Sample records for lead thorium uranium

  1. ELECTROLYSIS OF THORIUM AND URANIUM

    DOEpatents

    Hansen, W.N.

    1960-09-01

    An electrolytic method is given for obtaining pure thorium, uranium, and thorium-uranium alloys. The electrolytic cell comprises a cathode composed of a metal selected from the class consisting of zinc, cadmium, tin, lead, antimony, and bismuth, an anode composed of at least one of the metals selected from the group consisting of thorium and uranium in an impure state, and an electrolyte composed of a fused salt containing at least one of the salts of the metals selected from the class consisting of thorium, uranium. zinc, cadmium, tin, lead, antimony, and bismuth. Electrolysis of the fused salt while the cathode is maintained in the molten condition deposits thorium, uranium, or thorium-uranium alloys in pure form in the molten cathode which thereafter may be separated from the molten cathode product by distillation.

  2. Tables for determining lead, uranium, and thorium isotope ages

    NASA Technical Reports Server (NTRS)

    Schonfeld, E.

    1974-01-01

    Tables for determining lead, uranium, and thorium isotope ages are presented in the form of computer printouts. Decay constants, analytical expressions for the functions evaluated, and the precision of the calculations are briefly discussed.

  3. Thorium fueled reactor

    NASA Astrophysics Data System (ADS)

    Sipaun, S.

    2017-01-01

    Current development in thorium fueled reactors shows that they can be designed to operate in the fast or thermal spectrum. The thorium/uranium fuel cycle converts fertile thorium-232 into fissile uranium-233, which fissions and releases energy. This paper analyses the characteristics of thorium fueled reactors and discusses the thermal reactor option. It is found that thorium fuel can be utilized in molten salt reactors through many configurations and designs. A balanced assessment on the feasibility of adopting one reactor technology versus another could lead to optimized benefits of having thorium resource.

  4. Excess lead in "rusty rock" 66095 and implications for an early lunar differentiation

    USGS Publications Warehouse

    Nunes, P.D.; Tatsumoto, M.

    1973-01-01

    Apollo 16 breccia 66095 contains a remarkably high amount of lead (15 part's per million), 85 percent of which is not supported by uranium and thorium in the rock. An acid leach experiment coupled with separate analyses of the whole rock and mineral fractions for uranium, thorium, and lead indicate that the excess lead has a lunar source and was apparently introduced about 4.0 X 109 years ago. The data also suggest that a major lunar crustal differentiation occurred about 4.47 X 109 years ago.

  5. Radioactive equilibrium in ancient marine sediments

    USGS Publications Warehouse

    Breger, I.A.

    1955-01-01

    Radioactive equilibrium in eight marine sedimentary formations has been studied by means of direct determinations of uranium, radium and thorium. Alpha-particle counting has also been carried out in order to cross-calibrate thick-source counting techniques. The maximum deviation from radioactive equilibrium that has been noted is 11 per cent-indicating that there is probably equilibrium in all the formations analyzed. Thick-source alpha-particle counting by means of a proportional counter or an ionization chamber leads to high results when the samples contain less than about 10 p.p.m. of uranium. For samples having a higher content of uranium the results are in excellent agreement with each other and with those obtained by direct analytical techniques. The thorium contents that have been obtained correspond well to the average values reported in the literature. The uranium content of marine sediments may be appreciably higher than the average values that have been reported for sedimentary rocks. Data show that there is up to fourteen times the percentage of uranium as of thorium in the formations studied and that the percentage of thorium never exceeds that of uranium. While the proximity of a depositional environment to a land mass may influence the concentration of uranium in a marine sediment, this is not true with thorium. ?? 1955.

  6. Kinetics of dissolution of thorium and uranium doped britholite ceramics

    NASA Astrophysics Data System (ADS)

    Dacheux, N.; Du Fou de Kerdaniel, E.; Clavier, N.; Podor, R.; Aupiais, J.; Szenknect, S.

    2010-09-01

    In the field of immobilization of actinides in phosphate-based ceramics, several thorium and uranium doped britholite samples were submitted to leaching tests. The normalized dissolution rates determined for several pH values, temperatures and acidic media from the calcium release range from 4.7 × 10 -2 g m -2 d -1 to 21.6 g m -2 d -1. Their comparison with that determined for phosphorus, thorium and uranium revealed that the dissolution is clearly incongruent for all the conditions examined. Whatever the leaching solution considered, calcium and phosphorus elements were always released with higher RL values than the other elements (Nd, Th, U). Simultaneously, thorium was found to quickly precipitate as alteration product, leading to diffusion phenomena for uranium. For all the media considered, the uranium release is higher than that of thorium, probably due to its oxidation from tetravalent oxidation state to uranyl. Moreover, the evaluation of the partial order related to proton concentration and the apparent energy of activation suggest that the reaction of dissolution is probably controlled by surface chemical reactions occurring at the solid/liquid interface. Finally, comparative leaching tests performed in sulphuric acid solutions revealed a significant influence of such media on the chemical durability of the leached pellets, leading to higher normalized dissolution rates for all the elements considered. On the basis of the results of chemical speciation, this difference was mainly explained in the light of higher complexion constants by sulfate ions compared to nitrate, chloride and phosphate.

  7. Uranium in granites from the Southwestern United States: actinide parent-daughter systems, sites and mobilization. First year report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silver, L T; Williams, I S; Woodhead, J A

    1980-10-01

    Some of the principal findings of the study on the Lawler Peak Granite are: the granite is dated precisely by this work at 1411 +- 3 m.y., confirming its synchroneity with a great regional terrane of granites. Uranium is presently 8-10 times crustal abundance and thorium 2-3 times in this granite. Uranium is found to be enriched in at least eight, possibly ten, primary igneous mineral species over the whole-rock values. Individual mineral species show distinct levels in, and characteristics ranges of, uranium concentration. It appears that in a uraniferous granite such as this, conventional accuracy mineral suites probably cannotmore » account for most of the uranium in the rock, and more rare, high U-concentration phases also are present and are significant uranium hosts. It appears that at least two different geological episodes have contributed to the disturbance of the U-Th-Pb isotope systems. Studies of various sites for transient dispersal of uranium, thorium, and radiogenic lead isotopes indicate a non-uniform dispersal of these components. It appears that the bulk rock has lost at least 24 percent of its original uranium endowment, accepting limited or no radiogenic lead or thorium migration from the sample.« less

  8. URANIUM BISMUTHIDE DISPERSION IN MOLTEN METAL

    DOEpatents

    Teitel, R.J.

    1959-10-27

    The formation of intermetallic bismuth compounds of thorium or uranium dispersed in a liquid media containing bismuth and lead is described. A bismuthide of uranium dispersed in a liquid metal medium is formed by dissolving uranium in composition of lead and bismuth containing less than 80% lead and lowering the temperature of the composition to a temperature below the point at which the solubility of uranium is exceeded and above the melting point of the composition.

  9. 49 CFR 173.434 - Activity-mass relationships for uranium and natural thorium.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... natural thorium. 173.434 Section 173.434 Transportation Other Regulations Relating to Transportation....434 Activity-mass relationships for uranium and natural thorium. The table of activity-mass relationships for uranium and natural thorium are as follows: Thorium and uranium enrichment 1(Wt% 235 U present...

  10. 49 CFR 173.434 - Activity-mass relationships for uranium and natural thorium.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... natural thorium. 173.434 Section 173.434 Transportation Other Regulations Relating to Transportation....434 Activity-mass relationships for uranium and natural thorium. The table of activity-mass relationships for uranium and natural thorium are as follows: Thorium and uranium enrichment 1(Wt% 235 U present...

  11. 49 CFR 173.434 - Activity-mass relationships for uranium and natural thorium.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Activity-mass relationships for uranium and....434 Activity-mass relationships for uranium and natural thorium. The table of activity-mass relationships for uranium and natural thorium are as follows: Thorium and uranium enrichment 1(Wt% 235 U present...

  12. 49 CFR 173.434 - Activity-mass relationships for uranium and natural thorium.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Activity-mass relationships for uranium and....434 Activity-mass relationships for uranium and natural thorium. The table of activity-mass relationships for uranium and natural thorium are as follows: Thorium and uranium enrichment 1(Wt% 235 U present...

  13. 49 CFR 173.434 - Activity-mass relationships for uranium and natural thorium.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Activity-mass relationships for uranium and....434 Activity-mass relationships for uranium and natural thorium. The table of activity-mass relationships for uranium and natural thorium are as follows: Thorium and uranium enrichment 1(Wt% 235 U present...

  14. 10 CFR 765.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES General... uranium or thorium processing site or active processing site means: (1) Any uranium or thorium processing... an Agreement State, for the production at a site of any uranium or thorium derived from ore— (i) Was...

  15. 10 CFR 765.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES General... uranium or thorium processing site or active processing site means: (1) Any uranium or thorium processing... an Agreement State, for the production at a site of any uranium or thorium derived from ore— (i) Was...

  16. 10 CFR 765.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES General... uranium or thorium processing site or active processing site means: (1) Any uranium or thorium processing... an Agreement State, for the production at a site of any uranium or thorium derived from ore— (i) Was...

  17. Separation of thorium and uranium in nitric acid solution using silica based anion exchange resin.

    PubMed

    Chen, Yanliang; Wei, Yuezhou; He, Linfeng; Tang, Fangdong

    2016-09-30

    To separate thorium and uranium in nitric acid solution using anion exchange process, a strong base silica-based anion exchange resin (SiPyR-N4) was synthesized. Batch experiments were conducted and the separation factor of thorium and uranium in 9M nitric acid was about 10. Ion exchange chromatography was applied to separate thorium and uranium in different ratios. Uranium could be eluted by 9M nitric acid and thorium was eluted by 0.1M nitric acid. It was proved that thorium and uranium can be separated and recovered successfully by this method. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. 76 FR 30696 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... DEPARTMENT OF ENERGY Reimbursement for Costs of Remedial Action at Active Uranium and Thorium...) acceptance of claims in FY 2011 from eligible active uranium and thorium processing site licensees for... incurred by licensees at active uranium and thorium processing sites to remediate byproduct material...

  19. Safety and Regulatory Issues of the Thorium Fuel Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian; Worrall, Andrew; Powers, Jeffrey

    2014-02-01

    Thorium has been widely considered an alternative to uranium fuel because of its relatively large natural abundance and its ability to breed fissile fuel (233U) from natural thorium (232Th). Possible scenarios for using thorium in the nuclear fuel cycle include use in different nuclear reactor types (light water, high temperature gas cooled, fast spectrum sodium, molten salt, etc.), advanced accelerator-driven systems, or even fission-fusion hybrid systems. The most likely near-term application of thorium in the United States is in currently operating light water reactors (LWRs). This use is primarily based on concepts that mix thorium with uranium (UO2 + ThO2),more » add fertile thorium (ThO2) fuel pins to LWR fuel assemblies, or use mixed plutonium and thorium (PuO2 + ThO2) fuel assemblies. The addition of thorium to currently operating LWRs would result in a number of different phenomenological impacts on the nuclear fuel. Thorium and its irradiation products have nuclear characteristics that are different from those of uranium. In addition, ThO2, alone or mixed with UO2 fuel, leads to different chemical and physical properties of the fuel. These aspects are key to reactor safety-related issues. The primary objectives of this report are to summarize historical, current, and proposed uses of thorium in nuclear reactors; provide some important properties of thorium fuel; perform qualitative and quantitative evaluations of both in-reactor and out-of-reactor safety issues and requirements specific to a thorium-based fuel cycle for current LWR reactor designs; and identify key knowledge gaps and technical issues that need to be addressed for the licensing of thorium LWR fuel in the United States.« less

  20. 49 CFR 173.426 - Excepted packages for articles containing natural uranium or thorium.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... uranium or thorium. 173.426 Section 173.426 Transportation Other Regulations Relating to Transportation....426 Excepted packages for articles containing natural uranium or thorium. A manufactured article in which the sole Class 7 (radioactive) material content is natural uranium, unirradiated depleted uranium...

  1. 49 CFR 173.426 - Excepted packages for articles containing natural uranium or thorium.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... uranium or thorium. 173.426 Section 173.426 Transportation Other Regulations Relating to Transportation....426 Excepted packages for articles containing natural uranium or thorium. A manufactured article in which the sole Class 7 (radioactive) material content is natural uranium, unirradiated depleted uranium...

  2. 49 CFR 173.426 - Excepted packages for articles containing natural uranium or thorium.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... uranium or thorium. 173.426 Section 173.426 Transportation Other Regulations Relating to Transportation....426 Excepted packages for articles containing natural uranium or thorium. A manufactured article in which the sole Class 7 (radioactive) material content is natural uranium, unirradiated depleted uranium...

  3. Comparison of the Environment, Health, And Safety Characteristics of Advanced Thorium- Uranium and Uranium-Plutonium Fuel Cycles

    NASA Astrophysics Data System (ADS)

    Ault, Timothy M.

    The environment, health, and safety properties of thorium-uranium-based (''thorium'') fuel cycles are estimated and compared to those of analogous uranium-plutonium-based (''uranium'') fuel cycle options. A structured assessment methodology for assessing and comparing fuel cycle is refined and applied to several reference fuel cycle options. Resource recovery as a measure of environmental sustainability for thorium is explored in depth in terms of resource availability, chemical processing requirements, and radiological impacts. A review of available experience and recent practices indicates that near-term thorium recovery will occur as a by-product of mining for other commodities, particularly titanium. The characterization of actively-mined global titanium, uranium, rare earth element, and iron deposits reveals that by-product thorium recovery would be sufficient to satisfy even the most intensive nuclear demand for thorium at least six times over. Chemical flowsheet analysis indicates that the consumption of strong acids and bases associated with thorium resource recovery is 3-4 times larger than for uranium recovery, with the comparison of other chemical types being less distinct. Radiologically, thorium recovery imparts about one order of magnitude larger of a collective occupational dose than uranium recovery. Moving to the entire fuel cycle, four fuel cycle options are compared: a limited-recycle (''modified-open'') uranium fuel cycle, a modified-open thorium fuel cycle, a full-recycle (''closed'') uranium fuel cycle, and a closed thorium fuel cycle. A combination of existing data and calculations using SCALE are used to develop material balances for the four fuel cycle options. The fuel cycle options are compared on the bases of resource sustainability, waste management (both low- and high-level waste, including used nuclear fuel), and occupational radiological impacts. At steady-state, occupational doses somewhat favor the closed thorium option while low-level waste volumes slightly favor the closed uranium option, although uncertainties are significant in both cases. The high-level waste properties (radioactivity, decay heat, and ingestion radiotoxicity) all significantly favor the closed fuel cycle options (especially the closed thorium option), but an alternative measure of key fission product inventories that drive risk in a repository slightly favors the uranium fuel cycles due to lower production of iodine-129. Resource requirements are much lower for the closed fuel cycle options and are relatively similar between thorium and uranium. In additional to the steady-state results, a variety of potential transition pathways are considered for both uranium and thorium fuel cycle end-states. For dose, low-level waste, and fission products contributing to repository risk, the differences among transition impacts largely reflected the steady-state differences. However, the HLW properties arrived at a distinctly opposite result in transition (strongly favoring uranium, whereas thorium was strongly favored at steady-state), because used present-day fuel is disposed without being recycled given that uranium-233, rather than plutonium, is the primarily fissile nuclide at the closed thorium fuel cycle's steady-state. Resource consumption was the only metric was strongly influenced by the specific transition pathway selected, favoring those pathways that more quickly arrived at steady-state through higher breeding ratio assumptions regardless of whether thorium or uranium was used.

  4. METHOD OF RECOVERING TRANSURANIC ELEMENTS OF AN ATOMIC NUMBER BELOW 95

    DOEpatents

    Seaborg, G.T.; James, R.A.

    1959-12-15

    The concentration of neptanium or plutonium by two carrier precipitation steps with identical carriers but using (after dissolution of the first carrier in nitric acid) a reduced quantity of carrier for the second precipitation is discussed. Carriers suitable are uranium(IV) hypophosphate, uranium(IV) pyrophosphate, uranium(IV) oxalate, thorium oxalate, thorium citrate, thorium tartrate, thorium sulfide, and uranium(IV) sulfide.

  5. SEPARATION OF THORIUM FROM URANIUM

    DOEpatents

    Bane, R.W.

    1959-09-01

    A description is given for the separation of thorium from uranium by forming an aqueous acidic solution containing ionic species of thorium, uranyl uranium, and hydroxylamine, flowing the solution through a column containing the phenol-formaldehyde type cation exchange resin to selectively adsorb substantially all the thorium values and a portion of the uranium values, flowing a dilute solution of hydrochloric acid through the column to desorb the uranium values, and then flowing a dilute aqueous acidic solution containing an ion, such as bisulfate, which has a complexing effect upon thortum through the column to desorb substantially all of the thorium.

  6. Quantitative radiochemical method for determination of major sources of natural radioactivity in ores and minerals

    USGS Publications Warehouse

    Rosholt, J.N.

    1954-01-01

    When an ore sample contains radioactivity other than that attributable to the uranium series in equilibrium, a quantitative analysis of the other emitters must be made in order to determine the source of this activity. Thorium-232, radon-222, and lead-210 have been determined by isolation and subsequent activity analysis of some of their short-lived daughter products. The sulfides of bismuth and polonium are precipitated out of solutions of thorium or uranium ores, and the ??-particle activity of polonium-214, polonium-212, and polonium-210 is determined by scintillation-counting techniques. Polonium-214 activity is used to determine radon-222, polonium-212 activity for thorium-232, and polonium-210 for lead-210. The development of these methods of radiochemical analysis will facilitate the rapid determination of some of the major sources of natural radioactivity.

  7. SELECTIVE SEPARATION OF URANIUM FROM THORIUM, PROTACTINIUM AND FISSION PRODUCTS BY PEROXIDE DISSOLUTION METHOD

    DOEpatents

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1959-08-18

    A method is described for separating U/sup 233/ from thorium and fission products. The separation is effected by forming a thorium-nitric acid solution of about 3 pH, adding hydrogen peroxide to precipitate uranium and thorium peroxide, treating the peroxides with sodium hydroxide to selectively precipitate the uranium peroxide, and reacting the separated solution with nitric acid to re- precipitate the uranium peroxide.

  8. SOLVENT EXTRACTION PROCESS FOR THE SEPARATION OF URANIUM AND THORIUM FROM PROTACTINIUM AND FISSION PRODUCTS

    DOEpatents

    Rainey, R.H.; Moore, J.G.

    1962-08-14

    A liquid-liquid extraction process was developed for recovering thorium and uranium values from a neutron irradiated thorium composition. They are separated from a solvent extraction system comprising a first end extraction stage for introducing an aqueous feed containing thorium and uranium into the system consisting of a plurality of intermediate extractiorr stages and a second end extractron stage for introducing an aqueous immiscible selective organic solvent for thorium and uranium in countercurrent contact therein with the aqueous feed. A nitrate iondeficient aqueous feed solution containing thorium and uranium was introduced into the first end extraction stage in countercurrent contact with the organic solvent entering the system from the second end extraction stage while intro ducing an aqueous solution of salting nitric acid into any one of the intermediate extraction stages of the system. The resultant thorium and uranium-laden organic solvent was removed at a point preceding the first end extraction stage of the system. (AEC)

  9. Potential of Melastoma malabathricum as bio-accumulator for uranium and thorium from soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saat, Ahmad, E-mail: ahmad183@salam.uitm.edu.my; Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam; Kamsani, Ain Shaqina

    2015-04-29

    Uranium and Thorium are naturally occuring radionuclides. However, due to anthropogenic activities in some locations their concentrations in the soils could be elevated. This study explores the potential of Melastoma malabathricum (locally known as ‘pokok senduduk’) as bio-accumulator of uranium and thorium from soils of three different study areas, namely former tin mining, industrial and residential/commercial areas in Peninsular Malaysia. The study found elevated concentrations of uranium and thorium in former tin mining soils as compared to natural abundance. However in industral and residential/commercial areas the concentrations are within the range of natural abundance. In terms of transfer factor (TF),more » in ex-mining areas TF > 1 for uranium in the leaf, stem and roots, indicating accumulation of uranium from soil. However for thorium TF < 1, indicating the occurence of transfer from soil to root, stem and leaf, but no accumulation. For other areas only transfer of uranium and thorium were observed. The results indicated the potential of Melastoma malabathricum to be used as bio-accumulatior of uranium, especially in areas of elevated concentration.« less

  10. The feasibility study of small long-life gas cooled fast reactor with mixed natural Uranium/Thorium as fuel cycle input

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul

    2012-06-06

    A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE burn-up scheme has been performed. In this study, design GCFR with Helium coolant which can be continuously operated by supplying mixed Natural Uranium/Thorium without fuel enrichment plant or fuel reprocessing plant. The active reactor cores are divided into two region, Thorium fuel region and Uranium fuel region. Each fuel core regions are subdivided into ten parts (region-1 until region-10) with the same volume in the axial direction. The fresh Natural Uranium and Thorium is initially put in region-1, after one cycle of 10 years of burn-up it ismore » shifted to region-2 and the each region-1 is filled by fresh natural Uranium/Thorium fuel. This concept is basically applied to all regions in both cores area, i.e. shifted the core of i{sup th} region into i+1 region after the end of 10 years burn-up cycle. For the next cycles, we will add only Natural Uranium and Thorium on each region-1. The calculation results show the reactivity reached by mixed Natural Uranium/Thorium with volume ratio is 4.7:1. This reactor can results power thermal 550 MWth. After reactor start-up the operation, furthermore reactor only needs Natural Uranium/Thorium supply for continue operation along 100 years.« less

  11. Separation of uranium from (Th,U)O.sub.2 solid solutions

    DOEpatents

    Chiotti, Premo; Jha, Mahesh Chandra

    1976-09-28

    Uranium is separated from mixed oxides of thorium and uranium by a pyrometallurgical process in which the oxides are mixed with a molten chloride salt containing thorium tetrachloride and thorium metal which reduces the uranium oxide to uranium metal which can then be recovered from the molten salt. The process is particularly useful for the recovery of uranium from generally insoluble high-density sol-gel thoria-urania nuclear reactor fuel pellets.

  12. SEPARATION OF URANIUM FROM THORIUM

    DOEpatents

    Hellman, N.N.

    1959-07-01

    A process is presented for separating uranium from thorium wherein the ratio of thorium to uranium is between 100 to 10,000. According to the invention the thoriumuranium mixture is dissolved in nitric acid, and the solution is prepared so as to obtain the desired concentration within a critical range of from 4 to 8 N with regard to the total nitrate due to thorium nitrate, with or without nitric acid or any nitrate salting out agent. The solution is then contacted with an ether, such as diethyl ether, whereby uranium is extracted into ihe organic phase while thorium remains in the aqueous phase.

  13. 10 CFR 40.28 - General license for custody and long-term care of uranium or thorium byproduct materials disposal...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false General license for custody and long-term care of uranium... long-term care of uranium or thorium byproduct materials disposal sites. (a) A general license is... in this part for uranium or thorium mill tailings sites closed under title II of the Uranium Mill...

  14. 10 CFR 40.28 - General license for custody and long-term care of uranium or thorium byproduct materials disposal...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false General license for custody and long-term care of uranium... long-term care of uranium or thorium byproduct materials disposal sites. (a) A general license is... in this part for uranium or thorium mill tailings sites closed under title II of the Uranium Mill...

  15. 10 CFR 40.28 - General license for custody and long-term care of uranium or thorium byproduct materials disposal...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false General license for custody and long-term care of uranium... long-term care of uranium or thorium byproduct materials disposal sites. (a) A general license is... in this part for uranium or thorium mill tailings sites closed under title II of the Uranium Mill...

  16. 10 CFR 40.28 - General license for custody and long-term care of uranium or thorium byproduct materials disposal...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false General license for custody and long-term care of uranium... long-term care of uranium or thorium byproduct materials disposal sites. (a) A general license is... in this part for uranium or thorium mill tailings sites closed under title II of the Uranium Mill...

  17. PROCESS FOR CONTINUOUSLY SEPARATING IRRADIATION PRODUCTS OF THORIUM

    DOEpatents

    Hatch, L.P.; Miles, F.T.; Sheehan, T.V.; Wiswall, R.H.; Heus, R.J.

    1959-07-01

    A method is presented for separating uranium-233 and protactinium from thorium-232 containing compositions which comprises irradiating finely divided particles of said thorium with a neutron flux to form uranium-233 and protactinium, heating the neutron-irradiated composition in a fluorine and hydrogen atmosphere to form volatile fluorides of uranium and protactinium and thereafter separating said volatile fluorides from the thorium.

  18. Determination of lead, uranium, thorium, and thallium in silicate glass standard materials by isotope dilution mass spectrometry

    USGS Publications Warehouse

    Barnes, I.L.; Garner, E.L.; Gramlich, J.W.; Moore, L.J.; Murphy, T.J.; Machlan, L.A.; Shields, W.R.; Tatsumoto, M.; Knight, R.J.

    1973-01-01

    A set of four standard glasses has been prepared which have been doped with 61 different elements at the 500-, 50-, 1-, and 0.02-ppm level. The concentrations of lead, uranium, thorium, and thallium have been determined by isotope dilution mass spectrometry at a number of points in each of the glasses. The results obtained from independent determinations in two laboratories demonstrate the homogeneity of the samples and that precision of the order of 0.5% (95% L.E.) may be obtained by the method even at the 20-ppb level for these elements. The chemical and mass spectrometric procedures necessary are presented.

  19. Airborne gamma-ray spectrometer and magnetometer survey: Weed quadrangle, California. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-05-01

    Twelve anamolous areas attributable to gamma radiation in the uranium spectral window, and twenty-three in the thorium channel, have been recognized and delineated on the Weed quadrangle. The majority of the uranium anomalies are located in the southwestern part of the map sheet. Most of these are correlated with the pre-Cretaceous metamorphic rock system and the Mesozoic granitic rocks intrusive into it. Of the twenty-three anomalous areas of increased gamma radiation in the thorium spectral window, most are located in the northeast and the east center in a north-south trending belt. However, this apparent alignment is probably fortuitous as themore » individual anomalies are correlated with several different rock formations. Three are correlated with upper Cretaceous marine sediments, six with Ordovician marine sediments, two with Mesozoic granitic intrusives, and two with Silurian marine sediments. In the northwestern part of the quadrangle, four thorium radiation anomalies are delineated over exposures of upper Jurassic marine rocks. Anomaly 6, in the southwest, warrants attention as it suggests strong radiation in the uranium channel with little or no thorium radiation. The uranium/thorium and uranium/potassium ratio anomalies are also strong, supporting the likelihood of uranium enrichment. The feature is located on line 540, fiducials 7700 to 7720. Anomaly 7, on line 540, fiducials 8390 to 8420, shows similar characteristics although a minor thorium excursion is present. Anomaly 10, on line 3010 fiducials 9820 to 9840, is also characterized by a strong uranium radiation spike, with minor thorium radiation. The uranium/thorium and uranium/potassium ratio anomalies are well defined and relatively intense.« less

  20. The distribution of uranium and thorium in granitic rocks of the basin and range province, Western United States

    USGS Publications Warehouse

    McNeal, J.M.; Lee, D.E.; Millard, H.T.

    1981-01-01

    Some secondary uranium deposits are thought to have formed from uranium derived by the weathering of silicic igneous rocks such as granites, rhyolites, and tuffs. A regional geochemical survey was made to determine the distribution of uranium and thorium in granitic rocks of the Basin and Range province in order to evaluate the potential for secondary uranium occurrences in the area. The resulting geochemical maps of uranium, thorium, and the Th:U ratio may be useful in locating target areas for uranium exploration. The granites were sampled according to a five-level, nested, analysis-of-variance design, permitting estimates to be made of the variance due to differences between:(1) two-degree cells; (2) one-degree cells; (3) plutons; (4) samples; and (5) analyses. The cells are areas described in units of degrees of latitude and longitude. The results show that individual plutons tend to differ in uranium and thorium concentrations, but that each pluton tends to be relatively homogeneous. Only small amounts of variance occur at the two degree and the between-analyses levels. The three geochemical maps that were prepared are based on one-degree cell means. The reproducibility of the maps is U > Th ??? Th:U. These geochemical maps may be used in three methods of locating target areas for uranium exploration. The first method uses the concept that plutons containing the greatest amounts of uranium may supply the greatest amounts of uranium for the formation of secondary uranium occurrences. The second method is to examine areas with high thorium contents, because thorium and uranium are initially highly correlated but much uranium could be lost by weathering. The third method is to locate areas in which the plutons have particularly high Th:U ratios. Because uranium, but not thorium, is leached by chemical weathering, high Th:U ratios suggest a possible loss of uranium and possibly a greater potential for secondary uranium occurrences to be found in the area. ?? 1981.

  1. 10 CFR 765.2 - Scope and applicability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING... uranium or thorium processing sites as a result of byproduct material generated as an incident of sales to the United States. (b) Costs of remedial action at active uranium or thorium processing sites are...

  2. 10 CFR 765.2 - Scope and applicability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING... uranium or thorium processing sites as a result of byproduct material generated as an incident of sales to the United States. (b) Costs of remedial action at active uranium or thorium processing sites are...

  3. 10 CFR 765.2 - Scope and applicability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING... uranium or thorium processing sites as a result of byproduct material generated as an incident of sales to the United States. (b) Costs of remedial action at active uranium or thorium processing sites are...

  4. 10 CFR 765.2 - Scope and applicability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING... uranium or thorium processing sites as a result of byproduct material generated as an incident of sales to the United States. (b) Costs of remedial action at active uranium or thorium processing sites are...

  5. 10 CFR 765.2 - Scope and applicability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING... uranium or thorium processing sites as a result of byproduct material generated as an incident of sales to the United States. (b) Costs of remedial action at active uranium or thorium processing sites are...

  6. RECOVERY OF URANIUM AND THORIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Calkins, G.D.

    1958-06-10

    >A process is described for the recovery of uranium and thorium from monazite sand, which is frequently processed by treating it with a hot sodium hydroxide solution whereby a precipitate forms consisting mainly of oxides or hydroxides of the rare earths, thorium and uranium. The precipitate is dissolved in mineral acid, and the acid solution is then neutralized to a pH value of between 5.2 and 6.2 whereby both the uranium and thorium precipitate as the hydroxides, while substantially all the rare earth metal values present remain in the solution. The uranium and thoriunn can then be separated by dissolving the precipitate in a solution containing a mixture of alkali carbonate and alkali bicarbonate: and contacting the carbonate solution with a strong-base anion exchange resin whereby the uranium values are adsorbed on the resin while the thorium remains in solution.

  7. Transmutation of uranium and thorium in the particle field of the Quinta sub-critical assembly

    NASA Astrophysics Data System (ADS)

    Hashemi-Nezhad, S. R.; Asquith, N. L.; Voronko, V. A.; Sotnikov, V. V.; Zhadan, Alina; Zhuk, I. V.; Potapenko, A.; Husak, Krystsina; Chilap, V.; Adam, J.; Baldin, A.; Berlev, A.; Furman, W.; Kadykov, M.; Khushvaktov, J.; Kudashkin, I.; Mar'in, I.; Paraipan, M.; Pronskih, V.; Solnyshkin, A.; Tyutyunnikov, S.

    2018-03-01

    The fission rates of natural uranium and thorium were measured in the particle field of Quinta, a 512 kg natural uranium target-blanket sub-critical assembly. The Quinta assembly was irradiated with deuterons of energy 4 GeV from the Nuclotron accelerator of the Joint Institute for Nuclear Research (JINR), Dubna, Russia. Fission rates of uranium and thorium were measured using Gamma spectroscopy and fission track techniques. The production rate of 239Np was also measured. The obtained experimental results were compared with Monte Carlo predictions using the MCNPX 2.7 code employing the physics and fission-evaporation models of INCL4-ABLA, CEM03.03 and LAQGSM03.03. Some of the neutronic characteristics of the Quinta are compared with the "Energy plus Transmutation (EpT)" subcritical assembly, which is composed of a lead target and natU blanket. This comparison clearly demonstrates the importance of target material, neutron moderator and reflector types on the performance of a spallation neutron driven subcritical system. As the dimensions of the Quinta are very close to those of an optimal multi-rod-uranium target, the experimental and Monte Carlo calculation results presented in this paper provide insights on the particle field within a uranium target as well as in Accelerator Driven Systems in general.

  8. Quantitative determination of environmental levels of uranium, thorium and plutonium in bone by solvent extraction and alpha spectrometry

    NASA Astrophysics Data System (ADS)

    Singh, Narayani P.; Zimmerman, Carol J.; Lewis, Laura L.; Wrenn, McDonald E.

    1984-06-01

    Solvent extraction and alpha-spectrometry have been emplyed in the quantitative simultaneous determination of uranium. thorium and plutonium. The bone specimens, spiked with 232U, 229Th and 242Pu tracers, are wet ashed with HNO 3 followed by alternate additions of a new drops of HNO 3 and H 2O 2. Uranium is reduced to the tetravalent state with 200 mg SnCl 2 and 25 ml HI. Uranium, thorium and plutonium are then coprecipitated with calcium as oxalate, heated to 550°C, dissolved in 50 ml HCl, and the acidity adjusted to 10 M. Uranium and plutonium are extracted into a 20% tri-lauryl amine (TLA) solution in xylene, leaving thorium in the aqueous phase. Plutonium is first back-extracted from the TLA phase by shaking with a 1:1.5 volume of 0.05 M NH 4I in 8 M HCl, which reduces Pu(IV) to Pu(III). Uranium is then back-extracted with an equal volume of 0.1 M HCl. Thorium, which was left in the aqueous phase, is evaporated to dryness, dissolved in 4 M HNO 3, and the acidity adjusted to 4 M. Thorium is then extracted into 20% TLA solution in xylene pre-equilibrated with 4 M HNO 3, and back-extracted with 10 M HCl. Uranium, thorium, and plutonium are then electrodeposited separately onto platinum discs and counted by an alpha-spectrometer with a multi-channel analyzer and surface barrier silicon diodes. The mean recoveries of uranium, thorium, and plutonium in bovine, dog, and human bones were over 70%.

  9. 78 FR 21352 - Update on Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... DEPARTMENT OF ENERGY Update on Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites AGENCY: Department of Energy. ACTION: Notice of the Title X claims during fiscal... at active uranium and thorium processing sites to remediate byproduct material generated as an...

  10. METHOD OF PREPARING URANIUM, THORIUM, OR PLUTONIUM OXIDES IN LIQUID BISMUTH

    DOEpatents

    Davidson, J.K.; Robb, W.L.; Salmon, O.N.

    1960-11-22

    A method is given for forming compositions, as well as the compositions themselves, employing uranium hydride in a liquid bismuth composition to increase the solubility of uranium, plutonium and thorium oxides in the liquid bismuth. The finely divided oxide of uranium, plutonium. or thorium is mixed with the liquid bismuth and uranium hydride, the hydride being present in an amount equal to about 3 at. %, heated to about 5OO deg C, agitated and thereafter cooled and excess resultant hydrogen removed therefrom.

  11. RECOVERY OF THORIUM AND URANIUM VALUES FROM AQUEOUS SOLUTIONS

    DOEpatents

    Calkins, G.D.

    1958-02-18

    This patent deals with the separation and recovery of uranium from monazite sand. After initial treatment of the sand with sodium hydroxide, a precipitate is obtuined which contains the uranium, thorium, rare earths and some phosphorus. This precipitate is then dissolved in nitric acid. The bulk of the rare earths are removed from thls soiution by adding aa excess of alkali carbonate, causing precipitation of the rare earths together with part of the thorium present. The solution still contains a considerable amount of thorium, some rare earths, and practically all of the uranium originally present. Thorium and rare earth values are readily precipitated from such solution, and the uranium values thus isolated, by the addition of an excess hydrogen peroxide. The pH value of the solution is preferably adjusted to at least 9 prior to the addition of the peroxide.

  12. Global Uranium And Thorium Resources: Are They Adequate To Satisfy Demand Over The Next Half Century?

    NASA Astrophysics Data System (ADS)

    Lambert, I. B.

    2012-04-01

    This presentation will consider the adequacy of global uranium and thorium resources to meet realistic nuclear power demand scenarios over the next half century. It is presented on behalf of, and based on evaluations by, the Uranium Group - a joint initiative of the OECD Nuclear Energy Agency and the International Atomic Energy Agency, of which the author is a Vice Chair. The Uranium Group produces a biennial report on Uranium Resources, Production and Demand based on information from some 40 countries involved in the nuclear fuel cycle, which also briefly reviews thorium resources. Uranium: In 2008, world production of uranium amounted to almost 44,000 tonnes (tU). This supplied approximately three-quarters of world reactor requirements (approx. 59,000 tU), the remainder being met by previously mined uranium (so-called secondary sources). Information on availability of secondary sources - which include uranium from excess inventories, dismantling nuclear warheads, tails and spent fuel reprocessing - is incomplete, but such sources are expected to decrease in market importance after 2013. In 2008, the total world Reasonably Assured plus Inferred Resources of uranium (recoverable at less than 130/kgU) amounted to 5.4 million tonnes. In addition, it is clear that there are vast amounts of uranium recoverable at higher costs in known deposits, plus many as yet undiscovered deposits. The Uranium Group has concluded that the uranium resource base is more than adequate to meet projected high-case requirements for nuclear power for at least half a century. This conclusion does not assume increasing replacement of uranium by fuels from reprocessing current reactor wastes, or by thorium, nor greater reactor efficiencies, which are likely to ameliorate future uranium demand. However, progressively increasing quantities of uranium will need to be mined, against a backdrop of the relatively small number of producing facilities around the world, geopolitical uncertainties and strong opposition to growth of nuclear power in a number of quarters - it is vital that the market provides incentives for exploration and development of environmentally sustainable mining operations. Thorium: World Reasonably Assured plus Inferred Resources of thorium are estimated at over 2.2 million tonnes, in hard rock and heavy mineral sand deposits. At least double this amount is considered to occur in as yet undiscovered thorium deposits. Currently, demand for thorium is insignificant, but even a major shift to thorium-fueled reactors would not make significant inroads into the huge resource base over the next half century.

