euhedral zircon crystallized from the melt was observed around the relict baddeleyite in the sample annealed at 1300 °C for 1 h. The U-Pb isotopic systems of baddeleyite showed isotopic disturbances: many data points for the samples annealed at 1000 °C plotted above the concordia. Both radiogenic lead loss/uranium gain and radiogenic lead gain/uranium loss were observed in the baddeleyite annealed at 1300 °C. Complete radiogenic lead loss due to shock metamorphism and subsequent annealing was not observed in the shock-loaded/annealed baddeleyites studied here. These results confirm that the U-Pb isotopic systematics of baddeleyite are durable for shock metamorphism. Since shergottites still preserve Fe-Mg and/or Ca zonings in major constituent phases (i.e. pyroxene and olivine), the shock effects observed in Martian baddeleyites seem to be less intense compared to that under the present experimental conditions. An implication is that the U-Pb systems of baddeleyite in shergottites will provide crystallization ages of Martian magmatic rocks.

  15. Actinium-225 in targeted alpha-particle therapeutic applications

    PubMed Central

    Scheinberg, David A.; McDevit, Michael R.

    2017-01-01

    Alpha particle-emitting isotopes are being investigated in radioimmunotherapeutic applications because of their unparalleled cytotoxicity when targeted to cancer and their relative lack of toxicity towards untargeted normal tissue. Actinium-225 has been developed into potent targeting drug constructs and is in clinical use against acute myelogenous leukemia. The key properties of the alpha particles generated by 225Ac are the following: i) limited range in tissue of a few cell diameters; ii) high linear energy transfer leading to dense radiation damage along each alpha track; iii) a 10 day half-life; and iv) four net alpha particles emitted per decay. Targeting 225Ac-drug constructs have potential in the treatment of cancer. PMID:22202153

  16. Stable isotope dilution microquantification of creatine metabolites in plasma, whole blood and dried blood spots for pharmacological studies in mouse models of creatine deficiency.

    PubMed

    Tran, C; Yazdanpanah, M; Kyriakopoulou, L; Levandovskiy, V; Zahid, H; Naufer, A; Isbrandt, D; Schulze, A

    2014-09-25

    To develop an accurate stable isotope dilution assay for simultaneous quantification of creatine metabolites ornithine, arginine, creatine, creatinine, and guanidinoacetate in very small blood sample volumes to study creatine metabolism in mice. Liquid-chromatography (C18) tandem mass spectrometry with butylation was performed in positive ionization mode. Stable isotope dilution assay with external calibration was applied to three different specimen types, plasma, whole blood and dried blood spot (DBS). Analytical separation, sensitivity, accuracy, and linearity of the assay were adequate. The stable isotope dilution assay in plasma revealed no significant bias to gold standard methods for the respective analytes. Compared to plasma, we observed an overestimate of creatine and creatinine (2- to 5-fold and 1.2- to 2-fold, respectively) in whole-blood and DBS, and an underestimate of arginine (2.5-fold) in DBS. Validation of the assay in mouse models of creatine deficiency revealed plasma creatine metabolite pattern in good accordance with those observed in human GAMT and AGAT deficiency. Single dose intraperitoneal application of ornithine in wild-type mice lead to fast ornithine uptake (Tmax ≤ 10 min) and elimination (T1/2=24 min), and a decline of guanidinoacetate. The assay is fast and reliable to study creatine metabolism and pharmacokinetics in mouse models of creatine deficiency. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. An innovative application of stable isotopes (δ2H and δ18O) for tracing pollutant plumes in groundwater.

    PubMed

    Negrel, Philippe; Ollivier, Patrick; Flehoc, Christine; Hube, Daniel

    2017-02-01

    The identification of the sources of contaminants present in groundwater at industrial sites is primordial to address environmental and industrial issues. However, available tools are often inadequate or expensive. Here, we present the data of stable isotopes (δ 18 O and δ 2 H) of the water molecule at an industrial site where electrochemistry plant occurs impacting the groundwater quality. High ClO 3 and ClO 4 contents and 2 H enrichment have been measured in groundwater. Recharge of aquifer relates to infiltration of rainwater and by subsurface inflow. On-site, industrial products are generated by electrolysis. We show that the electrolysis process leads to a large 2 H enrichment (+425‰) in solutions. In the absence of hydrothermal water input containing H 2 S, we demonstrate that the relationship between δ 18 O and δ 2 H can be easily used in a way to trace the origin of the ClO 3 and ClO 4 in groundwater. Isotopes evidenced first a leakage from end-product storage tanks or during the production process itself. Then, an accumulation and release of ClO 3 and ClO 4 from soil is demonstrated. Our study successfully shows that stable isotopes are a powerful and low cost tool for tracing pollutant plumes in an industrial context using electrolysis process. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Metabolic De-Isotoping for Improved LC-MS Characterization of Modified RNAs

    NASA Astrophysics Data System (ADS)

    Wetzel, Collin; Li, Siwei; Limbach, Patrick A.

    2014-07-01

    Mapping, sequencing, and quantifying individual noncoding ribonucleic acids (ncRNAs), including post-transcriptionally modified nucleosides, by mass spectrometry is a challenge that often requires rigorous sample preparation prior to analysis. Previously, we have described a simplified method for the comparative analysis of RNA digests (CARD) that is applicable to relatively complex mixtures of ncRNAs. In the CARD approach for transfer RNA (tRNA) analysis, two complete sets of digestion products from total tRNA are compared using the enzymatic incorporation of 16O/18O isotopic labels. This approach allows one to rapidly screen total tRNAs from gene deletion mutants or comparatively sequence total tRNA from two related bacterial organisms. However, data analysis can be challenging because of convoluted mass spectra arising from the natural 13C and 15 N isotopes present in the ribonuclease-digested tRNA samples. Here, we demonstrate that culturing in 12C-enriched/13C-depleted media significantly reduces the isotope patterns that must be interpreted during the CARD experiment. Improvements in data quality yield a 35 % improvement in detection of tRNA digestion products that can be uniquely assigned to particular tRNAs. These mass spectral improvements lead to a significant reduction in data processing attributable to the ease of spectral identification of labeled digestion products and will enable improvements in the relative quantification of modified RNAs by the 16O/18O differential labeling approach.

  19. Formation of nonextractable soil residues: A stable isotope approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richnow, H.H.; Eschenback, A.; Mahro, B.

    1999-11-01

    Stable carbon isotopic measurements were employed to characterize the transformation of a {sup 13}C-labeled polycyclic aromatic hydrocarbon (PAH), anthracene, in a closed soil bioreactor system. The {sup 13}C-label was used to calculate a carbon mass balance including mineralization and the formation of nonextractable soil-bound residues. Similar results were obtained from {sup 13}C-labeled carbon and {sup 14}C-labeled carbon mass balance calculations for separate batch experiments with labeled anthracene. In concentration ranges typical for real PAH-contaminated sites, the sensitivity of the {sup 13}C tracer method meets the requirements of classical radiotracer experiments. Therefore, the authors balancing method based on stable isotope-labeled chemicalsmore » may supplement or substitute radiotracer experiments under many circumstances. One major advantage of using stable isotope-labeled tracers is the possible application in transformation studies where the use of radioactive substances is of environmental concern. The transformation of {sup 13}C-labeled PAH into nonextractable residues clearly depends on the metabolic activity of the soil microflora and occurs during an early phase of biodegradation. Successive contamination of the soil by anthracene leads to a progressive adaptation of the microflora to a complete mineralization of anthracene in the soil. The extent of residue formation is controlled by the capability of the microflora to degrade the contaminant. Results of long-term experiments indicate that nonextractable residues are relatively stable over time.« less

  20. Particular geoscientific perspectives on stable isotope analysis in the arboreal system

    NASA Astrophysics Data System (ADS)

    Helle, Gerhard; Balting, Daniel; Pauly, Maren; Slotta, Franziska

    2017-04-01

    In geosciences stable isotopes of carbon, oxygen and hydrogen from the tree ring archive have been used for several decades to trace the course of past environmental and climatological fluctuations. In contrast to ice cores, the tree ring archive is of biological nature (like many other terrestrial archives), but provides the opportunity to establish site networks with very high resolution in space and time. Many of the basic physical mechanisms of isotope shifts are known, but biologically mediated processes may lead to isotope effects that are poorly understood. This implies that the many processes within the arboreal system leading to archived isotope ratios in wood material are governed by a multitude of environmental variables that are not only tied to the isotopic composition of atmospheric source values (precipitation, CO2), but also to seasonally changing metabolic flux rates and pool sizes of photosynthates within the trees. Consequently, the extraction of climate and environmental information is particularly challenging and reconstructions are still of rather qualitative nature. Over the last 10 years or so, monitoring studies have been implemented to investigate stable isotope, climate and environmental signal transfer within the arboreal system to develop transfer or response functions that can translate the relevant isotope values extracted from tree rings into climate or other environmental variables. To what extent have these efforts lead to a better understanding that helps improving the meaningfulness of tree ring isotope signals? For example, do monitoring studies help deciphering the causes for age-related trends in tree ring stable isotope sequences that are published in a growing number of papers. Are existing monitoring studies going into detail enough or is it already too much effort for the outcome? Based on what we know already particularly in mesic habitats, tree ring stable isotopes are much better climate proxies than other tree ring parameters. However, millennial or multi-millennial high quality reconstructions from tree ring isotopes are still rare. This is because of i) methodological constraints related to mass spectrometric analyses and ii) the nature of tree-ring chronologies that are put together by many trees of various individual ages. In view of this: What is the state-of-the-art in high throughput tree ring stable isotope analyses? Is it necessary to advance existing methodologies further to conserve the annual time resolution provided by the tree-ring archive? Other terrestrial archives, like lake sediments and speleothems rarely provide annually resolved stable isotope data. Furthermore, certain tree species from tropical or sub-tropical regions cannot be dated properly by dendrochronology and hence demand specific stable isotope measuring strategies, etc.. Although the points raised here do specifically apply for the tree ring archive, some of them are important for all proxy archives of organic origin.

  1. Lead isotopes in iron and manganese oxide coatings and their use as an exploration guide for concealed mineralization

    USGS Publications Warehouse

    Gulson, B.L.; Church, S.E.; Mizon, K.J.; Meier, A.L.

    1992-01-01

    Lead isotopes from Fe and Mn oxides that coat stream pebbles from around the Mount Emmons porphyry molybdenum deposit in Colorado were studied to assess the feasibility of using Pb isotopes to detect concealed mineral deposits. The Fe/Mn oxide coatings were analyzed to determine their elemental concentrations using ICP-AES. The Pb isotope compositions of solutions from a selected suite of samples were measured, using both thermal ionization and ICP mass spectrometry, to compare results determined by the two analytical methods. Heavy mineral concentrates from the same sites were also analyzed to compare the Pb isotope compositions of the Fe/Mn coatings with those found in panned concentrates. The Fe/Mn and 206Pb/204Pb ratios of the oxide coatings are related to the lithology of the host rocks; Fe/Mn oxide coatings on pebbles of black shale have higher Fe/Mn values than do the coatings on either sandstone or igneous rocks. The shale host rocks have a more radiogenic signature (e.g. higher 206Pb/ 204Pb) than the sandstone or igneous host rocks. The Pb isotope data from sandstone and igneous hosts can detect concealed mineralized rock on both a regional and local scale, even though there are contributions from: (1) metals from the main-stage molybdenite ore deposit; (2) metals from the phyllic alteration zone which has a more radiogenic Pb isotope signature reflecting hydrothermal leaching of Pb from the Mancos Shale; (3) Pb-rich base metal veins with a highly variable Pb isotope signature; and (4) sedimentary country rocks which have a more radiogenic Pb isotope signature. An investigation of within-stream variation shows that the Pb isotope signature of the molybdenite ore zone is retained in the Fe/Mn oxide coatings and is not camouflaged by contributions from Pb-rich base-metal veins that crop out upstream. In another traverse, the Pb isotope data from Fe/Mn oxide coatings reflect a complex mixing of Pb from the molybdenite ore zone and its hornfels margin, Pb-rich base-metal veins, and sedimentary country rocks. Stream-sediment anomalies detected using oxalic acid leaches can be evaluated using Pb isotope analysesof selected geochemical anomalies. Such an evaluation procedure, given regional target Pb isotope signatures for concealed mineralization, can greatly reduce the cost of exploration for undiscovered ore deposits concealed beneath barren overburden. Lead isotope measurements on aliquots of the same solutions showed that ICP-MS determinations are of low precision and vary non-systematically when compared with the Pb isotope values of the higher precision thermal ionization method. These variations and lower precision of the ICP-MS measurements are attributed to matrix effects. ?? 1992.

  2. Laser ablation inductively coupled plasma mass spectrometry for direct isotope ratio measurements on solid samples

    NASA Astrophysics Data System (ADS)

    Pickhardt, Carola; Dietze, Hans-Joachim; Becker, J. Sabine

    2005-04-01

    Isotope ratio measurements have been increasingly used in quite different application fields, e.g., for the investigation of isotope variation in nature, in geoscience (geochemistry and geochronology), in cosmochemistry and planetary science, in environmental science, e.g., in environmental monitoring, or by the application of the isotope dilution technique for quantification purposes using stable or radioactive high-enriched isotope tracers. Due to its high sensitivity, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is today a challenging mass spectrometric technique for the direct determination of precise and accurate isotope ratios in solid samples. In comparison to laser ablation quadrupole ICP-MS (LA-ICP-QMS), laser ablation coupled to a double-focusing sector field ICP-MS (LA-ICP-SFMS) with single ion detection offers a significant improvement of sensitivity at low mass resolution, whereby isotope ratios can be measured with a precision to 0.1% relative standard deviation (R.S.D.). In LA-ICP-SFMS, many disturbing isobaric interferences of analyte and molecular ions can be separated at the required mass resolution (e.g., 40Ar16O+ and 56Fe+ for iron isotope ratio measurements). The precision on isotope ratio measurements was improved by one order of magnitude via the simultaneous detection of mass-separated ion currents of isotopes using multiple ion collectors in LA-ICP-MS (LA-MC-ICP-MS). The paper discusses the state of the art, the challenges and limits in isotope ratio measurements by LA-ICP-MS using different instrumentations at the trace and ultratrace level in different fields of application as in environmental and biological research, geochemistry and geochronology with respect to their precision and accuracy.

  3. Kinetic analysis of lead metabolism in healthy humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabinowitz, M.B.; Wetherill, G.W.; Kopple, J.D.

    The steady state kinetics of lead metabolism were studied in five healthy men with stable isotope tracers. Subjects lived in a metabolic unit and ate constant low lead diets. Their intake was supplemented each day with 79 to 204 ..mu..g of enriched lead-204 as nitrate which was ingested with meals for 1 to 124 days. The concentration and isotopic composition of lead was determined serially in blood, urine, feces, and diet and less commonly in hair, nails, sweat, bone, and alimentary tract secretions by isotopic dilution, mass spectrometric analysis. The data suggest a three-compartmental model for lead metabolism. The firstmore » compartment encompasses blood and is 1.5 to 2.2 times larger than the blood mass. It contains approximately 1.7 to 2.0 mg of lead and has a mean life of 35 days. This pool is in direct communication with ingested lead, urinary lead, and pools two and three. The second compartment is largely composed of soft tissue, contains about 0.3 to 0.9 mg of lead, and has a mean life of approximately 40 days. This pool gives rise to lead in hair, nails, sweat, and salivary, gastric, pancreatic, and biliary secretions. Pool three resides primarily in the skeleton, contains the vast quantity of body lead, and has a very slow mean life. Bones appear to differ in their rates of lead turnover. Within the relatively small changes in blood lead observed in the present study, the transfer coefficients between the pools remained constant.« less

  4. Lead isotope ratios for bullets, a descriptive approach for investigative purposes and a new method for sampling of bullet lead.

    PubMed

    Sjåstad, Knut-Endre; Simonsen, Siri Lene; Andersen, Tom H

    2014-11-01

    To establish a link between a bullet fired from a suspected firearm, investigation of striation marks are one of the corner stones in the forensic laboratory. Nevertheless, on some occasions, the bullet may be deformed to such extent that traditional investigation of striation marks will be impossible. Fragments of lead can be investigated by lead isotope ratio determination in order to distinguish between bullets with different origin. This approach initially seems reasonable, since the abundance of lead isotopes varies significantly in nature. To make a method valid for forensic purposes, it is important to have a fundamental understanding of the variation within a box of lead bullets and the expected variation between boxes. Studies of variability within and between boxes of ammunition are imperative to perform any type of forensic interpretation, both in an investigative and evaluative context. This work presents an extensive study of variability within and between boxes of ammunition by use of multicollector inductive coupled mass spectrometry. As a first approximation to classify bullets to any given source, a simple and robust graphical method is presented. In addition, an easy-to-use sampling procedure of lead is presented. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Calcium and Titanium Isotope Fractionation in CAIS: Tracers of Condensation and Inheritance in the Early Solar Protoplanetary Disk

    NASA Technical Reports Server (NTRS)

    Simon, J. I.; Jordan, M. K.; Tappa, M. J.; Kohl, I. E.; Young, E. D.

    2016-01-01

    The chemical and isotopic compositions of calcium-aluminum-rich inclusions (CAIs) can be used to understand the conditions present in the protoplantary disk where they formed. The isotopic compositions of these early-formed nebular materials are largely controlled by chemical volatility. The isotopic effects of evaporation/sublimation, which are well explained by both theory and experimental work, lead to enrichments of the heavy isotopes that are often exhibited by the moderately refractory elements Mg and Si. Less well understood are the isotopic effects of condensation, which limits our ability to determine whether a CAI is a primary condensate and/or retains any evidence of its primordial formation history.

  6. Pb isotopes of Gorgona Island (Colombia): isotopic variations correlated with magma type

    NASA Astrophysics Data System (ADS)

    Dupré, B.; Echeverría, L. M.

    1984-02-01

    Lead isotopic results obtained on komatiites and basalts from Gorgona Island provide evidence of large isotopic variations within a restricted area (8 × 2.5 km). The variations are correlated with differences in volcanic rock type. The highest isotopic ratios ( 206Pb/ 204Pb˜ 19.75 ) correspond to tholeiites which make up most of the island. The lowest ratios (18.3) correspond to the komatiites of the west coast of the island. Other rock types (komatiites of the east coast, K-tholeiites, picrites and tuffs) have isotopic characteristics intermediate between these two extreme values. These results are explained by the existence of two distinct mantle source regions, and by mixing or contamination between them.

  7. Statistical clumped isotope signatures

    PubMed Central

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  8. Application of isotopic labeling, and gas chromatography mass spectrometry, to understanding degradation products and pathways in the thermal-oxidative aging of Nylon 6.6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Gregory Von; Clough, Roger L.; Hochrein, James M.

    2013-12-01

    Nylon 6.6 containing 13C isotopic labels at specific positions along the macromolecular backbone has been subjected to extensive thermal-oxidative aging at 138 °C for time periods up to 243 days. In complementary experiments, unlabeled Nylon 6.6 was subjected to the same aging conditions under an atmosphere of 18O 2. Volatile organic degradation products were analyzed by cryofocusing gas chromatography mass spectrometry (cryo-GC/MS) to identify the isotopic labeling. The labeling results, combined with basic considerations of free radical reaction chemistry, provided insights to the origin of degradation species, with respect to the macromolecular structure. A number of inferences on chemical mechanismsmore » were drawn, based on 1) the presence (or absence) of the isotopic labels in the various products, 2) the location of the isotope within the product molecule, and 3) the relative abundance of products as indicated by large differences in peak intensities in the gas chromatogram. The overall degradation results can be understood in terms of free radical pathways originating from initial attacks on three different positions along the nylon chain which include hydrogen abstraction from: the (CH 2) group adjacent to the nitrogen atom, at the (CH 2) adjacent the carbonyl group, and direct radical attack on the carbonyl. Understanding the pathways which lead to Nylon 6.6 degradation ultimately provides new insight into changes that can be leveraged to detect and reduce early aging and minimize problems associated with material degradation.« less

  9. Changes in the mean square charge radii and electromagnetic moments of neutron-deficient Bi isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barzakh, A. E., E-mail: barzakh@mail.ru; Batist, L. Kh.; Fedorov, D. V.

    In-source laser spectroscopy experiments for neutron deficient bismuth isotopes at the 306.77 nm atomic transition were carried out at the IRIS (Investigation of Radioactive Isotopes on Synchrocyclotron) facility of Petersburg Nuclear Physics Institute (PNPI). New data on isotope shifts and hyperfine structure for {sup 189–198,} {sup 211}Bi isotopes and isomers were obtained. The changes in the mean-square charge radii and the magnetic moment values were deduced. Marked deviation from the nearly spherical behavior for ground states of bismuth isotopes at N < 109 is demonstrated, in contrast to the lead and thallium isotopic chains. The big isomer shift between Imore » = 1/2 (intruder) and I = 9/2 (normal) states for odd Bi isotopes (A = 193, 195, 197) was found.« less

  10. Origin of the Red Dog Zn-Pb-Ag deposits, Brooks Range, Alaska: Evidence from regional Pb and Sr isotope sources

    USGS Publications Warehouse

    Ayuso, R.A.; Kelley, K.D.; Leach, D.L.; Young, L.E.; Slack, J.F.; Wandless, G.; Lyon, A.M.; Dillingham, J.L.

    2004-01-01

    Pb and Sr isotope data were obtained on the shale-hosted Zn-Pb-Ag Red Dog deposits (Qanaiyaq, Main, Aqqaluk, and Paalaaq), other shale-hosted deposits near Red Dog, and Zn-Pb-Ag sulfide and barite deposits in the western and central Brooks Range. The Red Dog deposits and other shale-hosted Zn-Pb-Ag deposits near Red Dog are hosted in the Mississippian Kuna Formation, which is underlain by a sequence of marine-deltaic clastic rocks of the Upper Devonian to Lower Mississippian Endicott Group. Ag-Pb-Zn vein-breccias are found in the Endicott Group. Galena formed during the main mineralization stages in the Red Dog deposits and from the Anarraaq and Wulik deposits have overlapping Pb isotope compositions in the range 206Pb/204Pb = 18.364 to 18.428, 207Pb/204Pb = 15.553 to 15.621, and 208Pb/204Pb = 38.083 to 38.323. Galena and sphalerite formed during the main ore-forming stages in the Red Dog deposits define a narrow field on standard uranogenic and thorogenic Pb isotope diagrams. Lead in sulfides of the Red Dog district is less radiogenic (238U/204Pb: ?? = 9.51-9.77) than is indicated by the average crustal lead evolution model (?? = 9.74), a difference consistent with a long history of evolution at low ratios of ?? before the Carboniferous. The homogeneous regional isotopic reservoir of Pb may indicate large-scale transport and leaching of minerals with various ?? ratios and Th/Pb ratios. Younger and genetically unrelated fluids did not significantly disturb the isotopic compositions of galena and sphalerite after the main mineralization event in the Red Dog district. Some pyrite shows evidence of minor Pb remobilization. The overall lead isotope homogeneity in the shale-hosted massive sulfide deposits is consistent with three types of control: a homogeneous regional source, mixing of lead during leaching of a thick sedimentary section and fluid transport, or mixing at the site of deposition. Isotopic variability of the hydrothermal fluids, as represented by galena in the Red Dog district, appears to be consistent with a simple mixing system. Evidence indicates that galena was deposited from largely similar hydrothermal solutions throughout the Red Dog district. A shared regional isotopic reservoir is also supported by the correspondence of Pb isotope compositions of galena in deposits of the Red Dog district and galena in clastic rocks (vein-breccias). Leaching of metals and progressive extraction of radiogenic lead from the clastic rocks in the Endicott Group may account for the trend of increasing 206Pb/204Pb in galena of the Red Dog district. Galena in the Red Dog deposits is unlikely to have been derived entirely from the same isotopic reservoir as that represented by the lead in the Kuna Formation or from the igneous rocks in the Red Dog district. Sr isotope data for barite, calcite, and witherite from the Red Dog deposits are compared with data from regional barite that is associated with sulfides and from barite in sulfide-poor occurrences. Fluids with heterogeneous Sr isotope signatures are indicated. Barite in the Main deposit extends to higher ratios of 87Sr/86Sr (0.709034-0.709899) than barite in the Anarraaq deposit (0.708615-0.709256). All barite is more radiogenic than Carboniferous seawater. Other Mississippian(?) shale-hosted deposits and mineral occurrences containing barite in the Red Dog district and barite in regional occurrences east of Red Dog in the western and central Brooks Range also have heterogeneous 87Sr/86Sr ratios. Carbonate (87Sr/86Sr = 0.710319-0.713637) and witherite (87 Sr/86 Sr = 0.710513) in the Main deposit are more radiogenic than barite. In contrast, carbonate (87Sr/86Sr = 0.708196-0.709740) intergrown with massive sulfides at Anarraaq has isotopic compositions similar to that of barite. Paragenetic and isotop ic studies suggest that early barite is similar to barite typically formed in cold seeps along continental margins. This early fine-grained barite formed before the main mineralizat

  11. Evaluating Snowmelt Runoff Processes Using Stable Isotopes in a Permafrost Hillslope

    NASA Astrophysics Data System (ADS)

    Carey, S. K.

    2004-05-01

    Conceptual understanding of runoff generation in permafrost regions have been derived primarily from hydrometric information, with isotope and hydrochemical data having only limited application in delineating sources and pathways of water. Furthermore, when stable isotope data are used to infer runoff processes, it often provides conflicting results from hydrometric measurements. In a small subarctic alpine catchment within the Wolf Creek Research Basin, Yukon, Canada, experiments were conducted during the melt period of 2002 and 2003 to trace the stable isotopic signature (d18O) of meltwater from a melting snowpack into permafrost soils and laterally to the stream to identify runoff processes and evaluate sources of error for traditional hydrograph separation studies in snowmelt-dominated permafrost basins. Isotopic variability in the snowpack was recorded at 0.1 m depth intervals during the melt period and compared with the meltwater isotopic signature at the snowpack base collected in lysimeters. Throughout the melt period in both years, there was an isotopic enrichment of meltwater as the season progressed. A downslope transect of wells and piezometers were used to evaluate the influence of infiltrating meltwater and thawing ground on the subsurface d18O signature. As melt began, meltwater infiltrated the frozen porous organic layer, leading to liquid water saturation in the unsaturated pore spaces. Water sampled during this initial melt stage show soil water d18O mirroring that of the meltwater signal. As the melt season progressed, frozen soil began to melt, mixing enriched pre-melt soil water with meltwater. This mixing increased the overall value of d18O obtained from the soil, which gradually increased as thaw progressed. At the end of snowmelt, soil water had a d18O value similar to values from the previous fall, suggesting that much of the initial snowmelt water had been flushed from the hillslope. Results from the hillslope scale are compared with two-component hydrograph separations and sources of error are discussed.

  12. Agricultural Nutrient Cycling at the Strawberry Creek Watershed: Insights Into Processes Using Stable Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Thuss, E.; English, M. C.; Spoelstra, J.

    2009-05-01

    When nitrogen availability exceeds biological demand, excess nitrogen, especially nitrate, may subsequently pollute ground and surface water. Agricultural practices in Southern Ontario typically supplement soils with organic and inorganic nutrients to aid in crop development, and employ various management techniques to limit nutrient loss. Excess nitrogen has several potential fates, which are controlled by the net effects of numerous nitrogen cycling reactions in the soil that are often difficult to measure directly. Nitrogen cycling in soils is controlled in large part by soil moisture, as it affects microbial activity and soil redox conditions. Stable isotope geochemistry is a powerful tool that provides information on nitrogen sources and processes. This study uses crop nitrogen and carbon isotope ratios to provide insights into the net effects of soil nitrogen cycling and nitrogen fate. This research was conducted at the Strawberry Creek Watershed (SCW), an agricultural research watershed located between Kitchener-Waterloo and Guelph, Ontario. The SCW exhibits elevated nitrate concentrations in groundwater, tile discharge, and the stream itself. Previous isotopic work revealed that this nitrate is largely derived from chemical fertilizer and manure applications. Field-scale hydrological processes lead to areas where the fate of applied nitrogen differs, which has an isotopic effect on the residual nitrogen that is available to plants. Results of this study indicate significant patterns in the isotopic signature of plant tissue, in both temporal and spatial scales. At the plot-scale where soil conditions are similar, there is little to no variation in foliar isotope values, but at the field-scale there appears to be a significant amount of variability related to soil moisture and nitrogen loss. This relationship can potentially provide insight into ideal conditions for nitrogen uptake efficiency. Reducing agricultural nitrogen leaching to ground and surface water requires a better understanding of nitrogen fate in the soil zone, and will result in more effective agricultural nutrient management.

  13. Effective field theory for triaxially deformed nuclei

    NASA Astrophysics Data System (ADS)

    Chen, Q. B.; Kaiser, N.; Meißner, Ulf-G.; Meng, J.

    2017-10-01

    Effective field theory is generalized to investigate the rotational motion of triaxially deformed even-even nuclei. The Hamiltonian for the triaxial rotor is obtained up to next-to-leading order within the effective field theory formalism. Its applicability is examined by comparing with a five-dimensional rotor-vibrator Hamiltonian for the description of the energy spectra of the ground state and γ band in Ru isotopes. It is found that by taking into account the next-to-leading order corrections, the ground state band in the whole spin region and the γ band in the low spin region are well described. The deviations for high-spin states in the γ bands point towards the importance of including vibrational degrees of freedom in the effective field theory formulation.

  14. Lead isotope data bank; 2,624 samples and analyses cited

    USGS Publications Warehouse

    Doe, Bruce R.

    1976-01-01

    The Lead Isotope Data Bank (LIDB) was initiated to facilitate plotting data. Therefore, the Bank reflects data most often used in plotting rather than comprises a comprehensive tabulation of lead isotope data. Up until now, plotting was done using card decks processed by computer with tapes plotted by a Gerber plotter and more recently a CRT using a batch mode. Lack of a uniform format for sample identification was not a great impediment. With increase in the size of the bank, hand sorting is becoming prohibitive and ·plans are underway to put the bank into a uniform format on DISK with a card backup so that it may be accessed by use of IRIS on the DECK 10 computer at the U.S.G.S. facility in Denver. Plots will be constructed on a CRT. Entry of the bank into the IRIS accessing program is scheduled for completion in FY 1976

  15. Earth, air, fire and water: A targetry quartet

    NASA Astrophysics Data System (ADS)

    Valdovinos, Hector F.; Graves, Stephen; Ellison, Paul; Barnhart, Todd; Nickles, Robert J.

    2017-05-01

    Cyclotron targets have made steady progress in terms of current capabilities, automated handling and application to isotopically-enriched material. These advances have followed a distinct trajectory at the University of Wisconsin, with the emphasis on maximizing the yield of the desired radionuclide within the strict constraints of heat transfer of beam power and the ultimate recycling of precious target stock. This approach leads to four target families, each employed in the production of the positron-emitting transition metals of the 3d- and 4d-subshells, with importance now arising as targeted molecular imaging agents.

  16. Catalytic Oxidation of CO for Closed-Cycle CO2 Lasers

    NASA Technical Reports Server (NTRS)

    Miller, I. M.; Schryer, D. R.; Hess, R. V.; Sidney, B. D.; Wood, G. M., Jr.; Paulin, P. A.; Upchurch, B. T.; Brown, K. G.

    1987-01-01

    Stoichiometric mixture converted completely. High-energy pulsed CO2 lasers have potential for measuring many different features of atmosphere of Earth and particularly useful on airborne or space platforms. For this application, laser must be operated in closed cycle to conserve gas, especially if rare nonradioactive isotopes of carbon and oxygen used. However, laser discharge decomposes fraction of CO2 to CO and O2, causing rapid loss in power leading to erratic behavior. To maintain operation, CO and O2 must be recombined to form CO2.

  17. Static, Mixed-Array Total Evaporation for Improved Quantitation of Plutonium Minor Isotopes in Small Samples

    NASA Astrophysics Data System (ADS)

    Stanley, F. E.; Byerly, Benjamin L.; Thomas, Mariam R.; Spencer, Khalil J.

    2016-06-01

    Actinide isotope measurements are a critical signature capability in the modern nuclear forensics "toolbox", especially when interrogating anthropogenic constituents in real-world scenarios. Unfortunately, established methodologies, such as traditional total evaporation via thermal ionization mass spectrometry, struggle to confidently measure low abundance isotope ratios (<10-6) within already limited quantities of sample. Herein, we investigate the application of static, mixed array total evaporation techniques as a straightforward means of improving plutonium minor isotope measurements, which have been resistant to enhancement in recent years because of elevated radiologic concerns. Results are presented for small sample (~20 ng) applications involving a well-known plutonium isotope reference material, CRM-126a, and compared with traditional total evaporation methods.

  18. Full-Spectrum-Analysis Isotope ID

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G.

    2017-06-28

    FSAIsotopeID analyzes gamma ray spectra to identify radioactive isotopes (radionuclides). The algorithm fits the entire spectrum with combinations of pre-computed templates for a comprehensive set of radionuclides with varying thicknesses and compositions of shielding materials. The isotope identification algorithm is suitable for the analysis of spectra collected by gamma-ray sensors ranging from medium-resolution detectors, such a NaI, to high-resolution detectors, such as HPGe. In addition to analyzing static measurements, the isotope identification algorithm is applied for the radiation search applications. The search subroutine maintains a running background spectrum that is passed to the isotope identification algorithm, and it also selectsmore » temporal integration periods that optimize the responsiveness and sensitivity. Gain stabilization is supported for both types of applications.« less

  19. Static, Mixed-Array Total Evaporation for Improved Quantitation of Plutonium Minor Isotopes in Small Samples.

    PubMed

    Stanley, F E; Byerly, Benjamin L; Thomas, Mariam R; Spencer, Khalil J

    2016-06-01

    Actinide isotope measurements are a critical signature capability in the modern nuclear forensics "toolbox", especially when interrogating anthropogenic constituents in real-world scenarios. Unfortunately, established methodologies, such as traditional total evaporation via thermal ionization mass spectrometry, struggle to confidently measure low abundance isotope ratios (<10(-6)) within already limited quantities of sample. Herein, we investigate the application of static, mixed array total evaporation techniques as a straightforward means of improving plutonium minor isotope measurements, which have been resistant to enhancement in recent years because of elevated radiologic concerns. Results are presented for small sample (~20 ng) applications involving a well-known plutonium isotope reference material, CRM-126a, and compared with traditional total evaporation methods. Graphical Abstract ᅟ.

  20. High precision isotope ratio measurements of mercury isotopes in cinnabar ores using multi-collector inductively coupled plasma mass spectrometry.

    PubMed

    Hintelmann, Holger; Lu, ShengYong

    2003-06-01

    Variations in Hg isotope ratios in cinnabar ores obtained from different countries were detected by high precision isotope ratio measurements using multi-collector inductively coupled mass spectrometry (MC-ICP-MS). Values of delta198/202Hg varied from 0.0-1.3 percent per thousand relative to a NIST SRM 1641d Hg solution. The typical external uncertainty of the delta values was 0.06 to 0.26 percent per thousand. Hg was introduced into the plasma as elemental Hg after reduction by sodium borohydride. A significant fractionation of lead isotopes was observed during the simultaneous generation of lead hydride, preventing normalization of the Hg isotope ratios using the measured 208/206Pb ratio. Hg ratios were instead corrected employing the simultaneously measured 205/203T1 ratio. Using a 10 ng ml(-1) Hg solution and 10 min of sampling, introducing 60 ng of Hg, the internal precision of the isotope ratio measurements was as low as 14 ppm. Absolute Hg ratios deviated from the representative IUPAC values by approximately 0.2% per u. This observation is explained by the inadequacy of the exponential law to correct for mass bias in MC-ICP-MS measurements. In the absence of a precisely characterized Hg isotope ratio standard, we were not able to determine unambiguously the absolute Hg ratios of the ore samples, highlighting the urgent need for certified standard materials.

  1. Tracing source pollution in soils using cadmium and lead isotopes.

    PubMed

    Cloquet, C; Carignan, J; Libourel, G; Sterckeman, T; Perdrix, E

    2006-04-15

    Tracing the source of heavy metals in the environment is of key importance for our understanding of their pollution and natural cycles in the surface Earth reservoirs. Up to now, most exclusively Pb isotopes were used to effectively trace metal pollution sources in the environment. Here we report systematic variations of Cd isotope ratios measured in polluted topsoils surrounding a Pb-Zn refinery plant in northern France. Fractionated Cd was measured in soil samples surrounding the refinery, and this fractionation can be attributed to the refining processes. Despite the Cd isotopic ratios being precisely measured, the obtained uncertainties are still large compared to the total isotopic variation. Nevertheless, for the first time, Cd isotopically fractionated by industrial processes may be traced in the environment. On the same samples, Pb isotope systematics suggested that materials actually used by the refinery were not the major source of Pb in soils, probably because refined ore origins changed over the 100 years of operation. On the other hand, Cd isotopes and concentrations measured in topsoils allowed identification of three main origins (industrial dust and slag and agriculture), assuming that all Cd ores are not fractionated, as suggested by terrestrial rocks so far analyzed, and calculation of their relative contributions for each sampling point. Understanding that this refinery context was an ideal situation for such a study, our results lead to the possibility of tracing sources of anthropogenic Cd and better constrain mixing processes, fluxes, transport, and phasing out of industrial input in nature.

  2. Metals and metalloids in atmospheric dust: Use of lead isotopic analysis for source apportionment

    NASA Astrophysics Data System (ADS)

    Felix Villar, Omar I.

    Mining activities generate aerosol in a wide range of sizes. Smelting activities produce mainly fine particles (<1 microm). On the other hand, milling, crushing and refining processes, as well tailings management, are significant sources of coarse particles (> 1 microm). The adverse effects of aerosols on human health depend mainly on two key characteristics: size and chemical composition. One of the main objectives of this research is to analyze the size distribution of contaminants in aerosol produced by mining operations. For this purpose, a Micro-Orifice Uniform Deposit Impactor (MOUDI) was utilized. Results from the MOUDI samples show higher concentrations of the toxic elements like lead and arsenic in the fine fraction (<1 microm). Fine particles are more likely to be deposited in the deeper zones of the respiratory system; therefore, they are more dangerous than coarse particles that can be filtered out in the upper respiratory system. Unfortunately, knowing the total concentration of contaminants does not give us enough information to identify the source of contamination. For this reason, lead isotopes have been introduced as fingerprints for source apportionment. Each source of lead has specific isotopic ratios; by knowing these ratios sources can be identified. During this research, lead isotopic ratios were analyzed at different sites and for different aerosol sizes. From these analyses it can be concluded that lead isotopes are a powerful tool to identify sources of lead. Mitigation strategies could be developed if the source of contamination is well defined. Environmental conditions as wind speed, wind direction, relative humidity and precipitation have an important role in the concentration of atmospheric dust. Dry environments with low relative humidity are ideal for the transport of aerosols. Results obtained from this research show the relationship between dust concentrations and meteorological parameters. Dust concentrations are highly correlated with relative humidity and wind speed. With all the data collected on site and the analysis of the meteorological parameters, models can be develop to predict the transport of particles as well as the concentration of contaminants at a specific point. These models were developed and are part of the results shown in this dissertation.

  3. Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits

    PubMed Central

    Wen, Hanjie; Zhu, Chuanwei; Zhang, Yuxu; Cloquet, Christophe; Fan, Haifeng; Fu, Shaohong

    2016-01-01

    Lead-zinc deposits are often difficult to classify because clear criteria are lacking. In recent years, new tools, such as Cd and Zn isotopes, have been used to better understand the ore-formation processes and to classify Pb-Zn deposits. Herein, we investigate Cd concentrations, Cd isotope systematics and Zn/Cd ratios in sphalerite from nine Pb-Zn deposits divided into high-temperature systems (e.g., porphyry), low-temperature systems (e.g., Mississippi Valley type [MVT]) and exhalative systems (e.g., sedimentary exhalative [SEDEX]). Our results showed little evidence of fractionation in the high-temperature systems. In the low-temperature systems, Cd concentrations were the highest, but were also highly variable, a result consistent with the higher fractionation of Cd at low temperatures. The δ114/110Cd values in low-temperature systems were enriched in heavier isotopes (mean of 0.32 ± 0.31‰). Exhalative systems had the lowest Cd concentrations, with a mean δ114/110Cd value of 0.12 ± 0.50‰. We thus conclude that different ore-formation systems result in different characteristic Cd concentrations and fraction levels and that low-temperature processes lead to the most significant fractionation of Cd. Therefore, Cd distribution and isotopic studies can support better understanding of the geochemistry of ore-formation processes and the classification of Pb-Zn deposits. PMID:27121538

  4. A 500 year sediment lake record of anthropogenic and natural inputs to Windermere (English Lake District) using double-spike lead isotopes, radiochronology, and sediment microanalysis.

    PubMed

    Miller, Helen; Croudace, Ian W; Bull, Jonathan M; Cotterill, Carol J; Dix, Justin K; Taylor, Rex N

    2014-07-01

    A high-resolution record of pollution is preserved in recent sediments from Windermere, the largest lake in the English Lake District. Data derived from X-ray core scanning (validated against wavelength dispersive X-ray fluorescence), radiochronological techniques ((210)Pb and (137)Cs) and ultrahigh precision, double-spike mass spectrometry for lead isotopes are combined to decipher the anthropogenic inputs to the lake. The sediment record suggests that while most element concentrations have been stable, there has been a significant increase in lead, zinc, and copper concentrations since the 1930s. Lead isotope down-core variations identify three major contributory sources of anthropogenic (industrial) lead, comprising gasoline lead, coal combustion lead (most likely source is coal-fired steam ships), and lead derived from Carboniferous Pb-Zn mineralization (mining activities). Periods of metal workings do not correlate with peaks in heavy metals due to the trapping efficiency of up-system lakes in the catchment. Heavy metal increases could be due to flood-induced metal inwash after the cessation of mining and the weathering of bedrock in the catchment. The combination of sediment analysis techniques used provides new insights into the pollutant depositional history of Windermere and could be similarly applied to other lake systems to determine the timing and scale of anthropogenic inputs.

  5. Ammonium stability and nitrogen isotope fractionations for NH4+-NH3(aq)-NH3(gas) systems at 20-70 °C and pH of 2-13: Applications to habitability and nitrogen cycling in low-temperature hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Li, Long; Lollar, Barbara Sherwood; Li, Hong; Wortmann, Ulrich G.; Lacrampe-Couloume, Georges

    2012-05-01

    Ammonium/ammonia is an essential nutrient and energy source to support life in oceanic and terrestrial hydrothermal systems. Thus the stability of ammonium is crucial to determine the habitability or ecological structure in hydrothermal environments, but still not well understood. To date, the lack of constraints on nitrogen isotope fractionations between ammonium and ammonia has limited the application of nitrogen isotopes to trace (bio)geochemical processes in such environments. In this study, we carried out laboratory experiments to (1) examine the stability of ammonium in an ammonium sulfate solution under temperature conditions from 20 to 70 °C and pH from 2.1 to 12.6 and (2) determine nitrogen isotope fractionation between ammonium and ammonia. Our experimental results show that ammonium is stable under the experimental temperatures when pH is less than 6. In experiments with starting pH greater than 8, significant ammonium was lost as a result of dissociation of ammonium and degassing of ammonia product. Nitrogen concentrations in the fluids decreased by more than 50% in the first two hours, indicating extremely fast effusion rates of ammonia. This implies that ammonium at high pH fluids (e.g., Lost City Hydrothermal Vents, Oman ophiolite hyperalkaline springs) may not be stable. Habitable environments may be more favorable at the leading edge of a pH gradient toward more acidic conditions, where the fluid can efficiently trap any ammonia transferred from a high pH vent. Although modeling shows that high temperature, low pH hydrothermal vents (e.g., Rainbow hydrothermal vent) may have the capability to retain ammonium, their high temperatures may limit habitability. The habitable zone associated with such a hydrothermal vent is likely at the lower front of a temperature gradient. In contrast, modeling of ammonium in deep terrestrial systems, suggests that saline fracture waters in crystalline rocks such as described in the Canadian Shield and in the Witwatersrand Basin, South Africa may also provide habitable environments for life. The nitrogen isotope results of remaining ammonium from the partial dissociation experiments fit well with a batch equilibrium model, indicating equilibrium nitrogen isotope fractionations have been reached between ammonium and its dissociation product aqueous ammonia. Modeling yielded nitrogen isotope fractionations between ammonium and aqueous ammonia were 45.4‰ at 23 °C, 37.7‰ at 50 °C, and 33.5‰ at 70 °C, respectively. A relationship between nitrogen equilibrium isotope fractionation and temperature is determined for the experimental temperature range as: 103·lnα(aq)=25.94×{103}/{T}-42.25 Integrated with three previous theoretical estimates on nitrogen isotope equilibrium fractionations between ammonium and gaseous ammonia, we achieved three possible temperature-dependent nitrogen isotope equilibrium fractionation between aqueous ammonia and gaseous ammonia:

  6. Advances in primate stable isotope ecology-Achievements and future prospects.

    PubMed

    Crowley, Brooke E; Reitsema, Laurie J; Oelze, Vicky M; Sponheimer, Matt

    2016-10-01

    Stable isotope biogeochemistry has been used to investigate foraging ecology in non-human primates for nearly 30 years. Whereas early studies focused on diet, more recently, isotopic analysis has been used to address a diversity of ecological questions ranging from niche partitioning to nutritional status to variability in life history traits. With this increasing array of applications, stable isotope analysis stands to make major contributions to our understanding of primate behavior and biology. Most notably, isotopic data provide novel insights into primate feeding behaviors that may not otherwise be detectable. This special issue brings together some of the recent advances in this relatively new field. In this introduction to the special issue, we review the state of isotopic applications in primatology and its origins and describe some developing methodological issues, including techniques for analyzing different tissue types, statistical approaches, and isotopic baselines. We then discuss the future directions we envision for the field of primate isotope ecology. Am. J. Primatol. 78:995-1003, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  7. Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume.

    PubMed

    Abouchami, W; Hofmann, A W; Galer, S J G; Frey, F A; Eisele, J; Feigenson, M

    2005-04-14

    The two parallel chains of Hawaiian volcanoes ('Loa' and 'Kea') are known to have statistically different but overlapping radiogenic isotope characteristics. This has been explained by a model of a concentrically zoned mantle plume, where the Kea chain preferentially samples a more peripheral portion of the plume. Using high-precision lead isotope data for both centrally and peripherally located volcanoes, we show here that the two trends have very little compositional overlap and instead reveal bilateral, non-concentric plume zones, probably derived from the plume source in the mantle. On a smaller scale, along the Kea chain, there are isotopic differences between the youngest lavas from the Mauna Kea and Kilauea volcanoes, but the 550-thousand-year-old Mauna Kea lavas are isotopically identical to Kilauea lavas, consistent with Mauna Kea's position relative to the plume, which was then similar to that of present-day Kilauea. We therefore conclude that narrow (less than 50 kilometres wide) compositional streaks, as well as the larger-scale bilateral zonation, are vertically continuous over tens to hundreds of kilometres within the plume.

  8. A young Moon-forming giant impact at 70-110 million years accompanied by late-stage mixing, core formation and degassing of the Earth.

    PubMed

    Halliday, Alex N

    2008-11-28

    New W isotope data for lunar metals demonstrate that the Moon formed late in isotopic equilibrium with the bulk silicate Earth (BSE). On this basis, lunar Sr isotope data are used to define the former composition of the Earth and hence the Rb-Sr age of the Moon, which is 4.48+/-0.02Ga, or 70-110Ma (million years) after the start of the Solar System. This age is significantly later than had been deduced from W isotopes based on model assumptions or isotopic effects now known to be cosmogenic. The Sr age is in excellent agreement with earlier estimates based on the time of lunar Pb loss and the age of the early lunar crust (4.46+/-0.04Ga). Similar ages for the BSE are recorded by xenon and lead-lead, providing evidence of catastrophic terrestrial degassing, atmospheric blow-off and significant late core formation accompanying the ca 100Ma giant impact. Agreement between the age of the Moon based on the Earth's Rb/Sr and the lead-lead age of the Moon is consistent with no major losses of moderately volatile elements from the Earth during the giant impact. The W isotopic composition of the BSE can be explained by end member models of (i) gradual accretion with a mean life of roughly 35Ma or (ii) rapid growth with a mean life of roughly 10Ma, followed by a significant hiatus prior to the giant impact. The former assumes that approximately 60 per cent of the incoming metal from impactors is added directly to the core during accretion. The latter includes complete mixing of all the impactor material into the BSE during accretion. The identical W isotopic composition of the Moon and the BSE limits the amount of material that can be added as a late veneer to the Earth after the giant impact to less than 0.3+/-0.3 per cent of ordinary chondrite or less than 0.5+/-0.6 per cent CI carbonaceous chondrite based on their known W isotopic compositions. Neither of these on their own is sufficient to explain the inventories of both refractory siderophiles such as platinum group elements and rhenium, and volatiles such as sulphur, carbon and water.

  9. Modeling secular changes in seawater chemistry accurately requires inclusion of environmental controls on low-temperature, off-axis, hydrothermal fluxes

    NASA Astrophysics Data System (ADS)

    Coogan, L. A.; Dosso, S. E.; Higgins, J. A.

    2014-12-01

    There are sharp rises in the Sr- and Li-isotopic composition of seawater at the Eocene-Oligocene boundary that are generally thought to be associated with Himalayan uplift and associated climatic changes and continental weathering variability. In modeling such data the norm is to hold the chemical fluxes associated with off-axis hydrothermal circulation through the oceanic crust constant while varying the river fluxes (and/or isotopic ratios). There is, however, no a priori reason to assume the chemical fluxes (or isotopic compositions) associated with off-axis hydrothermal systems should stay constant. Instead, changing environmental conditions (e.g. seawater composition and bottom water temperature) will lead to changes in these fluxes. An alternative model to explain the sharp rise in the Sr- and Li-isotopic composition of seawater at the Eocene-Oligocene boundary is cooling of the deep ocean. Decreased reaction rates in the oceanic crust, due to decreasing temperature, can be shown to lead to a decrease in the flux of unradiogenic Sr into the ocean. The magnitude matches, within uncertainty, that required to explain the increase in seawater Sr-isotopic composition [Coogan and Dosso, in review]. The story for Li is more uncertain. Two factors may lead to smaller effective fractionation factors between seawater and the (large) Li sink in the oceanic crust when bottom water is warmer: (i) higher temperature will decrease the isotopic fractionation factor; (ii) the more extensive fluid-rock reaction in the ocean crust when bottom water is warmer will make Li uptake by the oceanic crust more efficient. All other things being equal this will lead to a lower Li content of seawater. In turn, a lower Li content in seawater will mean that for a given Li-uptake rate by the crust the effective fractionation factor is smaller, due to Rayleigh distillation of Li-isotopes during fluid-rock reaction in the oceanic crust. In combination these factors predict a significant (many per mil), but poorly constrained, increase in the Li-isotopic composition of the ocean due to cooling bottom water. Models of many geochemical species, including carbon [Coogan and Gillis, 2013], should include environmentally dependent fluxes from off-axis hydrothermal systems.

  10. APPLICATION OF STABLE ISOTOPE TECHNIQUES TO AIR POLLUTION RESEARCH

    EPA Science Inventory

    Stable isotope techniques provide a robust, yet under-utilized tool for examining pollutant effects on plant growth and ecosystem function. Here, we survey a range of mixing model, physiological and system level applications for documenting pollutant effects. Mixing model examp...

  11. ALL-UNION CONFERENCE ON APPLICATIONS OF RADIOACTIVE ISOTOPES AND NUCLEAR EMISSIONS IN THE NATIONAL INDUSTRY OF USSR (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1960-09-01

    Papers presented at the All-Union Conference on Industrial Applications of Radioactive Isotopes and Nuclear Emissions in the National Economy of USSR, April 12 to 16, 1960, in Riga are surveyed. Short summaries are given on applications of radioactive isotopes and nuclear emissions in prospecting, developing mineral resources, metallurgy, ore enrichment processes, machine construction technology, agriculture, food processing, and medicine. Sources of alpha , beta , and gamma radiation for control and automation of processes are also discussed. The full reports from the conference will be published in 1960. (R.V.J.)

  12. Pb isotopic constraints on the formation of the Dikulushi Cu-Pb-Zn-Ag mineralisation, Kundelungu Plateau (Democratic Republic of Congo)

    NASA Astrophysics Data System (ADS)

    Haest, Maarten; Schneider, Jens; Cloquet, Christophe; Latruwe, Kris; Vanhaecke, Frank; Muchez, Philippe

    2010-04-01

    Base metal-Ag mineralisation at Dikulushi and in other deposits on the Kundelungu Plateau (Democratic Republic of Congo) developed during two episodes. Subeconomic Cu-Pb-Zn-Fe polysulphide ores were generated during the Lufilian Orogeny (c. 520 Ma ago) in a set of E-W- and NE-SW-oriented faults. Their lead has a relatively unradiogenic and internally inhomogeneous isotopic composition (206Pb/204Pb = 18.07-18.49), most likely generated by mixing of Pb from isotopically heterogeneous clastic sources. These sulphides were remobilised and enriched after the Lufilian Orogeny, along reactivated and newly formed NE-SW-oriented faults into a chalcocite-dominated Cu-Ag mineralisation of high economic interest. The chalcocite samples contain only trace amounts of lead and show mostly radiogenic Pb isotope signatures that fall along a linear trend in the 207Pb/204Pb vs. 206Pb/204Pb diagram (206Pb/204Pb = 18.66-23.65; 207Pb/204Pb = 15.72-16.02). These anomalous characteristics reflect a two-stage evolution involving admixture of both radiogenic lead and uranium during a young fluid event possibly c. 100 Ma ago. The Pb isotope systematics of local host rocks to mineralisation also indicate some comparable young disturbance of their U-Th-Pb systems, related to the same event. They could have provided Pb with sufficiently radiogenic compositions that was added to less radiogenic Pb remobilised from precursor Cu-Pb-Zn-Fe polysulphides, whereas the U most likely originated from external sources. Local metal sources are also suggested by the 208Pb/204Pb-206Pb/204Pb systematics of combined ore and rock lead, which indicate a pronounced and diversified lithological control of the immediate host rocks on the chalcocite-dominated Cu-Ag ores. The Pb isotope systematics of polysulphide mineralisation on the Kundelungu Plateau clearly record a diachronous evolution.

  13. Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system

    USGS Publications Warehouse

    Cloern, J.E.; Canuel, E.A.; Harris, D.

