Sample records for lead sulfates

  1. Combined processing of lead concentrates

    NASA Astrophysics Data System (ADS)

    Kubasov, V. L.; Paretskii, V. M.; Sidorin, G. N.; Travkin, V. F.

    2013-06-01

    A combined scheme of processing of lead concentrates with the production of pure metallic lead and the important components containing in these concentrates is considered. This scheme includes sulfating roasting of the lead concentrates and two-stage leaching of the formed cinder with the formation of a sulfate solution and lead sulfate. When transformed into a carbonate form, lead sulfate is used for the production of pure metallic lead. Silver, indium, copper, cadmium, nickel, cobalt, and other important components are separately extracted from a solution. At the last stage, zinc is extracted by either extraction followed by electrolytic extraction of a metal or the return of the forming solution of sulfuric acid to cinder leaching.

  2. Impacts of blending ground, surface, and saline waters on lead release in drinking water distribution systems.

    PubMed

    Tang, Zhijian; Hong, Seungkwan; Xiao, Weizhong; Taylor, James

    2006-03-01

    The impacts of distribution water quality changes caused by blending different source waters on lead release from corrosion loops containing small lead coupons were investigated in a pilot distribution study. The 1-year pilot study demonstrated that lead release to drinking water increased as chlorides increased and sulfates decreased. Silica and calcium inhibited lead release to a lesser degree than sulfates. An additional 3-month field study isolated and verified the effects of chlorides and sulfates on lead release. Lead release decreased with increasing pH and increasing alkalinity during the 1-year pilot study; however, the effects of pH and alkalinity on lead release, were not clearly elucidated due to confounding effects. A statistical model was developed using nonlinear regression, which showed that lead release increased with increasing chlorides, alkalinity and temperature, and decreased with increasing pH and sulfates. The model indicated that primary treatment processes such as enhanced coagulation and RO (reverse osmosis membrane) were related to lead release by water quality. Chlorides are high in RO-finished water and increase lead release, while sulfates are high following enhanced coagulation and decrease lead release.

  3. Sulfation in lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Catherino, Henry A.; Feres, Fred F.; Trinidad, Francisco

    Virtually, all military land vehicle systems use a lead-acid battery to initiate an engine start. The maintainability of these batteries and as a consequence, system readiness, has suffered from a lack of understanding of the reasons for battery failure. Often, the term most commonly heard for explaining the performance degradation of lead-acid batteries is the word, sulfation. Sulfation is a residual term that came into existence during the early days of lead-acid battery development. The usage is part of the legend that persists as a means for interpreting and justifying the eventual performance deterioration and failure of lead-acid batteries. The usage of this term is confined to the greater user community and, over time, has encouraged a myriad of remedies for solving sulfation problems. One can avoid the connotations associated with the all-inclusive word, sulfation by visualizing the general "sulfation" effect in terms of specific mechanistic models. Also, the mechanistic models are essential for properly understanding the operation and making proper use this battery system. It is evident that the better the model, the better the level of understanding.

  4. Purification of Keratan Sulfate-endogalactosidase and its action on keratan sulfates of different origin.

    PubMed

    Nakazawa, K; Suzuki, S

    1975-02-10

    A glycosidase which attacks corneal keratan sulfate was purified from extracts of Pseudomonas sp. IFO-13309. When corneal keratan sulfate was degraded by the purified enzyme, Sephadex G-50 chromatography indicated the presence of a number of oligosaccharides differing in size and sulfate content. The characterization of two major fractions of the oligosaccharides indicated that the point of enzyme attack is limited to the endo-beta-D-galactoside bonds in which nonsulfated D-galactose residues participate. The enzyme, unlike ordinary exo-beta-D-galactosidases, did not catalyze the hydrolysis of phenyl beta-D-galactoside. Moreover, beta-D-galactosyl-(1 leads to 3)-2-acetamido-2-deoxy-beta-D-glucosyl-(1 leads to 3)-beta-D-galactosyl-(1 leads to 4)-D-glucose ("lacto-N-tetraose") was completely refractory to the action of this enzyme, suggesting that a structure of the type, X-(1 leads to 3)-beta-D-galactosyl-(1 leads to 4)-Y, is not the only specificity-determining factor, i.e. neighboring sugars, X and Y, or even larger portions of substrate molecule must have an important effect. Compared with corneal keratan sulfate, keratan sulfates from human nucleus pulposus and shark cartilage were attacked at lower rates with a resultant production of oligosaccharides of relatively large size. The result is in agreement with the view that considerable variations exist in the structure of keratan sulfates of different origin, and further suggests that the enzyme may serve as a useful reagent in studying these variations.

  5. Secondary effects of anion exchange on chloride, sulfate, and lead release: systems approach to corrosion control.

    PubMed

    Willison, Hillary; Boyer, Treavor H

    2012-05-01

    Water treatment processes can cause secondary changes in water chemistry that alter finished water quality including chloride, sulfate, natural organic matter (NOM), and metal release. Hence, the goal of this research was to provide an improved understanding of the chloride-to-sulfate mass ratio (CSMR) with regards to chloride and sulfate variations at full-scale water treatment plants and corrosion potential under simulated premise plumbing conditions. Laboratory corrosion studies were conducted using Pb-Sn solder/Cu tubing galvanic cells exposed to model waters with low (approx. 5 mg/L Cl(-) and 10 mg/L SO(4)(2-)) and high (approx. 50 mg/L Cl(-) and 100 mg/L SO(4)(2-)) concentrations of chloride and sulfate at a constant CSMR of ≈ 0.5. The role of NOM during corrosion was also evaluated by changing the type of organic material. In addition, full-scale sampling was conducted to quantify the raw water variability of chloride, sulfate, and NOM concentrations and the changes to these parameters from magnetic ion exchange treatment. Test conditions with higher concentrations of chloride and sulfate released significantly more lead than the lower chloride and sulfate test waters. In addition, the source of NOM was a key factor in the amount of lead released with the model organic compounds yielding significantly less lead release than aquatic NOM. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Role of iron and aluminum coagulant metal residuals and lead release from drinking water pipe materials.

    PubMed

    Knowles, Alisha D; Nguyen, Caroline K; Edwards, Marc A; Stoddart, Amina; McIlwain, Brad; Gagnon, Graham A

    2015-01-01

    Bench-scale experiments investigated the role of iron and aluminum residuals in lead release in a low alkalinity and high (> 0.5) chloride-to-sulfate mass ratio (CSMR) in water. Lead leaching was examined for two lead-bearing plumbing materials, including harvested lead pipe and new lead: tin solder, after exposure to water with simulated aluminum sulfate, polyaluminum chloride and ferric sulfate coagulation treatments with 1-25-μM levels of iron or aluminum residuals in the water. The release of lead from systems with harvested lead pipe was highly correlated with levels of residual aluminum or iron present in samples (R(2) = 0.66-0.88), consistent with sorption of lead onto the aluminum and iron hydroxides during stagnation. The results indicate that aluminum and iron coagulant residuals, at levels complying with recommended guidelines, can sometimes play a significant role in lead mobilization from premise plumbing.

  7. Evidence For Volcanic Initiation Of Cretaceous Ocean Anoxic Events (Invited)

    NASA Astrophysics Data System (ADS)

    Sageman, B. B.; Hurtgen, M. T.; McElwain, J.; Adams, D.; Barclay, R. S.; Joo, Y.

    2010-12-01

    Increasing evidence from studies of Cretaceous ocean anoxic events (OAE’s) has suggested that major changes in volcanic activity may have played a significant role in their genesis. Numerous specific mechanisms of have been proposed, including increases in atmospheric CO2 and surface temperature, leading to enhanced chemical weathering and terrestrial nutrient release, or increases in reduced trace metal fluxes, leading to oxygen depletion and possibly providing micronutrients for enhanced primary production. An additional pathway by which the byproducts of enhanced volcanic activity may have contributed to OAE genesis involves relationships between the biogeochemical cycles sulfur, iron, and phosphorus. Recent analysis of S-isotope data from carbonate-associated sulfate and pyrite collected across the Cenomanian-Turonian OAE2 in the Western Interior basin suggest that increases in sulfate to an initially sulfate-depleted ocean preceded onset of the event. Modern lake data support the idea that increases in sulfate concentration drive microbial sulfate reduction, leading to more efficient regeneration of P from sedimentary organic matter. If the early Cretaceous opening of the South Atlantic was accompanied by evaporite deposition sufficient to draw down global marine sulfate levels, and widespread anoxia leading to elevated pyrite burial helped maintain these low levels for the succeeding 30 myr, during which most Cretaceous OAE’s are found, perhaps pulses of volcanism that rapidly introduced large volumes of sulfate may have played a key role in OAE initiation. The eventually burial of S in the form of pyrite may have returned sulfate levels to a low background, thus providing a mechanism to terminate the anoxic events. This talk will review the evidence for volcanic initiation of OAE’s in the context of the sulfate-phosphorus regeneration model.

  8. Biological conversion of anglesite (PbSO(4)) and lead waste from spent car batteries to galena (PbS).

    PubMed

    Weijma, Jan; De Hoop, Klaas; Bosma, Wobby; Dijkman, Henk

    2002-01-01

    Lead paste, a solid mixture containing PbSO(4), PbO(2), PbO/Pb(OH)(2) precipitate, and elemental Pb, is one of the main waste fractions from spent car batteries. Biological sulfidation represents a new process for recovery of lead from this waste. In this process the lead salts in lead paste are converted to galena (PbS) by sulfate-reducing bacteria. This paper investigates a continuous process for sulfidation of anglesite (PbSO(4)), the main constituent of lead paste, and lead paste, consisting of a laboratory-scale gas-lift bioreactor to which a slurry of anglesite or lead paste was supplied. Sulfate or elemental sulfur was added as an additional sulfur source. Hydrogen gas served as an electron donor for the biological reduction of sulfate and elemental sulfur to sulfide by sulfate- and sulfur-reducing bacteria. Anglesite was almost completely converted to galena at a loading rate of 19 kg of PbSO(4) m(-)(3) day(-)(1), producing a sludge of which the crystalline lead phases consisted of >98% PbS (galena) and 1-2% elemental Pb. With lead paste, stable sulfidation rates of up to 17 kg of lead paste m(-)(3) day(-)(1) were demonstrated, producing a sludge of which the crystalline lead phases consisted of an estimated >96% PbS, 1-2% elemental Pb, and 1-2% PbO(2).

  9. Chondroitin sulfate effects on neural stem cell differentiation.

    PubMed

    Canning, David R; Brelsford, Natalie R; Lovett, Neil W

    2016-01-01

    We have investigated the role chondroitin sulfate has on cell interactions during neural plate formation in the early chick embryo. Using tissue culture isolates from the prospective neural plate, we have measured neural gene expression profiles associated with neural stem cell differentiation. Removal of chondroitin sulfate from stage 4 neural plate tissue leads to altered associations of N-cadherin-positive neural progenitors and causes changes in the normal sequence of neural marker gene expression. Absence of chondroitin sulfate in the neural plate leads to reduced Sox2 expression and is accompanied by an increase in the expression of anterior markers of neural regionalization. Results obtained in this study suggest that the presence of chondroitin sulfate in the anterior chick embryo is instrumental in maintaining cells in the neural precursor state.

  10. Acute Exacerbations of COPD Are Associated With Increased Expression of Heparan Sulfate and Chondroitin Sulfate in BAL.

    PubMed

    Papakonstantinou, Eleni; Klagas, Ioannis; Roth, Michael; Tamm, Michael; Stolz, Daiana

    2016-03-01

    Acute exacerbations of COPD (AECOPDs) are associated with accelerated aggravation of clinical symptoms and deterioration of pulmonary function. The mechanisms by which exacerbations may contribute to airway remodeling and declined lung function are poorly understood. We investigated whether AECOPDs are associated with differential expression of glycosaminoglycans in BAL in a cohort of 97 patients with COPD. Patients with COPD with either stable disease (n = 53) or AECOPD (n = 44) and undergoing diagnostic bronchoscopy were matched for demographics and lung function parameters. Levels of heparan sulfate, chondroitin sulfate, dermatan sulfate, and matrix metalloproteinases (MMPs) in BAL were measured by enzyme-linked immunosorbent assay. Heparan sulfate and chondroitin sulfate were significantly increased in BAL of patients during exacerbations. Levels of heparan sulfate were higher in the BAL of patients with microbial infections. Chondroitin sulfate was negatively correlated with FEV1 % predicted but not with diffusing capacity of lung for carbon monoxide % predicted, indicating that chondroitin sulfate is associated with airway remodeling, leading to obstruction rather than to emphysema. Furthermore, heparan sulfate and chondroitin sulfate were significantly correlated with MMP-9, MMP-2, and MMP-12 in BAL, indicating that they were cleaved from their respective proteoglycans by MMPs and subsequently washed out in BAL. During AECOPD, there is increased expression of heparan sulfate and chondroitin sulfate in BAL. These molecules are significantly correlated with MMPs in BAL, indicating that they may be associated with airway remodeling and may lead to lung function decline during exacerbations of COPD. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  11. NATIONAL PERFORMANCE AUDIT PROGRAM: 1979 PROFICIENCY SURVEYS FOR SULFUR DIOXIDE, NITROGEN DIOXIDE, CARBON MONOXIDE, SULFATE, NITRATE, LEAD AND HIGH VOLUME FLOW

    EPA Science Inventory

    The Quality Assurance Division of the Environmental Monitoring Systems Laboratory, Research Triangle Park, North Carolina, administers semiannual Surveys of Analytical Proficiency for sulfur dioxide, nitrogen dioxide, carbon monoxide, sulfate, nitrate and lead. Sample material, s...

  12. Contrast agent comparison for three-dimensional micro-CT angiography: A cadaveric study.

    PubMed

    Kingston, Mitchell J; Perriman, Diana M; Neeman, Teresa; Smith, Paul N; Webb, Alexandra L

    2016-07-01

    Barium sulfate and lead oxide contrast media are frequently used for cadaver-based angiography studies. These contrast media have not previously been compared to determine which is optimal for the visualisation and measurement of blood vessels. In this study, the lower limb vessels of 16 embalmed Wistar rats, and four sets of cannulae of known diameter, were injected with one of three different contrast agents (barium sulfate and resin, barium sulfate and gelatin, and lead oxide combined with milk powder). All were then scanned using micro-computed tomography (CT) angiography and 3-D reconstructions generated. The number of branching generations of the rat lower limb vessels were counted and compared between the contrast agents using ANOVA. The diameter of the contrast-filled cannulae, were measured and used to calculate the accuracy of the measurements by comparing the bias and variance of the estimates. Intra- and inter-observer reliability were calculated using intra-class correlation coefficients. There was no significant difference (mean difference [MD] 0.05; MD 95% confidence interval [CI] -0.83 to 0.93) between the number of branching generations for barium sulfate-resin and lead oxide-milk powder. Barium sulfate-resin demonstrated less bias and less variance of the estimates (MD 0.03; standard deviation [SD] 1.96 mm) compared to lead oxide-milk powder (MD 0.11; SD 1.96 mm) for measurements of contrast-filled cannulae scanned at high resolution. Barium sulfate-resin proved to be more accurate than lead oxide-milk powder for high resolution micro-CT scans and is preferred due to its non-toxicity. This technique could be applied to any embalmed specimen model. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. pH control of the structure, composition, and catalytic activity of sulfated zirconia

    NASA Astrophysics Data System (ADS)

    Ivanov, Vladimir K.; Baranchikov, Alexander Ye.; Kopitsa, Gennady P.; Lermontov, Sergey A.; Yurkova, Lyudmila L.; Gubanova, Nadezhda N.; Ivanova, Olga S.; Lermontov, Anatoly S.; Rumyantseva, Marina N.; Vasilyeva, Larisa P.; Sharp, Melissa; Pranzas, P. Klaus; Tretyakov, Yuri D.

    2013-02-01

    We report a detailed study of structural and chemical transformations of amorphous hydrous zirconia into sulfated zirconia-based superacid catalysts. Precipitation pH is shown to be the key factor governing structure, composition and properties of amorphous sulfated zirconia gels and nanocrystalline sulfated zirconia. Increase in precipitation pH leads to substantial increase of surface fractal dimension (up to ˜2.7) of amorphous sulfated zirconia gels, and consequently to increase in specific surface area (up to ˜80 m2/g) and simultaneously to decrease in sulfate content and total acidity of zirconia catalysts. Complete conversion of hexene-1 over as synthesized sulfated zirconia catalysts was observed even under ambient conditions.

  14. Release of chromaffin granule glycoproteins and proteoglycans from potassium-stimulated PC12 pheochromocytoma cells.

    PubMed

    Salton, S R; Margolis, R U; Margolis, R K

    1983-10-01

    Cultured PC12 pheochromocytoma cells were labeled with [3H]glucosamine, and the glycoproteins and proteoglycans released following potassium-induced depolarization were fractionated and characterized. Exposure of PC12 cells for 20 min to a high concentration of potassium (51.5 mM in Krebs-Ringers-HEPES buffer) results in an approximately sixfold increase in the release of labeled glycoproteins and proteoglycans, compared to incubation in physiological levels of potassium (6 mM). The released complex carbohydrates include chromogranins, dopamine beta-hydroxylase, and two chondroitin sulfate/heparan sulfate proteoglycan fractions, which together account for 7.4% of the soluble cell radioactivity. The chromogranins contained galactosyl(beta 1 leads to 3)N-acetylgalactosamine, as well as several mono- and disialyl O-glycosidically-linked oligosaccharides, and the tetrasaccharide AcNeu(alpha 2 leads to 3)Gal(beta 1 leads to 3)[AcNeu(alpha 2 leads to 6)] GalNAcol, obtained by alkaline borohydride treatment of the chromogranin glycopeptides, accounted for almost half of the total chromogranin labeling. The proteoglycan fractions varied in their relative proportions of chondroitin sulfate (23-68%), heparan sulfate (16-23%), and glycoprotein oligosaccharides (16-54%), which are of the tri- and tetraantennary and O-glycosidic types. As previously found in the case of proteoglycans from bovine chromaffin granules, the more acidic species has a considerably higher proportion of carbohydrate in the form of sulfated glycosaminoglycans.

  15. Determination of iron: In the presence of chromium and titanium with the jones reductor

    USGS Publications Warehouse

    Grimaldi, F.S.; Stevens, R.E.; Carron, M.K.

    1943-01-01

    Sulfuric acid solutions of titanous and chromous sulfates, obtained by passage through the Jones reductor, are oxidized by aeration for from 5 to 10 minutes in the presence of a trace of copper sulfate as a catalyst. Ferrous sulfate is essentially unoxidized and is titrated with permanganate after aeration. Best results are obtained by using 0.0003 millimole of copper sulfate in about 300 ml. of solution. Larger quantities of copper sulfate lead to slightly low results when both chromium and titanium are present.

  16. Pb4(BO3)2(SO4) and Pb2[(BO2)(OH)](SO4): New lead(II) borate-sulfate mixed-anion compounds with two types of 3D network structures

    NASA Astrophysics Data System (ADS)

    Ruan, Ting-Ting; Wang, Wen-Wen; Hu, Chun-Li; Xu, Xiang; Mao, Jiang-Gao

    2018-04-01

    Two new lead(II) borate-sulfate mixed-anion compounds, namely, Pb4(BO3)2(SO4) and Pb2[(BO2)(OH)](SO4), have been prepared by using high-temperature melt method or hydrothermal reaction. These compounds exhibit two different types of 3D structures composed of the same anionic units of BO3 triangles and SO4 tetrahedra which are interconnected by lead(II) cations. In Pb4(BO3)2(SO4), the lead(II) ions are bridged by borate anions into 3D [Pb4(BO3)2]2+ architectures with 1D tunnels of 8-member rings along the a-axis, which are filled by the sulfate anions. In Pb2[(BO2)(OH)](SO4), the lead(II) ions are interconnected by borate and sulfate anions into 2D Pb-B-O and Pb-S-O layers parallel to the ab plane, respectively, and these layers are further condensed into the 3D lead(II) borate-sulfate framework. TGA and DSC studies indicate that Pb4(BO3)2(SO4) is congruently melting with a melting point of 689 °C whereas Pb2[(BO2)(OH)](SO4) decomposes at approximately 335 °C. UV/Vis/NIR optical diffuse reflectance spectrum measurements reveal the optical band gaps of 4.03 and 4.08 eV for Pb4(BO3)2(SO4) and Pb2[(BO2)(OH)](SO4), respectively. Furthermore, the electronic structures of Pb4(BO3)2(SO4) have also been calculated.

  17. [Determination of trace lead and iron in nickel chloride and manganese sulfate by flame atomic absorption spectrometry after coprecipitation with yttrium phosphate].

    PubMed

    Su, Yao-Dong; Zhu, Wen-Ying; Ma, Hong-Mei; Chen, Long-Wu

    2006-09-01

    Using yttrium phosphate as the coprecipitation collector for the separation and preconcentration of trace lead and iron in nickel chloride and manganese sulfate, flame atomic absorption spectrometric (FAAS) determination was described in the present paper. Coprecipitation parameters including the pH of the solution, and the amounts of YCl3 and H3 PO4 were discussed. It was found that lead and iron in nickel chloride could be coprecipitated quantitatively in the range of pH 3.0-4.0, and so could be lead in manganese sulfate. The detection limits (3sigma) of lead and iron in 20 mL solution were 1.63 x 10(-2) mg x L(-1) and 4.58 x 10(-2) mg x L(-1) respectively. In NiCl2 solution the standard addition recoveries for lead and iron were 100.91% and 99.73% respectively, and in MnSO4 solution the standard addition recoveries were 99.45% and 98.98% respectively. The method has eliminated the interference of matrix, and the result is satisfied.

  18. Modeling of the cranking and charging processes of conventional valve regulated lead acid (VRLA) batteries in micro-hybrid applications

    NASA Astrophysics Data System (ADS)

    Gou, Jun; Lee, Anson; Pyko, Jan

    2014-10-01

    The cranking and charging processes of a VRLA battery during stop-start cycling in micro-hybrid applications were simulated by one dimensional mathematical modeling, to study the formation and distribution of lead sulfate across the cell and analyze the resulting effect on battery aging. The battery focused on in this study represents a conventional VRLA battery without any carbon additives in the electrodes or carbon-based electrodes. The modeling results were validated against experimental data and used to analyze the "sulfation" of negative electrodes - the common failure mode of lead acid batteries under high-rate partial state of charge (HRPSoC) cycling. The analyses were based on two aging mechanisms proposed in previous studies and the predictions showed consistency with the previous teardown observations that the sulfate formed at the negative interface is more difficult to be converted back than anywhere else in the electrodes. The impact of cranking pulses during stop-start cycling on current density and the corresponding sulfate layer production was estimated. The effects of some critical design parameters on sulfate formation, distribution and aging over cycling were investigated, which provided guidelines for developing models and designing of VRLA batteries in micro-hybrid applications.

  19. A role for a lithium-inhibited Golgi nucleotidase in skeletal development and sulfation

    PubMed Central

    Frederick, Joshua P.; Tafari, A. Tsahai; Wu, Sheue-Mei; Megosh, Louis C.; Chiou, Shean-Tai; Irving, Ryan P.; York, John D.

    2008-01-01

    Sulfation is an important biological process that modulates the function of numerous molecules. It is directly mediated by cytosolic and Golgi sulfotransferases, which use 3′-phosphoadenosine 5′-phosphosulfate to produce sulfated acceptors and 3′-phosphoadenosine 5′-phosphate (PAP). Here, we identify a Golgi-resident PAP 3′-phosphatase (gPAPP) and demonstrate that its activity is potently inhibited by lithium in vitro. The inactivation of gPAPP in mice led to neonatal lethality, lung abnormalities resembling atelectasis, and dwarfism characterized by aberrant cartilage morphology. The phenotypic similarities of gPAPP mutant mice to chondrodysplastic models harboring mutations within components of the sulfation pathway lead to the discovery of undersulfated chondroitin in the absence of functional enzyme. Additionally, we observed loss of gPAPP leads to perturbations in the levels of heparan sulfate species in lung tissue and whole embryos. Our data are consistent with a model that clearance of the nucleotide product of sulfotransferases within the Golgi plays an important role in glycosaminoglycan sulfation, provide a unique genetic basis for chondrodysplasia, and define a function for gPAPP in the formation of skeletal elements derived through endochondral ossification. PMID:18695242

  20. The maturation state of the auditory nerve and brainstem in rats exposed to lead acetate and supplemented with ferrous sulfate.

    PubMed

    Zucki, Fernanda; Morata, Thais C; Duarte, Josilene L; Ferreira, Maria Cecília F; Salgado, Manoel H; Alvarenga, Kátia F

    The literature has reported the association between lead and auditory effects, based on clinical and experimental studies. However, there is no consensus regarding the effects of lead in the auditory system, or its correlation with the concentration of the metal in the blood. To investigate the maturation state of the auditory system, specifically the auditory nerve and brainstem, in rats exposed to lead acetate and supplemented with ferrous sulfate. 30 weanling male rats (Rattus norvegicus, Wistar) were distributed into six groups of five animals each and exposed to one of two concentrations of lead acetate (100 or 400mg/L) and supplemented with ferrous sulfate (20mg/kg). The maturation state of the auditory nerve and brainstem was analyzed using Brainstem Auditory Evoked Potential before and after lead exposure. The concentration of lead in blood and brainstem was analyzed using Inductively Coupled Plasma-Mass Spectrometry. We verified that the concentration of Pb in blood and in brainstem presented a high correlation (r=0.951; p<0.0001). Both concentrations of lead acetate affected the maturation state of the auditory system, being the maturation slower in the regions corresponding to portion of the auditory nerve (wave I) and cochlear nuclei (wave II). The ferrous sulfate supplementation reduced significantly the concentration of lead in blood and brainstem for the group exposed to the lowest concentration of lead (100mg/L), but not for the group exposed to the higher concentration (400mg/L). This study indicate that the lead acetate can have deleterious effects on the maturation of the auditory nerve and brainstem (cochlear nucleus region), as detected by the Brainstem Auditory Evoked Potentials, and the ferrous sulphate can partially amend this effect. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. All rights reserved.

  1. DYNAMICS OF AUTOMOTIVE SULFATE EMISSIONS

    EPA Science Inventory

    A preliminary assessment of the potential environmental impact of automotive sulfuric acid (or sulfate) aerosol has been made by analyzing the aerosol dynamics. This analysis leads to the prediction of ambient automotive sulfuric acid aerosol concentrations over and around a larg...

  2. PREVENTION OF SCALE FORMATION IN URANIUM SOLVENT EXTRACTOR

    DOEpatents

    Delaplaine, J.W.

    1957-11-01

    A method for preventing the formation of scale in uranium solvent extraction apparatus is presented. The scale, consisting chiefly of precipitated silica and the sulfates uf calcium and lead, may be prevented by a combination of measures, chiefly by prior heating and agitation to crystallize and remove silica, and by a maintenance of uranyl nitrate concentration in the feed and extractant above certain levels to increase the solubility of the calcium and lead sulfates.

  3. Sulfur in the South Florida ecosystem: Distribution, sources, biogeochemistry, impacts, and management for restoration

    USGS Publications Warehouse

    Orem, W.; Gilmour, C.; Axelrad, D.; Krabbenhoft, D.; Scheidt, D.; Kalla, P.; McCormick, P.; Gabriel, M.; Aiken, G.

    2011-01-01

    Sulfur is broadly recognized as a water quality issue of significance for the freshwater Florida Everglades. Roughly 60% of the remnant Everglades has surface water sulfate concentrations above 1 mg l-1, a restoration performance measure based on present sulfate levels in unenriched areas. Highly enriched marshes in the northern Everglades have average sulfate levels of 60 mg l-1. Sulfate loading to the Everglades is principally a result of land and water management in South Florida. The highest concentrations of sulfate (average 60-70 mg l-1) in the ecosystem are in canal water in the Everglades Agricultural Area (EAA). Potential sulfur sourcesin the watershed are many, but geochemical data and a preliminary sulfur mass balance for the EAA are consistent with sulfur presently used in agricultural, and sulfur released by oxidation of organic EAA soils (including legacy agricultural applications and natural sulfur) as the primary sources of sulfate enrichment in the EAA canals. Sulfate loading to the Everglades increases microbial sulfate reduction in soils, leading to more reducing conditions, greater cycling of nutrients in soils, production of toxic sulfide, and enhanced methylmercury (MeHg) production and bioaccumulation. Wetlands are zones of naturally high MeHg production, but the combination of high atmospheric mercury deposition rates in South Florida and elevated sulfate loading leads to increased MeHg production and MeHg risk to Everglades wildlife and human consumers. Sulfate from the EAA drainage canals penetrates deep into the Everglades Water Conservation Areas, and may extend into Everglades National Park. Present plans to restore sheet flow and to deliver more water to the Everglades may increase overall sulfur loads to the ecosystem, and move sulfate-enriched water further south. However, water management practices that minimize soil drying and rewetting cycles can mitigate sulfate release during soil oxidation. A comprehensive Everglades restoration strategy should include reduction of sulfur loads as a goal because of the many detrimental impacts of sulfate on the ecosystem. Monitoring data show that the ecosystem response to changes in sulfate levels is rapid, and strategies for reducing sulfate loading may be effective in the near term. A multifaceted approach employing best management practices for sulfur in agriculture, agricultural practices that minimize soil oxidation, and changes to stormwater treatment areas that increase sulfate retention could help achieve reduced sulfate loads to the Everglades, with resulting benefits. Copyright ?? 2011 Taylor & Francis Group, LLC.

  4. Synthesis and foaming properties of new anionic surfactants based on a renewable building block: sodium dodecyl isosorbide sulfates.

    PubMed

    Lavergne, Aurélie; Zhu, Ying; Pizzino, Aldo; Molinier, Valérie; Aubry, Jean-Marie

    2011-08-15

    Two agro-based anionic surfactants containing an isosorbide moiety have been synthesized and their amphiphilic properties evaluated. Since isosorbide is now considered as an important platform chemical of the starch industry, these compounds could represent bio-sourced alternatives to the alkyl ether sulfates (notably lauryl ether sulfate, LES) that are based on petroleum-derived ethylene oxides. As isosorbide is an asymmetric diol, two isomers can be prepared (2-O-dodecyl isosorbide sulfate and 5-O-dodecyl isosorbide sulfate) that show significantly different aqueous properties as regards to their Krafft temperatures and critical micellar concentrations. 5-O-dodecyl isosorbide sulfate is the most soluble and the most efficient surfactant. It possesses a much lower critical micelle concentration (cmc) than sodium dodecyl sulfate, SDS, leading to comparable foaming properties with a three times lower concentration. Its behavior compares well with the one of pure diethoxylated dodecyl sulfate that has also been prepared and evaluated in this work. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Study of thermochemical sulfate reduction mechanism using compound specific sulfur isotope analysis

    USGS Publications Warehouse

    Meshoulam, Alexander; Ellis, Geoffrey S.; Ahmad, Ward Said; Deev, Andrei; Sessions, Alex L.; Tang, Yongchun; Adkins, Jess F.; Liu, Jinzhong; Gilhooly, William P.; Aizenshtat, Zeev; Amrani, Alon

    2016-01-01

    Experiments involving sparingly soluble CaSO4 show that during the second catalytic phase of TSR the rate of sulfate reduction exceeds that of sulfate dissolution. In this case, there is no apparent isotopic fractionation between source sulfate and generated H2S, as all of the available sulfate is effectively reduced at all reaction times. When CaSO4 is replaced with fully soluble Na2SO4, sulfate dissolution is no longer rate limiting and significant S-isotopic fractionation is observed. This supports the notion that CaSO4dissolution can lead to the apparent lack of fractionation between H2S and sulfate produced by TSR in nature. The S-isotopic composition of individual OSCs record information related to geochemical reactions that cannot be discerned from the δ34S values obtained from bulk phases such as H2S, oil, and sulfate minerals, and provide important mechanistic details about the overall TSR process.

  6. Sulfates on Mars: Indicators of Aqueous Processes

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Lane, Melissa D.; Dyar, M. Darby; Brown, Adrian J.

    2006-01-01

    Recent analyses by MER instruments at Meridiani Planum and Gusev crater and the OMEGA instrument on Mars Express have provided detailed information about the presence of sulfates on Mars [1,2,3]. We are evaluating these recent data in an integrated multi-disciplinary study of visible-near-infrared, mid-IR and Mossbauer spectra of several sulfate minerals and sulfate-rich analog sites. Our analyses suggest that hydrated iron sulfates may account for features observed in Mossbauer and mid-IR spectra of Martian soils [4]. The sulfate minerals kieserite, gypsum and other hydrated sulfates have been identified in OMEGA spectra in the layered terrains in Valles Marineris and Terra Meridiani [2]. These recent discoveries emphasize the importance of studying sulfate minerals as tracers of aqueous processes. The sulfate-rich rock outcrops observed in Meridiani Planum may have formed in an acidic environment similar to acid rock drainage environments on Earth [5]. Because microorganisms typically are involved in the oxidation of sulfides to sulfates in terrestrial sites, sulfate-rich rock outcrops on Mars may be a good location to search for evidence of past life on that planet. Whether or not life evolved on Mars, following the trail of sulfate minerals will lead to a better understanding of aqueous processes and chemical weathering.

  7. A novel hypothesis for atherosclerosis as a cholesterol sulfate deficiency syndrome.

    PubMed

    Seneff, Stephanie; Davidson, Robert M; Lauritzen, Ann; Samsel, Anthony; Wainwright, Glyn

    2015-05-27

    Despite a vast literature, atherosclerosis and the associated ischemia/reperfusion injuries remain today in many ways a mystery. Why do atheromatous plaques make and store a supply of cholesterol and sulfate within the major arteries supplying the heart? Why are treatment programs aimed to suppress certain myocardial infarction risk factors, such as elevated serum homocysteine and inflammation, generally counterproductive? Our methods are based on an extensive search of the literature in atherosclerotic cardiovascular disease as well as in the area of the unique properties of water, the role of biosulfates in the vascular wall, and the role of electromagnetic fields in vascular flow. Our investigation reveals a novel pathology linked to atherosclerosis that better explains the observed facts than the currently held popular view. We propose a novel theory that atherosclerosis can best be explained as being due to cholesterol sulfate deficiency. Furthermore, atheromatous plaques replenish the supply of cholesterol and sulfate to the microvasculature, by exploiting the inflammatory agent superoxide to derive sulfate from homocysteine and other sulfur sources. We argue that the sulfate anions attached to the glycosaminoglycans in the glycocalyx are essential in maintaining the structured water that is crucial for vascular endothelial health and erythrocyte mobility through capillaries. Sulfate depletion leads to cholesterol accumulation in atheromas, because its transport through water-based media depends on sulfurylation. We show that streaming potential induces nitric oxide (NO) release, and NO derivatives break down the extracellular matrix, redistributing sulfate to the microvasculature. We argue that low (less negative) zeta potential due to insufficient sulfate anions leads to hypertension and thrombosis, because these responses can increase streaming potential and induce nitric-oxide mediated vascular relaxation, promoting oxygen delivery. Our hypothesis is a parsimonious explanation of multiple features of atherosclerotic cardiovascular disease. If our interpretation is correct, then it would have a significant impact on how atherosclerosis is treated. We recommend a high intake of sulfur-containing foods as well as an avoidance of exposure to toxicants that may impair sulfate synthesis.

  8. Formation of aqueous-phase sulfate during the haze period in China: Kinetics and atmospheric implications

    NASA Astrophysics Data System (ADS)

    Zhang, Haijie; Chen, Shilu; Zhong, Jie; Zhang, Shaowen; Zhang, Yunhong; Zhang, Xiuhui; Li, Zesheng; Zeng, Xiao Cheng

    2018-03-01

    Sulfate is one of the most important components in the aerosol due to its key role in air pollution and global climate change. Recent work has suggested that reactive nitrogen chemistry in aqueous water can explain the missing source of sulfate in the aqueous water. Herein, we have mapped out the energy profile of the oxidization process of SO2 leading from NO2 and two feasible three-step mechanisms have been proposed. For the oxidation of HOSO2- and HSO3- by the dissolved NO2 in weakly acidic and neutral aerosol (pH ≤ 7), the main contribution to the missing sulfate production comes from the oxidation of HOSO2-. The whole process is a self-sustaining process. For the oxidation of SO32- in alkaline aerosol (pH > 7), the third step - decomposition step of H2O or hydrolysis of SO3 step which are two parallel processes are the rate-limiting steps. The present results are of avail to better understand the missing source of sulfate in the aerosol and hence may lead to better science-based solutions for resolving the severe haze problems in China.

  9. Recovery of lead from lead paste in spent lead acid battery by hydrometallurgical desulfurization and vacuum thermal reduction.

    PubMed

    Ma, Yunjian; Qiu, Keqiang

    2015-06-01

    Lead sulfate, lead oxides and lead metal are the main component of lead paste in spent lead acid battery. When lead sulfate was desulfurized and transformed into lead carbonate by sodium carbonate, lead metal and lead oxides remained unchanged. Lead carbonate is easily decomposed to lead oxide and carbon dioxide under high temperature. Namely, vacuum thermal process is the reduction reaction of lead oxides. A compatible environmental process consisted of hydrometallurgical desulfurization and vacuum thermal reduction to recycle lead was investigated in this research. Lead paste was firstly desulfurized with sodium carbonate, by which, the content of sulfur declined from 7.87% to 0.26%. Then, the desulfurized lead paste was reduced by charcoal under vacuum. Under the optimized reaction conditions, i.e., vacuum thermal reduction at temperature 850°C under 20 Pa for 45 min, a 22.11×10(-2) g cm(-2) min(-1) reduction rate, and a 98.13% direct recovery ratio of fine lead (99.77%) had been achieved, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bizzozero, Julien, E-mail: julien.bizzozero@gmail.com; Scrivener, Karen L.

    This paper reports a study of ternary blends composed of calcium aluminate cement, calcium sulfate hemihydrate and limestone. Compressive strength tests and hydration kinetics were studied as a function of limestone and calcium sulfate content. The phase evolution and the total porosity were followed and compared to thermodynamic simulation to understand the reactions involved and the effect of limestone on these binders. The reaction of limestone leads to the formation of hemicarboaluminate and monocarboaluminate. Increasing the ratio between sulfate and aluminate decreases the extent of limestone reaction.

  11. Tyrosine sulfation modulates activity of tick-derived thrombin inhibitors

    NASA Astrophysics Data System (ADS)

    Thompson, Robert E.; Liu, Xuyu; Ripoll-Rozada, Jorge; Alonso-García, Noelia; Parker, Benjamin L.; Pereira, Pedro José Barbosa; Payne, Richard J.

    2017-09-01

    Madanin-1 and chimadanin are two small cysteine-free thrombin inhibitors that facilitate blood feeding in the tick Haemaphysalis longicornis. Here, we report a post-translational modification—tyrosine sulfation—of these two proteins that is critical for potent anti-thrombotic and anticoagulant activity. Inhibitors produced in baculovirus-infected insect cells displayed heterogeneous sulfation of two tyrosine residues within each of the proteins. One-pot ligation-desulfurization chemistry enabled access to homogeneous samples of all possible sulfated variants of the proteins. Tyrosine sulfation of madanin-1 and chimadanin proved crucial for thrombin inhibitory activity, with the doubly sulfated variants three orders of magnitude more potent than the unmodified inhibitors. The three-dimensional structure of madanin-1 in complex with thrombin revealed a unique mode of inhibition, with the sulfated tyrosine residues binding to the basic exosite II of the protease. The importance of tyrosine sulfation within this family of thrombin inhibitors, together with their unique binding mode, paves the way for the development of anti-thrombotic drug leads based on these privileged scaffolds.

  12. Discovery and measurement of an isotopically distinct source of sulfate in Earth's atmosphere

    PubMed Central

    Dominguez, Gerardo; Jackson, Terri; Brothers, Lauren; Barnett, Burton; Nguyen, Bryan; Thiemens, Mark H.

    2008-01-01

    Sulfate (SO4) and its precursors are significant components of the atmosphere, with both natural and anthropogenic sources. Recently, our triple-isotope (16O, 17O, 18O) measurements of atmospheric sulfate have provided specific insights into the oxidation pathways leading to sulfate, with important implications for models of the sulfur cycle and global climate change. Using similar isotopic measurements of aerosol sulfate in a polluted marine boundary layer (MBL) and primary sulfate (p-SO4) sampled directly from a ship stack, we quantify the amount of p-SO4 found in the atmosphere from ships. We find that ships contribute between 10% and 44% of the non-sea-salt sulfate found in fine [diameter (D) < 1.5 μm) particulate matter in coastal Southern California. These fractions are surprising, given that p-SO4 constitutes ≈2–7% of total sulfur emissions from combustion sources [Seinfed JH, Pandis SN (2006) Atmospheric Chemistry and Physics (Wiley–Interscience, New York)]. Our findings also suggest that the interaction of SO2 from ship emissions with coarse hydrated sea salt particles may lead to the rapid removal of SO2 in the MBL. When combined with the longer residence time of p-SO4 emissions in the MBL, these findings suggest that the importance of p-SO4 emissions in marine environments may be underappreciated in global chemical models. Given the expected increase of international shipping in the years to come, these findings have clear implications for public health, air quality, international maritime law, and atmospheric chemistry. PMID:18753618

  13. Discovery and measurement of an isotopically distinct source of sulfate in Earth's atmosphere.

    PubMed

    Dominguez, Gerardo; Jackson, Terri; Brothers, Lauren; Barnett, Burton; Nguyen, Bryan; Thiemens, Mark H

    2008-09-02

    Sulfate (SO(4)) and its precursors are significant components of the atmosphere, with both natural and anthropogenic sources. Recently, our triple-isotope ((16)O, (17)O, (18)O) measurements of atmospheric sulfate have provided specific insights into the oxidation pathways leading to sulfate, with important implications for models of the sulfur cycle and global climate change. Using similar isotopic measurements of aerosol sulfate in a polluted marine boundary layer (MBL) and primary sulfate (p-SO(4)) sampled directly from a ship stack, we quantify the amount of p-SO(4) found in the atmosphere from ships. We find that ships contribute between 10% and 44% of the non-sea-salt sulfate found in fine [diameter (D) < 1.5 microm) particulate matter in coastal Southern California. These fractions are surprising, given that p-SO(4) constitutes approximately 2-7% of total sulfur emissions from combustion sources [Seinfed JH, Pandis SN (2006) Atmospheric Chemistry and Physics (Wiley-Interscience, New York)]. Our findings also suggest that the interaction of SO(2) from ship emissions with coarse hydrated sea salt particles may lead to the rapid removal of SO(2) in the MBL. When combined with the longer residence time of p-SO(4) emissions in the MBL, these findings suggest that the importance of p-SO(4) emissions in marine environments may be underappreciated in global chemical models. Given the expected increase of international shipping in the years to come, these findings have clear implications for public health, air quality, international maritime law, and atmospheric chemistry.

  14. EXPERIMENTS WITH A RESIN-IN-PULP PROCESS FOR TREATING LEAD-CONTAMINATED SOIL

    EPA Science Inventory

    This paper presents the results of experiments to evaluate the potential for using a resin-in-pulp process to remove lead contamination from soil. These experiments examined the kinetics and equilibrium partitioning of lead, lead carbonate, lead oxide, and lead sulfate in resin-s...

  15. Effects of sulfate deposition on pore water dissolved organic carbon, nutrients, and microbial enzyme activities in a northern peatland

    EPA Science Inventory

    Export of dissolved organic carbon from lakes and streams has increased throughout Europe and North America over the past several decades. One possible cause is altered deposition chemistry; specifically, decreasing sulfate inputs leading to changes in ionic strength and dissolve...

  16. Developing a More Rapid Test to Assess Sulfate Resistance of Hydraulic Cements

    PubMed Central

    Ferraris, Chiara; Stutzman, Paul; Peltz, Max; Winpigler, John

    2005-01-01

    External sulfate attack of concrete is a major problem that can appear in regions where concrete is exposed to soil or water containing sulfates, leading to softening and cracking of the concrete. Therefore, it is important that materials selection and proportioning of concrete in susceptible regions be carefully considered to resist sulfate attack. American Society for Testing Materials (ASTM) limits the tricalcium aluminate phase in cements when sulfate exposure is of concern. The hydration products of tricalcium aluminate react with the sulfates resulting in expansion and cracking. While ASTM standard tests are available to determine the susceptibility of cements to sulfate attack, these tests require at least 6 months and often up to a year to perform; a delay that hinders development of new cements. This paper presents a new method for testing cement resistance to sulfate attack that is three to five times faster than the current ASTM tests. Development of the procedure was based upon insights on the degradation process by petrographic examination of sulfate-exposed specimens over time. Also key to the development was the use of smaller samples and tighter environmental control. PMID:27308177

  17. Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation.

    PubMed

    Velasco, Antonio; Ramírez, Martha; Volke-Sepúlveda, Tania; González-Sánchez, Armando; Revah, Sergio

    2008-03-01

    The ability of sulfate-reducing bacteria to produce hydrogen sulfide and the high affinity of sulfide to react with divalent metallic cations represent an excellent option to remove heavy metals from wastewater. Different parameters have been proposed to control the hydrogen sulfide production by anaerobic bacteria, such as the organic and sulfate loading rates and the feed COD/SO4(2-) ratio. This work relates the feed COD/SO4(2-) ratio with the hydrogen sulfide production and dissolved lead precipitation, using ethanol as carbon and energy source in an up-flow anaerobic sludge blanket reactor. A maximum dissolved sulfide concentration of 470+/-7 mg S/L was obtained at a feed COD/SO4(2-) ratio of 2.5, with sulfate and ethanol conversions of approximately 94 and 87%, respectively. The lowest dissolved sulfide concentration (145+/-10 mg S/L) was observed with a feed COD/SO4(2-) ratio of 0.67. Substantial amounts of acetate (510-1730 mg/L) were produced and accumulated in the bioreactor from ethanol oxidation. Although only incomplete oxidation of ethanol to acetate was observed, the consortium was able to remove 99% of the dissolved lead (200 mg/L) with a feed COD/SO4(2-) ratio of 1.5. It was found that the feed COD/SO4(2-) ratio could be an adequate parameter to control the hydrogen sulfide production and the consequent precipitation of dissolved lead.

  18. Engineering and Development Support of General Decon Technology for the DARCOM Installation Restoration Program. Task 4. General Technology Literature Searches (II) Solidification Techniques for Lagoon Waters

    DTIC Science & Technology

    1980-12-01

    40.8 Sodium 70.1 Zinc 0.01 37 The process includes the following steps (Pichat et al., 1979): - neutralization precipitation (silicates, borates...Compressive Strength of Polyester - Encapsulated Sodium Sulfate Waste Composite ....... .............. 64 9. Deep Chemical Mixer Mounted on a Barge...zinc, copper, lead, manganese and tin; sodium salts of arsenate, borate, phosphate, iodate, and sulfide; and sulfate salts. Sulfate salts form calcium

  19. Lead-Free Initiator Materials for Small Electro-Explosive Devices for Medium Caliber Munitions: Final Report 04 June 2003

    DTIC Science & Technology

    2004-05-01

    dissolution of copper (II) sulfate pentahydrate (25 g) in 100 ml water) in a 1L jacketed vessel containing a thermometer and magnetic stirrer at a...solution containing copper (II) sulfate pentahydrate (2.37 g) and ethylenediamine (3.98 g) in water (6 ml). The dark purple mixture was stirred until all...ethylenedinitramine (as its sodium salt) with copper sulfate , although no details were available owing to the inaccessibility of the report (see Scheme 1). Scheme 1

  20. Biphasic Role of Chondroitin Sulfate in Cardiac Differentiation of Embryonic Stem Cells through Inhibition of Wnt/β-Catenin Signaling

    PubMed Central

    Prinz, Robert D.; Willis, Catherine M.; van Kuppevelt, Toin H.; Klüppel, Michael

    2014-01-01

    The glycosaminoglycan chondroitin sulfate is a critical component of proteoglycans on the cell surface and in the extracellular matrix. As such, chondroitin sulfate side chains and the sulfation balance of chondroitin play important roles in the control of signaling pathways, and have a functional importance in human disease. In contrast, very little is known about the roles of chondroitin sulfate molecules and sulfation patterns during mammalian development and cell lineage specification. Here, we report a novel biphasic role of chondroitin sulfate in the specification of the cardiac cell lineage during embryonic stem cell differentiation through modulation of Wnt/beta-catenin signaling. Lineage marker analysis demonstrates that enzymatic elimination of endogenous chondroitin sulfates leads to defects specifically in cardiac differentiation. This is accompanied by a reduction in the number of beating cardiac foci. Mechanistically, we show that endogenous chondroitin sulfate controls cardiac differentiation in a temporal biphasic manner through inhibition of the Wnt/beta-catenin pathway, a known regulatory pathway for the cardiac lineage. Treatment with a specific exogenous chondroitin sulfate, CS-E, could mimic these biphasic effects on cardiac differentiation and Wnt/beta-catenin signaling. These results establish chondroitin sulfate and its sulfation balance as important regulators of cardiac cell lineage decisions through control of the Wnt/beta-catenin pathway. Our work suggests that targeting the chondroitin biosynthesis and sulfation machinery is a novel promising avenue in regenerative strategies after heart injury. PMID:24667694

  1. Biphasic role of chondroitin sulfate in cardiac differentiation of embryonic stem cells through inhibition of Wnt/β-catenin signaling.

    PubMed

    Prinz, Robert D; Willis, Catherine M; van Kuppevelt, Toin H; Klüppel, Michael

    2014-01-01

    The glycosaminoglycan chondroitin sulfate is a critical component of proteoglycans on the cell surface and in the extracellular matrix. As such, chondroitin sulfate side chains and the sulfation balance of chondroitin play important roles in the control of signaling pathways, and have a functional importance in human disease. In contrast, very little is known about the roles of chondroitin sulfate molecules and sulfation patterns during mammalian development and cell lineage specification. Here, we report a novel biphasic role of chondroitin sulfate in the specification of the cardiac cell lineage during embryonic stem cell differentiation through modulation of Wnt/beta-catenin signaling. Lineage marker analysis demonstrates that enzymatic elimination of endogenous chondroitin sulfates leads to defects specifically in cardiac differentiation. This is accompanied by a reduction in the number of beating cardiac foci. Mechanistically, we show that endogenous chondroitin sulfate controls cardiac differentiation in a temporal biphasic manner through inhibition of the Wnt/beta-catenin pathway, a known regulatory pathway for the cardiac lineage. Treatment with a specific exogenous chondroitin sulfate, CS-E, could mimic these biphasic effects on cardiac differentiation and Wnt/beta-catenin signaling. These results establish chondroitin sulfate and its sulfation balance as important regulators of cardiac cell lineage decisions through control of the Wnt/beta-catenin pathway. Our work suggests that targeting the chondroitin biosynthesis and sulfation machinery is a novel promising avenue in regenerative strategies after heart injury.

  2. Decreased atmospheric sulfur deposition across the southeastern U.S.: When will watersheds release stored sulfate?

    Treesearch

    Karen C. Rice; Todd M. Scanlon; Jason A. Lynch; Bernard J. Cosby

    2014-01-01

    Emissions of sulfur dioxide (SO2) to the atmosphere lead to atmospheric deposition of sulfate (SO42-), which is the dominant strong acid anion causing acidification of surface waters and soils in the eastern United States. Since passage of the Clean Air Act and its Amendments, atmospheric deposition...

  3. Sedimentary sulfides in dune sands of Spiekeroog Island, southern North Sea: A biogeochemical study of sulfur isotope partitioning

    NASA Astrophysics Data System (ADS)

    Seibert, Stephan; Schubert, Florian; Schmiedinger, Iris; Böttcher, Michael E.; Massmann, Gudrun

    2017-04-01

    The formation of iron sulfides in sandy sediments and the associated development of stable isotope signatures is still mechanistically not understood. In dune sands under impact of both fresh and saline water several physico-chemical gradients may develop leading to distinctly different biogeochemical zones. In the present study, a 10 m long core from a dune base at the North Eastern part of Spiekeroog Island, southern North Sea, was investigated for the elemental and stable isotope composition. The pyrite (TRIS) content was quantitatively extracted via an acidic Cr(II) distillation procedure and the stable sulfur isotope composition was determined by means of C-irmMS. The pore waters display a downcore increase in salt contents and a mixing between fresh and salt water. The accumulation of metabolites at depth indicate an increasing superimposition of mixing by microbial decomposition of dissolved organic matter with only limited net sulfate reduction. This indicates an essential open system with respect to dissolved sulfate. The sands were found to be very low in TOC, TIC, and TRIS and dominated by quartz minerals. Under the assumption that North Sea water sulfate was the only substantial sulfate source (d34S = + 21per mil), the sedimentary sulfides indicate an overall sulfur isotope discrimination upon microbial sulfate reduction between 39 and 52 per mil, which is within the range of results from other fully marine sands from the Spiekeroog area and laboratory studies with pure cultures of sulfate-reducing bacteria under low cellular sulfate reduction rates. Further investigations are on the way to understand the processes leading to the iron sulfide formation in these organic-poor substrates.

  4. Isotope geochemistry of waters affected by acid mine drainage in old labour sites (SE, Spain).

    NASA Astrophysics Data System (ADS)

    Pérez-Sirvent, Carmen; Martinez-Sanchez, Maria Jose; Garcia-Lorenzo, Maria Luz; Agudo, Ines; Hernandez-Cordoba, Manuel; Recio, Clemente

    2015-04-01

    The ore deposits of this zone have iron, lead and zinc as the main metal components. Iron is present in oxides, hydroxides, sulfides, sulfates, carbonates, and silicates; lead and zinc occur in sulfides (galena and sphalerite, respectively), carbonates, sulfates, and lead or zinc-bearing (manganese, iron) oxides. Mining started with the Romans and activity peaked in the second half of the 19th century and throughout the 20th century until the 1980's. From 1940 to 1957, mineral concentration was made by froth flotation and, prior to this, by gravimetric techniques. The mining wastes, or tailings, with a very fine particle size were deposited inland (tailings dams) and, since 1957, huge releases were made in directly the sea coast. The objective of this work was to evaluate processes affecting waters from abandoned mine sites by way of stable isotopic analysis, particularly H and O stable isotopes from water and S and O from dissolved sulfates. Several common chemical and physical processes, such as evaporation, water-rock interaction and mixing could alter water isotopic composition. Evaporation, which causes an enrichment in δD and δ18O in the residual water, is an important process in semiarid areas. The results obtained indicate that, for sites near the coast, waters are meteoric, and marine infiltration only takes place in the deepest layers near the shore or if water remains stagnated in sediments with low permeability. The main source of sulfate was the oxidation of sulfides, resulting in the liberation of acid, sulfate and metals. In order to assess the mechanism responsible for sulfide oxidation, the stoichiometric isotope balance model and the general isotope balance model were tested, suggesting that the oxidation via Fe3+ was predominant in the surface, and controlled by A. ferrooxidans, while at depth, sulfate reduction occurred.

  5. Novel technique to ensure battery reliability in 42-V PowerNets for new-generation automobiles

    NASA Astrophysics Data System (ADS)

    Lam, L. T.; Haigh, N. P.; Phyland, C. G.; Huynh, T. D.

    The proposed 42-V PowerNet in automobiles requires the battery to provide a large number of shallow discharge-charge cycles at a high rate. High-rate discharge is necessary for engine cranking, while high-rate charge is associated with regenerative braking. The battery will therefore operate at these high rates in a partial-state-of-charge condition — 'HRPSoC duty'. Under simulated HRPSoC duty, it is found that the valve-regulated lead-acid (VRLA) battery fails prematurely due to the progressive accumulation of lead sulfate mainly on the surfaces of the negative plates. This is because the lead sulfate layer cannot be converted efficiently back to sponge lead during charging either from the engine or from the regenerative braking. Eventually, this layer of lead sulfate develops to such extent that the effective surface area of the plate is reduced markedly and the plate can no longer deliver the high-cranking current demanded by the automobile. The objective of this study is to develop and optimize a pulse-generation technique to minimize the development of lead sulfate layers on negative plates of VRLA batteries subjected to HRPSoC duty. The technique involves the application of sets of charging pulses of different frequency. It is found that the cycle-life performance of VRLA batteries is enhanced markedly when d.c. pulses of high frequency are used. For example, battery durability is raised from ˜10 600 cycles (no pulses) to 32 000 cycles with pulses of high frequency. Two key factors contribute to this improvement. The first factor is localization of the charging current on the surfaces of the plates — the higher the frequency, the greater is the amount of current concentrated on the plate surface. This phenomenon is known as the 'skin effect' as only the outer 'skin' of the plate is effectively carrying the current. The second factor is delivery of sufficient charge to the Faradaic resistance of the plate to compensate for the energy loss to inductance and double-layer capacitance effects. The Faradaic resistance represents the electrochemical reaction, i.e., conversion of lead sulfate to lead. The inductance simply results from the connection either between the cables and the terminals of the battery or between the terminals, bus-bars, and the lugs of the plates. The capacitance arises from the double layer which exists at the interface between the plate and the electrolyte solution. These findings have provided a demonstration and a scientific explanation of the benefit of superimposed pulsed current charging in suppressing the sulfation of negative plates in VRLA batteries operated under 42-V PowerNet and hybrid electric vehicle duties. A Novel Pulse™ device has been developed by the CSIRO. This device has the capability to be programmable to suite various applications and can be miniaturized to be encapsulated in the battery cover.

  6. Unraveling the influence of the COD/sulfate ratio on organic matter removal and methane production from the biodigestion of sugarcane vinasse.

    PubMed

    Kiyuna, Luma Sayuri Mazine; Fuess, Lucas Tadeu; Zaiat, Marcelo

    2017-05-01

    Throughout the sugarcane harvest, it is common for sulfate to accumulate in the vinasse of sugar and ethanol plants. However, little is known regarding the influence of sulfate on the anaerobic digestion (AD) of vinasse, which may lead to severe performance losses. This study assessed the influence of various COD/sulfate ratios (12.0, 10.0 and 7.5) on both COD removal and methane (CH 4 ) production from sugarcane vinasse AD. Batch assays were conducted in thermophilic conditions. At a COD/sulfate ratio of 7.5, CH 4 production was 35% lower compared with a ratio of 12.0, considering a diversion of approximately 13.6% of the electron flow to sulfidogenesis. The diversion of electrons to sulfidogenesis was negligible at COD/sulfate ratios higher than 25, considering the exponential increase in CH 4 production. Organic matter degradation was not greatly affected by sulfidogenesis, with COD removal levels higher than 80%, regardless of the initial COD/sulfate ratio. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Persistent sulfate formation from London Fog to Chinese haze

    PubMed Central

    Wang, Gehui; Zhang, Renyi; Gomez, Mario E.; Yang, Lingxiao; Levy Zamora, Misti; Hu, Min; Lin, Yun; Peng, Jianfei; Guo, Song; Meng, Jingjing; Li, Jianjun; Cheng, Chunlei; Hu, Tafeng; Ren, Yanqin; Wang, Yuesi; Gao, Jian; Cao, Junji; An, Zhisheng; Zhou, Weijian; Li, Guohui; Wang, Jiayuan; Tian, Pengfei; Marrero-Ortiz, Wilmarie; Secrest, Jeremiah; Du, Zhuofei; Zheng, Jing; Shang, Dongjie; Zeng, Limin; Shao, Min; Wang, Weigang; Huang, Yao; Wang, Yuan; Zhu, Yujiao; Li, Yixin; Hu, Jiaxi; Pan, Bowen; Cai, Li; Cheng, Yuting; Ji, Yuemeng; Zhang, Fang; Rosenfeld, Daniel; Liss, Peter S.; Duce, Robert A.; Kolb, Charles E.; Molina, Mario J.

    2016-01-01

    Sulfate aerosols exert profound impacts on human and ecosystem health, weather, and climate, but their formation mechanism remains uncertain. Atmospheric models consistently underpredict sulfate levels under diverse environmental conditions. From atmospheric measurements in two Chinese megacities and complementary laboratory experiments, we show that the aqueous oxidation of SO2 by NO2 is key to efficient sulfate formation but is only feasible under two atmospheric conditions: on fine aerosols with high relative humidity and NH3 neutralization or under cloud conditions. Under polluted environments, this SO2 oxidation process leads to large sulfate production rates and promotes formation of nitrate and organic matter on aqueous particles, exacerbating severe haze development. Effective haze mitigation is achievable by intervening in the sulfate formation process with enforced NH3 and NO2 control measures. In addition to explaining the polluted episodes currently occurring in China and during the 1952 London Fog, this sulfate production mechanism is widespread, and our results suggest a way to tackle this growing problem in China and much of the developing world. PMID:27849598

  8. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China

    PubMed Central

    Cheng, Yafang; Zheng, Guangjie; Wei, Chao; Mu, Qing; Zheng, Bo; Wang, Zhibin; Gao, Meng; Zhang, Qiang; He, Kebin; Carmichael, Gregory; Pöschl, Ulrich; Su, Hang

    2016-01-01

    Fine-particle pollution associated with winter haze threatens the health of more than 400 million people in the North China Plain. Sulfate is a major component of fine haze particles. Record sulfate concentrations of up to ~300 μg m−3 were observed during the January 2013 winter haze event in Beijing. State-of-the-art air quality models that rely on sulfate production mechanisms requiring photochemical oxidants cannot predict these high levels because of the weak photochemistry activity during haze events. We find that the missing source of sulfate and particulate matter can be explained by reactive nitrogen chemistry in aerosol water. The aerosol water serves as a reactor, where the alkaline aerosol components trap SO2, which is oxidized by NO2 to form sulfate, whereby high reaction rates are sustained by the high neutralizing capacity of the atmosphere in northern China. This mechanism is self-amplifying because higher aerosol mass concentration corresponds to higher aerosol water content, leading to faster sulfate production and more severe haze pollution. PMID:28028539

  9. Mercuric 5-Nitrotetrazole, a Possible Replacement for Lead Azide in Australian Ordnance. Part 1. An Assessment of Preparation Methods

    DTIC Science & Technology

    1983-08-01

    nitrotetrazole) (Cuen2 (NT)2 ) [7) A solution of sodium nitrite (26 g) and cupric sulfate pentahydrate (13.75 g) in water (75 ml) was placed in the 600 ml...pan and cooled to 50C. To this stirred solution was added a solution of 5-aminotetrazole monohydrate (12.9 g), cupric sulfate pentahydrate (1.0 g) and...stirring then a solution of cupric sulfate pentahydrate (5.25 q) and ethylenediamine (11.25 ml) in water (20 ml) was added. Stirring and heating were

  10. Factors influencing lead and iron release from some Egyptian drinking water pipes.

    PubMed

    Lasheen, M R; Sharaby, C M; El-Kholy, N G; Elsherif, I Y; El-Wakeel, S T

    2008-12-30

    The major objective of this study is to assess the effect of stagnation time, pipe age, pipes material and water quality parameters such as pH, alkalinity and chloride to sulfate mass ratio on lead and iron release from different types of water pipes used in Egypt namely polyvinyl chloride (PVC), polypropylene (PP) and galvanized iron (GI), by using fill and dump method. Low pH increased lead and iron release from pipes. Lead and iron release decreased as pH and alkalinity increased. Lead and iron release increased with increasing chloride to sulfate mass ratio in all pipes. EDTA was used as an example of natural organic matter which may be influence metals release. It is found that lead and iron release increased then this release decreased with time. In general, GI pipes showed to be the most effected by water quality parameters tested and the highest iron release. PVC pipes are the most lead releasing pipes while PP pipes are the least releasing.

  11. Impact of DIC, Sulfate and Chloride on Pb(II) Solubility

    EPA Science Inventory

    Corrosion of lead and the subsequent release of lead into drinking water distribution systems pose a concern to public health. Consequently, the U.S. Environmental Protection Agency’s (U.S. EPA) Lead and Copper rule established an action level for lead at the consumer’s tap of 0....

  12. Solubility of Lead Sulfate in Water and in Sodium Sulfate Solutions: An Experiment in Atomic Absorption Spectrophotometry.

    ERIC Educational Resources Information Center

    Lehman, Thomas A.; Everett, Wayne W.

    1982-01-01

    Describes a set of undergraduate laboratory experiments which provide experience in deuteration and derivatization procedures applied to infrared spectroscopy. Basic skills in vacuum-line technique are also taught while measuring infrared spectra of deuterated solid samples and demonstrating the value of derivatization as an aid to interpreting…

  13. The fate of sulfate in chronic heart failure

    PubMed Central

    Koning, Anne M.; Meijers, Wouter C.; Minović, Isidor; Post, Adrian; Feelisch, Martin; Pasch, Andreas; Leuvenink, Henri G. D.; de Boer, Rudolf A.; Bakker, Stephan J. L.

    2017-01-01

    New leads to advance our understanding of heart failure (HF) pathophysiology are urgently needed. Previous studies have linked urinary sulfate excretion to a favorable cardiovascular risk profile. Sulfate is not only the end product of hydrogen sulfide metabolism but is also directly involved in various (patho)physiological processes, provoking scientific interest in its renal handling. This study investigates sulfate clearance in chronic HF (CHF) patients and healthy individuals and considers its relationship with disease outcome. Parameters related to renal sulfate handling were determined in and compared between 96 previously characterized CHF patients and sex-matched healthy individuals. Among patients, sulfate clearance was analyzed for associations with clinical and outcome parameters. In CHF patients, plasma sulfate concentrations are significantly higher, whereas 24-h urinary excretion, fractional excretion, and clearance of sulfate are significantly lower, compared with healthy individuals. Among patients, sulfate clearance is independently associated with diuretics use, creatinine clearance and 24-h urinary sodium excretion. Sulfate clearance is associated with favorable disease outcome [hazard ratio per SD increase 0.38 (95% confidence interval 0.23–0.63), P < 0.001]. Although significance was lost after adjustment for creatinine clearance, the decrease of sulfate clearance in patients is independent of this parameter, indicating that sulfate clearance is not merely a reflection of renal function. This exploratory study reveals aberrant sulfate clearance as a potential contributor to CHF pathophysiology, with reduced levels in patients and a positive association with favorable disease outcome. Further research is needed to unravel the nature of its involvement and to determine its potential as a biomarker and target for therapy. NEW & NOTEWORTHY Sulfate clearance is decreased in chronic heart failure patients compared with healthy individuals. Among patients, sulfate clearance is positively associated with favorable disease outcome, i.e., a decreased rehospitalization rate and increased patient survival. Hence, decreased sulfate clearance may be involved in the pathophysiology of heart failure. PMID:27923792

  14. Effects of Iron and Nitrogen Limitation on Sulfur Isotope Fractionation during Microbial Sulfate Reduction

    PubMed Central

    Ono, Shuhei; Bosak, Tanja

    2012-01-01

    Sulfate-reducing microbes utilize sulfate as an electron acceptor and produce sulfide that is depleted in heavy isotopes of sulfur relative to sulfate. Thus, the distribution of sulfur isotopes in sediments can trace microbial sulfate reduction (MSR), and it also has the potential to reflect the physiology of sulfate-reducing microbes. This study investigates the relationship between the availability of iron and reduced nitrogen and the magnitude of S-isotope fractionation during MSR by a marine sulfate-reducing bacterium, DMSS-1, a Desulfovibrio species, isolated from salt marsh in Cape Cod, MA. Submicromolar levels of iron increase sulfur isotope fractionation by about 50% relative to iron-replete cultures of DMSS-1. Iron-limited cultures also exhibit decreased cytochrome c-to-total protein ratios and cell-specific sulfate reduction rates (csSRR), implying changes in the electron transport chain that couples carbon and sulfur metabolisms. When DMSS-1 fixes nitrogen in ammonium-deficient medium, it also produces larger fractionation, but it occurs at faster csSRRs than in the ammonium-replete control cultures. The energy and reducing power required for nitrogen fixation may be responsible for the reverse trend between S-isotope fractionation and csSRR in this case. Iron deficiency and nitrogen fixation by sulfate-reducing microbes may lead to the large observed S-isotope effects in some euxinic basins and various anoxic sediments. PMID:23001667

  15. Effects of sulfate deposition on pore water dissolved organic carbon, nutrients, and microbial enzyme activities in a northern peatland

    Treesearch

    L.R. Seifert-Monson; B.H. Hill; R.K. Kolka; T.M. Jicha; L.L. Lehto; C.M. Elonen

    2014-01-01

    Export of dissolved organic carbon from lakes and streams has increased throughout Europe and North America over the past several decades. One possible cause is altered deposition chemistry; specifically, decreasing sulfate inputs leading to changes in ionic strength and dissolved organic carbon solubility. To further investigate the relationship between deposition...

  16. Pseudomonas aeruginosa arylsulfatase: a purified enzyme for the mild hydrolysis of steroid sulfates.

    PubMed

    Stevenson, Bradley J; Waller, Christopher C; Ma, Paul; Li, Kunkun; Cawley, Adam T; Ollis, David L; McLeod, Malcolm D

    2015-10-01

    The hydrolysis of sulfate ester conjugates is frequently required prior to analysis for a range of analytical techniques including gas chromatography-mass spectrometry (GC-MS). Sulfate hydrolysis may be achieved with commercial crude arylsulfatase enzyme preparations such as that derived from Helix pomatia but these contain additional enzyme activities such as glucuronidase, oxidase, and reductase that make them unsuitable for many analytical applications. Strong acid can also be used to hydrolyze sulfate esters but this can lead to analyte degradation or increased matrix interference. In this work, the heterologously expressed and purified arylsulfatase from Pseudomonas aeruginosa is shown to promote the mild enzyme-catalyzed hydrolysis of a range of steroid sulfates. The substrate scope of this P. aeruginosa arylsulfatase hydrolysis is compared with commercial crude enzyme preparations such as that derived from H. pomatia. A detailed kinetic comparison is reported for selected examples. Hydrolysis in a urine matrix is demonstrated for dehydroepiandrosterone 3-sulfate and epiandrosterone 3-sulfate. The purified P. aeruginosa arylsulfatase contains only sulfatase activity allowing for the selective hydrolysis of sulfate esters in the presence of glucuronide conjugates as demonstrated in the short three-step chemoenzymatic synthesis of 5α-androstane-3β,17β-diol 17-glucuronide (ADG, 1) from epiandrosterone 3-sulfate. The P. aeruginosa arylsulfatase is readily expressed and purified (0.9 g per L of culture) and thus provides a new and selective method for the hydrolysis of steroid sulfate esters in analytical sample preparation. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Physiochemical properties of alkylaminium sulfates: hygroscopicity, thermostability, and density.

    PubMed

    Qiu, Chong; Zhang, Renyi

    2012-04-17

    Although heterogeneous interaction of amines has been recently shown to play an important role in the formation and growth of atmospheric aerosols, little information is available on the physicochemical properties of aminium sulfates. In this study, the hygroscopicity, thermostability, and density of alkylaminium sulfates (AASs) have been measured by an integrated aerosol analytical system including a tandem differential mobility analyzer and an aerosol particle mass analyzer. AAS aerosols exhibit monotonic size growth at increasing RH without a well-defined deliquescence point. Mixing of ammonium sulfate (AS) with AASs lowers the deliquescence point corresponding to AS. Particles with AASs show comparable or higher thermostability than that of AS. The density of AASs is determined to be 1.2-1.5 g cm(-3), and an empirical model is developed to predict the density of AASs on the basis of the mole ratio of alkyl carbons to total sulfate. Our results reveal that the heterogeneous uptake of amines on sulfate particles may considerably alter the aerosol properties. In particular, the displacement reaction of alkylamines with ammonium sulfate aerosols leads to a transition from the crystalline to an amorphorous phase and an improved water uptake, considerably enhancing their direct and indirect climate forcing.

  18. Influence of porewater sulfide on methylmercury production and partitioning in sulfate-impacted lake sediments.

    PubMed

    Bailey, Logan T; Mitchell, Carl P J; Engstrom, Daniel R; Berndt, Michael E; Coleman Wasik, Jill K; Johnson, Nathan W

    2017-02-15

    In low-sulfate and sulfate-limited freshwater sediments, sulfate loading increases the production of methylmercury (MeHg), a potent and bioaccumulative neurotoxin. Sulfate loading to anoxic sediments leads to sulfide production that can inhibit mercury methylation, but this has not been commonly observed in freshwater lakes and wetlands. In this study, sediments were collected from sulfate-impacted, neutral pH, surface water bodies located downstream from ongoing and historic mining activities to examine how chronic sulfate loading produces porewater sulfide, and influences MeHg production and transport. Sediments were collected over two years, during several seasons from lakes with a wide range of overlying water sulfate concentration. Samples were characterized for in-situ solid phase and porewater MeHg, Hg methylation potentials via incubations with enriched stable Hg isotopes, and sulfur, carbon, and iron content and speciation. Porewater sulfide reflected historic sulfur loading and was strongly related to the extractable iron content of sediment. Overall, methylation potentials were consistent with the accumulation of MeHg on the solid phase, but both methylation potentials and MeHg were significantly lower at chronically sulfate-impacted sites with a low solid-phase Fe:S ratio. At these heavily sulfate-impacted sites that also contained elevated porewater sulfide, both MeHg production and partitioning are influenced: Hg methylation potentials and sediment MeHg concentrations are lower, but occasionally porewater MeHg concentrations in sediment are elevated, particularly in the spring. The dual role of sulfide as a ligand for inorganic mercury (decreasing bioavailability) and methylmercury (increasing partitioning into porewater) means that elucidating the role of iron and sulfur loads as they define porewater sulfide is key to understanding sulfate's influence on MeHg production and partitioning in sulfate-impacted freshwater sediment. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora

    NASA Astrophysics Data System (ADS)

    Marshall, Lauren; Schmidt, Anja; Toohey, Matthew; Carslaw, Ken S.; Mann, Graham W.; Sigl, Michael; Khodri, Myriam; Timmreck, Claudia; Zanchettin, Davide; Ball, William T.; Bekki, Slimane; Brooke, James S. A.; Dhomse, Sandip; Johnson, Colin; Lamarque, Jean-Francois; LeGrande, Allegra N.; Mills, Michael J.; Niemeier, Ulrike; Pope, James O.; Poulain, Virginie; Robock, Alan; Rozanov, Eugene; Stenke, Andrea; Sukhodolov, Timofei; Tilmes, Simone; Tsigaridis, Kostas; Tummon, Fiona

    2018-02-01

    The eruption of Mt. Tambora in 1815 was the largest volcanic eruption of the past 500 years. The eruption had significant climatic impacts, leading to the 1816 year without a summer, and remains a valuable event from which to understand the climatic effects of large stratospheric volcanic sulfur dioxide injections. The eruption also resulted in one of the strongest and most easily identifiable volcanic sulfate signals in polar ice cores, which are widely used to reconstruct the timing and atmospheric sulfate loading of past eruptions. As part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP), five state-of-the-art global aerosol models simulated this eruption. We analyse both simulated background (no Tambora) and volcanic (with Tambora) sulfate deposition to polar regions and compare to ice core records. The models simulate overall similar patterns of background sulfate deposition, although there are differences in regional details and magnitude. However, the volcanic sulfate deposition varies considerably between the models with differences in timing, spatial pattern and magnitude. Mean simulated deposited sulfate on Antarctica ranges from 19 to 264 kg km-2 and on Greenland from 31 to 194 kg km-2, as compared to the mean ice-core-derived estimates of roughly 50 kg km-2 for both Greenland and Antarctica. The ratio of the hemispheric atmospheric sulfate aerosol burden after the eruption to the average ice sheet deposited sulfate varies between models by up to a factor of 15. Sources of this inter-model variability include differences in both the formation and the transport of sulfate aerosol. Our results suggest that deriving relationships between sulfate deposited on ice sheets and atmospheric sulfate burdens from model simulations may be associated with greater uncertainties than previously thought.

  20. Functional Requirements for Heparan Sulfate Biosynthesis in Morphogenesis and Nervous System Development in C. elegans.

    PubMed

    Blanchette, Cassandra R; Thackeray, Andrea; Perrat, Paola N; Hekimi, Siegfried; Bénard, Claire Y

    2017-01-01

    The regulation of cell migration is essential to animal development and physiology. Heparan sulfate proteoglycans shape the interactions of morphogens and guidance cues with their respective receptors to elicit appropriate cellular responses. Heparan sulfate proteoglycans consist of a protein core with attached heparan sulfate glycosaminoglycan chains, which are synthesized by glycosyltransferases of the exostosin (EXT) family. Abnormal HS chain synthesis results in pleiotropic consequences, including abnormal development and tumor formation. In humans, mutations in either of the exostosin genes EXT1 and EXT2 lead to osteosarcomas or multiple exostoses. Complete loss of any of the exostosin glycosyltransferases in mouse, fish, flies and worms leads to drastic morphogenetic defects and embryonic lethality. Here we identify and study previously unavailable viable hypomorphic mutations in the two C. elegans exostosin glycosyltransferases genes, rib-1 and rib-2. These partial loss-of-function mutations lead to a severe reduction of HS levels and result in profound but specific developmental defects, including abnormal cell and axonal migrations. We find that the expression pattern of the HS copolymerase is dynamic during embryonic and larval morphogenesis, and is sustained throughout life in specific cell types, consistent with HSPGs playing both developmental and post-developmental roles. Cell-type specific expression of the HS copolymerase shows that HS elongation is required in both the migrating neuron and neighboring cells to coordinate migration guidance. Our findings provide insights into general principles underlying HSPG function in development.

  1. Realizing high-rate sulfur reduction under sulfate-rich conditions in a biological sulfide production system to treat metal-laden wastewater deficient in organic matter.

    PubMed

    Sun, Rongrong; Zhang, Liang; Zhang, Zefeng; Chen, Guang-Hao; Jiang, Feng

    2017-12-22

    Biological sulfur reduction can theoretically produce sufficient sulfide to effectively remove and recover heavy metals in the treatment of organics-deficient sulfate-rich metal-laden wastewater such as acid mine drainage and metallurgic wastewater, using 75% less organics than biological sulfate reduction. However, it is still unknown whether sulfur reduction can indeed compete with sulfate reduction, particularly under high-strength sulfate conditions. The aim of this study was to investigate the long-term feasibility of biological sulfur reduction under high sulfate conditions in a lab-scale sulfur-reducing biological sulfide production (BSP) system with sublimed sulfur added. In the 169-day trial, an average sulfide production rate (SPR) as high as 47 ± 9 mg S/L-h was achieved in the absence of sulfate, and the average SPR under sulfate-rich conditions was similar (53 ± 10 mg S/L-h) when 1300 mg S/L sulfate were fed with the influent. Interestingly, sulfate was barely reduced even at such a high strength and contributed to only 1.5% of total sulfide production. Desulfomicrobium was identified as the predominant sulfidogenic bacterium in the bioreactor. Batch tests further revealed that this sulfidogenic bacteria used elemental sulfur as the electron acceptor instead of the highly bioavailable sulfate, during which polysulfide acted as an intermediate, leading to an even higher bioavailability of sulfur than sulfate. The pathway of sulfur to sulfide conversion via polysulfide in the presence of both sulfur and sulfate was discussed. Collectively, when conditions favor polysulfide formation, sulfur reduction can be a promising and attractive technology to realize a high-rate and low-cost BSP process for treating sulfate-rich metal-laden wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Supramolecular organization of calix[4]pyrrole with a methyl-trialkylammonium anion exchanger leads to remarkable reversal of selectivity for sulfate extraction vs. nitrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borman, Christopher J.; Custelcean, Radu; Hay, Ben P.

    Here, meso-Octamethylcalix[4]pyrrole (C4P) enhances sulfate selectivity in solvent extraction by Aliquat 336N, an effect ascribed to the supramolecular preorganization and thermodynamic stability imparted by insertion of the methyl group of the Aliquat cation into the cup of C4P in its cone conformation.

  3. Use of alkyl sulfates in the dewaterng of a coal flotation concentrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zubkova, Yu.N.; Basenkova, V.L.; Kucher, R.V.

    1981-01-01

    The possibility has been shown of using anionic SAAs in the dewatering of a coal flotation concentrate. It has been established that the adsorption of alkyl sulfates (ASs) obeys the general laws of the adsorption of organic substances from solutions on coals. The addition of electrolytes intensifies the adsorption of ASs, leading to the hydrophobization of the coal particles. 10 refs.

  4. Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earthworm.

    PubMed

    Gautam, Arunodaya; Ray, Abhishek; Mukherjee, Soumalya; Das, Santanu; Pal, Kunal; Das, Subhadeep; Karmakar, Parimal; Ray, Mitali; Ray, Sajal

    2018-02-01

    Copper oxide nanoparticles and copper sulfate are established contaminants of water and soil. Metaphire posthuma is a common variety of earthworm distributed in moist soil of Indian subcontinent. Comparative toxicity of copper nanoparticles and copper sulfate were investigated with reference to selected immune associated parameters of earthworm. Total count, phagocytic response, generation of cytotoxic molecules (superoxide anion, nitric oxide), activities of enzymes like phenoloxidase, superoxide dismutase, catalase, acid phosphatase, alkaline phosphatase and total protein of coelomocytes were estimated under the exposures of 100, 500, 1000mg of copper oxide nanoparticles and copper sulfate per kg of soil for 7 and 14 d. A significant decrease in the total coelomocyte count were recorded with maximum depletion as 15.45 ± 2.2 and 12.5 ± 2 × 10 4 cells/ml under the treatment of 1000mg/kg of copper nanoparticles and copper sulfate for 14 d respectively. A significant decrease in generation of nitric oxide and activity of phenoloxidase were recorded upon exposure of both toxins for 7 and 14 d indicating possible decline in cytotoxic status of the organism. A maximum inhibition of superoxide dismutase activity was recorded as 0.083 ± 0.0039 and 0.055 ± 0.0057 unit/mg protein/minute against 1000mg/kg of copper nanoparticles and copper sulfate treatment for 14 d respectively. Activities of catalase and alkaline phosphatase were inhibited by all experimental concentrations of both toxins in the coelomocytes of earthworm. These toxins were recorded to be modifiers of the major immune associated parameters of M. posthuma. Unrestricted contamination of soil by sulfate and oxide nanoparticles of copper may lead to an undesirable shift in the innate immunological status of earthworm leading to a condition of immune compromisation and shrinkage in population density of this species in its natural habitat. This article is the first time report of immunological toxicity of nanoparticles and sulfate salt of copper in M.posthuma inhabiting the soil of India, an agriculture based country. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Sulfate Aerosol in the Arctic: Source Attribution and Radiative Forcing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yang; Wang, Hailong; Smith, Steven J.

    Source attributions of Arctic sulfate and its direct radiative effect for 2010–2014 are quantified in this study using the Community Earth System Model (CESM) equipped with an explicit sulfur source-tagging technique. Regions that have high emissions and/or are near/within the Arctic present relatively large contributions to Arctic sulfate burden, with the largest contribution from sources in East Asia (27%). East Asia and South Asia together have the largest contributions to Arctic sulfate concentrations at 9–12 km, whereas sources within or near the Arctic account largely below 2 km. For remote sources with strong emissions, their contributions to Arctic sulfate burdenmore » are primarily driven by meteorology, while contributions of sources within or near the Arctic are dominated by their emission strength. The sulfate direct radiative effect (DRE) is –0.080 W m-2 at the Arctic surface, offsetting the net warming effect from the combination of in-snow heating and DRE cooling from black carbon. East Asia, Arctic local and Russia/Belarus/Ukraine sources contribute –0.017, –0.016 and –0.014 W m-2, respectively, to Arctic sulfate DRE. A 20% reduction in anthropogenic SO2 emissions leads to a net increase of +0.013 W m-2 forcing at the Arctic surface. These results indicate that a joint reduction in BC emissions could prevent possible Arctic warming from future reductions in SO2 emissions. Sulfate DRE efficiency calculations suggest that short transport pathways together with meteorology favoring long sulfate lifetimes make certain sources more efficient in influencing the Arctic sulfate DRE.« less

  6. Efflorescence as a source of hydrated sulfate minerals in valley settings on Mars

    NASA Astrophysics Data System (ADS)

    Szynkiewicz, Anna; Borrok, David M.; Vaniman, David T.

    2014-05-01

    A distinctive sulfur cycle dominates many geological processes on Mars and hydrated sulfate minerals are found in numerous topographic settings with widespread occurrences on the Martian surface. However, many of the key processes controlling the hydrological transport of sulfur, including sulfur sources, climate and the depositional history that led to precipitation of these minerals, remain unclear. In this paper, we use a model for the formation of sulfate efflorescent salts (Mg-Ca-Na sulfates) in the Rio Puerco watershed of New Mexico, a terrestrial analog site from the semiarid Southwest U.S., to assess the origin and environmental conditions that may have controlled deposition of hydrated sulfates in Valles Marineris on Mars. Our terrestrial geochemical results (δS34 of -36.0 to +11.1‰) show that an ephemeral arid hydrological cycle that mobilizes sulfur present in the bedrock as sulfides, sulfate minerals, and dry/wet atmospheric deposition can lead to widespread surface accumulations of hydrated sulfate efflorescences. Repeating cycles of salt dissolution and reprecipitation appear to be major processes that migrate sulfate efflorescences to sites of surface deposition and ultimately increase the aqueous SO42- flux along the watershed (average 41,273 metric tons/yr). We suggest that similar shallow processes may explain the occurrence of hydrated sulfates detected on the scarps and valley floors of Valles Marineris on Mars. Our estimates of salt mass and distribution are in accord with studies that suggest a rather short-lived process of sulfate formation (minimum rough estimate ∼100 to 1000 years) and restriction by prevailing arid conditions on Mars.