  13. PROCESSING OF MONAZITE SAND

    DOEpatents

    Calkins, G.D.; Bohlmann, E.G.

    1957-12-01

    A process for the recovery of thorium, uranium, and rare earths from monazite sands is presented. The sands are first digested and dissolved in concentrated NaOH, and the solution is then diluted causing precipitation of uranium, thorium and rare earth hydroxides. The precipitate is collected and dissolved in HCl, and the pH of this solution is adjusted to about 6, precipitating the hydroxides of thorium and uranium but leaving the rare earths in solution. The rare earths are then separated from the solution by precipitation at a still higher pH. The thorium and uranium containing precipitate is redissolved in HNO/sub 3/ and the two elements are separated by extraction into tributyl phosphate and back extraction with a weakly acidic solution to remove the thorium.

  14. Preliminary study of radioactive limonite localities in Colorado, Utah, and Wyoming

    USGS Publications Warehouse

    Lovering, T.G.; Beroni, E.P.

    1956-01-01

    Nine radioactive limonite localities of different types were sampled during the spring and fall of 1953 in an effort to establish criteria for differentiating limonite outcrops associated with uranium or thorium deposits from limonite outcrops not associated with such deposits. The samples were analyzed for uranium and thorium by standard chemical methods, for equivalent uranium by the radiometric method, and for a number of common metals by semiquantitative geochemical methods. Correlation coefficients were then calculated for each of the metals with respect to equivalent uranium, and to uranium where present, for all of the samples from each locality. The correlation coefficients may indicate a significant association between uranium or thorium and certain metals. Occurrences of specific that are interpreted as significant very considerably for different uranium localities but are more consistent for the thorium localities. Samples taken from radioactive outcrops in the vicinity of uranium or thorium deposits can be quickly analyzed by geochemical methods for various elements. Correlation coefficients can then be determined for the various elements with respect to uranium or thorium; if any significant correlations are obtained, the elements showing such correlation may be indicators of uranium or thorium. Soil samples of covered areas in the vicinity of the radioactive outcrop may then be analyzed for the indicator elements and any resulting anomalies used as a guide for prospecting where the depth of overburden is too great to allow the use of radiation-detecting instruments. Correlation coefficients of the associated indicator elements, used in conjunction with petrographic evidence, may also be useful in interpreting the origin and paragenesis of radioactive deposits. Changes in color of limonite stains on the outcrop may also be a useful guide to ore in some areas.

  15. The mechanism of thorium biosorption by Rhizopus arrhizus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsezos, M.; Volesky, B.

    1982-04-01

    Inactive cells of Rhizopus arrhizus have been documented to exhibit a high thorium biosorptive uptake (170 mg/g) from aqueous solutions. The mechanism of thorium sequestering by this biomass type was investigated following the same method as for the uranium biosorption emchanism. The thorium sequestering mechanism appeared somewhat different from that of uranium. Experimental evidence is presented which indicates that, at optimum biosorption pH (4), thorium coordinates with the nitroge of the chitin cell wall network and, in addition, more thorium is adsorbed by the external section of the fungal cell wall. At pH 2 the overall thorium uptake is reduced.more » The kinetic study of thorium biosorption revealed a very rapid rate of uptake. Unlike uranium at optimum solution pH, Fe/sup 2 +/ and Zn/sup 2 +/ did not interfere significantly with the thorium biosorptive uptake capacity of R. arrhizus.« less

  16. ADSORPTION METHOD FOR SEPARATING THORIUM VALUES FROM URANIUM VALUES

    DOEpatents

    Boyd, G.E.; Russell, E.R.; Schubert, J.

    1959-08-01

    An improved ion exchange method is described for recovery of uranium and thorium values as separate functions from an aqueous acidic solution containing less than 10/sup -3/ M thorium ions and between 0.1 and 1 M uranyl ions. The solution is passed through a bed of cation exchange resin in the acid form to adsorb all the thorium ions and a portion of the uranyl ions. The uranium is eluted by means of aqueous 0.1 to 0.4 M sulfuric acid. The thorium may then be stripped from the resin by elution with aqueous 0.5 M oxalic acid.

  17. ADSORPTION METHOD FOR SEPARATING THORIUM VALUES FROM URANIUM VALUES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, G.E.; Russell, E.R.; Schubert, J.

    An improved ion exchange method is described for recovery of uranium and thorium values as separate functions from an aqueous acidic solution containing less than 10/sup -3/ M thorium ions and between 0.1 and 1 M uranyl ions. The solution is passed through a bed of cation exchange resin in the acid form to adsorb all the thorium ions and a portion of the uranyl ions. The uranium is eluted by means of aqueous 0.1 to 0.4 M sulfuric acid. The thorium may then be stripped from the resin by elution with aqueous 0.5 M oxalic acid.

  18. Actinide removal from spent salts

    DOEpatents

    Hsu, Peter C.; von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Adamson, Martyn G.

    2002-01-01

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grate, Jay W.; Bliss, Mary; Farmer, Orville T.

    Ultra low-background radiation measurements are essential to several large-scale physics investigations, such as those involving neutrinoless double-beta decay, dark matter detection (such as SuperCDMS), and solar neutrino detection. There is a need for electrically and thermally insulating dielectric materials with extremely low-background radioactivity for detector construction. This need is best met with plastics. Most currently available structural plastics have milliBecquerel-per-kilogram total intrinsic radioactivity. Modern low-level detection systems require a large variety of plastics with low microBecquerel-per-kilogram levels. However, the assay of polymer materials for extremely low levels of radioactive elements, uranium and thorium in particular, presents new challenges. It ismore » only recently that any certified reference materials (CRMs) for toxic metals such as lead or cadmium in plastics have become available. However, there are no CRMs for uranium or thorium in thermoplastics. This paper discusses our assessment of the use of laser ablation (LA) for sampling and inductively coupled plasma mass spectrometry (ICP-MS) for analysis of polyethylene (PE) samples, with an emphasis on uranium determination. Using a CRM for lead in PE, we examine LA and ICP-MS parameters that determine whether the total atom efficiencies for uranium and lead are similar, and explore methods to use the lead content in a plastic as part of the process of estimating or determining the uranium content by LA-ICP-MS.« less

  20. METHOD OF RECOVERING URANIUM COMPOUNDS

    DOEpatents

    Poirier, R.H.

    1957-10-29

    S>The recovery of uranium compounds which have been adsorbed on anion exchange resins is discussed. The uranium and thorium-containing residues from monazite processed by alkali hydroxide are separated from solution, and leached with an alkali metal carbonate solution, whereby the uranium and thorium hydrorides are dissolved. The carbonate solution is then passed over an anion exchange resin causing the uranium to be adsorbed while the thorium remains in solution. The uranium may be recovered by contacting the uranium-holding resin with an aqueous ammonium carbonate solution whereby the uranium values are eluted from the resin and then heating the eluate whereby carbon dioxide and ammonia are given off, the pH value of the solution is lowered, and the uranium is precipitated.

  1. Determination of the elemental concentration of uranium and thorium in the products and by-products of amang tin tailings process

    NASA Astrophysics Data System (ADS)

    Alnour, I. A.; Wagiran, H.; Ibrahim, N.; Hamzah, S.; Elias, M. S.

    2017-01-01

    Amang or tin tailing is processed into concentrated ores and other economical valuable minerals such as monazite, zircon, xenotime, ilmenite etc. Besides that, the tailings from these ores may have a significant potential source of radiation exposure to amang plants' workers. This study was conducted to determine the elemental concentration of uranium and thorium in mineral samples collected from five amang tailing factories. The concentration of uranium and thorium was carried out by using instrumental neutron activation analysis (INAA) relative technique. The concentration of uranium and thorium in ppm obtained in this study are as follows: raw (189-1064) and (622-4965); monazite (1076-1988) and (3467-33578); xenotime 4053 and 5540; zircon (309-3090) and (387-6339); ilmenite (104-583) and (88-1205); rutile (212-889) and (44-1119); pyrite (7-43) and (9-132); and waste (5-338) and (9-1218) respectively. The analysis results shows that the monazite, xenotime and zircon have high content of uranium and thorium, whereas ilmenite, rutile, pyrite and waste have lower concentration compare with raw materials after tailing process. The highest values of uranium and thorium concentrations (4053 ± 428 ppm and 33578 ± 873 ppm, respectively) were observed in xenotime and monazite; whereas the lowest value was 5.48 ± 0.86 ppm of uranium recorded in waste (sand) and 9 ± 0.32 ppm of thorium for waste (sand) and pyrite.

  2. Thorium-uranium fractionation by garnet - Evidence for a deep source and rapid rise of oceanic basalts

    NASA Technical Reports Server (NTRS)

    Latourrette, T. Z.; Kennedy, A. K.; Wasserburg, G. J.

    1993-01-01

    Mid-ocean ridge basalts (MORBs) and ocean island basalts (OIBs) are derived by partial melting of the upper mantle and are marked by systematic excesses of thorium-230 activity relative to the activity of its parent, uranium-238. Experimental measurements of the distribution of thorium and uranium between the melt and solid residue show that, of the major phases in the upper mantle, only garnet will retain uranium over thorium. This sense of fractionation, which is opposite to that caused by clinopyroxene-melt partitioning, is consistent with the thorium-230 excesses observed in young oceanic basalts. Thus, both MORBs and OIBs must begin partial melting in the garnet stability field or below about 70 kilometers. A calculation shows that the thorium-230-uranium-238 disequilibrium in MORBs can be attributed to dynamic partial melting beginning at 80 kilometers with a melt porosity of 0.2 percent or more. This result requires that melting beneath ridges occurs in a wide region and that the magma rises to the surface at a velocity of at least 0.9 meter per year.

  3. 49 CFR 173.426 - Excepted packages for articles containing natural uranium or thorium.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Excepted packages for articles containing natural....426 Excepted packages for articles containing natural uranium or thorium. A manufactured article in which the sole Class 7 (radioactive) material content is natural uranium, unirradiated depleted uranium...

  4. 49 CFR 173.426 - Excepted packages for articles containing natural uranium or thorium.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Excepted packages for articles containing natural....426 Excepted packages for articles containing natural uranium or thorium. A manufactured article in which the sole Class 7 (radioactive) material content is natural uranium, unirradiated depleted uranium...

  5. The Use of Thorium within the Nuclear Power Industry - 13472

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Keith

    2013-07-01

    Thorium is 3 to 4 times more abundant than uranium and is widely distributed in nature as an easily exploitable resource in many countries. Unlike natural uranium, which contains ∼0.7% fissile {sup 235}U isotope, natural thorium does not contain any fissile material and is made up of the fertile {sup 232}Th isotope only. Therefore thorium and thorium-based fuel as metal, oxide or carbide, has been utilized in combination with fissile {sup 235}U or {sup 239}Pu in nuclear research and power reactors for conversion to fissile {sup 233}U, thereby enlarging fissile material resources. During the pioneering years of nuclear energy, frommore » the mid 1950's to mid 1970's, there was considerable interest worldwide to develop thorium fuels and fuel cycles in order to supplement uranium reserves. Thorium fuels and fuel cycles are particularly relevant to countries having large thorium deposits but very limited uranium reserves for their long term nuclear power programme. The feasibility of thorium utilization in high temperature gas cooled reactors (HTGR), light water reactors (LWR), pressurized heavy water reactors (PHWRs), liquid metal cooled fast breeder reactors (LMFBR) and molten salt breeder reactors (MSBR) were demonstrated. The initial enthusiasm for thorium fuels and fuel cycles was not sustained among the developing countries later, due to new discovery of uranium deposits and their improved availability. However, in recent times, the need for proliferation-resistance, longer fuel cycles, higher burnup, and improved waste form characteristics, reduction of plutonium inventories and in situ use of bred-in fissile material has led to renewed interest in thorium-based fuels and fuel cycles. (authors)« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuzmina, L.A.

    A method has been developed for determining uranium, thorium, and ionium (Th/sup 230/) in sea silt from a single sample. The completeness of isolation and radiochemical purity of thorium isotopes have been tested by means of tracers. The method has been proved on samples of sea silt as well as of rocks, ores, and minerals. It is applicable at thorium content from 5 x 10/sup -5/ to x x 10/sup - 4/% when uranium content is x x 10/sup -4/ % and at uranium content up to 70% when ionium contert is x x 10/sup -4/% (uranium equivalent). (tr-auth)

  7. SEPARATION OF URANIUM FROM THORIUM AND PROTACTINIUM

    DOEpatents

    Musgrave, W.K.R.

    1959-06-30

    This patent relates to the separation of uranium from thorium and protactinium; such mixtures of elements usually being obtained by neutron irradiation of thorium. The method of separating the constituents has been first to dissolve the mixture of elements in concertrated nitric acid and then to remove the protactinium by absorption on manganese dioxide and the uranium by solvent extraction with ether. Prior to now, comparatively large amounts of thorium were extracted with the uranium. According to the invention this is completely prevented by adding sodium diethyldithiocarbamate to the mixture of soluble nitrate salts. The organic salt has the effect of reacting only with the uranyl nitrate to form the corresponding uranyl salt which can then be selectively extracted from the mixture with amyl acetate.

  8. Uranium- and thorium-bearing pegmatites of the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, J.W.; Arengi, J.T.; Parrish, I.S.

    1980-04-01

    This report is part of the National Uranium Resource Evaluation (NURE) Program designed to identify criteria favorable for the occurrence of the world's significant uranium deposits. This project deals specifically with uranium- and thorium-bearing pegmatites in the United States and, in particular, their distribution and origin. From an extensive literature survey and field examination of 44 pegmatite localities in the United States and Canada, the authors have compiled an index to about 300 uranium- and thorium-bearing pegmatites in the United States, maps giving location of these deposits, and an annotated bibliography to some of the most pertinent literature on themore » geology of pegmatites. Pegmatites form from late-state magma differentiates rich in volatile constituents with an attendant aqueous vapor phase. It is the presence of an aqueous phase which results in the development of the variable grain size which characterizes pegmatites. All pegmatites occur in areas of tectonic mobility involving crustal material usually along plate margins. Those pegmatites containing radioactive mineral species show, essentially, a similar distribution to those without radioactive minerals. Criteria such as tectonic setting, magma composition, host rock, and elemental indicators among others, all serve to help delineate areas more favorable for uranium- and thorium-bearing pegmatites. The most useful guide remains the radioactivity exhibited by uranium- and thorium-bearing pegmatites. Although pegmatites are frequently noted as favorable hosts for radioactive minerals, the general paucity and sporadic distribution of these minerals and inherent mining and milling difficulties negate the resource potential of pegmatites for uranium and thorium.« less

  9. Production of medical isotopes from a thorium target irradiated by light charged particles up to 70 MeV

    NASA Astrophysics Data System (ADS)

    Duchemin, C.; Guertin, A.; Haddad, F.; Michel, N.; Métivier, V.

    2015-02-01

    The irradiation of a thorium target by light charged particles (protons and deuterons) leads to the production of several isotopes of medical interest. Direct nuclear reaction allows the production of Protactinium-230 which decays to Uranium-230 the mother nucleus of Thorium-226, a promising isotope for alpha radionuclide therapy. The fission of Thorium-232 produces fragments of interest like Molybdenum-99, Iodine-131 and Cadmium-115g. We focus our study on the production of these isotopes, performing new cross section measurements and calculating production yields. Our new sets of data are compared with the literature and the last version of the TALYS code.

  10. Production of medical isotopes from a thorium target irradiated by light charged particles up to 70 MeV.

    PubMed

    Duchemin, C; Guertin, A; Haddad, F; Michel, N; Métivier, V

    2015-02-07

    The irradiation of a thorium target by light charged particles (protons and deuterons) leads to the production of several isotopes of medical interest. Direct nuclear reaction allows the production of Protactinium-230 which decays to Uranium-230 the mother nucleus of Thorium-226, a promising isotope for alpha radionuclide therapy. The fission of Thorium-232 produces fragments of interest like Molybdenum-99, Iodine-131 and Cadmium-115g. We focus our study on the production of these isotopes, performing new cross section measurements and calculating production yields. Our new sets of data are compared with the literature and the last version of the TALYS code.

  11. SEPARATION OF THORIUM FROM URANIUM BY EXTRACTION

    DOEpatents

    Bohlmann, E.G.

    1959-07-28

    A method is presented for the recovery and separation of uranium and thorium values contained in an aqueous nitric acid solution which is more than 3 M in nitric acid. The uranium and thorium containing solution preferable about 7 M in nitric acid is contacted with tributyl phosphatekerosene mixture. Both U and Th are extracted by the immiscible organic. After phase separation the Th is selectively back extracted by contacting with an aqueous nitric acid solution preferably between 0.1 to 1.5 M in nitric acid. The uranium which is still in the organic extractant phase may be recovered by contacting with water.

  12. SEPARATION PROCESS FOR THORIUM SALTS

    DOEpatents

    Bridger, G.L.; Whatley, M.E.; Shaw, K.G.

    1957-12-01

    A process is described for the separation of uranium, thorium, and rare earths extracted from monazite by digesting with sulfuric acid. By carefully increasing the pH of the solution, stepwise, over the range 0.8 to 5.5, a series of selective precipitations will be achieved, with the thorium values coming out at lower pH, the rare earths at intermediate pH and the uranium last. Some mixed precipitates will be obtained, and these may be treated by dissolving in HNO/sub 3/ and contacting with dibutyl phosphate, whereby thorium or uranium are taken up by the organic phase while the rare earths preferentially remain in the aqueous solution.

  13. THE QUESTIONS OF HEALTH HAZARDS FROM THE INHALATION OF INSOLUBLE URANIUM AND THORIUM OXIDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, H.C.; Thomas, R.G.

    1958-10-31

    The insoluble compounds of uranium and thorium, particularly the oxides, are important in the development of atomic energy. Thc questions of health hazards from exposures to dusts of these insoluble compounds are strikily simlar in many but not all respects, Among the similarities may be listed the following facts: The insoluble compounds present no chemical hazard. Both uranium and thorium dioxides, for example, are remarkably inert physiologically. No radiation injuries have so far been described in the lungs of experimental animals inhaling dust concentrations many times the recommended MAC. The lungs of a few dogs studied seven years after excessivemore » inhalation exposures to ThO/sub 2/ gave negative histological findings although high concentrations of thorium were present. The MACs for insoluble uranium and for inxoluble thorium dusts are identical, specifically 3 x 10/sup -11/ c/1. Calculated on a radiation basis, a lower MAC is appropriate for thorium. Based on a considerable body of information from cted. For both uranium and thorium dioxides fecal excretion reflects the immediate exposure to dusty atmospheres. Urine analyses are a prime index of uranium exposure whereas the presence of the much less soluble thorium dioxide in the lung cannot be thus assessed. Breath thoron extimnations or possibly measurements using a whole body counter have been recommended as indices of thorium exposure. The fundamental question depends on the radiosensitivity of the lung and of the pulmonary lymph nodes; neither the production of radiation injury nor the production of cancer are evaluated at present with respect to dosage of radiation. The lung tissues of the dogs described above must have received several thousand rem during the 7 year period. The pulmonary lymph modes must have received considerably more radiation because the concentrations in these nodes e use of the insoluble oxides and the low MACs combine to raise recurring questions of health hazards. (auth)« less

  14. Preliminary report on uranium and thorium content of intrusive rocks in northeastern Washington and northern Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castor, S.B.; Berry, M.R.; Robins, J.W.

    1977-11-01

    This study delineates favorable areas for uranium resources in northeastern Washington and northern Idaho by identifying granitic rocks with relatively large amounts of uranium and (or) thorium. Results are based on analysis of 344 rock samples. Uranium analyses obtained by gamma-ray spectrometric data correlate closely with fluorometric determinations. On the basis of cumulative frequency distribution curves, more than 8 ppM equivalent uranium and more than 20 ppM equivalent thorium are considered anomalous for granitic rocks in northeastern Washington and northern Idaho. Granitic rocks anomalously high in uranium and (or) thorium are concentrated in two northeast-trending belts. The most prominent, themore » Midnite-Hall Mountain belt, includes the Midnite and Sherwood uranium mines, and two lesser but productive areas farther north. This belt follows the contact between Precambrian and Paleozoic rocks, which is also the locus of the Kootenai arc fold belt. The second belt of anomalously radioactive granitic rocks is along the Republic graben, a prominent linear structure in an area with no recorded uranium production. Anomalously radioactive granitic rocks are generally massive quartz monzonite, alaskite, or pegmatite, which contain abundant quartz and potash feldspar. They are also characterized by pink potash feldspar, commonly as large phenocrysts, and by the presence of muscovite. Several uranium and thorium minerals have been identified in these rocks. The two belts of anomalously radioactive plutons are considered favorable for uranium resources. Deposits could occur in the intrusive rocks themselves or in favorable environments in adjacent rocks. 13 figs., 2 tables.« less

  15. Natural Transmutation of Actinides via the Fission Reaction in the Closed Thorium-Uranium-Plutonium Fuel Cycle

    NASA Astrophysics Data System (ADS)

    Marshalkin, V. Ye.; Povyshev, V. M.

    2017-12-01

    It is shown for a closed thorium-uranium-plutonium fuel cycle that, upon processing of one metric ton of irradiated fuel after each four-year campaign, the radioactive wastes contain 54 kg of fission products, 0.8 kg of thorium, 0.10 kg of uranium isotopes, 0.005 kg of plutonium isotopes, 0.002 kg of neptunium, and "trace" amounts of americium and curium isotopes. This qualitatively simplifies the handling of high-level wastes in nuclear power engineering.

  16. Letter Report: Looking Ahead at Nuclear Fuel Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Stephen Herring

    2013-09-01

    The future of nuclear energy and its ability to fulfill part of the world’s energy needs for centuries to come depend on a reliable input of nuclear fuel, either thorium or uranium. Obviously, the present nuclear fuel cycle is completely dependent on uranium. Future thorium cycles will also depend on 235U or fissile isotopes separated from used fuel to breed 232Th into fissile 233U. This letter report discusses several emerging areas of scientific understanding and technology development that will clarify and enable assured supplies of uranium and thorium well into the future. At the most fundamental level, the nuclear energymore » community needs to appreciate the origins of uranium and thorium and the processes of planetary accretion by which those materials have coalesced to form the earth and other planets. Secondly, the studies of geophysics and geochemistry are increasing understanding of the processes by which uranium and thorium are concentrated in various locations in the earth’s crust. Thirdly, the study of neutrinos and particularly geoneutrinos (neutrinos emitted by radioactive materials within the earth) has given an indication of the overall global inventories of uranium and thorium, though little indication for those materials’ locations. Crustal temperature measurements have also given hints of the vertical distribution of radioactive heat sources, primarily 238U and 232Th, within the continental crust. Finally, the evolving technologies for laser isotope separation are indicating methods for reducing the energy input to uranium enrichment but also for tailoring the isotopic vectors of fuels, burnable poisons and structural materials, thereby adding another tool for dealing with long-term waste management.« less

  17. REGENERATION OF FISSION-PRODUCT-CONTAINING MAGNESIUM-THORIUM ALLOYS

    DOEpatents

    Chiotti, P.

    1964-02-01

    A process of regenerating a magnesium-thorium alloy contaminated with fission products, protactinium, and uranium is presented. A molten mixture of KCl--LiCl-MgCl/sub 2/ is added to the molten alloy whereby the alkali, alkaline parth, and rare earth fission products (including yttrium) and some of the thorium and uranium are chlorinated and

  18. Critical review of analytical techniques for safeguarding the thorium-uranium fuel cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hakkila, E.A.

    1978-10-01

    Conventional analytical methods applicable to the determination of thorium, uranium, and plutonium in feed, product, and waste streams from reprocessing thorium-based nuclear reactor fuels are reviewed. Separations methods of interest for these analyses are discussed. Recommendations concerning the applicability of various techniques to reprocessing samples are included. 15 tables, 218 references.

  19. Retardation of uranium and thorium by a cementitious backfill developed for radioactive waste disposal.

    PubMed

    Felipe-Sotelo, M; Hinchliff, J; Field, L P; Milodowski, A E; Preedy, O; Read, D

    2017-07-01

    The solubility of uranium and thorium has been measured under the conditions anticipated in a cementitious, geological disposal facility for low and intermediate level radioactive waste. Similar solubilities were obtained for thorium in all media, comprising NaOH, Ca(OH) 2 and water equilibrated with a cement designed as repository backfill (NRVB, Nirex Reference Vault Backfill). In contrast, the solubility of U(VI) was one order of magnitude higher in NaOH than in the remaining solutions. The presence of cellulose degradation products (CDP) results in a comparable solubility increase for both elements. Extended X-ray Absorption Fine Structure (EXAFS) data suggest that the solubility-limiting phase for uranium corresponds to a becquerelite-type solid whereas thermodynamic modelling predicts a poorly crystalline, hydrated calcium uranate phase. The solubility-limiting phase for thorium was ThO 2 of intermediate crystallinity. No breakthrough of either uranium or thorium was observed in diffusion experiments involving NRVB after three years. Nevertheless, backscattering electron microscopy and microfocus X-ray fluorescence confirmed that uranium had penetrated about 40 μm into the cement, implying active diffusion governed by slow dissolution-precipitation kinetics. Precise identification of the uranium solid proved difficult, displaying characteristics of both calcium uranate and becquerelite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Thorium: Crustal abundance, joint production, and economic availability

    DOE PAGES

    Jordan, Brett W.; Eggert, Roderick G.; Dixon, Brent W.; ...

    2015-03-02

    Recently, interest in thorium's potential use in a nuclear fuel cycle has been renewed. Thorium is more abundant, at least on average, than uranium in the earth's crust and, therefore, could theoretically extend the use of nuclear energy technology beyond the economic limits of uranium resources. This paper provides an economic assessment of thorium availability by creating cumulative-availability and potential mining-industry cost curves, based on known thorium resources. These tools provide two perspectives on the economic availability of thorium. In the long term, physical quantities of thorium likely will not be a constraint on the development of a thorium fuelmore » cycle. In the medium term, however, thorium supply may be limited by constraints associated with its production as a by-product of rare earth elements and heavy mineral sands. As a result, environmental concerns, social issues, regulation, and technology also present issues for the medium and long term supply of thorium.« less

  1. Thorium and Uranium in the Rock Raw Materials Used For the Production of Building Materials

    NASA Astrophysics Data System (ADS)

    Pękala, Agnieszka

    2017-10-01

    Thorium and uranium are constant components of all soils and most minerals thereby rock raw materials. They belong to the particularly dangerous elements because of their natural radioactivity. Evaluation of the content of the radioactive elements in the rock raw materials seems to be necessary in the early stage of the raw material evaluation. The rock formations operated from deposits often are accumulated in landfills and slag heaps where the concentration of the radioactive elements can be many times higher than under natural conditions. In addition, this phenomenon may refer to buildings where rock raw materials are often the main components of the construction materials. The global control system of construction products draws particular attention to the elimination of used construction products containing excessive quantities of the natural radioactive elements. In the presented study were determined the content of thorium and uranium in rock raw materials coming from the Bełachatów lignite deposit. The Bełchatów lignite deposit extracts mainly lignite and secondary numerous accompanying minerals with the raw material importance. In the course of the field works within the framework of the carried out work has been tested 92 samples of rocks of varied petrographic composition. There were carried out analyses of the content of the radioactive elements for 50 samples of limestone of the Jurassic age, 18 samples of kaolinite clays, and 24 samples of siliceous raw materials, represented by opoka-rocks, diatomites, gaizes and clastic rocks. The measurement of content of the natural radioactive elements thorium and uranium based on measuring the frequency counts of gamma quantum, recorded separately in measuring channels. At the same time performed measurements on volume patterns radioactive: thorium and uranium. The studies were carried out in Mazar spectrometer on the powdered material. Standardly performed ten measuring cycles, after which were calculated the concentration of radioactive elements in the sample. The highest concentration of thorium and uranium has been found in the clayey raw material. Their value was respectively from 8 to 12 mg/kg for thorium and from 2.3 to 3.5 mg/kg for uranium. In carbonate sediments the content of thorium was at the level from 0.5 to 2.1 mg/kg and uranium from 0.5-2.2 mg/kg. From a group of the siliceous raw materials the diatomite had a highest concentrations of radioactive elements where the content of thorium was from 1.5 to 1.8 mg/kg and uranium from 1.3 to 1.7 mg/kg.

  2. Simultaneous extraction and preconcentration of uranium and thorium in aqueous samples by new modified mesoporous silica prior to inductively coupled plasma optical emission spectrometry determination.

    PubMed

    Yousefi, Seyed Reza; Ahmadi, Seyed Javad; Shemirani, Farzaneh; Jamali, Mohammad Reza; Salavati-Niasari, Masoud

    2009-11-15

    A new synthesized modified mesoporous silica (MCM-41) using 5-nitro-2-furaldehyde (fural) was applied as an effective sorbent for the solid phase extraction of uranium(VI) and thorium(IV) ions from aqueous solution for the measurement by inductively coupled plasma optical emission spectrometry (ICP OES). The influences of some analytical parameters on the quantitative recoveries of the analyte ions were investigated in batch method. Under optimal conditions, the analyte ions were sorbed by the sorbent at pH 5.5 and then eluted with 1.0 mL of 1.0 mol L(-1) HNO(3). The preconcentration factor was 100 for a 100mL sample volume. The limits of detection (LOD) obtained for uranium(VI) and thorium(IV) were 0.3 microg L(-1). The maximum sorption capacity of the modified MCM-41 was found to be 47 and 49 mg g(-1) for uranium(VI) and thorium(IV), respectively. The sorbent exhibited good stability, reusability, high adsorption capacity and fast rate of equilibrium for sorption/desorption of uranium and thorium ions. The applicability of the synthesized sorbent was examined using CRM and real water samples.

  3. Natural thorium resources and recovery: Options and impacts

    USGS Publications Warehouse

    Ault, Timothy; Van Gosen, Bradley S.; Krahn, Steven; Croff, Allen

    2016-01-01

    This paper reviews the front end of the thorium fuel cycle, including the extent and variety of thorium deposits, the potential sources of thorium production, and the physical and chemical technologies required to isolate and purify thorium. Thorium is frequently found within rare earth element–bearing minerals that exist in diverse types of mineral deposits, often in conjunction with other minerals mined for their commercial value. It may be possible to recover substantial quantities of thorium as a by-product from active titanium, uranium, tin, iron, and rare earth mines. Incremental physical and chemical processing is required to obtain a purified thorium product from thorium minerals, but documented experience with these processes is extensive, and incorporating thorium recovery should not be overly challenging. The anticipated environmental impacts of by-product thorium recovery are small relative to those of uranium recovery since existing mining infrastructure utilization avoids the opening and operation of new mines and thorium recovery removes radionuclides from the mining tailings.

  4. Estimating terrestrial uranium and thorium by antineutrino flux measurements.

    PubMed

    Dye, Stephen T; Guillian, Eugene H

    2008-01-08

    Uranium and thorium within the Earth produce a major portion of terrestrial heat along with a measurable flux of electron antineutrinos. These elements are key components in geophysical and geochemical models. Their quantity and distribution drive the dynamics, define the thermal history, and are a consequence of the differentiation of the Earth. Knowledge of uranium and thorium concentrations in geological reservoirs relies largely on geochemical model calculations. This article describes the methods and criteria to experimentally determine average concentrations of uranium and thorium in the continental crust and in the mantle by using site-specific measurements of the terrestrial antineutrino flux. Optimal, model-independent determinations involve significant exposures of antineutrino detectors remote from nuclear reactors at both a midcontinental and a midoceanic site. This would require major, new antineutrino detection projects. The results of such projects could yield a greatly improved understanding of the deep interior of the Earth.

  5. Estimating terrestrial uranium and thorium by antineutrino flux measurements

    PubMed Central

    Dye, Stephen T.; Guillian, Eugene H.

    2008-01-01

    Uranium and thorium within the Earth produce a major portion of terrestrial heat along with a measurable flux of electron antineutrinos. These elements are key components in geophysical and geochemical models. Their quantity and distribution drive the dynamics, define the thermal history, and are a consequence of the differentiation of the Earth. Knowledge of uranium and thorium concentrations in geological reservoirs relies largely on geochemical model calculations. This article describes the methods and criteria to experimentally determine average concentrations of uranium and thorium in the continental crust and in the mantle by using site-specific measurements of the terrestrial antineutrino flux. Optimal, model-independent determinations involve significant exposures of antineutrino detectors remote from nuclear reactors at both a midcontinental and a midoceanic site. This would require major, new antineutrino detection projects. The results of such projects could yield a greatly improved understanding of the deep interior of the Earth. PMID:18172211

  6. TRANSURANIC ELEMENT, COMPOSITION THEREOF, AND METHODS FOR PRODUCING SEPARATING AND PURIFYING SAME

    DOEpatents

    Wahl, A.C.

    1961-09-19

    A process of separating plutonium from fission products contained in an aqueous solution is described. Plutonium, in the tri- or tetravalent state, and the fission products are coprecipitated on lanthanum fluoride, lanthanum oxalate, cerous fluoride, cerous phosphate, ceric iodate, zirconyl phosphate, thorium iodate, or thorium fluoride. The precipitate is dissolved in acid, and the plutonium is oxidized to the hexavalent state. The fission products are selectively precipitated on a carrier of the above group but different from that used for the coprecipitation. The plutonium in the solution, after removal of the fission product precipitate, is reduced to at least the tetravalent state and precipitated on lanthanum fluoride, lanthanum phosphate, lanthanum oxalate, lanthanum hydroxide, cerous fluoride, cerous phosphate, cerous oxalate, cerous hydroxide, ceric iodate, zirconyl phosphate, zirconyl iodate, zirconium hydroxide, thorium fluoride, thorium oxalate, thorium iodate, thorium peroxide, uranium iodate, uranium oxalate, or uranium peroxide, again using a different carrier than that used for the precipitation of the fission products.

  7. A theoretical study of alpha star populations in loaded nuclear emulsions

    USGS Publications Warehouse

    Senftle, F.E.; Farley, T.A.; Stieff, L.R.

    1954-01-01

    This theoretical study of the alpha star populations in loaded emulsions was undertaken in an effort to find a quantitative method for the analysis of less than microgram amounts of thorium in the presence of larger amounts of uranium. Analytical expressions for each type of star from each of the significantly contributing members of the uranium and thorium series as well as summation formulas for the whole series have been computed. The analysis for thorium may be made by determining the abundance of five-branched stars in a loaded nuclear emulsion and comparing of observed and predicted star populations. The comparison may also be used to check the half-lives of several members of the uranium and thorium series. ?? 1954.

  8. Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings (40 CFR Part 192)

    EPA Pesticide Factsheets

    This regulation sets standards for the protection of public health, safety, and the environment from radiological and non-radiological hazards from uranium and thorium ore processing and disposal of associated wastes.

  9. Radioactive deposits in California

    USGS Publications Warehouse

    Walker, George W.; Lovering, Tom G.

    1954-01-01

    Reconnaissance examination by Government geologists of many areas, mine properties, and prospects in California during the period between 1948 and 1953 has confirmed the presence of radioactive materials in place at more than 40 localities. Abnormal radioactivity at these localities is due to concentrations of primary and secondary uranium minerals, to radon gas, radium (?), and to thorium minerals. Of the known occurrences only three were thought to contain uranium oxide (uranitite or pitchblende), 4 contained uranium-bearing columbate, tantalate, or titanate minerals, 12 contained secondary uranium minerals, such as autunite, carnotite, and torbernite, one contained radon gas, 7 contained thorium minerals, and, at the remaining 16 localities, the source of the anomalous radiation was not positively determined. The occurrences in which uranium oxide has been tentatively identified include the Rathgeb mine (Calaveras County), the Yerih group of claims (San Bernardino County), and the Rainbow claim (Madera County). Occurrences of secondary uranium minerals are largely confined to the arid desert regions of south-eastern California including deposits in San Bernardino, Kern, Inyo, and Imperial Counties. Uranium-bearing columbate, tantalate, or titanate minerals have been reported from pegmatite and granitic rock in southeastern and eastern California. Thorium minerals have been found in vein deposits in eastern San Bernardino County and from pegmatites and granitic rocks in various parts of southeastern California; placer concentrations of thorium minerals are known from nearly all areas in the State that are underlain, in part, by plutonic crystalline rocks. The primary uranium minerals occur principally as minute accessory crystals in pegmatite or granitic rock, or with base-metal sulfide minerals in veins. Thorium minerals also occur as accessory crystals in pegmatite or granitic rock, in placer deposits derived from such rock, and, at Mountain Pass, in veins containing rare earths. Secondary uranium minerals have been found as fracture coatings and as disseminations in various types of wall rock, although they are largely confined to areas of Tertiary volcanic rocks. Probably the uranium in the uraniferous deposits in California is related genetically to felsic crystalline rocks and felsic volcanic rocks; the present distribution of the secondary uranium minerals has been controlled, in part, by circulating ground waters and probably, in part, by magmatic waters related to the Tertiary volcanic activity. The thorium minerals are genetically related to the intrusion of pegmatite and plutonic crystalline rocks. None of the known deposits of radioactive minerals in California contain marketable reserves of uranium or thorium ore under economic conditions existing in 1952. With a favorable local market small lots of uranium ore may be available in the following places: the Rosamund prospect, the Rafferty and Chilson properties, the Lucky Star claim, and the Yerih group. The commercial production of thorium minerals will be possible, in the near future, only if these minerals can be recovered cheaply as a byproduct either from the mining of rare earths minerals at Mountain Pass or as a byproduct of placer mining for gold.

  10. Helium Leak Detection of Vessels in Fuel Transfer Cell (FTC) of Prototype Fast Breeder Reactor (PFBR)

    NASA Astrophysics Data System (ADS)

    Dutta, N. G.