    2002-01-01

    We report measurements of seasonal variability in the C-N stable isotope ratios of plants collected across the habitat mosaic of San Francisco Bay, its marshes, and its tributary river system. Analyses of 868 plant samples were binned into 10 groups (e.g., terrestrial riparian, freshwater phytoplankton, salt marsh) to determine whether C-N isotopes can be used as biomarkers for tracing the origins of organic matter in this river-marsh-estuary complex. Variability of ??13C and ??15N was high (???5-10???) within each plant group, and we identified three modes of variability: (1) between species and their microhabitats, (2) over annual cycles of plant growth and senescence, and (3) between living and decomposing biomass. These modes of within-group variability obscure any source-specific isotopic signatures, confounding the application of C-N isotopes for identifying the origins of organic matter. A second confounding factor was large dissimilarity between the ??13C-??15N of primary producers and the organic-matter pools in the seston and sediments. Both confounding factors impede the application of C-N isotopes to reveal the food supply to primary consumers in ecosystems supporting diverse autotrophs and where the isotopic composition of organic matter has been transformed and become distinct from that of its parent plant sources. Our results support the advice of others: variability of C-N stable isotopes within all organic-matter pools is high and must be considered in applications of these isotopes to trace trophic linkages from primary producers to primary consumers. Isotope-based approaches are perhaps most powerful when used to complement other tools, such as molecular biomarkers, bioassays, direct measures of production, and compilations of organic-matter budgets.

  14. Calcium isotope analysis by mass spectrometry.

    PubMed

    Boulyga, Sergei F

    2010-01-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. The present article discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. In Sections 2 and 3, mass spectrometric methods applied to precise stable isotope analysis and to the determination of (41)Ca are described. Section 4 contains a short summary of selected applications, and includes tracer experiments and the potential use of biological isotope fractionation in medical studies, paleoclimatic and paleoceanographic, and other terrestrial as well as extraterrestrial investigations. 2009 Wiley Periodicals, Inc.

  15. Elemental and isotopic abundances in the solar wind

    NASA Technical Reports Server (NTRS)

    Geiss, J.

    1972-01-01

    The use of collecting foils and lunar material to assay the isotopic composition of the solar wind is reviewed. Arguments are given to show that lunar surface correlated gases are likely to be most useful in studying the history of the solar wind, though the isotopic abundances are thought to give a good approximation to the solar wind composition. The results of the analysis of Surveyor material are also given. The conditions leading to a significant component of the interstellar gas entering the inner solar system are reviewed and suggestions made for experimental searches for this fraction. A critical discussion is given of the different ways in which the basic solar composition could be modified by fractionation taking place between the sun's surface and points of observation such as on the Moon or in interplanetary space. An extended review is made of the relation of isotopic and elemental composition of the interplanetary gas to the dynamic behavior of the solar corona, especially processes leading to fractionation. Lastly, connection is made between the subject of composition, nucleosynthesis and the convective zone of the sun, and processes leading to modification of initial accretion of certain gases on the Earth and Moon.

  16. First-principles theory of anharmonicity and the inverse isotope effect in superconducting palladium-hydride compounds.

    PubMed

    Errea, Ion; Calandra, Matteo; Mauri, Francesco

    2013-10-25

    Palladium hydrides display the largest isotope effect anomaly known in the literature. Replacement of hydrogen with the heavier isotopes leads to higher superconducting temperatures, a behavior inconsistent with harmonic theory. Solving the self-consistent harmonic approximation by a stochastic approach, we obtain the anharmonic free energy, the thermal expansion, and the superconducting properties fully ab initio. We find that the phonon spectra are strongly renormalized by anharmonicity far beyond the perturbative regime. Superconductivity is phonon mediated, but the harmonic approximation largely overestimates the superconducting critical temperatures. We explain the inverse isotope effect, obtaining a -0.38 value for the isotope coefficient in good agreement with experiments, hydrogen anharmonicity being mainly responsible for the isotope anomaly.

  17. Analysis of the site-specific carbon isotope composition of propane by gas source isotope ratio mass spectrometer

    NASA Astrophysics Data System (ADS)

    Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Neto, E. V. Santos; Eiler, John M.

    2016-09-01

    Site-specific isotope ratio measurements potentially provide valuable information about the formation and degradation of complex molecules-information that is lost in conventional bulk isotopic measurements. Here we discuss the background and possible applications of such measurements, and present a technique for studying the site-specific carbon isotope composition of propane at natural abundance based on mass spectrometric analysis of the intact propane molecule and its fragment ions. We demonstrate the feasibility of this approach through measurements of mixtures of natural propane and propane synthesized with site-specific 13C enrichment, and we document the limits of precision of our technique. We show that mass balance calculations of the bulk δ13C of propane based on our site-specific measurements is generally consistent with independent constraints on bulk δ13C. We further demonstrate the accuracy of the technique, and illustrate one of its simpler applications by documenting the site-specific carbon isotope signature associated with gas phase diffusion of propane, confirming that our measurements conform to the predictions of the kinetic theory of gases. This method can be applied to propane samples of moderate size (tens of micromoles) isolated from natural gases. Thus, it provides a means of studying the site-specific stable isotope systematics of propane at natural isotope abundances on sample sizes that are readily recovered from many natural environments. This method may also serve as a model for future techniques that apply high-resolution mass spectrometry to study the site-specific isotopic distributions of larger organic molecules, with potential applications to biosynthesis, forensics and other geochemical subjects.

  18. Controls on the barium isotope compositions of marine sediments

    NASA Astrophysics Data System (ADS)

    Bridgestock, Luke; Hsieh, Yu-Te; Porcelli, Donald; Homoky, William B.; Bryan, Allison; Henderson, Gideon M.

    2018-01-01

    The accumulation of barium (Ba) in marine sediments is considered to be a robust proxy for export production, although this application can be limited by uncertainty in BaSO4 preservation and sediment mass accumulation rates. The Ba isotope compositions of marine sediments could potentially record insights into past changes in the marine Ba cycle, which should be insensitive to these limitations, enabling more robust interpretation of sedimentary Ba as a proxy. To investigate the controls on the Ba isotope compositions of marine sediments and their potential for paleo-oceanographic applications, we present the first Ba isotope compositions results for sediments, as well as overlying seawater depth profiles collected in the South Atlantic. Variations in Ba isotope compositions of the sediments predominantly reflect changes in the relative contributions of detrital and authigenic Ba sources, with open-ocean sediments constraining the isotope composition of authigenic Ba to be δ 138/134Ba ≈ + 0.1 ‰. This value is consistent with the average isotope composition inferred for sinking particulate Ba using simple mass balance models of Ba in the overlying water column and is hypothesized to reflect the removal of Ba from the upper water column with an associated isotopic fractionation of Δ diss-part 138/134Ba ≈ + 0.4 to +0.5. Perturbations to upper ocean Ba cycling, due to changes in export production and the supply of Ba via upwelling, should therefore be recorded by the isotope compositions of sedimentary authigenic Ba. Such insights will help to improve the reliable application of Ba accumulation rates in marine sediments as a proxy for past changes in export production.

  19. Asian anthropogenic lead contamination in the North Pacific Ocean as evidenced by stable lead isotopic compositions

    NASA Astrophysics Data System (ADS)

    Zurbrick, Cheryl M.

    This dissertation work determined the changing scope of lead (Pb) contamination in the North Pacific Ocean since the phase-out of leaded gasoline in most of the world. Chapters 1 and 2 consisted of validating our method for determining Pb concentrations and isotopic compositions in seawater. Chapter 3 established a baseline of Pb isotopic compositions (PbICs) in the western and central North Pacific in 2002. This was an ideal time to establish such a baseline because China had recently (mid-2000) ceased their use of leaded gasoline and simultaneously began consuming increasingly large amounts of coal, known to have relatively high Pb concentrations. We found subsurface waters were contaminated with Asian industrial Pb, predominantly Chinese coal emissions. In contrast, the abyssal waters were a mix of Asian industrial Pb and background (i.e., natural) Pb. Chapter 4 revisited the western and central North Pacific in 2009 -- 2011 to determine what, if any, changes had occurred in this short time period. We found that Pb in subsurface and abyssal waters of the western North Pacific were similar to Chinese aerosols. Such a large change in the PbICs of abyssal water in 9 years was unanticipated and attributed to the relatively large flux of particle-bound Pb from the euphotic zone to the deep ocean, which was in isotopic equilibrium with the reservoir of dissolved Pb. In contrast, the central North Pacific abyssal water PbICs were similar to values previously reported because of the relatively lower particulate export. Based on comparisons to baseline PbIC data, we determined that abyssal waters in the western and central North Pacific would be isotopically indistinguishable from surface waters in the next three decades. Sources of Pb to coastal California waters were reevaluated in Chapter 5. Prior studies had found that surface waters of the California Current System (CCS) were isotopically consistent with both Asian industrial Pb and US leaded gasoline, still in use at that point in time. In 2010 and 2011, we found that surface and subsurface waters of the CCS were isotopically similar to Asian industrial emissions. However, remobilized US gasoline Pb from sediments in the San Francisco Bay, California, were accumulating in the "mud belt" on the continental shelf and changing the isotopic composition of overlying waters. During periods of intense upwelling, this historic Pb was brought to the surface of the water. However, the much larger quantity of Pb from Asian industrial emissions made the isotopic composition of Pb from historic US gasoline unidentifiable in off-shore waters. A secondary research focus of this dissertation was to improve my own teaching abilities. Chapter 6 explored the intersection of system thinking and aquatic toxicology in undergraduate education. Among a wealth of information, I found that group concept mapping was no more useful to student learning than the same activity done individually. This was due to poor implementation of team learning strategies by me and inadequate time for students to adjust to non-traditional instruction methodologies.

  20. Lead in ancient Rome's city waters.

    PubMed

    Delile, Hugo; Blichert-Toft, Janne; Goiran, Jean-Philippe; Keay, Simon; Albarède, Francis

    2014-05-06

    It is now universally accepted that utilization of lead for domestic purposes and water distribution presents a major health hazard. The ancient Roman world was unaware of these risks. How far the gigantic network of lead pipes used in ancient Rome compromised public health in the city is unknown. Lead isotopes in sediments from the harbor of Imperial Rome register the presence of a strong anthropogenic component during the beginning of the Common Era and the Early Middle Ages. They demonstrate that the lead pipes of the water distribution system increased Pb contents in drinking water of the capital city by up to two orders of magnitude over the natural background. The Pb isotope record shows that the discontinuities in the pollution of the Tiber by lead are intimately entwined with the major issues affecting Late Antique Rome and its water distribution system.

  1. APPLICATIONS OF ENVIRONMENTAL ISOTOPES FOR WATERSHED INVESTIGATIONS

    EPA Science Inventory

    Environmental isotopes include naturally-occurring nuclides that can be applied as tracers within watersheds (Sidle, 1998). Recent advances in mass spectroscopy may supplant many traditional and costly hydrometric techniques. It is now possible, for example, to utilize isotopes a...

  2. Incorporating concentration dependence in stable isotope mixing models.

    PubMed

    Phillips, Donald L; Koch, Paul L

    2002-01-01

    Stable isotopes are often used as natural labels to quantify the contributions of multiple sources to a mixture. For example, C and N isotopic signatures can be used to determine the fraction of three food sources in a consumer's diet. The standard dual isotope, three source linear mixing model assumes that the proportional contribution of a source to a mixture is the same for both elements (e.g., C, N). This may be a reasonable assumption if the concentrations are similar among all sources. However, one source is often particularly rich or poor in one element (e.g., N), which logically leads to a proportionate increase or decrease in the contribution of that source to the mixture for that element relative to the other element (e.g., C). We have developed a concentration-weighted linear mixing model, which assumes that for each element, a source's contribution is proportional to the contributed mass times the elemental concentration in that source. The model is outlined for two elements and three sources, but can be generalized to n elements and n+1 sources. Sensitivity analyses for C and N in three sources indicated that varying the N concentration of just one source had large and differing effects on the estimated source contributions of mass, C, and N. The same was true for a case study of bears feeding on salmon, moose, and N-poor plants. In this example, the estimated biomass contribution of salmon from the concentration-weighted model was markedly less than the standard model estimate. Application of the model to a captive feeding study of captive mink fed on salmon, lean beef, and C-rich, N-poor beef fat reproduced very closely the known dietary proportions, whereas the standard model failed to yield a set of positive source proportions. Use of this concentration-weighted model is recommended whenever the elemental concentrations vary substantially among the sources, which may occur in a variety of ecological and geochemical applications of stable isotope analysis. Possible examples besides dietary and food web studies include stable isotope analysis of water sources in soils, plants, or water bodies; geological sources for soils or marine systems; decomposition and soil organic matter dynamics, and tracing animal migration patterns. A spreadsheet for performing the calculations for this model is available at http://www.epa.gov/wed/pages/models.htm.

  3. A stable isotope model for combined source apportionment and degradation quantification of environmental pollutants

    NASA Astrophysics Data System (ADS)

    Lutz, Stefanie; Van Breukelen, Boris

    2014-05-01

    Natural attenuation can represent a complementary or alternative approach to engineered remediation of polluted sites. In this context, compound specific stable isotope analysis (CSIA) has proven a useful tool, as it can provide evidence of natural attenuation and assess the extent of in-situ degradation based on changes in isotope ratios of pollutants. Moreover, CSIA can allow for source identification and apportionment, which might help to identify major emission sources in complex contamination scenarios. However, degradation and mixing processes in aquifers can lead to changes in isotopic compositions, such that their simultaneous occurrence might complicate combined source apportionment (SA) and assessment of the extent of degradation (ED). We developed a mathematical model (stable isotope sources and sinks model; SISS model) based on the linear stable isotope mixing model and the Rayleigh equation that allows for simultaneous SA and quantification of the ED in a scenario of two emission sources and degradation via one reaction pathway. It was shown that the SISS model with CSIA of at least two elements contained in the pollutant (e.g., C and H in benzene) allows for unequivocal SA even in the presence of degradation-induced isotope fractionation. In addition, the model enables precise quantification of the ED provided degradation follows instantaneous mixing of two sources. If mixing occurs after two sources have degraded separately, the model can still yield a conservative estimate of the overall extent of degradation. The SISS model was validated against virtual data from a two-dimensional reactive transport model. The model results for SA and ED were in good agreement with the simulation results. The application of the SISS model to field data of benzene contamination was, however, challenged by large uncertainties in measured isotope data. Nonetheless, the use of the SISS model provided a better insight into the interplay of mixing and degradation processes at the field site, as it revealed the prevailing contribution of one emission source and a low overall ED. The model can be extended to a larger number of sources and sinks. It may aid in forensics and natural attenuation assessment of soil, groundwater, surface water, or atmospheric pollution.

  4. Static, mixed-array total evaporation for improved quantitation of plutonium minor isotopes in small samples

    DOE PAGES

    Stanley, F. E.; Byerly, Benjamin L.; Thomas, Mariam R.; ...

    2016-03-31

    Actinide isotope measurements are a critical signature capability in the modern nuclear forensics “toolbox”, especially when interrogating anthropogenic constituents in real-world scenarios. Unfortunately, established methodologies, such as traditional total evaporation via thermal ionization mass spectrometry, struggle to confidently measure low abundance isotope ratios (<10 -6) within already limited quantities of sample. Herein, we investigate the application of static, mixed array total evaporation techniques as a straightforward means of improving plutonium minor isotope measurements, which have been resistant to enhancement in recent years because of elevated radiologic concerns. Furthermore, results are presented for small sample (~20 ng) applications involving a well-knownmore » plutonium isotope reference material, CRM-126a, and compared with traditional total evaporation methods.« less

  5. Lead isotopes tracing the life cycle of a catchment: From source rock via weathering to human impact

    NASA Astrophysics Data System (ADS)

    Negrel, P. J.; Petelet-Giraud, E.; Guerrot, C.; Millot, R.

    2015-12-01

    Chemical weathering of rocks involves consumption of CO2, a greenhouse gas with a strong influence on climate. Among rocks exposed to weathering, basalt plays a major role in the carbon cycle as it is more easily weathered than other crystalline silicate rocks. This means that basalt weathering acts as a major atmospheric CO2 sink. The present study investigated the lead isotopes in rock, soil and sediment for constraining the life cycle of a catchment, covering source rocks, erosion processes and products, and anthropogenic activities. For this, we investigated the Allanche river drainage basin in the Massif Central, the largest volcanic areas in France, that offers opportunities for selected geochemical studies since it drains a single type of virtually unpolluted volcanic rock, with agricultural activity increasing downstream. Soil and sediment are derived exclusively from basalt weathering, and their chemistry, coupled to isotope tracing, should shed light on the behavior of chemical species during weathering from parental bedrock. Bedrock samples of the basin, compared to regional bedrock of the volcanic province, resulted from a complex history and multiple mantle reservoir sources and mixing. Regarding soils and sediments, comparison of Pb and Zr normalized to mobile K shows a linear evolution of weathering processes, whereby lead enrichment from atmospheric deposition is the other major contributor. Lead-isotope ratios showed that most of the lead budget in sediment and soil results from bedrock weathering with an influence of past mining and mineral processing of ores in the Massif Central, and deposition of lead-rich particles from gasoline combustion, but no lead input from agricultural activity. A classic box model was used to investigate the dynamics of sediment transfer at the catchment scale, the lead behavior in the continuum bedrock-soil-sediment and the historical evolution of anthropogenic aerosol emissions.

  6. The potential source of lead in the Permian Kupferschiefer bed of Europe and some selected Paleozoic mineral deposits in the Federal Republic of Germany

    USGS Publications Warehouse

    Wedepohl, K.H.; Delevaux, M.H.; Doe, B.R.

    1978-01-01

    New lead isotopic compositions have been measured for Paleozoic bedded and vein ore deposits of Europe by the high precision thermal emission (triple filament) technique. Eleven samples have been analyzed from the Upper Permian Kupferschiefer bed with representatives from Poland to England, three samples from the Middle Devonian Rammelsberg deposit and one from the Middle Devonian Meggen deposit, both of which are conformable ore lenses and are in the Federal Republic of Germany (FRG); and also two vein deposits from the FRG were analyzed, from Ramsbeck in Devonian host rocks and from Grund in Carboniferous host rocks. For Kupferschiefer bed samples from Germany, the mineralization is of variable lead isotopic composition and appears to have been derived about 250 m.y. ago from 1700 m.y. old sources, or detritus of this age, in Paleozoic sedimentary rocks. Samples from England, Holland, and Poland have different isotopic characteristics from the German samples, indicative of significantly different source material (perhaps older). The isotopic variability of the samples from the Kupferschiefer bed in Germany probably favors the lead containing waters coming from shoreward (where poor mixing is to be expected) rather than basinward (where better mixing is likely) directions. The data thus support the interpretation of the metal source already given by Wedepohl in 1964. Data on samples from Rammelsberg and Meggen tend to be slightly less radiogenic than for the Kupferschiefer, about the amount expected if the leads were all derived from the same source material but 100 to 150 m.y. apart in time. The vein galena from Ramsbeck is similar to that from Rammelsberg conformable ore lenses, both in rocks of Devonian age; vein galena from Grund in Upper Carboniferous country rocks is similar to some bedded Kupferschiefer mineralization in Permian rocks, as if the lead composition was formed at about the same time and from similar source material as the bedded deposits. Although heat has played a more significant role in the formation of some of these deposits (veins and Rammelsberg-Meggen) than in others (Kupferschiefer), there is no indication of radically different sources for the lead, all apparently coming from sedimentary source material containing Precambrian detritus. One feldspar lead sample from the Brocken-Oker Granite is not the same in isotopic composition as any of the ores analyzed. ?? 1978 Springer-Verlag.

  7. Lead isotopes and trace metals in dust at Yucca Mountain

    USGS Publications Warehouse

    Kwak, Loretta; Neymark, Leonid A.; Peterman, Zell E.

    2008-01-01

    Lead (Pb)-isotope compositions and trace-metal concentrations were determined for samples of dust collected from underground and surface locations at and near the proposed radioactive waste repository at Yucca Mountain, Nevada. Rare earth element concentrations in the dust samples from the underground tunnels are similar to those in wholerock samples of the repository host rocks (Miocene Tiva Canyon Tuff and Topopah Spring Tuff), supporting interpretation that the subsurface dust is mainly composed of rock comminuted during tunnel construction. Other trace metals (arsenic, cadmium, cobalt, chromium, copper, manganese, nickel, lead, antimony, thallium, and zinc) are variably enriched in the subsurface dust samples relative to the average concentrations in the host rocks. Average concentrations of arsenic and lead in dust samples, high concentrations of which can cause corrosion of waste canisters, have enrichment factors from 1.2 to 1.6 and are insignificant relative to the range of concentrations for these metals observed in the host rock samples. Most dust samples from surface sites also are enriched in many of these trace metals relative to average repository host rocks. At least some of these enrichments may be artifacts of sampling. Plotted on a 208Pb/206Pb-207Pb/206Pb graph, Pb-isotope compositions of dust samples from underground sites form a mixing line extending from host-rock Pb-isotope compositions towards compositions of many of the dust samples from surface sites; however, combined Pb concentration and isotope data indicate the presence of a Pbenriched component in the subsurface dust that is not derived from host rock or surface dust and may derive from anthropogenic materials introduced into the underground environment.

  8. Transboundary atmospheric lead pollution.

    PubMed

    Erel, Yigal; Axelrod, Tamar; Veron, Alain; Mahrer, Yitzak; Katsafados, Petros; Dayan, Uri

    2002-08-01

    A high-temporal resolution collection technique was applied to refine aerosol sampling in Jerusalem, Israel. Using stable lead isotopes, lead concentrations, synoptic data, and atmospheric modeling, we demonstrate that lead detected in the atmosphere of Jerusalem is not only anthropogenic lead of local origin but also lead emitted in other countries. Fifty-seven percent of the collected samples contained a nontrivial fraction of foreign atmospheric lead and had 206Pb/207Pb values which deviated from the local petrol-lead value (206Pb/207Pb = 1.113) by more than two standard deviations (0.016). Foreign 206Pb/207Pb values were recorded in Jerusalem on several occasions. The synoptic conditions on these dates and reported values of the isotopic composition of lead emitted in various countries around Israel suggest that the foreign lead was transported to Jerusalem from Egypt, Turkey, and East Europe. The average concentration of foreign atmospheric lead in Jerusalem was 23 +/- 17 ng/m3, similar to the average concentration of local atmospheric lead, 21 +/- 18 ng/ m3. Hence, the load of foreign atmospheric lead is similar to the load of local atmospheric lead in Jerusalem.

  9. Atomic vapor laser isotope separation of lead-210 isotope

    DOEpatents

    Scheibner, K.F.; Haynam, C.A.; Johnson, M.A.; Worden, E.F.

    1999-08-31

    An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207. 5 figs.

  10. Atomic vapor laser isotope separation of lead-210 isotope

    DOEpatents

    Scheibner, Karl F.; Haynam, Christopher A.; Johnson, Michael A.; Worden, Earl F.

    1999-01-01

    An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207.

  11. Rainfall Type as a Dominant Control of the Isotopic Composition of Precipitation in the South Central United States

    NASA Astrophysics Data System (ADS)

    Sun, C.; Shanahan, T. M.; Partin, J. W.

    2017-12-01

    The processes that control the isotopic composition of precipitation in the mid-latitudes are understudied compared to the high and low latitudes, but are critical for interpreting paleo records using isotope proxies. To better understand these processes, we investigated changes of isotopic composition of rainwater in Central Texas using 20 months of event-based rainwater collection. We find that in both the event-based data and the monthly data from the Waco GNIP station, the dominant control on the isotopic composition of precipitation is the proportion that is derived from convective systems. This finding is consistent with previously reported data largely from tropical localities (Aggarwal et al., 2016), where large organized convective systems lead to high rainfall amounts and isotopically depleted precipitation. Although there are seasonal differences in the dominant rainfall types over the South Central US, with winter precipitation almost entirely stratiform, seasonality plays very little role in the net isotopic composition of precipitation because the total contribution during winter is small compared with spring, summer and fall. We also find that changes of source have little effect on the isotopic composition of rainfall, as the majority of the moisture is derived from the Gulf of Mexico with little influence of reevaporation or mixing. The majority of the warm season precipitation in the South Central US occurs in association with mesoscale convective systems (MCSs) and the development of these systems plays a critical role in the overall isotopic signature of precipitation. MCSs are characterized by a combination of intense, organized convection at their leading edges and trailing stratiform precipitation. Larger MCSs tend to contain higher proportions of stratiform rainfall and as a result, have isotopically depleted values. Proxy records from this region displaying more negative isotope values in the past should therefore be interpreted with caution as they could reflect either increases in cool versus warm season precipitation or changes in the intensity of warm season MCSs.

  12. Hydrogen and Oxygen Stable Isotope Fractionation in Body Fluid Compartments of Dairy Cattle According to Season, Farm, Breed, and Reproductive Stage

    PubMed Central

    Abeni, Fabio; Petrera, Francesca; Capelletti, Maurizio; Dal Prà, Aldo; Bontempo, Luana; Tonon, Agostino; Camin, Federica

    2015-01-01

    Environmental temperature affects water turnover and isotope fractionation by causing water evaporation from the body in mammals. This may lead to rearrangement of the water stable isotope equilibrium in body fluids. We propose an approach to detect possible variations in the isotope ratio in different body fluids on the basis of different homoeothermic adaptations in varying reproductive stages. Three different reproductive stages (pregnant heifer, primiparous lactating cow, and pluriparous lactating cow) of two dairy cattle breeds (Italian Friesian and Modenese) were studied in winter and summer. Blood plasma, urine, faecal water, and milk were sampled and the isotope ratios of H (2H/1H) and O (18O/16O) were determined. Deuterium excess and isotope-fractionation factors were calculated for each passage from plasma to faeces, urine and milk. The effects of the season, reproductive stages and breed on δ 2H and δ 18O were significant in all the fluids, with few exceptions. Deuterium excess was affected by season in all the analysed fluids. The correlations between water isotope measurements in bovine body fluids ranged between 0.6936 (urine-milk) and 0.7848 (urine-plasma) for δ 2H, and between 0.8705 (urine-milk) and 0.9602 (plasma-milk) for δ 18O. The increase in both isotopic δ values in all body fluids during summer is representative of a condition in which fractionation took place as a consequence of a different ratio between ingested and excreted water, which leads to an increased presence of the heavy isotopes. The different body water turnover between adult lactating cattle and non-lactating heifers was confirmed by the higher isotopic δ for the latter, with a shift in the isotopic equilibrium towards values more distant from those of drinking water. PMID:25996911

  13. An open source Bayesian Monte Carlo isotope mixing model with applications in Earth surface processes

    NASA Astrophysics Data System (ADS)

    Arendt, Carli A.; Aciego, Sarah M.; Hetland, Eric A.

    2015-05-01

    The implementation of isotopic tracers as constraints on source contributions has become increasingly relevant to understanding Earth surface processes. Interpretation of these isotopic tracers has become more accessible with the development of Bayesian Monte Carlo (BMC) mixing models, which allow uncertainty in mixing end-members and provide methodology for systems with multicomponent mixing. This study presents an open source multiple isotope BMC mixing model that is applicable to Earth surface environments with sources exhibiting distinct end-member isotopic signatures. Our model is first applied to new δ18O and δD measurements from the Athabasca Glacier, which showed expected seasonal melt evolution trends and vigorously assessed the statistical relevance of the resulting fraction estimations. To highlight the broad applicability of our model to a variety of Earth surface environments and relevant isotopic systems, we expand our model to two additional case studies: deriving melt sources from δ18O, δD, and 222Rn measurements of Greenland Ice Sheet bulk water samples and assessing nutrient sources from ɛNd and 87Sr/86Sr measurements of Hawaiian soil cores. The model produces results for the Greenland Ice Sheet and Hawaiian soil data sets that are consistent with the originally published fractional contribution estimates. The advantage of this method is that it quantifies the error induced by variability in the end-member compositions, unrealized by the models previously applied to the above case studies. Results from all three case studies demonstrate the broad applicability of this statistical BMC isotopic mixing model for estimating source contribution fractions in a variety of Earth surface systems.

  14. Isotopic fractionation of volatile species during bubble growth in magmas

    NASA Astrophysics Data System (ADS)

    Watson, E. B.

    2016-12-01

    Bubbles grow in decompressing magmas by simple expansion and also by diffusive supply of volatiles to the bubble/melt interface. The latter phenomenon is of significant geochemical interest because diffusion can fractionate isotopes, raising the possibility that the isotopic character of volatile components in bubbles may not reflect that of volatiles dissolved in the host melt over the lifetime of a bubble—even in the complete absence of equilibrium vapor/melt isotopic fractionation. None of the foregoing is conceptually new, but recent experimental studies have established the existence of isotope mass effects on diffusion in silicate melts for several elements (Li, Mg, Ca, Fe), and this finding has now been extended to the volatile (anionic) element chlorine (Fortin et al. 2016; this meeting). Knowledge of isotope mass effects on diffusion of volatile species opens the way for quantitative models of diffusive fractionation during bubble growth. Significantly different effects are anticipated for "passive" volatiles (e.g., noble gases and Cl) that are partitioned into existing bubbles but play little role in nucleation and growth, as opposed to "active" volatiles whose limited solubilities lead to bubble nucleation during magma decompression. Numerical solution of the appropriate diffusion/mass-conservation equations reveals that the isotope effect on passive volatiles partitioned into bubbles growing at a constant rate in a static system depends (predictably) upon R/D, Kd and D1/D2 (R = growth rate; D = diffusivity; Kd = bubble/melt partition coefficient; D1/D2 = diffusivity ratio of the isotopes of interest). Constant R is unrealistic, but other scenarios can be explored by including the solubility and EOS of an "active" volatile (e.g., CO2) in numerical simulations of bubble growth. For plausible decompression paths, R increases exponentially with time—leading, potentially, to larger isotopic fractionation of species partitioned into the growing bubble.

  15. STABLE ISOTOPES IN ECOLOGICAL STUDIES: NEW DEVELOPMENTS IN MIXING MODELS

    EPA Science Inventory

    Stable isotopes are increasingly being used as tracers in ecological studies. One application uses isotopic ratios to quantify the proportional contributions of multiple sources to a mixture. Examples include food sources for animals, water sources for plants, pollution sources...

  16. Why we need a centralized repository for isotopic data

    USDA-ARS?s Scientific Manuscript database

    Stable isotopes encode the origin and integrate the history of matter; thus, their analysis offers tremendous potential to address questions across diverse scientific disciplines. Indeed, the broad applicability of stable isotopes, coupled with advancements in high-throughput analysis, have created ...

  17. EARTHTIME: Teaching geochronology to high school students

    NASA Astrophysics Data System (ADS)

    Bookhagen, Britta; Buchwaldt, Robert; McLean, Noah; Rioux, Matthew; Bowring, Samuel

    2010-05-01

    The authors taught an educational module developed as part of the EARTHTIME (www.earth-time.org) outreach initiative to 215 high school students from a Massachusetts (USA) High School as part of an "out-of-school" field trip. The workshop focuses on uranium-lead (U-Pb) dating of zircons and its application to solving a geological problem. The theme of our 2.5-hour module is the timing of the K-T boundary and a discussion of how geochronology can be used to evaluate the two main hypotheses for the cause of the concurrent extinction—the Chicxlub impact and the massive eruption of the Deccan Traps. Activities are divided into three parts: In the first part, the instructors lead hands-on activities demonstrating how rock samples are processed to isolate minerals by their physical properties. Students use different techniques, such as magnetic separation, density separation using non-toxic heavy liquids, and mineral identification with a microscope. We cover all the steps from sampling an outcrop to determining a final age. Students also discuss geologic features relevant to the K-T boundary problem and get the chance to examine basalts, impact melts and meteorites. In the second part, we use a curriculum developed for and available on the EARTHTIME website (http://www.earth-time.org/Lesson_Plan.pdf). The curriculum teaches the science behind uranium-lead dating using tables, graphs, and a geochronology kit. In this module, the students start by exploring the concepts of half-life and exponential decay and graphically solving the isotopic decay equation. Manipulating groups of double-sided chips labeled with U and Pb isotopes reinforces the concept that an age determination depends on the Pb/U ratio, not the absolute number of atoms present. Next, the technique's accuracy despite loss of parent and daughter atoms during analysis, as well as the use of isotopic ratios rather than absolute abundances, is explained with an activity on isotope dilution. Here the students determine the number of beads in a large bucket without counting them all by adding a precisely known number of "tracer" beads and averaging ratios from several small samples of the mixture. The (pre-counted) unknown quantity of beads represents the isotopic composition of zircon from four samples—the Deccan Trap basalts, the Chicxulub impact melt, and ash layers above and below the K-T boundary —and the students' measurements are used in the final part of the module. An introduction to statistical inference from small samples can also be added to this exercise. After this, the chemistry and physics behind geochemical laboratory techniques, ion exchange chromatography and isotope ratio measurements using a mass spectrometer, are explained using models, movies, posters, and analogies to familiar physics. In the final part, students engage in a summary exercise where they apply what they have learned to test the two competing hypotheses. Using the dates they calculated with isotope dilution and a graphical solution to the decay equation, they determine if the Chicxulub impact or the Deccan Trap volcanic eruption can explain the K/T boundary mass extinction. They learn the importance of measurement uncertainty in interpreting data and brainstorm how best to resolve this outstanding scientific problem. Feedback from written evaluations shows that teachers valued the interdisciplinary association of concepts from physics, chemistry and mathematics. Students enjoyed the hands-on exercises that gave them the opportunity to see how rocks can be broken down into mineral separates and individual zircons selected for analysis. The K/T-boundary exercise at the end was appreciated because it demonstrates an exciting application of geochronological methods to popular science.

  18. Lead theft--a study of the "uniqueness" of lead from church roofs.

    PubMed

    Bond, John W; Hainsworth, Sarah V; Lau, Tien L

    2013-07-01

    In the United Kingdom, theft of lead is common, particularly from churches and other public buildings with lead roofs. To assess the potential to distinguish lead from different sources, 41 samples of lead from 24 church roofs in Northamptonshire, U.K, have been analyzed for relative abundance of trace elements and isotopes of lead using X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry, respectively. XRF revealed the overall presence of 12 trace elements with the four most abundant, calcium, phosphorus, silicon, and sulfur, showing a large weight percentage standard error of the mean of all samples suggesting variation in the weight percentage of these elements between different church roofs. Multiple samples from the same roofs, but different lead sheets, showed much lower weight percentage standard errors of the mean suggesting similar trace element concentrations. Lead isotope ratios were similar for all samples. Factors likely to affect the occurrence of these trace elements are discussed. © 2013 American Academy of Forensic Sciences.

  19. Paleoproxies: Heavy Stable Isotope Perspectives

    NASA Astrophysics Data System (ADS)

    Nagler, T. F.; Hippler, D.; Siebert, C.; Kramers, J. D.

    2002-12-01

    Recent advances in isotope ratio mass spectrometry, namely multiple collector ICP-MS and refined TIMS techniques, will significantly enhance the ability to measure heavy stable isotope fractionation, which will lead to the development of a wide array of process-identifying (bio)-geochemical tools. Thus far research in this area is not easily assessable to scientists outside the isotope field. This is due to the fact that analyzing heavy stable isotopes does not provide routine numbers which are per se true (the preciser the truer) but is still a highly experimental field. On the other hand resolving earth science problems requires specialists familiar with the environment being studied. So what is in there for paleoceanographers? In a first order approach, relating isotope variations to physical processes is straightforward. A prominent example are oxygen isotope variations with temperature. The total geological signal is of course far more complicated. At low temperatures, heavy stable isotopes variations have been reported for e.g. Ca, Cr, Fe, Cu, Zn, Mo and Tl. Fractionation mechanisms and physical parameters responsible for the observed variations are not yet resolved for most elements. Significant equilibrium isotope fractionation is expected from redox reactions of transition metals. However a difference in coordination number between two coexisting speciations of an element in the same oxidation state can also cause fractionation. Protonation of dissolved Mo is one case currently discussed. For paleoceanography studies, a principal distinction between transition metals essential for life (V to Zn plus Mo) or not will be helpful. In case of the former group, distinction between biogenic and abiogenic isotope fractionation will remain an important issue. For example, abiotic Fe redox reactions result in isotope fractionations indistinguishable in direction and magnitude from microbial effects. Only a combination of different stable isotope systems bears the potential to solve this problem for a given set of samples and thus to model the ocean system more accurately in different scales. Besides all complications some important applications of heavy stable isotopes as paleoproxies already emerge. Pilot studies indicate that Mo isotopes may present a proxy for the extend of anoxic condition in past oceans. On a finer scale the same system appears to provide a measure of (bio)-chemical redox-changes related to diagenesis. The Ca isotope system may complement more classical sea surface temperature proxies in particular environments. Promising results exist for polar waters (N. pachy left), as well as indications on the seasonality under global greenhouse conditions ~110-50 Ma ago. However, the heavily species dependent Ca isotope fractionation can not be interpreted by just adopting concepts and findings from the oxygen system. While a complication to the ease of use as SST proxy, this species dependence offers pathways to unravel different modes of bio-calcifications. Given the complexity of the matter, collaboration of specialists of different fields will be needed to develop successful process-related hypotheses and diagnostic tools.

  20. Scientific Opportunities and Plans for FRIB

    NASA Astrophysics Data System (ADS)

    Bollen, Georg

    2014-09-01

    FRIB, the US's ``Facility for Rare Isotope Beams'' under construction at Michigan State University will be a world-leading rare isotope beam facility. FRIB will be based on a 400 kW, 200 MeV/u heavy ion linac and provide a wide variety of high-quality beams of unstable isotopes at unprecedented intensities, opening exciting research perspectives with fast, stopped, and reaccelerated beams. This talk will summarize the scientific opportunities with FRIB in the areas of nuclear science, nuclear astrophysics, and the test of fundamental interaction and symmetries, as well using isotopes from FRIB for societal benefits. Design features of FRIB and the status of the ongoing construction will be presented. FRIB, the US's ``Facility for Rare Isotope Beams'' under construction at Michigan State University will be a world-leading rare isotope beam facility. FRIB will be based on a 400 kW, 200 MeV/u heavy ion linac and provide a wide variety of high-quality beams of unstable isotopes at unprecedented intensities, opening exciting research perspectives with fast, stopped, and reaccelerated beams. This talk will summarize the scientific opportunities with FRIB in the areas of nuclear science, nuclear astrophysics, and the test of fundamental interaction and symmetries, as well using isotopes from FRIB for societal benefits. Design features of FRIB and the status of the ongoing construction will be presented. This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE.

  1. Measurement of Proton-induced Radiation in Animal Tissue

    NASA Astrophysics Data System (ADS)

    Sękowski, P.; Skwira-Chalot, I.; Matulewicz, T.

    Hadron therapy, because of the dosimetric and radiobiological advantages, is more and more often used in tumour treatment. This treatment method leads also to the radioactive effects induced by energetic protons on nuclei. Nuclear reactions may lead to the production of radioactive isotopes. In the present experiment, two animal (human-like) tissue samples were irradiated with 60 MeV protons. Gamma-ray spectroscopy and lifetime measurements allowed identifying isotopes produced during the irradiation, e.g. $^{18}$F and $^{34m}$Cl.

  2. Field isotopic study of lead fate and compartmentalization in earthworm-soil-metal particle systems for highly polluted soil near Pb recycling factory.

    PubMed

    Goix, Sylvaine; Mombo, Stéphane; Schreck, Eva; Pierart, Antoine; Lévêque, Thibaut; Deola, Frédéric; Dumat, Camille

    2015-11-01

    Earthworms are important organisms in soil macrofauna and play a key role in soil functionality, and consequently in terrestrial ecotoxicological risk assessments. Because they are frequently observed in soils strongly polluted by metals, the influence of earthworm bioturbation on Pb fate could therefore be studied through the use of Pb isotopes. Total Pb concentrations and isotopic composition ((206)Pb, (207)Pb and (208)Pb) were then measured in earthworms, casts and bulk soils sampled at different distance from a lead recycling factory. Results showed decreasing Pb concentrations with the distance from the factory whatever the considered matrix (bulk soils, earthworm bodies or cast samples) with higher concentrations in bulk soils than in cast samples. The bivariate plot (208)Pb/(206)Pb ratios versus (206)Pb/(207)Pb ratios showed that all samples can be considered as a linear mixing between metallic process particulate matter (PM) and geochemical Pb background. Calculated anthropogenic fraction of Pb varied between approximately 84% and 100%. Based on Pb isotopic signatures, the comparison between casts, earthworms and bulk soils allowed to conclude that earthworms preferentially ingest the anthropogenic lead fraction associated with coarse soil organic matter. Actually, soil organic matter was better correlated with Pb isotopic ratios than with Pb content in soils. The proposed hypothesis is therefore a decrease of soil organic matter turnover due to Pb pollution with consequences on Pb distribution in soils and earthworm exposure. Finally, Pb isotopes analysis constitutes an efficient tool to study the influence of earthworm bioturbation on Pb cycle in polluted soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Uranium Measurement Improvements at the Savannah River Technology Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shick, C. Jr.

    Uranium isotope ratio and isotope dilution methods by mass spectrometry are used to achieve sensitivity, precision and accuracy for various applications. This report presents recent progress made at SRTC in the analysis of minor isotopes of uranium. Comparison of routine measurements of NBL certified uranium (U005a) using the SRTC Three Stage Mass Spectrometer (3SMS) and the SRTC Single Stage Mass Spectrometer (SSMS). As expected, the three stage mass spectrometer yielded superior sensitivity, precision, and accuracy for this application.

  4. Uranium and Calcium Isotope Ratio Measurements using the Modified Total Evaporation Method in TIMS

    NASA Astrophysics Data System (ADS)

    Richter, S.; Kuehn, H.; Berglund, M.; Hennessy, C.

    2010-12-01

    A new version of the "modified total evaporation" (MTE) method for isotopic analysis by multi-collector thermal ionization mass spectrometry (TIMS), with high analytical performance and designed in a more user-friendly and routinely applicable way, is described in detail. It is mainly being used for nuclear safeguards measurements of U and Pu and nuclear metrology, but can readily be applied to other scientific tasks in geochemistry, e.g. for Sr, Nd and Ca, as well. The development of the MTE method was organized in collaboration of several "key nuclear mass spectrometry laboratories", namely the New Brunswick Laboratory (NBL), the Institute for Transuranium Elements (ITU), the Safeguards Analytical Laboratory (now Safeguards Analytical Services, SGAS) of the International Atomic Energy Agency (IAEA) and the Institute for Reference Materials and Measurements (IRMM), with IRMM taking the leading role. The manufacturer of the TRITON TIMS instrument, Thermo Fisher Scientific, integrated this method into the software of the instrument. The development has now reached its goal to become a user-friendly and routinely useable method for uranium isotope ratio measurements with high precision and accuracy. Due to the use of the “total evaporation” (TE) method the measurement of the "major" uranium isotope ratio 235U/238U is routinely being performed with a precision of 0.01% to 0.02%. The use of a (certified) reference material measured under comparable conditions is emphasized to achieve an accuracy at a level of 0.02% - depending on the stated uncertainty of the certified value of the reference material. In contrast to the total evaporation method (TE), in the MTE method the total evaporation sequence is interrupted on a regular basis to allow for correction for background from peak tailing, internal calibration of a secondary electron multiplier (SEM) detector versus the Faraday cups, and ion source re-focusing. Therefore, the most significant improvement using the MTE method is in the analytical performance achieved for the "minor" ratios 234U/238U and 236U/238U. The MTE method is now routinely used at all collaborating laboratories and possibly more in the future. Additional applications for the MTE method, e.g. to take advantage of the good external precision in combination with the possibilities of internal background and detector calibrations or mass jumps between different cup configurations, are presented as well. One interesting application concerns new absolute isotope ratio measurements for Ca with an unprecedented level of accuracy. This is important because up to now most reported Ca isotope data are only calculated as relative deviations from a standard like NIST-SRM 915. Using the MTE method measurements on new gravimetrically prepared Ca isotope mixtures were performed. A significantly improved level of accuracy at the level of about 0.02% for both the 42Ca/40Ca and 44Ca/40Ca ratios was obtained.

  5. A critical review of inductively coupled plasma-mass spectrometry for geoanalysis, geochemistry and hydrology, Part 1. Analytical performance

    USGS Publications Warehouse

    Brenner, I.B.; Taylor, Howard E.

    1992-01-01

    Present-day inductively coupled plasma-mass spectrometry (ICP-MS) instrumentation is described briefly. Emphasis is placed on performance characteristics for geoanalysis, geochemistry, and hydrology. Applications where ICP-MS would be indispensable are indicated. Determination of geochemically diagnostic trace elements (such as the rare earth elements [REE], U and Th), of isotope ratios for fingerprinting, tracer and other geo-isotope applications, and benchmark isotope dilution determinations are considered to be typical priority applications for ICP-MS. It is concluded that ICP-MS furnishes unique geoanalytical and environmental data that are not readily provided by conventional spectroscopic (emission and absorption) techniques.

  6. STABLE ISOTOPES IN ECOLOGICAL STUDIES: NEW DEVELOPMENTS IN MIXING MODELS (URUGUAY)

    EPA Science Inventory

    Stable isotopes are increasingly being used as tracers in ecological studies. One application uses isotopic ratios to quantify the proportional contributions of multiple sources to a mixture. Examples include pollution sources for air or water bodies, food sources for animals, ...

  7. STABLE ISOTOPES IN ECOLOGICAL STUDIES: NEW DEVELOPMENTS IN MIXING MODELS (BRAZIL)

    EPA Science Inventory

    Stable isotopes are increasingly being used as tracers in ecological studies. One application uses isotopic ratios to quantify the proportional contributions of multiple sources to a mixture. Examples include pollution sources for air or water bodies, food sources for animals, ...

  8. COMPOUND-SPECIFIC STABLE ISOTOPE ANALYSIS TO DEMONSTRATE IN-SITU MTBE BIOTRANSFORMATION

    EPA Science Inventory

    Change of stable isotope composition of organic contaminants (isotopic fractionation) is a useful indicator of biotransformation. Most of applications to date are in the area of chlorinated solvents and recently BTEX, MTBE and TBA. Chemical reactions (biotic- and abiotic transfor...

  9. All fats are not equal: Considerations when using fatty acid biomarkers in compound-specific stable isotope soil and sediment tracing

    NASA Astrophysics Data System (ADS)

    Reiffarth, Dominic; Petticrew, Ellen; Owens, Philip; Lobb, David

    2013-04-01

    The development of cost-effective, convenient and reliable methods for tracing sediment movement will help establish water security. The use of compound-specific stable isotopes (CSSIs) has seen limited, small-scale applications, often in watersheds exhibiting exotic and highly diverse vegetation types. The CSSI tracing technique relies on the detection and transport of naturally occurring organics of plant origin (biomarkers); the biomarkers of interest are produced by flora, deposited on the soil and potentially mobilized along with soil particles. In part, the uniqueness of a biomarker is dependent on its biological pathway. As a plant fixes CO2-its primary source of carbon for building larger organic molecules-discrimination against the heavier 13C isotope leads to an enrichment of 12C. The more complex the biological pathway the biomarker has been subjected to, the more discrimination and unique isotopic signature the biomarker exhibits. Successfully implementing CSSI tracing requires recognizing: (i) factors contributing to the natural variability of the isotopic signature (ii) the suitability of a biomarker and (iii) factors affecting sensitivity during analysis. Considering the relatively low input of suitable organic biomarkers into the soil and degree of signal dispersion, care must be taken to isolate and correctly identify biomarkers, particularly where vegetation types show low variability and where long-range transport occurs. Research is currently being conducted in the Horsefly River (British Columbia, Canada) and South Tobacco Creek (Manitoba, Canada) watersheds; the research seeks to address some of these concerns, particularly in a temperate climate where exotic vegetation types are not common and variability is expected to be low.

  10. High risk of lead contamination for scavengers in an area with high moose hunting success.

    PubMed

    Legagneux, Pierre; Suffice, Pauline; Messier, Jean-Sébastien; Lelievre, Frédérick; Tremblay, Junior A; Maisonneuve, Charles; Saint-Louis, Richard; Bêty, Joël

    2014-01-01

    Top predators and scavengers are vulnerable to pollutants, particularly those accumulated along the food chain. Lead accumulation can induce severe disorders and alter survival both in mammals (including humans) and in birds. A potential source of lead poisoning in wild animals, and especially in scavengers, results from the consumption of ammunition residues in the tissues of big game killed by hunters. For two consecutive years we quantified the level lead exposure in individuals of a sentinel scavenger species, the common raven (Corvus corax), captured during the moose (Alces alces) hunting season in eastern Quebec, Canada. The source of the lead contamination was also determined using stable isotope analyses. Finally, we identified the different scavenger species that could potentially be exposed to lead by installing automatic cameras targeting moose gut piles. Blood lead concentration in ravens increased over time, indicating lead accumulation over the moose-hunting season. Using a contamination threshold of 100 µg x L(-1), more than 50% of individuals were lead-contaminated during the moose hunting period. Lead concentration was twice as high in one year compared to the other, matching the number of rifle-shot moose in the area. Non-contaminated birds exhibited no ammunition isotope signatures. The isotope signature of the lead detected in contaminated ravens tended towards the signature from lead ammunition. We also found that black bears (Ursus americanus), golden eagles and bald eagles (Aquila chrysaetos and Haliaeetus leucocephalus, two species of conservation concern) scavenged heavily on moose viscera left by hunters. Our unequivocal results agree with other studies and further motivate the use of non-toxic ammunition for big game hunting.

  11. High Risk of Lead Contamination for Scavengers in an Area with High Moose Hunting Success

    PubMed Central

    Legagneux, Pierre; Suffice, Pauline; Messier, Jean-Sébastien; Lelievre, Frédérick; Tremblay, Junior A.; Maisonneuve, Charles; Saint-Louis, Richard; Bêty, Joël

    2014-01-01

    Top predators and scavengers are vulnerable to pollutants, particularly those accumulated along the food chain. Lead accumulation can induce severe disorders and alter survival both in mammals (including humans) and in birds. A potential source of lead poisoning in wild animals, and especially in scavengers, results from the consumption of ammunition residues in the tissues of big game killed by hunters. For two consecutive years we quantified the level lead exposure in individuals of a sentinel scavenger species, the common raven (Corvus corax), captured during the moose (Alces alces) hunting season in eastern Quebec, Canada. The source of the lead contamination was also determined using stable isotope analyses. Finally, we identified the different scavenger species that could potentially be exposed to lead by installing automatic cameras targeting moose gut piles. Blood lead concentration in ravens increased over time, indicating lead accumulation over the moose-hunting season. Using a contamination threshold of 100 µg.L−1, more than 50% of individuals were lead-contaminated during the moose hunting period. Lead concentration was twice as high in one year compared to the other, matching the number of rifle-shot moose in the area. Non-contaminated birds exhibited no ammunition isotope signatures. The isotope signature of the lead detected in contaminated ravens tended towards the signature from lead ammunition. We also found that black bears (Ursus americanus), golden eagles and bald eagles (Aquila chrysaetos and Haliaeetus leucocephalus, two species of conservation concern) scavenged heavily on moose viscera left by hunters. Our unequivocal results agree with other studies and further motivate the use of non-toxic ammunition for big game hunting. PMID:25389754

  12. Environmental lead pollution threatens the children living in the Pearl River Delta region, China.

    PubMed

    Chen, Jianmin; Tong, Yongpeng; Xu, Jiazhang; Liu, Xiaoli; Li, Yulan; Tan, Mingguang; Li, Yan

    2012-09-01

    The objective of this study is to determine children's blood lead levels and identify sources of lead exposure. Childhood lead exposure constitutes a major pediatric health problem today in China. A blood lead screening survey program for children in the age group of 2-12 years residing in Pearl River Delta region, south of China, was carried out from Dec 2007 to Jan 2008. Blood lead levels and lead isotope ratios of a total of 761 participants were assessed by inductively coupled plasma mass spectroscopy. Measurements of urban environmental samples for source identification of children lead exposure were also performed. The geometric mean value of the children's blood lead levels was 57.05 μg/L, and 9.6% of them were higher than 100 μg/L. The blood lead levels were still much higher than those in developed countries. Based on the data of environmental lead source inventories, lead isotopic tracing revealed that there is about 6.7% past used gasoline Pb embedded in Shenzhen residential dust and about 15.6% in Guangzhou dust, respectively.

  13. Method for production of an isotopically enriched compound

    DOEpatents

    Watrous, Matthew G.

    2012-12-11

    A method is presented for producing and isolating an isotopically enriched compound of a desired isotope from a parent radionuclide. The method includes forming, or placing, a precipitate containing a parent radionuclide of the desired daughter isotope in a first reaction zone and allowing sufficient time for the parent to decay into the desired gaseous daughter radioisotope. The method further contemplates collecting the desired daughter isotope as a solid in a second reaction zone through the application of temperatures below the freezing point of the desired isotope to a second reaction zone that is connected to the first reaction zone. Specifically, a method is presented for producing isotopically enriched compounds of xenon, including the radioactive isotope Xe-131m and the stable isotope Xe-131.

  14. 55,000 yrs of Environmental Change in the Southern Hemisphere: Peat Stratigraphy and Inorganic Geochemistry of Lynch's Crater, NE Queensland, Australia.

    NASA Astrophysics Data System (ADS)

    Muller, J.; Kylander, M. E.; Wust, R. A.; Weiss, D. J.

    2005-12-01

    This study presents one of the first applications of geochemical proxies to define changes in vegetation, hydrology and atmospheric dust recorded in a peat deposit in the Southern Hemisphere. The Lynch's Crater archive has captured local, regional and global environmental changes and reveals dynamic ecosystem changes as a result of climate shifts over the past 55,000 yrs BP. The 13 m peat record consists of 1.5 m of ombrotrophic peat underlain by a minerotrophic peat. The ombrotrophic section consists of low inorganic content ("ash") and low pH, as expected in of an ombrotrophic environment. The minerotrophic section contains several layers, up to a few cm thick, where abundant sponge spicules, diatom fragments and detrital quartz are indicative of high algal and protista productivity. These layers are characterised by high (up to 50%) ash, indicating persistent flooding of the peat deposits of Lynch's Crater and signalling periods of change in precipitation in North Queensland, Australia. Geochemical data are used to differentiate between climatic episodes associated with flooding events and internal and external atmospheric dust fluxes. Lead isotopes with lithogenic and chalcophile elements tell us that two distinctive sources are prevalent in the Lynch's Crater record. Most of the inorganic fractions of the deposits have the same geochemical signatures as the rocks and sediments of the crater wall, with low As concentrations, high Al, Ti and Sc concentrations and a more radiogenic Pb isotope signature. Influence from long-range dust is distinguished in the lower sections of the core (~35,000-55,000 cal yrs BP) where increases in As concentrations and less radiogenic Pb isotopes are found. Leading up to the Holocene (~35,000-10,000) the influence of increased dust influx becomes more significant (increasing lithogenics, chalcophiles and ash content) and where possible long-range sources are still active, but diluted by a prevailing dominance of the local sources. During the Holocene Pb isotope signatures remain similar but lithogenic and chalcophile concentrations decrease significantly and coincide with the lowest ash values (~4%) in the core. The research shows Lynch's Crater is a sensitive record of past atmospheric dust cylces and precipitation regimes leading to an invaluable record of past environmental change in the Southern Hemisphere.

  15. Image segmentation for uranium isotopic analysis by SIMS: Combined adaptive thresholding and marker controlled watershed approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willingham, David G.; Naes, Benjamin E.; Heasler, Patrick G.