  7. Treatment of high-strength sulfate wastewater using an autotrophic biocathode in view of elemental sulfur recovery.

    PubMed

    Blázquez, Enric; Gabriel, David; Baeza, Juan Antonio; Guisasola, Albert

    2016-11-15

    Treatment of high-strength sulfate wastewaters is becoming a research issue not only for its optimal management but also for the possibility of recovering elemental sulfur. Moreover, sulfate-rich wastewater production is expected to grow due to the increased SO 2 emission contained in flue gases which are treated by chemical absorption in water. Bioelectrochemical systems (BESs) are a promising alternative for sulfate reduction with a lack of electron donor, since hydrogen can be generated in situ from electricity. However, complete sulfate reduction leads to hydrogen sulfide as final sulfur compound. This work is the first to demonstrate that, in addition to an efficient sulfate-rich wastewater treatment, elemental sulfur could be recovered in a biocathode of a BES under oxygen limiting conditions. The key of the process is the biological oxidation of sulfide to elemental sulfur simultaneously to the sulfate reduction in the cathode using the oxygen produced in the anode that diffuses through the membrane. High sulfate reduction rates (up to 388 mg S-SO 4 2-  L -1  d -1 ) were observed linked to a low production of sulfide. Accumulation of elemental sulfur over graphite fibers of the biocathode was demonstrated by energy dispersive spectrometry, discarding the presence of metal sulfides. Microbial community analysis of the cathode biofilm demonstrated the presence of sulfate-reducing bacteria (mainly Desulfovibrio sp.) and sulfide-oxidizing bacteria (mainly Sulfuricurvum sp.). Hence, this biocathode allows simultaneous biological sulfate reduction and biological sulfide oxidation to elemental sulfur, opening up a novel process for recovering sulfur from sulfate-rich wastewaters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. THE EFFECT OF FLUORIDE ON LEAD SOLUBILITY

    EPA Science Inventory

    Difficulties in predicting and controlling lead corrosion are encountered by hundreds of water systems across the country. Inorganic carbonate, sulfate, silicate, orthophosphate, pH, total organic carbon, temperature and the type/amount of chlorine residual are all known factors ...

  9. Influence of Sulfate-Reducing Bacteria on the Corrosion Residual Strength of an AZ91D Magnesium Alloy

    PubMed Central

    Zhu, Xianyong; Liu, Yaohui; Wang, Qiang; Liu, Jiaan

    2014-01-01

    In this paper, the corrosion residual strength of the AZ91D magnesium alloy in the presence of sulfate-reducing bacteria is studied. In the experiments, the chemical composition of corrosion film was analyzed by a scanning electron microscope with energy dispersive X-ray spectroscopy. In addition, a series of instruments, such as scanning electronic microscope, pH-meter and an AG-10TA materials test machine, were applied to test and record the morphology of the corrosion product, fracture texture and mechanical properties of the AZ91D magnesium alloy. The experiments show that the sulfate-reducing bacteria (SRB) play an important role in the corrosion process of the AZ91D magnesium alloy. Pitting corrosion was enhanced by sulfate-reducing bacteria. Corrosion pits are important defects that could lead to a significant stress concentration in the tensile process. As a result, sulfate-reducing bacteria influence the corrosion residual strength of the AZ91D magnesium alloy by accelerating pitting corrosion. PMID:28788236

  10. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China

    NASA Astrophysics Data System (ADS)

    Cheng, Yafang; Zheng, Guangjie; Wei, Chao; Mu, Qing; Zheng, Bo; Wang, Zhibin; Gao, Meng; Zhang, Qiang; Wang, Kebin; Carmichael, Gregory; Pöschl, Ulrich; Su, Hang

    2017-04-01

    Fine-particle pollution associated with winter haze threatens the health of more than 400 million people in the North China Plain. Sulfate is a major component of fine haze particles. Record sulfate concentrations of up to 300 μg m-3 were observed during the January 2013 winter haze event in Beijing. State-of-the-art air quality models that rely on sulfate production mechanisms requiring photochemical oxidants cannot predict these high levels because of the weak photochemistry activity during haze events. We find that the missing source of sulfate and particulate matter can be explained by reactive nitrogen chemistry in aerosol water. The aerosol water serves as a reactor, where the alkaline aerosol components trap SO2, which is oxidized by NO2 to form sulfate, whereby high reaction rates are sustained by the high neutralizing capacity of the atmosphere in northern China. This mechanism is self-amplifying because higher aerosol mass concentration corresponds to higher aerosol water content, leading to faster sulfate production and more severe haze pollution. Reference: Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K., Carmichael, G., Pöschl, U., and Su, H.: Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China, Science Advances, 2, 10.1126/sciadv.1601530, 2016.

  11. Reactive Nitrogen Chemistry in Aerosol Water as a Source of Sulfate during Haze Events in China

    NASA Astrophysics Data System (ADS)

    Su, H.; Zheng, G.; Wei, C.; Mu, Q.; Zheng, B.; Wang, Z.; Zhang, Q.; Gao, M.; He, K.; Carmichael, G. R.; Poeschl, U.; Cheng, Y.

    2017-12-01

    Fine particle pollution associated with winter haze threatens the health of over 400 million people in the North China Plain. Sulfate is a major component of fine haze particles. Record sulfate concentrations up to 300 μg m-3 were observed during the January 2013 winter haze event in Beijing. State-of-the-art air quality models relying on sulfate production mechanisms that require photochemical oxidants, cannot predict these high levels due to the weak photochemistry activity during haze events. We find that the missing source of sulfate and particulate matter can be explained by reactive nitrogen chemistry in aerosol water. The aerosol water serves as a reactor where the alkaline aerosol components trap SO2, which is oxidized by NO2 to form sulfate, whereby high reaction rates are sustained by the high neutralizing capacity of the atmosphere in northern China. This mechanism is self-amplifying because higher aerosol mass concentration corresponds to higher aerosol water content leading to faster sulfate production and more severe haze pollution. Reference: Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K., Carmichael, G., Pöschl, U., and Su, H.: Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China, Science Advances, 2, 10.1126/sciadv.1601530, 2016.

  12. Aggregation and charging of sulfate and amidine latex particles in the presence of oxyanions.

    PubMed

    Sugimoto, Takuya; Cao, Tianchi; Szilagyi, Istvan; Borkovec, Michal; Trefalt, Gregor

    2018-08-15

    Electrophoretic mobility and time resolved light scattering are used to measure the effect on charging and aggregation of amidine and sulfate latex particles of different oxyanions namely, phosphate, arsenate, sulfate, and selenate. In the case of negatively charged sulfate latex particles oxyanions represent the coions, while they represent counterions in the case of the positively charged amidine latex. Repulsive interaction between the sulfate latex surface and the coions results in weak ion specific effects on the charging and aggregation. On the other hand the interaction of oxyanions with the amidine latex surface is highly specific. The monovalent dihydrogen phosphate ion strongly adsorbs to the positively charged surface and reverses the charge of the particle. This charge reversal leads also to the restabilization of the amidine latex suspension at the intermediate phosphate concentrations. In the case of dihydrogen arsenate the adsorption to amidine latex surface is weaker and no charge reversal and restabilization occurs. Similar differences are seen between the sulfate and selenate analogues, where selenate adsorbs more strongly to the surface as compared to the sulfate ion and invokes charge reversal. The present results indicate that ion specificity is much more pronounced in the case of counterions. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. An Exploratory Study on the Pathways of Cr (VI) Reduction in Sulfate-reducing Up-flow Anaerobic Sludge Bed (UASB) Reactor

    PubMed Central

    Qian, Jin; Wei, Li; Liu, Rulong; Jiang, Feng; Hao, Xiaodi; Chen, Guang-Hao

    2016-01-01

    Electroplating wastewater contains both Cr (VI) and sulfate. So Cr (VI) removal under sulfate-rich condition is quite complicated. This study mainly investigates the pathways for Cr (VI) removal under biological sulfate-reducing condition in the up-flow anaerobic sludge bed (UASB) reactor. Two potential pathways are found for the removal of Cr (VI). The first one is the sulfidogenesis-induced Cr (VI) reduction pathway (for 90% Cr (VI) removal), in which Cr (VI) is reduced by sulfide generated from biological reduction of sulfate. The second one leads to direct reduction of Cr (VI) which is utilized by bacteria as the electron acceptor (for 10% Cr (VI) removal). Batch test results confirmed that sulfide was oxidized to elemental sulfur instead of sulfate during Cr (VI) reduction. The produced extracellular polymeric substances (EPS) provided protection to the microbes, resulting in effective removal of Cr (VI). Sulfate-reducing bacteria (SRB) genera accounted for 11.1% of the total bacterial community; thus they could be the major organisms mediating the sulfidogenesis-induced reduction of Cr (VI). In addition, chromate-utilizing genera (e.g. Microbacterium) were also detected, which were possibly responsible for the direct reduction of Cr (VI) using organics as the electron donor and Cr (VI) as the electron acceptor. PMID:27021522

  14. Purification and sequence characterization of chondroitin sulfate and dermatan sulfate from fishes.

    PubMed

    Lin, Na; Mo, Xiaoli; Yang, Yang; Zhang, Hong

    2017-04-01

    Chondroitin sulfate (CS) and dermatan sulfate (DS) were extracted and purified from skins or bones of salmon (Salmo salar), snakehead (Channa argus), monkfish (Lophius litulon) and skipjack tuna (Katsuwonus pelamis). Size, structural sequences and sulfate groups of oligosaccharides in the purified CS and DS could be characterized and identified using high performance liquid chromatography (HPLC) combined with Orbitrap mass spectrometry. CS and DS chain structure varies depending on origin, but motif structure appears consistent. Structures of CS and DS oligosaccharides with different size and sulfate groups were compared between fishes and other animals, and results showed that some minor differences of special structures could be identified by hydrophilic interaction chromatography-liquid chromatography-fourier transform-mass/mass spectrometry (HILIC-LC-FT-MS/MS). For example, data showed that salmon and skipjack CS had a higher percentage content of high-level sulfated oligosaccharides than that porcine CS. In addition, structural information of different origins of CS and DS was analyzed by principal component analysis (PCA) and results showed that CS and DS samples could be differentiated according to their molecular conformation and oligosaccharide fragments information. Understanding CS and DS structure derived from different origins may lead to the production of CS or DS with unique disaccharides or oligosaccharides sequence composition and biological functions.

  15. Does lead affect microbial metabolism in aquifer sediments under different terminal electron accepting conditions?

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Vroblesky, D.A.

    1993-01-01

    In groundwater from a petroleum hydrocarbon-contaminated aquifer. Substantial accumulation of aliphatic organic acids occurred only in methanogenic microcosms, and only trace amounts of acetic acid were detected in sulfate-reducing microcosms. This pattern parallels field observations in which high organic acid concentrations were detected in methanogenic zones, but only low concentrations of acetic acid were detected in sulfate-reducing zones. -from Authors

  16. Silver-silver sulfate reference electrodes for use in lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Ruetschi, Paul

    Electrochemical properties of silver-silver sulfate reference electrodes for lead-acid batteries are described, and the following possible applications discussed: Determination of individual capacities of positive and negative plates. Monitoring individual electrode behavior during deep discharge and cell reversal. Optimization charge or discharge parameters, by controlling the current such that pre-determined limits of positive or negative half-cell potential are respected. Observation of acid concentration differences, for example due to acid stratification, by measuring diffusion potentials (concentration-cell voltages). Detection of defective cells, and defective plate sets, in a string of cells, at the end of their service life. Silver-silver sulfate reference electrodes, permanently installed in lead-acid cells, may be a means to improve battery management, and therewith to improve reliability and service life. In vented batteries, reference electrodes may be used to limit positive plate polarization during charge, or float-charge. Limiting the positive half-cell potential to an upper, pre-set value would permit to keep anodic corrosion as low as possible. During cycling, discharge could be terminated when the half-cell potential of the positive electrode has dropped to a pre-set limit. This would prevent excessive discharge of the positive electrodes, which could result in an improvement of cycle life. In valve-regulated batteries, reference electrodes may be used to adjust float-charge conditions such as to assure sufficient cathodic polarization of the negative electrodes, in order to avoid sulfation. The use of such reference electrodes could be beneficial particularly in multi-cell batteries, with overall voltages above 12 V, operated in a partial-state-of-charge.

  17. Mechanistic study of lead desorption during the leaching process of ion-absorbed rare earths: pH effect and the column experiment

    NASA Astrophysics Data System (ADS)

    Xue, Q.; Tang, J., Sr.; Chen, H.

    2017-12-01

    High concentrations of ammonium sulfate, often used in the in-situ mining process, can result in a decrease of pH in the environment and dissolution of rare earth metals. Ammonium sulfate can also cause desorption of toxic heavy metals, leading to environmental and human health implications. In this study, the desorption behavior and fraction changes of lead in the ion-absorbed rare earth ore were studied using batch desorption experiments and column leaching tests. Results from batch desorption experiments showed that the desorption process of lead included fast and slow stages, and followed an Elovich model well. The desorption rate and the proportion of lead content in the solution to the total lead in the soil were observed to increase with a decrease in the initial pH of the ammonium sulfate solution. The lead in soil included an acid extractable fraction, reducible fraction, oxidizable fraction, and a residual fraction, with the predominant fractions being the reducible and acid extractable fractions. 96% of the extractable fraction in soil were desorbed into solution at pH=3.0, and the content of the reducible fraction was observed to initially increase (when pH>4.0) and then decrease (when pH<4.0) with a decrease in pH. Column leaching tests indicated that the content of lead in the different fractions of soil followed the trend of reducible fraction > oxidizable fraction > acid extractable fraction > residual fraction after the simulating leaching mining process. The change in pH was also found to have a larger influence on the acid extractable and reducible fractions than the other two fractions. The proportion of the extractable fraction being leached was ca. 86%, and the reducible fraction was enriched along the migration direction of the leaching liquid. These results suggest that certain lead fractions may desorb again and contaminate the environment via acid rain, which provides significant information for environmental assessment and remediation after mining process.

  18. METHOD OF IMPROVING THE CARRIER PRECIPITATION OF PLUTONIUM

    DOEpatents

    Kamack, H.J.; Balthis, J.H.

    1958-12-01

    Plutonium values can be recovered from acidic solutlons by adding lead nitrate, hydrogen fluoride, lantha num nitrate, and sulfurlc acid to the solution to form a carrler preclpitate. The lead sulfate formed improves the separatlon characteristics of the lanthanum fluoride carrier precipitate,

  19. Study of thermochemical sulfate reduction mechanism using compound specific sulfur isotope analysis

    NASA Astrophysics Data System (ADS)

    Meshoulam, Alexander; Ellis, Geoffrey S.; Said Ahmad, Ward; Deev, Andrei; Sessions, Alex L.; Tang, Yongchun; Adkins, Jess F.; Liu, Jinzhong; Gilhooly, William P.; Aizenshtat, Zeev; Amrani, Alon

    2016-09-01

    The sulfur isotopic fractionation associated with the formation of organic sulfur compounds (OSCs) during thermochemical sulfate reduction (TSR) was studied using gold-tube pyrolysis experiments to simulate TSR. The reactants used included n-hexadecane (n-C16) as a model organic compound with sulfate, sulfite, or elemental sulfur as the sulfur source. At the end of each experiment, the S-isotopic composition and concentration of remaining sulfate, H2S, benzothiophene, dibenzothiophene, and 2-phenylthiophene (PT) were measured. The observed S-isotopic fractionations between sulfate and BT, DBT, and H2S in experimental simulations of TSR correlate well with a multi-stage model of the overall TSR process. Large kinetic isotope fractionations occur during the first, uncatalyzed stage of TSR, 12.4‰ for H2S and as much as 22.2‰ for BT. The fractionations decrease as the H2S concentration increases and the reaction enters the second, catalyzed stage. Once all of the oxidizable hydrocarbons have been consumed, sulfate reduction ceases and equilibrium partitioning then dictates the fractionation between H2S and sulfate (∼17‰). Experiments involving sparingly soluble CaSO4 show that during the second catalytic phase of TSR the rate of sulfate reduction exceeds that of sulfate dissolution. In this case, there is no apparent isotopic fractionation between source sulfate and generated H2S, as all of the available sulfate is effectively reduced at all reaction times. When CaSO4 is replaced with fully soluble Na2SO4, sulfate dissolution is no longer rate limiting and significant S-isotopic fractionation is observed. This supports the notion that CaSO4 dissolution can lead to the apparent lack of fractionation between H2S and sulfate produced by TSR in nature. The S-isotopic composition of individual OSCs record information related to geochemical reactions that cannot be discerned from the δ34S values obtained from bulk phases such as H2S, oil, and sulfate minerals, and provide important mechanistic details about the overall TSR process.

  20. Testing the sulfate-phosphorous hypothesis for initiation of the early Aptian OAE1a

    NASA Astrophysics Data System (ADS)

    Mills, J. V.; Gomes, M. L.; Sageman, B. B.; Hurtgen, M. T.

    2012-12-01

    Oceanic anoxic events (OAEs) were short-lived (<1-myr) episodes of widespread marine organic carbon burial and anoxia that occurred during the Mesozoic. Several hypotheses have been proposed to explain these intervals of increased organic carbon production and preservation, yet none have satisfactorily accounted for the short-term character and widespread effects of the events. Some recent work has focused on the role of sulfur in the initiation/termination mechanism of these events, specifically the potential impact of a large increase in marine sulfate levels upon a very low sulfate background. Previous authors have suggested that a large pulse of volcanic-derived sulfur could have initiated widespread anoxia through a positive feedback cycle of enhanced phosphorous recycling and increased primary production. In this model, a sudden pulse of sulfur upon a low sulfate background impacts the biogeochemical cycles of sulfur and iron, leading to an escalation in phosphorous (P) release from sediments during organic matter degradation. The resulting sulfate-P feedback cycle, recognized in modern lake systems, continues until sulfate levels are drawn down by pyrite burial, thus ending the anoxic event. To test this hypothesis, we examine sulfur and carbon isotopes through the early Aptian OAE1a (~120 Ma) from Resolution Guyot in the Mid-Pacific Mountains (ODP Site 866). We present sulfur isotope records of carbonate-associated sulfate (CAS), which provide a higher resolution record than other sulfate records (e.g. marine barites), to infer how sulfate concentrations changed through the event. A decrease of ~5 permil in the CAS sulfur isotope composition through the event suggests either that massive volcanism delivered 34S-depleted sulfate to the oceans and/or that large-scale evaporite (calcium sulfate) deposition forced a reduction in marine sulfate levels and associated rates of pyrite burial. These results will be discussed within the context of evolving δ34Spyrite values in order to better constrain the evolution of marine sulfate concentrations through this time period and evaluate the importance of the sulfate-P feedback mechanism in regulating OAE1a.

  1. High performance positive electrode for a lead-acid battery

    NASA Technical Reports Server (NTRS)

    Kao, Wen-Hong (Inventor); Bullock, Norma K. (Inventor); Petersen, Ralph A. (Inventor)

    1994-01-01

    An electrode suitable for use as a lead-acid battery plate is formed of a paste composition which enhances the performance of the plate. The paste composition includes a basic lead sulfate, a persulfate and water. The paste may also include lead oxide and fibers. An electrode according to the invention is characterized by good strength in combination with high power density, porosity and surface area.

  2. Sulfur transformations in pilot-scale constructed wetland treating high sulfate-containing contaminated groundwater: a stable isotope assessment.

    PubMed

    Wu, Shubiao; Jeschke, Christina; Dong, Renjie; Paschke, Heidrun; Kuschk, Peter; Knöller, Kay

    2011-12-15

    Current understanding of the dynamics of sulfur compounds inside constructed wetlands is still insufficient to allow a full description of processes involved in sulfur cycling. Experiments in a pilot-scale horizontal subsurface flow constructed wetland treating high sulfate-containing contaminated groundwater were carried out. Application of stable isotope approach combined with hydro-chemical investigations was performed to evaluate the sulfur transformations. In general, under inflow concentration of about 283 mg/L sulfate sulfur, sulfate removal was found to be about 21% with a specific removal rate of 1.75 g/m(2)·d. The presence of sulfide and elemental sulfur in pore water about 17.3 mg/L and 8.5 mg/L, respectively, indicated simultaneously bacterial sulfate reduction and re-oxidation. 70% of the removed sulfate was calculated to be immobilized inside the wetland bed. The significant enrichment of (34)S and (18)O in dissolved sulfate (δ(34)S up to 16‰, compared to average of 5.9‰ in the inflow, and δ(18)O up to 13‰, compared to average of 6.9‰ in the inflow) was observed clearly correlated to the decrease of sulfate loads along the flow path through experimental wetland bed. This enrichment also demonstrated the occurrence of bacterial sulfate reduction as well as demonstrated by the presence of sulfide in the pore water. Moreover, the integral approach shows that bacterial sulfate reduction is not the sole process controlling the isotopic composition of dissolved sulfate in the pore water. The calculated apparent enrichment factor (ɛ = -22‰) for sulfur isotopes from the δ(34)S vs. sulfate mass loss was significantly smaller than required to produce the observed difference in δ(34)S between sulfate and sulfide. It indicated some potential processes superimposing bacterial sulfate reduction, such as direct re-oxidation of sulfide to sulfate by oxygen released from plant roots and/or bacterial disproportionation of elemental sulfur. Furthermore, 41% of residual sulfate was calculated to be from sulfide re-oxidation, which demonstrated that the application of stable isotope approach combined with the common hydro-chemical investigations is not only necessary for a general qualitative evaluation of sulfur transformations in constructed wetlands, but also leads to a quantitative description of intermediate processes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark)

    NASA Astrophysics Data System (ADS)

    Holmkvist, Lars; Ferdelman, Timothy G.; Jørgensen, Bo Barker

    2011-06-01

    Sulfate reduction and sulfur-iron geochemistry were studied in 5-6 m deep gravity cores of Holocene mud from Aarhus Bay (Denmark). A goal was to understand whether sulfate is generated by re-oxidation of sulfide throughout the sulfate and methane zones, which might explain the abundance of active sulfate reducers deep below the main sulfate zone. Sulfate penetrated down to 130 cm where methane started to build up and where the concentration of free sulfide peaked at 5.5 mM. Below this sulfate-methane transition, sulfide diffused downwards to a sulfidization front at 520 cm depth, below which dissolved iron, Fe 2+, accumulated in the pore water. Sulfate reduction rates measured by 35S-tracer incubations in the sulfate zone were high due to high concentrations of reactive organic matter. Within the sulfate-methane transition, sulfate reduction was distinctly stimulated by the anaerobic oxidation of methane. In the methane zone below, sulfate remained at positive "background" concentrations of <0.5 mM down to the sulfidization front. Sulfate reduction decreased steeply to rates which at 300-500 cm depth were 0.2-1 pmol SO 42- cm -3 d -1, i.e., 4-5 orders of magnitude lower than rates measured near the sediment surface. The turn-over time of sulfate increased from 3 years at 12 cm depth to 100-1000 years down in the methane zone. Sulfate reduction in the methane zone accounted for only 0.1% of sulfate reduction in the entire sediment column and was apparently limited by the low pore water concentration of sulfate and the low availability of organic substrates. Amendment of the sediment with both sulfate and organic substrates immediately caused a 10- to 40-fold higher, "potential sulfate reduction" which showed that a physiologically intact community of sulfate reducing bacteria was present. The "background" sulfate concentration appears to be generated from the reaction of downwards diffusing sulfide with deeply buried Fe(III) species, such as poorly-reactive iron oxides or iron bound in reactive silicates. The oxidation of sulfide to sulfate in the sulfidic sediment may involve the formation of elemental sulfur and thiosulfate and their further disproportionation to sulfide and sulfate. The net reaction of sulfide and Fe(III) to form pyrite requires an additional oxidant, irrespective of the formation of sulfate. This could be CO 2 which is reduced with H 2 to methane. The methane subsequently diffuses upwards to become re-oxidized at the sulfate-methane transition and thereby removes excess reducing power and enables the formation of excess sulfate. We show here how the combination of these well-established sulfur-iron-carbon reactions may lead to the deep formation of sulfate and drive a cryptic sulfur cycle. The iron-rich post-glacial sediments underlying Holocene marine mud stimulate the strong sub-surface sulfide reoxidation observed in Aarhus Bay and are a result of the glacial to interglacial history of the Baltic Sea area. Yet, processes similar to the ones described here probably occur widespread in marine sediments, in particular along the ocean margins.

  4. A colorimetric probe based on desensitized ionene-stabilized gold nanoparticles for single-step test for sulfate ions.

    PubMed

    Arkhipova, Viktoriya V; Apyari, Vladimir V; Dmitrienko, Stanislava G

    2015-03-15

    Desensitized ionene-stabilized gold nanoparticles have been prepared and applied as a colorimetric probe for the single-step test for sulfate ions at the relatively high concentration level. The approach is based on aggregation of the nanoparticles leading to the change in absorption spectra and color of the solution. These nanoparticles are characterized by the decreased sensitivity due to both electrostatic and steric stabilization, which allows for simple, and rapid direct single-step determination of sulfate at the relatively high concentration level in real water samples without sample pretreatment or dilution. Influence of different factors (the time of interaction, pH, the concentrations of sulfate ions and the nanoparticles) on the aggregation and analytical performance of the procedure was investigated. The method allows for the determination of sulfate ions in the mass range of 0.2-0.4 mg with RSD of 5% from the sample volume of less than 2 mL. It has a sharp dependence of the colorimetric response on the concentration of sulfate, which makes it prospective for indicating deviations of the sulfate concentration regarding some declared value chosen within the above range. The time of the analysis is 2 min. The method was applied to the analysis of mineral water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Influence of Pb 2+ ions in the H 2 oxidation on Pt catalyzed hydrogen diffusion anodes in sulfuric acid: presence of oscillatory phenomena

    NASA Astrophysics Data System (ADS)

    Expósito, E.; Sánchez-Sánchez, C. M.; Solla-Gullón, J.; Montiel, V.

    The influence of Pb 2+ ions in sulfuric acid medium on the behavior of a platinum catalyzed hydrogen diffusion electrode (HDE) in a filter press reactor has been studied. A voltammetric study of the H 2 oxidation reaction on a polyoriented platinum electrode and a platinum rotating disk electrode (RDE) in presence of lead ions in solution has also been carried out. Potential oscillations were found in galvanostatic experiments of H 2 oxidation using a HDE catalyzed with platinum when Pb 2+ ions are present in solution. This oscillatory phenomenon was also observed when hydrogen oxidation was carried out in presence of Pb 2+ ions using a platinum RDE. The oscillatory behavior observed has been attributed to an adsorption-oxidation-desorption process of lead on the platinum surface. Due to the low solubility of Pb 2+ in sulfuric acid, at high values of coverage, lead is oxidised to insoluble lead sulfate that blocks the Pt surface. The coupling of the dissolution of lead sulfate and the Pb electrochemical adsorption-oxidation processes cause the oscillatory phenomenon.

  6. Enhanced elementary sulfur recovery in integrated sulfate-reducing, sulfur-producing rector under micro-aerobic condition.

    PubMed

    Xu, Xi-jun; Chen, Chuan; Wang, Ai-jie; Fang, Ning; Yuan, Ye; Ren, Nan-qi; Lee, Duu-jong

    2012-07-01

    Biological treatment of sulfate-laden wastewater consists of two separate reactors to reduce sulfate to sulfide by sulfate-reducing bacteria (SRB) and to oxidize sulfide to sulfur (S(0)) by sulfide oxidation bacteria (SOB). To have SRB+SOB in a single reactor faced difficulty of low S(0) conversion. This study for the first time revealed that dissolved oxygen (DO) level can be used to manipulate SRB+SOB reactions in a single reactor. This work demonstrated successful operation of an integrated SRB+SOB reactor under micro-aerobic condition. At DO = 0.10-0.12 mg l(-1), since the activities of SOB were enhanced by limited oxygen, the removal efficiency for sulfate reached 81.5% and the recovery of S(0) peaked at 71.8%, higher than those reported in literature. At increased DO, chemical oxidation of sulfide with molecular oxygen competed with SOB so conversion of S(0) started to decline. At DO>0.30 mg l(-1) activities of SRB were inhibited, leading to failure of the SRB+SOB reactor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Atelosteogenesis type II is caused by mutations in the diastrophic dysplasia sulfate-transporter gene (DTDST): Evidence for a phenotypic series involving three chondrodysplasias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haestbacka, J.; Lander, E.S.; Superti-Furga, A.

    1996-02-01

    Atelosteogenesis type II (AO II) is a neonatally lethal chondrodysplasia whose clinical and histological characteristics resemble those of another chondrodysplasia, the much less severe diastrophic dysplasia (DTD). The similarity suggests a shared pathogenesis involving lesions in the same biochemical pathway and perhaps the same gene. DTD is caused by mutations in the recently identified diastrophic dysplasia sulfate-transporter gene (DTDST). Here, we report that AOII patients also have DTDST mutations, which lead to defective uptake of inorganic sulfate and insufficient sulfation of macromolecules by patient mesenchymal cells in vitro. Together with our recent observation that a third even more severe chondrodysplasia,more » achondrogenesis type IB, is also caused by mutations in DTDST, these results demonstrate a phenotypic series of three chondrodysplasias of increasing severity caused by lesions in a single sulfate-transporter gene. The severity of the phenotype appears to be correlated with the predicted effect of the mutations on the residual activity of the DTDST protein. 24 refs., 6 figs., 1 tab.« less

  8. Chemical models for martian weathering profiles: Insights into formation of layered phyllosilicate and sulfate deposits

    NASA Astrophysics Data System (ADS)

    Zolotov, Mikhail Yu.; Mironenko, Mikhail V.

    2016-09-01

    Numerical chemical models for water-basalt interaction have been used to constrain the formation of stratified mineralogical sequences of Noachian clay-bearing rocks exposed in the Mawrth Vallis region and in other places on cratered martian highlands. The numerical approaches are based on calculations of water-rock type chemical equilibria and models which include rates of mineral dissolution. Results show that the observed clay-bearing sequences could have formed through downward percolation and neutralization of acidic H2SO4-HCl solutions. A formation of weathering profiles by slightly acidic fluids equilibrated with current atmospheric CO2 requires large volumes of water and is inconsistent with observations. Weathering by solutions equilibrated with putative dense CO2 atmospheres leads to consumption of CO2 to abundant carbonates which are not observed in clay stratigraphies. Weathering by H2SO4-HCl solutions leads to formation of amorphous silica, Al-rich clays, ferric oxides/oxyhydroxides, and minor titanium oxide and alunite at the top of weathering profiles. Mg-Fe phyllosilicates, Ca sulfates, zeolites, and minor carbonates precipitate from neutral and alkaline solutions at depth. Acidic weathering causes leaching of Na, Mg, and Ca from upper layers and accumulation of Mg-Na-Ca sulfate-chloride solutions at depth. Neutral MgSO4 type solutions dominate in middle parts of weathering profiles and could occur in deeper layers owing to incomplete alteration of Ca minerals and a limited trapping of Ca to sulfates. Although salts are not abundant in the Noachian geological formations, the results suggest the formation of Noachian salty solutions and their accumulation at depth. A partial freezing and migration of alteration solutions could have separated sulfate-rich compositions from low-temperature chloride brines and contributed to the observed diversity of salt deposits. A Hesperian remobilization and release of subsurface MgSO4 type solutions into newly-formed depressions could account for formation of some massive layered sulfate deposits through freezing or evaporation. This scenario explains the observed deficiency of salts in Noachian formations, a paucity of Hesperian phyllosilicates, and the occurrence of sulfate deposits in Valles Marineris troughs, chaotic terrains, and some craters of the Hesperian age.

  9. Roles of Pt and BaO in the Sulfation of Pt/BaO/Al2O3 Lean NOx Trap Materials: Sulfur K-edge XANES and Pt LIII XAFS Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Do Heui; Kwak, Ja Hun; Szanyi, Janos

    2008-02-28

    The roles of barium oxide and platinum during the sulfation of Pt-BaO/Al2O3 lean NOx trap catalysts were investigated by S K edge XANES (X-ray absorption near-edge spectroscopy) and Pt LIII XAFS (X-ray absorption fine structure). All of the samples studied (Al2O3, BaO/Al2O3, Pt/Al2O3 and Pt-BaO/Al2O3) were pre-sulfated prior to the X-ray absorption measurements. It was found that barium oxide itself has the ability to directly form barium sulfate even in the absence of Pt and gas phase oxygen. In the platinum-containing samples, the presence of Pt-O species plays an important role in the formation of sulfate species. Even if bariummore » and aluminum sites are available for SO2 to form sulfate, for the case of the BaO(8)/Al2O3 sample, where the barium coverage is about 0.26 ML, S XANES spectroscopy results show that barium sulfates are preferentially produced over aluminum sulfates . When oxygen is absent from the gas phase, the sulfation route that involves Pt-O is eliminated after the initially present Pt-O species are completely consumed. In this case, formation of sulfates is suppressed unless barium oxide is also present. Pt LIII XAFS results show that the first coordination sphere around the Pt atoms in the Pt particles is dependent upon the redox nature of the gas mixture used during the sulfation process. Sulfation under reducing environments (e.g. SO2+H2) leads to formation of Pt-S bonds, while oxidizing conditions (e.g. SO2+O2) continue to show the presence of Pt-O bonds. In addition, the former condition was found to give rise to a higher degree of Pt sintering than the latter one. This result explains why samples sulfated under reducing conditions had lower NOx uptakes than those sulfated under oxidizing conditions. Therefore, our results provide needed information for the development of optimum practical operation conditions (e.g. sulfation or desulfation) for lean NOx trap catalysts that minimize deactivation by sulfur.« less

  10. Roles of Pt and BaO in the Sulfation of Pt/BaO/Al2O3 Lean NOx Trap Materials: Sulfur K-edge XANES and Pt Llll XAFS Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim,D.; Kwak, J.; Szanyi, J.

    2008-01-01

    The roles of barium oxide and platinum during the sulfation of Pt-BaO/Al2O3 lean NOx trap catalysts were investigated by S K edge XANES (X-ray absorption near-edge spectroscopy) and Pt LIII XAFS (X-ray absorption fine structure). All of the samples studied [Al2O3, BaO(x; x = 8 or 20 wt %)/Al2O3, Pt(2.5 wt %)/Al2O3, and Pt(2 wt %)-BaO(x; x = 8 or 20 wt %)/Al2O3] were pre-sulfated prior to the X-ray absorption measurements. It was found that barium oxide itself has the ability to directly form barium sulfate even in the absence of Pt and gas-phase oxygen. In the platinum-containing samples, themore » presence of Pt-O species plays an important role in the formation of sulfate species. For the case of the BaO(8)/Al2O3 sample, where the barium coverage is about 0.26 ML, both baria and alumina phases are available for sulfation. S XANES results show that barium sulfates are formed preferentially over aluminum sulfates. When oxygen is absent from the gas phase, the sulfation route that involves Pt-O is eliminated after the initially present Pt-O species are completely consumed. In this case, formation of sulfates is suppressed unless barium oxide is also present. Pt LIII XAFS results show that the first coordination sphere around the Pt atoms in the Pt particles is dependent upon the gas mixture used during the sulfation process. Sulfation under reducing environments (e.g., SO2/H2) leads to formation of Pt-S bonds, while oxidizing conditions (e.g., SO2/O2) continue to show the presence of Pt-O bonds. In addition, a reducing environment was found to cause Pt sintering in greater extent than an oxidizing one. This result explains why samples sulfated under reducing conditions had lower NOx uptakes than those sulfated under oxidizing conditions. Therefore, our results provide needed information for the development of optimum practical operation conditions (e.g., sulfation or desulfation) for lean NOx trap catalysts that minimize deactivation by sulfur.« less

  11. A Solution-Based Approach for Mo-99 Production: Considerations for Nitrate versus Sulfate Media

    DOE PAGES

    Youker, Amanda J.; Chemerisov, Sergey D.; Kalensky, Michael; ...

    2013-01-01

    Molybdenum-99 is the parent of Technetium-99m, which is used in nearly 80% of all nuclear medicine procedures. The medical community has been plagued by Mo-99 shortages due to aging reactors, such as the NRU (National Research Universal) reactor in Canada. There are currently no US producers of Mo-99, and NRU is scheduled for shutdown in 2016, which means that another Mo-99 shortage is imminent unless a potential domestic Mo-99 producer fills the void. Argonne National Laboratory is assisting two potential domestic suppliers of Mo-99 by examining the effects of a uranyl nitrate versus a uranyl sulfate target solution configuration onmore » Mo-99 production. Uranyl nitrate solutions are easier to prepare and do not generate detectable amounts of peroxide upon irradiation, but a high radiation field can lead to a large increase in pH, which can lead to the precipitation of fission products and uranyl hydroxides. Uranyl sulfate solutions are more difficult to prepare, and enough peroxide is generated during irradiation to cause precipitation of uranyl peroxide, but this can be prevented by adding a catalyst to the solution. A titania sorbent can be used to recover Mo-99 from a highly concentrated uranyl nitrate or uranyl sulfate solution; however, different approaches must be taken to prevent precipitation during Mo-99 production.« less

  12. Highly Acidic Ambient Particles, Soluble Metals, and Oxidative Potential: A Link between Sulfate and Aerosol Toxicity.

    PubMed

    Fang, Ting; Guo, Hongyu; Zeng, Linghan; Verma, Vishal; Nenes, Athanasios; Weber, Rodney J

    2017-03-07

    Soluble transition metals in particulate matter (PM) can generate reactive oxygen species in vivo by redox cycling, leading to oxidative stress and adverse health effects. Most metals, such as those from roadway traffic, are emitted in an insoluble form, but must be soluble for redox cycling. Here we present the mechanism of metals dissolution by highly acidic sulfate aerosol and the effect on particle oxidative potential (OP) through analysis of size distributions. Size-segregated ambient PM were collected from a road-side and representative urban site in Atlanta, GA. Elemental and organic carbon, ions, total and water-soluble metals, and water-soluble OP were measured. Particle pH was determined with a thermodynamic model using measured ionic species. Sulfate was spatially uniform and found mainly in the fine mode, whereas total metals and mineral dust cations were highest at the road-side site and in the coarse mode, resulting in a fine mode pH < 2 and near neutral coarse mode. Soluble metals and OP peaked at the intersection of these modes demonstrating that sulfate plays a key role in producing highly acidic fine aerosols capable of dissolving primary transition metals that contribute to aerosol OP. Sulfate-driven metals dissolution may account for sulfate-health associations reported in past studies.

  13. Bioturbation and the role of microniches for sulfate reduction in coastal marine sediments.

    PubMed

    Bertics, Victoria J; Ziebis, Wiebke

    2010-11-01

    The effects of bioturbation in marine sediments are mainly associated with an increase in oxic and oxidized zones through an influx of oxygen-rich water deeper into the sediment and the rapid transport of particles between oxic and anoxic conditions. However, macrofaunal activity also can increase the occurrence of reduced microniches and anaerobic processes, such as sulfate reduction. Our goal was to determine the two-dimensional distribution of microniches associated with burrows of a ghost shrimp (Neotrypaea californiensis) and to determine microbial activities. In laboratory experiments, detailed measurements of sulfate reduction rates (SRR) were measured by injecting, in a 1 cm grid, radiolabelled sulfate directly into a narrow aquarium (40 cm × 30 cm × 3 cm) containing the complex burrow of an actively burrowing shrimp. Light-coloured oxidized burrow walls, along with black reduced microniches, were clearly visible through the aquarium walls. Direct injection of radiotracers allowed for whole-aquarium incubation to obtain two-dimensional documentation of sulfate reduction. Results indicated SRR were up to three orders of magnitude higher (140-790 nmol SO(4) (2-) cm(-3) day(-1) ) in reduced microniches associated with burrows when compared with the surrounding sediment. Additionally, some of the subsurface sulfate-reducing microniches associated with the burrow system appeared to be zones of dinitrogen fixation. Bioturbation may also lead to decreased sulfate reduction in other microniches and the sum of the activity in all microniches might not result in a total increase of sulfate reduction compared with non-bioturbated control sediments. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. Polyguluronate sulfate, polymannuronate sulfate, and their oligosaccharides have antithrombin III- and heparin cofactor II-independent anticoagulant activity

    NASA Astrophysics Data System (ADS)

    Zeng, Xuan; Lan, Ying; Zeng, Pengjiao; Guo, Zhihua; Hao, Cui; Zhang, Lijuan

    2017-04-01

    Cardiovascular disease is the leading causes of death. However, the complications can be treated with heparin and heparinoids, such as heparin pentasaccharide Fondaparinux, dermatan sulfate, and PSS made from alginate extracted from brown seaweeds by chemical sulfation. Alginate is composed of a linear backbone of polymannuronate (PM), polyguluronate (PG), and alternate residues of mannuronic acid and guluronic acid. It is unknown if heparin and sulfated PG (PGS)/PM (PMS) have the same or different anticoagulant molecular targets. In the current study, the anticoagulant activities of PGS, PMS, and their oligosaccharides were directly compared to that of heparin, Fondaparinux, and dermatan sulfate by the activated partial thrombinplastin time (aPTT) assay using normal, antithrombin III (ATIII)-deficient, heparin co-factor II (HCII)-deficient, and ATIII- and HCII-double deficient human plasmas. Our results showed that PGS, PMS, and their oligosaccharides had better anticoagulant activity than that of Fondaparinux in all four human plasmas tested. As expected, heparin was the best anticoagulant in normal plasma. Moreover, PGS, PGS6, PGS12, PGS25, PMS6, PMS12, and PMS25 were better anticoagulants than dermatan sulfate in HCII-deficient plasma. Most strikingly, PGS, PGS12, PGS25, PMS6, PMS12, and PMS25 were better anticoagulants than that of heparin in ATIII- and HCII-double deficient human plasma. The results revealed for the first time that sulfated alginate had ATIII- and HCII-independent anticoagulant activities. Therefore, developing PGS and PMS-based anticoagulants might require to discover their major molecular targets and to develop target-specific anticoagulant assays.

  15. FORMATION OF PYROMORPHITE IN ANGLESITE-HYDROXYAPATITE SUSPENSIONS UNDER VARYING PH CONDITIONS

    EPA Science Inventory

    Addition of phosphate to lead [Pb(II)] contaminated soil to immobilize soil Pb by formation of pyromorphite has been proposed as an alternative remediation technique. Lead sulfate (PbSO4, anglesite), a Pb-bearing form found in contaminated soils and wastes, was reacted with a sy...

  16. Antibody recognizing 4-sulfated chondroitin sulfate proteoglycans restores memory in tauopathy-induced neurodegeneration.

    PubMed

    Yang, Sujeong; Hilton, Sam; Alves, João Nuno; Saksida, Lisa M; Bussey, Timothy; Matthews, Russell T; Kitagawa, Hiroshi; Spillantini, Maria Grazia; Kwok, Jessica C F; Fawcett, James W

    2017-11-01

    Chondroitin sulfate proteoglycans (CSPGs) are the main active component of perineuronal nets (PNNs). Digestion of the glycosaminoglycan chains of CSPGs with chondroitinase ABC or transgenic attenuation of PNNs leads to prolongation of object recognition memory and activation of various forms of plasticity in the adult central nervous system. The inhibitory properties of the CSPGs depend on the pattern of sulfation of their glycosaminoglycans, with chondroitin 4-sulfate (C4S) being the most inhibitory form. In this study, we tested a number of candidates for functional blocking of C4S, leading to selection of an antibody, Cat316, which specifically recognizes C4S and blocks its inhibitory effects on axon growth. It also partly blocks binding of semaphorin 3A to PNNs and attenuates PNN formation. We asked whether injection of Cat316 into the perirhinal cortex would have the same effects on memory as chondroitinase ABC treatment. We found that masking C4S with the Cat316 antibody extended long-term object recognition memory in normal wild-type mice to 24 hours, similarly to chondroitinase or transgenic PNN attenuation. We then tested Cat316 for restoration of memory in a neurodegeneration model. Mice expressing tau with the P301S mutation showed profound loss of object recognition memory at 4 months of age. Injection of Cat316 into the perirhinal cortex normalized object recognition at 3 hours in P301S mice. These data indicate that Cat316 binding to C4S in the extracellular matrix can restore plasticity and memory in the same way as chondroitinase ABC digestion. Our results suggest that antibodies to C4S could be a useful therapeutic to restore memory function in neurodegenerative disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. In vitro susceptibility of spiroplasmas to heavy-metal salts.

    PubMed

    Whitmore, S C; Rissler, J F; Davis, R E

    1983-01-01

    The susceptibility of six spiroplasma strains to heavy-metal salt was characterized in terms of minimal inhibitory concentrations and minimal biocidal concentrations in broth tube dilution tests. The strains were most susceptible to mercuric chloride and silver nitrate; less susceptible to copper sulfate, cobalt chloride, lead nitrate, and cadmium sulfate; and least susceptible to nickel chloride and zinc sulfate. Spiroplasma citri strains Maroc R8A2 and C189 were the most susceptible to five of eight heavy-metal salts, and honeybee spiroplasma strain AS576 and Spiroplasma floricola strain 23-6 were generally the least susceptible. The difference between the minimal biocidal concentrations and the minimal inhibitory concentrations was greater for certain heavy-metal salts than for others.

  18. Importance of sulfate radical anion formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate

    DOE PAGES

    Kwong, Kai Chung; Chim, Man Mei; Davies, James F.; ...

    2018-02-27

    Organosulfates are important organosulfur compounds present in atmospheric particles. While the abundance, composition, and formation mechanisms of organosulfates have been extensively investigated, it remains unclear how they transform and evolve throughout their atmospheric lifetime. To acquire a fundamental understanding of how organosulfates chemically transform in the atmosphere, this study investigates the heterogeneous OH radical-initiated oxidation of sodium methyl sulfate (CH 3SO 4Na) droplets, the smallest organosulfate detected in atmospheric particles, using an aerosol flow tube reactor at a high relative humidity (RH) of 85%. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (direct analysis in real time,more » DART) coupled with a high-resolution mass spectrometer showed that neither functionalization nor fragmentation products are detected. Instead, the ion signal intensity of the bisulfate ion (HSO 4 -) has been found to increase significantly after OH oxidation. We postulate that sodium methyl sulfate tends to fragment into a formaldehyde (CH 2O) and a sulfate radical anion (SO 4 .-) upon OH oxidation. The formaldehyde is likely partitioned back to the gas phase due to its high volatility. The sulfate radical anion, similar to OH radical, can abstract a hydrogen atom from neighboring sodium methyl sulfate to form the bisulfate ion, contributing to the secondary chemistry. Kinetic measurements show that the heterogeneous OH reaction rate constant, k, is (3.79 ± 0.19) × 10 -13cm 3molecule -1s -1 with an effective OH uptake coefficient, γ eff, of 0.17 ± 0.03. While about 40% of sodium methyl sulfate is being oxidized at the maximum OH exposure (1.27 × 10 12molecule cm -3s), only a 3% decrease in particle diameter is observed. This can be attributed to a small fraction of particle mass lost via the formation and volatilization of formaldehyde. Overall, we firstly demonstrate that the heterogeneous OH oxidation of an organosulfate can lead to the formation of sulfate radical anion and produce inorganic sulfate. Fragmentation processes and sulfate radical anion chemistry play a key role in determining the compositional evolution of sodium methyl sulfate during heterogeneous OH oxidation.« less

  19. Importance of sulfate radical anion formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate

    NASA Astrophysics Data System (ADS)

    Chung Kwong, Kai; Chim, Man Mei; Davies, James F.; Wilson, Kevin R.; Nin Chan, Man

    2018-02-01

    Organosulfates are important organosulfur compounds present in atmospheric particles. While the abundance, composition, and formation mechanisms of organosulfates have been extensively investigated, it remains unclear how they transform and evolve throughout their atmospheric lifetime. To acquire a fundamental understanding of how organosulfates chemically transform in the atmosphere, this work investigates the heterogeneous OH radical-initiated oxidation of sodium methyl sulfate (CH3SO4Na) droplets, the smallest organosulfate detected in atmospheric particles, using an aerosol flow tube reactor at a high relative humidity (RH) of 85 %. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (direct analysis in real time, DART) coupled with a high-resolution mass spectrometer showed that neither functionalization nor fragmentation products are detected. Instead, the ion signal intensity of the bisulfate ion (HSO4-) has been found to increase significantly after OH oxidation. We postulate that sodium methyl sulfate tends to fragment into a formaldehyde (CH2O) and a sulfate radical anion (SO4 ṡ -) upon OH oxidation. The formaldehyde is likely partitioned back to the gas phase due to its high volatility. The sulfate radical anion, similar to OH radical, can abstract a hydrogen atom from neighboring sodium methyl sulfate to form the bisulfate ion, contributing to the secondary chemistry. Kinetic measurements show that the heterogeneous OH reaction rate constant, k, is (3.79 ± 0.19) × 10-13 cm3 molecule-1 s-1 with an effective OH uptake coefficient, γeff, of 0.17 ± 0.03. While about 40 % of sodium methyl sulfate is being oxidized at the maximum OH exposure (1.27 × 1012 molecule cm-3 s), only a 3 % decrease in particle diameter is observed. This can be attributed to a small fraction of particle mass lost via the formation and volatilization of formaldehyde. Overall, we firstly demonstrate that the heterogeneous OH oxidation of an organosulfate can lead to the formation of sulfate radical anion and produce inorganic sulfate. Fragmentation processes and sulfate radical anion chemistry play a key role in determining the compositional evolution of sodium methyl sulfate during heterogeneous OH oxidation.

  20. Importance of sulfate radical anion formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwong, Kai Chung; Chim, Man Mei; Davies, James F.

    Organosulfates are important organosulfur compounds present in atmospheric particles. While the abundance, composition, and formation mechanisms of organosulfates have been extensively investigated, it remains unclear how they transform and evolve throughout their atmospheric lifetime. To acquire a fundamental understanding of how organosulfates chemically transform in the atmosphere, this study investigates the heterogeneous OH radical-initiated oxidation of sodium methyl sulfate (CH 3SO 4Na) droplets, the smallest organosulfate detected in atmospheric particles, using an aerosol flow tube reactor at a high relative humidity (RH) of 85%. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (direct analysis in real time,more » DART) coupled with a high-resolution mass spectrometer showed that neither functionalization nor fragmentation products are detected. Instead, the ion signal intensity of the bisulfate ion (HSO 4 -) has been found to increase significantly after OH oxidation. We postulate that sodium methyl sulfate tends to fragment into a formaldehyde (CH 2O) and a sulfate radical anion (SO 4 .-) upon OH oxidation. The formaldehyde is likely partitioned back to the gas phase due to its high volatility. The sulfate radical anion, similar to OH radical, can abstract a hydrogen atom from neighboring sodium methyl sulfate to form the bisulfate ion, contributing to the secondary chemistry. Kinetic measurements show that the heterogeneous OH reaction rate constant, k, is (3.79 ± 0.19) × 10 -13cm 3molecule -1s -1 with an effective OH uptake coefficient, γ eff, of 0.17 ± 0.03. While about 40% of sodium methyl sulfate is being oxidized at the maximum OH exposure (1.27 × 10 12molecule cm -3s), only a 3% decrease in particle diameter is observed. This can be attributed to a small fraction of particle mass lost via the formation and volatilization of formaldehyde. Overall, we firstly demonstrate that the heterogeneous OH oxidation of an organosulfate can lead to the formation of sulfate radical anion and produce inorganic sulfate. Fragmentation processes and sulfate radical anion chemistry play a key role in determining the compositional evolution of sodium methyl sulfate during heterogeneous OH oxidation.« less

  1. Secondary inorganic aerosols in Europe: sources and the significant influence of biogenic VOC emissions, especially on ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Aksoyoglu, Sebnem; Ciarelli, Giancarlo; El-Haddad, Imad; Baltensperger, Urs; Prévôt, André S. H.

    2017-06-01

    Contributions of various anthropogenic sources to the secondary inorganic aerosol (SIA) in Europe as well as the role of biogenic emissions on SIA formation were investigated using the three-dimensional regional model CAMx (comprehensive air quality model with extensions). Simulations were carried out for two periods of EMEP field campaigns, February-March 2009 and June 2006, which are representative of cold and warm seasons, respectively. Biogenic volatile organic compounds (BVOCs) are known mainly as precursors of ozone and secondary organic aerosol (SOA), but their role on inorganic aerosol formation has not attracted much attention so far. In this study, we showed the importance of the chemical reactions of BVOCs and how they affect the oxidant concentrations, leading to significant changes, especially in the formation of ammonium nitrate. A sensitivity test with doubled BVOC emissions in Europe during the warm season showed a large increase in secondary organic aerosol (SOA) concentrations (by about a factor of two), while particulate inorganic nitrate concentrations decreased by up to 35 %, leading to a better agreement between the model results and measurements. Sulfate concentrations decreased as well; the change, however, was smaller. The changes in inorganic nitrate and sulfate concentrations occurred at different locations in Europe, indicating the importance of precursor gases and biogenic emission types for the negative correlation between BVOCs and SIA. Further analysis of the data suggested that reactions of the additional terpenes with nitrate radicals at night were responsible for the decline in inorganic nitrate formation, whereas oxidation of BVOCs with OH radicals led to a decrease in sulfate. Source apportionment results suggest that the main anthropogenic source of precursors leading to formation of particulate inorganic nitrate is road transport (SNAP7; see Table 1 for a description of the categories), whereas combustion in energy and transformation industries (SNAP1) was the most important contributor to sulfate particulate mass. Emissions from international shipping were also found to be very important for both nitrate and sulfate formation in Europe. In addition, we also examined contributions from the geographical source regions to SIA concentrations in the most densely populated region of Switzerland, the Swiss Plateau.

  2. Mechanistic study of lead desorption during the leaching process of ion-absorbed rare earths: pH effect and the column experiment.

    PubMed

    Tang, Jie; Xue, Qiang; Chen, Honghan; Li, Wenting

    2017-05-01

    High concentrations of ammonium sulfate, often used in the in situ mining process, can result in a decrease of pH in the environment and dissolution of rare earth metals. Ammonium sulfate can also cause desorption of toxic heavy metals, leading to environmental and human health implications. In this study, the desorption behavior and fraction changes of lead in the ion-absorbed rare earth ore were studied using batch desorption experiments and column leaching tests. Results from batch desorption experiments showed that the desorption process of lead included fast and slow stages and followed an Elovich model well. The desorption rate and the proportion of lead content in the solution to the total lead in the soil were observed to increase with a decrease in the initial pH of the ammonium sulfate solution. The lead in soil included an acid-extractable fraction, reducible fraction, oxidizable fraction, and a residual fraction, with the predominant fractions being the reducible and acid-extractable fractions. Ninety-six percent of the extractable fraction in soil was desorbed into solution at pH = 3.0, and the content of the reducible fraction was observed to initially increase (when pH >4.0) and then decrease (when pH <4.0) with a decrease in pH. Column leaching tests indicated that the content of lead in the different fractions of soil followed the trend of reducible fraction > oxidizable fraction > acid-extractable fraction > residual fraction after the simulating leaching mining process. The change in pH was also found to have a larger influence on the acid-extractable and reducible fractions than the other two fractions. The proportion of the extractable fraction being leached was ca. 86%, and the reducible fraction was enriched along the migration direction of the leaching liquid. These results suggest that certain lead fractions may desorb again and contaminate the environment via acid rain, which provides significant information for environmental assessment and remediation after mining process. Graphical abstract ᅟ.

  3. Significant decrease of broth viscosity and glucose consumption in erythromycin fermentation by dynamic regulation of ammonium sulfate and phosphate.

    PubMed

    Chen, Yong; Wang, Zejian; Chu, Ju; Zhuang, Yingping; Zhang, Siliang; Yu, Xiaoguang

    2013-04-01

    In this study, the effects of nitrogen sources on broth viscosity and glucose consumption in erythromycin fermentation were investigated. By controlling ammonium sulfate concentration, broth viscosity and glucose consumption were decreased by 18.2% and 61.6%, respectively, whereas erythromycin biosynthesis was little affected. Furthermore, erythromycin A production was increased by 8.7% still with characteristics of low broth viscosity and glucose consumption through the rational regulations of phosphate salt, soybean meal and ammonium sulfate. It was found that ammonium sulfate could effectively control proteinase activity, which was correlated with the utilization of soybean meal as well as cell growth. The pollets formation contributed much to the decrease of broth viscosity. The accumulation of extracellular propionate and succinate under the new regulation strategy indicated that higher propanol consumption might increase the concentration of methylmalonyl-CoA and propionyl-CoA and thus could increase the flux leading to erythromycin A. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Air pollution and heart rate variability: effect modification by chronic lead exposure.

    PubMed

    Park, Sung Kyun; O'Neill, Marie S; Vokonas, Pantel S; Sparrow, David; Wright, Robert O; Coull, Brent; Nie, Huiling; Hu, Howard; Schwartz, Joel

    2008-01-01

    Outdoor air pollution and lead exposure can disturb cardiac autonomic function, but the effects of both these exposures together have not been studied. We examined whether higher cumulative lead exposures, as measured by bone lead, modified cross-sectional associations between air pollution and heart rate variability among 384 elderly men from the Normative Aging Study. We used linear regression, controlling for clinical, demographic, and environmental covariates. We found graded, significant reductions in both high-frequency and low-frequency powers of heart rate variability in relation to ozone and sulfate across the quartiles of tibia lead. Interquartile range increases in ozone and sulfate were associated respectively, with 38% decrease (95% confidence interval = -54.6% to -14.9%) and 22% decrease (-40.4% to 1.6%) in high frequency, and 38% decrease (-51.9% to -20.4%) and 12% decrease (-28.6% to 9.3%) in low frequency, in the highest quartile of tibia lead after controlling for potential confounders. We observed similar but weaker effect modification by tibia lead adjusted for education and cumulative traffic (residuals of the regression of tibia lead on education and cumulative traffic). Patella lead modified only the ozone effect on heart rate variability. People with long-term exposure to higher levels of lead may be more sensitive to cardiac autonomic dysfunction on high air pollution days. Efforts to understand how environmental exposures affect the health of an aging population should consider both current levels of pollution and history of lead exposure as susceptibility factors.

  5. Cholinergic aspects of cyanide intoxication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Von Bredow, J.D.; Vick, J.A.

    1993-05-13

    The acute exposure of pentobarbital anesthetized dogs to cyanide leads to a rapid increase and sudden halt in respiration accompanied by cardiovascular irregularities and extreme bradycardia which ultimately lead to cardiac arrest and death. Cardiac irregularities and cardiac arrest in the presence of cyanide induced respiratory arrest are assumed to be due to anoxia and therefore unresponsive to cardiotonic agents. Pretreatment or treatment with atropine sulfate or methyl atropine nitrate provides a marked reduction in the cardiovascular irregularities, bradycardia and hypotension. The cyanide induced cardiovascular effect can also be prevented by bilateral vagotomy. An intramuscularly injected combination of 20 mg/kgmore » sodium nitrite and 1 mg/kg of atropine sulfate ensured recovery of pentobarbital anesthetized dogs exposed to lethal concentrations (2.5 mg/kg i.v.) of sodium cyanide.« less

  6. Detoxification of mercury, cadmium, and lead in Klebsiella aerogenes NCTC 418 growing in continuous culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aiking, H.; Govers, H.; van 'T Riet, J.

    1985-11-01

    Klebsiella aerogenes NCTC 418 growing in the presence of cadmium under glucose-, sulfate-, or phosphate-limited conditions in continuous culture exhibited sulfide formation and P/sub i/ accumulation as the only demonstrable detoxification mechanisms. In the presence of mercury under similar conditions only HgS formation could be confirmed, by an increased sensitivity to mercury under sulfate-limited conditions, among others. The fact that the cells were most sensitive to cadmium under conditions of phosphate limitation and most sensitive to mercury under conditions of sulfate limitation led to the hypothesis that these inorganic detoxification mechanisms generally depended on a kind of facilitated precipitation. Themore » process was coined thus because heavy metals were probably accumulated and precipitated near the cell perimeter due to the relatively high local concentrations of sulfide and phosphate there. Depending on the growth-limiting nutrient, mercury proved to be 25-fold (phosphate limitation), 75-fold (glycerol limitation), or 150-fold (sulfate limitation) more toxic than cadmium to this organism. In the presence of lead, PbS formation was suggested. since no other detoxification mechanisms were detected, for example, rendering heavy metal ions innocuous as metallo-organic compounds, it was concluded that formation of heavy metal precipitates is crucially important to this organism. In addition, it was observed that several components of a defined mineral medium were able to reduce mercuric ions to elemental mercury. This abiotic mercury volatilization was studied in detail, and its general and environmental implications are discussed.« less

  7. Isotopic Zonation Within Sulfate Evaporite Mineral Crystals Reveal Quantitative Paleoenvironment Details

    NASA Astrophysics Data System (ADS)

    Coleman, M.; Rhorssen, M.; Mielke, R. E.

    2008-12-01

    Isotopic variations measured within a single crystal of hydrated magnesium sulfate are greater than 30 permil for delta 2-H, almost 10 permil for δ18O in water of hydration; and greater than 3 permil in sulfate oxygen. These results are interpreted to indicate the relative humidity of the system during evaporation (15 to 20 percent in this test case) and constrain the volume of water involved. The theoretical basis of this system is the isotopic fractionation between the species in solution and those precipitated as evaporite salts. Precipitation preferentially accumulates more of the heavy isotopes of sulfur and oxygen in mineral sulfate, relative to sulfate in solution. During the course of mineral growth this leads to successive depletion of the respective heavier isotopes in the residual brine reflected in a parallel trend in successive precipitates or even in successive zones within a single crystal. The change in isotopic composition at any one time during the process, relative to the initial value, can be described by an isotopic version of the Rayleigh Fractionation equation, depending only on the extent of the completion of the process and the relevant fractionation factor. Evaporation preferentially removes isotopically lighter hydrogen and oxygen leading to successive extents of enrichment in the respective heavier isotopes in the residual water. However, the relative effects on hydrogen and oxygen isotopes differs as function of relative humidity [1]. ALL OF THESE CHANGES ARE PRESERVED IN THE MINERAL ISOTOPE COMPOSITIONS. We precipitated barium sulfate from epsomite or gypsum samples, which was reduced at 1450°C in the presence of graphite and glassy carbon in a Finnigan TC/EA to produce CO for O isotopic analysis in a Finnigan 253 mass spectrometer, while a separate subsample was oxidized to SO2 in a Costech Elemental Analyzer. However, to make progress with this approach we needed to make a large number of measurements of hydration water and so we developed a new analytical method [2]. We use a modification of the standard TC/EA continuous-flow protocol to measure both hydrogen and oxygen of water of hydration from the same small sample. We have proved the concept of this new approach by analyzing zones within crystals and individual grains, growing epsomite (magnesium sulfate heptahydrate) in the laboratory and by analysis of natural gypsum evaporites. We are now exploring the effects of varying the controlling parameters. Eventual application to Martian sulfates will reveal amount of water involved in sulfate formation, its isotopic composition(s) and details of the paleo-atmospheric humidity. [1] Gat JR and Gonfiantini R, (Eds) (1981) IAEA Technical Report Series. [2] Rohrssen MK, Brunner B Mielke RE and Coleman M (2008) Analyt. Chem. (in press).

  8. Direct solid surface fluorescence spectroscopy of standard chemicals and humic acid in ternary system

    NASA Astrophysics Data System (ADS)

    Mounier, S.; Nicolodelli, G.; Redon, R.; Milori, D. M. B. P.

    2017-04-01

    The front face fluorescence spectroscopy is often used to quantify chemicals in well-known matrices as it is a rapid and powerful technique, with no sample preparation. However it was not used to investigate extracted organic matter like humic substances. This work aims to fully investigate for the first time front face fluorescence spectroscopy response of a ternary system including boric acid, tryptophan and humic substances, and two binaries system containing quinine sulfate or humic substance in boric acid. Pure chemicals, boric acid, tryptophan, quinine sulfate and humic acid were mixed together in solid pellet at different contents from 0 to 100% in mass. The measurement of excitation emission matrix of fluorescence (3D fluorescence) and laser induced fluorescence were then done in the front face mode. Fluorescence matrices were decomposed using the CP/PARAFAC tools after scattering treatments. Results show that for 3D fluorescence there is no specific component for tryptophan and quinine sulfate, and that humic substances lead to a strong extinction effect for mixture containing quinine sulfate. Laser induced fluorescence gives a very good but non-specific related response for both quinine sulfate and tryptophan. No humic substances fluorescence response was found, but extinction effect is observed as for 3D fluorescence. This effect is stronger for quinine sulfate than for tryptophan. These responses were modeled using a simple absorbance versus emission model.

  9. Assessing Pyrite-Derived Sulfate in the Mississippi River with Four Years of Sulfur and Triple-Oxygen Isotope Data.

    PubMed

    Killingsworth, Bryan A; Bao, Huiming; Kohl, Issaku E

    2018-05-17

    Riverine dissolved sulfate (SO 4 2- ) sulfur and oxygen isotope variations reflect their controls such as SO 4 2- reduction and reoxidation, and source mixing. However, unconstrained temporal variability of riverine SO 4 2- isotope compositions due to short sampling durations may lead to mischaracterization of SO 4 2- sources, particularly for the pyrite-derived sulfate load. We measured the sulfur and triple-oxygen isotopes (δ 34 S, δ 18 O, and Δ' 17 O) of Mississippi River SO 4 2- with biweekly sampling between 2009 and 2013 to test isotopic variability and constrain sources. Sulfate δ 34 S and δ 18 O ranged from -6.3‰ to -0.2‰ and -3.6‰ to +8.8‰, respectively. Our sampling period captured the most severe flooding and drought in the Mississippi River basin since 1927 and 1956, respectively, and a first year of sampling that was unrepresentative of long-term average SO 4 2- . The δ 34 S SO4 data indicate pyrite-derived SO 4 2- sources are 74 ± 10% of the Mississippi River sulfate budget. Furthermore, pyrite oxidation is implicated as the dominant process supplying SO 4 2- to the Mississippi River, whereas the Δ' 17 O SO4 data shows 18 ± 9% of oxygen in this sulfate is sourced from air O 2 .

  10. Global Distribution of Solid Ammonium Sulfate Aerosols and their Climate Impact Acting as Ice Nuclei

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Penner, J.

    2017-12-01

    Laboratory experiments show that liquid ammonium sulfate particles effloresce when RHw is below 34% to become solid and dissolve when RHw is above 79%. Solid ammonium sulfate aerosols can act as heterogeneous ice nuclei particles (INPs) to form ice particles in deposition mode when the relative humidity over ice is above 120%. In this study we used the coupled IMPACT/CAM5 model to track the efflorescence and deliquescence processes of ammonium sulfate. Results show that about 20% of the total simulated pure sulfate aerosol mass is in the solid state and is mainly distributed in the northern hemisphere (NH) from 50 hPa to 200 hPa. When these solid ammonium sulfate aerosols are allowed to act as ice nuclei particles, they act to increase the ice water path in the NH and reduce ice water path in the tropics. The addition of these particles leads to a positive net radiative effect at the TOA ranging from 0.5-0.9 W/m2 depending on the amounts of other ice nuclei particles (e.g., dust, soot) used in the ice nucleation process. The short-term climate feedback shows that the ITCZ shifts northwards and precipitation increases in the NH. There is also an average warming of 0.05-0.1 K near the surface (at 2 meter) in the NH which is most obvious in the Arctic region.

  11. Bacterially Induced Dolomite Formation in the Presence of Sulfate Ions under Aerobic Conditions

    NASA Astrophysics Data System (ADS)

    Sanchez-Roman, M.; McKenzie, J. A.; Vasconcelos, C.; Rivadeneyra, M.

    2005-12-01

    The origin of dolomite remains a long-standing enigma in sedimentary geology because, although thermodynamically favorable, precipitation of dolomite from modern seawater does not occur. Experiments conducted at elevated temperatures (200 oC) indicated that the presence of small concentrations of sulfate ions inhibits the transformation of calcite to dolomite [1]. Indeed, sulfate ions appeared to inhibit dolomite formation above 2 mM concentration (versus 28 mM in modern seawater). Recently, culture experiments have demonstrated that sulfate-reducing bacteria mediate the precipitation of dolomite at Earth surface conditions in the presence of sustained sulfate ion concentrations [2,3]. Additionally, in a number of modern hypersaline environments, dolomite forms from solutions with high sulfate ion concentrations (2 to 70 times seawater). These observations suggest that the experimentally observed sulfate-ion inhibition [1] may not apply to all ancient dolomite formation. Here, we report aerobic culture experiments conducted at low temperatures (25 and 35 oC) and variable sulfate ion concentrations (0, 0.5, 1 and 2 x seawater values) using moderately halophilic bacteria, Halomonas meridiana. After an incubation period of 15 days, experiments at 35 oC with variable sulfate ion concentrations (0, 0.5 x and seawater values) contained crystals of Ca-dolomite and stochiometric dolomite. The experiment at 35 oC with 2 x seawater sulfate ion concentration produced dolomite crystals after 20 days of incubation. In a parallel set of experiments at 25 oC, precipitation of dolomite was observed after 25 days of incubation in cultures with variable sulfate ion concentrations (0, 0.5 x and seawater values). In the culture with 2 x seawater sulfate ion concentration, dolomite crystals were observed after 30 days. Our study demonstrates that halophilic bacteria (or heterotrophic microorganisms), which do not require sulfate ions for metabolism, can mediate dolomite precipitation in the presence of sulfate ions. Apparently, microbial dolomite precipitation is not intrinsically linked to any particular group of organisms or specific metabolic processes or even specific environment. Furthermore, because heterotrophic microorganisms appear to be able to mediate microbial dolomite precipitation with or without sulfate ions in the media, our results indicate that the kinetic inhibition effect of sulfate ions can be overcome under specific sedimentary conditions. The present study adds a new insight to the dolomite problem, which could lead to a better clarification of the mechanism(s) involved in the massive dolomite formation observed in the geological record. References: [1] Baker, P.A., and Kastner, M., (1981), Science, 213, 214-216. [2] Vasconcelos, C., McKenzie, J.A., Bernasconi, S., Grujic, D. and Tien, A.J., (1995), Nature 377, 220-222.. [3] Warthmann R., van Lith Y., Vasconcelos C., McKenzie J.A. and Karpoff A.M., (2000), Geology 28, 1091-1094.

  12. Distinct 3-O-Sulfated Heparan Sulfate Modification Patterns Are Required for kal-1−Dependent Neurite Branching in a Context-Dependent Manner in Caenorhabditis elegans

    PubMed Central

    Tecle, Eillen; Diaz-Balzac, Carlos A.; Bülow, Hannes E.

    2013-01-01

    Heparan sulfate (HS) is an unbranched glycosaminoglycan exhibiting substantial molecular diversity due to multiple, nonuniformly introduced modifications, including sulfations, epimerization, and acetylation. HS modifications serve specific and instructive roles in neuronal development, leading to the hypothesis of a HS code that regulates nervous system patterning. Although the in vivo roles of many of the HS modifications have been investigated, very little is known about the function of HS 3-O-sulfation in vivo. By examining patterning of the Caenorhabditis elegans nervous system in loss of function mutants of the two 3-O-sulfotransferases, hst-3.1 and hst-3.2, we found HS 3-O-sulfation to be largely dispensable for overall neural development. However, generation of stereotypical neurite branches in hermaphroditic-specific neurons required hst-3.1, hst-3.2, as well as an extracellular cell adhesion molecule encoded by kal-1, the homolog of Kallmann Syndrome associated gene 1/anosmin-1. In contrast, kal-1−dependent neurite branching in AIY neurons required catalytic activity of hst-3.2 but not hst-3.1. The context-dependent requirement for hst-3.2 and hst-3.1 indicates that both enzymes generate distinct types of HS modification patterns in different cell types, which regulate kal-1 to promote neurite branching. We conclude that HS 3-O-sulfation does not play a general role in establishing the HS code in C. elegans but rather plays a specialized role in a context-dependent manner to establish defined aspects of neuronal circuits. PMID:23451335

  13. Polysulfides as Intermediates in the Oxidation of Sulfide to Sulfate by Beggiatoa spp.

    PubMed Central

    Schwedt, Anne; Kreutzmann, Anne-Christin; Kuypers, Marcel M. M.; Milucka, Jana

    2014-01-01

    Zero-valent sulfur is a key intermediate in the microbial oxidation of sulfide to sulfate. Many sulfide-oxidizing bacteria produce and store large amounts of sulfur intra- or extracellularly. It is still not understood how the stored sulfur is metabolized, as the most stable form of S0 under standard biological conditions, orthorhombic α-sulfur, is most likely inaccessible to bacterial enzymes. Here we analyzed the speciation of sulfur in single cells of living sulfide-oxidizing bacteria via Raman spectroscopy. Our results showed that under various ecological and physiological conditions, all three investigated Beggiatoa strains stored sulfur as a combination of cyclooctasulfur (S8) and inorganic polysulfides (Sn2−). Linear sulfur chains were detected during both the oxidation and reduction of stored sulfur, suggesting that Sn2− species represent a universal pool of bioavailable sulfur. Formation of polysulfides due to the cleavage of sulfur rings could occur biologically by thiol-containing enzymes or chemically by the strong nucleophile HS− as Beggiatoa migrates vertically between oxic and sulfidic zones in the environment. Most Beggiatoa spp. thus far studied can oxidize sulfur further to sulfate. Our results suggest that the ratio of produced sulfur and sulfate varies depending on the sulfide flux. Almost all of the sulfide was oxidized directly to sulfate under low-sulfide-flux conditions, whereas only 50% was oxidized to sulfate under high-sulfide-flux conditions leading to S0 deposition. With Raman spectroscopy we could show that sulfate accumulated in Beggiatoa filaments, reaching intracellular concentrations of 0.72 to 1.73 M. PMID:24212585

  14. Mechanism for chelated sulfate formation from SO2 and bis (triphenylphosphine) platinum

    NASA Technical Reports Server (NTRS)

    Mehandru, S. P.; Anderson, A. B.

    1985-01-01

    Structure and energy surface calculations using the atom superposition and electron delocalization molecular orbital theory show that the first step in the reaction between SO2 and the dioxygen complex (PPh3)2PtO2 is the coordination of SO2 with one oxygen atom of the complex, followed by metal-oxygen bond breaking and reorientation, leading to a five-membered cyclic structure. This then rearranges to form the bidentate coordinated sulfate. Alternative pathways are considered and are found to be less favorable.

  15. Studies on mathematical modeling of the leaching process in order to efficiently recover lead from the sulfate/oxide lead paste.

    PubMed

    Buzatu, Traian; Ghica, Gabriel Valeriu; Petrescu, Ionuţ Mircea; Iacob, Gheorghe; Buzatu, Mihai; Niculescu, Florentina

    2017-02-01

    Increasing global lead consumption has been mainly supported by the acid battery manufacturing industry. As the lead demand will continue to grow, to provide the necessary lead will require an efficient approach to recycling lead acid batteries. In this paper was performed a mathematical modeling of the process parameters for lead recovery from spent lead-acid batteries. The results of the mathematical modeling compare well with the experimental data. The experimental method applied consists in the solubilisation of the sulfate/oxide paste with sodium hydroxide solutions followed by electrolytic processing for lead recovery. The parameters taken into considerations were NaOH molarity (4M, 6M and 8M), solid/liquid ratio - S/L (1/10, 1/30 and 1/50) and temperature (40°C, 60°C and 80°C). The optimal conditions resulted by mathematical modeling of the electrolytic process of lead deposition from alkaline solutions have been established by using a second-order orthogonal program, in order to obtain a maximum efficiency of current without exceeding an imposed energy specific consumption. The optimum value for the leaching recovery efficiency, obtained through mathematical modeling, was 89.647%, with an error of δ y =3.623 which leads to a maximum recovery efficiency of 86.024%. The optimum values for each variable that ensure the lead extraction efficiency equal to 89.647% are the following: 3M - NaOH, 1/35 - S/L, 70°C - temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The effects of acid deposition on sulfate reduction and methane production in peatlands

    NASA Technical Reports Server (NTRS)

    Murray, Georgia L.; Hines, Mark E.; Bayley, Suzanne E.

    1992-01-01

    Peatlands, as fens and bods, make up a large percentage of northern latitude terrestrial environments. They are organic rich and support an active community of anaerobic bacteria, such as methanogenic and sulfate-reducing bacteria. The end products of these microbial activities, methane and hydrogen sulfide, are important components in the global biogeochemical cycles of carbon and sulfur. Since these two bacterial groups compete for nutritional substrates, increases in sulfate deposition due to acid rain potentially can disrupt the balance between these processes leading to a decrease in methane production and emission. This is significant because methane is a potent greenhouse gas that effects the global heat balance. A section of Mire 239 in the Experimental Lakes Area, in Northwestern Ontario, was artificially acidified and rates of sulfate reduction and methane production were measured with depth. Preliminary results suggested that methane production was not affected immediately after acidification. However, concentrations of dissolved methane decreased and dissolved sulfide increased greatly after acidification and both took several days to recover. The exact mechanism for the decrease in methane was not determined. Analyses are under way which will be used to determine rates of sulfate reduction. These results will be available by Spring and will be discussed.

  17. OPC Paste Samples Exposed To Aggressive Solutions. Cementitious Barriers Partnership

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langton, C.

    2014-11-01

    The study presented in this report focused on a low-activity wasteform containing a high-pH pore solution with a significant level of sulfate. The purpose of the study was to improve understanding of the complex concrete/wasteform reactive transport problem, in particular, the role of pH in sulfate attack. Paste samples prepared at three different water-to-cement ratios were tested. The mixtures were prepared with ASTM Type I cement, without additional admixtures. The samples were exposed to two different sodium sulfate contact solutions. The first solution was prepared at 0.15M Na 2SO 4. The second solution also incorporated 0.5M NaOH, to mimic themore » high pH conditions found in Saltstone. The data collected indicated that, in Na 2SO 4 solution, damage occurs to the pastes. In the case of the high-pH sulfate solution (Na 2SO 4 + NaOH), no signs of damage were observed on any of the paste mixtures. These results indicate that the high sulfate content found in the wasteform pore solution will not necessarily lead to severe damage to concrete. Good-quality mixtures could thus prove durable over the long term, and act as an effective barrier to prevent radionuclides from reaching the environment.« less

  18. Allosteric Partial Inhibition of Monomeric Proteases. Sulfated Coumarins Induce Regulation, not just Inhibition, of Thrombin

    PubMed Central

    Verespy III, Stephen; Mehta, Akul Y.; Afosah, Daniel; Al-Horani, Rami A.; Desai, Umesh R.

    2016-01-01

    Allosteric partial inhibition of soluble, monomeric proteases can offer major regulatory advantages, but remains a concept on paper to date; although it has been routinely documented for receptors and oligomeric proteins. Thrombin, a key protease of the coagulation cascade, displays significant conformational plasticity, which presents an attractive opportunity to discover small molecule probes that induce sub-maximal allosteric inhibition. We synthesized a focused library of some 36 sulfated coumarins to discover two agents that display sub-maximal efficacy (~50%), high potency (<500 nM) and high selectivity for thrombin (>150-fold). Michaelis-Menten, competitive inhibition, and site-directed mutagenesis studies identified exosite 2 as the site of binding for the most potent sulfated coumarin. Stern-Volmer quenching of active site-labeled fluorophore suggested that the allosteric regulators induce intermediate structural changes in the active site as compared to those that display ~80–100% efficacy. Antithrombin inactivation of thrombin was impaired in the presence of the sulfated coumarins suggesting that allosteric partial inhibition arises from catalytic dysfunction of the active site. Overall, sulfated coumarins represent first-in-class, sub-maximal inhibitors of thrombin. The probes establish the concept of allosteric partial inhibition of soluble, monomeric proteins. This concept may lead to a new class of anticoagulants that are completely devoid of bleeding. PMID:27053426

  19. Evidence of Sulfate-Dependent Anaerobic Methane Oxidation within an Area Impacted by Coalbed Methane-Related Gas Migration

    NASA Astrophysics Data System (ADS)

    Wolfe, A. L.; Wikin, R. T.

    2017-12-01

    We evaluated water quality characteristics in the northern Raton Basin of Colorado and documented the response of the Poison Canyon aquifer system several years after upward migration of methane gas occurred from the deeper Vermejo Formation coalbed production zone. Over a 17-month study period, water samples were obtained from domestic water wells and monitoring wells located within the impacted area, and analyzed for 245 constituents, including organic compounds, nutrients, major and trace elements, dissolved gases, and isotopic tracers for carbon, sulfur, oxygen, and hydrogen. Multiple lines of evidence suggest that sulfate-dependent methane biodegradation, which involves the oxidation of methane (CH4) to carbon dioxide (CO2) using sulfate (SO42-) as the terminal electron acceptor, is occurring: (i) consumption of methane and sulfate and production of sulfide and bicarbonate, (ii) methane loss coupled to production of higher molecular weight (C2+) gaseous hydrocarbons, (iii) patterns of 13C enrichment and depletion in methane and dissolved inorganic carbon, and (iv) a systematic shift in sulfur and oxygen isotope ratios of sulfate, indicative of microbial sulfate reduction. Groundwater-methane attenuation is linked to the production of dissolved sulfide, and elevated dissolved sulfide concentrations represent an undesirable secondary water quality impact. The biogeochemical response of the aquifer system has not mobilized naturally occurring trace metals, including arsenic, chromium, cobalt, nickel, and lead, likely due to the microbial production of hydrogen sulfide, which favors stabilization of metals in aquifer solids.

  20. Semi-synthesis of unusual chondroitin sulfate polysaccharides containing GlcA(3-O-sulfate) or GlcA(2,3-di-O-sulfate) units.

    PubMed

    Bedini, Emiliano; De Castro, Cristina; De Rosa, Mario; Di Nola, Annalida; Restaino, Odile F; Schiraldi, Chiara; Parrilli, Michelangelo

    2012-02-13

    The extraction from natural sources of Chondroitin sulfate (CS), a polysaccharide used for management of osteoarthritis, leads to very complex mixtures. The synthesis of CS by chemical modification of other polysaccharides has seldom been reported due to the intrinsic complexity that arises from fine chemical modifications of the polysaccharide structure. In view of the growing interest in expanding the application of CS to pharmacological fields other than osteoarthritis treatment, we launched a program to find new sources of known or even unprecedented CS polysaccharides. As part of this program, we report herein on an investigation of the use of a cyclic orthoester group to selectively protect the 4,6-diol of N-acetyl-galactosamine residues in chondroitin (obtained from a microbial source), thereby facilitating its transformation into CSs. In particular, three CS polysaccharides were obtained and demonstrated to possess rare or hitherto unprecedented sulfation patterns by 2D NMR spectroscopy characterization. Two of them contained disaccharide subunits characterized by glucuronic acid residues selectively sulfated at position 3 (GlcA(3S)), the biological functions of which are known but have yet to be fully investigated. This first semi-synthetic access to GlcA(3S)-containing CS could greatly expedite such studies, since it can easily furnish considerable amounts of these polysaccharides, which are usually isolated with difficulty and in very low quantity from natural sources. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Determination of pyrophosphate and sulfate using polyhexamethylene guanidine hydrochloride-stabilized silver nanoparticles.

    PubMed

    Terenteva, E A; Apyari, V V; Dmitrienko, S G; Garshev, A V; Volkov, P A; Zolotov, Yu A

    2018-04-01

    Positively charged polyhexamethylene guanidine hydrochloride-stabilized silver nanoparticles (PHMG-AgNPs) were prepared and applied as a colorimetric probe for single-step determination of pyrophosphate and sulfate. The approach is based on the nanoparticles aggregation leading to change in their absorption spectra and color of the solution. Due to both electrostatic and steric stabilization these nanoparticles show decreased sensitivity relatively to many common anions, which allows for simple and rapid direct single-step determination of pyrophosphate and sulfate. Effects of different factors (time of interaction, pH, concentrations of anions and the nanoparticles) on aggregation of PHMG-AgNPs and analytical performance of the procedure were investigated. The method allows for the determination of pyrophosphate and sulfate in the range of 0.16-2μgmL -1 and 20-80μgmL -1 with RSD of 2-5%, respectively. The analysis can be performed using either spectrophotometry or naked-eye detection. Practical application of the method was shown by the example of pyrophosphate determination in baking powder sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. On the relevance of volume increase for the length changes of mortar bars in sulfate solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunther, Wolfgang, E-mail: wkunther@googlemail.com; Lothenbach, Barbara; Scrivener, Karen L.

    2013-04-01

    The ingress of sulfate ions into cementitious materials leads to the formation of ettringite, gypsum and other phases. The increase in solid volume through the formation of these phases is often assumed to be the only reason for expansion. In this paper we systematically compare the volume increase predicted by thermodynamic modeling to macroscopic expansion for mortars made with CEM I in different sulfate solutions and for mortars made with a range of blended cements in sodium sulfate solution. It is shown that the length changes cannot be explained by simple volume increase alone. A more plausible explanation of expansionmore » lies in the theory of crystallization pressure, in which crystals forming from a supersaturated solution may exert pressure on their surroundings. It is observed that expansion occurs in systems where thermodynamic modeling predicts the co-existence of ettringite with gypsum. In such a case, if monosulfate and gypsum are both present locally, the solution can be highly supersaturated with respect to ettringite, whose formation in confined conditions (such as within C–S–H) can then exert expansive forces.« less

  3. Isotopic mass independent signature of black crusts: a proxy for atmospheric aerosols formation in the Paris area (France).