    2012-11-01

    Bharatiya Nabhikiya Vidyut Nigam (BHAVINI) is engaged in construction of 500MW Prototype Fast Breeder Reactor (PFBR) at Kalpak am, Chennai. In this very important and prestigious national programme Special Product Division (SPD) of M/s Kay Bouvet Engg.pvt. ltd. (M/s KBEPL) Satara is contributing in a major way by supplying many important sub-assemblies like- Under Water trolley (UWT), Airlocks (PAL, EAL) Container and Storage Rack (CSR) Vessels in Fuel Transfer Cell (FTC) etc for PFBR. SPD of KBEPL caters to the requirements of Government departments like - Department of Atomic Energy (DAE), BARC, Defense, and Government undertakings like NPCIL, BHAVINI, BHEL etc. and other precision Heavy Engg. Industries. SPD is equipped with large size Horizontal Boring Machines, Vertical Boring Machines, Planno milling, Vertical Turret Lathe (VTL) & Radial drilling Machine, different types of welding machines etc. PFBR is 500 MWE sodium cooled pool type reactor in which energy is produced by fissions of mixed oxides of Uranium and Plutonium pellets by fast neutrons and it also breeds uranium by conversion of thorium, put along with fuel rod in the reactor. In the long run, the breeder reactor produces more fuel then it consumes. India has taken the lead to go ahead with Fast Breeder Reactor Programme to produce electricity primarily because India has large reserve of Thorium. To use Thorium as further fuel in future, thorium has to be converted in Uranium by PFBR Technology.

  11. On the Nature of the Cherdyntsev-Chalov Effect

    NASA Astrophysics Data System (ADS)

    Timashev, S. F.

    2018-06-01

    It is shown that the Cherdyntsev-Chalov effect, usually presented as the separation of even isotopes of uranium upon their transition from the solid to the liquid phase, can include initiated acceleration of the radioactive decay of uranium-238 nuclei during the formation of cracks in geologically (seismic and volcanically) active zones of the Earth's crust. The fissuring of the solid-phase medium leads to an increase in mechanical tensile stress and the emergence of strong local electric fields, resulting in the injection of chemical-scale high-energy electrons into the aqueous phase of the cracks. Under these conditions, the e - catalytic decay of uranium-238 nucleus studied earlier can occur during the formation of metastable protactinium-238 nuclei with locally distorted nucleon structure, which subequently undergo β-decay with the formation of thorium-234 and helium-4 nuclei as products of the fission of the initial uranium-238 nucleus with a characteristic period of several years. The observed increased activity of uranium-234 nuclei that form during the subsequent β-decay of thorium and then protactinium is associated with the initiated fission of uranium-238. The possibility is discussed of developing thermal power by using existing wastes from uranium production that contain uranium-238 to activate this isotope through the mechanochemical processing of these wastes in aqueous media with the formation of 91 238 Pa isu , the half-life of which is several years.

  12. Geochemistry of Thorium and Uranium in Soils of the Southern Urals

    NASA Astrophysics Data System (ADS)

    Asylbaev, I. G.; Khabirov, I. K.; Gabbasova, I. M.; Rafikov, B. V.; Lukmanov, N. A.

    2017-12-01

    Specific features of the horizontal and vertical distribution of uranium and thorium in soils and parent materials of the Southern Urals within the Bashkortostan Republic have been studied with the use of mass spectrometry with inductively coupled plasma. The dependence of distribution patterns of these elements on the local environmental conditions is shown. A scale for soil evaluation according to the concentrations of uranium and thorium (mg/kg) is suggested: the low level, up to 3; medium, up to 9; high, up to 15; and very high, above 15 mg/kg. On the basis of to this scale, the ecological state of the soils is evaluated, and the schematic geochemical map of the region is compiled. The territory of Bashkortostan is subdivided into two parts according to the contents of radioactive elements in soils: the western part with distinct accumulation of uranium and the eastern part with predominant thorium accumulation. This finding supports the charriage (thrust fault) nature of the fault zone of the Southern Urals. The vertical distribution patterns of uranium and thorium in soils of the region are of the same character. The dependence between the contents of these two elements and rare-earth elements has been established. The results of this study are applied for assessing the ecological state of soils in the region.

  13. PRODUCTION OF URANIUM AND THORIUM COMPOUNDS

    DOEpatents

    Arden, T.V.; Burstall, F.H.; Linstead, R.P.; Wells, R.A.

    1955-12-27

    Compounds of Th and U are extracted with an organic solvent in the presence of an adsorbent substance which has greater retentivity for impurities present than for the uranium and/or thorium. The preferred adsorbent material is noted as being cellulose. The uranium and thoriumcontaining substances treated are preferably in the form of dissolved nitrates, and the preferred organic solvent is diethyl ether.

  14. URANIUM SEPARATION PROCESS

    DOEpatents

    Hyde, E.K.; Katzin, L.I.; Wolf, M.J.

    1959-07-14

    The separation of uranium from a mixture of uranium and thorium by organic solvent extraction from an aqueous solution is described. The uranium is separrted from an aqueous mixture of uranium and thorium nitrates 3 N in nitric acid and containing salting out agents such as ammonium nitrate, so as to bring ihe total nitrate ion concentration to a maximum of about 8 N by contacting the mixture with an immiscible aliphatic oxygen containing organic solvent such as diethyl carbinol, hexone, n-amyl acetate and the like. The uranium values may be recovered from the organic phase by back extraction with water.

  15. National Uranium Resource Evaluation. Volume 1. Summary of the geology and uranium potential of Precambrian conglomerates in southeastern Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karlstrom, K.E.; Houston, R.S.; Flurkey, A.J.

    1981-02-01

    A series of uranium-, thorium-, and gold-bearing conglomerates in Late Archean and Early Proterozoic metasedimentary rocks have been discovered in southern Wyoming. The mineral deposits were found by applying the time and strata bound model for the origin of uranium-bearing quartz-pebble conglomerates to favorable rock types within a geologic terrane known from prior regional mapping. No mineral deposits have been discovered that are of current (1981) economic interest, but preliminary resource estimates indicate that over 3418 tons of uranium and over 1996 tons of thorium are present in the Medicine Bow Mountains and that over 440 tons of uranium andmore » 6350 tons of thorium are present in Sierra Madre. Sampling has been inadequate to determine gold resources. High grade uranium deposits have not been detected by work to date but local beds of uranium-bearing conglomerate contain as much as 1380 ppM uranium over a thickness of 0.65 meters. This project has involved geologic mapping at scales from 1/6000 to 1/50,000 detailed sampling, and the evaluation of 48 diamond drill holes, but the area is too large to fully establish the economic potential with the present information. This first volume summarizes the geologic setting and geologic and geochemical characteristics of the uranium-bearing conglomerates. Volume 2 contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks, and drill site geologic maps and cross-sections from most of the holes. Volume 3 is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates.« less

  16. RECOVERY OF URANIUM BY SECONDARY XANTHATE COMPLEXING

    DOEpatents

    Neville, O.K.

    1959-09-01

    A method is described for separating and recovering uranium values contained in an acidic aqueous solution together with thorium or protactinium values. In accordance with the invention, the acidic solution containing uranium in the uranyl form is contacted with an organic xanthate. The xanthate forms a urano-xanthate complex but is substantially non-reactive with thorium and protactinium. The urano-xanthate complex is recovered by organic solvent extraction.

  17. Fabrication of thorium bearing carbide fuels

    DOEpatents

    Gutierrez, Rueben L.; Herbst, Richard J.; Johnson, Karl W. R.

    1981-01-01

    Thorium-uranium carbide and thorium-plutonium carbide fuel pellets have been fabricated by the carbothermic reduction process. Temperatures of 1750.degree. C. and 2000.degree. C. were used during the reduction cycle. Sintering temperatures of 1800.degree. C. and 2000.degree. C. were used to prepare fuel pellet densities of 87% and >94% of theoretical, respectively. The process allows the fabrication of kilogram quantities of fuel with good reproducibility of chemicals and phase composition. Methods employing liquid techniques that form carbide microspheres or alloying-techniques which form alloys of thorium-uranium or thorium-plutonium suffer from limitation on the quantities processed of because of criticality concerns and lack of precise control of process conditions, respectively.

  18. β-decay Rates for Exotic Nuclei and r-process Nucleosynthesis up to Thorium and Uranium

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Shibagaki, Shota; Yoshida, Takashi; Kajino, Toshitaka; Otsuka, Takaharu

    2018-06-01

    Beta-decay rates for exotic nuclei with neutron magic number of N = 126 relevant to r-process nucleosynthesis are studied up to Z = 78 by shell-model calculations. The half-lives for the waiting-point nuclei obtained, which are short compared to a standard finite-range-droplet model, are used to study r-process nucleosynthesis in core-collapse supernova (CCSN) explosions and binary neutron star mergers. The element abundances are obtained up to the third peak as well as beyond the peak region up to thorium and uranium. The position of the third peak is found to be shifted toward a higher mass region in both CCSN explosions and neutron star mergers. We find that thorium and uranium elements are produced more with the shorter shell-model half-lives and their abundances come close to the observed values in CCSN explosions. In the case of binary neutron star mergers, thorium and uranium are produced consistently with the observed values independent of the half-lives.

  19. METHOD OF SEPARATING URANIUM FROM ALLOYS

    DOEpatents

    Chiotti, P.; Shoemaker, H.E.

    1960-06-28

    Uranium can be recovered from metallic uraniumthorium mixtures containing uranium in comparatively small amounts. The method of recovery comprises adding a quantity of magnesium to a mass to obtain a content of from 48 to 85% by weight; melting and forming a magnesium-thorium alloy at a temperature of between 585 and 800 deg C; agitating the mixture, allowing the mixture to settle whereby two phases, a thorium-containing magnesium-rich liquid phase and a solid uranium-rich phase, are formed; and separating the two phases.

  20. Method of increasing the deterrent to proliferation of nuclear fuels

    DOEpatents

    Rampolla, Donald S.

    1982-01-01

    A process of recycling protactinium-231 to enhance the utilization of radioactively hot uranium-232 in nuclear fuel for the purpose of making both fresh and spent fuel more resistant to proliferation. The uranium-232 may be obtained by the irradiation of protactinium-231 which is normally found in the spent fuel rods of a thorium base nuclear reactor. The production of protactinium-231 and uranium-232 would be made possible by the use of the thorium uranium-233 fuel cycle in power reactors.

  1. Sorption of uranium in uranyl nitrate solutions on strong cationic resins and its elution with ammonium sulfate. II. Effects of EDTA on thorium decontamination; Estudos de sorpcao de uranio contido em solucoes de nitrato de uranilo por resina cationica forte e sua eluicao com sulfato de amonio. Parte II: efeito de EDTA na descontaminacao do torio (in Portuguese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribas, Antonio G.S.; Abrao, Alcidio

    1970-05-15

    This paper describes the studies of decontamination of thorium present as impurity in uranyl nitrate solutions, which was carried out through strong cationic resin where the thorium was partially retained. Then, the final decontamination was performed percolating the uranyl solution on a second cationic resin, after complexation of thorium (and other impurities) with EDTA. The thorium decontamination and the uranium retention were studied as a function of EDTA/U ratio, uranium concentration and acidity of the influent uranyl nitrate. The elution conditions were also studied as a function of eluent flow rate, concentration and acidity. Several tables and graphs showing themore » final results are included. (tr-auth)« less

  2. 10 CFR 765.10 - Eligibility for reimbursement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Eligibility for reimbursement. 765.10 Section 765.10 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM... uranium or thorium processing site that has incurred costs of remedial action for the site that are...

  3. 10 CFR 765.1 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Purpose. 765.1 Section 765.1 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES General § 765.1... costs of remedial action at active uranium or thorium processing sites as specified by Subtitle A of...

  4. 10 CFR 765.1 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Purpose. 765.1 Section 765.1 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES General § 765.1... costs of remedial action at active uranium or thorium processing sites as specified by Subtitle A of...

  5. 10 CFR 765.10 - Eligibility for reimbursement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Eligibility for reimbursement. 765.10 Section 765.10 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM... uranium or thorium processing site that has incurred costs of remedial action for the site that are...

  6. 10 CFR 765.10 - Eligibility for reimbursement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Eligibility for reimbursement. 765.10 Section 765.10 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM... uranium or thorium processing site that has incurred costs of remedial action for the site that are...

  7. 10 CFR 765.10 - Eligibility for reimbursement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Eligibility for reimbursement. 765.10 Section 765.10 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM... uranium or thorium processing site that has incurred costs of remedial action for the site that are...

  8. 10 CFR 765.1 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Purpose. 765.1 Section 765.1 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES General § 765.1... costs of remedial action at active uranium or thorium processing sites as specified by Subtitle A of...

  9. 10 CFR 765.1 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Purpose. 765.1 Section 765.1 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES General § 765.1... costs of remedial action at active uranium or thorium processing sites as specified by Subtitle A of...

  10. 10 CFR 765.10 - Eligibility for reimbursement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Eligibility for reimbursement. 765.10 Section 765.10 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM... uranium or thorium processing site that has incurred costs of remedial action for the site that are...

  11. Determination of uranium and thorium in materials associated with real time electronic solar neutrino detectors

    NASA Astrophysics Data System (ADS)

    Fassett, J. D.; Kelly, W. R.

    1992-07-01

    The application of isotope dilution thermal ionization mass spectrometry to the determination of both uranium and thorium in four different target materials used or proposed for electronic neutrino detectors is described. Isotope dilution analysis is done using highly enriched 233U and 230Th separated isotopes. Sensitivity of the technique is such that sub-picogram amounts of material are readily measured. The overall limit to measurement is caused by contamination of these elements during the measurement process. Uranium is more easily measured than thorium because both the instrumental sensitivity is higher and contamination is better controlled. The materials analyzed were light and heavy water, pseudocumene, and mineral oil.

  12. Selective uptake of uranium and thorium by some vegetables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusof, A.M.; Ghazali, Z.; Rahman, S.A.

    1996-12-31

    Uranium and thorium are trace elements in the actinide series found naturally in the atmosphere and can enter the human body through ingestion of food or by drinking. To establish baseline information for current and future environmental assessment due to pollution, especially in foodstuff, by heavy and trace metals, biological samples such as locally grown vegetables were analyzed for uranium and thorium contents. The terrain in most parts of the Malaysian peninsula consists of monazite-bearing rocks or soil that can be found extensively in areas related to tin-mining operations. Abandoned mining areas provide suitable sites for vegetable cultivation where mostmore » vegetables in the lowlands are grown.« less

  13. U-Th-Pb measurements of Luna 20 soil

    USGS Publications Warehouse

    Tatsumoto, M.

    1973-01-01

    The concentrations of uranium, thorium and lead and the lead isotopic composition of Luna 20 soil were determined. The data indicate that the Luna 20 soil is mainly a mixture of highland anorthosites and low-K basalt, but little KREEP basalt. The U-Th-Pb systematics are discussed in comparison with other lunar soils, especially with Apollo 16 soils which were collected from a 'typical' highland region. The data fit well in the Apollo 16 soil array on a U-Pb evolution diagram, and they exhibit excess lead relative to uranium. This relationship appears to be a characteristic of highland localities. Considering the previous observations of lunar samples, we infer that lead enrichment in the soil relative to uranium occurred between 3.2 and 3.9 b.y. ago and that the soil was disturbed by 'third events' about 2.0 b.y. ago. A lunar evolution model is discussed. ?? 1973.

  14. Actinide Corroles: Synthesis and Characterization of Thorium(IV) and Uranium(IV) bis(-chloride) Dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Ashleigh L.; Buckley, Heather L.; Gryko, Daniel T.

    2013-12-01

    The first synthesis and structural characterization of actinide corroles is presented. Thorium(IV) and uranium(IV) macrocycles of Mes2(p-OMePh)corrole were synthesised and characterized by single-crystal X-ray diffraction, UV-Visible spectroscopy, variable-temperature 1H NMR, ESI mass spectrometry and cyclic voltammetry.

  15. Helium on Venus - Implications for uranium and thorium

    NASA Technical Reports Server (NTRS)

    Prather, M. J.; Mcelroy, M. B.

    1983-01-01

    Helium is removed at an average rate of 10 to the 6th atoms per square centimeter per second from Venus's atmosphere by the solar wind following ionization above the plasmapause. The surface source of helium-4 on Venus is similar to that on earth, suggesting comparable abundances of crustal uranium and thorium.

  16. Spectrophotometric study of the thorium-morin mixed-color system

    USGS Publications Warehouse

    Fletcher, M.H.; Milkey, R.G.

    1956-01-01

    A spectrophotometric study was made of the thoriummorin reaction to evaluate the suitability of morin as a reagent for the determination of trace amounts of thorium. At pH 2, the equilibrium constant for the reaction is 1 ?? 106, and a single complex having a thorium-morin ratio of 1 to 2 is formed. The complex shows maximum absorbance at a wave length of 410 m??, and its absorbance obeys Beer's law. The absorbance readings are highly reproducible, and the sensitivity is relatively high, an absorbance difference of 0.001 being equivalent to 0.007 ?? of ThO2 per sq. cm. The effects of acid, alcohol, and morin concentration, time, temperature, and age of the morin reagent as well as the behavior of morin with zirconium(IV), iron(III), aluminum(III), ytterbium(III), yttrium(III), uranium(VI), praseodymium(III), lead(II), lanthanum(III), and calcium(II) ions are discussed. A method is presented for the determination of thorium in pure solutions. Appropriate separations for the isolation of thorium may extend the usefulness of the method and permit the determination of trace amounts of thorium in complex materials.

  17. Radioisotope dilution analyses of geological samples using 236U and 229Th

    USGS Publications Warehouse

    Rosholt, J.N.

    1984-01-01

    The use of 236U and 229Th in alpha spectrometric measurements has some advantages over the use of other tracers and measurement techniques in isotope dilution analyses of most geological samples. The advantages are: (1) these isotopes do not occur in terrestrial rocks, (2) they have negligible decay losses because of their long half lives, (3) they cause minimal recoil contamination to surface-barrier detectors, (4) they allow for simultaneous determination of the concentration and isotopic composition of uranium and thorium in a variety of sample types, and (5) they allow for simple and constant corrections for spectral inferences, 0.5% of the 238U activity is subtracted for the contribution of 235U in the 236U peak and 1% of the 229Th activity is subtracted from the 230Th activity. Disadvantages in using 236U and 229Th are: (1) individual separates of uranium and thorium must be prepared as very thin sources for alpha spectrometry, (2) good resolution in the spectrometer system is required for thorium isotopic measurements where measurement times may extend to 300 h, and (3) separate calibrations of the 236U and 229Th spike solution with both uranium and thorium standards are required. The use of these tracers in applications of uranium-series disequilibrium studies has simplified the measurements required for the determination of the isotopic composition of uranium and thorium because of the minimal corrections needed for alpha spectral interferences. ?? 1984.

  18. PEROXIDE PROCESS FOR SEPARATION OF RADIOACTIVE MATERIALS

    DOEpatents

    Seaborg, G.T.; Perlman, I.

    1958-09-16

    reduced state, from hexavalent uranium. It consists in treating an aqueous solution containing such uranium and plutonium ions with sulfate ions in order to form a soluble uranium sulfate complex and then treating the solution with a soluble thorium compound and a soluble peroxide compound in order to ferm a thorium peroxide carrier precipitate which carries down with it the plutonium peroxide present. During this treatment the pH of the solution must be maintained between 2 and 3.

  19. Feasibility study on AFR-100 fuel conversion from uranium-based fuel to thorium-based fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidet, F.; Kim, T.; Grandy, C.

    2012-07-30

    Although thorium has long been considered as an alternative to uranium-based fuels, most of the reactors built to-date have been fueled with uranium-based fuel with the exception of a few reactors. The decision to use uranium-based fuels was initially made based on the technology maturity compared to thorium-based fuels. As a result of this experience, lot of knowledge and data have been accumulated for uranium-based fuels that made it the predominant nuclear fuel type for extant nuclear power. However, following the recent concerns about the extent and availability of uranium resources, thorium-based fuels have regained significant interest worldwide. Thorium ismore » more abundant than uranium and can be readily exploited in many countries and thus is now seen as a possible alternative. As thorium-based fuel technologies mature, fuel conversion from uranium to thorium is expected to become a major interest in both thermal and fast reactors. In this study the feasibility of fuel conversion in a fast reactor is assessed and several possible approaches are proposed. The analyses are performed using the Advanced Fast Reactor (AFR-100) design, a fast reactor core concept recently developed by ANL. The AFR-100 is a small 100 MW{sub e} reactor developed under the US-DOE program relying on innovative fast reactor technologies and advanced structural and cladding materials. It was designed to be inherently safe and offers sufficient margins with respect to the fuel melting temperature and the fuel-cladding eutectic temperature when using U-10Zr binary metal fuel. Thorium-based metal fuel was preferred to other thorium fuel forms because of its higher heavy metal density and it does not need to be alloyed with zirconium to reduce its radiation swelling. The various approaches explored cover the use of pure thorium fuel as well as the use of thorium mixed with transuranics (TRU). Sensitivity studies were performed for the different scenarios envisioned in order to determine the best core performance characteristics for each of them. With the exception of the fuel type and enrichment, the reference AFR-100 core design characteristics were kept unchanged, including the general core layout and dimensions, assembly dimensions, materials and power rating. In addition, the mass of {sup 235}U required was kept within a reasonable range from that of the reference AFR-100 design. The core performance characteristics, kinetics parameters and reactivity feedback coefficients were calculated using the ANL suite of fast reactor analysis code systems. Orifice design calculations and the steady-state thermal-hydraulic analyses were performed using the SE2-ANL code. The thermal margins were evaluated by comparing the peak temperatures to the design limits for parameters such as the fuel melting temperature and the fuel-cladding eutectic temperature. The inherent safety features of AFR-100 cores proposed were assessed using the integral reactivity parameters of the quasi-static reactivity balance analysis. The design objectives and requirements, the computation methods used as well as a description of the core concept are provided in Section 2. The three major approaches considered are introduced in Section 3 and the neutronics performances of those approaches are discussed in the same section. The orifice zoning strategies used and the steady-state thermal-hydraulic performance are provided in Section 4. The kinetics and reactivity coefficients, including the inherent safety characteristics, are provided in Section 5, and the Conclusions in Section 6. Other scenarios studied and sensitivity studies are provided in the Appendix section.« less

  20. Closed fuel cycle with increased fuel burn-up and economy applying of thorium resources

    NASA Astrophysics Data System (ADS)

    Kulikov, G. G.; Apse, V. A.

    2017-01-01

    The possible role of existing thorium reserves in the Russian Federation on engaging thorium in being currently closed (U-Pu)-fuel cycle of nuclear power of the country is considered. The application efficiency of thermonuclear neutron sources with thorium blanket for the economical use of existing thorium reserves is demonstrated. The aim of the work is to find solutions of such major tasks as the reduction of both front-end and back-end of nuclear fuel cycle and an enhancing its protection against the uncontrolled proliferation of fissile materials by means of the smallest changes in the fuel cycle. During implementation of the work we analyzed the results obtained earlier by the authors, brought new information on the number of thorium available in the Russian Federation and made further assessments. On the basis of proposal on the inclusion of hybrid reactors with Th-blanket into the future nuclear power for the production of light uranium fraction 232+233+234U, and 231Pa, we obtained the following results: 1. The fuel cycle will shift from fissile 235U to 233U which is more attractive for thermal power reactors. 2. The light uranium fraction is the most "protected" in the uranium component of fuel and mixed with regenerated uranium will in addition become a low enriched uranium fuel, that will weaken the problem of uncontrolled proliferation of fissile materials. 3. 231Pa doping into the fuel stabilizes its multiplying properties that will allow us to implement long-term fuel residence time and eventually to increase the export potential of all nuclear power technologies. 4. The thorium reserves being near city Krasnoufimsk (Russia) are large enough for operation of large-scale nuclear power of the Russian Federation of 70 GWe capacity during more than a quarter century under assumption that thorium is loaded into blankets of hybrid TNS only. The general conclusion: the inclusion of a small number of hybrid reactors with Th-blanket into the future nuclear power will allow us substantially to solve its problems, as well as to increase its export potential.

  1. Analysis of key safety metrics of thorium utilization in LWRs

    DOE PAGES

    Ade, Brian J.; Bowman, Stephen M.; Worrall, Andrew; ...

    2016-04-08

    Here, thorium has great potential to stretch nuclear fuel reserves because of its natural abundance and because it is possible to breed the 232Th isotope into a fissile fuel ( 233U). Various scenarios exist for utilization of thorium in the nuclear fuel cycle, including use in different nuclear reactor types (e.g., light water, high-temperature gas-cooled, fast spectrum sodium, and molten salt reactors), along with use in advanced accelerator-driven systems and even in fission-fusion hybrid systems. The most likely near-term application of thorium in the United States is in currently operating light water reactors (LWRs). This use is primarily based onmore » concepts that mix thorium with uranium (UO 2 + ThO 2) or that add fertile thorium (ThO 2) fuel pins to typical LWR fuel assemblies. Utilization of mixed fuel assemblies (PuO 2 + ThO 2) is also possible. The addition of thorium to currently operating LWRs would result in a number of different phenomenological impacts to the nuclear fuel. Thorium and its irradiation products have different nuclear characteristics from those of uranium and its irradiation products. ThO 2, alone or mixed with UO 2 fuel, leads to different chemical and physical properties of the fuel. These key reactor safety–related issues have been studied at Oak Ridge National Laboratory and documented in “Safety and Regulatory Issues of the Thorium Fuel Cycle” (NUREG/CR-7176, U.S. Nuclear Regulatory Commission, 2014). Various reactor analyses were performed using the SCALE code system for comparison of key performance parameters of both ThO 2 + UO 2 and ThO 2 + PuO 2 against those of UO 2 and typical UO 2 + PuO 2 mixed oxide fuels, including reactivity coefficients and power sharing between surrounding UO 2 assemblies and the assembly of interest. The decay heat and radiological source terms for spent fuel after its discharge from the reactor are also presented. Based on this evaluation, potential impacts on safety requirements and identification of knowledge gaps that require additional analysis or research to develop a technical basis for the licensing of thorium fuel are identified.« less

  2. Theoretical analysis of uranium-doped thorium dioxide: Introduction of a thoria force field with explicit polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shields, A. E.; Ruiz Hernandez, S. E.; Leeuw, N. H. de, E-mail: DeLeeuwN@Cardiff.ac.uk

    2015-08-15

    Thorium dioxide is used industrially in high temperature applications, but more insight is needed into the behavior of the material as part of a mixed-oxide (MOX) nuclear fuel, incorporating uranium. We have developed a new interatomic potential model including polarizability via a shell model, and commensurate with a prominent existing UO{sub 2} potential, to conduct configurational analyses and to investigate the thermophysical properties of uranium-doped ThO{sub 2}. Using the GULP and Site Occupancy Disorder (SOD) computational codes, we have analyzed the distribution of low concentrations of uranium in the bulk material, where we have not observed the formation of uraniummore » clusters or the dominance of a single preferred configuration. We have calculated thermophysical properties of pure thorium dioxide and Th{sub (1−x)}U{sub x}O{sub 2} which generated values in very good agreement with experimental data.« less

  3. On the equilibrium isotopic composition of the thorium-uranium-plutonium fuel cycle

    NASA Astrophysics Data System (ADS)

    Marshalkin, V. Ye.; Povyshev, V. M.

    2016-12-01

    The equilibrium isotopic compositions and the times to equilibrium in the process of thorium-uranium-plutonium oxide fuel recycling in VVER-type reactors using heavy water mixed with light water are estimated. It is demonstrated thEhfat such reactors have a capacity to operate with self-reproduction of active isotopes in the equilibrium mode.

  4. PROCESS FOR DECONTAMINATING THORIUM AND URANIUM WITH RESPECT TO RUTHENIUM

    DOEpatents

    Meservey, A.A.; Rainey, R.H.

    1959-10-20

    The control of ruthenium extraction in solvent-extraction processing of neutron-irradiated thorium is presented. Ruthenium is rendered organic-insoluble by the provision of sulfite or bisulfite ions in the aqueous feed solution. As a result the ruthenium remains in the aqueous phase along with other fission product and protactinium values, thorium and uranium values being extracted into the organic phase. This process is particularly applicable to the use of a nitrate-ion-deficient aqueous feed solution and to the use of tributyl phosphate as the organic extractant.

  5. Conceptual Core Analysis of Long Life PWR Utilizing Thorium-Uranium Fuel Cycle

    NASA Astrophysics Data System (ADS)

    Rouf; Su'ud, Zaki

    2016-08-01

    Conceptual core analysis of long life PWR utilizing thorium-uranium based fuel has conducted. The purpose of this study is to evaluate neutronic behavior of reactor core using combined thorium and enriched uranium fuel. Based on this fuel composition, reactor core have higher conversion ratio rather than conventional fuel which could give longer operation length. This simulation performed using SRAC Code System based on library SRACLIB-JDL32. The calculation carried out for (Th-U)O2 and (Th-U)C fuel with uranium composition 30 - 40% and gadolinium (Gd2O3) as burnable poison 0,0125%. The fuel composition adjusted to obtain burn up length 10 - 15 years under thermal power 600 - 1000 MWt. The key properties such as uranium enrichment, fuel volume fraction, percentage of uranium are evaluated. Core calculation on this study adopted R-Z geometry divided by 3 region, each region have different uranium enrichment. The result show multiplication factor every burn up step for 15 years operation length, power distribution behavior, power peaking factor, and conversion ratio. The optimum core design achieved when thermal power 600 MWt, percentage of uranium 35%, U-235 enrichment 11 - 13%, with 14 years operation length, axial and radial power peaking factor about 1.5 and 1.2 respectively.

  6. METHOD OF PROCESSING MONAZITE SAND

    DOEpatents

    Welt, M.A.; Smutz, M.

    1958-08-26

    A process is described for recovering thorium, uranium, and rare earth values from monazite sand. The monazite sand is first digested with sulfuric acid and the resulting "monazite sulfate" solution is adjusted to a pH of between 0.4 and 3.0, and oxalate anions are added causing precipitation of the thorium and the rare earths as the oxalates. The oxalate precipitate is separated from the uranium containing supernatant solution, and is dried and calcined to the oxides. The thorium and rare earth oxides are then dissolved in nitric acid and the solution is contacted with tribntyl phosphate whereby an organic extract phase containing the cerium and thorium values is obtained, together with an aqueous raffinate containing the other rare earth values. The organic phase is then separated from the aqueous raffinate and the cerium and thorium are back extracted with an aqueous medium.

  7. Surface Cleaning Techniques: Ultra-Trace ICP-MS Sample Preparation and Assay of HDPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overman, Nicole R.; Hoppe, Eric W.; Addleman, Raymond S.

    2013-06-01

    The world’s most sensitive radiation detection and assay systems depend upon ultra-low background (ULB) materials to reduce unwanted radiological backgrounds. Herein, we evaluate methods to clean HDPE, a material of interest to ULB systems and the means to provide rapid assay of surface and bulk contamination. ULB level material and ultra-trace level detection of actinide elements is difficult to attain, due to the introduction of contamination from sample preparation equipment such as pipette tips, sample vials, forceps, etc. and airborne particulate. To date, literature available on the cleaning of such polymeric materials and equipment for ULB applications and ultra-trace analysesmore » is limited. For these reasons, a study has been performed to identify an effective way to remove surface contamination from polymers in an effort to provide improved instrumental detection limits. Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) was utilized to assess the effectiveness of a variety of leachate solutions for removal of inorganic uranium and thorium surface contamination from polymers, specifically high density polyethylene (HDPE). HDPE leaching procedures were tested to optimize contaminant removal of thorium and uranium. Calibration curves for thorium and uranium ranged from 15 ppq (fg/mL) to 1 ppt (pg/mL). Detection limits were calculated at 6 ppq for uranium and 7 ppq for thorium. Results showed the most effective leaching reagent to be clean 6 M nitric acid for 72 hour exposures. Contamination levels for uranium and thorium found in the leachate solutions were significant for ultralow level radiation detection applications.« less

  8. 10 CFR 40.28 - General license for custody and long-term care of uranium or thorium byproduct materials disposal...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false General license for custody and long-term care of uranium or thorium byproduct materials disposal sites. 40.28 Section 40.28 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL General Licenses § 40.28 General license for custody and...

  9. THERMAL FISSION REACTOR COMPOSITIONS AND METHOD OF FABRICATING SAME

    DOEpatents

    Blainey, A.

    1959-10-01

    A body is presented for use in a thermal fission reactor comprising a sintered compressed mass of a substance of the group consisting of uranium, thorium, and oxides and carbides of uranium and thorium, enclosed in an envelope of a sintered, compacted, heat-conductive material of the group consisting of beryllium, zirconium, and oxides and carbides of beryllium and zirconium.

  10. Differential lead retention in zircons: implications for nuclear waste containment.

    PubMed

    Gentry, R V; Sworski, T J; McKown, H S; Smith, D H; Eby, R E; Christie, W H

    1982-04-16

    An innovative ultrasensitive technique was used for lead isotopic analysis of individual zircons extracted from granite core samples at depths of 960, 2170, 2900, 3930, and 4310 meters. The results show that lead, a relatively mobile element compared to the nuclear waste-related actinides uranium and thorium, has been highly retained at elevated temperatures (105 degrees to 313 degrees C) under conditions relevant to the burial of synthetic rock waste containers in deep granite holes.

  11. Thorium-phosphorus triamidoamine complexes containing Th-P single- and multiple-bond interactions.

    PubMed

    Wildman, Elizabeth P; Balázs, Gábor; Wooles, Ashley J; Scheer, Manfred; Liddle, Stephen T

    2016-09-29

    Despite the burgeoning field of uranium-ligand multiple bonds, analogous complexes involving other actinides remain scarce. For thorium, under ambient conditions only a few multiple bonds to carbon, nitrogen, oxygen, sulfur, selenium and tellurium are reported, and no multiple bonds to phosphorus are known, reflecting a general paucity of synthetic methodologies and also problems associated with stabilising these linkages at the large thorium ion. Here we report structurally authenticated examples of a parent thorium(IV)-phosphanide (Th-PH 2 ), a terminal thorium(IV)-phosphinidene (Th=PH), a parent dithorium(IV)-phosphinidiide (Th-P(H)-Th) and a discrete actinide-phosphido complex under ambient conditions (Th=P=Th). Although thorium is traditionally considered to have dominant 6d-orbital contributions to its bonding, contrasting to majority 5f-orbital character for uranium, computational analyses suggests that the bonding of thorium can be more nuanced, in terms of 5f- versus 6d-orbital composition and also significant involvement of the 7s-orbital and how this affects the balance of 5f- versus 6d-orbital bonding character.

  12. PREPARATION OF REFRACTORY OXIDE CRYSTALS

    DOEpatents

    Grimes, W.R.; Shaffer, J.H.; Watson, G.M.

    1962-11-13

    A method is given for preparing uranium dioxide, thorium oxide, and beryllium oxide in the form of enlarged individual crystals. The surface of a fused alkali metal halide melt containing dissolved uranium, thorium, or beryllium values is contacted with a water-vapor-bearing inert gas stream at a rate of 5 to 10 cubic centimeters per minute per square centimeter of melt surface area. Growth of individual crystals is obtained by prolonged contact. Beryllium oxide-coated uranium dioxide crystals are prepared by disposing uranium dioxide crystals 5 to 20 microns in diameter in a beryllium-containing melt and contacting the melt with a water-vapor-bearing inert gas stream in the same manner. (AEC)

  13. LWR First Recycle of TRU with Thorium Oxide for Transmutation and Cross Sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrea Alfonsi; Gilles Youinou; Sonat Sen

    2013-02-01

    Thorium has been considered as an option to uranium-based fuel, based on considerations of resource utilization (thorium is approximately three times more plentiful than uranium) and as a result of concerns about proliferation and waste management (e.g. reduced production of plutonium, etc.). Since the average composition of natural Thorium is dominated (100%) by the fertile isotope Th-232, Thorium is only useful as a resource for breeding new fissile materials, in this case U-233. Consequently a certain amount of fissile material must be present at the start-up of the reactor in order to guarantee its operation. The thorium fuel can bemore » used in both once-through and recycle options, and in both fast and thermal spectrum systems. The present study has been aimed by the necessity of investigating the option of using reprocessed plutonium/TRU, from a once-through reference LEU scenario (50 GWd/ tIHM), mixed with natural thorium and the need of collect data (mass fractions, cross-sections etc.) for this particular fuel cycle scenario. As previously pointed out, the fissile plutonium is needed to guarantee the operation of the reactor. Four different scenarios have been considered: • Thorium – recycled Plutonium; • Thorium – recycled Plutonium/Neptunium; • Thorium – recycled Plutonium/Neptunium/Americium; • Thorium – recycled Transuranic. The calculations have been performed with SCALE6.1-TRITON.« less

  14. LWR First Recycle of TRU with Thorium Oxide for Transmutation and Cross Sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrea Alfonsi; Gilles Youinou

    2012-07-01

    Thorium has been considered as an option to uranium-based fuel, based on considerations of resource utilization (thorium is approximately three times more plentiful than uranium) and as a result of concerns about proliferation and waste management (e.g. reduced production of plutonium, etc.). Since the average composition of natural Thorium is dominated (100%) by the fertile isotope Th-232, Thorium is only useful as a resource for breeding new fissile materials, in this case U-233. Consequently a certain amount of fissile material must be present at the start-up of the reactor in order to guarantee its operation. The thorium fuel can bemore » used in both once-through and recycle options, and in both fast and thermal spectrum systems. The present study has been aimed by the necessity of investigating the option of using reprocessed plutonium/TRU, from a once-through reference LEU scenario (50 GWd/ tIHM), mixed with natural thorium and the need of collect data (mass fractions, cross-sections etc.) for this particular fuel cycle scenario. As previously pointed out, the fissile plutonium is needed to guarantee the operation of the reactor. Four different scenarios have been considered: • Thorium – recycled Plutonium; • Thorium – recycled Plutonium/Neptunium; • Thorium – recycled Plutonium/Neptunium/Americium; • Thorium – recycled Transuranic. The calculations have been performed with SCALE6.1-TRITON.« less

  15. THORIUM OXALATE-URANYL ACETATE COUPLED PROCEDURE FOR THE SEPARATION OF RADIOACTIVE MATERIALS

    DOEpatents

    Gofman, J.W.