    A novel approach to particle identification and particle isotope ratio determination has been developed for nuclear safeguard applications. This particle search approach combines an adaptive thresholding algorithm and marker-controlled watershed segmentation (MCWS) transform, which improves the secondary ion mass spectrometry (SIMS) isotopic analysis of uranium containing particle populations for nuclear safeguards applications. The Niblack assisted MCWS approach (a.k.a. SEEKER) developed for this work has improved the identification of isotopically unique uranium particles under conditions that have historically presented significant challenges for SIMS image data processing techniques. Particles obtained from five NIST uranium certified reference materials (CRM U129A, U015, U150, U500more » and U850) were successfully identified in regions of SIMS image data 1) where a high variability in image intensity existed, 2) where particles were touching or were in close proximity to one another and/or 3) where the magnitude of ion signal for a given region was count limited. Analysis of the isotopic distributions of uranium containing particles identified by SEEKER showed four distinct, accurately identified 235U enrichment distributions, corresponding to the NIST certified 235U/238U isotope ratios for CRM U129A/U015 (not statistically differentiated), U150, U500 and U850. Additionally, comparison of the minor uranium isotope (234U, 235U and 236U) atom percent values verified that, even in the absence of high precision isotope ratio measurements, SEEKER could be used to segment isotopically unique uranium particles from SIMS image data. Although demonstrated specifically for SIMS analysis of uranium containing particles for nuclear safeguards, SEEKER has application in addressing a broad set of image processing challenges.« less

  16. Coupling Meteorology, Metal Concentrations, and Pb Isotopes for Source Attribution in Archived Precipitation Samples

    EPA Science Inventory

    A technique that couples lead (Pb) isotopes and multi-element concentrations with meteorological analysis was used to assess source contributions to precipitation samples at the Bondville, Illinois USA National Trends Network (NTN) site. Precipitation samples collected over a 16 ...

  17. Upper Mississippi Pb as a mid-1800s chronostratigraphic marker in sediments from seasonally anoxic lakes in Eastern Canada

    NASA Astrophysics Data System (ADS)

    Gobeil, Charles; Tessier, André; Couture, Raoul-Marie

    2013-07-01

    Sediment cores from eight headwater lakes located in Southern Québec, Eastern Canada, were analyzed for Pb, stable Pb isotopes, and the radioelements 210Pb, 137Cs, 241Am and 226Ra. The depth profiles of stable Pb isotope ratios show, for the post-19th century period, the influence of several isotopically distinct anthropogenic lead sources, mainly including emissions from two Canadian smelters and from leaded gasoline combustion in Canada and in the United States. A most interesting feature of the profiles, however, is the presence of sharp stable Pb isotope ratio peaks near the depth horizon, where excess 210Pb becomes undetectable. Using a binary mixing model and assuming that natural Pb concentrations and isotopic compositions from the catchment are given by the pre-industrial sediments at the bottom of the cores, we find that a significant part of the anthropogenic Pb supplied to the sediments at this horizon originated from smelting activities in the Upper Mississippi Valley. We assess that the Pb isotope ratio peaks, also observed in the laminated sediments of the Pettaquamscutt Estuary, Rhode Island, USA, are an accurate chronostratigraphic marker for the validation of mid-19th century 210Pb-derived dates. Given that the study lakes are located up to 2000 km from the Mississippi Valley, we conclude that this isotopic Pb signal provides a widely distributed time-marker that is key to validate 210Pb chronologies in environmental archives from Eastern North America.

  18. Lead in ancient Rome’s city waters

    PubMed Central

    Delile, Hugo; Blichert-Toft, Janne; Goiran, Jean-Philippe; Keay, Simon; Albarède, Francis

    2014-01-01

    It is now universally accepted that utilization of lead for domestic purposes and water distribution presents a major health hazard. The ancient Roman world was unaware of these risks. How far the gigantic network of lead pipes used in ancient Rome compromised public health in the city is unknown. Lead isotopes in sediments from the harbor of Imperial Rome register the presence of a strong anthropogenic component during the beginning of the Common Era and the Early Middle Ages. They demonstrate that the lead pipes of the water distribution system increased Pb contents in drinking water of the capital city by up to two orders of magnitude over the natural background. The Pb isotope record shows that the discontinuities in the pollution of the Tiber by lead are intimately entwined with the major issues affecting Late Antique Rome and its water distribution system. PMID:24753588

  19. Stable isotopic variation in tropical forest plants for applications in primatology.

    PubMed

    Blumenthal, Scott A; Rothman, Jessica M; Chritz, Kendra L; Cerling, Thure E

    2016-10-01

    Stable isotope analysis is a promising tool for investigating primate ecology although nuanced ecological applications remain challenging, in part due to the complex nature of isotopic variability in plant-animal systems. The aim of this study is to investigate sources of carbon and nitrogen isotopic variation at the base of primate food webs that reflect aspects of primate ecology. The majority of primates inhabit tropical forest ecosystems, which are dominated by C3 vegetation. We used stable isotope ratios in plants from Kibale National Park, Uganda, a well-studied closed-canopy tropical forest, to investigate sources of isotopic variation among C3 plants related to canopy stratification, leaf age, and plant part. Unpredictably, our results demonstrate that vertical stratification within the canopy does not explain carbon or nitrogen isotopic variation in leaves. Leaf age can be a significant source of isotopic variation, although the direction and magnitude of this difference is not consistent across tree species. Some plant parts are clearly differentiated in carbon and nitrogen isotopic composition, particularly leaves compared to non-photosynthetic parts such as reproductive parts and woody stem parts. Overall, variation in the isotopic composition of floral communities, plant species, and plant parts demonstrates that stable isotope studies must include analysis of local plant species and parts consumed by the primates under study from within the study area. Am. J. Primatol. 78:1041-1054, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  20. Pyroxene Homogenization and the Isotopic Systematics of Eucrites

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Bogard, D. D.

    1996-01-01

    The original Mg-Fe zoning of eucritic pyroxenes has in nearly all cases been partly homogenized, an observation that has been combined with other petrographic and compositional criteria to establish a scale of thermal "metamorphism" for eucrites. To evaluate hypotheses explaining development of conditions on the HED parent body (Vesta?) leading to pyroxene homogenization against their chronological implications, it is necessary to know whether pyroxene metamorphism was recorded in the isotopic systems. However, identifying the effects of the thermal metamorphism with specific effects in the isotopic systems has been difficult, due in part to a lack of correlated isotopic and mineralogical studies of the same eucrites. Furthermore, isotopic studies often place high demands on analytical capabilities, resulting in slow growth of the isotopic database. Additionally, some isotopic systems would not respond in a direct and sensitive way to pyroxene homogenization. Nevertheless, sufficient data exist to generalize some observations, and to identify directions of potentially fruitful investigations.

  1. APPLICABILITY OF La-Ce SYSTEMATICS TO PLANETARY SAMPLES.

    USGS Publications Warehouse

    Nakamura, Noboru; Tatsumoto, Mitsunobu; Ludwig, Kenneth R.

    1984-01-01

    Ce isotopic compositions in several terrestrial and extraterrestrial materials were determined in order to investigate the applicability of using Ce as an isotopic tracer to geological processes. Owing to the low abundances of **1**3**8La and **1**3**8Ce in nature, the measurements of **1**3**8Ce/**1**4**0Ce ratios of natural samples have relatively large ( greater than 0. 02%) errors, and the variations in Ce-isotope ratios were barely resolved. A tenuous anticorrelation was observed between epsilon //C//e and epsilon //N//d for terrestrial basalts and granites, indicating that with some improvement in analytical techniques the Ce isotopic composition may prove useful as a tracer for geological processes.

  2. Combining lead isotopes and cluster analysis to distinguish the Guarani and Serra Geral Aquifer Systems and contaminated waters in a highly industrialized area in Southern Brazil.

    PubMed

    Kuhn, Isadora Aumond; Roisenberg, Ari

    2017-10-01

    The Rio dos Sinos Watershed area is located at the Middle-West region of the Rio Grande do Sul State, Southern Brazil, along thirty two municipalities and affecting 1.5 million inhabitants and many important industrial centers. Three main aquifers are recognized in the study area: the unconfined-fractured Serra Geral Aquifer System, the porous Guarani Aquifer System, and the Permian Aquitard. This study aims to understand groundwater, surface water and human activity interactions in the Rio dos Sinos Watershed, evaluating the application of stable lead isotopic ratios analyzed for this propose. Thirty six groundwater samples, 8 surface water samples and 5 liquid effluents of tanneries and landfills samples were measured using a Thermal Ionization Mass Spectrometer Thermo-Finnigan and a Neptune Multi-Collector Inductively Coupled Plasma Mass Spectrometer. Groundwater isotopic ratios have a wider range compared to the surface water, with less radiogenic averages 208 Pb/ 204 Pb = 38.1837 vs 38.4050 (standard deviation = 0.2921 vs 0.1343) and 206 Pb/ 204 Pb = 18.2947 vs 18.4766 (standard deviation = 0.2215 vs 0.1059), respectively. Industrial liquid effluents (tanneries and industrial landfill) have averages 208 Pb/ 204 Pb = 38.1956 and 206 Pb/ 204 Pb = 18.3169, distinct from effluent samples of domestic sanitary landfill (averages 208 Pb/ 204 Pb = 38.2353 and 206 Pb/ 204 Pb = 18.6607). Hierarchical cluster analysis led to distinguish six groups of groundwater, representing the three aquifers that occur in the area, two clusters suggesting groundwater mixtures and one demonstrating a highly contaminated groundwater. By analyzing the cluster results and wells' stratigraphic profiles it was possible to distinguish the different aquifers in the area. The Serra Geral Aquifer System has 206 Pb/ 204 Pb ratios between 18.4718 and 18.7089; 207 Pb/ 204 Pb between 15.6692 and 15.6777; 208 Pb/ 204 Pb between 38.6826 and 38.7616; 207 Pb/ 206 Pb between 0.8372 and 0.8623; 208 Pb/ 206 Pb between 2.0671 and 2.0964 and the Guarani Aquifer System has a wider range ( 208 Pb/ 204 Pb ranged from 37.9393 to 38.1279 and 206 Pb/ 204 Pb ranged from 18.0892 to 18.3217). Water mixing of these two aquifer systems is reflected by transitional results. The results confirm that the hierarchical cluster analysis of lead isotopes is a useful tool to discriminate different aquifer conditions, reflecting mostly the influence of the natural lead isotopic composition of the aquifers instead of the anthropogenic activities (urban and industrial), except when the groundwater is highly contaminated by human activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Geogenic lead isotope signatures from meat products in Great Britain: Potential for use in food authentication and supply chain traceability.

    PubMed

    Evans, Jane A; Pashley, Vanessa; Richards, Gemma J; Brereton, Nicola; Knowles, Toby G

    2015-12-15

    This paper presents lead (Pb) isotope data from samples of farm livestock raised in three areas of Britain that have elevated natural Pb levels: Central Wales, the Mendips and the Derbyshire Peak District. This study highlights three important observations; that the Pb found in modern British meat from these three areas is geogenic and shows no clear evidence of modern tetraethyl anthropogenic Pb contribution; that the generally excellent match between the biological samples and the ore field data, particularly for the Mendip and Welsh data, suggests that this technique might be used to provenance biological products to specific ore sites, under favourable conditions; and that modern systems reflect the same process of biosphere averaging that is analogous to cultural focusing in human archaeological studies that is the process of biological averaging leading to an homogenised isotope signature with increasing Pb concentration. Copyright © 2015. Published by Elsevier B.V.

  4. Application of neodymium isotope ratio measurements for the origin assessment of uranium ore concentrates.

    PubMed

    Krajkó, Judit; Varga, Zsolt; Yalcintas, Ezgi; Wallenius, Maria; Mayer, Klaus

    2014-11-01

    A novel procedure has been developed for the measurement of (143)Nd/(144)Nd isotope ratio in various uranium-bearing materials, such as uranium ores and ore concentrates (UOC) in order to evaluate the usefulness and applicability of variations of (143)Nd/(144)Nd isotope ratio for provenance assessment in nuclear forensics. Neodymium was separated and pre-concentrated by extraction chromatography and then the isotope ratios were measured by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The method was validated by the measurement of standard reference materials (La Jolla, JB-2 and BCR-2) and the applicability of the procedure was demonstrated by the analysis of uranium samples of world-wide origin. The investigated samples show distinct (143)Nd/(144)Nd ratio depending on the ore type, deposit age and Sm/Nd ratio. Together with other characteristics of the material in question, the Nd isotope ratio is a promising signature for nuclear forensics and suggests being indicative of the source material, the uranium ore. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  5. SOURCE PARTITIONING USING STABLE ISOTOPES: COPING WITH TOO MANY SOURCES

    EPA Science Inventory

    Stable isotopes are increasingly being used as tracers in environmental studies. One application is to use isotopic ratios to quantitatively determine the proportional contribution of several sources to a mixture, such as the proportion of various pollution sources in a waste st...

  6. USE OF STABLE ISOTOPES IN ENVIRONMENTAL AND FORENSIC GEOCHEMISTRY STUDIES

    EPA Science Inventory

    Stable carbon and hydrogen isotopes have been used for many decades in the petroleum industry, but the development of combined gas chromatography-isotope ratio mass spectrometry (GCIRMS) has led to a virtual explosion in application of this technique not only in petroleum explora...

  7. Physiological responses to fertilization recorded in tree rings: isotopic lessons from a long-term fertilization trial - 2008

    EPA Science Inventory

    Nitrogen fertilizer applications are common land-use management tools, but details on physiological responses to these applications are often lacking, particularly for long-term responses over decades of forest management. We used tree-ring growth patterns and stable isotopes to...

  8. Physiological responses to fertilization recorded in tree rings: Isotopic lessons from a long-term fertilization trial

    EPA Science Inventory

    Nitrogen fertilizer applications are common land use management tools, but details on physiological responses to these applications are often lacking, particularly for long-term responses over decades of forest management. We used tree ring growth patterns and stable isotopes to ...

  9. 78 FR 63501 - Request To Submit a Two-Part Application-Northwest Medical Isotopes, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... NUCLEAR REGULATORY COMMISSION [Project No. 0803; NRC-2013-0235] Request To Submit a Two-Part Application--Northwest Medical Isotopes, LLC AGENCY: Nuclear Regulatory Commission. ACTION: Exemption. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) is issuing an exemption in response to an August 9, 2013...

  10. Anomalous Lead Isotopic Composition of Galena and Age of Altered Uranium Minerals: a Case study of Chauli Deposits, Chatkal-Qurama District, Uzbekistan

    NASA Astrophysics Data System (ADS)

    Chernyshev, I. V.; Golubev, V. N.; Chugaev, A. V.

    2017-11-01

    The enrichment of lead isotopic composition of nonuranium minerals, in the first place galena in 206Pb and 207Pb, as compared to common lead is a remarkable feature of uranium deposits. The study of such lead isotopic composition anomalous in 206Pb and 207Pb in uranium minerals provides an opportunity for not only identification of superimposed processes resulting in transformation of uranium ores during deposit history but also calculation of age of these processes under certain model assumptions. Galena from the Chauli deposit in the Chatkal-Qurama district, Uzbekistan, a typical representative of hydrothermal uranium deposits associated with domains of Phanerozoic continental volcanism, has been examined with the highprecision (±0.02%) MC-ICP-MS method. Twenty microsamples of galena were taken from polished sections. Six of them are galena hosted in carbonate adjacent to pitchblende spherulites or filling thin veinlets (approximately 60 μm) cutting pitchblende. Isotopically anomalous lead with 206Pb/204Pb and 207Pb/204Pb values reaching 20.462 and 15.743, respectively, has been found in these six microsamples in contrast to another fourteen in which the Pb-Pb characteristics are consistent with common lead. On the basis of these data and with account for the 292 ± 2 Ma age for the Chauli deposit, the age of epigenetic transformation of uranium ores of this deposit has been estimated. During this process, radiogenic lead partly lost from pitchblende was captured into galena. The obtained date is 170 Ma. In the Chatkal-Qurama district, these epigenetic processes are apparently caused by the interaction of uranium minerals with activated underground water under tectonic activity and relief transformation, which took place from the post-Permian (i.e., after the Chauli formation) to the Jurassic period.

  11. Linking low-level stable isotope fractionation to expression of the cytochrome P450 monooxygenase-encoding ethB gene for elucidation of methyl tert-butyl ether biodegradation in aerated treatment pond systems.

    PubMed

    Jechalke, Sven; Rosell, Mònica; Martínez-Lavanchy, Paula M; Pérez-Leiva, Paola; Rohwerder, Thore; Vogt, Carsten; Richnow, Hans H

    2011-02-01

    Multidimensional compound-specific stable isotope analysis (CSIA) was applied in combination with RNA-based molecular tools to characterize methyl tertiary (tert-) butyl ether (MTBE) degradation mechanisms occurring in biofilms in an aerated treatment pond used for remediation of MTBE-contaminated groundwater. The main pathway for MTBE oxidation was elucidated by linking the low-level stable isotope fractionation (mean carbon isotopic enrichment factor [ε(C)] of -0.37‰ ± 0.05‰ and no significant hydrogen isotopic enrichment factor [ε(H)]) observed in microcosm experiments to expression of the ethB gene encoding a cytochrome P450 monooxygenase able to catalyze the oxidation of MTBE in biofilm samples both from the microcosms and directly from the ponds. 16S rRNA-specific primers revealed the presence of a sequence 100% identical to that of Methylibium petroleiphilum PM1, a well-characterized MTBE degrader. However, neither expression of the mdpA genes encoding the alkane hydroxylase-like enzyme responsible for MTBE oxidation in this strain nor the related MTBE isotope fractionation pattern produced by PM1 could be detected, suggesting that this enzyme was not active in this system. Additionally, observed low inverse fractionation of carbon (ε(C) of +0.11‰ ± 0.03‰) and low fractionation of hydrogen (ε(H) of -5‰ ± 1‰) in laboratory experiments simulating MTBE stripping from an open surface water body suggest that the application of CSIA in field investigations to detect biodegradation may lead to false-negative results when volatilization effects coincide with the activity of low-fractionating enzymes. As shown in this study, complementary examination of expression of specific catabolic genes can be used as additional direct evidence for microbial degradation activity and may overcome this problem.

  12. Linking Low-Level Stable Isotope Fractionation to Expression of the Cytochrome P450 Monooxygenase-Encoding ethB Gene for Elucidation of Methyl tert-Butyl Ether Biodegradation in Aerated Treatment Pond Systems▿ †

    PubMed Central

    Jechalke, Sven; Rosell, Mònica; Martínez-Lavanchy, Paula M.; Pérez-Leiva, Paola; Rohwerder, Thore; Vogt, Carsten; Richnow, Hans H.

    2011-01-01

    Multidimensional compound-specific stable isotope analysis (CSIA) was applied in combination with RNA-based molecular tools to characterize methyl tertiary (tert-) butyl ether (MTBE) degradation mechanisms occurring in biofilms in an aerated treatment pond used for remediation of MTBE-contaminated groundwater. The main pathway for MTBE oxidation was elucidated by linking the low-level stable isotope fractionation (mean carbon isotopic enrichment factor [ɛC] of −0.37‰ ± 0.05‰ and no significant hydrogen isotopic enrichment factor [ɛH]) observed in microcosm experiments to expression of the ethB gene encoding a cytochrome P450 monooxygenase able to catalyze the oxidation of MTBE in biofilm samples both from the microcosms and directly from the ponds. 16S rRNA-specific primers revealed the presence of a sequence 100% identical to that of Methylibium petroleiphilum PM1, a well-characterized MTBE degrader. However, neither expression of the mdpA genes encoding the alkane hydroxylase-like enzyme responsible for MTBE oxidation in this strain nor the related MTBE isotope fractionation pattern produced by PM1 could be detected, suggesting that this enzyme was not active in this system. Additionally, observed low inverse fractionation of carbon (ɛC of +0.11‰ ± 0.03‰) and low fractionation of hydrogen (ɛH of −5‰ ± 1‰) in laboratory experiments simulating MTBE stripping from an open surface water body suggest that the application of CSIA in field investigations to detect biodegradation may lead to false-negative results when volatilization effects coincide with the activity of low-fractionating enzymes. As shown in this study, complementary examination of expression of specific catabolic genes can be used as additional direct evidence for microbial degradation activity and may overcome this problem. PMID:21148686

  13. Determination of lead, cadmium, indium, thallium and silver in ancient ices from Antarctica by isotope dilution-thermal ionization mass spectrometry

    USGS Publications Warehouse

    Matsumoto, A.; Hinkley, T.K.

    1997-01-01

    The concentrations of five chalcophile elements (Pb, Cd, In, Tl and Ag) and the lead isotope rarios in ancient ices from the Taylor Dome near coastal Antarctica, have been determined by the isotope dilutionthermal ionization mass spectrometry (ID-TIMS), with ultra-clean laboratory techniques. The samples were selected from segments of cores, one of which included a visible ash layer. Electric conductivity measurement (ECM) or dielectric properties (DEP) gave distinctive sharp peaks for some of the samples c hosen. Exterior portions of the sample segments were trimmed away by methods described here. Samples w ere evaporated to dryness and later separated into fractions for the five elements using an HBr-HNO3 a nion exchange column method. The concentrations are in the range 2.62-36.7 pg Pb/g of ice, 0.413-2.83 pg Cd/g, 0.081-0.34 pg In/g, 0.096-2.8 pg Tl/g and 0.15-0.84 pg Ag/g. respectively. The dispersions in duplicate analyses are about ??1% for lead and cadmium, ??2% for indium. ??4% for thallium and ??6% for silver, respectively. The concentrations of lead obtained are commonly higher than those in the present-day Antarctic surface snows, but the isotope ratios are distinctively higher than those of the present-day snows and close to those of the other ancient ice collected from a different Antarctic area.

  14. Electrochemically controlled iron isotope fractionation

    NASA Astrophysics Data System (ADS)

    Black, Jay R.; Young, Edward D.; Kavner, Abby

    2010-02-01

    Variations in the stable isotope abundances of transition metals have been observed in the geologic record and trying to understand and reconstruct the physical/environmental conditions that produced these signatures is an area of active research. It is clear that changes in oxidation state lead to large fractionations of the stable isotopes of many transition metals such as iron, suggesting that transition metal stable isotope signatures could be used as a paleo-redox proxy. However, the factors contributing to these observed stable isotope variations are poorly understood. Here we investigate how the kinetics of iron redox electrochemistry generates isotope fractionation. Through a combination of electrodeposition experiments and modeling of electrochemical processes including mass-transport, we show that electron transfer reactions are the cause of a large isotope separation, while mass transport-limited supply of reactant to the electrode attenuates the observed isotopic fractionation. Furthermore, the stable isotope composition of electroplated transition metals can be tuned in the laboratory by controlling parameters such as solution chemistry, reaction overpotential, and solution convection. These methods are potentially useful for generating isotopically-marked metal surfaces for tracking and forensic purposes. In addition, our studies will help interpret stable isotope data in terms of identifying underlying electron transfer processes in laboratory and natural samples.

  15. Potential of Opuntia ficus-indica for air pollution biomonitoring: a lead isotopic study.

    PubMed

    El Hayek, Eliane; El Samrani, Antoine; Lartiges, Bruno; Kazpard, Veronique; Benoit, Mathieu; Munoz, Marguerite

    2015-11-01

    Opuntia ficus-indica (Ofi) is a long-domesticated cactus that is widespread throughout arid and semiarid regions. Ofi is grown for both its fruits and edible cladodes, which are flattened photosynthetic stems. Young cladodes develop from mother cladodes, thus forming series of cladodes of different ages. Therefore, successive cladodes may hold some potential for biomonitoring over several years the local atmospheric pollution. In this study, cladodes, roots, dust deposited onto the cladodes, and soil samples were collected in the vicinity of three heavily polluted sites, i.e., a fertilizer industry, the road side of a highway, and mine tailings. The lead content was analyzed using atomic absorption spectroscopy (AAS) and inductively coupled plasma-mass spectrometry (ICP-MS). Scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX) was used to characterize the cladode surfaces and the nature of dust deposit, and the lead isotopes were analyzed to identify the origin of Pb. The results show that (i) Ofi readily bioaccumulates Pb, (ii) the lead isotopic composition of cladodes evidences a foliar pathway of lead into Ofi and identifies the relative contributions of local Pb sources, and (iii) an evolution of air quality is recorded with successive cladodes, which makes Ofi a potential biomonitor to be used in environmental and health studies.

  16. Tamil Chola Bronzes and Swamimalai Legacy: Metal Sources and Archaeotechnology

    NASA Astrophysics Data System (ADS)

    Srinivasan, Sharada

    2016-08-01

    This review explores the great copper alloy image casting traditions of southern India from archaeometallurgical and ethnometallurgical perspectives. The usefulness of lead isotope ratio and compositional analysis in the finger-printing and art historical study of more than 130 early historic, Pallava, Chola, later Chola, and Vijayanagara sculptures (fifth-eighteenth centuries) is highlighted, including Nataraja, Buddha, Parvati, and Rama images made of copper, leaded bronze, brass, and gilt copper. Image casting traditions at Swamimalai in Tamil Nadu are compared with artistic treatises and with the technical examination of medieval bronzes, throwing light on continuities and changes in foundry practices. Western Indian sources could be pinpointed for a couple of medieval images from lead isotope analysis. Slag and archaeometallurgical investigations suggest the exploitation of some copper and lead-silver sources in the Andhra and Karnataka regions in the early historic Satavahana period and point to probable copper sources for the medieval images in Karnataka, Tamil Nadu, and Andhra Pradesh. The general lower iron content in southern Indian bronzes perhaps renders the proximal copper-magnetite reserves of Seruvila in Sri Lanka as a less likely source. Given the lack of lead deposits in Sri Lanka, however, the match of the lead isotope signatures of a well-known Ceylonese Buddhist Tara in British Museum with a Buddha image from Nagapattinam in Tamil Nadu may underscore ties between the island nation and the southern Indian Tamil regions.

  17. The Balmat-Edwards zinc-lead deposits-synsedimentary ore from Mississippi valley-type fluids.

    USGS Publications Warehouse

    Whelan, J.F.; Rye, R.O.; Delorraine, W.

    1984-01-01

    The Balmat-Edwards Zn-Pb district in New York is in Mid-Proterozoic Grenville marbles. Tabular to podiform, generally conformable massive sphalerite-galena orebodies occur at various horizons in the approx 1 km-thick marbles. Metamorphism obscured or obliterated most primary characteristics, whose reconstruction is attempted through detailed S, C, and O isotope studies of the Fowler orebody, and trace element and S isotope studies of sphalerite concentrates and composite ore samples from 22 orebodies. Sulphur isotope data reflect equilibration at near peak metamorphism with some indication of re-equilibration during retrograde metamorphism. The carbon and oxygen isotope composition of gangue carbonates suggests derivation from the host marbles. The oxygen isotope composition of gangue quartz is compatible with a chert origin or metamorphism-equilibration with other minerals. Sulphur and lead isotopes and sulphide mineralogy suggests that the ore fluids were evolved basin brines, chemically like those responsible for Mississippi Valley-type deposits. The large stratigraphic span (> 600 m) of the Balmat orebodies may be due to basin dewatering of million-year intervals. Stratigraphically increasing 34S values of evaporite-anhydrite are postulated to record hydrothermal events and to imply bacterial sulphate reduction on an unusually large scale. Such a stratigraphic increase may be a general exploration guide where sediment-hosted exhalative deposits or Mississippi Valley-type deposits occur.-G.J.N.

  18. Isotope pattern deconvolution as rising tool for isotope tracer studies in environmental research

    NASA Astrophysics Data System (ADS)

    Irrgeher, Johanna; Zitek, Andreas; Prohaska, Thomas

    2014-05-01

    During the last decade stable isotope tracers have emerged as versatile tool in ecological research. Besides 'intrinsic' isotope tracers caused by the natural variation of isotopes, the intentional introduction of 'extrinsic' enriched stable isotope tracers into biological systems has gained significant interest. Hereby the induced change in the natural isotopic composition of an element allows amongst others for studying the fate and fluxes of metals, trace elements and species in organisms or provides an intrinsic marker or tag of particular biological samples. Due to the shoreless potential of this methodology, the number of publications dealing with applications of isotope (double) spikes as tracers to address research questions in 'real world systems' is constantly increasing. However, some isotope systems like the natural Sr isotopic system, although potentially very powerful for this type of application, are still rarely used, mainly because their adequate measurement/determination poses major analytical challenges; as e.g. Sr is available in significant amounts in natural samples. In addition, biological systems underlie complex processes such as metabolism, adsorption/desorption or oxidation/reduction. As a consequence, classic evaluation approaches such as the isotope dilution mass spectrometry equation are often not applicable because of the unknown amount of tracer finally present in the sample. Isotope pattern deconvolution (IPD), based on multiple linear regression, serves as simplified alternative data processing strategy to double spike isotope dilution calculations. The outstanding advantage of this mathematical tool lies in the possibility of deconvolving the isotope pattern in a spiked sample without knowing the quantities of enriched isotope tracer being incorporated into the natural sample matrix as well as the degree of impurities and species-interconversion (e.g. from sample preparation). Here, the potential of IPD for environmental tracer studies is critically discussed, where special emphasis is set on evaluating different data processing strategies on the example of enriched stable Sr isotopes.1 The analytical key parameters such as blank (Kr, Sr and Rb), variation of the natural Sr isotopic composition in the sample, mass bias, interferences (Rb) and total combined uncertainty are considered. A full metrological protocol for data processing using IPD is presented based on data gained during two transgenerational marking studies of fish, where the transfer of a Sr isotope double spike (84Sr and 86Sr) from female spawners of common carp (Cyprinus carpio L.) and brown trout (Salmo trutta f.f.)2 to the centre of the otoliths of their offspring was studied by (LA)-MC-ICP-MS. 1J. Irrgeher, A. Zitek, M. Cervicek and T. Prohaska, J. Anal. At. Spectrom., 2014, 29, 193-200. 2A. Zitek, J. Irrgeher, M. Kletzl, T. Weismann and T. Prohaska, Fish. Manage. Ecol., 2013, 20, 654-361.

  19. Lead isotope database of unpublished results from sulfide mineral occurrences-California, Idaho, Oregon, and Washington

    USGS Publications Warehouse

    Church, S.E.

    2010-01-01

    The Pb isotope database for sulfide deposits and occurrences in the Western United States was funded by the Mineral Resources Program, U.S. Geological Survey (USGS). Reports on Pb isotope data from Alaska were published in Church and others (1987a) and Gaccetta and Church (1989). The primary objectives of the project were three-fold: * To utilize Pb isotope signatures, in conjunction with the regional mapping, to assess the relative ages and to categorize the types of deposits studied, * To relate the Pb isotope and trace-element geochemical signatures of specific deposits and occurrences to ore-forming processes, and * To use the Pb isotope data to correlate lithotectonic terranes within the northern Cordillera. The report by Church and others (1987b) shows how this fingerprinting methodology can be applied to trace the offset of lithostratigraphic terranes

  20. Oxygen isotope fractionation in the CaCO3-DIC-H2O system

    NASA Astrophysics Data System (ADS)

    Devriendt, Laurent S.; Watkins, James M.; McGregor, Helen V.

    2017-10-01

    The oxygen isotope ratio (δ18O) of inorganic and biogenic carbonates is widely used to reconstruct past environments. However, the oxygen isotope exchange between CaCO3 and H2O rarely reaches equilibrium and kinetic isotope effects (KIE) commonly complicate paleoclimate reconstructions. We present a comprehensive model of kinetic and equilibrium oxygen isotope fractionation between CaCO3 and water (αc/w) that accounts for fractionation between both (a) CaCO3 and the CO32- pool (α c / CO32-) , and (b) CO32- and water (α CO32- / w) , as a function of temperature, pH, salinity, calcite saturation state (Ω), the residence time of the dissolved inorganic carbon (DIC) in solution, and the activity of the enzyme carbonic anhydrase. The model results suggest that: (1) The equilibrium αc/w is only approached in solutions with low Ω (i.e. close to 1) and low ionic strength such as in the cave system of Devils Hole, Nevada. (2) The sensitivity of αc/w to the solution pH and/or the mineral growth rate depends on the level of isotopic equilibration between the CO32- pool and water. When the CO32- pool approaches isotopic equilibrium with water, small negative pH and/or growth rate effects on αc/w of about 1-2‰ occur where these parameters covary with Ω. In contrast, isotopic disequilibrium between CO32- and water leads to strong (>2‰) positive or negative pH and growth rate effects on α CO32-/ w (and αc/w) due to the isotopic imprint of oxygen atoms derived from HCO3-, CO2, H2O and/or OH-. (3) The temperature sensitivity of αc/w originates from the negative effect of temperature on α CO32-/ w and is expected to deviate from the commonly accepted value (-0.22 ± 0.02‰/°C between 0 and 30 °C; Kim and O'Neil, 1997) when the CO32- pool is not in isotopic equilibrium with water. (4) The model suggests that the δ18O of planktic and benthic foraminifers reflects a quantitative precipitation of DIC in isotopic equilibrium with a high-pH calcifying fluid, leading to a relatively constant foraminifer calcite δ18O-temperature relationship (-0.21 ± 0.01‰/°C). The lower average coral δ18O data relative to foraminifers and other calcifiers is best explained by the precipitation of internal DIC derived from hydrated CO2 in a high-pH calcifying fluid and minimal subsequent DIC-H2O isotopic equilibration. This leads to a reduced and variable coral aragonite δ18O-temperature relationship (-0.11 to -0.22‰/°C). Together, the model presented here reconciles observations of oxygen isotope fractionation over a range of CaCO3-DIC-H2O systems.

  1. Dual isotopic approach for determining groundwater origin and water-rock interactions in over exploited watershed in India

    NASA Astrophysics Data System (ADS)

    Negrel, Philippe; Pauwels, Hélène; Millot, Romain; Roy, Stéphane; Guerrot, Catherine

    2010-05-01

    Groundwater flow and storage in hard rock areas is becoming a matter of great interest and importance to researchers and water managers either with regards to the quantity, quality of water as well as delimitation of resources and aquifers. Degradation of groundwater resources by abstraction, contamination, ... has been increasing in many areas and is of growing concern for few decades. In terms of hydrogeology, hard rocks represent a quite heterogeneous and anisotropic media with irregular distribution of pathways of groundwater flow, typically consisting of three vertical zones, upper weathered, middle fractured and lower massive bedrock. Aim of this work is dual and the Maheshwaram watershed (53 km2, Andhra Pradesh, India) representative of watersheds in southern India in terms of geology, overpumping of its hard-rock aquifer (more than 700 classical open end wells in use), its cropping pattern (rice dominating), and its rural socio-economy mainly based on traditional agriculture is investigated through stable isotopes of the water molecule and lead isotopes in groundwater. The overall objective is to incorporate isotopic- and chemical-tracing data and constraints into methods for evaluating groundwater circulation. It divides into fingerprinting the groundwater recharge processes (e.g. the input by the monsoon) and the water use in such agricultural watershed, which is of primary importance in such semi-arid context and investigating the processes of water-rock interactions (e.g. granite-water interaction). In the frame of delimitation of resources and aquifers and long-term sustainability, we monitored the input from monsoon-precipitation over 2 years, and measured spatial and temporal variations in δ18O and δ2H in the groundwater and in precipitation. Individual recharge from the two monsoon periods was identified. This led to identification of periods during which evaporation affects groundwater quality through a higher concentration of salts and stable isotopes in the return flow. In addition, such evaporation is further affected by land use, rice paddies having the strongest evapotranspiration. Lead concentrations span over one or two orders of magnitude up to approximately 20 ?g. L-1. Pb-isotopes, measured in water by MC-ICPMS using an improved new procedure, fluctuate largely as exemplified by the 206Pb/204Pb ratio, reaching values up to 25. Most of the lead in the groundwaters is of geogenic origin, and through the lead isotopic signature in groundwater we have traced and fingerprinted the processes of water-rock interactions considering the granite matrix. Combining a weathering model and field observations, we have defined a two step weathering process that includes a control on the Pb-isotopes ratios by accessory phases and by the main mineral from the granite in a second step of weathering. For future studies, multi-isotope approach will be necessary for the identification of possible flowpaths, in conjunction with the larger exploitation of the groundwater resources. This is also challenging for generalising the use of isotope tools (such as Nd, Sr, Pb and newly developed isotope systematics like Ca, Si...) in many other catchments that may face structural problems of groundwater overdraft.

  2. Effects of must concentration techniques on wine isotopic parameters.

    PubMed

    Guyon, Francois; Douet, Christine; Colas, Sebastien; Salagoïty, Marie-Hélène; Medina, Bernard

    2006-12-27

    Despite the robustness of isotopic methods applied in the field of wine control, isotopic values can be slightly influenced by enological practices. For this reason, must concentration technique effects on wine isotopic parameters were studied. The two studied concentration techniques were reverse osmosis (RO) and high-vacuum evaporation (HVE). Samples (must and extracted water) have been collected in various French vineyards. Musts were microfermented at the laboratory, and isotope parameters were determined on the obtained wine. Deuterium and carbon-13 isotope ratios were studied on distilled ethanol by nuclear magnetic resonance (NMR) and isotope ratio mass spectrometry (IRMS), respectively. The oxygen-18 ratio was determined on extracted and wine water using IRMS apparatus. The study showed that the RO technique has a very low effect on isotopic parameters, indicating that this concentration technique does not create any isotopic fractionation, neither at sugar level nor at water level. The effect is notable for must submitted to HVE concentration: water evaporation leads to a modification of the oxygen-18 ratio of the must and, as a consequence, ethanol deuterium concentration is also modified.

  3. Combining Solvent Isotope Effects with Substrate Isotope Effects in Mechanistic Studies of Alcohol and Amine Oxidation by Enzymes*

    PubMed Central

    Fitzpatrick, Paul F.

    2014-01-01

    Oxidation of alcohols and amines is catalyzed by multiple families of flavin-and pyridine nucleotide-dependent enzymes. Measurement of solvent isotope effects provides a unique mechanistic probe of the timing of the cleavage of the OH and NH bonds, necessary information for a complete description of the catalytic mechanism. The inherent ambiguities in interpretation of solvent isotope effects can be significantly decreased if isotope effects arising from isotopically labeled substrates are measured in combination with solvent isotope effects. The application of combined solvent and substrate (mainly deuterium) isotope effects to multiple enzymes is described here to illustrate the range of mechanistic insights that such an approach can provide. PMID:25448013

  4. Light stable isotope analysis of meteorites by ion microprobe

    NASA Technical Reports Server (NTRS)

    Mcsween, Harry Y., Jr.

    1994-01-01

    The main goal was to develop the necessary secondary ion mass spectrometer (SIMS) techniques to use a Cameca ims-4f ion microprobe to measure light stable isotope ratios (H, C, O and S) in situ and in non-conducting mineral phases. The intended application of these techniques was the analysis of meteorite samples, although the techniques that have been developed are equally applicable to the investigation of terrestrial samples. The first year established techniques for the analysis of O isotope ratios (delta O-18 and delta O-17) in conducting mineral phases and the measurement of S isotope ratios (delta S-34) in a variety of sulphide phases. In addition, a technique was developed to measure delta S-34 values in sulphates, which are insulators. Other research undertaken in the first year resulted in SIMS techniques for the measurement of wide variety of trace elements in carbonate minerals, with the aim of understanding the nature of alteration fluids in carbonaceous chondrites. In the second year we developed techniques for analyzing O isotope ratios in nonconducting mineral phases. These methods are potentially applicable to the measurement of other light stable isotopes such as H, C and S in insulators. Also, we have further explored the analytical techniques used for the analysis of S isotopes in sulphides by analyzing troilite in a number of L and H ordinary chondrites. This was done to see if there was any systematic differences with petrological type.

  5. Predicting the solubility and lability of Zn, Cd, and Pb in soils from a minespoil-contaminated catchment by stable isotopic exchange

    NASA Astrophysics Data System (ADS)

    Marzouk, E. R.; Chenery, S. R.; Young, S. D.

    2013-12-01

    The Rookhope catchment of Weardale, England, has a diverse legacy of contaminated soils due to extensive lead mining activity over four centuries. We measured the isotopically exchangeable content of Pb, Cd and Zn (E-values) in a large representative subset of the catchment soils (n = 246) using stable isotope dilution. All three metals displayed a wide range of %E-values (c. 1-100%) but relative lability followed the sequence Cd > Pb > Zn. A refinement of the stable isotope dilution approach also enabled detection of non-reactive metal contained within suspended sub-micron (<0.22 μm) colloidal particles (SCP-metal). For most soils, the presence of non-labile SCP-metal caused only minor over-estimation of E-values (<2%) but the effect was greater for soils with particularly large humus or carbonate contents. Approximately 80%, 53% and 66% of the variability in Zn, Cd and Pb %E-values (respectively) could be explained by pH, loss on ignition and total metal content. E-values were affected by the presence of ore minerals at high metal contents leading to an inconsistent trend in the relationship between %E-value and soil metal concentration. Metal solubility, in the soil suspensions used to measure E-values, was predicted using the WHAM geochemical speciation model (versions VI and VII). The use of total and isotopically exchangeable metal as alternative input variables was compared; the latter provided significantly better predictions of solubility, especially in the case of Zn. Lead solubility was less well predicted by either version of WHAM, with over-prediction at low pH and under-prediction at high soil pH values. Quantify the isotopically exchangeable fractions of Zn, Cd and Pb (E-values), and assess their local and regional variability, using multi-element stable isotope dilution, in a diverse range of soil ecosystems within the catchment of an old Pb/Zn mining area. Assess the controlling influences of soil properties on metal lability and develop predictive algorithms for metal lability in the contaminated catchment based on simple soil properties (such as pH, organic matter (LOI), and total metal content). Examine the incidence of non-isotopically-exchangeable metal held within suspended colloidal particles (SCP-metal) in filtered soil solutions (<0.22 μm) by comparing E-values from isotopic abundance in solutions equilibrated with soil and in a resin phase equilibrated with the separated solution. Assess the ability of a geochemical speciation model, WHAM(VII), to predict metal solubility using isotopically exchangeable metal as an input variable.

  6. Final report of the key comparison CCQM-K98: Pb isotope amount ratios in bronze

    NASA Astrophysics Data System (ADS)

    Vogl, Jochen; Yim, Yong-Hyeon; Lee, Kyoung-Seok; Goenaga-Infante, Heidi; Malinowskiy, Dmitriy; Ren, Tongxiang; Wang, Jun; Vocke, Robert D., Jr.; Murphy, Karen; Nonose, Naoko; Rienitz, Olaf; Noordmann, Janine; Näykki, Teemu; Sara-Aho, Timo; Ari, Betül; Cankur, Oktay

    2014-01-01

    Isotope amount ratios are proving useful in an ever increasing array of applications that range from studies unravelling transport processes, to pinpointing the provenance of specific samples as well as trace element quantification by using isotope dilution mass spectrometry (IDMS). These expanding applications encompass fields as diverse as archaeology, food chemistry, forensic science, geochemistry, medicine and metrology. However, to be effective tools, the isotope ratio data must be reliable and traceable to enable the comparability of measurement results. The importance of traceability and comparability in isotope ratio analysis has already been recognized by the Inorganic Analysis Working Group (IAWG) within the CCQM. While the requirements for isotope ratio accuracy and precision in the case of IDMS are generally quite modest, 'absolute' Pb isotope ratio measurements for geochemical applications as well as forensic provenance studies require Pb isotope ratio measurements of the highest quality. To support present and future CMCs on isotope ratio determinations, a key comparison was urgently needed and therefore initiated at the IAWG meeting in Paris in April 2011. The analytical task within such a comparison was decided to be the measurement of Pb isotope amount ratios in water and bronze. Measuring Pb isotope amount ratios in an aqueous Pb solution tested the ability of analysts to correct for any instrumental effects on the measured ratios, while the measurement of Pb isotope amount ratios in a metal matrix sample provided a real world test of the whole chemical and instrumental procedure. A suitable bronze material with a Pb mass fraction between 10 and 100 mg•kg-1 and a high purity solution of Pb with a mass fraction of approximately 100 mg•kg-1 was available at the pilot laboratory (BAM), both offering a natural-like Pb isotopic composition. The mandatory measurands, the isotope amount ratios n(206Pb)/n(204Pb), n(207Pb)/n(204Pb) and n(208Pb)/n(204Pb) were selected such that they correspond with those commonly reported in Pb isotopic studies and fully describe the isotopic composition of Pb in the sample. Additionally, the isotope amount ratio n(208Pb)/n(206Pb) was added, as this isotope ratio is typically measured when performing Pb quantitation by IDMS involving a 206Pb spike. Each participant was free to use any method they deemed suitable for measuring the individual isotope ratios. However, the majority of the results were obtained by using muIti-collector ICPMS or TIMS. The key requirements for all analytical procedures were a traceability statement for all results and the establishment of an uncertainty budget meeting a target uncertainty for all ratios of 0.2 %, relative (k=1). Additionally, the use of a Pb-matrix separation procedure was encouraged. The obtained overall result was excellent, demonstrating that the individual results reported by the NMIs/DIs were comparable and compatible for the determination of Pb isotope ratios. MC-ICPMS and MC-TIMS data were consistent with each other and agree to within 0.05 %. The corresponding uncertainties can be considered as realistic uncertainties and mainly range from 0.02 % to 0.08 % (k=1). As stated above isotope ratios are being increasingly used in different fields. Despite the availability and ease of use of new mass spectrometers, the metrology of unbiased isotope ratio measurements remains very challenging. Therefore, further comparisons are urgently needed, and should be designed to also engage scientists outside the NMI/DI community. Possible follow-up studies should focus on isotope ratio and delta measurements important for environmental and technical applications (e.g. B), food traceability and forensics (e.g. H, C, N, O, S and 87Sr/86Sr) or climate change issues (e.g. Li, B, Mg, Ca, Si). Main text. To reach the main text of this paper, click on Final Report. The final report has been peer-reviewed and approved for publication by the CCQM.

  7. Investigation of off-site airborne transport of lead from a superfund removal action site using lead isotope ratios and concentrations

    USGS Publications Warehouse

    Pribil, Michael J.; Maddaloni, Mark A.; Staiger, Kimberly; Wilson, Eric; Magriples, Nick; Ali, Mustafa; Santella, Dennis

    2014-01-01

    Lead (Pb) concentration and Pb isotopic composition of surface and subsurface soil samples were used to investigate the potential for off-site air transport of Pb from a former white Pb processing facility to neighboring residential homes in a six block area on Staten Island, NY. Surface and subsurface soil samples collected on the Jewett White Pb site were found to range from 1.122 to 1.138 for 206Pb/207Pb and 2.393 to 2.411 for 208Pb/207Pb. The off-site surface soil samples collected from residential backyards, train trestle, near site grass patches and background areas varied from 1.144 to 1.196 for 206Pb/207Pb and 2.427 to 2.464 for 208Pb/207Pb. Two soil samples collected along Richmond Terrace, where Jewett site soils accumulated after major rain events, varied from 1.136 to 1.147 for 206Pb/207Pb and 2.407 to 2.419 for 208Pb/207Pb. Lead concentration for on-site surface soil samples ranged from 450 to 8000 ug/g, on-site subsurface soil samples ranged from 90,000 to 240,000 ug/g and off-site samples varied from 380 to 3500 ug/g. Lead concentration and isotopic composition for the Staten Island off-site samples were similar to previously published data for other northeastern US cities and reflect re-suspension and re-mobilization of local accumulated Pb. The considerable differences in both the Pb isotopic composition and Pb concentration of on-site and off-site samples resulted in the ability to geochemically trace the transport of particulate Pb. Data in this study indicate minimal off-site surface transport of Pb from the Jewett site into the neighboring residential area.

  8. Tracing geogenic and anthropogenic sources in urban dusts: Insights from lead isotopes

    NASA Astrophysics Data System (ADS)

    Del Rio-Salas, R.; Ruiz, J.; De la O-Villanueva, M.; Valencia-Moreno, M.; Moreno-Rodríguez, V.; Gómez-Alvarez, A.; Grijalva, T.; Mendivil, H.; Paz-Moreno, F.; Meza-Figueroa, D.

    2012-12-01

    Tracing the source of metals in the environment is critical to understanding their pollution level and fate. Geologic materials are an important source of airborne particulate matter, but the contribution of contaminated soil to concentrations of Pb in airborne dust is not yet widely documented. To examine the potential significance of this mechanism, surface soil samples were collected, as well as wind-transported dust trapped at 1 and 2 m height at seven different locations including residential, industrial, high-traffic and rural sites. Samples of dust deposited on roofs from 24 schools were also obtained and analyzed for Pb isotope ratios. Spatial distribution of Pb of airborne and sedimented dust suggests a process dominated by re-suspension/sedimentation, which was controlled by erosion, traffic and topography of the urban area. Anthropogenic lead input in the city grades outward the urban zone toward geogenic values. Our results shows that Pb-isotopic signatures of leaded gasoline are imprinted in dust sedimented on roofs. Considering that leaded-gasoline has not been in use in Mexico since two decades ago, this signature shows not only a Pb-legacy in soil, but also a re-suspension process affecting air column below 3 m in height. The combination of the 207Pb/206Pb data of the surrounding rocks and urban dust, reveal three well-defined zones with remarkable anthropogenic influence, which correspond to the oldest urban sectors. This work highlights the importance of spatial characterization of metals in particles suspended below a height of 3 m of the airborne column, a fact that should be considered to identify exposure paths to humans and the potential risks. Lead isotope signatures allowed the identification of geogenic and anthropogenic emission sources for dust, a matter that deserves consideration in the efforts to control airborne metal emissions.

  9. Carbon Isotope Fractionation in Reactions of 1,2-Dibromoethane with FeS and Hydrogen Sulfide

    EPA Science Inventory

    EDB (1,2-dibromoethane) is frequently detected at sites impacted by leaded gasoline. In reducing environments, EDB is highly susceptible to abiotic degradation. A study was conducted to evaluate the potential of compound-specific isotope analysis (CSIA) in assessing abiotic degr...

  10. Using trace element content and lead isotopic composition to assess sources of PM in Tijuana, Mexico

    NASA Astrophysics Data System (ADS)

    Salcedo, D.; Castro, T.; Bernal, J. P.; Almanza-Veloz, V.; Zavala, M.; González-Castillo, E.; Saavedra, M. I.; Perez-Arvízu, O.; Díaz-Trujillo, G. C.; Molina, L. T.

    2016-05-01

    PM2.5 samples were collected at two urban sites (Parque Morelos (PQM) and CECyTE (CEC)) in Tijuana during the Cal-Mex campaign from May 24 to June 5, 2010. Concentration of trace elements (Mg, Al, Ti, V, Mn, Fe, Co, Ni, Zn, Cu, Ga, As, Se, Rb, Sr, Mo, Cd, Sn, Sb, Ba, La, Ce, and Pb), and Pb isotopic composition were determined in order to study the sources of PM impacting each site. Other chemical analysis (gravimetric, elemental and organic carbon (EC/OC), and polycyclic aromatic hydrocarbons (PAHs)), were also performed. Finally, back-trajectories were calculated to facilitate the interpretation of the chemical data. Trace elements results show that CEC is a receptor site affected by mixed regional sources: sea salt, mineral, urban, and industrial. On the other hand, PQM seems to be impacted mainly by local sources. In particular, Pb at CEC is of anthropogenic, as well as crustal origin. This conclusion is supported by the lead isotopic composition, whose values are consistent with a combination of lead extracted from US mines, and lead from bedrocks in the Mexican Sierras. Some of the time variability observed can be explained using the back-trajectories.

  11. Lipid Correction for Carbon Stable Isotope Analysis of Deep-sea Fishes

    EPA Science Inventory

    Lipid extraction is used prior to stable isotope analysis of fish tissues to remove variability in the carbon stable isotope ratio (d13C) caused by varying lipid content among samples. Our objective was to evaluate an application of a mass balance correction for the effect of lip...

  12. Standoff Detection of Uranium and its Isotopes by Femtosecond Filament Laser Ablation Molecular Isotopic Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartig, Kyle C.; Ghebregziabher, Isaac; Jovanovic, Igor

    The ability to perform not only elementally but also isotopically sensitive detection and analysis at standoff distances is important for remote sensing applications in diverse ares, such as nuclear nonproliferation, environmental monitoring, geophysics, and planetary science. We demonstrate isotopically sensitive real-time standoff detection of uranium by the use of femtosecond filament-induced laser ablation molecular isotopic spectrometry. A uranium oxide molecular emission isotope shift of 0.05 ± 0.007 nm is reported at 593.6 nm. We implement both spectroscopic and acoustic diagnostics to characterize the properties of uranium plasma generated at different filament- uranium interaction points. The resulting uranium oxide emission exhibitsmore » a nearly constant signal-to-background ratio over the length of the filament, unlike the uranium atomic and ionic emission, for which the signal-to-background ratio varies significantly along the filament propagation. This is explained by the different rates of increase of plasma density and uranium oxide density along the filament length resulting from spectral and temporal evolution of the filament along its propagation. Lastly, the results provide a basis for the optimal use of filaments for standoff detection and analysis of uranium isotopes and indicate the potential of the technique for a wider range of remote sensing applications that require isotopic sensitivity.« less

  13. Standoff Detection of Uranium and its Isotopes by Femtosecond Filament Laser Ablation Molecular Isotopic Spectrometry

    PubMed Central

    Hartig, Kyle C.; Ghebregziabher, Isaac; Jovanovic, Igor

    2017-01-01

    The ability to perform not only elementally but also isotopically sensitive detection and analysis at standoff distances is impor-tant for remote sensing applications in diverse ares, such as nuclear nonproliferation, environmental monitoring, geophysics, and planetary science. We demonstrate isotopically sensitive real-time standoff detection of uranium by the use of femtosecond filament-induced laser ablation molecular isotopic spectrometry. A uranium oxide molecular emission isotope shift of 0.05 ± 0.007 nm is reported at 593.6 nm. We implement both spectroscopic and acoustic diagnostics to characterize the properties of uranium plasma generated at different filament-uranium interaction points. The resulting uranium oxide emis-sion exhibits a nearly constant signal-to-background ratio over the length of the filament, unlike the uranium atomic and ionic emission, for which the signal-to-background ratio varies significantly along the filament propagation. This is explained by the different rates of increase of plasma density and uranium oxide density along the filament length resulting from spectral and temporal evolution of the filament along its propagation. The results provide a basis for the optimal use of filaments for standoff detection and analysis of uranium isotopes and indicate the potential of the technique for a wider range of remote sensing applications that require isotopic sensitivity. PMID:28272450

  14. Isotopic composition of atmospheric moisture from pan water evaporation measurements.

    PubMed

    Devi, Pooja; Jain, Ashok Kumar; Rao, M Someshwer; Kumar, Bhishm

    2015-01-01

    A continuous and reliable time series data of the stable isotopic composition of atmospheric moisture is an important requirement for the wider applicability of isotope mass balance methods in atmospheric and water balance studies. This requires routine sampling of atmospheric moisture by an appropriate technique and analysis of moisture for its isotopic composition. We have, therefore, used a much simpler method based on an isotope mass balance approach to derive the isotopic composition of atmospheric moisture using a class-A drying evaporation pan. We have carried out the study by collecting water samples from a class-A drying evaporation pan and also by collecting atmospheric moisture using the cryogenic trap method at the National Institute of Hydrology, Roorkee, India, during a pre-monsoon period. We compared the isotopic composition of atmospheric moisture obtained by using the class-A drying evaporation pan method with the cryogenic trap method. The results obtained from the evaporation pan water compare well with the cryogenic based method. Thus, the study establishes a cost-effective means of maintaining time series data of the isotopic composition of atmospheric moisture at meteorological observatories. The conclusions drawn in the present study are based on experiments conducted at Roorkee, India, and may be examined at other regions for its general applicability.