    NASA Astrophysics Data System (ADS)

    Genot, Isabelle; Martin, Erwan; Yang, David Au; De Rafelis, Marc; Cartigny, Pierre; Wing, Boswell; Le Gendre, Erwann; Bekki, Slimane

    2016-04-01

    In view of the negative forcing of the sulfate aerosols on climate, a more accurate understanding of the formation of these particles is crucial. Indeed, despite the knowledge of their effects, uncertainties remain regarding the formation of sulfate aerosols, particularly the oxidation processes of S-bearing gases. Since the discovery of oxygen and sulfur mass independent fractionation (O- and S-MIF) processes on Earth, the sulfate isotopic composition became essential to investigate the atmospheric composition evolution and its consequences on the climate and the biosphere. Large amount of S-bearing compounds (SO2 mainly) is released into the atmosphere by anthropogenic and natural sources. Their oxidation in the atmosphere generates sulfate aerosols, H2SO4, which precipitate on the earth surface mainly as acid rain. One consequence of this precipitation is the formation of black crust on buildings made of carbonate stones. Indeed the chemical alteration of CaCO3 by H2SO4 leads to gypsum (CaSO4·2H2O) concretions on building walls. Associated to other particles, gypsum forms black-crusts. Therefore, black crusts acts as 'sulfate aerosol traps', meaning that their isotopic composition reveals the composition and thus the source and formation processes of sulfate aerosols in the atmosphere in a specific region. In this study we collected 37 black crusts on a 300km NW-SE profile centered on Paris (France). In our samples, sulfate represent 40wt.% and other particles 60wt.% of the black crusts. After sulfate extraction from each samples we measured their O- and S-isotopes composition. Variations of about 10‰ in δ18O and δ34S are observed and both O-MIF (Δ17O from 0 to 1.4‰) and S-MIF (Δ33S from 0 to -0.3‰) compositions have been measured. In regards to these compositions we can discuss the source and formation (oxidation pathways) of the sulfate aerosols in troposphere above the Paris region that covers urban, rural and coastal environments. Furthermore, this study shows for the first time O- and S-MIF signature in black crusts. Finally, we demonstrate that black crusts can be considered as a good 'sulfate aerosols traps', which can be widely used to study the sulfate aerosol formation, fate and sink in the troposphere.

  4. Oxygen Isotopic Composition of Nitrate and Sulfate in Fog and River water in Podocarpus National Forest, Ecuador

    NASA Astrophysics Data System (ADS)

    Brothers, L. A.; Fabian, P.; Thiemens, M. H.

    2006-12-01

    The eastern slopes of the Andean rainforests of Ecuador possess some of the highest plant biodiversity found on the planet; however, these ecosystems are in jeopardy because region is experiences one of the highest deforestation rates in South America. This rainforest characterized by high acidity and low nutrient soils and experiences natural process which are both destabilizing and stabilizing to biodiversity rendering this a unique, though sensitive environment. There is increased concern that anthropogenic activities are affecting rainforests and could lead to higher extinction rates, changes in the biodiversity and far reaching effects on the global troposphere. Measurements of nitrate and sulfate in rain and fog water have shown periods of elevated concentrations in the Podocarpus National Park near Loja, Ecuador. These high episodes contribute to annual deposition rates that are comparable to polluted central Europe. Significant anthropogenic sources near this region are lacking and it is believed that the majority of the nitrate and sulfate pollution can be attributed to biomass burning in the Amazon basin. Concentration measurements do not elucidate the source of high nitrate and sulfate pollution; however, by measuring all three stable isotopes of oxygen in nitrate and sulfate from fog and river water provides a new way to examine the impacts of biomass burning on the region. By using stable isotope techniques atmospheric nitrate and sulfate can be resolved from terrestrial sources. This provides an unique way to trace the contributions from the biomass burning and farming sources. Current research at the field station monitors sulfate and nitrate concentrations in rain and fog water by standard methods to investigate water and nutrient pathways along with data from satellite and ground based remote sensing, in-situ observations and numerical models.

  5. Mucopolysaccharidosis IVA and glycosaminoglycans

    PubMed Central

    Khan, Shaukat; Alméciga-Díaz, Carlos J.; Sawamoto, Kazuki; Mackenzie, William G.; Theroux, Mary C; Pizarro, Christian; Mason, Robert W.; Orii, Tadao; Tomatsu, Shunji

    2016-01-01

    Mucopolysaccharidosis IVA (MPS IVA; Morquio A: OMIM 253000) is a lysosomal storage disease with an autosomal recessive trait caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase. Deficiency of this enzyme leads to accumulation of specific glycosaminoglycans (GAGs): chondroitin-6-sulfate (C6S) and keratan sulfate (KS). C6S and KS are mainly produced in the cartilage. Therefore, the undegraded substrates are stored primarily in cartilage and in its extracellular matrix (ECM), leading to a direct impact on cartilage and bone development, and successive systemic skeletal dysplasia. Chondrogenesis, the earliest phase of skeletal formation, is maintained by cellular interactions with the ECM, growth and differentiation factors, signaling pathways, and transcription factors in a temporal-spatial manner. In patients with MPS IVA, the cartilage is disrupted at birth as a consequence of abnormal chondrogenesis and/or endochondral ossification. The unique skeletal features are distinguished by a disproportional short stature, odontoid hypoplasia, spinal cord compression, tracheal obstruction, pectus carinatum, kyphoscoliosis, platyspondyly, coxa valga, genu valgum, waddling gait, and laxity of joints. In spite of many descriptions of these unique clinical features, delay of diagnosis still happens. The pathogenesis and treatment of systemic skeletal dysplasia in MPS IVA remains an unmet challenge. In this review article, we comprehensively describe historical aspect, property of GAGs, diagnosis, screening, pathogenesis, and current and future therapies of MPS IVA. PMID:27979613

  6. A retrospective survey of the causes of bracket- and tube-bonding failures.

    PubMed

    Roelofs, Tom; Merkens, Nico; Roelofs, Jeroen; Bronkhorst, Ewald; Breuning, Hero

    2017-01-01

    To investigate the causes of bonding failures of orthodontic brackets and tubes and the effect of premedicating for saliva reduction. Premedication with atropine sulfate was administered randomly. Failure rate of brackets and tubes placed in a group of 158 consecutive patients was evaluated after a mean period of 67 weeks after bonding. The failure rate in the group without atropine sulfate premedication was 2.4%. In the group with premedication, the failure rate was 2.7%. The Cox regression analysis of these groups showed that atropine application did not lead to a reduction in bond failures. Statistically significant differences in the hazard ratio were found for the bracket regions and for the dental assistants who prepared for the bonding procedure. Premedication did not lead to fewer bracket failures. The roles of the dental assistant and patient in preventing failures was relevant. A significantly higher failure rate for orthodontic appliances was found in the posterior regions.

  7. Interface-Limited Spherulitic Growth of Hydroxyapatite/Chondroitin Sulfate Composite Enamel-like Films

    NASA Astrophysics Data System (ADS)

    Ma, Guobin; Xu, Yifei; Wang, Xiyan; Wang, Mu

    2012-02-01

    Understanding and mimicking the growth of hard tissues such as tooth enamel may lead to innovative approaches toward engineering novel functional materials and providing new therapeutics. Up to now, in vitro growth of enamel-like materials is still a great challenge, and the microscopic formation mechanisms are far from well understood. Here we report synthesis of large-scale hydroxyapatite (HAP) and chondroitin sulfate (ChS) composite films by an efficient solution-air interface growth method. The products have the characteristic hierarchical prism structures of enamel and the mechanical properties comparable to dentin. We demonstrate that the films are assembled by spherulites nucleated at the solution surface. The growth of the spherulites is limited by the interfaces between them as well as between the solution and air, leading to the ordered prism structure. The results are beneficial for a clearer understanding of the fundamentals of tooth enamel formation.

  8. Speciation and precipitation of heavy metals in high-metal and high-acid mine waters from the Iberian Pyrite Belt (Portugal).

    PubMed

    Durães, Nuno; Bobos, Iuliu; da Silva, Eduardo Ferreira

    2017-02-01

    Acid mine waters (AMW) collected during high- and low-flow water conditions from the Lousal, Aljustrel, and São Domingos mining areas (Iberian Pyrite Belt) were physicochemically analyzed. Speciation calculation using PHREEQC code confirms the predominance of Me n+ and Me-SO 4 species in AMW samples. Higher concentration of sulfate species (Me-SO 4 ) than free ion species (Me n+ , i.e., Al, Fe, and Pb) were found, whereas opposite behavior is verified for Mg, Cu, and Zn. A high mobility of Zn than Cu and Pb was identified. The sulfate species distribution shows that Fe 3+ -SO 4 2- , SO 4 2- , HSO 4 - , Al-SO 4 , MgSO 4 0 , and CaSO 4 0 are the dominant species, in agreement with the simple and mixed metal sulfates and oxy-hydroxysulphates precipitated from AMW. The saturation indices (SI) of melanterite and epsomite show a positive correlation with Cu and Zn concentrations in AMW, which are frequently retained in simple metal sulfates. Lead is well correlated with jarosite and alunite (at least in very acid conditions) than with simple metal sulfates. The Pb for K substitution in jarosite occurs as increasing Pb concentration in solution. Lead mobility is also controlled by anglesite precipitation (a fairly insoluble sulfate), where a positive correlation was ascertained when the SI approaches equilibrium. The zeta potential of AMW decreased as pH increased due to colloidal particles aggregation, where water species change from SO 4 2- to OH - species during acid to alkaline conditions, respectively. The AMW samples were supersaturated in schwertmannite and goethite, confirmed by the Me n+ -SO 4 , Me n+ -Fe-O-OH, or Me n+ -S-O-Fe-O complexes identified by attenuated total reflectance infrared spectroscopy (ATR-IR). The ATR-IR spectrum of an AMW sample with pH 3.5 (sample L1) shows well-defined vibration plans attributed to SO 4 tetrahedron bonded with Fe-(oxy)hydroxides and the Me n+ sorbed by either SO 4 or Fe-(oxy)hydroxides. For samples with lower pH values (pH ~ 2.5-samples SD1 and SD4), the vibration plans attributed to Me n+ sorption are not evidenced, indicating its release in solution. The sorption of heavy metals on the first precipitated simple metal sulfates was ascertained by scanning electron microscopy coupled with X-ray spectrometry (SEM-EDX), where X-ray maps of Cu and Zn confirm a distribution of both metals in the melanterite structure.

  9. Neurosteroid-like Inhibitors of N-Methyl-d-aspartate Receptor: Substituted 2-Sulfates and 2-Hemisuccinates of Perhydrophenanthrene.

    PubMed

    Slavikova, Barbora; Chodounska, Hana; Nekardova, Michaela; Vyklicky, Vojtech; Ladislav, Marek; Hubalkova, Pavla; Krausova, Barbora; Vyklicky, Ladislav; Kudova, Eva

    2016-05-26

    N-Methyl-d-aspartate receptors (NMDARs) display a critical role in various diseases of the central nervous system. The activity of NMDARs can be modulated by neurosteroids. Herein, we report a structure-activity relationship study for perhydrophenanthrene analogues possessing a framework that mimics the steroidal ring system. This study comprises the design, synthesis, and assessment of the biological activity of a library of perhydrophenanthrene 2-sulfates and 2-hemisuccinates (1-10). Their ability to modulate NMDAR-induced currents was tested on recombinant GluN1/GluN2B receptors. Our results demonstrate that such structural optimization leads to compounds that are inhibitors of NMDARs. Notably, compound 9 (IC50 = 15.6 μM) was assessed as a more potent inhibitor of NMDAR-induced currents than the known endogenous neurosteroid, pregnanolone sulfate (IC50 = 24.6 μM).

  10. A microphysical parameterization of aqSOA and sulfate formation in clouds

    NASA Astrophysics Data System (ADS)

    McVay, Renee; Ervens, Barbara

    2017-07-01

    Sulfate and secondary organic aerosol (cloud aqSOA) can be chemically formed in cloud water. Model implementation of these processes represents a computational burden due to the large number of microphysical and chemical parameters. Chemical mechanisms have been condensed by reducing the number of chemical parameters. Here an alternative is presented to reduce the number of microphysical parameters (number of cloud droplet size classes). In-cloud mass formation is surface and volume dependent due to surface-limited oxidant uptake and/or size-dependent pH. Box and parcel model simulations show that using the effective cloud droplet diameter (proportional to total volume-to-surface ratio) reproduces sulfate and aqSOA formation rates within ≤30% as compared to full droplet distributions; other single diameters lead to much greater deviations. This single-class approach reduces computing time significantly and can be included in models when total liquid water content and effective diameter are available.

  11. Roles of oxyanions in promoting the partial oxidation of styrene on Ag(110): nitrate, carbonate, sulfite, and sulfate.

    PubMed

    Zhou, Ling; Madix, Robert J

    2010-11-02

    The promotion roles of nitrate, carbonate, sulfite, and sulfate in oxidation of styrene on Ag(110) have been studied by means of temperature-programmed reaction spectroscopy (TPRS) and X-ray photoelectron spectroscopy (XPS). While isolated nitrate leads only to the secondary oxidation of styrene, a surface co-covered by nitrate, oxygen, and 0.1 ML cesium promotes a low-temperature epoxidation pathway. XPS indicates that adsorbed surface oxygen is the oxidant in this selective reaction pathway, and, though it affects the reactivity of the surface oxygen, nitrate is a spectator. Carbonate acts as an oxygen transfer agent and exhibits similar reactivity and selectivity as an oxidant for styrene as does atomic oxygen on Ag(110). The reactivities of sulfite and sulfate are strongly dependent on their surface structures, the c(6 × 2) sulfite showing the capacity to transfer oxygen to styrene.

  12. Effects of tunneling on groundwater flow and swelling of clay-sulfate rocks

    NASA Astrophysics Data System (ADS)

    Butscher, Christoph; Einstein, Herbert H.; Huggenberger, Peter

    2011-11-01

    Swelling of clay-sulfate rocks is a major threat in tunneling. It is triggered by the transformation of the sulfate mineral anhydrite into gypsum as a result of water inflow in anhydrite-containing layers after tunnel excavation. The present study investigates the hydraulic effects of tunneling on groundwater flow and analyzes how hydraulic changes caused by excavation lead to water inflow into anhydrite-containing layers in the tunnel area. Numerical groundwater models are used to conduct scenario simulations that allow one to relate hydrogeological conditions to rock swelling. The influence of the topographic setting, the excavation-damaged zone around the tunnel, the sealing effect of the tunnel liner, and the geological configuration are analyzed separately. The analysis is performed for synthetic situations and is complemented by a case study from a tunnel in Switzerland. The results illustrate the importance of geological and hydraulic information when assessing the risk of swelling at an actual site.

  13. Effects of chloride, sulfate and natural organic matter (NOM) on the accumulation and release of trace-level inorganic contaminants from corroding iron.

    PubMed

    Peng, Ching-Yu; Ferguson, John F; Korshin, Gregory V

    2013-09-15

    This study examined effects of varying levels of anions (chloride and sulfate) and natural organic matter (NOM) on iron release from and accumulation of inorganic contaminants in corrosion scales formed on iron coupons exposed to drinking water. Changes of concentrations of sulfate and chloride were observed to affect iron release and, in lesser extent, the retention of representative inorganic contaminants (vanadium, chromium, nickel, copper, zinc, arsenic, cadmium, lead and uranium); but, effects of NOM were more pronounced. DOC concentration of 1 mg/L caused iron release to increase, with average soluble and total iron concentrations being four and two times, respectively, higher than those in the absence of NOM. In the presence of NOM, the retention of inorganic contaminants by corrosion scales was reduced. This was especially prominent for lead, vanadium, chromium and copper whose retention by the scales decreased from >80% in the absence of NOM to <30% in its presence. Some of the contaminants, notably copper, chromium, zinc and nickel retained on the surface of iron coupons in the presence of DOC largely retained their mobility and were released readily when ambient water chemistry changed. Vanadium, arsenic, cadmium, lead and uranium retained by the scales were largely unsusceptible to changes of NOM and chloride levels. Modeling indicated that the observed effects were associated with the formation of metal-NOM complexes and effects of NOM on the sorption of the inorganic contaminants on solid phases that are typical for iron corrosion in drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Undergraduate Infrared Spectroscopy Experiments.

    ERIC Educational Resources Information Center

    MacCarthy, Patrick; Bowman, Susan J.

    1982-01-01

    Highlights procedures and results of an experiment using atomic absorption spectroscope to illustrate a fundamental chemical concept. The experiment demonstrates the dependence of the solubility product of lead sulfate on ionic strength in the presence of a slight excess of anion. (Author/JN)

  15. Determination of active oxygen in the presence of barium and lead

    USGS Publications Warehouse

    Fleischer, M.

    1943-01-01

    The method of Mrgudich and Clark is modified by substituting 5 per cent (by volume) perchloric acid for 50 per cent perchloric acid. Titration by potassium permanganate may be substituted for electrometric titration with ceric sulfate.

  16. Deducing the distribution of terminal electron-accepting processes in hydrologically diverse groundwater systems

    USGS Publications Warehouse

    Chapelle, Francis H.; McMahon, Peter B.; Dubrovsky, Neil M.; Fujii, Roger F.; Oaksford, Edward T.; Vroblesky, Don A.

    1995-01-01

    The distribution of microbially mediated terminal electron-accepting processes (TEAPs( was investigated in four hydrologically diverse groundwater systems by considering patterns of electron acceptor (nitrate, sulfate) consumption, intermediate product (hydrogen (H2)) concentrations, and final product (ferrous iron, sulfide, and methane) production. In each hydrologic system a determination of predominant TEAPs could be arrived at, but the level of confidence appropriate for each determination differed. In a portion of the lacustrine aquifer of the San Joaquin Valley, for example, all three indicators (sulfate concentrations decreasing, H2concentrations in the 1–2 nmol range, and sulfide concentrations increasing along flow paths identified sulfate reduction as the predominant TEAP, leading to a high degree of confidence in the determination. In portions of the Floridan aquifer and a petroleum hydrocarbon-contaminated aquifer, sulfate reduction and methanogenesis are indicated by production of sulfide and methane, and hydrogen oncentrations in the 1–4 nmol and 5–14 nmol range, respectively. However, because electron acceptor consumption could not be documented in these systems, less confidence is warranted in the TEAP determination. In the Black Creek aquifer, no pattern of sulfate consumption and sulfide production were observed, but H2 concentrations indicated sulfate reduction as the predominant TEAP. In this case, where just a single line of evidence is available, the least confidence in the TEAP diagnosis is justified. Because this methodology is based on measurable water chemistry parameters and upon the physiology of microbial electron transfer processes, it provides a better description of predominant redox processes in groundwater systems than more traditional Eh-based methods.

  17. Isotope Biogeochemistry of Sulfur in a Cold-Water Carbonate Mound (IODP Site 1317)

    NASA Astrophysics Data System (ADS)

    Ferdelman, T. G.; Boettcher, M. E.

    2007-12-01

    To establish a depositional model for cold-water carbonate mounds, Challenger Mound and adjacent continental slope sites were drilled during IODP Expedition 307 in May 2005. Although a role for methane seepage and subsequent anaerobic oxidation was discounted both as a hard-round substrate for mound initiation and as a principal source of carbonate within the mound succession, interstitial water profiles of sulfate, alkalinity, Mg, and Sr indicated a tight coupling between carbonate diagenesis and mircrobial sulfate reduction. The reaction of sulfide with siliciclastic iron-bearing minerals to form pyrite was proposed to account for enhanced diagenetic carbonate precipitation (Ferdelman et al., 2006; Proc. IODP, vol. 307; doi:10.2204/iodp.proc.307.2006). To characterize these geomicrobial sulfur transformations in the carbonate mound sediments, the inorganic and stable isotope geochemical compositions of pore water sulfate and solid phase reduced sulfur compounds were performed. Acid-volatile sulfur (AVS) and pyrite del 34S compositions were usually similar and exhibited an increasing trend of from -40 per mil near surface to -20 per mil at the mound base at 132 mbsf. However, several excursions to more 34S sulfur enriched pyrite to values >0 per mil were observed in the deeper sections of the mound sequence. These excursions may be linked transitory changes in the depth of the methane-sulfate transition zone during mound build-up. The oxygen isotopic composition of residual dissolved sulfate indicates intracellular isotope exchange processes within the cells of SRBs, leading to increasing equilibration between extracellular pore water and sulfate.

  18. Enhancement of the sulfur capture capacity of limestones by the addition of Na2CO3 and NaCl.

    PubMed

    Laursen, K; Grace, J R; Lim, C J

    2001-11-01

    The ability of Na2CO3 and NaCl to enhance the sulfur capture capacity of three limestones was evaluated via fixed-bed calcination and sulfation experiments. The tested limestones represent three different sulfation morphologies: unreacted-core, network, and uniformly sulfated. Treatment with aqueous or powdered Na2CO3 significantly increased the Ca-utilization for two stones which normally sulfate in an unreacted-core pattern (20% to 45%) and network pattern (33% to 49%). The increase was lower for the uniformly sulfated stone (44% to 48%). Na2CO3 treatment increased the number of macropores leading to uniform sulfation of all particles, nearly eliminating the normal strong dependence of utilization on limestone type and particle size. The effect of Na2CO3 is believed to be associated with formation of a eutectic melt which enhances ionic diffusion and accelerates molecular rearrangement of the CaO. Treatment with aqueous NaCl solution caused a decrease in utilization, probably due to formation of large grains and plugging of pores caused by formation of a large amount of eutectic melt. The effect of Na2CO3 is less sensitive than that of NaCl to the amount added and the combustion environment (temperature and gas composition). In addition, Na2CO3 neither promotes corrosion nor forms chlorinated byproducts, which are main concerns associated with NaCl. Thus, Na2CO3 appears to have significant advantages over NaCl for enhancement of limestone sulfur capture capacity in fluidized-bed combustors.

  19. Brain ageing changes proteoglycan sulfation, rendering perineuronal nets more inhibitory.

    PubMed

    Foscarin, Simona; Raha-Chowdhury, Ruma; Fawcett, James W; Kwok, Jessica C F

    2017-06-28

    Chondroitin sulfate (CS) proteoglycans in perineuronal nets (PNNs) from the central nervous system (CNS) are involved in the control of plasticity and memory. Removing PNNs reactivates plasticity and restores memory in models of Alzheimer's disease and ageing. Their actions depend on the glycosaminoglycan (GAG) chains of CS proteoglycans, which are mainly sulfated in the 4 (C4S) or 6 (C6S) positions. While C4S is inhibitory, C6S is more permissive to axon growth, regeneration and plasticity. C6S decreases during critical period closure. We asked whether there is a late change in CS-GAG sulfation associated with memory loss in aged rats. Immunohistochemistry revealed a progressive increase in C4S and decrease in C6S from 3 to 18 months. GAGs extracted from brain PNNs showed a large reduction in C6S at 12 and 18 months, increasing the C4S/C6S ratio. There was no significant change in mRNA levels of the chondroitin sulfotransferases. PNN GAGs were more inhibitory to axon growth than those from the diffuse extracellular matrix. The 18-month PNN GAGs were more inhibitory than 3-month PNN GAGs. We suggest that the change in PNN GAG sulfation in aged brains renders the PNNs more inhibitory, which lead to a decrease in plasticity and adversely affect memory.

  20. Sulfate-reducing mixed communities with the ability to generate bioelectricity and degrade textile diazo dye in microbial fuel cells.

    PubMed

    Miran, Waheed; Jang, Jiseon; Nawaz, Mohsin; Shahzad, Asif; Lee, Dae Sung

    2018-06-15

    The biotreatment of recalcitrant wastes in microbial fuel cells (MFCs) rather than chemical, physical, and advanced oxidation processes is a low-cost and eco-friendly process. In this study, sulfate-reducing mixed communities in MFC anodic chamber were employed for simultaneous electricity generation, dye degradation, and sulfate reduction. A power generation of 258 ± 10 mW/m 2 was achieved under stable operating conditions in the presence of electroactive sulfate-reducing bacteria (SRB). The SRBs dominant anodic chambers result in dye, chemical oxygen demand (COD), and sulfate removal of greater than 85% at an initial COD (as lactate)/SO 4 2- mass ratio of 2.0 and dye concentration of 100 mg/L. The effects of the COD/SO 4 2- ratio (5.0:1.0-0.5:1.0) and initial diazo dye concentration (100-1000 mg/L) were studied to evaluate and optimize the MFC performance. Illumina Miseq technology for bacterial community analysis showed that Proteobacteria (89.4%), Deltaproteobacteria (52.7%), and Desulfovibrio (48.2%) were most dominant at phylum, class, and genus levels, respectively, at the MFC anode. Integration of anaerobic SRB culture in MFC bioanode for recalcitrant chemical removal and bioenergy generation may lead to feasible option than the currently used technologies in terms of overall pollutant treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Health and air quality benefits of policies to reduce coal-fired power plant emissions: a case study in North Carolina.

    PubMed

    Li, Ya-Ru; Gibson, Jacqueline MacDonald

    2014-09-02

    We analyzed sulfur dioxide (SO2) emissions and fine particulate sulfate (PM2.5 sulfate) concentrations in the southeastern United States during 2002-2012, in order to evaluate the health impacts in North Carolina (NC) of the NC Clean Smokestacks Act of 2002. This state law required progressive reductions (beyond those mandated by federal rules) in pollutant emissions from NC's coal-fired power plants. Although coal-fired power plants remain NC's leading SO2 source, a trend analysis shows significant declines in SO2 emissions (-20.3%/year) and PM2.5 sulfate concentrations (-8.7%/year) since passage of the act. Emissions reductions were significantly greater in NC than in neighboring states, and emissions and PM2.5 sulfate concentration reductions were highest in NC's piedmont region, where 9 of the state's 14 major coal-fired power plants are located. Our risk model estimates that these air quality improvements decreased the risk of premature death attributable to PM2.5 sulfate in NC by about 63%, resulting in an estimated 1700 (95% CI: 1500, 1800) deaths prevented in 2012. These findings lend support to recent studies predicting that implementing the proposed federal Cross-State Air Pollution Rule (recently upheld by the U.S. Supreme Court) could substantially decrease U.S. premature deaths attributable to coal-fired power plant emissions.

  2. Combinatorial Roles of Heparan Sulfate Proteoglycans and Heparan Sulfates in Caenorhabditis elegans Neural Development

    PubMed Central

    Kinnunen, Tarja K.

    2014-01-01

    Heparan sulfate proteoglycans (HSPGs) play critical roles in the development and adult physiology of all metazoan organisms. Most of the known molecular interactions of HSPGs are attributed to the structurally highly complex heparan sulfate (HS) glycans. However, whether a specific HSPG (such as syndecan) contains HS modifications that differ from another HSPG (such as glypican) has remained largely unresolved. Here, a neural model in C. elegans is used to demonstrate for the first time the relationship between specific HSPGs and HS modifications in a defined biological process in vivo. HSPGs are critical for the migration of hermaphrodite specific neurons (HSNs) as genetic elimination of multiple HSPGs leads to 80% defect of HSN migration. The effects of genetic elimination of HSPGs are additive, suggesting that multiple HSPGs, present in the migrating neuron and in the matrix, act in parallel to support neuron migration. Genetic analyses suggest that syndecan/sdn-1 and HS 6-O-sulfotransferase, hst-6, function in a linear signaling pathway and glypican/lon-2 and HS 2-O-sulfotransferase, hst-2, function together in a pathway that is parallel to sdn-1 and hst-6. These results suggest core protein specific HS modifications that are critical for HSN migration. In C. elegans, the core protein specificity of distinct HS modifications may be in part regulated at the level of tissue specific expression of genes encoding for HSPGs and HS modifying enzymes. Genetic analysis reveals that there is a delicate balance of HS modifications and eliminating one HS modifying enzyme in a compromised genetic background leads to significant changes in the overall phenotype. These findings are of importance with the view of HS as a critical regulator of cell signaling in normal development and disease. PMID:25054285

  3. Analysis of low-dose radiation shield effectiveness of multi-gate polymeric sheets

    NASA Astrophysics Data System (ADS)

    Kim, S. C.; Lee, H. K.; Cho, J. H.

    2014-07-01

    Computed tomography (CT) uses a high dose of radiation to create images of the body. As patients are exposed to radiation during a CT scan, the use of shielding materials becomes essential in CT scanning. This study was focused on the radiation shielding materials used for patients during a CT scan. In this study, sheets were manufactured to shield the eyes and the thyroid, the most sensitive parts of the body, against radiation exposure during a CT scan. These sheets are manufactured using silicone polymers, barium sulfate (BaSO4) and tungsten, with the aim of making these sheets equally or more effective in radiation shielding and more cost-effective than lead sheets. The use of barium sulfate drew more attention than tungsten due to its higher cost-effectiveness. The barium sulfate sheets were coated to form a multigate structure by applying the maximum charge rate during the agitator and subsequent mixing processes and creating multilayered structures on the surface. To measure radiation shielding effectiveness, the radiation dose was measured around both eyes and the thyroid gland using sheets in three different thicknesses (1, 2 and 3 mm). Among the 1 and 2 mm sheets, the Pb sheets exhibited greater effectiveness in radiation shielding around both eyes, but the W sheets were more effective in radiation shielding around the thyroid gland. In the 3 mm sheets, the Pb sheet also attenuated a higher amount of radiation around both eyes while the W sheet was more effective around the thyroid gland. In conclusion, the sheets made from barium sulfate and tungsten proved highly effective in shielding against low-dose radiation in CT scans without causing ill-health effects, unlike lead.

  4. Impacts of aerosol-cloud interactions on past and future changes in tropospheric composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unger, N.; Menon, S.; Shindell, D. T.

    2009-02-02

    The development of effective emissions control policies that are beneficial to both climate and air quality requires a detailed understanding of all the feedbacks in the atmospheric composition and climate system. We perform sensitivity studies with a global atmospheric composition-climate model to assess the impact of aerosols on tropospheric chemistry through their modification on clouds, aerosol-cloud interactions (ACI). The model includes coupling between both tropospheric gas-phase and aerosol chemistry and aerosols and liquid-phase clouds. We investigate past impacts from preindustrial (PI) to present day (PD) and future impacts from PD to 2050 (for the moderate IPCC A1B scenario) that embracemore » a wide spectrum of precursor emission changes and consequential ACI. The aerosol indirect effect (AIE) is estimated to be -2.0 Wm{sup -2} for PD-PI and -0.6 Wm{sup -2} for 2050-PD, at the high end of current estimates. Inclusion of ACI substantially impacts changes in global mean methane lifetime across both time periods, enhancing the past and future increases by 10% and 30%, respectively. In regions where pollution emissions increase, inclusion of ACI leads to 20% enhancements in in-cloud sulfate production and {approx}10% enhancements in sulfate wet deposition that is displaced away from the immediate source regions. The enhanced in-cloud sulfate formation leads to larger increases in surface sulfate across polluted regions ({approx}10-30%). Nitric acid wet deposition is dampened by 15-20% across the industrialized regions due to ACI allowing additional re-release of reactive nitrogen that contributes to 1-2 ppbv increases in surface ozone in outflow regions. Our model findings indicate that ACI must be considered in studies of methane trends and projections of future changes to particulate matter air quality.« less

  5. [The Role of Membrane-Bound Heat Shock Proteins Hsp90 in Migration of Tumor Cells in vitro and Involvement of Cell Surface Heparan Sulfate Proteoglycans in Protein Binding to Plasma Membrane].

    PubMed

    Snigireva, A V; Vrublevskaya, V V; Skarga, Y Y; Morenkov, O S

    2016-01-01

    Heat shock protein Hsp90, detected in the extracellular space and on the membrane of cells, plays an important role in cell motility, migration, invasion and metastasis of tumor cells. At present, the functional role and molecular mechanisms of Hsp90 binding to plasma membrane are not elucidated. Using isoform-specific antibodies against Hsp90, Hsp9α and Hsp90β, we showed that membrane-bound Hsp90α and Hsp90β play a significant role in migration of human fibrosarcoma (HT1080) and glioblastoma (A-172) cells in vitro. Disorders of sulfonation of cell heparan sulfates, cleavage of cell heparan. sulfates by heparinase I/III as well as treatment of cells with heparin lead to an abrupt reduction in the expression level of Hsp90 isoforms. Furthermore, heparin significantly inhibits tumor cell migration. The results obtained demonstrate that two isoforms of membrane-bound Hsp90 are involved in migration of tumor cells in vitro and that cell surface heparan sulfate proteoglycans play a pivotal role in the "anchoring" of Hsp90α and Hsp90β to the plasma membrane.

  6. The Glycosaminoglycans of Normal and Arthritic Cartilage

    PubMed Central

    Mankin, Henry J.; Lippiello, Louis

    1971-01-01

    The cartilages from the hip joints of 13 normal and 15 osteoarthritic humans were analyzed for glycosaminoglycan content and distribution. The GAGs were separated by elution with CPC on a short cellulose column by the technique of Svejcar and Robertson after digestion of the tissue with pronase and papain. The eluates were identified by a variety of methods including determination of molar ratios, N-acetyl-hexosamine determinations after hyaluronidase treatment and thin-layer chromatography of unhydrolyzed and hydrolyzed GAGs. From the data obtained, it was demonstrated that cartilage from arthritic patients showed a significant increase in the concentration of chondroitin 4-sulfate and a significant decrease in keratan sulfate, with only slight changes in the total amount of GAG present. Calculations of the molar ratios showed variation in the sulfation with chondroitin 4-sulfate appearing in the “supersulfated” state in the arthritic cartilage. The data lead to speculation regarding the process of osteoarthritis, and it is concluded that the changes seen are more likely to represent an altered pattern of synthesis rather than selective degradation. Since the changes suggest a younger cartilage, a theory is advanced that the chondrocyte responds to the chronic stress of osteoarthritis by modulation to a chondroblastic phase. PMID:4255496

  7. (C6N2H16)[Co(H2O)6](SO4)2.2H2O: A new hybrid material based on sulfate templated by diprotonated trans-1,4-diaminocyclohexane

    NASA Astrophysics Data System (ADS)

    Hamdi, N.; Ngopoh, F. A. I.; da Silva, I.; El Bali, B.; Lachkar, M.

    2018-03-01

    Employing trans-1,4-diaminocyclohexane (DACH) as template, the new hybrid sulphate (C6N2H16)[Co(H2O)6](SO4)2.2H2O was prepared in solution. Single-crystal X-ray diffraction analysis shows that it crystallizes in the monoclinic system (S.G.: P 21/n), with the following unit-cell parameters (Å,°): a = 6.2897(2), b = 12.3716(6), c = 13.1996(4), β = 98.091(3) V = 1016.89(7) Å3, Z = 4. Its 3D crystal structure is made upon isolated [Co(H2O)6] octahedra, regular [SO4] tetrahedra, protonated DACH and free H2O molecules, which interact through N-H···O and O-H···O hydrogen bonds. The Fourier transform infrared result exhibits bands corresponding to the vibrations of DACH, sulfate group and water molecules. The thermal decomposition of the phase consists mainly in the loss of the organic moiety and one sulfate group, leading thus to the formation of anhydrous cobalt sulfate.

  8. EFFECT OF PH, DIC, ORTHOPHOSPHATE AND SULFATE ON DRINKING WATER CUPROSOLVENCY

    EPA Science Inventory

    Field data from various copper monitoring studies and Lead and Copper Rule compliance data are often inappropriate and misleading for reliably determining fundamental chemical relationships behind copper corrosion control. To address this deficiency, a comprehensive solubility mo...

  9. Impact of RO-desalted water on distribution water qualities.

    PubMed

    Taylor, J; Dietz, J; Randall, A; Hong, S

    2005-01-01

    A large-scale pilot distribution study was conducted to investigate the impacts of blending different source waters on distribution water qualities, with an emphasis on metal release (i.e. corrosion). The principal source waters investigated were conventionally treated ground water (G1), surface water processed by enhanced treatment (S1), and desalted seawater by reverse osmosis membranes (RO). Due to the nature of raw water quality and associated treatment processes, G1 water had high alkalinity, while S1 and RO sources were characterized as high sulfate and high chloride waters, respectively. The blending ratio of different treated waters determined the quality of finished waters. Iron release from aged cast iron pipes increased significantly when exposed to RO and S1 waters: that is, the greater iron release was experienced with alkalinity reduced below the background of G1 water. Copper release to drinking water, however, increased with increasing alkalinity and decreasing pH. Lead release, on the other hand, increased with increasing chloride and decreasing sulfate. The effect of pH and alkalinity on lead release was not clearly observed from pilot blending study. The flat and compact corrosion scales observed for lead surface exposed to S1 water may be attributable to lead concentration less than that of RO water blends.

  10. Understanding Function and Performance of Carbon Additives in Lead-Acid Batteries

    DOE PAGES

    Enos, D. G.; Ferreira, S. R.; Barkholtz, H. M.; ...

    2017-10-31

    While the low cost and strong safety record of lead-acid batteries make them an appealing option compared to lithium-ion technologies for stationary storage, they can be rapidly degraded by the extended periods of high rate, partial state-of-charge operation required in such applications. Degradation occurs primarily through a process called hard sulfation, where large PbSO 4 crystals are formed on the negative battery plates, hindering charge acceptance and reducing battery capacity. Various researchers have found that the addition of some forms of excess carbon to the negative active mass in lead-acid batteries can mitigate hard sulfation, but the mechanism through whichmore » this is accomplished is unclear. In this work, the effect of carbon composition and morphology was explored by characterizing four discrete types of carbon additives, then evaluating their effect when added to the negative electrodes within a traditional valve-regulated lead-acid battery design. The cycle life for the carbon modified cells was significantly larger than an unmodified control, with cells containing a mixture of graphitic carbon and carbon black yielding the greatest improvement. The carbons also impacted other electrochemical aspects of the battery (e.g., float current, capacity, etc.) as well as physical characteristics of the negative active mass, such as the specific surface area.« less

  11. Understanding Function and Performance of Carbon Additives in Lead-Acid Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enos, D. G.; Ferreira, S. R.; Barkholtz, H. M.

    While the low cost and strong safety record of lead-acid batteries make them an appealing option compared to lithium-ion technologies for stationary storage, they can be rapidly degraded by the extended periods of high rate, partial state-of-charge operation required in such applications. Degradation occurs primarily through a process called hard sulfation, where large PbSO 4 crystals are formed on the negative battery plates, hindering charge acceptance and reducing battery capacity. Various researchers have found that the addition of some forms of excess carbon to the negative active mass in lead-acid batteries can mitigate hard sulfation, but the mechanism through whichmore » this is accomplished is unclear. In this work, the effect of carbon composition and morphology was explored by characterizing four discrete types of carbon additives, then evaluating their effect when added to the negative electrodes within a traditional valve-regulated lead-acid battery design. The cycle life for the carbon modified cells was significantly larger than an unmodified control, with cells containing a mixture of graphitic carbon and carbon black yielding the greatest improvement. The carbons also impacted other electrochemical aspects of the battery (e.g., float current, capacity, etc.) as well as physical characteristics of the negative active mass, such as the specific surface area.« less

  12. The Use of Pristine and Intercalated Graphite Fiber Composites as Buss Bars in Lead-Acid Batteries

    NASA Technical Reports Server (NTRS)

    Opaluch, Amanda M.

    2004-01-01

    This study was conducted as a part of the Firefly Energy Space Act Agreement project to investigate the possible use of composite materials in lead acid batteries. Specifically, it examined the use of intercalated graphite composites as buss bars. Currently, buss bars of these batteries are made of lead, a material that is problematic for several reasons. Over time, the lead is subject to both corrosion at the positive plate and sulfation at the negative plate, resulting in decreased battery life. In addition, the weight and size of the lead buss bars make for a heavy and cumbersome battery that is undesirable. Functionality and practicality of lead buss bars is adequate at best; consequently, investigation of more efficient composite materials would be advantageous. Practically speaking, graphite composites have a low density that is nearly one fourth that of its lead counterpart. A battery made of less dense materials would be more attractive to the consumer and the producer because it would be light and convenient. More importantly, low weight would be especially beneficial because it would result in greater overall power density of the battery. In addition to power density, use of graphite composite materials can also increase the life of the battery. From a functional standpoint, corrosion and sulfation at the positive and negative plates are major obstacles when considering how to extend battery life. Neither of these reactions are a factor when graphite composites replace lead parts because graphite is chemically non-reactive with the electrolyte within the battery. Without the problem of corrosion or sulfation, battery life expectancy can be almost doubled. The replacement of lead battery parts with composite materials is also more environmentally favorable because of easy disposal of organic materials. For this study, both pristine and bromine intercalated single-ply graphite fiber composites were created. The composites were fabricated in such a way as to facilitate their use in a 3" x 1/2" buss bar test cell. The prime objective of this investigation was to examine the effectiveness of a variety of graphite composite materials to act as buss bars and carry the current to and from the positive and negative battery plates. This energy transfer can be maximized by use of materials with high conductivity to minimize the buss resistance. Electrical conductivity of composites was measured using both a contactless eddy current probe and a four point measurement. In addition, the stability of these materials at battery-use conditions was characterized.

  13. Mucopolysaccharidosis IVA and glycosaminoglycans.

    PubMed

    Khan, Shaukat; Alméciga-Díaz, Carlos J; Sawamoto, Kazuki; Mackenzie, William G; Theroux, Mary C; Pizarro, Christian; Mason, Robert W; Orii, Tadao; Tomatsu, Shunji

    Mucopolysaccharidosis IVA (MPS IVA; Morquio A: OMIM 253000) is a lysosomal storage disease with an autosomal recessive trait caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase. Deficiency of this enzyme leads to accumulation of specific glycosaminoglycans (GAGs): chondroitin-6-sulfate (C6S) and keratan sulfate (KS). C6S and KS are mainly produced in the cartilage. Therefore, the undegraded substrates are stored primarily in cartilage and in its extracellular matrix (ECM), leading to a direct impact on cartilage and bone development, and successive systemic skeletal dysplasia. Chondrogenesis, the earliest phase of skeletal formation, is maintained by cellular interactions with the ECM, growth and differentiation factors, signaling pathways, and transcription factors in a temporal-spatial manner. In patients with MPS IVA, the cartilage is disrupted at birth as a consequence of abnormal chondrogenesis and/or endochondral ossification. The unique skeletal features are distinguished by a disproportional short stature, odontoid hypoplasia, spinal cord compression, tracheal obstruction, pectus carinatum, kyphoscoliosis, platyspondyly, coxa valga, genu valgum, waddling gait, and laxity of joints. In spite of many descriptions of these unique clinical features, delay of diagnosis still happens. The pathogenesis and treatment of systemic skeletal dysplasia in MPS IVA remains an unmet challenge. In this review article, we comprehensively describe historical aspect, property of GAGs, diagnosis, screening, pathogenesis, and current and future therapies of MPS IVA. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. A Metabolic Trade-Off Modulates Policing of Social Cheaters in Populations of Pseudomonas aeruginosa

    PubMed Central

    Yan, Huicong; Wang, Meizhen; Sun, Feng; Dandekar, Ajai A.; Shen, Dongsheng; Li, Na

    2018-01-01

    Pseudomonas aeruginosa uses quorum sensing (QS) to regulate the production of public goods such as the secreted protease elastase. P. aeruginosa requires the LasI–LasR QS circuit to induce elastase and enable growth on casein as the sole carbon and energy source. The LasI–LasR system also induces a second QS circuit, the RhlI–RhlR system. During growth on casein, LasR-mutant social cheaters emerge, and this can lead to a population collapse. In a minimal medium containing ammonium sulfate as a nitrogen source, populations do not collapse, and cheaters and cooperators reach a stable equilibrium; however, without ammonium sulfate, cheaters overtake the cooperators and populations collapse. We show that ammonium sulfate enhances the activity of the RhlI–RhlR system in casein medium and this leads to increased production of cyanide, which serves to control levels of cheaters. This enhancement of cyanide production occurs because of a trade-off in the metabolism of glycine: exogenous ammonium ion inhibits the transformation of glycine to 5,10-methylenetetrahydrofolate through a reduction in the expression of the glycine cleavage genes gcvP1 and gcvP2, thereby increasing the availability of glycine as a substrate for RhlR-regulated hydrogen cyanide synthesis. Thus, environmental ammonia enhances cyanide production and stabilizes QS in populations of P. aeruginosa. PMID:29535700

  15. Impact of FeS Mineralogy on TCE Degradation

    EPA Science Inventory

    Iron- and sulfate-reducing conditions are often encountered in permeable reactive barrier (PRB) systems that are constructed to remove TCE from groundwater, which usually leads to the accumulation of FeS mineral phases in the matrix of the PRB. Poorly crystalline mackinawite (Fe...

  16. [Sensitive Determination of Chondroitin Sulfate by Fluorescence Recovery of an Anionic Aluminum Phthalocyanine-Cationic Surfactant Ion-Association Complex Used as a Fluorescent Probe Emitting at Red Region].

    PubMed

    Chen, Lin; Huang, Ping; Yang, Hui-qing; Deng, Ya-bin; Guo, Meng-lin; Li, Dong-hui

    2015-08-01

    Determination of chondroitin sulfate in the biomedical field has an important value. The conventional methods for the assay of chondroitin sulfate are still unsatisfactory in sensitivity, selectivity or simplicity. This work aimed at developing a novel method for sensitive and selective determination of chondroitin sulfate by fluorimetry. We found that some kinds of cationic surfactants have the ability to quench the fluorescence of tetrasulfonated aluminum phthalocyanine (AlS4Pc), a strongly fluorescent compound which emits at red region, with high efficiency. But, the fluorescence of the above-mentioned fluorescence quenching system recovered significantly when chondroitin sulfate (CS) exits. Tetradecyl dimethyl benzyl ammonium chloride(TDBAC) which was screened from all of the candidates of cationic surfactants was chosen as the quencher because it shows the most efficient quenching effect. It was found that the fluorescence of AlS4Pc was extremely quenched by TDBAC because of the formation of association complex between AlS4Pc and TDBAC. Fluorescence of the association complex recovered dramatically after the addition of chondroitin sulfate (CS) due to the ability of chondroitin sulfate to shift the association equilibrium of the association, leading to the release of AlS4Pc, thus resulting in an increase in the fluorescence of the reaction system. Based on this phenomenon, a novel method with simplicity, accuracy and sensitivity was developed for quantitative determination of CS. Factors including the reaction time, influencing factors and the effect of coexisting substances were investigated and discussed. Under optimum conditions the linear range of the calibration curve was 0.20~10.0 μg · mL(-1). The detection limit for CS was 0.070 μg · mL(-1). The method has been applied to the analysis of practical samples with satisfied results. This work expands the applications of AlS4Pc in biomedical area.

  17. Decorin inhibits cell migration through a process requiring its glycosaminoglycan side chain.

    PubMed

    Merle, B; Durussel, L; Delmas, P D; Clézardin, P

    1999-12-01

    Several studies overwhelmingly support the notion that decorin (DCN) is involved in matrix assembly, and in the control of cell adhesion and proliferation. However, nothing is known about the role of DCN during cell migration. Cell migration is a tightly regulated process which requires both adhesion (at the leading edge of the cell) and de-adhesion (at the trailing edge of the cell) from the substratum. We have determined in this study the effect of DCN on MG-63 osteosarcoma cell migration and have analyzed whether its effect is mediated by the protein core and/or the glycosaminoglycan side chain. DCN impeded the migration-promoting effect of matrix molecules (fibronectin, collagen type I) known to interact with the proteoglycan. Conversely, DCN did not counteract the migration-promoting effect of fibrinogen lacking proteoglycan affinity. DCN bearing dermatan-sulfate chains (i.e., skin and cartilage DCN) was about 20-fold more effective in inhibiting cell migration than DCN bearing chondroitin-sulfate chains (i.e., bone DCN). In addition, chondroitinase AC-treatment of cartilage DCN (which specifically removes chondroitin-sulfate chains) did not attenuate the inhibitory effect of this proteoglycan, while cartilage DCN deprived of both chondroitin- and dermatan-sulfate chains failed to alter cell migration promoted by either fibronectin or its heparin- and cell-binding domains. These data assert that the dermatan-sulfate chains of DCN are responsible for a negative influence on cell migration. However, isolated glycosaminoglycans failed to alter cell migration promoted by fibronectin, indicating that strongly negatively charged glycosaminoglycans alone cannot account for the impaired cell motility seen with DCN. Overall, these results show that the inhibitory action of DCN is dependent of substratum binding, is differentially mediated by its glycosaminoglycan side chains (chondroitin-sulfate vs. dermatan-sulfate chains), and is independent of a steric hindrance effect exerted by its glycosaminoglycan side chains. Copyright 1999 Wiley-Liss, Inc.

  18. The Evolution of Sulfide in Shallow Aquatic Ecosystem Sediments: An Analysis of the Roles of Sulfate, Organic Carbon, and Iron and Feedback Constraints Using Structural Equation Modeling

    NASA Astrophysics Data System (ADS)

    Pollman, C. D.; Swain, E. B.; Bael, D.; Myrbo, A.; Monson, P.; Shore, M. D.

    2017-11-01

    The generation of elevated concentrations of sulfide in sediment pore waters that are toxic to rooted macrophytes is problematic in both marine and freshwaters. In marine waters, biogeochemical conditions that lead to toxic levels of sulfide generally relate to factors that affect oxygen dynamics or the sediment iron concentration. In freshwaters, increases in surface water sulfate have been implicated in decline of Zizania palustris (wild rice), which is important in wetlands across the Great Lakes region of North America. We developed a structural equation (SE) model to elucidate key variables that govern the evolution of sulfide in pore waters in shallow aquatic habitats that are potentially capable of supporting wild rice. The conceptual basis for the model is the hypothesis that dissimilatory sulfate reduction is limited by the availability of both sulfate and total organic carbon (TOC) in the sediment. The conceptual model also assumes that pore water sulfide concentrations are constrained by the availability of pore water iron and that sediment iron supports the supply of dissolved iron to the pore water. A key result from the SE model is that variations in three external variables (sulfate, sediment TOC, and sediment iron) contribute nearly equally to the observed variations in pore water sulfide. As a result, management efforts to mitigate against the toxic effects of pore water sulfide on macrophytes such as wild rice should approach defining a protective sulfate threshold as an exercise tailored to the geochemistry of each site that quantitatively considers the effects of ambient concentrations of sediment Fe and TOC.

  19. Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands.

    PubMed

    Dalcin Martins, Paula; Hoyt, David W; Bansal, Sheel; Mills, Christopher T; Tfaily, Malak; Tangen, Brian A; Finocchiaro, Raymond G; Johnston, Michael D; McAdams, Brandon C; Solensky, Matthew J; Smith, Garrett J; Chin, Yu-Ping; Wilkins, Michael J

    2017-08-01

    Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallow wetlands. The sediment pore waters of PPR wetlands contain some of the highest concentrations of dissolved organic carbon (DOC) and sulfur species ever recorded in terrestrial aquatic environments. Using a suite of geochemical and microbiological analyses, we measured the impact of sedimentary carbon and sulfur transformations in these wetlands on methane fluxes to the atmosphere. This research represents the first study of coupled geochemistry and microbiology within the PPR and demonstrates how the conversion of abundant labile DOC pools into methane results in some of the highest fluxes of this greenhouse gas to the atmosphere ever reported. Abundant DOC and sulfate additionally supported some of the highest sulfate reduction rates ever measured in terrestrial aquatic environments, which we infer to account for a large fraction of carbon mineralization in this system. Methane accumulations in zones of active sulfate reduction may be due to either the transport of free methane gas from deeper locations or the co-occurrence of methanogenesis and sulfate reduction. If both respiratory processes are concurrent, any competitive inhibition of methanogenesis by sulfate-reducing bacteria may be lessened by the presence of large labile DOC pools that yield noncompetitive substrates such as methanol. Our results reveal some of the underlying mechanisms that make PPR wetlands biogeochemical hotspots, which ultimately leads to their critical, but poorly recognized role in regional greenhouse gas emissions. © 2017 John Wiley & Sons Ltd.

  20. The Compact and Biologically Relevant Structure of Inter-α-inhibitor Is Maintained by the Chondroitin Sulfate Chain and Divalent Cations.

    PubMed

    Scavenius, Carsten; Nikolajsen, Camilla Lund; Stenvang, Marcel; Thøgersen, Ida B; Wyrożemski, Łukasz; Wisniewski, Hans-Georg; Otzen, Daniel E; Sanggaard, Kristian W; Enghild, Jan J

    2016-02-26

    Inter-α-inhibitor is a proteoglycan of unique structure. The protein consists of three subunits, heavy chain 1, heavy chain 2, and bikunin covalently joined by a chondroitin sulfate chain originating at Ser-10 of bikunin. Inter-α-inhibitor interacts with an inflammation-associated protein, tumor necrosis factor-inducible gene 6 protein, in the extracellular matrix. This interaction leads to transfer of the heavy chains from the chondroitin sulfate of inter-α-inhibitor to hyaluronan and consequently to matrix stabilization. Divalent cations and heavy chain 2 are essential co-factors in this transfer reaction. In the present study, we have investigated how divalent cations in concert with the chondroitin sulfate chain influence the structure and stability of inter-α-inhibitor. The results showed that Mg(2+) or Mn(2+), but not Ca(2+), induced a conformational change in inter-α-inhibitor as evidenced by a decrease in the Stokes radius and a bikunin chondroitin sulfate-dependent increase of the thermodynamic stability. This structure was shown to be essential for the ability of inter-α-inhibitor to participate in extracellular matrix stabilization. In addition, the data revealed that bikunin was positioned adjacent to both heavy chains and that the two heavy chains also were in close proximity. The chondroitin sulfate chain interacted with all protein components and inter-α-inhibitor dissociated when it was degraded. Conventional purification protocols result in the removal of the Mg(2+) found in plasma and because divalent cations influence the conformation and affect function it is important to consider this when characterizing the biological activity of inter-α-inhibitor. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalcin Martins, Paula; Hoyt, David W.; Bansal, Sheel

    Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallow wetlands. The sediment pore waters of PPR wetlands contain some of the highest concentrations of dissolved organic carbon (DOC) and sulfur species ever recorded in terrestrial aquatic environments. Using a suite of geochemical and microbiological analyses we measured the impact of sedimentary carbon and sulfur transformations in these wetlands on methane fluxesmore » to the atmosphere. This research represents the first study of coupled geochemistry and microbiology within the PPR, and demonstrates how the conversion of abundant labile DOC pools into methane results in some of the highest fluxes of this greenhouse gas to the atmosphere ever reported. Abundant DOC and sulfate additionally supported some of the highest sulfate reduction rates ever measured in terrestrial aquatic environments, which we infer to account for a large fraction of carbon mineralization in this system. Methane accumulations in zones of active sulfate reduction may be due to either the transport of free methane gas from deeper locations, or the co-occurrence of methanogenesis and sulfate reduction. If both respiratory processes are concurrent, any competitive inhibition of methanogenesis by sulfate-reducing bacteria may be lessened by the presence of large labile DOC pools that yield non-competitive substrates such as methanol. Our results reveal some of the underlying mechanisms that make PPR wetlands biogeochemical hotspots, which ultimately leads to their critical, but poorly recognized role in regional greenhouse gas emissions.« less

  2. Mechanisms of direct inhibition of the respiratory sulfate-reduction pathway by (per)chlorate and nitrate.

    PubMed

    Carlson, Hans K; Kuehl, Jennifer V; Hazra, Amrita B; Justice, Nicholas B; Stoeva, Magdalena K; Sczesnak, Andrew; Mullan, Mark R; Iavarone, Anthony T; Engelbrektson, Anna; Price, Morgan N; Deutschbauer, Adam M; Arkin, Adam P; Coates, John D

    2015-06-01

    We investigated perchlorate (ClO(4)(-)) and chlorate (ClO(3)(-)) (collectively (per)chlorate) in comparison with nitrate as potential inhibitors of sulfide (H(2)S) production by mesophilic sulfate-reducing microorganisms (SRMs). We demonstrate the specificity and potency of (per)chlorate as direct SRM inhibitors in both pure cultures and undefined sulfidogenic communities. We demonstrate that (per)chlorate and nitrate are antagonistic inhibitors and resistance is cross-inducible implying that these compounds share at least one common mechanism of resistance. Using tagged-transposon pools we identified genes responsible for sensitivity and resistance in Desulfovibrio alaskensis G20. We found that mutants in Dde_2702 (Rex), a repressor of the central sulfate-reduction pathway were resistant to both (per)chlorate and nitrate. In general, Rex derepresses its regulon in response to increasing intracellular NADH:NAD(+) ratios. In cells in which respiratory sulfate reduction is inhibited, NADH:NAD(+) ratios should increase leading to derepression of the sulfate-reduction pathway. In support of this, in (per)chlorate or nitrate-stressed wild-type G20 we observed higher NADH:NAD(+) ratios, increased transcripts and increased peptide counts for genes in the core Rex regulon. We conclude that one mode of (per)chlorate and nitrate toxicity is as direct inhibitors of the central sulfate-reduction pathway. Our results demonstrate that (per)chlorate are more potent inhibitors than nitrate in both pure cultures and communities, implying that they represent an attractive alternative for controlling sulfidogenesis in industrial ecosystems. Of these, perchlorate offers better application logistics because of its inhibitory potency, solubility, relative chemical stability, low affinity for mineral cations and high mobility in environmental systems.

  3. Possible genetic defects in regulation of glycosaminoglycans in patients with diabetic nephropathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deckert, T.; Horowitz, I.M.; Kofoed-Enevoldsen, A.

    1991-06-01

    The hypothesis of genetic defects in glycosaminoglycan (GAG) regulation among patients with insulin-dependent diabetes mellitus (IDDM) and nephropathy was assessed by studies in tissue cultures of fibroblasts obtained from 7 patients with normal urinary albumin excretion, 11 patients with diabetic nephropathy, and 6 nondiabetic control subjects. The incorporation of (2H) glucosamine and (35S) sulfate into hyaluronic acid (HA), chondroitin sulfate and dermatan sulfate (CS + DS), and heparan sulfate (HS) was measured in cells, matrix, and medium and related to micrograms of tissue protein. Large interindividual variations were seen in all three groups, and the incorporation of (3H) glucosamine intomore » HA, CS + DS, and HS and (35S) sulfate into CS + DS and HS were not significantly different between the three groups. However, the fractional incorporation of (3H)glucosamine into HS was significantly reduced in diabetic patients with nephropathy compared with control subjects. This was the case not only when related to the total amount of GAGs (P = 0.014) but also when related to HA (P = 0.014). No significant difference was seen between control subjects and normoalbuminuric diabetic patients. The degree of N-sulfation of HS was not significantly different between the experimental groups. The results suggest that patients with diabetic nephropathy may suffer from deficiencies of coordinate regulation in the biosynthesis of GAG in fibroblasts, which may lead to a reduced density of HS in the extracellular matrix. If these changes reflect alterations in the biosynthesis of GAG from endothelial, myomedial, and mesangial cells, this observation may be relevant for the pathogenesis of severe diabetic complications.« less

  4. Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands

    USGS Publications Warehouse

    Martins, Paula; Hoyt, David W.; Bansal, Sheel; Mills, Christopher T.; Tfaily, Malak; Tangen, Brian; Finocchiaro, Raymond; Johnston, Michael D.; McAdams, Brandon C.; Solensky, Matthew J.; Smith, Garrett J.; Chin, Yu-Ping; Wilkins, Michael J.

    2017-01-01

    Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallow wetlands. The sediment pore waters of PPR wetlands contain some of the highest concentrations of dissolved organic carbon (DOC) and sulfur species ever recorded in terrestrial aquatic environments. Using a suite of geochemical and microbiological analyses, we measured the impact of sedimentary carbon and sulfur transformations in these wetlands on methane fluxes to the atmosphere. This research represents the first study of coupled geochemistry and microbiology within the PPR and demonstrates how the conversion of abundant labile DOC pools into methane results in some of the highest fluxes of this greenhouse gas to the atmosphere ever reported. Abundant DOC and sulfate additionally supported some of the highest sulfate reduction rates ever measured in terrestrial aquatic environments, which we infer to account for a large fraction of carbon mineralization in this system. Methane accumulations in zones of active sulfate reduction may be due to either the transport of free methane gas from deeper locations or the co-occurrence of methanogenesis and sulfate reduction. If both respiratory processes are concurrent, any competitive inhibition of methanogenesis by sulfate-reducing bacteria may be lessened by the presence of large labile DOC pools that yield noncompetitive substrates such as methanol. Our results reveal some of the underlying mechanisms that make PPR wetlands biogeochemical hotspots, which ultimately leads to their critical, but poorly recognized role in regional greenhouse gas emissions.

  5. Involvement of Receptor-like Protein Tyrosine Phosphatase ζ/RPTPβ and Its Ligand Pleiotrophin/Heparin-binding Growth-associated Molecule (HB-GAM) in Neuronal Migration

    PubMed Central

    Maeda, Nobuaki; Noda, Masaharu

    1998-01-01

    Pleiotrophin/heparin-binding growth-associated molecule (HB-GAM) is a specific ligand of protein tyrosine phosphatase ζ (PTPζ)/receptor-like protein tyrosine phosphatase β (RPTPβ) expressed in the brain as a chondroitin sulfate proteoglycan. Pleiotrophin and PTPζ isoforms are localized along the radial glial fibers, a scaffold for neuronal migration, suggesting that these molecules are involved in migratory processes of neurons during brain development. In this study, we examined the roles of pleiotrophin-PTPζ interaction in the neuronal migration using cell migration assay systems with glass fibers and Boyden chambers. Pleiotrophin and poly-l-lysine coated on the substratums stimulated cell migration of cortical neurons, while laminin, fibronectin, and tenascin exerted almost no effect. Pleiotrophin-induced and poly-l-lysine–induced neuronal migrations showed significant differences in sensitivity to various molecules and reagents. Polyclonal antibodies against the extracellular domain of PTPζ, PTPζ-S, an extracellular secreted form of PTPζ, and sodium vanadate, a protein tyrosine phosphatase inhibitor, added into the culture medium strongly suppressed specifically the pleiotrophin-induced neuronal migration. Furthermore, chondroitin sulfate C but not chondroitin sulfate A inhibited pleiotrophin-induced neuronal migration, in good accordance with our previous findings that chondroitin sulfate constitutes a part of the pleiotrophin-binding site of PTPζ, and PTPζ-pleiotrophin binding is inhibited by chondroitin sulfate C but not by chondroitin sulfate A. Immunocytochemical analysis indicated that the transmembrane forms of PTPζ are expressed on the migrating neurons especially at the lamellipodia along the leading processes. These results suggest that PTPζ is involved in the neuronal migration as a neuronal receptor of pleiotrophin distributed along radial glial fibers. PMID:9660874

  6. 3-O sulfation of heparin leads to hepatotropism and longer circulatory half-life.

    PubMed

    Miller, Colton M; Xu, Yongmei; Kudrna, Katrina M; Hass, Blake E; Kellar, Brianna M; Egger, Andrew W; Liu, Jian; Harris, Edward N

    2018-05-17

    Heparins are common blood anticoagulants that are critical for many surgical and biomedical procedures used in modern medicine. In contrast to natural heparin derived from porcine gut mucosa, synthetic heparins are homogenous by mass, polymer length, and chemistry. Stable cell lines expressing the human and mouse Stabilin receptors were used to evaluate endocytosis of natural and synthetic heparin. We chemoenzymatically produced synthetic heparin consisting of 12 sugars (dodecamers) containing 14 sulfate groups resulting in a non-3-O sulfated structure (n12mer). Half of the n12mer was modified with a 3-O sulfate on a single GlcNS sugar producing the 3-O sulfated heparin (12mer). Wildtype (WT), Stabilin-1 knock-out (KO), and Stabilin-2 KO C57BL/6 mice were developed and used for metabolic studies and provided as a source for primary liver sinusoidal endothelial cells. Human and mouse Stabilin-2 receptors had very similar endocytosis rates of both the 12mer and n12mer, suggesting that they are functionally similar in primary cells. Subcutaneous injections of the n12mer and 12mer revealed that the 12mer had a much longer half-life in circulation and a higher accumulation in liver. The n12mer never accumulated in circulation and was readily excreted by the kidneys before liver accumulation could occur. Liver sinusoidal endothelial cells from the Stabilin-2 KO mice had lower uptake rates for both dodecamers, whereas, the Stabilin-1 KO mice had lower endocytosis rates for the 12mer than the n12mer. 3-O sulfation of heparin is correlated to both a longer circulatory half-life and hepatotropism which is largely performed by the Stabilin receptors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Tales of volcanoes and El-Nino southern oscillations with the oxygen isotope anomaly of sulfate aerosol.

    PubMed

    Shaheen, Robina; Abauanza, Mariana; Jackson, Teresa L; McCabe, Justin; Savarino, Joel; Thiemens, Mark H

    2013-10-29

    The ability of sulfate aerosols to reflect solar radiation and simultaneously act as cloud condensation nuclei renders them central players in the global climate system. The oxidation of S(IV) compounds and their transport as stable S(VI) in the Earth's system are intricately linked to planetary scale processes, and precise characterization of the overall process requires a detailed understanding of the linkage between climate dynamics and the chemistry leading to the product sulfate. This paper reports a high-resolution, 22-y (1980-2002) record of the oxygen-triple isotopic composition of sulfate (SO4) aerosols retrieved from a snow pit at the South Pole. Observed variation in the O-isotopic anomaly of SO4 aerosol is linked to the ozone variation in the tropical upper troposphere/lower stratosphere via the Ozone El-Niño Southern Oscillations (ENSO) Index (OEI). Higher (17)O values (3.3‰, 4.5‰, and 4.2‰) were observed during the three largest ENSO events of the past 2 decades. Volcanic events inject significant quantities of SO4 aerosol into the stratosphere, which are known to affect ENSO strength by modulating stratospheric ozone levels (OEI = 6 and (17)O = 3.3‰, OEI = 11 and (17)O = 4.5‰) and normal oxidative pathways. Our high-resolution data indicated that (17)O of sulfate aerosols can record extreme phases of naturally occurring climate cycles, such as ENSOs, which couple variations in the ozone levels in the atmosphere and the hydrosphere via temperature driven changes in relative humidity levels. A longer term, higher resolution oxygen-triple isotope analysis of sulfate aerosols from ice cores, encompassing more ENSO periods, is required to reconstruct paleo-ENSO events and paleotropical ozone variations.

  8. Effects of sulfation level on the desulfation behavior of pre-sulfated Pt BaO/Al2O3 lean NOx trap catalysts: a combined H2 Temperature-Programmed Reaction, in-situ sulfur K-edge X-ray Absorption Near-Edge Spectroscopy, X-ray Photoelectron Spectroscopy, and Time-Resolved X-ray Diffraction Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Do Heui; Szanyi, Janos; Kwak, Ja Hun

    2009-04-03

    Desulfation by hydrogen of pre-sulfated Pt(2wt%) BaO(20wt%)/Al2O3 with various sulfur loading (S/Ba = 0.12, 0.31 and 0.62) were investigated by combining H2 temperature programmed reaction (TPRX), x-ray photoelectron spectroscopy (XPS), in-situ sulfur K-edge x-ray absorption near-edge spectroscopy (XANES), and synchrotron time-resolved x-ray diffraction (TR-XRD) techniques. We find that the amount of H2S desorbed during the desulfation in the H2 TPRX experiments is not proportional to the amount of initial sulfur loading. The results of both in-situ sulfur K-edge XANES and TR-XRD show that at low sulfur loadings, sulfates were transformed to a BaS phase and remained in the catalyst, rathermore » than being removed as H2S. On the other hand, when the deposited sulfur level exceeded a certain threshold (at least S/Ba = 0.31) sulfates were reduced to form H2S, and the relative amount of the residual sulfide species in the catalyst was much less than at low sulfur loading. Unlike samples with high sulfur loading (e.g., S/Ba = 0.62), H2O did not promote the desulfation for the sample with S/Ba of 0.12, implying that the formed BaS species originating from the reduction of sulfates at low sulfur loading are more stable to hydrolysis. The results of this combined spectroscopy investigation provide clear evidence to show that sulfates at low sulfur loadings are less likely to be removed as H2S and have a greater tendency to be transformed to BaS on the material, leading to the conclusion that desulfation behavior of Pt BaO/Al2O3 lean NOx trap catalysts is markedly dependent on the sulfation levels.« less

  9. A comparison of results from a hydrologic transport model (HSPF) with distributions of sulfate and mercury in a mine-impacted watershed in northeastern Minnesota.

    PubMed

    Berndt, Michael E; Rutelonis, Wes; Regan, Charles P

    2016-10-01

    The St. Louis River watershed in northeast Minnesota hosts a major iron mining district that has operated continuously since the 1890s. Concern exists that chemical reduction of sulfate that is released from mines enhances the methylation of mercury in the watershed, leading to increased mercury concentrations in St. Louis River fish. This study tests this idea by simulating the behavior of chemical tracers using a hydrologic flow model (Hydrologic Simulation Program FORTRAN; HSPF) and comparing the results with measured chemistry from several key sites located both upstream and downstream from the mining region. It was found that peaks in measured methylmercury (MeHg), total mercury (THg), dissolved organic carbon (DOC), and dissolved iron (Fe) concentrations correspond to periods in time when modeled recharge was dominated by active groundwater throughout the watershed. This helps explain why the timing and size of the MeHg peaks was nearly the same at sites located just upstream and downstream from the mining region. Both the modeled percentages of mine water and the measured sulfate concentrations were low and computed transit times were short for sites downstream from the mining region at times when measured MeHg reached its peak. Taken together, the data and flow model imply that MeHg is released into groundwater that recharges the river through riparian sediments following periods of elevated summer rainfall. The measured sulfate concentrations at the upstream site reached minimum concentrations of approximately 1 mg/L just as MeHg reached its peak, suggesting that reduction of sulfate from non-point sources exerts an important influence on MeHg concentrations at this site. While mines are the dominant source of sulfate to sites downstream from them, it appears that the background sulfate which is present at only 1-6 mg/L, has the largest influence on MeHg concentrations. This is because point sourced sulfate is transported generally under oxidized conditions and is not flushed through riparian sediments in a gaining stream watershed system. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Mercury methylation in Sphagnum moss mats and its association with sulfate-reducing bacteria in an acidic Adirondack forest lake wetland.

    PubMed

    Yu, Ri-Qing; Adatto, Isaac; Montesdeoca, Mario R; Driscoll, Charles T; Hines, Mark E; Barkay, Tamar

    2010-12-01

    Processes leading to the bioaccumulation of methylmercury (MeHg) in northern wetlands are largely unknown. We have studied various ecological niches within a remote, acidic forested lake ecosystem in the southwestern Adirondacks, NY, to discover that mats comprised of Sphagnum moss were a hot spot for mercury (Hg) and MeHg accumulation (190.5 and 18.6 ng g⁻¹ dw, respectively). Furthermore, significantly higher potential methylation rates were measured in Sphagnum mats as compared with other sites within Sunday Lake's ecosystem. Although MPN estimates showed a low biomass of sulfate-reducing bacteria (SRB), 2.8 × 10⁴ cells mL⁻¹ in mat samples, evidence consisting of (1) a twofold stimulation of potential methylation by the addition of sulfate, (2) a significant decrease in Hg methylation in the presence of the sulfate reduction inhibitor molybdate, and (3) presence of dsrAB-like genes in mat DNA extracts, suggested that SRB were involved in Hg methylation. Sequencing of dsrB genes indicated that novel SRB, incomplete oxidizers including Desulfobulbus spp. and Desulfovibrio spp., and syntrophs dominated the sulfate-reducing guild in the Sphagnum moss mat. Sphagnum, a bryophyte dominating boreal peatlands, and its associated microbial communities appear to play an important role in the production and accumulation of MeHg in high-latitude ecosystems. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  11. Glycosaminoglycan levels in dried blood spots of patients with mucopolysaccharidoses and mucolipidoses

    PubMed Central

    Kubaski, Francyne; Suzuki, Yasuyuki; Orii, Kenji; Giugliani, Roberto; Church, Heather J.; Mason, Robert W.; Dũng, Vũ Chí; Ngoc, Can Thi Bich; Yamaguchi, Seiji; Kobayashi, Hironori; Girisha, Katta M.; Fukao, Toshiyuki; Orii, Tadao; Tomatsu, Shunji

    2017-01-01

    Mucopolysaccharidoses (MPSs) and mucolipidoses (ML) are groups of lysosomal storage disorders in which lysosomal hydrolases are deficient leading to accumulation of undegraded glycosaminoglycans (GAGs), throughout the body, subsequently resulting in progressive damage to multiple tissues and organs. Assays using tandem mass spectrometry (MS/MS) have been established to measure GAGs in serum or plasma from MPS and ML patients, but few studies were performed to determine whether these assays are sufficiently robust to measure GAG levels in dried blood spots (DBS) of patients with MPS and ML. Material and methods In this study, we evaluated GAG levels in DBS samples from 124 MPS and ML patients (MPS I = 16; MPS II = 21; MPS III = 40; MPS IV = 32; MPS VI =10; MPS VII = 1; ML= 4), and compared them with 115 age-matched controls. Disaccharides were produced from polymer GAGs by digestion with chondroitinase B, heparitinase, and keratanase II. Subsequently, dermatan sulfate (DS), heparan sulfate (HS-0S, HS-NS), and keratan sulfate (mono-sulfated KS, di-sulfated KS, and ratio of di-sulfated KS in total KS) were measured by MS/MS. Results Untreated patients with MPS I, II, VI, and ML had higher levels of DS compared to control samples. Untreated patients with MPS I, II, III, VI, and ML had higher levels of HS-0S; and untreated patients with MPS II, III and VI and ML had higher levels of HS-NS. Levels of KS were age dependent, so although levels of both mono-sulfated KS and di-sulfated KS were generally higher in patients, particularly for MPS II and MPS IV, age group numbers were not sufficient to determine significance of such changes. However, the ratio of di-sulfated KS in total KS was significantly higher in all MPS patients younger than 5 years old, compared to age-matched controls. MPS I and VI patients treated with HSCT had normal levels of DS, and MPS I, VI, and VII treated with ERT or HSCT had normal levels of HS-0S and HS-NS, indicating that both treatments are effective in decreasing blood GAG levels. Conclusion Measurement of GAG levels in DBS is useful for diagnosis and potentially for monitoring the therapeutic efficacy in MPS. PMID:28065440

  12. EFFECT OF PH, DIC, ORTHOPHOSPHATE AND SULFATE ON DRINKING WATER CUPROSOLVENCY (EPA/600/R-95/085)

    EPA Science Inventory

    Field data from various copper monitoring studies and Lead and Copper Rule compliance data are often inappropriate and misleading for reliably determining fundamental chemical relationships behind copper corrosion control. To address this deficiency, a comprehensive solubility m...

  13. The Impact of FeS Mineralogy on TCE Degradation

    EPA Science Inventory

    Iron- and sulfate-reducing conditions are often encountered in permeable reactive barrier (PRB) systems that are constructed to remove TCE from groundwater, which usually leads to the accumulation of FeS mineral phases in the matrix of the PRB. Poorly crystalline mackinawite (Fe...

  14. Mineral dust photochemistry induces nucleation events in the presence of SO2

    PubMed Central

    Dupart, Yoan; King, Stephanie M.; Nekat, Bettina; Nowak, Andreas; Wiedensohler, Alfred; Herrmann, Hartmut; David, Gregory; Thomas, Benjamin; Miffre, Alain; Rairoux, Patrick; D’Anna, Barbara; George, Christian

    2012-01-01

    Large quantities of mineral dust particles are frequently ejected into the atmosphere through the action of wind. The surface of dust particles acts as a sink for many gases, such as sulfur dioxide. It is well known that under most conditions, sulfur dioxide reacts on dust particle surfaces, leading to the production of sulfate ions. In this report, for specific atmospheric conditions, we provide evidence for an alternate pathway in which a series of reactions under solar UV light produces first gaseous sulfuric acid as an intermediate product before surface-bound sulfate. Metal oxides present in mineral dust act as atmospheric photocatalysts promoting the formation of gaseous OH radicals, which initiate the conversion of SO2 to H2SO4 in the vicinity of dust particles. Under low dust conditions, this process may lead to nucleation events in the atmosphere. The laboratory findings are supported by recent field observations near Beijing, China, and Lyon, France. PMID:23213230

  15. The influence of indoxyl sulfate and ammonium on the autofluorescence of human urine.

    PubMed

    Perinchery, Sandeep Menon; Kuzhiumparambil, Unnikrishnan; Vemulpad, Subramanyam; Goldys, Ewa M

    2010-01-15

    Despite biological variability the spectral characteristics of undiluted human urine show relatively low autofluorescence at short UV (250-300nm) excitation. However with dilution the fluorescence intensity remarkably increases. This paper examines the mechanisms behind this effect, by using excitation-emission matrices. Corrections for the inner filter effect were made for improved understanding of the spectral patterns. We focused on three major fluorophores (tryptophan, indoxyl sulfate and 5-hydroxyindole-3-acetate) that are excited at these wavelengths, and whose content in urine is strongly linked with various health conditions. Their fluorescence was studied both individually and in combinations. We also examined the effect of ammonium on the fluorescence of these major fluorophores individually and in combinations. Through these studies we have identified the leading effects that reduce the UV fluorescence, namely higher concentration of indoxyl sulfate producing the inner filter effect and concentration quenching and quenching of fluorophores by ammonium. This result will assist in broader utilisation of UV fluorescence in medical diagnostics.

  16. Salt Effect on the Antioxidant Activity of Red Microalgal Sulfated Polysaccharides in Soy-Bean Formula.

    PubMed

    Burg, Ariela; Oshrat, Levy-Ontman

    2015-10-20

    Sulfated polysaccharides produced by microalgae, which are known to exhibit various biological activities, may potentially serve as natural antioxidant sources. To date, only a few studies have examined the antioxidant bioactivity of red microalgal polysaccharides. In this research, the effect of different salts on the antioxidant activities of two red microalgal sulfated polysaccharides derived from Porphyridium sp. and Porphyridium aerugineum were studied in a soy bean-based infant milk formula. Salt composition and concentration were both shown to affect the polysaccharides' antioxidant activity. It can be postulated that the salt ions intefer with the polysaccharide chains' interactions and alter their structure, leading to a new three-dimensional structure that better exposes antiooxidant sites in comparison to the polysaccharide without salt supplement. Among the cations that were studied, Ca(2+) had the strongest enhancement effect on antioxidant activities of both polysaccharides. Understanding the effect of salts on polysaccharides' stucture, in addition to furthering knowledge on polysaccharide bioactivities, may also shed light on the position of the antioxidant active sites.

  17. Bio-reduction of N-nitrosodimethylamine (NDMA) using a hydrogen-based membrane biofilm reactor.

    PubMed

    Chung, Jinwook; Ahn, Chang-Hoon; Chen, Zhuo; Rittmann, Bruce E

    2008-01-01

    N-Nitrosodimethylamine (NDMA) is a disinfection by-product shown to be carcinogenic, mutagenic, and teratogenic. A feasible detoxification pathway for NDMA is a three-step bio-reduction that leads to ammonia and dimethylamine. This study examines the bio-reduction of NDMA in a H2-based membrane biofilm reactor (MBfR) that also is active in nitrate and sulfate reductions. In particular, the study investigates the effects of H2 availability and the relative loadings of NDMA, nitrate, and sulfate, which potentially are competing electron acceptors. The results demonstrate that NDMA was bio-reduced to a major extent (i.e., at least 96%) in a H2-based MBfR in which the electron-equivalent fluxes from H2 oxidation were dominated by nitrate and sulfate reductions. NDMA reduction kinetics responded to NDMA concentration, H2 pressure, and the presence of competing acceptors. The most important factor controlling NDMA-reduction kinetics was the H2 availability, controlled primarily by the H2 pressure, and secondarily by competition from nitrate reduction.

  18. Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days

    PubMed Central

    He, Hong; Wang, Yuesi; Ma, Qingxin; Ma, Jinzhu; Chu, Biwu; Ji, Dongsheng; Tang, Guiqian; Liu, Chang; Zhang, Hongxing; Hao, Jiming

    2014-01-01

    Haze in China has been increasing in frequency of occurrence as well as the area of the affected region. Here, we report on a new mechanism of haze formation, in which coexistence with NOx can reduce the environmental capacity for SO2, leading to rapid conversion of SO2 to sulfate because NO2 and SO2 have a synergistic effect when they react on the surface of mineral dust. Monitoring data from five severe haze episodes in January of 2013 in the Beijing-Tianjin-Hebei regions agreed very well with the laboratory simulation. The combined air pollution of motor vehicle exhaust and coal-fired flue gases greatly reduced the atmospheric environmental capacity for SO2, and the formation of sulfate was found to be a main reason for the growth of fine particles, which led to the occurrence of haze. These results indicate that the impact of motor vehicle exhaust on the atmospheric environment might be underestimated. PMID:24566871

  19. The Influence of Salt Anions on Heavy Metal Ion Adsorption on the Example of Nickel

    PubMed Central

    Mende, Mandy; Schwarz, Dana; Steinbach, Christine; Schwarz, Simona

    2018-01-01

    The biodegradable polysaccharide chitosan possesses protonated and natural amino groups at medium pH values and has therefore been used as an adsorbing material for nickel salts in water treatment. Nickel is a problematic heavy metal ion which can cause various diseases and disorders in living organisms. Here, we show the influence of oxyanions (e.g., nitrate and sulfate) to the adsorption of nickel ions. Hence, simultaneously we are addressing the increasing global problem of nitrate and sulfate ion pollution in groundwater and surface water. A series of adsorption experiments was carried out in order to determine (i) the adsorption equilibrium, (ii) the adsorption capacity in dependence on the initial nickel ion concentration, and (iii) the influence of the anion presented in solution for the adsorption capacity. Surface morphology of chitosan flakes before and after the adsorption process has been studied with SEM-EDX analysis. The chitosan flakes exhibited promising adsorption capacities of 81.9 mg·g−1 and 21.2 mg·g−1 for nickel (sulfate) and nickel (nitrate), respectively. The calculated values of Gibbs free energy change ΔG0 confirm the higher adsorption of nickel ions in presence of sulfate ions. Hence, higher anion valence leads to a higher adsorption capacity. PMID:29510485

  20. Receptor Mincle promotes skin allergies and is capable of recognizing cholesterol sulfate

    PubMed Central

    Kostarnoy, Alexey V.; Gancheva, Petya G.; Lepenies, Bernd; Tukhvatulin, Amir I.; Dzharullaeva, Alina S.; Polyakov, Nikita B.; Grumov, Daniil A.; Egorova, Daria A.; Kulibin, Andrey Y.; Bobrov, Maxim A.; Malolina, Ekaterina A.; Soloviev, Andrey I.; Maltseva, Diana V.; Sakharov, Dmitry A.; Tonevitsky, Alexander G.; Verkhovskaya, Lyudmila V.; Logunov, Denis Y.; Naroditsky, Boris S.; Gintsburg, Alexander L.

    2017-01-01

    Sterile (noninfected) inflammation underlies the pathogenesis of many widespread diseases, such as allergies and autoimmune diseases. The evolutionarily conserved innate immune system is considered to play a key role in tissue injury recognition and the subsequent development of sterile inflammation; however, the underlying molecular mechanisms are not yet completely understood. Here, we show that cholesterol sulfate, a molecule present in relatively high concentrations in the epithelial layer of barrier tissues, is selectively recognized by Mincle (Clec4e), a C-type lectin receptor of the innate immune system that is strongly up-regulated in response to skin damage. Mincle activation by cholesterol sulfate causes the secretion of a range of proinflammatory mediators, and s.c. injection of cholesterol sulfate results in a Mincle-mediated induction of a severe local inflammatory response. In addition, our study reveals a role of Mincle as a driving component in the pathogenesis of allergic skin inflammation. In a well-established model of allergic contact dermatitis, the absence of Mincle leads to a significant suppression of the magnitude of the skin inflammatory response as assessed by changes in ear thickness, myeloid cell infiltration, and cytokine and chemokine secretion. Taken together, our results provide a deeper understanding of the fundamental mechanisms underlying sterile inflammation. PMID:28292894

  1. Modeling anoxic aggregates in the ocean - implications for nitrogen, sulfur and trace metal cycling

    NASA Astrophysics Data System (ADS)

    Bianchi, D.; Weber, T. S.; Deutsch, C.

    2016-02-01

    Anoxic conditions are uncommon in the open ocean, and mostly confined to the cores of oxygen minimum zones (OMZs). When oxygen runs out, a suite of alternative electron acceptors are used, leading to denitrification and, rarely in open waters, sulfate reduction. Anoxic conditions have been shown to develop inside millimeter-scale organic particles and aggregates, establishing microscale gradients that could sustain diverse microbial communities along a sequence of redox niches. We develop a model of the biogeochemistry of anoxic aggregates that includes aerobic and anaerobic reactions in a diffusion-limited environment, and present analytical and numerical solutions for the conditions that allow denitrification and sulfate reduction inside aggregates. The model is applied to realistic size spectra of particles sinking through the water column, and used to estimate the potential for particle-bound denitrification and sulfate reduction in the global ocean. We show that anoxia inside aggregates may be common throughout low oxygen waters, extending the niche of denitrifying metabolisms beyond fully anoxic zones. In the OMZ cores, aggregates can sustain pockets of sulfate reduction in otherwise non-sulfidic waters, depending on ambient nitrate concentrations, particle respiration rates, and other factors. We further discuss the implications for nitrogen, sulfur and trace metal cycling in the ocean.

  2. Hydrology and Ground-Water Quality in the Mine Workings within the Picher Mining District, Northeastern Oklahoma, 2002-03

    USGS Publications Warehouse

    DeHay, Kelli L.; Andrews, William J.; Sughru, Michael P.