    1959-08-11

    The recovery of fission products from neutronirradiated uranium is described. The neutron-irradiated uranium is dissolved in acid and thorium oxalate is precipitated in ihe solution formed, whereby the fission products are carried on the thorium oxalate. The separated thorium oxalate precipitate is then dissolved in an aqueous oxalate solution and the solution formed is acidified, limiting ihe excess acidity to a maximum of 2 N, whereby thorium oxalate precipitates and carries lanthanum-rareearth- and alkaline-earth-metal fission products while the zirconium-fission-product remains in solution. This precipitate, too, is dissolved in an aqaeous oxalate solution at elevated temperature, and lanthanum-rare-earth ions are added to the solution whereby lanthanum-rare-earth oxalate forms and the lanthanum-rare-earth-type and alkalineearth-metal-type fission products are carried on the oxalate. The precipitate is separated from the solution.

  16. COORDINATION COMPOUND-SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY

    DOEpatents

    Reas, W.H.

    1959-03-10

    A method is presented for the separation of uranium from aqueous solutions containing a uranyl salt and thorium. Thc separation is effected by adding to such solutions an organic complexing agent, and then contacting the solution with an organic solvent in which the organic complexing agent is soluble. By use of the proper complexing agent in the proper concentrations uranium will be complexed and subsequently removed in the organic solvent phase, while the thorium remains in the aqueous phase. Mentioned as suitable organic complexing agents are antipyrine, bromoantipyrine, and pyramidon.

  17. On the role of fusion neutron source with thorium blanket in forming the nuclide composition of the nuclear fuel cycle of the Russian Federation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shmelev, A. N.; Kulikov, G. G., E-mail: ggkulikov@mephi.ru

    The possible role of available thorium resources of the Russian Federation in utilization of thorium in the closed (U–Pu)-fuel cycle of nuclear power is considered. The efficiency of application of fusion neutron sources with thorium blanket for economical use of available thorium resources is demonstrated. The objective of this study is the search for a solution of such major tasks of nuclear power as reduction of the amount of front-end operations in the nuclear fuel cycle and enhancement of its protection against uncontrolled proliferation of fissile materials with the smallest possible alterations in the fuel cycle. The earlier results aremore » analyzed, new information on the amount of thorium resources of the Russian Federation is used, and additional estimates are made. The following basic results obtained on the basis of the assumption of involving fusion reactors with Th-blanket in future nuclear power for generation of the light uranium fraction {sup 232+233+234}U and {sup 231}Pa are formulated. (1) The fuel cycle would shift from fissile {sup 235}U to {sup 233}U, which is more attractive for thermal power reactors. (2) The light uranium fraction is the most “protected” in the uranium fuel component, and being mixed with regenerated uranium, it would become reduced-enrichment uranium fuel, which would relieve the problem of nonproliferation of the fissile material. (3) The addition of {sup 231}Pa into the fuel would stabilize its neutron-multiplying properties, thus making it possible to implement a long fuel residence time and, as a consequence, increase the export potential of the whole nuclear power technology. (4) The available thorium resource in the vicinity of Krasnoufimsk is sufficient for operation of the large-scale nuclear power industry of the Russian Federation with an electric power of 70 GW for more than one quarter of a century. The general conclusion is that involvement of a small number of fusion reactors with Th-blanket in the future nuclear power industry of the Russian Federation would to a large extent solve its problems and increase its export potential.« less

  18. On the role of fusion neutron source with thorium blanket in forming the nuclide composition of the nuclear fuel cycle of the Russian Federation

    NASA Astrophysics Data System (ADS)

    Shmelev, A. N.; Kulikov, G. G.

    2016-12-01

    The possible role of available thorium resources of the Russian Federation in utilization of thorium in the closed (U-Pu)-fuel cycle of nuclear power is considered. The efficiency of application of fusion neutron sources with thorium blanket for economical use of available thorium resources is demonstrated. The objective of this study is the search for a solution of such major tasks of nuclear power as reduction of the amount of front-end operations in the nuclear fuel cycle and enhancement of its protection against uncontrolled proliferation of fissile materials with the smallest possible alterations in the fuel cycle. The earlier results are analyzed, new information on the amount of thorium resources of the Russian Federation is used, and additional estimates are made. The following basic results obtained on the basis of the assumption of involving fusion reactors with Th-blanket in future nuclear power for generation of the light uranium fraction 232+233+234U and 231Pa are formulated. (1) The fuel cycle would shift from fissile 235U to 233U, which is more attractive for thermal power reactors. (2) The light uranium fraction is the most "protected" in the uranium fuel component, and being mixed with regenerated uranium, it would become reduced-enrichment uranium fuel, which would relieve the problem of nonproliferation of the fissile material. (3) The addition of 231Pa into the fuel would stabilize its neutron-multiplying properties, thus making it possible to implement a long fuel residence time and, as a consequence, increase the export potential of the whole nuclear power technology. (4) The available thorium resource in the vicinity of Krasnoufimsk is sufficient for operation of the large-scale nuclear power industry of the Russian Federation with an electric power of 70 GW for more than one quarter of a century. The general conclusion is that involvement of a small number of fusion reactors with Th-blanket in the future nuclear power industry of the Russian Federation would to a large extent solve its problems and increase its export potential.

  19. Geological and geochemical aspects of uranium deposits. A selected, annotated bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garland, P.A.; Thomas, J.M.; Brock, M.L.

    1980-06-01

    A bibliography of 479 references encompassing the fields of uranium and thorium geochemistry and mineralogy, geology of uranium deposits, uranium mining, and uranium exploration techniques has been compiled by the Ecological Sciences Information Center of Oak Ridge National Laboratory. The bibliography was produced for the National Uranium Resource Evaluation Program, which is funded by the Grand Junction Office of the Department of Energy. The references contained in the bibliography have been divided into the following eight subject categories: (1) geology of deposits, (2) geochemistry, (3) genesis O deposits, (4) exploration, (5) mineralogy, (6) uranium industry, (7) reserves and resources, andmore » (8) geology of potential uranium-bearing areas. All categories specifically refer to uranium and thorium; the last category contains basic geologic information concerning areas which the Grand Junction Office feels are particularly favorable for uranium deposition. The references are indexed by author, geographic location, quadrangle name, geoformational feature, taxonomic name, and keyword.« less

  20. Thorium Energy Resources and its Potential of Georgian Republic, The Caucasus

    NASA Astrophysics Data System (ADS)

    Gogoladze, Salome; Okrostsvaridze, Avtandil

    2017-04-01

    Energy resources, currently consumed by modern civilization, are represented by hydrocarbons - 78-80 %, however these reserves are exhausting. In light of these challenges, search of new energy resources is vital importance problem for the modern civilization. Based on the analysis of existing energy reserves and potential, as the main energy resources for the future of our civilization, the renewable and nuclear energy should be considered. However, thorium has a number of advantages compared to Uranium (Kazimi, 2003; et al.): It is concentrated in the earth crust 4-5 times more than uranium; extraction and enrichment of thorium is much cheaper than uranium's; It is less radioactive; complete destruction of its waste products is possible; thorium yields much more energy than uranium. Because of unique properties and currently existed difficult energetic situation thorium is considered as the main green energy resource in the 3rd millennium of the human civilization (Martin, 2009). Georgia republic, which is situated in the central part of Caucasus, poor of hydrocarbons, but has a thorium resource important potential. In general the Caucasus represents a collisional orogen, that formed along the Eurasian North continental margin and extends over 1200 km from Caspian to Black Sea. Three major units are distinguished in its construction: the Greater and Lesser Caucasian mobile belts and the Transcaucasus microplate. Currently it represents the Tethyan segment connecting the Mediterranean and Iran-Himalayan orogenic belts, between the Gondvana-derived Arabian plate and East European platform. Now in Georgian Republic are marked thorium four ore occurrences (Okrostsvaridze, 2014): 1- in the Sothern slope of the Greater Caucasus, in the quartz -plagioclases veins (Th concentrations vary between 51g/t - 3882 g/t); 2- in the Transcaucasus Dzirula massif hydrothermally altered rocks of the Precambrian quartz-diorite gneisses (Th concentrations vary between 117 g/t -266 g/t); 3- in magnetite ore bodies of Vakijvari ore field (Th concentrations vary between 185 g/t - 1600 g/t); 4- in the black sand (magnetite sand) of the Black Sea Guria region coast (Th concentrations vary between 200 g/t - 450 g/t). Based on these data and on the correlation of these information on the other thorium deposit of the world, the Georgian thorium ore occurrences should be treated as a prospective objects. Because of this, we consider that complex investigation of thorium resources of Georgia should be included into the sphere of strategic interests of the state. REFERENCES Martin R., 2009. "Uranium is So Last Centure - Enter Thorium , the New Green Nuke", Weird Magazine, Dec. 21. Kazimi M. S., 2003. "Thorium fuel for nuclear energy", American Scientist, 91, pp. 305-313. Okrostsvaridze A. V., 2014. Torium - Future Energy of Modern Civilization? and its Ore Occurrences in Georgia Republic. Bull.Georg. Natl. Acad. Sci., vol. 8., no 3, pp. 48-55.

  1. Implications of modelled radioactivity measurements along coastal Odisha, Eastern India for heavy mineral resources

    NASA Astrophysics Data System (ADS)

    Ghosal, S.; Agrahari, S.; Guin, R.; Sengupta, D.

    2017-01-01

    A radioelemental assemblage assessment of two beaches of Odisha is performed for the first time. The radiation is measured in two ways, both on field with the help of a hand held environmental survey meter and in the laboratory, where the concentrations of radionuclide's 238U, 232Th and 4K have been determined with the help of High Purity Germanium detector (HPGe). Mineralogical analysis of selected samples has been performed with the help of X-Ray Fluorescence Spectrometry (XRF). A marked difference between the concentration of Uranium (274 Bq kg-1) and Thorium (2489 Bq kg-1) is observed and discussed based on the geology of the area. The placer deposits showing an enrichment of thorium can be an important source of nuclear fuel for the thorium based nuclear reactors. The ratio of thorium and uranium concentrations gives us an idea about the coastal processes associated with the beach. Statistical analysis of the data shows a positive correlation between 238U and 232Th and a strong negative correlation is indicated between 4 K and 238U, 232Th. A cross plot between the equivalent thorium and the equivalent uranium and the equivalent thorium and potassium, represents the nature of deposition and its association with the heavy mineral along with the radioactive elements. Heavy minerals exhibit an increasing trend towards Northeast-Southwest along the south eastern coast of India.

  2. THE ATTRACTIVENESS OF MATERIAS ASSOCIATED WITH THORIUM-BASED NUCLEAR FUEL CYCLES FOR PHWRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prichard, Andrew W.; Niehus, Mark T.; Collins, Brian A.

    2011-07-17

    This paper reports the continued evaluation of the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with thorium based nuclear fuel cycles. Specifically, this paper examines a thorium fuel cycle in which a pressurized heavy water reactor (PHWR) is fueled with mixtures of natural uranium/233U/thorium. This paper uses a PHWR fueled with natural uranium as a base fuel cycle, and then compares material attractiveness of fuel cycles that use 233U/thorium salted with natural uranium. The results include the material attractiveness of fuel at beginning of life (BoL), end of life (EoL), and the number of fuel assemblies requiredmore » to collect a bare critical mass of plutonium or uranium. This study indicates what is required to render the uranium as having low utility for use in nuclear weapons; in addition, this study estimates the increased number of assemblies required to accumulate a bare critical mass of plutonium that has a higher utility for use in nuclear weapons. This approach identifies that some fuel cycles may be easier to implement the International Atomic Energy Agency (IAEA) safeguards approach and have a more effective safeguards by design outcome. For this study, approximately one year of fuel is required to be reprocessed to obtain one bare critical mass of plutonium. Nevertheless, the result of this paper suggests that all spent fuel needs to be rigorously safeguarded and provided with high levels of physical protection. This study was performed at the request of the United States Department of Energy /National Nuclear Security Administration (DOE/NNSA). The methodology and key findings will be presented.« less

  3. Natural uranium and thorium isotopes in sediment cores off Malaysian ports

    NASA Astrophysics Data System (ADS)

    Yusoff, Abdul Hafidz; Sabuti, Asnor Azrin; Mohamed, Che Abd Rahim

    2015-06-01

    Sediment cores collected from three Malaysian marine ports, namely, Kota Kinabalu, Labuan and Klang were analyzed to determine the radioactivities of 234U, 238U, 230Th, 232Th and total organic carbon (TOC) content. The objectives of this study were to determine the factors that control the activity of uranium isotopes and identify the possible origin of uranium and thorium in these areas. The activities of 234U and 238U show high positive correlation with TOC at the middle of sediment core from Kota Kinabalu port. This result suggests that activity of uranium at Kota Kinabalu port was influenced by organic carbon. The 234U/238U value at the upper layer of Kota Kinabalu port was ≥1.14 while the ratio value at Labuan and Klang port was ≤ 1.14. These results suggest a reduction process occurred at Kota Kinabalu port where mobile U(VI) was converted to immobile U(IV) by organic carbon. Therefore, it can be concluded that the major input of uranium at Kota Kinabalu port is by sorptive uptake of authigenic uranium from the water column whereas the major inputs of uranium to Labuan and Klang port are of detrital origin. The ratio of 230Th/232Th was used to estimate the origin of thorium. Low ratio value (lt; 1.5) at Labuan and Klang ports support the suggestion that thorium from both areas were come from detrital input while the high ratio (> 1.5) of 230Th/232Th at Kota Kinabalu port suggest the anthropogenic input of 230Th to this area. The source of 230Th is probably from phosphate fertilizers used in the oil-palm cultivation in Kota Kinabalu that is adjacent to the Kota Kinabalu port.

  4. DEVILS DEN ROADLESS AREA, VERMONT.

    USGS Publications Warehouse

    Slack, John F.; Sabin, Andrew E.

    1984-01-01

    A mineral-resource survey was made of the Devils Den Roadless Area, Vermont, Geochemical sampling found traces of gold, copper, barium, lead, molybdenum, silver, tin, and thorium in rocks, stream sediments, and panned concentrates, but not in sufficient quantities to identify any resource potential. The only apparent resources are nonmetallic commodities including abundant rock suitable for crushihg, and very small deposits of sand and gravel and marble; these also occur outside the roadless area. The area was also evaluated for bedrock uranium and thorium deposits, but not anomalously high radioactive bedrock was found. A potential may exist for oil or natural gas at great depth, but this cannot be evaluated by the present study.

  5. SELKIRK ROADLESS AREA, IDAHO.

    USGS Publications Warehouse

    Miller, Fred K.; Benham, John R.

    1984-01-01

    On the basis of mineral-resource surveys the Selkirk Roadless Area, Idaho has little promise for the occurrence of mineral or energy resources. Molybdenum, lead, uranium, thorium, chromium, tungsten, zirconium, and several rare-earth elements have been detected in panned concentrates from samples of stream sediment, but no minerals containing the first five elements were found in place, nor were any conditions conducive to their concentration found. Zirconium, thorium, and the rare earths occur in sparsely disseminated accessory minerals in granitic rocks and no resource potential is identified. There is no history of mining in the roadless area and there are no oil, gas, mineral, or geothermal leases or current claims.

  6. Natural chelates for radionuclide decorporation

    DOEpatents

    Premuzic, E.T.

    1983-08-25

    This invention relates to the method and resulting chelates of desorbing a radionuclide selected from thorium, uranium, and plutonium containing cultures in a bioavailable form involving pseudomonas or other microorganisms. A preferred microorganism is Pseudomonas aeruginosa which forms multiple chelates with thorium in the range of molecular weight 1000 to 1000 and also forms chelates with uranium of molecular weight in the area of 100 to 1000 and 1000 to 2000.

  7. A procedural manual for measurement of uranium and thorium isotopes utilizing the USGS-Stanford Finnegan Mat 262

    USGS Publications Warehouse

    Shamp, Donald D.

    2001-01-01

    Over the past several decades investigators have extensively examined the 238U-234U- 230Th systematics of a variety of geologic materials using alpha spectroscopy. Analytical uncertainty for 230Th by alpha spectroscopy has been limited to about 2% (2σ). The advantage of thermal ionization mass spectroscopy (TIMS), introduced by Edwards and co-workers in the late 1980’s is the increased detectability of these isotopes by a factor of ~200, and decreases in the uncertainty for 230Th to about 5‰ (2σ) error. This report is a procedural manual for using the USGS-Stanford Finnegan-Mat 262 TIMS to collect and isolate Uranium and Thorium isotopic ratio data. Chemical separation of Uranium and Thorium from the sample media is accomplished using acid dissolution and then processed using anion exchange resins. The Finnegan-Mat262 Thermal Ionization Mass Spectrometer (TIMS) utilizes a surface ionization technique in which nitrates of Uranium and Thorium are placed on a source filament. Upon heating, positive ion emission occurs. The ions are then accelerated and focused into a beam which passes through a curved magnetic field dispersing the ions by mass. Faraday cups and/or an ion counter capture the ions and allow for quantitative analysis of the various isotopes.

  8. Time differences in the formation of meteorites as determined from the ratio of lead-207 to lead-206

    USGS Publications Warehouse

    Tatsumoto, M.; Knight, R.J.; Allegre, C.J.

    1973-01-01

    Measurements of the lead isotopic composition and the uranium, thorium, and lead concentrations in meteorites were made in order to obtain more precise radiometric ages of these members of the solar system. The newly determined value of the lead isotopic composition of Canyon Diablo troilite is as follows: 206Pb/204Pb = 9.307, 207Pb/204Pb = 10.294, and 208Pb/204Pb = 29.476. The leads of Angra dos Reis, Sioux County, and Nuevo Laredo achondrites are very radiogenic, the 206Pb/204Pb values are about 200, and the uranium-thorium-lead systems are nearly concordant. The ages of the meteorites as calculated from a single-stage 207Pb/206Pb isochron based on the newly determined primordial lead value and the newly reported 235U and 238U decay constants, are 4.528 ?? 10 9 years for Sioux County and Nuevo Laredo and 4.555 ?? 10 9 years for Angra dos Reis. When calculated with the uranium decay constants used by Patterson, these ages are 4.593 ?? 109 years and 4.620 ?? 109 years, respectively, and are therefore 40 to 70 ?? 106 years older than the 4.55 ?? 109 years age Patterson reported. The age difference of 27 ?? 106 years between Angra dos Reis and the other two meteorites is compatible with the difference between the initial 87Sr/86Sr ratio of Angra dos Reis and that of seven basaltic achondrites observed by Papanastassiou and Wasserburg. The time difference is also comparable to that determined by 129I-129Xe chronology. The ages of ordinary chondrites (H5 and L6) range from 4.52 to 4.57 ?? 109 years, and, here too, time differences in the formation of the parent bodies or later metamorphic events are indicated. Carbonaceous chondrites (C2 and C3) appear to contain younger lead components.

  9. Preliminary reconnaissance survey for thorium, uranium, and rare-earth oxides, Bear Lodge Mountains, Crook County, Wyoming

    USGS Publications Warehouse

    Wilmarth, V.R.; Johnson, D.H.

    1953-01-01

    An area about 6 miles north of Sundance, in the Bear Lodge Mountains, in Crook County, Wyo., was examined during August 1950 for thorium, uranium, and rare-earth oxides and samples were collected. Uranium is known to occur in fluorite veins and iron-manganese veins and in the igneous rocks of Tertiary age that compose the core of the Bear Lodge Mountains. The uranium content of the samples ranges from 0.001 to 0.015 percent in those from the fluorite veins, from 0.005 to 0.018 percent in those from the iron-manganese veins, and from 0.001 to 0.017 percent in those from the igneous rocks. The radioactivity of the samples is more than that expected from the uranium content. Thorium accounts for most of this discrepancy. The thorium oxide content of samples ranges from 0.07 to 0.25 percent in those from the iron-manganese veins and from 0.07 to 0.39 percent in those from the sedimentary rocks, and from0.04 to 0.30 in those from the igneous rocks. Rare-earth oxides occur in iron-manganese veins and in zones of altered igneous rocks. The veins contain from 0.16 to 12.99 percent rare-earth oxides, and the igneous rocks, except for two localities, contain from 0.01 to 0.42 percent rare-earth oxides. Inclusions of metamorphosed sedimentary rocks in the intrusive rocks contain from 0.07 to 2.01 percent rare-earth oxides.

  10. Method for mobilization of hazardous metal ions in soils

    DOEpatents

    Dugan, Patrick R.; Pfister, Robert M.

    1995-01-01

    A microbial process for removing heavy metals such as bismuth, cadmium, lead, thorium, uranium and other transuranics from soils and sediments, utilizing indigenous, or isolates of indigenous, microorganisms and reducing agents, such as cysteine or sodium thioglycollate, or complexing agents such as the amino acid glycine, to effect the mobilization or release of the metals from the soil particles.

  11. Thorium–phosphorus triamidoamine complexes containing Th–P single- and multiple-bond interactions

    PubMed Central

    Wildman, Elizabeth P.; Balázs, Gábor; Wooles, Ashley J.; Scheer, Manfred; Liddle, Stephen T.

    2016-01-01

    Despite the burgeoning field of uranium-ligand multiple bonds, analogous complexes involving other actinides remain scarce. For thorium, under ambient conditions only a few multiple bonds to carbon, nitrogen, oxygen, sulfur, selenium and tellurium are reported, and no multiple bonds to phosphorus are known, reflecting a general paucity of synthetic methodologies and also problems associated with stabilising these linkages at the large thorium ion. Here we report structurally authenticated examples of a parent thorium(IV)–phosphanide (Th–PH2), a terminal thorium(IV)–phosphinidene (Th=PH), a parent dithorium(IV)–phosphinidiide (Th–P(H)-Th) and a discrete actinide–phosphido complex under ambient conditions (Th=P=Th). Although thorium is traditionally considered to have dominant 6d-orbital contributions to its bonding, contrasting to majority 5f-orbital character for uranium, computational analyses suggests that the bonding of thorium can be more nuanced, in terms of 5f- versus 6d-orbital composition and also significant involvement of the 7s-orbital and how this affects the balance of 5f- versus 6d-orbital bonding character. PMID:27682617

  12. Treatability Study Report for In SITU Lead Immobilization Using Phosphate-Based Binders

    DTIC Science & Technology

    2008-05-01

    include lead, zinc, copper, cadmium, nickel, uranium, barium, cesium, strontium, plutonium, thorium, and other lanthanide and actinide metals. There...Density Bulk density is the measure of the mass per unit volume of the whole soil specimen. American Society for Testing and Materials (ASTM) D 698...Where: m = mass of the soil (grams) V = Volume of sample (cm3) 4.2.2.1.3 Unconfined Compressive Strength (UCS) The UCS test was used to

  13. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    NASA Astrophysics Data System (ADS)

    Mohammed, Abdul Aziz; Pauzi, Anas Muhamad; Rahman, Shaik Mohmmed Haikhal Abdul; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad

    2016-01-01

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 (233U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.

  14. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammed, Abdul Aziz, E-mail: azizM@uniten.edu.my; Rahman, Shaik Mohmmed Haikhal Abdul; Pauzi, Anas Muhamad, E-mail: anas@uniten.edu.my

    2016-01-22

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 ({sup 233}U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintainingmore » the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.« less

  15. Preliminary summary review of thorium-bearing mineral occurrences in Alaska

    USGS Publications Warehouse

    Bates, Robert G.; Wedow, Helmuth

    1952-01-01

    Thorium-bearing minerals are known at 47 localities in Alaska. At these localities the thorium occurs as a major constituent or in minor amounts as an impurity in one or more of the following 12 minerals: allanite, columbite, ellsworthite, eschynite, gummite, monazite, orangite, parisite, thorianite, thorite, xenotime, and zircon. In addition other minerals, such as biotite and sphene, are radioactive and may contain thorium. Several unidentified columbate minerals with uranium or thorium and uranium as major constituents have been recognized at some localities. The distribution, by type of deposit, of the 57 thorium occurrences is as follows: lode - 3, lode and placer - 1, granitic rock - 3, granitic rock and related placer - 14, and placer - 26. Of the four lode occurrences only the radioactive veins at Salmon Bay in southeastern Alaska and the contact metamorphic deposit in the Nixon Fork area of central Alaska warrant further consideration, although insufficient data are available to determine whether these two deposits have commercial possibilities. The remaining occurrences of thorium-bearing minerals in Alaska are limited to placer deposits and disseminations of accessory minerals in granitic rocks. In most of these occurrences the thorium-bearing minerals occur in only trace amounts and consequently warrent little further consideration. More data are needed to determine the possibilities of byproduct recovery of thorium-bearing minerals from several of the gold and tin placers.

  16. Minor actinide transmutation in thorium and uranium matrices in heavy water moderated reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatti, Zaki; Hyland, B.; Edwards, G.W.R.

    2013-07-01

    The irradiation of Th{sup 232} breeds fewer of the problematic minor actinides (Np, Am, Cm) than the irradiation of U{sup 238}. This characteristic makes thorium an attractive potential matrix for the transmutation of these minor actinides, as these species can be transmuted without the creation of new actinides as is the case with a uranium fuel matrix. Minor actinides are the main contributors to long term decay heat and radiotoxicity of spent fuel, so reducing their concentration can greatly increase the capacity of a long term deep geological repository. Mixing minor actinides with thorium, three times more common in themore » Earth's crust than natural uranium, has the additional advantage of improving the sustainability of the fuel cycle. In this work, lattice cell calculations have been performed to determine the results of transmuting minor actinides from light water reactor spent fuel in a thorium matrix. 15-year-cooled group-extracted transuranic elements (Np, Pu, Am, Cm) from light water reactor (LWR) spent fuel were used as the fissile component in a thorium-based fuel in a heavy water moderated reactor (HWR). The minor actinide (MA) transmutation rates, spent fuel activity, decay heat and radiotoxicity, are compared with those obtained when the MA were mixed instead with natural uranium and taken to the same burnup. Each bundle contained a central pin containing a burnable neutron absorber whose initial concentration was adjusted to have the same reactivity response (in units of the delayed neutron fraction β) for coolant voiding as standard NU fuel. (authors)« less

  17. Chloro-, methyl-, and (tetrahydroborato)tris((hexamethyldisilyl)amido)thorium(IV) and -uranium(IV). Crystal structure of (tetrahydroborato)tris((hexamethyldisilyl)amido)thorium(IV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, H.W.; Andersen, R.A.; Zalkin, A.

    1979-05-01

    Reaction of sodium (hexamethyldisilyl)amide with thorium tetrachloride or uranium tetrachloride yields chlorotris-((hexamethyldisilyl)amido)thorium(IV) or -uranium(IV), respectively. The chloroamides of thorium or uranium react with dimethylmagnesium or methyllithium yielding the methyl derivatives MeTh(N(SiMe/sub 3/)/sub 2/)/sub 3/ or MeU(N(SiMe/sub 3/)/sub 2/)/sub 3/, respectively. The chloro compounds yield BH/sub 4/M(N(SiMe/sub 3/)/sub 2/)/sub 3/ upon reaction with lithium tetrahydroborate, where M is thorium or uranium. Infrared spectra of the tetrahydroborate derivatives suggest that BH/sub 4/ is bonded in a tridentate fashion in both compounds, the metal atoms being six-coordinate. Single-crystal X-ray analysis of the thorium borohydride confirms the infrared result. The white BH/sub 4/Th(N(Si(CH/sub 3/))/submore » 2/)/sub 3/ crystals are rhombohedral with cell dimensions a/sub r/ = 11.137 A and ..cap alpha../sub r/ = 113.61/sup 0/; the triply primitive hexagonal cell has a/sub h/ = 18.640 (3) A c/sub h/ = 8.604 (1) A, V = 2489 A/sup 3/, Z = 3, and D/sub x/ = 1.40 g/cm/sup 3/, space group R3m. The structure was refined by full-matrix least squares to a conventional R factor of 0.031 for 1014 data. The Th atom is on a threefold axis 2.32 A from three nitrogen atoms and 2.61 A from the boron atom, a distance which represents a triple bridge bond between Th and B. The three (dimethylsilyl)amide ligands are disordered by a mirror plane parallel to the threefold axis. CH/sub 3/Th(N(Si(CH/sub 3/)/sub 3/)/sub 2/)/sub 3/ is isomorphous with BH/sub 4/Th(N(Si(CH/sub 3/)/sub 3/)/sub 2/)/sub 3/ with cell dimensions a/sub h/ = 18.68 (1) A and c/sub h/ = 8.537 (6) A. The diffraction data yielded integral'' = 12.16 +- 0.33 e for the imaginary scattering term for Th with Cu K..cap alpha.. radiation.« less

  18. Natural radionuclide and plutonium content in Black Sea bottom sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strezov, A.; Stoilova, T.; Yordanova, I.

    1996-01-01

    The content of uranium, thorium, radium, lead, polonium, and plutonium in bottom sediments and algae from two locations at the Bulgarian Black Sea coast have been determined. Some parent:progeny ratios for evaluation of the geochemical behavior of the nuclides have been estimated as well. The extractable and total uranium and thorium are determined by two separate radiochemical procedures to differentiate the more soluble chemical forms of the elements and to estimate the potential hazard for the biosphere and for humans. No distinct seasonal variation as well as no significant change in total and extractable uranium (also for {sup 226}Ra) contentmore » is observed. The same is valid for extractable thorium while the total thorium content in the first two seasons is slightly higher. Our data show that {sup 210}Po content is accumulated more in the sediments than {sup 210}Pb, and the evaluated disequilibria suggest that the two radionuclides belong to more recent sediment layers deposited in the slime samples compared to the silt ones for the different seasons. The obtained values for plutonium are in the lower limits of the data cited in literature, which is quite clear as there are no plutonium discharge facilities at the Bulgarian Black Sea coast. The obtained values for the activity ratio {sup 238}Pu: {sup 239+240}Pu are higher for Bjala sediments compared to those of Kaliakra. The ratio values are out of the variation range for the global contamination with weapon tests fallout plutonium which is probably due to Chernobyl accident contribution. The dependence of natural radionuclide content on the sediment type as well as the variation of nuclide accumulation for two types of algae in two sampling locations for five consecutive seasons is evaluated. No serious contamination with natural radionuclides in the algae is observed. 38 refs., 6 figs., 7 tabs.« less

  19. 40 CFR 192.03 - Monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.03 Monitoring. A...

  20. 40 CFR 192.03 - Monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.03 Monitoring. A...

  1. 40 CFR 192.03 - Monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.03 Monitoring. A...

  2. 40 CFR 192.03 - Monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.03 Monitoring. A...

  3. Utilization of non-weapons-grade plutonium and highly enriched uranium with breeding of the 233U isotope in the VVER reactors using thorium and heavy water

    NASA Astrophysics Data System (ADS)

    Marshalkin, V. E.; Povyshev, V. M.

    2015-12-01

    A method for joint utilization of non-weapons-grade plutonium and highly enriched uranium in the thorium-uranium—plutonium oxide fuel of a water-moderated reactor with a varying water composition (D2O, H2O) is proposed. The method is characterized by efficient breeding of the 233U isotope and safe reactor operation and is comparatively simple to implement.

  4. Method for mobilization of hazardous metal ions in soils

    DOEpatents

    Dugan, P.R.; Pfister, R.M.

    1995-06-27

    A microbial process is revealed for removing heavy metals such as bismuth, cadmium, lead, thorium, uranium and other transuranics from soils and sediments. The method utilizes indigenous, or isolates of indigenous, microorganisms and reducing agents, such as cysteine or sodium thioglycollate, or complexing agents such as the amino acid glycine, to effect the mobilization or release of the metals from the soil particles. 5 figs.

  5. 40 CFR 192.00 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.00 Applicability. This... sites under section 108 of the Uranium Mill Tailings Radiation Control Act of 1978 (henceforth...

  6. 40 CFR 192.10 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Cleanup of Land and Buildings Contaminated with Residual Radioactive Materials from Inactive Uranium Processing... radioactive materials at which all or substantially all of the uranium was produced for sale to any Federal...

  7. 40 CFR 192.00 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.00 Applicability. This... sites under section 108 of the Uranium Mill Tailings Radiation Control Act of 1978 (henceforth...

  8. 40 CFR 192.10 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Cleanup of Land and Buildings Contaminated with Residual Radioactive Materials from Inactive Uranium Processing... radioactive materials at which all or substantially all of the uranium was produced for sale to any Federal...

  9. 40 CFR 192.00 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.00 Applicability. This... sites under section 108 of the Uranium Mill Tailings Radiation Control Act of 1978 (henceforth...

  10. 40 CFR 192.00 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.00 Applicability. This... sites under section 108 of the Uranium Mill Tailings Radiation Control Act of 1978 (henceforth...

  11. An investigation into the feasibility of thorium fuels utilization in seed-blanket configurations for TRIGA PUSPATI Reactor (RTP)

    NASA Astrophysics Data System (ADS)

    Damahuri, Abdul Hannan Bin; Mohamed, Hassan; Aziz Mohamed, Abdul; Idris, Faridah

    2018-01-01

    Thorium is one of the elements that needs to be explored for nuclear fuel research and development. One of the popular core configurations of thorium fuel is seed-blanket configuration or also known as Radkowsky Thorium Fuel concept. The seed will act as a supplier of neutrons, which will be placed inside of the core. The blanket, on the other hand, is the consumer of neutrons that is located at outermost of the core. In this work, a neutronic analysis of seed-blanket configuration for the TRIGA PUSPATI Reactor (RTP) is carried out using Monte Carlo method. The reactor, which has been operated since 1982 use uranium zirconium hydride (U-ZrH1.6) as the fuel and have multiple uranium weight which are 8.5, 12 and 20 wt.%. The pool type reactor is one and only research reactor that located in Malaysia. The design of core included the Uranium Zirconium Hydride located at the centre of the core that will act as the seed to supply neutron. The thorium oxide that will act as blanket situated outside of seed region will receive neutron to transmute 232Th to 233U. The neutron multiplication factor or criticality of each configuration is estimated. Results show that the highest initial criticality achieved is 1.30153.

  12. Sensitivity of thermal transport in thorium dioxide to defects

    NASA Astrophysics Data System (ADS)

    Park, Jungkyu; Farfán, Eduardo B.; Mitchell, Katherine; Resnick, Alex; Enriquez, Christian; Yee, Tien

    2018-06-01

    In this research, the reverse non-equilibrium molecular dynamics is employed to investigate the effect of vacancy and substitutional defects on the thermal transport in thorium dioxide (ThO2). Vacancy defects are shown to severely alter the thermal conductivity of ThO2. The thermal conductivity of ThO2 decreases significantly with increasing the defect concentration of oxygen vacancy; the thermal conductivity of ThO2 decreases by 20% when 0.1% oxygen vacancy defects are introduced in the 100 unit cells of ThO2. The effect of thorium vacancy defect on the thermal transport in ThO2 is even more detrimental; ThO2 with 0.1% thorium vacancy defect concentration exhibits a 38.2% reduction in its thermal conductivity and the thermal conductivity becomes only 8.2% of that of the pristine sample when the thorium vacancy defect concentration is increased to 5%. In addition, neutron activation of thorium produces uranium and this uranium substitutional defects in ThO2 are observed to affect the thermal transport in ThO2 marginally when compared to vacancy defects. This indicates that in the thorium fuel cycle, fissile products such as 233U is not likely to alter the thermal transport in ThO2 fuel.

  13. Investigations of systems ThO 2-MO 2-P 2O 5 (M=U, Ce, Zr, Pu). Solid solutions of thorium-uranium (IV) and thorium-plutonium (IV) phosphate-diphosphates

    NASA Astrophysics Data System (ADS)

    Dacheux, N.; Podor, R.; Brandel, V.; Genet, M.

    1998-02-01

    In the framework of nuclear waste management aiming at the research of a storage matrix, the chemistry of thorium phosphates has been completely re-examined. In the ThO 2-P 2O 5 system a new compound thorium phosphate-diphosphate Th 4(PO 4) 4P 2O 7 has been synthesized. The replacement of Th 4+ by a smaller cation like U 4+ and Pu 4+ in the thorium phosphate-diphosphate (TPD) lattice has been achieved. Th 4- xU x(PO 4) 4P 2O 7 and Th 4- xPu x(PO 4) 4P 2O 7 solid solutions have been synthesized through wet and dry processes with 0< x<3.0 for uranium and 0< x<1.0 for plutonium. From the variation of the unit cell parameters, an upper x value equal to 1.67 has been estimated for the thorium-plutonium (IV) phosphate-diphosphate solid solutions. Two other tetravalent cations, Ce 4+ and Zr 4+, cannot be incorporated in the TPD lattice: cerium (IV) because of its reduction into Ce (III) at high temperature, and zirconium probably because of its too small radius compared to thorium.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, G.W.R.; Priest, N.D.; Richardson, R.B.

    The online refueling capability of Heavy Water Reactors (HWRs), and their good neutron economy, allows a relatively high amount of neutron absorption in breeding materials to occur during normal fuel irradiation. This characteristic makes HWRs uniquely suited to the extraction of energy from thorium. In Canada, the toxicity and radiological protection methods dealing with personnel exposure to natural uranium (NU) spent fuel (SF) are well-established, but the corresponding methods for irradiated thorium fuel are not well known. This study uses software to compare the activity and toxicity of irradiated thorium fuel ('thorium SF') against those of NU. Thorium elements, containedmore » in the inner eight elements of a heterogeneous high-burnup bundle having LEU (Low-enriched uranium) in the outer 35 elements, achieve a similar burnup to NU SF during its residence in a reactor, and the radiotoxicity due to fission products was found to be similar. However, due to the creation of such inhalation hazards as U-232 and Th-228, the radiotoxicity of thorium SF was almost double that of NU SF after sufficient time has passed for the decay of shorter-lived fission products. Current radio-protection methods for NU SF exposure are likely inadequate to estimate the internal dose to personnel to thorium SF, and an analysis of thorium in fecal samples is recommended to assess the internal dose from exposure to this fuel. (authors)« less

  15. OPTIMIZATION OF HETEROGENEOUS UTILIZATION OF THORIUM IN PWRS TO ENHANCE PROLIFERATION RESISTANCE AND REDUCE WASTE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TODOSOW,M.; KAZIMI,M.