  15. Standoff Detection of Uranium and its Isotopes by Femtosecond Filament Laser Ablation Molecular Isotopic Spectrometry

    DOE PAGES

    Hartig, Kyle C.; Ghebregziabher, Isaac; Jovanovic, Igor

    2017-03-08

    The ability to perform not only elementally but also isotopically sensitive detection and analysis at standoff distances is important for remote sensing applications in diverse ares, such as nuclear nonproliferation, environmental monitoring, geophysics, and planetary science. We demonstrate isotopically sensitive real-time standoff detection of uranium by the use of femtosecond filament-induced laser ablation molecular isotopic spectrometry. A uranium oxide molecular emission isotope shift of 0.05 ± 0.007 nm is reported at 593.6 nm. We implement both spectroscopic and acoustic diagnostics to characterize the properties of uranium plasma generated at different filament- uranium interaction points. The resulting uranium oxide emission exhibitsmore » a nearly constant signal-to-background ratio over the length of the filament, unlike the uranium atomic and ionic emission, for which the signal-to-background ratio varies significantly along the filament propagation. This is explained by the different rates of increase of plasma density and uranium oxide density along the filament length resulting from spectral and temporal evolution of the filament along its propagation. Lastly, the results provide a basis for the optimal use of filaments for standoff detection and analysis of uranium isotopes and indicate the potential of the technique for a wider range of remote sensing applications that require isotopic sensitivity.« less

  16. Standoff Detection of Uranium and its Isotopes by Femtosecond Filament Laser Ablation Molecular Isotopic Spectrometry

    NASA Astrophysics Data System (ADS)

    Hartig, Kyle C.; Ghebregziabher, Isaac; Jovanovic, Igor

    2017-03-01

    The ability to perform not only elementally but also isotopically sensitive detection and analysis at standoff distances is impor-tant for remote sensing applications in diverse ares, such as nuclear nonproliferation, environmental monitoring, geophysics, and planetary science. We demonstrate isotopically sensitive real-time standoff detection of uranium by the use of femtosecond filament-induced laser ablation molecular isotopic spectrometry. A uranium oxide molecular emission isotope shift of 0.05 ± 0.007 nm is reported at 593.6 nm. We implement both spectroscopic and acoustic diagnostics to characterize the properties of uranium plasma generated at different filament-uranium interaction points. The resulting uranium oxide emis-sion exhibits a nearly constant signal-to-background ratio over the length of the filament, unlike the uranium atomic and ionic emission, for which the signal-to-background ratio varies significantly along the filament propagation. This is explained by the different rates of increase of plasma density and uranium oxide density along the filament length resulting from spectral and temporal evolution of the filament along its propagation. The results provide a basis for the optimal use of filaments for standoff detection and analysis of uranium isotopes and indicate the potential of the technique for a wider range of remote sensing applications that require isotopic sensitivity.

  17. Quantifying N2O reduction to N2 based on N2O isotopocules - validation with independent methods (helium incubation and 15N gas flux method)

    NASA Astrophysics Data System (ADS)

    Lewicka-Szczebak, Dominika; Augustin, Jürgen; Giesemann, Anette; Well, Reinhard

    2017-02-01

    Stable isotopic analyses of soil-emitted N2O (δ15Nbulk, δ18O and δ15Nsp = 15N site preference within the linear N2O molecule) may help to quantify N2O reduction to N2, an important but rarely quantified process in the soil nitrogen cycle. The N2O residual fraction (remaining unreduced N2O, rN2O) can be theoretically calculated from the measured isotopic enrichment of the residual N2O. However, various N2O-producing pathways may also influence the N2O isotopic signatures, and hence complicate the application of this isotopic fractionation approach. Here this approach was tested based on laboratory soil incubations with two different soil types, applying two reference methods for quantification of rN2O: helium incubation with direct measurement of N2 flux and the 15N gas flux method. This allowed a comparison of the measured rN2O values with the ones calculated based on isotopic enrichment of residual N2O. The results indicate that the performance of the N2O isotopic fractionation approach is related to the accompanying N2O and N2 source processes and the most critical is the determination of the initial isotopic signature of N2O before reduction (δ0). We show that δ0 can be well determined experimentally if stable in time and then successfully applied for determination of rN2O based on δ15Nsp values. Much more problematic to deal with are temporal changes of δ0 values leading to failure of the approach based on δ15Nsp values only. For this case, we propose here a dual N2O isotopocule mapping approach, where calculations are based on the relation between δ18O and δ15Nsp values. This allows for the simultaneous estimation of the N2O-producing pathways' contribution and the rN2O value.

  18. Isotope tracing of Hg pollution from artisanal small scale gold mining in an aquatic ecosystem of Amapá, Brazil

    NASA Astrophysics Data System (ADS)

    Adler Miserendino, R.; Silbergeld, E. K.; Guimarães, J. D.; Ghosh, S.; Bergquist, B. A.

    2010-12-01

    Artisinal small scale gold mining (ASGM) is a central economic activity throughout the developing world. It is both a poverty driven and poverty alleviating process; however, ASGM leads to extensive pollution of waterways through the use of Hg to extract gold from deposits. There have been many studies conducted in the Amazon showing elevated levels of Hg in fish and sediment downstream of ASGM sites; however, the debate continues about the contribution of Hg from ASGM versus other potential sources of Hg. In this study, we investigate whether Hg stable isotope analysis can be used to trace mercury pollution from an ASGM site through an aquatic ecosystem in Amapá, Brazil. We measured the Hg isotopic composition of sediment cores from two lakes, only one of which was heavily impacted by the use of elemental Hg in ASGM, as well as from grab samples at the AGSM site and upstream and downstream from the AGSM site along the river which connects the polluted lake to the ASGM site. Hg from all samples were trapped via combustion using the Leeman Labs Hydra-C mercury analyzer and analyzed for both mass-independent and mass-dependent signatures using cold vapor multi-collector inductively coupled plasma mass spectrometry (CV-MC-ICP-MS). Detectable variations in the Hg isotopic signatures were apparent across our field sites, suggesting stable isotopic analysis has great potential to trace contamination pathways in waterways. Preliminary data demonstrate Hg from the ASGM site has unique isotopic signatures that are seen downstream. However, the impacted lake sediments do not have the mining signature despite having three times more Hg than the non-impacted lake. Based on this data, it may be possible to trace Hg from ASGM and assess whether it is impacting local ecosystems and food webs. Hair and soil samples will also be discussed. This demonstration is essential for the broader application of these tools for understanding and applying Hg isotopic analysis in other contexts. This information may also be useful to help reduce Hg exposure of highly vulnerable populations exposed to Hg from ASGM through these aquatic networks in Amapá, Brazil.

  19. Minor isotope safeguards techniques (MIST): Analysis and visualization of gas centrifuge enrichment plant process data using the MSTAR model

    NASA Astrophysics Data System (ADS)

    Shephard, Adam M.; Thomas, Benjamin R.; Coble, Jamie B.; Wood, Houston G.

    2018-05-01

    This paper presents a development related to the use of minor isotope safeguards techniques (MIST) and the MSTAR cascade model as it relates to the application of international nuclear safeguards at gas centrifuge enrichment plants (GCEPs). The product of this paper is a derivation of the universal and dimensionless MSTAR cascade model. The new model can be used to calculate the minor uranium isotope concentrations in GCEP product and tails streams or to analyze, visualize, and interpret GCEP process data as part of MIST. Applications of the new model include the detection of undeclared feed and withdrawal streams at GCEPs when used in conjunction with UF6 sampling and/or other isotopic measurement techniques.

  20. Precise and accurate isotope ratio measurements by ICP-MS.

    PubMed

    Becker, J S; Dietze, H J

    2000-09-01

    The precise and accurate determination of isotope ratios by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) is important for quite different application fields (e.g. for isotope ratio measurements of stable isotopes in nature, especially for the investigation of isotope variation in nature or age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, quality assurance of fuel material, for reprocessing plants, nuclear material accounting and radioactive waste control, for tracer experiments using stable isotopes or long-lived radionuclides in biological or medical studies). Thermal ionization mass spectrometry (TIMS), which used to be the dominant analytical technique for precise isotope ratio measurements, is being increasingly replaced for isotope ratio measurements by ICP-MS due to its excellent sensitivity, precision and good accuracy. Instrumental progress in ICP-MS was achieved by the introduction of the collision cell interface in order to dissociate many disturbing argon-based molecular ions, thermalize the ions and neutralize the disturbing argon ions of plasma gas (Ar+). The application of the collision cell in ICP-QMS results in a higher ion transmission, improved sensitivity and better precision of isotope ratio measurements compared to quadrupole ICP-MS without the collision cell [e.g., for 235U/238U approximately 1 (10 microg x L(-1) uranium) 0.07% relative standard deviation (RSD) vs. 0.2% RSD in short-term measurements (n = 5)]. A significant instrumental improvement for ICP-MS is the multicollector device (MC-ICP-MS) in order to obtain a better precision of isotope ratio measurements (with a precision of up to 0.002%, RSD). CE- and HPLC-ICP-MS are used for the separation of isobaric interferences of long-lived radionuclides and stable isotopes by determination of spallation nuclide abundances in an irradiated tantalum target.

  1. Abstracts of the 24th international isotope society (UK group) symposium: synthesis and applications of labelled compounds 2015.

    PubMed

    Aigbirhio, F I; Allwein, S; Anwar, A; Atzrodt, J; Audisio, D; Badman, G; Bakale, R; Berthon, F; Bragg, R; Brindle, K M; Bushby, N; Campos, S; Cant, A A; Chan, M Y T; Colbon, P; Cornelissen, B; Czarny, B; Derdau, V; Dive, V; Dunscombe, M; Eggleston, I; Ellis-Sawyer, K; Elmore, C S; Engstrom, P; Ericsson, C; Fairlamb, I J S; Georgin, D; Godfrey, S P; He, L; Hickey, M J; Huscroft, I T; Kerr, W J; Lashford, A; Lenz, E; Lewinton, S; L'Hermite, M M; Lindelöf, Å; Little, G; Lockley, W J S; Loreau, O; Maddocks, S; Marguerit, M; Mirabello, V; Mudd, R J; Nilsson, G N; Owens, P K; Pascu, S I; Patriarche, G; Pimlott, S L; Pinault, M; Plastow, G; Racys, D T; Reif, J; Rossi, J; Ruan, J; Sarpaki, S; Sephton, S M; Simonsson, R; Speed, D J; Sumal, K; Sutherland, A; Taran, F; Thuleau, A; Wang, Y; Waring, M; Watters, W H; Wu, J; Xiao, J

    2016-04-01

    The 24th annual symposium of the International Isotope Society's United Kingdom Group took place at the Møller Centre, Churchill College, Cambridge, UK on Friday 6th November 2015. The meeting was attended by 77 delegates from academia and industry, the life sciences, chemical, radiochemical and scientific instrument suppliers. Delegates were welcomed by Dr Ken Lawrie (GlaxoSmithKline, UK, chair of the IIS UK group). The subsequent scientific programme consisted of oral presentations, short 'flash' presentations in association with particular posters and poster presentations. The scientific areas covered included isotopic synthesis, regulatory issues, applications of labelled compounds in imaging, isotopic separation and novel chemistry with potential implications for isotopic synthesis. Both short-lived and long-lived isotopes were represented, as were stable isotopes. The symposium was divided into a morning session chaired by Dr Rebekka Hueting (University of Oxford, UK) and afternoon sessions chaired by Dr Sofia Pascu (University of Bath, UK) and by Dr Alan Dowling (Syngenta, UK). The UK meeting concluded with remarks from Dr Ken Lawrie (GlaxoSmithKline, UK). Copyright © 2016 John Wiley & Sons, Ltd.

  2. Detrital sources and water mass circulation in the tropical North Atlantic during the Late Cretaceous to Paleogene

    NASA Astrophysics Data System (ADS)

    Martin, E. E.; Pugh, E.; Kamenov, G. D.; MacLeod, K. G.

    2014-12-01

    Seawater Nd isotopes from fossil fish teeth in Campanian to Paleogene calcareous claystone on Demerara Rise in the tropical North Atlantic record a change from epsilon Nd values of -17 to -11 during the late Maastrichtian. This shift has been identified in three different Ocean Drilling Program (ODP) sites that span from 600 to 1500 m paleodepths (ODP sites 1259, 1260 and 1261) and has been interpreted as a transition from a warm saline intermediate water mass formed on the South American margin, referred to as Demerara Bottom Water, to a source from the North Atlantic. A study of corresponding detrital Sr, Nd and Pb isotopes was undertaken to confirm the isotopic values derived from fish teeth record water mass compositions rather than diagenesis or boundary exchange. Several leaching procedures designed to remove Fe-Mn oxide coatings and the seawater signature they carry from the detrital fractions were tested. Sr isotopic data indicate a 0.02 M hydroxylamine hydrochloride (HH) leach was ineffective at removing the Fe-Mn oxides whereas a 1.0 M HH leach produced detrital Sr isotopic values that were consistent for all three sites and plotted farther from the seawater value. Detrital isotopic results can be divided into three intervals: 1) 73 - 66 Ma, when DBW is present, 2) 66 - 61 Ma, during the transition to North Atlantic sources, and 3) <61 Ma, when North Atlantic sources appear to dominate. During interval 1, detrital Nd isotopes increase gradually, while Sr and Pb isotopic ratios are relatively constant. Leading into interval 2, detrital Nd isotopes are fairly constant while there is a stepwise increase in Sr and Pb isotopes. Leading into interval 3, there is a large increase in Nd and decrease in Sr isotopes and a slight decrease in Pb isotopes. The subtle differences in the timing of changes in fish teeth and detrital Nd isotopes suggest the seawater signal is responding to changes in water mass rather than changes in sediment composition (boundary exchange). The timing of the changes in detrital inputs indicates changes in provenance may correlate with the rearrangement of the currents transporting sediment to the region associated with the transition from a water mass sourced from the tropics to a more northern source.

  3. Modeling stable isotope transport in metamorphic and hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Baumgartner, L. P.; Mueller, T.; Skora, S.; Begue, F.

    2007-12-01

    Stable isotopes are powerful tools for deciphering the fluid flow histories of metamorphic terrains. The nature of fluid flow, fluid sources, and fluid fluxes can be delineated in well constrained studies. Continuum mechanics models for stable isotope fluid-rock exchange were developed and used over the last three decades in an attempt to accurately interpret the signatures left behind by fluid flow in the earths crust. The efforts have been hampered by the realization that the exchange of many stable isotopes, e.g. oxygen and carbon, by intracrystalline diffusion, hence without re-organization of the crystal lattice, appears to be too slow to achieve significant exchange. This should lead to relatively flat isotopic exchange profiles on hand-, outcrop, or aureole scale. Nevertheless, isotopic fronts are typically sharp (sub mm to cm scale), when measured in the field. This has lead to the suggestion that these sharp fronts correspond to the sides of infiltration fronts, implying the data to have been collected at a high angle to the infiltration direction. Nevertheless, the fact that the oxygen and carbon fronts are located at the same place is not explained by this. A review of published carbon and oxygen data reveals that many contact aureoles show linear trends in oxygen-carbon isotope ratio diagrams for carbonate sample suits. This implies that the fluid composition infiltrating the aureoles had essentially an X(CO2) of 0.5. This is in contrast to skarn mineralogy developed, which requires a water-rich fluid, in agreement with the general notion that igneous fluids are water-rich. These and other observations indicate that the mass transport equation used for stable isotope exchange needs to be improved to model appropriately the actual isotope kinetics during fluid-rock exchange. Detailed isotope studies on systems where net transport reactions are driven by mass transport have led us to identify different exchange mechanisms, including: a) the stable isotope exchange is given by instantaneous mass balance written for the isotope during reaction; b) equilibrium precipitation of products, but slow exchange kinetics for reactants. These observations require that the reactive term in the stable isotope reactive transport equation is re-written to include the net transfer reactions, which in turn implies the solution of the transport equation for the elements driving the reaction.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monna, F.; Aiuppa, A.; Varrica, D.

    A total of 25 lichen thalli of Parmelia conspersa (Ehrh), collected at Vulcano island and at Mt. Etna, during a one-year biogeochemical survey, were analyzed for Pb, br, Al, Sc,[sup 206]Pb/[sup 207]Pb, and [sup 208]Pb/[sup 206]Pb ratios. Lead isotope ratios were also measured on aerosol samples from urban areas and industrial sites of Sicily. The observed [sup 206]Pb/[sup 207]Pb range for urban and industrial aerosols matches the anthropogenic signature. Lichens instead, are closer to the compositional field of [sup 206]Pb rich geogenic sources. This natural input is more evident at Vulcano island than at Mt. Etna, where the anthropogenic activitiesmore » are considerably more effective. On the basis of lead isotope data, Pb/Br ratios and calculated lead enrichment factors, a natural lead pollution from volcanoes is suggested. Volcanic lead contribution ranges from 10 to 30% at Mt. Etna to 10--80% at Vulcano island.« less

  5. Integrated modelling of enhanced in situ biodenitrification in a fractured aquifer: biogeochemistry and isotope geochemistry

    NASA Astrophysics Data System (ADS)

    Rodríguez-Escales, Paula; Folch, Albert; van Breukelen, Boris M.; Vidal-Gavilan, Georgina; Soler, Albert

    2014-05-01

    Enhanced in-situ biodenitrification is a feasible technology to recovery groundwater polluted by nitrates and achieves drinking water standards. Under optimum conditions, nitrate is reduced by autochthonous bacteria trough different reactions until arrive to harmless dinitrogen gas. Isotopic fractionation monitoring in field applications allows knowing the exact degree and the real scope of this technology. Using the Rayleigh equation the change in the isotope ratio of the nitrate molecule (δ15N-NO3-, δ18O-NO3-) is related to the fraction of molecules remaining as a result of biodenitrification. However, Rayleigh application at field scale is sometimes limited due to other processes involved during groundwater flow such as dispersion or adsorption and geological media heterogeneities that interferes in concentration values. Then, include isotope fractionation processes in reactive transport models is a useful tool to interpret and predict data from in-situ biodenitrification. We developed a reactive transport model of enhanced in situ application at field scale in a fractured aquifer that considers biogeochemical processes as well as isotope fractionation to enable better monitoring and management of this technology. Processes considered were: microbiological- exogenous and endogenous nitrate and sulfate respiration coupled with microbial growth and decay, geochemical reactions (precipitation of calcite) and isotopic fractionation (δ15N-NO3-; δ18O- NO3- and carbon isotope network). The 2-D simulations at field scale were developed using PHAST code. Modeling of nitrate isotope geochemistry has allowed determining the extent of biodenitrification in model domain. We have quantified which is the importance in decreasing of nitrate concentrations due to biodegradation (percentage of biodegradation, 'B%') and due to dilution process (percentage of dilution, 'D%'). On the other hand, the stable carbon isotope geochemistry has been modeled. We have considered the isotopic carbon fractionation of different carbon species involved in enhanced biodenitrification: external organic carbon, biomass, inorganic carbon (in different forms) and calcite. The inclusion of carbon isotopes in the model, which are involved in both direct (oxidation of organic carbon) and indirect (carbonate mineral interaction) processes of enhanced biodenitrification, improves the evaluation of the overall model consistency due to the central role of carbon in the reaction network.

  6. Metal stable isotopes in low-temperature systems: A primer

    USGS Publications Warehouse

    Bullen, T.D.; Eisenhauer, A.

    2009-01-01

    Recent advances in mass spectrometry have allowed isotope scientists to precisely determine stable isotope variations in the metallic elements. Biologically infl uenced and truly inorganic isotope fractionation processes have been demonstrated over the mass range of metals. This Elements issue provides an overview of the application of metal stable isotopes to low-temperature systems, which extend across the borders of several science disciplines: geology, hydrology, biology, environmental science, and biomedicine. Information on instrumentation, fractionation processes, data-reporting terminology, and reference materials presented here will help the reader to better understand this rapidly evolving field.

  7. Isotope scattering and phonon thermal conductivity in light atom compounds: LiH and LiF

    DOE PAGES

    Lindsay, Lucas R.

    2016-11-08

    Engineered isotope variation is a pathway toward modulating lattice thermal conductivity (κ) of a material through changes in phonon-isotope scattering. The effects of isotope variation on intrinsic thermal resistance is little explored, as varying isotopes have relatively small differences in mass and thus do not affect bulk phonon dispersions. However, for light elements isotope mass variation can be relatively large (e.g., hydrogen and deuterium). Using a first principles Peierls-Boltzmann transport equation approach the effects of isotope variance on lattice thermal transport in ultra-low-mass compound materials LiH and LiF are characterized. The isotope mass variance modifies the intrinsic thermal resistance viamore » modulation of acoustic and optic phonon frequencies, while phonon-isotope scattering from mass disorder plays only a minor role. This leads to some unusual cases where values of isotopically pure systems ( 6LiH, 7Li 2H and 6LiF) are lower than the values from their counterparts with naturally occurring isotopes and phonon-isotope scattering. However, these differences are relatively small. The effects of temperature-driven lattice expansion on phonon dispersions and calculated κ are also discussed. This work provides insight into lattice thermal conductivity modulation with mass variation and the interplay of intrinsic phonon-phonon and phonon-isotope scattering in interesting light atom systems.« less

  8. Two-step extraction method for lead isotope fractionation to reveal anthropogenic lead pollution.

    PubMed

    Katahira, Kenshi; Moriwaki, Hiroshi; Kamura, Kazuo; Yamazaki, Hideo

    2018-05-28

    This study developed the 2-step extraction method which eluted the Pb adsorbing on the surface of sediments in the first solution by aqua regia and extracted the Pb absorbed inside particles into the second solution by mixed acid of nitric acid, hydrofluoric acid and hydrogen peroxide solution. We applied the method to sediments in the enclosed water area and found out that the isotope ratios of Pb in the second solution represented those of natural origin. This advantage of the method makes it possible to distinguish the Pb between natural origin and anthropogenic source on the basis of the isotope ratios. The results showed that the method was useful to discuss the Pb sources and that anthropogenic Pb in the sediment samples analysed was mainly derived from China because of transboundary air pollution.

  9. Hydrogen Isotope Measurements of Organic Acids and Alcohols by Pyrolysis-GC-MS-TC-IRMS: Application to Analysis of Experimentally Derived Hydrothermal Mineral-Catalyzed Organic Products

    NASA Astrophysics Data System (ADS)

    Socki, R. A.; Fu, Q.; Niles, P. B.; Gibson, E. K.

    2012-03-01

    We report results of experiments to measure the H-isotope composition of organic acids and alcohols. These experiments make use of a pyroprobe interfaced with a GC and high-temperature extraction furnace to make quantitative H-isotope measurements.

  10. A Report Guide to Radiographic Testing Literature. Volume 6

    DTIC Science & Technology

    1975-04-01

    Sources and Applications IITRI, Chicago, 111., 21-22 October 1964, ORNL -11C5, UC-23-Isotopes-Industrial Technology, November 1965 This...Applications IITRI, Chicago, IU., 21-22 October 1964. ORNL -11C5, UC-23lsotopes-lndustria3 Technology November 1965 The design of radioactive sources...Mich. Proceedings of Symposium on Low-Energy X and Gamma Sources and Applications IITRI, Chicago, HI., 21-22 October 1964. ORNL -11C5, US-23-Isotopes

  11. Determination of phenylalanine isotope ratio enrichment by liquid chromatography/time- of-flight mass spectrometry.

    PubMed

    Wu, Zhanpin; Zhang, Xiao-Jun; Cody, Robert B; Wolfe, Robert R

    2004-01-01

    The application of time-of-flight mass spectrometry to isotope ratio measurements has been limited by the relatively low dynamic range of the time-to-digital converter detectors available on commercial LC/ToF-MS systems. Here we report the measurement of phenylalanine isotope ratio enrichment by using a new LC/ToF-MS system with wide dynamic range. Underivatized phenylalanine was injected onto a C18 column directly with 0.1% formic acid/acetonitrile as the mobile phase. The optimal instrument parameters for the time-of-flight mass spectrometer were determined by tuning the instrument with a phenylalanine standard. The accuracy of the isotope enrichment measurement was determined by the injection of standard solutions with known isotope ratios ranging from 0.02% to 9.2%. A plot of the results against the theoretical values gave a linear curve with R2 of 0.9999. The coefficient of variation for the isotope ratio measurement was below 2%. The method is simple, rapid, and accurate and presents an attractive alternative to traditional GC/MS applications.

  12. A critical examination of the possible application of zinc stable isotope ratios in bivalve mollusks and suspended particulate matter to trace zinc pollution in a tropical estuary.

    PubMed

    Araújo, Daniel; Machado, Wilson; Weiss, Dominik; Mulholland, Daniel S; Boaventura, Geraldo R; Viers, Jerome; Garnier, Jeremie; Dantas, Elton L; Babinski, Marly

    2017-07-01

    The application of zinc (Zn) isotopes in bivalve tissues to identify zinc sources in estuaries was critically assessed. We determined the zinc isotope composition of mollusks (Crassostrea brasiliana and Perna perna) and suspended particulate matter (SPM) in a tropical estuary (Sepetiba Bay, Brazil) historically impacted by metallurgical activities. The zinc isotope systematics of the SPM was in line with mixing of zinc derived from fluvial material and from metallurgical activities. In contrast, source mixing alone cannot account for the isotope ratios observed in the bivalves, which are significantly lighter in the contaminated metallurgical zone (δ 66 Zn JMC  = +0.49 ± 0.06‰, 2σ, n = 3) compared to sampling locations outside (δ 66 Zn JMC  = +0.83 ± 0.10‰, 2σ, n = 22). This observation suggests that additional factors such as speciation, bioavailability and bioaccumulation pathways (via solution or particulate matter) influence the zinc isotope composition of bivalves. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Evidencing lead deposition at the urban scale using "short-lived" isotopic signatures of the source term (Pb-Zn refinery)

    NASA Astrophysics Data System (ADS)

    Franssens, Matthias; Flament, Pascal; Deboudt, Karine; Weis, Dominique; Perdrix, Espéranza

    2004-09-01

    To demonstrate the ability of the lead isotope signature technique to evidence the spatial extent of an industrial Pb deposition plume at a local scale, dry deposition of lead in the urban environment of a Pb-Zn refinery was investigated, as a study case, using transient ("short-lived") isotopic signatures of the industrial source. Sampling campaigns were achieved in representative weather conditions, on an 8-h basis. Dry deposition rates measured downwind from refinery emissions (≈102-103 μg Pb m-2 h-1), cross-sectionally in a 3-5 km radius area around the plant, represent 10-100 times the urban background dry fallout, measured upwind, as well as fallout measured near other potential sources of anthropogenic Pb. The Pb-Zn refinery isotopic signature (approx. 1.100<206Pb/207Pb<1.135) is made identifiable, using the same set of Pb and Zn ores for 2 days before sampling and during field experiments, by agreement with the executive staff of the plant. This source signature is less radiogenic than signatures of urban background Pb aerosols (1.155<206Pb/207Pb<1.165) and minor sources of Pb aerosols (1.147<206Pb/207Pb<1.165). By a simple binary mixing model calculation, we established the extension of the industrial Pb deposition plume. Fifty to eighty percents of total lead settled by the dry deposition mode, 3-4 km away from the refinery, still have an industrial origin. That represents from 40 to 80 μg Pb m-2 h-1, in an area where the blood lead level exceeds 100 μg Pb l-1 for 30% of men and 12% of women living there. We demonstrate here that stable Pb isotope analysis is able to evidence the Pb dry deposition plume in stabilised aerodynamic conditions, using a short-lived source term, suggesting that this methodology is able to furnish valuable data to validate industrial Pb aerosols dispersion models, at the urban scale.

  14. Rare Isotopes Physics in the Multimessenger Era

    NASA Astrophysics Data System (ADS)

    Schatz, Hendrik

    2018-06-01

    While these isotopes only exist for fractions of seconds, their properties shape the resulting cosmic distribution of elements and the astronomical observables including spectra, neutrinos, and gravitational waves. The long standing challenge in nuclear astrophysics of the production of the relevant isotopes in the laboratory is now overcome with a new generation of rare isotope accelerator facilities now coming online. One example is the FRIB facility under construction at Michigan State University for the US Department of Energy, Office of Science, Office of Nuclear Physics. These new capabilities in nuclear physics coincide with advances in astronomy directly related to the cosmic sites where these isotopes are created, in particular in time domain and gravitational wave astronomy. I will discuss the importance of rare isotope physics in interpreting multi-messenger observations and how advances in nuclear physics and astronomy when combined promise to lead us towards a comprehensive theory of the origin of the elements.

  15. Tracing the origin of pollution in French Alpine snow and aerosols using lead isotopic ratios.

    PubMed

    Veysseyre, A M; Bollhöfer, A F; Rosman, K J; Ferrari, C P; Boutron, C F

    2001-11-15

    Fresh snow samples collected at 15 remote locations and aerosols collected at one location in the French Alps between November 1998 and April 1999 have been analyzed for Pb concentration and isotopic composition by thermal ionization mass spectrometry. The snow samples contained 19-1300 pg/g of Pb with isotopic ratios 206Pb/207Pb (208Pb/207Pb) of 1.1279-1.1607 (2.3983-2.4302). Airborne Pb concentrations at one sampling site ranged from 0.42 to 6.0 ng/m3 with isotopic ratios of 1.1321-1.1427 (2.4029-2.4160). Air mass trajectory analysis combined with isotopic compositions of potential source regions did not show discernible evidence of the long-range atmospheric transport of pollutants. Isotopic ratios in the Alpine snow samples and thus the free troposphere were generally higher than airborne Pb isotopic ratios in urban France, which coupled with the relatively high Pb concentrations suggested a regional anthropogenic Pb source, probably Italy but possibly Eastern Europe.

  16. An update of the Pb isotope inventory in post leaded-petrol Singapore environments.

    PubMed

    Carrasco, Gonzalo; Chen, Mengli; Boyle, Edward A; Tanzil, Jani; Zhou, Kuanbo; Goodkin, Nathalie F

    2018-02-01

    Pb is a trace metal that tracks anthropogenic pollution in natural environments. Despite recent leaded petrol phase out around Southeast Asia, the region's growth has resulted in continued exposure of Pb from a variety of sources. In this study, sources of Pb into Singapore, a highly urbanised city-state situated in the central axis of Southeast Asia, are investigated using isotopic ratios and concentrations. We compiled data from our previous analyses of aerosols, incineration fly ash and sediments, with new data from analyses of soil from gas stations, water from runoff and round-island coastal seawater to obtain a spatio-temporal overview of sources of Pb into the Singapore environment. Using 206 Pb/ 207 Pb ratio, we identified three main Pb source origins: natural Pb (1.215 ± 0.001), historic/remnant leaded petrol (1.123 ± 0.013), and present-day industrial and incinerated waste (1.148 ± 0.005). Deep reservoir sediments bore larger traces of Pb from leaded petrol, but present-day runoff waters and coastal seawater were a mix of industrial and natural sources with somewhat variable concentrations. We found temporal variability in Pb isotopic ratio in aerosols indicating alternating transboundary Pb sources to Singapore that correspond to seasonal changes in monsoon winds. By contrast, seasonal monsoon circulation did not significantly influence isotopic ratios of coastal seawater Pb. Instead, seawater Pb was driven more by location differences, suggesting stronger local-scale drivers of Pb such as point sources, water flushing, and isotope exchange. The combination of multiple historic and current sources of Pb shown in this study highlights the need for continued monitoring of Pb in Southeast Asia, especially in light of emerging industries and potential large sources of Pb such as coal combustion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Evidence for Patterns of Selective Urban Migration in the Greater Indus Valley (2600-1900 BC): A Lead and Strontium Isotope Mortuary Analysis

    PubMed Central

    Valentine, Benjamin; Kamenov, George D.; Kenoyer, Jonathan Mark; Shinde, Vasant; Mushrif-Tripathy, Veena; Otarola-Castillo, Erik; Krigbaum, John

    2015-01-01

    Just as modern nation-states struggle to manage the cultural and economic impacts of migration, ancient civilizations dealt with similar external pressures and set policies to regulate people’s movements. In one of the earliest urban societies, the Indus Civilization, mechanisms linking city populations to hinterland groups remain enigmatic in the absence of written documents. However, isotopic data from human tooth enamel associated with Harappa Phase (2600-1900 BC) cemetery burials at Harappa (Pakistan) and Farmana (India) provide individual biogeochemical life histories of migration. Strontium and lead isotope ratios allow us to reinterpret the Indus tradition of cemetery inhumation as part of a specific and highly regulated institution of migration. Intra-individual isotopic shifts are consistent with immigration from resource-rich hinterlands during childhood. Furthermore, mortuary populations formed over hundreds of years and composed almost entirely of first-generation immigrants suggest that inhumation was the final step in a process linking certain urban Indus communities to diverse hinterland groups. Additional multi disciplinary analyses are warranted to confirm inferred patterns of Indus mobility, but the available isotopic data suggest that efforts to classify and regulate human movement in the ancient Indus region likely helped structure socioeconomic integration across an ethnically diverse landscape. PMID:25923705

  18. Evidence for Patterns of Selective Urban Migration in the Greater Indus Valley (2600-1900 BC): A Lead and Strontium Isotope Mortuary Analysis.

    PubMed

    Valentine, Benjamin; Kamenov, George D; Kenoyer, Jonathan Mark; Shinde, Vasant; Mushrif-Tripathy, Veena; Otarola-Castillo, Erik; Krigbaum, John

    2015-01-01

    Just as modern nation-states struggle to manage the cultural and economic impacts of migration, ancient civilizations dealt with similar external pressures and set policies to regulate people's movements. In one of the earliest urban societies, the Indus Civilization, mechanisms linking city populations to hinterland groups remain enigmatic in the absence of written documents. However, isotopic data from human tooth enamel associated with Harappa Phase (2600-1900 BC) cemetery burials at Harappa (Pakistan) and Farmana (India) provide individual biogeochemical life histories of migration. Strontium and lead isotope ratios allow us to reinterpret the Indus tradition of cemetery inhumation as part of a specific and highly regulated institution of migration. Intra-individual isotopic shifts are consistent with immigration from resource-rich hinterlands during childhood. Furthermore, mortuary populations formed over hundreds of years and composed almost entirely of first-generation immigrants suggest that inhumation was the final step in a process linking certain urban Indus communities to diverse hinterland groups. Additional multi disciplinary analyses are warranted to confirm inferred patterns of Indus mobility, but the available isotopic data suggest that efforts to classify and regulate human movement in the ancient Indus region likely helped structure socioeconomic integration across an ethnically diverse landscape.

  19. Lead isotopic composition of trinitite melt glass: evidence for the presence of Canadian industrial lead in the first atomic weapon test.

    PubMed

    Bellucci, Jeremy J; Simonetti, Antonio; Wallace, Christine; Koeman, Elizabeth C; Burns, Peter C

    2013-08-06

    The Pb isotopic compositions for 51 spots of melt glass in 11 samples of trinitite have been determined by laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). Trinitite glass yields a large range of Pb isotopic compositions (i.e., (206)Pb/(204)Pb = 17.08-19.04), which reflect mixing between industrial Pb from materials used in the Trinity test and natural geologic components. Areas within trinitite melt glass containing high concentrations of both Cu and Pb, which are derived from the bomb and blast site-related components, were used for delineating the Pb isotopic composition corresponding to the anthropogenic Pb component. Comparison between the isotopic composition estimated here for the industrial Pb used in the Trinity test and those from known Pb deposits worldwide indicates close agreement with ore from the Buchans mine (Newfoundland, Canada). The Buchans mine was active during the time of the Trinity test and was operated by the American Smelting and Refining Company, which could have provided the Pb used in the test. The industrial Pb used in the Trinity test materials is not documented in the literature (or declassified) but could have been present in bricks, solder, pigs, or some other anthropogenic component related to the experiment.

  20. A Reassessment of the Precision of Carbonate Clumped Isotope Measurements: Implications for Calibrations and Paleoclimate Reconstructions

    NASA Astrophysics Data System (ADS)

    Fernandez, Alvaro; Müller, Inigo A.; Rodríguez-Sanz, Laura; van Dijk, Joep; Looser, Nathan; Bernasconi, Stefano M.

    2017-12-01

    Carbonate clumped isotopes offer a potentially transformational tool to interpret Earth's history, but the proxy is still limited by poor interlaboratory reproducibility. Here, we focus on the uncertainties that result from the analysis of only a few replicate measurements to understand the extent to which unconstrained errors affect calibration relationships and paleoclimate reconstructions. We find that highly precise data can be routinely obtained with multiple replicate analyses, but this is not always done in many laboratories. For instance, using published estimates of external reproducibilities we find that typical clumped isotope measurements (three replicate analyses) have margins of error at the 95% confidence level (CL) that are too large for many applications. These errors, however, can be systematically reduced with more replicate measurements. Second, using a Monte Carlo-type simulation we demonstrate that the degree of disagreement on published calibration slopes is about what we should expect considering the precision of Δ47 data, the number of samples and replicate analyses, and the temperature range covered in published calibrations. Finally, we show that the way errors are typically reported in clumped isotope data can be problematic and lead to the impression that data are more precise than warranted. We recommend that uncertainties in Δ47 data should no longer be reported as the standard error of a few replicate measurements. Instead, uncertainties should be reported as margins of error at a specified confidence level (e.g., 68% or 95% CL). These error bars are a more realistic indication of the reliability of a measurement.

  1. Preparation of isotopic molybdenum foils utilizing small quantities of material

    NASA Astrophysics Data System (ADS)

    Lipski, A. R.; Lee, L. L.; Liang, J. F.; Mahon, J. C.

    1993-09-01

    A simple method utilizing a small amount of isotopic material for production of molybdenum foils is discussed. An e-gun is used in the procedure. The Mo powder undergoes reduction-sintering and melting-solidifying steps leading to the creation of a metallic droplet suitable for further cold rolling or vacuum deposition.

  2. USE OF STABLE CARBON ISOTOPE RATIOS OF FATTY ACIDS TO EVALUATE MICROBIAL CARBON SOURCES IN TERRESTRIAL ENVIRONMENTS

    EPA Science Inventory

    We use measurements of the concentration and stable carbon isotopic ratio (D 13C) of individual microbial phospholipid fatty acids (PLFAs) in soils as indicators of live microbial biomass levels and microbial carbon source. We found that intensive sugar cane cultivation leads to ...

  3. Isotope effects in the evaporation of water: a status report of the Craig-Gordon model.

    PubMed

    Horita, Juske; Rozanski, Kazimierz; Cohen, Shabtai

    2008-03-01

    The Craig-Gordon model (C-G model) [H. Craig, L.I. Gordon. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In Stable Isotopes in Oceanographic Studies and Paleotemperatures, E. Tongiorgi (Ed.), pp. 9-130, Laboratorio di Geologia Nucleare, Pisa (1965).] has been synonymous with the isotope effects associated with the evaporation of water from surface waters, soils, and vegetations, which in turn constitutes a critical component of the global water cycle. On the occasion of the four decades of its successful applications to isotope geochemistry and hydrology, an attempt is made to: (a) examine its physical background within the framework of modern evaporation models, (b) evaluate our current knowledge of the environmental parameters of the C-G model, and (c) comment on a general strategy for the use of these parameters in field applications. Despite its simplistic representation of evaporation processes at the water-air interface, the C-G model appears to be adequate to provide the isotopic composition of the evaporation flux. This is largely due to its nature for representing isotopic compositions (a ratio of two fluxes of different isotopic water molecules) under the same environmental conditions. Among many environmental parameters that are included in the C-G model, accurate description and calculations are still problematic of the kinetic isotope effects that occur in a diffusion-dominated thin layer of air next to the water-air interface. In field applications, it is of importance to accurately evaluate several environmental parameters, particularly the relative humidity and isotopic compositions of the 'free-atmosphere', for a system under investigation over a given time-scale of interest (e.g., hourly to daily to seasonally). With a growing interest in the studies of water cycles of different spatial and temporal scales, including paleoclimate and water resource studies, the importance and utility of the C-G model is also likely to grow in the future.

  4. Isotope Geochemistry for Comparative Planetology of Exoplanets

    NASA Technical Reports Server (NTRS)

    Mandt, K. E.; Atreya, S.; Luspay-Kuti, A.; Mousis, O.; Simon, A.; Hofstadter, M. D.

    2017-01-01

    Isotope geochemistry has played a critical role in understanding processes at work in and the history of solar system bodies. Application of these techniques to exoplanets would be revolutionary and would allow comparative planetology with the formation and evolution of exoplanet systems. The roadmap for comparative planetology of the origins and workings of exoplanets involves isotopic geochemistry efforts in three areas: (1) technology development to expand observations of the isotopic composition of solar system bodies and expand observations to isotopic composition of exoplanet atmospheres; (2) theoretical modeling of how isotopes fractionate and the role they play in evolution of exoplanetary systems, atmospheres, surfaces and interiors; and (3) laboratory studies to constrain isotopic fractionation due to processes at work throughout the solar system.

  5. Isotopic generator for bismuth-212 and lead-212 based on radium

    DOEpatents

    Hines, J.J.; Atcher, R.W.; Friedman, A.M.

    1985-01-30

    Disclosed are method and apparatus for providing radionuclides of bismuth-212 and lead-212. Thorium-228 and carrier solution starting material is input to a radiologically contained portion of an isotopic generator system, and radium-224 is separated from thorium-228 which is retained by a strongly basic anion exchange column. The separated radium-224 is transferred to an accessible, strongly acidic cationic exchange column. The cationic column retains the radium-224, and natural radioactive decay generates bismuth-212 and lead-212. The cationic exchange column can also be separated from the contained portion of the system and utilized without the extraordinary safety measures necessary in the contained portion. Furthermore, the cationic exchange column provides over a relatively long time period the short lived lead-212 and bismuth-212 radionuclides which are useful for a variety of medical therapies.

  6. Isotopic generator for bismuth-212 and lead-212 from radium

    DOEpatents

    Atcher, Robert W.; Friedman, Arnold M.; Hines, John

    1987-01-01

    A method and apparatus for providing radionuclides of bismuth-212 and lead-212. Thorium-228 and carrier solution starting material is input to a radiologically contained portion of an isotopic generator system, and radium-224 is separated from thorium-228 which is retained by a strongly basic anion exchange column. The separated radium-224 is transferred to an accessible, strongly acidic cationic exchange column. The cationic column retains the radium-224, and natural radioactive decay generates bismuth-212 and lead-212. The cationic exchange column can also be separated from the contained portion of the system and utilized without the extraordinary safety measures necessary in the contained portion. Furthermore, the cationic exchange column provides over a relatively long time period the short lived lead-212 and bismuth-212 radionuclides which are useful for a variety of medical therapies.

  7. Applications of New Synthetic Uranium Reference Materials for Geochemistry Research (Invited)

    NASA Astrophysics Data System (ADS)

    Richter, S.; Weyer, S.; Alonso, A.; Aregbe, Y.; Kuehn, H.; Eykens, R.; Verbruggen, A.; Wellum, R.

    2009-12-01

    For many applications in geochemistry research isotope ratio measurements play a significant role. In geochronology isotope abundances of uranium and its daughter products thorium and lead are being used to determine the age and history of various samples of geological interest. For measuring the isotopic compositions of these elements by mass spectrometry, suitable isotope reference materials are needed to validate measurement procedures and to calibrate multi-collector and ion counting detector systems. IRMM is a recognized provider for nuclear isotope reference materials to the nuclear industry and nuclear safeguards authorities, which are also being applied widely for geochemical applications. The preparation of several new synthetic uranium reference materials at IRMM during the recent five years has provided significant impacts on geochemical research. As an example, the IRMM-074 series of gravimetrically prepared uranium mixtures for linearity testing of secondary electron multipliers (SEMs) has been applied for the redetermination of the secular equilibrium 234U/238U value and the 234U half-life by Cheng et al (2009). Due to the use of IRMM-074, results with smaller uncertainties were obtained, which are shifted by about 0.04% compared to the commonly used values published earlier by Cheng et al. in 2000. This has a significant impact for U isotope measurements in geochemistry.. As a further example, the new double spike IRMM-3636 with a 233U/236U ratio of 1:1 and an expanded uncertainty as low as 0.016% (coverage factor k=2, 95% confidence level) was prepared gravimetrically. This double spike allows internal mass fractionation correction for high precision 235U/238U ratio measurements of close to natural samples. Using the new double spike IRMM-3636, the 235U/238U ratios for several commonly used natural U standard materials from NIST/NBL and IRMM, such as e.g. NBS960 (=NBL CRM-112a), NBS950a,b and IRMM-184, have been re-measured with improved precision and accuracy. The (preliminary) result of 137.836(23) for the 238U/235U ratio of NBS960, measured using the new gravimetrically prepared 233U/236U-Double Spike IRMM-3636, is deviating by -0.032% from the well-known and widely used consensus value of 137.88. For the consensus value no uncertainty has ever been assigned, but it is outside the uncertainty limits of the new measurement result. The re-measured 238U/235U ratio of 137.689(22) of IRMM-184 agrees quite well with the certified value of 137.697(41), the calculated difference is only -0.006(34)% which is insignificant. The results for both NBS960 and IRMM-184, obtained using multi-dynamic TIMS at IRMM and using high efficiency MC-ICPMS at the University of Frankfurt, agree well with each other. As a conclusion, the IRMM-3636 Double Spike has been successfully applied for measurements of important uranium isotopic standards like NBS960 and IRMM-184, with improved uncertainties at the level of 0.016%.

  8. Investigation of sulphur isotope variation due to different processes applied during uranium ore concentrate production.

    PubMed

    Krajkó, Judit; Varga, Zsolt; Wallenius, Maria; Mayer, Klaus; Konings, Rudy

    The applicability and limitations of sulphur isotope ratio as a nuclear forensic signature have been studied. The typically applied leaching methods in uranium mining processes were simulated for five uranium ore samples and the n ( 34 S)/ n ( 32 S) ratios were measured. The sulphur isotope ratio variation during uranium ore concentrate (UOC) production was also followed using two real-life sample sets obtained from industrial UOC production facilities. Once the major source of sulphur is revealed, its appropriate application for origin assessment can be established. Our results confirm the previous assumption that process reagents have a significant effect on the n ( 34 S)/ n ( 32 S) ratio, thus the sulphur isotope ratio is in most cases a process-related signature.

  9. Stable isotope dimethyl labelling for quantitative proteomics and beyond

    PubMed Central

    Hsu, Jue-Liang; Chen, Shu-Hui

    2016-01-01

    Stable-isotope reductive dimethylation, a cost-effective, simple, robust, reliable and easy-to- multiplex labelling method, is widely applied to quantitative proteomics using liquid chromatography-mass spectrometry. This review focuses on biological applications of stable-isotope dimethyl labelling for a large-scale comparative analysis of protein expression and post-translational modifications based on its unique properties of the labelling chemistry. Some other applications of the labelling method for sample preparation and mass spectrometry-based protein identification and characterization are also summarized. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644970

  10. Lead Contamination and Source Characterization in Soils Around a Lead-Zinc Smelting Plant in a Near-Urban Environment in Baoji, China.

    PubMed

    Deng, Wenbo; Li, Xuxiang; An, Zhisheng; Yang, Liu

    2016-11-01

    Economic reforms in China since 1978 have promoted nationwide socioeconomic advancement but led to a considerable amount of environmental pollution. The distribution and sources of Pb in a typical peri-urban industrial part of Baoji, China, were assessed by determining the Pb contents and isotopic compositions in 52 topsoil samples from the study area. The topsoil samples were polluted averagely with 40.88 mg Pb kg -1 , was 1.86 times higher than the Pb content of local background soil (22.04 mg kg -1 ). Pb isotopic compositions were determined by analyzing samples prepared using total digestion and acid extraction methods. Radiogenic isotopes contributed more to the Pb concentrations in the acid extracts than in the total digests. This was shown by the 207/206 Pb and 208/206 Pb ratios, which were 0.845-0.88 and 2.088-2.128, respectively, in the acid extracts and 0.841-0.875 and 2.086-2.125, respectively, in the total digests. This indicates that anthropogenic sources of Pb could be identified more sensitively in acid extracts than in total digests. The Pb isotope ratios showed that burning coal and smelting ore are the predominant anthropogenic sources of Pb in the study area, i.e., a lead-zinc smelter and a coking plant are major sources of Pb in the study area.

  11. Iron and nickel isotope fractionation by diffusion, with applications to iron meteorites

    NASA Astrophysics Data System (ADS)

    Watson, Heather C.; Richter, Frank; Liu, Ankun; Huss, Gary R.

    2016-10-01

    Mass-dependent, kinetic fractionation of isotopes through processes such as diffusion can result in measurable isotopic signatures. When these signatures are retained in geologic materials, they can be used to help interpret their thermal histories. The mass dependence of the diffusion coefficient of isotopes 1 and 2 can be written as (D1 /D2) =(m2 /m1) β, where D1 and D2 are the diffusion coefficients of m1 and m2 respectively, and β is an empirical coefficient that relates the two ratios. Experiments have been performed to measure β in the Fe-Ni alloy system. Diffusion couple experiments between pure Fe and Ni metals were run in a piston cylinder at 1300-1400 °C and 1 GPa. Concentration and isotopic profiles were measured by electron microprobe and ion microprobe respectively. We find that a single β coefficient of β = 0.32 ± 0.04 can describe the isotopic effect in all experiments. This result is comparable to the isotope effect determined in many other similar alloy systems. The new β coefficient is used in a model of the isotopic profiles to be expected during the Widmanstätten pattern formation in iron meteorites. The results are consistent with previous estimates of the cooling rate of the iron meteorite Toluca. The application of isotopic constraints based on these results in addition to conventional cooling rate models could provide a more robust picture of the thermal history of these early planetary bodies.

  12. The isotopic composition of uranium and lead in Allende inclusions and meteoritic phosphates

    NASA Technical Reports Server (NTRS)

    Chen, J. H.; Wasserburg, G. J.

    1981-01-01

    The isotopic compositions of uranium and lead in Ca-Al-rich inclusions from the Allende chondrite and in whitlockite from the St. Severin chondrite and the Angra dos Reis achondrite are reported. Isoptopic analysis of acid soluble fractions of the Allende inclusions and the meteoritic whitlockite, which show isotopic anomalies in other elements, reveals U-235/U-238 ratios from 1/137.6 to 1/138.3, within 20 per mil of normal terrestrial U abundances. The Pb isotopic compositions of five coarse-grained Allende inclusions give a mean Pb-207/Pb-206 model age of 4.559 + or - 0.015 AE, in agreement with the U results. Pb isotope ratios of two fine-grained inclusions and a coarse-grained inclusion with strong mass fractionation and some nonlinear isotopic anomalies indicate that the U-Pb systems of these inclusions have evolved differently from the rest of Allende. Th/U abundance ratios in the Allende inclusions and meteoritic phosphate are found to range from 3.8 to 96, presumably indicating an optimal case for Cm/U fractionation, although the normal U concentrations do not support claims of abundant live Cm-247 or Cm-247/U-238 fractionation at the time of meteorite formation, in contrast to previous results. A limiting Cm-247/U-235 ratio of 0.004 at the time of meteorite formation is calculated which implies that the last major r process contribution at the protosolar nebula was approximately 100 million years prior to Al-26 formation and injection.

  13. The isotopic composition of ore lead of the Creede mining district and vicinity, San Juan Mountains, Colorado: Text of a talk presented at the San Juan Mountains symposium to honor Thomas A. Steven; Rocky Mountain Section meeting of the Geological Society of America, May 2, 1987, Boulder, Colorado

    USGS Publications Warehouse

    Foley, N.K.; Barton, P.B.; Bethke, P.M.; Doe, B.R.

    1988-01-01

    Recent work allows us to extend the results of Doe et al. and to consider alternative processes to explain the widespread homogeneity and radiogenic nature of the ore lead: 1) David Matty (pers. commun., 1986) has shown that some minor volcanic units in the area have unusually radiogneic lead values; magmas comparable in composition to the units are a possible, though improbable, source of the ore lead. 2) The uniformity of the isotopic values of galenas may have resulted from homogenization during an extensive potassium-metasomatic event that predated the ores; this possibility is being tested in an on-going study of feldspars from metasomatized and unmetasomatized rocks. 3) Recent regional studies suggest the possibility of a prevolcanic, NNW-trending graben system filled by clastic sediments derived from the Precambrian basement, a process that would have an homogenizing effect on the lead isotopes. This interpretation implies importation, deep within the Creede hydrologic system, of fluids from remote sources. These alternatives show that the Pbisotope systematics may have a profound impact on the interpretation of the Creede hydrothermal system, and that further study is warranted.

  14. Isotope geochemistry of waters affected by acid mine drainage in old labour sites (SE, Spain).

    NASA Astrophysics Data System (ADS)

    Pérez-Sirvent, Carmen; Martinez-Sanchez, Maria Jose; Garcia-Lorenzo, Maria Luz; Agudo, Ines; Hernandez-Cordoba, Manuel; Recio, Clemente

    2015-04-01

    The ore deposits of this zone have iron, lead and zinc as the main metal components. Iron is present in oxides, hydroxides, sulfides, sulfates, carbonates, and silicates; lead and zinc occur in sulfides (galena and sphalerite, respectively), carbonates, sulfates, and lead or zinc-bearing (manganese, iron) oxides. Mining started with the Romans and activity peaked in the second half of the 19th century and throughout the 20th century until the 1980's. From 1940 to 1957, mineral concentration was made by froth flotation and, prior to this, by gravimetric techniques. The mining wastes, or tailings, with a very fine particle size were deposited inland (tailings dams) and, since 1957, huge releases were made in directly the sea coast. The objective of this work was to evaluate processes affecting waters from abandoned mine sites by way of stable isotopic analysis, particularly H and O stable isotopes from water and S and O from dissolved sulfates. Several common chemical and physical processes, such as evaporation, water-rock interaction and mixing could alter water isotopic composition. Evaporation, which causes an enrichment in δD and δ18O in the residual water, is an important process in semiarid areas. The results obtained indicate that, for sites near the coast, waters are meteoric, and marine infiltration only takes place in the deepest layers near the shore or if water remains stagnated in sediments with low permeability. The main source of sulfate was the oxidation of sulfides, resulting in the liberation of acid, sulfate and metals. In order to assess the mechanism responsible for sulfide oxidation, the stoichiometric isotope balance model and the general isotope balance model were tested, suggesting that the oxidation via Fe3+ was predominant in the surface, and controlled by A. ferrooxidans, while at depth, sulfate reduction occurred.