    2004-01-01

    The Picher mining district of northeastern Ottawa County, Oklahoma, was a major site of mining for lead and zinc ores in the first half of the 20th century. The primary source of lead and zinc were sulfide minerals disseminated in the cherty limestones and dolomites of the Boone Formation of Mississippian age, which comprises the Boone aquifer. Ground water in the aquifer and seeping to surface water in the district has been contaminated by sulfate, iron, lead, zinc, and several other metals. The U.S. Geological Survey, in cooperation with the Oklahoma Department of Environmental Quality, investigated hydrology and ground-water quality in the mine workings in the mining district, as part of the process to aid water managers and planners in designing remediation measures that may restore the environmental quality of the district to pre-mining conditions. Most ground-water levels underlying the mining district had similar altitudes, indicating a large degree of hydraulic connection in the mine workings and overlying aquifer materials. Recharge-age dates derived from concentrations of chlorofluorocarbons and other dissolved gases indicated that water in the Boone aquifer may flow slowly from the northeast and southeast portions of the mining district. However, recharge-age dates may have been affected by the types of sites sampled, with more recent recharge-age dates being associated with mine-shafts, which are more prone to atmospheric interactions and surface runoff than the sampled airshafts. Water levels in streams upstream from the confluence of Tar and Lytle Creeks were several feet higher than those in adjacent portions of the Boone aquifer, perhaps due to low-permeability streambed sediments and indicating the streams may be losing water to the aquifer in this area. From just upstream to downstream from the confluence of Tar and Lytle Creeks, surface-water elevations in these streams were less than those in the surrounding Boone aquifer, indicating that seepage from the aquifer to downstream portions of Tar Creek was much more likely. Water properties and major-ion concentrations indicate that water in the mining area was very hard, with large concentrations of dissolved solids that increased from areas of presumed recharge toward areas with older ground water. Most of the ground-water samples, particularly those from the airshafts, had dissolved-oxygen concentrations less than 1.0 milligram per liter. Small concentrations of dissolved oxygen may have been introduced during the sampling process. The small dissolved-oxygen concentrations were associated with samples containing large iron concentrations that indicates possible anoxic conditions in much of the aquifer. Ground water in the mining district was dominated by calcium, magnesium, and sulfate. Sodium concentrations tended to increase relative to calcium and magnesium concentrations. Ground-water samples collected in 2002-03 had large concentrations of many trace elements. Larger concentrations of metals and sulfate occurred in ground water with smaller pHs and dissolved-oxygen concentrations. Iron was the metal with the largest concentrations in the ground-water samples, occurring at concentrations up to 115,000 micrograms per liter. Cadmium, lead, manganese, zinc, and the other analyzed metals occurred in smaller concentrations in ground water than iron. However, larger cadmium concentrations appeared to be associated with sites that have small iron concentrations and more oxygenated waters. This is noteworthy because the small sulfate and iron concentrations in these waters could lead to conclusions that the waters are less contaminated than waters with large sulfate and iron concentrations. Ground-water quality in the mining district was compared with subsets of samples collected in 1983-85 and in 2002. Concentrations of most mine-water indicators such as specific conductance, acidity, magnesium, sulfate, and trace elements concentrations dec

  3. Fouling and the inhibition of salt corrosion. [hot corrosion of superalloys

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1980-01-01

    In an attempt to reduce fouling while retaining the beneficial effects of alkaline earth inhibitors on the hot corrosion of superalloys, the use of both additives and the intermittent application of the inhibitors were evaluated. Additions of alkaline earth compounds to combustion gases containing sodium sulfate were shown to inhibit hot corrosion. However, sulfate deposits can lead to turbine fouling in service. For that reason, dual additives and intermittant inhibitor applications were evaluated to reduce such deposit formation. Silicon in conjunction with varium showed some promise. Total deposition was apparently reduced while the inhibition of hot corrosion by barium was unimpaired. The intermittant application of the inhibitor was found to be more effective and controllable.

  4. Corrosion Control through a Better Understanding of the Metallic Substrate/Organic Coating Interface

    DTIC Science & Technology

    1990-03-16

    electrically coupling steel electrodes in different pH solutions. Anodic and cathodic sites beneath a coating are known to produce acidic and alkaline...9,16]. Lead-steel couples were used to model the interactions between metallic lead and steel. Both acidic and alkaline solutions were used because the...acetate solution can be altered by the addition of acid or base without precipitation of the anion. Other anions such as chlorides and sulfates are

  5. Effects of Lead and Mercury on Sulfate-Reducing Bacterial Activity in a Biological Process for Flue Gas Desulfurization Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Lin, Xiaojuan; Wang, Jinting; Jiang, Feng; Wei, Li; Chen, Guanghao; Hao, Xiaodi

    2016-07-01

    Biological sulfate-reducing bacteria (SRB) may be effective in removing toxic lead and mercury ions (Pb(II) and Hg(II)) from wet flue gas desulfurization (FGD) wastewater through anaerobic sulfite reduction. To confirm this hypothesis, a sulfite-reducing up-flow anaerobic sludge blanket reactor was set up to treat FGD wastewater at metal loading rates of 9.2 g/m3-d Pb(II) and 2.6 g/m3-d Hg(II) for 50 days. The reactor removed 72.5 ± 7% of sulfite and greater than 99.5% of both Hg(II) and Pb(II). Most of the removed lead and mercury were deposited in the sludge as HgS and PbS. The contribution of cell adsorption and organic binding to Pb(II) and Hg(II) removal was 20.0 ± 0.1% and 1.8 ± 1.0%, respectively. The different bioavailable concentration levels of lead and mercury resulted in different levels of lethal toxicity. Cell viability analysis revealed that Hg(II) was less toxic than Pb(II) to the sludge microorganisms. In the batch tests, increasing the Hg(II) feeding concentration increased sulfite reduction rates. In conclusion, a sulfite-reducing reactor can efficiently remove sulfite, Pb(II) and Hg(II) from FGD wastewater.

  6. Effects of Lead and Mercury on Sulfate-Reducing Bacterial Activity in a Biological Process for Flue Gas Desulfurization Wastewater Treatment

    PubMed Central

    Zhang, Liang; Lin, Xiaojuan; Wang, Jinting; Jiang, Feng; Wei, Li; Chen, Guanghao; Hao, Xiaodi

    2016-01-01

    Biological sulfate-reducing bacteria (SRB) may be effective in removing toxic lead and mercury ions (Pb(II) and Hg(II)) from wet flue gas desulfurization (FGD) wastewater through anaerobic sulfite reduction. To confirm this hypothesis, a sulfite-reducing up-flow anaerobic sludge blanket reactor was set up to treat FGD wastewater at metal loading rates of 9.2 g/m3-d Pb(II) and 2.6 g/m3-d Hg(II) for 50 days. The reactor removed 72.5 ± 7% of sulfite and greater than 99.5% of both Hg(II) and Pb(II). Most of the removed lead and mercury were deposited in the sludge as HgS and PbS. The contribution of cell adsorption and organic binding to Pb(II) and Hg(II) removal was 20.0 ± 0.1% and 1.8 ± 1.0%, respectively. The different bioavailable concentration levels of lead and mercury resulted in different levels of lethal toxicity. Cell viability analysis revealed that Hg(II) was less toxic than Pb(II) to the sludge microorganisms. In the batch tests, increasing the Hg(II) feeding concentration increased sulfite reduction rates. In conclusion, a sulfite-reducing reactor can efficiently remove sulfite, Pb(II) and Hg(II) from FGD wastewater. PMID:27455890

  7. Using Mars's Sulfur Cycle to Constrain the Duration and Timing of Fluvial Processes

    NASA Technical Reports Server (NTRS)

    Blaney, D. L.

    2002-01-01

    Sulfur exists in high abundances at diverse locations on Mars. This work uses knowledge of the Martian sulfate system to discriminate between leading hypotheses and discusses the implications for duration and timing of fluvial processes. Additional information is contained in the original extended abstract.

  8. SALTS AND RADIATION PRODUCTS ON THE SURFACE OF EUROPA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, M. E.; Hand, K. P., E-mail: mbrown@caltech.edu

    The surface of Europa could contain the compositional imprint of an underlying interior ocean, but competing hypotheses differ over whether spectral observations from the Galileo spacecraft show the signature of ocean evaporates or simply surface radiation products unrelated to the interior. Using adaptive optics at the W. M. Keck Observatory, we have obtained spatially resolved spectra of most of the disk of Europa at a spectral resolution {approx}40 times higher than seen by the Galileo spacecraft. These spectra show a previously undetected distinct signature of magnesium sulfate salts on Europa, but the magnesium sulfate is confined to the trailing hemispheremore » and spatially correlated with the presence of radiation products like sulfuric acid and SO{sub 2}. On the leading, less irradiated, hemisphere, our observations rule out the presence of many of the proposed sulfate salts, but do show the presence of distorted water ice bands. Based on the association of the potential MgSO{sub 4} detection on the trailing side with other radiation products, we conclude that MgSO{sub 4} is also a radiation product, rather than a constituent of a Europa ocean brine. Based on ocean chemistry models, we hypothesize that, prior to irradiation, magnesium is primarily in the form of MgCl{sub 2}, and we predict that NaCl and KCl are even more abundant, and, in fact, dominate the non-ice component of the leading hemisphere. We propose observational tests of this new hypothesis.« less

  9. Evaluation of the Sequential Spot Sampler (S3) for time-resolved measurement of PM2.5 sulfate and nitrate through lab and field measurements

    NASA Astrophysics Data System (ADS)

    Hecobian, A.; Evanoski-Cole, A.; Eiguren-Fernandez, A.; Sullivan, A. P.; Lewis, G. S.; Hering, S. V.; Collett, J. L., Jr.

    2016-02-01

    The Sequential Spot Sampler (S3), a newly developed instrument to collect aerosols for time-resolved chemical composition measurements, was evaluated in the laboratory and field for the measurement of particulate sulfate and nitrate. The S3 uses a multi-temperature condensation growth tube to grow individual aerosols to droplets which are then deposited as a ˜ 1 mm diameter dry spot at the end of the growth tube in a 100 µL well of a multi-well plate. The well plate advances automatically to provide a sequence of time-resolved samples. The collected aerosols are subsequently analyzed in the laboratory. The sample is concentrated during the collection process, and the laboratory extraction and analysis steps can be automated. The well plate, as received from the field, is placed onto a needle-based autosampler that adds liquid for sample extraction and injects sample extract from each well onto an ion chromatograph for analysis. Laboratory evaluation for sulfate and nitrate ions showed that poly ether ether ketone (PEEK) used as well plate material does not contribute any artifacts; a 60 min extraction procedure leads to the recovery of sulfate and nitrate from the dry spots at above 95 % extraction efficiency; and samples stored frozen and analyzed up to 23 months later show less than a 10 % change in sulfate and nitrate concentrations. The limit of detection was 0.5 µg m-3 for sulfate and 0.2 µg m-3 for nitrate for a 1 h sampling period. In a month-long field study conducted in southern California, two S3s were deployed alongside a URG denuder-filter-pack and a Particle-Into-Liquid Sampler combined with an Ion Chromatograph (PILS-IC). Collocated S3 sampler concentrations compared by linear regression show good agreement, with r2 = 0.99 and slope = 0.99 (±0.004) µg m-3 for sulfate and r2 = 0.99 and slope = 1.0 (±0.006) µg m-3 for nitrate. When compared to the URG denuder-filter-pack and the PILS-IC, the S3 sulfate and nitrate concentrations yielded correlations above 0.84 for the square of the correlation coefficient and regression slopes close to 1.

  10. Geochemistry of Peruvian near-surface sediments

    NASA Astrophysics Data System (ADS)

    Böning, Philipp; Brumsack, Hans-Jürgen; Böttcher, Michael E.; Schnetger, Bernhard; Kriete, Cornelia; Kallmeyer, Jens; Borchers, Sven Lars

    2004-11-01

    Sixteen short sediment cores were recovered from the upper edge (UEO), within (WO) and below (BO) the oxygen minimum zone (OMZ) off Peru during cruise 147 of R/V Sonne. Solids were analyzed for major/trace elements, total organic carbon, total inorganic carbon, total sulfur, the stable sulfur isotope composition (δ 34S) of pyrite, and sulfate reduction rates (SRR). Pore waters were analyzed for dissolved sulfate/sulfide and δ 34S of sulfate. In all cores highest SRR were observed in the top 5 cm where pore water sulfate concentrations varied little due to resupply of sulfate by sulfide oxidation and/or diffusion of sulfate from bottom water. δ 34S of dissolved sulfate showed only minor downcore increases. Strong 32S enrichments in sedimentary pyrite (to -48‰ vs. V-CDT) are due to processes in the oxidative part of the sulfur cycle in addition to sulfate reduction. Manganese and Co are significantly depleted in Peruvian upwelling sediments most likely due to mobilization from particles settling through the OMZ, whereas release of both elements from reducing sediments only seems to occur in near-coastal sites. Cadmium, Mo and Re are exceptionally enriched in WO sediments (<600 m water depth). High Re and moderate Cd and Mo enrichments are seen in BO sediments (>600 m water depth). Re/Mo ratios indicate anoxic and suboxic conditions for WO and BO sediments, respectively. Cadmium and Mo downcore profiles suggest considerable contribution to UEO/WO sediments by a biodetrital phase, whereas Re presumably accumulates via diffusion across the sediment-water interface to precipitation depth. Uranium is distinctly enriched in WO sediments (due to sulfidic conditions) and in some BO sediments (due to phosphorites). Silver transfer to suboxic BO sediments is likely governed by diatomaceous matter input, whereas in anoxic WO sediments Ag is presumably trapped due to sulfide precipitation. Cadmium, Cu, Zn, Ni, Cr, Ag, and T1 predominantly accumulate via biogenic pre-concentration in plankton remains. Rhenium, Sb, As, V, U and Mo are enriched in accordance with seawater TE availability. Lead and Bi enrichment in UEO surface sediments is likely contributed by anthropogenic activity (mining). Accumulation rates of TOC, Cd, Mo, U, and V from Peruvian and Namibian sediments exceed those from the Oman Margin and Gulf of California due to enhanced preservation off Peru and Namibia.

  11. Comparison of EDTA and SDS as potential surface impregnation agents for lead adsorption by activated carbon

    NASA Astrophysics Data System (ADS)

    Chen, Wei-fang; Pan, Ling; Chen, Li-fang; Yu, Zhe; Wang, Qiong; Yan, Chang-cheng

    2014-08-01

    Ethylene diamine tetraacetic acid (EDTA) and sodium dodecyl sulfate (SDS) were employed to impregnate activated carbons for the purpose of lead removal. The mechanisms of surface impregnation and lead adsorption method of chemical regeneration were investigated. Results showed that the highest impregnation of EDTA and SDS on activated carbon was 0.33 and 0.96 mmol/g, respectively. Adsorption capacities for lead of EDTA and SDS impregnated activated carbons reached 0.29 and 0.24 mmol/g. Rapid small scale column tests of adsorption and regeneration were conducted. Lead adsorption was greatly enhanced by EDTA impregnation. In addition, EDTA impregnated adsorbent was able to be successful regenerated by HNO3 and thus reused.

  12. Evaporation pathways and solubility of Fe-Ca-Mg-rich salts in acid sulfate waters. A model for Martian ancient surface waters

    NASA Astrophysics Data System (ADS)

    Sobron, P.; Sansano, A.; Sanz, A.

    2011-12-01

    It has been suggested that Martian iron rich sulfate and oxyhydroxide deposits were precipitated from meltwaters[1], thought to have been acidic. Alternatively, iron(III)-rich hydrated sulfates from oxidized sulfides observed in the outcrops may occur as a result of long-term reactions[4]. Recent analysis of Martian materials support that they come from hydrothermal activity[5], which is highly consistent with the observation of enriched in iron, magnesium, silicon and calcium materials[2]. Independently of the nature of the sulfate formation paths on Mars, characterizing the interaction of saline mineral assemblages and the aqueous solutions necessary for their formation is significance in assessing Mars' hydrological and mineralogical evolution history. In this work we have characterized a layered deposit(Fig. 1) formed from the evaporation of stream water from Rio Tinto, Spain, a relevant Mars analog site[6]. The minerals detected in-situ, confirmed later via high resolution laser Raman spectroscopy in the laboratory, are, from bottom to top: (A) mixture of goethite and probably schwermannite; (B) goethite; (C) mixture of gypsum and highly hydrated ferric sulfates; (D) hexahydrite; and (E) mixture of hexahydrite and epsomite. What we observed in this deposit is the precipitation of relatively insoluble hydroxysulfates (schwermannite admixed with goethite), followed by the precipitation of other relatively insoluble ferric and gypsum, and finally the occurrence of the very soluble Mg-sulfates. We are currently investigating the correlation of this evaporite deposit with the hydrochemistry of the stream water from which it evaporated through dedicated laboratory analysis of natural mineral and aqueous samples. A solubility model including the minerals identified in this work will be reported at the conference. The study of this particular acid sulfate system (with analog mineralogy to that observed in Meridiani[3]) provides constraints on the evaporation pathways that may lead to a better understanding of the composition of ancient surface waters on Mars from which certain complex mineral assemblages are thought to have been formed.

  13. Sulfur and Carbon Isotope Systematics in Middle-Upper Cambrian Port au Port Group From Western Newfoundland, Canada: Implications for Seawater Sulfate Concentrations

    NASA Astrophysics Data System (ADS)

    Hurtgen, M. T.; Pruss, S.; Knoll, A. H.

    2006-12-01

    The biogeochemical cycles of carbon and sulfur are intimately linked through a variety of feedbacks that operate on timescales of days to millions of years. For example, under anaerobic conditions, some bacteria respire organic matter by sulfate reduction, reducing sulfate to sulfide, which then reacts with iron to form iron sulfide (preserved as pyrite). On much longer timescales, increases in the fraction of total carbon buried as organic carbon can drive increases in atmospheric oxygen concentrations which then facilitate an increase in the extent to which sulfides on land are oxidatively weathered and ultimately delivered to the oceans as sulfate via rivers. Interestingly, these two processes impose very different isotope relationships between the C isotope composition of marine dissolved inorganic carbon (DIC) and the S isotope composition of seawater sulfate. The former leads to a positive correlation between δ13Ccarbonate and δ34Ssulfate whereas the latter prescribes a long-term negative correlation. Of course, the recognition of either a positive or negative correlation between δ13Ccarbonate and δ34Ssulfate depends strongly on the relative sizes of the DIC and seawater sulfate reservoirs-- neither of which is well constrained for the Cambrian Period. Here, we present a high-resolution δ34S (sulfate and pyrite) and δ13Ccarbonate record from the mixed carbonate-siliciclastic Middle-Upper Cambrian Port au Port Group in western Newfoundland, Canada. The δ34Ssulfate profile displays systematic shifts of >15‰ over relatively short stratigraphic distances (10 m, likely to represent < 1 Myr). C isotope values shift sympathetically throughout much of the composite section; however, important deviations from this relationship exist. First, in the Middle Cambrian March Point Formation, a 15‰- δ34Ssulfate decrease precedes a 3‰-δ13Ccarbonate fall suggesting that the sulfur cycle recorded the perturbation to the system before the carbon cycle did. Secondly, further up in the section, the Upper Cambrian Man O' War Member exhibits a ~6‰ positive C isotope excursion (SPICE Event) with almost no change in S isotope values. In combination, these data suggest that seawater sulfate concentrations were much lower than modern values, at least in this basin, resulting in a sulfate reservoir that was more susceptible to isotopic variation. Moreover, differences in the relationship between C and S isotopes indicate that the relative sizes of the marine DIC and sulfate reservoir changed through this interval and/or that the various perturbations recorded in the lower and upper parts of this succession affected the carbon and sulfur cycles in different ways.

  14. Fractionation of Sulfur Isotopes by Desulfovibrio vulgaris Mutants Lacking Periplasmic Hydrogenases or the Type I Tetraheme Cytochrome c3

    NASA Astrophysics Data System (ADS)

    Sim, M.; Ono, S.; Bosak, T.

    2012-12-01

    A large fraction of anaerobic mineralization of organic compounds relies on microbial sulfate reduction. Sulfur isotope fractionation by these microbes has been widely used to trace the biogeochemical cycling of sulfur and carbon, but intracellular mechanisms behind the wide range of fractionations observed in nature and cultures are not fully understood. In this study, we investigated the influence of electron transport chain components on the fractionation of sulfur isotopes by culturing Desulfovibrio vulgaris Hildenborough mutants lacking hydrogenases or type I tetraheme cytochrome c3 (Tp1-c3). The mutants were grown both in batch and continuous cultures. All tested mutants grew on lactate or pyruvate as the sole carbon and energy sources, generating sulfide. Mutants lacking cytoplasmic and periplasmic hydrogenases exhibited similar growth physiologies and sulfur isotope fractionations to their parent strains. On the other hand, a mutant lacking Tp1-c3 (ΔcycA) fractionated the 34S/32S ratio more than the wild type, evolving H2 in the headspace and exhibiting a lower specific respiration rate. In the presence of high concentrations of pyruvate, the growth of ΔcycA relied largely on fermentation rather than sulfate reduction, even when sulfate was abundant, producing the largest sulfur isotope effect observed in this study. Differences between sulfur isotope fractionation by ΔcycA and the wild type highlight the effect of electron transfer chains on the magnitude of sulfur isotope fractionation. Because Tp1-c3 is known to exclusively shuttle electrons from periplasmic hydrogenases to transmembrane complexes, electron transfers in the absence of Tp1-c3 should bypass the periplasmic hydrogen cycling, and the loss of reducing equivalents in the form of H2 can impair the flow of electrons from organic acids to sulfur, increasing isotope fractionation. Larger fractionation by ΔcycA can inform interpretations of sulfur isotope data at an environmental scale as well, because intracellular concentrations of electron transport components can be altered by environmental factors such as iron availability. Simultaneous sulfate reduction and fermentation, and their corresponding sulfur isotope effects, also generate a hypothesis that links sulfur isotope fractionation to the cellular energy budget. Theoretically, the largest fractionation during microbial sulfate reduction occurs when the backward fluxes equal the forward fluxes in sulfate reduction pathway. However, when the generation of ATP depends exclusively on sulfate respiration, a minimum respiration rate is required to fulfill the maintenance energy requirement. In contrast, when sulfate reduction occurs simultaneously with fermentation, the latter process may contribute toward maintenance energy, enabling slower and more reversible sulfate reduction, and leading to larger fractionation. Given that many sulfate-reducing microbes are also facultative fermenters, fermentation by sulfate reducing microbes in natural habitats and sulfur isotope signatures produced by such communities deserve further exploration.

  15. Transient sixth cranial nerve palsy following orgasm abrogated by treatment with sympathomimetic amines.

    PubMed

    Check, J H; Katsoff, B

    2014-01-01

    To describe a unique disorder where a transient 6th nerve palsy leading to diploplia following orgasm developed in a 28-year-old woman. This coincided with a weight gain of 100 pounds in a short time without a corresponding change in dietary habits. She was treated with the sympathomimetic amine dextroamphetamine sulfate. Indeed she immediately responded to treatment with dextroamphetamine sulfate sustained release capsules with complete resolution of the episodes of 6th nerve palsy following orgasm. The main importance of this case is that it suggests that orgasm causes a transient generalized decrease in sympathetic nervous system activity and that the achievement of an orgasm may require an increase in the sympathetic nervous system activity.

  16. Method for the isolation of biologically active monomeric immunoglobulin A from a plasma fraction.

    PubMed

    Leibl, H; Tomasits, R; Wolf, H M; Eibl, M M; Mannhalter, J W

    1996-04-12

    A purification method for immunoglobulin A (IgA) yielding monomeric IgA with a purity of over 97% has been developed. This procedure uses ethanol-precipitated plasma (Cohn fraction III precipitate) as the starting material and includes heparin-Sepharose adsorption, dextran sulfate and ammonium sulfate precipitation, hydroxyapatite chromatography, batch adsorption by an anion-exchange matrix and gel permeation. Additional protein G Sepharose treatment leads to an IgA preparation of greater than 99% purity. The isolated IgA presented with an IgA subclass distribution, equivalent to IgA in unfractionated plasma, and was biologically active, as was shown by its ability to down-modulate Haemophilus influenzae-b-induced IL-6 secretion of human monocytes.

  17. Synthesis and characterization of Cd Cr and Zn Cd Cr layered double hydroxides intercalated with dodecyl sulfate

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Zhang, He; Zhao, Lan; Li, Guo-Dong; Chen, Jie-Sheng; Xu, Lin

    2005-06-01

    Cd-Cr and Zn-Cd-Cr layered double hydroxides (CdCr-LDH and ZnCdCr-LDH) containing alkyl sulfate as the interlamellar anion have been prepared through a coprecipitation technique. The resulting compounds were characterized using X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. Magnetic property measurements indicate that antiferromagnetic interactions occur between the chromium ions in the two compounds at low temperatures. The introduction of zinc influences the ligand field of Cr III and the Cr III-Cr III interactions in the LDH compound. It is found that both CdCr-LDH and ZnCdCr-LDH can be delaminated by dispersion in formamide, leading to translucent and stable colloidal solutions.

  18. Effects of phosphoric acid on the lead-acid battery reactions

    NASA Astrophysics Data System (ADS)

    Ikeda, Osamu; Iwakura, Chiaki; Yoneyama, Hiroshi; Tamura, Hideo

    1986-10-01

    The addition of a small amount of phosphoric acid to 5 M H2SO4 (commercial electrolyte of lead-acid batteries) results in various positive effects on the lead-acid battery reactions: (1) depression of the corrosion rate of the lead substrate through a preferential formation of alpha-PbO2 on the substrate surface; (2) retardation of hard sulfate formation or of deactivation of active materials; and (3) change in the crystal morphology of PbSO2 formed on the discharge of PbO2. Most of these effects results from chemisorption of phosphoric acid on PbSO4 crystals produced in the discharge process of PbO2.

  19. The fast oxidation of SO2 in oil sands regions of Alberta,Canada

    NASA Astrophysics Data System (ADS)

    Amiri, N.; Norman, A. L.

    2016-12-01

    Secondary aerosols in the atmosphere play a significant role in the Earth's radiation budget and in human health. It is important to understand how secondary aerosols are formed. Atmospheric SO2 oxidation leads to secondary sulfate aerosols. The SO2 oxidation rate needs to be well defined to better understand aerosols and their effects and oxidation varies depending on the oxidants present. This research presents the results of a field campaign from 13 Aug to 5 Sep 2013 at the Wood Buffalo Air Monitoring Station 13 (AMS13) site just south of Fort MacKay, in which two lines of evidence show fast oxidation of SO2 in the region. Size-segregated sulfate aerosols and SO2 gas were collected on microfiber glass filters and filters treated by K2CO3 and glycerin respectively. The sulfur isotopic composition of sulfate aerosols and SO2 were measured. Periods when a nearby instrument was in operation (20m away), displayed markedly distinct d34S values from periods when it was not operational. The nearby instrument used enriched 34SO2, and this affected the resulting d34S values for all sulfate size fractions but not SO2 from our high volume sampler. The most pronounced contamination was observed for sulfate aerosols D<490nm, which are expected to be derived mostly from secondary sulfate. Furthermore, the concentration of SO2 collected on the high volume filters was significantly lower than the concentration measured by a co-located optical analyzer (m=0.4). These observations show that the isotopically enriched SO2 can be used as an unintentional ambient tracer experiment in the Oil Sands region, and that this SO2 was oxidized before reaching the high volume sampler. The results from our study show that SO2 oxidation in the Oil Sands regions in the presence of pollutants such as hydrocarbons is rapid.

  20. Guar Gum Stimulates Biogenic Sulfide Production at Elevated Pressures: Implications for Shale Gas Extraction

    PubMed Central

    Nixon, Sophie L.; Walker, Leanne; Streets, Matthew D. T.; Eden, Bob; Boothman, Christopher; Taylor, Kevin G.; Lloyd, Jonathan R.

    2017-01-01

    Biogenic sulfide production is a common problem in the oil industry, and can lead to costly hydrocarbon processing and corrosion of extraction infrastructure. The same phenomenon has recently been identified in shale gas extraction by hydraulic fracturing, and organic additives in fracturing fluid have been hypothesized to stimulate this process. Constraining the relative effects of the numerous organic additives on microbial metabolism in situ is, however, extremely challenging. Using a bespoke bioreactor system we sought to assess the potential for guar gum, the most commonly used gelling agent in fracturing fluids, to stimulate biogenic sulfide production by sulfate-reducing microorganisms at elevated pressure. Two pressurized bioreactors were fed with either sulfate-amended freshwater medium, or low-sulfate natural surface water, in addition to guar gum (0.05 w/v%) and an inoculum of sulfate-reducing bacteria for a period of 77 days. Sulfide production was observed in both bioreactors, even when the sulfate concentration was low. Analysis of 16S rRNA gene sequences indicate that heterotrophic bacteria closely associated with the genera Brevundimonas and Acinetobacter became enriched early in the bioreactor experiments, followed by an increase in relative abundance of 16S rRNA genes associated with sulfate-reducing bacteria (Desulfosporosinus and Desulfobacteraceae) at later time points. Results demonstrate that guar gum can stimulate acid- and sulfide-producing microorganisms at elevated pressure, and may have implications for the potential role in microbially induced corrosion during hydraulic fracturing operations. Key differences between experimental and in situ conditions are discussed, as well as additional sources of carbon and energy for biogenic sulfide production during shale gas extraction. Our laboratory approach can be tailored to better simulate deep subsurface conditions in order to probe the role of other fracturing fluid additives and downhole parameters on microbial metabolisms observed in these systems. Such baseline studies will prove essential for effective future development of shale gas worldwide. PMID:28469616

  1. Effects of Sulfation Level on the Desulfation Behavior of Presulfated Pt-BaO/Al2O3 Lean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, D.; Szanyi, J; Kwak, J

    2009-01-01

    Desulfation by hydrogen of presulfated Pt (2 wt %)-BaO(20 wt %)/Al2O3 with various sulfur loading (S/Ba = 0.12, 0.31, and 0.62) were investigated by combining H2 temperature programmed reaction (TPRX), X-ray photoelectron spectroscopy (XPS), in situ sulfur K-edge X-ray absorption near-edge spectroscopy (XANES), and synchrotron time-resolved X-ray diffraction (TR-XRD) techniques. We find that the amount of H2S desorbed during the desulfation in the H2 TPRX experiments is not proportional to the amount of initial sulfur loading. The results of both in situ sulfur K-edge XANES and TR-XRD show that at low sulfur loadings, sulfates were transformed to a BaS phasemore » and remained in the catalyst rather than being removed as H2S. On the other hand, when the deposited sulfur level exceeded a certain threshold (at least S/Ba = 0.31) sulfates were reduced to form H2S, and the relative amount of the residual sulfide species in the catalyst was much less than at low sulfur loading. Unlike samples with high sulfur loading (e.g., S/Ba = 0.62), H2O did not promote the desulfation for the sample with S/Ba of 0.12, implying that the formed BaS species originating from the reduction of sulfates at low sulfur loading are more stable to hydrolysis. The results of this combined spectroscopy investigation provide clear evidence to show that sulfates at low sulfur loadings are less likely to be removed as H2S and have a greater tendency to be transformed to BaS on the material, leading to the conclusion that desulfation behavior of Pt-BaO/Al2O3 lean NOx trap catalysts is markedly dependent on the sulfation levels.« less

  2. Modified APHA closed-tube reflux colorimetric method for TOC determination in water and wastewater.

    PubMed

    Salihu, Simon Olonkwoh; Bakar, Nor Kartini Abu

    2018-05-30

    The analysis of total organic carbon (TOC) by the American Public Health Association (APHA) closed-tube reflux colorimetric method requires potassium dichromate (K 2 Cr 2 O 7 ), silver sulfate (AgSO 4 ), and mercury (HgSO 4 ) sulfate in addition to large volumes of both reagents and samples. The method relies on the release of oxygen from dichromate on heating which is consumed by carbon associated with organic compounds. The method risks environmental pollution by discharging large amounts of chromium (VI) and silver and mercury sulfates. The present method used potassium monochromate (K 2 CrO 4 ) to generate the K 2 Cr 2 O 7 on demand in the first phase. In addition, miniaturizing the procedure to semi microanalysis decreased the consumption of reagents and samples. In the second phase, mercury sulfate was eliminated as part of the digestion mixture through the introduction of sodium bismuthate (NaBiO 3 ) for the removal of chlorides from the sample. The modified method, the potassium monochromate closed-tube colorimetry with sodium bismuthate chloride removal (KMCC-Bi), generates the potassium dichromate on demand and eliminates mercury sulfate. The semi microanalysis procedure leads to a 60% reduction in sample volume and ≈ 33.33 and 60% reduction in monochromate and silver sulfate consumption respectively. The LOD and LOQ were 10.17 and 33.90 mg L -1 for APHA, and 4.95 and 16.95 mg L -1 for KMCC-Bi. Recovery was between 83 to 98% APHA and 92 to 104% KMCC-Bi, while the RSD (%) ranged between 0.8 to 5.0% APHA and 0.00 to 0.62% KMCC-Bi. The method was applied for the UV-Vis spectrometry determination of COD in water and wastewater. Statistics was done by MINITAB 17 or MS Excel 2016. ᅟ Graphical abstract.

  3. Tales of volcanoes and El-Niño southern oscillations with the oxygen isotope anomaly of sulfate aerosol

    PubMed Central

    Shaheen, Robina; Abauanza, Mariana; Jackson, Teresa L.; McCabe, Justin; Savarino, Joel; Thiemens, Mark H.

    2013-01-01

    The ability of sulfate aerosols to reflect solar radiation and simultaneously act as cloud condensation nuclei renders them central players in the global climate system. The oxidation of S(IV) compounds and their transport as stable S(VI) in the Earth’s system are intricately linked to planetary scale processes, and precise characterization of the overall process requires a detailed understanding of the linkage between climate dynamics and the chemistry leading to the product sulfate. This paper reports a high-resolution, 22-y (1980–2002) record of the oxygen-triple isotopic composition of sulfate (SO4) aerosols retrieved from a snow pit at the South Pole. Observed variation in the O-isotopic anomaly of SO4 aerosol is linked to the ozone variation in the tropical upper troposphere/lower stratosphere via the Ozone El-Niño Southern Oscillations (ENSO) Index (OEI). Higher ∆17O values (3.3‰, 4.5‰, and 4.2‰) were observed during the three largest ENSO events of the past 2 decades. Volcanic events inject significant quantities of SO4 aerosol into the stratosphere, which are known to affect ENSO strength by modulating stratospheric ozone levels (OEI = 6 and ∆17O = 3.3‰, OEI = 11 and ∆17O = 4.5‰) and normal oxidative pathways. Our high-resolution data indicated that ∆17O of sulfate aerosols can record extreme phases of naturally occurring climate cycles, such as ENSOs, which couple variations in the ozone levels in the atmosphere and the hydrosphere via temperature driven changes in relative humidity levels. A longer term, higher resolution oxygen-triple isotope analysis of sulfate aerosols from ice cores, encompassing more ENSO periods, is required to reconstruct paleo-ENSO events and paleotropical ozone variations. PMID:23447567

  4. Sulfate Formation Enhanced by a Cocktail of High NOx, SO2, Particulate Matter, and Droplet pH during Haze-Fog Events in Megacities in China: An Observation-Based Modeling Investigation.

    PubMed

    Xue, Jian; Yuan, Zibing; Griffith, Stephen M; Yu, Xin; Lau, Alexis K H; Yu, Jian Zhen

    2016-07-19

    In recent years in a few Chinese megacities, fog events lasting one to a few days have been frequently associated with high levels of aerosol loading characterized by high sulfate (as high as 30 μg m(-3)), therefore termed as haze-fog events. The concomitant pollution characteristics include high gas-phase mixing ratios of SO2 (up to 71 ppbv) and NO2 (up to 69 ppbv), high aqueous phase pH (5-6), and smaller fog droplets (as low as 2 μm), resulting from intense emissions from fossil fuel combustion and construction activities supplying abundant Ca(2+). In this work, we use an observation-based model for secondary inorganic aerosols (OBM-SIA) to simulate sulfate formation pathways under conditions of haze-fog events encountered in Chinese megacities. The OBM analysis has identified, at a typical haze-fogwater pH of 5.6, the most important pathway to be oxidation of S(IV) by dissolved NO2, followed by the heterogeneous reaction of SO2 on the aerosol surface. The aqueous phase oxidation of S(IV) by H2O2 is a very minor formation pathway as a result of the high NOx conditions suppressing H2O2 formation. The model results indicate that the unique cocktail of high fogwater pH, high concentrations of NO2, SO2, and PM, and small fog droplets are capable of greatly enhancing sulfate formation. Such haze-fog conditions could lead to rapid sulfate production at night and subsequently high PM2.5 in the morning when the fog evaporates. Sulfate formation is simulated to be highly sensitive to fogwater pH, PM, and precursor gases NO2 and SO2. Such insights on major contributing factors imply that reduction of road dust and NOx emissions could lessen PM2.5 loadings in Chinese megacities during fog events.

  5. Cerro Negro, Nicaragua: A key Mars Analog Environment for Acid-Sulfate Weathering

    NASA Astrophysics Data System (ADS)

    Hynek, B. M.; Rogers, K. L.; McCollom, T. M.

    2008-12-01

    Sulfate-rich bedrock has been discovered in many locations on Mars and has been studied by both orbiting spacecraft and landers. It appears that in most cases these minerals are produced by acid-sulfate weathering of igneous rocks, which may have been a widespread process for the first billion years of Mars' history. The origin of life on Earth may have occurred in iron-sulfur hydrothermal settings and it is conceivable that early Mars had similar environmental conditions. An excellent terrestrial analog for acid- sulfate weathering of Mars-like basalts exists at Cerro Negro (CN), Nicaragua, where sulfur-bearing gases interact with recently erupted basaltic ash in numerous fumaroles. To date, we have made two expeditions to CN to assess the chemical, mineralogical, and biological conditions. At the fumaroles pH ranges from <1 to 5 and temperatures range from 40 to 400° C. Basalts with a chemical composition very similar to those on Mars are being chemically altered in the solfatara setting. In a few years, freshly erupted basalt can be converted into predominately Ca-, Mg-, and Fe-sulfates, Fe-hydroxides (including jarosite), clays, and free silica. Altered rocks have up to 30 wt% SO3 equivalent, which is similar to the Meridiani Planum bedrocks and inferred in other sulfate-bearing bedrock on Mars. Moreover, heavily weathered rocks have silica contents up to 80 wt%, similar to silica-rich soils at Gusev Crater that possibly formed in hydrothermal environments. Samples were collected for biological analysis including enrichment and isolation of novel thermophiles as well as molecular characterization of thermophile diversity. The low water and nutrient levels found in solfatara environments lead to less biomass when compared to hot springs with similar geochemical conditions. Nonetheless, microbes are thriving in these hot, acidic vent environments. At Cerro Negro solfatara, we are characterizing the metabolic and phylogenetic diversity of resident microbial communities in order to yield clues to the habitability of similar environments on early Mars.

  6. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation

    USGS Publications Warehouse

    Claypool, George E.; Holser, William T.; Kaplan, Isaac R.; Sakai, Hitoshi; Zak, Israel

    1980-01-01

    Three hundred new samples of marine evaporite sulfate, of world-wide distribution, were analyzed for δ34S, and 60 of these also for δ18O in the sulfate ion. Detailed δ34S age curves for Tertiary—Cretaceous, Permian—Pennsylvanian, Devonian, Cambrian and Proterozoic times document large variations in δ34S. A summary curve forδ18O also shows definite variations, some at different times than δ34S, and always smaller. The measured δ34S and δ18O correspond to variations in these isotopes in sulfate of the world ocean surface. The variations of δ18O are controlled by input and output fluxes of sulfur in the ocean, three of which are the same that control δ34S: deposition and erosion of sulfate, and deposition of sulfide. Erosion of sulfide differs in its effect on the S and O systems. δ18O in the sulfate does not seem to be measurably affected by equilibration with either seawater or with subsurface waters after crystallization. In principle, the simultaneous application of both δ34S and δ18O age curves should help reduce the number of assumptions in calculations of the cycles of sulfur and oxygen through geological time, and a new model involving symmetrical fluxes is introduced here to take advantage of the oxygen data. However, all previously published models as well as this one lead to anomalies, such as unreasonable calcium or oxygen depletions in the ocean—atmosphere system. In addition, most models are incapable of reproducing the sharp rises of the δ34S curve in the late Proterozoic, the Devonian and the Triassic which would be the result of unreasonably fast net sulfide deposition. This fast depletion could result from an ocean that has not always been mixed (as previously assumed in all model calculations).

  7. Guar Gum Stimulates Biogenic Sulfide Production at Elevated Pressures: Implications for Shale Gas Extraction.

    PubMed

    Nixon, Sophie L; Walker, Leanne; Streets, Matthew D T; Eden, Bob; Boothman, Christopher; Taylor, Kevin G; Lloyd, Jonathan R

    2017-01-01

    Biogenic sulfide production is a common problem in the oil industry, and can lead to costly hydrocarbon processing and corrosion of extraction infrastructure. The same phenomenon has recently been identified in shale gas extraction by hydraulic fracturing, and organic additives in fracturing fluid have been hypothesized to stimulate this process. Constraining the relative effects of the numerous organic additives on microbial metabolism in situ is, however, extremely challenging. Using a bespoke bioreactor system we sought to assess the potential for guar gum, the most commonly used gelling agent in fracturing fluids, to stimulate biogenic sulfide production by sulfate-reducing microorganisms at elevated pressure. Two pressurized bioreactors were fed with either sulfate-amended freshwater medium, or low-sulfate natural surface water, in addition to guar gum (0.05 w/v%) and an inoculum of sulfate-reducing bacteria for a period of 77 days. Sulfide production was observed in both bioreactors, even when the sulfate concentration was low. Analysis of 16S rRNA gene sequences indicate that heterotrophic bacteria closely associated with the genera Brevundimonas and Acinetobacter became enriched early in the bioreactor experiments, followed by an increase in relative abundance of 16S rRNA genes associated with sulfate-reducing bacteria ( Desulfosporosinus and Desulfobacteraceae) at later time points. Results demonstrate that guar gum can stimulate acid- and sulfide-producing microorganisms at elevated pressure, and may have implications for the potential role in microbially induced corrosion during hydraulic fracturing operations. Key differences between experimental and in situ conditions are discussed, as well as additional sources of carbon and energy for biogenic sulfide production during shale gas extraction. Our laboratory approach can be tailored to better simulate deep subsurface conditions in order to probe the role of other fracturing fluid additives and downhole parameters on microbial metabolisms observed in these systems. Such baseline studies will prove essential for effective future development of shale gas worldwide.

  8. Spectral behavior of hydrated sulfate salts: implications for Europa mission spectrometer design

    NASA Technical Reports Server (NTRS)

    Dalton, James Bradley 3rd

    2003-01-01

    Remote sensing of the surface of Europa with near-infrared instruments has suggested the presence of hydrated materials, including sulfate salts. Attention has been focused on these salts for the information they might yield regarding the evolution of a putative interior ocean, and the evaluation of its astrobiological potential. These materials exhibit distinct infrared absorption features due to bound water. The interactions of this water with the host molecules lead to fine structure that can be used to discriminate among these materials on the basis of their spectral behavior. This fine structure is even more pronounced at the low temperatures prevalent on icy satellites. Examination of hydrated sulfate salt spectra measured under cryogenic temperature conditions provides realistic constraints for future remote-sensing missions to Europa. In particular, it suggests that a spectrometer system capable of 2-5 nm spectral resolution or better, with a spatial resolution approaching 100 m, would be able to differentiate among proposed hydrated surface materials, if present, and constrain their distributions across the surface. Such information would provide valuable insights into the evolutionary history of Europa.

  9. Salt Effect on the Antioxidant Activity of Red Microalgal Sulfated Polysaccharides in Soy-Bean Formula

    PubMed Central

    Burg, Ariela; Oshrat, Levy-Ontman

    2015-01-01

    Sulfated polysaccharides produced by microalgae, which are known to exhibit various biological activities, may potentially serve as natural antioxidant sources. To date, only a few studies have examined the antioxidant bioactivity of red microalgal polysaccharides. In this research, the effect of different salts on the antioxidant activities of two red microalgal sulfated polysaccharides derived from Porphyridium sp. and Porphyridium aerugineum were studied in a soy bean-based infant milk formula. Salt composition and concentration were both shown to affect the polysaccharides’ antioxidant activity. It can be postulated that the salt ions intefer with the polysaccharide chains’ interactions and alter their structure, leading to a new three-dimensional structure that better exposes antiooxidant sites in comparison to the polysaccharide without salt supplement. Among the cations that were studied, Ca2+ had the strongest enhancement effect on antioxidant activities of both polysaccharides. Understanding the effect of salts on polysaccharides’ stucture, in addition to furthering knowledge on polysaccharide bioactivities, may also shed light on the position of the antioxidant active sites. PMID:26492255

  10. PM2.5 Exposure Suppresses Dendritic Maturation in Subgranular Zone in Aged Rats.

    PubMed

    Cheng, Lewis; Lau, Way K W; Fung, Timothy K H; Lau, Benson W M; Chau, Bolton K H; Liang, Yutong; Wang, Zhe; So, Kwok Fai; Wang, Tao; Chan, Chetwyn C H; Lee, Tatia M C

    2017-07-01

    Detrimental effects of long-term inhalation of fine particulate matter (PM 2.5 ) on the pulmonary and cardiovascular systems have been widely reported. Recent studies have shown that exposure to PM 2.5 also causes adverse neurocognitive effects. This study investigates the effects of inhaled ammonium sulfate, which is a major compound of inorganic air pollutants in PM 2.5 , on adult neurogenesis in aged Sprague-Dawley rats. A total of 20 rats were randomly assigned to experimental (n = 10) and control (n = 10) conditions, wherein they were exposed to either ammonium sulfate or sham air for 2 h per day and for 28 consecutive days. It was observed that ammonium sulfate inhibited the maturation process and diminished dendritic complexity of immature neurons in the subgranular zone (SGZ) of the hippocampus significantly, although the number of neural stem cells or the rates of differentiation were comparable between the two groups. Our findings provide clear evidence on the direct relationship between air quality and advantageous neurogenesis. Exposure to PM leads to specific adverse effects on the maturation process during neurogenesis.

  11. Corrosion of Alloy 690 process pot by sulfate containing high level radioactive waste at feed stage

    NASA Astrophysics Data System (ADS)

    Sengupta, P.; Soudamini, N.; Kaushik, C. P.; Jagannath; Mishra, R. K.; Kale, G. B.; Raj, K.; Das, D.; Sharma, B. P.

    2008-02-01

    Prolonged exposure of Alloy 690 process pot to sulfate containing high level radioactive waste leads to (a) depletion of Cr from the alloy, (b) intergranular attack and (c) building up of Cr 2O 3-Ni 2O 3-Fe 2O 3 mixed oxide surface layer containing Na and Cs sulfate precipitates. Time dependence of material loss from Alloy 690 is found to follow a linear relationship of the type Δ w (material loss) = -7.05 + 0.05 t. Corrosion rate calculated for 2400 h exposure is 3.66 mpy. Cr and Ni leach rates obtained for the same sample are 1.61 g m -2 d -1 and 2.52 g m -2 d -1, respectively. Ni leach rates followed a linear time dependence relationship of the type dNL Ni/d t (leach rate) = -0.09 + 0.027 t, whereas Cr leach rates obeyed a non-linear relationship of the type dNL Cr/d t (leach rate) = 0.241 + 0.027 t - 1.33 × 10 -4t1/2.

  12. [Serum glycosaminoglycans in Graves' disease patients].

    PubMed

    Winsz-Szczotka, Katarzyna B; Olczyk, Krystyna Z; Koźma, Ewa M; Komosińska-Vassev, Katarzyna B; Wisowski, Grzegorz R; Marcisz, Czesław

    2006-01-01

    The aim of the study was to determine the blood serum sulfated glycosaminoglycans (GAGs) and hyaluronic acid (HA) concentration of Graves' disease patients before treatment and after attainment of the euthyroid state. The study was carried out on the blood serum obtained from 17 patients with newly recognised Graves' disease and from the same patients after attainment of the euthyroid state. Graves' patients had not any clinical symptoms neither of ophthalmopathy nor pretibial myxedema. GAGs were isolated from the blood serum by the multistage extraction and purification using papaine hydrolysis, alkali elimination, as well as cetylpyridium chloride binding. Total amount of GAGs was quantified by the hexuronic acids assay. HA content in obtained GAGs sample was evaluated by the ELISA method. Increased serum concentration of sulfated GAGs in non-treated Graves' disease patients was found. Similarly, serum HA level in untreated patients was significantly elevated. The attainment of euthyroid state was accompanied by the decreased serum sulfated GAGs level and by normalization of serum HA concentration. In conclusion, the results obtained demonstrate that the alterations of GAGs metabolism connected with Graves' disease can lead to systemic changes of the extracellular matrix properties.

  13. Spectral behavior of hydrated sulfate salts: implications for Europa mission spectrometer design.

    PubMed

    Dalton, James Bradley

    2003-01-01

    Remote sensing of the surface of Europa with near-infrared instruments has suggested the presence of hydrated materials, including sulfate salts. Attention has been focused on these salts for the information they might yield regarding the evolution of a putative interior ocean, and the evaluation of its astrobiological potential. These materials exhibit distinct infrared absorption features due to bound water. The interactions of this water with the host molecules lead to fine structure that can be used to discriminate among these materials on the basis of their spectral behavior. This fine structure is even more pronounced at the low temperatures prevalent on icy satellites. Examination of hydrated sulfate salt spectra measured under cryogenic temperature conditions provides realistic constraints for future remote-sensing missions to Europa. In particular, it suggests that a spectrometer system capable of 2-5 nm spectral resolution or better, with a spatial resolution approaching 100 m, would be able to differentiate among proposed hydrated surface materials, if present, and constrain their distributions across the surface. Such information would provide valuable insights into the evolutionary history of Europa.

  14. Pyrite formation driven by MSW landfill leachate in the Madrid Basin, Spain

    NASA Astrophysics Data System (ADS)

    Castelló, Ricardo; Recio, Clemente; Morillas, Pilar; Vizcayno, Carmen

    2008-04-01

    The role of municipal solid waste (MSW) landfill leachate on the genesis of minor amounts of pyrite associated with gypsum in an otherwise predominantly evaporitic sequence was studied in geological and geochemical terms. The potential association between landfill leachate and the conditions required for bacterial reduction of sulfate and fixation of H2S as pyrite were examined. The lithological column was generally found to contain little or no Fe. The δ34S values for sulfates were consistent with previously reported data; however, the measured δ18O values were slightly higher. Sulfides disseminated in the marl/lutite exhibited higher δ34S values (≈-8‰) than gypsum-coating pyrite crystals (δ34S < -30‰). Dissolution of gypsum to sulfate and the supply of metabolizable organic matter and Fe required for H2S fixation as sulfides may have originated from landfill leachate. Intermittent availability of leachate, a result of the precipitation regime, can facilitate sulfur disproportionation and lead to fractionations as high as δ_{text{SO}4^{2-}-{text{S}^{2-}}}≈ - {text{50}}permille.

  15. Carbon, nutrient and trace metal cycling in sandy sediments: A comparison of high-energy beaches and backbarrier tidal flats

    NASA Astrophysics Data System (ADS)

    Reckhardt, Anja; Beck, Melanie; Seidel, Michael; Riedel, Thomas; Wehrmann, Achim; Bartholomä, Alexander; Schnetger, Bernhard; Dittmar, Thorsten; Brumsack, Hans-Jürgen

    2015-06-01

    In order to evaluate the importance of coastal sandy sediments and their contribution to carbon, nutrient and metal cycling we investigated two beach sites on Spiekeroog Island, southern North Sea, Germany, and a tidal flat margin, located in Spiekeroog's backbarrier area. We also analyzed seawater and fresh groundwater on Spiekeroog Island, to better define endmember concentrations, which influence our study sites. Intertidal sandy flats and beaches are characterized by pore water advection. Seawater enters the sediment during flood and pore water drains out during ebb and at low tide. This pore water circulation leads to continuous supply of fresh organic substrate to the sediments. Remineralization products of microbial degradation processes, i.e. nutrients, and dissolved trace metals from the reduction of particulate metal oxides, are enriched in the pore water compared to open seawater concentrations. The spatial distribution of dissolved organic carbon (DOC), nutrients (PO43-, NO3-, NO2-, NH4+, Si(OH)4 and total alkalinity), trace metals (dissolved Fe and Mn) as well as sulfate suggests that the exposed beach sites are subject to relatively fast pore water advection, which leads to organic matter and oxygen replenishment. Frequent pore water exchange further leads to comparatively low nutrient concentrations. Sulfate reduction does not appear to play a major role during organic matter degradation. High nitrate concentrations indicate that redox conditions are oxic within the duneward freshwater influenced section, while ammonification, denitrification, manganese and iron reduction seem to prevail in the ammonium-dominated seawater circulation zone. In contrast, the sheltered tidal flat margin site exhibits a different sedimentology (coarser beach sands versus finer tidal flat sands) and nutrients, dissolved manganese and DOC accumulate in the pore water. Ammonium is the dominant pore water nitrogen species and intense sulfate reduction leads to the formation of sulfide, which precipitates dissolved iron as iron sulfide. These findings are due to slower advective pore water exchange in the tidal flat sediments. This study illustrates how different energy regimes affect biogeochemical cycling in intertidal permeable sediments.

  16. SO2 adsorption on silica supported iridium.

    PubMed

    Bounechada, Djamela; Anderson, David P; Skoglundh, Magnus; Carlsson, Per-Anders

    2017-02-28

    The interaction of SO 2 with Ir/SiO 2 was studied by simultaneous in situ diffuse reflectance infrared Fourier transform spectroscopy and mass spectrometry, exposing the sample to different SO 2 concentrations ranging from 10 to 50 ppm in the temperature interval 200-400 °C. Evidences of adsorption of sulfur species in both absence and presence of oxygen are found. For a pre-reduced sample in the absence of oxygen, SO 2 disproportionates such that the iridium surface is rapidly saturated with adsorbed S while minor amounts of formed SO 3 may adsorb on SiO 2 . Adding oxygen to the feed leads to the oxidation of sulfide species that either (i) desorb as SO 2 and/or SO 3 , (ii) remain at metal sites in the form of adsorbed SO 2 , or (iii) spillover to the oxide support and form sulfates (SO 4 2- ). Notably, significant formation of sulfates on silica is possible only in the presence of both SO 2 and O 2 , suggesting that SO 2 oxidation to SO 3 is a necessary first step in the mechanism of formation of sulfates on silica. During the formation of sulfates, a concomitant removal/rearrangement of surface silanol groups is observed. Finally, the interaction of SO 2 with Ir/SiO 2 depends primarily on the temperature and type of gas components but only to a minor extent on the inlet SO 2 concentration.

  17. SO2 adsorption on silica supported iridium

    NASA Astrophysics Data System (ADS)

    Bounechada, Djamela; Anderson, David P.; Skoglundh, Magnus; Carlsson, Per-Anders

    2017-02-01

    The interaction of SO2 with Ir/SiO2 was studied by simultaneous in situ diffuse reflectance infrared Fourier transform spectroscopy and mass spectrometry, exposing the sample to different SO2 concentrations ranging from 10 to 50 ppm in the temperature interval 200-400 °C. Evidences of adsorption of sulfur species in both absence and presence of oxygen are found. For a pre-reduced sample in the absence of oxygen, SO2 disproportionates such that the iridium surface is rapidly saturated with adsorbed S while minor amounts of formed SO3 may adsorb on SiO2. Adding oxygen to the feed leads to the oxidation of sulfide species that either (i) desorb as SO2 and/or SO3, (ii) remain at metal sites in the form of adsorbed SO2, or (iii) spillover to the oxide support and form sulfates (SO42-). Notably, significant formation of sulfates on silica is possible only in the presence of both SO2 and O2, suggesting that SO2 oxidation to SO3 is a necessary first step in the mechanism of formation of sulfates on silica. During the formation of sulfates, a concomitant removal/rearrangement of surface silanol groups is observed. Finally, the interaction of SO2 with Ir/SiO2 depends primarily on the temperature and type of gas components but only to a minor extent on the inlet SO2 concentration.

  18. Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron.

    PubMed

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, James A

    2016-05-05

    This study assessed the bioremediation of acid rock drainage (ARD) in flow-through columns testing zero-valent iron (ZVI) for the first time as the sole exogenous electron donor to drive sulfate-reducing bacteria in permeable reactive barriers. Columns containing ZVI, limestone or a mixture of both materials were inoculated with an anaerobic mixed culture and fed a synthetic ARD containing sulfuric acid and heavy metals (initially copper, and later also cadmium and lead). ZVI significantly enhanced sulfate reduction and the heavy metals were extensively removed (>99.7%). Solid-phase analyses showed that heavy metals were precipitated with biogenic sulfide in the columns packed with ZVI. Excess sulfide was sequestered by iron, preventing the discharge of dissolved sulfide. In the absence of ZVI, heavy metals were also significantly removed (>99.8%) due to precipitation with hydroxide and carbonate ions released from the limestone. Vertical-profiles of heavy metals in the columns packing, at the end of the experiment, demonstrated that the ZVI columns still had excess capacity to remove heavy metals, while the capacity of the limestone control column was approaching saturation. The ZVI provided conditions that enhanced sulfate reduction and generated alkalinity. Collectively, the results demonstrate an innovative passive ARD remediation process using ZVI as sole electron-donor. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Seeded growth of gold nanorods: the effect of sulfur-containing quenching agents

    NASA Astrophysics Data System (ADS)

    Gobbo, Alberto; Marin, Riccardo; Canton, Patrizia

    2018-03-01

    Herein we present a study on the efficacy of selected sulfur-containing species as growth quenchers and metal ion scavengers in the framework of gold nanorod (GNR) synthesis. The here utilized seeded growth method is the reference GNR synthesis approach. However, GNRs synthesized according to it are prone to morphological changes upon aging, promoted by the presence of unreacted metal ions in the stock suspension. This, in turn, leads to optical property changes. Sodium sulfide is an efficient GNR growth quencher and metal ion scavenger, because sulfide ion has a strong affinity towards noble metals used for the GNRs' synthesis. Moving from these considerations, different sulfur-containing molecules were selected and their interaction with GNR surface was investigated: sulfate, sulfite, thiourea, and dodecyl sulfate were chosen for their difference in terms of net charge, size, and hydrophobicity. We initially assessed the best synthesis conditions in terms of reaction time, seed amount, silver concentration, and quencher amount. Consequently, the quencher/scavenger was varied. Thiourea, sulfite, and sulfate ions all showed a feeble, yet non-negligible, interaction with metals. Although sodium sulfide turned out to be the most efficient quencher/scavenger, also dodecyl sulfate showed evidences of adsorption on the GNR surface, probably prompted by hydrophobic interactions. These findings are expected to contribute as a background for further advancements in the perfection of GNR synthetic approaches specifically in terms of post-synthesis treatments.

  20. NATIONAL PERFORMANCE AUDIT PROGRAM: 1980 PROFICIENCY SURVEY FOR SULFUR DIOXIDE, NITROGEN DIOXIDE, CARBON MONOXIDE, SULFATE, NITRATE, LEAD AND HIGH VOLUME FLOW

    EPA Science Inventory

    Based on authority granted by provisions of the Clean Air Act (42 U.S.C 7410, et seq.), the Quality Assurance Division of the Environmental Monitoring Systems Laboratory, Research Triangle Park, NC administers periodic surveys of analytical proficiency for sulfur dioxide, nitroge...

  1. SPATIALLY RESOLVED SPECTROSCOPY OF EUROPA: THE DISTINCT SPECTRUM OF LARGE-SCALE CHAOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, P. D.; Brown, M. E.; Hand, K. P., E-mail: pfischer@caltech.edu

    2015-11-15

    We present a comprehensive analysis of spatially resolved moderate spectral resolution near-infrared spectra obtained with the adaptive optics system at the Keck Observatory. We identify three compositionally distinct end member regions: the trailing hemisphere bullseye, the leading hemisphere upper latitudes, and a third component associated with leading hemisphere chaos units. We interpret the composition of the three end member regions to be dominated by irradiation products, water ice, and evaporite deposits or salt brines, respectively. The third component is associated with geological features and distinct from the geography of irradiation, suggesting an endogenous identity. Identifying the endogenous composition is ofmore » particular interest for revealing the subsurface composition. However, its spectrum is not consistent with linear mixtures of the salt minerals previously considered relevant to Europa. The spectrum of this component is distinguished by distorted hydration features rather than distinct spectral features, indicating hydrated minerals but making unique identification difficult. In particular, it lacks features common to hydrated sulfate minerals, challenging the traditional view of an endogenous salty component dominated by Mg-sulfates. Chloride evaporite deposits are one possible alternative.« less

  2. Final report on the safety assessment of sodium cetearyl sulfate and related alkyl sulfates as used in cosmetics.

    PubMed

    Fiume, Monice; Bergfeld, Wilma F; Belsito, Donald V; Klaassen, Curtis D; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Alan Andersen, F

    2010-05-01

    Sodium cetearyl sulfate is the sodium salt of a mixture of cetyl and stearyl sulfate. The other ingredients in this safety assessment are also alkyl salts, including ammonium coco-sulfate, ammonium myristyl sulfate, magnesium coco-sulfate, sodium cetyl sulfate, sodium coco/hydrogenated tallow sulfate, sodium coco-sulfate, sodium decyl sulfate, sodium ethylhexyl sulfate, sodium myristyl sulfate, sodium oleyl sulfate, sodium stearyl sulfate, sodium tallow sulfate, sodium tridecyl sulfate, and zinc coco-sulfate. These ingredients are surfactants used at concentrations from 0.1% to 29%, primarily in soaps and shampoos. Many of these ingredients are not in current use. The Cosmetic Ingredient Review (CIR) Expert Panel previously completed a safety assessment of sodium and ammonium lauryl sulfate. The data available for sodium lauryl sulfate and ammonium lauryl sulfate provide sufficient basis for concluding that sodium cetearyl sulfate and related alkyl sulfates are safe in the practices of use and concentration described in the safety assessment.

  3. Formation of carbonate pipes in the northern Okinawa Trough linked to strong sulfate exhaustion and iron supply

    NASA Astrophysics Data System (ADS)

    Peng, Xiaotong; Guo, Zixiao; Chen, Shun; Sun, Zhilei; Xu, Hengchao; Ta, Kaiwen; Zhang, Jianchao; Zhang, Lijuan; Li, Jiwei; Du, Mengran

    2017-05-01

    The microbial anaerobic oxidation of methane (AOM), a key biogeochemical process that consumes substantial amounts of methane produced in seafloor sediments, can lead to the formation of carbonate deposits at or beneath the sea floor. Although Fe oxide-driven AOM has been identified in cold seep sediments, the exact mode by which it may influence the formation of carbonate deposits remains poorly understood. Here, we characterize the morphology, petrology and geochemistry of a methane-derived Fe-rich carbonate pipe in the northern Okinawa Trough (OT). We detect abundant authigenic pyrites, as well as widespread trace Fe, within microbial mat-like carbonate veins in the pipe. The in situ δ34S values of these pyrites range from -3.9 to 31.6‰ (VCDT), suggesting a strong consumption of seawater sulfate by sulfate-driven AOM at the bottom of sulfate reduction zone. The positive δ56Fe values of pyrite and notable enrichment of Fe in the OT pipe concurrently indicate that the pyrites are primarily derived from Fe oxides in deep sediments. We propose that the Fe-rich carbonate pipe formed at the bottom of sulfate reduction zone, below which Fe-driven AOM, rather than Fe-oxide reduction coupled to organic matter degradation, might be responsible for the abundantly available Fe2+ in the fluids from which pyrites precipitated. The Fe-rich carbonate pipe described in this study probably represents the first fossil example of carbonate deposits linked to Fe-driven AOM. Because Fe-rich carbonate deposits have also been found at other cold seeps worldwide, we infer that similar processes may play an essential role in biogeochemical cycling of sub-seafloor methane and Fe at continental margins.

  4. Heterogeneous reaction of SO2 with soot: The roles of relative humidity and surface composition of soot in surface sulfate formation

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Liu, Yongchun; Ma, Jinzhu; Ma, Qingxin; He, Hong

    2017-03-01

    The conversion of SO2 to sulfates on the surface of soot is still poorly understood. Soot samples with different fractions of unsaturated hydrocarbons and oxygen-containing groups were prepared by combusting n-hexane under well-controlled conditions. The heterogeneous reaction of SO2 with soot was investigated using in situ attenuated total internal reflection infrared (ATR-IR) spectroscopy, ion chromatography (IC) and a flow tube reactor at the ambient pressure and relative humidity (RH). Water promoted SO2 adsorption and sulfate formation at the RH range from 6% to 70%, while exceeded water condensed on soot was unfavorable for sulfate formation due to inhibition of SO2 adsorption when RH was higher than 80%. The surface composition of soot, which was governed by combustion conditions, also played an important role in the heterogeneous reaction of SO2 with soot. This effect was found to greatly depend on RH. At low RH of 6%, soot with the highest fuel/oxygen ratio of 0.162 exhibited a maximum uptake capacity for SO2 because it contained a large amount of aromatic Csbnd H groups, which acted as active sites for SO2 adsorption. At RH of 54%, soot produced with a fuel/oxygen ratio of 0.134 showed the highest reactivity toward SO2 because it contained appropriate amounts of aromatic Csbnd H groups and oxygen-containing groups, subsequently leading to the optimal surface concentrations of both SO2 and water. These results suggest that variation in the surface composition of soot from different sources and/or resulting from chemical aging in the atmosphere likely affects the conversion of SO2 to sulfates.

  5. The role microbial sulfate reduction in the direct mediation of sedimentary authigenic carbonate precipitation

    NASA Astrophysics Data System (ADS)

    Turchyn, A. V.; Walker, K.; Sun, X.

    2016-12-01

    The majority of modern deep marine sediments are bathed in water that is undersaturated with respect to calcium carbonate. However, within marine sediments changing chemical conditions, driven largely by the microbial oxidation of organic carbon in the absence of oxygen, lead to supersaturated conditions and drive calcium carbonate precipitation. This sedimentary calcium carbonate is often called `authigenic carbonate', and is found in the form of cements and disseminated crystals within the marine sedimentary pile. As this precipitation of this calcium carbonate is microbially mediated, identifying authigenic carbonate within the geological record and understanding what information its geochemical and/or isotopic signature may hold is key for understanding its importance and what information it may contain past life. However, the modern controls on authigenic carbonate precipitation remain enigmatic because the myriad of microbially mediated reactions occurring within sediments both directly and indirectly impact the proton balance. In this submission we present data from 25 ocean sediment cores spanning the globe where we explore the deviation from the stoichiometrically predicted relationships among alkalinity, calcium and sulfate concentrations. In theory for every mol of organic carbon reduced by sulfate, two mol of alkalinity is produced, and to precipitate subsurface calcium carbonate one mol of calcium is used to consume two mol of alkalinity. We use this data with a model to explore changes in carbonate saturation state with depth below the seafloor. Alkalinity changes in the subsurface are poorly correlated with changes in calcium concentrations, however calcium concentrations are directly and tightly coupled to changes in sulfate concentrations in all studied sites. This suggests a direct role for sulfate reducing bacteria in the precipitation of subsurface carbonate cements.

  6. Influence of drinking water treatments on chlorine dioxide consumption and chlorite/chlorate formation.

    PubMed

    Sorlini, Sabrina; Gialdini, Francesca; Biasibetti, Michela; Collivignarelli, Carlo

    2014-05-01

    Disinfection is the last treatment stage of a Drinking Water Treatment Plant (DWTP) and is carried out to maintain a residual concentration of disinfectant in the water distribution system. Chlorine dioxide (ClO2) is a widely used chemical employed for this purpose. The aim of this work was to evaluate the influence of several treatments on chlorine dioxide consumption and on chlorite and chlorate formation in the final oxidation/disinfection stage. A number of tests was performed at laboratory scale employing water samples collected from the DWTP of Cremona (Italy). The following processes were studied: oxidation with potassium permanganate, chlorine dioxide and sodium hypochlorite, coagulation/flocculation with ferric chloride and aluminum sulfate, filtration and adsorption onto activated carbon. The results showed that the chlorine dioxide demand is high if sodium hypochlorite or potassium permanganate are employed in pre-oxidation. On the other hand, chlorine dioxide leads to the highest production of chlorite and chlorate. The coagulation/flocculation process after pre-oxidation shows that chlorine dioxide demand decreases if potassium permanganate is employed as an oxidant, both with ferric chloride and aluminum sulfate. Therefore, the combination of these processes leads to a lower production of chlorite and chlorate. Aluminum sulfate is preferable in terms of the chlorine dioxide demand reduction and minimization of the chlorite and chlorate formation. Activated carbon is the most effective solution as it reduced the chlorine dioxide consumption by about 50% and the DBP formation by about 20-40%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Involvement of UDP-Glucuronosyltransferases and Sulfotransferases in the Excretion and Tissue Distribution of Resveratrol in Mice

    PubMed Central

    Böhmdorfer, Michaela; Szakmary, Akos; Schiestl, Robert H.; Vaquero, Javier; Riha, Juliane; Brenner, Stefan; Thalhammer, Theresia; Szekeres, Thomas; Jäger, Walter

    2017-01-01

    Resveratrol is a naturally occurring polyphenolic compound with various pharmacological activities. It is unknown whether the expression of metabolizing enzymes correlates with resveratrol levels in organs and tissues. Therefore, we investigated the metabolism and tissue distribution of resveratrol in mice and assessed its association with the expression of UDP-glucuronosyltransferase (Ugt) and sulfotransferase (Sult) genes. Plasma, urine, feces, and various organs were analyzed using high-performance liquid chromatography at up to 8 h after intragastric resveratrol administration. The metabolism of resveratrol was pronounced, leading to the formation of resveratrol glucuronides and sulfates. Concentrations of resveratrol and its metabolites were high in the gastrointestinal organs, urine, and feces, but low in the liver and kidneys. In lung, heart, thymus, and brain tissues, parent resveratrol levels exceeded the sulfate and glucuronide concentrations. The formation of resveratrol conjugates correlated with the expression of certain Ugt and Sult genes. Reverse transcription quantitative PCR (RT-qPCR) analysis revealed high mRNA expression of Ugt1a1 and Ugt1a6a in the liver, duodenum, jejunum, ileum, and colon, leading to high concentrations of resveratrol-3-O-glucuronide in these organs. Strong correlations of resveratrol-3-O-sulfate and resveratrol-3-O-4′-O-disulfate formation with Sult1a1 mRNA expression were also observed, particularly in the liver and colon. In summary, our data revealed organ-specific expression of Sults and Ugts in mice that strongly affects resveratrol concentrations; this may also be predictive in humans following oral uptake of dietary resveratrol. PMID:29231856

  8. Alterations of lead speciation by sulfate from addition of flue gas desulfurization gypsum (FGDG) in two contaminated soils

    EPA Science Inventory

    This is the first study to evaluate the potential application of FGDG as an in situ Pb stabilizer in contaminated soils with two different compositions and to explain the underlying mechanisms. A smelter Pb contaminated soil (SM-soil), rich in ferrihydrite bound Pb (FH-Pb), ceru...

  9. Quantification of Phenol, Phenyl Glucuronide, and Phenyl Sulfate in Blood of Unanesthetized Rainbow Trout by On-line Microdialysis Sampling

    EPA Science Inventory

    In this study we have developed a novel method to estimate in vivo rates of metabolism in unanesthetized fish. This method provides a basis for evaluating the accuracy of in vitro-in vivo metabolism extrapolations. As such, this research will lead to improved risk assessments f...

  10. Combustion system processes leading to corrosive deposits

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Rosner, D. E.

    1981-01-01

    Degradation of turbine engine hot gas path components by high temperature corrosion can usually be associated with deposits even though other factors may also play a significant role. The origins of the corrosive deposits are traceable to chemical reactions which take place during the combustion process. In the case of hot corrosion/sulfidation, sodium sulfate was established as the deposited corrosive agent even when none of this salt enters the engine directly. The sodium sulfate is formed during the combustion and deposition processes from compounds of sulfur contained in the fuel as low level impurities and sodium compounds, such as sodium chloride, ingested with intake air. In other turbine and power generation situations, corrosive and/or fouling deposits can result from such metals as potassium, iron, calcium, vanadium, magnesium, and silicon.

  11. Stratospheric Heterogeneous Chemistry and Microphysics: Model Development, Validation and Applications

    NASA Technical Reports Server (NTRS)

    Turco, Richard P.

    1996-01-01

    The objectives of this project are to: define the chemical and physical processes leading to stratospheric ozone change that involve polar stratospheric clouds (PSCS) and the reactions occurring on the surfaces of PSC particles; study the formation processes, and the physical and chemical properties of PSCS, that are relevant to atmospheric chemistry and to the interpretation of field measurements taken during polar stratosphere missions; develop quantitative models describing PSC microphysics and heterogeneous chemical processes; assimilate laboratory and field data into these models; and calculate the extent of chemical processing on PSCs and the impact of specific microphysical processes on polar composition and ozone depletion. During the course of the project, a new coupled microphysics/physical-chemistry/ photochemistry model for stratospheric sulfate aerosols and nitric acid and ice PSCs was developed and applied to analyze data collected during NASA's Arctic Airborne Stratospheric Expedition-II (AASE-II) and other missions. In this model, detailed treatments of multicomponent sulfate aerosol physical chemistry, sulfate aerosol microphysics, polar stratospheric cloud microphysics, PSC ice surface chemistry, as well as homogeneous gas-phase chemistry were included for the first time. In recent studies focusing on AASE measurements, the PSC model was used to analyze specific measurements from an aircraft deployment of an aerosol impactor, FSSP, and NO(y) detector. The calculated results are in excellent agreement with observations for particle volumes as well as NO(y) concentrations, thus confirming the importance of supercooled sulfate/nitrate droplets in PSC formation. The same model has been applied to perform a statistical study of PSC properties in the Northern Hemisphere using several hundred high-latitude air parcel trajectories obtained from Goddard. The rates of ozone depletion along trajectories with different meteorological histories are presently being systematically evaluated to identify the principal relationships between ozone loss and aerosol state. Under this project, we formulated a detailed quantitative model that predicts the multicomponent composition of sulfate aerosols under stratospheric conditions, including sulfuric, nitric, hydrochloric, hydrofluoric and hydrobromic acids. This work defined for the first time the behavior of liquid ternary-system type-1b PSCS. The model also allows the compositions and reactivities of sulfate aerosols to be calculated over the entire range of environmental conditions encountered in the stratosphere (and has been incorporated into a trajectory/microphysics model-see above). Important conclusions that derived from this work over the last few years include the following: the HNO3 content of liquid-state aerosols dominate PSCs below about 195 K; the freezing of nitric acid ice from sulfate aerosol solutions is likely to occur within a few degrees K of the water vapor frost point; the uptake and reactions of HCl in liquid aerosols is a critical component of PSC heterogeneous chemistry. In a related application of this work, the inefficiency of chlorine injection into the stratosphere during major volcanic eruptions was explained on the basis of nucleation of sulfuric acid aerosols in rising volcanic plumes leading to the formation of supercooled water droplets on these aerosols, which efficiently scavenges HCl via precipitation.

  12. Assessment of water resources in lead-zinc mined areas in Cherokee County, Kansas, and adjacent areas

    USGS Publications Warehouse

    Spruill, Timothy B.

    1984-01-01

    A study was conducted to evaluate water-resources problems related to abandoned lead and zinc mines in Cherokee County, Kansas, and adjacent areas in Missouri and Oklahoma. Past mining activities have caused changes in the hydrogeology of the area. Lead and zinc mining has caused discontinuities and perforations in the confining shale west of the Pennsylvanian-Mississippian geologic contact (referred to as the western area), which have created artificial ground-water recharge and discharge areas. Recharge to the shallow aquifer (rocks of Mississippian age) through collapses, shafts, and drill holes in the shale has caused the formation of a groundwater "mound" in the vicinity of the Picher Field in Kansas and Oklahoma. Discharge of mine-contaminated ground water to Tar Creek occurs in'Oklahoma from drill holes and shafts where the potentiometric surface of the shallow aquifer is above the land surface. Mining of ore in the shallow aquifer has resulted in extensive fracturing and removal of material, which has created highly transmissive zones and voids and increased ground-water storage properties of the aquifer. In the area east of the Pennsylvanian-Mississippian geologic contact (referred to as the eastern area), fractured rock and tailings on the land surface increased the amount of water available for infiltration to the shallow aquifer; in the western area, tailings on the impermeable shale created artificial, perched aquifer systems that slowly drain to surface streams.Pumping of the deep aquifer (rocks of Cambrian and Ordovician age) by towns and industries, which developed as a result of the mining industry, has resulted in a potential for downward movement of water from the shallow aquifer. The potential is greatest in Ottawa County, Oklahoma. Because of the large volume of water that may be transported from the shallow to the deep aquifer, open drill holes or casings present the greatest contamination hazard to water supplies in the deep aquifer.Mining allowed oxidation of ore deposits which, on saturation with water, resulted in poor-quality water that generally contains large concentrations of sulfate and trace metals. Water from mines in the eastern area contained dissolved-solids concentrations of less than 500 mg/L (milligrams per liter), a median pH of 3.9, sulfate concentrations that ranged between 98 and 290 mg/L, and median concentrations for zinc of 37,600 pg/L (micrograms per liter), for lead of 240 pg/L, for cadmium of 180 ug/L, for iron of 70 pg/L, for manganese of 240 pg/L, and for silica of 15 mg/L. Water from mines in the western area contained dissolved-solids concentrations of generally more than 500 mg/L, a median pH of 6.8, sulfate concentrations that ranged between 170 and 2,150 mg/L, and median concentrations for zinc of 3,200 pg/L, for lead of 0 pg/L (minimum detection limit is 10 pg/L), for cadmium of 6 pg/L, for iron of 840 pg/L, for manganese of 440 ug/L, and for silica of 11 mg/L.No conclusive evidence of lateral migration of water from the mines into domestic well-water supplies in the shallow aquifer was found in the study area in Kansas. Analyses of water from public-supply wells tapping the deep aquifer did not indicate contamination with trace metals, although chemical analyses from four of six wells exhibited increasing trends through time in sulfate concentrations. These increases probably reflect localized leakage of water from the shallow aquifer along corroded or leaky well casings.Effects of abandoned lead and zinc mines on tributaries of the Spring River in the eastern area are most severe in Short Creek. Compared with water samples from three other major streams in the eastern area, a sample collected from Short Creek, 2 miles west of Galena, Kansas, during August 1981, contained the largest concentrations of dissolved sulfate (240 mg/L), zinc (25,000 pg/L), cadmium (170 pg/L), manganese (1,700 ug/L), and the lowest pH (6.0). Concentrations of these constituents are due primarily to inflow of ground water from the breccia, mines, and to seepage from chat piles in the Short Creek basin. The largest concentrations of zinc and manganese in the Spring River during August 1981, were observed in analyses of samples collected below Short Creek. In the western area, drainage from tailings, which act as perched aquifers on the impervious Pennsylvanian shales, appeared to have little effect on water quality in Willow Creek during low-flow conditions but caused larger concentrations of dissolved zinc just after a wet period during June 1981. Drainage from tailings cause large concentrations of sulfate, zinc, and cadmium in Tar Creek in Kansas. Compared with four other major streams in the western area in Kansas, Tar Creek contained the largest low-flow concentrations of sulfate (910 mg/L), zinc (5,800 pg/L), and cadmium (40ug/L).

  13. Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions

    NASA Astrophysics Data System (ADS)

    Orcutt, B.; Meile, C.

    2008-11-01

    Anaerobic oxidation of methane (AOM) is the main process responsible for the removal of methane generated in Earth's marine subsurface environments. However, the biochemical mechanism of AOM remains elusive. By explicitly resolving the observed spatial arrangement of methanotrophic archaea and sulfate reducing bacteria found in consortia mediating AOM, potential intermediates involved in the electron transfer between the methane oxidizing and sulfate reducing partners were investigated via a consortium-scale reaction transport model that integrates the effect of diffusional transport with thermodynamic and kinetic controls on microbial activity. Model simulations were used to assess the impact of poorly constrained microbial characteristics such as minimum energy requirements to sustain metabolism and cell specific rates. The role of environmental conditions such as the influence of methane levels on the feasibility of H2, formate and acetate as intermediate species, and the impact of the abundance of intermediate species on pathway reversal were examined. The results show that higher production rates of intermediates via AOM lead to increased diffusive fluxes from the methane oxidizing archaea to sulfate reducing bacteria, but the build-up of the exchangeable species can cause the energy yield of AOM to drop below that required for ATP production. Comparison to data from laboratory experiments shows that under the experimental conditions of Nauhaus et al. (2007), none of the potential intermediates considered here is able to support metabolic activity matching the measured rates.

  14. Biochemical passive reactors for treatment of acid mine drainage: Effect of hydraulic retention time on changes in efficiency, composition of reactive mixture, and microbial activity.

    PubMed

    Vasquez, Yaneth; Escobar, Maria C; Neculita, Carmen M; Arbeli, Ziv; Roldan, Fabio

    2016-06-01

    Biochemical passive treatment represents a promising option for the remediation of acid mine drainage. This study determined the effect of three hydraulic retention times (1, 2, and 4 days) on changes in system efficiency, reactive mixture, and microbial activity in bioreactors under upward flow conditions. Bioreactors were sacrificed in the weeks 8, 17 and 36, and the reactive mixture was sampled at the bottom, middle, and top layers. Physicochemical analyses were performed on reactive mixture post-treatment and correlated with sulfate-reducing bacteria and cellulolytic and dehydrogenase activity. All hydraulic retention times were efficient at increasing pH and alkalinity and removing sulfate (>60%) and metals (85-99% for Fe(2+) and 70-100% for Zn(2+)), except for Mn(2+). The longest hydraulic retention time (4 days) increased residual sulfides, deteriorated the quality of treated effluent and negatively impacted sulfate-reducing bacteria. Shortest hydraulic retention time (1 day) washed out biomass and increased input of dissolved oxygen in the reactors, leading to higher redox potential and decreasing metal removal efficiency. Concentrations of iron, zinc and metal sulfides were high in the bottom layer, especially with 2 day of hydraulic retention time. Sulfate-reducing bacteria, cellulolytic and dehydrogenase activity were higher in the middle layer at 4 days of hydraulic retention time. Hydraulic retention time had a strong influence on overall performance of passive reactors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Sulfur capture under periodically changing oxidizing and reducing conditions in PFBC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zevenhoven, R.; Yrjas, P.; Hupa, M.

    1999-07-01

    During in situ sulfur capture with a calcium-based sorbent in fluidized bed combustion (FBC), a temperature optimum is found, at atmospheric pressure, at {approximately}850 C. The repeated decomposition of sulfated limestone during stages where the gas atmosphere surrounding the sorbent particle is not oxidizing but reducing has been identified to explain this maximum. Under pressurized (PFBC) conditions, an additional aspect is the direct conversion of calcium carbonate (CaCO{sub 3}) without the intermediate calcium oxide (CaO) due to the partial pressure of carbon dioxide (CO{sub 2}). In this work it was evaluated how stable calcium sulfate (CaSO{sub 4}) is in amore » gas atmosphere that periodically changes from oxidizing to reducing and vice versa. Atmospheric as well as elevated pressures are considered. CaO or CaCO{sub 3}, and/or calcium sulfide (CaS) are formed during the reducing stage. Using a pressurized thermogravimetric reactor (PTGR) a limestone was periodically sulfated under oxidizing conditions and decomposed under reducing conditions with carbon monoxide (CO), or with CO + H{sub 2} (hydrogen). Experiments at 1 bar and 15 bar were carried out, at temperatures from 850 C to 950 C, at C O and CO + H{sub 2} concentrations up to 4%-vol. The experimental data were modeled using simple first order (parallel) reaction schemes that allowed for sorbent structure changes. This gave rate parameters for the sulfation and the decomposition reactions, and identified the decomposition products. It was found that 1 bar, CO + H{sub 2} gives a higher reduction of CaSO{sub 4} than CO, at the same total concentration. The rate of decomposition increases faster with temperature than the sulfation, explaining the sulfation efficiency maximum mentioned above. At 15 bar, a different picture is seen. The reductive decomposition rate as well as the sulfation rate are slower, with CO as well as CO with small amounts of H{sub 2} as the reducing species. There is a significant effect of the water which is present in the gas at higher concentrations than H{sub 2}. Thermodynamics indicate that this leads to the decomposition of CaS, releasing H{sub 2}S.« less

  16. Transport of steroid 3-sulfates and steroid 17-sulfates by the sodium-dependent organic anion transporter SOAT (SLC10A6).

    PubMed

    Grosser, Gary; Bennien, Josefine; Sánchez-Guijo, Alberto; Bakhaus, Katharina; Döring, Barbara; Hartmann, Michaela; Wudy, Stefan A; Geyer, Joachim

    2018-05-01

    The sodium-dependent organic anion transporter SOAT/Soat shows highly specific transport activity for sulfated steroids. SOAT substrates identified so far include dehydroepiandrosterone sulfate, 16α-hydroxydehydroepiandrosterone sulfate, estrone-3-sulfate, pregnenolone sulfate, 17β-estradiol-3-sulfate, and androstenediol sulfate. Apart from these compounds, many other sulfated steroids occur in mammals. Therefore, we aimed to expand the substrate spectrum of SOAT and analyzed the SOAT-mediated transport of eight different sulfated steroids by combining in vitro transport experiments in SOAT-transfected HEK293 cells with LC-MS/MS analytics of cell lysates. In addition, we aimed to better understand the structural requirements for SOAT substrates and so selected structural pairs varying only at specific positions: 3α/3β-sulfate, 17α/17β-sulfate, mono-sulfate/di-sulfate, and 17α-hydroxylation. We found significant and sodium-dependent SOAT-mediated transport of 17α-hydroxypregnenolone sulfate, 17β-estradiol-17-sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and 5α-dihydrotestosterone sulfate. However, 17β-estradiol-3,17-disulfate was not transported by SOAT. SOAT substrates from the group of sulfated steroids are characterized by a planar and lipophilic steroid backbone in trans-trans-trans conformation of the rings and a negatively charged mono-sulfate group at positions 3' or 17' with flexibility for α- or β- orientation. Furthermore, 5α-reduction, 16α-hydroxylation, and 17α-hydroxylation are acceptable for SOAT substrate recognition, whereas addition of a second negatively charged sulfate group seems to abolish substrate binding to SOAT, and so 17β-estradiol-3,17-disulfate is not transported by SOAT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Influence of hydronium, sulfate, chloride and other non-carbonate ions on hydrogen generation by anaerobic corrosion of granular cast iron.