    2004-08-01

    Issues affecting the implementation, public perception and acceptance of nuclear power include: proliferation, radioactive waste, safety, and economics. The thorium cycle directly addresses the proliferation and waste issues, but optimization studies of core design and fuel management are needed to ensure that it fits within acceptable safety and economic margins. Typical pressurized water reactors, although loaded with uranium fuel, produce 225 to 275 kg of plutonium per gigawatt-year of operation. Although the spent fuel is highly radioactive, it nevertheless offers a potential proliferation pathway because the plutonium is relatively easy to separate, amounts to many critical masses, and does notmore » present any significant intrinsic barrier to weapon assembly. Uranium 233, on the other hand, produced by the irradiation of thorium, although it too can be used in weapons, may be ''denatured'' by the addition of natural, depleted or low enriched uranium. Furthermore, it appears that the chemical behavior of thoria or thoria-urania fuel makes it a more stable medium for the geological disposal of the spent fuel. It is therefore particularly well suited for a once-through fuel cycle. The use of thorium as a fertile material in nuclear fuel has been of interest since the dawn of nuclear power technology due to its abundance and to potential neutronic advantages. Early projects include homogeneous mixtures of thorium and uranium oxides in the BORAX-IV, Indian Point I, and Elk River reactors, as well as heterogeneous mixtures in the Shippingport seed-blanket reactor. However these projects were developed under considerably different circumstances than those which prevail at present. The earlier applications preceded the current proscription, for non-proliferation purposes, of the use of uranium enriched to more than 20 w/o in {sup 235}U, and has in practice generally prohibited the use of uranium highly enriched in {sup 235}U. They were designed when the expected burnup of light water fuel was on the order of 25 MWD/kgU--about half the present day value--and when it was expected that the spent fuel would be recycled to recover its fissile content.« less

  16. Immobilization of actinides in stable mineral type and ceramic materials (high temperature synthesis)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starkov, O.; Konovalov, E.

    1996-05-01

    Alternative vitrification technologies are being developed in the world for the immobilization of high radioactive waste in materials with improved thermodynamic stability, as well as improved chemical and thermal stability and stability to radiation. Oxides, synthesized in the form of analogs to rock-forming minerals and ceramics, are among those materials that have highly stable properties and are compatible with the environment. In choosing the appropriate material, we need to be guided by its geometric stability, the minimal number of cations in the structure of the material and the presence of structural elements in the mineral that are isomorphs of uraniummore » and thorium, actinoids found in nature. Rare earth elements, yttrium, zirconium and calcium are therefore suitable. The minerals listed in the table (with the exception of the zircon) are pegatites by origin, i.e. they are formed towards the end of the magma crystallization of silicates form the residual melt, enriched with Ta, Nb, Ti, Zr, Ce, Y, U and Th. Uranium and thorium in the form of isomorphic admixtures form part of the lattice of the mineral. These minerals, which are rather simple in composition and structure and are formed under high temperatures, may be viewed as natural physio-chemical systems that are stable and long-lived in natural environments. The similarity of the properties of actinoids and lanthanoids plays an important role in the geochemistry of uranium and thorium; however, uranium (IV) is closer to the {open_quotes}heavy{close_quotes} group of lanthanoids (the yttrium group) while thorium (IV) is closer to the {open_quotes}light{close_quotes} group (the cerium group). That is why rare earth minerals contain uranium and thorium in the form of isomorphic admixtures.« less

  17. NUCLEAR FUEL COMPOSITION

    DOEpatents

    Spedding, F.H.; Wilhelm, H.A.

    1960-05-31

    A novel reactor composition for use in a self-sustaining fast nuclear reactor is described. More particularly, a fuel alloy comprising thorium and uranium-235 is de scribed, the uranium-235 existing in approximately the same amount that it is found in natural uranium, i.e., 1.4%.

  18. 40 CFR 192.34 - Effective date.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Management of Uranium Byproduct Materials Pursuant to Section 84 of the Atomic Energy Act of 1954, as Amended...

  19. 40 CFR 192.34 - Effective date.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Management of Uranium Byproduct Materials Pursuant to Section 84 of the Atomic Energy Act of 1954, as Amended...

  20. Methods Applied to Uranium and Thorium Ore Prospecting. a. In the Desert Countries. b. In the Equatorial Forest Regions of the Union Francaise; LA PROSPECTION DES MINERAIS D'URANIUM ET DE THORIUM DANS LES PAYS DESERTIQUES ET DANS LES REGIONS DE FORET EQUATORIALE DE L'UNION FRANCAISE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lecoq, J.J.; Bigotte, G.; Hinault, J.

    1959-10-31

    Since 1946 the Commissariat a l'Energie Atomique has supported explorations for uranium and thorium deposits in the French territorial possessions of French territorial possessions of French Africa, Madagascar, and French Guiana. A lange part of this territory is desert, equatorial forest, or savannah regions. The particular difficulties of prospecting for radioactive minerals in these territories include the geographic character of the region, the climate, and the lack of access and skilled labor. The different methods of prospecting in the desert and equatorial forests include photogeology, aerial and ground prospecting, geochemical and geophysical techniques, and the training of local labor formore » prospecting. These techniques are described, and the results obtained are discussed. Three examples of prospecting in countries with extreme climates are given. (J.S.R.)« less

  1. Short papers of the U.S. Geological Survey uranium-thorium symposium, 1977

    USGS Publications Warehouse

    Campbell, John A.

    1977-01-01

    This circular contains expanded abstracts for the technical papers presented at the 1977 Uranium and Thorium Research and Resources Conference, sponsored by the Branch of Uranium and Thorium Resources, U.S. Geological Survey. This Conference was held April 27 and 28, 1977, at the Colorado School of Mines, Golden. This was the second conference sponsored by the Branch the first was held in December of 1975.Readers interested in additional information about a paper presented at the meeting should contact the author directly. U.S. Geological Survey authors stationed in Denver can be reached by writing to Box 25046, Denver Federal Center, Denver, Colorado 80225. Authors stationed in Reston, Virginia, can be reached by writing to the U.S. Geological Survey, National Center, 12201 Sunrise Valley Drive, Reston, Virginia 22092. Current addresses for other authors appear at the beginning of their papers.Any use of trade names and trademarks in this publication is for descriptive purposes only and does not constitute endorsement by the U.S. Geological Survey.

  2. Simultaneous spectrophotometric determination of trace amounts of uranium, thorium, and zirconium using the partial least squares method after their preconcentration by alpha-benzoin oxime modified Amberlite XAD-2000 resin.

    PubMed

    Ghasemi, Jahan B; Zolfonoun, E

    2010-01-15

    A new solid phase extraction method for separation and preconcentration of trace amounts of uranium, thorium, and zirconium in water samples is proposed. The procedure is based on the adsorption of U(VI), Th(IV) and Zr(IV) ions on a column of Amberlite XAD-2000 resin loaded with alpha-benzoin oxime prior to their simultaneous spectrophotometric determination with Arsenazo III using orthogonal signal correction partial least squares method. The enrichment factor for preconcentration of uranium, thorium, and zirconium was found to be 100. The detection limits for U(VI), Th(IV) and Zr(IV) were 0.50, 0.54, and 0.48microgL(-1), respectively. The precision of the method, evaluated as the relative standard deviation obtained by analyzing a series of 10 replicates, was below 4% for all elements. The practical applicability of the developed sorbent was examined using synthetic seawater, natural waters and ceramic samples.

  3. 800-MeV proton irradiation of thorium and depleted uranium targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, G.J.; Brun, T.O.; Pitcher, E.J.

    As part of the Los Alamos Fertile-to-Fissile-Conversion (FERFICON) program in the late 1980`s, thick targets of the fertile materials thorium and depleted uranium were bombarded by 800-MeV protons to produce the fissile materials {sup 233}U and {sup 239}Pu, respectively. The amount of {sup 233}U made was determined by measuring the {sup 233}Pa activity, and the yield of {sup 239}Pu was deduced by measuring the activity of {sup 239}Np. For the thorium target, 4 spallation products and 34 fission products were also measured. For the depleted uranium target, 3 spallation products and 16 fission products were also measured. The number ofmore » fissions in each target was deduced from fission product mass-yield curves. In actuality, axial distributions of the products were measured, and the distributions were then integrated over the target volume to obtain the total number of products for each reaction.« less

  4. Fertile-to-fissile and fission measurements for depleted uranium and thorium bombarded by 800-MeV protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilmore, J.S.; Russell, G.J.; Robinson, H.

    Axial distributions of fissions and of fertile-to-fissile conversions in thick depleted uranium and thorium targets bombarded by 800-MeV protons have been measured. The amounts of /sup 239/Pu and /sup 233/U produced were determined by measuring the yields of /sup 239/Np and /sup 233/Pa, respectively. The number of fissions was deduced from fission product mass-yield curves. Integration of the axial distributions gave the total number of conversions and fissions occurring in the targets. For the uranium target, experimental results were 5.90 +- 0.25 fissions and 3.81 +- 0.01 atoms of /sup 239/Pu produced per incident portion. Corresponding calculated results were 6.14more » +- 0.04 and 3.88 +- 0.03. In the thorium target, 1.56 +- 0.25 fissions and 1.25 +- 0.01 atoms of /sup 233/U per incident proton were measured; the calculated values were 1.54 +- 0.01 fissions and 1.27 +- 0.01 atom/proton.« less

  5. 10 CFR 765.11 - Reimbursable costs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING... uranium processing site licensees shall not exceed $6.25, as adjusted for inflation, multiplied by the... remedial action incurred at all active uranium processing sites shall not exceed $350 million. This...

  6. 10 CFR 765.11 - Reimbursable costs.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING... uranium processing site licensees shall not exceed $6.25, as adjusted for inflation, multiplied by the... remedial action incurred at all active uranium processing sites shall not exceed $350 million. This...

  7. 10 CFR 765.11 - Reimbursable costs.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING... uranium processing site licensees shall not exceed $6.25, as adjusted for inflation, multiplied by the... remedial action incurred at all active uranium processing sites shall not exceed $350 million. This...

  8. 10 CFR 765.11 - Reimbursable costs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING... uranium processing site licensees shall not exceed $6.25, as adjusted for inflation, multiplied by the... remedial action incurred at all active uranium processing sites shall not exceed $350 million. This...

  9. 10 CFR 765.11 - Reimbursable costs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING... uranium processing site licensees shall not exceed $6.25, as adjusted for inflation, multiplied by the... remedial action incurred at all active uranium processing sites shall not exceed $350 million. This...

  10. Uranium and Thorium

    ERIC Educational Resources Information Center

    Finch, Warren I.

    1978-01-01

    The results of President Carter's policy on non-proliferation of nuclear weapons are expected to slow the growth rate in energy consumption, put the development of the breeder reactor in question, halt plans to reprocess and recycle uranium and plutonium, and expand facilities to supply enriched uranium. (Author/MA)

  11. METHOD OF PROCESSING MONAZITE SAND

    DOEpatents

    Calkins, G.D.

    1957-10-29

    A method is given for the pretreatment of monazite sand with sodium hydroxide. When momazite sand is reacted with sodium hydroxide, the thorium, uranium, and rare earths are converted to water-insoluble hydrous oxides; but in the case of uranium, the precipitate compound may at least partly consist of a slightly soluble uranate. According to the patent, monazite sand is treated with an excess of aqueous sodium hydroxide solution, and the insoluble compounds of thorium, uranium, and the rare earths are separated from the aqueous solution. This solution is then concentrated causing sodium phosphate to crystallize out. The crystals are removed from the remaining solution, and the solution is recycled for reaction with a mew supply of momazite sand.

  12. Thermal diffusivity and conductivity of thorium- uranium mixed oxides

    NASA Astrophysics Data System (ADS)

    Saoudi, M.; Staicu, D.; Mouris, J.; Bergeron, A.; Hamilton, H.; Naji, M.; Freis, D.; Cologna, M.

    2018-03-01

    Thorium-uranium oxide pellets with high densities were prepared at the Canadian Nuclear Laboratories (CNL) by co-milling, pressing, and sintering at 2023 K, with UO2 mass contents of 0, 1.5, 3, 8, 13, 30, 60 and 100%. At the Joint Research Centre, Karlsruhe (JRC-Karlsruhe), thorium-uranium oxide pellets were prepared using the spark plasma sintering (SPS) technique with 79 and 93 wt. % UO2. The thermal diffusivity of (Th1-xUx)O2 (0 ≤ x ≤ 1) was measured at CNL and at JRC-Karlsruhe using the laser flash technique. ThO2 and (Th,U)O2 with 1.5, 3, 8 and 13 wt. % UO2 were found to be semi-transparent to the infrared wavelength of the laser and were coated with graphite for the thermal diffusivity measurements. This semi-transparency decreased with the addition of UO2 and was lost at about 30 wt. % of UO2 in ThO2. The thermal conductivity was deduced using the measured density and literature data for the specific heat capacity. The thermal conductivity for ThO2 is significantly higher than for UO2. The thermal conductivity of (Th,U)O2 decreases rapidly with increasing UO2 content, and for UO2 contents of 60% and higher, the conductivity of the thorium-uranium oxide fuel is close to UO2. As the mass difference between the Th and U atoms is small, the thermal conductivity decrease is attributed to the phonon scattering enhanced by lattice strain due to the introduction of uranium in ThO2 lattice. The new results were compared to the data available in the literature and were evaluated using the classical phonon transport model for oxide systems.

  13. 40 CFR 192.33 - Corrective action programs.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Management of Uranium Byproduct Materials Pursuant to Section 84 of the Atomic Energy Act of 1954, as Amended...

  14. 40 CFR 192.33 - Corrective action programs.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Management of Uranium Byproduct Materials Pursuant to Section 84 of the Atomic Energy Act of 1954, as Amended...

  15. 10 CFR 765.32 - Reimbursement of excess funds.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM... additional reimbursement to uranium licensees for costs of remedial action, subject to the availability of... uranium licensee's prorated share will be determined by dividing the total excess funds available by the...

  16. 10 CFR 765.32 - Reimbursement of excess funds.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM... additional reimbursement to uranium licensees for costs of remedial action, subject to the availability of... uranium licensee's prorated share will be determined by dividing the total excess funds available by the...

  17. 10 CFR 765.32 - Reimbursement of excess funds.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM... additional reimbursement to uranium licensees for costs of remedial action, subject to the availability of... uranium licensee's prorated share will be determined by dividing the total excess funds available by the...

  18. 10 CFR 765.32 - Reimbursement of excess funds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM... additional reimbursement to uranium licensees for costs of remedial action, subject to the availability of... uranium licensee's prorated share will be determined by dividing the total excess funds available by the...

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bi, G.; Liu, C.; Si, S.

    This paper was focused on core design, neutronics evaluation and fuel cycle analysis for Thorium-Uranium Breeding Recycle in current PWRs, without any major change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. The fuel cycle analysis indicates that Thorium-Uranium Breeding Recycle is technically feasible in current PWRs. A 4-loop, 193-assembly PWR core utilizing 17 x 17 fuel assemblies (FAs) was taken as the model core. Two mixed cores were investigated respectively loaded with mixed reactor grade Plutonium-Thorium (PuThOX) FAs and mixed reactor grade {sup 233}U-Thorium (U{sub 3}ThOX) FAs on the basis ofmore » reference full Uranium oxide (UOX) equilibrium-cycle core. The UOX/PuThOX mixed core consists of 121 UOX FAs and 72 PuThOX FAs. The reactor grade {sup 233}U extracted from burnt PuThOX fuel was used to fabrication of U{sub 3}ThOX for starting Thorium-. Uranium breeding recycle. In UOX/U{sub 3}ThOX mixed core, the well designed U{sub 3}ThOX FAs with 1.94 w/o fissile uranium (mainly {sup 233}U) were located on the periphery of core as a blanket region. U{sub 3}ThOX FAs remained in-core for 6 cycles with the discharged burnup achieving 28 GWD/tHM. Compared with initially loading, the fissile material inventory in U{sub 3}ThOX fuel has increased by 7% via 1-year cooling after discharge. 157 UOX fuel assemblies were located in the inner of UOX/U{sub 3}ThOX mixed core refueling with 64 FAs at each cycle. The designed UOX/PuThOX and UOX/U{sub 3}ThOX mixed core satisfied related nuclear design criteria. The full core performance analyses have shown that mixed core with PuThOX loading has similar impacts as MOX on several neutronic characteristic parameters, such as reduced differential boron worth, higher critical boron concentration, more negative moderator temperature coefficient, reduced control rod worth, reduced shutdown margin, etc.; while mixed core with U{sub 3}ThOX loading on the periphery of core has no visible impacts on neutronic characteristics compared with reference full UOX core. The fuel cycle analysis has shown that {sup 233}U mono-recycling with U{sub 3}ThOX fuel could save 13% of natural uranium resource compared with UOX once through fuel cycle, slightly more than that of Plutonium single-recycling with MOX fuel. If {sup 233}U multi-recycling with U{sub 3}ThOX fuel is implemented, more natural uranium resource would be saved. (authors)« less

  20. Photochemical route to actinide-transition metal bonds: synthesis, characterization and reactivity of a series of thorium and uranium heterobimetallic complexes.

    PubMed

    Ward, Ashleigh L; Lukens, Wayne W; Lu, Connie C; Arnold, John

    2014-03-05

    A series of actinide-transition metal heterobimetallics has been prepared, featuring thorium, uranium, and cobalt. Complexes incorporating the binucleating ligand N[ο-(NHCH2P(i)Pr2)C6H4]3 with either Th(IV) (4) or U(IV) (5) and a carbonyl bridged [Co(CO)4](-) unit were synthesized from the corresponding actinide chlorides (Th: 2; U: 3) and Na[Co(CO)4]. Irradiation of the resulting isocarbonyls with ultraviolet light resulted in the formation of new species containing actinide-metal bonds in good yields (Th: 6; U: 7); this photolysis method provides a new approach to a relatively unusual class of complexes. Characterization by single-crystal X-ray diffraction revealed that elimination of the bridging carbonyl and formation of the metal-metal bond is accompanied by coordination of a phosphine arm from the N4P3 ligand to the cobalt center. Additionally, actinide-cobalt bonds of 3.0771(5) Å and 3.0319(7) Å for the thorium and uranium complexes, respectively, were observed. The solution-state behavior of the thorium complexes was evaluated using (1)H, (1)H-(1)H COSY, (31)P, and variable-temperature NMR spectroscopy. IR, UV-vis/NIR, and variable-temperature magnetic susceptibility measurements are also reported.

  1. Photochemical route to actinide-transition metal bonds: synthesis, characterization and reactivity of a series of thorium and uranium heterobimetallic complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Ashleigh; Lukens, Wayne; Lu, Connie

    2014-04-01

    A series of actinide-transition metal heterobimetallics has been prepared, featuring thorium, uranium and cobalt. Complexes incorporating the binucleating ligand N[-(NHCH2PiPr2)C6H4]3 and Th(IV) (4) or U(IV) (5) with a carbonyl bridged [Co(CO)4]- unit were synthesized from the corresponding actinide chlorides (Th: 2; U: 3) and Na[Co(CO)4]. Irradiation of the isocarbonyls with ultraviolet light resulted in the formation of new species containing actinide-metal bonds in good yields (Th: 6; U: 7); this photolysis method provides a new approach to a relatively rare class of complexes. Characterization by single-crystal X-ray diffraction revealed that elimination of the bridging carbonyl is accompanied by coordination ofmore » a phosphine arm from the N4P3 ligand to the cobalt center. Additionally, actinide-cobalt bonds of 3.0771(5) and 3.0319(7) for the thorium and uranium complexes, respectively, were observed. The solution state behavior of the thorium complexes was evaluated using 1H, 1H-1H COSY, 31P and variable-temperature NMR spectroscopy. IR, UV-Vis/NIR, and variable-temperature magnetic susceptibility measurements are also reported.« less

  2. 10 CFR 765.20 - Procedures for submitting reimbursement claims.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Section 765.20 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM... reimbursement ceiling for any active uranium or thorium processing site; (5) Any revision in the per dry short ton limit on reimbursement for all active uranium processing sites; and (6) Any other relevant...

  3. 10 CFR 765.20 - Procedures for submitting reimbursement claims.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Section 765.20 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM... reimbursement ceiling for any active uranium or thorium processing site; (5) Any revision in the per dry short ton limit on reimbursement for all active uranium processing sites; and (6) Any other relevant...

  4. 10 CFR 765.20 - Procedures for submitting reimbursement claims.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Section 765.20 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM... reimbursement ceiling for any active uranium or thorium processing site; (5) Any revision in the per dry short ton limit on reimbursement for all active uranium processing sites; and (6) Any other relevant...

  5. 10 CFR 765.20 - Procedures for submitting reimbursement claims.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Section 765.20 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM... reimbursement ceiling for any active uranium or thorium processing site; (5) Any revision in the per dry short ton limit on reimbursement for all active uranium processing sites; and (6) Any other relevant...

  6. Recovery of protactinium from molten fluoride nuclear fuel compositions

    DOEpatents

    Baes, C.F. Jr.; Bamberger, C.; Ross, R.G.

    1973-12-25

    A method is provided for separating protactinium from a molten fluonlde salt composition consisting essentially of at least one alkali and alkaline earth metal fluoride and at least one soluble fluoride of uranium or thorium which comprises oxidizing the protactinium in said composition to the + 5 oxidation state and contacting said composition with an oxide selected from the group consisting of an alkali metal oxide, an alkaline earth oxide, thorium oxide, and uranium oxide, and thereafter isolating the resultant insoluble protactinium oxide product from said composition. (Official Gazette)

  7. MOUNT ZIRKEL WILDERNESS AND VICINITY, COLORADO.

    USGS Publications Warehouse

    Snyder, George L.; Patten, Lowell L.

    1984-01-01

    Several areas of metallic and nonmetallic mineralization have been identified from surface occurrences within the Mount Zirkel Wilderness and vicinity, Colorado. Three areas of probable copper-lead-zinc-silver-gold resource potential, two areas of probable chrome-platinum resource potential, four areas of probable uranium-thorium resource potential, two areas of probable molybdenum resource potential, and one area of probable fluorspar potential were identified. No potential for fossil fuel or geothermal resources was identified.

  8. METHOD OF SEPARATING URANIUM VALUES, PLUTONIUM VALUES AND FISSION PRODUCTS BY CHLORINATION

    DOEpatents

    Brown, H.S.; Seaborg, G.T.

    1959-02-24

    The separation of plutonium and uranium from each other and from other substances is described. In general, the method comprises the steps of contacting the uranium with chlorine in the presence of a holdback material selected from the group consisting of lanthanum oxide and thorium oxide to form a uranium chloride higher than uranium tetrachloride, and thereafter heating the uranium chloride thus formed to a temperature at which the uranium chloride is volatilized off but below the volatilizalion temperature of plutonium chloride.

  9. DECONTAMINATION OF URANIUM

    DOEpatents

    Feder, H.M.; Chellew, N.R.

    1958-02-01

    This patent deals with the separation of rare earth and other fission products from neutron bombarded uranium. This is accomplished by melting the uranium in contact with either thorium oxide, maguesium oxide, alumnum oxide, beryllium oxide, or uranium dioxide. The melting is preferably carried out at from 1150 deg to 1400 deg C in an inert atmosphere, such as argon or helium. During this treatment a scale of uranium dioxide forms on the uranium whtch contains most of the fission products.

  10. 40 CFR Table A to Subpart D of... - Table A to Subpart D of Part 192

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Management of Uranium Byproduct Materials Pursuant to Section 84 of the Atomic... Combined radium-226 and radium-228 5 Gross alpha-particle activity (excluding radon and uranium) 15 ...

  11. 40 CFR Table A to Subpart D of... - Table A to Subpart D of Part 192

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Management of Uranium Byproduct Materials Pursuant to Section 84 of the Atomic... Combined radium-226 and radium-228 5 Gross alpha-particle activity (excluding radon and uranium) 15 ...

  12. 76 FR 50728 - Science Advisory Board Staff Office; Notification of Public Teleconferences of the Science...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... advisory report related to uranium and thorium in-situ leach recovery and post-closure stability monitoring... . Technical Contact: Technical background information pertaining to the Uranium In-Situ leach recovery--Post... entitled ``Considerations Related to Post-Closure Monitoring of Uranium In-Situ Leach/In-Situ Recovery (ISL...

  13. Utilization of thorium and U-ZrH1.6 fuels in various heterogeneous cores for TRIGA PUSPATI Reactor (RTP)

    NASA Astrophysics Data System (ADS)

    Damahuri, Abdul Hannan Bin; Mohamed, Hassan; Aziz Mohamed, Abdul; Idris, Faridah

    2018-01-01

    The use of thorium as nuclear fuel has been an appealing prospect for many years and will be great significance to nuclear power generation. There is an increasing need for more research on thorium as Malaysian government is currently active in the national Thorium Flagship Project, which was launched in 2014. The thorium project, which is still in phase 1, focuses on the research and development of the thorium extraction from mineral processing ore. Thus, the aim of the study is to investigate other alternative TRIGA PUSPATI Reactor (RTP) core designs that can fully utilize thorium. Currently, the RTP reactor has an average neutron flux of 2.797 x 1012 cm-2/s-1 and an effective multiplication factor, k eff, of 1.001. The RTP core has a circular array core configuration with six circular rings. Each ring consists of 6, 12, 18, 24, 30 or 36 U-ZrH1.6 fuel rods. There are three main type of uranium weight, namely 8.5, 12 and 20 wt.%. For this research, uranium zirconium hydride (U-ZrH1.6) fuel rods in the RTP core were replaced by thorium (ThO2) fuel rods. Seven core configurations with different thorium fuel rods placements were modelled in a 2D structure and simulated using Monte Carlo n-particle (MCNPX) code. Results show that the highest initial criticality obtained is around 1.35101. Additionally there is a significant discrepancy between results from previous study and the work because of the large estimated leakage probability of approximately 21.7% and 2D model simplification.

  14. Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid.

    PubMed

    Rahmani-Sani, Abolfazl; Hosseini-Bandegharaei, Ahmad; Hosseini, Seyyed-Hossein; Kharghani, Keivan; Zarei, Hossein; Rastegar, Ayoob

    2015-04-09

    In this work, the removal of uranium and thorium ions from aqueous solutions was studied by solid-liquid extraction using an advantageous extractant-impregnated resin (EIR) prepared by loading carminic acid (CA) onto Amberlite XAD-16 resin beads. Batch sorption experiments using CA/XAD-16 beads for the removal of U(VI) and Th(IV) ions were carried out as a function of several parameters, like equilibration time, metal ion concentration, etc. The equilibrium data obtained from the sorption experiments were adjusted to the Langmuir isotherm model and the calculated maximum sorption capacities in terms of monolayer sorption were in agreement with those obtained from the experiments. The experimental data on the sorption behavior of both metal ions onto the EIR beads fitted well in both Bangham and intra-particle diffusion kinetic models, indicating that the intra-particle diffusion is the rate-controlling step. The thermodynamic studies at different temperatures revealed the feasibility and the spontaneous nature of the sorption process for both uranium and thorium ions. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Use of Electrodeposition for Sample Preparation and Rejection Rate Prediction for Assay of Electroformed Ultra High Purity Copper for 232Th and 238U Prior to Inductively Coupled Plasma Mass Spectrometry (ICP/MS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoppe, Eric W.; Aalseth, Craig E.; Brodzinski, Ronald L.

    The search for neutrinoless double beta decay in 76Ge has driven the need for ultra-low background Ge detectors shielded by electroformed copper of ultra-high radiopurity (<0.1µBq/kg). Although electrodeposition processes are almost sophisticated enough to produce copper of this purity, to date there are no methods sensitive enough to assay it. Inductively-coupled plasma mass spectrometry (ICP/MS) can detect thorium and uranium at femtogram levels, but in the past, this assay has been hindered by high copper concentrations in the sample. Electrodeposition of copper samples removes copper from the solution while selectively concentrating thorium and uranium contaminants to be assayed by ICP/MS.more » Spiking 232Th and 238U into the plating bath simulates low purity copper and allows for the calculation of the electrochemical rejection rate of thorium and uranium in the electroplating system. This rejection value will help to model plating bath chemistry.« less

  16. Measurement of 238U and 232Th radionuclides in ilmenite and synthetic rutile

    NASA Astrophysics Data System (ADS)

    Idris, M. I.; Siong, K. K.; Fadzil, S. M.

    2018-01-01

    The only factory that currently processes ilmenite to produce synthetic rutile is Tor Minerals in Ipoh, Perak, Malaysia. These two minerals contain radioactive elements such as uranium and thorium. Furthermore, this factory was built close to the residential areas. Thus, the primary issues are radiation exposure attributed to the decay of the radionuclides. Hence, the objectives of this study are to measure the dose and to evaluate activity levels of uranium and thorium. Dose rates from surrounding area of factory indicate the normal range for both on the surface and 1 meter above the ground (0.3-0.7 μSv/hr) lower than the global range of 0.5-1.3 μSv/hr set by UNSCEAR. The mean activity levels of uranium and thorium for ilmenite are 235 Bq/kg and 503 Bq/kg while for synthetic rutile are 980 Bq/kg and 401 Bq/kg, respectively. The result shows that uranium activity levels of synthetic rutile is 4 times higher than ilmenite but it is still lower than the regulatory exemption limit of 1000 Bq/kg set by IAEA Basic Safety Standards. Even though the dose rates at the factory and the activity levels are within safe limits, safety precautions must be followed by the factory management to prevent any unwanted accident to occur.

  17. Sorption and coprecipitation of trace concentrations of thorium with various minerals under conditions simulating an acid uranium mill effluent environment

    USGS Publications Warehouse

    Landa, Edward R.; Le, Anh H.; Luck, Rudy L.; Yeich, Philip J.

    1995-01-01

    Sorption of thorium by pre-existing crystals of anglesite (PbSO4), apatite (Ca5(PO4)3(HO)), barite (BaSO4), bentonite (Na0.7Al3.3Mg0.7Si8O20(OH)4), celestite (SrSO4), fluorite (CaF2), galena (PbS), gypsum (CaSO4·2H2O), hematite (Fe2O3), jarosite (KFe3(SO4)2(OH)6), kaolinite (Al2O3·2SiO2·2H2O), quartz (SiO2) and sodium feldspar (NaAlSi3O8) was studied under conditions that simulate an acidic uranium mill effluent environment. Up to 100% removal of trace quantitiees of thorim (approx. 1.00 ppm in 0.01 N H2SO4) from solution occurred within 3 h with fluorite and within 48 h in the case of bentonite. Quartz, jarosite, hematite, sodium feldspar, gypsum and galena removed less than 15% of the thorium from solution. In the coprecipitation studies, barite, anglesite, gypsum and celestite were formed in the presence of thorium (approx. 1.00 ppm). Approximately all of the thorium present in solution coprecipitated with barite and celestite; 95% coprecipitated with anglesite and less than 5% with gypsum under similar conditions. When jarosite was precipitated in the presence of thorium, a significant amount of thorium (78%) was incorporated in the precipitate.

  18. Fabrication of thorium bearing carbide fuels

    DOEpatents

    Gutierrez, R.L.; Herbst, R.J.; Johnson, K.W.R.

    Thorium-uranium carbide and thorium-plutonium carbide fuel pellets have been fabricated by the carbothermic reduction process. Temperatures of 1750/sup 0/C and 2000/sup 0/C were used during the reduction cycle. Sintering temperatures of 1800/sup 0/C and 2000/sup 0/C were used to prepare fuel pellet densities of 87% and > 94% of theoretical, respectively. The process allows the fabrication of kilogram quantities of fuel with good reproductibility of chemical and phase composition.

  19. Implications of convection in the Moon and the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Turcotte, Donald L.

    1987-01-01

    The early thermal and chemical evolution of the Moon is discussed. The rubidium-strontium, neodymium-samarium, and uranium-thorium-lead systems were studied. The relation of source region heterogeneity to the mixing associated with mantle convection is considered. Work on the application of fractal concepts to planetary geology and geophysics is also discussed. The fractal concept was applied to fragmentation, including the frequency-size distribution of meteorites, asteroids and particulate matter produced by impacts.

  20. 76 FR 72920 - Notification of a Public Teleconference of the Chartered Science Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... Document ``Considerations Related to Post-Closure Monitoring of Uranium In-Situ ISL/ISR Sites.'' DATES: The... Monitoring of Uranium In-Situ ISL/ISR Sites.'' The SAB will comply with the provisions of FACA and all... Environmental Protection Standards for Uranium and Thorium Mill Tailings in regard to underground In-Situ Leach...

  1. 10 CFR 765.30 - Reimbursement of costs incurred in accordance with a plan for subsequent remedial action.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES Additional Reimbursement... reimbursement ratio established for such site; or (2) For the uranium site licensees only, $6.25, as adjusted...

  2. 10 CFR 765.30 - Reimbursement of costs incurred in accordance with a plan for subsequent remedial action.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES Additional Reimbursement... reimbursement ratio established for such site; or (2) For the uranium site licensees only, $6.25, as adjusted...

  3. 10 CFR 765.30 - Reimbursement of costs incurred in accordance with a plan for subsequent remedial action.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES Additional Reimbursement... reimbursement ratio established for such site; or (2) For the uranium site licensees only, $6.25, as adjusted...

  4. 10 CFR 765.30 - Reimbursement of costs incurred in accordance with a plan for subsequent remedial action.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES Additional Reimbursement... reimbursement ratio established for such site; or (2) For the uranium site licensees only, $6.25, as adjusted...

  5. METHOD OF PREPARING A FUEL ELEMENT FOR A NUCLEAR REACTOR

    DOEpatents

    Handwerk, J.H.; BAch, R.A.

    1959-08-18

    A method is described for preparing a reactor fuel element by forming a mixture of thorium dioxide and an oxide of uranium, the uranium being present. In an oxidation state at least as high as it is in U/sub 3/O/sub 8/, into a desired shape and firing in air at a temperature siifficiently high to reduce the higher uranium oxide to uranium dioxide.

  6. CATALYTIC RECOMBINATION OF RADIOLYTIC GASES IN THORIUM OXIDE SLURRIES

    DOEpatents

    Morse, L.E.

    1962-08-01

    A method for the coinbination of hydrogen and oxygen in aqueous thorium oxide-uranium oxide slurries is described. A small amount of molybdenum oxide catalyst is provided in the slurry. This catalyst is applicable to the recombination of hydrogen and/or deuterium and oxygen produced by irradiation of the slurries in nuclear reactors. (AEC)

  7. NUCLEAR CONVERSION APPARATUS

    DOEpatents

    Seaborg, G.T.

    1960-09-13

    A nuclear conversion apparatus is described which comprises a body of neutron moderator, tubes extending therethrough, uranium in the tubes, a fluid- circulating system associated with the tubes, a thorium-containing fluid coolant in the system and tubes, and means for withdrawing the fluid from the system and replacing it in the system whereby thorium conversion products may be recovered.

  8. Molybdenum-99 production calculation analysis of SAMOP reactor based on thorium nitrate fuel

    NASA Astrophysics Data System (ADS)

    Syarip; Togatorop, E.; Yassar

    2018-03-01

    SAMOP (Subcritical Assembly for Molybdenum-99 Production) has the potential to use thorium as fuel to produce 99Mo after modifying the design, but the production performance has not been discovered yet. A study needs to be done to obtain the correlation between 99Mo production with the mixed fuel composition of uranium and with SAMOP power on the modified SAMOP design. The study aims to obtain the production of 99Mo based thorium nitrate fuel on SAMOP’s modified designs. Monte Carlo N-Particle eXtended (MCNPX) is required to simulate the operation of the assembly by varying the composition of the uranium-thorium nitrate mixed fuel, geometry and power fraction on the SAMOP modified designs. The burnup command on the MCNPX is used to confirm the 99Mo production result. The assembly is simulated to operate for 6 days with subcritical neutron multiplication factor (keff = 0.97-0.99). The neutron multiplication factor of the modified design (keff) is 0.97, the activity obtained from 99Mo is 18.58 Ci at 1 kW power operation.

  9. Further evaluations of the toxicity of irradiated advanced heavy water reactor fuels.

    PubMed

    Edwards, Geoffrey W R; Priest, Nicholas D

    2014-11-01

    The neutron economy and online refueling capability of heavy water moderated reactors enable them to use many different fuel types, such as low enriched uranium, plutonium mixed with uranium, or plutonium and/or U mixed with thorium, in addition to their traditional natural uranium fuel. However, the toxicity and radiological protection methods for fuels other than natural uranium are not well established. A previous paper by the current authors compared the composition and toxicity of irradiated natural uranium to that of three potential advanced heavy water fuels not containing plutonium, and this work uses the same method to compare irradiated natural uranium to three other fuels that do contain plutonium in their initial composition. All three of the new fuels are assumed to incorporate plutonium isotopes characteristic of those that would be recovered from light water reactor fuel via reprocessing. The first fuel investigated is a homogeneous thorium-plutonium fuel designed for a once-through fuel cycle without reprocessing. The second fuel is a heterogeneous thorium-plutonium-U bundle, with graded enrichments of U in different parts of a single fuel assembly. This fuel is assumed to be part of a recycling scenario in which U from previously irradiated fuel is recovered. The third fuel is one in which plutonium and Am are mixed with natural uranium. Each of these fuels, because of the presence of plutonium in the initial composition, is determined to be considerably more radiotoxic than is standard natural uranium. Canadian nuclear safety regulations require that techniques be available for the measurement of 1 mSv of committed effective dose after exposure to irradiated fuel. For natural uranium fuel, the isotope Pu is a significant contributor to the committed effective dose after exposure, and thermal ionization mass spectrometry is sensitive enough that the amount of Pu excreted in urine is sufficient to estimate internal doses, from all isotopes, as low as 1 mSv. In addition, if this method is extended so that Pu is also measured, then the combined amount of Pu and Pu is sufficiently high in the thorium-plutonium fuel that a committed effective dose of 1 mSv would be measurable. However, the fraction of Pu and Pu in the other two fuels is sufficiently low that a 1 mSv dose would remain below the detection limit using this technique. Thus new methods, such as fecal measurements of Pu (or other alpha emitters), will be required to measure exposure to these new fuels.