  15. A two century record of lead isotopes in high altitude Alpine snow and ice

    NASA Astrophysics Data System (ADS)

    Rosman, K. J. R.; Ly, C.; Van de Velde, K.; Boutron, C. F.

    2000-03-01

    A 140 m snow/ice core drilled at Mont Blanc, France, has been analysed for Pb isotopes, Pb and Ba concentrations. The 206Pb/ 207Pb ratio, which was measured by thermal ionisation mass spectrometry, decreased steadily from ˜1.18 about two centuries ago to ˜1.17 in 1960, then fell rapidly to ˜1.15 by 1968. Evidence of the Italian (Turin) isotopic lead experiment (IILE) was found in samples dated ˜1977 where the ratio dipped to 1.117. By the early 1990s it had returned to mid 1960s values. Large seasonal variations were found in Pb and Ba concentrations. Summer samples were associated with smooth changes in the 206Pb/ 207Pb ratio while larger fluctuations were encountered in winter which is consistent with a low altitude inversion near Mont Blanc in the winter and free transfer of pollutants from lower to higher altitudes at other times. A plot of 208Pb/ 207Pb versus 206Pb/ 207Pb ratios reveals three isotopic groupings, associated with the periods pre-1923, 1923-1968 and 1969-1991. In the first group, the isotopic composition is consistent with local mining, smelting and coal burning, while in the second, motor vehicle exhaust emissions dominate. In the third group, motor vehicle emissions also dominate but the Pb is even less radiogenic. During this period the IILE occurred and there was a reduction in the use of leaded gasoline in Europe. A comparison of the Mont Blanc and Summit (central Greenland) records shows they contain similar 206Pb/ 207Pb ratios between 1960 and 1968, although small differences in isotopic composition can be detected by also considering the 208Pb/ 207Pb ratio. However, after 1969 the two records diverge markedly, with the Greenland ratios being dominated by the highly radiogenic Mississippi valley-type Pb from the USA and with the Mont Blanc ratios moving to lower values particularly about the time of the IILE.

  16. Are leaf physiological traits related to leaf water isotopic enrichment in restinga woody species?

    PubMed

    Rosado, Bruno H P; De Mattos, Eduardo A; Sternberg, Leonel Da S L

    2013-09-01

    During plant-transpiration, water molecules having the lighter stable isotopes of oxygen and hydrogen evaporate and diffuse at a faster rate through the stomata than molecules having the heavier isotopes, which cause isotopic enrichment of leaf water. Although previous models have assumed that leaf water is well-mixed and isotopically uniform, non-uniform stomatal closure, promoting different enrichments between cells, and different pools of water within leaves, due to morpho-physiological traits, might lead to inaccuracies in isotopic models predicting leaf water enrichment. We evaluate the role of leaf morpho-physiological traits on leaf water isotopic enrichment in woody species occurring in a coastal vegetation of Brazil known as restinga. Hydrogen and oxygen stable isotope values of soil, plant stem and leaf water and leaf traits were measured in six species from restinga vegetation during a drought and a wet period. Leaf water isotopic enrichment relative to stem water was more homogeneous among species during the drought in contrast to the wet period suggesting convergent responses to deal to temporal heterogeneity in water availability. Average leaf water isotopic enrichment relative to stem water during the drought period was highly correlated with relative apoplastic water content. We discuss this observation in the context of current models of leaf water isotopic enrichment as a function of the Péclet effect. We suggest that future studies should include relative apoplastic water content in isotopic models.

  17. Isotopic signatures suggest important contributions from recycled gasoline, road dust and non-exhaust traffic sources for copper, zinc and lead in PM10 in London, United Kingdom

    NASA Astrophysics Data System (ADS)

    Dong, Shuofei; Ochoa Gonzalez, Raquel; Harrison, Roy M.; Green, David; North, Robin; Fowler, Geoff; Weiss, Dominik

    2017-09-01

    The aim of this study was to improve our understanding of what controls the isotope composition of Cu, Zn and Pb in particulate matter (PM) in the urban environment and to develop these isotope systems as possible source tracers. To this end, isotope ratios (Cu, Zn and Pb) and trace element concentrations (Fe, Al, Cu, Zn, Sb, Ba, Pb, Cr, Ni and V) were determined in PM10 collected at two road sites with contrasting traffic densities in central London, UK, during two weeks in summer 2010, and in potential sources, including non-combustion traffic emissions (tires and brakes), road furniture (road paint, manhole cover and road tarmac surface) and road dust. Iron, Ba and Sb were used as proxies for emissions derived from brake pads, and Ni, and V for emissions derived from fossil fuel oil. The isotopic composition of Pb (expressed using 206Pb/207Pb) ranged between 1.1137 and 1.1364. The isotope ratios of Cu and Zn expressed as δ65CuNIST976 and δ66ZnLyon ranged between -0.01‰ and +0.51‰ and between -0.21‰ and +0.33‰, respectively. We did not find significant differences in the isotope signatures in PM10 over the two weeks sampling period and between the two sites, suggesting similar sources for each metal at both sites despite their different traffic densities. The stable isotope composition of Pb suggests significant contribution from road dust resuspension and from recycled leaded gasoline. The Cu and Zn isotope signatures of tires, brakes and road dust overlap with those of PM10. The correlation between the enrichments of Sb, Cu, Ba and Fe in PM10 support the previously established hypothesis that Cu isotope ratios are controlled by non-exhaust traffic emission sources in urban environments (Ochoa Gonzalez et al., 2016). Analysis of the Zn isotope signatures in PM10 and possible sources at the two sites suggests significant contribution from tire wear. However, temporary additional sources, likely high temperature industrial emissions, need to be invoked to explain the isotopically light Zn found in 3 out of 18 samples of PM10.

  18. Chemical data and lead isotopic compositions of geochemical baseline samples from streambed sediments and smelter slag, lead isotopic compositions in fluvial tailings, and dendrochronology results from the Boulder River watershed, Jefferson County, Montana

    USGS Publications Warehouse

    Unruh, Daniel M.; Fey, David L.; Church, Stan E.

    2000-01-01

    IntroductionAs a part of the U.S. Geological Survey Abandoned Mine Lands Initiative, metal-mining related wastes in the Boulder River study area in northern Jefferson County, Montana, have been evaluated for their environmental effects. The study area includes a 24-km segment of the Boulder River in and around Basin, Montana and three principal tributaries to the Boulder River: Basin Creek, Cataract Creek, and High Ore Creek. Mine and prospect waste dumps and mill wastes are located throughout the drainage basins of these tributaries and in the Boulder River. Mine-waste material has been transported into and down streams, where it has mixed with and become incorporated into the streambed sediments. In some localities, mine waste material was placed directly in stream channels and was transported downstream forming fluvial tailings deposits along the stream banks. Water quality and aquatic habitat have been affected by trace-element-contaminated sediment that moves from mine wastes into and down streams during snowmelt and storm runoff events within the Boulder River watershed.Present-day trace element concentrations in the streambed sediments and fluvial tailings have been extensively studied. However, in order to accurately evaluate the impact of mining on the stream environments, it is also necessary to evaluate the pre-mining trace-element concentrations in the streambed sediments. Three types of samples have been collected for estimation of pre-mining concentrations: 1) streambed sediment samples from the Boulder River and its tributaries located upstream from historical mining activity, 2) stream terrace deposits located both upstream and downstream of the major tributaries along the Boulder River, and 3) cores through sediment in overbank deposits, in abandoned stream channels, or beneath fluvial tailings deposits. In this report, we present geochemical data for six stream-terrace samples and twelve sediment-core samples and lead isotopic data for six terrace and thirteen core samples. Sample localities are in table 1 and figures 1 and 2, and site and sample descriptions are in table 2.Geochemical data have been presented for cores through fluvial tailings on High Ore Creek, on upper Basin Creek, and on Jack Creek and Uncle Sam Gulch. Geochemical and lead isotopic data for modern streambed-sediment samples have been presented by Fey and others.Lead isotopic determinations in bed sediments have been shown to be an effective tool for evaluating the contributions from various sources to the metals in bed sediments. However, in order to make these calculations, the lead isotopic compositions of the contaminant sources must also be known. Consequently, we have determined the lead isotopic compositions of five streambed-sediment samples heavily contaminated with fluvial mine waste immediately downstream from large mines in the Boulder River watershed in order to determine the lead isotopic signatures of the contaminants. Summary geochemical data for the contaminants are presented here and geochemical data for the streambed-sediment samples are given by Fey and others.Downstream from the Katie mill site and Jib tailings, fluvial deposits of mill tailings are present on a 10-m by 50-m bar in the Boulder River below the confluence with Basin Creek. The source of these tailings is not known, but fluvial tailings are also present immediately downstream from the Katie mill site, which is immediately upstream from the confluence with Basin Creek. Nine cores of fluvial tailings from this bar were analyzed.Dendrochronology samples were taken at several stream terrace localities to provide age control on the stream terrace deposits. Trees growing on the surfaces of stream terraces provide a minimum age for the terrace deposits, although floods subsequent to the trees' growth could have deposited post-mining overbank deposits around the trees. Historical data were also used to provide estimates of minimum ages of cultural features and to bracket the age of events.

  19. ICC-CLASS: isotopically-coded cleavable crosslinking analysis software suite

    PubMed Central

    2010-01-01

    Background Successful application of crosslinking combined with mass spectrometry for studying proteins and protein complexes requires specifically-designed crosslinking reagents, experimental techniques, and data analysis software. Using isotopically-coded ("heavy and light") versions of the crosslinker and cleavable crosslinking reagents is analytically advantageous for mass spectrometric applications and provides a "handle" that can be used to distinguish crosslinked peptides of different types, and to increase the confidence of the identification of the crosslinks. Results Here, we describe a program suite designed for the analysis of mass spectrometric data obtained with isotopically-coded cleavable crosslinkers. The suite contains three programs called: DX, DXDX, and DXMSMS. DX searches the mass spectra for the presence of ion signal doublets resulting from the light and heavy isotopic forms of the isotopically-coded crosslinking reagent used. DXDX searches for possible mass matches between cleaved and uncleaved isotopically-coded crosslinks based on the established chemistry of the cleavage reaction for a given crosslinking reagent. DXMSMS assigns the crosslinks to the known protein sequences, based on the isotopically-coded and un-coded MS/MS fragmentation data of uncleaved and cleaved peptide crosslinks. Conclusion The combination of these three programs, which are tailored to the analytical features of the specific isotopically-coded cleavable crosslinking reagents used, represents a powerful software tool for automated high-accuracy peptide crosslink identification. See: http://www.creativemolecules.com/CM_Software.htm PMID:20109223

  20. Possible application of laser isotope separation

    NASA Technical Reports Server (NTRS)

    Delionback, L. M.

    1975-01-01

    The laser isotope separation process is described and its special economic features discussed. These features are its low cost electric power operation, capital investment costs, and the costs of process materials.

  1. Sulfur transformations in pilot-scale constructed wetland treating high sulfate-containing contaminated groundwater: a stable isotope assessment.

    PubMed

    Wu, Shubiao; Jeschke, Christina; Dong, Renjie; Paschke, Heidrun; Kuschk, Peter; Knöller, Kay

    2011-12-15

    Current understanding of the dynamics of sulfur compounds inside constructed wetlands is still insufficient to allow a full description of processes involved in sulfur cycling. Experiments in a pilot-scale horizontal subsurface flow constructed wetland treating high sulfate-containing contaminated groundwater were carried out. Application of stable isotope approach combined with hydro-chemical investigations was performed to evaluate the sulfur transformations. In general, under inflow concentration of about 283 mg/L sulfate sulfur, sulfate removal was found to be about 21% with a specific removal rate of 1.75 g/m(2)·d. The presence of sulfide and elemental sulfur in pore water about 17.3 mg/L and 8.5 mg/L, respectively, indicated simultaneously bacterial sulfate reduction and re-oxidation. 70% of the removed sulfate was calculated to be immobilized inside the wetland bed. The significant enrichment of (34)S and (18)O in dissolved sulfate (δ(34)S up to 16‰, compared to average of 5.9‰ in the inflow, and δ(18)O up to 13‰, compared to average of 6.9‰ in the inflow) was observed clearly correlated to the decrease of sulfate loads along the flow path through experimental wetland bed. This enrichment also demonstrated the occurrence of bacterial sulfate reduction as well as demonstrated by the presence of sulfide in the pore water. Moreover, the integral approach shows that bacterial sulfate reduction is not the sole process controlling the isotopic composition of dissolved sulfate in the pore water. The calculated apparent enrichment factor (ɛ = -22‰) for sulfur isotopes from the δ(34)S vs. sulfate mass loss was significantly smaller than required to produce the observed difference in δ(34)S between sulfate and sulfide. It indicated some potential processes superimposing bacterial sulfate reduction, such as direct re-oxidation of sulfide to sulfate by oxygen released from plant roots and/or bacterial disproportionation of elemental sulfur. Furthermore, 41% of residual sulfate was calculated to be from sulfide re-oxidation, which demonstrated that the application of stable isotope approach combined with the common hydro-chemical investigations is not only necessary for a general qualitative evaluation of sulfur transformations in constructed wetlands, but also leads to a quantitative description of intermediate processes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. A lead isotope distribution study in swine tissue using ICP-MS

    USGS Publications Warehouse

    May, T.W.; Wiedmeyer, Ray H.; Brown, L.D.; Casteel, S.W.

    1999-01-01

    In the United States lead is an ubiquitous environmental pollutant that is a serious human health hazard, especially for women of childbearing age, developing fetuses, and young children. Information concerning the uptake and distribution of lead to maternal and fetal tissues during pregnancy is poorly documented. A study was designed using domestic swine and lead isotope enrichment methodology to focus on maternal absorption and distribution of lead into bone and soft tissues, including the fetal compartment, under varying conditions of oral lead exposure and during altered physiological states (pregnant vs unbred). Total lead levels and Pb207/Pb206 ratios in bone (femur and vertebra), blood, and soft tissues (liver, kidney, brain) were determined by ICP-MS. Lead in fetal tissues derived from maternal bone could be differentiated from that derived from exogenous dosing. Unbred swine absorbed much less lead than pregnant females receiving the same dose. The accuracy and precision of ICP-MS at the instrumental level and for the entire method (sample collection, digestion, and analysis) were evaluated for both Pb207/Pb206 ratios and total lead. Several changes were suggested in method design to improve both instrumental and total method precision.

  3. Patterns of local and nonlocal water resource use across the western U.S. determined via stable isotope intercomparisons

    USDA-ARS?s Scientific Manuscript database

    The stable isotope ratios of hydrogen (H) and oxygen (O) are valuable tracers of the origin of biological materials and water sources. Application of these environmental tracers is largely based on the distinct and pervasive spatial patterns of precipitation isotopes, which are preserved in many hy...

  4. Quantifying dispersal rates and distances in North American martens: a test of enriched isotope labeling

    Treesearch

    Jonathan N. Pauli; Winston P. Smith; Merav Ben-David

    2012-01-01

    Advances in the application of stable isotopes have allowed the quantitative evaluation of previously cryptic ecological processes. In particular, researchers have utilized the predictable spatial patterning in natural abundance of isotopes to better understand animal dispersal and migration. However, quantifying dispersal via natural abundance alone has proven to be...

  5. Lead Isotopes and Temporal Records of Atmospheric Aerosol and Pollutants in Lichens

    NASA Astrophysics Data System (ADS)

    Getty, S. R.; Nash, T.; Asmerom, Y.

    2001-05-01

    Lichens are useful receptors of atmospheric particulate matter (PM) and pollutants due to their retention of body parts (unlike plants), slow growth rates, fairly uniform morphologies, lack of a vascular system, and sessile character over decades to centuries. Lichen biomonitoring has been used widely to map patterns of aerosol deposition, yet few studies have tested whether lichens can preserve a temporal record of airborne PM and pollutants. We show with U-Pb data that epilithic lichens (rock as host) can retain in their porous structure an integrated, decadal-scale history of changing aerosol inputs to desert ecosystems. Three lichens resided along an 80-km transect from a copper smelter (Douglas, AZ) closed in early 1987, to the ENE into adjacent New Mexico. For the radially growing lichen (Xanthoparmelia sp.), U-Pb data were obtained along cm-scale transects in the growth direction on a single thallus. Profiles from lichen rim to interior show increasing [Pb] and [U], or net accumulation with thallus age. Total lead contents are highest near the smelter. In contrast, each lead isotope profile (206Pb/207Pb) is flat during smelter operation, showing low ratios near the smelter (1.152) and high ratios (1.175) 80 km away. This suggests comparable mixtures of crust and smelter lead per locality over decades. Since smelter closure, lichens 80 km from the smelter show a sharp upturn in lead ratio in the recently grown lichen rim, indicating that smelter lead is either dispersed by aeolian recycling, or suppressed in desert soils. The amplitude and position of the isotope signal suggests a soil recovery "half-life" of about 13 yrs, a radial growth rate of 0.57+/-0.1 mm/yr, and a total lichen age of 105+/-18 yrs. Lichens near the smelter have no upturn in isotope ratio, indicating continued aeolian recylcing of lead from soils about 11 yrs after closure. Results at a far-removed desert site (c. New Mexico) also argue that isotope profiles reflect aerosol deposition, and not local effects of wind or rock substrate. There, the 206Pb/207Pb of 1.18 is identical among epiphytic lichens suspended from trees (Usnea sp.) and a thallus profile for a radial epilithic lichens (Xanthoparmelia sp.). Each lichen contrasts strongly with the 206Pb/207Pb of 1.138 for the basalt substrate. These results show that temporal records of airborne PM in radial lichens can help to reconstruct rates of recycling of aeolian soils and aerosol dispersal in desert ecosystems.

  6. The plasma separation process as a pre-cursor for large scale radioisotope production

    NASA Astrophysics Data System (ADS)

    Stevenson, Nigel R.

    2001-07-01

    Radioisotope production generally employs either accelerators or reactors to convert stable (usually enriched) isotopes into the desired product species. Radioisotopes have applications in industry, environmental sciences, and most significantly in medicine. The production of many potentially useful radioisotopes is significantly hindered by the lack of availability or by the high cost of key enriched stable isotopes. To try and meet this demand, certain niche enrichment processes have been developed and commercialized. Calutrons, centrifuges, and laser separation processes are some of the devices and techniques being employed to produce large quantities of selective enriched stable isotopes. Nevertheless, the list of enriched stable isotopes in sufficient quantities remains rather limited and this continues to restrict the availability of many radioisotopes that otherwise could have a significant impact on society. The Plasma Separation Process is a newly available commercial technique for producing large quantities of a wide range of enriched isotopes and thereby holds promise of being able to open the door to producing new and exciting applications of radioisotopes in the future.

  7. Silicon Isotopes doping experiments to measure quartz dissolution and precipitation rates at equilibrium and test the principle of detailed balance

    NASA Astrophysics Data System (ADS)

    Zhu, C.; Rimstidt, J. D.; Liu, Z.; Yuan, H.

    2016-12-01

    The principle of detailed balance (PDB) has been a cornerstone for irreversible thermodynamics and chemical kinetics for a long time, and its wide application in geochemistry has mostly been implicit and without experimental testing of its applicability. Nevertheless, many extrapolations based on PDB without experimental validation have far reaching impacts on society's mega environmental enterprises. Here we report an isotope doping method that independently measures simultaneous dissolution and precipitation rates and can test this principle. The technique reacts a solution enriched in a rare isotope of an element with a solid having natural isotopic abundances (Beck et al., 1992; Gaillardet, 2008; Gruber et al., 2013). Dissolution and precipitation rates are found from the changing isotopic ratios. Our quartz experiment doped with 29Si showed that the equilibrium dissolution rate remains unchanged at all degrees of undersaturation. We recommend this approach to test the validity of using the detailed balance relationship in rate equations for other substances.

  8. Redefining the utility of the three-isotope method

    NASA Astrophysics Data System (ADS)

    Cao, Xiaobin; Bao, Huiming

    2017-09-01

    The equilibrium isotope fractionation factor αeq is a fundamental parameter in the study of stable isotope effects. Experimentally, it has been difficult to establish that a system has attained equilibrium. The three-isotope method, using the initial trajectory of changing isotope ratios (e.g. 16O, 17O, and 18O) to deduce the final equilibrium point of isotope exchange, has long been hailed as the most rigorous experimental approach. However, over the years some researchers have cautioned on the limitations of this method, but the foundation of three-isotope method has not been properly examined and the method is still widely used in calibrating αeq for both traditional and increasingly non-traditional isotope systems today. Here, using water-water and dissolved CO2-water oxygen exchange as model systems, we conduct an isotopologues-specific kinetic analysis of the exchange processes and explore the underlying assumptions and validity of the three-isotope method. We demonstrate that without knowing the detailed exchange kinetics a priori the three-isotope method cannot lead to a reliable αeq. For a two-reservoir exchanging system, α determined by this method may be αeq, kinetic isotope effect, or apparent kinetic isotope effect, which can all bear different values. When multiple reservoirs exist during exchange, the evolving trajectory can be complex and hard to predict. Instead of being a tool for αeq determination, three-isotope method should be used as a tool for studying kinetic isotope effect, apparent kinetic isotope effect, and detailed exchange kinetics in diverse systems.

  9. Polyatomic interferences on high precision uranium isotope ratio measurements by MC-ICP-MS: Applications to environmental sampling for nuclear safeguards

    DOE PAGES

    Pollington, Anthony D.; Kinman, William S.; Hanson, Susan K.; ...

    2015-09-04

    Modern mass spectrometry and separation techniques have made measurement of major uranium isotope ratios a routine task; however accurate and precise measurement of the minor uranium isotopes remains a challenge as sample size decreases. One particular challenge is the presence of isobaric interferences and their impact on the accuracy of minor isotope 234U and 236U measurements. Furthermore, we present techniques used for routine U isotopic analysis of environmental nuclear safeguards samples and evaluate polyatomic interferences that negatively impact accuracy as well as methods to mitigate their impacts.

  10. Measurement of isotope ratios on transient signals by MC-ICP-MS.

    PubMed

    Günther-Leopold, Ines; Wernli, Beat; Kopajtic, Zlatko; Günther, Detlef

    2004-01-01

    Precise and accurate isotope ratio measurements are an important task in many applications such as isotope-dilution mass spectrometry, bioavailability studies, or the determination of isotope variations in geological or nuclear samples. The technique of MC-ICP-MS has attracted much attention because it permits the precise measurement of isotope compositions for a wide range of elements combined with excellent detection limits due to high ionisation efficiencies. However, the results are based mainly on measurements using continuous sample introduction. In the present study the determination of isotope ratios on various transient signals with a time duration of 30 to 60 s has been achieved by coupling high-performance liquid chromatography to a multicollector inductively coupled plasma mass spectrometer. In order to investigate the origin of ratio drifts across the transient signals for this hyphenated technique, measurements with the same standard solutions were also carried out using a flow-injection device for sample introduction. As a result of this application it could be concluded that the main source of the bias in the measured isotope ratios is within the ICP-MS instead of fractionation effects on the chromatographic column material. Preliminary studies on short transient signals of gaseous samples (dry plasma) showed a reverse fractionation effect compared with wet plasma conditions (flow injection and HPLC).

  11. Progress in the Use of Isotopes: The Atomic Triad - Reactors, Radioisotopes and Radiation

    DOE R&D Accomplishments Database

    Libby, W. F.

    1958-08-04

    Recent years have seen a substantial growth in the use of isotopes in medicine, agriculture, and industry: up to the minute information on the production and use of isotopes in the U.S. is presented. The application of radioisotopes to industrial processes and manufacturing operations has expanded more rapidly than any one except its most ardent advocates expected. New uses and new users are numerous. The adoption by industry of low level counting techniques which make possible the use of carbon-14 and tritium in the control of industrial processes and in certain exploratory and research problems is perhaps most promising of current developments. The latest information on savings to industry will be presented. The medical application of isotopes has continued to develop at a rapid pace. The current trend appears to be in the direction of improvements in technique and the substitution of more effective isotopes for those presently in use. Potential and actual benefits accruing from the use of isotopes in agriculture are reviewed. The various methods of production of radioisotopes are discussed. Not only the present methods but also interesting new possibilities are covered. Although isotopes are but one of the many peaceful uses of the atom, it is the first to pay its way. (auth)

  12. Production of medical isotopes from a thorium target irradiated by light charged particles up to 70 MeV

    NASA Astrophysics Data System (ADS)

    Duchemin, C.; Guertin, A.; Haddad, F.; Michel, N.; Métivier, V.

    2015-02-01

    The irradiation of a thorium target by light charged particles (protons and deuterons) leads to the production of several isotopes of medical interest. Direct nuclear reaction allows the production of Protactinium-230 which decays to Uranium-230 the mother nucleus of Thorium-226, a promising isotope for alpha radionuclide therapy. The fission of Thorium-232 produces fragments of interest like Molybdenum-99, Iodine-131 and Cadmium-115g. We focus our study on the production of these isotopes, performing new cross section measurements and calculating production yields. Our new sets of data are compared with the literature and the last version of the TALYS code.

  13. Production of medical isotopes from a thorium target irradiated by light charged particles up to 70 MeV.

    PubMed

    Duchemin, C; Guertin, A; Haddad, F; Michel, N; Métivier, V

    2015-02-07

    The irradiation of a thorium target by light charged particles (protons and deuterons) leads to the production of several isotopes of medical interest. Direct nuclear reaction allows the production of Protactinium-230 which decays to Uranium-230 the mother nucleus of Thorium-226, a promising isotope for alpha radionuclide therapy. The fission of Thorium-232 produces fragments of interest like Molybdenum-99, Iodine-131 and Cadmium-115g. We focus our study on the production of these isotopes, performing new cross section measurements and calculating production yields. Our new sets of data are compared with the literature and the last version of the TALYS code.

  14. Constraining recent lead pollution sources in the North Pacific using ice core stable lead isotopes

    NASA Astrophysics Data System (ADS)

    Kreutz, K. J.; Osterberg, E. C.; Gross, B.; Handley, M.; Wake, C. P.; Yalcin, K.

    2009-12-01

    Trends and sources of lead aerosol pollution in the North Pacific boundary layer from 1970-2001 are investigated using a high-resolution ice core record recovered from Eclipse Icefield (3017 masl; St. Elias Mountains, Canada). Average Pb concentrations in the ice core are enriched 31.8 times above crustal values based on ratios with five crustal reference elements (La, Ce, Pr, Al and Ti), indicating that >90% of the Pb deposited is anthropogenic. Isotopic analyses (208Pb/207Pb and 206Pb/207Pb) confirm that the Pb deposited at Eclipse Icefield is predominantly anthropogenic. Annually averaged Pb concentrations range from 25.6 ng/l to 96.7 ng/l (67.6 ng/l mean) and show no long term trend for the 1970-2001 period, contrary to other ice core records from the North Atlantic and the North Pacific. The stable Pb isotope ratio (208Pb/207Pb and 206Pb/207Pb) field indicates that recent Eclipse Icefield Pb pollution represents a variable mixture of North American, Central Eurasian and Asian (Chinese and Japanese) emissions transported across the Pacific basin, with Chinese coal combustion likely being the primary source. Increasing 208Pb/207Pb and 206Pb/207Pb ratios from the 1970’s through 2001 reflect the progressive East Asian industrialization concurrent with a decrease in Eurasian Pb emissions. We compare Pb isotope results from the Eclipse Icefield to data recently acquired from Denali National Park, where snowpit samples were collected from the Kahiltna Pass region (3048 masl). Pb isotope data from both sites are used to evaluate the relative importance of Asian emissions at similar altitudes yet different latitudes.

  15. High-Precision (MC-ICPMS) Isotope Ratio Analysis Reveals Contrasting Sources of Elevated Blood Lead Levels of an Adult with Retained Bullet Fragments, and of His Child, in Milwaukee, Wisconsin.

    PubMed

    Smith, Kate E; Shafer, Martin M; Weiss, Debora; Anderson, Henry A; Gorski, Patrick R

    2017-05-01

    Exposure to the neurotoxic element lead (Pb) continues to be a major human health concern, particularly for children in US urban settings, and the need for robust tools for assessment of exposure sources has never been greater. The latest generation of multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) instrumentation offers the capability of using Pb isotopic signatures as a tool for environmental source tracking in public health. We present a case where MC-ICPMS was applied to isotopically resolve Pb sources in human clinical samples. An adult male and his child residing in Milwaukee, Wisconsin, presented to care in August 2015 with elevated blood lead levels (BLLs) (>200 μg/dL for the adult and 10 μg/dL for the child). The adult subject is a gunshot victim who had multiple bullet fragments embedded in soft tissue of his thigh for approximately 10 years. This study compared the high-precision isotopic fingerprints (<1 ‰ 2σ external precision) of Pb in the adult's and child's whole blood (WB) to the following possible Pb sources: a surgically extracted bullet fragment, household paint samples and tap water, and a Pb water-distribution pipe removed from servicing a house in the same neighborhood. Pb in the bullet and adult WB were nearly isotopically indistinguishable (matching within 0.05-0.56 ‰), indicating that bullet fragments embedded in soft tissue could be the cause of both acute and chronic elevated blood Pb levels. Among other sources investigated, no single source dominated the child's exposure profile as reflected in the elevated BLL.

  16. Photochemical isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1987-01-01

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  17. Laser isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Boyer, Keith; Greiner, Norman R.

    1988-01-01

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  18. Isotope separation by laser means

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1982-06-15

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  19. Lead isotope ratios for bullets, forensic evaluation in a Bayesian paradigm.

    PubMed

    Sjåstad, Knut-Endre; Lucy, David; Andersen, Tom

    2016-01-01

    Forensic science is a discipline concerned with collection, examination and evaluation of physical evidence related to criminal cases. The results from the activities of the forensic scientist may ultimately be presented to the court in such a way that the triers of fact understand the implications of the data. Forensic science has been, and still is, driven by development of new technology, and in the last two decades evaluation of evidence based on logical reasoning and Bayesian statistic has reached some level of general acceptance within the forensic community. Tracing of lead fragments of unknown origin to a given source of ammunition is a task that might be of interest for the Court. Use of data from lead isotope ratios analysis interpreted within a Bayesian framework has shown to be suitable method to guide the Court to draw their conclusion for such task. In this work we have used isotopic composition of lead from small arms projectiles (cal. .22) and developed an approach based on Bayesian statistics and likelihood ratio calculation. The likelihood ratio is a single quantity that provides a measure of the value of evidence that can be used in the deliberation of the court. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. A new method for stable lead isotope extraction from seawater.

    PubMed

    Zurbrick, Cheryl M; Gallon, Céline; Flegal, A Russell

    2013-10-24

    A new technique for stable lead (Pb) isotope extraction from seawater is established using Toyopearl AF-Chelate 650M(®) resin (Tosoh Bioscience LLC). This new method is advantageous because it is semi-automated and relatively fast; in addition it introduces a relatively low blank by minimizing the volume of chemicals used in the extraction. Subsequent analyses by HR ICP-MS have a good relative external precision (2σ) of 3.5‰ for (206)Pb/(207)Pb, while analyses by MC-ICP-MS have a better relative external precision of 0.6‰. However, Pb sample concentrations limit MC-ICP-MS analyses to (206)Pb, (207)Pb, and (208)Pb. The method was validated by processing the common Pb isotope reference material NIST SRM-981 and several GEOTRACES intercalibration samples, followed by analyses by HR ICP-MS, all of which showed good agreement with previously reported values. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Assay Methods for 238U, 232Th, and 210Pb in Lead and Calibration of 210Bi Bremsstrahlung Emission from Lead

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrell, John L.; Aalseth, Craig E.; Arnquist, Isaac J.

    2016-02-13

    Assay methods for measuring 238U, 232Th, and 210Pb concentrations in refined lead are presented. The 238U and 232Th concentrations are assayed via inductively coupled plasma mass spectrometry (ICP-MS) after anion exchange column separation on dissolved lead samples. The 210Pb concentration is inferred through α-spectroscopy of a daughter isotope, 210Po, after chemical precipitation separation on dissolved lead samples. Subsequent to the 210Po α-spectroscopy assay, a method for evaluating 210Pb concentrations in solid lead samples was developed via measurement of bremsstrahlung radiation from β-decay of a daughter isotope, 210Bi, by employing a 14-crystal array of high purity germanium (HPGe) detectors. Ten sourcesmore » of refined lead were assayed. The 238U concentrations were <34 microBq/kg and the 232Th concentrations ranged <0.6 – 15 microBq/kg, as determined by the ICP-MS assay method. The 210Pb concentrations ranged from ~0.1 – 75 Bq/kg, as inferred by the 210Po α-spectroscopy assay method.« less

  2. Fishing for isotopes in the Brookhaven Lab Isotope Producer (BLIP) cooling water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzsimmons, Jonathan

    Be-7 has been used in environmental studies; the isotope is produced during BLIP irradiations and accumulates in the 320 gallons of cooling water. Be-7 has a 53.24 day half-life, so the optimal production/purification time is at the end of the BLIP run season. To purify Be-7 fifteen to twenty gallons of BLIP cooling water are removed and pumped through ion exchange columns that retain Be-7. This labor intensive approach captures ~15 mCi of Be-7, but the solution requires further purification. The method can lead to increased radiation exposure to staff. The ideal way to capture isotopes from large volumes ismore » to reach in to the solution and selectively pull out the desired isotope. It is a lot like fishing.« less

  3. Advances in natural stable isotope ratio analysis of human hair to determine nutritional and metabolic status.

    PubMed

    Petzke, Klaus J; Fuller, Benjamin T; Metges, Cornelia C

    2010-09-01

    We review the literature on the use of stable isotope ratios at natural abundance to reveal information about dietary habits and specific nutrient intakes in human hair protein (keratin) and amino acids. In particular, we examine whether hair isotopic compositions can be used as unbiased biomarkers to provide information about nutritional status, metabolism, and diseases. Although the majority of research on the stable isotope ratio analysis of hair has focused on bulk protein, methods have been recently employed to examine amino acid-specific isotope ratios using gas chromatography or liquid chromatography coupled to an isotope ratio mass spectrometer. The isotopic measurement of amino acids has the potential to answer research questions on amino acid nutrition, metabolism, and disease processes and can contribute to a better understanding of the variations in bulk protein isotope ratio values. First results suggest that stable isotope ratios are promising as unbiased nutritional biomarkers in epidemiological research. However, variations in stable isotope ratios of human hair are also influenced by nutrition-dependent nitrogen balance, and more controlled clinical research is needed to examine these effects in human hair. Stable isotope ratio analysis at natural abundance in human hair protein offers a noninvasive method to reveal information about long-term nutritional exposure to specific nutrients, nutritional habits, and in the diagnostics of diseases leading to nutritional stress and impaired nitrogen balance.

  4. Multi-factorial in vivo stable isotope fractionation: causes, correlations, consequences and applications.

    PubMed

    Schmidt, Hanns-Ludwig; Robins, Richard J; Werner, Roland A

    2015-01-01

    Many physical and chemical processes in living systems are accompanied by isotope fractionation on H, C, N, O and S. Although kinetic or thermodynamic isotope effects are always the basis, their in vivo manifestation is often modulated by secondary influences. These include metabolic branching events or metabolite channeling, metabolite pool sizes, reaction mechanisms, anatomical properties and compartmentation of plants and animals, and climatological or environmental conditions. In the present contribution, the fundamentals of isotope effects and their manifestation under in vivo conditions are outlined. The knowledge about and the understanding of these interferences provide a potent tool for the reconstruction of physiological events in plants and animals, their geographical origin, the history of bulk biomass and the biosynthesis of defined representatives. It allows the use of isotope characteristics of biomass for the elucidation of biochemical pathways and reaction mechanisms and for the reconstruction of climatic, physiological, ecological and environmental conditions during biosynthesis. Thus, it can be used for the origin and authenticity control of food, the study of ecosystems and animal physiology, the reconstruction of present and prehistoric nutrition chains and paleaoclimatological conditions. This is demonstrated by the outline of fundamental and application-orientated examples for all bio-elements. The aim of the review is to inform (advanced) students from various disciplines about the whole potential and the scope of stable isotope characteristics and fractionations and to provide them with a comprehensive introduction to the literature on fundamental aspects and applications.

  5. Identification of sources of lead in children in a primary zinc-lead smelter environment.

    PubMed Central

    Gulson, Brian L; Mizon, Karen J; Davis, Jeff D; Palmer, Jacqueline M; Vimpani, Graham

    2004-01-01

    We compared high-precision lead isotopic ratios in deciduous teeth and environmental samples to evaluate sources of lead in 10 children from six houses in a primary zinc-lead smelter community at North Lake Macquarie, New South Wales, Australia. Teeth were sectioned to allow identification of lead exposure in utero and in early childhood. Blood lead levels in the children ranged from 10 to 42 micro g/dL and remained elevated for a number of years. For most children, only a small contribution to tooth lead can be attributed to gasoline and paint sources. In one child with a blood lead concentration of 19.7 microg/dL, paint could account for about 45% of lead in her blood. Comparison of isotopic ratios of tooth lead levels with those from vacuum cleaner dust, dust-fall accumulation, surface wipes, ceiling (attic) dust, and an estimation of the smelter emissions indicates that from approximately 55 to 100% of lead could be derived from the smelter. For a blood sample from another child, > 90% of lead could be derived from the smelter. We found varying amounts of in utero-derived lead in the teeth. Despite the contaminated environment and high blood lead concentrations in the children, the levels of lead in the teeth are surprisingly low compared with those measured in children from other lead mining and smelting communities. PMID:14698931

  6. MIR hollow waveguide (HWG) isotope ratio analyzer for environmental applications

    NASA Astrophysics Data System (ADS)

    Wang, Zhenyou; Zhuang, Yan; Deev, Andrei; Wu, Sheng

    2017-05-01

    An advanced commercial Mid-InfraRed Isotope Ratio (IR2) analyzer was developed in Arrow Grand Technologies based on hollow waveguide (HWG) as the sample tube. The stable carbon isotope ratio, i.e. δ13C, was obtained by measuring the selected CO2 absorption peaks in the MIR. Combined with a GC and a combustor, it has been successfully employed to measure compound specific δ13C isotope ratios in the field. By using both the 1- pass HWG and 5-path HWG, we are able to measure δ13C isotope ratio at a broad CO2 concentration of 300 ppm-37,500 ppm. Here, we demonstrate its applications in environmental studies. The δ13C isotope ratio and concentration of CO2 exhaled by soil samples was measured in real time with the isotope analyzer. The concentration was found to change with the time. We also convert the Dissolved Inorganic Carbon (DIC) into CO2, and then measure the δ13C isotope ratio with an accuracy of better than 0.3 ‰ (1 σ) with a 6 min test time and 1 ml sample usage. Tap water, NaHCO3 solvent, coca, and even beer were tested. Lastly, the 13C isotope ratio of CO2 exhaled by human beings was obtained <10 seconds after simply blowing the exhaled CO2 into a tube with an accuracy of 0.5‰ (1 σ) without sample preconditioning. In summary, a commercial HWG isotope analyzer was demonstrated to be able to perform environmental and health studies with a high accuracy ( 0.3 ‰/Hz1/2 1 σ), fast sampling rate (up to 10 Hz), low sample consumption ( 1 ml), and broad CO2 concentration range (300 ppm-37,500 ppm).

  7. Hyperfine interactions of trans-lead elements studied by nuclear radiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ansaldo, E.J.

    1973-09-16

    The applications of nuclear radiation methods to the study of hyperfine interactions (hfi) for elements beyond Pb in the periodic table are reviewed. A general discussion of hfi is presented along with a review of specific methods. The techniques are illustrated whenever possible by their application to the actinides, with emphasis on the unsolved aspects of the results. A special method of sample preparation is ion implantation, in which stable or radioactive ions of practically any element are shot into the host, either by means of isotope separators or the recoil energy of nuclear reactions or radioactive decays. The locationmore » of the implanted (recoiled) atom in the lattice has to be assessed for a reliable determination of the hfi. Therefore, a chapter on the channeling technique is also included. (JRD)« less

  8. High-frequency field-deployable isotope analyzer for hydrological applications

    Treesearch

    Elena S.F. Berman; Manish Gupta; Chris Gabrielli; Tina Garland; Jeffrey J. McDonnell

    2009-01-01

    A high-frequency, field-deployable liquid water isotope analyzer was developed. The instrument was deployed for 4 contiguous weeks in the H. J. Andrews Experimental Forest Long-term Ecological Research site in western Oregon, where it was used for real-time measurement of the isotope ratios of precipitation and stream water during three large storm events. We were able...

  9. Improved Discrimination for Brassica Vegetables Treated with Agricultural Fertilizers Using a Combined Chemometric Approach.

    PubMed

    Yuan, Yuwei; Hu, Guixian; Chen, Tianjin; Zhao, Ming; Zhang, Yongzhi; Li, Yong; Xu, Xiahong; Shao, Shengzhi; Zhu, Jiahong; Wang, Qiang; Rogers, Karyne M

    2016-07-20

    Multielement and stable isotope (δ(13)C, δ(15)N, δ(2)H, δ(18)O, (207)Pb/(206)Pb, and (208)Pb/(206)Pb) analyses were combined to provide a new chemometric approach to improve the discrimination between organic and conventional Brassica vegetable production. Different combinations of organic and conventional fertilizer treatments were used to demonstrate this authentication approach using Brassica chinensis planted in experimental test pots. Stable isotope analyses (δ(15)N and δ(13)C) of B. chinensis using elemental analyzer-isotope ratio mass spectrometry easily distinguished organic and chemical fertilizer treatments. However, for low-level application fertilizer treatments, this dual isotope approach became indistinguishable over time. Using a chemometric approach (combined isotope and elemental approach), organic and chemical fertilizer mixes and low-level applications of synthetic and organic fertilizers were detectable in B. chinensis and their associated soils, improving the detection limit beyond the capacity of individual isotopes or elemental characterization. LDA shows strong promise as an improved method to discriminate genuine organic Brassica vegetables from produce treated with chemical fertilizers and could be used as a robust test for organic produce authentication.

  10. Development of a High Resolution-High Sensitivity Ion Microprobe Facility for Cosmochemical Applications

    NASA Technical Reports Server (NTRS)

    McKeegan, Kevin D.

    1998-01-01

    NASA NAGW-4112 has supported development of the CAMECA ims 1270 ion microprobe at UCLA for applications in cosmochemistry. The instrument has been brought to an operational status and techniques developed for accurate, precise microbeam analysis of oxygen isotope ratios in polished thin-sections. We made the first oxygen isotopic (delta(18)O and delta(17)O) measurements of rare mafic silicates in the most chemically primitive meteorites, the a chondrites (Leshin et al., 1997). The results have implications for both high temperature processing in the nebula and low-T aqueous alteration on the CI asteroid. We have performed measurements of oxygen isotopic compositions of magnetite and co-existing olivine from carbonaceous (Choi et al., 1997) and unequilibrated ordinary chondrites (Choi et al., in press). This work has identified a significant new oxygen isotope reservoir in the early solar system: water characterized by a very high Delta(17)) value of approx. 5 % per thousand. We have determined the spatial distributions of oxygen isotopic anomalies in all major mineral phases of a type B CAI from Allende. We have also studied an unusual fractionated CAI from Leoville and made the first oxygen isotopic measurements in rare CAIs from ordinary chondrites.

  11. Mass spectrometry in Earth sciences: the precise and accurate measurement of time.

    PubMed

    Schaltegger, Urs; Wotzlaw, Jörn-Frederik; Ovtcharova, Maria; Chiaradia, Massimo; Spikings, Richard

    2014-01-01

    Precise determinations of the isotopic compositions of a variety of elements is a widely applied tool in Earth sciences. Isotope ratios are used to quantify rates of geological processes that occurred during the previous 4.5 billion years, and also at the present time. An outstanding application is geochronology, which utilizes the production of radiogenic daughter isotopes by the radioactive decay of parent isotopes. Geochronological tools, involving isotopic analysis of selected elements from smallest volumes of minerals by thermal ionization mass spectrometry, provide precise and accurate measurements of time throughout the geological history of our planet over nine orders of magnitude, from the accretion of the proto-planetary disk, to the timing of the last glaciation. This article summarizes the recent efforts of the Isotope Geochemistry, Geochronology and Thermochronology research group at the University of Geneva to advance the U-Pb geochronological tool to achieve unprecedented precision and accuracy, and presents two examples of its application to two significant open questions in Earth sciences: what are the triggers and timescales of volcanic supereruptions, and what were the causes of mass extinctions in the geological past, driven by global climatic and environmental deterioration?

  12. Population-Level Metrics of Trophic Structure Based on Stable Isotopes and Their Application to Invasion Ecology

    PubMed Central

    Jackson, Michelle C.; Donohue, Ian; Jackson, Andrew L.; Britton, J. Robert; Harper, David M.; Grey, Jonathan

    2012-01-01

    Biological invasions are a significant driver of human-induced global change and many ecosystems sustain sympatric invaders. Interactions occurring among these invaders have important implications for ecosystem structure and functioning, yet they are poorly understood. Here we apply newly developed metrics derived from stable isotope data to provide quantitative measures of trophic diversity within populations or species. We then use these to test the hypothesis that sympatric invaders belonging to the same functional feeding group occupy a smaller isotopic niche than their allopatric counterparts. Two introduced, globally important, benthic omnivores, Louisiana swamp crayfish (Procambarus clarkii) and carp (Cyprinus carpio), are sympatric in Lake Naivasha, Kenya. We applied our metrics to an 8-year data set encompassing the establishment of carp in the lake. We found a strong asymmetric interaction between the two invasive populations, as indicated by inverse correlations between carp abundance and measures of crayfish trophic diversity. Lack of isotopic niche overlap between carp and crayfish in the majority of years indicated a predominantly indirect interaction. We suggest that carp-induced habitat alteration reduced the diversity of crayfish prey, resulting in a reduction in the dietary niche of crayfish. Stable isotopes provide an integrated signal of diet over space and time, offering an appropriate scale for the study of population niches, but few isotope studies have retained the often insightful information revealed by variability among individuals in isotope values. Our population metrics incorporate such variation, are robust to the vagaries of sample size and are a useful additional tool to reveal subtle dietary interactions among species. Although we have demonstrated their applicability specifically using a detailed temporal dataset of species invasion in a lake, they have a wide array of potential ecological applications. PMID:22363724

  13. Population-level metrics of trophic structure based on stable isotopes and their application to invasion ecology.

    PubMed

    Jackson, Michelle C; Donohue, Ian; Jackson, Andrew L; Britton, J Robert; Harper, David M; Grey, Jonathan

    2012-01-01

    Biological invasions are a significant driver of human-induced global change and many ecosystems sustain sympatric invaders. Interactions occurring among these invaders have important implications for ecosystem structure and functioning, yet they are poorly understood. Here we apply newly developed metrics derived from stable isotope data to provide quantitative measures of trophic diversity within populations or species. We then use these to test the hypothesis that sympatric invaders belonging to the same functional feeding group occupy a smaller isotopic niche than their allopatric counterparts. Two introduced, globally important, benthic omnivores, Louisiana swamp crayfish (Procambarus clarkii) and carp (Cyprinus carpio), are sympatric in Lake Naivasha, Kenya. We applied our metrics to an 8-year data set encompassing the establishment of carp in the lake. We found a strong asymmetric interaction between the two invasive populations, as indicated by inverse correlations between carp abundance and measures of crayfish trophic diversity. Lack of isotopic niche overlap between carp and crayfish in the majority of years indicated a predominantly indirect interaction. We suggest that carp-induced habitat alteration reduced the diversity of crayfish prey, resulting in a reduction in the dietary niche of crayfish. Stable isotopes provide an integrated signal of diet over space and time, offering an appropriate scale for the study of population niches, but few isotope studies have retained the often insightful information revealed by variability among individuals in isotope values. Our population metrics incorporate such variation, are robust to the vagaries of sample size and are a useful additional tool to reveal subtle dietary interactions among species. Although we have demonstrated their applicability specifically using a detailed temporal dataset of species invasion in a lake, they have a wide array of potential ecological applications.

  14. Stable isotope tracers and exercise physiology: past, present and future.

    PubMed

    Wilkinson, Daniel J; Brook, Matthew S; Smith, Kenneth; Atherton, Philip J

    2017-05-01

    Stable isotope tracers have been invaluable assets in physiological research for over 80 years. The application of substrate-specific stable isotope tracers has permitted exquisite insight into amino acid, fatty-acid and carbohydrate metabolic regulation (i.e. incorporation, flux, and oxidation, in a tissue-specific and whole-body fashion) in health, disease and response to acute and chronic exercise. Yet, despite many breakthroughs, there are limitations to 'substrate-specific' stable isotope tracers, which limit physiological insight, e.g. the need for intravenous infusions and restriction to short-term studies (hours) in controlled laboratory settings. In recent years significant interest has developed in alternative stable isotope tracer techniques that overcome these limitations, in particular deuterium oxide (D 2 O or heavy water). The unique properties of this tracer mean that through oral administration, the turnover and flux through a number of different substrates (muscle proteins, lipids, glucose, DNA (satellite cells)) can be monitored simultaneously and flexibly (hours/weeks/months) without the need for restrictive experimental control. This makes it uniquely suited for the study of 'real world' human exercise physiology (amongst many other applications). Moreover, using D 2 O permits evaluation of turnover of plasma and muscle proteins (e.g. dynamic proteomics) in addition to metabolomics (e.g. fluxomics) to seek molecular underpinnings, e.g. of exercise adaptation. Here, we provide insight into the role of stable isotope tracers, from substrate-specific to novel D 2 O approaches, in facilitating our understanding of metabolism. Further novel potential applications of stable isotope tracers are also discussed in the context of integration with the snowballing field of 'omic' technologies. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  15. IsoCor: correcting MS data in isotope labeling experiments.

    PubMed

    Millard, Pierre; Letisse, Fabien; Sokol, Serguei; Portais, Jean-Charles

    2012-05-01

    Mass spectrometry (MS) is widely used for isotopic labeling studies of metabolism and other biological processes. Quantitative applications-e.g. metabolic flux analysis-require tools to correct the raw MS data for the contribution of all naturally abundant isotopes. IsoCor is a software that allows such correction to be applied to any chemical species. Hence it can be used to exploit any isotopic tracer, from well-known ((13)C, (15)N, (18)O, etc) to unusual ((57)Fe, (77)Se, etc) isotopes. It also provides new features-e.g. correction for the isotopic purity of the tracer-to improve the accuracy of quantitative isotopic studies, and implements an efficient algorithm to process large datasets. Its user-friendly interface makes isotope labeling experiments more accessible to a wider biological community. IsoCor is distributed under OpenSource license at http://metasys.insa-toulouse.fr/software/isocor/

  16. Progress on Establishing the Feasibility of Lead Slowing Down Spectroscopy for Direct Measurement of Plutonium in Used Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulisek, Jonathan A.; Anderson, Kevin K.; Bowyer, Sonya M.

    2012-07-19

    Developing a method for the accurate, direct, and independent assay of the fissile isotopes in bulk materials (such as used fuel) of next-generation domestic nuclear fuel cycles is a goal of the Office of Nuclear Energy, Fuel Cycle R&D, Material Protection and Control Technology (MPACT) Campaign. To meet this goal, MPACT continues to support a multi-institutional collaboration to address the feasibility of Lead Slowing Down Spectroscopy (LSDS) as an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic masses in used fuel with an uncertainty considerably lower than the approximately 10%more » typical of today’s confirmatory assay methods. An LSDS is comprised of a stack of lead (typically 1-6 m3) in which materials to be measured are placed in the lead and a pulse of neutrons is injected. The neutrons in this pulse lose energy due to inelastic and (subsequently) elastic scattering and the average energy of the neutrons decreases as the time increases by a well-defined relationship. In the interrogation energy region (~0.1-1000 eV) the neutrons have little energy spread (~30%) about the average neutron energy. Due to this characteristic, the energy of the (assay) neutrons can then be determined by measuring the time elapsed since the neutron pulse. By measuring the induced fission neutrons emitted from the used fuel, it is possible to determine isotopic-mass content by unfolding the unique structure of isotopic resonances across the interrogation energy region. This paper will present efforts on the development of time-spectral analysis algorithms, fast neutron detector advances, and validation and testing measurements.« less

  17. Efficient 3He/4He separation in a nanoporous graphenylene membrane.

    PubMed

    Qu, Yuanyuan; Li, Feng; Zhao, Mingwen

    2017-08-16

    Helium-3 is a precious noble gas, which is essential in many advanced technologies such as cryogenics, isotope labeling and nuclear weapons. The current imbalance of 3 He demand and supply shortage leads to the search for an efficient membrane with high performance for 3 He separation. In this study, based on first-principles calculations, we demonstrated that highly efficient 3 He harvesting can be achieved in a nanoporous graphenylene membrane with industrially-acceptable selectivity and permeance. The quantum tunneling effect leads to 3 He harvesting with high efficiency via kinetic sieving. Both the quantum tunneling effect and zero-point energy (ZPE) determine the 3 He/ 4 He separation via thermally-driven equilibrium sieving, where the ZPE effect dominates efficient 3 He/ 4 He separation between two reservoirs. The quantum effects revealed in this work suggest that the nanoporous graphenylene membrane is promising for efficient 3 He harvesting that can be exploited for industrial applications.

  18. Improved detection of sugar addition to maple syrup using malic acid as internal standard and in 13C isotope ratio mass spectrometry (IRMS).

    PubMed

    Tremblay, Patrice; Paquin, Réal

    2007-01-24

    Stable carbon isotope ratio mass spectrometry (delta13C IRMS) was used to detect maple syrup adulteration by exogenous sugar addition (beet and cane sugar). Malic acid present in maple syrup is proposed as an isotopic internal standard to improve actual adulteration detection levels. A lead precipitation method has been modified to isolate quantitatively malic acid from maple syrup using preparative reversed-phase liquid chromatography. The stable carbon isotopic ratio of malic acid isolated from this procedure shows an excellent accuracy and repeatability of 0.01 and 0.1 per thousand respectively, confirming that the modified lead precipitation method is an isotopic fractionation-free process. A new approach is proposed to detect adulteration based on the correlation existing between the delta13Cmalic acid and the delta13Csugars-delta13Cmalic acid (r = 0.704). This technique has been tested on a set of 56 authentic maple syrup samples. Additionally, authentic samples were spiked with exogeneous sugars. The mean theoretical detection level was statistically lowered using this technique in comparison with the usual two-standard deviation approach, especially when maple syrup is adulterated with beet sugar : 24 +/- 12% of adulteration detection versus 48 +/- 20% (t-test, p = 7.3 x 10-15). The method was also applied to published data for pineapple juices and honey with the same improvement.