    PubMed

    Ruhl, Aki S; Jekel, Martin

    2013-10-15

    Permeable reactive barriers are successfully applied for the removal of various contaminants. The concomitant reduction of hydrogen ions and the subsequent formation of hydrogen gas by anaerobic corrosion lead to decreased pore volume filled with water and thus residence times, so called gas clogging. Long term column experiments were conducted to elucidate the impact of ubiquitous water constituents on the formation of hydrogen gas and potential passivation due to corrosion products. The collected gas volumes revealed a relation to the hydronium concentration (pH) but were only slightly increased in the presence of chloride and sulfate and not significantly influenced in the presence of phosphate, silicate, humic acid and ammonium compared to deionized water. Significant gas volumes within the reactive filling were verified by gravimetry. The presence of nitrate completely eliminated hydrogen formation by competition for electrons. Solid phase analyses revealed that neither chloride nor sulfate was incorporated in corrosion products in concentrations above 0.1 weight percent, and they did not alter the formation of mainly magnetite in comparison to deionized water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Chemical analyses of ground-water samples from the Rio Grande Valley in the vicinity of Albuquerque, New Mexico, October 1993 through January 1994

    USGS Publications Warehouse

    Wilkins, D.W.; Schlottmann, J.L.; Ferree, D.M.

    1996-01-01

    A study was conducted to investigate general ground-water- quality conditions and contaminant locations in the Rio Grande Valley in the vicinity of Albuquerque, New Mexico. Water samples from 36 observation wells in 12 well nests were analyzed. The well nests are located along three roads near the Rio Grande--two well nests near Paseo del Norte, five well nests near Monta?o Road, and five well nests near Rio Bravo Boulevard. The water samples were collected from October 19, 1993, through January 18, 1994. Water-quality types by major-ion composition were calcium bicarbonate (found in most samples), sodium sulfate, calcium sulfate, and calcium sulfate chloride. Nutrients were detected in all but one sample. Ammonia was detected in 34 samples, nitrite in 4 samples, and nitrate in 17 samples. Orthophosphate was detected in 31 samples. Organic carbon was detected in all samples collected. The trace elements arsenic and barium were detected in all samples and zinc in 31 samples. Fourteen samples contained detectable copper. Cadmium was detected in one sample, chromium in two samples, lead in four samples, and selenium in two samples. Mercury and silver were not detected.

  19. The agmatine-containing poly(amidoamine) polymer AGMA1 binds cell surface heparan sulfates and prevents attachment of mucosal human papillomaviruses.

    PubMed

    Cagno, Valeria; Donalisio, Manuela; Bugatti, Antonella; Civra, Andrea; Cavalli, Roberta; Ranucci, Elisabetta; Ferruti, Paolo; Rusnati, Marco; Lembo, David

    2015-09-01

    The agmatine-containing poly(amidoamine) polymer AGMA1 was recently shown to inhibit the infectivity of several viruses, including human papillomavirus 16 (HPV-16), that exploit cell surface heparan sulfate proteoglycans (HSPGs) as attachment receptors. The aim of this work was to assess the antiviral activity of AGMA1 and its spectrum of activity against a panel of low-risk and high-risk HPVs and to elucidate its mechanism of action. AGMA1 was found to be a potent inhibitor of mucosal HPV types (i.e., types 16, 31, 45, and 6) in pseudovirus-based neutralization assays. The 50% inhibitory concentration was between 0.34 μg/ml and 0.73 μg/ml, and no evidence of cytotoxicity was observed. AGMA1 interacted with immobilized heparin and with cellular heparan sulfates, exerting its antiviral action by preventing virus attachment to the cell surface. The findings from this study indicate that AGMA1 is a leading candidate compound for further development as an active ingredient of a topical microbicide against HPV and other sexually transmitted viral infections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Attenuation of contaminants of coal pile leachate by interaction with subsoil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghuman, G.S.; Denham, M.E.

    1996-09-01

    Increased use of coal as energy source has resulted in its greater outdoor storage at electrical generation sites. Coal pile runoff (CPR) with its high concentrations of Fe, Al and sulfate leaches into subsoil and may adversely affect the quality of groundwater. During the summer, 1995, this study was conducted to determine the removal of CPR contaminants by subsoil around D-area electric plant at Savannah River Site (SRS). Groundwater samples from five monitoring wells were analyzed for physical and chemical parameters. Hydrolab Surveyor, TOC Analyzer, Dionex Ion Chromatograph and ICP-ES instruments were used for analysis. Results showed appreciable removal ofmore » CPR contaminants, sulfate, Fe, Al, Cr, Mn and Ni by the upper subsoil near the pile. The reductions in the concentrations of major contaminants in the distant wells relative to the near wells were from 12,947 to 1293 mg/L for sulfate, from 3.138 to 42 mg/L for Fe, and from 593 to 119 mg/L for Al. The study revealed the capacity of soil system to retain toxic elements of CPR leachate, which may lead to remedial actions.« less

  1. Effect of sulfur supplements on cellulolytic rumen micro-organisms and microbial protein synthesis in cattle fed a high fibre diet.

    PubMed

    McSweeney, C S; Denman, S E

    2007-11-01

    To examine the effect of sulfur-containing compounds on the growth of anaerobic rumen fungi and the fibrolytic rumen bacteria Ruminococcus albus, Ruminococcus flavefaciens and Fibrobacter succinogenes in pure culture and within the cattle rumen. The effect of two reduced sulfur compounds, 3-mercaptopropionic acid (MPA) or 3-mercapto-1-propanesulfonic acid as the sole S source on growth of pure fibroyltic fungal and bacterial cultures showed that these compounds were capable of sustaining growth. An in vivo trial was then conducted to determine the effect of sulfur supplements (MPA and sodium sulfate) on microbial population dynamics in cattle fed the roughage Dichanthium aristatum. Real-time PCR showed significant increases in fibrolytic bacterial and fungal populations when cattle were supplemented with these compounds. Sulfate supplementation leads to an increase in dry matter intake without a change in whole tract dry matter digestibility. Supplementation of low S-containing diets with either sodium sulfate or MPA stimulates microbial growth with an increase in rumen microbial protein supply to the animal. Through the use of real-time PCR monitoring, a better understanding of the effect of S supplementation on discrete microbial populations within the rumen is provided.

  2. Impact of Aeolian Dry Deposition of Reactive Iron Minerals on Sulfur Cycling in Sediments of the Gulf of Aqaba

    PubMed Central

    Blonder, Barak; Boyko, Valeria; Turchyn, Alexandra V.; Antler, Gilad; Sinichkin, Uriel; Knossow, Nadav; Klein, Rotem; Kamyshny, Alexey

    2017-01-01

    The Gulf of Aqaba is an oligotrophic marine system with oxygen-rich water column and organic carbon-poor sediments (≤0.6% at sites that are not influenced by anthropogenic impact). Aeolian dust deposition from the Arabian, Sinai, and Sahara Deserts is an important source of sediment, especially at the deep-water sites of the Gulf, which are less affected by sediment transport from the Arava Desert during seasonal flash floods. Microbial sulfate reduction in sediments is inferred from the presence of pyrite (although at relatively low concentrations), the presence of sulfide oxidation intermediates, and by the sulfur isotopic composition of sulfate and solid-phase sulfides. Saharan dust is characterized by high amounts of iron minerals such as hematite and goethite. We demonstrated, that the resulting high sedimentary content of reactive iron(III) (hydr)oxides, originating from this aeolian dry deposition of desert dust, leads to fast re-oxidation of hydrogen sulfide produced during microbial sulfate reduction and limits preservation of reduced sulfur in the form of pyrite. We conclude that at these sites the sedimentary sulfur cycle may be defined as cryptic. PMID:28676799

  3. Glycosaminoglycan-dependent restriction of FGF diffusion is necessary for lacrimal gland development

    PubMed Central

    Qu, Xiuxia; Pan, Yi; Carbe, Christian; Powers, Andrea; Grobe, Kay; Zhang, Xin

    2012-01-01

    Glycosaminoglycans (GAGs) play a central role in embryonic development by regulating the movement and signaling of morphogens. We have previously demonstrated that GAGs are the co-receptors for Fgf10 signaling in the lacrimal gland epithelium, but their function in the Fgf10-producing periocular mesenchyme is still poorly understood. In this study, we have generated a mesenchymal ablation of UDP-glucose dehydrogenase (Ugdh), an essential biosynthetic enzyme for GAGs. Although Fgf10 RNA is expressed normally in the periocular mesenchyme, Ugdh mutation leads to excessive dispersion of Fgf10 protein, which fails to elicit an FGF signaling response or budding morphogenesis in the presumptive lacrimal gland epithelium. This is supported by genetic rescue experiments in which the Ugdh lacrimal gland defect is ameliorated by constitutive Ras activation in the epithelium but not in the mesenchyme. We further show that lacrimal gland development requires the mesenchymal expression of the heparan sulfate N-sulfation genes Ndst1 and Ndst2 but not the 6-O and 2-O-sulfation genes Hs6st1, Hs6st2 and Hs2st. Taken together, these results demonstrate that mesenchymal GAG controls lacrimal gland induction by restricting the diffusion of Fgf10. PMID:22745308

  4. Corrosive microenvironments at lead solder surfaces arising from galvanic corrosion with copper pipe.

    PubMed

    Nguyen, Caroline K; Stone, Kendall R; Dudi, Abhijeet; Edwards, Marc A

    2010-09-15

    As stagnant water contacts copper pipe and lead solder (simulated soldered joints), a corrosion cell is formed between the metals in solder (Pb, Sn) and the copper. If the resulting galvanic current exceeds about 2 μA/cm(2), a highly corrosive microenvironment can form at the solder surface, with pH < 2.5 and chloride concentrations at least 11 times higher than bulk water levels. Waters with relatively high chloride tend to sustain high galvanic currents, preventing passivation of the solder surface, and contributing to lead contamination of potable water supplies. The total mass of lead corroded was consistent with predictions based on the galvanic current, and lead leaching to water was correlated with galvanic current. If the concentration of sulfate in the water increased relative to chloride, galvanic currents and associated lead contamination could be greatly reduced, and solder surfaces were readily passivated.

  5. PROCESS OF PREPARING A FLUORIDE OF TETRAVLENT URANIUM

    DOEpatents

    Wheelwright, E.J.

    1959-02-17

    A method is described for producing a fluoride salt pf tetravalent uranium suitable for bomb reduction to metallic uranium. An aqueous solution of uranyl nitrate is treated with acetic acid and a nitrite-suppressor and then contacted with metallic lead whereby uranium is reduced from the hexavalent to the tetravalent state and soluble lead acetate is formed. Sulfate ions are then added to the solution to precipitate and remove the lead values. Hydrofluoric acid and alkali metal ions are then added causing the formation of an alkali metal uranium double-fluoride in which the uranium is in the tetravalent state. After recovery, this precipitate is suitable for using in the limited production of metallic uranium.

  6. Manufacturing and operational issues with lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Rand, D. A. J.; Boden, D. P.; Lakshmi, C. S.; Nelson, R. F.; Prengaman, R. D.

    An expert panel replies to questions on lead-acid technology and performance asked by delegates to the Ninth Asian Battery Conference. The subjects are as follows. Grid alloys: effects of calcium and tin levels on microstructure, corrosion, mechanical and electrochemical properties; effect of alloy-fabrication process on mechanical strength and corrosion resistance; low dross-make during casting of lead-calcium-tin alloys; future of book-mould casting; effect of increasing levels of silver; stability of continuously processed grids at high temperature. Negative-plate expanders: function of lignosulfonates and barium sulfate; benefits of pre-blended expanders; optimum expander formulations. Valve-regulated batteries: effect of oxygen cycle; optimum methods for float charging; charging and deep-cycle lifetimes; reliability testing.

  7. Lead-Free Sn-Ce-O Composite Coating on Cu Produced by Pulse Electrodeposition from an Aqueous Acidic Sulfate Electrolyte

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Das, Karabi; Das, Siddhartha

    2017-10-01

    Pulse-electrodeposited Sn-Ce-O composite solder coatings were synthesized on a Cu substrate from an aqueous acidic solution containing stannous sulfate (SnSO4·3H2O), sulfuric acid (H2SO4), and Triton X-100 as an additive. The codeposition was achieved by adding nano-cerium oxide powder in varying concentrations from 5 g/L to 20 g/L into the electrolytic bath. Microstructural characterization was carried out using x-ray diffraction (XRD), scanning electron microscopy, and transmission electron microscopy. The XRD analysis showed that the deposits consist mainly of tetragonal β (Sn) with reduced cerium oxide species. The composite coatings thus obtained exhibit a smaller grain size, possess higher microhardness, and a lower melting point than the monolithic Sn coating. The electrical resistivity of the developed composites increases, however, but lies within the permissible limits for current lead-free solder applications. Also, an optimum balance of properties in terms of microhardness, adhesion, melting point and resistivity can be obtained with 0.9 wt.% cerium oxide in the Sn matrix, which enables potential applications in solder joints and packaging.

  8. Ion chromatography in the manufacture of multilayer circuit boards

    NASA Astrophysics Data System (ADS)

    Smith, R. E.

    1987-10-01

    Ion chromatography (IC) has proven useful in analyzing chemical solutions used in the manufacture of multilayer circuit boards. IC provides results on ions not expected in the production solutions. Thus, solution contamination and breakdown products can be monitored in every phase of the circuit board manufacturing. During the first phase, epoxy laminates experience an etchback, first in chromic acid, which can be analyzed for trace chloride and sulfate, then in ammonium bifluoride/HCl, which can be analyzed for fluoride and chloride. Following a wet blasting to roughen up the surface, 20 mu in. of copper are deposited using an electroless bath. Again, IC is applicable for monitoring formate, tartarate, and sulfate levels. Next, an acid copper bath is used to electroplate the through holes with 0.001 in. of ductile copper. This bath is analyzed for trace chloride. Photoimaging is then performed, and the organic solvents used can be assayed for trace ionic chloride. Finally, a fluoroboric acid-based tin-lead bath is used to deposit a solderable alloy. This bath is analyzed for total fluoroborate, tin, and lead. In addition, mobile phase ion chromatography (MPIC) is used to monitor the nonionic organic brighteners in the baths.

  9. Ion chromatography in the manufacture of multilayer circuit boards

    NASA Astrophysics Data System (ADS)

    Smith, Robert E.

    1990-01-01

    Ion chromatography (IC) has proven useful in analyzing chemical solutions used in the manufacture of multilayer circuit boards. Unlike other chemical quantification techniques, IC provides results on ions not expected in the production solutions. Thus, solution contamination and break-down products can be monitored in every phase of the circuit board manufacturing. During the first phase, epoxy laminates experience an etchback, first in chromic acid, which can be analyzed for trace chloride and sulfate, then in ammonium bifluoride/HCl, which can be analyzed for fluoride and chloride. Following a wet-blasting to roughen up the surface, 20 microinches of copper are deposited using an electroless bath. Again, IC is applicable for monitoring formate, tartarate, and sulfate levels. Next, an acid copper bath is used to electroplate the through holes with 0.001 inches of ductile copper. This bath is analyzed for trace chloride. Photoimaging is then performed, and the organic solvents used can be assayed for trace ionic chloride. Finally, a fluoroboric acid-based tin-lead bath is used to deposit a solderable alloy. This bath is analyzed for fluoroborate, tin, and lead. In addition, mobile phase ion chromatography (MPIC) is used to monitor the nonionic organic brighteners in the baths.

  10. Impacts of East Asian Sulfate Aerosols on Local and Remote Climate

    NASA Astrophysics Data System (ADS)

    Bartlett, R. E.; Bollasina, M. A.

    2017-12-01

    Anthropogenic aerosols exert significant climate forcing, which increases with emissions following trends of growing population and industry. Globally, aerosols cause a net cooling, counteracting greenhouse gas warming; however, regional impacts vary since emissions are spatially and temporally heterogeneous. While European and North American emissions have decreased in recent decades, Asian, particularly East Asian, emissions continued to rise into the 21st century. In addition to links between Asian anthropogenic aerosols and significant local climate impacts - for example, changes to the Asian monsoon system - studies have also shown influences on remote climate. Sulfate aerosols are particularly important for East Asia, remaining at constant levels higher than column burdens of other aerosol species. If a concerted effort - as laid out by government policies aiming to improve air quality - is made, the effects of anthropogenic aerosols (due to their short atmospheric lifetime) could be quickly reversed. Thus, it is vital to understand the climate impact aerosols have had up to now to aid in determining what will happen in the future. We use transient climate modelling experiments with the Community Earth System Model to investigate the impacts of East Asian sulfate aerosols in the present day compared to 1950 (i.e. before rapid industrialisation in this region), focusing on dynamical mechanisms leading to the occurrence of such impacts, and how their influence can spread to remote regions. We find, in addition to significant monsoon impacts, noticeable shifts in large-scale circulation features such as the ITCZ and the Pacific Walker cell. Through diabatic heating responses, changes to upper-level atmospheric dynamics are evident, leading to downstream effects on surface climate - for example, surface cooling over Europe. Understanding of these impacts is vital when considering how the good intentions of air quality improvement might inadvertently have significant impacts on future climate on regional scales.

  11. Geochemical signatures of thermochemical sulfate reduction in controlled hydrous pyrolysis experiments

    USGS Publications Warehouse

    Zhang, T.; Ellis, G.S.; Walters, C.C.; Kelemen, S.R.; Wang, K.-s.; Tang, Y.

    2008-01-01

    A series of gold tube hydrous pyrolysis experiments was conducted in order to investigate the effect of thermochemical sulfate reduction (TSR) on gas generation, residual saturated hydrocarbon compositional alteration, and solid pyrobitumen formation. The intensity of TSR significantly depends on the H2O/MgSO4 mole ratio, the smaller the ratio, the stronger the oxidizing conditions. Under highly oxidizing conditions (MgSO4/hydrocarbon wt/wt 20/1 and hydrocarbon/H2O wt/wt 1/1), large amounts of H2S and CO2 are generated indicating that hydrocarbon oxidation coupled with sulfate reduction is the dominant reaction. Starting with a mixture of C21-C35 n-alkanes, these hydrocarbons are consumed totally at temperatures below the onset of hydrocarbon thermal cracking in the absence of TSR (400 ??C). Moreover, once the longer chain length hydrocarbons are oxidized, secondarily formed hydrocarbons, even methane, are oxidized to CO2. Using whole crude oils as the starting reactants, the TSR reaction dramatically lowers the stability of hydrocarbons leading to increases in gas dryness and gas/oil ratio. While their concentrations decrease, the relative distributions of n-alkanes do not change appreciably from the original composition, and consequently, are non-diagnostic for TSR. However, distinct molecular changes related to TSR are observed, Pr/n-C17 and Ph/n-C18 ratios decrease at a faster rate under TSR compared to thermal chemical alteration (TCA) alone. TSR promotes aromatization and the incorporation of sulfur and oxygen into hydrocarbons leading to a decrease in the saturate to aromatic ratio in the residual oil and in the generation of sulfur and oxygen rich pyrobitumen. These experimental findings could provide useful geochemical signatures to identify TSR in settings where TSR has occurred in natural systems. ?? 2008 Elsevier Ltd. All rights reserved.

  12. Effects of Sulfation Level on the Desulfation Behavior of Presulfated Pt-BaO/Al2O3 Lean NOx Trap Catalysts: A Combined H2 Temperature-Programmed Reaction, in Situ Sulfur K-Edge X-ray Absorption Near-Edge Spectroscopy, X-ray Photoelectron Spectroscopy, and Time-Resolved X-ray Diffraction Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, D.H.; Hanson, J.; Szanyi, J.

    2009-04-30

    Desulfation by hydrogen of presulfated Pt (2 wt %)-BaO(20 wt %)/Al{sub 2}O{sub 3} with various sulfur loading (S/Ba = 0.12, 0.31, and 0.62) were investigated by combining H{sub 2} temperature programmed reaction (TPRX), X-ray photoelectron spectroscopy (XPS), in situ sulfur K-edge X-ray absorption near-edge spectroscopy (XANES), and synchrotron time-resolved X-ray diffraction (TR-XRD) techniques. We find that the amount of H{sub 2}S desorbed during the desulfation in the H{sub 2} TPRX experiments is not proportional to the amount of initial sulfur loading. The results of both in situ sulfur K-edge XANES and TR-XRD show that at low sulfur loadings, sulfates weremore » transformed to a BaS phase and remained in the catalyst rather than being removed as H{sub 2}S. On the other hand, when the deposited sulfur level exceeded a certain threshold (at least S/Ba = 0.31) sulfates were reduced to form H{sub 2}S, and the relative amount of the residual sulfide species in the catalyst was much less than at low sulfur loading. Unlike samples with high sulfur loading (e.g., S/Ba = 0.62), H{sub 2}O did not promote the desulfation for the sample with S/Ba of 0.12, implying that the formed BaS species originating from the reduction of sulfates at low sulfur loading are more stable to hydrolysis. The results of this combined spectroscopy investigation provide clear evidence to show that sulfates at low sulfur loadings are less likely to be removed as H{sub 2}S and have a greater tendency to be transformed to BaS on the material, leading to the conclusion that desulfation behavior of Pt-BaO/Al{sub 2}O{sub 3} lean NO{sub x} trap catalysts is markedly dependent on the sulfation levels.« less

  13. Factors Governing the Germination of Sulfate-Reducing Desulfotomaculum Endospores Involved in Oil Reservoir Souring.

    NASA Astrophysics Data System (ADS)

    Sherry, A.; Bell, E.; Cueto, G.; Suarez-Suarez, A.; Pilloni, G.; Hubert, C. R.

    2015-12-01

    Reservoir souring is caused by the activity of sulfate-reducing microorganisms (SRM) in subsurface oil reservoirs, and is often induced by seawater injection during secondary oil recovery. Souring can potentially contribute to corrosion of infrastructure, health and safety hazards to the workforce, and reduction in value by increasing refining costs associated with producing the oil resource. Souring causes annual losses in the billions of dollars to the oil industry. Endospore-forming SRM, such as Desulfotomaculum spp., are often suspected culprits in reservoir souring. Endospores can survive unfavourable conditions for long periods, yet remain poised to germinate and become active if conditions become more favourable. Factors governing endospore germination are poorly understood, but are thought to include availability of nutrients, possibly metabolic by products of other anaerobic bioprocesses, and/or variations in temperature. Most research has focused on aerobic Bacillus spp., with very few studies dedicated to spore germination among anaerobes (order Clostridiales) including the sulfate-reducing Desulfotomaculum found in anoxic subsurface petroleum reservoirs. For Desulfotomaculum spores in deep hot oil reservoirs, cold seawater introduction during secondary oil recovery may create thermal viability zones for sulfate reduction near the injection wellbore. To evaluate these processes, sulfate-containing microcosms were prepared with different marine sediments as a source of spores, and amended with organic substrates in the presence or absence of oil. Incubation at 80°C for six days was followed by a down-shift in temperature to 60°C to mimic cold seawater injection into a hot reservoir. Souring did not occur at 80°C, but commenced within hours at 60°C. Microcosms were monitored for sulfate reduction and organic acids in combination with next generation sequencing of 16S rRNA genes (Ion Torrent, Illumina MiSeq). Through a combination of high-throughput microbial DNA sequencing and geochemical process analyses we show that altered conditions in oil reservoirs during seawater flooding activates dormant Desulfotomaculum endospores, which leads to reservoir souring, and provide insights on the factors governing the germination of endospores in the deep hot biosphere.

  14. Atmospheric concentrations of particulate sulfate and nitrate in Hong Kong during 1995-2008: Impact of local emission and super-regional transport

    NASA Astrophysics Data System (ADS)

    Nie, Wei; Wang, Tao; Wang, Wenxing; Wei, Xiaolin; Liu, Qian

    2013-09-01

    The release of large amounts of sulfur dioxide (SO2) and nitrogen oxides (NOx) from the burning of fossil fuel leads to regional air pollution phenomena such as haze and acidic deposition. Despite longstanding recognition of the severity of these problems and the numerous studies conducted in China, little is known of long-term trends in particulate sulfate and nitrate and their association with changes in precursor emissions. In this study, we analyze records covering a 14-year period (1995-2008) of PM10 composition in the subtropical city of Hong Kong, situated in the rapidly developing Pearl River Delta region of southern China. A linear regression method and a Regional Kendall test are employed for trend calculations. In contrast to the decreased levels of SO2 and NOx emissions in Hong Kong, there are increasing overall trends in ambient concentrations of PM10 sulfate and PM10 nitrate, with the most obvious rise seen during 2001-2005. The percentages of sulfate and nitrate in the PM10 mass and rainwater acidity also increased. Backward trajectories are computed to help identify the origin of large-scale air masses arriving in Hong Kong. In air masses dominated by Hong Kong urban sources and ship emissions, there was no statistically significant trend for PM10 sulfate and a small increase for PM10 nitrate; however, the evident increases in PM10 sulfate and PM10 nitrate concentrations were observed in air masses originating from eastern China and are generally consistent with changes in emissions of their precursors in eastern China. Examination of PM10 mass data recorded at a pair of upwind-urban sites also indicates that long-range transport makes a large contribution (>80%) to PM10 loadings in Hong Kong. Together with our previous study on the ozone trend, these results demonstrate the important impact exerted by long-distance sources and suggest a need to consider the impact of super-regional transport when formulating air-quality management strategy in Hong Kong in future.

  15. Development of affinity-based delivery of NGF from a chondroitin sulfate biomaterial.

    PubMed

    Butterfield, Karen Chao; Conovaloff, Aaron W; Panitch, Alyssa

    2011-01-01

    Chondroitin sulfate is a major component of the extracellular matrix in both the central and peripheral nervous systems. Chondroitin sulfate is upregulated at injury, thus methods to promote neurite extension through chondroitin sulfate-rich matrices and synthetic scaffolds are needed. We describe the use of both chondroitin sulfate and a novel chondroitin sulfate-binding peptide to control the release of nerve growth factor. Interestingly, the novel chondroitin sulfate-binding peptide enhances the controlled release properties of the chondroitin sulfate gels. While introduction of chondroitin sulfate into a scaffold inhibits primary cortical outgrowth, the combination of chondroitin sulfate, chondroitin sulfate-binding peptide and nerve growth factor promotes primary cortical neurite outgrowth in chondroitin sulfate gels.

  16. Synthesis, Photophysical, and Biological Evaluation of Sulfated Polyglycerol Dendronized Perylenebisimides (PBIs)--A Promising Platform for Anti-Inflammatory Theranostic Agents?

    PubMed

    Heek, T; Kühne, C; Depner, H; Achazi, K; Dernedde, J; Haag, R

    2016-03-16

    A set of four water-soluble perylene bisimides (PBI) based on sulfated polyglycerol (PGS) dendrons were developed, their photophysical properties determined via UV/vis and fluorescence spectroscopy, and their performance as possible anti-inflammatory agents evaluated via biological in vitro studies. It could be shown that in contrast to charge neutral PG-PBIs the introduction of the additional electrostatic repulsion forces leads to a decrease in the dendron generation necessary for aggregation suppression, allowing the preparation of PBIs with fluorescence quantum yields of >95% with a considerable decreased synthetic effort. Furthermore, the values determined for L-selectin binding down to the nanomolar range, their limited impact on blood coagulation, and their minor activation of the complement system renders these systems ideal for anti-inflammatory purposes.

  17. Simultaneous quantification of cholesterol sulfate, androgen sulfates, and progestagen sulfates in human serum by LC-MS/MS[S

    PubMed Central

    Sánchez-Guijo, Alberto; Oji, Vinzenz; Hartmann, Michaela F.; Traupe, Heiko; Wudy, Stefan A.

    2015-01-01

    Steroids are primarily present in human fluids in their sulfated forms. Profiling of these compounds is important from both diagnostic and physiological points of view. Here, we present a novel method for the quantification of 11 intact steroid sulfates in human serum by LC-MS/MS. The compounds analyzed in our method, some of which are quantified for the first time in blood, include cholesterol sulfate, pregnenolone sulfate, 17-hydroxy-pregnenolone sulfate, 16-α-hydroxy-dehydroepiandrosterone sulfate, dehydroepiandrosterone sulfate, androstenediol sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and dihydrotestosterone sulfate. The assay was conceived to quantify sulfated steroids in a broad range of concentrations, requiring only 300 μl of serum. The method has been validated and its performance was studied at three quality controls, selected for each compound according to its physiological concentration. The assay showed good linearity (R2 > 0.99) and recovery for all the compounds, with limits of quantification ranging between 1 and 80 ng/ml. Averaged intra-day and between-day precisions (coefficient of variation) and accuracies (relative errors) were below 10%. The method has been successfully applied to study the sulfated steroidome in diseases such as steroid sulfatase deficiency, proving its diagnostic value. This is, to our best knowledge, the most comprehensive method available for the quantification of sulfated steroids in human blood. PMID:26239050

  18. Simultaneous quantification of cholesterol sulfate, androgen sulfates, and progestagen sulfates in human serum by LC-MS/MS.

    PubMed

    Sánchez-Guijo, Alberto; Oji, Vinzenz; Hartmann, Michaela F; Traupe, Heiko; Wudy, Stefan A

    2015-09-01

    Steroids are primarily present in human fluids in their sulfated forms. Profiling of these compounds is important from both diagnostic and physiological points of view. Here, we present a novel method for the quantification of 11 intact steroid sulfates in human serum by LC-MS/MS. The compounds analyzed in our method, some of which are quantified for the first time in blood, include cholesterol sulfate, pregnenolone sulfate, 17-hydroxy-pregnenolone sulfate, 16-α-hydroxy-dehydroepiandrosterone sulfate, dehydroepiandrosterone sulfate, androstenediol sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and dihydrotestosterone sulfate. The assay was conceived to quantify sulfated steroids in a broad range of concentrations, requiring only 300 μl of serum. The method has been validated and its performance was studied at three quality controls, selected for each compound according to its physiological concentration. The assay showed good linearity (R(2) > 0.99) and recovery for all the compounds, with limits of quantification ranging between 1 and 80 ng/ml. Averaged intra-day and between-day precisions (coefficient of variation) and accuracies (relative errors) were below 10%. The method has been successfully applied to study the sulfated steroidome in diseases such as steroid sulfatase deficiency, proving its diagnostic value. This is, to our best knowledge, the most comprehensive method available for the quantification of sulfated steroids in human blood. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  19. Synthesis of sodium lauryl sulphate (SLS)-modified activated carbon from risk husk for waste lead (Pb) removal

    NASA Astrophysics Data System (ADS)

    Al-Latief, D. N.; Arnelli, Astuti, Y.

    2015-12-01

    Surfactant-modified active carbon (SMAC) has been successfully synthesized from waste rice husk using a series of treatments i.e. carbonization, activation with H3PO4 and surface modification using sodium lauryl sulfate (SLS). The synthesized SMAC was characterized using SEM-EDX and FTIR. The adsorption results show that the SMAC synthesized using H3PO4 treatment for 8 hours followed with SLS treatment for 5 hours had efficiency and capacity of the waste lead removal of 99.965% and 0.499825 mg.g-1, respectively.

  20. Glucosamine Sulfate

    MedlinePlus

    ... Glucosamine Sulphate KCl, Glucosamine-6-Phosphate, GS, Mono-Sulfated Saccharide, Poly-(1->3)-N-Acetyl-2-Amino- ... Sulfate de Glucosamine, Sulfate de Glucosamine 2KCl, SG, Sulfated Monosaccharide, Sulfated Saccharide, Sulfato de Glucosamina. Glucosamine Hydrochloride ...

  1. Upper-atmosphere Aerosols: Properties and Natural Cycles

    NASA Technical Reports Server (NTRS)

    Turco, Richard P.

    1992-01-01

    The middle atmosphere is rich in its variety of particulate matter, which ranges from meteorite debris, to sulfate aerosols, to polar stratospheric ice clouds. Volcanic eruptions strongly perturb the stratospheric sulfate (Junge) layer. High-altitude 'noctilucent' ice clouds condense at the summer mesopause. The properties of these particles, including their composition, sizes, and geographical distribution, are discussed, and their global effects, including chemical, radiative, and climatic roles, are reviewed. Polar stratospheric clouds (PSCs) are composed of water and nitric acid in the form of micron-sized ice crystals. These particles catalyze reactions of chlorine compounds that 'activate' otherwise inert chlorine reservoirs, leading to severe ozone depletions in the southern polar stratosphere during austral spring. PSCs also modify the composition of the polar stratosphere through complex physiocochemical processes, including dehydration and denitrification, and the conversion of reactive nitrogen oxides into nitric acid. If water vapor and nitric acid concentrations are enhanced by high-altitude aircraft activity, the frequency, geographical range, and duration of PSCs might increase accordingly, thus enhancing the destruction of the ozone layer (which would be naturally limited in geographical extent by the same factors that confine the ozone hole to high latitudes in winter). The stratospheric sulfate aerosol layer reflects solar radiation and increases the planetary albedo, thereby cooling the surface and possibly altering the climate. Major volcanic eruptions, which increase the sulfate aerosol burden by a factor of 100 or more, may cause significant global climate anomalies. Sulfate aerosols might also be capable of activating stratospheric chlorine reservoirs on a global scale (unlike PCSs, which represent a localized polar winter phenomenon), although existing evidence suggests relatively minor perturbations in chlorine chemistry. Nevertheless, if atmospheric concentrations of chlorine (associated with anthropogenic use of chlorofluorocarbons) continue to increase by a factor of two or more in future decades, aircraft emissions of sulfur dioxide and water vapor may take on greater significance.

  2. Anaerobic biodegradation of biofuels and their impact on the corrosion of a Cu-Ni alloy in marine environments.

    PubMed

    Liang, Renxing; Aydin, Egemen; Le Borgne, Sylvie; Sunner, Jan; Duncan, Kathleen E; Suflita, Joseph M

    2018-03-01

    Fuel biodegradation linked to sulfate reduction can lead to corrosion of the metallic infrastructure in a variety of marine environments. However, the biological stability of emerging biofuels and their potential impact on copper-nickel alloys commonly used in marine systems has not been well documented. Two potential naval biofuels (Camelina-JP5 and Fisher-Tropsch-F76) and their petroleum-derived counterparts (JP5 and F76) were critically assessed in seawater/sediment incubations containing a metal coupon (70/30 Cu-Ni alloy). Relative to a fuel-unamended control (1.2 ± 0.4 μM/d), Camelina-JP5 (86.4 ± 1.6 μM/d) and JP5 (77.6 ± 8.3 μM/d) stimulated much higher rates of sulfate reduction than either FT-F76 (11.4 ± 2.7 μM/d) or F76 (38.4 ± 3.7 μM/d). The general corrosion rate (r 2  = 0.91) and pitting corrosion (r 2  = 0.92) correlated with sulfate loss in these incubations. Despite differences in microbial community structure on the metal or in the aqueous or sediment phases, sulfate reducing bacteria affiliated with Desulfarculaceae and Desulfobacteraceae became predominant upon fuel amendment. The identification of alkylsuccinates and alkylbenzylsuccinates attested to anaerobic metabolism of fuel hydrocarbons. Sequences related to Desulfobulbaceae were highly enriched (34.2-64.8%) on the Cu-Ni metal surface, regardless of whether the incubation received a fuel amendment. These results demonstrate that the anaerobic metabolism of biofuel linked to sulfate reduction can exacerbate the corrosion of Cu-Ni alloys. Given the relative lability of Camelina-JP5, particular precaution should be taken when incorporating this hydroprocessed biofuel into marine environments serviced by a Cu-Ni metallic infrastructure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Identification and distribution of sulfate reducing bacteria and sulphur-oxidising bacteria in northern South China Sea

    NASA Astrophysics Data System (ADS)

    Mao, S.; Zhu, X.; Guan, H.; Wu, D.; Wu, N.

    2015-12-01

    Fatty acids are one of the major components in modern marine sediments. It is well known that the saturated short-chain FAs were typically to be from vascular plants, algae, bacteria, and other sources, while the saturated long-chain FAs are the major components found in leaf waxes, suberin, and cutin in terrestrial higher plants. So the lipid biomarkers of fatty acids in Site 4B from Shenhu Area, northern South China Sea were investigated in Recent research supported from the 973 Program (2009CB219506), and the resources of branched fatty acids and monounsaturated fatty acids were mainly discussed. The results reveal that i/a15:0, i/a17:0, 16:1ω5, 18:1ω9 and 10me16:0 are derived from sulfate reducing bacteria (SRB), while 16:1ω7t/c and 18:1ω7 are originated from sulphur-oxidising bacteria (SOB). The biomakers of methanotrophs such as 16:1ω6/8 and 18:1ω6/8 were not detected in the sediments which coincide with more positive carbon isotope values of the fatty acids in the sediments. The stable relationship between SRB and SOB below 97cm in the sediments reflects the relative stable oxidative and reductive depositional environment which may be connected with the sulphur cycle in the sediments, that is carried out as sulfate is reduced to sulfide, and then sulfide is oxidized to sulfate and elemental sulfur, at last elemental sulfur is disproportionated to sulfide and sulfate. The frequently changed relationship of SRB and SOB above 97cm in the sediments indicates intensely changing oxidative and reductive sedimental environment, that may related with diapir structure around Site 4B, which also brings about hydrocarbon seepage leading to increasing biomass at 97cm.

  4. [Stimulation of maturing and terminal differentiation by concanavalin A in rabbit permanent chondrocyte cultures].

    PubMed

    Yan, W Q; Yang, T S; Hou, L Z; Susuki, F; Kato, Y

    1994-12-01

    The effect of concanavalin A (Con A) on maturing and terminal differentiation in permanent chondrocyte cultures were examined. Chondrocytes isolated from permanent cartilage were seeded at low density and grown in MEM medium containing 10% fetal bovine serum, 50 micrograms/ml of ascorbic acid and antibiotics, at 37 degrees C under 50% CO2 in air. At 0.3% of low serum concentration, addition of Con A to the culture medium increased by 3- to 4-fold the incorporation of [35S] sulfate into large chondroitin sulfate proteoglycan that characteristically found in cartilage. Chemical analysis showed a 4-fold increase in the accumulation of macromolecular containing hexuronic acid in Con A-maintained cultures. The effect of Con A on [35S]sulfate incorporation into proteoglycan was greater than that of various growth factor or hormones. Brief exposure of the permanent chondrocytes to Con A (5 micrograms/ml) for 24 hours and subsequent incubation in its absence for 5-10 days resulted in 10- to 100-fold increase in alkaline phosphatase and binding of 1.25 (OH)2 vitamin D3 to cells. Treatment with Con A also resulted in 10- to 20-fold increase in calcium content and 45Ca incorporation into insoluble material. Methyl-D-mannopyranoside reversed the effect of Con A on [35S]sulfate incorporation into proteoglycan and alkaline phosphatase activity. Since other lectins, such as wheat germ agglutinin, lentil lectin, phytohemagglutinin, Ulex europeasu agglutinin and garden pea lectin had been tested to have little effect on [35S]sulfate incorporation into proteoglycans and induction of alkaline phosphatase activity, the Con A action on chondrocytes seems specific. These results indicate that Con A is a potent modulator of differentiation of chondrocytes, which induces the onset on a maturing and a terminal differentiation in chondrocytes, leading to extensive calcification of the extracellular matrix.

  5. Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions

    NASA Astrophysics Data System (ADS)

    Orcutt, B.; Meile, C.

    2008-05-01

    Anaerobic oxidation of methane (AOM) is the main process responsible for the removal of methane generated in Earth's marine subsurface environments. However, the biochemical mechanism of AOM remains elusive. By explicitly resolving the observed spatial arrangement of methanotrophic archaea and sulfate reducing bacteria found in consortia mediating AOM, potential intermediates involved in the electron transfer between the methane oxidizing and sulfate reducing partners were investigated via a consortium-scale reaction transport model that integrates the effect of diffusional transport with thermodynamic and kinetic controls on microbial activity. Model simulations were used to assess the impact of poorly constrained microbial characteristics such as minimum energy requirements to sustain metabolism, substrate affinity and cell specific rates. The role of environmental conditions such as the influence of methane levels on the feasibility of H2, formate and acetate as intermediate species, and the impact of the abundance of intermediate species on pathway reversal was examined. The results show that higher production rates of intermediates via AOM lead to increased diffusive fluxes from the methane oxidizing archaea to sulfate reducing bacteria, but the build-up of the exchangeable species causes the energy yield of AOM to drop below that required for ATP production. Comparison to data from laboratory experiments shows that under the experimental conditions of Nauhaus et al. (2007), neither hydrogen nor formate is exchanged fast enough between the consortia partners to achieve measured rates of metabolic activity, but that acetate exchange might support rates that approach those observed.

  6. Histopathologic and immunohistochemical features of capsular tissue around failed Ahmed glaucoma valves.

    PubMed

    Mahale, Alka; Fikri, Fatma; Al Hati, Khitam; Al Shahwan, Sami; Al Jadaan, Ibrahim; Al Katan, Hind; Khandekar, Rajiv; Maktabi, Azza; Edward, Deepak P

    2017-01-01

    Impervious encapsulation around Ahmed glaucoma valve (AGV) results in surgical failure raising intraocular pressure (IOP). Dysregulation of extracellular matrix (ECM) molecules and cellular factors might contribute to increased hydraulic resistance to aqueous drainage. Therefore, we examined these molecules in failed AGV capsular tissue. Immunostaining for ECM molecules (collagen I, collagen III, decorin, lumican, chondroitin sulfate, aggrecan and keratan sulfate) and cellular factors (αSMA and TGFβ) was performed on excised capsules from failed AGVs and control tenon's tissue. Staining intensity of ECM molecules was assessed using Image J. Cellular factors were assessed based on positive cell counts. Histopathologically two distinct layers were visible in capsules. The inner layer (proximal to the AGV) showed significant decrease in most ECM molecules compared to outer layer. Furthermore, collagen III (p = 0.004), decorin (p = 0.02), lumican (p = 0.01) and chondroitin sulfate (p = 0.02) was significantly less in inner layer compared to tenon's tissue. Outer layer labelling however was similar to control tenon's for most ECM molecules. Significantly increased cellular expression of αSMA (p = 0.02) and TGFβ (p = 0.008) was detected within capsular tissue compared to controls. Our results suggest profibrotic activity indicated by increased αSMA and TGFβ expression and decreased expression of proteoglycan (decorin and lumican) and glycosaminoglycans (chondroitin sulfate). Additionally, we observed decreased collagen III which might reflect increased myofibroblast contractility when coupled with increased TGFβ and αSMA expression. Together these events lead to tissue dysfunction potentially resulting in hydraulic resistance that may affect aqueous flow through the capsular wall.

  7. The effect of magnesium sulfate on bleeding time and nitric oxide production in preeclamsia.

    PubMed

    Moslemizade, Narges; Rafiei, Alireza; Yazdani, Fereshteh; Hosseini-khah, Zahra; Yusefnezhad, Keyvan

    2011-01-15

    Preeclampsia is a disease regarding with altered vascular reactivity leading to hypertension of the mother and metabolic alterations in the fetus. This study aimed to assess nitric oxide and bleeding time following administration of magnesium sulfate to preeclamtic patients compared to normotensive pregnant women. A total of 112 subjects (56 preeclamtic patients and 56 normotensive pregnant controls) were enrolled in this case-control study. Cases and controls were matched for age, BMI, gestational age, parity and gravidity. Total concentration of nitrite and nitrate (NOx) was measured before and during magnesium sulfate (MgSO4) treatment using a modified Griess-based method. Systolic and diastolic blood pressures were significantly decreased during MgSO4 treatment in preeclamtic patients (p < 0.0001). NOx levels were significantly increased in preeclamtic women after MgSO4 administration (33.7 +/- 18.5 vs. 50.2 +/- 21.6, p < 0.0001) but it was not seen in normotensive parturients (52.4 +/- 28.9 vs. 57.3 +/- 21.7, p = 0.362). The bleeding time was scarcely increased following magnesium sulfate treatment in preeclamptic patients compared to normotensive pregnant women but it was not significant (p = 0.18). In addition, there was only a significantly reverse correlation between NOx levels and systolic or diastolic blood pressure in preeclamtic parturients after MgSO4 treatment (r = -0384; p = 0.003 and r = -0.29; p = 0.03, respectively). This study demonstrates that administrating MgSO4 to preeclamtic patients induced significant changes in NOx production which had a major role in modulating vasculature changes in preeclamsia.

  8. Antiangiogenic activity of semisynthetic biotechnological heparins: low-molecular-weight-sulfated Escherichia coli K5 polysaccharide derivatives as fibroblast growth factor antagonists.

    PubMed

    Presta, Marco; Oreste, Pasqua; Zoppetti, Giorgio; Belleri, Mirella; Tanghetti, Elena; Leali, Daria; Urbinati, Chiara; Bugatti, Antonella; Ronca, Roberto; Nicoli, Stefania; Moroni, Emanuela; Stabile, Helena; Camozzi, Maura; Hernandez, German Andrés; Mitola, Stefania; Dell'Era, Patrizia; Rusnati, Marco; Ribatti, Domenico

    2005-01-01

    Low-molecular-weight heparin (LMWH) exerts antitumor activity in clinical trials. The K5 polysaccharide from Escherichia coli has the same structure as the heparin precursor. Chemical and enzymatic modifications of K5 polysaccharide lead to the production of biotechnological heparin-like compounds. We investigated the fibroblast growth factor-2 (FGF2) antagonist and antiangiogenic activity of a series of LMW N,O-sulfated K5 derivatives. Surface plasmon resonance analysis showed that LMW-K5 derivatives bind FGF2, thus inhibiting its interaction with heparin immobilized to a BIAcore sensor chip. Interaction of FGF2 with tyrosine-kinase receptors (FGFRs), heparan sulfate proteoglycans (HSPGs), and alpha(v)beta3 integrin is required for biological response in endothelial cells. Similar to LMWH, LMW-K5 derivatives abrogate the formation of HSPG/FGF2/FGFR ternary complexes by preventing FGF2-mediated attachment of FGFR1-overexpressing cells to HSPG-bearing cells and inhibit FGF2-mediated endothelial cell proliferation. However, LMW-K5 derivatives, but not LMWH, also inhibit FGF2/alpha(v)beta3 integrin interaction and consequent FGF2-mediated endothelial cell sprouting in vitro and angiogenesis in vivo in the chick embryo chorioallantoic membrane. LMW N,O-sulfated K5 derivatives affect both HSPG/FGF2/FGFR and FGF2/alpha(v)beta3 interactions and are endowed with FGF2 antagonist and antiangiogenic activity. These compounds may provide the basis for the design of novel LMW heparin-like angiostatic compounds.

  9. Removing organic matter from sulfate-rich wastewater via sulfidogenic and methanogenic pathways.

    PubMed

    Vilela, Rogerio Silveira; Damianovic, Márcia Helena Rissato Zamariolli; Foresti, Eugenio

    2014-01-01

    The simultaneous organic matter removal and sulfate reduction in synthetic sulfate-rich wastewater was evaluated for various chemical oxygen demand (COD)/sulfate ratios applied in a horizontal-flow anaerobic immobilized sludge (HAIS) reactor. At higher COD/sulfate ratios (12.5 and 7.5), the removal of organic matter was stable, likely due to methanogenesis. A combination of sulfate reduction and methanogenesis was clearly established at COD/sulfate ratios of 3.0 and 1.9. At a COD/sulfate ratio of 1.0, the organic matter removal was likely influenced by methanogenesis inhibition. The quantity of sulfate removed at a COD/sulfate ratio of 1.0 was identical to that obtained at a ratio of 1.9, indicating a lack of available electron donors for sulfidogenesis. The sulfate reduction and organic matter removal were not maximized at the same COD/sulfate ratio; therefore, competitive inhibition must be the predominant mechanism in establishing an electron flow.

  10. Significant role of organic sulfur in supporting sedimentary sulfate reduction in low-sulfate environments

    NASA Astrophysics Data System (ADS)

    Fakhraee, Mojtaba; Li, Jiying; Katsev, Sergei

    2017-09-01

    Dissimilatory sulfate reduction (DSR) is a major carbon mineralization pathway in aquatic sediments, soils, and groundwater, which regulates the production of hydrogen sulfide and the mobilization rates of biologically important elements such as phosphorus and mercury. It has been widely assumed that water-column sulfate is the main sulfur source to fuel this reaction in sediments. While this assumption may be justified in high-sulfate environments such as modern seawater, we argue that in low-sulfate environments mineralization of organic sulfur compounds can be an important source of sulfate. Using a reaction-transport model, we investigate the production of sulfate from sulfur-containing organic matter for a range of environments. The results show that in low sulfate environments (<500 μM) the in-sediment production of sulfate can support a substantial portion (>50%) of sulfate reduction. In well-oxygenated systems, porewater sulfate profiles often exhibit sub-interface peaks so that sulfate fluxes are directed out of the sediment. Our measurements in Lake Superior, the world's largest lake, corroborate this conclusion: offshore sediments act as sources rather than sinks of sulfate for the water column, and sediment DSR is supported entirely by the in-sediment production of sulfate. Sulfate reduction rates are correlated to the depth of oxygen penetration and strongly regulated by the supply of reactive organic matter; rate co-regulation by sulfate availability becomes appreciable below 500 μM level. The results indicate the need to consider the mineralization of organic sulfur in the biogeochemical cycling in low-sulfate environments, including several of the world's largest freshwater bodies, deep subsurface, and possibly the sulfate-poor oceans of the Early Earth.

  11. Assessment of water resources in lead-zinc mined areas in Cherokee County, Kansas, and adjacent areas

    USGS Publications Warehouse

    Spruill, Timothy B.

    1987-01-01

    A study was conducted to evaluate water-resources problems related to abandoned lead and zinc mines in Cherokee County, Kansas, and adjacent areas in Missouri and Oklahoma. Past mining activities have caused changes in the hydrogeology of the area. Lead and zinc mining has caused discontinuities and perforations in the confining shale west of the Pennsylvanian-Mississippian geologic contact (referred to as the western area), which have created artificial ground-water recharge and discharge areas. Recharge to the shallow aquifer (rocks of Mississippian age) through collapses, shafts, and drill holes in the shale has caused the formation of a ground-water 'mound' in the vicinity of the Picher Field in Kansas and Oklahoma. Discharge of mine-contaminated ground water to Tar Creek occurs in Oklahoma from drill holes and shafts where the potentiometric surface of the shallow aquifer is above the land surface. Mining of ore in the shallow aquifer has resulted in extensive fracturing and removal of material, which has created highly transmissive zones and voids and increased ground-water storage properties of the aquifer. In the area east of the Pennsylvanian-Mississippian geologic contact (referred to as the eastern area), fractured rock and tailings on the land surface increased the amount of water available for infiltration to the shallow aquifer; in the western area, tailings on the impermeable shale created artificial, perched aquifer systems that slowly drain to surface streams. Pumping of the deep aquifer (rocks of Cambrian and Ordovician age) by towns and industries, which developed as a result of the mining industry, has resulted in a potential for downward movement of water from the shallow aquifer. The potential is greatest in Ottawa County, Oklahoma. Because of the large volume of water that may be transported from the shallow to the deep aquifer, open drill holes or casings present the greatest contamination hazard to water supplies in the deep aquifer. Mining allowed oxidation of ore deposits which, on saturation with water, resulted in poor-quality water that generally contains large concentrations of sulfate and trace metals. Water from mines in the eastern area contained dissolved-solids concentrations of less than 500 mg/L (milligrams per liter), a median pH of 3.9, sulfate concentrations that ranged between 98 and 290 mg/L, and median concentrations for zinc of 37,600 micrograms/L (micrograms per liter), for lead of 240 micrograms/L, for cadmium of 180 micrograms/L, for iron of 70 micrograms/L, for manganese of 240 micrograms/L, and for silica of 15 mg/L. Water from mines in the western area contained dissolved-solids concentrations of generally more than 500 mg/L, a median pH of 6.8, sulfate concentrations that ranged between 170 and 2,150 mg/L, and median concentrations for zinc of 3,200 micrograms/L, for lead of 0 micrograms/L (minimum detection limit is 10 micrograms/L), for cadmium of 6 micrograms/L, for iron of 840 micrograms/L, for manganese of 440 micrograms/L, and for silica of 11 mg/L. No conclusive evidence of lateral migration of water from the mines into domestic well-water supplies in the shallow aquifer was found in the study area in Kansas. Analyses of water from public-supply wells tapping the deep aquifer did not indicate contamination with trace metals, although chemical analyses from four of six wells exhibited increasing trends through time in sulfate concentrations. These increases probably reflect localized leakage of water from the shallow aquifer along corroded or leaky well casings. Effects of abandoned lead and zinc mines on tributaries of the Spring River in the eastern area are most severe in Short Creek. Compared with water samples from three other major streams in the eastern area, a sample collected from Short Creek, 2 miles west of Galena, Kansas, during August 1981, contained the largest concentrations of dissolved sulfate (240 mg/L), zinc (25,000 micrograms/L), ca

  12. 21 CFR 524.1484e - Neomycin sulfate and polymyxin B sulfate ophthalmic solution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Neomycin sulfate and polymyxin B sulfate... DOSAGE FORM NEW ANIMAL DRUGS § 524.1484e Neomycin sulfate and polymyxin B sulfate ophthalmic solution. (a) Specifications. Each milliliter of the ophthalmic preparation contains 5.0 milligrams neomycin sulfate (3.5...

  13. 21 CFR 524.1484e - Neomycin sulfate and polymyxin B sulfate ophthalmic solution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Neomycin sulfate and polymyxin B sulfate... DOSAGE FORM NEW ANIMAL DRUGS § 524.1484e Neomycin sulfate and polymyxin B sulfate ophthalmic solution. (a) Specifications. Each milliliter of the ophthalmic preparation contains 5.0 milligrams neomycin sulfate (3.5...

  14. 21 CFR 524.1484e - Neomycin sulfate and polymyxin B sulfate ophthalmic solution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Neomycin sulfate and polymyxin B sulfate... DOSAGE FORM NEW ANIMAL DRUGS § 524.1484e Neomycin sulfate and polymyxin B sulfate ophthalmic solution. (a) Specifications. Each milliliter of the ophthalmic preparation contains 5.0 milligrams neomycin sulfate (3.5...

  15. 21 CFR 524.1484e - Neomycin sulfate and polymyxin B sulfate ophthalmic solution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Neomycin sulfate and polymyxin B sulfate... DOSAGE FORM NEW ANIMAL DRUGS § 524.1484e Neomycin sulfate and polymyxin B sulfate ophthalmic solution. (a) Specifications. Each milliliter of the ophthalmic preparation contains 5.0 milligrams neomycin sulfate (3.5...

  16. Testing Silica Fume-Based Concrete Composites under Chemical and Microbiological Sulfate Attacks

    PubMed Central

    Estokova, Adriana; Kovalcikova, Martina; Luptakova, Alena; Prascakova, Maria

    2016-01-01

    Current design practices based on descriptive approaches to concrete specification may not be appropriate for the management of aggressive environments. In this study, the durability of cement-based materials with and without the addition of silica fume, subjected to conditions that leach calcium and silicon, were investigated. Chemical corrosion was simulated by employing various H2SO4 and MgSO4 solutions, and biological corrosion was simulated using Acidithiobacillus sp. bacterial inoculation, leading to disrupted and damaged surfaces; the samples’ mass changes were studied following both chemical and biological attacks. Different leaching trends were observed via X-ray fluorescence when comparing chemical with biological leaching. Lower leaching rates were found for concrete samples fortified with silica fume than those without silica fume. X-ray diffraction and scanning electron microscopy confirmed a massive sulfate precipitate formation on the concrete surface due to bacterial exposure. PMID:28773452

  17. Neuroactive steroids with perfluorobenzoyl group.

    PubMed

    Cerný, Ivan; Buděšínský, Miloš; Pouzar, Vladimír; Vyklický, Vojtěch; Krausová, Barbora; Vyklický, Ladislav

    2012-10-01

    During an initial study in searching for the alternative derivatives suitable for photolabeling of neuroactive steroids, perfluorobenzoates and perfluorobenzamides in position 17 of 5β-androstan-3α-ol were synthesized from the corresponding 17-hydroxy and 17-amino derivatives. After transformation into glutamates or sulfates, 17α-epimers had comparable inhibitory activity at NMDA receptors to the natural neurosteroid (20-oxo-5β-pregnan-3β-yl sulfate), however, were more potent (2- to 36-fold) than their 17β-substituted analogs. In one case, fluorine in position 4' of perfluorobenzoate group was substituted with azide and activity of the final glutamate was retained comparing with the corresponding perfluorobenzoate. The series was expanded with perfluorobenzoyl derivatives of pregnanolone: Perfluorobenzamide of glutamate and perfluorobenzoate of 11α-hydroxy pregnanolone were prepared and tested. From nine tested compounds, four of them exhibit very good inhibition activity and can serve as promising leads for photolabeling experiments. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Evaluation of contaminants retention in soils from Viamão District, Rio Grande do Sul State, Brazil

    NASA Astrophysics Data System (ADS)

    Herlinger, Ronaldo; Viero, Antonio Pedro

    2006-05-01

    Adsorption is one of the most significant processes in the mobility of soluble pollutants in soils. The aim of this work is to characterize and evaluate the adsorption capacity of soils from Viamão District, Brazil. The studied ions were leadtotal, coppertotal, sulfate, phosphate, and potassium. The soils were mapped by remote sensing and characterized by granulometrical and mineralogical techniques. The adsorption tests were made by the contact of soil samples with aqueous solutions. The soils adsorption capacity presented the following trend: Pbtotal>Cutotal≈PO{4/3-}>K+ ≈SO{4/2+}. Adsorption in the soils is strongly influenced by clay content. The adsorption of phosphate, copper, and lead was accentuated by the presence of organic matter. Phosphate adsorption was controlled by oxides and organic matter. Both potassium and sulfate showed insignificant adsorption in the studied soils.

  19. Mechanisms of Heparanase Inhibitors in Cancer Therapy

    PubMed Central

    Heyman, Benjamin; Yang, Yiping

    2016-01-01

    Heparanase is an endo-β-D-glucuronidase capable of cleaving heparan sulfate (HS) side chains contributing to break down of the extracellular matrix. Increased expression of heparanase has been found in numerous malignancies, and is associated with a poor prognosis. It has generated significant interest as a potential anti-neoplastic target because of the multiple roles it plays in tumor growth and metastasis. The pro-tumorigenic effects of heparanase are enhanced by the release of HS side chains, with subsequent increase in bioactive fragments and increased cytokine levels; both promoting tumor invasion, angiogenesis and metastasis. Preclinical experiments have shown heparanase inhibitors to substantially reduce tumor growth and metastasis leading to clinical trials with heparan sulfate mimetics. In this review we will examine heparanase’s role in tumor biology, its interaction with heparan surface proteoglycans, specifically syndecan-1; as well as the mechanism of action for heparanase inhibitors developed as anti-neoplastic therapeutics. PMID:27576132

  20. The short-term effects of three molluscicides on the microflora and microfauna of small, biologically stable ponds in Southern Rhodesia.

    PubMed

    SHIFF, C J; GARNETT, B

    1961-01-01

    Where large-scale molluscicide applications are anticipated, it is important to investigate the effects of the chemicals to be used on the freshwater microflora and fauna existing in the bodies of water to be treated. The food chains of which these organisms form basic parts are important in the general ecology leading up to fish and even to man. Some observations on the direct short-term effect of three molluscicides-copper sulfate, sodium pentachlorophenate and Bayer 73-on the populations of certain plankton organisms, carried out in biologically stable ponds in Southern Rhodesia, are reported on in this paper. It appears that copper sulfate has the most drastic and long-lasting effects on these organisms. The authors stress that snail control measures involving molluscicides should be so designed as to effect the minimum alteration to the ecological balance of the freshwater habitat.

  1. The influence of drop size-dependent fog chemistry on aerosol processing by San Joaquin Valley fogs

    NASA Astrophysics Data System (ADS)

    Hoag, Katherine J.; Collett, Jeffrey L., Jr.; Pandis, Spyros N.

    Drop size-resolved measurements of fog chemistry in California's San Joaquin Valley during the 1995 Integrated Monitoring Study reveal that fog composition varies with drop size. Small fog drops were less alkaline and typically contained higher major ion (nitrate, sulfate, ammonium) concentrations than large drops. Small drops often contained higher concentrations of Fe and Mn than large drops while H 2O 2 concentrations exhibited no strong drop size dependence. Simulation of an extended fog episode in Fresno, California revealed the capability of a drop size-resolved fog chemistry model to reproduce the measured (based on two drop size categories) drop size dependence of several key species. The model was also able to satisfactorily reproduce measured species-dependent deposition rates (ammonium>sulfate>nitrate) resulting from fog drop sedimentation. Both the model simulation and direct analysis of size-resolved fog composition observations and measured gas-phase oxidant concentrations indicate the importance of ozone as an aqueous-phase S(IV) oxidant in these high pH fogs. Due to the nonlinear dependence of the rate law for the ozone pathway on the hydrogen ion concentration, use of the average fog drop composition can lead to significant underprediction of aqueous phase sulfate production rates in these chemically heterogeneous fogs.

  2. Fate of products of degradation processes: consequences for climatic change.

    PubMed

    Slanina, J; ten Brink, H M; Khlystov, A

    1999-03-01

    The end products of atmospheric degradation are not only CO2 and H2O but also sulfate and nitrate depending on the chemical composition of the substances which are subject to degradation processes. Atmospheric degradation has thus a direct influence on the radiative balance of the earth not only due to formation of greenhouse gases but also of aerosols. Aerosols of a diameter of 0.1 to 2 micrometer, reflect short wave sunlight very efficiently leading to a radiative forcing which is estimated to be about -0.8 watt per m2 by IPCC. Aerosols also influence the radiative balance by way of cloud formation. If more aerosols are present, clouds are formed with more and smaller droplets and these clouds have a higher albedo and are more stable compared to clouds with larger droplets. Not only sulfate, but also nitrate and polar organic compounds, formed as intermediates in degradation processes, contribute to this direct and indirect aerosol effect. Estimates for the Netherlands indicate a direct effect of -4 watt m-2 and an indirect effect of as large as -5 watt m-2. About one third is caused by sulfates, one third by nitrates and last third by polar organic compounds. This large radiative forcing is obviously non-uniform and depends on local conditions.

  3. Heparan Sulfate Biosynthesis Enzyme, Ext1, Contributes to Outflow Tract Development of Mouse Heart via Modulation of FGF Signaling.

    PubMed

    Zhang, Rui; Cao, Peijuan; Yang, Zhongzhou; Wang, Zhenzhen; Wu, Jiu-Lin; Chen, Yan; Pan, Yi

    2015-01-01

    Glycosaminoglycans are important regulators of multiple signaling pathways. As a major constituent of the heart extracellular matrix, glycosaminoglycans are implicated in cardiac morphogenesis through interactions with different signaling morphogens. Ext1 is a glycosyltransferase responsible for heparan sulfate synthesis. Here, we evaluate the function of Ext1 in heart development by analyzing Ext1 hypomorphic mutant and conditional knockout mice. Outflow tract alignment is sensitive to the dosage of Ext1. Deletion of Ext1 in the mesoderm induces a cardiac phenotype similar to that of a mutant with conditional deletion of UDP-glucose dehydrogenase, a key enzyme responsible for synthesis of all glycosaminoglycans. The outflow tract defect in conditional Ext1 knockout(Ext1f/f:Mesp1Cre) mice is attributable to the reduced contribution of second heart field and neural crest cells. Ext1 deletion leads to downregulation of FGF signaling in the pharyngeal mesoderm. Exogenous FGF8 ameliorates the defects in the outflow tract and pharyngeal explants. In addition, Ext1 expression in second heart field and neural crest cells is required for outflow tract remodeling. Our results collectively indicate that Ext1 is crucial for outflow tract formation in distinct progenitor cells, and heparan sulfate modulates FGF signaling during early heart development.

  4. Determination of trace elements in triglycine sulfate solutions

    NASA Technical Reports Server (NTRS)

    Tadros, Shawky H.

    1993-01-01

    Ten elements were divided into 2 groups. The elements in the first group included iron, nickel, chromium, manganese, copper, and gold. The elements in the second group included zinc, cobalt, lead, cadmium, and gold. Five ppm of each element in each group was spiked in a 1 percent triglycine sulfate (TGS) solution. Glycine was removed with 1-naphthyl isocyanate in ether medium. The glycine derivative 1-naphthyl isocyanate glycine was removed by filtration, and the filtrates were analyzed for the different elements. Analysis of these elements was performed by using the 5100 Perkin-Elmer Atomic Absorption Spectrophotometer. The result of these experiments was the observation that there was a decrease in the concentration of chromium and gold, which was interpreted to be due to the chelation of these elements by the derivative 1-naphthyl isocyanate glycine. Further research is needed to determine the concentration of other elements in triglycine sulfate (TGS) solutions. These elements will include lithium, sodium, rubidium, magnesium, calcium, strontium, barium, aluminum, and silicon. These are the most likely elements to be found in the sulfuric acid used in manufacturing the TGS crystal. Moreover, we will extend our research to investigate the structural formula of the violet colored chelated compounds, which had been formed by interaction of the derivative 1-naphthyl isocyanate glycine with the different elements, such as gold, chromium.

  5. 40 CFR 436.150 - Applicability; description of the sodium sulfate subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sodium sulfate subcategory. 436.150 Section 436.150 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Sodium Sulfate Subcategory § 436.150 Applicability; description of the sodium sulfate subcategory. The provisions of this subpart are applicable to the processing of sodium sulfate. Sodium sulfate...

  6. 40 CFR 436.150 - Applicability; description of the sodium sulfate subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sodium sulfate subcategory. 436.150 Section 436.150 Protection of Environment ENVIRONMENTAL PROTECTION... Sodium Sulfate Subcategory § 436.150 Applicability; description of the sodium sulfate subcategory. The provisions of this subpart are applicable to the processing of sodium sulfate. Sodium sulfate obtained from...

  7. 40 CFR 436.150 - Applicability; description of the sodium sulfate subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sodium sulfate subcategory. 436.150 Section 436.150 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Sodium Sulfate Subcategory § 436.150 Applicability; description of the sodium sulfate subcategory. The provisions of this subpart are applicable to the processing of sodium sulfate. Sodium sulfate...

  8. 40 CFR 436.150 - Applicability; description of the sodium sulfate subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sodium sulfate subcategory. 436.150 Section 436.150 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Sodium Sulfate Subcategory § 436.150 Applicability; description of the sodium sulfate subcategory. The provisions of this subpart are applicable to the processing of sodium sulfate. Sodium sulfate...

  9. 21 CFR 184.1315 - Ferrous sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ferrous sulfate. 184.1315 Section 184.1315 Food... GRAS § 184.1315 Ferrous sulfate. (a) Ferrous sulfate heptahydrate (iron (II) sulfate heptahydrate, Fe... pale, bluish-green crystals or granules. Progressive heating of ferrous sulfate heptahydrate produces...

  10. 40 CFR 436.150 - Applicability; description of the sodium sulfate subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sodium sulfate subcategory. 436.150 Section 436.150 Protection of Environment ENVIRONMENTAL PROTECTION... Sodium Sulfate Subcategory § 436.150 Applicability; description of the sodium sulfate subcategory. The provisions of this subpart are applicable to the processing of sodium sulfate. Sodium sulfate obtained from...

  11. Sulfate reduction in freshwater wetland soils and the effects of sulfate and substrate loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, J.; Hsieh, Y.P.

    1998-07-01

    Elevated sulfate and organic C loadings in freshwater wetlands could stimulate dissimilatory sulfate reduction that oxidizes organic C, produces hydrogen sulfide and alkalinity, and sequesters trace metals. The authors determined the extent of sulfate reduction in two freshwater wetland soils, that is black gum (Nyssa biflona) swamp soils and titi (Cliftonia monophylla) swamp soils, in northern Florida. They also investigated the potential of sulfate reduction in the wetland soils by adding sulfate, organic substrate, and lime. Sulfate reduction was found to be an active process in both swamp soils without any amendment, where the pore water pH was as lowmore » as 3.6 and sulfate concentration was as low as 5 mg L{sup {minus}1}. Without amendment, 11 to 14% of organic C was oxidized through sulfate reduction in the swamp soils. Sulfate loading, liming, and substrate addition significantly increased sulfate reduction in the black gum swamp soil, but none of those treatments increase sulfate reduction in the titi swamp soil. The limiting factor for sulfate reduction in the titi swamp soil were likely texture and soil aggregate related properties. The results suggested that wastewater loading may increase sulfate reduction in some freshwater wetlands such as the black swamps while it has no stimulating effect on other wetlands such as the titi swamps.« less

  12. Microbial Sulfate Reduction Potential in Coal-Bearing Sediments Down to ~2.5 km below the Seafloor off Shimokita Peninsula, Japan

    PubMed Central

    Glombitza, Clemens; Adhikari, Rishi R.; Riedinger, Natascha; Gilhooly, William P.; Hinrichs, Kai-Uwe; Inagaki, Fumio

    2016-01-01

    Sulfate reduction is the predominant anaerobic microbial process of organic matter mineralization in marine sediments, with recent studies revealing that sulfate reduction not only occurs in sulfate-rich sediments, but even extends to deeper, methanogenic sediments at very low background concentrations of sulfate. Using samples retrieved off the Shimokita Peninsula, Japan, during the Integrated Ocean Drilling Program (IODP) Expedition 337, we measured potential sulfate reduction rates by slurry incubations with 35S-labeled sulfate in deep methanogenic sediments between 1276.75 and 2456.75 meters below the seafloor. Potential sulfate reduction rates were generally extremely low (mostly below 0.1 pmol cm−3 d−1) but showed elevated values (up to 1.8 pmol cm−3 d−1) in a coal-bearing interval (Unit III). A measured increase in hydrogenase activity in the coal-bearing horizons coincided with this local increase in potential sulfate reduction rates. This paired enzymatic response suggests that hydrogen is a potentially important electron donor for sulfate reduction in the deep coalbed biosphere. By contrast, no stimulation of sulfate reduction rates was observed in treatments where methane was added as an electron donor. In the deep coalbeds, small amounts of sulfate might be provided by a cryptic sulfur cycle. The isotopically very heavy pyrites (δ34S = +43‰) found in this horizon is consistent with its formation via microbial sulfate reduction that has been continuously utilizing a small, increasingly 34S-enriched sulfate reservoir over geologic time scales. Although our results do not represent in-situ activity, and the sulfate reducers might only have persisted in a dormant, spore-like state, our findings show that organisms capable of sulfate reduction have survived in deep methanogenic sediments over more than 20 Ma. This highlights the ability of sulfate-reducers to persist over geological timespans even in sulfate-depleted environments. Our study moreover represents the deepest evidence of a potential for sulfate reduction in marine sediments to date. PMID:27761134

  13. Microbial Sulfate Reduction Potential in Coal-Bearing Sediments Down to ~2.5 km below the Seafloor off Shimokita Peninsula, Japan.

    PubMed

    Glombitza, Clemens; Adhikari, Rishi R; Riedinger, Natascha; Gilhooly, William P; Hinrichs, Kai-Uwe; Inagaki, Fumio

    2016-01-01

    Sulfate reduction is the predominant anaerobic microbial process of organic matter mineralization in marine sediments, with recent studies revealing that sulfate reduction not only occurs in sulfate-rich sediments, but even extends to deeper, methanogenic sediments at very low background concentrations of sulfate. Using samples retrieved off the Shimokita Peninsula, Japan, during the Integrated Ocean Drilling Program (IODP) Expedition 337, we measured potential sulfate reduction rates by slurry incubations with 35 S-labeled sulfate in deep methanogenic sediments between 1276.75 and 2456.75 meters below the seafloor. Potential sulfate reduction rates were generally extremely low (mostly below 0.1 pmol cm -3 d -1 ) but showed elevated values (up to 1.8 pmol cm -3 d -1 ) in a coal-bearing interval (Unit III). A measured increase in hydrogenase activity in the coal-bearing horizons coincided with this local increase in potential sulfate reduction rates. This paired enzymatic response suggests that hydrogen is a potentially important electron donor for sulfate reduction in the deep coalbed biosphere. By contrast, no stimulation of sulfate reduction rates was observed in treatments where methane was added as an electron donor. In the deep coalbeds, small amounts of sulfate might be provided by a cryptic sulfur cycle. The isotopically very heavy pyrites (δ 34 S = +43‰) found in this horizon is consistent with its formation via microbial sulfate reduction that has been continuously utilizing a small, increasingly 34 S-enriched sulfate reservoir over geologic time scales. Although our results do not represent in-situ activity, and the sulfate reducers might only have persisted in a dormant, spore-like state, our findings show that organisms capable of sulfate reduction have survived in deep methanogenic sediments over more than 20 Ma. This highlights the ability of sulfate-reducers to persist over geological timespans even in sulfate-depleted environments. Our study moreover represents the deepest evidence of a potential for sulfate reduction in marine sediments to date.

  14. Specific sulfation and glycosylation—a structural combination for the anticoagulation of marine carbohydrates

    PubMed Central

    Pomin, Vitor H.; Mourão, Paulo A. S.

    2014-01-01

    Based on considered achievements of the last 25 years, specific combinations of sulfation patterns and glycosylation types have been proved to be key structural players for the anticoagulant activity of certain marine glycans. These conclusions were obtained from comparative and systematic analyses on the structure-anticoagulation relationships of chemically well-defined sulfated polysaccharides of marine invertebrates and red algae. These sulfated polysaccharides are known as sulfated fucans (SFs), sulfated galactans (SGs) and glycosaminoglycans (GAGs). The structural combinations necessary for the anticoagulant activities are the 2-sulfation in α-L-SGs, the 2,4-di-sulfation in α-L-fucopyranosyl units found as composing units of certain sea-urchin and sea-cucumber linear SFs, or as branching units of the fucosylated chondroitin sulfate, a unique GAG from sea-cucumbers. Another unique GAG type from marine organisms is the dermatan sulfate isolated from ascidians. The high levels of 4-sulfation at the galactosamine units combined with certain levels of 2-sulfation at the iduronic acid units is the anticoagulant structural requirements of these GAGs. When the backbones of red algal SGs are homogeneous, the anticoagulation is proportionally dependent of their sulfation content. Finally, 4-sulfation was observed to be the structural motif required to enhance the inhibition of thrombin via heparin cofactor-II by invertebrate SFs. PMID:24639954

  15. Molasses melanoidin-like products enhance phytoextraction of lead through three Brassica species.

    PubMed

    Hatano, Ken-Ichi; Yamatsu, Takeshi

    2018-05-12

    Previously, it has been suggested that melanoidin-like products (MLP) from sugarcane molasses may accelerate copper phytoextraction. In this study, we evaluated the facilitatory effect of MLP on phytoextraction in a medium including cadmium or lead, the concentrations of which were adjusted around the regulation values of the Soil Contamination Countermeasures Act in Japan. Three Brassica species were tested based on their fast growth, high biomass productivity, and high heavy metal absorption. Both biomass and lead uptake in the nutrient medium with 1 mM lead nitrate were significantly increased by the addition of MLP, and almost all of the lead was accumulated in the root tissue. Therefore, MLP were able both to detoxify lead ions and to improve their bioavailability in Brassica species. In contrast, only these species with MLP or citric acid survived in the nutrient medium with 1 mM cadmium sulfate. The phytoextraction of cadmium using these species was therefore impractical under the Act.

  16. On the adsorption/reaction of acetone on pure and sulfate-modified zirconias.

    PubMed

    Crocellà, Valentina; Cerrato, Giuseppina; Morterra, Claudio

    2013-08-28

    In situ FTIR spectroscopy was employed to investigate some aspects of the ambient temperature (actually, IR-beam temperature) adsorption of acetone on various pure and sulfate-doped zirconia specimens. Acetone uptake yields, on all examined systems and to a variable extent, different types of specific molecular adsorption, depending on the kind/population of available surface sites: relatively weak H-bonding interaction(s) with surface hydroxyls, medium-strong coordinative interaction with Lewis acidic sites, and strong H-bonding interaction with Brønsted acidic centres. Moreover acetone, readily and abundantly adsorbed in molecular form, is able to undergo the aldol condensation reaction (yielding, as the main reaction product, adsorbed mesityl oxide) only if the adsorbing material possesses some specific surface features. The occurrence/non-occurrence of the acetone self-condensation reaction is discussed, and leads to conclusions concerning the sites that catalyze the condensation reaction that do not agree with either of two conflicting interpretations present in the literature of acetone uptake/reaction on, mainly, zeolitic systems. In particular, what turns out to be actually necessary for the acetone aldol condensation reaction to occur on the examined zirconia systems is the presence of coordinatively unsaturated O(2-) surface sites of basicity sufficient to lead to the extraction of a proton from one of the CH3 groups of adsorbed acetone.

  17. Negative Electron Transfer Dissociation Sequencing of 3-O-Sulfation-Containing Heparan Sulfate Oligosaccharides

    NASA Astrophysics Data System (ADS)

    Wu, Jiandong; Wei, Juan; Hogan, John D.; Chopra, Pradeep; Joshi, Apoorva; Lu, Weigang; Klein, Joshua; Boons, Geert-Jan; Lin, Cheng; Zaia, Joseph

    2018-03-01

    Among dissociation methods, negative electron transfer dissociation (NETD) has been proven the most useful for glycosaminoglycan (GAG) sequencing because it produces informative fragmentation, a low degree of sulfate losses, high sensitivity, and translatability to multiple instrument types. The challenge, however, is to distinguish positional sulfation. In particular, NETD has been reported to fail to differentiate 4-O- versus 6-O-sulfation in chondroitin sulfate decasaccharide. This raised the concern of whether NETD is able to differentiate the rare 3-O-sulfation from predominant 6-O-sulfation in heparan sulfate (HS) oligosaccharides. Here, we report that NETD generates highly informative spectra that differentiate sites of O-sulfation on glucosamine residues, enabling structural characterizations of synthetic HS isomers containing 3-O-sulfation. Further, lyase-resistant 3-O-sulfated tetrasaccharides from natural sources were successfully sequenced. Notably, for all of the oligosaccharides in this study, the successful sequencing is based on NETD tandem mass spectra of commonly observed deprotonated precursor ions without derivatization or metal cation adduction, simplifying the experimental workflow and data interpretation. These results demonstrate the potential of NETD as a sensitive analytical tool for detailed, high-throughput structural analysis of highly sulfated GAGs. [Figure not available: see fulltext.

  18. Opiate-like excitatory effects of steroid sulfates and calcium-complexing agents given cerebroventricularly.

    PubMed

    LaBella, F S; Havlicek, V; Pinsky, C

    1979-01-12

    Intracerebroventricular administration of 10--20 microgram of steroid-O-sulfates induced hypermotility, agitation, salivation, EEG abnormalities, stereotypies, wet dog shakes and seizures. Equivalent effects resulted from 30--200 microgram morphine sulfate (H2SO4 salt), 50 microgram EGTA or 300--400 microgram of sodium sulfate or phosphate, but not chloride, nitrate or acetate. Non-steroid sulfates, steroid glucuronides and steroid phosphates were inactive. Naloxone, previously found to antagonize the excitatory effects of androsterone sulfate, failed to antagonize those of cortisol sulfate, sodium sulfate or EGTA. These findings suggest a role for extracellular calcium ions and for sulfate derived from circulating steroids in central responses to opiates.

  19. Aqueous-Phase Mechanism for Secondary Organic Aerosol Formation from Isoprene: Application to the Southeast United States and Co-Benefit of SO2 Emission Controls

    NASA Technical Reports Server (NTRS)

    Marais, E. A.; Jacob, D. J.; Jimenez, J. L.; Campuzano-Jost, P.; Day, D. A.; Hu, W.; Krechmer, J.; Zhu, L.; Kim, P. S.; Miller, C. C.; hide

    2016-01-01

    Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA), but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for isoprene SOA formation coupled to a detailed gas-phase isoprene oxidation scheme. The mechanism is based on aerosol reactive uptake coefficients (gamma) for water-soluble isoprene oxidation products, including sensitivity to aerosol acidity and nucleophile concentrations. We apply this mechanism to simulation of aircraft (SEAC4RS) and ground-based (SOAS) observations over the Southeast US in summer 2013 using the GEOS-Chem chemical transport model. Emissions of nitrogen oxides (NOx = NO + NO2) over the Southeast US are such that the peroxy radicals produced from isoprene oxidation (ISOPO2) react significantly with both NO (high-NOx pathway) and HO2 (low-NOx pathway), leading to different suites of isoprene SOA precursors. We find a mean SOA mass yield of 3.3 % from isoprene oxidation, consistent with the observed relationship of total fine organic aerosol (OA) and formaldehyde (a product of isoprene oxidation). Isoprene SOA production is mainly contributed by two immediate gas-phase precursors, isoprene epoxydiols (IEPOX, 58% of isoprene SOA) from the low-NOx pathway and glyoxal (28%) from both low- and high-NOx pathways. This speciation is consistent with observations of IEPOX SOA from SOAS and SEAC4RS. Observations show a strong relationship between IEPOX SOA and sulfate aerosol that we explain as due to the effect of sulfate on aerosol acidity and volume. Isoprene SOA concentrations increase as NOx emissions decrease (favoring the low-NOx pathway for isoprene oxidation), but decrease more strongly as SO2 emissions decrease (due to the effect of sulfate 42 on aerosol acidity and volume). The US EPA projects 2013-2025 decreases in anthropogenic emissions of 34% for NOx (leading to 7% increase in isoprene SOA) and 48% for SO2 (35% decrease in isoprene SOA). Reducing SO2 emissions decreases sulfate and isoprene SOA by a similar magnitude, representing a factor of 2 co-benefit for PM2.5 from SO2 emission controls.

  20. 21 CFR 524.960 - Flumethasone, neomycin sulfate, and polymyxin B sulfate ophthalmic solutions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Flumethasone, neomycin sulfate, and polymyxin B sulfate ophthalmic solutions. 524.960 Section 524.960 Food and Drugs FOOD AND DRUG ADMINISTRATION... TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.960 Flumethasone, neomycin sulfate, and polymyxin B sulfate...

  1. 21 CFR 524.960 - Flumethasone, neomycin sulfate, and polymyxin B sulfate ophthalmic solutions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Flumethasone, neomycin sulfate, and polymyxin B sulfate ophthalmic solutions. 524.960 Section 524.960 Food and Drugs FOOD AND DRUG ADMINISTRATION... TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.960 Flumethasone, neomycin sulfate, and polymyxin B sulfate...

  2. Mixtures of Sulfates in Melas Chasma

    NASA Image and Video Library

    2017-09-04

    In this image from NASA's Mars Reconnaissance Orbiter, layering within the light-toned sulfate deposit is the result of different states of hydration. Some of the layers have sulfates with little water (known as monohydrated sulfates) whereas other layers have higher amounts of water (called polyhydrated sulfates). The different amounts of water within the sulfates may reflect changes in the water chemistry during deposition of the sulfates, or may have occurred after the sulfates were laid down when heat or pressure forced the water out of some layers, causing a decrease in the hydration state. Many locations on Mars have sulfates, which are sedimentary rocks formed in water. Within Valles Marineris, the large canyon system that cuts across the planet, there are big and thick sequences of sulfates. The CRISM instrument on MRO is crucial for telling scientists which type of sulfate is associated with each layer, because each hydration state will produce a spectrum with absorptions at specific wavelengths depending upon the amount of water contained within the sulfate. https://photojournal.jpl.nasa.gov/catalog/PIA21935

  3. Using Multi-Isotope Tracer Methods to Understand the Sources of Nitrate in Aerosols, Fog and River Water in Podocarpus National Forest, Ecuador

    NASA Astrophysics Data System (ADS)

    Brothers, L. A.; Dominguez, G.; Fabian, P.; Thiemens, M. H.

    2008-12-01

    The eastern slopes of the Andean rainforests of Ecuador possess some of the highest plant biodiversity found on the planet; however, these ecosystems are in jeopardy because region is experiences one of the highest deforestation rates in South America. This rainforest characterized by high acidity and low nutrient soils and experiences natural process which are both destabilizing and stabilizing to biodiversity rendering this a unique, though sensitive environment. There is increased concern that anthropogenic activities especially biomass burning are affecting the rainforests and could lead to higher extinction rates, changes in the biodiversity and far reaching effects on the global troposphere. Measurements of nitrate and sulfate in rain and fog water have shown periods of elevated concentrations in the Podocarpus National Park near Loja, Ecuador. These high episodes contribute to annual deposition rates that are comparable to polluted regions of North America and Europe. Significant anthropogenic sources such as large scale industry or a major city, near this forest are lacking. It is believed that the majority of the nitrate and sulfate pollution is due to the large amount of biomass burning during the dry season in the Amazon Basin. In recent years it has been shown that large amount of dust is transported across the Atlantic from Africa which reaches South America. Concentration measurements do not elucidate the source of high nitrate and sulfate pollution; however, by measuring all three stable isotopes of oxygen in nitrate and sulfate from fog and river water provides a new way to examine the impacts of biomass burning on the region. By using stable isotope techniques atmospheric nitrate and sulfate can be resolved from terrestrial sources. This provides a unique way to trace the contributions from the biomass burning and farming sources. Current research at the field station, Estación Científica San Francisco in the Podocarpus National Forest monitors sulfate and nitrate concentrations in rain and fog water by standard methods to investigate water and nutrient pathways along with data from satellite and ground based remote sensing, observations and numerical models. We hope to pair this with a multi-isotope tracer method and NOAA Hysplit Back trajectories, and satellite imagery for information about the number of fires burning in the region to help identify sources of the high nitrate deposition.

  4. Sulfur biogeochemistry of cold seeps in the Green Canyon region of the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Formolo, Michael J.; Lyons, Timothy W.