  10. Feasibility study of a small, thorium-based fission power system for space and terrestrial applications

    NASA Astrophysics Data System (ADS)

    Worrall, Michael Jason

    One of the current challenges facing space exploration is the creation of a power source capable of providing useful energy for the entire duration of a mission. Historically, radioisotope batteries have been used to provide load power, but this conventional system may not be capable of sustaining continuous power for longer duration missions. To remedy this, many forays into nuclear powered spacecraft have been investigated, but no robust system for long-term power generation has been found. In this study, a novel spin on the traditional fission power system that represents a potential optimum solution is presented. By utilizing mature High Temperature Gas Reactor (HTGR) technology in conjunction with the capabilities of the thorium fuel cycle, we have created a light-weight, long-term power source capable of a continuous electric power output of up to 70kW for over 15 years. This system relies upon a combination of fissile, highly-enriched uranium dioxide and fertile thorium carbide Tri-Structural Isotropic (TRISO) fuel particles embedded in a hexagonal beryllium oxide matrix. As the primary fissile material is consumed, the fertile material breeds new fissile material leading to more steady fuel loading over the lifetime of the core. Reactor control is achieved through an innovative approach to the conventional boron carbide neutron absorber by utilizing sections of borated aluminum placed in rotating control drums within the reflector. Borated aluminum allows for much smaller boron concentrations, thus eliminating the potential for 10B(n,alpha)6Li heating issues that are common in boron carbide systems. A wide range of other reactivity control systems are also investigated, such as a radially-split rotating reflector. Lastly, an extension of the design to a terrestrial based system is investigated. In this system, uranium enrichment is dropped to 20 percent in order to meet current regulations, a solid uranium-zirconium hydride fissile driver replaces the uranium dioxide TRISO particles, and the moderating material is changed from beryllium oxide to graphite. These changes result in an increased core size, but the same long-term power generation potential is achieved. Additionally, small amounts of erbium are added to the hydride matrix to further extend core lifetime.

  11. Impact of New Nuclear Data Libraries on Small Sized Long Life CANDLE HTGR Design Parameters

    NASA Astrophysics Data System (ADS)

    Liem, Peng Hong; Hartanto, Donny; Tran, Hoai Nam

    2017-01-01

    The impact of new evaluated nuclear data libraries (JENDL-4.0, ENDF/B-VII.0 and JEFF-3.1) on the core characteristics of small-sized long-life CANDLE High Temperature Gas-Cooled Reactors (HTGRs) with uranium and thorium fuel cycles was investigated. The most important parameters of the CANDLE core characteristics investigated here covered (1) infinite multiplication factor of the fresh fuel containing burnable poison, (2) the effective multiplication factor of the equilibrium core, (3) the moving velocity of the burning region, (4) the attained discharge burnup, and (5) the maximum power density. The reference case was taken from the current JENDL-3.3 results. For the uranium fuel cycle, the impact of the new libraries was small, while significant impact was found for thorium fuel cycle. The findings indicated the needs of more accurate nuclear data libraries for nuclides involved in thorium fuel cycle in the future.

  12. STUDY OF THE U/Th RATIO IN A THORITE FROM KIVU (BELGIAN CONGO) WITH REGARD TO ITS UTILIZATION IN THE PREPARATION OF THORIUM STANDARDS FOR GAMMA SPECTROMETRY (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poulaert, G.

    1958-01-01

    The uranium and thorium contents of a thorite from Kivu were determined. The very low U/Th ratio found makes this mineral a good standard for gamma spectrometry and fer all other direct radiometric measurements of thorium. The mineral was used in the preparation of ThB standards for the determination of the absolute age of rocks and minerals. (tr-auth)

  13. Assessment for advanced fuel cycle options in CANDU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morreale, A.C.; Luxat, J.C.; Friedlander, Y.

    2013-07-01

    The possible options for advanced fuel cycles in CANDU reactors including actinide burning options and thorium cycles were explored and are feasible options to increase the efficiency of uranium utilization and help close the fuel cycle. The actinide burning TRUMOX approach uses a mixed oxide fuel of reprocessed transuranic actinides from PWR spent fuel blended with natural uranium in the CANDU-900 reactor. This system reduced actinide content by 35% and decreased natural uranium consumption by 24% over a PWR once through cycle. The thorium cycles evaluated used two CANDU-900 units, a generator and a burner unit along with a drivermore » fuel feedstock. The driver fuels included plutonium reprocessed from PWR, from CANDU and low enriched uranium (LEU). All three cycles were effective options and reduced natural uranium consumption over a PWR once through cycle. The LEU driven system saw the largest reduction with a 94% savings while the plutonium driven cycles achieved 75% savings for PWR and 87% for CANDU. The high neutron economy, online fuelling and flexible compact fuel make the CANDU system an ideal reactor platform for many advanced fuel cycles.« less

  14. Comparison of solvent extraction and extraction chromatography resin techniques for uranium isotopic characterization in high-level radioactive waste and barrier materials.

    PubMed

    Hurtado-Bermúdez, Santiago; Villa-Alfageme, María; Mas, José Luis; Alba, María Dolores

    2018-07-01

    The development of Deep Geological Repositories (DGP) to the storage of high-level radioactive waste (HLRW) is mainly focused in systems of multiple barriers based on the use of clays, and particularly bentonites, as natural and engineered barriers in nuclear waste isolation due to their remarkable properties. Due to the fact that uranium is the major component of HLRW, it is required to go in depth in the analysis of the chemistry of the reaction of this element within bentonites. The determination of uranium under the conditions of HLRW, including the analysis of silicate matrices before and after the uranium-bentonite reaction, was investigated. The performances of a state-of-the-art and widespread radiochemical method based on chromatographic UTEVA resins, and a well-known and traditional method based on solvent extraction with tri-n-butyl phosphate (TBP), for the analysis of uranium and thorium isotopes in solid matrices with high concentrations of uranium were analysed in detail. In the development of this comparison, both radiochemical approaches have an overall excellent performance in order to analyse uranium concentration in HLRW samples. However, due to the high uranium concentration in the samples, the chromatographic resin is not able to avoid completely the uranium contamination in the thorium fraction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Radiogenic lead as coolant, reflector and moderator in advanced fast reactors

    NASA Astrophysics Data System (ADS)

    Kulikov, E. G.

    2017-01-01

    Main purpose of the study is assessing reasonability for recovery, production and application of radiogenic lead as a coolant, neutron moderator and neutron reflector in advanced fast reactors. When performing the study, thermal, physical and neutron-physical properties of natural and radiogenic lead were analyzed. The following results were obtained: 1. Radiogenic lead with high content of isotope 208Pb can be extracted from thorium or mixed thorium-uranium ores because 208Pb is a final product of 232Th natural decay chain. 2. The use of radiogenic lead with high 208Pb content in advanced fast reactors and accelerator-driven systems (ADS) makes it possible to improve significantly their neutron-physical and thermal-hydraulic parameters. 3. The use of radiogenic lead with high 208Pb content in advanced fast reactors as a coolant opens the possibilities for more intense fuel breeding and for application of well-known oxide fuel instead of the promising but not tested enough nitride fuel under the same safety parameters. 4. The use of radiogenic lead with high 208Pb content in ADS as a coolant can upgrade substantially the level of neutron flux in the ADS blanket, which enables effective transmutation of radioactive wastes with low cross-sections of radiative neutron capture.

  16. 75 FR 71702 - Science Advisory Board Staff Office; Request for Nominations of Experts for Review of EPA's Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... Nominations of Experts for Review of EPA's Draft Technical Report Pertaining to Uranium and Thorium In-Situ... expectation is that In-Situ Leach Recovery (ISL/ISR) operations will be the most common type of new uranium... pertaining to Uranium In-Situ Leach Recovery--Post-Closure Stability Monitoring can be found at the following...

  17. 76 FR 36918 - Science Advisory Board Staff Office; Notification of a Public Teleconference and Meeting of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... of EPA's Draft Technical Report Pertaining to Uranium and Thorium In-Situ Leach Recovery and Post... Related to Post-Closure Monitoring of Uranium In-Situ Leach/In-Situ Recovery (ISL/ISR) Sites.'' DATES: The... pertaining to Uranium In-Situ Leach Recovery--Post-Closure Stability Monitoring can be found at http://www...

  18. Raman spectroscopic investigation of thorium dioxide-uranium dioxide (ThO₂-UO₂) fuel materials.

    PubMed

    Rao, Rekha; Bhagat, R K; Salke, Nilesh P; Kumar, Arun

    2014-01-01

    Raman spectroscopic investigations were carried out on proposed nuclear fuel thorium dioxide-uranium dioxide (ThO2-UO2) solid solutions and simulated fuels based on ThO2-UO2. Raman spectra of ThO2-UO2 solid solutions exhibited two-mode behavior in the entire composition range. Variations in mode frequencies and relative intensities of Raman modes enabled estimation of composition, defects, and oxygen stoichiometry in these compounds that are essential for their application. The present study shows that Raman spectroscopy is a simple, promising analytical tool for nondestructive characterization of this important class of nuclear fuel materials.

  19. PLUTONIUM PURIFICATION PROCESS EMPLOYING THORIUM PYROPHOSPHATE CARRIER

    DOEpatents

    King, E.L.

    1959-04-28

    The separation and purification of plutonium from the radioactive elements of lower atomic weight is described. The process of this invention comprises forming a 0.5 to 2 M aqueous acidffc solution containing plutonium fons in the tetravalent state and elements with which it is normally contaminated in neutron irradiated uranium, treating the solution with a double thorium compound and a soluble pyrophosphate compound (Na/sub 4/P/sub 2/O/sub 7/) whereby a carrier precipitate of thorium A method is presented of reducing neptunium and - trite is advantageous since it destroys any hydrazine f so that they can be removed from solutions in which they are contained is described. In the carrier precipitation process for the separation of plutonium from uranium and fission products including zirconium and columbium, the precipitated blsmuth phosphate carries some zirconium, columbium, and uranium impurities. According to the invention such impurities can be complexed and removed by dissolving the contaminated carrier precipitate in 10M nitric acid, followed by addition of fluosilicic acid to about 1M, diluting the solution to about 1M in nitric acid, and then adding phosphoric acid to re-precipitate bismuth phosphate carrying plutonium.

  20. Concentrations of trace elements in Great Lakes fishes

    USGS Publications Warehouse

    Lucas, Henry F.; Edgington, David N.; Colby, Peter J.

    1970-01-01

    The concentration of 15 trace elements was determined by activation analysis of samples of whole fish and fish livers from three of the Great Lakes: Michigan, Superior, and Erie. The average concentrations of 7 elements in 19 whole fish from 3 species were as follows: uranium, 3 ppb (parts per billion); thorium, 6 ppb; cobalt, 28 ppb; cadmium, 94 ppb; arsenic, 16 ppb; chromium, 1 ppm; and copper, 1.3 ppm. The average concentrations of 8 elements in 40 liver samples from 10 species of fish were as follows: uranium, ~ 2 ppb; thorium, a?? 2 ppb; cobalt, 40 ppb; copper, 9 ppm; zinc, 30 ppm; bromine, 0.4 ppm; arsenic, 30 ppb; and cadmium, 0.4 ppm. Other elements observed in most of the samples were: antimony, 5-100 ppb; gold, 2-5 ppb; lanthanum, 1-20 ppb; rhenium, 0.5-5 ppb; rubidium, 0.06-4 ppm; and selenium, 0.1-2 ppb. Trace element concentrations varied with species and lake. Uranium and thorium varied with species, but not for the same species from different lakes. The levels of copper, cobalt, zinc, and bromine varied little between species and lakes. The concentration of cadmium, arsenic, and chromium varied between species and with species between lakes.

  1. POWER REACTOR

    DOEpatents

    Zinn, W.H.

    1958-07-01

    A fast nuclear reactor system ls described for producing power and radioactive isotopes. The reactor core is of the heterogeneous, fluid sealed type comprised of vertically arranged elongated tubular fuel elements having vertical coolant passages. The active portion is surrounded by a neutron reflector and a shield. The system includes pumps and heat exchangers for the primary and secondary coolant circuits. The core, primary coolant pump and primary heat exchanger are disposed within an irapenforate tank which is filled with the primary coolant, in this case a liquid metal such as Na or NaK, to completely submerge these elements. The tank is completely surrounded by a thick walled concrete shield. This reactor system utilizes enriched uranium or plutonium as the fissionable material, uranium or thorium as a diluent and thorium or uranium containing less than 0 7% of the U/sup 235/ isotope as a fertile material.

  2. Electron-spectroscopy studies of clean thorium and uranium surfaces. Chemisorption and initial stages of reaction with O2, CO, and CO2

    NASA Astrophysics Data System (ADS)

    McLean, W.; Colmenares, C. A.; Smith, R. L.; Somorjai, G. A.

    1982-01-01

    The adsorption of O2, CO, and CO2 on the thorium (111) crystal face and on polycrystalline α-uranium has been investigated by x-ray photoelectron spectroscopy, Auger electron spectroscopy (AES), and secondary-ion mass spectroscopy (SIMS) at 300 K. Oxygen adsorption on both metals resulted in the formation of the metal dioxide. CO and CO2 adsorption on Th(111) produced species derived from atomic carbon and oxygen; the presence of molecular CO was also detected. Only atomic carbon and oxygen were observed on uranium. Elemental depth profiles by AES and SIMS indicated that the carbon produced by the dissociation of CO or CO2 diffused into the bulk of the metals to form a carbide, while the oxygen remained on their surfaces as an oxide.

  3. Characteristics of NORM in the oil industry from eastern and western deserts of Egypt.

    PubMed

    Shawky, S; Amer, H; Nada, A A; El-Maksoud, T M; Ibrahiem, N M

    2001-07-01

    Naturally occurring radionuclides (NORs) from the 232Th- and 238U-series, which are omnipresent in the earth's crust, can be concentrated by technical activities, particularly those involving natural resources. Although, a great deal of work has been done in the field of radiation protection and remedial action on uranium and other mines, recent concern has been devoted to the hazard arising from naturally occurring radioactive materials (NORM) in oil and gas facilities. NORM wastes associated with oil and gas operations from scale deposits, separated sludge and water at different oil fields in the eastern and western deserts were investigated. Concentrations of the uranium, thorium, and potassium (40K) series have been determined from high-resolution gamma-ray spectrometry. Total uranium content of samples was determined using laser fluorimetry. The levels of radioactivity were mainly due to enhanced levels of dissolved radium ions. Only minute quantities of uranium and thorium were present. The disequilibrium factor for 238U/226Ra has been determined.

  4. A neutron activation analysis procedure for the determination of uranium, thorium and potassium in geologic samples

    USGS Publications Warehouse

    Aruscavage, P. J.; Millard, H.T.

    1972-01-01

    A neutron activation analysis procedure was developed for the determination of uranium, thorium and potassium in basic and ultrabasic rocks. The three elements are determined in the same 0.5-g sample following a 30-min irradiation in a thermal neutron flux of 2??1012 n??cm-2??sec-1. Following radiochemical separation, the nuclides239U (T=23.5 m),233Th (T=22.2 m) and42K (T=12.36 h) are measured by ??-counting. A computer program is used to resolve the decay curves which are complex owing to contamination and the growth of daughter activities. The method was used to determine uranium, throium and potassium in the U. S. Geological Survey standard rocks DTS-1, PCC-1 and BCR-1. For 0.5-g samples the limits of detection for uranium, throium and potassium are 0.7, 1.0 and 10 ppb, respectively. ?? 1972 Akade??miai Kiado??.

  5. Sequential extraction procedure for determination of uranium, thorium, radium, lead and polonium radionuclides by alpha spectrometry in environmental samples

    NASA Astrophysics Data System (ADS)

    Oliveira, J. M.; Carvalho, F. P.

    2006-01-01

    A sequential extraction technique was developed and tested for common naturally-occurring radionuclides. This technique allows the extraction and purification of uranium, thorium, radium, lead, and polonium radionuclides from the same sample. Environmental materials such as water, soil, and biological samples can be analyzed for those radionuclides without matrix interferences in the quality of radioelement purification and in the radiochemical yield. The use of isotopic tracers (232U, 229Th, 224Ra, 209Po, and stable lead carrier) added to the sample in the beginning of the chemical procedure, enables an accurate control of the radiochemical yield for each radioelement. The ion extraction procedure, applied after either complete dissolution of the solid sample with mineral acids or co-precipitation of dissolved radionuclide with MnO2 for aqueous samples, includes the use of commercially available pre-packed columns from Eichrom® and ion exchange columns packed with Bio-Rad resins, in altogether three chromatography columns. All radioactive elements but one are purified and electroplated on stainless steel discs. Polonium is spontaneously plated on a silver disc. The discs are measured using high resolution silicon surface barrier detectors. 210Pb, a beta emitter, can be measured either through the beta emission of 210Bi, or stored for a few months and determined by alpha spectrometry through the in-growth of 210Po. This sequential extraction chromatography technique was tested and validated with the analysis of certified reference materials from the IAEA. Reproducibility was tested through repeated analysis of the same homogeneous material (water sample).

  6. WET FLUORIDE SEPARATION METHOD

    DOEpatents

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1958-11-25

    The separation of U/sup 233/ from thorium, protactinium, and fission products present in neutron-irradiated thorium is accomplished by dissolving the irradiated materials in aqueous nitric acid, adding either a soluble fluoride, iodate, phosphate, or oxalate to precipltate the thorium, separating the precipltate from the solution, and then precipitating uranlum and protactinium by alkalizing the solution. The uranium and protactinium precipitate is removcd from the solution and dissolved in nitric acid. The uranyl nitrate may then be extracted from the acid solution by means of ether, and the protactinium recovered from the aqueous phase.

  7. 10 CFR 765.21 - Procedures for processing reimbursement claims.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Procedures for processing reimbursement claims. 765.21 Section 765.21 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM... uranium or thorium processing site licensees for approved costs of remedial action will be made...

  8. 10 CFR 765.21 - Procedures for processing reimbursement claims.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Procedures for processing reimbursement claims. 765.21 Section 765.21 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM... uranium or thorium processing site licensees for approved costs of remedial action will be made...

  9. 10 CFR 765.21 - Procedures for processing reimbursement claims.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Procedures for processing reimbursement claims. 765.21 Section 765.21 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM... uranium or thorium processing site licensees for approved costs of remedial action will be made...

  10. RECOVERY OF URANIUM BY AROMATIC DITHIOCARBAMATE COMPLEXING

    DOEpatents

    Neville, O.K.

    1959-08-11

    A selective complexing organic solvent extraction process is presented for the separation of uranium values from an aqueous nitric acid solution of neutron irradiated thorium. The process comprises contacting the solution with an organic aromatic dithiccarbamaie and recovering the resulting urancdithiccarbamate complex with an organic solvent such as ethyl acetate.

  11. Enhanced fuel production in thorium/lithium hybrid blankets utilizing uranium multipliers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitulski, R.H.

    1979-10-01

    A consistent neutronics analysis is performed to determine the effectiveness of uranium bearing neutron multiplier zones on increasing the production of U/sup 233/ in thorium/lithium blankets for use in a tokamak fusion-fission hybrid reactor. The nuclear performance of these blankets is evaluated as a function of zone thicknesses and exposure by using the coupled transport burnup code ANISN-CINDER-HIC. Various parameters such as U/sup 233/, Pu/sup 239/, and H/sup 3/ production rates, the blanket energy multiplication, isotopic composition of the fuels, and neutron leakages into the various zones are evaluated during a 5 year (6 MW.y.m/sup -2/) exposure period. Although themore » results of this study were obtained for a tokomak magnetic fusion device, the qualitative behavior associated with the use of the uranium bearing neutron multiplier should be applicable to all fusion-fission hybrids.« less

  12. Wayne Interim Storage Site environmental report for calendar year 1992, 868 Black Oak Ridge Road, Wayne, New Jersey. Formerly Utilized Sites Remedial Action Program (FUSRAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-05-01

    This report describes the environmental surveillance program at the Wayne Interim Storage Site (WISS) and provides the results for 1992. The fenced, site, 32 km (20 mi) northwest of Newark, New Jersey, was used between 1948 and 1971 for commercial processing of monazite sand to separate natural radioisotopes - predominantly thorium. Environmental surveillance of WISS began in 1984 in accordance with Department of Energy (DOE) Order 5400.1 when Congress added the site to DOE`s Formerly Utilized Sites Remedial Action Program (FUSRAP). The environmental surveillance program at WISS includes sampling networks for radon and thoron in air; external gamma radiation exposure;more » radium-226, radium-228, thorium-230, thorium-232, total uranium, and several chemicals in surface water and sediment; and total uranium, radium-226, radium-228, thorium-230, thorium-232, and organic and inorganic chemicals in groundwater. Monitoring results are compared with applicable Environmental Protection Agency (EPA) and state standards, DOE derived concentration guides (DCGs), dose limits, and other DOE requirements. This monitoring program assists in fulfilling the DOE policy of measuring and monitoring effluents from DOE activities and calculating hypothetical doses. Results for environmental surveillance in 1992 show that the concentrations of all radioactive and most chemical contaminants were below applicable standards.« less

  13. METHOD OF COMBINING HYDROGEN AND OXYGEN

    DOEpatents

    McBride, J.P.

    1962-02-27

    A method is given for the catalytic recombination of radiolytic hydrogen and/or deulerium and oxygen resulting from the subjection or an aqueous thorium oxide or thorium oxide-uranium oxide slurry to ionizing radiation. An improved catalyst is prepared by providing paliadium nitrate in an aqueous thorium oxide sol at a concentration of at least 0.05 grams per gram of thorium oxide and contacting the sol with gaseous hydrogen to form flocculated solids. The solids are then recovered and added to the slurry to provide a palladium concentration of 100 to 1000 parts per million. Recombination is effected by the calalyst at a rate sufficient to support high nuclear reactor power densities. (AEC)

  14. Compositional changes at the interface between thorium-doped uranium dioxide and zirconium due to high-temperature annealing

    NASA Astrophysics Data System (ADS)

    Youn, Young-Sang; Lee, Jeongmook; Kim, Jandee; Kim, Jong-Yun

    2018-06-01

    Compositional changes at the interface between thorium-doped uranium dioxide (U0.97Th0.03O2) and Zr before and after annealing at 1700 °C for 18 h were studied by X-ray photoelectron spectroscopy, X-ray diffraction, and Raman spectroscopy. At room temperature, the U0.97Th0.03O2 pellet consisted of hyperstoichiometric UO2+x with UO2 and ThO2, and the Zr sample contained Zr with ZrO2. After annealing, the former contained stoichiometric UO2 with ThO2 and the latter consisted of ZrO2 along with ZrO2·2H2O.

  15. Nuclear and chemical safety analysis: Purex Plant 1970 thorium campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boldt, A.L.; Oberg, G.C.

    The purpose of this document is to discuss the flowsheet and the related processing equipment with respect to nuclear and chemical safety. The analyses presented are based on equipment utilization and revised piping as outlined in the design criteria. Processing of thorium and uranium-233 in the Purex Plant can be accomplished within currently accepted levels of risk with respect to chemical and nuclear safety if minor instrumentation changes are made. Uranium-233 processing is limited to a rate of about 670 grams per hour by equipment capacities and criticality safety considerations. The major criticality prevention problems result from the potential accumulationmore » of uranium-233 in a solvent phase in E-H4 (ICU concentrator), TK-J1 (IUC receiver), and TK-J21 (2AF pump tank). The same potential problems exist in TK-J5 (3AF pump tank) and TK-N1 (3BU receiver), but the probabilities of reaching a critical condition are not as great. In order to prevent the excessive accumulation of uranium-233 in any of these vessels by an extraction mechanism, it is necessary to maintain the uranium-233 and salting agent concentrations below the point at which a critical concentration of uranium-233 could be reached in a solvent phase.« less

  16. Four methods for determining the composition of trace radioactive surface contamination of low-radioactivity metal

    NASA Astrophysics Data System (ADS)

    O'Keeffe, H. M.; Burritt, T. H.; Cleveland, B. T.; Doucas, G.; Gagnon, N.; Jelley, N. A.; Kraus, C.; Lawson, I. T.; Majerus, S.; McGee, S. R.; Myers, A. W.; Poon, A. W. P.; Rielage, K.; Robertson, R. G. H.; Rosten, R. C.; Stonehill, L. C.; VanDevender, B. A.; Van Wechel, T. D.

    2011-12-01

    Four methods for determining the composition of low-level uranium- and thorium-chain surface contamination are presented. One method is the observation of Cherenkov light production in water. In two additional methods a position-sensitive proportional counter surrounding the surface is used to make both a measurement of the energy spectrum of alpha particle emissions and also coincidence measurements to derive the thorium-chain content based on the presence of short-lived isotopes in that decay chain. The fourth method is a radiochemical technique in which the surface is eluted with a weak acid, the eluate is concentrated, added to liquid scintillator and assayed by recording beta-alpha coincidences. These methods were used to characterize two 'hotspots' on the outer surface of one of the 3He proportional counters in the Neutral Current Detection array of the Sudbury Neutrino Observatory experiment. The methods have similar sensitivities, of order tens of ng, to both thorium- and uranium-chain contamination.

  17. Neutronics Design of a Thorium-Fueled Fission Blanket for LIFE (Laser Inertial Fusion-based Energy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powers, J; Abbott, R; Fratoni, M

    The Laser Inertial Fusion-based Energy (LIFE) project at LLNL includes development of hybrid fusion-fission systems for energy generation. These hybrid LIFE engines use high-energy neutrons from laser-based inertial confinement fusion to drive a subcritical blanket of fission fuel that surrounds the fusion chamber. The fission blanket contains TRISO fuel particles packed into pebbles in a flowing bed geometry cooled by a molten salt (flibe). LIFE engines using a thorium fuel cycle provide potential improvements in overall fuel cycle performance and resource utilization compared to using depleted uranium (DU) and may minimize waste repository and proliferation concerns. A preliminary engine designmore » with an initial loading of 40 metric tons of thorium can maintain a power level of 2000 MW{sub th} for about 55 years, at which point the fuel reaches an average burnup level of about 75% FIMA. Acceptable performance was achieved without using any zero-flux environment 'cooling periods' to allow {sup 233}Pa to decay to {sup 233}U; thorium undergoes constant irradiation in this LIFE engine design to minimize proliferation risks and fuel inventory. Vast reductions in end-of-life (EOL) transuranic (TRU) inventories compared to those produced by a similar uranium system suggest reduced proliferation risks. Decay heat generation in discharge fuel appears lower for a thorium LIFE engine than a DU engine but differences in radioactive ingestion hazard are less conclusive. Future efforts on development of thorium-fueled LIFE fission blankets engine development will include design optimization, fuel performance analysis work, and further waste disposal and nonproliferation analyses.« less

  18. Th-230 - U-238 series disequilibrium of the Olkaria rhyolites Gregory Rift Valley, Kenya: Petrogenesis

    NASA Technical Reports Server (NTRS)

    Black, S.; Macdonald, R.; Kelly, M.

    1993-01-01

    Positive correlations of (U-238/Th-230) versus Th show the rhyolites to be products of partial melting. Positive correlations of U and Cl and U and F show that the U enrichment in the rhyolites is associated with the halogen contents which may be related to the minor phenocryst phase fractionation. Instantaneous Th/U ratios exceed time integrated Th/U ratios providing further evidence of the hydrous nature of the Olkaria rhyolite source. Excess (U-238/Th-230) in the subduction related rocks has been associated to the preferential incorporation of uranium in slab derived fluids, but no evaluation of the size of this flux has been made. The majority of the Naivasha samples show a (U-238/Th-230) less than 1 and plot close to the subduction related samples indicating the Naivasha rhyolites may also have been influenced by fluids during their formation. In general samples with high (U-238/Th-230) ratios reflecting recent enrichment of uranium relative to thorium have high thorium contents, thereby the high (U-238/Th-230) ratios are restricted to the most incompatible element enriched magmas and, hence, are a good indication that the rhyolites were formed by partial melting. If a fluid phase had some influence on the formation of the rhyolites then the uranium and thorium may have some correlation with F and Cl contents which can be mirrored by the peralkalinity. Plots of uranium against F and Cl contents are shown. The positive correlation indicates that the uranium enrichments are associated with the halogen contents. There seems to be a greater correlation for U against Cl than F indicating that the U may be transported preferentially as Cl complexes.

  19. Radiometric Survey in Western Afghanistan: A Website for Distribution of Data

    USGS Publications Warehouse

    Sweeney, Ronald E.; Kucks, Robert P.; Hill, Patricia L.; Finn, Carol A.

    2007-01-01

    Radiometric (uranium content, thorium content, potassium content, and gamma-ray intensity) and related data were digitized from radiometric and survey route location maps of western Afghanistan published in 1976. The uranium content data were digitized along contour lines from 33 maps in a series entitled 'Map of Uranium (Radium) Contents of Afghanistan (Western Area),' compiled by V. N. Kirsanov and R. S. Dershimanov. The thorium content data were digitized along contour lines from 33 maps in a series entitled 'Map of Thorium Contents of Afghanistan (Western Area),' compiled by V. N. Kirsanov and R. S. Dershimanov. The potassium content data were digitized along contour lines from 33 maps in a series entitled 'Map of Potassium Contents of Afghanistan (Western Area),' compiled by V. N. Kirsanov and R. S. Dershimanov. The gamma-ray intensity data were digitized along contour lines from 33 maps in a series entitled 'Map of Gamma-Field of Afghanistan (Western Area),' compiled by V. N. Kirsanov and R. S. Dershimanov. The survey route location data were digitized along flight-lines located on 33 maps in a series entitled 'Survey Routes Location and Contours of Flight Equal Altitudes. Western Area of Afghanistan,' compiled by Z. A. Alpatova, V. G. Kurnosov, and F. A. Grebneva.

  20. Laboratory Enrichment of Radioactive Assemblages and Estimation of Thorium and Uranium Radioactivity in Fractions Separated from Placer Sands in Southeast Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Takayuki, E-mail: sasaki@nucleng.kyoto-u.ac.jp; Rajib, Mohammad; Akiyoshi, Masafumi

    2015-06-15

    The present study reports the likely first attempt of separating radioactive minerals for estimation of activity concentration in the beach placer sands of Bangladesh. Several sand samples from heavy mineral deposits located at the south-eastern coastal belt of Bangladesh were processed to physically upgrade their radioactivity concentrations using plant and laboratory equipment. Following some modified flow procedure, individual fractions were separated and investigated using gamma-ray spectrometry and powder-XRD analysis. The radioactivity measurements indicated contributions of the thorium and uranium radioactive series and of {sup 40}K. The maximum values of {sup 232}Th and {sup 238}U, estimated from the radioactivity of {supmore » 208}Tl and {sup 234}Th in secular equilibrium, were found to be 152,000 and 63,300 Bq/kg, respectively. The fraction of the moderately conductive part in electric separation contained thorium predominantly, while that of the non-conductive part was found to be uranium rich. The present arrangement of the pilot plant cascade and the fine tuning of setting parameters were found to be effective and economic separation process of the radioactive minerals from placer sands in Bangladesh. Probable radiological impacts and extraction potentiality of such radioactive materials are also discussed.« less

  1. X-ray powder data for uranium and thorium minerals

    USGS Publications Warehouse

    Frondel, Clifford; Riska, Daphne; Frondel, Judith Weiss

    1956-01-01

    The U.S. Geological Survey has in preparation a comprehensive volume on the mineralogy of uranium and thorium. This work has been done as part of a continuing systematic survey of data on uranium and thorium minerals on behalf of the Division of Raw Materials, U.S. Atomic Energy Commission. Pending publication of this volume and in response to a widespread demand among workers in uranium and thorium mineralogy, the X-ray powder diffraction data for the known minerals that contain uranium or thorium as an essential constituent are presented here. The coverage is complete except for a few minerals for which there are no reliable data owing to lack of authentic specimens. With the exception of that for ianthinite, the new data either originated in the Geological Survey or in the Mineralogical Laboratory of Harvard University. Data from the literature or other sources were cross-checked against the files of standard patterns of these laboratories; the sources are indicated in the references. Data not accompanied by a reference were obtained from films in the Harvard Standard File and cross-checked as to the identity of the film with the Geological Survey's file. Minor differences can be expected in the d-spacings reported for the same specimens by different investigators because of the manner of preparation of the mount, the conditions of X-ray irradiation, and the method of photography and measurement of the film or chart. The Harvard and Geological Survey data all were obtained from films taken in 114-mm diameter cameras, using either ethyl cellulose and toluene or collodion spindle mounts and Straumanis-type film mounting. Unless otherwise indicated all patterns were taken with copper radiation (Kα 1.5418 A.) and nickel filter and data are given in Angstrom units. The d-spacings are not corrected for film shrinkage. The correction ordinarily is small and in general is less than either the variation in spacing arising from differences in experimental technique of different investigators, including the varying absorption of samples of different thickness and concentration, or the variation attending slight changes in the chemical composition of the mineral. Some uranium minerals give poor diffraction patterns. The best results are generally obtained by using relatively small diameter spindles and long exposures, with a take-off angle from teh X-ray tube of about 4°. It is sometimes advantageous to shield the film from fluorescence in the visible region excited by X-ray irradiation. Copper radiation is preferable. The patterns of a few uranium minerals are greatly impaired by heavy grinding of the sample. Light crushing of the coarse sample after mixing with about one-third its volume of coarsely powdered low-absorption glass is helpful. Many uranium minerals, such as the members of the torbernite group, readily lose zeolithic water or transform to lower hydrates at or near ordinary conditions of temperature and humidity and care should be taken to control this in the manner of preservation and preparation of the sample.

  2. 10 CFR 110.22 - General license for the export of source material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... country not listed in § 110.28: (1) Uranium or thorium, other than U-230, U-232, Th-227, and Th-228, in any substance in concentrations of less than 0.05 percent by weight. (2) Thorium, other than Th-227 and Th-228, in incandescent gas mantles or in alloys in concentrations of 5 percent or less. (3) Th...

  3. A thermodynamic study of the gaseous thorium carbides, ThC, ThC2, ThC3, ThC4, ThC5, and ThC6

    NASA Astrophysics Data System (ADS)

    Gupta, Satish K.; Gingerich, Karl A.

    1980-02-01

    Six gaseous carbides of thorium, ThCn(n=1-6), have been identified in a Knudsen effusion mass spectrometric investigation of the vapor phase above a thorium-uranium-rhodium-graphite system at high temperatures. The partial pressures of the thorium containing species were measured as a function of temperature in the 2300-2700 °K range. Third law enthalpies for the reactions Th(g)+nC(graphite) =ThCn, n=1 to 6, and of various other homogeneous and heterogeneous reactions were evaluated. By combining the experimental enthalpies with appropriate thermodynamic data taken from literature, the following values for the atomization energies ΔH °at,298, and standard heats of formation ΔH °f,298 of thorium carbides have been derived:

  4. Defense Technical Information Center Thesaurus

    DTIC Science & Technology

    2000-10-01

    acquisition radar 4 + Indicates existence of further generic levels of the term DTIC Thesaurus Actuators Acridines Actinide series (cont.) Activated sintering...BT Heterocyclic compounds+ Uranium+ BT Sintering Acrilan Actinide series compounds Activated sludge process use Acrylonitrile polymers RT Actinide...Waste treatment+ Protactinium compounds Acronyms Thorium compounds+ Activation use Abbreviations Transuranium compounds+ UF Energizing Uranium compounds

  5. 46 CFR 148.04-1 - Radioactive material, Low Specific Activity (LSA).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Radioactive material, Low Specific Activity (LSA). 148... § 148.04-1 Radioactive material, Low Specific Activity (LSA). (a) Authorized materials are limited to: (1) Uranium or thorium ores and physical or chemical concentrates of such ores; (2) Uranium metal...

  6. Rapid fusion method for the determination of refractory thorium and uranium isotopes in soil samples

    DOE PAGES

    Maxwell, Sherrod L.; Hutchison, Jay B.; McAlister, Daniel R.

    2015-02-14

    Recently, approximately 80% of participating laboratories failed to accurately determine uranium isotopes in soil samples in the U.S Department of Energy Mixed Analyte Performance Evaluation Program (MAPEP) Session 30, due to incomplete dissolution of refractory particles in the samples. Failing laboratories employed acid dissolution methods, including hydrofluoric acid, to recover uranium from the soil matrix. The failures illustrate the importance of rugged soil dissolution methods for the accurate measurement of analytes in the sample matrix. A new rapid fusion method has been developed by the Savannah River National Laboratory (SRNL) to prepare 1-2 g soil sample aliquots very quickly, withmore » total dissolution of refractory particles. Soil samples are fused with sodium hydroxide at 600 ºC in zirconium crucibles to enable complete dissolution of the sample. Uranium and thorium are separated on stacked TEVA and TRU extraction chromatographic resin cartridges, prior to isotopic measurements by alpha spectrometry on cerium fluoride microprecipitation sources. Plutonium can also be separated and measured using this method. Batches of 12 samples can be prepared for measurement in <5 hours.« less

  7. Method for radioactivity monitoring

    DOEpatents

    Umbarger, C. John; Cowder, Leo R.

    1976-10-26

    The disclosure relates to a method for analyzing uranium and/or thorium contents of liquid effluents preferably utilizing a sample containing counting chamber. Basically, 185.7-keV gamma rays following .sup.235 U alpha decay to .sup.231 Th which indicate .sup.235 U content and a 63-keV gamma ray doublet found in the nucleus of .sup.234 Pa, a granddaughter of .sup.238 U, are monitored and the ratio thereof taken to derive uranium content and isotopic enrichment .sup.235 U/.sup.235 U + .sup.238 U) in the liquid effluent. Thorium content is determined by monitoring the intensity of 238-keV gamma rays from the nucleus of .sup.212 Bi in the decay chain of .sup.232 Th.