  19. Utilizing Stable Isotopes and Isotopic Anomalies to Study Early Solar System Formation Processes

    NASA Technical Reports Server (NTRS)

    Simon, Justin

    2017-01-01

    Chondritic meteorites contain a diversity of particle components, i.e., chondrules and calcium-, aluminum-rich refractory inclusions (CAIs), that have survived since the formation of the Solar System. The chemical and isotopic compositions of these materials provide a record of the conditions present in the protoplanetary disk where they formed and can aid our understanding of the processes and reservoirs in which solids formed in the solar nebula, an important step leading to the accretion of planetesimals. Isotopic anomalies associated with nucleosynthetic processes are observed in these discrete materials, and can be compared to astronomical observations and astrophysical formation models of stars and more recently proplyds. The existence and size of these isotopic anomalies are typically thought to reflect a significant state of isotopic heterogeneity in the earliest Solar System, likely left over from molecular cloud heterogeneities on the grain scale, but some could also be due to late stellar injection. The homogenization of these isotopic anomalies towards planetary values can be used to track the efficiency and timescales of disk wide mixing,

  20. Compound-Specific Isotopic Analysis of Meteoritic Amino Acids as a Tool for Evaluating Potential Formation Pathways

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Burton, Aaron S.; Callahan, Michael C.; Charnley, Steven B.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    Measurements of stable hydrogen, carbon, and nitrogen isotopic ratios (delta D, delta C-13, delta N-15) of organic compounds can reveal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may point towards the most likely of these proposed pathways. The technique of gas chromatography coupled with mass spectrometry and isotope ratio mass spectrometry provides compound-specific structural and isotopic information from a single splitless injection, enhancing the amount of information gained from small amounts of precious samples such as carbonaceous chondrites. We have applied this technique to measure the compound-specific C, N, and H isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites. We are using these measurements to evaluate predictions of expected isotopic enrichments from potential formation pathways and environments, leading to a better understanding of the origin of these compounds.

  1. Position-specific isotope analysis by on-line pyrolysis coupled to IRMS

    NASA Astrophysics Data System (ADS)

    Gilbert, A.; Suda, K.; Yamada, K.; Ueno, Y.; Yoshida, N.

    2016-12-01

    Position-specific isotopic analyses (PSIA) provide unique information regarding the sources, sinks and processes related to natural molecules. For instance, PSIA of short-chain hydrocarbons could lead to temperature of formation and maturity of natural gas reservoirs [1][2]. In the last decade, quantitative Nuclear Magnetic Resonance (NMR) specrometry has been used for PSIA of organic molecules such as glucose or n-alkanes [3][4]. However, due to its low sensitivity, application to low amount geochemical samples remains challenging. In 1997, Corso & Brenna proposed to adapt a pyrolysis furnace to an isotope ratio mass spectrometer, making it possible the thermal degradation of the target molecule and the subsequent analysis of the d13C values of the fragments formed [5]. Starting from fatty acid methyl esters they demonstrated the absence of rearrangement during pyrolytic degradation and could determine the d13C value of carboxyl C-atom position. We adapted the system for the full characterization of position-specific isotope composition of small molecules (ethanol, acetic acid, alanine, propane). Nanomole amount of sample can be analyzed with a precision on intramolecular d13C values of 1‰ or lower [2]. We recently analyzed abiotic and thermogenic propane samples both from the field and from lab simulations. PSIA of propane shows systematic differences of position-specific isotope composition between thermogenic and abiotic samples. While the former show 13C-depletion on the terminal C-atom position - consistent with thermal cracking kinetic models [6] - abiotic samples show little or no preference for terminal or central 13C-isotopomer. These results emphasize the potential of PSIA to trace the the processes associated with organic molecules production. [1] Piasecki et al. 2016 GCA 188, 58 [2] Gilbert et al. 2016 GCA 177, 205 [3] Gilbert et al. 2012 PNAS, 109, 18204 [4] Gilbert et al. 2013 Org. Geochem, 62, 56 [5] Corso & Brenna 1997 PNAS, 94, 1049 [6] Tang et al., 2000 GCA 64, 2673

  2. Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE

    NASA Astrophysics Data System (ADS)

    Fedosseev, Valentin; Chrysalidis, Katerina; Day Goodacre, Thomas; Marsh, Bruce; Rothe, Sebastian; Seiffert, Christoph; Wendt, Klaus

    2017-08-01

    At ISOLDE the majority of radioactive ion beams are produced using the resonance ionization laser ion source (RILIS). This ion source is based on resonant excitation of atomic transitions by wavelength tunable laser radiation. Since its installation at the ISOLDE facility in 1994, the RILIS laser setup has been developed into a versatile remotely operated laser system comprising state-of-the-art solid state and dye lasers capable of generating multiple high quality laser beams at any wavelength in the range of 210-950 nm. A continuous programme of atomic ionization scheme development at CERN and at other laboratories has gradually increased the number of RILIS-ionized elements. At present, isotopes of 40 different elements have been selectively laser-ionized by the ISOLDE RILIS. Studies related to the optimization of the laser-atom interaction environment have yielded new laser ion source types: the laser ion source and trap and the versatile arc discharge and laser ion source. Depending on the specific experimental requirements for beam purity or versatility to switch between different ionization mechanisms, these may offer a favourable alternative to the standard hot metal cavity configuration. In addition to its main purpose of ion beam production, the RILIS is used for laser spectroscopy of radioisotopes. In an ongoing experimental campaign the isotope shifts and hyperfine structure of long isotopic chains have been measured by the extremely sensitive in-source laser spectroscopy method. The studies performed in the lead region were focused on nuclear deformation and shape coexistence effects around the closed proton shell Z = 82. The paper describes the functional principles of the RILIS, the current status of the laser system and demonstrated capabilities for the production of different ion beams including the high-resolution studies of short-lived isotopes and other applications of RILIS lasers for ISOLDE experiments. This article belongs to the Focus on Exotic Beams at ISOLDE: A Laboratory Portrait special issue.

  3. Estimating pathway-specific contributions to biodegradation in aquifers based on dual isotope analysis: theoretical analysis and reactive transport simulations.

    PubMed

    Centler, Florian; Heße, Falk; Thullner, Martin

    2013-09-01

    At field sites with varying redox conditions, different redox-specific microbial degradation pathways contribute to total contaminant degradation. The identification of pathway-specific contributions to total contaminant removal is of high practical relevance, yet difficult to achieve with current methods. Current stable-isotope-fractionation-based techniques focus on the identification of dominant biodegradation pathways under constant environmental conditions. We present an approach based on dual stable isotope data to estimate the individual contributions of two redox-specific pathways. We apply this approach to carbon and hydrogen isotope data obtained from reactive transport simulations of an organic contaminant plume in a two-dimensional aquifer cross section to test the applicability of the method. To take aspects typically encountered at field sites into account, additional simulations addressed the effects of transverse mixing, diffusion-induced stable-isotope fractionation, heterogeneities in the flow field, and mixing in sampling wells on isotope-based estimates for aerobic and anaerobic pathway contributions to total contaminant biodegradation. Results confirm the general applicability of the presented estimation method which is most accurate along the plume core and less accurate towards the fringe where flow paths receive contaminant mass and associated isotope signatures from the core by transverse dispersion. The presented method complements the stable-isotope-fractionation-based analysis toolbox. At field sites with varying redox conditions, it provides a means to identify the relative importance of individual, redox-specific degradation pathways. © 2013.

  4. A METHOD TO IMPROVE DOSE ASSESSMENT BY RECONSTRUCTION OF THE COMPLETE ISOTOPES INVENTORY.

    PubMed

    Bonin, Alice; Tsilanizara, Aimé

    2017-06-01

    Radiation shielding assessments may underestimate the expected dose if some isotopes at trace level are not considered in the isotopes inventory of the shielded radioactive materials. Indeed, information about traces is not often available. Nevertheless, the activation of some minor isotopic traces may significantly contribute to the dose build-up. This paper presents a new method (Isotopes Inventory Reconstruction-IIR) estimating the concentration of the minor isotopes in the irradiated material at the beginning of the cooling period. The method requires the solution of the inverse problem describing the irradiated material's decay. In a mixture of an irradiated uranium-plutonium oxide shielded by a set-up made of stainless-steel, porous polyethylene plaster and lead methyl methacrylate, the comparison between different methods proves that the IIR-method allows better assessment of the dose than other approximate methods. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Isotopic Clues to Mars Crust-Atmosphere Interactions

    NASA Image and Video Library

    2016-09-29

    Chemistry that takes place in the surface material on Mars can explain why particular xenon (Xe) and krypton (Kr) isotopes are more abundant in the Martian atmosphere than expected. The isotopes -- variants that have different numbers of neutrons -- are formed in the loose rocks and material that make up the regolith -- the surface layer down to solid rock. The chemistry begins when cosmic rays penetrate into the surface material. If the cosmic rays strike an atom of barium (Ba), the barium can lose one or more of its neutrons (n0). Atoms of xenon can pick up some of those neutrons – a process called neutron capture – to form the isotopes xenon-124 and xenon-126. In the same way, atoms of bromine (Br) can lose some of their neutrons to krypton, leading to the formation of krypton-80 and krypton-82 isotopes. These isotopes can enter the atmosphere when the regolith is disturbed by impacts and abrasion, allowing gas to escape. http://photojournal.jpl.nasa.gov/catalog/PIA20847

  6. Molybdenum isotope systematics in subduction zones

    NASA Astrophysics Data System (ADS)

    König, Stephan; Wille, Martin; Voegelin, Andrea; Schoenberg, Ronny

    2016-08-01

    This study presents Mo isotope data for arc lavas from different subduction zones that range between δ 98 / 95 Mo = - 0.72 and + 0.07 ‰. Heaviest isotope values are observed for the most slab fluid dominated samples. Isotopically lighter signatures are related to increasing relevance of terrigenous sediment subduction and sediment melt components. Our observation complements previous conclusions that an isotopically heavy Mo fluid flux likely mirrors selective incorporation of isotopically light Mo in secondary minerals within the subducting slab. Analogue to this interpretation, low δ 98 / 95 Mo flux that coincides with terrigenous sediment subduction and sediment melting cannot be simply related to a recycled input signature. Instead, breakdown of the controlling secondary minerals during sediment melting may release the light component and lead to decreasing δ 98 / 95 Mo influx into subarc mantle sources. The natural range between slab dehydration and hydrous sediment melting may thus cause a large spread of δ 98 / 95 Mo in global subduction zone magmas.

  7. Nitrogen isotope effects induced by anammox bacteria

    PubMed Central

    Brunner, Benjamin; Contreras, Sergio; Lehmann, Moritz F.; Matantseva, Olga; Rollog, Mark; Kalvelage, Tim; Klockgether, Gabriele; Lavik, Gaute; Jetten, Mike S. M.; Kartal, Boran; Kuypers, Marcel M. M.

    2013-01-01

    Nitrogen (N) isotope ratios (15N/14N) provide integrative constraints on the N inventory of the modern ocean. Anaerobic ammonium oxidation (anammox), which converts ammonium and nitrite to dinitrogen gas (N2) and nitrate, is an important fixed N sink in marine ecosystems. We studied the so far unknown N isotope effects of anammox in batch culture experiments. Anammox preferentially removes 14N from the ammonium pool with an isotope effect of +23.5‰ to +29.1‰, depending on factors controlling reversibility. The N isotope effects during the conversion of nitrite to N2 and nitrate are (i) inverse kinetic N isotope fractionation associated with the oxidation of nitrite to nitrate (−31.1 ± 3.9‰), (ii) normal kinetic N isotope fractionation during the reduction of nitrite to N2 (+16.0 ± 4.5‰), and (iii) an equilibrium N isotope effect between nitrate and nitrite (−60.5 ± 1.0‰), induced when anammox is exposed to environmental stress, leading to the superposition of N isotope exchange effects upon kinetic N isotope fractionation. Our findings indicate that anammox may be responsible for the unresolved large N isotope offsets between nitrate and nitrite in oceanic oxygen minimum zones. Irrespective of the extent of N isotope exchange between nitrate and nitrite, N removed from the combined nitrite and nitrate (NOx) pool is depleted in 15N relative to NOx. This net N isotope effect by anammox is superimposed on the N isotope fractionation by the co-occurring reduction of nitrate to nitrite in suboxic waters, possibly enhancing the overall N isotope effect for N loss from oxygen minimum zones. PMID:24191043

  8. Stable isotope views on ecosystem function: challenging or challenged?

    PubMed

    Resco, Víctor; Querejeta, José I; Ogle, Kiona; Voltas, Jordi; Sebastià, Maria-Teresa; Serrano-Ortiz, Penélope; Linares, Juan C; Moreno-Gutiérrez, Cristina; Herrero, Asier; Carreira, José A; Torres-Cañabate, Patricia; Valladares, Fernando

    2010-06-23

    Stable isotopes and their potential for detecting various and complex ecosystem processes are attracting an increasing number of scientists. Progress is challenging, particularly under global change scenarios, but some established views have been challenged. The IX meeting of the Spanish Association of Terrestrial Ecology (AAET, Ubeda, 18-22 October 2009) hosted a symposium on the ecology of stable isotopes where the linear mixing model approach of partitioning sinks and sources of carbon and water fluxes within an ecosystem was challenged, and new applications of stable isotopes for the study of plant interactions were evaluated. Discussion was also centred on the need for networks that monitor ecological processes using stable isotopes and key ideas for fostering future research with isotopes.

  9. Stable isotope views on ecosystem function: challenging or challenged?

    PubMed Central

    Resco, Víctor; Querejeta, José I.; Ogle, Kiona; Voltas, Jordi; Sebastià, Maria-Teresa; Serrano-Ortiz, Penélope; Linares, Juan C.; Moreno-Gutiérrez, Cristina; Herrero, Asier; Carreira, José A.; Torres-Cañabate, Patricia; Valladares, Fernando

    2010-01-01

    Stable isotopes and their potential for detecting various and complex ecosystem processes are attracting an increasing number of scientists. Progress is challenging, particularly under global change scenarios, but some established views have been challenged. The IX meeting of the Spanish Association of Terrestrial Ecology (AAET, Úbeda, 18–22 October 2009) hosted a symposium on the ecology of stable isotopes where the linear mixing model approach of partitioning sinks and sources of carbon and water fluxes within an ecosystem was challenged, and new applications of stable isotopes for the study of plant interactions were evaluated. Discussion was also centred on the need for networks that monitor ecological processes using stable isotopes and key ideas for fostering future research with isotopes. PMID:20015858

  10. Laser isotope separation

    DOEpatents

    Robinson, C.P.; Reed, J.J.; Cotter, T.P.; Boyer, K.; Greiner, N.R.

    1975-11-26

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light is described. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  11. Photochemical isotope separation

    DOEpatents

    Robinson, C.P.; Jensen, R.J.; Cotter, T.P.; Greiner, N.R.; Boyer, K.

    1987-04-28

    A process is described for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium. 8 figs.

  12. Modelingofwaterisotopesinpolarregionsandapplicationtoicecorestudies

    NASA Astrophysics Data System (ADS)

    Jouzel, J.

    2012-04-01

    Willi Dansgaard spear-headed the use of the stable isotopes of water in climatology and palaeoclimatology especially as applied to deep ice cores for which measurements of the oxygen and hydrogen isotope ratios remain the key tools for reconstructing continuous palaeotemperature records. In the line of his pioneering work on "Stable isotopes in precipitation" published in Tellus in 1964, I will review how isotopic models, either Rayleigh type or based on the implementation of water isotopes in General Circulation Models, have developed and been used for applications in polar ice core studies. This will include a discussion of the conventional approach for interpreting water isotopes in ice cores and of additional information provided by measurements of the deuterium excess and more recently of the 17O-excess.

  13. Application of isotope dilution inductively coupled plasma mass spectrometry to the analysis of marine sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaren, J.W.; Beauchemin, D.; Berman, S.S.

    1987-02-15

    Isotope dilution inductively coupled plasma mass spectrometry (ICP-MS) has been applied to the determination of 11 trace elements (Cr, Ni, Zn, Sr, Mo, Cd, Sn, Sb, Tl, Pb, and U) in the marine sediment reference materials MESS-1 and BCSS-1. Accuracy and, especially, precision are better than those that can be easily achieved by other ICP-MS calibration strategies, as long as isotopic equilibration is achieved and the isotopes used for the ratio measurement are free of isobaric interferences by molecular species. The measurement of the isotope ratios on unspiked samples provides a sensitive diagnostic of such interferences.

  14. Precise and traceable carbon isotope ratio measurements by multicollector ICP-MS: what next?

    PubMed

    Santamaria-Fernandez, Rebeca

    2010-06-01

    This article reviews recent developments in the use of multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) to provide high-precision carbon isotope ratio measurements. MC-ICP-MS could become an alternative method to isotope ratio mass spectrometry (IRMS) for rapid carbon isotope ratio determinations in organic compounds and characterisation and certification of isotopic reference materials. In this overview, the advantages, drawbacks and potential of the method for future applications are critically discussed. Furthermore, suggestions for future improvements in terms of precision and sensitivity are made. No doubt, this is an exciting analytical challenge and, as such, hurdles will need to be cleared.

  15. Isotopic insights into biological regulation of zinc in contaminated systems

    USGS Publications Warehouse

    Wanty, Richard B.; Balistrieri, Laurie S.; Wesner, Jeff S.; Walters, David; Schmidt, Travis S.; Podda, Francesca; De Giudici, G.; Stricker, Craig A.; Kraus, Johanna M.; Lattanzi, Pierfranco; Wolf, Ruth E.; Cidu, R.

    2015-01-01

    Aquatic organisms use a variety of biogeochemical reactions to regulate essential and non-essential trace metals. Many of these mechanisms can lead to isotopic fractionation, thus measurement of metal isotopes may yield insights into the processes by which organisms respond to metal exposure. We illustrate these concepts with two case studies, one involving an intra- and the other an extra-cellular mechanism of Zn sequestration. In the first study, the mayfly Neocloeon triangulifer was grown in the laboratory, and fed a diet of Zn-doped diatoms at Zn levels exceeding the requirements for normal mayfly life functions. The N. triangulifer larvae consumed the diatoms and retained their Zn isotopic signature. Upon metamorphosis, the subimago life stage lost Zn mass either in the exuvia or by excretion, and the Zn retained was isotopically enriched. Thus, Zn uptake is nonfractionating, but Zn regulation favors the lighter isotope. Thus the Zn remaining in the subimago was isotopically heavier. In the second study, Zn was adsorbed on the cell walls and exopolysaccharide secretions of cyanobacteria, which favored the heavier Zn isotope. Continued adsorption eventually resulted in nucleation and biomineralization of hydrozincite {Zn5(CO3)2(OH)6}. These case studies demonstrate the utility of Zn isotopes to provide insights into how aquatic insects respond to metal exposure.

  16. Effects of acidification on the isotopic ratios of Neotropical otter tooth dentin.

    PubMed

    Carrasco, Thayara S; Botta, Silvina; Machado, Rodrigo; Colares, Elton P; Secchi, Eduardo R

    2018-05-30

    Stable carbon and nitrogen isotope ratios are widely used in ecological studies providing important information on the trophic ecology and habitat use of consumers. However, some factors may lead to isotopic variability, which makes difficult the interpretation of data, such as the presence of inorganic carbon in mineralized tissues. In order to remove the inorganic carbon, acidification is a commonly used treatment. The effects of two methods of acidification were tested: (i) dentin acidification with 10% HCl using the 'drop-by-drop' technique, and (ii) dentin acidification in an 'HCl atmosphere', by exposing the dentin to vaporous 30% hydrochloric acid. Results were compared with untreated subsamples. The stable carbon and nitrogen ratios of untreated and acidified subsamples were measured using an elemental analyzer coupled to an isotope ratio mass spectrometer. The nitrogen isotopic ratios were statistically different between the two acidification treatments, but no significant changes in carbon isotopic ratios were found in acidified and untreated samples. The results indicated that acidification had no effect on carbon isotopic ratios of Neotropical otter tooth dentin, while introducing a source of error in nitrogen isotopic ratios. Therefore, we conclude that acidification is an unnecessary step for C and N stable isotope analysis. Copyright © 2018 John Wiley & Sons, Ltd.

  17. Biological and physical influences on the carbon isotope content of CO2 in a subalpine forest snowpack, Niwot Ridge, Colorado

    Treesearch

    D. R. Bowling; W. J. Massman; S. M. Schaeffer; S. P. Burns; R. K. Monson; M. W. Williams

    2009-01-01

    Considerable research has recently been devoted to understanding biogeochemical processes under winter snow cover, leading to enhanced appreciation of the importance of many winter ecological processes. In this study, a comprehensive investigation of the stable carbon isotope composition (δ 13C) of CO2 within a high-elevation subalpine...

  18. Authenticity of Benin metalworks evaluated by inductively coupled plasma mass spectrometry and lead isotope analyses

    NASA Astrophysics Data System (ADS)

    Fabbri, E.; Soffritti, C.; Merlin, M.; Vaccaro, C.; Garagnani, G. L.

    2017-05-01

    Two metal plaques and a cock statuette belonging to a private collection and stylistically consistent with the Royal Art of Benin (Nigeria) were investigated in order to verify their authenticity. The characterization of alloys and patinas were carried out by inductively coupled plasma mass spectrometry, optical microscopy, scanning electron microscopy and energy dispersion spectroscopy, and X-Ray diffraction spectrometry. Furthermore, thermal ionization mass spectrometry was used to assess the abundances of lead isotopes and to attempt a dating by the measurement of 210Pb/204Pb ratio. The results showed that all three artefacts were mainly composed of low lead-brass alloys, with relatively high concentrations of zinc, antimony, cadmium and aluminum in the solid copper solution. Microstructures were mostly dendritic, typical of as-cast brasses, and characterized by recrystallized non-homogeneous twinned grains in areas corresponding to surface decorations, probably due to multiple hammering steps followed by partial annealing treatments. The matrix was composed of a cored α-Cu solid solution together with non-metallic inclusions, lead globules and Sn-rich precipitates in interdendritic spaces. On the surface of all metalworks, both copper and zinc oxides, a non-continuous layer of sulphur-containing contaminants and chloride-containing compounds, were identified. The lead isotope results were consistent with brasses produced shortly before or after 1900 CE. Overall, the data obtained by different techniques supported the hypothesis that the three artefacts were not authentic.

  19. Application of zinc isotope tracer technology in tracing soil heavy metal pollution

    NASA Astrophysics Data System (ADS)

    Norbu, Namkha; Wang, Shuguang; Xu, Yan; Yang, Jianqiang; Liu, Qiang

    2017-08-01

    Recent years the soil heavy metal pollution has become increasingly serious, especially the zinc pollution. Due to the complexity of this problem, in order to prevent and treat the soil pollution, it's crucial to accurately and quickly find out the pollution sources and control them. With the development of stable isotope tracer technology, it's able to determine the composition of zinc isotope. Based on the theory of zinc isotope tracer technique, and by means of doing some latest domestic and overseas literature research about the zinc isotope multi-receiving cups of inductively coupled plasma mass spectrometer (MC-ICP-MS) testing technology, this paper summarized the latest research results about the pollution tracer of zinc isotope, and according to the deficiencies and existing problems of previous research, made outlooks of zinc isotope fractionation mechanism, repository establishment and tracer multiple solutions.

  20. Mass fractionation processes of transition metal isotopes

    NASA Astrophysics Data System (ADS)

    Zhu, X. K.; Guo, Y.; Williams, R. J. P.; O'Nions, R. K.; Matthews, A.; Belshaw, N. S.; Canters, G. W.; de Waal, E. C.; Weser, U.; Burgess, B. K.; Salvato, B.

    2002-06-01

    Recent advances in mass spectrometry make it possible to utilise isotope variations of transition metals to address some important issues in solar system and biological sciences. Realisation of the potential offered by these new isotope systems however requires an adequate understanding of the factors controlling their isotope fractionation. Here we show the results of a broadly based study on copper and iron isotope fractionation during various inorganic and biological processes. These results demonstrate that: (1) naturally occurring inorganic processes can fractionate Fe isotope to a detectable level even at temperature ˜1000°C, which challenges the previous view that Fe isotope variations in natural system are unique biosignatures; (2) multiple-step equilibrium processes at low temperatures may cause large mass fractionation of transition metal isotopes even when the fractionation per single step is small; (3) oxidation-reduction is an importation controlling factor of isotope fractionation of transition metal elements with multiple valences, which opens a wide range of applications of these new isotope systems, ranging from metal-silicate fractionation in the solar system to uptake pathways of these elements in biological systems; (4) organisms incorporate lighter isotopes of transition metals preferentially, and transition metal isotope fractionation occurs stepwise along their pathways within biological systems during their uptake.

  1. Isotopic equilibration between dissolved and suspended particulate lead in the Atlantic Ocean - Evidence from Pb-210 and stable Pb isotopes

    NASA Technical Reports Server (NTRS)

    Sherrell, Robert M.; Boyle, Edward A.; Hamelin, Bruno

    1992-01-01

    Vertical profiles of, on one hand, the stable Pb isotopic composition, and on the other, the ratio of total Pb to Pb-210 in suspended particles, are noted to closely track contemporaneous depth variations in these ratios for dissolved Pb throughout the upper 2 km of the Sargasso Sea near Bermuda. A simple flux model suggests that the effect of deep ocean scavenging processes on the flux and isotopic composition of Pb sinking on large particles was minor throughout the preanthropogenic, and most of the anthropogenic era: but it has become more important as surface inputs decrease to preleaded gasoline levels, perhaps exceeding the contribution of surface-derived Pb flux in the next decade.

  2. Simultaneous measurement of sulfur and lead isotopes in sulfides using nanosecond laser ablation coupled with two multi-collector inductively coupled plasma mass spectrometers

    NASA Astrophysics Data System (ADS)

    Yuan, Honglin; Liu, Xu; Chen, Lu; Bao, Zhian; Chen, Kaiyun; Zong, Chunlei; Li, Xiao-Chun; Qiu, Johnson Wenhong

    2018-04-01

    We herein report the coupling of a nanosecond laser ablation system with a large-scale multi-collector inductively coupled plasma mass spectrometer (Nu1700 MC-ICPMS, NP-1700) and a conventional Nu Plasma II MC-ICPMS (NP-II) for the simultaneous laser ablation and determination of in situ S and Pb isotopic compositions of sulfide minerals. We found that the required aerosol distribution between the two spectrometers depended on the Pb content of the sample. For example, for a sulfide containing 100-3000 ppm Pb, the aerosol was distributed between the NP-1700 and the NP-II spectrometers in a 1:1 ratio, while for lead contents >3000 and <100 ppm, these ratios were 5:1 and 1:3, respectively. In addition, S isotopic analysis showed a pronounced matrix effect, so a matrix-matched external standard was used for standard-sample bracketing correction. The NIST NBS 977 (NBS, National Bureau of Standards; NIST, National Institute of Standards & Technology) Tl (thallium) dry aerosol internal standard and the NIST SRM 610 (SRM, standard reference material) external standard were employed to obtain accurate results for the analysis of Pb isotopes. In tandem experiments where airflow conditions were similar to those employed during stand-alone analyses, small changes in the aerosol carrier gas flow did not significantly influence the accurate determination of S and Pb isotope ratios. In addition, careful optimization of the flow ratio of the aerosol carrier (He) and makeup (Ar) gases to match stand-alone analytical conditions allowed comparable S and Pb isotope ratios to be obtained within an error of 2 s analytical uncertainties. Furthermore, the results of tandem analyses obtained using our method were consistent with those of previously reported stand-alone techniques for the S and Pb isotopes of chalcopyrite, pyrite, galena, and sphalerite, thus indicating that this method is suitable for the simultaneous analysis of S and Pb isotopes of natural sulfide minerals, and provides an effective tool to determine S and Pb isotope compositions of sulfides formed through multi-stage deposition routes.

  3. Analysis and application of heavy isotopes in the environment

    NASA Astrophysics Data System (ADS)

    Steier, Peter; Dellinger, Franz; Forstner, Oliver; Golser, Robin; Knie, Klaus; Kutschera, Walter; Priller, Alfred; Quinto, Francesca; Srncik, Michaela; Terrasi, Filippo; Vockenhuber, Christof; Wallner, Anton; Wallner, Gabriele; Wild, Eva Maria

    2010-04-01

    A growing number of AMS laboratories are pursuing applications of actinides. We discuss the basic requirements of the AMS technique of heavy (i.e., above ˜150 amu) isotopes, present the setup at the Vienna Environmental Research Accelerator (VERA) which is especially well suited for the isotope 236U, and give a comparison with other AMS facilities. Special emphasis will be put on elaborating the effective detection limits for environmental samples with respect to other mass spectrometric methods. At VERA, we have carried out measurements for radiation protection and environmental monitoring ( 236U, 239,240,241,242,244Pu), astrophysics ( 182Hf, 236U, 244Pu, 247Cm), nuclear physics, and a search for long-lived super-heavy elements ( Z > 100). We are pursuing the environmental distribution of 236U, as a basis for geological applications of natural 236U.

  4. The smallest Gliders in the Ocean- Temperature Recordings from Pteropods using SIMS

    NASA Astrophysics Data System (ADS)

    Keul, N.; Orland, I. J.; Valley, J. W.; Kozdon, R.; deMenocal, P. B.

    2016-02-01

    During the last few decades, the development, refinement and application of geochemical methods have lead to the establishment of new proxies to estimate global change. The oxygen isotope composition of carbonate shells formed by marine organisms is a widely used proxy for past ocean temperatures. Secondary ion mass spectrometry (SIMS) is a high spatial-resolution in situ technique, allowing oxygen isotope measurements on very small samples (down to 3 μm spot size). Pteropods are pelagic mollusks, producing shells made out of aragonite, which is more soluble than calcite in seawater, making them one of the first responders to climate change. They calcify closely at the aragonite- seawater equilibrium and are therefor ideal candidates to reconstruct temperatures based on their d18O. The oxygen isotopic composition of pteropod shells from sediment traps, net tows and a culture study from the Fram Strait will be presented. Specimens travelled in the Westspitsbergen Current prior to sinking into the sediment. During this transport specimens continue to grow, sequentially adding aragonite to the shell. We show that when using traditional (whole shell) δ18O measurements, the isotopic signatures of whole shells reflect the latitudinal gradient. Combining this with SIMS-derived δ18O measurements on individual shell parts, however, reveals that this is only half the story: Comparing δ18O of earlier (produced further South) and later shell parts (produced further North) shows that pteropods calcify in sequentially shallower water depths, overriding the latitudinal South to North temperature gradient. Combining traditional and novel δ18O measurements can potentially not only allow the reconstruction of temperature/ global warming, but also to assess ecological key parameters, such as habitat depth, at the same time.

  5. A new algorithm to handle finite nuclear mass effects in electronic calculations: the ISOTOPE program.

    PubMed

    Gonçalves, Cristina P; Mohallem, José R

    2004-11-15

    We report the development of a simple algorithm to modify quantum chemistry codes based on the LCAO procedure, to account for the isotope problem in electronic structure calculations. No extra computations are required compared to standard Born-Oppenheimer calculations. An upgrade of the Gamess package called ISOTOPE is presented, and its applicability is demonstrated in some examples.

  6. Non-traditional isotopes in analytical ecogeochemistry assessed by MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Prohaska, Thomas; Irrgeher, Johanna; Horsky, Monika; Hanousek, Ondřej; Zitek, Andreas

    2014-05-01

    Analytical ecogeochemistry deals with the development and application of tools of analytical chemistry to study dynamic biological and ecological processes within ecosystems and across ecosystem boundaries in time. It can be best described as a linkage between modern analytical chemistry and a holistic understanding of ecosystems ('The total human ecosystem') within the frame of transdisciplinary research. One focus of analytical ecogeochemistry is the advanced analysis of elements and isotopes in abiotic and biotic matrices and the application of the results to basic questions in different research fields like ecology, environmental science, climatology, anthropology, forensics, archaeometry and provenancing. With continuous instrumental developments, new isotopic systems have been recognized for their potential to study natural processes and well established systems could be analyzed with improved techniques, especially using multi collector inductively coupled plasma mass spectrometry (MC-ICP-MS). For example, in case of S, isotope ratio measurements at high mass resolution could be achieved at much lower S concentrations with ICP-MS as compared to IRMS, still keeping suitable uncertainty. Almost 50 different isotope systems have been investigated by ICP-MS, so far, with - besides Sr, Pb and U - Ca, Mg, Cd, Li, Hg, Si, Ge and B being the most prominent and considerably pushing the limits of plasma based mass spectrometry also by applying high mass resolution. The use of laser ablation in combination with MC-ICP-MS offers the possibility to achieve isotopic information on high spatial (µm-range) and temporal scale (in case of incrementally growing structures). The information gained with these analytical techniques can be linked between different hierarchical scales in ecosystems, offering means to better understand ecosystem processes. The presentation will highlight the use of different isotopic systems in ecosystem studies accomplished by ICP-MS. Selected examples on combining isotopic systems for the study of ecosystem processes on different spatial scales will underpin the great opportunities substantiated by the field of analytical ecogeochemistry. Moreover, recent developments in plasma mass spectrometry and the application of new isotopic systems require sound metrological approaches in order to prevent scientific conclusions drawn from analytical artifacts.

  7. Improvements in Precise and Accurate Isotope Ratio Determination via LA-MC-ICP-MS by Application of an Alternative Data Reduction Protocol

    NASA Astrophysics Data System (ADS)

    Fietzke, J.; Liebetrau, V.; Guenther, D.; Frische, M.; Zumholz, K.; Hansteen, T. H.; Eisenhauer, A.

    2008-12-01

    An alternative approach for the evaluation of isotope ratio data using LA-MC-ICP-MS will be presented. In contrast to previously applied methods it is based on the simultaneous responses of all analyte isotopes of interest and the relevant interferences without performing a conventional background correction. Significant improvements in precision and accuracy can be achieved when applying this new method and will be discussed based on the results of two first methodical applications: a) radiogenic and stable Sr isotopes in carbonates b) stable chlorine isotopes of pyrohydrolytic extracts. In carbonates an external reproducibility of the 87Sr/86Sr ratios of about 19 ppm (RSD) was achieved, an improvement of about a factor of 5. For recent and sub-recent marine carbonates a mean radiogenic strontium isotope ratio 87Sr/86Sr of 0.709170±0.000007 (2SE) was determined, which agrees well with the value of 0.7091741±0.0000024 (2SE) reported for modern sea water [1,2]. Stable chlorine isotope ratios were determined ablating pyrohydrolytic extracts with a reproducibility of about 0.05‰ (RSD). For basaltic reference material JB1a and JB2 chlorine isotope ratios were determined relative to SMOC (standard mean ocean chlorinity) δ37ClJB-1a = (-0.99±0.06) ‰ and δ37ClJB-1a = (-0.60±0.03) ‰ (SD), respectively, in accordance with published data [3]. The described strategies for data reduction are considered to be generally applicable for all isotope ratio measurements using LA-MC-ICP-MS. [1] J.M. McArthur, D. Rio, F. Massari, D. Castradori, T.R. Bailey, M. Thirlwall, S. Houghton, Palaeogeo. Palaeoclim. Palaeoeco., 2006, 242 (126), doi: 10.1016/j.palaeo.2006.06.004 [2] J. Fietzke, V. Liebetrau, D. Guenther, K. Guers, K. Hametner, K. Zumholz, T.H. Hansteen and A. Eisenhauer, J. Anal. At. Spectrom., 2008, 23, 955-961, doi:10.1039/B717706B [3] J. Fietzke, M. Frische, T.H. Hansteen and A. Eisenhauer, J. Anal. At. Spectrom., 2008, 23, 769-772, doi:10.1039/B718597A

  8. Micro-scale novel stable isotope fractionation during weathering disclosed by femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Schuessler, J. A.; von Blanckenburg, F.

    2012-12-01

    The stable isotope fractionation of metals and metalloids during chemical weathering and alteration of rocks at low temperature is a topic receiving increasing scientific attention. For these systems, weathering of primary minerals leads to selective partitioning of isotopes between the secondary minerals formed from them, and the dissolved phase of soil or river water. While the isotopic signatures of these processes have been mapped-out at the catchment or the soil scale, the actual isotopic fractionation is occurring at the mineral scale. To identify the processes underlying such micro-scale fractionation, the development of micro-analytical tools allows to investigate mechanisms of isotope fractionation in-situ, in combination with textural information of weathering reactions. We have developed a second-generation UV femtosecond (fs) laser system at GFZ Potsdam. The advantage of UV-fs laser ablation is the reduction of laser-induced isotopic and elemental fractionation by avoiding 'thermal effects' during ablation, such that accurate isotope ratios can be measured by standard-sample-standard bracketing using laser ablation multicollector ICP-MS; where the matrix of the bracketing standard does not need to match that of the sample [1]. Our system consists of the latest generation femtosecond solid-state laser (Newport Spectra Physics Solstice), producing an ultra short pulse width of about 100 femtoseconds at a wavelength of 196 nm. The system is combined with a custom-build computer-controlled sample stage and allows fully automated isotope analyses through synchronised operation of the laser with the Neptune MC-ICP-MS. To assess precision and accuracy of our laser ablation method, we analysed various geological reference materials. We obtained δ30Si values of -0.31 ± 0.23 (2SD, n = 13) for basalt glass BHVO-2G, and -1.25 ± 0.21 (2SD, n = 27) for pure Si IRMM17 when bracketed against NBS-28 quartz. δ56Fe and δ26Mg values obtained from non-matrix matched standard-sample-bracketing laser ablation analyses on sulfides, oxides and silicates agree within 0.15 permil to measurements done by solution MC-ICP-MS after chromatographic matrix separation. With our laser ablation method all compartments of the weathering zone can be analysed with minimal sample preparation [2]. In a first application, we investigate Si isotope fractionation during deep (10 m) core stone weathering, where crystalline rock is altered, producing secondary clay minerals along 20 micrometer wide (biogenic?) alteration textures. While unweathered centers of plagioclase grains show a homogenous Si isotope composition of δ30Si = -0.20 ± 0.17 permil (2SD, n=12), the secondary weathering products found in fissures within and between plagioclase grains consistently show negative δ30Si values - as low as -1.13 permil. Comparison with isotope studies at the soil and catchment scale suggests that the isotopic weathering signatures found in dissolved and particulate Si in rivers can be traced to processes operating at the micro scale. [1] Horn & von Blanckenburg, Spectrochimica Acta B. 62, 2007 [2] Steinhoefel et al., Chem. Geol. 286, 2011

  9. Biomedical research applications of electromagnetically separated enriched stable isotopes

    NASA Astrophysics Data System (ADS)

    Lambrecht, R. M.

    The current and projected annual requirements through 1985 for stable isotopes enriched by electromagnetic separation methods were reviewed for applications in various types of biomedical research: (1) medical radiosiotope production, labeled compounds, and potential radio-pharmaceuticals; (2) nutrition, food science, and pharmacology: (3) metallobiochemistry and environmental toxicology; (4) nuclear magnetic resonance, electron paramagnetic resonance, and moessbauer spectroscopy in biochemical, biophysical, and biomedical research; and (5) miscellaneous advances in radioactive and nonradioactive tracer technology. Radioisotopes available from commercial sources or routinely used in clinical nuclear medicine were excluded. Current requirements for enriched stable isotopes in biomedical research are not being satisfied. Severe shortages exist for Mg 26, Ca 43, Zn 70, Se 76, Se 77, Se 78, Pd 102, Cd 111, Cd 113, and Os 190. Many interesting and potentially important investigations in biomedical research require small quantities of specific elements at high isotopic enrichments.

  10. Stable Isotope Ratios as Biomarkers of Diet for Health Research

    PubMed Central

    O’Brien, Diane M.

    2016-01-01

    Diet is a leading modifiable risk factor for chronic disease, but it remains difficult to measure accurately due to the error and bias inherent in self-reported methods of diet assessment. Consequently there is a pressing need for more objective biomarkers of diet for use in health research. The stable isotope ratios of light elements are a promising set of candidate biomarkers because they vary naturally and reproducibly among foods, and those variations are captured in molecules and tissues with high fidelity. Recent studies have identified valid isotopic measures of short and long-term sugar intake, meat intake, and fish intake in specific populations. These studies provide a strong foundation for validating stable isotopic biomarkers in the general United States population. Approaches to improve specificity for specific foods are needed, for example, by modeling intake using multiple stable isotope ratios, or by isolating and measuring specific molecules linked to foods of interest. PMID:26048703

  11. Isotopic evidence of spatial magnitude of the Pb deposition near a lead smelter

    NASA Astrophysics Data System (ADS)

    Flament, P.; Franssens, M.; Debout, K.; Weis, D.

    2003-05-01

    In order to détermine the dry deposition of lead around a Pb-Zn refinery, two cross-sectional sampling experiments, using deposition plates, have been performed on a daiiy basis, ucder representative meteorological situations (north-easterly and south-westerly winds). The amount of lead deposited as well as its isotopic composition (expressed by the ^{206}Pb/^{207}Pb ratio) are systematically measured. For a daily production of approximately 670 metric tons of (Pb+Zn) the dry fallout, greater than 1000 μg Pb.h^{-1}.m^{-2} on the edge of the plant, falls to about 100 μg Pb.h^{-1}.m^{-2}, four kilometres away from the refinery. This value is still ten times higher than th urban background (<10 μg Pb.h^{-1}.m^{-2}). The spatial extension of the dry deposition plume is evidenced by the evolution of the isotopic signature of the refinery (1.10<^{206}Pb/^{207}), clearly distinct from the urban backgrounde signature (1.15<^{206}Pb/^{207}Pb<1.16). As a first estimate, the extension of the deposition plume seems not to be linked to the wind speed. At the opposite, diffuse emissions from slag heaps are related to this parameter.

  12. Pb isotope geochemistry of Piton de la Fournaise historical lavas

    NASA Astrophysics Data System (ADS)

    Vlastélic, Ivan; Deniel, Catherine; Bosq, Chantal; Télouk, Philippe; Boivin, Pierre; Bachèlery, Patrick; Famin, Vincent; Staudacher, Thomas

    2009-07-01

    Variations of Pb isotopes in historical lavas (1927-2007) from Piton de la Fournaise are investigated based on new (116 samples) and published (127 samples) data. Lead isotopic signal exhibits smooth fluctuations (18.87 < 206Pb/ 204Pb < 18.94) on which superimpose unradiogenic spikes ( 206Pb/ 204Pb down to 18.70). Lead isotopes are decoupled from 87Sr/ 86Sr and 143Nd/ 144Nd, which display small and barely significant variations, respectively. No significant change of Pb isotope composition occurred during the longest (> 3 years) periods of inactivity of the volcano (1939-1942, 1966-1972, 1992-1998), supporting previous inferences that Pb isotopic variations occur mostly during and not between eruptions. Intermediate compositions (18.904 < 206Pb/ 204Pb < 18.917) bracket the longest periods of quiescence. In this respect, the highly frequent occurrence of an intermediate composition (18.90 < 206Pb/ 204Pb < 18.91), which clearly defines an isotopic baseline during the most recent densely sampled period (1975-2007), either suggests direct sampling of plume melts or sampling of a voluminous magma reservoir that buffers Pb isotopic composition. Deviations from this prevalent composition occurred during well-defined time periods, namely 1977-1986 (radiogenic signature), 1986-1990 and 1998-2005 (unradiogenic signatures). The three periods display a progressive isotopic drift ending by a rapid return (mostly during a single eruption) to the isotopic baseline. The isotopic gradients could reflect progressive emptying of small magma reservoirs or magma conduits, which are expected to be more sensitive to wall-rock interactions than the main magma chamber. These gradients provide a lower bound ranging from 0.1 to 0.17 km 3 for the size of the shallow magma storage system. The isotopic shifts (March 1986, January 1990 and February 2005) are interpreted as refilling the plumbing system with deep melts that have not interacted with crustal components. The volume of magma erupted between the two major refilling events of March 1986 and February 2005 (0.28 km 3) could provide a realistic estimate of the magma reservoir size. Unradiogenic anomalies appear to be linked, more or less directly, to the eruption of olivine-rich lavas. The related samples have low 206Pb/ 204Pb and 208Pb/ 204Pb but normal 207Pb/ 204Pb, suggesting a recent decrease of U/Pb and Th/Pb, for instance through sequestration of Pb into sulfides. Olivine and sulfides, which are both denser than silicate melts, could be entrained with magma pulses, which give rise to high-flux oceanite eruptions.

  13. Lead and zinc dust depositions from ore trains characterised using lead isotopic compositions.

    PubMed

    Kristensen, L J; Taylor, M P; Morrison, A L

    2015-03-01

    This study investigates an unusual source of environmental lead contamination - the emission and deposition of lead and zinc concentrates along train lines into and out of Australia's oldest silver-lead-zinc mine at Broken Hill, Australia. Transport of lead and zinc ore concentrates from the Broken Hill mines has occurred for more than 125 years, during which time the majority was moved in uncovered rail wagons. A significant amount of ore was lost to the adjoining environments, resulting in soil immediately adjacent to train lines elevated with concentrations of lead (695 mg kg(-1)) and zinc (2230 mg kg(-1)). Concentrations of lead and zinc decreased away from the train line and also with depth shown in soil profiles. Lead isotopic compositions demonstrated the soil lead contained Broken Hill ore in increasing percentages closer to the train line, with up to 97% apportioned to the mined Broken Hill ore body. SEM examination showed ceiling dusts collected from houses along the train line were composed of unweathered galena particles, characteristic of the concentrate transported in the rail wagons. The loss of ore from the uncovered wagons has significantly extended the environmental footprint of contamination from local mining operations over an area extending hundreds of kilometres along each of the three train lines.

  14. Environmental and biomedical applications of natural metal stable isotope variations

    USGS Publications Warehouse

    Bullen, T.D.; Walczyk, T.

    2009-01-01

    etal stable isotopes are now being used to trace metal contaminants in the environment and as indicators of human systemic function where metals play a role. Stable isotope abundance variations provide information about metal sources and the processes affecting metals in complex natural systems, complementing information gained from surrogate tracers, such as metal abundance ratios or biochemical markers of metal metabolism. The science is still in its infancy, but the results of initial studies confirm that metal stable isotopes can provide a powerful tool for forensic and biomedical investigations.

  15. Membrane inlet laser spectroscopy to measure H and O stable isotope compositions of soil and sediment pore water with high sample throughput

    DOE PAGES

    Oerter, Erik J.; Perelet, Alexei; Pardyjak, Eric; ...

    2016-10-20

    Here, the fast and accurate measurement of H and O stable isotope compositions (δ 2H and δ 18O values) of soil and sediment pore water remains an impediment to scaling-up the application of these isotopes in soil and vadose hydrology. Here we describe a method and its calibration to measuring soil and sediment pore water δ 2H and δ 18O values using a water vapor-permeable probe coupled to an isotope ratio infrared spectroscopy analyzer.

  16. An Isotope-Powered Thermal Storage unit for space applications

    NASA Technical Reports Server (NTRS)

    Lisano, Michael E.; Rose, M. F.

    1991-01-01

    An Isotope-Powered Thermal Storage Unit (ITSU), that would store and utilize heat energy in a 'pulsed' fashion in space operations, is described. Properties of various radioisotopes are considered in conjunction with characteristics of thermal energy storage materials, to evaluate possible implementation of such a device. The utility of the unit is discussed in light of various space applications, including rocket propulsion, power generation, and spacecraft thermal management.

  17. The Effect of Phytase on the Oxygen Isotope Composition of Phosphate

    NASA Astrophysics Data System (ADS)

    von Sperber, C.; Tamburini, F.; Bernasconi, S. M.; Frossard, E.

    2013-12-01

    Plants and microorganisms under phosphorus (P) stress release extracellular phosphatases as a strategy to acquire inorganic phosphate (Pi) (1-2). These enzymes catalyze the hydrolysis of phosphoesters leading to a release of Pi. The enzymatic hydrolysis leads, via a nucleophilic attack, to the incorporation of one oxygen atom from the water into the newly formed Pi molecule. During the incorporation, an isotopic fractionation occurs, which might be used to identify the origin of Pi in the environment (3-6). While the effect of phosphomonoesterases and phosphodiesterases on the oxygen isotope composition of phosphate has been examined, there are, so far, no studies dealing with the effect of phytases (4-6). Phytases catalyze the hydrolysis of myo-inositol-hexakis-phosphate (IP6), which is an important component of organic P in many ecosystems (7). Enzymatic assays with phytase from wheat germ and Aspergillus niger were prepared under sterile and temperature controlled conditions in order to determine the effect of phytases on the oxygen isotope composition of phosphate, which has been liberated from IP6 via enzymatic hydrolysis. Assays with phytase from wheat germ lead to a turnover of the substrate close to 100%, while assays with phytase from Aspergillus niger lead to a turnover of the substrate close to 80%. In the case of the assays with phytase from wheat germ, our results indicate that one sixth of the total 24 oxygen which are associated to the phosphates in IP6 are exchanged with oxygen from water. From this we conclude that the incorporation of one oxygen atom from water occurs only at four phosphate molecules of IP6, while two phosphate molecules do not experience an incorporation of oxygen. This suggests that during the enzymatic hydrolysis, four P-O bonds and two C-O bonds are broken. Provided that, the isotopic fractionation can be calculated with an isotopic mass balance resulting in -8.4‰ (×3.6 SD). This is a value very similar to those reported for acid phosphatases (6). In contrast, the results from assays with phytase from Aspergillus niger indicate that the exchange of oxygen occurs at more than one third of the total 24 oxygen which are associated to the phosphates in IP6. In addition, we observe a change in the oxygen isotope composition of Pi when using myo-inositol and potassium-dihydrogen-phosphate as sole substrates in the enzymatic assays with phytase from Aspergillus niger. These observations suggest that the reformation of IP6 from the two products of the reaction (myo-inositol and Pi) is taking place at a rate, which is within the time scale of the experiment. In this case, the isotopic fractionation caused by phytase from Aspergillus niger will be determined by the equilibrium of the reaction. Further experiments are in process to verify these findings.

  18. Protein quantification using a cleavable reporter peptide.

    PubMed

    Duriez, Elodie; Trevisiol, Stephane; Domon, Bruno

    2015-02-06

    Peptide and protein quantification based on isotope dilution and mass spectrometry analysis are widely employed for the measurement of biomarkers and in system biology applications. The accuracy and reliability of such quantitative assays depend on the quality of the stable-isotope labeled standards. Although the quantification using stable-isotope labeled peptides is precise, the accuracy of the results can be severely biased by the purity of the internal standards, their stability and formulation, and the determination of their concentration. Here we describe a rapid and cost-efficient method to recalibrate stable isotope labeled peptides in a single LC-MS analysis. The method is based on the equimolar release of a protein reference peptide (used as surrogate for the protein of interest) and a universal reporter peptide during the trypsinization of a concatenated polypeptide standard. The quality and accuracy of data generated with such concatenated polypeptide standards are highlighted by the quantification of two clinically important proteins in urine samples and compared with results obtained with conventional stable isotope labeled reference peptides. Furthermore, the application of the UCRP standards in complex samples is described.

  19. Lead-203 as a label for radioimaging

    DOEpatents

    Srivastava, Suresh C.; Meinken, George E.

    1990-01-01

    A radiopharmaceutical composition comprising a radioactive isotope of lead (Pb-203) in combination with a pharmaceutical or an antibody or antibody fragment and a bifunctional chelating agent. These compositions are especially useful in the imaging and diagnosis of tumors and tumor metastases.

  20. Lead-203 as a label for radioimaging

    DOEpatents

    Srivastava, Suresh C.; Meinken, George E.

    1990-02-06

    A radiopharmaceutical composition comprising a radioactive isotope of lead (Pb-203) in combination with a pharmaceutical or an antibody or antibody fragment and a bifunctional chelating agent. These compositions are especially useful in the imaging and diagnosis of tumors and tumor metastases.

  1. Metal Stable Isotope Tagging: Renaissance of Radioimmunoassay for Multiplex and Absolute Quantification of Biomolecules.

    PubMed

    Liu, Rui; Zhang, Shixi; Wei, Chao; Xing, Zhi; Zhang, Sichun; Zhang, Xinrong

    2016-05-17

    The unambiguous quantification of biomolecules is of great significance in fundamental biological research as well as practical clinical diagnosis. Due to the lack of a detectable moiety, the direct and highly sensitive quantification of biomolecules is often a "mission impossible". Consequently, tagging strategies to introduce detectable moieties for labeling target biomolecules were invented, which had a long and significant impact on studies of biomolecules in the past decades. For instance, immunoassays have been developed with radioisotope tagging by Yalow and Berson in the late 1950s. The later languishment of this technology can be almost exclusively ascribed to the use of radioactive isotopes, which led to the development of nonradioactive tagging strategy-based assays such as enzyme-linked immunosorbent assay, fluorescent immunoassay, and chemiluminescent and electrochemiluminescent immunoassay. Despite great success, these strategies suffered from drawbacks such as limited spectral window capacity for multiplex detection and inability to provide absolute quantification of biomolecules. After recalling the sequences of tagging strategies, an apparent question is why not use stable isotopes from the start? A reasonable explanation is the lack of reliable means for accurate and precise quantification of stable isotopes at that time. The situation has changed greatly at present, since several atomic mass spectrometric measures for metal stable isotopes have been developed. Among the newly developed techniques, inductively coupled plasma mass spectrometry is an ideal technique to determine metal stable isotope-tagged biomolecules, for its high sensitivity, wide dynamic linear range, and more importantly multiplex and absolute quantification ability. Since the first published report by our group, metal stable isotope tagging has become a revolutionary technique and gained great success in biomolecule quantification. An exciting research highlight in this area is the development and application of the mass cytometer, which fully exploited the multiplexing potential of metal stable isotope tagging. It realized the simultaneous detection of dozens of parameters in single cells, accurate immunophenotyping in cell populations, through modeling of intracellular signaling network and undoubted discrimination of function and connection of cell subsets. Metal stable isotope tagging has great potential applications in hematopoiesis, immunology, stem cells, cancer, and drug screening related research and opened a post-fluorescence era of cytometry. Herein, we review the development of biomolecule quantification using metal stable isotope tagging. Particularly, the power of multiplex and absolute quantification is demonstrated. We address the advantages, applicable situations, and limitations of metal stable isotope tagging strategies and propose suggestions for future developments. The transfer of enzymatic or fluorescent tagging to metal stable isotope tagging may occur in many aspects of biological and clinical practices in the near future, just as the revolution from radioactive isotope tagging to fluorescent tagging happened in the past.