    2013-10-01

    Cold seeps in the Gulf of Mexico provide a natural laboratory to study biogeochemical cycling of sulfur, carbon, and oxygen at hydrate- and hydrocarbon-rich deep marine settings with obvious additional relevance to studies of diverse modern and ancient seeps. Of particular interest are the sulfur isotope signatures of microbial sulfate reduction coupled to anaerobic oxidation of methane and other non-methane liquid and gaseous hydrocarbons. Whereas most of the published sulfur isotope data from cold seep systems pertain to pore-water species, our study integrates both solid and dissolved sulfur: acid-volatile sulfides (SAVS), pyrite (Spy), elemental sulfur (S°), dissolved sulfate and ΣH2S. Modeled and 35SO42- reduction rates and δ13C and δ18O data for authigenic carbonates are integrated within this sulfur framework. Our results indicate extreme variability over narrow spatial and temporal scales within short distances (meters) from active seeps. High rates of microbial sulfate reduction can lead to complete consumption of the sulfate within the upper few centimeters of burial, while meters away the sulfate profile shows little depletion. Such small-scale variability must reflect the structure and temporal dynamics of hydrocarbon migration in the presence of low amounts of background organic matter. Our past work demonstrated that electron donors other than methane drive significant levels of microbial activity at these seeps, and very recent work has demonstrated that oxidation of higher chain volatile hydrocarbons can contribute to the high levels of microbial activity. These findings are consistent with our new results. Elevated concentrations of pyrite and diagenetic carbonate relative to background sediments are diagnostic of active seepage, yet the S isotopes tell more complex stories. Low levels of the transient, 'instantaneous' products of S cycling-AVS and S°-show high δ34S values that increase with depth. Most of the pyrite formation, however, seems to be very early as limited by the availability of reactive Fe phases. As such, δ34S values for pyrite at ancient seeps can show consistently low δ34S values that undersell the full intensity of microbial sulfate reduction. Low sedimentation rates, and the resulting low detrital iron fluxes, may in fact limit our ability to recognize seeps in the geologic record using only δ34S compositions for pyrite.

  5. Installation Restoration Program. Phase 2. Confirmation/Quantification. Stage 1. Sites 24-WF15, 25-WF22 and 26-BST5. U.S. Air Force Plant No. 42, Palmdale, California.

    DTIC Science & Technology

    1988-06-15

    Primary Metals: CA Title 2:60 e Arsenic 0.005 mg/L~~ Barium 0.005 mg/LICadmium 0.005 mg/L Chromium 0.01 mg/L Lead 0.05 mg/L Mercury 0.001 mg/L Selenium...analyzed for twelve metals: arsenic (As), barium (Ba), cadmium (Ca), chromium (COr), lead (Pb), mer- cury (Hg), selenium (Se), silver (Ag), iron (Fe...Total Threshold Limit Substnce (mg/L) (mg/Kg) Arsenic 5.0 500 Barium (excludingf barium sulfate) 100 10,000 Cadmium 1.0 100 Chromium VI 5 500 Chromium

  6. Sulfate resistance of high calcium fly ash concrete

    NASA Astrophysics Data System (ADS)

    Dhole, Rajaram

    Sulfate attack is one of the mechanisms which can cause deterioration of concrete. In general, Class C fly ash mixtures are reported to provide poor sulfate resistance. Fly ashes, mainly those belonging to the Class C, were tested as per the ASTM C 1012 procedure to evaluate chemical sulfate resistance. Overall the Class C fly ashes showed poor resistance in the sulfate environment. Different strategies were used in this research work to improve the sulfate resistance of Class C fly ash mixes. The study revealed that some of the strategies such as use of low W/CM (water to cementing materials by mass ratio), silica fume or ultra fine fly ash, high volumes of fly ash and, ternary or quaternary mixes with suitable supplementary cementing materials, can successfully improve the sulfate resistance of the Class C fly ash mixes. Combined sulfate attack, involving physical and chemical action, was studied using sodium sulfate and calcium sulfate solutions. The specimens were subjected to wetting-drying cycles and temperature changes. These conditions were found to accelerate the rate of degradation of concrete placed in a sodium sulfate environment. W/CM was found to be the main governing factor in providing sulfate resistance to mixes. Calcium sulfate did not reveal damage as a result of mainly physical action. Characterization of the selected fly ashes was undertaken by using SEM, XRD and the Rietveld analysis techniques, to determine the relation between the composition of fly ashes and resistance to sulfate attack. The chemical composition of glass represented on the ternary diagram was the main factor which had a significant influence on the sulfate resistance of fly ash mixtures. Mixes prepared with fly ashes containing significant amounts of vulnerable crystalline phases offered poor sulfate resistance. Comparatively, fly ash mixes containing inert crystalline phases such as quartz, mullite and hematite offered good sulfate resistance. The analysis of hydrated lime-fly ash pastes confirmed that fly ash mortar or concrete mixes forming more monosulfate than ettringite before exposure to sulfates would offer poor sulfate resistance and vice versa. During quantitative Rietveld analysis carried out for determining ettringite, monosulfate and gypsum formed in the fly ash pastes, it was observed that fly ash mixtures showing more ettringite after exposures to sulfates, give poor sulfate resistance. A good relationship between the amounts of ettringite formed and expansions of mortar specimens in the ASTM C 1012 test was found.

  7. 40 CFR 415.630 - Applicability; description of the zinc sulfate production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sulfate production subcategory. 415.630 Section 415.630 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Zinc Sulfate Production Subcategory § 415.630 Applicability; description of the zinc sulfate... production of zinc sulfate. ...

  8. 40 CFR 415.630 - Applicability; description of the zinc sulfate production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sulfate production subcategory. 415.630 Section 415.630 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Zinc Sulfate Production Subcategory § 415.630 Applicability; description of the zinc sulfate... production of zinc sulfate. ...

  9. 40 CFR 415.630 - Applicability; description of the zinc sulfate production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sulfate production subcategory. 415.630 Section 415.630 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Zinc Sulfate Production Subcategory § 415.630 Applicability; description of the zinc sulfate... production of zinc sulfate. ...

  10. 21 CFR 184.1307 - Ferric sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ferric sulfate. 184.1307 Section 184.1307 Food and....1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS Reg. No. 10028-22-5) is a yellow substance that may be prepared by oxidizing iron (II) sulfate or by treating ferric oxide or...

  11. A Copper-Sulfate-Based Inorganic Chemistry Laboratory for First-Year University Students That Teaches Basic Operations and Concepts.

    ERIC Educational Resources Information Center

    Rodriguez, Emilio; Vicente, Miguel Angel

    2002-01-01

    Presents a 10-hour chemistry experiment using copper sulfate that has three steps: (1) purification of an ore containing copper sulfate and insoluble basic copper sulfates; (2) determination of the number of water molecules in hydrated copper sulfate; and (3) recovery of metallic copper from copper sulfate. (Author/YDS)

  12. 21 CFR 172.822 - Sodium lauryl sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium lauryl sulfate. 172.822 Section 172.822... Sodium lauryl sulfate. The food additive sodium lauryl sulfate may be safely used in food in accordance... of sodium alkyl sulfates consisting chiefly of sodium lauryl sulfate [CH2(CH2)10CH2OSO2Na]. (2) It...

  13. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil.

    PubMed

    Sitte, Jana; Akob, Denise M; Kaufmann, Christian; Finster, Kai; Banerjee, Dipanjan; Burkhardt, Eva-Maria; Kostka, Joel E; Scheinost, Andreas C; Büchel, Georg; Küsel, Kirsten

    2010-05-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the (35)SO(4)(2-) radiotracer method, was restricted to reduced soil horizons with rates of < or =142 +/- 20 nmol cm(-3) day(-1). Concentrations of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that approximately 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [(13)C]acetate- and [(13)C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined < or =100% during anoxic soil incubations. In contrast to results in other studies, soluble uranium increased in carbon-amended treatments, reaching < or =1,407 nM in solution. Our results suggest that (i) ongoing sulfate reduction in contaminated soil resulted in in situ metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems.

  14. Microbial Links between Sulfate Reduction and Metal Retention in Uranium- and Heavy Metal-Contaminated Soil▿

    PubMed Central

    Sitte, Jana; Akob, Denise M.; Kaufmann, Christian; Finster, Kai; Banerjee, Dipanjan; Burkhardt, Eva-Maria; Kostka, Joel E.; Scheinost, Andreas C.; Büchel, Georg; Küsel, Kirsten

    2010-01-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the 35SO42− radiotracer method, was restricted to reduced soil horizons with rates of ≤142 ± 20 nmol cm−3 day−1. Concentrations of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that ∼80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [13C]acetate- and [13C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined ≤100% during anoxic soil incubations. In contrast to results in other studies, soluble uranium increased in carbon-amended treatments, reaching ≤1,407 nM in solution. Our results suggest that (i) ongoing sulfate reduction in contaminated soil resulted in in situ metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems. PMID:20363796

  15. Temperature induced decoupling of enzymatic hydrolysis and carbon remineralization in long-term incubations of Arctic and temperate sediments

    NASA Astrophysics Data System (ADS)

    Robador, Alberto; Brüchert, Volker; Steen, Andrew D.; Arnosti, Carol

    2010-04-01

    Extracellular enzymatic hydrolysis of high-molecular weight organic matter is the initial step in sedimentary organic carbon degradation and is often regarded as the rate-limiting step. Temperature effects on enzyme activities may therefore exert an indirect control on carbon mineralization. We explored the temperature sensitivity of enzymatic hydrolysis and its connection to subsequent steps in anoxic organic carbon degradation in long-term incubations of sediments from the Arctic and the North Sea. These sediments were incubated under anaerobic conditions for 24 months at temperatures of 0, 10, and 20 °C. The short-term temperature response of the active microbial community was tested in temperature gradient block incubations. The temperature optimum of extracellular enzymatic hydrolysis, as measured with a polysaccharide (chondroitin sulfate), differed between Arctic and temperate habitats by about 8-13 °C in fresh sediments and in sediments incubated for 24 months. In both Arctic and temperate sediments, the temperature response of chondroitin sulfate hydrolysis was initially similar to that of sulfate reduction. After 24 months, however, hydrolysis outpaced sulfate reduction rates, as demonstrated by increased concentrations of dissolved organic carbon (DOC) and total dissolved carbohydrates. This effect was stronger at higher incubation temperatures, particularly in the Arctic sediments. In all experiments, concentrations of volatile fatty acids (VFA) were low, indicating tight coupling between VFA production and consumption. Together, these data indicate that long-term incubation at elevated temperatures led to increased decoupling of hydrolytic DOC production relative to fermentation. Temperature increases in marine sedimentary environments may thus significantly affect the downstream carbon mineralization and lead to the increased formation of refractory DOC.

  16. Natural attenuation potential of phenylarsenicals in anoxic groundwaters.

    PubMed

    Hempel, Michael; Daus, Birgit; Vogt, Carsten; Weiss, Holger

    2009-09-15

    The extensive production of chemical warfare agents in the 20th century has led to serious contamination of soil and groundwater with phenyl arsenicals at former ammunition depots or warfare agent production sites worldwide. Most phenyl arsenicals are highly toxic for humans. The microbial degradation of phenylarsonic acid (PAA) and diphenylarsinic acid (DPAA) was investigated in microcosms made of anoxic groundwater/sediment mixtures taken from different depths of an anoxic, phenyl arsenical contaminated aquifer in Central Germany. DPAA was not transformed within 91 days incubation time in any of the microcosms. The removal of PAA can be described by a first order kinetics without a lag-phase (rate: 0.037 d(-1)). In sterilized microcosms, PAA concentrations always remained stable, demonstrating that PAA transformation was a biologically mediated process. PAA transformation occurred under sulfate-reducing conditions due to sulfate consumption and production of sulfide. The addition of lactate (1 mM), a typical substrate of sulfate-reducing bacteria, increased the transformation rate of PAA significantly up to 0.134 d(-1). The content of total arsenic was considerably reduced (> 75%). Intermediates of PAA transformation were detected by high performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS). Experiments with a pure strain and sterile controls of Desulfovibrio gigas spiked with PAA showed that the elimination process is linked to the presence of sulfide formed through bacterial activity. Phenyl arsenicals were likely immobilized in the sedimentthrough sulfur substitution and a subsequent sulfur bond under the prevailing sulfate reducing condition. The results of this study indicate that PAA can undergo microbiologically mediated transformation in anoxic aquifers, leading to reduced concentrations in groundwater, which indicate a (enhancend) natural attenuation potential.

  17. Role of sulfate, chloride, and nitrate anions on the degradation of fluoroquinolone antibiotics by photoelectro-Fenton.

    PubMed

    Villegas-Guzman, Paola; Hofer, Florian; Silva-Agredo, Javier; Torres-Palma, Ricardo A

    2017-12-01

    Taking ciprofloxacin (CIP) as a fluoroquinolone antibiotic model, this work explores the role of common anions (sulfate, nitrate, and chloride) during the application of photoelectro-Fenton (PEF) at natural pH to degrade this type of compound in water. The system was composed of an IrO 2 anode, Ti, or gas diffusion electrode (GDE) as cathode, Fe 2+ , and UV (254 nm). To determine the implications of these anions, the degradation pathway and efficiency of the PEF sub-processes (UV photolysis, anodic oxidation, and electro-Fenton at natural pH) were studied in the individual presence of the anions. The results highlight that degradation routes and kinetics are strongly dependent on electrolytes. When chloride and nitrate ions were present, indirect electro-chemical oxidation was identified by electro-generated HOCl and nitrogenated oxidative species, respectively. Additionally, direct photolysis and direct oxidation at the anode surface were identified as degradation routes. As a consequence of the different pathways, six primary CIP by-products were identified. Therefore, a scheme was proposed representing the pathways involved in the degradation of CIP when submitted to PEF in water with chloride, nitrate, and sulfate ions, showing the complexity of this process. Promoted by individual and synergistic actions of this process, the PEF system leads to a complete elimination of CIP with total removal of antibiotic activity against Staphylococcus aureus and Escherichia coli, and significant mineralization. Finally, the role of the anions was tested in seawater containing CIP, in which the positive contributions of the anions were partially suppressed by its OH radical scavenger action. The findings are of interest for the understanding of the degradation of antibiotics via the PEF process in different matrices containing sulfate, nitrate, and chloride ions.

  18. Novel Alkylsulfatases Required for Biodegradation of the Branched Primary Alkyl Sulfate Surfactant 2-Butyloctyl Sulfate

    PubMed Central

    Ellis, Andrew J.; Hales, Stephen G.; Ur-Rehman, Naheed G. A.; White, Graham F.

    2002-01-01

    Recent reports show that contrary to common perception, branched alkyl sulfate surfactants are readily biodegradable in standard biodegradability tests. We report here the isolation of bacteria capable of biodegrading 2-butyloctyl sulfate and the identification of novel enzymes that initiate the process. Enrichment culturing from activated sewage sludge yielded several strains capable of growth on 2-butyloctyl sulfate. Of these, two were selected for further study and identified as members of the genus Pseudomonas. Strain AE-A was able to utilize either sodium dodecyl sulfate (SDS) or 2-butyloctyl sulfate as a carbon and energy source for growth, but strain AE-D utilized only the latter. Depending on growth conditions, strain AE-A produced up to three alkylsulfatases, as shown by polyacrylamide gel electrophoresis zymography. Growth on either SDS or 2-butyloctyl sulfate or in nutrient broth produced an apparently constitutive, nonspecific primary alkylsulfatase, AP1, weakly active on SDS and on 2-butyloctyl sulfate. Growth on 2-butyloctyl sulfate produced a second enzyme, AP2, active on 2-butyloctyl sulfate but not on SDS, and growth on SDS produced a third enzyme, AP3, active on SDS but not on 2-butyloctyl sulfate. In contrast, strain AE-D, when grown on 2-butyloctyl sulfate (no growth on SDS), produced a single enzyme, DP1, active on 2-butyloctyl sulfate but not on SDS. DP1 was not produced in broth cultures. DP1 was induced when residual 2-butyloctyl sulfate was present in the growth medium, but the enzyme disappeared when the substrate was exhausted. Gas chromatographic analysis of products of incubating 2-butyloctyl sulfate with DP1 in gels revealed the formation of 2-butyloctanol, showing the enzyme to be a true sulfatase. In contrast, Pseudomonas sp. strain C12B, well known for its ability to degrade linear SDS, was unable to grow on 2-butyloctyl sulfate, and its alkylsulfatases responsible for initiating the degradation of SDS by releasing the parent alcohol exhibited no hydrolytic activity on 2-butyloctyl sulfate. DP1 and the analogous AP2 are thus new alkylsulfatase enzymes with novel specificity toward 2-butyloctyl sulfate. PMID:11772605

  19. Dry Climate as Major Factor Controlling Formation of Hydrated Sulfate Minerals in Valles Marineris on Mars

    NASA Astrophysics Data System (ADS)

    Szynkiewicz, A.

    2016-12-01

    In this study, a model for the formation of hydrated sulfate salts (Mg-Ca-Na sulfates) in the Rio Puerco watershed of New Mexico, a terrestrial analog site from the semi-arid Southwest U.S., was used to assess the origin and climate condition that may have controlled deposition of hydrated sulfates in Valles Marineris on Mars. In this analog site, the surface accumulation of sulfate minerals along canyon walls, slopes and valley surfaces closely resemble occurrences of hydrated sulfates in Valles Marineris on Mars. Significant surface accumulations of Mg-Ca-Na sulfates are a result of prevailing semiarid conditions and a short-lived hydrological cycle that mobilizes sulfur present in the bedrock as sulfides, sulfate minerals, and atmospheric deposition. Repeating cycles of salt dissolution and re-precipitation appear to be the underpinning processes that serve to transport sulfate from bedrock to sulfate salts (e.g., efflorescences) and into surface water. This process occurs in the shallow surface environment and is not accompanied by deep groundwater flow because of prevailing dry conditions and low annual precipitation. Generally, close resemblance of surface occurrence and mineralogical composition of sulfate salts between the studied terrestrial analog and Valles Marineris suggest that a similar sulfate cycle, involving limited water activity during formation of hydrated sulfates, was once present in Valles Marineris. Measured as efflorescence, the distributed surface mass of hydrated sulfates in Valles Marineris is relatively small (4 to 42%) when compared to terrestrial settings with higher surface accumulation of sulfate minerals such as the White Sands gypsum dune field. Under semi-arid conditions similar to the studied analog in the Rio Pueurco watershed, it would take only 100 to 1,000 years to activate an equivalent flux of aqueous sulfate in Valles Marineris, when comparing terrestrial annual sulfate fluxes from the Rio Puerco watershed with the amount of hydrated sulfates and the size of Valles Marineris. The results of this study suggest that during formation of hydrated sulfates in Valles Marineris on Mars the climate was relatively dry with limited aqueous processes in surface environment.

  20. Molecular regulation of aluminum resistance and sulfur nutrition during root growth.

    PubMed

    Alarcón-Poblete, Edith; Inostroza-Blancheteau, Claudio; Alberdi, Miren; Rengel, Zed; Reyes-Díaz, Marjorie

    2018-01-01

    Aluminum toxicity and sulfate deprivation both regulate microRNA395 expression, repressing its low-affinity sulfate transporter ( SULTR2;1 ) target. Sulfate deprivation also induces the high-affinity sulfate transporter gene ( SULTR12 ), allowing enhanced sulfate uptake. Few studies about the relationships between sulfate, a plant nutrient, and aluminum, a toxic ion, are available; hence, the molecular and physiological processes underpinning this interaction are poorly understood. The Al-sulfate interaction occurs in acidic soils, whereby relatively high concentrations of trivalent toxic aluminum (Al 3+ ) may hamper root growth, limiting uptake of nutrients, including sulfur (S). On the other side, Al 3+ may be detoxified by complexation with sulfate in the acid soil solution as well as in the root-cell vacuoles. In this review, we focus on recent insights into the mechanisms governing plant responses to Al toxicity and its relationship with sulfur nutrition, emphasizing the role of phytohormones, microRNAs, and ion transporters in higher plants. It is known that Al 3+ disturbs gene expression and enzymes involved in biosynthesis of S-containing cysteine in root cells. On the other hand, Al 3+ may induce ethylene biosynthesis, enhance reactive oxygen species production, alter phytohormone transport, trigger root growth inhibition and promote sulfate uptake under S deficiency. MicroRNA395, regulated by both Al toxicity and sulfate deprivation, represses its low-affinity Sulfate Transporter 2;1 (SULTR2;1) target. In addition, sulfate deprivation induces High Affinity Sulfate Transporters (HAST; SULTR1;2), improving sulfate uptake from low-sulfate soil solutions. Identification of new microRNAs and cloning of their target genes are necessary for a better understanding of the role of molecular regulation of plant resistance to Al stress and sulfate deprivation.

  1. Synthesis of N-oleyl O-sulfate chitosan from methyl oleate with O-sulfate chitosan as edible film material

    NASA Astrophysics Data System (ADS)

    Daniel; Sihaloho, O.; Saleh, C.; Magdaleni, A. R.

    2018-04-01

    The research on the synthesis of N-oleyl O-sulfate chitosan through sulfonation reaction on chitosan with ammonium sulfate and followed by amidation reaction using methyl oleate has been done. In this study, chitosan was chemically modified into N-oleyl O-sulfatechitosan as an edible film making material. N-oleyl O-sulfate chitosan was synthesized by reaction between methyl oleate and O-sulfate chitosan. Wherein the depleted chitosan of O-sulfate chitosan into O-sulfate chitosan was obtained by reaction of sulfonation between ammonium sulfate and chitosan aldimine. While chitosan aldimine was obtained through reaction between chitosan with acetaldehyde. The structure of N-oleyl O-sulfate chitosan was characterized by FT-IR analysis which showed vibration uptake of C-H sp3 group, S=O group, and carbonyl group C=O of the ester. The resulting of N-oleyl O-sulfate chitosan yielded a percentage of 93.52%. Hydrophilic-Lipophilic Balance (HLB) test results gave a value of 6.68. In the toxicity test results of N-oleyl O-sulfate chitosan obtained LC50 value of 3738.4732 ppm. In WVTR (Water Vapor Transmission Rate) test results for chitosan film was 407.625 gram/m2/24 hours and N-oleylO-sulfate chitosan film was 201.125 gram/m2/24 hours.

  2. Reduced Sulfation of Chondroitin Sulfate but Not Heparan Sulfate in Kidneys of Diabetic db/db Mice

    PubMed Central

    Reine, Trine M.; Grøndahl, Frøy; Jenssen, Trond G.; Hadler-Olsen, Elin; Prydz, Kristian

    2013-01-01

    Heparan sulfate proteoglycans are hypothesized to contribute to the filtration barrier in kidney glomeruli and the glycocalyx of endothelial cells. To investigate potential changes in proteoglycans in diabetic kidney, we isolated glycosaminoglycans from kidney cortex from healthy db/+ and diabetic db/db mice. Disaccharide analysis of chondroitin sulfate revealed a significant decrease in the 4-O-sulfated disaccharides (D0a4) from 65% to 40%, whereas 6-O-sulfated disaccharides (D0a6) were reduced from 11% to 6%, with a corresponding increase in unsulfated disaccharides. In contrast, no structural differences were observed in heparan sulfate. Furthermore, no difference was found in the molar amount of glycosaminoglycans, or in the ratio of hyaluronan/heparan sulfate/chondroitin sulfate. Immunohistochemical staining for the heparan sulfate proteoglycan perlecan was similar in both types of material but reduced staining of 4-O-sulfated chondroitin and dermatan was observed in kidney sections from diabetic mice. In support of this, using qRT-PCR, a 53.5% decrease in the expression level of Chst-11 (chondroitin 4-O sulfotransferase) was demonstrated in diabetic kidney. These results suggest that changes in the sulfation of chondroitin need to be addressed in future studies on proteoglycans and kidney function in diabetes. PMID:23757342

  3. Reduced sulfation of chondroitin sulfate but not heparan sulfate in kidneys of diabetic db/db mice.

    PubMed

    Reine, Trine M; Grøndahl, Frøy; Jenssen, Trond G; Hadler-Olsen, Elin; Prydz, Kristian; Kolset, Svein O

    2013-08-01

    Heparan sulfate proteoglycans are hypothesized to contribute to the filtration barrier in kidney glomeruli and the glycocalyx of endothelial cells. To investigate potential changes in proteoglycans in diabetic kidney, we isolated glycosaminoglycans from kidney cortex from healthy db/+ and diabetic db/db mice. Disaccharide analysis of chondroitin sulfate revealed a significant decrease in the 4-O-sulfated disaccharides (D0a4) from 65% to 40%, whereas 6-O-sulfated disaccharides (D0a6) were reduced from 11% to 6%, with a corresponding increase in unsulfated disaccharides. In contrast, no structural differences were observed in heparan sulfate. Furthermore, no difference was found in the molar amount of glycosaminoglycans, or in the ratio of hyaluronan/heparan sulfate/chondroitin sulfate. Immunohistochemical staining for the heparan sulfate proteoglycan perlecan was similar in both types of material but reduced staining of 4-O-sulfated chondroitin and dermatan was observed in kidney sections from diabetic mice. In support of this, using qRT-PCR, a 53.5% decrease in the expression level of Chst-11 (chondroitin 4-O sulfotransferase) was demonstrated in diabetic kidney. These results suggest that changes in the sulfation of chondroitin need to be addressed in future studies on proteoglycans and kidney function in diabetes.

  4. [Regulation of sulfates, hydrogen sulfide and heavy metals in technogenic reservoirs by sulfate-reducing bacteria].

    PubMed

    Hudz', S P; Peretiatko, T B; Moroz, O M; Hnatush, S O; Klym, I R

    2011-01-01

    Sulfate-reducing bacteria Desulfovibrio desulfuricans Ya-11 in the presence of sulfates and organic compounds in the medium reduce sulfates to hydrogen sulfide (dissimilatory sulfate reduction). Heavy metals in concentration over 2 mM inhibit this process. Pb2+, Zn2+, Ni2+, Co2+, Fe2+ and Cd2+ ions in concentration 1-1.5 mM display insignificant inhibiting effect on sulfate reduction process, and metals precipitate in the form of sulfides. At concentrations of heavy metals 2-3 mM one can observe a decrease of sulfates reduction intensity, and a percent of metals binding does not exceed 72%. Obtained results give reason to confirm, that sulfate-reducing bacteria play an important role in regulation of the level of sulfates, hydrogen sulfide and heavy metals in reservoirs and they may be used for purification of water environment from these compounds.

  5. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOEpatents

    Shearer, J.A.; Turner, C.B.; Johnson, I.

    1980-03-13

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  6. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOEpatents

    Shearer, John A.; Turner, Clarence B.; Johnson, Irving

    1982-01-01

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  7. Monoalkyl sulfates as alkylating agents in water, alkylsulfatase rate enhancements, and the “energy-rich” nature of sulfate half-esters

    PubMed Central

    Wolfenden, Richard; Yuan, Yang

    2007-01-01

    Alkyl sulfate monoesters are involved in cell signaling and structure. Alkyl sulfates are also present in many commercial detergents. Here, we show that monomethyl sulfate acts as an efficient alkylating agent in water, reacting spontaneously with oxygen nucleophiles >100-fold more rapidly than do alkylsulfonium ions, the usual methyl donors in living organisms. These reactions of methyl sulfate, which are much more rapid than its hydrolysis, are insensitive to the nature of the attacking nucleophile, with a Brønsted βnuc value of −0.01. Experiments at elevated temperatures indicate a rate constant of 2 × 10−11 s−1 for the uncatalyzed hydrolysis of methyl sulfate at 25°C (t1/2 = 1,100 y), corresponding to a rate enhancement of ≈1011-fold by a human alkylsulfatase. Equilibria of formation of methyl sulfate from methanol and sodium hydrogen sulfate indicate a group transfer potential (ΔG′pH7) of −8.9 kcal/mol for sulfate ester hydrolysis. The magnitude of that value, involving release of the strong acid HSO4−, helps to explain the need for harnessing the free energy of hydrolysis of two ATP molecules in activating sulfate for the biosynthesis of sulfate monoesters. The “energy-rich” nature of monoalkyl sulfate esters, coupled with their marked resistance to hydrolysis, renders them capable of acting as sulfating or alkylating agents under relatively mild conditions. These findings raise the possibility that, under appropriate circumstances, alkyl groups may undergo transfer from alkyl sulfate monoesters to biological target molecules. PMID:17182738

  8. 21 CFR 184.1307 - Ferric sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ferric sulfate. 184.1307 Section 184.1307 Food and... Substances Affirmed as GRAS § 184.1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS Reg. No. 10028-22-5) is a yellow substance that may be prepared by oxidizing iron (II) sulfate or by...

  9. 21 CFR 184.1307 - Ferric sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferric sulfate. 184.1307 Section 184.1307 Food and... Substances Affirmed as GRAS § 184.1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS Reg. No. 10028-22-5) is a yellow substance that may be prepared by oxidizing iron (II) sulfate or by...

  10. 21 CFR 184.1307 - Ferric sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ferric sulfate. 184.1307 Section 184.1307 Food and... Substances Affirmed as GRAS § 184.1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS Reg. No. 10028-22-5) is a yellow substance that may be prepared by oxidizing iron (II) sulfate or by...

  11. 21 CFR 184.1307 - Ferric sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ferric sulfate. 184.1307 Section 184.1307 Food and... Substances Affirmed as GRAS § 184.1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS Reg. No. 10028-22-5) is a yellow substance that may be prepared by oxidizing iron (II) sulfate or by...

  12. Effects of sulfate chitosan derivatives on nonalcoholic fatty liver disease

    NASA Astrophysics Data System (ADS)

    Yu, Mingming; Wang, Yuanhong; Jiang, Tingfu; Lv, Zhihua

    2014-06-01

    Sulfate chitosan derivatives have good solubility and therapeutic effect on the cell model of NAFLD. The aim of this study was to examine the therapeutic effect of sulfate chitosan derivatives on NAFLD. The male Wistar rats were orally fed high fat emulsion and received sulfate chitosan derivatives for 5 weeks to determine the pre-treatment effect of sulfate chitosan derivatives on NAFLD. To evaluate the therapeutic effect of sulfate chitosan derivatives on NAFLD, the rats were orally fed with high concentration emulsion for 5 weeks, followed by sulfate chitosan derivatives for 3 weeks. Histological analysis and biomedical assays showed that sulfate chitosan derivatives can dramatically prevent the development of hepatic steatosis in hepatocyte cells. In animal studies, pre-treatment and treatment with sulfate chitosan derivatives significantly protected against hepatic steatohepatitis induced by high fat diet according to histological analysis. Furthermore, increased TC, ALT, MDA, and LEP in NAFLD were significantly ameliorated by pre-treatment and treatment with sulfate chitosan derivatives. Furthermore, increased TG, AST, and TNF-α in NAFLD were significantly ameliorated by treatment with sulfate chitosan derivatives. Sulfate chitosan derivatives have good pre-treatment and therapeutic effect on NAFLD.

  13. Sources of sulfate supporting anaerobic metabolism in a contaminated aquifer

    USGS Publications Warehouse

    Ulrich, G.A.; Breit, G.N.; Cozzarelli, I.M.; Suflita, J.M.

    2003-01-01

    Field and laboratory techniques were used to identify the biogeochemical factors affecting sulfate reduction in a shallow, unconsolidated alluvial aquifer contaminated with landfill leachate. Depth profiles of 35S-sulfate reduction rates in aquifer sediments were positively correlated with the concentration of dissolved sulfate. Manipulation of the sulfate concentration in samples revealed a Michaelis-Menten-like relationship with an apparent Km and Vmax of approximately 80 and 0.83 ??M SO4-2??day-1, respectively. The concentration of sulfate in the core of the leachate plume was well below 20 ??M and coincided with very low reduction rates. Thus, the concentration and availability of this anion could limit in situ sulfate-reducing activity. Three sulfate sources were identified, including iron sulfide oxidation, barite dissolution, and advective flux of sulfate. The relative importance of these sources varied with depth in the alluvium. The relatively high concentration of dissolved sulfate at the water table is attributed to the microbial oxidation of iron sulfides in response to fluctuations of the water table. At intermediate depths, barite dissolves in undersaturated pore water containing relatively high concentrations of dissolved barium (???100 ??M) and low concentrations of sulfate. Dissolution is consistent with the surface texture of detrital barite grains in contact with leachate. Laboratory incubations of unamended and barite-amended aquifer slurries supported the field observation of increasing concentrations of barium in solution when sulfate reached low levels. At a deeper highly permeable interval just above the confining bottom layer of the aquifer, sulfate reduction rates were markedly higher than rates at intermediate depths. Sulfate is supplied to this deeper zone by advection of uncontaminated groundwater beneath the landfill. The measured rates of sulfate reduction in the aquifer also correlated with the abundance of accumulated iron sulfide in this zone. This suggests that the current and past distributions of sulfate-reducing activity are similar and that the supply of sulfate has been sustained at these sites.

  14. Quantification and isotopic analysis of intracellular sulfur metabolites in the dissimilatory sulfate reduction pathway

    NASA Astrophysics Data System (ADS)

    Sim, Min Sub; Paris, Guillaume; Adkins, Jess F.; Orphan, Victoria J.; Sessions, Alex L.

    2017-06-01

    Microbial sulfate reduction exhibits a normal isotope effect, leaving unreacted sulfate enriched in 34S and producing sulfide that is depleted in 34S. However, the magnitude of sulfur isotope fractionation is quite variable. The resulting changes in sulfur isotope abundance have been used to trace microbial sulfate reduction in modern and ancient ecosystems, but the intracellular mechanism(s) underlying the wide range of fractionations remains unclear. Here we report the concentrations and isotopic ratios of sulfur metabolites in the dissimilatory sulfate reduction pathway of Desulfovibrio alaskensis. Intracellular sulfate and APS levels change depending on the growth phase, peaking at the end of exponential phase, while sulfite accumulates in the cell during stationary phase. During exponential growth, intracellular sulfate and APS are strongly enriched in 34S. The fractionation between internal and external sulfate is up to 49‰, while at the same time that between external sulfate and sulfide is just a few permil. We interpret this pattern to indicate that enzymatic fractionations remain large but the net fractionation between sulfate and sulfide is muted by the closed-system limitation of intracellular sulfate. This 'reservoir effect' diminishes upon cessation of exponential phase growth, allowing the expression of larger net sulfur isotope fractionations. Thus, the relative rates of sulfate exchange across the membrane versus intracellular sulfate reduction should govern the overall (net) fractionation that is expressed. A strong reservoir effect due to vigorous sulfate reduction might be responsible for the well-established inverse correlation between sulfur isotope fractionation and the cell-specific rate of sulfate reduction, while at the same time intraspecies differences in sulfate uptake and/or exchange rates could account for the significant scatter in this relationship. Our approach, together with ongoing investigations of the kinetic isotope fractionation by key enzymes in the sulfate reduction pathway, should provide an empirical basis for a quantitative model relating the magnitude of microbial isotope fractionation to their environmental and physiological controls.

  15. High rates of sulfate reduction in a low-sulfate hot spring microbial mat are driven by a low level of diversity of sulfate-respiring microorganisms.

    PubMed

    Dillon, Jesse G; Fishbain, Susan; Miller, Scott R; Bebout, Brad M; Habicht, Kirsten S; Webb, Samuel M; Stahl, David A

    2007-08-01

    The importance of sulfate respiration in the microbial mat found in the low-sulfate thermal outflow of Mushroom Spring in Yellowstone National Park was evaluated using a combination of molecular, microelectrode, and radiotracer studies. Despite very low sulfate concentrations, this mat community was shown to sustain a highly active sulfur cycle. The highest rates of sulfate respiration were measured close to the surface of the mat late in the day when photosynthetic oxygen production ceased and were associated with a Thermodesulfovibrio-like population. Reduced activity at greater depths was correlated with novel populations of sulfate-reducing microorganisms, unrelated to characterized species, and most likely due to both sulfate and carbon limitation.

  16. High Rates of Sulfate Reduction in a Low-Sulfate Hot Spring Microbial Mat Are Driven by a Low Level of Diversity of Sulfate-Respiring Microorganisms▿

    PubMed Central

    Dillon, Jesse G.; Fishbain, Susan; Miller, Scott R.; Bebout, Brad M.; Habicht, Kirsten S.; Webb, Samuel M.; Stahl, David A.

    2007-01-01

    The importance of sulfate respiration in the microbial mat found in the low-sulfate thermal outflow of Mushroom Spring in Yellowstone National Park was evaluated using a combination of molecular, microelectrode, and radiotracer studies. Despite very low sulfate concentrations, this mat community was shown to sustain a highly active sulfur cycle. The highest rates of sulfate respiration were measured close to the surface of the mat late in the day when photosynthetic oxygen production ceased and were associated with a Thermodesulfovibrio-like population. Reduced activity at greater depths was correlated with novel populations of sulfate-reducing microorganisms, unrelated to characterized species, and most likely due to both sulfate and carbon limitation. PMID:17575000

  17. Mass loading of selected major and trace elements in Lake Fork Creek near Leadville, Colorado, September-October 2001

    USGS Publications Warehouse

    Walton-Day, Katherine; Flynn, Jennifer L.; Kimball, Briant A.; Runkel, Robert L.

    2005-01-01

    A mass-loading study of Lake Fork Creek of the Arkansas River between Sugarloaf Dam and the mouth was completed in September-October 2001 to help ascertain the following: (1) variation of pH and aqueous constituent concentrations (calcium, sulfate, alkalinity, aluminum, cadmium, copper, iron, manganese, lead, and zinc) and their relation to toxicity standards along the study reach; (2) location and magnitude of sources of metal loading to Lake Fork Creek; (3) amount and locations of metal attenuation; (4) the effect of streamside wetlands on metal transport from contributing mine tunnels; and (5) the effect of organic-rich inflow from the Leadville National Fish Hatchery on water quality in Lake Fork Creek. The study was done in cooperation with the Bureau of Land Management, U.S. Department of Agriculture Forest Service, and U.S. Fish and Wildlife Service. Constituent concentrations and pH showed variable patterns over the study reach. Hardness-based acute and chronic toxicity standards were exceeded for some inflows and some constituents. However, stream concentrations did not exceed standards except for zinc starting in the upper parts of the study reach and extending to just downstream from the inflow from the Leadville National Fish Hatchery. Dilution from that inflow lowered stream zinc concentrations to less than acute and chronic toxicity standards. The uppermost 800 meters of the study reach that contained inflow from the Bartlett, Dinero, and Nelson mine tunnels and the Dinero wetland was the greatest source of loading for manganese and zinc. A middle section of the study reach that extended approximately 2 kilometers upstream from the National Fish Hatchery inflow to just downstream from that inflow was the largest source of aluminum, copper, iron, and lead loading. The loading was partially from the National Fish Hatchery inflow but also from unknown sources upstream from that inflow, possibly ground water. The largest sources for calcium and sulfate load to the stream were the parts of the study reach containing inflow from the tribu-taries Halfmoon Creek (calcium) and Willow Creek (sulfate). The Arkansas River and its tributaries upstream from Lake Fork Creek were the source of most of the calcium (70 percent), sulfate (82 percent), manganese (77 percent), lead (78 percent), and zinc (95 percent) loads in the Arkansas River downstream from the Lake Fork confluence. In contrast, Lake Fork Creek was the major source of aluminum (68 percent), copper (65 percent), and iron (87 percent) loads to the Arkansas River downstream from the confluence. Attenuation was not important for calcium, sulfate, or iron. However, other metals loads were reduced up to 81 percent over the study reach (aluminum, 25 percent; copper, 20 percent; manganese, 81 percent; lead, 30 percent; zinc, 72 percent). Metal attenuation in the stream occurred primarily in three locations (1) the irrigation diversion ditch; (2) the beaver pond complex extending from upstream from the Colorado Gulch inflow to just downstream from that inflow; and (3) the stream reach that included the inflow from Willow Creek. The most likely attenuation mechanism is precipitation of metal oxides and hydroxides (primarily manganese), and sorption or coprecipitation of trace elements with the precipitating phase. A mass-balance calculation indicated that the wetland between the Dinero Tunnel and Lake Fork Creek removed iron, had little effect on zinc mass load, and was a source for, or was releasing, aluminum and manganese. In contrast, the wetland that occurred between the Siwatch Tunnel and Lake Fork Creek removed aluminum, iron, manganese, and zinc from the tunnel drainage before it entered the creek. Inflow from the National Fish Hatchery increased dissolved organic carbon concentrations in Lake Fork Creek and slightly changed the composition of the dissolved organic carbon. However, dissolved organic carbon loads increased in the stream reach downs

  18. Lead speciation in indoor dust: a case study to assess old paint contribution in a Canadian urban house

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beauchemin, Suzanne; MacLean, Lachlan C.W.; Rasmussen, Pat E.

    Residents in older homes may experience increased lead (Pb) exposures due to release of lead from interior paints manufactured in past decades, especially pre-1960s. The objective of the study was to determine the speciation of Pb in settled dust from an urban home built during WWII. X-ray absorption near-edge structure (XANES) and micro-X-ray diffraction (XRD) analyses were performed on samples of paint (380-2,920 mg Pb kg{sup -1}) and dust (200-1,000 mg Pb kg{sup -1}) collected prior to renovation. All dust samples exhibited a Pb XANES signature similar to that of Pb found in paint. Bulk XANES and micro-XRD identified Pbmore » species commonly found as white paint pigments (Pb oxide, Pb sulfate, and Pb carbonate) as well as rutile, a titanium-based pigment, in the <150 {micro}m house dust samples. In the dust fraction <36 {micro}m, half of the Pb was associated with the Fe-oxyhydroxides, suggesting additional contribution of outdoor sources to Pb in the finer dust. These results confirm that old paints still contribute to Pb in the settled dust for this 65-year-old home. The Pb speciation also provided a clearer understanding of the Pb bioaccessibility: Pb carbonate > Pb oxide > Pb sulfate. This study underscores the importance of taking precautions to minimize exposures to Pb in house dust, especially in homes where old paint is exposed due to renovations or deterioration of painted surfaces.« less

  19. Lead Speciation in Indoor Dust: A Case Study to Assess Old Paint Contribution in a Canadian Urban House

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Beauchemin; L MacLean; P Rasmussen

    Residents in older homes may experience increased lead (Pb) exposures due to release of lead from interior paints manufactured in past decades, especially pre-1960s. The objective of the study was to determine the speciation of Pb in settled dust from an urban home built during WWII. X-ray absorption near-edge structure (XANES) and micro-X-ray diffraction (XRD) analyses were performed on samples of paint (380-2,920 mg Pb kg{sup -1}) and dust (200-1,000 mg Pb kg{sup -1}) collected prior to renovation. All dust samples exhibited a Pb XANES signature similar to that of Pb found in paint. Bulk XANES and micro-XRD identified Pbmore » species commonly found as white paint pigments (Pb oxide, Pb sulfate, and Pb carbonate) as well as rutile, a titanium-based pigment, in the <150 m house dust samples. In the dust fraction <36 {mu}m, half of the Pb was associated with the Fe-oxyhydroxides, suggesting additional contribution of outdoor sources to Pb in the finer dust. These results confirm that old paints still contribute to Pb in the settled dust for this 65-year-old home. The Pb speciation also provided a clearer understanding of the Pb bioaccessibility: Pb carbonate > Pb oxide > Pb sulfate. This study underscores the importance of taking precautions to minimize exposures to Pb in house dust, especially in homes where old paint is exposed due to renovations or deterioration of painted surfaces.« less

  20. Appraisal of storm-water quality near Salem, Oregon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, T.L.

    Stormwater runoff for the period December 1979 to May 1981, at 13 sites in the vicinity of Salem, Oregon, was sampled and analyzed for water quality. Constituent concentrations for urban storm water were relatively small when compared to samples from Portland and Medford, Oregon and to samples from Denver, Colorado. The data indicated that levels of suspended sediment, ultimate CBOD (carbonaceous biochemical oxygen demand), and total lead increased with increased urbanization. Because of small chemical concentrations and winter high flow and low temperature conditions in the Willamette River, Salem storm water probably has little effect on biological or on mostmore » chemical conditions in the Willamette River. An analysis of data from a stormwater detention pond indicated that the facility was about 47% efficient in reducing suspended sediment loads. Precipitation samples collected at one site for a year were found to be acidic, with a median pH of 4.6. Median total lead concentration was 8 micrograms/L (ug/L) in precipitation, whereas the median total lead concentration in runoff from the 12 basins ranged from 8 to 110 ug/L. The median dissolved ammonia concentration in precipitation was larger than the median dissolved ammonia concentration at all 13 sites. In contrast, the median total Kjeldahl nitrogen concentration in precipitation samples was about half the median for streamwater concentrations. Median ratios of sulfate to chloride and nitrate to chloride in precipitation were much higher than ratios expected for sea water, suggesting anthropogenic sources for sulfate and nitrate. 24 refs., 6 figs., 7 tabs.« less

  1. Substance-P alleviates dextran sulfate sodium-induced intestinal damage by suppressing inflammation through enrichment of M2 macrophages and regulatory T cells.

    PubMed

    Hong, Hyun Sook; Hwang, Dae Yeon; Park, Ju Hyeong; Kim, Suna; Seo, Eun Jung; Son, Youngsook

    2017-02-01

    Intestinal inflammation alters immune responses in the mucosa and destroys colon architecture, leading to serious diseases such as inflammatory bowel disease (IBD). Thus, regulation of inflammation is regarded as the ultimate therapy for intestinal disease. Substance-P (SP) is known to mediate proliferation, migration, and cellular senescence in a variety of cells. SP was found to mobilize stem cells from bone marrow to the site of injury and to suppress inflammatory responses by inducing regulatory T cells (Tregs) and M2 macrophages. In this study, we explored the effects of SP in a dextran sodium sulfate (DSS)-induced intestine damage model. The effects of SP were evaluated by analyzing crypt structures, proliferating cells within the colon, cytokine secretion profiles, and immune cells population in the spleen/mesenteric lymph nodes in vivo. DSS treatment provoked an inflammatory response with loss of crypts in the intestines of experimental mice. This response was associated with high levels of inflammatory cytokines such as TNF-α and IL-17, and low levels of Tregs and M2 macrophages, leading to severely damaged tissue structure. However, SP treatment inhibited inflammatory responses by modulating cytokine production as well as the balance of Tregs/Th 17 cells and the M1/M2 transition in lymphoid organs, leading to accelerated tissue repair. Collectively, our data indicate that SP can promote the regeneration of tissue following damage by DSS treatment, possibly by modulating immune response. Our results propose SP as a candidate therapeutic for intestine-related inflammatory diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Estrogenicity and androgenicity screening of PCB sulfate monoesters in human breast cancer MCF-7 cells

    PubMed Central

    Flor, Susanne; He, Xianran; Lehmler, Hans-Joachim; Ludewig, Gabriele

    2015-01-01

    Recent studies identified PCB sulfate esters as a major product of PCB metabolism. Since hydroxy-PCBs (HO-PCBs), the immediate precursors of PCB sulfates and important contributors to PCB toxicity, were shown to have estrogenic activity, we investigated the estrogenicity/androgenicty of a series of PCB sulfate metabolites. We synthesized the five possible structural sulfate monoester metabolites of PCB 3, a congener shown to be biotransformed to sulfates, a sulfate ester of the paint-specific congener PCB 11, and sulfate monoesters of two HO-PCBs reported to interact with sulfotransferases (PCB 39, no ortho chlorines, and PCB 53, 3 ortho chlorines). We tested these PCB sulfates and 4’-HO-PCB 3 as positive control for estrogenic, androgenic, anti-estrogenic and anti-androgenic activity in the E- and A-screen with human breast cancer MCF7 derived cells at 100 μM – 1 pM concentrations. Only 4’-HO-PCB 3 was highly cytotoxic at 100 μM. We observed structure-activity relationships: compounds with a sulfate group in the chlorine-containing ring of PCB 3 (2PCB 3 and 3PCB 3 sulfate) showed no interaction with the estrogen (ER) and androgen (AR) receptor. The 4’-HO-PCB 3 and its sulfate ester had the highest estrogenic effect, but at 100 fold different concentrations, i.e. 1 μM and 100 μM, respectively. Four of the PCB sulfates were estrogenic (2’PCB 3, 4’PCB 3, 4PCB 39, 4PCB 53 sulfates; at 100 μM). These sulfates and 3’PCB 3 sulfate also exhibited anti-estrogenic activity, but at nM and pM concentrations. The 4’PCB 3 sulfate (para-para’ substituted) had the strongest androgenic activity, followed by 3’PCB 3, 4PCB 53, 4PCB11, and 4PCB 39 sulfates and the 4’HO-PCB 3. In contrast, anti-androgenicity was only observed with the two compounds that have the sulfate group in ortho- or meta- position in the second ring (2’PCB 3 and 3’PCB 3 sulfate). No dose-response was observed in any screen, but, with exception of estrogenic activity (only seen at 100 μM), endocrine activity was often displayed at several concentrations and even at 1 pM concentration. These data suggest that sulfation of HO-PCBs is indeed reducing their cytotoxicity and estrogenicity, but may produce other endocrine disruptive activities at very low concentrations. PMID:26300354

  3. Estrogenicity and androgenicity screening of PCB sulfate monoesters in human breast cancer MCF-7 cells.

    PubMed

    Flor, Susanne; He, Xianran; Lehmler, Hans-Joachim; Ludewig, Gabriele

    2016-02-01

    Recent studies identified polychlorinated biphenyl (PCB) sulfate esters as a major product of PCB metabolism. Since hydroxy-PCBs (HO-PCBs), the immediate precursors of PCB sulfates and important contributors to PCB toxicity, were shown to have estrogenic activity, we investigated the estrogenicity/androgenicty of a series of PCB sulfate metabolites. We synthesized the five possible structural sulfate monoester metabolites of PCB 3, a congener shown to be biotransformed to sulfates, a sulfate ester of the paint-specific congener PCB 11, and sulfate monoesters of two HO-PCBs reported to interact with sulfotransferases (PCB 39, no ortho chlorines, and PCB 53, 3 ortho chlorines). We tested these PCB sulfates and 4'-HO-PCB 3 as positive control for estrogenic, androgenic, anti-estrogenic, and anti-androgenic activity in the E- and A-screen with human breast cancer MCF7-derived cells at 100 μM-1 pM concentrations. Only 4'-HO-PCB 3 was highly cytotoxic at 100 μM. We observed structure-activity relationships: compounds with a sulfate group in the chlorine-containing ring of PCB 3 (2PCB 3 and 3PCB 3 sulfate) showed no interaction with the estrogen (ER) and androgen (AR) receptor. The 4'-HO-PCB 3 and its sulfate ester had the highest estrogenic effect, but at 100-fold different concentrations, i.e., 1 and 100 μM, respectively. Four of the PCB sulfates were estrogenic (2'PCB 3, 4'PCB 3, 4'PCB 39, and 4'PCB 53 sulfates; at 100 μM). These sulfates and 3'PCB 3 sulfate also exhibited anti-estrogenic activity, but at nM and pM concentrations. The 4'PCB 3 sulfate (para-para' substituted) had the strongest androgenic activity, followed by 3'PCB 3, 4'PCB 53, 4PCB11, and 4PCB 39 sulfates and the 4'HO-PCB 3. In contrast, anti-androgenicity was only observed with the two compounds that have the sulfate group in ortho- or meta- position in the second ring (2'PCB 3 and 3'PCB 3 sulfate). No dose-response was observed in any screen, but, with exception of estrogenic activity (only seen at 100 μM), endocrine activity was often displayed at several concentrations and even at 1 pM concentration. These data suggest that sulfation of HO-PCBs is indeed reducing their cytotoxicity and estrogenicity, but may produce other endocrine disruptive activities at very low concentrations.

  4. Sulfur and iron speciation in gas-rich impact-melt glasses from basaltic shergottites determined by microXANES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, S.R.; Rao, M.N.; Nyquist, L.E.

    2008-04-28

    Sulfur and iron K XANES measurements were made on GRIM glasses from EET 79001. Iron is in the ferrous state. Sulfur speciation is predominately sulfide coordination but is Fe coordinated in Lith B and, most likely, Ca coordinated in Lith A. Sulfur is abundantly present as sulfate near Martian surface based on chemical and mineralogical investigations on soils and rocks in Viking, Pathfinder and MER missions. Jarosite is identified by Moessbauer studies on rocks at Meridian and Gusev, whereas MgSO{sub 4} is deduced from MgO-SO{sub 3} correlations in Pathfinder MER and Viking soils. Other sulfate minerals such as gypsum andmore » alunogen/S-rich aluminosilicates and halides are detected only in martian meteorites such as shergottites and nakhlites using SEM/FE-SEM and EMPA techniques. Because sulfur has the capacity to occur in multiple valence states, determination of sulfur speciation (sulfide/sulfate) in secondary mineral assemblages in soils and rocks near Mars surface may help us understand whether the fluid-rock interactions occurred under oxidizing or reducing conditions. On Earth, volcanic rocks contain measurable quantities of sulfur present as both sulfide and sulfate. Carroll and Rutherford showed that oxidized forms of sulfur may comprise a significant fraction of total dissolved sulfur, if the oxidation state is higher than {approx}2 log fO{sub 2} units relative to the QFM buffer. Terrestrial samples containing sulfates up to {approx}25% in fresh basalts from the Galapagos Rift on one hand and high sulfide contents present in oceanic basalts on the other indicate that the relative abundance of sulfide and sulfate varies depending on the oxygen fugacity of the system. Basaltic shergottites (bulk) such as Shergotty, EET79001 and Zagami usually contain small amounts of sulfur ({approx}0.5%) as pyrrhotite. But, in isolated glass pockets containing secondary salts (known as GRIM glasses) in these meteorites, sulfur is present in high abundance ({approx}1-12%). To determine sulfur speciation (sulfide, sulfate or elemental sulfur) in these glasses, Gooding et al. and Burgess et al. carried out vacuum pyrolysis experiments on these GRIM glasses (also called Lith C) using quadrupole mass-spectrometric methods. They found that the evolved S-bearing gases from these samples consisted of both SO{sub 2} (from sulfate) and H{sub 2}S (from sulfide) in varying proportions. However, as mass-spectrometric studies do not provide details about spatial association of these S-species in these samples, we have studied the spatial distribution of sulfides and sulfates in GRIM glasses using sulfur K micro-XANES techniques in the present study. The microscale speciation of S may have important implications for the Rb-Sr isotope systematics of EET79001 Lith C glasses. In reference to oxidative weathering of surface basalts on Mars yielding secondary iron sulfates, Solberg and Burns examined a GRIM glass in EET79001 by Moessbauer spectroscopic techniques and showed that the percentage of Fe{sup 3+} in Lith C is <2%. They suggested that the Lith C contains very little Fe{sup 3+} despite the occurrence of oxidized sulfate in them, indicating that the conditions leading to the formation of these glasses were insufficiently oxidizing to produce Fe{sup 3+} from Fe{sup 2+} in these glasses. To understand the implications of these observations for the formation of the GRIM glasses, we determined the oxidation state of Fe in the GRIM glasses using Fe K micro-XANES techniques. The S and Fe K micro-XANES measurements were performed on thin sections from EET79001: 506 from Lith A and 507 from Lith B.« less

  5. Global source attribution of sulfate aerosol and its radiative forcing

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Wang, H.; Smith, S.; Easter, R. C.; Ma, P. L.; Qian, Y.; Li, C.; Yu, H.; Rasch, P. J.

    2017-12-01

    Sulfate is an important aerosol that poses health risks and influences climate. Due to long-range atmospheric transport, local sulfate pollution could result from intercontinental influences, making domestic efforts of improving air quality inefficient. Accurate understanding of source attribution of sulfate and its radiative forcing is important for both regional air quality improvement and global climate mitigation. In this study, for the first time, a sulfur source-tagging capability is implemented in the Community Atmosphere Model (CAM5) to quantify the global source-receptor relationships of sulfate and its direct and indirect radiative forcing (DRF and IRF). Near-surface sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO2 emissions, the near-surface sulfate is primarily attributed to non-local sources from long-range transport. The export of SO2 and sulfate from Europe contributes 20% of sulfate concentrations over North Africa, Russia and Central Asia. Sources from the Middle East account for 20% of sulfate over North Africa, Southern Africa and Central Asia in winter and autumn, and 20% over South Asia in spring. East Asia accounts for about 50% of sulfate over Southeast Asia in winter and autumn, 15% over Russia in summer, and 10% over North America in spring. South Asia contributes to 25% of sulfate over Southeast Asia in spring. Lifetime of aerosols, together with regional export, is found to determine regional air quality. The simulated global total sulfate DRF is -0.42 W m-2, with 75% contributed by anthropogenic sulfate and 25% contributed by natural sulfate. In the Southern Hemisphere tropics, dimethyl sulfide (DMS) contributes the most to the total DRF. East Asia has the largest contribution of 20-30% over the Northern Hemisphere mid- and high-latitudes. A 20% perturbation of sulfate and its precursor emissions gives a sulfate IRF of -0.44 W m-2. DMS has the largest contribution, explaining half of the global sulfate IRF. IRF over regions in the Southern Hemisphere with low background aerosols is more sensitive to emission perturbation than those over the polluted Northern Hemisphere.

  6. Multiple stable oxygen isotopic studies of atmospheric sulfate: A new quantitative way to understand sulfate formation processes in the atmosphere

    NASA Astrophysics Data System (ADS)

    Lee, Charles Chi-Woo

    2000-11-01

    Sulfate is an important trace species in the Earth's atmosphere because of its roles in numerous atmospheric processes. In addition to its inherent light-scattering properties, sulfate can serve as cloud condensation nucleus (CCN), affecting cloud formation as well as microphysical properties of clouds. Consequently, atmospheric sulfate species influence the global radiative energy balance. Sulfate is known to increase acidity of rainwater with negative consequences in both natural and urban environments. In addition, aerosol sulfate (<=2.5 μm) is respirable and poses a threat to human health as a potential carrier of toxic pollutants through the respiratory tract. Despite intense investigative effort, uncertainty regarding the relative significance of gas and aqueous phase oxidation pathways still remains. Acquisition of such information is important because the lifetime and transport of S(IV) species and sulfate aerosols are influenced by the oxidative pathways. In addition, sulfate formation processes affect the aerosol size distribution, which ultimately influences radiative properties of atmospheric aerosols. Therefore, the budgetary information of the sulfur cycle, as well as the radiative effects of sulfate on global climate variation, can be attained from better quantitative understanding of in situ sulfate formation processes in the atmosphere. Multiple stable oxygen isotopic studies of atmospheric sulfate are presented as a new tool to better comprehend the atmospheric sulfate formation processes. Coupled with isotopic studies, 35S radioactivity measurements have been utilized to assess contribution of sulfate from high altitude air masses. Atmospheric sulfate (aerosols and rainwater) samples have been collected from diverse environments. Laboratory experiments of gas and aqueous phase S(IV) oxidation by various oxidants, as well as biomass burning experiments, have also been conducted. The main isotopic results from these studies are as follows: (1)Atmospheric (aerosol and rainwater) sulfate has a mass independent oxygen isotopic composition; (2)Aqueous phase S(IV) oxidation by atmospheric ozone and hydrogen peroxide are the source of the mass independent anomaly in atmospheric sulfate; (3)The mass independent oxygen isotopic anomaly appears to enhance with increasing altitude, suggesting a stratospheric contribution; (4)Primary sulfate from biomass burning has a mass dependent oxygen isotopic composition.

  7. The Effects of Low Sulfate Concentrations on Modern Microbial Mat Communities: A Long Term Manipulation

    NASA Technical Reports Server (NTRS)

    Bebout, Brad; Carpenter, Steve; DesMarais, David J.; Discipulo, Mykell; Hogan, Mary; Turk, Kendra

    2002-01-01

    Microbial mats were widespread during the first ca. 2 Ga. of our biosphere's history. To better understand microbial ecosystems and their biomarkers under the low sulfate levels present in early oceans, we attempted a long-term (ca. 1 year) manipulation of sulfate in modem mats. Mats collected from salt ponds at Guerrero Negro, Baja Calif. Sur were incubated in a Greenhouse "Collaboratory" at Ames. Mats were maintained in artificial seawater brine containing either: 1) sulfate levels normal for these mats (70 mM), or 2) brine in which sulfate was replaced by chloride. Sulfate concentrations in the "low sulfate" brine gradually approached their lowest (to date) value of 0. 1 mM as sulfate was consumed and/or diffused out of the mat over a period of ca. 4 months. During that period of time, a number of differences between the treatments emerged. Relative to the "low sulfate" mats, "normal sulfate" mats had: 1) lower consumption of oxygen in the lower levels of the mat, 2) higher efficiencies of oxygenic photosynthesis, and 3) higher rates of nitrogen fixation. Rates of methane production by the mats increased greatly as sulfate concentrations fell below ca. 0.2 mM. In contrast, "low" and "normal" sulfate mats had similar net rates of exchange of O2 and dissolved inorganic C between the mats and overlying water. Reduced sulfate levels have diverse impacts upon these ecosystems.

  8. A CONSIDERATION OF THE PERMEABILITY OF CARTILAGE TO INORGANIC SULFATE

    PubMed Central

    Campo, Robert D.; Dziewiatkowski, Dominic D.

    1961-01-01

    On the basis of an examination of autoradiograms of knee-joints fixed so as to remove chondroitin sulfate or inorganic sulfate, or to minimize the loss of both, it is suggested that the cartilage is permeable to inorganic sulfate in vivo and in vitro. In vivo and in vitro, almost as rapidly as it enters the cartilage, inorganic sulfate is utilized by the cells in the synthesis of chondroitin sulfate. The net result is a continuing low concentration of inorganic sulfate in the cartilage. PMID:13690307

  9. The role of sulfate in aerobic granular sludge process for emerging sulfate-laden wastewater treatment.

    PubMed

    Xue, Weiqi; Hao, Tianwei; Mackey, Hamish R; Li, Xiling; Chan, Richard C; Chen, Guanghao

    2017-11-01

    Sulfate-rich wastewaters pose a major threat to mainstream wastewater treatment due to the unpreventable production of sulfide and associated shift in functional bacteria. Aerobic granular sludge could mitigate these challenges in view of its high tolerance and resilience against changes in various environmental conditions. This study aims to confirm the feasibility of aerobic granular sludge in the treatment of sulfate containing wastewater, investigate the impact of sulfate on nutrient removal and granulation, and reveal metabolic relationships in the above processes. Experiments were conducted using five sequencing batch reactors with different sulfate concentrations operated under alternating anoxic/aerobic condition. Results showed that effect of sulfate on chemical oxygen demand (COD) removal is negligible, while phosphate removal was enhanced from 12% to 87% with an increase in sulfate from 0 to 200 mg/L. However, a long acclimatization of the biomass (more than 70 days) is needed at a sulfate concentration of 500 mg/L and a total deterioration of phosphate removal at 1000 mg/L. Batch tests revealed that sulfide promoted volatile fatty acids (VFAs) uptake, producing more energy for phosphate uptake when sulfate concentrations were beneath 200 mg/L. However, sulfide detoxification became energy dominating, leaving insufficient energy for Polyhydroxyalkanoate (PHA) synthesis and phosphate uptake when sulfate content was further increased. Granulation accelerated with increasing sulfate levels by enhanced production of N-Acyl homoserine lactones (AHLs), a kind of quorum sensing (QS) auto-inducer, using S-Adenosyl Methionine (SAM) as primer. The current study demonstrates interactions among sulfate metabolism, nutrients removal and granulation, and confirms the feasibility of using the aerobic granular sludge process for sulfate-laden wastewaters treatment with low to medium sulfate content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. In vivo contribution of amino acid sulfur to cartilage proteoglycan sulfation

    PubMed Central

    Pecora, Fabio; Gualeni, Benedetta; Forlino, Antonella; Superti-Furga, Andrea; Tenni, Ruggero; Cetta, Giuseppe; Rossi, Antonio

    2006-01-01

    Cytoplasmic sulfate for sulfation reactions may be derived either from extracellular fluids or from catabolism of sulfur-containing amino acids and other thiols. In vitro studies have pointed out the potential relevance of sulfur-containing amino acids as sources for sulfation when extracellular sulfate concentration is low or when its transport is impaired such as in DTDST [DTD (diastrophic dysplasia) sulfate transporter] chondrodysplasias. In the present study, we have considered the contribution of cysteine and cysteine derivatives to in vivo macromolecular sulfation of cartilage by using the mouse model of DTD we have recently generated [Forlino, Piazza, Tiveron, Della Torre, Tatangelo, Bonafe, Gualeni, Romano, Pecora, Superti-Furga et al. (2005) Hum. Mol. Genet. 14, 859–871]. By intraperitoneal injection of [35S]cysteine in wild-type and mutant mice and determination of the specific activity of the chondroitin 4-sulfated disaccharide in cartilage, we demonstrated that the pathway by which sulfate is recruited from the intracellular oxidation of thiols is active in vivo. To check whether cysteine derivatives play a role, sulfation of cartilage proteoglycans was measured after treatment for 1 week of newborn mutant and wild-type mice with hypodermic NAC (N-acetyl-L-cysteine). The relative amount of sulfated disaccharides increased in mutant mice treated with NAC compared with the placebo group, indicating an increase in proteoglycan sulfation due to NAC catabolism, although pharmacokinetic studies demonstrated that the drug was rapidly removed from the bloodstream. In conclusion, cysteine contribution to cartilage proteoglycan sulfation in vivo is minimal under physiological conditions even if extracellular sulfate availability is low; however, the contribution of thiols to sulfation becomes significant by increasing their plasma concentration. PMID:16719839

  11. Equilibrium climate response of the East Asian summer monsoon to forcing of anthropogenic aerosol species

    NASA Astrophysics Data System (ADS)

    Wang, Zhili; Wang, Qiuyan; Zhang, Hua

    2017-12-01

    We used an online aerosol-climate model to study the equilibrium climate response of the East Asian summer monsoon (EASM) to increases in anthropogenic emissions of sulfate, organic carbon, and black carbon aerosols from 1850 to 2000. Our results show that each of these aerosol species has a different effect on the EASM as a result of changes in the local sea-land thermal contrast and atmospheric circulation. The increased emission of sulfate aerosol leads to a decrease in the thermal contrast between the land and ocean, a southward shift of the East Asian subtropical jet, and significant northerly wind anomalies at 850 hPa over eastern China and the ambient oceans, markedly dampening the EASM. An increase in organic carbon aerosol results in pronounced surface cooling and the formation of an anomalous anticyclone over the oceans north of 30°N. These effects cause a slight increase in the sea-land thermal contrast and southerly flow anomalies to the west of the anticyclonic center, strengthening the northern EASM. An increase in organic carbon emission decreases the sea-land thermal contrast over southern China, which weakens the southern EASM. The response of the summer 850-hPa winds and rainfall over the East Asian monsoon region to an increase in black carbon emission is generally consistent with the response to an increase in organic carbon. The increase in black carbon emission leads to a strengthening of the northern EASM north of 35°N and a slight weakening of the southern EASM south of 35°N. The simulated response of the EASM to the increase in black carbon emission is unchanged when the emission of black carbon is scaled up by five times its year 2000 levels, although the intensities of the response is enhanced. The increase in sulfate emission primarily weakens the EASM, whereas the increases in black carbon and organic carbon emissions mitigate weakening of the northern EASM.

  12. A review of chemical methods for the selective sulfation and desulfation of polysaccharides.

    PubMed

    Bedini, Emiliano; Laezza, Antonio; Parrilli, Michelangelo; Iadonisi, Alfonso

    2017-10-15

    Sulfated polysaccharides are known to possess several biological activities, with their sulfation pattern acting as a code able to transmit functional information. Due to their high biological and biomedical importance, in the last two decades many reports on the chemical modification of their sulfate distribution as well as on the regioselective insertion of sulfate groups on non-sulfated polysaccharides appeared in literature. In this Review we have for the first time collected these reports together, categorizing them into three different classes: i) regioselective sulfation reactions, ii) regioselective desulfation reactions, iii) regioselective insertion of sulfate groups through multi-step strategies, and discussing their scope and limitations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Structural analysis and anticoagulant activities of two sulfated polysaccharides from the sea cucumber Holothuria coluber.

    PubMed

    Yang, Wenjiao; Cai, Ying; Yin, Ronghua; Lin, Lisha; Li, Zhongkun; Wu, Mingyi; Zhao, Jinhua

    2018-05-01

    Sulfated polysaccharides such as fucosylated glycosaminoglycan and fucan sulfate from echinoderm possess complex chemical structure and various biological activities. The two sulfated polysaccharides were purified from the low-value sea cucumber Holothuria coluber. Their physicochemical properties and chemical structures were analyzed and characterized by chemical and instrumental methods. Structural analysis clarified that the sea cucumber fucosylated glycosaminoglycan contains a chondroitin sulfate-like backbone and fucosyl branches with four various sulfation patterns. The fucan sulfate with molecular weight of 64.6 kDa comprises a central core of regular α(1 → 4)-linked tetrasaccharide repeating units, each of which is linked by a 4-O-sulfated fucose residue. Anticoagulant assays indicated that these sulfated polysaccharides possessed strong APTT prolonging activities and intrinsic factor Xase inhibitory activities, both of which decreased with the reduction of their molecular weights. Our results expand knowledge on the structural types of sulfated polysaccharides from sea cucumbers and further illustrate their functionality. Copyright © 2018. Published by Elsevier B.V.

  14. Transcriptome analysis of the sulfate deficiency response in the marine microalga Emiliania huxleyi.

    PubMed

    Bochenek, Michal; Etherington, Graham J; Koprivova, Anna; Mugford, Sam T; Bell, Thomas G; Malin, Gill; Kopriva, Stanislav

    2013-08-01

    The response to sulfate deficiency of plants and freshwater green algae has been extensively analysed by system biology approaches. By contrast, seawater sulfate concentration is high and very little is known about the sulfur metabolism of marine organisms. Here, we used a combination of metabolite analysis and transcriptomics to analyse the response of the marine microalga Emiliania huxleyi as it acclimated to sulfate limitation. Lowering sulfate availability in artificial seawater from 25 to 5 mM resulted in significant reduction in growth and intracellular concentrations of dimethylsulfoniopropionate and glutathione. Sulfate-limited E. huxleyi cells showed increased sulfate uptake but sulfate reduction to sulfite did not seem to be regulated. Sulfate limitation in E. huxleyi affected expression of 1718 genes. The vast majority of these genes were upregulated, including genes involved in carbohydrate and lipid metabolism, and genes involved in the general stress response. The acclimation response of E. huxleyi to sulfate deficiency shows several similarities to the well-described responses of Arabidopsis and Chlamydomonas, but also has many unique features. This dataset shows that even though E. huxleyi is adapted to constitutively high sulfate concentration, it retains the ability to re-program its gene expression in response to reduced sulfate availability. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  15. Sulfate Metabolites of 4-Monochlorobiphenyl in Whole Poplar Plants

    PubMed Central

    Zhai, Guangshu; Lehmler, Hans-Joachim; Schnoor, Jerald L.

    2013-01-01

    4-Monochlorobiphenyl (PCB3) has been proven to be transformed into hydroxylated metabolites of PCB3 (OH-PCB3s) in whole poplar plants in our previous work. However, hydroxylated metabolites of PCBs, including OH-PCB3s, as the substrates of sulfotransferases have not been studied in many organisms including plants in vivo. Poplar (Populus deltoides × nigra, DN34) was used to investigate the further metabolism from OH-PCB3s to PCB3 sulfates because it is a model plant and one that is frequently utilized in phytoremediation. Results showed poplar plants could metabolize PCB3 into PCB3 sulfates during 25 day exposures. Three sulfate metabolites, including 2′-PCB3 sulfate, 3′-PCB3 sulfate and 4′-PCB3 sulfate, were identified in poplar roots and their concentrations increased in the roots from day 10 to day 25. The major products were 2′-PCB3 sulfate and 4′-PCB3 sulfate. However, the concentrations of PCB3 sulfates were much lower than those of OH-PCB3s in the roots, suggesting the sequential transformation of these hydroxylated PCB3 metabolites into PCB3 sulfates in whole poplars. In addition, 2′-PCB3 sulfate or 4′-PCB3 sulfate was also found in the bottom wood samples indicating some translocation or metabolism in woody tissue. Results suggested that OH-PCB3s were the substrates of sulfotransferases which catalyzed the formation of PCB3 sulfates in the metabolic pathway of PCB3. PMID:23215248

  16. Fractionation of sulfur and oxygen isotopes in sulfate by soil sorption

    NASA Astrophysics Data System (ADS)

    Van Stempvoort, D. R.; Reardon, E. J.; Fritz, P.

    1990-10-01

    Both field and laboratory data indicate that there is no significant isotope fractionation of sulfate during sorption in upland forest Podzols. The dominant sulfate sorption process in these soils is adsorption onto mineral surfaces. In the Plastic Lake watershed, Dorset, Ontario, Canada, fractions of sulfate from Podzol B-horizons have the following mean isotope (%.) compositions: water soluble sulfate, δ34S = +6.4; δ18O = -5.3; bicarbonate-exchanged sulfate by two methods, δ34S = + 4.5 and + 3.4; δ18O =-6.2 and -5.6; dissolved sulfate in B-horizon soilwater seepage, δ34S = + 4.8; δ18O = -5.4. These data indicate that soil sorption enriches dissolved sulfate in 34S by approximately 1 ± 1%. and in 18O by 0 +- 1 %. relative to sorbed sulfate. Similar results were obtained by laboratory sorption of sulfate by prepared goethite, which is a mineral representative of soil sorption sites in acidic Podzols like the one at Plastic Lake. The mean fractionation between sorbed and dissolved sulfate was found to be - 0.3%. for 34S and 0.1 %. for 18O. Earlier literature has confused the term adsorption; in many cases the more general term sorption, or retention, should be used. Pronounced fractionation of S and O isotopes in sulfate by lake and ocean sediments has been attributed to "adsorption" or "retention" but is more likely the result of sulfate reduction. Apparently, at Earth-surface conditions the only substantial isotope shifts in sulfate occur during microbial processes.

  17. Effects of high glucose on the production of heparan sulfate proteoglycan by mesangial and epithelial cells.

    PubMed

    van Det, N F; van den Born, J; Tamsma, J T; Verhagen, N A; Berden, J H; Bruijn, J A; Daha, M R; van der Woude, F J

    1996-04-01

    Changes in heparan sulfate metabolism may be important in the pathogenesis of diabetic nephropathy. Recent studies performed on renal biopsies from patients with diabetic nephropathy revealed a decrease in heparan sulfate glycosaminoglycan staining in the glomerular basement membrane without changes in staining for heparan sulfate proteoglycan-core protein. To understand this phenomenon at the cellular level, we investigated the effect of high glucose conditions on the synthesis of heparan sulfate proteoglycan by glomerular cells in vitro. Human adult mesangial and glomerular visceral epithelial cells were cultured under normal (5 mM) and high glucose (25 mM) conditions. Immunofluorescence performed on cells cultured in 25 mM glucose confirmed and extended the in vivo histological observations. Using metabolic labeling we observed an altered proteoglycan production under high glucose conditions, with predominantly a decrease in heparan sulfate compared to dermatan sulfate or chondroitin sulfate proteoglycan. N-sulfation analysis of heparan sulfate proteoglycan produced under high glucose conditions revealed less di- and tetrasaccharides compared to larger oligosaccharides, indicating an altered sulfation pattern. Furthermore, with quantification of glomerular basement membrane heparan sulfate by ELISA, a significant decrease was observed when mesangial and visceral epithelial cells were cultured in high glucose conditions. We conclude that high glucose concentration induces a significant alteration of heparan sulfate production by mesangial cells and visceral epithelial cells. Changes in sulfation and changes in absolute quantities are both observed and may explain the earlier in vivo observations. These changes may be of importance for the altered integrity of the glomerular charge-dependent filtration barrier and growth-factor matrix interactions in diabetic nephropathy.

  18. Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps

    DOE PAGES

    Sivan, Orit; Antler, Gilad; Turchyn, Alexandra V.; ...

    2014-09-22

    Seep sediments are dominated by intensive microbial sulfate reduction coupled to the anaerobic oxidation of methane (AOM). Through geochemical measurements of incubation experiments with methane seep sediments collected from Hydrate Ridge, we provide insight into the role of iron oxides in sulfate-driven AOM. Seep sediments incubated with 13C-labeled methane showed co-occurring sulfate reduction, AOM, and methanogenesis. The isotope fractionation factors for sulfur and oxygen isotopes in sulfate were about 40‰ and 22‰, respectively, reinforcing the difference between microbial sulfate reduction in methane seeps versus other sedimentary environments (for example, sulfur isotope fractionation above 60‰ in sulfate reduction coupled to organicmore » carbon oxidation or in diffusive sedimentary sulfate–methane transition zone). The addition of hematite to these microcosm experiments resulted in significant microbial iron reduction as well as enhancing sulfate-driven AOM. The magnitude of the isotope fractionation of sulfur and oxygen isotopes in sulfate from these incubations was lowered by about 50%, indicating the involvement of iron oxides during sulfate reduction in methane seeps. The similar relative change between the oxygen versus sulfur isotopes of sulfate in all experiments (with and without hematite addition) suggests that oxidized forms of iron, naturally present in the sediment incubations, were involved in sulfate reduction, with hematite addition increasing the sulfate recycling or the activity of sulfur-cycling microorganisms by about 40%. Furthermore, these results highlight a role for natural iron oxides during bacterial sulfate reduction in methane seeps not only as nutrient but also as stimulator of sulfur recycling.« less

  19. Crystallization of aqueous ammonium sulfate particles internally mixed with soot and kaolinite: crystallization relative humidities and nucleation rates.

    PubMed

    Pant, Atul; Parsons, Matthew T; Bertram, Allan K

    2006-07-20

    Using optical microscopy, we investigated the crystallization of aqueous ammonium sulfate droplets containing soot and kaolinite, as well as the crystallization of aqueous ammonium sulfate droplets free of solid material. Our results show that soot did not influence the crystallization RH of aqueous ammonium sulfate particles under our experimental conditions. In contrast, kaolinite increased the crystallization RH of the aqueous ammonium sulfate droplets by approximately 10%. In addition, our results show that the crystallization RH of aqueous ammonium sulfate droplets free of solid material does not depend strongly on particle size. This is consistent with conclusions made previously in the literature, based on comparisons of results from different laboratories. From the crystallization results we determined the homogeneous nucleation rates of crystalline ammonium sulfate in aqueous ammonium sulfate droplets and the heterogeneous nucleation rates of crystalline ammonium sulfate in aqueous ammonium sulfate particles containing kaolinite. Using classical nucleation theory and our experimental data, we determined that the interfacial tension between an ammonium sulfate critical nucleus and an aqueous ammonium sulfate solution is 0.064 +/- 0.003 J m(-2) (in agreement with our previous measurements), and the contact angle between an ammonium sulfate critical nucleus and a kaolinite surface is 59 +/- 2 degrees. On the basis of our results, we argue that soot will not influence the crystallization RH of aqueous ammonium sulfate droplets in the atmosphere, but kaolinite can significantly modify the crystallization RH of atmospheric ammonium sulfate droplets. As an example, the CRH50 (the relative humidity at which 50% of the droplets crystallize) ranges from about 41 to 51% RH when the diameter of the kaolinite inclusion ranges from 0.1 to 5 microm. For comparison, the CRH50 of aqueous ammonium sulfate droplets (0.5 microm diameter) free of solid material is approximately 34.3% RH under atmospheric conditions.

  20. Loss of the anion exchanger DRA (Slc26a3), or PAT1 (Slc26a6), alters sulfate transport by the distal ileum and overall sulfate homeostasis.

    PubMed

    Whittamore, Jonathan M; Hatch, Marguerite

    2017-09-01

    The ileum is considered the primary site of inorganic sulfate ([Formula: see text]) absorption. In the present study, we explored the contributions of the apical chloride/bicarbonate (Cl - /[Formula: see text]) exchangers downregulated in adenoma (DRA; Slc26a3), and putative anion transporter 1 (PAT1; Slc26a6), to the underlying transport mechanism. Transepithelial 35 [Formula: see text] and 36 Cl - fluxes were determined across isolated, short-circuited segments of the distal ileum from wild-type (WT), DRA-knockout (KO), and PAT1-KO mice, together with measurements of urine and plasma sulfate. The WT distal ileum supported net sulfate absorption [197.37 ± 13.61 (SE) nmol·cm -2 ·h -1 ], but neither DRA nor PAT1 directly contributed to the unidirectional mucosal-to-serosal flux ([Formula: see text]), which was sensitive to serosal (but not mucosal) DIDS, dependent on Cl - , and regulated by cAMP. However, the absence of DRA significantly enhanced net sulfate absorption by one-third via a simultaneous rise in [Formula: see text] and a 30% reduction to the secretory serosal-to-mucosal flux ([Formula: see text]). We propose that DRA, together with PAT1, contributes to [Formula: see text] by mediating sulfate efflux across the apical membrane. Associated with increased ileal sulfate absorption in vitro, plasma sulfate was 61% greater, and urinary sulfate excretion ( U SO4 ) 2.2-fold higher, in DRA-KO mice compared with WT controls, whereas U SO4 was increased 1.8-fold in PAT1-KO mice. These alterations to sulfate homeostasis could not be accounted for by any changes to renal sulfate handling suggesting that the source of this additional sulfate was intestinal. In summary, we characterized transepithelial sulfate fluxes across the mouse distal ileum demonstrating that DRA (and to a lesser extent, PAT1) secretes sulfate with significant implications for intestinal sulfate absorption and overall homeostasis. NEW & NOTEWORTHY Sulfate is an essential anion that is actively absorbed from the small intestine involving members of the Slc26 gene family. Here, we show that the main intestinal chloride transporter Slc26a3, known as downregulated in adenoma (DRA), also handles sulfate and contributes to its secretion into the lumen. In the absence of functional DRA (as in the disease congenital chloride diarrhea), net intestinal sulfate absorption was significantly enhanced resulting in substantial alterations to overall sulfate homeostasis. Copyright © 2017 the American Physiological Society.

  1. Effect of Sulfate on Rhenium Partitioning during Melting of Low-Activity Waste Glass Feeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Tongan; Kim, Dong-Sang; Schweiger, Michael J.

    2015-10-01

    The volatile loss of technetium-99 (99Tc) is a major concern of the low-activity waste (LAW) vitrification at Hanford. We investigated the incorporation and volatile loss of Re (a nonradioactive surrogate for 99Tc) during batch-to-glass conversion up to 1100°C. The AN-102 feed, which is one of the representative Hanford LAW feeds, containing 0.59 wt% of SO3 (in glass if 100% retained) was used. The modified sulfate-free AN-102_0S feed was also tested to investigate the effect of sulfate on Re partitioning and retention during melting. After heating of the dried melter feed (mixture of LAW simulant and glass forming/modifying additives) to differentmore » temperatures, the heat-treated samples were quenched. For each heat-treated sample, the salts (soluble components in room temperature leaching), early glass forming melt (soluble components in 80°C leaching), and insoluble solids were separated by a two-step leaching and the chemical compositions of each phase were quantitatively analyzed. The final retention ratio of AN-102 and AN-102_0S in glass (insoluble solids) are 32% and 63% respectively. The presence of sulfate in the salt phase between 600 and 800°C leads to a significantly higher Re loss via volatilization from the salt layer. At ≥800°C, for both samples, there is no more incorporation of Re into the insoluble phase because: for AN-102_0S there is no salt left i.e., the split into the insoluble and gas phases is complete by 800°C and for AN-102 all the Re contained in the remaining salt phase is lost through volatilization. The present results on the effect of sulfate, although not directly applicable to LAW vitrification in the melter, will be used to understand the mechanism of Re incorporation into glass to eventually develop the methods that can increase the 99Tc retention during LAW vitrification at Hanford.« less

  2. Specific anions effects of on the stability of azurin in ice.

    PubMed

    Strambini, Giovanni B; Gonnelli, Margherita

    2008-08-21

    This investigation represents a first attempt to gain a quantitative estimate of the effects of the anions sulfate, citrate, acetate, chloride and thiocyanate on the thermodynamic stability (DeltaG degrees) of a model globular protein in ice at -15 degrees C. The method, based on guanidinium chloride denaturation of the azurin mutant C112S from Pseudomonas aeruginosa, distinguishes between the effects of cooling to subfreezing temperatures from those induced specifically by the formation of a solid ice phase. The results confirm that, both in liquid and frozen states, kosmotropes (sulfate, citrate and acetate) increase significantly protein stability, relative to chloride, whereas the chaotrope thiocyanate decreases it. Throughout, their stabilizing efficacy was found to rank according to the Hofmeister series, sulfate>citrate>acetate>chloride>thiocyanate, although the magnitude of Delta(DeltaG degrees) exhibited a distinct sensitivity among the anions to low temperature and to ice formation. In the liquid state, lowering the temperature from +20 to -15 degreesC weakens considerably the stabilizing efficacy of the organic anions citrate and acetate. Among the anions sulfate stands out as the only strong stabilizer at subfreezing temperatures while SCN- becomes an even stronger denaturant. Freezing of the solution in the presence the "neutral" salt NaCl destabilizes the protein, DeltaG degrees progressively decreasing up to 3-4 kcal/mol as the fraction of liquid water in equilibrium with ice (VL) is reduced to less than 1%. Kosmotropes do attenuate the decrease in protein stability in ice although in the case of citrate and acetate, their efficacy diminishes sharply as the liquid fraction shrinks to below 2.7%. On the contrary, sulfate is remarkable for it maintains constantly high the stability of azurin in liquid and frozen solutions, down to the smallest VL (0.5%) examined. Throughout, the reduction in DeltaG degrees caused by the solidification of water correlates with the decrease in the denaturant m value, an indirect indication that protein-ice interactions generally lead to partial unfolding of the native state. It is proposed that binding of the kosmotropes to the ice interface may inhibit protein adsorption to the solid phase and thereby counter the ice perturbation.