  8. 49 CFR 176.84 - Other requirements for stowage and segregation for cargo vessels and passenger vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...” flammable liquids. 29 Stow “away from” ammonium compounds. 30 Stow “away from” animal or vegetable oils. 31... vegetable oils. 55 Stow “separated from” ammonia. 56 Stow “separated from” ammonium compounds. 57 Stow... hexahydrate solution, uranium metal hexahydrate solution, uranium metal pyrophoric and thorium metal...

  9. 49 CFR 176.84 - Other requirements for stowage and segregation for cargo vessels and passenger vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...” flammable liquids. 29 Stow “away from” ammonium compounds. 30 Stow “away from” animal or vegetable oils. 31... vegetable oils. 55 Stow “separated from” ammonia. 56 Stow “separated from” ammonium compounds. 57 Stow... hexahydrate solution, uranium metal hexahydrate solution, uranium metal pyrophoric and thorium metal...

  10. Thermodynamic study of the gaseous thorium carbides, ThC, ThC/sub 2/, ThC/sub 3/, ThC/sub 4/, ThC/sub 5/, and ThC/sub 6/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, S.K.; Gingerich, K.A.

    Six gaseous carbides of thorium, ThC/sub n/(n=1--6), have been identified in a Knudsen effusion mass spectrometric investigation of the vapor phase above a thorium--uranium--rhodium--graphite system at high temperatures. The partial pressures of the thorium containing species were measured as a function of temperature in the 2300--2700 /sup 0/K range. Third law enthalpies for the reactions Th(g)+nC(graphite) =ThC/sub n/, n=1 to 6, and of various other homogeneous and heterogeneous reactions were evaluated. By combining the experimental enthalpies with appropriate thermodynamic data taken from literature, the following values for the atomization energies ..delta..H /sup 0//sub at,298/, and standard heats of formation ..delta..H/supmore » tsdegree//sub f/,298 of thorium carbides have been derived:« less

  11. Thorium isotopes in colloidal fraction of water from San Marcos Dam, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Cabral-Lares, M.; Melgoza, A.; Montero-Cabrera, M. E.; Renteria-Villalobos, M.

    2013-07-01

    The main interest of this stiidy is to assess the contents and distribution of Th-series isotopes in colloidal fraction of surface water from San Marcos dam, because the suspended particulate matter serves as transport medium for several pollutants. The aim of this work was to assess the distribution of thorium isotopes (232Th and 230Th) contained in suspended matter. Samples were taken from three surface points along the San Marcos dam: water input, midpoint, and near to dam wall. In this last point, a depth sampling was also carried out. Here, three depth points were taken at 0.4, 8 and 15 meters. To evaluate the thorium behavior in surface water, from every water sample the colloidal fraction was separated, between 1 and 0.1 μm. Thorium isotopes concentraron in samples were obtained by alpha spectrometry. Activity concentrations obtained of 232Th and 230Th in surface points ranged from 0.3 to 0.5 Bq ṡ L-1, whereas in depth points ranged from 0.4 to 3.2 Bq ṡ L-1, respectively. The results show that 230Th is in higher concentration than 232Th in colloidal fraction. This can be attributed to a preference of these colloids to adsorb uranium. Thus, the activity ratio 230Th/232Th in colloidal fraction showed values from 2.3 to 10.2. In surface points along the dam, 230Th activity concentration decreases while 232Th concentration remains constant. On the other hand, activity concentrations of both isotopes showed a pointed out enhancement with depth. The results have shown a possible lixiviation of uranium from geological substrate into the surface water and an important fractionation of thorium isotopes, which suggest that thorium is non-homogeneously distributed along San Marcos dam.

  12. Uranium, radium and thorium in soils with high-resolution gamma spectroscopy, MCNP-generated efficiencies, and VRF non-linear full-spectrum nuclide shape fitting

    NASA Astrophysics Data System (ADS)

    Metzger, Robert; Riper, Kenneth Van; Lasche, George

    2017-09-01

    A new method for analysis of uranium and radium in soils by gamma spectroscopy has been developed using VRF ("Visual RobFit") which, unlike traditional peak-search techniques, fits full-spectrum nuclide shapes with non-linear least-squares minimization of the chi-squared statistic. Gamma efficiency curves were developed for a 500 mL Marinelli beaker geometry as a function of soil density using MCNP. Collected spectra were then analyzed using the MCNP-generated efficiency curves and VRF to deconvolute the 90 keV peak complex of uranium and obtain 238U and 235U activities. 226Ra activity was determined either from the radon daughters if the equilibrium status is known, or directly from the deconvoluted 186 keV line. 228Ra values were determined from the 228Ac daughter activity. The method was validated by analysis of radium, thorium and uranium soil standards and by inter-comparison with other methods for radium in soils. The method allows for a rapid determination of whether a sample has been impacted by a man-made activity by comparison of the uranium and radium concentrations to those that would be expected from a natural equilibrium state.

  13. Abundances of uranium, thorium, and potassium for some Australian crystalline rocks

    USGS Publications Warehouse

    Bunker, Carl Maurice; Bush, C.A.; Munroe, Robert J.; Sass, J.H.

    1975-01-01

    This report contains a tabulation of the basic radioelement and radiogenic heat data obtained during an Australian National University (ANU) - United States Geological Survey (USGS) heat-flow project, directed jointly by J. C. Jaeger (ANU) and J. H. Sass (USGS). Most samples were collected during the periods June through September, 1971 and 1972. The measurements were made subsequently by two of us (C. M. Bunker and C. A. Bush) using the gamma-ray spec trometric techniques described by Bunker and Bush (1966, 1967). Interpreting the spectra for quantitative analyses of the radioelements was accomplished with an iterative leastsquares computer program modified from one by Schonfeld (1966). Uranium content determined by gamma-ray spectrometry is based on a measurement of the daughter products of 226Ra. Equilibrium in the uranium-decay series was assumed for these analyses . Throughout the report, when U content is stated, radium-equivalent uranium is implied. The coefficient of variation for the accuracy of the radioelement data, when compared to ana lyses by isotope dilution and flame photometry is about 3 percent for radium-equivalent uranium and thorium and about 1 percent for potassium. These percentages are in addition to minimum standard deviations of about 0.05 ppm for U and Th, and about 0.03 percent for K.

  14. Reconnaissance for uranium and thorium in Alaska, 1954

    USGS Publications Warehouse

    Matzko, John J.; Bates, Robert G.

    1957-01-01

    During 1954 reconnaissance investigations to locate minable deposits of uranium and thorium in Alaska were unsuccessful. Areas examined, from which prospectors had submitted radioactive samples, include Cap Yakataga, Kodiak Island, and Shirley Lake. Unconcentrated gravels from the beach at Cape Yakataga average about 0.001 percent equivalent uranium. Uranothorianite has been identified by X-ray diffraction data and is the principal source of radioactivity in the Cape Yakataga beach sands studied; but the zircon, monazite, and uranothorite are also radioactive. The black, opaque uranothorianite generally occurs as minute euhedral cubs, the majority of which will pass through a 100-mesh screen. The bedrock source of the radioactive samples from Kodiak Island was not found; the maximum radioactivity of samples from the Shirley Lake area was equivalent to about 0.02 percent uranium. Radiometric traverses of the 460-foot level of the Garnet shaft of the Nixon Fork mine in the Nixon Fork mining district indicated a maximum of 0.15 mr/hr. In the Hot Springs district, drill hole concentrates of gravels examined contained a maximum of 0.03 percent equivalent uranium. A radioactivity anomaly noted during the Survey's airborne reconnaissance of portions of the Territory during 1954 is located in the Fairhaven district. A ground check disclosed that the radioactivity was due to accessory minerals in the granitic rock.

  15. Accelerator Driven Nuclear Energy: The Thorium Option

    ScienceCinema

    Raja, Rajendran

    2018-01-05

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years.   At the current rate of use, existing sources of Uranium will last for 50-100 years.  We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy.  Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem.  Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.  

  16. Illicit Trafficking of Natural Radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrich, Steinhaeusler; Lyudmila, Zaitseva

    2008-08-07

    Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from anmore » operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.« less

  17. Illicit Trafficking of Natural Radionuclides

    NASA Astrophysics Data System (ADS)

    Friedrich, Steinhäusler; Lyudmila, Zaitseva

    2008-08-01

    Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from an operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.

  18. Rapid Evaluation of Radioactive Contamination in Rare Earth Mine Mining

    NASA Astrophysics Data System (ADS)

    Wang, N.

    2017-12-01

    In order to estimate the current levels of environmental radioactivity in Bayan Obo rare earth mine and to study the rapid evaluation methods of radioactivity contamination in the rare earth mine, the surveys of the in-situ gamma-ray spectrometry and gamma dose rate measurement were carried out around the mining area and living area. The in-situ gamma-ray spectrometer was composed of a scintillation detector of NaI(Tl) (Φ75mm×75mm) and a multichannel analyzer. Our survey results in Bayan Obo Mine display: (1) Thorium-232 is the radioactive contamination source of this region, and uranium-238 and potassium - 40 is at the background level. (2) The average content of thorium-232 in the slag of the tailings dam in Bayan Obo is as high as 276 mg/kg, which is 37 times as the global average value of thorium content. (3) We found that the thorium-232 content in the soil in the living area near the mining is higher than that in the local soil in Guyang County. The average thorium-232 concentrations in the mining areas of the Bayan Obo Mine and the living areas of the Bayan Obo Town were 18.7±7.5 and 26.2±9.1 mg/kg, respectively. (4) It was observed that thorium-232 was abnormal distributed in the contaminated area near the tailings dam. Our preliminary research results show that the in-situ gamma-ray spectrometry is an effective approach of fast evaluating rare earths radioactive pollution, not only can the scene to determine the types of radioactive contamination source, but also to measure the radioactivity concentration of thorium and uranium in soil. The environmental radioactive evaluation of rare earth ore and tailings dam in open-pit mining is also needed. The research was supported by National Natural Science Foundation of China (No. 41674111).

  19. Integral experiments on thorium assemblies with D-T neutron source

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Yang, Yiwei; Feng, Song; Zheng, Lei; Lai, Caifeng; Lu, Xinxin; Wang, Mei; Jiang, Li

    2017-09-01

    To validate nuclear data and code in the neutronics design of a hybrid reactor with thorium, integral experiments in two kinds of benchmark thorium assemblies with a D-T fusion neutron source have been performed. The one kind of 1D assemblies consists of polyethylene and depleted uranium shells. The other kind of 2D assemblies consists of three thorium oxide cylinders. The capture reaction rates, fission reaction rates, and (n, 2n) reaction rates in 232Th in the assemblies are measured by ThO2 foils. The leakage neutron spectra from the ThO2 cylinders are measured by a liquid scintillation detector. The experimental uncertainties in all the results are analyzed. The measured results are compared to the calculated ones with MCNP code and ENDF/B-VII.0 library data.

  20. Conceptual design study of small long-life PWR based on thorium cycle fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subkhi, M. Nurul; Su'ud, Zaki; Waris, Abdul

    2014-09-30

    A neutronic performance of small long-life Pressurized Water Reactor (PWR) using thorium cycle based fuel has been investigated. Thorium cycle which has higher conversion ratio in thermal region compared to uranium cycle produce some significant of {sup 233}U during burn up time. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.3, while the multi-energy-group diffusion calculations were optimized in whole core cylindrical two-dimension R-Z geometry by SRAC-CITATION. this study would be introduced thorium nitride fuel system which ZIRLO is the cladding material. The optimization of 350 MWt small long life PWRmore » result small excess reactivity and reduced power peaking during its operation.« less

  1. A deposit model for carbonatite and peralkaline intrusion-related rare earth element deposits: Chapter J in Mineral deposit models for resource assessment

    USGS Publications Warehouse

    Verplanck, Philip L.; Van Gosen, Bradley S.; Seal, Robert R.; McCafferty, Anne E.

    2014-01-01

    The greatest environmental challenges associated with carbonatite and peralkaline intrusion-related rare earth element deposits center on the associated uranium and thorium. Considerable uncertainty exists around the toxicity of rare earth elements and warrants further investigation. The acid-generating potential of carbonatites and peralkaline intrusion-related deposits is low due to the dominance of carbonate minerals in carbonatite deposits, the presence of feldspars and minor calcite within the alkaline intrusion deposits, and only minor quantities of potentially acid-generating sulfides. Therefore, acid-drainage issues are not likely to be a major concern associated with these deposits. Uranium has the potential to be recovered as a byproduct, which would mitigate some of its environmental effects. However, thorium will likely remain a waste-stream product that will require management since progress is not being made towards the development of thorium-based nuclear reactors in the United States or other large scale commercial uses. Because some deposits are rich in fluorine and beryllium, these elements may be of environmental concern in certain locations.

  2. Performance and economics analysis of several laser fusion breeder fueled electricity generation systems

    NASA Astrophysics Data System (ADS)

    Berwald, D. H.; Maniscalco, J. A.

    1981-01-01

    The paper evaluates the potential of several future electricity generating systems composed of laser fusion-driven breeder reactors that provide fissile fuel for current technology light water fission power reactors (LWRs). The performance and economic feasibility of four fusion breeder blanket technologies for laser fusion drivers, namely uranium fast fission (UFF) blankets, uranium-thorium fast fission (UTFF) blankets, thorium fast fission (TFF) blankets and thorium-suppressed fission (TSF) blankets, are considered, including design and costs of two kinds, fixed (indirect) costs associated with plant capital and variable (direct) costs associated with fuel processing and operation and maintenance. Results indicate that the UTFF and TFF systems produce electricity most inexpensively and that any of the four breeder blanket concepts, including the TSF and UFF systems, can produce electricity for about 25 to 33% above the cost of electricity produced by a new LWR operating on the current once-through cycle. It is suggested that fusion breeders could supply most or all of our fissile fuel makeup requirements within about 20 years after commercial introduction.

  3. Precise Nuclear Data Measurements Possible with the NIFFTE fissionTPC for Advanced Reactor Designs

    NASA Astrophysics Data System (ADS)

    Towell, Rusty; Niffte Collaboration

    2015-10-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) Collaboration has applied the proven technology of Time Projection Chambers (TPC) to the task of precisely measuring fission cross sections. With the NIFFTE fission TPC, precise measurements have been made during the last year at the Los Alamos Neutron Science Center from both U-235 and Pu-239 targets. The exquisite tracking capabilities of this device allow the full reconstruction of charged particles produced by neutron beam induced fissions from a thin central target. The wealth of information gained from this approach will allow systematics to be controlled at the level of 1%. The fissionTPC performance will be presented. These results are critical to the development of advanced uranium-fueled reactors. However, there are clear advantages to developing thorium-fueled reactors such as Liquid Fluoride Thorium Reactors over uranium-fueled reactors. These advantages include improved reactor safety, minimizing radioactive waste, improved reactor efficiency, and enhanced proliferation resistance. The potential for using the fissionTPC to measure needed cross sections important to the development of thorium-fueled reactors will also be discussed.

  4. Radioactive occurrences in veins and igneous and metamorphic rocks of New Mexico with annotated bibliography. [Over 600 citations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLemore, V. T.

    1982-01-01

    From an extensive literature search and field examination of 96 nonsandstone radioactive occurrences, the author compiled an annotated bibliography of over 600 citations and a list of 327 radioactive occurrences in veins and igneous and metamorphic rocks of New Mexico. The citations are indexed by individual radioactive occurrence, geographic area, county, fluorspar deposits and occurrences, geochemical analyses, and geologic maps. In addition, the geology, mineralization, and uranium and thorium potential of 41 geographic areas in New Mexico containing known radioactive occurrences in veins and igneous and metamorphic rocks or that contain host rocks considered favorable for uranium or thorium mineralizationmore » are summarized. A list of aerial-radiometric, magnetic, hydrogeochemical, and stream-sediment survey reports is included.« less

  5. Preliminary results of calculations for heavy-water nuclear-power-plant reactors employing 235U, 233U, and 232Th as a fuel and meeting requirements of a nonproliferation of nuclear weapons

    NASA Astrophysics Data System (ADS)

    Ioffe, B. L.; Kochurov, B. P.

    2012-02-01

    A physical design is developed for a gas-cooled heavy-water nuclear reactor intended for a project of a nuclear power plant. As a fuel, the reactor would employ thorium with a small admixture of enriched uranium that contains not more than 20% of 235U. It operates in the open-cycle mode involving 233U production from thorium and its subsequent burnup. The reactor meets the conditions of a nonproliferation of nuclear weapons: the content of fissionable isotopes in uranium at all stages of the process, including the final one, is below the threshold for constructing an atomic bomb, the amount of product plutonium being extremely small.

  6. Distribution of heavy metals and radionuclides in sediments, water, and fish in an area of Great Bear Lake contaminated with mine wastes.

    PubMed

    Moore, J W; Sutherland, D J

    1981-01-01

    The concentrations of heavy metals and radionuclides in the sediments and water of Great Bear Lake were determined during 1978 near an operating silver mine and an abandoned uranium mine. Additional information on the level of mercury in fish tissues were also collected. The mines, situated on the same site, deposited tailings and other waste material directly into the lake. The concentrations of mercury, lead, manganese, and nickel in the sediments were highest near the tailings deposit and decreased significantly as the distance from the mine increased. Although there were also significant positive correlations between these metals and the organic content of the sediments, water depth and slope of the bottom had no impact on metal distribution. Since the concentrations of arsenic, cobalt, copper, 226radium, 210lead and 230thorium varied inconsistently throughout the study area, the distribution of these substances could not be related to any of the environmental factors that were measured. There were, however, significant negative correlations between the concentrations of 232thorium and 228thorium and distance from the mine and organic content of the sediments. Heavy metal and radionuclide levels in water were generally below detectable limits, reflecting the strong chemical bonding characteristics of the sediments. The low concentrations of mercury in the tissues of lake trout Salvelinus namaycush were probably related to low uptake rates and the ability of this species to move into uncontaminated areas of the lake.

  7. The coprecipitation of Pu and other radionuclides with CaCO[sub 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meece, D.E.; Benninger, L.K.

    1993-04-01

    The record of fallout plutonium concentrations in annual bands of corals is strikingly similar to the record of atmospheric deposition of [sup 90]Sr. This similarity implies that corals may incorporate Pu from seawater with a constant partition coefficient (constant discrimination). To investigate physicochemical aspects of Pu incorporation, the following have been coprecipitated with CaCO[sub 3] (calcite and aragonite): oxidized and reduced Pu; americium, thorium, and uranium as analogs to Pu oxidation states (III, IV, VI), respectively; and [sup 210]Pb as a particle-reactive nuclide which may be incorporated by corals with constant discrimination. Americium, thorium, and lead adsorb onto both calcitemore » and aragonite, with more than 99% of the recovered activity found associated with the solids. Uranium exhibits a behavior consistent with lattice substitution. Partition coefficients for U in aragonite range from 1.8 to 9.8 and vary inversely with pH and/or rate of precipitation. The partition coefficient for U in calcite is less than 0.2 and may be as low as 0.046. Reduced Pu sorbs with 3 to 4% remaining in solution. Oxidized Pu may both sorb and coprecipitate. The coral record for Pb and U results primarily from biological, rather than physicochemical, effects; it is likely that the PU coral record also reflects biological discrimination. 50 refs., 4 figs., 5 tabs.« less

  8. Toxicity of irradiated advanced heavy water reactor fuels.

    PubMed

    Priest, N D; Richardson, R B; Edwards, G W R

    2013-02-01

    The good neutron economy and online refueling capability of the CANDU® heavy water moderated reactor (HWR) enable it to use many different fuels such as low enriched uranium (LEU), plutonium, or thorium, in addition to its traditional natural uranium (NU) fuel. The toxicity and radiological protection methods for these proposed fuels, unlike those for NU, are not well established. This study uses software to compare the fuel composition and toxicity of irradiated NU fuel against those of two irradiated advanced HWR fuel bundles as a function of post-irradiation time. The first bundle investigated is a CANFLEX® low void reactor fuel (LVRF), of which only the dysprosium-poisoned central element, and not the outer 42 LEU elements, is specifically analyzed. The second bundle investigated is a heterogeneous high-burnup (LEU,Th)O(2) fuelled bundle, whose two components (LEU in the outer 35 elements and thorium in the central eight elements) are analyzed separately. The LVRF central element was estimated to have a much lower toxicity than that of NU at all times after shutdown. Both the high burnup LEU and the thorium fuel had similar toxicity to NU at shutdown, but due to the creation of such inhalation hazards as (238)Pu, (240)Pu, (242)Am, (242)Cm, and (244)Cm (in high burnup LEU), and (232)U and (228)Th (in irradiated thorium), the toxicity of these fuels was almost double that of irradiated NU after 2,700 d of cooling. New urine bioassay methods for higher actinoids and the analysis of thorium in fecal samples are recommended to assess the internal dose from these two fuels.

  9. Summaries of Papers Presented at the Short Wavelength Coherent Radiation: Generation and Applications Topical Meeting Held in Cape Cod, Massachusetts on September 26-29, 1988

    DTIC Science & Technology

    1989-03-01

    characteristics of the plasma. (p. 75) xi Hx transition at 54.19 A is reported. (p. 86) TuC20 Quantum Mechanical Interference in Four-Wave TuC28 Gain Measurement...E.MixingtK.ctivH.iBaldwinenAustralean Ntwoiofenal untue Miura. Y. Kitagawa, K. Nishihara, Y. Kato. H. Nishimura. C. and destructive interference between...Incidence Optics for Synchrotron TuC25 Spectra of Lead, Bismuth, Thorium, and Uranium X-Ray Lithography , R. J. Rosser, P. M. J. H. Wormell, R

  10. Semimicrodetermination of tantalum with selenous acid

    USGS Publications Warehouse

    Grimaldi, F.S.; Schnepfe, M.M.

    1958-01-01

    Tantalum is separated and determined gravimetrically by precipitation with selenous acid from a highly acidic solution containing oxalic and tartaric acids. The method is selective for the determination of up to 30 mg. of tantalum pentoxide, and tolerates relatively large amounts of scandium, yttrium, cerium, titanium, zirconium, thorium, vanadium, niobium, molybdenum, tungsten, uranium, iron, aluminum, gallium, tin, lead, antimony, and bismuth. The separation of tantalum from niobium and titanium is not strictly quantitative, and correction is made colorimetrically for the small amounts of niobium and titanium co-precipitating with the tantalum. The method was applied to the determination of tantalum in tantaloniobate ores.

  11. Separation of Californium from other Actinides

    DOEpatents

    Mailen, J C; Ferris, L M

    1973-09-25

    A method is provided for separating californium from a fused fluoride composition containing californium and at least one element selected from the group consisting of plutonium, americium, curium, uranium, thorium, and protactinium which comprises contacting said fluoride composition with a liquid bismuth phase containing sufficient lithium or thorium to effect transfer of said actinides to the bismuth phase and then contacting the liquid bismuth phase with molten LiCl to effect selective transfer of californium to the chloride phase.

  12. An assessment of the attractiveness of material associated with thorium/uranium and uranium closed fuel cycles from a safeguards perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bathke, Charles Gary; Wallace, Richard K; Hase, Kevin R

    2010-01-01

    This paper reports the continued evaluation of the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with various proposed nuclear fuel cycles. Specifically, this paper examines two closed fuel cycles. The first fuel cycle examined is a thorium fuel cycle in which a pressurized heavy water reactor (PHWR) is fueled with mixtures of plutonium/thorium and {sup 233}U/thorium. The used fuel is then reprocessed using the THOREX process and the actinides are recycled. The second fuel cycle examined consists of conventional light water reactors (LWR) whose fuel is reprocessed for actinides that are then fed to and recycled untilmore » consumed in fast-spectrum reactors: fast reactors and accelerator driven systems (ADS). As reprocessing of LWR fuel has already been examined, this paper will focus on the reprocessing of the scheme's fast-spectrum reactors' fuel. This study will indicate what is required to render these materials as having low utility for use in nuclear weapons. Nevertheless, the results of this paper suggest that all reprocessing products evaluated so far need to be rigorously safeguarded and provided high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE). The methodology and key findings will be presented.« less

  13. Raman Spectroscopy for Analysis of Thorium Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Yin-Fong; Johnson, Timothy J.; Olsen, Khris B.

    2016-05-12

    The thorium fuel cycle is an alternative to the uranium fuel cycle in that when 232Th is irradiated with neutrons it is converted to 233U, another fissile isotope. There are several chemical forms of thorium which are used in the Th fuel cycle. Recently, Raman spectroscopy has become a very portable and facile analytical technique useful for many applications, including e.g. determining the chemical composition of different materials such as for thorium compounds. The technique continues to improve with the development of ever-more sensitive instrumentation and better software. Using a laboratory Fourier-transform (FT)-Raman spectrometer with a 785 nm wavelength laser,more » we were able to obtain Raman spectra from a series of thorium-bearing compounds of unknown origin. These spectra were compared to the spectra of in-stock-laboratory thorium compounds including ThO2, ThF4, Th(CO3)2 and Th(C2O4)2. The unknown spectra showed very good agreement to the known standards, demonstrating the applicability of Raman spectroscopy for detection and identification of these nuclear materials.« less

  14. Crucible cast from beryllium oxide and refractory cement is impervious to flux and molten metal

    NASA Technical Reports Server (NTRS)

    Jastrzebski, Z. D.

    1966-01-01

    Crucible from a mixture of a beryllium oxide aggregate and hydraulic refractory cement, and coated with an impervious refractory oxide will not deteriorate in the presence of fused salt- molten metal mixtures such as uranium- magnesium-zinc-halide salt systems. Vessels cast by this process are used in the flux reduction of oxides of thorium and uranium.

  15. The Complex Sol-Gel Process for producing small ThO2 microspheres

    NASA Astrophysics Data System (ADS)

    Brykala, Marcin; Rogowski, Marcin

    2016-05-01

    Thorium based fuels offer several benefits compared to uranium based fuels thus they might be an attractive alternative to conventional fuel types. This study is devoted to the synthesis and the characterization of small thorium dioxide microspheres (Ø <50 μm). Their application involves using powder-free process, called the Complex Sol-Gel Process. The source sols used for the processes were prepared by the method where in the starting ascorbic acid solution the solid thorium nitrate was dissolved and partially neutralized by aqueous ammonia under pH control. The microspheres of thorium-ascorbate gel were obtained using the ICHTJ Process (INCT in English). Studies allowed to determine an optimal heat treatment with calcination temperature of 700 °C and temperature rate not higher than 2 °C/min which enabled us to obtain a crack-free surface of microspheres. The main parameters which have a strong influence on the synthesis method and features of the spherical particles of thorium dioxide are described in this article.

  16. Design study of long-life PWR using thorium cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subkhi, Moh. Nurul; Su'ud, Zaki; Waris, Abdul

    2012-06-06

    Design study of long-life Pressurized Water Reactor (PWR) using thorium cycle has been performed. Thorium cycle in general has higher conversion ratio in the thermal spectrum domain than uranium cycle. Cell calculation, Burn-up and multigroup diffusion calculation was performed by PIJ-CITATION-SRAC code using libraries based on JENDL 3.2. The neutronic analysis result of infinite cell calculation shows that {sup 231}Pa better than {sup 237}Np as burnable poisons in thorium fuel system. Thorium oxide system with 8%{sup 233}U enrichment and 7.6{approx} 8%{sup 231}Pa is the most suitable fuel for small-long life PWR core because it gives reactivity swing less than 1%{Delta}k/kmore » and longer burn up period (more than 20 year). By using this result, small long-life PWR core can be designed for long time operation with reduced excess reactivity as low as 0.53%{Delta}k/k and reduced power peaking during its operation.« less

  17. Studies of the mobility of uranium and thorium in Nevada Test Site tuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wollenberg, H.A.; Flexser, S.; Smith, A.R.

    1991-06-01

    Hydro-geochemical processes must be understood if the movement of radionuclides away from a breached radioactive waste canister is to be modeled and predicted. In this respect, occurrences of uranium and thorium in hydrothermal systems are under investigation in tuff and in rhyolitic tuff that was heated to simulate the effects of introduction of radioactive waste. In these studies, high-resolution gamma spectrometry and fission-track radiography are coupled with observations of alteration mineralogy and thermal history to deduce the evidence of, or potential for movement of, U and Th in response to the thermal environment. Observations to date suggest that U wasmore » mobile in the vicinity of the heater but that localized reducing environments provided by Fe-Ti-Mn-oxide minerals concentrated U and thus attenuated its migration.« less

  18. Aqueous biphasic extraction of uranium and thorium from contaminated soils. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaiko, D.J.; Gartelmann, J.; Henriksen, J.L.

    1995-07-01

    The aqueous biphasic extraction (ABE) process for soil decontamination involves the selective partitioning of solutes and fine particulates between two immiscible aqueous phases. The biphase system is generated by the appropriate combination of a water-soluble polymer (e.g., polyethlene glycol) with an inorganic salt (e.g., sodium carbonate). Selective partitioning results in 99 to 99.5% of the soil being recovered in the cleaned-soil fraction, while only 0.5 to 1% is recovered in the contaminant concentrate. The ABE process is best suited to the recovery of ultrafine, refractory material from the silt and clay fractions of soils. During continuous countercurrent extraction tests withmore » soil samples from the Fernald Environmental Management Project site (Fernald, OH), particulate thorium was extracted and concentrated between 6- and 16-fold, while the uranium concentration was reduced from about 500 mg/kg to about 77 mg/kg. Carbonate leaching alone was able to reduce the uranium concentration only to 146 mg/kg. Preliminary estimates for treatment costs are approximately $160 per ton of dry soil. A detailed flowsheet of the ABE process is provided.« less

  19. An evaluation of uranium-series dating of fossil echinoids from southern California Pleistocene marine terraces

    USGS Publications Warehouse

    Muhs, D.R.; Kennedy, G.L.

    1985-01-01

    Fossil sea urchins (Strongylocentrotus) from Pleistocene marine terraces on the southern California Channel Islands have been dated by the uranium-series method in order to test the suitability of echinoids for dating marine terraces. Results indicate that urchin plates and spines do not behave as closed systems with respect to both uranium and thorium. Calculated ages based on these data do not agree with uranium-series ages (120,000 and 127,000 yrs) obtained previously from corals from the same localities. Thus, fossil sea urchins (Strongylocentrotus) are not considered suitable for uraniumseries dating of Pleistocene marine terrace deposits. ?? 1985.

  20. Thorium Fuel Utilization Analysis on Small Long Life Reactor for Different Coolant Types

    NASA Astrophysics Data System (ADS)

    Permana, Sidik

    2017-07-01

    A small power reactor and long operation which can be deployed for less population and remote area has been proposed by the IAEA as a small and medium reactor (SMR) program. Beside uranium utilization, it can be used also thorium fuel resources for SMR as a part of optimalization of nuclear fuel as a “partner” fuel with uranium fuel. A small long-life reactor based on thorium fuel cycle for several reactor coolant types and several power output has been evaluated in the present study for 10 years period of reactor operation. Several key parameters are used to evaluate its effect to the reactor performances such as reactor criticality, excess reactivity, reactor burnup achievement and power density profile. Water-cooled types give higher criticality than liquid metal coolants. Liquid metal coolant for fast reactor system gives less criticality especially at beginning of cycle (BOC), which shows liquid metal coolant system obtains almost stable criticality condition. Liquid metal coolants are relatively less excess reactivity to maintain longer reactor operation than water coolants. In addition, liquid metal coolant gives higher achievable burnup than water coolant types as well as higher power density for liquid metal coolants.

  1. Liquid fuel molten salt reactors for thorium utilization

    DOE PAGES

    Gehin, Jess C.; Powers, Jeffrey J.

    2016-04-08

    Molten salt reactors (MSRs) represent a class of reactors that use liquid salt, usually fluoride- or chloride-based, as either a coolant with a solid fuel (such as fluoride salt-cooled high temperature reactors) or as a combined coolant and fuel with fuel dissolved in a carrier salt. For liquid-fuelled MSRs, the salt can be processed online or in a batch mode to allow for removal of fission products as well as introduction of fissile fuel and fertile materials during reactor operation. The MSR is most commonly associated with the 233U/thorium fuel cycle, as the nuclear properties of 233U combined with themore » online removal of parasitic absorbers allow for the ability to design a thermal-spectrum breeder reactor; however, MSR concepts have been developed using all neutron energy spectra (thermal, intermediate, fast, and mixed-spectrum zoned concepts) and with a variety of fuels including uranium, thorium, plutonium, and minor actinides. Early MSR work was supported by a significant research and development (R&D) program that resulted in two experimental systems operating at ORNL in the 1960s, the Aircraft Reactor Experiment and the Molten Salt Reactor Experiment. Subsequent design studies in the 1970s focusing on thermal-spectrum thorium-fueled systems established reference concepts for two major design variants: (1) a molten salt breeder reactor (MSBR), with multiple configurations that could breed additional fissile material or maintain self-sustaining operation; and (2) a denatured molten salt reactor (DMSR) with enhanced proliferation-resistance. T MSRs has been selected as one of six most promising Generation IV systems and development activities have been seen in fast-spectrum MSRs, waste-burning MSRs, MSRs fueled with low-enriched uranium (LEU), as well as more traditional thorium fuel cycle-based MSRs. This study provides an historical background of MSR R&D efforts, surveys and summarizes many of the recent development, and provides analysis comparing thorium-based MSRs.« less

  2. Induced Formation of Chelating Agents by Pseudomonas aeruginosa Grown in Presence of Thorium and Uranium

    DTIC Science & Technology

    1985-07-01

    aerugiaosa PAO-l, Saccharomyces cerevisiae, Aspergillus niger , P. fluorescens, Escherichia coli, and Thiobacillus ferroxidans. Interaction of these...shown that P. aeruginosa CSU has..a-••reference for uranium while P. aeruginosa PAO-l, Aspergillus niger and-P. fluorescens exhibits a preference for...exhibits a preference for chromium. Aspergillus niger under identical conditions is chromium and manganese selective. P. aeruginosa when grown in th

  3. Synthesis of actinide nitrides, phosphides, sulfides and oxides

    DOEpatents

    Van Der Sluys, William G.; Burns, Carol J.; Smith, David C.

    1992-01-01

    A process of preparing an actinide compound of the formula An.sub.x Z.sub.y wherein An is an actinide metal atom selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, x is selected from the group consisting of one, two or three, Z is a main group element atom selected from the group consisting of nitrogen, phosphorus, oxygen and sulfur and y is selected from the group consisting of one, two, three or four, by admixing an actinide organometallic precursor wherein said actinide is selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, a suitable solvent and a protic Lewis base selected from the group consisting of ammonia, phosphine, hydrogen sulfide and water, at temperatures and for time sufficient to form an intermediate actinide complex, heating said intermediate actinide complex at temperatures and for time sufficient to form the actinide compound, and a process of depositing a thin film of such an actinide compound, e.g., uranium mononitride, by subliming an actinide organometallic precursor, e.g., a uranium amide precursor, in the presence of an effectgive amount of a protic Lewis base, e.g., ammonia, within a reactor at temperatures and for time sufficient to form a thin film of the actinide compound, are disclosed.

  4. SHEATHING URANIUM

    DOEpatents

    Colbeck, E.W.

    1959-02-01

    A method is deseribed for forming a conveniently handled corrosion resistant U articlc comprising pouring molten U into an open-ended corrosion resistant metal eontainer such as Cu and its alloys, Al, or austenitic Ni stainless steel. The exposed surface of the cast U is covered with a metallic packing material such as a brazing flux consisting of Al-Si alloy. The container is sealed iii contact with substantially the entire exposed surface of the packing material. The article is then worked mechanically to reduce the cross section. l3651 A thorium--carbon alloy containing 0.1 to 0.5% by weight carbon, whieh is more resistant to water corrosion than pure thorium metal is presented. The alloy is prepared by fusing thorium metal with the desired amount of carbon at a temperature of about 1850 C. It is found that the carbon is present in the alloy as thorium monocarbide

  5. A novel assay method for the trace determination of Th and U in copper and lead using inductively coupled plasma mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaFerriere, Brian D.; Maiti, Tapas C.; Arnquist, Isaac J.

    2015-03-01

    This study describes a novel sample preparation and assay method developed in support of the MAJORANA DEMONSTRATOR experiment for the determination of thorium and uranium levels in copper and lead shielding components. Meticulously clean sample preparation methods combined with novel anion exchange separations for analyte pre-concentration and matrix removal were developed. Quantification was performed by inductively coupled plasma mass spectrometry. Detection limits of 0.0084 pg 232Th/g and 0.0106 pg 238U/g were determined for copper, while detection limits of 0.23 pg 232Th/g and 0.46 pg 238U/g were achieved for lead. These methods allow the Majorana Collaboration to accurately assay detector componentsmore » and ensure that the experiment’s stringent radiopurity requirements are met.« less

  6. Analysis of the effects of stirring condition of separation of thorium in the elution process of monazite partial solution by solvent impregnated resin method

    NASA Astrophysics Data System (ADS)

    Prassanti, R.; Putra, D. S.; Kusuma, B. P.; Nawawi, F. W.

    2018-01-01

    Monazite is a natural mineral which contains abundant valuable element such as Radioactive Element and Rare Earth Element(REE). In this experiment, it is proven that solution of residual Thorium Sulfate from Monazite mineral process, can be seperated selectively by using extracting method of Solvent Impregnated Resin(SIR), with the elutant solution HNO3. In the earlier process, Thorium solution is conditioned at PH 1 by using H2SO4. Then REE, Thorium and Uranium elements are seperated. This seperation is conducted by using adsorption method by Amberlite XAD-16 Resin, which has been impregnated by Tributhyl Phosphate extractant. It is continued with elution process, which is aimed to obtain Thorium solution of a higher level of concentration. This elution process is conducted by using HNO3, with the elution variables of the lenght of mixing and amount concentration elutant. Based on this experiment, SIR extracting method is able to dissolve Thorium solution until 63,2%grade and a higher level of %grade about 92,40%. It can be concluded that this SIR method can extracted Thorium elements selectively, improve extracting process recovery, and determine optimum stripping condition in the 45th minutes with elutant concentration of 1,0M HNO3.