  2. Compelling Research Opportunities using Isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Isotopes are vital to the science and technology base of the US economy. Isotopes, both stable and radioactive, are essential tools in the growing science, technology, engineering, and health enterprises of the 21st century. The scientific discoveries and associated advances made as a result of the availability of isotopes today span widely from medicine to biology, physics, chemistry, and a broad range of applications in environmental and material sciences. Isotope issues have become crucial aspects of homeland security. Isotopes are utilized in new resource development, in energy from bio-fuels, petrochemical and nuclear fuels, in drug discovery, health care therapies andmore » diagnostics, in nutrition, in agriculture, and in many other areas. The development and production of isotope products unavailable or difficult to get commercially have been most recently the responsibility of the Department of Energy's Nuclear Energy program. The President's FY09 Budget request proposed the transfer of the Isotope Production program to the Department of Energy's Office of Science in Nuclear Physics and to rename it the National Isotope Production and Application program (NIPA). The transfer has now taken place with the signing of the 2009 appropriations bill. In preparation for this, the Nuclear Science Advisory Committee (NSAC) was requested to establish a standing subcommittee, the NSAC Isotope Subcommittee (NSACI), to advise the DOE Office of Nuclear Physics. The request came in the form of two charges: one, on setting research priorities in the short term for the most compelling opportunities from the vast array of disciplines that develop and use isotopes and two, on making a long term strategic plan for the NIPA program. This is the final report to address charge 1. NSACI membership is comprised of experts from the diverse research communities, industry, production, and homeland security. NSACI discussed research opportunities divided into three areas: (1) medicine, pharmaceuticals, and biology, (2) physical sciences and engineering, and (3) national security and other applications. In each area, compelling research opportunities were considered and the subcommittee as a whole determined the final priorities for research opportunities as the foundations for the recommendations. While it was challenging to prioritize across disciplines, our order of recommendations reflect the compelling research prioritization along with consideration of time urgency for action as well as various geopolitical market issues. Common observations to all areas of research include the needs for domestic availability of crucial stable and radioactive isotopes and the education of the skilled workforce that will develop new advances using isotopes in the future. The six recommendations of NSACI reflect these concerns and the compelling research opportunities for potential new discoveries. The science case for each of the recommendations is elaborated in the respective chapters.« less

  3. The electrooxidation mechanism of formic acid on platinum and on lead ad-atoms modified platinum studied with the kinetic isotope effect

    NASA Astrophysics Data System (ADS)

    Bełtowska-Brzezinska, M.; Łuczak, T.; Stelmach, J.; Holze, R.

    2014-04-01

    Kinetics and mechanism of formic acid (FA) oxidation on platinum and upd-lead ad-atoms modified platinum electrodes have been studied using unlabelled and deuterated compounds. Poisoning of the electrode surface by CO-like species was prevented by suppression of dissociative chemisorption of FA due to a fast competitive underpotential deposition of lead ad-atoms on the Pt surface from an acidic solution containing Pb2+ cations. Modification of the Pt electrode with upd lead induced a catalytic effect in the direct electrooxidation of physisorbed FA to CO2. With increasing degree of H/D substitution, the rate of this reaction decreased in the order: HCOOH > DCOOH ≥ HCOOD > DCOOD. HCOOH was oxidized 8.5-times faster on a Pt/Pb electrode than DCOOD. This primary kinetic isotope effect proves that the C-H- and O-H-bonds are simultaneously cleaved in the rate determining step. A secondary kinetic isotope effect was found in the dissociative chemisorption of FA in the hydrogen adsorption-desorption range on a bare Pt electrode after H/D exchange in the C-H bond, wherein the influence of deuterium substitution in the O-H group was negligibly small. Thus the C-H bond cleavage is accompanied by the C-OH and not the O-H bond split in the FA decomposition, producing CO-like species on the Pt surface sites.

  4. Global Security, Medical Isotopes, and Nuclear Science

    NASA Astrophysics Data System (ADS)

    Ahle, Larry

    2007-10-01

    Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241 Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R&D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities.

  5. Pb isotope signatures in the North Atlantic: initial results from the U.S. GEOTRACES North Atlantic Transect

    NASA Astrophysics Data System (ADS)

    Noble, A.; Echegoyen-Sanz, Y.; Boyle, E. A.

    2012-12-01

    This study presents Pb isotope data from the US GEOTRACES North Atlantic Transect (US-GT-NAT) sampled during two cruises that took place during Fall 2010 and 2011. Almost all of the Pb in the modern ocean is derived from anthropogenic sources, and the North Atlantic has received major Pb inputs from the United States and Europe due to emissions from leaded gasoline and high temperature industrial processes. During the past three decades, Pb fluxes to the North Atlantic have decreased following the phasing out of leaded gasoline in the United States and Europe. Following the concentrations and isotope ratios of Pb in this basin over time reveals the temporal evolution of Pb in this highly-affected basin. The Pb isotope signatures reflect the relative importance of changing inputs from the United States and Europe as leaded gasoline was phased out faster in the United States relative to Europe. In the western North Atlantic, a shallow (~100-200m) low Pb-206/Pb-207 ratio feature was observed near the Subtropical Underwater salinity peak at many stations across the transect, coincident with shallow subsurface maxima in Pb concentration. This water mass originates from high-salinity surface water near 25°N (Defant), which is in the belt of European-Pb-gas-contaminated African aerosols, which we confirmed by Pb-206/Pb-207 ~ 1.17 from upper ocean samples from US-GT-NAT station 18 (23.24degN,38.04degW). At the Mid-Atlantic Ridge station, Pb scavenging onto iron oxides and sulfide was observed by a decrease in Pb concentrations within the TAG hydrothermal plume, although the isotopic signature within the plume was slightly (~3 permil) lower than the surrounding waters possibly indicating a small contribution of hydrothermal Pb or preferential uptake of the lighter isotope. In the Mediteranean Outflow plume near Lisbon, Pb-206/Pb-207 (~1.178) is also strongly influenced by European Pb. Further results from the section will be presented as more data will be available by the conference.

  6. An MS-DOS-based program for analyzing plutonium gamma-ray spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruhter, W.D.; Buckley, W.M.

    1989-09-07

    A plutonium gamma-ray analysis system that operates on MS-DOS-based computers has been developed for the International Atomic Energy Agency (IAEA) to perform in-field analysis of plutonium gamma-ray spectra for plutonium isotopics. The program titled IAEAPU consists of three separate applications: a data-transfer application for transferring spectral data from a CICERO multichannel analyzer to a binary data file, a data-analysis application to analyze plutonium gamma-ray spectra, for plutonium isotopic ratios and weight percents of total plutonium, and a data-quality assurance application to check spectral data for proper data-acquisition setup and performance. Volume 3 contains the software listings for these applications.

  7. Graphic and algebraic solutions of the discordant lead-uranium age problem

    USGS Publications Warehouse

    Stieff, L.R.; Stern, T.W.

    1961-01-01

    Uranium-bearing minerals that give lead-uranium and lead-lead ages that are essentially in agreement, i.e. concordant, generally are considered to have had a relatively simple geologic history and to have been unaltered since their deposition. The concordant ages obtained on such materials are, therefore, assumed to approach closely the actual age of the minerals. Many uranium-bearing samples, particularly uranium ores, give the following discordant age sequences; Pb206 U238 < Pb207 U235 ??? Pb207 Pb206 or, less frequently, Pb207 Pb206 ??? Pb207 U235 < Pb206 U238. These discordant age sequences have been attributed most often to uncertainties in the common lead correction, selective loss of radio-active daughter products, loss or gain of lead or uranium, or contamination by an older generation of radiogenic lead. The evaluation of discordant lead isotope age data may be separated into two operations. The first operation, with which this paper is concerned, is mechanical in nature and involves the calculation of the different possible concordant ages corresponding to the various processes assumed to have produced the discordant ages. The second operation is more difficult to define and requires, in part, some personal judgement. It includes a synthesis of the possible concordant age solutions with other independent geologic and isotopic evidence. The concordant age ultimately chosen as most acceptable should be consistent not only with the known events in the geologic history of the area, the age relations of the enclosing rocks, and the mineralogic and paragenetic evidence, but also with other independent age measurements and the isotopic data obtained on the lead in related or associated non-radioactive minerals. The calculation of the possible concordant ages from discordant age data has been greatly simplified by Wetherill's graphical method of plotting the mole ratios of radiogenic Pb206 U238 ( N206 N238) vs. radiogenic Pb207 U235 ( N207 N235) after correcting for the contaminating common Pb206 and Pb207. The linear relationships noted in this graphical procedure have been extended to plots of the mole ratios of total Pb206 U238 ( tN206 N238) vs. total Pb207 U235 ( tN207 N235). This modification permits the calculation of concordant ages for unaltered samples using only the Pb207 Pb206 ratio of the contaminating common lead. If isotopic data are available for two samples of the same age, x and y, from the same or related deposits or outcrops, graphs of the normalized difference ratios [ ( N206 N204)x - ( N206 N204)y ( N238 N204)x -( N238 N204)y] vs. [ ( N207 N204)x - ( N207 N204)y ( N235 N204)x -( N235 N204)y] can give concordant ages corrected for unknown amounts of a common lead with an unknown Pb207/ Pb206 ratio. (If thorium is absent the difference ratios may be normalized with the more abundant index isotope, Pb208.) Similar plots of tho normalized, difference ratios for three genetically related samples (x - y) and(x - z), will give concordant ages corrected, in addition, for either one unknown period of past alteration or initial contamination by an older generation of radiogenic lead of unknown Pb207/Pb206 ratio. Practical numerical solutions for many of tho concordant age calculations are not currently available. However, the algebraic equivalents of these new graphical methods give equations which may be programmed for computing machines. For geologically probable parameters the equations of higher order have two positive real roots that rapidly converge on the exact concordant ages corrected for original radiogenic lead and for loss or gain of lead or uranium. Modifications of these general age equations expanded only to the second degree have been derived for use with desk calculators. These graphical and algebraic methods clearly suggest both the type and minimum number of samples necessary for adequate mathematical analysis of discordant lead isotope age data. This mathematical treatment also makes it clear t

  8. Intraspecific carbon and nitrogen isotopic variability in foxtail millet (Setaria italica).

    PubMed

    Lightfoot, Emma; Przelomska, Natalia; Craven, Martha; O Connell, Tamsin C; He, Lu; Hunt, Harriet V; Jones, Martin K

    2016-07-15

    Isotopic palaeodietary studies generally focus on bone collagen from human and/or animal remains. While plant remains are rarely analysed, it is known that plant isotope values can vary as a result of numerous factors, including soil conditions, the environment and type of plant. The millets were important food crops in prehistoric Eurasia, yet little is known about the isotopic differences within millet species. Here we compare the stable isotope ratios within and between Setaria italica plants grown in a controlled environment chamber. Using homogenised samples, we compare carbon isotope ratios of leaves and grains, and nitrogen isotope ratios of grains, from 29 accessions of Setaria italica. We find significant isotopic variability within single leaves and panicles, and between leaves and panicles within the same plant, which must be considered when undertaking plant isotope studies. We find that the leaves and grains from the different accessions have a ca 2‰ range in δ(13) C values, while the nitrogen isotope values in the grains have a ca 6‰ range. We also find an average offset of 0.9‰ between leaves and grains in their δ(13) C values. The variation found is large enough to have archaeological implications and within- and between-plant isotope variability should be considered in isotope studies. The range in δ(15) N values is particularly significant as it is larger than the typical values quoted for a trophic level enrichment, and as such may lead to erroneous interpretations of the amount of animal protein in human or animal diets. It is therefore necessary to account for the variability in plant stable isotope values during palaeodietary reconstructions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Stable Chlorine Isotope Study: Application to Early Solar System Materials

    NASA Technical Reports Server (NTRS)

    Mala,ira. M/; Nyquist, L. E.; Reese, Y.; Shih, C-Y; Fujitani, T.; Okano, O.

    2010-01-01

    A significantly large mass fractionation between two stable chlorine isotopes is expected during planetary processes In addition, in view of the isotopic heterogeneity of other light elements, the chlorine isotopes can potentially be used as a tracer for the origins and evolutionary processes of early solar system materials. Due to analytical difficulties, however, current chlorine isotope studies on planetary materials are quite controversial among IRMS (gas source mass spectrometry) and/or TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1-3]. Although a cross-calibration of IRMS and TIMS indicates that both techniques are sufficiently consistent with each other [4], some authors have claimed that the Cl-37/Cl-35 ratio of geological samples obtained by TIMS technique are, in general, misleadingly too high and variable compared to those of IRMS [3]. For example, almost no differences of Cl isotope composition were observed among mantle materials and carbonaceous meteorites by [3]. On the other hand, according to more recent IRMS work [2], significant Cl isotope variations are confirmed for mantle materials. Therefore, additional careful investigation of Cl isotope analyses are now required to confirm real chlorine isotope variations for planetary materials including carbonaceous chondrites [5]. A significantly large mass fractionation between two stable chlorine isotopes is expected during planetary processes In addition, in view of the isotopic heterogeneity of other light elements, the chlorine isotopes can potentially be used as a tracer for the origins and evolutionary processes of early solar system materials. Due to analytical difficulties, however, current chlorine isotope studies on planetary materials are quite controversial among IRMS (gas source mass spectrometry) and/or TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1-3]. Although a cross-calibration of IRMS and TIMS indicates that both techniques are sufficiently consistent with each other [4], some authors have claimed that the 37Cl/35Cl ratio of geological samples obtained by TIMS technique are, in general, misleadingly too high and variable compared to those of IRMS [3]. For eample, almost no differences of Cl isotope composition were observed among mantle materials and carbonaceous meteorites by [3]. On the other hand, according to more recent IRMS work [2], significant Cl isotope variations are confirmed for mantle materials. Therefore, additional careful investigation of Cl isotope analyses are now required to confirm real chlorine isotope variations for planetary materials including carbonaceous chondrites [5]. In order to clarify the stable chlorine isotope features of early solar system materials, we have initiated development of the TIMS technique at NASA JSC applicable to analysis of small amounts of meteoritic and planetary materials. We report here the current status of chlorine isotope analysis at NASA JSC.

  10. A lead isotope perspective on urban development in ancient Naples.

    PubMed

    Delile, Hugo; Keenan-Jones, Duncan; Blichert-Toft, Janne; Goiran, Jean-Philippe; Arnaud-Godet, Florent; Romano, Paola; Albarède, Francis

    2016-05-31

    The influence of a sophisticated water distribution system on urban development in Roman times is tested against the impact of Vesuvius volcanic activity, in particular the great eruption of AD 79, on all of the ancient cities of the Bay of Naples (Neapolis). Written accounts on urbanization outside of Rome are scarce and the archaeological record sketchy, especially during the tumultuous fifth and sixth centuries AD when Neapolis became the dominant city in the region. Here we show that isotopic ratios of lead measured on a well-dated sedimentary sequence from Neapolis' harbor covering the first six centuries CE have recorded how the AD 79 eruption was followed by a complete overhaul of Neapolis' water supply network. The Pb isotopic signatures of the sediments further reveal that the previously steady growth of Neapolis' water distribution system ceased during the collapse of the fifth century AD, although vital repairs to this critical infrastructure were still carried out in the aftermath of invasions and volcanic eruptions.

  11. A lead isotope perspective on urban development in ancient Naples

    PubMed Central

    Delile, Hugo; Keenan-Jones, Duncan; Goiran, Jean-Philippe; Arnaud-Godet, Florent; Romano, Paola; Albarède, Francis

    2016-01-01

    The influence of a sophisticated water distribution system on urban development in Roman times is tested against the impact of Vesuvius volcanic activity, in particular the great eruption of AD 79, on all of the ancient cities of the Bay of Naples (Neapolis). Written accounts on urbanization outside of Rome are scarce and the archaeological record sketchy, especially during the tumultuous fifth and sixth centuries AD when Neapolis became the dominant city in the region. Here we show that isotopic ratios of lead measured on a well-dated sedimentary sequence from Neapolis’ harbor covering the first six centuries CE have recorded how the AD 79 eruption was followed by a complete overhaul of Neapolis’ water supply network. The Pb isotopic signatures of the sediments further reveal that the previously steady growth of Neapolis’ water distribution system ceased during the collapse of the fifth century AD, although vital repairs to this critical infrastructure were still carried out in the aftermath of invasions and volcanic eruptions. PMID:27185923

  12. Advanced Laser-Compton Gamma-Ray Sources for Nuclear Materials Detection, Assay and Imaging

    NASA Astrophysics Data System (ADS)

    Barty, C. P. J.

    2015-10-01

    Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.

  13. Nuclear Forensics and Radiochemistry: Radiation Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rundberg, Robert S.

    Radiation detection is necessary for isotope identification and assay in nuclear forensic applications. The principles of operation of gas proportional counters, scintillation counters, germanium and silicon semiconductor counters will be presented. Methods for calibration and potential pitfalls in isotope quantification will be described.

  14. Elucidating Water Contamination by Fracturing Fluids and Formation Waters from Gas Wells: Integrating Isotopic and Geochemical Tracers

    EPA Pesticide Factsheets

    The objective of this presentation is to evaluate the potential and applicability of different geochemical and isotopic tracers for tracing the impacts of fracturing fluids and co-produced waters on water resources.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven Larson MD

    This project funded since 1986 serves as a core project for cancer research throughout MSKCC, producing key radiotracers as well as basic knowledge about thel physics of radiation decay and imaging, for nuclear medicine applications to cancer diagnosis and therapy. In recent years this research application has broadened to include experiments intended to lead to an improved understanding of cancer biology and into the discovery and testing of new cancer drugs. Advances in immune based radiotargeting form the basis for this project. Both antibody and cellular based immune targeting methods have been explored. The multi-step targeting methodologies (MST) developed bymore » NeoRex (Seattle,Washington), have been adapted for use with positron emitting isotopes and PET allowing the quantification and optimization of targeted delivery. In addition, novel methods for radiolabeling immune T-cells with PET tracers have advanced our ability to track these cells of prolonged period of time.« less

  16. Strontium and neodymium isotopic variations in early Archean gneisses affected by middle to late Archean high-grade metamorphic processes: West Greenland and Labrador

    NASA Technical Reports Server (NTRS)

    Collerson, K. D.; Mcculloch, M. T.; Bridgwater, D.; Mcgregor, V. R.; Nutman, A. P.

    1986-01-01

    Relicts of continental crust formed more than 3400 Ma ago are preserved fortuitously in most cratons. The cratons provide the most direct information about crust and mantle evolutionary processes during the first billion years of Earth history. In view of their polymetamorphic character, these terrains are commonly affected by subsequent tectonothermal events. Hence, their isotope systematics may be severely disturbed as a result of bulk chemical change or local isotopic homogenization. This leads to equivocal age and source information for different components within these terrains. The Sr and Nd isotopic data are presented for early Archean gneisses from the North Atlantic Craton in west Greenland and northern Labrador which were affected by younger metamorphic events.

  17. Asymptotic Analysis of Time-Dependent Neutron Transport Coupled with Isotopic Depletion and Radioactive Decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brantley, P S

    2006-09-27

    We describe an asymptotic analysis of the coupled nonlinear system of equations describing time-dependent three-dimensional monoenergetic neutron transport and isotopic depletion and radioactive decay. The classic asymptotic diffusion scaling of Larsen and Keller [1], along with a consistent small scaling of the terms describing the radioactive decay of isotopes, is applied to this coupled nonlinear system of equations in a medium of specified initial isotopic composition. The analysis demonstrates that to leading order the neutron transport equation limits to the standard time-dependent neutron diffusion equation with macroscopic cross sections whose number densities are determined by the standard system of ordinarymore » differential equations, the so-called Bateman equations, describing the temporal evolution of the nuclide number densities.« less

  18. Monitoring Lead (Pb) Pollution and Identifying Pb Pollution Sources in Japan Using Stable Pb Isotope Analysis with Kidneys of Wild Rats.

    PubMed

    Nakata, Hokuto; Nakayama, Shouta M M; Oroszlany, Balazs; Ikenaka, Yoshinori; Mizukawa, Hazuki; Tanaka, Kazuyuki; Harunari, Tsunehito; Tanikawa, Tsutomu; Darwish, Wageh Sobhy; Yohannes, Yared B; Saengtienchai, Aksorn; Ishizuka, Mayumi

    2017-01-10

    Although Japan has been considered to have little lead (Pb) pollution in modern times, the actual pollution situation is unclear. The present study aims to investigate the extent of Pb pollution and to identify the pollution sources in Japan using stable Pb isotope analysis with kidneys of wild rats. Wild brown ( Rattus norvegicus , n = 43) and black ( R. rattus , n = 98) rats were trapped from various sites in Japan. Mean Pb concentrations in the kidneys of rats from Okinawa (15.58 mg/kg, dry weight), Aichi (10.83), Niigata (10.62), Fukuoka (8.09), Ibaraki (5.06), Kyoto (4.58), Osaka (4.57), Kanagawa (3.42), and Tokyo (3.40) were above the threshold (2.50) for histological kidney changes. Similarly, compared with the previous report, it was regarded that even structural and functional kidney damage as well as neurotoxicity have spread among rats in Japan. Additionally, the possibility of human exposure to a high level of Pb was assumed. In regard to stable Pb isotope analysis, distinctive values of stable Pb isotope ratios (Pb-IRs) were detected in some kidney samples with Pb levels above 5.0 mg/kg. This result indicated that composite factors are involved in Pb pollution. However, the identification of a concrete pollution source has not been accomplished due to limited differences among previously reported values of Pb isotope composition in circulating Pb products. Namely, the current study established the limit of Pb isotope analysis for source identification. Further detailed research about monitoring Pb pollution in Japan and the demonstration of a novel method to identify Pb sources are needed.

  19. Shear heating and solid state diffusion: Constraints from clumped isotope thermometry in carbonate faults

    NASA Astrophysics Data System (ADS)

    Siman-Tov, S.; Affek, H. P.; Matthews, A.; Aharonov, E.; Reches, Z.

    2015-12-01

    Natural faults are expected to heat rapidly during seismic slip and to cool quite quickly after the event. Here we examine clumped isotope thermometry for its ability to identify short duration elevated temperature events along frictionally heated carbonate faults. This method is based on measured Δ47 values that indicate the relative atomic order of oxygen and carbon stable isotopes in the calcite lattice, which is affected by heat and thus can serve as a thermometer. We examine three types of calcite rock samples: (1) samples that were rapidly heated and then cooled in static laboratory experiments, simulating the temperature cycle experienced by fault rock during earthquake slip; (2) limestone samples that were experimentally sheared to simulate earthquake slip events; and (3) samples taken from principle slip zones of natural carbonate faults that likely experienced earthquake slip. Experimental results show that Δ47 values decrease rapidly (in the course of seconds) and systematically both with increasing temperature and shear velocity. On the other hand, carbonate shear zone from natural faults do not show such Δ47 reduction. We propose that the experimental Δ47 response is controlled by the presence of high-stressed nano-grains within the fault zone that can reduce the activation energy for diffusion by up to 60%, and thus lead to an increased rate of solid-state diffusion in the experiments. However, the lowering of activation energy is a double-edged sword in terms of clumped isotopes: In laboratory experiments, it allows for rapid disordering so that isotopic signal appears after very short heating, but in natural faults it also leads to relatively fast isotopic re-ordering after the cessation of frictional heating, thus erasing the high temperature signature in Δ47 values within relatively short geological times (<1 Ma).

  20. Monitoring Lead (Pb) Pollution and Identifying Pb Pollution Sources in Japan Using Stable Pb Isotope Analysis with Kidneys of Wild Rats

    PubMed Central

    Nakata, Hokuto; Nakayama, Shouta M. M.; Oroszlany, Balazs; Ikenaka, Yoshinori; Mizukawa, Hazuki; Tanaka, Kazuyuki; Harunari, Tsunehito; Tanikawa, Tsutomu; Darwish, Wageh Sobhy; Yohannes, Yared B.; Saengtienchai, Aksorn; Ishizuka, Mayumi

    2017-01-01

    Although Japan has been considered to have little lead (Pb) pollution in modern times, the actual pollution situation is unclear. The present study aims to investigate the extent of Pb pollution and to identify the pollution sources in Japan using stable Pb isotope analysis with kidneys of wild rats. Wild brown (Rattus norvegicus, n = 43) and black (R. rattus, n = 98) rats were trapped from various sites in Japan. Mean Pb concentrations in the kidneys of rats from Okinawa (15.58 mg/kg, dry weight), Aichi (10.83), Niigata (10.62), Fukuoka (8.09), Ibaraki (5.06), Kyoto (4.58), Osaka (4.57), Kanagawa (3.42), and Tokyo (3.40) were above the threshold (2.50) for histological kidney changes. Similarly, compared with the previous report, it was regarded that even structural and functional kidney damage as well as neurotoxicity have spread among rats in Japan. Additionally, the possibility of human exposure to a high level of Pb was assumed. In regard to stable Pb isotope analysis, distinctive values of stable Pb isotope ratios (Pb-IRs) were detected in some kidney samples with Pb levels above 5.0 mg/kg. This result indicated that composite factors are involved in Pb pollution. However, the identification of a concrete pollution source has not been accomplished due to limited differences among previously reported values of Pb isotope composition in circulating Pb products. Namely, the current study established the limit of Pb isotope analysis for source identification. Further detailed research about monitoring Pb pollution in Japan and the demonstration of a novel method to identify Pb sources are needed. PMID:28075384

  1. Isotopic data for Late Cretaceous intrusions and associated altered and mineralized rocks in the Big Belt Mountains, Montana

    USGS Publications Warehouse

    du Bray, Edward A.; Unruh, Daniel M.; Hofstra, Albert H.

    2017-03-07

    The quartz monzodiorite of Mount Edith and the concentrically zoned intrusive suite of Boulder Baldy constitute the principal Late Cretaceous igneous intrusions hosted by Mesoproterozoic sedimentary rocks of the Newland Formation in the Big Belt Mountains, Montana. These calc-alkaline plutonic masses are manifestations of subduction-related magmatism that prevailed along the western edge of North America during the Cretaceous. Radiogenic isotope data for neodymium, strontium, and lead indicate that the petrogenesis of the associated magmas involved a combination of (1) sources that were compositionally heterogeneous at the scale of the geographically restricted intrusive rocks in the Big Belt Mountains and (2) variable contamination by crustal assimilants also having diverse isotopic compositions. Altered and mineralized rocks temporally, spatially, and genetically related to these intrusions manifest at least two isotopically distinct mineralizing events, both of which involve major inputs from spatially associated Late Cretaceous igneous rocks. Alteration and mineralization of rock associated with the intrusive suite of Boulder Baldy requires a component characterized by significantly more radiogenic strontium than that characteristic of the associated igneous rocks. However, the source of such a component was not identified in the Big Belt Mountains. Similarly, altered and mineralized rocks associated with the quartz monzodiorite of Mount Edith include a component characterized by significantly more radiogenic strontium and lead, particularly as defined by 207Pb/204Pb values. The source of this component appears to be fluids that equilibrated with proximal Newland Formation rocks. Oxygen isotope data for rocks of the intrusive suite of Boulder Baldy are similar to those of subduction-related magmatism that include mantle-derived components; oxygen isotope data for altered and mineralized equivalents are slightly lighter.

  2. Sulfur and oxygen isotope fractionation during benzene, toluene, ethyl benzene, and xylene degradation by sulfate-reducing bacteria.

    PubMed

    Knöller, Kay; Vogt, Carsten; Richnow, Hans-Herrmann; Weise, Stephan M

    2006-06-15

    We examined the oxygen and sulfur isotope fractionation of sulfate during anaerobic degradation of toluene by sulfate-reducing bacteria in culture experiments with Desulfobacula toluolica as a type strain and with an enrichment culture Zz5-7 obtained from a benzene, toluene, ethylbenzene, and xylene (BTEX)-contaminated aquifer. Sulfur isotope fractionation can show considerable variation upon sulfate reduction and may react extremely sensitively to changes in environmental conditions. In contrast, oxygen isotope fractionation seems to be less sensitive to environmental changes. Our results clearly indicate that oxygen isotope fractionation is dominated by isotope exchange with ambient water. To verify our experimental results and to test the applicability of oxygen and sulfur isotope investigations under realistic field conditions, we evaluated isotope data from two BTEX-contaminated aquifers presented in the recent literature. On a field scale, bacterial sulfate reduction may be superimposed by processes such as dispersion, adsorption, reoxidation, or mixing. The dual isotope approach enables the identification of such sulfur transformation processes. This identification is vital for a general qualitative evaluation of the natural attenuation potential of the contaminated aquifer.

  3. High-precision lead isotopes and stripy plumes: Revisiting the Society chain in French Polynesia

    NASA Astrophysics Data System (ADS)

    Cordier, Carole; Chauvel, Catherine; Hémond, Christophe

    2016-09-01

    An increasing number of geochemical studies looked for spatial organization of the isotopic variations along Pacific volcanic island chains (e.g., Hawaii, Marquesas, Samoa and Society Islands) in order to discuss the possible zoning of the plume conduits. Here, we reexamine the occurrence of isotopic stripes in the Society archipelago in French Polynesia, using new Sr-Nd-Hf-Pb isotope ratios of sixty-six lavas from six islands (Mehetia, Moorea, Maupiti, Huahine, Raiatea, Bora-Bora). We demonstrate that the Pb isotope variability observed using literature data is an analytical artifact related to the poor control of mass fractionation during Pb measurements by conventional TIMS technique. New MC-ICP-MS Pb data demonstrate that the isotopic stripes as previously defined disappear. They rather show that individual islands cover a significant part of the entire isotopic range of the chain. We suggest, therefore, that the dominant characteristic of the Society plume is small-scale heterogeneities, evenly distributed within the plume conduit. At a global scale, we show that some ocean island chains with similar geochemical and isotopic characteristics, such as Samoa and Society Islands, define different arrays when variations of Nd with high-precision Pb isotopes are considered. We proposed that this puzzling observation might record differences in recycling age of the basalt + sediment mixture subducted into the mantle and sampled by mantle plume.

  4. Review of pollutant lead decline in urban air and human blood: A case study from northwestern Europe

    NASA Astrophysics Data System (ADS)

    Petit, Daniel; Véron, Alain; Flament, Pascal; Deboudt, Karine; Poirier, André

    2015-09-01

    A review of the transient decline of pollutant lead in the air (PbA) and the blood (PbB) has been conducted in order to assess the relationship between these environmental reservoirs. We have demonstrated that PbA decreased 20 to 100 times more than PbB for the past 30 years, suggesting another significant intake besides airborne lead to explain lead accumulated in humans. This trend has also been observed in two blood surveys we have completed in 1976-1978 and 2008-2009 in northern France and Belgium. Nowadays, the mean PbB (1.5-3.5 μg/dL) remains at least 100 times higher than the estimated non-contaminated PbB. Lead isotope imprints in blood could help decipher specific contamination cases, and were coherent with the decline of PbA, but could not help discriminate the source of blood lead owing to the lack of source imprints, especially from dietary intakes. Correlations between recent PbB, isotopic imprints and the age of the subjects suggested that lead released from bones has become a significant source of lead in blood. The significant cause for human exposure to lead may have shifted from direct pollutant lead input accumulated in exogenous reservoirs (air and diet) to endogenous lead release from bone tissues consequential to metabolic calcium homeostasis and bone turnover.

  5. D/H Ratios in Lipids as a Tool to Elucidate Microbial Metabolism

    NASA Astrophysics Data System (ADS)

    Wijker, R. S.; Sessions, A. L.

    2015-12-01

    Large D/H fractionations have been observed in the lipids and growth water of most organisms studied today. These fractionations have generally been assumed to be constant across most biota because they originate solely from isotope effects imposed by the highly conserved lipid biosynthetic pathway. Recent data is illustrating this conclusion as incomplete. Lipids from field and laboratory samples exhibit huge variations in D/H fractionation. In environmental samples, lipids vary in δD by up to 300 ‰ and in laboratory cultures the documented variation is up to 500 ‰ within the same organism. Remarkably, the isotope fractionation appears to be correlated with the type of metabolism employed by the host organism. However, the underlying biochemical mechanisms leading to these isotopic variations are not yet fully understood. Because the largest proportion of H-bound C in fatty acids is derived directly from NADPH during biosynthesis, the original hypothesis was that large differences in the isotopic composition of NADPH, generated by different central metabolic pathways, were the primary source of D/H variation in lipids. However, recent observations indicate that this cannot be the whole story and lead us to the conclusion that additional processes must affect the isotope composition of NADPH. These processes may include the isotopic exchange of NADPH with water as well as fractionation of NADPH by transhydrogenases, interconverting NADH to NADPH by exhibiting large isotope effects. In this project, our objective is to ascertain whether D/H fractionation and these biochemical processes are correlated. We investigate correlations between cellular NADPH/NADP+ as well as NADH/NAD+ pool sizes and the D/H fractionation in a set of different microorganisms and will present the first trends here. Our results will contribute to a more comprehensive understanding of the basic biological regulations over D/H fractionation and potentially enables their use as tracers and proxies across earth and biological sciences.

  6. D/H Ratios in Lipids as a Tool to Elucidate Microbial Metabolism

    NASA Astrophysics Data System (ADS)

    Wijker, Reto S.; Sessions, Alex L.

    2016-04-01

    Large D/H fractionations have been observed in the lipids and growth water of most organisms studied today. These fractionations have generally been assumed to be constant across most biota because they originate solely from isotope effects imposed by the highly conserved lipid biosynthetic pathway. Recent data is illustrating this conclusion as incomplete. Lipids from field and laboratory samples exhibit huge variations in D/H fractionation. In environmental samples, lipids vary in δD by up to 300 ‰ and in laboratory cultures the documented variation is up to 500 ‰ within the same organism. Remarkably, the isotope fractionation appears to be correlated with the type of metabolism employed by the host organism. However, the underlying biochemical mechanisms leading to these isotopic variations are not yet fully understood. Because the largest proportion of H-bound C in fatty acids is derived directly from NADPH during biosynthesis, the original hypothesis was that large differences in the isotopic composition of NADPH, generated by different central metabolic pathways, were the primary source of D/H variation in lipids. However, recent observations indicate that this cannot be the whole story and lead us to the conclusion that additional processes must affect the isotope composition of NADPH. These processes may include the isotopic exchange of NADPH with water as well as fractionation of NADPH by transhydrogenases, interconverting NADH to NADPH by exhibiting large isotope effects. In this project, our objective is to ascertain whether D/H fractionation and these biochemical processes are correlated. We investigate correlations between cellular NADPH/NADP+ as well as NADH/NAD+ pool sizes and the D/H fractionation in a set of different microorganisms and will present the trends here. Our results will contribute to a more comprehensive understanding of the basic biological regulations over D/H fractionation and potentially enables their use as tracers and proxies across earth and biological sciences.

  7. Nitrate dynamics in natural plants: insights based on the concentration and natural isotope abundances of tissue nitrate

    PubMed Central

    Liu, Xue-Yan; Koba, Keisuke; Makabe, Akiko; Liu, Cong-Qiang

    2014-01-01

    The dynamics of nitrate (NO−3), a major nitrogen (N) source for natural plants, has been studied mostly through experimental N addition, enzymatic assay, isotope labeling, and genetic expression. However, artificial N supply may not reasonably reflect the N strategies in natural plants because NO−3 uptake and reduction may vary with external N availability. Due to abrupt application and short operation time, field N addition, and isotopic labeling hinder the elucidation of in situ NO−3-use mechanisms. The concentration and natural isotopes of tissue NO−3 can offer insights into the plant NO−3 sources and dynamics in a natural context. Furthermore, they facilitate the exploration of plant NO−3 utilization and its interaction with N pollution and ecosystem N cycles without disturbing the N pools. The present study was conducted to review the application of the denitrifier method for concentration and isotope analyses of NO−3 in plants. Moreover, this study highlights the utility and advantages of these parameters in interpreting NO−3 sources and dynamics in natural plants. We summarize the major sources and reduction processes of NO−3 in plants, and discuss the implications of NO−3 concentration in plant tissues based on existing data. Particular emphasis was laid on the regulation of soil NO−3 and plant ecophysiological functions in interspecific and intra-plant NO−3 variations. We introduce N and O isotope systematics of NO−3 in plants and discuss the principles and feasibilities of using isotopic enrichment and fractionation factors; the correlation between concentration and isotopes (N and O isotopes: δ18O and Δ17O); and isotope mass-balance calculations to constrain sources and reduction of NO−3 in possible scenarios for natural plants are deliberated. Finally, we offer a preliminary framework of intraplant δ18O-NO−3 variation, and summarize the uncertainties in using tissue NO−3 parameters to interpret plant NO−3 utilization. PMID:25101106

  8. Nitrate dynamics in natural plants: insights based on the concentration and natural isotope abundances of tissue nitrate.

    PubMed

    Liu, Xue-Yan; Koba, Keisuke; Makabe, Akiko; Liu, Cong-Qiang

    2014-01-01

    The dynamics of nitrate (NO(-) 3), a major nitrogen (N) source for natural plants, has been studied mostly through experimental N addition, enzymatic assay, isotope labeling, and genetic expression. However, artificial N supply may not reasonably reflect the N strategies in natural plants because NO(-) 3 uptake and reduction may vary with external N availability. Due to abrupt application and short operation time, field N addition, and isotopic labeling hinder the elucidation of in situ NO(-) 3-use mechanisms. The concentration and natural isotopes of tissue NO(-) 3 can offer insights into the plant NO(-) 3 sources and dynamics in a natural context. Furthermore, they facilitate the exploration of plant NO(-) 3 utilization and its interaction with N pollution and ecosystem N cycles without disturbing the N pools. The present study was conducted to review the application of the denitrifier method for concentration and isotope analyses of NO(-) 3 in plants. Moreover, this study highlights the utility and advantages of these parameters in interpreting NO(-) 3 sources and dynamics in natural plants. We summarize the major sources and reduction processes of NO(-) 3 in plants, and discuss the implications of NO(-) 3 concentration in plant tissues based on existing data. Particular emphasis was laid on the regulation of soil NO(-) 3 and plant ecophysiological functions in interspecific and intra-plant NO(-) 3 variations. We introduce N and O isotope systematics of NO(-) 3 in plants and discuss the principles and feasibilities of using isotopic enrichment and fractionation factors; the correlation between concentration and isotopes (N and O isotopes: δ(18)O and Δ(17)O); and isotope mass-balance calculations to constrain sources and reduction of NO(-) 3 in possible scenarios for natural plants are deliberated. Finally, we offer a preliminary framework of intraplant δ(18)O-NO(-) 3 variation, and summarize the uncertainties in using tissue NO(-) 3 parameters to interpret plant NO(-) 3 utilization.

  9. Forensic applications of nitrogen and oxygen isotopes in tracing nitrate sources in urban environments

    USGS Publications Warehouse

    Silva, S.R.; Ging, P.B.; Lee, R.W.; Ebbert, J.C.; Tesoriero, A.J.; Inkpen, E.L.

    2002-01-01

    Ground and surface waters in urban areas are susceptible to nitrate contamination from septic systems, leaking sewer lines, and fertilizer applications. Source identification is a primary step toward a successful remediation plan in affected areas. In this respect, nitrogen and oxygen isotope ratios of nitrate, in conjunction with hydrologic data and water chemistry, have proven valuable in urban studies from Austin, Texas, and Tacoma, Washington. In Austin, stream water was sampled during stremflow and baseflow conditions to assess surface and subsurface sources of nitrate, respectively. In Tacoma, well waters were sampled in adjacent sewered and un-sewered areas to determine if locally high nitrate concentrations were caused by septic systems in the un-sewered areas. In both studies, sewage was identified as a nitrate source and mixing between sewage and other sources of nitrate was apparent. In addition to source identification, combined nitrogen and oxygen isotopes were important in determining the significance of denitrification, which can complicate source assessment by reducing nitrate concentrations and increasing ??15N values. The two studies illustrate the value of nitrogen and oxygen isotopes of nitrate for forensic applications in urban areas. ?? Published by Elsevier Science Ltd. on behalf of AEHS.

  10. Isotopic Discrimination of Perchlorate Sources in Ground Water

    NASA Astrophysics Data System (ADS)

    Bohlke, J.; Hatzinger, P. B.; Sturchio, N. C.; Gu, B.; Jackson, W. A.; Abbene, I. J.

    2007-12-01

    Perchlorate has been detected in ground water and drinking water in many areas of the U.S. during the past decade. Sources of potential perchlorate enrichment in ground water include releases from past military activities, fireworks manufacture and display, fertilizer applications, discarded road flares, and local atmospheric deposition. Here we present analyses of stable isotopes (δ37Cl, δ18O, and Δ17O) of dissolved perchlorate, along with other supporting environmental tracer data, from selected occurrences in ground water in the U.S. The isotope data indicate that both synthetic and natural perchlorate are present in ground water, and that multiple sources are present locally in some areas. The sampled ground waters generally were oxic and the perchlorate isotopes generally were not affected substantially by biodegradation. In some areas, natural perchlorate, with Δ17O = +7 to +10 ‰, can be attributed to agricultural applications of atmospherically derived natural nitrate fertilizer imported from South America (Atacama Desert, Chile). In at least one agricultural area in New York, concentrations of perchlorate increase with depth and ground-water age, possibly because of decreasing application rates of Atacama nitrate fertilizer and(or) decreasing perchlorate concentrations in the imported fertilizer products in recent years.

  11. Three centuries of heavy metal pollution in Paris (France) recorded by urban speleothems.

    PubMed

    Pons-Branchu, Edwige; Ayrault, Sophie; Roy-Barman, Matthieu; Bordier, Louise; Borst, Wolfgang; Branchu, Philippe; Douville, Eric; Dumont, Emmanuel

    2015-06-15

    The first record of urban speleothems used to reconstruct the history of heavy metal pollution of shallow groundwaters is presented. Two speleothems grew during the last 300 years in an underground aqueduct in the north-eastern part of Paris. They display high Pb, Mn V, Cu, Cd and Al concentrations since 1900 due to the urbanization of the site which triggered anthropogenic contamination of the water feeding the speleothems. Surprisingly, these heavy metal concentrations are also high in the oldest part. This early pollution could come from the use of Parisian waste as fertilizers in the orchards and vineyards cultivated above the aqueduct before urbanization. Lead isotopes were measured in these carbonates as well as in lead artifacts from the 17th-18th centuries ((206)Pb/(207)Pb=1.180+/-0.003). The mean (206)Pb/(207)Pb ratio, for one of the speleothems is 1.181+/-0.003 unvarying with time. These lead signatures are close to those of coal and old lead from northern European mines, lower than the natural background signature. It confirms that the high metal concentrations found come from anthropogenic pollution. Conversely, the lead isotopic composition of the second speleothem presents two temporal trends: for the oldest levels, the mean value (1.183+/-0.003) is similar to the first speleothem. For the youngest part, a lower value (1.172+/-0.005) is recorded, evidencing the contribution of a new lead source at the beginning of the industrial revolution. Pb isotopes were also measured in recent samples from a nearby superficial site. The first sample is a recent (AD 1975+/-15 years) deposit ((206)Pb/(207)Pb=1.148+/-0.003), and the second, a thin subactual layer ((206)Pb/(207)Pb=1.181+/-0.002). These data are compatible with the adding of anthropogenic sources (leaded gasoline and industrial lead from Rio Tinto ore). Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Calcium Isotope Analysis by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Boulyga, S.; Richter, S.

    2010-12-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. This presentation discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. Additionally, the availability of Ca isotope reference materials will be discussed.

  13. The Sensitivity of Atmospheric Water Isotopes to Entrainment and Precipitation Efficiency in a Bulk Plume Model of Convection

    NASA Astrophysics Data System (ADS)

    Duan, S.; Wright, J. S.; Romps, D. M.

    2016-12-01

    Atmospheric water isotopes have been proposed as potentially powerful constraints on the physics of convective clouds and parameterizations of convective processes in models. We have previously derived an analytical model of water vapor (H2O) and one of its heavy isotopes (HDO) in convective environments based on a bulk-plume convective water budget in radiative convective equilibrium. This analytical model provides a useful starting point for examining the joint responses of water vapor and its isotopic composition to changes in convective parameters; however, certain idealistic assumptions are required to make the model analytically solvable. Here, we develop a more flexible numerical framework that enables a wider range of model configurations and includes additional isotopic tracers. This model provides a bridge between Rayleigh distillation, which is simple but inflexible, and more complicated convection schemes and cloud resolving models, which are more realistic but also more difficult to perturb and interpret. Application of realistic in-cloud water profiles in our model produces vertical distributions of δD that qualitatively match satellite observations from the Tropospheric Emission Spectrometer (TES). We test the sensitivity of water vapor and its isotopic composition to a wide range of perturbations in the model parameters and their vertical profiles. In this presentation, we focus especially on establishing constraints for convective entrainment and precipitation efficiency. We conclude by discussing the potential application of this model as part of a larger water isotope toolkit for use with offline diagnostics provided by reanalyses and GCMs.

  14. Compound-specific isotope analysis as a tool to characterize biodegradation of ethylbenzene.

    PubMed

    Dorer, Conrad; Vogt, Carsten; Kleinsteuber, Sabine; Stams, Alfons J M; Richnow, Hans-Hermann

    2014-08-19

    This study applied one- and two-dimensional compound-specific isotope analysis (CSIA) for the elements carbon and hydrogen to assess different means of microbial ethylbenzene activation. Cultures incubated under nitrate-reducing conditions showed significant carbon and highly pronounced hydrogen isotope fractionation of comparable magnitudes, leading to nearly identical slopes in dual-isotope plots. The results imply that Georgfuchsia toluolica G5G6 and an enrichment culture dominated by an Azoarcus species activate ethylbenzene by anaerobic hydroxylation catalyzed by ethylbenzene dehydrogenase, similar to Aromatoleum aromaticum EbN1. The isotope enrichment pattern in dual plots from two strictly anaerobic enrichment cultures differed considerably from those for benzylic hydroxylation, indicating an alternative anaerobic activation step, most likely fumarate addition. Large hydrogen fractionation was quantified using a recently developed Rayleigh-based approach considering hydrogen atoms at reactive sites. Data from nine investigated microbial cultures clearly suggest that two-dimensional CSIA in combination with the magnitude of hydrogen isotope fractionation is a valuable tool to distinguish ethylbenzene degradation and may be of practical use for monitoring natural or technological remediation processes at field sites.

  15. High Resolution Gamma Ray Analysis of Medical Isotopes

    NASA Astrophysics Data System (ADS)

    Chillery, Thomas

    2015-10-01

    Compton-suppressed high-purity Germanium detectors at the University of Massachusetts Lowell have been used to study medical radioisotopes produced at Brookhaven Linac Isotope Producer (BLIP), in particular isotopes such as Pt-191 used for cancer therapy in patients. The ability to precisely analyze the concentrations of such radio-isotopes is essential for both production facilities such as Brookhaven and consumer hospitals across the U.S. Without accurate knowledge of the quantities and strengths of these isotopes, it is possible for doctors to administer incorrect dosages to patients, thus leading to undesired results. Samples have been produced at Brookhaven and shipped to UML, and the advanced electronics and data acquisition capabilities at UML have been used to extract peak areas in the gamma decay spectra. Levels of Pt isotopes in diluted samples have been quantified, and reaction cross-sections deduced from the irradiation parameters. These provide both cross checks with published work, as well as a rigorous quantitative framework with high quality state-of-the-art detection apparatus in use in the experimental nuclear physics community.

  16. A Bat's-Eye View of Holocene Climate Change in the Southwest: Resolving Ambiguities in Cave Isotopic Records

    NASA Astrophysics Data System (ADS)

    Cole, J. E.; Truebe, S. A.; Harrington, M. D.; Woodhead, J. D.; Overpeck, J. T.; Hlohowskyj, S.; Henderson, G. M.

    2015-12-01

    In dry environments, speleothems provide an outstanding archive of information on past climate change, particularly since lakes are typically absent or intermittent. Speleothem stable isotopes are widely used for climate reconstruction, but the isotope-climate relationship is complex in arid-region precipitation, and within-cave processes further complicate climate interpretations. Our isotope results from 3 southeastern Arizona caves, spanning the past 3.5-12 kyr, collectively indicate a weakening monsoon from 7kyr to present. These records exhibit substantial multidecadal-multicentury variability that is sometimes shared, and sometimes independent among caves. Strategies to overcome ambiguities in isotope records include long-term monitoring of cave dripwaters, multi-site comparisons, and multiproxy measurements. Monthly dripwater measurements from two caves spanning several years highlight substantial seasonal biases that create distinct differences in the climate sensitivity of individual cave records. These biases can lead to lack of correlation between records, but also creates opportunities for seasonally specific moisture reconstructions. New preliminary analyses suggest that elemental data can help to unravel the multivariate signal contained in speleothem oxygen isotope records.

  17. Heterogenous Oxygen Isotopic Composition of a Complex Wark-Lovering Rim and the Margin of a Refractory Inclusion from Leoville

    NASA Technical Reports Server (NTRS)

    Simon, J. I.; Matzel, J. E. P.; Simon, S. B.; Weber, P. K.; Grossman, L.; Ross, D. K.; Hutcheon, I. D.

    2014-01-01

    Wark-Lovering (WL) rims [1] surrounding many refractory inclusions represent marker events in the early evolution of the Solar System in which many inclusions were exposed to changes in pressure [2], temperature [3], and isotopic reservoirs [4-7]. The effects of these events can be complex, not only producing mineralogical variability of WL rims [2], but also leading to mineralogical [8-10] and isotopic [7, 11, 12] changes within inclusion interiors. Extreme oxygen isotopic heterogeneity measured in CAIs has been explained by mixing between distinct oxygen gas reservoirs in the nebula [13]. Some WL rims contain relatively simple mineral layering and/or are isotopically homogeneous [14, 15]. As part of a larger effort to document and understand the modifications observed in some CAIs, an inclusion (L6) with a complex WL rim from Leoville, a member of the reduced CV3 subgroup was studied. Initial study of the textures and mineral chemistry was presented by [16]. Here we present NanoSIMS oxygen isotopic measurements to complement these petrologic observations.

  18. Isotopic excesses of proton-rich nuclei related to space weathering observed in a gas-rich meteorite Kapoeta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hidaka, Hiroshi; Yoneda, Shigekazu, E-mail: hidaka@hiroshima-u.ac.jp, E-mail: s-yoneda@kahaku.go.jp

    2014-05-10

    The idea that solar system materials were irradiated by solar cosmic rays from the early Sun has long been suggested, but is still questionable. In this study, Sr, Ba, Ce, Nd, Sm, and Gd isotopic compositions of sequential acid leachates from the Kapoeta meteorite (howardite) were determined to find systematic and correlated variations in their isotopic abundances of proton-rich nuclei, leading to an understanding of the irradiation condition by cosmic rays. Significantly large excesses of proton-rich isotopes (p-isotopes), {sup 84}Sr, {sup 130}Ba, {sup 132}Ba, {sup 136}Ce, {sup 138}Ce, and {sup 144}Sm, were observed, particularly in the first chemical separate, whichmore » possibly leached out of the very shallow layer within a few μm from the surface of regolith grains in the sample. The results reveal the production of p-isotopes through the interaction of solar cosmic rays with the superficial region of the regolith grains before the formation of the Kapoeta meteorite parent body, suggesting strong activity in the early Sun.« less

  19. Tracing Cd, Zn and Pb pollution sources in bivalves using isotopes

    NASA Astrophysics Data System (ADS)

    Shiel, A. E.; Weis, D. A.; Orians, K. J.

    2010-12-01

    In a multi-tracer study, Cd, Zn and Pb isotopes (MC-ICP-MS) and elemental concentrations (HR-ICP-MS) are evaluated as tools to distinguish between natural and anthropogenic sources of these metals in bivalves from western Canada (British Columbia), the eastern USA, Hawaii and France. High Cd concentrations found in BC oysters have elicited economic and health concerns. The source of these high Cd levels is unknown but thought to be largely natural. High Cd levels in BC oysters are largely attributed to the natural upwelling of Cd-rich intermediate waters in the North Pacific as the δ114/110Cd (-0.69 to -0.09‰) and δ66/64Zn (0.28 to 0.36‰) values of BC oysters fall within the range reported for North Pacific seawater. Different contributions from anthropogenic sources account for the variability of Cd isotopic compositions of BC oysters; the lightest of these oysters are from the BC mainland. These oysters also have Pb isotopic compositions that reflect primarily anthropogenic sources (e.g., leaded and unleaded automotive gasoline and smelting of Pb ores, potentially historical). On the contrary, USA East Coast bivalves exhibit relatively light Cd isotopic compositions (δ114/110Cd = -1.20 to -0.54‰; lighter than reported for North Atlantic seawater) due to the high prevalence of industry on this coast. The Pb isotopic compositions of these bivalves indicate contributions from the combustion of coal. The large variability of environmental health among coastal areas in France is reflected in the broad range of Cd isotopic compositions exhibited by French bivalves (δ114/110Cd = -1.08 to -0.20‰). Oysters and mussels from the Marennes-Oléron basin and Gironde estuary have the lightest Cd isotopic compositions of the French oysters consistent with significant historical Cd emissions from the now-closed proximal Zn smelter. In these bivalves, significant declines in the Cd levels between 1984/7 and 2004/5 are not accompanied by a significant shift in the Cd isotopic composition toward natural values. The Mediterranean samples have isotopic compositions within error of the lighter end of the range reported for Mediterranean seawater. The Zn isotopic compositions of French oysters and mussels (δ66/64Zn = 0.39 to 0.46‰) are identical to those reported for North Atlantic seawater, with the exception of the much heavier compositions of oysters (δ66/64Zn = 1.03 to 1.15‰) from the polluted Gironde estuary. In agreement with Cd and Zn isotopic compositions, the Pb isotopic compositions of the French bivalves indicate primarily industrial (as opposed to automotive) sources; this is consistent with the collection of most of the French bivalve samples in 2004, after the complete phase-out of leaded gasoline in France. This study demonstrates the effective use of Cd and Zn isotopes to trace anthropogenic sources in the environment and the benefit of combining these tools with Pb isotope “fingerprinting” techniques to identify processes contributing metals. Use of these new geochemical tools requires site-specific knowledge of potential metal sources and their isotopic compositions.

  20. Identifying sources of Pb pollution in urban soils by means of MC-ICP-MS and TOF-SIMS.

    PubMed

    Rodríguez-Seijo, Andrés; Arenas-Lago, Daniel; Andrade, María Luisa; Vega, Flora A

    2015-05-01

    Lead pollution was evaluated in 17 urban soils from parks and gardens in the city of Vigo (NW Spain). The Pb isotope ratios ((207)Pb/(206)Pb, (208)Pb/(204)Pb, (206)Pb/(204)Pb and (208)Pb/(206)Pb) were determined after being measured by MC-ICP-MS. The association of the isotopes ((204)Pb, (206)Pb, (207)Pb and (208)Pb) with the different components of the soil was studied using TOF-SIMS. The isotopic ranges obtained for the samples were between 1.116 and 1.203 ((206)Pb/(207)Pb), 2.044-2.143 ((208)Pb/(206)Pb), 37.206-38.608 ((208)Pb/(204)Pb), 15.5482-15.6569 ((207)Pb/(204)Pb) and 17.357-18.826 ((206)Pb/(204)Pb). The application of the three-end-member model indicates that the Pb derived from petrol is the main source of Pb in the soils (43.51% on average), followed by natural or geogenic Pb (39.12%) and industrial emissions (17.37%). The emissions derived from coal combustion do not appear to influence the content of Pb in the soil. TOF-SIMS images show that the Pb mainly interacts with organic matter. This technique contributes to the understanding of the association of anthropogenic Pb with the components of the soil, as well as the particle size of these associations, thus allowing the possible sources of Pb to be identified.