  3. Influence of urban pollution on the production of organic particulate matter from isoprene epoxydiols in central Amazonia

    DOE PAGES

    de Sa, Suzane S.; Palm, Brett B.; Campuzano-Jost, Pedro; ...

    2017-06-06

    The atmospheric chemistry of isoprene contributes to the production of a substantial mass fraction of the particulate matter (PM) over tropical forests. Isoprene epoxydiols (IEPOX) produced in the gas phase by the oxidation of isoprene under HO 2-dominant conditions are subsequently taken up by particles, thereby leading to production of secondary organic PM. The present study investigates possible perturbations to this pathway by urban pollution. The measurement site in central Amazonia was located 4 to 6 hours downwind of Manaus, Brazil. Measurements took place from February through March 2014 of the wet season, as part of the GoAmazon2014/5 experiment. Massmore » spectra of organic PM collected with an Aerodyne Aerosol Mass Spectrometer were analyzed by positive-matrix factorization. One resolved statistical factor (“IEPOX-SOA factor”) was associated with PM production by the IEPOX pathway. Loadings of this factor correlated with independently measured mass concentrations of tracers of IEPOX-derived PM, namely C 5-alkene triols and 2-methyltetrols (R = 0.96 and 0.78, respectively). Factor loading, as well as the ratio of the factor loading to organic PM mass concentration, decreased under polluted compared to background conditions. For the study period, sulfate concentration explained 37 % of the variability in the factor loading. After segregation of the data set by NO y concentration, the sulfate concentration explained up to 75 % of the variability in factor loading within the NO y subsets. The sulfate-detrended IEPOX-SOA factor loading decreased by two- to three-fold for an increase in NO y concentration from 0.5 to 2 ppb. Here, the suppressing effects of elevated NO dominated over the enhancing effects of higher sulfate with respect to the production of IEPOX-derived PM. Relative to background conditions, the Manaus pollution contributed more significantly to NO y than to sulfate. In this light, increased emissions of nitrogen oxides, as anticipated for some scenarios of Amazonian economic development, could significantly alter pathways of PM production that presently prevail over the tropical forest, implying changes to air quality and regional climate.« less

  4. Influence of urban pollution on the production of organic particulate matter from isoprene epoxydiols in central Amazonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Sa, Suzane S.; Palm, Brett B.; Campuzano-Jost, Pedro

    The atmospheric chemistry of isoprene contributes to the production of a substantial mass fraction of the particulate matter (PM) over tropical forests. Isoprene epoxydiols (IEPOX) produced in the gas phase by the oxidation of isoprene under HO 2-dominant conditions are subsequently taken up by particles, thereby leading to production of secondary organic PM. The present study investigates possible perturbations to this pathway by urban pollution. The measurement site in central Amazonia was located 4 to 6 hours downwind of Manaus, Brazil. Measurements took place from February through March 2014 of the wet season, as part of the GoAmazon2014/5 experiment. Massmore » spectra of organic PM collected with an Aerodyne Aerosol Mass Spectrometer were analyzed by positive-matrix factorization. One resolved statistical factor (“IEPOX-SOA factor”) was associated with PM production by the IEPOX pathway. Loadings of this factor correlated with independently measured mass concentrations of tracers of IEPOX-derived PM, namely C 5-alkene triols and 2-methyltetrols (R = 0.96 and 0.78, respectively). Factor loading, as well as the ratio of the factor loading to organic PM mass concentration, decreased under polluted compared to background conditions. For the study period, sulfate concentration explained 37 % of the variability in the factor loading. After segregation of the data set by NO y concentration, the sulfate concentration explained up to 75 % of the variability in factor loading within the NO y subsets. The sulfate-detrended IEPOX-SOA factor loading decreased by two- to three-fold for an increase in NO y concentration from 0.5 to 2 ppb. Here, the suppressing effects of elevated NO dominated over the enhancing effects of higher sulfate with respect to the production of IEPOX-derived PM. Relative to background conditions, the Manaus pollution contributed more significantly to NO y than to sulfate. In this light, increased emissions of nitrogen oxides, as anticipated for some scenarios of Amazonian economic development, could significantly alter pathways of PM production that presently prevail over the tropical forest, implying changes to air quality and regional climate.« less

  5. Increase of chromium tolerance in Scenedesmus acutus after sulfur starvation: Chromium uptake and compartmentalization in two strains with different sensitivities to Cr(VI).

    PubMed

    Marieschi, M; Gorbi, G; Zanni, C; Sardella, A; Torelli, A

    2015-10-01

    In photosynthetic organisms sulfate constitutes the main sulfur source for the biosynthesis of GSH and its precursor Cys. Hence, sulfur availability can modulate the capacity to cope with environmental stresses, a phenomenon known as SIR/SED (Sulfur Induced Resistance or Sulfur Enhanced Defence). Since chromate may compete for sulfate transport into the cells, in this study chromium accumulation and tolerance were investigated in relation to sulfur availability in two strains of the unicellular green alga Scenedesmus acutus with different Cr-sensitivities. Paradoxically, sulfur deprivation has been demonstrated to induce a transient increase of Cr-tolerance in both strains. Sulfur deprivation is known to enhance the sulfate uptake/assimilation pathway leading to important consequences on Cr-tolerance: (i) reduced chromate uptake due to the induction of high affinity sulfate transporters (ii) higher production of cysteine and GSH which can play a role both through the formation of unsoluble complexes and their sequestration in inert compartments. To investigate the role of the above mentioned mechanisms, Cr accumulation in total cells and in different cell compartments (cell wall, membranes, soluble and miscellaneous fractions) was analyzed in both sulfur-starved and unstarved cells. Both strains mainly accumulated chromium in the soluble fraction, but the uptake was higher in the wild-type. In this type a short period of sulfur starvation before Cr(VI) treatment lowered chromium accumulation to the level observed in the unstarved Cr-tolerant strain, in which Cr uptake seems instead less influenced by S-starvation, since no significant decrease was observed. The increase in Cr-tolerance following S-starvation seems thus to rely on different mechanisms in the two strains, suggesting the induction of a mechanism constitutively active in the Cr-tolerant strain, maybe a high affinity sulfate transporter also in the wild-type. Changes observed in the cell wall and membrane fractions suggest a strong involvement of these compartments in Cr-tolerance increase following S-starvation. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Acid mucopolysaccharides

    MedlinePlus

    AMP; Dermatan sulfate - urine; Urine heparan sulfate; Urine dermatan sulfate; Heparan sulfate - urine ... the smaller special container and then transfer that urine into the other larger container. On day 1, ...

  7. 21 CFR 520.1044c - Gentamicin sulfate soluble powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Gentamicin sulfate soluble powder. 520.1044c... Gentamicin sulfate soluble powder. (a) Specifications. Each gram of gentamicin sulfate soluble powder contains gentamicin sulfate equivalent to 16.7, 66.7, or 333.3 milligrams of gentamicin. (b) Sponsor. See...

  8. 21 CFR 558.364 - Neomycin sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Neomycin sulfate. 558.364 Section 558.364 Food and... in Animal Feeds § 558.364 Neomycin sulfate. (a) Approvals. Type A medicated article: 325 grams per.... (c) [Reserved] (d) Conditions of use. Neomycin sulfate is used as follows: Neomycin Sulfate...

  9. 21 CFR 558.364 - Neomycin sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Neomycin sulfate. 558.364 Section 558.364 Food and... in Animal Feeds § 558.364 Neomycin sulfate. (a) Approvals. Type A medicated article: 325 grams per.... (c) [Reserved] (d) Conditions of use. Neomycin sulfate is used as follows: Neomycin Sulfate...

  10. 21 CFR 558.364 - Neomycin sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Neomycin sulfate. 558.364 Section 558.364 Food and... in Animal Feeds § 558.364 Neomycin sulfate. (a) Approvals. Type A medicated article: 325 grams per.... (c) [Reserved] (d) Conditions of use. Neomycin sulfate is used as follows: Neomycin Sulfate...

  11. 21 CFR 520.1044c - Gentamicin sulfate soluble powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Gentamicin sulfate soluble powder. 520.1044c... Gentamicin sulfate soluble powder. (a) Specifications. Each gram of gentamicin sulfate soluble powder contains gentamicin sulfate equivalent to 16.7, 66.7, or 333.3 milligrams of gentamicin. (b) Sponsor. See...

  12. Methods of producing sulfate salts of cations from heteroatomic compounds and dialkyl sulfates and uses thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2015-09-29

    Methods of preparing sulfate salts of heteroatomic compounds using dialkyl sulfates as a primary reactant are disclosed. Also disclosed are methods of making ionic liquids from the sulfate salts of the heteroatomic compound, and electrochemical cells comprising the ionic liquids.

  13. 21 CFR 558.364 - Neomycin sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Neomycin sulfate. 558.364 Section 558.364 Food and... in Animal Feeds § 558.364 Neomycin sulfate. (a) Approvals. Type A medicated article: 325 grams per.... (c) [Reserved] (d) Conditions of use. Neomycin sulfate is used as follows: Neomycin Sulfate...

  14. 21 CFR 558.364 - Neomycin sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Neomycin sulfate. 558.364 Section 558.364 Food and... in Animal Feeds § 558.364 Neomycin sulfate. (a) Approvals. Type A medicated article: 325 grams per.... (c) [Reserved] (d) Conditions of use. Neomycin sulfate is used as follows: Neomycin Sulfate...

  15. 21 CFR 524.155 - Bacitracin zinc-polymyxin B sulfate-neomycin sulfate-hydrocortisone or hydrocortisone acetate...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... sulfate-hydrocortisone or hydrocortisone acetate ophthalmic ointment. 524.155 Section 524.155 Food and... zinc-polymyxin B sulfate-neomycin sulfate-hydrocortisone or hydrocortisone acetate ophthalmic ointment... hydrocortisone. (2) To 043264; each gram of ointment contains 400 units of bacitracin zinc, 10,000 units of...

  16. 21 CFR 524.155 - Bacitracin zinc-polymyxin B sulfate-neomycin sulfate-hydrocortisone or hydrocortisone acetate...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... sulfate-hydrocortisone or hydrocortisone acetate ophthalmic ointment. 524.155 Section 524.155 Food and... zinc-polymyxin B sulfate-neomycin sulfate-hydrocortisone or hydrocortisone acetate ophthalmic ointment... hydrocortisone. (2) To 025463; each gram of ointment contains 400 units of bacitracin zinc, 10,000 units of...

  17. 21 CFR 524.155 - Bacitracin zinc-polymyxin B sulfate-neomycin sulfate-hydrocortisone or hydrocortisone acetate...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... sulfate-hydrocortisone or hydrocortisone acetate ophthalmic ointment. 524.155 Section 524.155 Food and... zinc-polymyxin B sulfate-neomycin sulfate-hydrocortisone or hydrocortisone acetate ophthalmic ointment... hydrocortisone. (2) To 025463; each gram of ointment contains 400 units of bacitracin zinc, 10,000 units of...

  18. 21 CFR 524.155 - Bacitracin zinc-polymyxin B sulfate-neomycin sulfate-hydrocortisone or hydrocortisone acetate...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... sulfate-hydrocortisone or hydrocortisone acetate ophthalmic ointment. 524.155 Section 524.155 Food and... zinc-polymyxin B sulfate-neomycin sulfate-hydrocortisone or hydrocortisone acetate ophthalmic ointment... hydrocortisone. (2) To 025463; each gram of ointment contains 400 units of bacitracin zinc, 10,000 units of...

  19. 21 CFR 172.822 - Sodium lauryl sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium lauryl sulfate. 172.822 Section 172.822... CONSUMPTION Multipurpose Additives § 172.822 Sodium lauryl sulfate. The food additive sodium lauryl sulfate... following specifications: (1) It is a mixture of sodium alkyl sulfates consisting chiefly of sodium lauryl...

  20. 21 CFR 177.1210 - Closures with sealing gaskets for food containers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... cetyl sulfate 1 percent. Sodium decylbenzenesulfonate Do. Sodium decyl sulfate Do. Sodium formaldehyde sulfoxylate 0.05 percent. Sodium lauryl sulfate 1 percent. Sodium lignin sulfonate 0.2 percent. Sodium myristyl sulfate (sodium tetradecyl sulfate) 0.6 percent. Sodium nitrite 0.2 percent; for use only in...

  1. Aerobic sulfate reduction in microbial mats

    NASA Technical Reports Server (NTRS)

    Canfield, Donald E.; Des Marais, David J.

    1991-01-01

    Measurements of bacterial sulfate reduction and dissolved oxygen (O2) in hypersaline bacterial mats from Baja California, Mexico, revealed that sulfate reduction occurred consistently within the well-oxygenated photosynthetic zone of the mats. This evidence that dissimilatory sulfate reduction can occur in the presence of O2 challenges the conventional view that sulfate reduction is a strictly anaerobic process. At constant temperature, the rates of sulfate reduction in oxygenated mats during daytime were similar to rates in anoxic mats at night: thus, during a 24-hour cycle, variations in light and O2 have little effect on rates of sulfate reduction in these mats.

  2. Kinetics of sulfate and hydrogen uptake by the thermophilic sulfate-reducing bacteria Thermodesulfobacterium sp. strain JSP and Thermodesulfovibrio sp. strain R1Ha3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonne-Hansen, J.; Ahring, B.K.; Westermann, P.

    1999-03-01

    Dissimilatory sulfate reduction and methanogenesis are the main terminal processes in the anaerobic food chain. Both the sulfate-reducing bacteria (SRB) and the methane-producing archaea (MPA) use acetate and hydrogen as substrates and, therefore, compete for common electron donors in sulfate-containing natural environments. Due to a higher affinity for the electron donors acetate and hydrogen, SRB outcompete MPA for these compounds whenever sulfate is present in sufficient concentrations. Half-saturation constants (K{sub m}), maximum uptake rates (V{sub max}), and threshold concentrations for sulfate and hydrogen were determined for two thermophilic sulfate-reducing bacteria (SRB) in an incubation system without headspace. K{sub m} valuesmore » determined for the thermophilic SRB were similar to the constants described for mesophilic SRB isolated from environments with low sulfate concentrations.« less

  3. Changes in cat urinary glycosaminoglycans with age and in feline urologic syndrome.

    PubMed

    Pereira, Daionety A; Aguiar, Jair A K; Hagiwara, Mitika K; Michelacci, Yara M

    2004-04-07

    The aim of the present study was to characterize the urinary excretion of glycosaminoglycans in kittens and adult healthy cats, as well as in cats with a low urinary tract disease, the feline urologic syndrome (FUS). The main urinary glycosaminoglycan in cats was found to be chondroitin sulfate, with smaller amounts of dermatan sulfate and heparan sulfate. There was no difference in the urinary glycosaminoglycan concentration with sex, but a marked decrease occurred with age, due to chondroitin sulfate. Trace amounts of keratan sulfate were also detected in the urine of kittens, but not of healthy adult cats. Dermatan sulfate and heparan sulfate were the only glycosaminoglycans found in the urinary tract and kidney, and chondroitin sulfate was the only glycosaminoglycan found in the plasma. These data suggest that the main urinary glycosaminoglycan chondroitin sulfate is of systemic origin and filtered in the kidney, while the minor components dermatan sulfate and heparan sulfate may come from the urinary tract. The urinary glycosaminoglycan concentration was greatly decreased in animals with FUS, as compared to normal adults. We hypothesize that these low glycosaminoglycan levels reflect a damage to the bladder surface, resulting in absorption and/or degradation of the endogenous urinary glycosaminoglycans.

  4. Sulfated alpha-L-galactans from the sea urchin ovary: selective 6-desulfation as eggs are spawned.

    PubMed

    Cinelli, Leonardo P; Andrade, Leonardo; Valente, Ana Paula; Mourão, Paulo A S

    2010-06-01

    The sea urchin eggs are surrounded by a jelly coat, which contains sulfated polysaccharides with unique structures. These molecules are responsible for inducing the species-specific acrosome reaction, an obligatory event for the binding of sperm and fusion with the egg. The mechanism of biosynthesis of these sulfated polysaccharides is virtually unknown. The egg jelly of the sea urchin Echinometra lucunter contains a simple 2-sulfated, 3-linked alpha-L-galactan. Here, we pulse labeled the sea urchin ovary in vitro with (35)S-sulfate to follow the biosynthesis of the sulfated alpha-L-galactan. We found that the ovary contains a 2,6-disulfated, 3-linked alpha-L-galactan, which incorporates (35)S-sulfate more avidly than the 2-sulfated isoform. The 2,6-disulfated alpha-L-galactan was purified by anion exchange chromatography, analyzed by electrophoresis and characterized by 1D and 2D nuclear magnetic resonance spectra. We also investigated the location of the sulfated polysaccharides on the oocytes using histochemical procedures. The stain revealed high amounts of sulfated polysaccharide in mature oocytes and accessory cells. The amount of intracellular sulfated polysaccharides decreased as oocytes are spawned. We speculate that 2,6-disulfated galactan is initially synthesized in the ovary and that 6-sulfate ester is removed when the polysaccharide is secreted into the egg jelly. Similar events related to remodeling of sulfated polysaccharides have been reported in other biological systems.

  5. Study the adsorption of sulfates by high cross-linked polystyrene divinylbenzene anion-exchange resin

    NASA Astrophysics Data System (ADS)

    Fathy, Mahmoud; Moghny, Th. Abdel; Awadallah, Ahmed E.; El-Bellihi, Abdel-Hameed A.-A.

    2017-03-01

    In response to rising concerns about the effect of sulfate on water quality, human health, and agriculture, many jurisdictions around the world are imposing tighter regulations for sulfate discharge. This is driving the need for environmental compliance in industries like mining, metal processing, pulp and paper, sewage treatment, and chemical manufacturing. The sulfate removal from synthetic water by high cross-linked polystyrene divinylbenzene resin was studied at batch experiments in this study. The effect of pH, contact time, sulfates concentration, and adsorbent dose on the sulfate sequestration was investigated. The optimum conditions were studied on Saline water as a case study. The results showed that with increasing of the absorbent amount; contact time, and pH improve the efficiency of sulfate removal. The maximum sulfates uptake was obtained in pH and contact time 3.0 and 120 min, respectively. Also, with increasing initial concentration of sulfates in water, the efficiency of sulfate removal decreased. The obtained results in this study were matched with Freundlich isotherm and pseudo-second-order kinetic. The maximum adsorption capacity (Qm) and constant rate were found 0.318 (mg/g) and 0.21 (mg/g.min), respectively. This study also showed that in the optimum conditions, the sulfate removal efficiency from Saline water by 0.1 mg/L sulfates was 65.64 %. Eventually, high cross-linked polystyrene divinylbenzene resin is recommended as a suitable and low cost absorbent to sulfate removal from aqueous solutions.

  6. Association of Indoxyl Sulfate with Heart Failure among Patients on Hemodialysis

    PubMed Central

    Cao, Xue-Sen; Chen, Jun; Zou, Jian-Zhou; Zhong, Yi-Hong; Teng, Jie; Ji, Jun; Chen, Zhang-Wei; Liu, Zhong-Hua; Shen, Bo; Nie, Yu-Xin; Lv, Wen-Lv; Xiang, Fang-Fang; Tan, Xiao

    2015-01-01

    Background and objectives Indoxyl sulfate, a protein-bound uremic toxin, may be associated with cardiovascular events and mortality in patients with CKD. This study aimed to investigate the relationship between indoxyl sulfate and heart failure in patients on hemodialysis. Design, setting, participants, & measurements Patients on hemodialysis for >6 months were enrolled within 6 months. Patients with congestive heart failure, angina pectoris, acute myocardial infarction, cerebral infarction, or cerebral hemorrhage within 3 months before the study or those <18 years old were excluded. The primary end point was first heart failure event during follow-up. Results In total, 258 patients (145 men) with a mean age of 57.0±14.6 years old were enrolled. Median plasma indoxyl sulfate level was used to categorize patients into two groups: the low-indoxyl sulfate group (indoxyl sulfate ≤32.35 μg/ml) and the high-indoxyl sulfate group (indoxyl sulfate >32.35 μg/ml). Then, patients were prospectively followed up for a median of 48.0 (interquartile range: 33.5–48.0) months. During follow-up, 68 patients experienced episodes of first heart failure. Kaplan–Meier analysis revealed the incidence of first heart failure event in the high–indoxyl sulfate group was significantly higher than in the low-indoxyl sulfate group (log rank P<0.001). Cox regression analysis showed indoxyl sulfate was significantly associated with first heart failure event (indoxyl sulfate as the continuous variable: hazard ratio, 1.02; 95% confidence interval [95% CI], 1.01 to 1.03; P=0.001; indoxyl sulfate as the dichotomous variable: hazard ratio, 3.49; 95% CI, 1.97 to 6.20; P<0.001). After adjustment for other confounding factors, the results remained significant (indoxyl sulfate as the continuous variable: hazard ratio, 1.04; 95% CI, 1.02 to 1.06; P<0.001; indoxyl sulfate as the dichotomous variable: hazard ratio, 5.31; 95% CI, 2.43 to 11.58; P<0.001). Conclusions Plasma indoxyl sulfate was associated with first heart failure event in patients on hemodialysis. Whether indoxyl sulfate is only a biomarker or involved in the pathogenesis of heart failure in hemodialysis warrants additional study. PMID:25332316

  7. Sulfur and Methylmercury in the Florida Everglades - the Biogeochemical Connection

    NASA Astrophysics Data System (ADS)

    Orem, W. H.; Gilmour, C. C.; Krabbenhoft, D. P.; Aiken, G.

    2011-12-01

    Methylmercury (MeHg) is a serious environmental problem in aquatic ecosystems worldwide because of its toxicity and tendency to bioaccumulate. The Everglades receives some of the highest levels of atmospheric mercury deposition and has some of the highest levels of MeHg in fish in the USA, posing a threat to pisciverous wildlife and people through fish consumption. USGS studies show that a combination of biogeochemical factors make the Everglades especially susceptible to MeHg production and bioaccumulation: (1) vast wetland area with anoxic soils supporting anaerobic microbial activity, (2) high rates of atmospheric mercury deposition, (3) high levels of dissolved organic carbon (DOC) that complexes and stabilizes mercury in solution for transport to sites of methylation, and (4) high sulfate loading in surface water that drives microbial sulfate reduction and mercury methylation. The high levels of sulfate in the Everglades represent an unnatural condition. Background sulfate levels are estimated to be <1 mg/L, but about 60% of the Everglades has surface water sulfate concentrations exceeding background. Highly sulfate-enriched marshes in the northern Everglades have average sulfate levels of 60 mg/L. Sulfate loading to the Everglades is principally a result of land and water management in south Florida. The highest concentrations of sulfate, averaging 60-70 mg/L, are in canal water in the Everglades Agricultural Area (EAA). Geochemical data and a preliminary sulfur mass balance for the EAA are consistent with sulfur currently used in agriculture, and sulfur released by oxidation of organic EAA soils (including legacy agricultural applications and natural sulfur) as the primary sources of sulfate enrichment to the canals and ecosystem. Sulfate loading increases microbial sulfate reduction and MeHg production in soils. The relationship between sulfate loading and MeHg production, however, is complex. Sulfate levels up to about 20-30 mg/L increase mercury methylation, but buildup of sulfide from microbial sulfate reduction begins to inhibit mercury methylation above this range. Sulfate from the EAA canals has primarily impacted the northern Everglades nearest the EAA, but recent evidence shows sulfate loading extending about 80 km further south into Everglades National Park. Current restoration plans to restore to deliver more water south to Everglades National Park may increase overall sulfur loads to the southern part of the ecosystem. A comprehensive Everglades restoration strategy should include reduction of sulfur loads as a goal because of the many detrimental impacts of sulfate on the ecosystem. Monitoring data show that the ecosystem response to changes in sulfate levels is rapid, and strategies for reducing sulfate loading may be effective in the near-term. A multifaceted approach employing best management practices for sulfur in agriculture, agricultural practices that minimize soil oxidation, and changes to stormwater treatment areas that increase sulfate retention, could help reduce sulfate loads to the Everglades, with resulting benefits.

  8. The stability of sulfate and hydrated sulfate minerals near ambient conditions and their significance in environmental and planetary sciences

    USGS Publications Warehouse

    Chou, I-Ming; Seal, Robert R.; Wang, Alian

    2013-01-01

    Sulfate and hydrated sulfate minerals are abundant and ubiquitous on the surface of the Earth and also on other planets and their satellites. The humidity-buffer technique has been applied to study the stability of some of these minerals at 0.1MPa in terms of temperature-relative humidity space on the basis of hydration-dehydration reversal experiments. Updated phase relations in the binary system MgSO"4-H"2O are presented, as an example, to show how reliable thermodynamic data for these minerals could be obtained based on these experimental results and thermodynamic principles. This approach has been applied to sulfate and hydrated sulfate minerals of other metals, including Fe (both ferrous and ferric), Zn, Ni, Co, Cd, and Cu. Metal-sulfate salts play important roles in the cycling of metals and sulfate in terrestrial systems, and the number of phases extends well beyond the simple sulfate salts that have thus far been investigated experimentally. The oxidation of sulfide minerals, particularly pyrite, is a common process that initiates the formation of efflorescent metal-sulfate minerals. Also, the overall abundance of iron-bearing sulfate salts in nature reflects the fact that the weathering of pyrite or pyrrhotite is the ultimate source for many of these phases. Many aspects of their environmental significance are reviewed, particularly in acute effects to aquatic ecosystems related to the dissolution of sulfate salts during rain storms or snow-melt events. Hydrous Mg, Ca, and Fe sulfates were identified on Mars, with wide distribution and very large quantities at many locations, on the basis of spectroscopic observations from orbital remote sensing and surface explorations by rovers. However, many of these findings do not reveal the detailed information on the degree of hydration that is essential for rigorous interpretation of the hydrologic history of Mars. Laboratory experiments on stability fields, reactions pathways, and reaction rates of hydrous sulfates likely to be found on Mars enhance our understanding of the degrees of hydration of various sulfates that should currently exist on Mars at various seasons and locations and during various atmospheric pressure and obliquity periods. Two sets of systematic experiments were described; one on hydrous Mg sulfates and the other on hydrous Fe^3^+ sulfates. Also, their implications to Mars sulfates mineralogy were discussed.

  9. The stability of sulfate and hydrated sulfate minerals near ambient conditions and their significance in environmental and planetary sciences

    USGS Publications Warehouse

    Chou, I-Ming; Seal, Robert R.; Wang, Alian

    2013-01-01

    Sulfate and hydrated sulfate minerals are abundant and ubiquitous on the surface of the Earth and also on other planets and their satellites. The humidity-buffer technique has been applied to study the stability of some of these minerals at 0.1 MPa in terms of temperature-relative humidity space on the basis of hydration-dehydration reversal experiments. Updated phase relations in the binary system MgSO4-H2O are presented, as an example, to show how reliable thermodynamic data for these minerals could be obtained based on these experimental results and thermodynamic principles. This approach has been applied to sulfate and hydrated sulfate minerals of other metals, including Fe (both ferrous and ferric), Zn, Ni, Co, Cd, and Cu. Metal-sulfate salts play important roles in the cycling of metals and sulfate in terrestrial systems, and the number of phases extends well beyond the simple sulfate salts that have thus far been investigated experimentally. The oxidation of sulfide minerals, particularly pyrite, is a common process that initiates the formation of efflorescent metal-sulfate minerals. Also, the overall abundance of iron-bearing sulfate salts in nature reflects the fact that the weathering of pyrite or pyrrhotite is the ultimate source for many of these phases. Many aspects of their environmental significance are reviewed, particularly in acute effects to aquatic ecosystems related to the dissolution of sulfate salts during rain storms or snow-melt events. Hydrous Mg, Ca, and Fe sulfates were identified on Mars, with wide distribution and very large quantities at many locations, on the basis of spectroscopic observations from orbital remote sensing and surface explorations by rovers. However, many of these findings do not reveal the detailed information on the degree of hydration that is essential for rigorous interpretation of the hydrologic history of Mars. Laboratory experiments on stability fields, reactions pathways, and reaction rates of hydrous sulfates likely to be found on Mars enhance our understanding of the degrees of hydration of various sulfates that should currently exist on Mars at various seasons and locations and during various atmospheric pressure and obliquity periods. Two sets of systematic experiments were described; one on hydrous Mg sulfates and the other on hydrous Fe3+ sulfates. Also, their implications to Mars sulfates mineralogy were discussed.

  10. Efflux transport of chrysin and apigenin sulfates in HEK293 cells overexpressing SULT1A3: The role of multidrug resistance-associated protein 4 (MRP4/ABCC4).

    PubMed

    Li, Wan; Sun, Hua; Zhang, Xingwang; Wang, Huan; Wu, Baojian

    2015-11-01

    Efflux transport is a critical determinant to the pharmacokinetics of sulfate conjugates. Here we aimed to establish SULT1A3 stably transfected HEK293 cells, and to determine the contributions of BCRP and MRP transporters to excretion of chrysin and apigenin sulfates. The cDNA of SULT1A3 was stably introduced into HEK293 cells using a lentiviral vector, generating a sulfonation active cell line (i.e., SULT293 cells). Identification of sulfate transporters was achieved through chemical inhibition (using chemical inhibitors) and biological inhibition (using short-hairpin RNAs (shRNAs)) methods. Sulfated metabolites were rapidly generated and excreted upon incubation of SULT293 cells with chrysin and apigenin. Ko143 (a selective BCRP inhibitor) did not show inhibitory effects on sulfate disposition, whereas the pan-MRP inhibitor MK-571 caused significant reductions (38.5-64.3%, p<0.001) in sulfate excretion and marked elevations (160-243%, p<0.05) in sulfate accumulation. Further, two efflux transporters (BCRP and MRP4) expressed in the cells were knocked-down by shRNA-mediated silencing. Neither sulfate excretion nor sulfate accumulation was altered in BCRP knocked-down cells as compared to scramble cells. By contrast, MRP4 knock-down led to moderate decreases (17.1-20.6%, p<0.05) in sulfate excretion and increases (125-135%, p<0.05) in sulfate accumulation. In conclusion, MRP4 was identified as an exporter for chrysin and apigenin sulfates. The SULT1A3 modified HEK293 cells were an appropriate tool to study SULT1A3-mediated sulfonation and to characterize BCRP/MRP4-mediated sulfate transport. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. [Analysis of chondroitin sulfate content of Cervi Cornu Pantotrichum with different processing methods and different parts].

    PubMed

    Gong, Rui-Ze; Wang, Yan-Hua; Sun, Yin-Shi

    2018-02-01

    The differences and the variations of chondroitin sulfate content in different parts of Cervi Cornu Pantotrichum(CCP) with different processing methods were investigated. The chondroitin sulfate from velvet was extracted by dilute alkali-concentrated salt method. Next, the chondroitin sulfate was digested by chondroitinase ABC.The contents of total chondroitin sulfate and chondroitin sulfate A, B and C in the samples were determined by high performance liquid chromatography(HPLC).The content of chondroitin sulfate in wax,powder,gauze,bone slices of CCP with freeze-drying processing is 14.13,11.99,1.74,0.32 g·kg⁻¹, respectively. The content of chondroitin sulfate in wax,powder,gauze,bone slices of CCP with boiling processing is 10.71,8.97,2.21,1.40 g·kg⁻¹, respectively. The content of chondroitin sulfate in wax,powder,gauze,bone slices of CCP without blood is 12.47,9.47,2.64,0.07 g·kg⁻¹, respectively. And the content of chondroitin sulfate in wax,powder,gauze,bone slices of CCP with blood is 8.22,4.39,0.87,0.28 g·kg⁻¹ respectively. The results indicated that the chondroitin sulfate content in different processing methods was significantly different.The content of chondroitin sulfate in CCP with freeze-drying is higher than that in CCP with boiling processing.The content of chondroitin sulfate in CCP without blood is higher than that in CCP with blood. The chondroitin sulfate content in differerent paris of the velvet with the same processing methods was arranged from high to low as: wax slices, powder, gauze slices, bone slices. Copyright© by the Chinese Pharmaceutical Association.

  12. 21 CFR 520.1044c - Gentamicin sulfate powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Gentamicin sulfate powder. 520.1044c Section 520... sulfate powder. (a) Specifications. Each gram of powder contains gentamicin sulfate equivalent to: (1) 16... colibacillosis: Gentamicin sulfate equivalent to 25 mg of gentamicin per gallon of drinking water to provide 0.5...

  13. 21 CFR 520.1044c - Gentamicin sulfate powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Gentamicin sulfate powder. 520.1044c Section 520... sulfate powder. (a) Specifications. Each gram of powder contains gentamicin sulfate equivalent to: (1) 16... colibacillosis: Gentamicin sulfate equivalent to 25 mg of gentamicin per gallon of drinking water to provide 0.5...

  14. Global rates of marine sulfate reduction and implications for sub-sea-floor metabolic activities

    NASA Astrophysics Data System (ADS)

    Bowles, Marshall W.; Mogollón, José M.; Kasten, Sabine; Zabel, Matthias; Hinrichs, Kai-Uwe

    2014-05-01

    Sulfate reduction is a globally important redox process in marine sediments, yet global rates are poorly quantified. We developed an artificial neural network trained with 199 sulfate profiles, constrained with geomorphological and geochemical maps to estimate global sulfate-reduction rate distributions. Globally, 11.3 teramoles of sulfate are reduced yearly (~15% of previous estimates), accounting for the oxidation of 12 to 29% of the organic carbon flux to the sea floor. Combined with global cell distributions in marine sediments, these results indicate a strong contrast in sub-sea-floor prokaryote habitats: In continental margins, global cell numbers in sulfate-depleted sediment exceed those in the overlying sulfate-bearing sediment by one order of magnitude, whereas in the abyss, most life occurs in oxic and/or sulfate-reducing sediments.

  15. Identification of glycosaminoglycans using high-performance liquid chromatography on a hydroxyapatite column.

    PubMed

    Narita, H; Takeda, Y; Takagaki, K; Nakamura, T; Harata, S; Endo, M

    1995-11-20

    Glycosaminoglycans (heparin, heparan sulfate, dermatan sulfate, chondroitin sulfate, and hyaluronic acid) were labeled with a fluorescent reagent, 2-aminopyridine. The fluoro-labeled glycosaminoglycans were subjected to high-performance liquid chromatography on a hydroxyapatite column. The binding property of each glycosaminoglycan to hydroxyapatite was different. The structural properties of glycosaminoglycans bound to hydroxyapatite were then investigated using chemical desulfated or enzymic depolymerized glycosaminoglycans. This revealed that the sulfate content and molecular weight of the glycosaminoglycans correlated with their binding properties to hydroxyapatite. Desulfated dermatan sulfate but not desulfated chondroitin 6-sulfate bound to the hydroxyapatite. These data indicate that iduronic acid residues of glycosaminoglycans are important for the binding property. The method described which uses hydroxyapatite columns facilitates rapid separation and microanalysis of the glycosaminoglycans, especially dermatan sulfate and chondroitin sulfate.

  16. Oxygen-Dependent Growth of the Sulfate-Reducing Bacterium Desulfovibrio oxyclinae in Coculture with Marinobacter sp. Strain MB in an Aerated Sulfate-Depleted Chemostat

    PubMed Central

    Sigalevich, Pavel; Cohen, Yehuda

    2000-01-01

    A chemostat coculture of the sulfate-reducing bacterium Desulfovibrio oxyclinae and the facultatively aerobic heterotroph Marinobacter sp. strain MB was grown for 1 week under anaerobic conditions at a dilution rate of 0.05 h−1. It was then exposed to an oxygen flux of 223 μmol min−1 by gassing the growth vessel with 5% O2. Sulfate reduction persisted under these conditions, though the amount of sulfate reduced decreased by 45% compared to the amount reduced during the initial anaerobic mode. After 1 week of growth under these conditions, sulfate was excluded from the incoming medium. The sulfate concentration in the growth vessel decreased exponentially from 4.1 mM to 2.5 μM. The coculture consumed oxygen effectively, and no residual oxygen was detected during either growth mode in which oxygen was supplied. The proportion of D. oxyclinae cells in the coculture as determined by in situ hybridization decreased from 86% under anaerobic conditions to 70% in the microaerobic sulfate-reducing mode and 34% in the microaerobic sulfate-depleted mode. As determined by the most-probable-number (MPN) method, the numbers of viable D. oxyclinae cells during the two microaerobic growth modes decreased compared to the numbers during the anaerobic growth mode. However, there was no significant difference between the MPN values for the two modes when oxygen was supplied. The patterns of consumption of electron donors and acceptors suggested that when oxygen was supplied in the absence of sulfate and thiosulfate, D. oxyclinae performed incomplete aerobic oxidation of lactate to acetate. This is the first observation of oxygen-dependent growth of a sulfate-reducing bacterium in the absence of either sulfate or thiosulfate. Cells harvested during the microaerobic sulfate-depleted stage and exposed to sulfate and thiosulfate in a respiration chamber were capable of anaerobic sulfate and thiosulfate reduction. PMID:11055958

  17. Using Terrestrial Sulfate Efflorescences as an Analogue of Hydrated Sulfate Formation in Valles Marineris on Mars

    NASA Astrophysics Data System (ADS)

    Smith, P. C.; Szynkiewicz, A.

    2015-12-01

    Hydrated sulfate minerals provide conclusive evidence that a hydrologic cycle was once active on the surface of Mars. Two classes of hydrated sulfate minerals have been detected by robotic instruments on Mars: monohydrated sulfate minerals comprised of kieserite and gypsum, and various polyhydrated sulfates with Fe-Ca-Na-Mg-rich compositions. These minerals are found in various locations on Mars, including large surface exposures in valley settings of Valles Marineris. However, the sulfate sources and formation mechanisms of these minerals are not yet well understood.Recently, it has been suggested that the sulfate minerals in Valles Marineris might have formed in a manner similar to sulfate efflorescences found in dry environments on Earth. In this study, we use sulfate effloresences from the Rio Puerco Watershed, New Mexico as a terrestrial analogue to assess major factors that might have led to deposition of sulfate minerals in Valles Marineris. In different seasons indicative of dry and wet conditions, we collected field photographs and sediment samples for chemical and stable isotopic analyses (sulfur content, δ34S) to determine major sources of sulfate ions for efflorescences and to assess how the seasonal changes in surface/groundwater activity affect their formation. Preliminary sulfur isotope results suggest that oxidation of bedrock sulfides (0.01-0.05 wt. S %) is a major source of sulfate ion for efflorescences formation because their δ34S varied in negative range (-28 to -20‰) similar to sulfides (average -32‰). Using field photographs collected in Oct 2006, Feb and Nov 2012, May 2013, Mar and Oct 2014, we infer that the highest surface accumulation of sulfate efflorescences in the studied analog site was observed after summer monsoon seasons when more water was available for surface and subsurface transport of solutes from chemical weathering. Conversely, spring snow melt led to enhanced dissolution of sulfate efflorescences.

  18. An Investigation into the Suitability of Sulfate-Reducing Bacteria as Models for Martian Forward Contamination

    NASA Astrophysics Data System (ADS)

    Silver, Maxwell M. W.

    The NASA Planetary Protection policy requires interplanetary space missions do not compromise the target body for a current or future scientific investigation and do not pose an unacceptable risk to Earth, including biologic materials. Robotic missions to Mars pose a risk to planetary protection in the forms of forward and reverse contamination. To reduce these risks, a firm understanding of microbial response to Mars conditions is required. Sulfate-reducing bacteria are prime candidates for potential forward contamination on Mars. Understanding the potential for forward-contamination of sulfate-reducers on Mars calls for the characterization of sulfate-reducers under Mars atmosphere, temperature, and sulfate-brines. This study investigated the response of several sulfate-reducing bacteria, including spore formers and psychrophiles. The psychrophile Desulfotalea psychrophila was found to inconsistently survive positive control lab conditions, attributed to an issue shipping pure cultures. Desulfotomaculum arcticum, a spore-forming mesophilic sulfate-reducer, and Desulfuromusa ferrireducens, an iron and sulfate-reducer, were metabolically active under positive control lab conditions with complex and minimal growth medium. A wastewater treatment sulfate-reducing bacteria (SRB) isolate was subjected to sulfate + growth-medium solutions of varied concentrations (0.44 & 0.55% wt. SO42-). The wastewater SRB displayed higher cellular light-absorbance levels at delayed rates in 0.55% sulfate solutions, suggesting a greater total culture reproduction, but with increased lag time. Additional SRB were isolated from marine sediments, subjected to a shock pressure of 8.73 GPa, and returned to ideal conditions. The sulfate-concentration patterns in the impacted SRB culture suggests a destruction of culture occurred somewhere during the preparation process. The response of SRB in this investigation to Ca and Na sulfate-brines suggests that Martian sulfate deposits offer a viable energy sink to terrestrial microorganisms, and the studied SRB are capable of replication at reduced water-activity. Further investigation (i.e. sulfate cations and concentrations, temperature, pressure, etc.) may identify Martian locations at risk to forward contamination.

  19. Sulfur isotope measurements of submicrometer sulfate aerosol particles over the Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Calhoun, Julie A.; Charlson, Robert J.; Bates, Timothy S.

    1991-01-01

    Stable isotopes were used to analyze the submicron-size sulfate aerosol particles in the atmosphere over the Pacific Ocean, together with the air-mass back trajectories, in order to test the hypothesis of Charlson et al. (1987) who suggested that, over the remote ocean areas, the primary source of atmospheric nonseasalt (NSS) sulfate is marine emissions of dimethylsulfide (DMS). The observed results of isotopic fractionation between the seawater sulfate and NSS sulfate fractions was found to be consistent with the isotopic fractionation predicted for the transformation of the seawater sulfate to the atmospheric NSS sulfate via a DMS path way, supporting the hypothesis of Charlson et al.

  20. Tracing sources of streamwater sulfate during snowmelt using S and O isotope ratios of sulfate and 35S activity

    USGS Publications Warehouse

    Shanley, J.B.; Mayer, B.; Mitchell, M.J.; Michel, R.L.; Bailey, S.W.; Kendall, C.

    2005-01-01

    The biogeochemical cycling of sulfur (S) was studied during the 2000 snowmelt at Sleepers River Research Watershed in northeastern Vermont, USA using a hydrochemical and multi-isotope approach. The snowpack and 10 streams of varying size and land use were sampled for analysis of anions, dissolved organic carbon (DOC), 35S activity, and ?? 34S and ?? 18O values of sulfate. At one of the streams, ?? 18O values of water also were measured. Apportionment of sulfur derived from atmospheric and mineral sources based on their distinct ?? 34S values was possible for 7 of the 10 streams. Although mineral S generally dominated, atmospheric-derived S contributions exceeded 50% in several of the streams at peak snowmelt and averaged 41% overall. However, most of this atmospheric sulfur was not from the melting snowpack; the direct contribution of atmospheric sulfate to streamwater sulfate was constrained by 35S mass balance to a maximum of 7%. Rather, the main source of atmospheric sulfur in streamwater was atmospheric sulfate deposited months to years earlier that had microbially cycled through the soil organic sulfur pool. This atmospheric/pedospheric sulfate (pedogenic sulfate formed from atmospheric sulfate) source is revealed by ?? 18O values of streamwater sulfate that remained constant and significantly lower than those of atmospheric sulfate throughout the melt period, as well as streamwater 35S ages of hundreds of days. Our results indicate that the response of streamwater sulfate to changes in atmospheric deposition will be mediated by sulfate retention in the soil. ?? Springer 2005.

  1. Metabolism of Deoxynivalenol and Deepoxy-Deoxynivalenol in Broiler Chickens, Pullets, Roosters and Turkeys

    PubMed Central

    Schwartz-Zimmermann, Heidi E.; Fruhmann, Philipp; Dänicke, Sven; Wiesenberger, Gerlinde; Caha, Sylvia; Weber, Julia; Berthiller, Franz

    2015-01-01

    Recently, deoxynivalenol-3-sulfate (DON-3-sulfate) was proposed as a major DON metabolite in poultry. In the present work, the first LC-MS/MS based method for determination of DON-3-sulfate, deepoxy-DON-3-sulfate (DOM-3-sulfate), DON, DOM, DON sulfonates 1, 2, 3, and DOM sulfonate 2 in excreta samples of chickens and turkeys was developed and validated. To this end, DOM-3-sulfate was chemically synthesized and characterized by NMR and LC-HR-MS/MS measurements. Application of the method to excreta and chyme samples of four feeding trials with turkeys, chickens, pullets, and roosters confirmed DON-3-sulfate as the major DON metabolite in all poultry species studied. Analogously to DON-3-sulfate, DOM-3-sulfate was formed after oral administration of DOM both in turkeys and in chickens. In addition, pullets and roosters metabolized DON into DOM-3-sulfate. In vitro transcription/translation assays revealed DOM-3-sulfate to be 2000 times less toxic on the ribosome than DON. Biological recoveries of DON and DOM orally administered to broiler chickens, turkeys, and pullets were 74%–106% (chickens), 51%–72% (roosters), and 131%–151% (pullets). In pullets, DON-3-sulfate concentrations increased from jejunum chyme samples to excreta samples by a factor of 60. This result, put into context with earlier studies, indicates fast and efficient absorption of DON between crop and jejunum, conversion to DON-3-sulfate in intestinal mucosa, liver, and possibly kidney, and rapid elimination into excreta via bile and urine. PMID:26569307

  2. Acharan sulfate, the new glycosaminoglycan from Achatina fulica Bowdich 1822. Structural heterogeneity, metabolic labeling and localization in the body, mucus and the organic shell matrix.

    PubMed

    Vieira, Tuane C R G; Costa-Filho, Adilson; Salgado, Norma C; Allodi, Silvana; Valente, Ana-Paula; Nasciutti, Luiz E; Silva, Luiz-Claudio F

    2004-02-01

    Acharan sulfate, a recently discovered glycosaminoglycan isolated from Achatina fulica, has a major disaccharide repeating unit of -->4)-2-acetyl,2-deoxy-alpha-d-glucopyranose(1-->4)-2-sulfo-alpha-l-idopyranosyluronic acid (1-->, making it structurally related to both heparin and heparan sulfate. It has been suggested that this glycosaminoglycan is polydisperse, with an average molecular mass of 29 kDa and known minor disaccharide sequence variants containing unsulfated iduronic acid. Acharan sulfate was found to be located in the body of this species using alcian blue staining and it was suggested to be the main constituent of the mucus. In the present work, we provide further information on the structure and compartmental distribution of acharan sulfate in the snail body. Different populations of acharan sulfate presenting charge and/or molecular mass heterogeneities were isolated from the whole body, as well as from mucus and from the organic shell matrix. A minor glycosaminoglycan fraction susceptible to degradation by nitrous acid was also purified from the snail body, suggesting the presence of N-sulfated glycosaminoglycan molecules. In addition, we demonstrate the in vivo metabolic labeling of acharan sulfate in the snail body after a meal supplemented with [35S]free sulfate. This simple approach might be applied to the study of acharan sulfate biosynthesis. Finally, we developed histochemical assays to localize acharan sulfate in the snail body by metachromatic staining and by histoautoradiography following metabolic radiolabeling with [35S]sulfate. Our results show that acharan sulfate is widely distributed among several organs.

  3. Functional conservation of the human EXT1 tumor suppressor gene and its Drosophila homolog tout velu.

    PubMed

    Dasgupta, Ujjaini; Dixit, Bharat L; Rusch, Melissa; Selleck, Scott; The, Inge

    2007-08-01

    Heparan sulfate proteoglycans play a vital role in signaling of various growth factors in both Drosophila and vertebrates. In Drosophila, mutations in the tout velu (ttv) gene, a homolog of the mammalian EXT1 tumor suppressor gene, leads to abrogation of glycosaminoglycan (GAG) biosynthesis. This impairs distribution and signaling activities of various morphogens such as Hedgehog (Hh), Wingless (Wg), and Decapentaplegic (Dpp). Mutations in members of the exostosin (EXT) gene family lead to hereditary multiple exostosis in humans leading to bone outgrowths and tumors. In this study, we provide genetic and biochemical evidence that the human EXT1 (hEXT1) gene is conserved through species and can functionally complement the ttv mutation in Drosophila. The hEXT1 gene was able to rescue a ttv null mutant to adulthood and restore GAG biosynthesis.

  4. CELLULAR DIFFERENTIATION AND THE AGING PROCESS IN CARTILAGINOUS TISSUES

    PubMed Central

    Shulman, Herbert J.; Meyer, Karl

    1968-01-01

    Primary cell cultures of differentiated chondrocytes were shown to produce chondroitin-4-sulfate as the predominant mucopolysaccharide, with suggestive evidence for the synthesis of keratan sulfate and possibly chondroitin-6-sulfate. Chicken embryonic cartilage was shown to be composed mainly of chondroitin-4-sulfate, with a small amount of chondroitin-6-sulfate, but essentially no keratan sulfate. These findings were compared to the data of others, and a hypothesis explaining the aging process in cartilage in terms of cellular differentiation was presented. PMID:5688079

  5. Microcalorimetric study of the adsorption of PEGylated lysozyme and PEG on a mildly hydrophobic resin: influence of ammonium sulfate.

    PubMed

    Werner, Albert; Blaschke, Tim; Hasse, Hans

    2012-08-07

    Adsorption of native as well as mono-, di-, and tri-PEGylated lysozyme on Toyopearl PPG-600M, a mildly hydrophobic resin is studied by isothermal titration calorimetry and by independent adsorption equilibrium measurements in sodium phosphate buffer at pH 7.0 and 25 °C. For PEGylation two different PEG sizes are used (5 and 10 kDa) which leads to six different forms of PEGylated lysozyme all of which are systematically studied. Additionally, the adsorption of five pure PEGs is explored. The ammonium sulfate concentration is varied from 600 to 1200 mM. The molar enthalpy of adsorption Δh(p)(ads) is determined from the calorimetric and the adsorption equilibrium data. It is found to be endothermic in all experiments. The comparison of the adsorption of different PEGylated forms shows that the adsorption of PEGylated lysozyme is driven by the adsorption of the PEG chain. The results provide insight into the adsorption mechanisms of polymer-modified proteins on hydrophobic chromatographic resins.

  6. Consequences of ions and pH on the supramolecular organization of sphingomyelin and sphingomyelin/cholesterol bilayers.

    PubMed

    Chemin, Caroline; Bourgaux, Claudie; Péan, Jean-Manuel; Pabst, Georg; Wüthrich, Patrick; Couvreur, Patrick; Ollivon, Michel

    2008-06-01

    For drug delivery purpose the anticancer drug S12363 was loaded into ESM/Chol-liposomes using either a pH or an ammonium gradient. Association between the drug and the liposome depends markedly on the liposome membrane structure. Thus, ESM and ESM/Chol bilayer organization had been characterized by coupled DSC and XRDT as a function of both cholesterol concentration and aqueous medium composition. ESM bilayers exhibited a ripple lamellar gel phase P(beta') below the melting temperature and adopted a L(beta)-like gel phase upon Chol insertion. Supramolecular organization of ESM and ESM/Chol bilayers was not modified by citrate buffer or ammonium sulfate solution whatever the pH (3< or = pH < or =7). Nevertheless, in ESM bilayer, ammonium sulfate salt induced a peculiar organization of head groups, leading to irregular d-spacing and weakly correlated bilayers. Moreover, in the presence of salts, a weakening of van der Waals attraction forces was seen and led to a swelling of the water layer.

  7. The impact of gut microbiota on kidney function and pathogenesis.

    PubMed

    Mahmoodpoor, Fariba; Rahbar Saadat, Yalda; Barzegari, Abolfazl; Ardalan, Mohammadreza; Zununi Vahed, Sepideh

    2017-09-01

    Chronic kidney diseases (CKDs) are a global health problem. Besides diverse leading reasons in initiation and progression of CKDs, it is evident that they might largely originate from changes in the gut microbial community (microbiota). Mounting evidence indicates that a bidirectional relationship exists between host and microbiome in humans and animals with CKDs. Changes in the microbiota composition and structure (dysbiosis) produce excessive amounts of uremic toxins (e.g. indoxyl sulfate, p-cresyl sulfate and trimethylamine-N-oxide) but less reno-protective metabolites that are implicated in oxidative stress, uremia, inflammation, deterioration of kidney function, kidney diseases progression, a higher prevalence of cardiovascular risk, and mortality in patients with CKD. The present review focuses on the pathogenic association between gut microbiota and kidney diseases like CKD, IgA nephropathy, and kidney stone disease. Certainly, novel insights into the impact of the gut microbiota in kidney diseases can be helpful to develop therapeutic strategies in order to avoid and/or treat aforementioned conditions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. The chemistry of sodium chloride involvement in processes related to hot corrosion. [in gas turbine engines

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.

    1979-01-01

    Thermodynamic and mass transport calculations, and laboratory experiments elucidating the behavior of sodium chloride in combustion environments, in the deposition process, and in reactions with certain oxides on the surfaces of superalloys are summarized. It was found that some of the ingested salt is separated out of the air stream by the compressor. However, sodium chloride does pass from the compressor to the combustor where numerous chemical reactions take place. Here some of the salt is vaporized to yield gaseous sodium chloride molecules. Hydrogen and oxygen atoms present in the combustion products react with some sodium chloride to yield other gaseous species such as sodium, and a fraction of the salt remains as particulates. Both the gas phase and condensed sodium chloride can lead to sodium sulfate formation by various routes, all of which involve reaction with sulfur oxides and oxygen. In addition to contributing to the formation of sodium sulfate, the sodium chloride can contribute to corrosion directly.

  9. Structure of the DBL3x domain of pregnancy-associated malaria protein VAR2CSA complexed with chondroitin sulfate A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, K.; Gittis, A.G.; Nguyen, P.

    Plasmodium falciparum-infected erythrocytes bind to chondroitin sulfate A (CSA) in the placenta via the VAR2CSA protein, a member of the P. falciparum erythrocyte membrane protein-1 family, leading to life-threatening malaria in pregnant women with severe effects on their fetuses and newborns. Here we describe the structure of the CSA binding DBL3x domain, a Duffy binding-like (DBL) domain of VAR2CSA. By forming a complex of DBL3x with CSA oligosaccharides and determining its structure, we have identified the CSA binding site to be a cluster of conserved positively charged residues on subdomain 2 and subdomain 3. Mutation or chemical modification of lysinemore » residues at the site markedly diminished CSA binding to DBL3x. The location of the CSA binding site is an important step forward in the molecular understanding of pregnancy-associated malaria and offers a new target for vaccine development.« less

  10. Structure of the Complex between a Heparan Sulfate Octasaccharide and Mycobacterial Heparin-Binding Hemagglutinin.

    PubMed

    Huang, Teng-Yi; Irene, Deli; Zulueta, Medel Manuel L; Tai, Tzu-Jui; Lain, Shih-Han; Cheng, Cheng-Po; Tsai, Ping-Xi; Lin, Shu-Yi; Chen, Zhi-Geng; Ku, Chiao-Chu; Hsiao, Chwan-Deng; Chyan, Chia-Lin; Hung, Shang-Cheng

    2017-04-03

    Heparin-binding hemagglutinin (HBHA) is a 199 amino acid virulence factor at the envelope of Mycobacterium tuberculosis that contributes to latent tuberculosis. The binding of HBHA to respiratory epithelial cells, which leads to extrapulmonary dissemination of the pathogen, is mediated by cell-surface heparan sulfate (HS). We report the structural characterization of the HBHA/HS complex by NMR spectroscopy. To develop a model for the molecular recognition, the first chemically synthesized uniformly 13 C- and 15 N-labeled HS octasaccharide and a uniformly 13 C- and 15 N-labeled form of HBHA were prepared. Residues 180-195 at the C-terminal region of HBHA show large chemical shift perturbation upon association with the octasaccharide. Molecular dynamics simulations conforming to the multidimensional NMR data revealed key electrostatic and even hydrophobic interactions between the binding partners that may aid in the development of agents targeting the binding event. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Advances in understanding hydration of Portland cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scrivener, Karen L., E-mail: Karen.scrivener@epfl.ch; Juilland, Patrick; Monteiro, Paulo J.M.

    2015-12-15

    Progress in understanding hydration is summarized. Evidence supports the geochemistry dissolution theory as an explanation for the induction period, in preference to the inhibiting layer theory. The growth of C–S–H is the principal factor controlling the main heat evolution peak. Electron microscopy indicates that C–S–H “needles” grow from the surface of grains. At the peak, the surface is covered, but deceleration cannot be attributed to diffusion control. The shoulder peak comes from renewed reaction of C{sub 3}A after depletion of sulfate in solution, but release of sulfate absorbed on C–S–H means that ettringite continues to form. After several days spacemore » becomes the major factor controlling hydration. The use of new analytical technique is improving our knowledge of the action of superplasticizers and leading to the design of molecules for different applications. Atomistic modeling is becoming a topic of increasing interest. Recent publications in this area are reviewed.« less

  12. The effect of atmospheric sulfate reductions on diffuse radiation and photosynthesis in the United States during 1995-2013

    NASA Astrophysics Data System (ADS)

    Keppel-Aleks, G.; Washenfelder, R. A.

    2016-09-01

    Aerosol optical depth (AOD) has been shown to influence the global carbon sink by increasing the fraction of diffuse light, which increases photosynthesis over a greater fraction of the vegetated canopy. Between 1995 and 2013, U.S. SO2 emissions declined by over 70%, coinciding with observed AOD reductions of 3.0 ± 0.6% yr-1 over the eastern U.S. In the Community Earth System Model (CESM), these trends cause diffuse light to decrease regionally by almost 0.6% yr-1, leading to declines in gross primary production (GPP) of 0.07% yr-1. Integrated over the analysis period and domain, this represents 0.5 Pg C of omitted GPP. A separate upscaling calculation that used published relationships between GPP and diffuse light agreed with the CESM model results within 20%. The agreement between simulated and data-constrained upscaling results strongly suggests that anthropogenic sulfate trends have a small impact on carbon uptake in temperate forests due to scattered light.

  13. Chemistry of the calcite/water interface: Influence of sulfate ions and consequences in terms of cohesion forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourchet, Sylvie, E-mail: sylvie.pourchet@u-bourgogne.fr; Pochard, Isabelle; Brunel, Fabrice

    2013-10-15

    Calcite suspensions are used to mimic the behavior of more complex cementitious systems. Therefore the characterization of calcite–water interface in strong alkaline conditions, through ionic adsorption, electrokinetic measurements, static rheology and atomic force microscopy is a prerequisite. Calcium, a potential determining ion for calcite, adsorbs specifically onto the weakly positively charged calcite surface in water. This leads to an increase of the repulsive electric double layer force and thus weakens the particle cohesion. Sulfate adsorption, made at constant calcium concentration and ionic strength, significantly increases the attractive interactions between the calcite particles despite its very low adsorption. This is attributedmore » to a lowering of the electrostatic repulsion in connection with the evolution of the zeta potential. The linear relationship found between the yield stress and ζ{sup 2} proves that the classical DLVO theory applies for these systems, contrary to what was previously observed with C–S–H particles under the same conditions.« less

  14. Enhanced Differentiation of Human Preosteoblasts on Electrospun Blend Fiber Mats of Polydioxanone and Anionic Sulfated Polysaccharides

    PubMed Central

    2017-01-01

    The viability and differentiation of SaOS-2 preosteoblasts on fiber mats of blends comprising of the biodegradable poly(ester-ether) polydioxanone (PDX) and the sulfate-containing anionic polysaccharides kappa-carrageenan (KCG) and fucoidan (FUC) were investigated for a range of different blend compositions. The detailed analysis of the blend nanofiber properties revealed a different degree of miscibility of PDX and the polysaccharide leading to a different enrichment at the surface of the blend nanofibers, which were observed to be stable in phosphate buffer solution (PBS) for up to 5 weeks. The fibrous mats of PDX/FUC led to the highest osteogenic differentiation with very good cell viability. The electrospun blend fibers also supported human-induced pluripotent stem (iPS) cells and iPS cell-derived embryoid bodies with high cell viability, which underlines the potential of these novel blend fiber systems for optimized performance in bone tissue engineering applications. PMID:29285521

  15. Jasmonate signaling in plant stress responses and development - active and inactive compounds.

    PubMed

    Wasternack, Claus; Strnad, Miroslav

    2016-09-25

    Jasmonates (JAs) are lipid-derived signals mediating plant responses to biotic and abiotic stresses and in plant development. Following the elucidation of each step in their biosynthesis and the important components of perception and signaling, several activators, repressors and co-repressors have been identified which contribute to fine-tuning the regulation of JA-induced gene expression. Many of the metabolic reactions in which JA participates, such as conjugation with amino acids, glucosylation, hydroxylation, carboxylation, sulfation and methylation, lead to numerous compounds with different biological activities. These metabolites may be highly active, partially active in specific processes or inactive. Hydroxylation, carboxylation and sulfation inactivate JA signaling. The precursor of JA biosynthesis, 12-oxo-phytodienoic acid (OPDA), has been identified as a JA-independent signaling compound. An increasing number of OPDA-specific processes is being identified. To conclude, the numerous JA compounds and their different modes of action allow plants to respond specifically and flexibly to alterations in the environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Coating Galvanized Steel

    DTIC Science & Technology

    1989-06-01

    bonding of topcoats to smooth galvanizing have lead to such practices as washing with vinegar , washing with copper sulfate solution, or weathering before...of special treatments other than weathering: "The "home cure" type of treatments such as washing the surface with vinegar , acetic acid, cider, copper... alcohol . The wash primer used was MIL-P-15328 (Formula 117). It is spray- applied to give 0.3- to 0.5-mil dry film thickness and is used on ships to

  17. On the role of convective motion during dendrite growth: Experiments under variable gravity, revised

    NASA Technical Reports Server (NTRS)

    Hallett, J.; Cho, N.; Harrison, K.; Lord, A.; Wedum, E.; Purcell, R.; Saunders, C. P. R.

    1987-01-01

    Experiments show the effect of self induced convection on individual dendrite growth in uniformly supercooled samples and solidification of the resulting mush under conditions of high and low g. Convection is visualized by a Schlieren optical system or a Mach Zender interferometer. For ice crystals growing from the vapor in air, a slight reduction in linear growth rate occur under low g. For ice crystals growing from NaCl solution, dendrite tip velocities are unchanged, but subsequent mush solidification is enhanced through drainage channels under higher g. By contrast, sodium sulfate decahydrate dendrites growing from solution produce convective plumes which lead to higher tip growth rate only as the crystal growth direction approaches that of gravity. Convective plumes are laminar for small crystals under conditions of these experiments; the rise velocity of such plumes is greater than individual vortex rings under identical conditions. Convection effects are only present in solution under a critical supercooling less than about 5 C for sodium sulfate and 2 C for ice in NaCl since at higher supercooling the crystallization velocity, proportional to the square of the supercooling, exceeds the convective velocity, proportional to the square root of the supercooling. The role of convective velocity in bulk solidification is to give a large scale flow which under extreme cases may lead to extensive secondary crystal production, which alters the resulting crystal texture of the completely solidified melt.

  18. Analysis of nutrients, selected inorganic constituents, and trace elements in water from Illinois community-supply wells, 1984-91

    USGS Publications Warehouse

    Warner, Kelly L.

    2000-01-01

    The lower Illinois River Basin (LIRB) study unit is part of the National Water-Quality Assessment program that includes studies of most major aquifer systems in the United States. Retrospective water-quality data from community-supply wells in the LIRB and in the rest of Illinois are grouped by aquifer and depth interval. Concentrations of selected chemical constituents in water samples from community-supply wells within the LIRB vary with aquifer and depth of well. Ranked data for 16 selected trace elements and nutrients are compared by aquifer, depth interval, and between the LIRB and the rest of Illinois using nonparametric statistical analyses. For all wells, median concentrations of nitrate and nitrite (as Nitrogen) are highest in water samples from the Quaternary aquifer at well depths less than 100 ft; ammonia concentrations (as Nitrogen), however, are highest in samples from well depths greater than 200 ft. Chloride and sulfate concentrations are higher in samples from the older bedrock aquifers. Arsenic, lead, sulfate, and zinc concentrations are appreciably different between samples from the LIRB and samples from the rest of Illinois for ground water from the Quaternary aquifer. Arsenic concentration is highest in the deep Quaternary aquifer. Chromium, cyanide, lead, and mercury are not frequently detected in water samples from community-supply wells in Illinois.

  19. Simulated responses of terrestrial aridity to black carbon and sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Lin, L.; Gettelman, A.; Xu, Y.; Fu, Q.

    2016-01-01

    Aridity index (AI), defined as the ratio of precipitation to potential evapotranspiration (PET), is a measure of the dryness of terrestrial climate. Global climate models generally project future decreases of AI (drying) associated with global warming scenarios driven by increasing greenhouse gas and declining aerosols. Given their different effects in the climate system, scattering and absorbing aerosols may affect AI differently. Here we explore the terrestrial aridity responses to anthropogenic black carbon (BC) and sulfate (SO4) aerosols with Community Earth System Model simulations. Positive BC radiative forcing decreases precipitation averaged over global land at a rate of 0.9%/°C of global mean surface temperature increase (moderate drying), while BC radiative forcing increases PET by 1.0%/°C (also drying). BC leads to a global decrease of 1.9%/°C in AI (drying). SO4 forcing is negative and causes precipitation a decrease at a rate of 6.7%/°C cooling (strong drying). PET also decreases in response to SO4 aerosol cooling by 6.3%/°C cooling (contributing to moistening). Thus, SO4 cooling leads to a small decrease in AI (drying) by 0.4%/°C cooling. Despite the opposite effects on global mean temperature, BC and SO4 both contribute to the twentieth century drying (AI decrease). Sensitivity test indicates that surface temperature and surface available energy changes dominate BC- and SO4-induced PET changes.

  20. Anglesite and silver recovery from jarosite residues through roasting and sulfidization-flotation in zinc hydrometallurgy.

    PubMed

    Han, Haisheng; Sun, Wei; Hu, Yuehua; Jia, Baoliang; Tang, Honghu

    2014-08-15

    Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new route, roasting combined with sulfidization-flotation, for the recovery of anglesite and silver from jarosite residues of zinc hydrometallurgy. Surface appearance and elemental distribution of jarosite residues was examined by scanning electron microscopy and energy dispersive X-ray spectrometry analysis, respectively. Decomposition and transformation mechanisms of jarosite residues were illustrated by differential thermal analysis. Results showed that after roasting combined with flotation, the grade and recovery of lead were 43.89% and 66.86%, respectively, and those of silver were 1.3 kg/t and 81.60%, respectively. At 600-700 °C, jarosite was decomposed to release encapsulated valuable minerals such as anglesite (PbSO4) and silver mineral; silver jarosite decomposed into silver sulfate (Ag2SO4); and zinc ferrite (ZnO · Fe2O3) decomposed into zinc sulfate (ZnSO4) and hematite (Fe2O3). Bared anglesite and silver minerals were modified by sodium sulfide and easily collected by flotation collectors. This study demonstrates that the combination of roasting and sulfidization-flotation provides a promising process for the recovery of zinc, lead, and silver from jarosite residues of zinc hydrometallurgy. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. ROLE OF TYROSINE-SULFATED PROTEINS IN RETINAL STRUCTURE AND FUNCTION

    PubMed Central

    Kanan, Y.; Al-Ubaidi, M.R.

    2014-01-01

    The extracellular matrix (ECM) plays a significant role in cellular and retinal health. The study of retinal tyrosine-sulfated proteins is an important first step toward understanding the role of ECM in retinal health and diseases. These secreted proteins are members of the retinal ECM. Tyrosine sulfation was shown to be necessary for the development of proper retinal structure and function. The importance of tyrosine sulfation is further demonstrated by the evolutionary presence of tyrosylprotein sulfotransferases, enzymes that catalyze proteins’ tyrosine sulfation, and the compensatory abilities of these enzymes. Research has identified four tyrosine-sulfated retinal proteins: fibulin 2, vitronectin, complement factor H (CFH), and opticin. Vitronectin and CFH regulate the activation of the complement system and are involved in the etiology of some cases of age-related macular degeneration. Analysis of the role of tyrosine sulfation in fibulin function showed that sulfation influences the protein's ability to regulate growth and migration. Although opticin was recently shown to exhibit anti-angiogenic properties, it is not yet determined what role sulfation plays in that function. Future studies focusing on identifying all of the tyrosine-sulfated retinal proteins would be instrumental in determining the impact of sulfation on retinal protein function in retinal homeostasis and diseases. PMID:25819460

  2. Stable Isotope Characteristics of Jarosite: The Acidic Aqueous History of Mars

    NASA Technical Reports Server (NTRS)

    Earl, Lyndsey D.

    2005-01-01

    The Mars Rover Opportunity found jarosite (Na(+) or K(+))Fe3SO4(OH)6 at the Meridiani Planum site. This mineral forms from the evaporation of an aqueous acidic sulfate brine. Oxygen isotope compositions may characterize formation conditions but subsequent isotope exchange may have occurred between the sulfate and hydroxide of jarosite and water. The rate of oxygen isotope exchange depends on the acidity and temperature of the brine, but it has not been investigated in detail. We performed laboratory experiments to determine the rate of oxygen isotope exchange under varying acidities and temperatures to learn more about this process. Barium sulfate samples were precipitated weekly from acidic sodium sulfate brines. The oxygen isotope composition of the precipitated sulfate was obtained using a Finnigan MAT253 Isotope Ratio Mass-Spectrometer. The results show that water was trapped in barium sulfate during precipitation. Trapped water may exchange with sulfate when exposed to high temperatures, thus changing the isotope composition of sulfate and the observed fractionation factor of oxygen isotope exchange between sulfate and water. The results of our research will contribute to the understanding of oxygen isotope exchange rates between water and sulfate under acidic conditions and provide experimental knowledge for the dehydration of barium sulfate samples.

  3. Hygroscopicity of organic surrogate compounds from biomass burning and their effect on the efflorescence of ammonium sulfate in mixed aerosol particles

    NASA Astrophysics Data System (ADS)

    Lei, Ting; Zuend, Andreas; Cheng, Yafang; Su, Hang; Wang, Weigang; Ge, Maofa

    2018-01-01

    Hygroscopic growth factors of organic surrogate compounds representing biomass burning and mixed organic-inorganic aerosol particles exhibit variability during dehydration experiments depending on their chemical composition, which we observed using a hygroscopicity tandem differential mobility analyzer (HTDMA). We observed that levoglucosan and humic acid aerosol particles release water upon dehumidification in the range from 90 to 5 % relative humidity (RH). However, 4-Hydroxybenzoic acid aerosol particles remain in the solid state upon dehumidification and exhibit a small shrinking in size at higher RH compared to the dry size. For example, the measured growth factor of 4-hyroxybenzoic acid aerosol particles is ˜ 0.96 at 90 % RH. The measurements were accompanied by RH-dependent thermodynamic equilibrium calculations using the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model and Extended Aerosol Inorganics Model (E-AIM), the Zdanovskii-Stokes-Robinson (ZSR) relation, and a fitted hygroscopicity expression. We observed several effects of organic components on the hygroscopicity behavior of mixtures containing ammonium sulfate (AS) in relation to the different mass fractions of organic compounds: (1) a shift of efflorescence relative humidity (ERH) of ammonium sulfate to higher RH due to the presence of 25 wt % levoglucosan in the mixture. (2) There is a distinct efflorescence transition at 25 % RH for mixtures consisting of 25 wt % of 4-hydroxybenzoic acid compared to the ERH at 35 % for organic-free AS particles. (3) There is indication for a liquid-to-solid phase transition of 4-hydroxybenzoic acid in the mixed particles during dehydration. (4) A humic acid component shows no significant effect on the efflorescence of AS in mixed aerosol particles. In addition, consideration of a composition-dependent degree of dissolution of crystallization AS (solid-liquid equilibrium) in the AIOMFAC and E-AIM models leads to a relatively good agreement between models and observed growth factors, as well as ERH of AS in the mixed system. The use of the ZSR relation leads to good agreement with measured diameter growth factors of aerosol particles containing humic acid and ammonium sulfate. Lastly, two distinct mixtures of organic surrogate compounds, including levoglucosan, 4-hydroxybenzoic acid, and humic acid, were used to represent the average water-soluble organic carbon (WSOC) fractions observed during the wet and dry seasons in the central Amazon Basin. A comparison of the organic fraction's hygroscopicity parameter for the simple mixtures, e.g., κ ≈ 0.12 to 0.15 for the wet-season mixture in the 90 to 40 % RH range, shows good agreement with field data for the wet season in the Amazon Basin (WSOC κ ≈ 0.14±0.06 at 90 % RH). This suggests that laboratory-generated mixtures containing organic surrogate compounds and ammonium sulfate can be used to mimic, in a simplified manner, the chemical composition of ambient aerosols from the Amazon Basin for the purpose of RH-dependent hygroscopicity studies.

  4. 21 CFR 184.1315 - Ferrous sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ferrous sulfate. 184.1315 Section 184.1315 Food... Specific Substances Affirmed as GRAS § 184.1315 Ferrous sulfate. (a) Ferrous sulfate heptahydrate (iron (II) sulfate heptahydrate, FeSO4·7H2O, CAS Reg. No. 7782-63-0) is prepared by the action of sulfuric acid on...

  5. 21 CFR 524.154 - Bacitracin or bacitracin zinc-neomycin sulfate-polymyxin B sulfate ophthalmic ointment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Bacitracin or bacitracin zinc-neomycin sulfate-polymyxin B sulfate ophthalmic ointment. 524.154 Section 524.154 Food and Drugs FOOD AND DRUG ADMINISTRATION... TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.154 Bacitracin or bacitracin zinc-neomycin sulfate-polymyxin B...

  6. 21 CFR 524.154 - Bacitracin or bacitracin zinc-neomycin sulfate-polymyxin B sulfate ophthalmic ointment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Bacitracin or bacitracin zinc-neomycin sulfate-polymyxin B sulfate ophthalmic ointment. 524.154 Section 524.154 Food and Drugs FOOD AND DRUG ADMINISTRATION... TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.154 Bacitracin or bacitracin zinc-neomycin sulfate-polymyxin B...

  7. 21 CFR 184.1461 - Manganese sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Manganese sulfate. 184.1461 Section 184.1461 Food... GRAS § 184.1461 Manganese sulfate. (a) Manganese sulfate (MnSO4·H2O, CAS Reg. No. 7785-0987-097) is a... of pyrolusite (MnO2) ore with solid ferrous sulfate and coal, followed by leaching and...

  8. 21 CFR 184.1315 - Ferrous sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ferrous sulfate. 184.1315 Section 184.1315 Food... Specific Substances Affirmed as GRAS § 184.1315 Ferrous sulfate. (a) Ferrous sulfate heptahydrate (iron (II) sulfate heptahydrate, FeSO4·7H2O, CAS Reg. No. 7782-63-0) is prepared by the action of sulfuric acid on...

  9. 21 CFR 184.1461 - Manganese sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Manganese sulfate. 184.1461 Section 184.1461 Food... Specific Substances Affirmed as GRAS § 184.1461 Manganese sulfate. (a) Manganese sulfate (MnSO4·H2O, CAS... dioxide in sulfuric acid, and the roasting of pyrolusite (MnO2) ore with solid ferrous sulfate and coal...

  10. 21 CFR 184.1461 - Manganese sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Manganese sulfate. 184.1461 Section 184.1461 Food... Specific Substances Affirmed as GRAS § 184.1461 Manganese sulfate. (a) Manganese sulfate (MnSO4·H2O, CAS... dioxide in sulfuric acid, and the roasting of pyrolusite (MnO2) ore with solid ferrous sulfate and coal...

  11. Specific PET Imaging Probes for Early Detection of Prostate Cancer Metastases

    DTIC Science & Technology

    2012-05-01

    protamin sulfate and pentosan sulfate are more potent than heparan sulfate and chondroitin sulfates to inhibit FITC-R11 uptake. 2. In vitro and in...GAGs) on the uptake of FITC-R9, FITC- R11 and FITC-R13 have been evaluated in four prostate cancer cell lines. The results show that dextran sulfate

  12. Preparation and evaluation of polysaccharide sulfates for inhibiting Helicobacter pylori adhesion.

    PubMed

    Song, Weijuan; Wang, Yalong; Zhang, Liyan; Fu, Shengnan; Zeng, Ying; Hu, Haiyan

    2014-03-15

    In treatments of Helicobacter pylori infections, recrudescences were common because of an unfavorable bacterial eradication rate due to the ever increasing resistance to antibiotics. In this study, we chose pectin, guar gum and chitosan to synthesize their sulfates to inhibit adhesions of H. pylori and thus enhance the eradication rate. The introduction of sulfates was characterized using FT-IR and elemental analysis. Data from zeta-potential, hydrodynamic diameter, hydrolysis and rheological property demonstrated the sulfates were physicochemically stable. Inhibition assay of hemagglutination and adhesion indicated sulfates prevented H. pylori from adhering to erythrocytes and AGS cells. In binding assay, affinities of sulfates to H. pylori suggested sulfates could compete with target cells for bacteria and moderated the bacterial adhesion to hosts. A higher content of galactoses and 2,3-O-linked sulfates benefited this action. Thus polysaccharide sulfates can serve as potential adjuvants to raise the bacterial eradication rate by inhibiting adhesions of H. pylori. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Novel diffusive gradients in thin films technique to assess labile sulfate in soil.

    PubMed

    Hanousek, Ondrej; Mason, Sean; Santner, Jakob; Chowdhury, Md Mobaroqul Ahsan; Berger, Torsten W; Prohaska, Thomas

    2016-09-01

    A novel diffusive gradients in thin films (DGT) technique for sampling labile soil sulfate was developed, based on a strong basic anion exchange resin (Amberlite IRA-400) for sulfate immobilization on the binding gel. For reducing the sulfate background on the resin gels, photopolymerization was applied instead of ammonium persulfate-induced polymerization. Agarose cross-linked polyacrylamide (APA) hydrogels were used as diffusive layer. The sulfate diffusion coefficient in APA gel was determined as 9.83 × 10(-6) ± 0.35 × 10(-6) cm(2) s(-1) at 25 °C. The accumulated sulfate was eluted in 1 mol L(-1) HNO3 with a recovery of 90.9 ± 1.6 %. The developed method was tested against two standard extraction methods for soil sulfate measurement. The obtained low correlation coefficients indicate that DGT and conventional soil test methods assess differential soil sulfate pools, rendering DGT a potentially important tool for measuring labile soil sulfate.

  14. Theoretical study on the reactivity of sulfate species with hydrocarbons

    USGS Publications Warehouse

    Ma, Q.; Ellis, G.S.; Amrani, A.; Zhang, T.; Tang, Y.

    2008-01-01

    The abiotic, thermochemically controlled reduction of sulfate to hydrogen sulfide coupled with the oxidation of hydrocarbons, is termed thermochemical sulfate reduction (TSR), and is an important alteration process that affects petroleum accumulations in nature. Although TSR is commonly observed in high-temperature carbonate reservoirs, it has proven difficult to simulate in the laboratory under conditions resembling nature. The present study was designed to evaluate the relative reactivities of various sulfate species in order to provide greater insight into the mechanism of TSR and potentially to fill the gap between laboratory experimental data and geological observations. Accordingly, quantum mechanics density functional theory (DFT) was used to determine the activation energy required to reach a potential transition state for various aqueous systems involving simple hydrocarbons and different sulfate species. The entire reaction process that results in the reduction of sulfate to sulfide is far too complex to be modeled entirely; therefore, we examined what is believed to be the rate limiting step, namely, the reduction of sulfate S(VI) to sulfite S(IV). The results of the study show that water-solvated sulfate anions SO42 - are very stable due to their symmetrical molecular structure and spherical electronic distributions. Consequently, in the absence of catalysis, the reactivity of SO42 - is expected to be extremely low. However, both the protonation of sulfate to form bisulfate anions (HSO4-) and the formation of metal-sulfate contact ion-pairs could effectively destabilize the sulfate molecular structure, thereby making it more reactive. Previous reports of experimental simulations of TSR generally have involved the use of acidic solutions that contain elevated concentrations of HSO4- relative to SO42 -. However, in formation waters typically encountered in petroleum reservoirs, the concentration of HSO4- is likely to be significantly lower than the levels used in the laboratory, with most of the dissolved sulfate occurring as SO42 -, aqueous calcium sulfate ([CaSO4](aq)), and aqueous magnesium sulfate ([MgSO4](aq)). Our calculations indicate that TSR reactions that occur in natural environments are most likely to involve bisulfate ions (HSO4-) and/or magnesium sulfate contact ion-pairs ([MgSO4]CIP) rather than 'free' sulfate ions (SO42 -) or solvated sulfate ion-pairs, and that water chemistry likely plays a significant role in controlling the rate of TSR. ?? 2008 Elsevier Ltd. All rights reserved.

  15. Theoretical study on the reactivity of sulfate species with hydrocarbons

    NASA Astrophysics Data System (ADS)

    Ma, Qisheng; Ellis, Geoffrey S.; Amrani, Alon; Zhang, Tongwei; Tang, Yongchun

    2008-09-01

    The abiotic, thermochemically controlled reduction of sulfate to hydrogen sulfide coupled with the oxidation of hydrocarbons, is termed thermochemical sulfate reduction (TSR), and is an important alteration process that affects petroleum accumulations in nature. Although TSR is commonly observed in high-temperature carbonate reservoirs, it has proven difficult to simulate in the laboratory under conditions resembling nature. The present study was designed to evaluate the relative reactivities of various sulfate species in order to provide greater insight into the mechanism of TSR and potentially to fill the gap between laboratory experimental data and geological observations. Accordingly, quantum mechanics density functional theory (DFT) was used to determine the activation energy required to reach a potential transition state for various aqueous systems involving simple hydrocarbons and different sulfate species. The entire reaction process that results in the reduction of sulfate to sulfide is far too complex to be modeled entirely; therefore, we examined what is believed to be the rate limiting step, namely, the reduction of sulfate S(VI) to sulfite S(IV). The results of the study show that water-solvated sulfate anions SO42- are very stable due to their symmetrical molecular structure and spherical electronic distributions. Consequently, in the absence of catalysis, the reactivity of SO42- is expected to be extremely low. However, both the protonation of sulfate to form bisulfate anions ( HSO4-) and the formation of metal-sulfate contact ion-pairs could effectively destabilize the sulfate molecular structure, thereby making it more reactive. Previous reports of experimental simulations of TSR generally have involved the use of acidic solutions that contain elevated concentrations of HSO4- relative to SO42-. However, in formation waters typically encountered in petroleum reservoirs, the concentration of HSO4- is likely to be significantly lower than the levels used in the laboratory, with most of the dissolved sulfate occurring as SO42-, aqueous calcium sulfate ([CaSO 4] (aq)), and aqueous magnesium sulfate ([MgSO 4] (aq)). Our calculations indicate that TSR reactions that occur in natural environments are most likely to involve bisulfate ions ( HSO4-) and/or magnesium sulfate contact ion-pairs ([MgSO 4] CIP) rather than 'free' sulfate ions ( SO42-) or solvated sulfate ion-pairs, and that water chemistry likely plays a significant role in controlling the rate of TSR.

  16. Chondroitin-4-sulfation negatively regulates axonal guidance and growth

    PubMed Central

    Wang, Hang; Katagiri, Yasuhiro; McCann, Thomas E.; Unsworth, Edward; Goldsmith, Paul; Yu, Zu-Xi; Tan, Fei; Santiago, Lizzie; Mills, Edward M.; Wang, Yu; Symes, Aviva J.; Geller, Herbert M.

    2008-01-01

    Summary Glycosaminoglycan (GAG) side chains endow extracellular matrix proteoglycans with diversity and complexity based upon the length, composition, and charge distribution of the polysaccharide chain. Using cultured primary neurons, we show that specific sulfation in the GAG chains of chondroitin sulfate (CS) mediates neuronal guidance cues and axonal growth inhibition. Chondroitin-4-sulfate (CS-A), but not chondroitin-6-sulfate (CS-C), exhibits a strong negative guidance cue to mouse cerebellar granule neurons. Enzymatic and gene-based manipulations of 4-sulfation in the GAG side chains alter their ability to direct growing axons. Furthermore, 4-sulfated CS GAG chains are rapidly and significantly increased in regions that do not support axonal regeneration proximal to spinal cord lesions in mice. Thus, our findings provide the evidence showing that specific sulfation along the carbohydrate backbone carries instructions to regulate neuronal function. PMID:18768934

  17. Divergent Synthesis of Chondroitin Sulfate Disaccharides and Identification of Sulfate Motifs that Inhibit Triple Negative Breast Cancer

    NASA Astrophysics Data System (ADS)

    Wei Poh, Zhong; Heng Gan, Chin; Lee, Eric J.; Guo, Suxian; Yip, George W.; Lam, Yulin

    2015-09-01

    Glycosaminoglycans (GAGs) regulate many important physiological processes. A pertinent issue to address is whether GAGs encode important functional information via introduction of position specific sulfate groups in the GAG structure. However, procurement of pure, homogenous GAG motifs to probe the “sulfation code” is a challenging task due to isolation difficulty and structural complexity. To this end, we devised a versatile synthetic strategy to obtain all the 16 theoretically possible sulfation patterns in the chondroitin sulfate (CS) repeating unit; these include rare but potentially important sulfated motifs which have not been isolated earlier. Biological evaluation indicated that CS sulfation patterns had differing effects for different breast cancer cell types, and the greatest inhibitory effect was observed for the most aggressive, triple negative breast cancer cell line MDA-MB-231.

  18. Effects of sulfate on microcystin production, photosynthesis, and oxidative stress in Microcystis aeruginosa.

    PubMed

    Chen, Lei; Gin, Karina Y H; He, Yiliang

    2016-02-01

    Increasing sulfate in freshwater systems, caused by human activities and climate change, may have negative effects on aquatic organisms. Microcystis aeruginosa (M. aeruginosa) is both a major primary producer and a common toxic cyanobacterium, playing an important role in the aquatic environment. This study first investigated the effects of sulfate on M. aeruginosa. The experiment presented here aims at analyzing the effects of sulfate on physiological indices, molecular levels, and its influencing mechanism. The results of our experiment showed that sulfate (at 40, 80, and 300 mg L(-1)) inhibited M. aeruginosa growth, increased both intracellular and extracellular toxin contents, and enhanced the mcyD transcript level. Sulfate inhibited the photosynthesis of M. aeruginosa, based on the decrease in pigment content and the down-regulation of photosynthesis-related genes after sulfate exposure. Furthermore, sulfate decreased the maximum electron transport rate, causing the cell to accumulate surplus electrons and form reactive oxygen species (ROS). Sulfate also increased the malondialdehyde (MDA) content, which showed that sulfate damaged the cytomembrane. This damage contributed to the release of intracellular toxin to the culture medium. Although sulfate increased superoxide dismutase (SOD) activities, expression of sod, and total antioxidant capacity in M. aeruginosa, it still overwhelmed the antioxidant system since the ROS level simultaneously increased, and finally caused oxidative stress. Our results indicate that sulfate has direct effects on M. aeruginosa, inhibits photosynthesis, causes oxidative stress, increases toxin production, and affects the related genes expression in M. aeruginosa.

  19. Fish Mercury and Surface Water Sulfate Relationships in the Everglades Protection Area

    NASA Astrophysics Data System (ADS)

    Gabriel, Mark C.; Howard, Nicole; Osborne, Todd Z.

    2014-03-01

    Few published studies present data on relationships between fish mercury and surface or pore water sulfate concentrations, particularly on an ecosystem-wide basis. Resource managers can use these relationships to identify the sulfate conditions that contain fish with health-concerning total mercury (THg) levels and to evaluate the role of sulfate in methyl-mercury (MeHg) production. In this study, we derived relationships between THg in three fish trophic levels (mosquitofish, sunfish, and age-1 largemouth bass) and surface water sulfate from 1998 to 2009 for multiple stations across the Everglades Protection Area (EPA). Results show the relationship between sulfate and fish THg in each fish type is nonlinear and largely skewed, similar to the relationship between MeHg production and sulfate concentration in peatland sediment pore water identified by other researchers. Peak fish THg levels occurred in ~1 to 12 mg/L sulfate conditions. There was significant variability in the fish THg data, and there were several instances of high-fish THg levels in high-sulfate conditions (>30 mg/L). Health-concerning fish THg levels were present in all surface water sulfate conditions; however, most of these levels occurred in 1-20 mg/L sulfate. The data in this study, including recent studies, show consistent and identifiable areas of high- and low-fish THg across the spectrum of surface water sulfate concentration, therefore, applying an ecosystem-wide sulfur strategy may be an effective management approach as it would significantly reduce MeHg risk in the EPA.

  20. Control of Promatrilysin (MMP7) Activation and Substrate-specific Activity by Sulfated Glycosaminoglycans*

    PubMed Central

    Ra, Hyun-Jeong; Harju-Baker, Susanna; Zhang, Fuming; Linhardt, Robert J.; Wilson, Carole L.; Parks, William C.

    2009-01-01

    Matrix metalloproteinases are maintained in an inactive state by a bond between the thiol of a conserved cysteine in the prodomain and a zinc atom in the catalytic domain. Once this bond is disrupted, MMPs become active proteinases and can act on a variety of extracellular protein substrates. In vivo, matrilysin (MMP7) activates pro-α-defensins (procryptdins), but in vitro, processing of these peptides is slow, with about 50% conversion in 8–12 h. Similarly, autolytic activation of promatrilysin in vitro can take up to 12–24 h for 50% conversion. These inefficient reactions suggest that natural cofactors enhance the activation and activity of matrilysin. We determined that highly sulfated glycosaminoglycans (GAG), such as heparin, chondroitin-4,6-sulfate (CS-E), and dermatan sulfate, markedly enhanced (>50-fold) the intermolecular autolytic activation of promatrilysin and the activity of fully active matrilysin to cleave specific physiologic substrates. In contrast, heparan sulfate and less sulfated forms of chondroitin sulfate did not augment matrilysin activation or activity. Chondroitin-2,6-sulfate (CS-D) also did not enhance matrilysin activity, suggesting that the presentation of sulfates is more important than the overall degree of sulfation. Surface plasmon resonance demonstrated that promatrilysin bound heparin (KD, 400 nm) and CS-E (KD, 630 nm). Active matrilysin bound heparin (KD, 150 nm) but less so to CS-E (KD, 60 μm). Neither form bound heparan sulfate. These observations demonstrate that sulfated GAGs regulate matrilysin activation and its activity against specific substrates. PMID:19654318

  1. Fish mercury and surface water sulfate relationships in the Everglades Protection Area.

    PubMed

    Gabriel, Mark C; Howard, Nicole; Osborne, Todd Z

    2014-03-01

    Few published studies present data on relationships between fish mercury and surface or pore water sulfate concentrations, particularly on an ecosystem-wide basis. Resource managers can use these relationships to identify the sulfate conditions that contain fish with health-concerning total mercury (THg) levels and to evaluate the role of sulfate in methyl-mercury (MeHg) production. In this study, we derived relationships between THg in three fish trophic levels (mosquitofish, sunfish, and age-1 largemouth bass) and surface water sulfate from 1998 to 2009 for multiple stations across the Everglades Protection Area (EPA). Results show the relationship between sulfate and fish THg in each fish type is nonlinear and largely skewed, similar to the relationship between MeHg production and sulfate concentration in peatland sediment pore water identified by other researchers. Peak fish THg levels occurred in ~1 to 12 mg/L sulfate conditions. There was significant variability in the fish THg data, and there were several instances of high-fish THg levels in high-sulfate conditions (>30 mg/L). Health-concerning fish THg levels were present in all surface water sulfate conditions; however, most of these levels occurred in 1-20 mg/L sulfate. The data in this study, including recent studies, show consistent and identifiable areas of high- and low-fish THg across the spectrum of surface water sulfate concentration, therefore, applying an ecosystem-wide sulfur strategy may be an effective management approach as it would significantly reduce MeHg risk in the EPA.

  2. Geochemical and isotopic composition of ground water with emphasis on sources of sulfate in the upper Floridan Aquifer in parts of Marion, Sumter, and Citrus counties, Florida

    USGS Publications Warehouse

    Sacks, Laura A.

    1996-01-01

    In inland areas of northwest central Florida, sulfate concentrations in the Upper Floridan aquifer are extremely variable and sometimes exceed drinking water standards (250 milligrams per liter). This is unusual because the aquifer is unconfined and near the surface, allowing for active recharge. The sources of sulfate and geochemical processes controlling ground-water composition were evaluated in this area. Water was sampled from thirty-three wells in parts of Marion, Sumter, and Citrus Counties, within the Southwest Florida Water Management District; these included at least a shallow and a deep well at fifteen separate locations. Ground water was analyzed for major ions, selected trace constituents, dissolved organic carbon, and stable isotopes (sulfur-34 of sulfate and sulfide, carbon-13 of inorganic carbon, deuterium, and oxygen-18). Sulfate concentrations ranged from less than 0.2 to 1,400 milligrams per liter, with higher sulfate concentrations usually in water from deeper wells. The samples can be categorized into a low sulfate group (less than 30 milligrams per liter) and a high sulfate group (greater than 30 milligrams per liter). For the high sulfate water, concentrations of calcium and magnesium increased concurrently with sulfate. Chemical and isotopic data and mass-balance modeling indicate that the composition of high sulfate waters is controlled by dedolomitization reactions (dolomite dissolution and calcite precipitation, driven by dissolution of gypsum). Gypsum occurs deeper in the aquifer than open intervals of sampled wells. Upward flow has been documented in deeper parts of the aquifer in the study area, which may be driven by localized discharge areas or rapid flow in shallow parts of the aquifer. Mixing between shallow ground water and sulfate-rich water that dissolved gypsum at the base of the aquifer is probably responsible for the range of concentrations observed in the study area. Other solutes that increased with sulfate apparently originate from the gypsum itself, from other mineral assemblages found deeper in the aquifer in association with gypsum, and from residual seawater from less- flushed, deeper parts of the aquifer. These ions are subsequently transported with sulfate to shallower parts of the aquifer where gypsum is not present. The composition of low sulfate ground water is controlled by differences in the extent of microbially mediated reactions, which produce carbon dioxide. This, in turn, influences the extent of calcite dissolution. Ground waters which underwent limited microbial reactions contained dissolved oxygen and were usually in ridge areas where recharge typically is rapid. Anaerobic waters were in lower lying areas of Sumter County, where soils are poorly drained and aquifer recharge is slow. Anaerobic waters had higher concentrations of calcium, bicarbonate, sulfide, dissolved organic carbon, iron, manganese, and silica, and had lower concentrations of nitrate than aerobic ground waters. For low sulfate waters, sulfate generally originates from meteoric sources (atmospheric precipitation), with variable amounts of oxidation of reduced sulfur and sulfate reduction. Sulfide is sometimes removed from solution, probably by precipitation of a sulfide minerals such as pyrite. In areas where deep ground water has low sulfate concentrations, the shallow flow system is apparently deeper than where high sulfate concentrations occur, and upwelling sulfate-rich water is negligible. The range of sulfate concentrations observed in the study areas and differences in sulfate concentrations with depth indicate a complex interaction between shallow and deep ground-water flow systems.

  3. Process for removing sulfate anions from waste water

    DOEpatents

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  4. Bioleaching of heavy metals from sewage sludge by indigenous iron-oxidizing microorganisms using ammonium ferrous sulfate and ferrous sulfate as energy sources: a comparative study.

    PubMed

    Pathak, Ashish; Dastidar, M G; Sreekrishnan, T R

    2009-11-15

    The potential of indigenous iron-oxidizing microorganisms enriched at initial neutral pH of the sewage sludge for bioleaching of heavy metals was investigated at initial neutral pH of the sludge using ammonium ferrous sulfate (FAS) and ferrous sulfate (FS) as an energy sources in two different sets of experiments. After 16 days of bioleaching, 56% Cu, 48% Ni, 68% Zn and 42% C were removed from the sludge using ammonium ferrous sulfate as an energy source. On the other hand, 64% Cu, 58% Ni, 76% Zn and 52% Cr were removed using ferrous sulfate. Further, 32% nitrogen and 24% phosphorus were leached from the sludge using ferrous sulfate, whereas only 22% nitrogen and 17% phosphorus were removed using ammonium ferrous sulfate. The BCR sequential extraction study on speciation of metals showed that using ammonium ferrous sulfate and ferrous sulfate, all the metals remained in bioleached sludge as stable form (F4 fraction). The results of the present study indicate that the bioleached sludge would be safer for land application. Also, the fertilizing property was largely conserved in the bioleached sludge using both the substrates.

  5. Synthesis and anticoagulant activity of the quaternary ammonium chitosan sulfates.

    PubMed

    Fan, Lihong; Wu, Penghui; Zhang, Jinrong; Gao, Song; Wang, Libo; Li, Mingjia; Sha, Mingming; Xie, Weiguo; Nie, Min

    2012-01-01

    Quaternary ammonium chitosan sulfates with diverse degrees of substitution (DS) ascribed to sulfate groups between 0.52 and 1.55 were synthesized by reacting quaternary ammonium chitosan with an uncommon sulfating agent (N(SO(3)Na)(3)) that was prepared from sodium bisulfite (NaHSO(3)) through reaction with sodium nitrite (NaNO(2)) in the aqueous system homogeneous. The structures of the derivatives were characterized by FTIR, (1)H NMR and (13)C NMR. The factors affecting DS of quaternary ammonium chitosan sulfates which included the molar ratio of NaNO(2) to quaternary ammonium chitosan, sulfated temperature, sulfated time and pH of sulfated reaction solution were investigated in detail. Its anticoagulation activity in vitro was determined by an activated partial thromboplastin time (APTT) assay, a thrombin time (TT) assay and a prothrombin time (PT) assay. Results of anticoagulation assays showed quaternary ammonium chitosan sulfates significantly prolonged APTT and TT, but not PT, and demonstrated that the introduction of sulfate groups into the quaternary ammonium chitosan structure improved its anticoagulant activity obviously. The study showed its anticoagulant properties strongly depended on its DS, concentration and molecular weight. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  6. [Tracing Sources of Sulfate Aerosol in Nanjing Northern Suburb Using Sulfur and Oxygen Isotopes].

    PubMed

    Wei, Ying; Guo, Zhao-bing; Ge, Xin; Zhu, Sheng-nan; Jiang, Wen-juan; Shi, Lei; Chen, Shu

    2015-04-01

    Abstract: To trace the sources of sulfate contributing to atmospheric aerosol, PM2.5 samples for isotopic analysis were collected in Nanjing northern suburb during January 2014. The sulfur and oxygen isotopic compositions of sulfate from these samples were determined by EA-IRMS. Source identification and apportionment were carried out using stable isotopic and chemical evidences, combined with absolute principal component analysis (APCA) method. The Δ34S values of aerosol sulfate ranged from 2.7 per thousand to 6.4 per thousand, with an average of 5.0 per thousand ± 0.9 per thousand, while the Δ18O values ranged from 10.6 per thousand to 16.1 per thousand, with an average of 12.5 per thousand ± 1.37 per thousand. In conjunction with air mass trajectories, the results suggested that aerosol sulfates were controlled by a dominance of local anthropogenic sulfate, followed by the contributions of long-distance transported sulfate. There was a minor effect of some other low-Δ34S valued sulfates, which might be expected from biogenic sources. Absolute principal component analysis results showed that the contributions of anthropogenic sulfate and long-distance transported sulfate were 46.74% and 31.54%, respectively.

  7. Effects of chlorate on the sulfation process of Trypanosoma cruzi glycoconjugates. Implication of parasite sulfates in cellular invasion.

    PubMed

    Ferrero, Maximiliano R; Soprano, Luciana L; Acosta, Diana M; García, Gabriela A; Esteva, Mónica I; Couto, Alicia S; Duschak, Vilma G

    2014-09-01

    Sulfation, a post-translational modification which plays a key role in various biological processes, is inhibited by competition with chlorate. In Trypanosoma cruzi, the agent of Chagas' disease, sulfated structures have been described as part of glycolipids and we have reported sulfated high-mannose type oligosaccharides in the C-T domain of the cruzipain (Cz) glycoprotein. However, sulfation pathways have not been described yet in this parasite. Herein, we studied the effect of chlorate treatment on T. cruzi with the aim to gain some knowledge about sulfation metabolism and the role of sulfated molecules in this parasite. In chlorate-treated epimastigotes, immunoblotting with anti-sulfates enriched Cz IgGs (AS-enriched IgGs) showed Cz undersulfation. Accordingly, a Cz mobility shift toward higher isoelectric points was observed in 2D-PAGE probed with anti-Cz antibodies. Ultrastructural membrane abnormalities and a significant decrease of dark lipid reservosomes were shown by electron microscopy and a significant decrease in sulfatide levels was confirmed by TLC/UV-MALDI-TOF-MS analysis. Altogether, these results suggest T. cruzi sulfation occurs via PAPS. Sulfated epitopes in trypomastigote and amastigote forms were evidenced using AS-enriched IgGs by immunoblotting. Their presence on trypomastigotes surface was demonstrated by flow cytometry and IF with Cz/dCz specific antibodies. Interestingly, the percentage of infected cardiac HL-1 cells decreased 40% when using chlorate-treated trypomastigotes, suggesting sulfates are involved in the invasion process. The same effect was observed when cells were pre-incubated with dCz, dC-T or an anti-high mannose receptor (HMR) antibody, suggesting Cz sulfates and HMR are also involved in the infection process by T. cruzi. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Tandem Mass Spectrometry of Heparan Sulfate Negative Ions: Sulfate Loss Patterns and Chemical Modification Methods for Improvement of Product Ion Profiles

    NASA Astrophysics Data System (ADS)

    Shi, Xiaofeng; Huang, Yu; Mao, Yang; Naimy, Hicham; Zaia, Joseph

    2012-09-01

    Heparan sulfate (HS) is a polysaccharide modified with sulfation, acetylation, and epimerization that enable its binding with protein ligands and regulation of important biological processes. Tandem mass spectrometry has been employed to sequence linear biomolecules e.g., proteins and peptides. However, its application in structural characterization of HS is limited due to the neutral loss of sulfate (SO3) during collisional induced dissociation (CID). In this report, we studied the dissociation patterns of HS disaccharides and demonstrate that the N-sulfate (N-S) bond is especially facile during CID. We identified factors that influence the propensities of such losses from precursor ions and proposed a Free Proton Index (FPI) to help select ions that are able to produce meaningful backbone dissociations. We then investigated the thermodynamics and kinetics of SO3 loss from sulfates that are protonated, deprotonated, and metal-adducted using density functional theory computations. The calculations showed that sulfate loss from a protonated site was much more facile than that from a deprotonated or metal-adducted site. Further, the loss of SO3 from N-sulfate was energetically favored by 3-8 kcal/mol in transition states relative to O-sulfates, making it more prone to this process by a substantial factor. In order to reduce the FPI, representing the number of labile sulfates in HS native chains and oligosaccharides, we developed a series of chemical modifications to selectively replace the N-sulfates of the glucosamine with deuterated acetyl group. These modifications effectively reduced the sulfate density on the HS oligosaccharides and generated considerably more backbone dissociation using on-line LC/tandem MS.

  9. Sulfation of melatonin: enzymatic characterization, differences of organs, species and genders, and bioactivity variation.

    PubMed

    Tian, Xiangge; Huo, Xiaokui; Dong, Peipei; Wu, Baojian; Wang, Xiaobo; Wang, Chao; Liu, Kexin; Ma, Xiaochi

    2015-04-15

    Exogenous melatonin (Mel) is widely used in clinic for multiple therapeutic purposes. In metabolism pathways of Mel, 6-hydroxymelatonin-sulfate (S-O-Mel) and N-acetylserotonin sulfate (S-NAS) are the most abundant metabolites account for over 90% of total Mel metabolites in humans, indicating that sulfation plays an important role in reflecting the functions and clearance of Mel in vivo. In the present study, we characterized Mel sulfation using various human organ cytosols (liver, lung, kidney, small intestine and brain), liver cytosols from five different animal species, and cDNA-expressed human sulfotransferase (SULT) for the first time. Our results demonstrated that liver, lung, kidney and small intestine of humans had high catalytic efficiency for Mel sulfation, however, brain contained a very low reaction rate. Interestingly, organ cytosols prepared from females exhibited higher sulfation activity than those of males. SULT isoforms 1A1, 1A2, 1A3, 1B1 and 1E1 exhibited metabolic activities toward Mel. According to kinetic parameters (Km and Vmax), chemical inhibition, correlation analysis, molecular docking and sulfation assays with recombinant human SULTs isoforms, SULT1A1 was determined as the major enzyme responsible for Mel sulfation. Furthermore, considerable species differences in Mel sulfation were observed, and the total intrinsic clearance rate of Mel sulfation was as follows: monkey>rat>dog>human>pig>mouse. Additionally, the anti-inflammatory effects of Mel and its sulfated metabolites were evaluated by inhibiting nitric oxide (NO) production in RAW264.7 cells, and S-O-Mel as a bioactive form, exhibited potent bioactivity. Our investigation provided a global view of the enzyme-dependent sulfation of Mel that can guide biomedical research on Mel. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Integrative Transcriptomic Analysis Uncovers Novel Gene Modules That Underlie the Sulfate Response in Arabidopsis thaliana

    PubMed Central

    Henríquez-Valencia, Carlos; Arenas-M, Anita; Medina, Joaquín; Canales, Javier

    2018-01-01

    Sulfur is an essential nutrient for plant growth and development. Sulfur is a constituent of proteins, the plasma membrane and cell walls, among other important cellular components. To obtain new insights into the gene regulatory networks underlying the sulfate response, we performed an integrative meta-analysis of transcriptomic data from five different sulfate experiments available in public databases. This bioinformatic approach allowed us to identify a robust set of genes whose expression depends only on sulfate availability, indicating that those genes play an important role in the sulfate response. In relation to sulfate metabolism, the biological function of approximately 45% of these genes is currently unknown. Moreover, we found several consistent Gene Ontology terms related to biological processes that have not been extensively studied in the context of the sulfate response; these processes include cell wall organization, carbohydrate metabolism, nitrogen compound transport, and the regulation of proteolysis. Gene co-expression network analyses revealed relationships between the sulfate-responsive genes that were distributed among seven function-specific co-expression modules. The most connected genes in the sulfate co-expression network belong to a module related to the carbon response, suggesting that this biological function plays an important role in the control of the sulfate response. Temporal analyses of the network suggest that sulfate starvation generates a biphasic response, which involves that major changes in gene expression occur during both the early and late responses. Network analyses predicted that the sulfate response is regulated by a limited number of transcription factors, including MYBs, bZIPs, and NF-YAs. In conclusion, our analysis identified new candidate genes and provided new hypotheses to advance our understanding of the transcriptional regulation of sulfate metabolism in plants. PMID:29692794

  11. Integrative Transcriptomic Analysis Uncovers Novel Gene Modules That Underlie the Sulfate Response in Arabidopsis thaliana.

    PubMed

    Henríquez-Valencia, Carlos; Arenas-M, Anita; Medina, Joaquín; Canales, Javier

    2018-01-01

    Sulfur is an essential nutrient for plant growth and development. Sulfur is a constituent of proteins, the plasma membrane and cell walls, among other important cellular components. To obtain new insights into the gene regulatory networks underlying the sulfate response, we performed an integrative meta-analysis of transcriptomic data from five different sulfate experiments available in public databases. This bioinformatic approach allowed us to identify a robust set of genes whose expression depends only on sulfate availability, indicating that those genes play an important role in the sulfate response. In relation to sulfate metabolism, the biological function of approximately 45% of these genes is currently unknown. Moreover, we found several consistent Gene Ontology terms related to biological processes that have not been extensively studied in the context of the sulfate response; these processes include cell wall organization, carbohydrate metabolism, nitrogen compound transport, and the regulation of proteolysis. Gene co-expression network analyses revealed relationships between the sulfate-responsive genes that were distributed among seven function-specific co-expression modules. The most connected genes in the sulfate co-expression network belong to a module related to the carbon response, suggesting that this biological function plays an important role in the control of the sulfate response. Temporal analyses of the network suggest that sulfate starvation generates a biphasic response, which involves that major changes in gene expression occur during both the early and late responses. Network analyses predicted that the sulfate response is regulated by a limited number of transcription factors, including MYBs, bZIPs, and NF-YAs. In conclusion, our analysis identified new candidate genes and provided new hypotheses to advance our understanding of the transcriptional regulation of sulfate metabolism in plants.

  12. Interaction of antithrombin with sulfated, low molecular weight lignins: opportunities for potent, selective modulation of antithrombin function.

    PubMed

    Henry, Brian L; Connell, Justin; Liang, Aiye; Krishnasamy, Chandravel; Desai, Umesh R

    2009-07-31

    Antithrombin, a major regulator of coagulation and angiogenesis, is known to interact with several natural sulfated polysaccharides. Previously, we prepared sulfated low molecular weight variants of natural lignins, called sulfated dehydrogenation polymers (DHPs) (Henry, B. L., Monien, B. H., Bock, P. E., and Desai, U. R. (2007) J. Biol. Chem. 282, 31891-31899), which have now been found to exhibit interesting antithrombin binding properties. Sulfated DHPs represent a library of diverse noncarbohydrate aromatic scaffolds that possess structures completely different from heparin and heparan sulfate. Fluorescence binding studies indicate that sulfated DHPs bind to antithrombin with micromolar affinity under physiological conditions. Salt dependence of binding affinity indicates that the antithrombin-sulfated DHP interaction involves a massive 80-87% non-ionic component to the free energy of binding. Competitive binding studies with heparin pentasaccharide, epicatechin sulfate, and full-length heparin indicate that sulfated DHPs bind to both the pentasaccharide-binding site and extended heparin-binding site of antithrombin. Affinity capillary electrophoresis resolves a limited number of peaks of antithrombin co-complexes suggesting preferential binding of selected DHP structures to the serpin. Computational genetic algorithm-based virtual screening study shows that only one sulfated DHP structure, out of the 11 present in a library of plausible sequences, bound in the heparin-binding site with a high calculated score supporting selectivity of recognition. Enzyme inhibition studies indicate that only one of the three sulfated DHPs studied is a potent inhibitor of free factor VIIa in the presence of antithrombin. Overall, the chemo-enzymatic origin and antithrombin binding properties of sulfated DHPs present novel opportunities for potent and selective modulation of the serpin function, especially for inhibiting the initiation phase of hemostasis.

  13. Pathways of sulfate enhancement by natural and anthropogenic mineral aerosols in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xin; Song, Yu; Zhao, Chun

    2014-12-27

    China, the world’s largest consumer of coal, emits approximately 30 million tons of sulfur dioxide (SO₂) per year. SO₂ is subsequently oxidized to sulfate in the atmosphere. However, large gaps exist between model-predicted and measured sulfate levels in China. Long-term field observations and numerical simulations were integrated to investigate the effect of mineral aerosols on sulfate formation. We found that mineral aerosols contributed a nationwide average of approximately 22% to sulfate production in 2006. The increased sulfate concentration was approximately 2 μg m⁻³ in the entire China. In East China and the Sichuan Basin, the increments reached 6.3 μg m⁻³more » and 7.3 μg m⁻³, respectively. Mineral aerosols led to faster SO₂ oxidation through three pathways. First, more SO₂ was dissolved as cloud water alkalinity increased due to water-soluble mineral cations. Sulfate production was then enhanced through the aqueous-phase oxidation of S(IV) (dissolved sulfur in oxidation state +4). The contribution to the national sulfate production was 5%. Second, sulfate was enhanced through S(IV) catalyzed oxidation by transition metals. The contribution to the annual sulfate production was 8%, with 19% during the winter that decreased to 2% during the summer. Third, SO₂ reacts on the surface of mineral aerosols to produce sulfate. The contribution to the national average sulfate concentration was 9% with 16% during the winter and a negligible effect during the summer. The inclusion of mineral aerosols does resolve model discrepancies with sulfate observations in China, especially during the winter. These three pathways, which are not fully considered in most current chemistry-climate models, will significantly impact assessments regarding the effects of aerosol on climate change in China.« less

  14. Sulfate Salts in Gasoline and Ethanol Fuels -- Historical Perspective and Analysis of Available Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, Robert L.; Alleman, Teresa; Yanowitz, Janet

    This report reviews the chemistry of sulfate salts dissolved in ethanol and gasoline, potential sources of sulfate salts in ethanol and gasoline, the history of consumer vehicle issues with sulfate salt deposits in the early 2000s, and the corresponding changes to the denatured fuel ethanol specification. Recommendations for future research are provided. During a period of rapid market expansion in 2004-05, issues were reported with vehicles running on E10 provided by certain suppliers in some markets. It was commonly believed that these vehicle problems were caused by sulfate salts precipitating from the fuel. Investigators identified sodium sulfate, and in onemore » case also ammonium sulfate, as the predominate salts found in the engines. Several stakeholders believed the issue was excess sulfate ions in the ethanol portion of the E10, and in 2005 the ASTM specification for ethanol (D4806) was modified to include a 4-part per million (ppm) limit on sulfate ions. While there have been no further reports of consumer vehicle issues, the recently approved increase of ethanol in gasoline from 10 to 15 volume percent has resulted in renewed interest in the sulfate ion concentration in fuel ethanol. This report reviews published data on the solubility of sulfate salts in ethanol. The possible sources of sulfate anions and charge balancing cations (such as sodium) in fuel ethanol and petroleum derived blendstocks are discussed. Examination of historical information on the consumer vehicle issues that occurred in 2004-2005 reveals that a source of sodium or ammonium ions, required for the formation of the observed insoluble salts, was never identified. Recommendations for research to better understand sulfate salt solubility issues in ethanol, hydrocarbon blendstocks, and ethanol-gasoline blends are presented.« less

  15. Integrated approach for investigating the durability of self-consolidating concrete to sulfate attack

    NASA Astrophysics Data System (ADS)

    Bassuoni, Mohamed Tamer F.

    The growing use of self-consolidating concrete (SCC) in various infrastructure applications exposed to sulfate-rich environments necessitates conducting comprehensive research to evaluate its durability to external sulfate attack. Since the reliability and adequacy of standard sulfate immersion tests have been questioned, the current thesis introduced an integrated testing approach for assessing the durability of a wide scope of SCC mixtures to external sulfate attack. This testing approach involved progressive levels of complexity from single to multiple damage processes. A new series of sulfate attack tests involving multiple field-like parameters and combined damage mechanisms (various cations, controlled pH, wetting-drying, partial immersion, freezing-thawing, and cyclic cold-hot conditions with or without sustained flexural loading) were designed to evaluate the performance (suitability) of the SCC mixtures under various sulfate attack exposure scenarios. The main mixture design variables of SCC included the type of binder (single, binary, ternary and quaternary), air-entrainment, sand-to-aggregate mass ratio and hybrid fibre reinforcement. The comprehensive database and knowledge obtained from this research were used to develop smart models (fuzzy and neuro-fuzzy inference systems) based on artificial-intelligence to evaluate and predict the performance of the SCC mixtures under various sulfate attack exposure regimes implemented in this study. In full immersion tests involving high concentration sodium and magnesium sulfate solutions with controlled pH, the low penetrability of SCC was responsible for the high durability of specimens. Ternary and quaternary cementitious systems with or without limestone materials provided a passivating layer, with or without acid neutralization capacity, which protected SCC from severe damage in the aggressive sulfuric acid and ammonium sulfate solutions. In contrast to conclusions drawn from the sodium sulfate immersion tests, the combined sulfate attack tests captured performance risks and complex damage mechanisms associated with the SCC pore structure and constituent materials. Sodium sulfate attack with wetting-drying cycles and/or partial immersion under temperate-hot conditions synergistically caused significant damage to specimens, especially to quaternary cementitious systems having very fine pore structure, due to the build-up of salt crystals and sulfate reaction products. The deleterious effects of sulfate reaction products and salt crystallization on all cementitious systems were more severe under the combined sodium sulfate and freezing-thawing exposure, with a potential of sudden brittle failure. Laboratory experiments in the current work documented evidence for the occurrence of thaumasite sulfate attack (TSA) in cementitious systems containing limestone filler, not only under cold but also under temperate-hot conditions, which made specimens more vulnerable to damage in the combined sulfate attack tests. The field-like combined exposure of sodium sulfate, cyclic environments and flexural loading had synergistic effects on SCC specimens and caused the coexistence of multiple-complex degradation mechanisms (sulfate attack, TSA, stress-corrosion, salt crystallization, surface scaling and corrosion of surface steel fibres) depending on the mixture design variables. The current thesis demonstrates that relying only on sulfate immersion tests to evaluate the performance of cement-based materials can be risky. It also shows that linear and deterministic modeling of the performance of concrete structures under external sulfate attack is unrealistic. Fuzzy and adaptive-neuro fuzzy inference systems developed in the current thesis accurately and rationally predicted the serviceability, deterioration in engineering properties and time to failure of the SCC mixtures under the various sulfate attack exposure regimes adopted in the integrated testing approach. A durability evaluation factor from multiple performance criteria was created for the ammonium sulfate exposure. Environmental charts were developed to determine the level of aggression associated with sodium sulfate attack from temperature, RH and degree of wetting-drying expected in service. This novel modeling approach showed promising success in handling complex durability topics such as the sulfate attack of concrete, which involves non-linearity, ambiguity and interface with operator approximation. The current thesis provides needed fundamental knowledge on the durability of a wide scope of SCC mixtures to various sulfate attack exposure scenarios. It elucidates complex deterioration mechanisms and failure modes of cement-based materials under multi-mechanistic aging processes. It also proposes carefully engineered integrated sulfate attack tests that replicate various sulfate attack exposure regimes, which could be refined and standardized in the future. In addition, the current work introduced original knowledge-based smart models capable of handling uncertainty and providing reliable predictions for the behaviour of concrete under external sulfate attack. The models do not require conducting exhaustive laboratory experiments and/or making assumptions, thus facilitating the selection of optimum concrete mixtures for a specified exposure. Overall, this research should effectively contribute to the development of performance-based standards and specifications for, and improvement of durability-based design and life-cycle analysis of concrete structures subjected to external sulfate attack. Keywords. Sulfate attack, self-consolidating concrete, integrated testing, composite cements, air-entrainment, hybrid fibres, full immersion, cations, pH, wetting-drying, partial immersion, freezing-thawing, cyclic cold-hot conditions, flexural loading, thaumasite, salt crystallization, fuzzy, neuro-fuzzy, systems.

  16. Crystallization of Chicken Egg White Lysozyme from Sulfate Salts

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc

    1998-01-01

    It has been "known" that chicken egg white lysozyme does not crystallize from sulfate, particularly ammonium sulfate, salts, but instead gives amorphous precipitates. This has been the basis of several studies using lysozyme comparing macromolecule crystal nucleation and amorphous precipitation. Recently Ries-Kautt et al (Acta Cryst D50, (1994) 366) have shown that purified isoionic CEWL could be crystallized from low concentrations of sulfate at basic pH, and we subsequently showed that in fact CEWL could be purified in both the tetragonal and orthorhombic forms using ammonium sulfate over the pH range 4.0 to 7.8 (Acta Cryst D53, (1997) 795). We have now extended these observations to include a range of common sulfate salts, specifically sodium, potassium, rubidium, magnesium, and manganese sulfates. In all cases but the manganese sulfates both the familiar tetragonal and orthorhombic forms were obtained, with unit cell dimensions close to those known for the "classic" sodium chloride crystallized forms. Manganese sulfate has only yielded orthorhombic crystals to date. All crystallizations were carried out using low (typically less than or equal to 6 M) salt and high (greater than approximately 90 mg/ml) protein concentrations. As with ammonium sulfate, the tetragonal - orthorhombic phase shift appears to be a function of both the temperature and the protein concentration, with higher temperatures and concentrations favoring the orthorhombic and lower the tetragonal form. The phase change range is somewhat reduced for the sulfate salts, depending upon conditions being typically between approximately 15 - 20 C. Both the magnesium and manganese sulfates gave crystals at salt concentrations over 0.6 M as well, with magnesium sulfate giving a very slowly nucleating and growing hexagonal form. A triclinic crystal form, characterized by aggressively small crystals (typically 0.1 mm in size) has been occasionally obtained from ammonium sulfate. Finally, preliminary spot solubility determinations have suggested that in some cases the solubility increases with increasing salt concentrations.

  17. Modeling Reduction of Uranium U(VI) under Variable Sulfate Concentrations by Sulfate-Reducing Bacteria

    PubMed Central

    Spear, John R.; Figueroa, Linda A.; Honeyman, Bruce D.

    2000-01-01

    The kinetics for the reduction of sulfate alone and for concurrent uranium [U(VI)] and sulfate reduction, by mixed and pure cultures of sulfate-reducing bacteria (SRB) at 21 ± 3°C were studied. The mixed culture contained the SRB Desulfovibrio vulgaris along with a Clostridium sp. determined via 16S ribosomal DNA analysis. The pure culture was Desulfovibrio desulfuricans (ATCC 7757). A zero-order model best fit the data for the reduction of sulfate from 0.1 to 10 mM. A lag time occurred below cell concentrations of 0.1 mg (dry weight) of cells/ml. For the mixed culture, average values for the maximum specific reaction rate, Vmax, ranged from 2.4 ± 0.2 μmol of sulfate/mg (dry weight) of SRB · h−1) at 0.25 mM sulfate to 5.0 ± 1.1 μmol of sulfate/mg (dry weight) of SRB · h−1 at 10 mM sulfate (average cell concentration, 0.52 mg [dry weight]/ml). For the pure culture, Vmax was 1.6 ± 0.2 μmol of sulfate/mg (dry weight) of SRB · h−1 at 1 mM sulfate (0.29 mg [dry weight] of cells/ml). When both electron acceptors were present, sulfate reduction remained zero order for both cultures, while uranium reduction was first order, with rate constants of 0.071 ± 0.003 mg (dry weight) of cells/ml · min−1 for the mixed culture and 0.137 ± 0.016 mg (dry weight) of cells/ml · min−1 (U0 = 1 mM) for the D. desulfuricans culture. Both cultures exhibited a faster rate of uranium reduction in the presence of sulfate and no lag time until the onset of U reduction in contrast to U alone. This kinetics information can be used to design an SRB-dominated biotreatment scheme for the removal of U(VI) from an aqueous source. PMID:10966381

  18. Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil.

    PubMed

    Wang, Yong-Jie; Dang, Fei; Zhao, Jia-Ting; Zhong, Huan

    2016-06-01

    There is increasing interest in understanding factors controlling methylmercury (MeHg) production in mercury-contaminated rice paddy soil. Sulfate has been reported to affect MeHg biogeochemistry under anoxic conditions, and recent studies revealed that selenium (Se) could evidently reduce MeHg production in paddy soil. However, the controls of sulfate and Se on net MeHg production in paddy soil under fluctuating redox conditions remain largely unknown. Microcosm experiments were conducted to explore the effects of sulfate and Se on net MeHg production in rice paddy soil. Soil was added with 0-960 mg/kg sulfate, in the presence or absence of 3.0 mg/kg selenium (selenite or selenate), and incubated under anoxic (40 days) or suboxic conditions (5 days), simulating fluctuating redox conditions in rice paddy field. Sulfate addition moderately affected soil MeHg concentrations under anoxic conditions, while reoxidation resulted in evidently higher (18-40%) MeHg levels in sulfate amended soils than the control. The observed changes in net MeHg production were related to dynamics of sulfate and iron. However, Se could inhibit sulfate-mediated MeHg production in the soils: Se addition largely reduced net MeHg production in the soils (23-86%, compared to the control), despite of sulfate addition. Similarly, results of the pot experiments (i.e., rice cultivation in amended soils) indicated that soil MeHg levels were rather comparable in Se-amended soils during rice growth period, irrespective of added sulfate doses. The more important role of Se than sulfate in controlling MeHg production was explained by the formation of HgSe nanoparticles irrespective of the presence of sulfate, confirmed by TEM-EDX and XANES analysis. Our findings regarding the effects of sulfate and Se on net MeHg production in rice paddy soil together with the mechanistic explanation of the processes advance our understanding of MeHg dynamics and risk in soil-rice systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Biotreatment of zinc-containing wastewater in a sulfidogenic CSTR: Performance and artificial neural network (ANN) modelling studies.

    PubMed

    Sahinkaya, Erkan

    2009-05-15

    Sulfidogenic treatment of sulfate (2-10g/L) and zinc (65-677mg/L) containing simulated wastewater was studied in a mesophilic (35 degrees C) CSTR. Ethanol was supplemented (COD/sulfate=0.67) as carbon and energy source for sulfate-reducing bacteria (SRB). The robustness of the system was studied by increasing Zn, COD and sulfate loadings. Sulfate removal efficiency, which was 70% at 2g/L feed sulfate concentration, steadily decreased with increasing feed sulfate concentration and reached 40% at 10g/L. Over 99% Zn removal was attained due to the formation of zinc-sulfide precipitate. COD removal efficiency at 2g/L feed sulfate concentration was over 94%, whereas, it steadily decreased due to the accumulation of acetate at higher loadings. Alkalinity produced from acetate oxidation increased wastewater pH remarkably when feed sulfate concentration was 5g/L or lower. Electron flow from carbon oxidation to sulfate reduction averaged 83+/-13%. The rest of the electrons were most likely coupled with fermentative reactions as the amount of methane production was insignificant. The developed ANN model was very successful as an excellent to reasonable match was obtained between the measured and the predicted concentrations of sulfate (R=0.998), COD (R=0.993), acetate (R=0.976) and zinc (R=0.827) in the CSTR effluent.

  20. Enzymatic desulfation of the red seaweeds agar by Marinomonas arylsulfatase.

    PubMed

    Wang, Xueyan; Duan, Delin; Fu, Xiaoting

    2016-12-01

    Agar and sulfated galactans were isolated from the red seaweeds Gracilariopsis lemaneiformis and Gelidium amansii. A previously purified arylsulfatase from Marinomonas sp. FW-1 was used to remove sulfate groups in agar and sulfated galactans. After enzymatic desulfation, the sulfate content decreased to about 0.16% and gel strength increased about two folds. Moreover, there was no difference between the DNA electrophoresis spectrum on the gel of the arylsulfatase-treated agar and that of the commercial agarose. In order to reveal the desulfation ratio and site, chemical and structural identification of sulfated galactan were carried out. G. amansii sulfated galactan with 7.4% sulfated content was composed of galactose and 3,6-anhydro-l-galactose. Meanwhile, G. lemaneiformis sulfated galactan with 8.5% sulfated content was composed of galactose, 3,6-anhydro-l-galactose, 2-O-methyl-3,6-anhydro-l-galactose and xylose. Data from 13 C NMR, FT-IR, GC-MS provided evidence of sulfate groups at C-4 and C-6 of d-galactose and C-6 of l-galactose both in GRAP and GEAP. Data from GC-MS revealed that desulfation was carried out by the arylsulfatase at the sulfate bonds at C-4 and C-6 of d-galactose and C-6 of l-galactose, with a desulfation ratio of 83.4% and 86.0% against GEAP and GRAP, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The preparation and antioxidant activity of glucosamine sulfate

    NASA Astrophysics Data System (ADS)

    Xing, Ronge; Liu, Song; Wang, Lin; Cai, Shengbao; Yu, Huahua; Feng, Jinhua; Li, Pengcheng

    2009-05-01

    Glucosamine sulfate was prepared from glucosamine hydrochloride that was produced by acidic hydrolysis of chitin by ion-exchange method. Optical rotation and elemental analysis characterized the degree of its purity. In addition, the antioxidant potency of chitosan derivative-glucosamine sulfate was investigated in various established in vitro systems, such as superoxide (O{2/-})/hydroxyl (·OH) radicals scavenging, reducing power, iron ion chelating. The following results are obtained: first, glucosamine sulfate had pronounced scavenging effect on superoxide radical. For example the O{2/-} scavenging activity of glucosamine sulfate was 92.11% at 0.8 mg/mL. Second, the ·OH scavenging activity of glucosamine sulfate was also strong, and was about 50% at 3.2 mg/mL. Third, the reducing power of glucosamine sulfate was more pronounced. The reducing power of glucosamine sulfate was 0.643 at 0.75 mg/mL. However, its potency for ferrous ion chelating was weak. Furthermore, except for ferrous ion chelating potency, the scavenging rate of radical and reducing power of glucosamine sulfate were concentration-dependent and increased with their increasing concentrations, but its ferrous ion chelating potency decreased with the increasing concentration. The multiple antioxidant activities of glucosamine sulfate were evidents of reducing power and superoxide/hydroxyl radicals scavenging ability. These in vitro results suggest the possibility that glucosamine sulfate could be used effectively as an ingredient in health or functional food, to alleviate oxidative stress.

  2. Sul1 and Sul2 Sulfate Transceptors Signal to Protein Kinase A upon Exit of Sulfur Starvation*

    PubMed Central

    Kankipati, Harish Nag; Rubio-Texeira, Marta; Castermans, Dries; Diallinas, George; Thevelein, Johan M.

    2015-01-01

    Sulfate is an essential nutrient with pronounced regulatory effects on cellular metabolism and proliferation. Little is known, however, about how sulfate is sensed by cells. Sul1 and Sul2 are sulfate transporters in the yeast Saccharomyces cerevisiae, strongly induced upon sulfur starvation and endocytosed upon the addition of sulfate. We reveal Sul1,2-dependent activation of PKA targets upon sulfate-induced exit from growth arrest after sulfur starvation. We provide two major arguments in favor of Sul1 and Sul2 acting as transceptors for signaling to PKA. First, the sulfate analogue, d-glucosamine 2-sulfate, acted as a non-transported agonist of signaling by Sul1 and Sul2. Second, mutagenesis to Gln of putative H+-binding residues, Glu-427 in Sul1 or Glu-443 in Sul2, abolished transport without affecting signaling. Hence, Sul1,2 can function as pure sulfate sensors. Sul1E427Q and Sul2E443Q are also deficient in sulfate-induced endocytosis, which can therefore be uncoupled from signaling. Overall, our data suggest that transceptors can undergo independent conformational changes, each responsible for triggering different downstream processes. The Sul1 and Sul2 transceptors are the first identified plasma membrane sensors for extracellular sulfate. High affinity transporters induced upon starvation for their substrate may generally act as transceptors during exit from starvation. PMID:25724649

  3. Effective Synthesis of Sulfate Metabolites of Chlorinated Phenols

    PubMed Central

    Lehmler, Hans-Joachim; He, Xianran; Li, Xueshu; Duffel, Michael W.; Parkin, Sean

    2013-01-01

    Chlorophenols are an important class of persistent environmental contaminants and have been implicated in a range of adverse health effects, including cancer. They are readily conjugated and excreted as the corresponding glucuronides and sulfates in the urine of humans and other species. Here we report the synthesis and characterization of a series of ten chlorophenol sulfates by sulfation of the corresponding chlorophenols with 2,2,2-trichloroethyl (TCE) chlorosulfate using N,N-dimethylaminopyridine (DMAP) as base. Deprotection of the chlorophenol diesters with zinc powder/ammonium formate yielded the respective chlorophenol sulfate ammonium salts in good yield. The molecular structure of three TCE-protected chlorophenol sulfate diesters and one chlorophenol sulfate monoester were confirmed by X-ray crystal structure analysis. The chlorophenol sulfates were stable for several months if stored at −20 °C and, thus, are useful for future toxicological, environmental and human biomonitoring studies. PMID:23906814

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ecarot-Charrier, B.; Bouchard, F.; Delloye, C.

    Isolated mouse osteoblasts that retain their osteogenic activity in culture were incubated with (35S) sulfate. Two radiolabeled proteins, in addition to proteoglycans, were extracted from the calcified matrix of osteoblast cultures. All the sulfate label in both proteins was in the form of tyrosine sulfate as assessed by amino acid analysis and thin layer chromatography following alkaline hydrolysis. The elution behavior on DEAE-Sephacel of the major sulfated protein and the apparent Mr on sodium dodecyl sulfate gels were characteristic of bone sialoprotein II extracted from rat. This protein was shown to cross-react with an antiserum raised against bovine bone sialoproteinmore » II, indicating that bone sialoprotein II synthesized by cultured mouse osteoblasts is a tyrosine-sulfated protein. The minor sulfated protein was tentatively identified as bone sialoprotein I or osteopontin based on its elution properties on DEAE-Sephacel and anomalous behavior on sodium dodecyl sulfate gels similar to those reported for rat bone sialoprotein I.« less

  5. Energy for biologic sulfate reduction in a hydrothermally formed ocean on Europa

    NASA Astrophysics Data System (ADS)

    Zolotov, Mikhail Y.; Shock, Everett L.

    2003-04-01

    Formation of a sulfate-bearing ocean on Jupiter's satellite Europa by quenched hydrothermal fluids provides a source of metabolic energy for low-temperature sulfate-reducing organisms that use dissolved H2 as an electron donor. Inhibition of thermodynamically favorable sulfate reduction in cooled hydrothermal fluids creates the potential for biologic reduction. Both high temperature and reduced conditions of ocean-forming hydrothermal solutions favor sulfate reduction in quenched fluids. The maximum amount of energy available to support autotrophic sulfate reduction is on the order of a few kilojoules per kilogram of water and is limited by the low abundances of either H2 or sulfate in ocean-forming fluids. Although this irreplaceable energy source might have supported early life on Europa, maintenance of biologic sulfate reduction throughout the ocean's history would require a supply of organic compounds from endogenic sources or from the satellite's surface.

  6. Sulfate was a trace constituent of Archean seawater.

    PubMed

    Crowe, Sean A; Paris, Guillaume; Katsev, Sergei; Jones, CarriAyne; Kim, Sang-Tae; Zerkle, Aubrey L; Nomosatryo, Sulung; Fowle, David A; Adkins, Jess F; Sessions, Alex L; Farquhar, James; Canfield, Donald E

    2014-11-07

    In the low-oxygen Archean world (>2400 million years ago), seawater sulfate concentrations were much lower than today, yet open questions frustrate the translation of modern measurements of sulfur isotope fractionations into estimates of Archean seawater sulfate concentrations. In the water column of Lake Matano, Indonesia, a low-sulfate analog for the Archean ocean, we find large (>20 per mil) sulfur isotope fractionations between sulfate and sulfide, but the underlying sediment sulfides preserve a muted range of δ(34)S values. Using models informed by sulfur cycling in Lake Matano, we infer Archean seawater sulfate concentrations of less than 2.5 micromolar. At these low concentrations, marine sulfate residence times were likely 10(3) to 10(4) years, and sulfate scarcity would have shaped early global biogeochemical cycles, possibly restricting biological productivity in Archean oceans. Copyright © 2014, American Association for the Advancement of Science.

  7. XANES mapping of organic sulfate in three scleractinian coral skeletons

    NASA Astrophysics Data System (ADS)

    Cuif, Jean-Pierre; Dauphin, Yannicke; Doucet, Jean; Salome, Murielle; Susini, Jean

    2003-01-01

    The presence and localization of organic sulfate within coral skeletons are studied by using X-ray absorption near edge structure spectroscopy (XANES) fluorescence. XANES spectra are recorded from four reference sulfur-bearing organic molecules: three amino acids (H-S-C bonds in cysteine; C-S-C bonds in methionine; one disulfide bond C-S-S-C bonds in cystine) and a sulfated sugar (C-SO 4 bonds in chondroitin sulfate). Spectral responses of three coral skeletons show that the sulfated form is extremely dominant in coral aragonite, and practically exclusive within both centres of calcification and the surrounding fibrous tissues of coral septa. Mapping of S-sulfate concentrations in centres and fibres gives us direct evidence of high concentration of organic sulfate in centres of calcification. Additionally, a banding pattern of S-sulfate is visible in fibrous part of the coral septa, evidencing a biochemical zonation that corresponds to the step-by-step growth of fibres.

  8. Heterogeneous Production of Sulfate Aerosol over China.

    NASA Astrophysics Data System (ADS)

    Shao, J.; Alexander, B.; Chen, Q.; Zhang, L.; Wang, Y.; Xie, Z.; He, P.

    2017-12-01

    Sulfate is thought to be the main contributor to the growth of PM2.5 during the severe haze pollution over China, but most studies have shown that traditional gas- and aqueous-phase chemistry cannot explain the rapid sulfate production during haze events, suggesting a missing heterogeneous oxidation mechanism. In this work, we implement heterogeneous sulfate formation into a 3-D global chemical transport model (GEOS-Chem) to evaluate the different pathways for global and regional sulfate production, including SO2 oxidation by NO2, O3, H2O2, and TMI+O2. Heterogeneous sulfate production rates and the dominant heterogeneous sulfate formation mechanism depends on calculations of aerosol pH, which is in turn is dependent upon thermodynamic state assumptions. We evaluate the influence of aerosol pH and potential impacts of aerosol ionic strength on sulfate production rates and mechanisms in the model, and its implications for PM2.5 in Chinese haze events.

  9. Bioaccessibility tests accurately estimate bioavailability of lead to quail

    USGS Publications Warehouse

    Beyer, W. Nelson; Basta, Nicholas T; Chaney, Rufus L.; Henry, Paula F.; Mosby, David; Rattner, Barnett A.; Scheckel, Kirk G.; Sprague, Dan; Weber, John

    2016-01-01

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from five Pb-contaminated Superfund sites had relative bioavailabilities from 33%-63%, with a mean of about 50%. Treatment of two of the soils with phosphorus significantly reduced the bioavailability of Pb. Bioaccessibility of Pb in the test soils was then measured in six in vitro tests and regressed on bioavailability. They were: the “Relative Bioavailability Leaching Procedure” (RBALP) at pH 1.5, the same test conducted at pH 2.5, the “Ohio State University In vitro Gastrointestinal” method (OSU IVG), the “Urban Soil Bioaccessible Lead Test”, the modified “Physiologically Based Extraction Test” and the “Waterfowl Physiologically Based Extraction Test.” All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the RBALP pH 2.5 and OSU IVG tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter (24%), or present as Pb sulfate (18%). Additional Pb was associated with P (chloropyromorphite, hydroxypyromorphite and tertiary Pb phosphate), and with Pb carbonates, leadhillite (a lead sulfate carbonate hydroxide), and Pb sulfide. The formation of chloropyromorphite reduced the bioavailability of Pb and the amendment of Pb-contaminated soils with P may be a thermodynamically favored means to sequester Pb.

  10. Isomer separation and effect of the degree of polymerization on the gas-phase structure of chondroitin sulfate oligosaccharides analyzed by ion mobility and tandem mass spectrometry.

    PubMed

    Poyer, Salomé; Lopin-Bon, Chrystel; Jacquinet, Jean-Claude; Salpin, Jean-Yves; Daniel, Régis

    2017-12-15

    Chondroitin sulfate (CS) glycosaminoglycans are bioactive sulfated polysaccharides comprising repeating units of uronic acid and N-acetyl galactose sulfated at various positions. The optimal length and sulfation pattern of the CS bioactive sequences remain elusive so that structure-activity relationships cannot be easily established. Development of efficient analytical methods allowing the differentiation of the various sulfation patterns of CS sequences is therefore of particular importance to correlate their biological functions to the sulfation pattern. Discrimination of different oligomers (dp2 to dp6) of synthetic chondroitin sulfate isomers was evaluated by electrospray ionization tandem mass spectrometry (ESI-MS/MS) in the negative-ion mode from deprotonated and alkali adduct species. In addition, ion mobility mass spectrometry (IMS-MS) was used to study the influence of both the degree of polymerization and sulfate group location on the gas-phase conformation of CS oligomers. ESI-MS/MS spectra of chondroitin sulfate isomers show characteristic product ions exclusively from alkali adduct species (Li, Na, K and Cs). Whatever the alkali adducts studied, MS/MS of chondroitin oligosaccharides sulfated at position 6 yields a specific product ion at m/z 139 while CS oligosaccharides sulfated at position 4 show a specific product ion at m/z 154. Being observed for the different CS oligomers di-, tetra- and hexasaccharides, these fragment ions are considered as diagnostic ions for chondroitin 6-O-sulfate and chondroitin 4-O-sulfate, respectively. IMS-MS experiments reveal that collision cross-sections (CCS) of CS oligomers with low charge states evolved linearly with degrees of polymerization indicating a similar gas-phase conformation. This study allows the fast and unambiguous differentiation of CS isomers sulfated at position 6 or 4 for both saturated and unsaturated analogues from MS/MS experiments. In addition, the CCS linear evolution of CS oligomers in function of the degree of polymerization indicates that no folding occurs even for hexasaccharides. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Process integration for biological sulfate reduction in a carbon monoxide fed packed bed reactor.

    PubMed

    Kumar, Manoj; Sinharoy, Arindam; Pakshirajan, Kannan

    2018-08-01

    This study examined immobilized anaerobic biomass for sulfate reduction using carbon monoxide (CO) as the sole carbon source under batch and continuous fed conditions. The immobilized bacteria with beads made of 10% polyvinyl alcohol (PVA) showed best results in terms of sulfate reduction (84 ± 3.52%) and CO utilization (98 ± 1.67%). The effect of hydraulic retention time (HRT), sulfate loading rate and CO loading rate on sulfate and CO removal was investigated employing a 1L packed bed bioreactor containing the immobilized biomass. At 48, 24 and 12 h HRT, the sulfate removal was 94.42 ± 0.15%, 89.75 ± 0.47% and 61.08 ± 0.34%, respectively, along with a CO utilization of more than 90%. The analysis of variance (ANOVA) of the results obtained showed that only the initial CO concentration significantly affected the sulfate reduction process. The reactor effluent sulfate concentrations were 27.41 ± 0.44, 59.16 ± 1.08, 315.83 ± 7.33 mg/L for 250, 500 and 1000 mg/L of influent sulfate concentrations respectively, under the optimum operating conditions. The sulfate reduction rates matched well with low inlet sulfate loading rates, indicating stable performance of the bioreactor system. Overall, this study yielded very high sulfate reduction efficiency by the immobilized anaerobic biomass under high CO loading condition using the packed bed reactor system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. The heparanome--the enigma of encoding and decoding heparan sulfate sulfation.

    PubMed

    Lamanna, William C; Kalus, Ina; Padva, Michael; Baldwin, Rebecca J; Merry, Catherine L R; Dierks, Thomas

    2007-04-30

    Heparan sulfate (HS) is a cell surface carbohydrate polymer modified with sulfate moieties whose highly ordered composition is central to directing specific cell signaling events. The ability of the cell to generate these information rich glycans with such specificity has opened up a new field of "heparanomics" which seeks to understand the systems involved in generating these cell type and developmental stage specific HS sulfation patterns. Unlike other instances where biological information is encrypted as linear sequences in molecules such as DNA, HS sulfation patterns are generated through a non-template driven process. Thus, deciphering the sulfation code and the dynamic nature of its generation has posed a new challenge to system biologists. The recent discovery of two sulfatases, Sulf1 and Sulf2, with the unique ability to edit sulfation patterns at the cell surface, has opened up a new dimension as to how we understand the regulation of HS sulfation patterning and pattern-dependent cell signaling events. This review will focus on the functional relationship between HS sulfation patterning and biological processes. Special attention will be given to Sulf1 and Sulf2 and how these key editing enzymes might act in concert with the HS biosynthetic enzymes to generate and regulate specific HS sulfation patterns in vivo. We will further explore the use of knock out mice as biological models for understanding the dynamic systems involved in generating HS sulfation patterns and their biological relevance. A brief overview of new technologies and innovations summarizes advances in the systems biology field for understanding non-template molecular networks and their influence on the "heparanome".

  13. Expression of two different sulfated fucans by females of Lytechinus variegatus may regulate the seasonal variation in the fertilization of the sea urchin.

    PubMed

    Cinelli, Leonardo P; Castro, Michelle O; Santos, Livia L; Garcia, Clarice R; Vilela-Silva, Ana-Cristina E S; Mourão, Paulo A S

    2007-08-01

    The egg jellies of sea urchins contain sulfated polysaccharides with unusual structures, composed of linear chains of l-fucose or l-galactose with well-defined repetitive units. The specific pattern of sulfation and the position of the glycosidic bond vary among sulfated polysaccharides from different species. These polysaccharides show species specificity in inducing the acrosome reaction, which is a critical event for fertilization. Females of the sea urchin Lytechinus variegatus spawn eggs containing a sulfated fucan with the repetitive sequence [3-alpha-L-Fucp-2(OSO(3))-1 --> 3-alpha-L-Fucp-4(OSO(3))-1 --> 3-alpha-L-Fucp-2,4(OSO(3))-1 --> 3-alpha-L-Fucp-2(OSO(3))-1](n). We now observe that, close to winter, a period of decreased fertility for the sea urchin, the females synthesize a distinct sulfated fucan with a simple structure, composed of 4-sulfated, 3-linked alpha-fucose residues. This sulfated fucan is inactive when tested in vitro for the acrosome reaction using homologous sperm. The amount of egg jellies spawned by females (and their constituent sulfated polysaccharides) varied greatly throughout the year. Apparently, there is a correlation between the temperature of the sea water and the expression of the 4-sulfated, 3-linked sulfated fucan. Overall, we described the occurrence of two isotypes of sulfated fucan in the egg jelly of the sea urchin L. variegatus, which differ in their biological activity and may be involved in the periodicity of the reproductive cycle of the invertebrate.

  14. Anaerobic oxidation of methane by sulfate in hypersaline groundwater of the Dead Sea aquifer

    PubMed Central

    Avrahamov, N; Antler, G; Yechieli, Y; Gavrieli, I; Joye, S B; Saxton, M; Turchyn, A V; Sivan, O

    2014-01-01

    Geochemical and microbial evidence points to anaerobic oxidation of methane (AOM) likely coupled with bacterial sulfate reduction in the hypersaline groundwater of the Dead Sea (DS) alluvial aquifer. Groundwater was sampled from nine boreholes drilled along the Arugot alluvial fan next to the DS. The groundwater samples were highly saline (up to 6300 mm chlorine), anoxic, and contained methane. A mass balance calculation demonstrates that the very low δ13CDIC in this groundwater is due to anaerobic methane oxidation. Sulfate depletion coincident with isotope enrichment of sulfur and oxygen isotopes in the sulfate suggests that sulfate reduction is associated with this AOM. DNA extraction and 16S amplicon sequencing were used to explore the microbial community present and were found to be microbial composition indicative of bacterial sulfate reducers associated with anaerobic methanotrophic archaea (ANME) driving AOM. The net sulfate reduction seems to be primarily controlled by the salinity and the available methane and is substantially lower as salinity increases (2.5 mm sulfate removal at 3000 mm chlorine but only 0.5 mm sulfate removal at 6300 mm chlorine). Low overall sulfur isotope fractionation observed (34ε = 17 ± 3.5‰) hints at high rates of sulfate reduction, as has been previously suggested for sulfate reduction coupled with methane oxidation. The new results demonstrate the presence of sulfate-driven AOM in terrestrial hypersaline systems and expand our understanding of how microbial life is sustained under the challenging conditions of an extremely hypersaline environment. PMID:25039851

  15. Anaerobic oxidation of methane by sulfate in hypersaline groundwater of the Dead Sea aquifer.

    PubMed

    Avrahamov, N; Antler, G; Yechieli, Y; Gavrieli, I; Joye, S B; Saxton, M; Turchyn, A V; Sivan, O

    2014-11-01

    Geochemical and microbial evidence points to anaerobic oxidation of methane (AOM) likely coupled with bacterial sulfate reduction in the hypersaline groundwater of the Dead Sea (DS) alluvial aquifer. Groundwater was sampled from nine boreholes drilled along the Arugot alluvial fan next to the DS. The groundwater samples were highly saline (up to 6300 mm chlorine), anoxic, and contained methane. A mass balance calculation demonstrates that the very low δ(13) CDIC in this groundwater is due to anaerobic methane oxidation. Sulfate depletion coincident with isotope enrichment of sulfur and oxygen isotopes in the sulfate suggests that sulfate reduction is associated with this AOM. DNA extraction and 16S amplicon sequencing were used to explore the microbial community present and were found to be microbial composition indicative of bacterial sulfate reducers associated with anaerobic methanotrophic archaea (ANME) driving AOM. The net sulfate reduction seems to be primarily controlled by the salinity and the available methane and is substantially lower as salinity increases (2.5 mm sulfate removal at 3000 mm chlorine but only 0.5 mm sulfate removal at 6300 mm chlorine). Low overall sulfur isotope fractionation observed ((34) ε = 17 ± 3.5‰) hints at high rates of sulfate reduction, as has been previously suggested for sulfate reduction coupled with methane oxidation. The new results demonstrate the presence of sulfate-driven AOM in terrestrial hypersaline systems and expand our understanding of how microbial life is sustained under the challenging conditions of an extremely hypersaline environment. © 2014 The Authors. Geobiology Published by John Wiley & Sons Ltd.

  16. Investigation of kinetics and absorption isotherm models for hydroponic phytoremediation of waters contaminated with sulfate.

    PubMed

    Saber, Ali; Tafazzoli, Milad; Mortazavian, Soroosh; James, David E

    2018-02-01

    Two common wetland plants, Pampas Grass (Cortaderia selloana) and Lucky Bamboo (Dracaena sanderiana), were used in hydroponic cultivation systems for the treatment of simulated high-sulfate wastewaters. Plants in initial experiments at pH 7.0 removed sulfate more efficiently compared to the same experimental conditions at pH 6.0. Results at sulfate concentrations of 50, 200, 300, 600, 900, 1200, 1500 and 3000 mg/L during three consecutive 7-day treatment periods with 1-day rest intervals, showed decreasing trends of both removal efficiencies and uptake rates with increasing sulfate concentrations from the first to the second to the third 7-day treatment periods. Removed sulfate masses per unit dry plant mass, calculated after 23 days, showed highest removal capacity at 600 mg/L sulfate for both plants. A Langmuir-type isotherm best described sulfate uptake capacity of both plants. Kinetic studies showed that compared to pseudo first-order kinetics, pseudo-second order kinetic models slightly better described sulfate uptake rates by both plants. The Elovich kinetic model showed faster rates of attaining equilibrium at low sulfate concentrations for both plants. The dimensionless Elovich model showed that about 80% of sulfate uptake occurred during the first four days' contact time. Application of three 4-day contact times with 2-day rest intervals at high sulfate concentrations resulted in slightly higher uptakes compared to three 7-day contact times with 1-day rest intervals, indicating that pilot-plant scale treatment systems could be sized with shorter contact times and longer rest-intervals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. 40 CFR 415.630 - Applicability; description of the zinc sulfate production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the zinc... CATEGORY Zinc Sulfate Production Subcategory § 415.630 Applicability; description of the zinc sulfate... production of zinc sulfate. ...

  18. 40 CFR 415.630 - Applicability; description of the zinc sulfate production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the zinc... CATEGORY Zinc Sulfate Production Subcategory § 415.630 Applicability; description of the zinc sulfate... production of zinc sulfate. ...

  19. An Efficient Approach to Sulfate Metabolites of Polychlorinated Biphenyls

    PubMed Central

    Li, Xueshu; Parkin, Sean; Duffel, Michael W.; Robertson, Larry W.; Lehmler, Hans-Joachim

    2009-01-01

    Polychlorinated biphenyls (PCBs), a major class of persistent organic pollutants, are metabolized to hydroxylated PCBs. Several hydroxylated PCBs are substrates of cytosolic phase II enzymes, such as phenol and hydroxysteroid (alcohol) sulfotransferases; however, the corresponding sulfation products have not been isolated and characterized. Here we describe a straightforward synthesis of a series of ten PCB sulfate monoesters from the corresponding hydroxylated PCBs. The hydroxylated PCBs were synthesized by coupling chlorinated benzene boronic acids with appropriate brominated (chloro-)anisoles, followed by demethylation with boron tribromide. The hydroxylated PCBs were sulfated with 2,2,2-trichloroethyl chlorosulfate using DMAP as base. Deprotection with zinc powder/ammonium formate yielded the ammonium salts of the desired PCB sulfate monoesters in good yields when the sulfated phenyl ring contained no or one chlorine substituent. However, no PCB sulfate monoesters were isolated when two chlorines were present ortho to the sulfated hydroxyl group. To aid with future quantitative structure activity relationship studies, the structures of two 2,2,2-trichloroethyl-protected PCB sulfates were verified by X-ray diffraction. PMID:19345419

  20. Automotive sulfate emission data.

    PubMed Central

    Somers, J H

    1975-01-01

    This paper discusses automotive sulfate emission results obtained by the Office of Mobile Source Air Pollution Control of EPA, General Motors, Ford, Chrysler, and Esso. This work has been directed towards obtaining sulfate emission factors for cars with and without catalyst. While the EPA and Chrysler investigations have found significant sulfate formation in noncatalyst cars, GM, Ford, and Esso have found only trace levels from noncatalyst cars. All of these investigators agree that much higher quantities of sulfate are emitted from catalyst cars. The work done to date shows pelleted catalysts to have much lower sulfate emissions over the low speed-EPA Federal Test Procedures than monolith catalysts. This is probably due to temporary storage of sulfates on the catalyst due to chemical interaction with the alumina pellets. The sulfate compounds are, to a large degree, emitted later under higher speed conditions which result in higher catalyst temperatures which decompose the alumina salt. Future work will be directed towards further elucidation of this storage mechanism as well as determining in detail how factors such as air injection rate and catalyst location affect sulfate emissions. PMID:50932

  1. Hexagonal-shaped chondroitin sulfate self-assemblies have exalted anti-HSV-2 activity.

    PubMed

    Galus, Aurélia; Mallet, Jean-Maurice; Lembo, David; Cagno, Valeria; Djabourov, Madeleine; Lortat-Jacob, Hugues; Bouchemal, Kawthar

    2016-01-20

    The initial step in mucosal infection by the herpes simplex virus type 2 (HSV-2) requires its binding to certain glycosaminoglycans naturally present on host cell membranes. We took advantage of this interaction to design biomimetic supramolecular hexagonal-shaped nanoassemblies composed of chondroitin sulfate having exalted anti-HSV-2 activity in comparison with native chondroitin sulfate. Nanoassemblies were formed by mixing hydrophobically-modified chondroitin sulfate with α-cyclodextrin in water. Optimization of alkyl chain length grafted on chondroitin sulfate and the ratio between hydrophobically-modified chondroitin sulfate and α-cyclodextrin showed that more cohesive and well-structured nanoassemblies were obtained using higher α-cyclodextrin concentration and longer alkyl chain lengths. A structure-activity relationship was found between anti-HSV-2 activity and the amphiphilic nature of hydrophobically-modified chondroitin sulfate. Also, antiviral activity of hexagonal nanoassemblies against HSV-2 was further improved in comparison with hydrophobically-modified chondroitin sulfate. This work suggests a new biomimetic formulation approach that can be extended to other heparan-sulfate-dependent viruses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Evaluation of antioxidant activities and chemical analysis of sulfated chitosan from Sepia prashadi.

    PubMed

    Seedevi, Palaniappan; Moovendhan, Meivelu; Vairamani, Shanmugam; Shanmugam, Annaian

    2017-06-01

    The chitin and chitosan of S. prashadi was prepared through demineralization, deproteinzation, deacetylation process and sulfation were carried by chlorosulfonic acid in N,N-dimethylformamide. The sulfate content in chitosan was found to be 18.9%. The carbon, hydrogen and nitrogen composition of the sulfated chitosan were recorded 39.09%, 6.95% and 6.58% respectively. The structural analysis was done by using FT-IR and NMR spectroscopy technique. The DSC curves of sulfated chitosan showed a large endothermic peak resolved with T o value of 54.57°C and T P value of 97.46°C. The morphology of sulfated chitin and sulfated chitosan were studied by SEM. The Further in vitro antioxidant activity of sulfated chitosan was screened by scavenging activity of superoxide radical assay, hydroxyl radical scavenging assay, metal-ion chelating effect and reducing power. Its anticoagulant activity was tested for human plasma with respect to Activated Partial Thromboplastin Time (APTT) and Prothrombin Time (PT). Results prove that sulfated chitosan has potent antioxidant and anticoagulant activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. 21 CFR 522.650 - Dihydrostreptomycin sulfate injection.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Dihydrostreptomycin sulfate injection. 522.650... § 522.650 Dihydrostreptomycin sulfate injection. (a) Specifications. Each milliliter contains dihydrostreptomycin sulfate equivalent to 500 milligrams of dihydrostreptomycin. (b) Sponsors. See Nos. 054771 and...

  4. Kinetics of sulfate and hydrogen uptake by the thermophilic sulfate-reducing bacteria thermodesulfobacterium sp. Strain JSP and thermodesulfovibrio sp. Strain R1Ha3

    PubMed

    Sonne-Hansen; Westermann; Ahring

    1999-03-01

    Half-saturation constants (Km), maximum uptake rates (Vmax), and threshold concentrations for sulfate and hydrogen were determined for two thermophilic sulfate-reducing bacteria (SRB) in an incubation system without headspace. Km values determined for the thermophilic SRB were similar to the constants described for mesophilic SRB isolated from environments with low sulfate concentrations.

  5. Kinetics of Sulfate and Hydrogen Uptake by the Thermophilic Sulfate-Reducing Bacteria Thermodesulfobacterium sp. Strain JSP and Thermodesulfovibrio sp. Strain R1Ha3

    PubMed Central

    Sonne-Hansen, Jacob; Westermann, Peter; Ahring, Birgitte K.

    1999-01-01

    Half-saturation constants (Km), maximum uptake rates (Vmax), and threshold concentrations for sulfate and hydrogen were determined for two thermophilic sulfate-reducing bacteria (SRB) in an incubation system without headspace. Km values determined for the thermophilic SRB were similar to the constants described for mesophilic SRB isolated from environments with low sulfate concentrations. PMID:10049897

  6. Regeneration of sulfated metal oxides and carbonates

    DOEpatents

    Hubble, Bill R.; Siegel, Stanley; Cunningham, Paul T.

    1978-03-28

    Alkali metal or alkaline earth metal carbonates such as calcium carbonate and magnesium carbonate found in dolomite or limestone are employed for removal of sulfur dioxide from combustion exhaust gases. The sulfated carbonates are regenerated to oxides through use of a solid-solid reaction, particularly calcium sulfide with calcium sulfate to form calcium oxide and sulfur dioxide gas. The regeneration is performed by contacting the sulfated material with a reductant gas such as hydrogen within an inert diluent to produce calcium sulfide in mixture with the sulfate under process conditions selected to permit the sulfide-sulfate, solid-state reaction to occur.

  7. Seasonal and event variations in δ34S values of stream sulfate in a Vermont forested catchment: Implications for sulfur sources and cycling

    USGS Publications Warehouse

    Shanley, James B.; Mayer, Bernhard; Mitchell, Myron J.; Bailey, Scott W.

    2008-01-01

    Stable sulfur (S) isotope ratios can be used to identify the sources of sulfate contributing to streamwater. We collected weekly and high-flow stream samples for S isotopic analysis of sulfate through the entire water year 2003 plus the snowmelt period of 2004. The study area was the 41-ha forested W-9 catchment at Sleepers River Research Watershed, Vermont, a site known to produce sulfate from weathering of sulfide minerals in the bedrock. The δ34S values of streamwater sulfate followed an annual sinusoidal pattern ranging from about 6.5‰ in early spring to about 10‰ in early fall. During high-flow events, δ34S values typically decreased by 1 to 3‰ from the prevailing seasonal value. The isotopic evidence suggests that stream sulfate concentrations are controlled by: (1) an overall dominance of bedrock-derived sulfate (δ34S ~ 6–14‰); (2) contributions of pedogenic sulfate (δ34S ~ 5–6‰) during snowmelt and storms with progressively diminishing contributions during base flow recession; and (3) minor effects of dissimilatory bacterial sulfate reduction and subsequent reoxidation of sulfides. Bedrock should not be overlooked as a source of S in catchment sulfate budgets.

  8. Biological sulfate removal from construction and demolition debris leachate: effect of bioreactor configuration.

    PubMed

    Kijjanapanich, Pimluck; Do, Anh Tien; Annachhatre, Ajit P; Esposito, Giovanni; Yeh, Daniel H; Lens, Piet N L

    2014-03-30

    Due to the contamination of construction and demolition debris (CDD) by gypsum drywall, especially, its sand fraction (CDD sand, CDDS), the sulfate content in CDDS exceeds the posed limit of the maximum amount of sulfate present in building sand (1.73 g sulfate per kg of sand for the Netherlands). Therefore, the CDDS cannot be reused for construction. The CDDS has to be washed in order to remove most of the impurities and to obtain the right sulfate content, thus generating a leachate, containing high sulfate and calcium concentrations. This study aimed at developing a biological sulfate reduction system for CDDS leachate treatment and compared three different reactor configurations for the sulfate reduction step: the upflow anaerobic sludge blanket (UASB) reactor, inverse fluidized bed (IFB) reactor and gas lift anaerobic membrane bioreactor (GL-AnMBR). This investigation demonstrated that all three systems can be applied for the treatment of CDDS leachate. The highest sulfate removal efficiency of 75-85% was achieved at a hydraulic retention time (HRT) of 15.5h. A high calcium concentration up to 1,000 mg L(-1) did not give any adverse effect on the sulfate removal efficiency of the IFB and GL-AnMBR systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Substantial Seasonal Contribution of Observed Biogenic Sulfate Particles to Cloud Condensation Nuclei.

    PubMed

    Sanchez, Kevin J; Chen, Chia-Li; Russell, Lynn M; Betha, Raghu; Liu, Jun; Price, Derek J; Massoli, Paola; Ziemba, Luke D; Crosbie, Ewan C; Moore, Richard H; Müller, Markus; Schiller, Sven A; Wisthaler, Armin; Lee, Alex K Y; Quinn, Patricia K; Bates, Timothy S; Porter, Jack; Bell, Thomas G; Saltzman, Eric S; Vaillancourt, Robert D; Behrenfeld, Mike J

    2018-02-19

    Biogenic sources contribute to cloud condensation nuclei (CCN) in the clean marine atmosphere, but few measurements exist to constrain climate model simulations of their importance. The chemical composition of individual atmospheric aerosol particles showed two types of sulfate-containing particles in clean marine air masses in addition to mass-based Estimated Salt particles. Both types of sulfate particles lack combustion tracers and correlate, for some conditions, to atmospheric or seawater dimethyl sulfide (DMS) concentrations, which means their source was largely biogenic. The first type is identified as New Sulfate because their large sulfate mass fraction (63% sulfate) and association with entrainment conditions means they could have formed by nucleation in the free troposphere. The second type is Added Sulfate particles (38% sulfate), because they are preexisting particles onto which additional sulfate condensed. New Sulfate particles accounted for 31% (7 cm -3 ) and 33% (36 cm -3 ) CCN at 0.1% supersaturation in late-autumn and late-spring, respectively, whereas sea spray provided 55% (13 cm -3 ) in late-autumn but only 4% (4 cm -3 ) in late-spring. Our results show a clear seasonal difference in the marine CCN budget, which illustrates how important phytoplankton-produced DMS emissions are for CCN in the North Atlantic.

  10. Proteoglycans synthesized by smooth muscle cells derived from monkey (Macaca nemestrina) aorta.

    PubMed

    Chang, Y; Yanagishita, M; Hascall, V C; Wight, T N

    1983-05-10

    Smooth muscle cells derived from monkey aorta were cultured in medium with [35S]sulfate and [3H]glucosamine as labeling precursors. Proteoglycans in the medium and in 4 M guanidine HCl extracts of the cell layer were purified by DEAE-Sephacel and molecular sieve chromatography. Both preparations contained a predominant, large chondroitin sulfate proteoglycan (Kav = 0.30 on Sepharose CL-2B) with glycosaminoglycan chains of Mr approximately 43,000 average containing a ratio of 6-sulfate to 4-sulfate of approximately 2. Approximately 7 and 27% of the 3H label in this proteoglycan were present in N-linked and O-linked oligosaccharides, respectively. Reaggregation experiments indicated that a large proportion of these proteoglycans can form link protein-stabilized aggregates. The medium fraction also contained a smaller dermatan sulfate proteoglycan (Kav = 0.67 on Sepharose CL-2B) with glycosaminoglycan chains of Mr approximately 43,000 containing a ratio of 6-sulfate to 4-sulfate of about 0.5. This proteoglycan contained approximately the same percentage of N-linked oligosaccharides as the chondroitin sulfate proteoglycan, but few or no O-linked oligosaccharides. A smaller dermatan sulfate proteoglycan with a single chain was present only in the cell layer. Additionally, small amounts of heparan sulfate proteoglycans were synthesized by the cells.

  11. Glycosaminoglycan in cerebrum, cerebellum and brainstem of young sheep brain with particular reference to compositional and structural variations of chondroitin-dermatan sulfate and hyaluronan.

    PubMed

    Kilia, Virginia; Skandalis, Spyros S; Theocharis, Achilleas D; Theocharis, Dimitrios A; Karamanos, Nikos K; Papageorgakopoulou, Nickoletta

    2008-09-01

    Recent advances in the structural biology of chondroitin sulfate chains have suggested important biological functions in the development of the brain. Several studies have demonstrated that the composition of chondroitin sulfate chains changes with aging and normal brain maturation. In this study, we determined the concentration of all glycosaminoglycan types, i.e. chondroitin sulfate, dermatan sulfate, keratan sulfate, heparan sulfate, hyaluronan and chondroitin in cerebrum, cerebellum and brainstem of young sheep brain. In all cases, chondroitin sulfate was the predominant glycosaminoglycan type, comprising about 54-58% of total glycosaminoglycans, with hyaluronan being present also in significant amounts of about 19-28%. Of particular interest was the increased presence of the disulfated disaccharides and dermatan sulfate in cerebellum and brainstem, respectively, as well as the detectable and measurable occurrence of chondroitin in young sheep brain. Among the three brain areas, cerebrum was found to be significantly richer in chondroitin sulfate and hyaluronan, two major extracellular matrix components. These findings imply that the extracellular matrix of the cerebrum is different from those of cerebellum and brainstem, and probably this fact is related to the particular histological and functional characteristics of each anatomic area of the brain.

  12. Improved Aerosol Optical Depth and Particle Size Index from Satellite Detected Radiance

    DTIC Science & Technology

    1991-12-01

    the central Pacific. Another environmental factor discussed by Benedict (1989) was the eruption of the Kilauea volcano in Hawaii (17°N, 157°W...another near 1O0N. A distinction can be made between an influence from Kilauea volcano at 20°N and DMS production leading to non-sea-salt sulfate...natural dust or anthropogenic pollutants. There is another peak near 8°N. Since Figure 8 revealed little optical depth from the eruption of Kilauea , this

  13. A deposit model for Mississippi Valley-Type lead-zinc ores: Chapter A in Mineral deposit models for resource assessment

    USGS Publications Warehouse

    Leach, David L.; Taylor, Ryan D.; Fey, David L.; Diehl, Sharon F.; Saltus, Richard W.

    2010-01-01

    This report also describes the geoenvironmental characteristic of MVT deposits. The response of MVT ores in the supergene environment is buffered by their placement in carbonate host rocks which commonly results in near-neutral associated drainage water. The geoenvironmental features and anthropogenic mining effects presented in this report illustrates this important environmental aspect of MVT deposits which separates them from other deposit types (especially coal, VHMS, Cu-porphyry, SEDEX, acid-sulfate polymetallic vein).

  14. Lead isotopic compositions of soil and near-surface till profiles from a watershed containing arsenic-enriched groundwater in coastal Maine

    USGS Publications Warehouse

    Ayuso, Robert; Foley, Nora; Wandless, Gregory; Dillingham, Jeremy; Colvin, Anna

    2005-01-01

    Lead isotope compositions of soils and near-surface tills from an area of coastal Maine known to have groundwater with anomalously high arsenic contents were measured in order to determine the source of the lead and, by inference, possible sources of arsenic. Five soil and till sites were selected for detailed chemical and isotopic analysis. To construct profiles of the soil and till horizons, five samples were collected at 10-cm intervals from the surface to the base of each horizon. Total lead and arsenic concentrations and lead isotopic compositions were measured for 48 leaches and bulk residues. The soils and tills are underlain by sulfidic schists of the Penobscot Formation. Several generations of minerals containing arsenic and lead exist in the regional bedrock, including rock-forming silicates (feldspar and micas), sulfide minerals formed during diagenesis (for example, arsenic-rich pyrite), and sulfide and oxide minerals that formed as a result of Silurian metamorphic and igneous events (for example, arsenopyrite, galena, iron-oxides, and arsenic-sulfides). A young group of secondary minerals (for example, iron-hydroxides, arsenic-hydroxides, lead-sulfate, and arsenic-jarosite) formed from recent weathering and pedogenic processes.

  15. Impact of treatment on Pb release from full and partially replaced harvested Lead Service Lines (LSLs).

    PubMed

    Cartier, Clément; Doré, Evelyne; Laroche, Laurent; Nour, Shokoufeh; Edwards, Marc; Prévost, Michèle

    2013-02-01

    Release of lead from 80% partially replaced service lines was compared to full lead service lines using harvested-stabilized lead pipes and field brass connectors. After more than a year of stabilization, lead release was consistent with field samples. Over the relatively short duration partial replacement of lead pipe by copper pipe (3 months), generated high lead release, attributed to galvanic corrosion, resulting in a final outcome for lead release that was even worse than for a full lead pipe. Increased lead release was especially evident at higher flow rates. Orthophosphate reduced lead release from full lead pipes by 64%. For partially replaced samples with copper, lead concentrations were unchanged by phosphate dosing at moderate flow (103 ± 265 vs 169 ± 349 μg/L) and were increased to very high levels when sampled at high flow rates (1001 ± 1808 vs 257 ± 224 μg/L). The increase lead release was in the form of particulate lead (>90%). In comparison to the condition without treatment, increased sulfate treatment had little impact on lead release from 100%-Pb rigs but reduced lead release from partially replaced lead pipes with copper. Our results also raise questions concerning protocols based on short 30 min stagnation (as those used in Canada) due to their incapacity to consider particulate lead release generated mostly after longer stagnation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Effects of oversulfated and fucosylated chondroitin sulfates on coagulation. Challenges for the study of anticoagulant polysaccharides.

    PubMed

    Fonseca, Roberto J C; Oliveira, Stephan-Nicollas M C G; Pomin, Vitor H; Mecawi, André S; Araujo, Iracema G; Mourão, Paulo A S

    2010-05-01

    We report the effects of a chemically oversulfated chondroitin sulfate and a naturally fucosylated chondroitin sulfate on the coagulation system. The former has been recently identified as a contaminant of heparin preparations and the latter has been proposed as an alternative anticoagulant. The mechanism of action of these polymers on coagulation is complex and target different components of the coagulation system. They have serpin-independent anticoagulant activity, which preponderates in plasma. They also have serpin-dependent anticoagulant activity but differ significantly in the target coagulation protease and preferential serpin. Their anticoagulant effects differ even more markedly when tested as inhibitors of coagulation proteases using plasma as a source of serpins. It is possible that the difference is due to the high availability of fucosylated chondroitin sulfate whereas oversulfated chondroitin sulfate has strong unspecific binding to plasma protein and low availability for the binding to serpins. When tested using a venous thrombosis experimental model, oversulfated chondroitin sulfate is less potent as an antithrombotic agent than fucosylated chondroitin sulfate. These highly sulfated chondroitin sulfates activate factor XII in in vitro assays, based on kallikrein release. However, only fucosylated chondroitin sulfate induces hypotension when intravenously injected into rats. In conclusion, the complexity of the regulatory mechanisms involved in the action of highly sulfated polysaccharides in coagulation requires their analysis by a combination of in vitro and in vivo assays. Our results are relevant due to the urgent need for new anticoagulant drugs or alternative sources of heparin.

  17. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject to...

  18. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject to...

  19. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327) are...

  20. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327) are...

Top