  1. Medical Isotope Program: O-18, C-13, and Xe-129 Final Report CRADA No. TC-2043-02

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheibner, K. F.; Fought, J.

    This was a collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and Spectra Gases, Inc., to develop new and cheaper sources of Oxgyen-18 (O-18), Carbon-13 (C-13), and Xenon-129 (Xe-129), and to develop new applications of these stable medical isotopes in medicine resulting in a substantial increase in stable isotopes that are important to human health sciences.

  2. pH-dependent equilibrium isotope fractionation associated with the compound specific nitrogen and carbon isotope analysis of substituted anilines by SPME-GC/IRMS.

    PubMed

    Skarpeli-Liati, Marita; Turgeon, Aurora; Garr, Ashley N; Arnold, William A; Cramer, Christopher J; Hofstetter, Thomas B

    2011-03-01

    Solid-phase microextraction (SPME) coupled to gas chromatography/isotope ratio mass spectrometry (GC/IRMS) was used to elucidate the effects of N-atom protonation on the analysis of N and C isotope signatures of selected aromatic amines. Precise and accurate isotope ratios were measured using polydimethylsiloxane/divinylbenzene (PDMS/DVB) as the SPME fiber material at solution pH-values that exceeded the pK(a) of the substituted aniline's conjugate acid by two pH-units. Deviations of δ(15)N and δ(13)C-values from reference measurements by elemental analyzer IRMS were small (<0.9‰) and within the typical uncertainties of isotope ratio measurements by SPME-GC/IRMS. Under these conditions, the detection limits for accurate isotope ratio measurements were between 0.64 and 2.1 mg L(-1) for δ(15)N and between 0.13 and 0.54 mg L(-1) for δ(13)C, respectively. Substantial inverse N isotope fractionation was observed by SPME-GC/IRMS as the fraction of protonated species increased with decreasing pH leading to deviations of -20‰ while the corresponding δ(13)C-values were largely invariant. From isotope ratio analysis at different solution pHs and theoretical calculations by density functional theory, we derived equilibrium isotope effects, EIEs, pertinent to aromatic amine protonation of 0.980 and 1.001 for N and C, respectively, which were very similar for all compounds investigated. Our work shows that N-atom protonation can compromise accurate compound-specific N isotope analysis of aromatic amines.

  3. Transient signal isotope analysis: validation of the method for isotope signal synchronization with the determination of amplifier first-order time constants.

    PubMed

    Gourgiotis, Alkiviadis; Manhès, Gérard; Louvat, Pascale; Moureau, Julien; Gaillardet, Jérôme

    2015-09-30

    During transient signal acquisition by Multi-Collection Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS), an isotope ratio increase or decrease (isotopic drift hereafter) is often observed which is related to the different time responses of the amplifiers involved in multi-collection. This isotopic drift affects the quality of the isotopic data and, in a recent study, a method of internal amplifier signal synchronization for isotope drift correction was proposed. In this work the determination of the amplifier time constants was investigated in order to validate the method of internal amplifier signal synchronization for isotope ratio drift correction. Two different MC-ICPMS instruments, the Neptune and the Neptune Plus, were used, and both the lead transient signals and the signal decay curves of the amplifiers were investigated. Our results show that the first part of the amplifier signal decay curve is characterized by a pure exponential decay. This part of the signal decay was used for the effective calculation of the amplifier first-order time constants. The small differences between these time constants were compared with time lag values obtained from the method of isotope signal synchronization and were found to be in good agreement. This work proposes a way of determining amplifier first-order time constants. We show that isotopic drift is directly related to the amplifier first-order time constants and the method of internal amplifier signal synchronization for isotope ratio drift correction is validated. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Fractionation of lithium isotopes in magmatic systems as a natural consequence of cooling

    NASA Astrophysics Data System (ADS)

    Gallagher, Kerry; Elliott, Tim

    2009-02-01

    High-temperature, diffusive fractionation has been invoked to account for striking Li isotopic variability recently observed within individual phenocrysts and xenolith minerals. It has been argued that chemical potential gradients required to drive such diffusion arise from changes in Li partitioning between coexisting phases during cooling. If so, Li isotopic zoning should be a common occurrence but the role of temperature-dependent partition coefficients in generating Li isotopic variability remains to be tested in a quantitative manner. Here we consider a basic scenario of a phenocryst in a cooling lava, using simple parameterisations of the temperature dependence of Li partitioning and diffusivity in clinopyroxene. Our model initially produces an asymmetric isotope profile across the crystal with a δ7Li minimum that remains close to the edge of a crystal. Such a distinctive shape mimics Li isotopic profiles documented in some olivine and clinopyroxene phenocrysts, which have isotopically normal cores but anomalously light rims. The temperature dependence of both the diffusivity and the partition coefficient of Li are key factors in generating this form of diffusion profile. Continued diffusion leads to an inversion in the sense of isotopic change between core and rim and results in the whole phenocryst attaining markedly light isotopic values. Our calculations show that significant Li isotopic zoning can occur as a natural consequence of cooling magmatic systems. Crystals that have experienced more complex thermal histories (e.g. re-entrained cumulates versus true phenocrysts) will therefore exhibit contrasting isotopic profiles and, as such, these data may be useful for tracing sub-volcanic processes.

  5. Development of stable isotope mixing models in ecology - Dublin

    EPA Science Inventory

    More than 40 years ago, stable isotope analysis methods used in geochemistry began to be applied to ecological studies. One common application is using mathematical mixing models to sort out the proportional contributions of various sources to a mixture. Examples include contri...

  6. Historical development of stable isotope mixing models in ecology

    EPA Science Inventory

    More than 40 years ago, stable isotope analysis methods used in geochemistry began to be applied to ecological studies. One common application is using mathematical mixing models to sort out the proportional contributions of various sources to a mixture. Examples include contri...

  7. Development of stable isotope mixing models in ecology - Perth

    EPA Science Inventory

    More than 40 years ago, stable isotope analysis methods used in geochemistry began to be applied to ecological studies. One common application is using mathematical mixing models to sort out the proportional contributions of various sources to a mixture. Examples include contri...

  8. Development of stable isotope mixing models in ecology - Fremantle

    EPA Science Inventory

    More than 40 years ago, stable isotope analysis methods used in geochemistry began to be applied to ecological studies. One common application is using mathematical mixing models to sort out the proportional contributions of various sources to a mixture. Examples include contri...

  9. Development of stable isotope mixing models in ecology - Sydney

    EPA Science Inventory

    More than 40 years ago, stable isotope analysis methods used in geochemistry began to be applied to ecological studies. One common application is using mathematical mixing models to sort out the proportional contributions of various sources to a mixture. Examples include contri...

  10. Determination of lead, uranium, thorium, and thallium in silicate glass standard materials by isotope dilution mass spectrometry

    USGS Publications Warehouse

    Barnes, I.L.; Garner, E.L.; Gramlich, J.W.; Moore, L.J.; Murphy, T.J.; Machlan, L.A.; Shields, W.R.; Tatsumoto, M.; Knight, R.J.

    1973-01-01

    A set of four standard glasses has been prepared which have been doped with 61 different elements at the 500-, 50-, 1-, and 0.02-ppm level. The concentrations of lead, uranium, thorium, and thallium have been determined by isotope dilution mass spectrometry at a number of points in each of the glasses. The results obtained from independent determinations in two laboratories demonstrate the homogeneity of the samples and that precision of the order of 0.5% (95% L.E.) may be obtained by the method even at the 20-ppb level for these elements. The chemical and mass spectrometric procedures necessary are presented.

  11. Evidence for Proterozoic and late Cretaceous-early Tertiary ore-forming events in the Coeur d'Alene district, Idaho and Montana

    USGS Publications Warehouse

    Leach, D.L.; Hofstra, A.H.; Church, S.E.; Snee, L.W.; Vaughn, R.B.; Zartman, R.E.

    1998-01-01

    New 40Ar/39Ar age spectra on sericite and lead isotope data on tetrahedrite, siderite, galena, bournonite, and stibnite, together with previously published isotopic, geochemical, and geologic studies provide evidence for two major vein-forming events in the Coeur d'Alene district and surrounding area of the Belt basin. The data suggest that the zinc- and lead-rich veins (e.g., Bunker Hill and Star-Morning mines) formed in the Proterozoic (1.0 Ga), whereas the silver-rich veins (e.g., Silver belt mines), antimony veins (e.g., US Antimony mine), and gold-bearing quartz veins (Murry subdistrict) formed in Late Cretaceous to early Tertiary time.

  12. Application of stable isotope ratio analysis for biodegradation monitoring in groundwater

    USGS Publications Warehouse

    Hatzinger, Paul B.; Böhlke, John Karl; Sturchio, Neil C.

    2013-01-01

    Stable isotope ratio analysis is increasingly being applied as a tool to detect, understand, and quantify biodegradation of organic and inorganic contaminants in groundwater. An important feature of this approach is that it allows degradative losses of contaminants to be distinguished from those caused by non-destructive processes such as dilution, dispersion, and sorption. Recent advances in analytical techniques, and new approaches for interpreting stable isotope data, have expanded the utility of this method while also exposing complications and ambiguities that must be considered in data interpretations. Isotopic analyses of multiple elements in a compound, and multiple compounds in the environment, are being used to distinguish biodegradative pathways by their characteristic isotope effects. Numerical models of contaminant transport, degradation pathways, and isotopic composition are improving quantitative estimates of in situ contaminant degradation rates under realistic environmental conditions.

  13. Lead isotope ratios in lichen samples evaluated by ICP-ToF-MS to assess possible atmospheric pollution sources in Havana, Cuba.

    PubMed

    Alvarez, Alfredo Montero; Estévez Alvarez, Juan R; do Nascimento, Clístenes Williams Araújo; González, Iván Pupo; Rizo, Oscar Díaz; Carzola, Lázaro Lima; Torres, Roberto Ayllón; Pascual, Jorge Gómez

    2017-01-01

    Epiphytic lichens, collected from 119 sampling sites grown over "Roistonea Royal Palm" trees, were used to assess the spatial distribution pattern of lead (Pb) and identify possible pollution sources in Havana (Cuba). Lead concentrations in lichens and topsoils were determined by flame atomic absorption spectrophotometry and inductively coupled plasma (ICP) atomic emission spectrometry, respectively, while Pb in crude oils and gasoline samples were measured by ICP-time of flight mass spectrometry (ICP-ToF-MS). Lead isotopic ratios measurements for lichens, soils, and crude oils were obtained by ICP-ToF-MS. We found that enrichment factors (EF) reflected a moderate contamination for 71% of the samples (EF > 10). The 206 Pb/ 207 Pb ratio values for lichens ranged from 1.17 to 1.20 and were a mixture of natural radiogenic and industrial activities (e.g., crude oils and fire plants). The low concentration of Pb found in gasoline (<7.0 μg L -1 ) confirms the official statement that leaded gasoline is no longer used in Cuba.

  14. Nuclear applications of inorganic mass spectrometry.

    PubMed

    De Laeter, John

    2010-01-01

    There are several basic characteristics of mass spectrometry that are not always fully appreciated by the science community. These characteristics include the distinction between relative and absolute isotope abundances, and the influence of isotope fractionation on the accuracy of isotopic measurements. These characteristics can be illustrated in the field of nuclear physics with reference to the measurement of nuclear parameters, which involve the use of enriched isotopes, and to test models of s-, r-, and p-process nucleosynthesis. The power of isotope-dilution mass spectrometry (IDMS) to measure trace elements in primitive meteorites to produce accurate Solar System abundances has been essential to the development of nuclear astrophysics. The variety of mass spectrometric instrumentation used to measure the isotopic composition of elements has sometimes been accompanied by a lack of implementation of basic mass spectrometric protocols which are applicable to all instruments. These metrological protocols are especially important in atomic weight determinations, but must also be carefully observed in cases where the anomalies might be very small, such as in studies of the daughter products of extinct radionuclides to decipher events in the early history of the Solar System. There are occasions in which misleading conclusions have been drawn from isotopic data derived from mass spectrometers where such protocols have been ignored. It is important to choose the mass spectrometer instrument most appropriate to the proposed experiment. The importance of the integrative nature of mass spectrometric measurements has been demonstrated by experiments in which long, double beta decay and geochronological decay half-lives have been measured as an alternative to costly radioactive-counting experiments. This characteristic is also illustrated in the measurement of spontaneous fission yields, which have accumulated over long periods of time. Mass spectrometry is also a valuable tool in the determination of neutron capture cross-section measurements and the application of such determinations in Planetary Science. 2009 Wiley Periodicals, Inc.

  15. Pollutant Source Tracking (PST) Technical Guidance

    DTIC Science & Technology

    2011-12-01

    in the context of heavy metals (lead, copper), is considered to be a minor process contribution to the source fingerprint. 3.7 RAPID SCREENING...limits (summarized in Table 2) support the use of ICP-AES (ICP-OES) for heavy metal determination in soils , sediments, wastewater and other matrices...are included here. Isotopic ratios of stable isotopes of the metal of interest can be used for source identification and apportionment in complex

  16. Genetic interpretation of lead-isotopic data from the Columbia River basalt group, Oregon, Washington, and Idaho.

    USGS Publications Warehouse

    Church, S.E.

    1985-01-01

    Lead-isotopic data for the high-alumina olivine plateau basalts and most of the Colombia River basalt group plot within the Cascade Range mixing array. The data for several of the formations form small, tight clusters and the Nd and Sr isotopic data show discrete variation between these basalt groups. The observed isotopic and trace-element data from most of the Columbia River basalt group can be accounted for by a model which calls for partial melting of the convecting oceanic-type mantle and contamination by fluids derived from continental sediments which were subducted along the trench. These sediments were transported in the low-velocity zone at least 400 km behind the active arc into a back-arc environment represented by the Columbia Plateau province. With time, the zone of melting moved up, resulting in the formation of the Saddle Mt basalt by partial melting of a 2600 m.y.-old sub-continental lithosphere characterized by high Th/U, Th/Pb, Rb/Sr and Nd/Sm ratios and LREE enrichment. Partial melting of old sub-continental lithosphere beneath the continental crust may be an important process in the formation of continental tholeiite flood basalt sequences world-wide. -L.di H.

  17. Stable isotopes reveal spatial variability in the trophic structure of a macro-benthic invertebrate community in a tropical coral reef.

    PubMed

    Kolasinski, Joanna; Nahon, Sarah; Rogers, Karyne; Chauvin, Anne; Bigot, Lionel; Frouin, Patrick

    2016-02-15

    Studies of organic matter fluxes in coral reefs are historically based on physical and biogeochemical approaches. It is important to link these approaches to community analysis as the abundance and behaviour of species, populations or trophic groups can have a profound effect on nutrient budgets. We determined the carbon and nitrogen isotopic compositions of coral reef organic matter sources and macro-benthic invertebrate communities using a Europa Geo 20/20 isotope ratio mass spectrometer interfaced to an ANCA-SL elemental analyzer in continuous flow mode. Isotopic ecology metrics and a mixing model were used to analyze and interpret the data. The coral reef macro-invertebrate community principally relies on detrital or recycled food sources. An increased reliance on reef nitrogen-derived sources was observed in the cold-dry season. The community food-web lengths differ noticeably across the coral reef and reflect the characteristics and origin of organic matter reservoirs. Anthropogenic and terrestrial inputs lead to a loss of biological diversity. Exclusive dominance of suspension-feeding species is observed in areas receiving direct surface riverine particulate organic matter. The accumulation of sediment organic matter in eutrophic areas leads to dominance of deposit-feeding species. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. New isotopic evidence of lead contamination in wheat grain from atmospheric fallout.

    PubMed

    Yang, Jun; Chen, Tongbin; Lei, Mei; Zhou, Xiaoyong; Huang, Qifei; Ma, Chuang; Gu, Runyao; Guo, Guanghui

    2015-10-01

    Crops could accumulate trace metals by soil-root transfer and foliar uptake from atmospheric fallout, and an accurate assessment of pollution sources is a prerequisite for preventing heavy metal pollution in agricultural products. In this study, we examined Pb isotope rates to trace the sources of Pb in wheat grain grown in suburbs. Results showed that, even in zones with scarcely any air pollution spots, atmospheric fallout was still a considerable source of Pb accumulation in wheat. The concentration of Pb in wheat grain has poor correlation with that in farm soil. The Pb concentration in wheat grains with dust in bran coat was significantly higher than that in wheat grains, which indicates that Pb may accumulate by foliar uptake. The Pb isotope rate has obvious differences between the soil and atmospheric fallout, and scatter ratio is significantly closer between the wheat grain and atmospheric fallout. Atmospheric fallout is a more significant source of Pb concentration in wheat grains than in soil. As far as we know, this is the first study on the main sources of lead in grain crop (wheat) samples with isotope. This study aims to improve our understanding of the translocation of foliar-absorbed metals to nonexposed parts of plants.

  19. Evaluated nuclear data files for the naturally-occurring isotopes of cadmium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, J.; Smith, A.B.; Meadows, J.W.

    1993-06-01

    Comprehensive neutronic evaluated data files for the naturally-occurring isotopes of cadmium are deduced from experimental data and nuclear models, and presented in the ENDF/B-VI formats. Particular attention is given to those processes relevant to fuel-cycle and fission-product applications. Comparisons are made with prior evaluations of the cadmium isotopes, and discrepancies and consistencies cited. Some of the discrepancies are very large 9.9 as much as 100%), and the differences have the potential for a pronounced impact on applications usage. The present files are comprehensive, including may important processes that are not represented in the contemporary ENDF/B-VI system. Recommendations are made formore » future measurements where appropriate.« less

  20. Distribution and Source Identification of Pb Contamination in industrial soil

    NASA Astrophysics Data System (ADS)

    Ko, M. S.

    2017-12-01

    INTRODUCTION Lead (Pb) is toxic element that induce neurotoxic effect to human, because competition of Pb and Ca in nerve system. Lead is classified as a chalophile element and galena (PbS) is the major mineral. Although the Pb is not an abundant element in nature, various anthropogenic source has been enhanced Pb enrichment in the environment after the Industrial Revolution. The representative anthropogenic sources are batteries, paint, mining, smelting, and combustion of fossil fuel. Isotope analysis widely used to identify the Pb contamination source. The Pb has four stable isotopes that are 208Pb, 207Pb, 206Pb, and 204Pb in natural. The Pb is stable isotope and the ratios maintain during physical and chemical fractionation. Therefore, variations of Pb isotope abundance and relative ratios could imply the certain Pb contamination source. In this study, distributions and isotope ratios of Pb in industrial soil were used to identify the Pb contamination source and dispersion pathways. MATERIALS AND METHODS Soil samples were collected at depth 0­-6 m from an industrial area in Korea. The collected soil samples were dried and sieved under 2 mm. Soil pH, aqua-regia digestion and TCLP carried out using sieved soil sample. The isotope analysis was carried out to determine the abundance of Pb isotope. RESULTS AND DISCUSSION The study area was developed land for promotion of industrial facilities. The study area was forest in 1980, and the satellite image show the alterations of land use with time. The variations of land use imply the possibilities of bringing in external contaminated soil. The Pb concentrations in core samples revealed higher in lower soil compare with top soil. Especially, 4 m soil sample show highest Pb concentrations that are approximately 1500 mg/kg. This result indicated that certain Pb source existed at 4 m depth. CONCLUSIONS This study investigated the distribution and source identification of Pb in industrial soil. The land use and Pb concentration at depth indicated elusive contamination event or contamination sources. In order to identify the contamination source clearly, isotope and Pb compound/mineralogy analysis are necessary.

  1. Spectral contaminant identifier for off-axis integrated cavity output spectroscopy measurements of liquid water isotopes

    NASA Astrophysics Data System (ADS)

    Brian Leen, J.; Berman, Elena S. F.; Liebson, Lindsay; Gupta, Manish

    2012-04-01

    Developments in cavity-enhanced absorption spectrometry have made it possible to measure water isotopes using faster, more cost-effective field-deployable instrumentation. Several groups have attempted to extend this technology to measure water extracted from plants and found that other extracted organics absorb light at frequencies similar to that absorbed by the water isotopomers, leading to δ2H and δ18O measurement errors (Δδ2H and Δδ18O). In this note, the off-axis integrated cavity output spectroscopy (ICOS) spectra of stable isotopes in liquid water is analyzed to determine the presence of interfering absorbers that lead to erroneous isotope measurements. The baseline offset of the spectra is used to calculate a broadband spectral metric, mBB, and the mean subtracted fit residuals in two regions of interest are used to determine a narrowband metric, mNB. These metrics are used to correct for Δδ2H and Δδ18O. The method was tested on 14 instruments and Δδ18O was found to scale linearly with contaminant concentration for both narrowband (e.g., methanol) and broadband (e.g., ethanol) absorbers, while Δδ2H scaled linearly with narrowband and as a polynomial with broadband absorbers. Additionally, the isotope errors scaled logarithmically with mNB. Using the isotope error versus mNB and mBB curves, Δδ2H and Δδ18O resulting from methanol contamination were corrected to a maximum mean absolute error of 0.93 ‰ and 0.25 ‰ respectively, while Δδ2H and Δδ18O from ethanol contamination were corrected to a maximum mean absolute error of 1.22 ‰ and 0.22 ‰. Large variation between instruments indicates that the sensitivities must be calibrated for each individual isotope analyzer. These results suggest that the properly calibrated interference metrics can be used to correct for polluted samples and extend off-axis ICOS measurements of liquid water to include plant waters, soil extracts, wastewater, and alcoholic beverages. The general technique may also be extended to other laser-based analyzers including methane and carbon dioxide isotope sensors.

  2. Evidences for Cu and Zn Isotope Fractionation in Sediments and Particulate Suspended Matter of the Scheldt Estuary

    NASA Astrophysics Data System (ADS)

    Petit, J.; Mattielli, N.; de Jong, J.; Chou, L.

    2004-05-01

    Recent developments in MC-ICP-MS technology allow high precision measurements of heavy stable isotopes, such as Cu and Zn isotopes, which have been shown to undergo biotic or abiotic fractionation (1). Application of Zn isotopes to the study of aquatic ecosystems has already shown some interesting perspectives in their potential use as biogeochemical tracers in deep ocean carbonates (2) or Fe-Mn nodules (3). However, until now no investigation of possible Cu and Zn isotopic fractionation has been carried out within estuaries that are important pathways for hydrological and geochemical cycling of metals. Cu and Zn isotope geochemistry has been studied in sandy to loamy surface sediments (top 20 cm) and in suspended particulate matter (SPM) along a transect in a strong tidal estuary, the Scheldt estuary situated in Belgium and the Netherlands (November 2002). Further to separation of Cu, Fe and Zn by one step ion-exchange chromatography, Cu and Zn isotopic ratios are measured with a "Nu-Plasma" MC-ICP-MS. Instrumental mass bias is corrected using reference materials (Zn JMC, Cu NIST SRM 976 and Ga JMC standard) by simultaneous standard-sample bracketing and external normalization (500 ppb Zn doping for Cu isotopic analyses in static mode and 250 ppb Ga doping for Zn isotopic analyses in dynamic mode), together with a Ni correction. These methods lead to long-term reproducibility (2σ at 95 % confidence level) of ± 0.07 per mil for δ 66Zn (n=100 over 7 analysis sessions) and ± 0.06 per mil for δ 65Cu (n=120 over 8 analysis sessions) for 500 ppb of reference material. Average beam intensities are 6 V/ppm. Precise and reproducible results are obtained for concentration as low as 100 ppb for Cu and Zn. Expected Cu and Zn enrichment in SPM (120 ppm and 1200 ppm respectively) and sediments (being 6 to 10 times lower than SPM) in the upper estuary and progressive decrease in metal content by mixing downstream of the maximum turbidity zone (MTZ, around 5 psu) are observed. Results show that variations in Cu and Zn isotopic composition are smaller in SPM (δ 66Zn varying from 0.35 to 0.17 and δ 65Cu from -0.13 to 0.18) than in sediments. Cu and Zn isotopic signatures of sediments show a clear trend of lighter isotopes removal from the MTZ seaward with δ 66Zn varying from 0.21 at 2 psu to 1.11 per mil at 33 psu (and δ 65Cu = -0.37 to 0.24). In contrast, Zn isotopic compositions in SPM are more homogeneous with average δ 66Zn of 0.24 ± 0.18 over all the transect. Cu isotopic composition in SPM are very constant downstream of the MTZ with average δ 65Cu =-0.06 ± 0.08 but become more scattered within MTZ (varying from -0.04 to 0.18). These preliminary results pinpoint important variations in Cu and Zn isotopic compositions within estuarine systems and contrasted isotopic signatures in Cu and Zn between SPM and sediments. Results suggest the important role of early diagenesis in the isotope geochemistry of heavy metals in estuarine environment. This study provides a stepping stone for further investigation of interacting processes involved in controlling the cycling of metals in the Scheldt estuary. (1) Zhu et al., Earth Planet. Sci. Lett. 200 (2002), 47-62 (2) Pichat et al., Earth Planet. Sci. Lett. 6598 (2003), 1-12 (3) Maréchal et al., Geochem. Geophys. Geosyt., 1 (2000), GC000029

  3. Recent Developments in MC-ICP-MS for Uranium Isotopic Determination from Small Samples.

    NASA Astrophysics Data System (ADS)

    Field, P.; Lloyd, N. S.

    2016-12-01

    V002: Advances in approaches and instruments for isotope studies Session ID#: 12653 Recent Developments in MC-ICP-MS for Uranium Isotopic Determination from small samples.M. Paul Field 1 & Nicholas S. Lloyd. 1 Elemental Scientific Inc., Omaha, Nebraska, USA. field@icpms.com 2 Thermo Fisher Scientific, Hanna-Kunath-Str. 11, 28199 Bremen, Germany. nicholas.lloyd@thermofisher.com Uranium isotope ratio determination for nuclear, nuclear safeguards and for environmental applications can be challenging due to, 1) the large isotopic differences between samples and 2) low abundance of 234U and 236U. For some applications the total uranium quantities can be limited, or it is desirable to run at lower concentrations for radiological protection. Recent developments in inlet systems and detector technologies allow small samples to be analyzed at higher precisions using MC-ICP-MS. Here we evaluate the combination of Elemental Scientific apex omega desolvation system and microFAST-MC dual loop-loading flow-injection system with the Thermo Scientific NEPTUNE Plus MC-ICP-MS. The inlet systems allow for the automated syringe loading and injecting handling of small sample volumes with efficient desolvation to minimize the hydride interference on 236U. The highest ICP ion sampling efficiency is realized using the Thermo Scientific Jet Interface. Thermo Scientific 1013 ohm amplifier technology allows small ion beams to be measured at higher precision, offering the highest signal/noise ratio with a linear and stable response that covers a wide dynamic range (ca. 1 kcps - 30 Mcps). For nanogram quantities of low enriched and depleted uranium standards the 235U was measured with 1013 ohm amplifier technology. The minor isotopes (234U and 236U) were measured by SEM ion counters with RPQ lens filters, which offer the lowest detection limits. For sample amounts ca. 20 ng the minor isotopes can be moved onto 1013 ohm amplifiers and the 235U onto standard 1011 ohm amplifier. To illustrate the application a set of solutions from environmental particles [1] were analyzed, the use of precise three isotope ratio plots allows for source attribution with increased confidence. [1] Lloyd et al. 2009, J. Anal. At. Spectrom., 24(6), 752-758.

  4. Development of procedure for measurement of Pb isotope ratios in seawater by application of seaFAST sample pre-treatment system and Sector Field Inductively Coupled Plasma Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Vassileva, Emilia; Wysocka, Irena

    2016-12-01

    Anthropogenic Pb in the oceans, derived from high-temperature industrial processes, fuel combustion and incineration can have an isotopic signature distinct from naturally occurring Pb, supplied by rock weathering. To identify the different pollution sources accurately and to quantify their relative contributions, Pb isotope ratios are widely used. Due to the high salt content (approximately 3.5% of total dissolved solids) and very low levels of Pb (typically from 1 to 100 ng L- 1) in seawater the determination of Pb isotope ratios requires preliminary matrix separation and analyte preconcentration. An analytical protocol for the measurements of Pb isotope ratios in seawater combining seaFAST sample pre-treatment system and Sector Field Inductively Coupled Plasma Mass Spectrometry (SF ICP-MS) was developed. The application of seaFAST system was advantageous, because of its completely closed working cycle and small volumes of chemicals introduced in pre-treatment step, resulting in very low detection limits and procedural blanks. The preconcentration/matrix separation step was also of crucial importance for minimizing the isobaric and matrix interferences, coming from the seawater. In order to differentiate between anthropogenic and natural Pb sources, particular attention was paid to the determination of 204Pb isotope because of its implication in some geological interpretations. The validation of the analytical procedure was effectuated according to the recommendations of the ISO/IEC 17025 standard. The method was validated by processing the common Pb isotope reference material NIST SRM 981. All major sources of uncertainty were identified and propagated together following the ISO/GUM guidelines. The estimation of the total uncertainty associated to each measurement result was fundamental tool for sorting the main sources of possible biases. The developed analytical procedure was applied to the coastal and open seawater samples, collected in different regions of the world and revealed that the procedure is applicable for the measurement of Pb isotope ratios in seawater with combined uncertainty adequate to discuss the origin of Pb pollution in the ocean.

  5. Multi-isotope tracers to investigate processes in the Elbe, Weser and Ems river catchment using B, Mo, Sr, and Pb isotope ratios assessed by MC ICP-MS

    NASA Astrophysics Data System (ADS)

    Irrgeher, Johanna; Reese, Anna; Zimmermann, Tristan; Prohaska, Thomas; Retzmann, Anika; Wieser, Michael E.; Zitek, Andreas; Proefrock, Daniel

    2017-04-01

    Environmental monitoring of complex ecosystems requires reliable sensitive techniques based on sound analytical strategies to identify the source, fate and sink of elements and matter. Isotopic signatures can serve to trace pathways by making use of specific isotopic fingermarks or to distinguish between natural and anthropogenic sources. The presented work shows the potential of using the isotopic variation of Sr, Pb (as well-established isotopic systems), Mo and B (as novel isotopic system) assessed by MC ICP-MS in water and sediment samples to study aquatic ecosystem transport processes. The isotopic variation of Sr, Pb, Mo and B was determined in different marine and estuarine compartments covering the catchment of the German Wadden Sea and its main tributaries, the Elbe, Weser and Ems River. The varying elemental concentrations, the complex matrix and the expected small variations in the isotopic composition required the development and application of reliable analytical measurement approaches as well as suited metrological data evaluation strategies. Aquatic isoscapes were created using ArcGIS® by relating spatial isotopic data with geographical and geological maps. The elemental and isotopic distribution maps show large variation for different parameters and also reflect the numerous impact factors (e.g. geology, anthropogenic sources) influencing the catchment area.

  6. The new high-resolution IRMS MAT253 ULTRA at Utrecht University

    NASA Astrophysics Data System (ADS)

    Röckmann, Thomas; Hofmann, Magdalena; Paul, Dipayan; Popa, Elena; Adnew, Getachew

    2017-04-01

    In 2016, the new high-resolution, multi-collector isotope ratio mass spectrometer MAT253 ULTRA [1] was installed at Utrecht University. This instrument is designed to reach a mass resolving power of 20,000 to 40,000 (M/ΔM). The ion currents are detected with a variable multi-collector unit that allows to register up to 9 ion currents simultaneously with Faraday cups and ion counters. The width of the entrance slit can be varied between 5 and 250μm so that the instrument can be operated under low, medium and high mass resolution, and an optimum balance between resolution and sensitivity can be selected for the respective applications. The central field of application of the new IRMS at Utrecht University is the measurement of multiply substituted isotopologues (clumped isotopes) in atmospheric trace compounds (e.g. 13CDH3, 13C18O16O, 18O18O, 15N14N18O) [1-7]. It is known from thermodynamics that the zero point energy of a chemical bond usually decreases when multiple heavy isotopes clump together in a molecule, and this effect depends on temperature [7]. Therefore, the abundance of clumped isotopes can be used as temperature indicator under thermodynamical equilibrium conditions. However, in the atmosphere, many reactions are controlled kinetically. It has been shown recently for a few examples that negative clumping signatures (anti-clumping) can be produced under non-equilibrium conditions [3,4]. In addition, based on purely statistical reasons, anti-clumping signatures will be produced in any molecule that contains indistinguishable atoms, which originate from isotopically distinct reservoir [5,6]. Thus, the investigation of multiply substituted isotopologues is expected to generate novel isotope signatures that can complement conventional stable isotope analysis in atmospheric science. We will present data on the performance of the MAT 253 ULTRA instrument and first scientific applications to atmospheric research. 1. Eiler, J.M., et al., A high-resolution gas-source isotope ratio mass spectrometer, Int. J. Mass Spect., 2013. 335: 45- 56. 2. Young, E.D., et al., A large-radius high-mass-resolution multiple-collector isotope ratio mass spectrometer for analysis of rare isotopologues of O2, N2, CH4 and other gases, Int. J. Mass Spect., 2016. 401: 1-10. 3. Wang, D.T., et al., Nonequilibrium clumped isotope signals in microbial methane, Science, 2015. 348: 428-431. 4. Yeung, L.Y., et al., Biological signatures in clumped isotopes of O2, Science, 2015. 348: 431-434. 5. Yeung, L.Y., Combinatorial effects on clumped isotopes and their significance in biogeochemistry, Geochim. Cosmochim. Act., 2016: doi:10.1016/j.gca.2015.09.020. 6. Röckmann, T., et al., Statistical clumped isotope signatures Scientific reports, 2016. 6: 31947; doi: 10.1038/srep31947. 7. Wang, Z.G., et al., Equilibrium thermodynamics of multiply substituted isotopologues of molecular gases, Geochim. Cosmochim. Act., 2004. 68: 4779-4797.

  7. Online induction heating for determination of isotope composition of woody stem water with laser spectrometry: A methods assessment

    USGS Publications Warehouse

    Lazarus, Brynne E.; Germino, Matthew; Vander Veen, Jessica L.

    2016-01-01

    Application of stable isotopes of water to studies of plant–soil interactions often requires a substantial preparatory step of extracting water from samples without fractionating isotopes. Online heating is an emerging approach for this need, but is relatively untested and major questions of how to best deliver standards and assess interference by organics have not been evaluated. We examined these issues in our application of measuring woody stem xylem of sagebrush using a Picarro laser spectrometer with online induction heating. We determined (1) effects of cryogenic compared to induction-heating extraction, (2) effects of delivery of standards on filter media compared to on woody stem sections, and (3) spectral interference from organic compounds for these approaches (and developed a technique to do so). Our results suggest that matching sample and standard media improves accuracy, but that isotopic values differ with the extraction method in ways that are not due to spectral interference from organics.

  8. Measurement of infiltration rates in urban sewer systems by use of oxygen isotopes.

    PubMed

    De Bénédittis, J; Bertrand-Krajewski, J L

    2005-01-01

    The paper presents the principle of a method to measure infiltration rates in sewer systems based on the use of oxygen isotopes and its application in Lyon (France). In the urban area of Lyon, significant differences in delta 18O that can reach 3 per thousand are observed between the oxygen isotopic compositions of groundwater originating from Rhone, Saone and from their associated alluvial aquifers. Drinking water supplying Lyon results mainly from pumping in the Rhone alluvial aquifer. Therefore, in some areas, the difference of isotopic composition between wastewater resulting from the consumption of drinking water and local groundwater can be used to measure infiltration in sewer systems. The application in the catchment of Ecully shows that the infiltration flow rate presents strong fluctuations at an hourly scale: it varies between 15 and 40 m3/h. This variability could be explained by non-constant discharges of pumping and by variations of the water level in the sewer.

  9. Pan-derived isotopic composition of atmospheric vapour in a Mediterranean wetland (Rhône River Delta, France).

    PubMed

    Vallet-Coulomb, Christine; Cartapanis, Olivier; Radakovitch, Olivier; Sonzogni, Corinne; Pichaud, Marc

    2010-03-01

    A continuous record of atmospheric vapour isotopic composition (delta(A)) can be derived from the isotope mass balance of a water body submitted to natural evaporation. In this paper, we present preliminary results of the application of this method to a drying evaporation pan, located in a Mediterranean wetland, during a two-month summer period. Results seem consistent with few atmospheric vapour data based on the assumption of isotopic equilibrium with precipitation, but we observed a shift between pan-derived delta(A) and the composition of vapour samples collected by cold trapping. These results suggest that further investigations are necessary to evaluate the effect of diurnal variations of atmospheric conditions on the applicability of the pan-evaporation method, and on the representative of grab atmospheric samples. We also propose a sensitivity analysis for evaluating the impact of the different measured components on delta(A) calculation, and show an improvement in the method efficiency as the pan is drying.

  10. Physics of the Isotopic Dependence of Galactic Cosmic Ray Fluence Behind Shielding

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Saganti, Premkumar B.; Hu, Xiao-Dong; Kim, Myung-Hee Y.; Cleghorn, Timothy F.; Wilson, John W.; Tripathi, Ram K.; Zeitlin, Cary J.

    2003-01-01

    For over 25 years, NASA has supported the development of space radiation transport models for shielding applications. The NASA space radiation transport model now predicts dose and dose equivalent in Earth and Mars orbit to an accuracy of plus or minus 20%. However, because larger errors may occur in particle fluence predictions, there is interest in further assessments and improvements in NASA's space radiation transport model. In this paper, we consider the effects of the isotopic composition of the primary galactic cosmic rays (GCR) and the isotopic dependence of nuclear fragmentation cross-sections on the solution to transport models used for shielding studies. Satellite measurements are used to describe the isotopic composition of the GCR. Using NASA's quantum multiple-scattering theory of nuclear fragmentation (QMSFRG) and high-charge and energy (HZETRN) transport code, we study the effect of the isotopic dependence of the primary GCR composition and secondary nuclei on shielding calculations. The QMSFRG is shown to accurately describe the iso-spin dependence of nuclear fragmentation. The principal finding of this study is that large errors (plus or minus 100%) will occur in the mass-fluence spectra when comparing transport models that use a complete isotope grid (approximately 170 ions) to ones that use a reduced isotope grid, for example the 59 ion-grid used in the HZETRN code in the past, however less significant errors (less than 20%) occur in the elemental-fluence spectra. Because a complete isotope grid is readily handled on small computer workstations and is needed for several applications studying GCR propagation and scattering, it is recommended that they be used for future GCR studies.

  11. Isotopic effects on phonon anharmonicity in layered van der Waals crystals: Isotopically pure hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Cuscó, Ramon; Artús, Luis; Edgar, James H.; Liu, Song; Cassabois, Guillaume; Gil, Bernard

    2018-04-01

    Hexagonal boron nitride (h -BN) is a layered crystal that is attracting a great deal of attention as a promising material for nanophotonic applications. The strong optical anisotropy of this crystal is key to exploit polaritonic modes for manipulating light-matter interactions in 2D materials. h -BN has also great potential for solid-state neutron detection and neutron imaging devices, given the exceptionally high thermal neutron capture cross section of the boron-10 isotope. A good knowledge of phonons in layered crystals is essential for harnessing long-lived phonon-polariton modes for nanophotonic applications and may prove valuable for developing solid-state 10BN neutron detectors with improved device architectures and higher detection efficiencies. Although phonons in graphene and isoelectronic materials with a similar hexagonal layer structure have been studied, the effect of isotopic substitution on the phonons of such lamellar compounds has not been addressed yet. Here we present a Raman scattering study of the in-plane high-energy Raman active mode on isotopically enriched single-crystal h -BN. Phonon frequency and lifetime are measured in the 80-600-K temperature range for 10B-enriched, 11B-enriched, and natural composition high quality crystals. Their temperature dependence is explained in the light of perturbation theory calculations of the phonon self-energy. The effects of crystal anisotropy, isotopic disorder, and anharmonic phonon-decay channels are investigated in detail. The isotopic-induced changes in the phonon density of states are shown to enhance three-phonon anharmonic decay channels in 10B-enriched crystals, opening the possibility of isotope tuning of the anharmonic phonon decay processes.

  12. IsoWeb: A Bayesian Isotope Mixing Model for Diet Analysis of the Whole Food Web

    PubMed Central

    Kadoya, Taku; Osada, Yutaka; Takimoto, Gaku

    2012-01-01

    Quantitative description of food webs provides fundamental information for the understanding of population, community, and ecosystem dynamics. Recently, stable isotope mixing models have been widely used to quantify dietary proportions of different food resources to a focal consumer. Here we propose a novel mixing model (IsoWeb) that estimates diet proportions of all consumers in a food web based on stable isotope information. IsoWeb requires a topological description of a food web, and stable isotope signatures of all consumers and resources in the web. A merit of IsoWeb is that it takes into account variation in trophic enrichment factors among different consumer-resource links. Sensitivity analysis using realistic hypothetical food webs suggests that IsoWeb is applicable to a wide variety of food webs differing in the number of species, connectance, sample size, and data variability. Sensitivity analysis based on real topological webs showed that IsoWeb can allow for a certain level of topological uncertainty in target food webs, including erroneously assuming false links, omission of existent links and species, and trophic aggregation into trophospecies. Moreover, using an illustrative application to a real food web, we demonstrated that IsoWeb can compare the plausibility of different candidate topologies for a focal web. These results suggest that IsoWeb provides a powerful tool to analyze food-web structure from stable isotope data. We provide R and BUGS codes to aid efficient applications of IsoWeb. PMID:22848427

  13. A 300 year history of lead contamination in northern French Alps reconstructed from distant lake sediment records.

    PubMed

    Arnaud, F; Revel-Rolland, M; Bosch, D; Winiarski, T; Desmet, M; Tribovillard, N; Givelet, N

    2004-05-01

    Lead concentrations and isotopic ratios were measured along two well-dated sediment cores from two distant lakes: Anterne (2100 m a.s.l.) and Le Bourget (270 m a.s.l.), submitted to low and high direct human impact and covering the last 250 and 600 years, respectively. The measurement of lead in old sediment samples (>3000 BP) permits, in using mixing-models, the determination of lead concentration, flux and isotopic composition of purely anthropogenic origin. We thus show that since ca. 1800 AD the regional increase in lead contamination was mostly driven by coal consumption ((206)Pb/(207)Pb approximately 1.17-1.19; (206)Pb/(204)Pb approximately 18.3-18.6), which peaks around 1915 AD. The increasing usage of leaded gasoline, introduced in the 1920s, was recorded in both lakes by increasing Pb concentrations and decreasing Pb isotope ratios. A peak around 1970 ((206)Pb/(207)Pb approximately 1.13-1.16; (206)Pb/(204)Pb approximately 17.6-18.0) corresponds to the worldwide recorded leaded gasoline maximum of consumption. The 1973 oil crisis is characterised by a drastic drop of lead fluxes in both lakes (from approximately 35 to <20 mg cm(-2) yr(-1)). In the late 1980s, environmental policies made the Lake Anterne flux drop to pre-1900 values (<10 mg cm(-2) yr(-1)) while Lake Le Bourget is always submitted to an important flux (approximately 25 mg cm(-2) yr(-1)). The good match of our distant records, together and with a previously established series in an ice core from Mont Blanc, provides confidence in the use of sediments as archives of lead contamination. The integration of the Mont Blanc ice core results from Rosman et al. with our data highlights, from 1990 onward, a decoupling in lead sources between the high elevation sites (Lake Anterne and Mont Blanc ice core), submitted to a mixture of long-distance and regional contamination and the low elevation site (Lake Le Bourget), where regional contamination is predominant.

  14. Isotopic 13C NMR spectrometry to assess counterfeiting of active pharmaceutical ingredients: site-specific 13C content of aspirin and paracetamol.

    PubMed

    Silvestre, Virginie; Mboula, Vanessa Maroga; Jouitteau, Catherine; Akoka, Serge; Robins, Richard J; Remaud, Gérald S

    2009-10-15

    Isotope profiling is a well-established technique to obtain information about the chemical history of a given compound. However, the current methodology using IRMS can only determine the global (13)C content, leading to the loss of much valuable data. The development of quantitative isotopic (13)C NMR spectrometry at natural abundance enables the measurement of the (13)C content of each carbon within a molecule, thus giving simultaneous access to a number of isotopic parameters. When it is applied to active pharmaceutical ingredients, each manufactured batch can be characterized better than by IRMS. Here, quantitative isotopic (13)C NMR is shown to be a very promising and effective tool for assessing the counterfeiting of medicines, as exemplified by an analysis of aspirin (acetylsalicylic acid) and paracetamol (acetaminophen) samples collected from pharmacies in different countries. It is proposed as an essential complement to (2)H NMR and IRMS.

  15. U-Pb systematics in iron meteorites - Uniformity of primordial lead

    NASA Astrophysics Data System (ADS)

    Gopel, C.; Manhes, G.; Allegre, C. J.

    1985-08-01

    Pb isotopic compositions and U-Pb abundances were determined in the metal phase of six iron meteorites: Canyon Diablo IA, Toluca IA, Odessa IA, Youndegin IA, Deport IA, and Mundrabilla An. Prior to complete dissolution, samples were subjected to a series of leachings and partial dissolutions. Isotopic compositions and abundances of the etched Pb indicate a contamination by terrestrial Pb which is attributable to previous cutting of the meteorite. Pb isotopic compositions measured in the decontaminated samples are identical within 0.2 percent and essentially confirm the primordial Pb value defined by Tatsumoto et al. (1973). These data invalidate more radiogenic Pb isotopic compositions published for iron meteorites, which are the result of terrestrial Pb contamination introduced mainly by analytical procedure. The results of this study support the idea of a solar nebula which was isotopically homogeneous for Pb 4.55 Ga ago. The new upper limit for U-abundance in iron meteorites, 0.001 ppb, is in agreement with its expected thermodynamic solubility in the metal phase.

  16. Lead isotopes in trade wind aerosols at Barbados - The influence of European emissions over the North Atlantic

    NASA Technical Reports Server (NTRS)

    Hamelin, B.; Grousset, F. E.; Biscaye, P. E.; Zindler, A.; Prospero, J. M.

    1989-01-01

    Previous studies have shown that Pb can be used as a transient tracer in the atmosphere and the ocean because of strong time-variability of industrial inputs and because Pb isotopic composition can be used to identify contributions from different sources. Pb isotopic measurements on aerosols collected from the North Atlantic Ocean in the trade wind belt are presented. Aerosols sampled at Barbados during the 1969-1985 period have a Pb isotopic composition different from that observed by previous investigators in Bermuda corals and Sargasso Sea waters. Barbados aerosols appear to contain significant amounts of relatively unradiogenic industrial and automotive Pb that is derived from Europe and carried to Barbados by the trade winds. In contrast, Bermuda corals and Sargasso sea waters are influenced mainly by U.S.-derived emissions, which contain more radiogenic Pb originating from Missouri-type ores. This difference generates a strong latitudinal Europe-U.S.A. isotopic gradient, thus allowing study of trans-Atlantic atmospheric transport and ocean mixing processes.

  17. Performance and limits of liquid chromatography isotope ratio mass spectrometry system for halogenated compounds

    NASA Astrophysics Data System (ADS)

    Gilevska, Tetyana; Gehre, Matthias; Richnow, Hans

    2014-05-01

    Compound Specific Isotope Analysis (CSIA) has been an important step for the assessment of the origin and fate of compounds in environmental science.[1] Biologically or pharmaceutically important compounds often are not amenable for gas chromatographic separation because of high polarity and lacking volatility, thermostability. In 2004 liquid chromatography isotope ratio mass spectrometry (LC-IRMS) became commercially available. LC-IRMS system intent a quantitative conversion of analytes separation into CO2 via wet oxidation with sodium persulfate in the presence of phosphoric acid while analytes are still dissolved in the aqueous liquid phase.[2] The aim of this study is to analyze the oxidation capacity of the interface of the LC-IRMS system and determine which parameters could improve oxidation of compounds which are resistant to persulfate oxidation. Oxidation capacity of the liquid chromatography isotope ratio mass spectrometry system was tested with halogenated acetic acid and a set of aromatic compounds with different substitutes. Acetic acid (AA) was taken as a model compound for complete oxidation and compared to the oxidation of other analytes on a molar basis. Correct values were obtained for di- and mono chlorinated and fluorinated and also for tribrominated acetic acid and for all studied aromatic compounds. Incomplete oxidation for trichloroacetic (TCAA) and trifluoroacetic (TFAA) acid was revealed with lower recovery compared to acetic acid and isotope fractionation leading to depleted carbon isotope composition compared to values obtained with an elementary analyzer connected to an isotope mass spectrometer Several optimization steps were tried in order to improve the oxidation of TCAA and TFAA: (i) increasing the concentration of the oxidizing agent, (ii) variation of flow rate of the oxidizing and acid solution, (iii) variation of flow rate of liquid chromatography pump (iv) addition of a catalyzer. These modifications lead to longer reaction time in the coil and increase in the concentration of radical but complete combustion of highly chlorinated or fluorinated compounds was not achieved. Due to these findings the limit for a LC-IRMS system for similar structure compounds can be predicted. 1. Elsner, M., et al., Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Analytical and Bioanalytical Chemistry, 2012. 403(9): p. 2471-2491. 2. Krummen, M., et al., A new concept for isotope ratio monitoring liquid chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 2004. 18(19): p. 2260-2266.

  18. Strontium isotope measurement of basaltic glasses by laser ablation multiple collector inductively coupled plasma mass spectrometry based on a linear relationship between analytical bias and Rb/Sr ratios.

    PubMed

    Zhang, Le; Ren, Zhong-Yuan; Wu, Ya-Dong; Li, Nan

    2018-01-30

    In situ strontium (Sr) isotope analysis of geological samples by laser ablation multiple collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) provides useful information about magma mixing, crustal contamination and crystal residence time. Without chemical separation, during Sr isotope analysis with laser ablation, many kinds of interference ions (such as Rb + and Kr + ) are on the Sr isotope spectrum. Most previous in situ Sr isotope studies only focused on Sr-enriched minerals (e.g. plagioclase, calcite). Here we established a simple method for in situ Sr isotope analysis of basaltic glass with Rb/Sr ratio less than 0.14 by LA-MC-ICP-MS. Seven Faraday cups, on a Neptune Plus MC-ICP-MS instrument, were used to receive the signals on m/z 82, 83, 84, 85, 86, 87 and 88 simultaneously for the Sr isotope analysis of basaltic glass. The isobaric interference of 87 Rb was corrected by the peak stripping method. The instrumental mass fractionation of 87 Sr/ 86 Sr was corrected to 86 Sr/ 88 Sr = 0.1194 with an exponential law. Finally, the residual analytical biases of 87 Sr/ 86 Sr were corrected with a relationship between the deviation of 87 Sr/ 86 Sr from the reference values and the measured 87 Rb/ 86 Sr. The validity of the protocol present here was demonstrated by measuring the Sr isotopes of four basaltic glasses, a plagioclase crystal and a piece of modern coral. The measured 87 Sr/ 86 Sr ratios of all these samples agree within 100 ppm with the reference values. In addition, the Sr isotopes of olivine-hosted melt inclusions from the Emeishan large igneous province (LIP) were measured to show the application of our method to real geological samples. A simple but accurate approach for in situ Sr isotope measurement by LA-MC-ICP-MS has been established, which should greatly facilitate the wider application of in situ Sr isotope geochemistry, especially to volcanic rock studies. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Small-scale studies of roasted ore waste reveal extreme ranges of stable mercury isotope signatures

    NASA Astrophysics Data System (ADS)

    Smith, Robin S.; Wiederhold, Jan G.; Jew, Adam D.; Brown, Gordon E.; Bourdon, Bernard; Kretzschmar, Ruben

    2014-07-01

    Active and closed Hg mines are significant sources of Hg contamination to the environment, mainly due to large volumes of mine waste material disposed of on-site. The application of Hg isotopes as source tracer from such contaminated sites requires knowledge of the Hg isotope signatures of different materials potentially released to the environment. Previous work has shown that calcine, the waste residue of the on-site ore roasting process, can exhibit distinct Hg isotope signatures compared with the primary ore. Here, we report results from a detailed small-scale study of Hg isotope variations in calcine collected from the closed New Idria Hg mine, San Benito County, CA, USA. The calcine samples exhibited different internal layering features which were investigated using optical microscopy, micro X-ray fluorescence, micro X-ray absorption spectroscopy (μ-XAS), and stable Hg isotope analysis. Significant Fe, S, and Hg concentration gradients were found across the different internal layers. Isotopic analyses revealed an extreme variation with pronounced isotopic gradients across the internal layered features. Overall, δ202Hg (±0.10‰, 2 SD) describing mass-dependent fractionation (MDF) ranged from -5.96 to 14.49‰, which is by far the largest range of δ202Hg values reported for any environmental sample. In addition, Δ199Hg (±0.06‰, 2 SD) describing mass-independent fractionation (MIF) ranged from -0.17 to 0.21‰. The μ-XAS analyses suggested that cinnabar and metacinnabar are the dominant Hg-bearing phases in the calcine. Our results demonstrate that the incomplete roasting of HgS ores in Hg mines can cause extreme mass-dependent Hg isotope fractionations at the scale of individual calcine pieces with enrichments in both light and heavy Hg isotopes relative to the primary ore signatures. This finding has important implications for the application of Hg isotopes as potential source tracers for Hg released to the environment from closed Hg mines and highlights the need for detailed source signature identification.

  20. Lead Isotope Characteristics of the Mindyak Gold Deposit, Southern Urals: Evidence for the Source of Metals

    NASA Astrophysics Data System (ADS)

    Chugaev, A. V.; Znamensky, S. E.

    2018-01-01

    The isotopic composition of Pb in pyrite of the Mindyak orogenic gold deposit located in the Main Ural Fault Zone, the Southern Urals, has been studied by the high-precision MC-ICP-MS method. Orebodies at the deposit are composed of early pyrite and late polysulfide-carbonate-quartz mineral assemblages. The orebodies are localized in olistostrome with carbonaceous clayey-cherty cement. Pyrites from early and late mineral assemblages are close in Pb isotope ratios. For early pyrite 206Pb/204Pb = 18.250-18.336, 207Pb/204Pb = 15.645-15.653, 208Pb/204Pb = 38.179-38.461; while for late pyrite 206Pb/204Pb = 18.102-18.378, 207Pb/204Pb = 15.635-15.646, 208Pb/204Pb = 38.149-38.320. The model parameters μ2 (238U/204Pb = 9.91 ± 2), ω2 (232Th/204Pb = 38.5 ± 4), and 232Th/238U = 3.88 ± 3 indicate that an upper crustal Pb source played a leading role in ore formation. Carbonaceous shale as an olistostrome cement and syngenetic sulfide mineralization are considered to be the main Pb sources of both early and late mineral assemblages. An additional recept in apparently magmatic lead is suggested for the late veinlet mineralization. The involvement of lead from several sources in ore formation is consistent with the genetic model, which assumes a two-stage formation of orebodies at the Mindyak deposit.

Top