  7. Prospecting for Precious Metals in Ultra-Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    French, R. S.

    2000-05-01

    The chemical compositions of the most metal-poor halo stars are living records of the very early nucleosynthetic history of the Galaxy. Only a few prior generations, if not a single one, of element-donating supernovae could have been responsible for the heavy elements observed in ultra-metal-poor (UMP; [Fe/H] < --2.5) stars. Abundances of the heavy neutron-capture elements (Z > 30) can yield direct information about the supernova progenitors to UMP stars, and abundances of unstable thorium and uranium (Z = 90, 92) can potentially provide age estimates for the Galactic halo. Already, many studies have demonstrated that abundances of rare-earth elements (56 <= Z <= 72) in UMP stars are completely consistent with their production in rapid neutron-capture synthesis (r-process) events, usually believed to occur during supernovae explosions. Therefore, mapping the entire abundance pattern of UMP stars is of significant interest. In particular, abundances of the most massive stable elements (Os -> Pb or 76 <= Z <= 82) could provide crucial information about the so-called ``third r-process peak,'' and are critical to the radioactive-dating technique that uses unstable thorium as a chronometer. Until recently, abundance determinations for these elements have been virtually non-existent, as the strongest relevant transitions lay in the vacuum UV, inaccessible to ground-based observation. The availability of high-resolution space-based spectrometers has opened up new regions of spectral coverage, including precisely the range in wavelength needed to make these sensitive measurements. We have undertaken a study of about 10 metal-poor halo giants to determine the abundances of several of the heaviest neutron-capture elements including platinum, osmium, lead, and gold. Preliminary results indicate that the abundance pattern of heavy neutron-capture elements (56 <= Z <= 82) in UMP stars does mimic a scaled solar system r-process. Thus, the ability to estimate the initial abundances of thorium and uranium is greatly reinforced.

  8. Colonie Interim Storage Site environmental report for calendar year 1992, 1130 Central Avenue, Colonie, New York. Formerly Utilized Sites Remedial Action Program (FUSRAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-05-01

    This report describes the environmental surveillance program at the Colonie Interim Storage Site (CISS) and provides the results for 1992. The site is located in eastern New York State, approximately 6.4 km (4.0 mi) northwest of downtown Albany. From 1958 to 1984, National Lead (NL) Industries used the facility to manufacture various components from depleted and enriched uranium natural thorium. Environmental monitoring of CISS began in 1984 when Congress added, the site to the US Department of Energy`s (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a program established to identify and decontaminate or otherwise control sites wheremore » residual radioactive materials remain from the early years of the nation`s atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental surveillance program at CISS includes sampling networks for external gamma radiation exposure and for thorium-232 and total uranium concentrations in surface water, sediment, and groundwater. Several chemical parameters are also measured in groundwater, including total metals, volatile organics, and water quality parameters. This surveillance program assists in fulfilling the DOE policy of measuring and monitoring effluents from DOE activities and calculating hypothetical doses. Results are compared with applicable Environmental Protection Agency (EPA) and New York State Department of Environmental Conservation (NYSDEC) standards, DOE derived concentration guides (DCGs), dose limits, and other DOE requirements.« less

  9. Beta-Decay Rates for Exotic Nuclei and R-Process Nucleosynthesis up to Th and U

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Yoshida, Takashi; Shibagaki, Shota; Kajino, Toshitaka; Otsuka, Takaharu

    Beta-decay rates for exotic nuclei with N = 126 relevant to r-process nucleosynthesis are studied up to Z = 78 by shell-model calculations. The half-lives for the waiting-point nuclei obtained, which are short compared to a standard FRDM, are used to study r-process nucleosynthesis in neutrino-driven winds and magneto-hydrodynamic jets of core-collapse supernova explosions as well as in binary neutron star mergers. The element abundances are obtained up to the third peak as well as beyond the peak region up to thorium and uranium. Thorium and uranium are found to be produced more with the shorter shell-model half-lives and their abundances come closer to the observed values in core-collapse supernova explosions, while in case of binary neutron star mergers they are produced as much as the observed values rather independent of the half-lives.

  10. Characterization of microstructural, mechanical and thermophysical properties of Th-52U alloy

    NASA Astrophysics Data System (ADS)

    Das, Santanu; Kaity, S.; Kumar, R.; Banerjee, J.; Roy, S. B.; Chaudhari, G. P.; Daniel, B. S. S.

    2016-11-01

    Th-52 wt.% U alloy has a microstructure featuring interspersed networks of uranium rich and thorium rich phases. Room temperature hardness of the alloy is more than twice that of unalloyed thorium. The alloy age hardens (550 °C) only slightly (peak hardness/hardness of solution heated and quenched = 1.05). Room temperature thermal conductivity (25.6 W m-1 °C-1) is close to that of uranium and most of the binary and ternary metallic alloy fuel materials. Average linear coefficient of thermal expansion (CTE) of Th-52 wt.% U alloy [11.2 × 10-06 °C-1 (27-290 °C) and 16.75 × 10-06 °C-1 (27-600 °C)] are comparable with that of many metallic alloy fuel candidates. Th-52 wt.% U alloy with non-age hardenable microstructure, appreciable thermal conductivity, moderate thermal expansion may find metallic fuel applications in nuclear reactors.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamboj, Sunita; Durham, Lisa A.

    A post-remediation radiological dose assessment was conducted for the Formerly Utilized Sites Remedial Action Program (FUSRAP) Linde Site by using the measured residual concentrations of the radionuclides of concern following the completion of the soils remedial action. The site’s FUSRAP-related contaminants of concern (COCs) are radionuclides associated with uranium processing activities conducted by the Manhattan Engineer District (MED) in support of the Nation’s early atomic energy and weapons program and include radium-226 (Ra-226), thorium-230 (Th-230), and total uranium (Utotal). Remedial actions to address Linde Site soils and structures were conducted in accordance with the Record of Decision for the Lindemore » Site, Tonawanda, New York (ROD) (USACE 2000a). In the ROD, the U.S. Army Corps of Engineers (USACE) determined that the cleanup standards found in Title 40, Part 192 of the Code of Federal Regulations (40 CFR Part 192), the standards for cleanup of uranium mill sites designated under the Uranium Mill Tailings Radiation Control Act (UMTRCA), and the Nuclear Regulatory Commission (NRC) standards for decommissioning of licensed uranium and thorium mills, found in 10 CFR Part 40, Appendix A, Criterion 6(6), are Applicable or Relevant and Appropriate Requirements (ARARs) for cleanup of MED-related contamination at the Linde Site. The major elements of this remedy will involve excavation of the soils with COCs above soil cleanup levels and placement of clean materials to meet the other criteria of 40 CFR Part 192.« less

  12. Detection Technology in the 21st Century: The Case of Nuclear Weapons of Mass Destruction

    DTIC Science & Technology

    2008-03-26

    Weapons of Mass Destruction FORMAT : Strategy Research Project DATE: 26 March 2008 WORD COUNT: 6,764 PAGES: 25 KEY TERMS: National Security, Deterrence...stocks remaining in Ukraine, Belarus, Uzbekistan, and other former Soviet and Eastern European states, and the unknown amounts of highly enriched uranium ...detect emissions from the decay of radioactive nuclides, which can occur naturally, such as uranium and thorium, or are manmade, such as plutonium

  13. Radioactivity of Consumer Products

    NASA Astrophysics Data System (ADS)

    Peterson, David; Jokisch, Derek; Fulmer, Philip

    2006-11-01

    A variety of consumer products and household items contain varying amounts of radioactivity. Examples of these items include: FiestaWare and similar glazed china, salt substitute, bananas, brazil nuts, lantern mantles, smoke detectors and depression glass. Many of these items contain natural sources of radioactivity such as Uranium, Thorium, Radium and Potassium. A few contain man-made sources like Americium. This presentation will detail the sources and relative radioactivity of these items (including demonstrations). Further, measurements of the isotopic ratios of Uranium-235 and Uranium-238 in several pieces of china will be compared to historical uses of natural and depleted Uranium. Finally, the presenters will discuss radiation safety as it pertains to the use of these items.

  14. Actinide metal processing

    DOEpatents

    Sauer, Nancy N.; Watkin, John G.

    1992-01-01

    A process of converting an actinide metal such as thorium, uranium, or plnium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrte. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  15. Airborne gamma-ray spectrometer and magnetometer survey: Concrete quadrangle (Washington). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-01-01

    Twenty-five uranium anomalies meet the minimum statistical requirements as defined. These anomalies are tabulated and are shown on the Uranium Anomaly Interpretation Map. Potassium (%K), equivalent Uranium (ppM eU), equivalent Thorium (ppM eT), eU/eT, eU/K, eT/K, and magnetic pseudo-contour maps are presented. Stacked Profiles showing geologic strips maps along each flight-line, together with sensor data, and ancillary data are presented. All maps and profiles were prepared on a scale of 1:250,000, but have been reduced to 1:500,000 for presentation.

  16. Actinide metal processing

    DOEpatents

    Sauer, N.N.; Watkin, J.G.

    1992-03-24

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  17. 10 CFR 170.31 - Schedule of fees for materials licenses and other regulatory services, including inspections, and...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... material in sealed sources contained in devices used in industrial measuring systems, including x-ray... metals other than uranium or thorium, including licenses authorizing the possession of byproduct waste...

  18. 40 CFR 192.22 - Supplemental standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Supplemental standards. 192.22 Section 192.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Implementation...

  19. 40 CFR 192.22 - Supplemental standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Supplemental standards. 192.22 Section 192.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Implementation...

  20. 40 CFR 192.22 - Supplemental standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Supplemental standards. 192.22 Section 192.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Implementation...

  1. 40 CFR 192.22 - Supplemental standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Supplemental standards. 192.22 Section 192.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Implementation...

  2. 40 CFR 192.22 - Supplemental standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Supplemental standards. 192.22 Section 192.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Implementation...

  3. Future Scenarios for Fission Based Reactors

    NASA Astrophysics Data System (ADS)

    David, S.

    2005-04-01

    The coming century will see the exhaustion of standard fossil fuels, coal, gas and oil, which today represent 75% of the world energy production. Moreover, their use will have caused large-scale emission of greenhouse gases (GEG), and induced global climate change. This problem is exacerbated by a growing world energy demand. In this context, nuclear power is the only GEG-free energy source available today capable of responding significantly to this demand. Some scenarios consider a nuclear energy production of around 5 Gtoe in 2050, wich would represent a 20% share of the world energy supply. Present reactors generate energy from the fission of U-235 and require around 200 tons of natural Uranium to produce 1GWe.y of energy, equivalent to the fission of one ton of fissile material. In a scenario of a significant increase in nuclear energy generation, these standard reactors will consume the whole of the world's estimated Uranium reserves in a few decades. However, natural Uranium or Thorium ore, wich are not themselves fissile, can produce a fissile material after a neutron capture ( 239Pu and 233U respectively). In a breeder reactor, the mass of fissile material remains constant, and the fertile ore is the only material to be consumed. In this case, only 1 ton of natural ore is needed to produce 1GWe.y. Thus, the breeding concept allows optimal use of fertile ore and development of sustainable nuclear energy production for several thousand years into the future. Different sustainable nuclear reactor concepts are studied in the international forum "generation IV". Different types of coolant (Na, Pb and He) are studied for fast breeder reactors based on the Uranium cycle. The thermal Thorium cycle requires the use of a liquid fuel, which can be reprocessed online in order to extract the neutron poisons. This paper presents these different sustainable reactors, based on the Uranium or Thorium fuel cycles and will compare the different options in term of fissile inventory, capacity to be deployed, induced radiotoxicities, and R&D efforts.

  4. Uranium and its decay products in samples contaminated with uranium mine and mill waste

    NASA Astrophysics Data System (ADS)

    Benedik, L.; Klemencic, H.; Repinc, U.; Vrecek, P.

    2003-05-01

    The routine determination of the activity concentrations of uranium isotopes (^{238}U, ^{235}U and ^{234}U), thorium isotopes (^{212}Th, ^{230}TI, and ^{228}Th), ^{231}Pa, ^{226}Ra, ^{210}Pb and ^{210}Po in the environment is one of the most important tasks in uranium mining areas. Natural radionuclides contribute negligibly to the extemal radiation dose, but in the case of ingestion or inhalation can represent a very serious hazard. The objective of this study was to determine the activities of uranium and its decay products ^{230}Th, ^{231}Pa, ^{226}Ra, ^{210}Pb and ^{210}Po in sediments and water below sources of contamination (uranium mine, disposal sites and individual inflows) using gamma and alpha spectrometry, beta counting, the liquid scintillation technique and radiochemical neutron activation analysis.

  5. Radioactive rare-earth deposit at Scrub Oaks mine, Morris County, New Jersey

    USGS Publications Warehouse

    Klemic, Harry; Heyl, A.V.; Taylor, Audrey R.; Stone, Jerome

    1959-01-01

    A deposit of rare-earth minerals in the Scrub Oaks iron mine, Morris County, N. J., was mapped and sampled in 1955. The rare-earth minerals are mainly in coarse-grained magnetite ore and in pegmatite adjacent to it. Discrete bodies of rare-earth-bearing magnetite ore apparently follow the plunge of the main magnetite ore body at the north end of the mine. Radioactivity of the ore containing rare earths is about 0.2 to 0.6 mllliroentgens per hour. The principal minerals of the deposit are quartz, magnetite, hematite, albiteoligoclase, perthite and antiperthite. Xenotime and doverite aggregates and bastnaesite with intermixed leucoxene are the most abundant rare-earth minerals, and zircon, sphene, chevkinite, apatite, and monazite are of minor abundance in the ore. The rare-earth elements are partly differentiated into cerium-rich bastnaesite, chevkinite, and monazite, and yttrium-rich xenotime and doverite. Apatite, zircon, and sphene contain both cerium and yttrium group earths. Eleven samples of radioactive ore and rock average 0.009 percent uranium, 0.062 percent thorium, 1.51 percent combined rare-earth oxides including yttrium oxide and 24.8 percent iron. Scatter diagrams of sample data show a direct correlation between equivalent uranium, uranium, thorium, and combined rare^ earth oxides. Both cerium- and yttrium-group earths are abundant in the rare-earth minerals. Radioactive magnetite ore containing rare-earth minerals probably formed as a variant of the magnetite mineralization that produced the main iron ore of the Scrub Oaks deposit. The rare-earth minerals and the iron ore were deposited contemporaneously. Zircon crystals, probably deposited at the same time, have been determined by the Larsen method to be about 550 to 600 million years old (late Precambrian age). Uranium, thorium, and rare-earth elements are potential byproducts of iron in the coarse-grained magnetite ore.

  6. Fission Product Yields from {sup 232}Th, {sup 238}U, and {sup 235}U Using 14 MeV Neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierson, B.D., E-mail: bpnuke@umich.edu; Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352; Greenwood, L.R.

    Neutron-induced fission yield studies using deuterium-tritium fusion-produced 14 MeV neutrons have not yet directly measured fission yields from fission products with half-lives on the order of seconds (far from the line of nuclear stability). Fundamental data of this nature are important for improving and validating the current models of the nuclear fission process. Cyclic neutron activation analysis (CNAA) was performed on three actinide targets–thorium-oxide, depleted uranium metal, and highly enriched uranium metal–at the University of Michigan's Neutron Science Laboratory (UM-NSL) using a pneumatic system and Thermo-Scientific D711 accelerator-based fusion neutron generator. This was done to measure the fission yields ofmore » short-lived fission products and to examine the differences between the delayed fission product signatures of the three actinides. The measured data were compared against previously published results for {sup 89}Kr, −90, and −92 and {sup 138}Xe, −139, and −140. The average percent deviation of the measured values from the Evaluated Nuclear Data Files VII.1 (ENDF/B-VII.1) for thorium, depleted-uranium, and highly-enriched uranium were −10.2%, 4.5%, and −12.9%, respectively. In addition to the measurements of the six known fission products, 23 new fission yield measurements from {sup 84}As to {sup 146}La are presented.« less

  7. 40 CFR 192.10 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Applicability. 192.10 Section 192.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Cleanup of...

  8. 40 CFR 192.43 - Effective date.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Effective date. 192.43 Section 192.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Management...

  9. 40 CFR 192.42 - Substitute provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Substitute provisions. 192.42 Section 192.42 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for...

  10. 40 CFR 192.34 - Effective date.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Effective date. 192.34 Section 192.34 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Management...

  11. 10 CFR 170.31 - Schedule of fees for materials licenses and other regulatory services, including inspections, and...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., including x-ray fluorescence analyzers.4 Application [Program Code(s): 22140] $1,200 D. All other special... extraction of metals other than uranium or thorium, including licenses authorizing the possession of...

  12. 40 CFR 192.04 - Corrective action.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Corrective action. 192.04 Section 192.04 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for...

  13. 40 CFR 192.03 - Monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Monitoring. 192.03 Section 192.03 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control...

  14. 40 CFR 192.00 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Applicability. 192.00 Section 192.00 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control...

  15. Entry of uranium, thorium, and radium isotopes into plants from soils and fertilizers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shishkunova, L.V.; Grashchenko, S.M.; Strukov, V.N.

    1989-01-01

    We studied the effect of phosphorus fertilizers on the entry of /sup 238/U, /sup 234/U, /sup 228/Th, /sup 230/Th, /sup 232/Th, and /sup 226/Ra into crops from soils. Also examined was plant uptake of radionuclides originating from the fertilizers. Raising the phosphate content by incorporating the fertilizers into certain soils changed the ratio of the amount of radionuclide available to a plant to that fixed in the soil. A specific case was the addition of 4000 kg/ha of ammophos to soddy podzolic soils, which raised the thorium isotope buildup factor by 2 to 3. The uptake of thorium from ammophosmore » by plants, as measured by the entry ratio, was a hundred times lower than from the soils.« less

  16. Establishing bounding internal dose estimates for thorium activities at Rocky Flats.

    PubMed

    Ulsh, Brant A; Rich, Bryce L; Chew, Melton H; Morris, Robert L; Sharfi, Mutty; Rolfes, Mark R

    2008-07-01

    As part of an evaluation of a Special Exposure Cohort petition filed on behalf of workers at the Rocky Flats Plant, the National Institute for Occupational Safety and Health (NIOSH) was required to demonstrate that bounding values could be established for radiation doses due to the potential intake of all radionuclides present at the facility. The main radioactive elements of interest at Rocky Flats were plutonium and uranium, but much smaller quantities of several other elements, including thorium, were occasionally handled at the site. Bounding potential doses from thorium has proven challenging at other sites due to the early historical difficulty in detecting this element through urinalysis methods and the relatively high internal dose delivered per unit intake. This paper reports the results of NIOSH's investigation of the uses of thorium at Rocky Flats and provides bounding dose reconstructions for these operations. During this investigation, NIOSH reviewed unclassified reports, unclassified extracts of classified materials, material balance and inventory ledgers, monthly progress reports from various groups, and health physics field logbooks, and conducted interviews with former Rocky Flats workers. Thorium operations included: (1) an experimental metal forming project with 240 kg of thorium in 1960; (2) the use of pre-formed parts in weapons mockups; (3) the removal of Th from U; (4) numerous analytical procedures involving trace quantities of thorium; and (5) the possible experimental use of thorium as a mold coating compound. The thorium handling operations at Rocky Flats were limited in scope, well-monitored and documented, and potential doses can be bounded.

  17. Safeguards Considerations for Thorium Fuel Cycles

    DOE PAGES

    Worrall, Louise G.; Worrall, Andrew; Flanagan, George F.; ...

    2016-04-21

    We report that by around 2025, thorium-based fuel cycles are likely to be deployed internationally. States such as China and India are pursuing research, development, and deployment pathways toward a number of commercial-scale thorium fuel cycles, and they are already building test reactors and the associated fuel cycle infrastructure. In the future, the potential exists for these emerging programs to sell, export, and deploy thorium fuel cycle technology in other states. Without technically adequate international safeguards protocols and measures in place, any future potential clandestine misuse of these fuel cycles could go undetected, compromising the deterrent value of these protocolsmore » and measures. The development of safeguards approaches for thorium-based fuel cycles is therefore a matter of some urgency. Yet, the focus of the international safeguards community remains mainly on safeguarding conventional 235U- and 239Pu-based fuel cycles while the safeguards challenges of thorium-uranium fuel cycles remain largely uninvestigated. This raises the following question: Is the International Atomic Energy Agency and international safeguards system ready for thorium fuel cycles? Furthermore, is the safeguards technology of today sufficiently mature to meet the verification challenges posed by thorium-based fuel cycles? In defining these and other related research questions, the objectives of this paper are to identify key safeguards considerations for thorium-based fuel cycles and to call for an early dialogue between the international safeguards and the nuclear fuel cycle communities to prepare for the potential safeguards challenges associated with these fuel cycles. In this paper, it is concluded that directed research and development programs are required to meet the identified safeguards challenges and to take timely action in preparation for the international deployment of thorium fuel cycles.« less

  18. Present investigations of radioactive raw materials by the Geological Survey and a recommended program for future work

    USGS Publications Warehouse

    Butler, A.P.; Stead, F.W.

    1947-01-01

    The Geological Survey's program of investigation of radioactive raw materials is presented herewith under present investigations, plans for future investigations, plan of operation, and cost of operation. This report was prepared at the request of the Atomic Energy Commission. Present investigations are summarized to show the scope of the present Trace Elements program, grouping individual projects into related types of investigations. Plans for future investigations on an expanded scale are outlined. These should provide sufficient data and knowledge of the occurrence and availability of uranium, thorium, and related elements, to permit a more complete evaluation of domestic resources. Reconnaissance projects are designed to discover possible new sources of uranium and thorium and to select areas and materials warranting further investigation. Typical projects leading to the estimation of reserves are the investigation of the carnotite ores of the Colorado Plateau by geologic mapping, exploratory drilling, and related research, and investigation of asphaltic sandstone in Emery County, Utah. Extensive research will be undertaken to establish the principles governing the geological and geochemical relations of uranium, thorium, and associated elements as an essential guide in appraising domestic resources. Particular emphasis will be placed on phosphatic rocks and black shales which offer ultimate resources of uranium far greater than carnotite ores. All the foregoing investigations will be accompanied by chemical, gephysical, and mineralogical research and analytical work. Under plan of operation is discussed the organization of the Trace Elements Unit, space requirements for laboratory and office, the scheduling of investigations, and other related problems. The proposed scheduling of work calls for approximately 109, 173, and 203 man years in fiscal years 1948, 1949, and 1950 respectively. Definite plans have been formulated only for the next three fiscal years, by which time it is assumed the program will reach stable proportions or can be altered as experience dictates. Under cost of operation is set forth the funds available in fiscal year 1947, the status of funds transferred from Atomic Services (14-217/80920), and funds necessary in succeeding fiscal years. The estimate for fiscal year 1948 inclues a non-recurring item of $1,025,000 for establishing adequate laboratories for chemical, physical, spectrographic and mineralogic research and analytical work. The total funds required in fiscal years 1948, 1949, and 1950 to support the proposed program will be $2,440,000, $2,161,000 and $2,198,000 respectively. The Geological survey anticipates contributing from its appropriation in fiscal years 1948, 1949 and 1950 approximately $243,000, $350,000, and $400,000 respectively; the balance of the necessary funds to be contributed by the Atomic Energy Commission in fiscal years 1948, 1949, and 1950 will be approximately $2,196,900, $1,811,000, and $1,798,000 respectively.

  19. Hydrogeochemical and stream sediment reconnaissance basic data for Palestine NTMS Quadrangle, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-05-04

    Results of a reconnaissance geochemical survey of the Palestine Quadrangle are reported. Field and laboratory data are presented for 714 groundwater and 577 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwater data indicate that uranium concentrations above the 85th percentile occur primarily in the Caddell, Wellborn, and Manning Formations of the Jackson Group; and the Yegua Formation of the Claiborne Group. Saline watermore » trends are also prominent in these formations. Stream sediment data indicate that uranium values above the 85th percentile correlate with high concentrations of cerium, niobium, thorium, titanium, yttrium, and zirconium. This elemental suite probably indicates that uranium is associated with resistate and/or heavy minerals.« less

  20. 40 CFR 192.33 - Corrective action programs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Corrective action programs. 192.33 Section 192.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for...

  1. 40 CFR 192.21 - Criteria for applying supplemental standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... standards. 192.21 Section 192.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL... a clear and present risk of injury to workers or to members of the public, notwithstanding...

  2. 40 CFR 192.23 - Effective date.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Effective date. 192.23 Section 192.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Implementation § 192.23...

  3. 40 CFR 192.21 - Criteria for applying supplemental standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Criteria for applying supplemental standards. 192.21 Section 192.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL...

  4. 40 CFR 192.21 - Criteria for applying supplemental standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Criteria for applying supplemental standards. 192.21 Section 192.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL...

  5. 40 CFR 192.23 - Effective date.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Effective date. 192.23 Section 192.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Implementation § 192.23...

  6. 40 CFR 192.23 - Effective date.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Effective date. 192.23 Section 192.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Implementation § 192.23...

  7. 40 CFR 192.21 - Criteria for applying supplemental standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Criteria for applying supplemental standards. 192.21 Section 192.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL...

  8. 40 CFR 192.23 - Effective date.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Effective date. 192.23 Section 192.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Implementation § 192.23...

  9. 40 CFR 192.21 - Criteria for applying supplemental standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Criteria for applying supplemental standards. 192.21 Section 192.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL...

  10. Humic acid provenance influence to the adsorption capacity in uranium and thorium removal

    NASA Astrophysics Data System (ADS)

    Prasetyo, E.

    2018-01-01

    It is common knowledge that humic acid is organic compound without certain chemical composition since it is derived from different organic materials. Further this raises question whether the different humic acid sample used could lead to different adsorbent properties e.g. adsorption capacity. To address the problem, this paper is aimed to clarify the relation between the provenances of humic acid and synthesized adsorbent properties especially adsorption capacities by quantitative and qualitative functional groups determination including discussion on their effect to the metal ion adsorption mechanism using three humic acid samples. Two commercial samples were derived from recent compost while the other extracted from tertiary carbonaceous mudstone strata.

  11. Application of banana peels nanosorbent for the removal of radioactive minerals from real mine water.

    PubMed

    Oyewo, Opeyemi A; Onyango, Maurice S; Wolkersdorfer, Christian

    2016-11-01

    Transformation of agricultural waste such as banana peels into a valuable sorbent material has been proven effective and efficient in wastewater treatment. Further, transformation into nanosorbent to enhance the removal capacity of actinides (uranium and thorium) from synthetic and real mine water is extensively investigated in this study. The nanosorbent samples before and after adsorption were characterised by X-ray diffraction (XRD), Fourier transform infra-red (FTIR), zetasizer nanoseries and scanning electron microscopy (SEM) while the amount of radioactive substances adsorbed was determined by inductively coupled plasma optical emission spectroscopy. Results revealed that there was a crystallite size and particle size reduction from 108 to 12 nm and <65,000 nm to <25 nm respectively as a function of milling time. Furthermore, appearance and disappearance of nanofibers via milling was noticed during structural analysis. The functional groups responsible for the banana peels capability to coordinate and remove metal ions were identified at absorption bands of 1730 cm -1 (carboxylic groups) and 889 cm -1 (amine groups) via FTIR analysis. Equilibrium isotherm results demonstrated that the adsorption process was endothermic for both uranium and thorium. The Langmuir maximum adsorption capacity was 27.1 mg g -1 , 34.13 mg g -1 for uranium and 45.5 mg g -1 , 10.10 mg g -1 for thorium in synthetic and real mine water, respectively. The results obtained indicate that nanostructured banana peels is a potential adsorbent for the removal of radioactive substances from aqueous solution and also from real mine water. However, the choice of this sorbent material for any application depends on the composition of the effluent to be treated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. FUSED REACTOR FUELS

    DOEpatents

    Mayer, S.W.

    1962-11-13

    This invention relates to a nuciear reactor fuel composition comprising (1) from about 0.01 to about 50 wt.% based on the total weight of said composition of at least one element selected from the class consisting of uranium, thorium, and plutonium, wherein said eiement is present in the form of at least one component selected from the class consisting of oxides, halides, and salts of oxygenated anions, with components comprising (2) at least one member selected from the class consisting of (a) sulfur, wherein the sulfur is in the form of at least one entity selected irom the class consisting of oxides of sulfur, metal sulfates, metal sulfites, metal halosulfonates, and acids of sulfur, (b) halogen, wherein said halogen is in the form of at least one compound selected from the class of metal halides, metal halosulfonates, and metal halophosphates, (c) phosphorus, wherein said phosphorus is in the form of at least one constituent selected from the class consisting of oxides of phosphorus, metal phosphates, metal phosphites, and metal halophosphates, (d) at least one oxide of a member selected from the class consisting of a metal and a metalloid wherein said oxide is free from an oxide of said element in (1); wherein the amount of at least one member selected from the class consisting of halogen and sulfur is at least about one at.% based on the amount of the sum of said sulfur, halogen, and phosphorus atom in said composition; and wherein the amount of said 2(a), 2(b) and 2(c) components in said composition which are free from said elements of uranium, thorium, arid plutonium, is at least about 60 wt.% based on the combined weight of the components of said composition which are free from said elements of uranium, thorium, and plutonium. (AEC)

  13. Profiles of gamma-ray and magnetic data from aerial surveys over the conterminous United States

    USGS Publications Warehouse

    Duval, Joseph S.; Riggle, Frederic E.

    1999-01-01

    This publication contains images for the conterminous U.S. generated from geophysical data, software for displaying and analyzing the images, and software for displaying and examining the profile data from the aerial surveys flown as part of the National Uranium Resource Evaluation (NURE) Program of the U.S. Department of Energy. The images included are of gamma-ray data (uranium, thorium, and potassium channels), Bouguer gravity data, isostatic residual gravity data, aeromagnetic anomalies, topography, and topography with bathymetry.

  14. Utilization of non-weapons-grade plutonium and highly enriched uranium with breeding of the {sup 233}U isotope in the VVER reactors using thorium and heavy water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshalkin, V. E., E-mail: marshalkin@vniief.ru; Povyshev, V. M.

    A method for joint utilization of non-weapons-grade plutonium and highly enriched uranium in the thorium–uranium—plutonium oxide fuel of a water-moderated reactor with a varying water composition (D{sub 2}O, H{sub 2}O) is proposed. The method is characterized by efficient breeding of the {sup 233}U isotope and safe reactor operation and is comparatively simple to implement.

  15. Airborne gamma-ray spectrometer and magnetometer survey, Cape Flattery quadrange (Washington). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-01-01

    No uranium anomalies meet the minimum statistical requirements as defined. There is no Uranium Anomaly Interpretation Map for the Cape Flattery quadrangle. Potassium (%K), equivalent Uranium (ppM eU), equivalent Thorium (ppM eT), eU/eT, eU/K, eT/K, and magnetic pseudo-contour maps are presented in Appendix E. Stacked Profiles showing geologic strip maps along each flight-line, together with sensor data, and ancillary data are presented in Appendix F. All maps and profiles were prepared on a scale of 1:250,000, but have been reduced to 1:500,000 for presentation.

  16. Airborne gamma-ray spectrometer and magnetometer survey, Copalis Beach quadrangle (Washington). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-01-01

    No uranium anomalies meet the minimum statistical requirements as defined. There is no Uranium Anomaly Interpretation Map for the Copalis Beach quadrangle. Potassium (%K), equivalent Uranium (ppM eU), equivalent Thorium (ppM eT), eU/eT, eU/K, eT/K, and magnetic pseudo-contour maps are presented in Appendix E. Stacked Profiles showing geologic strip maps along each flight-line, together with sensor data, and ancillary data are presented in Appendix F. All maps and profiles were prepared on a scale of 1:250,000, but have been reduced to 1:500,000 for presentation.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehin, Jess C.; Powers, Jeffrey J.

    Molten salt reactors (MSRs) represent a class of reactors that use liquid salt, usually fluoride- or chloride-based, as either a coolant with a solid fuel (such as fluoride salt-cooled high temperature reactors) or as a combined coolant and fuel with fuel dissolved in a carrier salt. For liquid-fuelled MSRs, the salt can be processed online or in a batch mode to allow for removal of fission products as well as introduction of fissile fuel and fertile materials during reactor operation. The MSR is most commonly associated with the 233U/thorium fuel cycle, as the nuclear properties of 233U combined with themore » online removal of parasitic absorbers allow for the ability to design a thermal-spectrum breeder reactor; however, MSR concepts have been developed using all neutron energy spectra (thermal, intermediate, fast, and mixed-spectrum zoned concepts) and with a variety of fuels including uranium, thorium, plutonium, and minor actinides. Early MSR work was supported by a significant research and development (R&D) program that resulted in two experimental systems operating at ORNL in the 1960s, the Aircraft Reactor Experiment and the Molten Salt Reactor Experiment. Subsequent design studies in the 1970s focusing on thermal-spectrum thorium-fueled systems established reference concepts for two major design variants: (1) a molten salt breeder reactor (MSBR), with multiple configurations that could breed additional fissile material or maintain self-sustaining operation; and (2) a denatured molten salt reactor (DMSR) with enhanced proliferation-resistance. T MSRs has been selected as one of six most promising Generation IV systems and development activities have been seen in fast-spectrum MSRs, waste-burning MSRs, MSRs fueled with low-enriched uranium (LEU), as well as more traditional thorium fuel cycle-based MSRs. This study provides an historical background of MSR R&D efforts, surveys and summarizes many of the recent development, and provides analysis comparing thorium-based MSRs.« less

  18. Thorium Fuel Cycle Option Screening in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taiwo, Temitope A.; Kim, Taek K.; Wigeland, Roald A.

    2016-05-01

    As part of a nuclear fuel cycle Evaluation and Screening (E&S) study, a wide-range of thorium fuel cycle options were evaluated and their performance characteristics and challenges to implementation were compared to those of other nuclear fuel cycle options based on criteria specified by the Nuclear Energy Office of the U.S. Department of Energy (DOE). The evaluated nuclear fuel cycles included the once-through, limited, and continuous recycle options using critical or externally-driven nuclear energy systems. The E&S study found that the continuous recycle of 233U/Th in fuel cycles using either thermal or fast reactors is an attractive promising fuel cyclemore » option with high effective fuel resource utilization and low waste generation, but did not perform quite as well as the continuous recycle of Pu/U using a fast critical system, which was identified as one of the most promising fuel cycle options in the E&S study. This is because compared to their uranium counterparts the thorium-based systems tended to have higher radioactivity in the short term (about 100 years post irradiation) because of differences in the fission product yield curves, and in the long term (100,000 years post irradiation) because of the decay of 233U and daughters, and because of higher mass flow rates due to lower discharge burnups. Some of the thorium-based systems also require enriched uranium support, which tends to be detrimental to resource utilization and waste generation metrics. Finally, similar to the need for developing recycle fuel fabrication, fuels separations and fast reactors for the most promising options using Pu/U recycle, the future thorium-based fuel cycle options with continuous recycle would also require such capabilities, although their deployment challenges are expected to be higher since such facilities have not been developed in the past to a comparable level of maturity for Th-based systems.« less

  19. Age of the moon: An isotopic study of uranium-thorium-lead systematics of lunar samples

    USGS Publications Warehouse

    Tatsumoto, M.; Rosholt, J.N.

    1970-01-01

    Concentrations of U, Th, and Pb in Apollo 11 samples studied are low (U. 0.16 to 0.87; Th, 0.53 to 3.4; Pb, 0.29 to 1.7, in ppm) but the extremely radiogenic lead in samples allows radiometric dating. The fine dust and the breccia have a concordant age of 4.66 billion years on the basis of 207Pb/206Pb, 206Pb/238U, 207Pb/235U, and 208Pb/232Th ratios. This age is comparable with the age of meteorites and with the age generally accepted for the earth. Six crystalline and vesicular samples are distinctly younger than the dust and breccia. The 238U/235U ratio is the same as that in earth rocks, and 234U is in radioactive equilibrium with parent 238U.

  20. COMMENTS ON THE DEFINITION OF THE CURIE, WITH SPECIAL REFERENCE TO NATURAL RADIOACTIVE MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaeger, R.G.; Houtermans, H.

    1962-06-01

    An analysis of maximum permissible levels of radionuclides showed that the definition of the curie, when applied to natural radioactive materials, is ambiguous. The history of the definition of the curie is reviewed. In the past, no clear distinction was raade between the curie as a unit of the quantity of a radioactive substance, and the curie as a unit of radioactivity. This has caused different interpretation of the curic as applied to natural radioactive materials, e.g., natural uranium and natural thorium. A redefinition of the curie as a pure unit of radioactivity is suggested, and maximum permissible levels ormore » concentrations of natural radioactive materials, such as uranium or thorium, should be stated in mass per unit mass or volume of air, water, food, etc. It is recommended that, in legislation listing the amounts of naturally occurring radioactive substances, these amounts be stated in milligrams or Kilograms. (auth)« less

  1. Catalytic Dehydrogenation of Dimethylamine Borane by Highly Active Thorium and Uranium Metallocene Complexes

    DOE PAGES

    Erickson, Karla A.; Kiplinger, Jaqueline L.

    2017-05-19

    In the thorium and uranium complexes (C 5Me 5) 2AnMe 2, [(C 5Me 5) 2An(H)(μ-H)] 2 (An = Th, U) and [(C 5Me 5) 2U(H)] 2 dehydrogenate dimethylamine borane (Me2NH·BH3) at room temperature. Upon mild heating at 45 °C, turnover frequencies (TOFs) of 400 h –1 are obtained, which is comparable to some of the fastest Me 2NH·BH 3 dehydrogenation catalysts known in the literature. We propose a β-hydride elimination mechanism for dehydrogenation because of the observation of Me 2N=BH 2, Me 2N=BMe 2, and Me 2N=BHMe in the 11B NMR spectra of catalytic and stoichiometric reactions. The similar catalyticmore » metrics between the actinide dimethyl and hydride complexes with Me 2NH·BH 3 indicate that the actinide hydride complexes are the active catalysts in this chemistry.« less

  2. Catalytic Dehydrogenation of Dimethylamine Borane by Highly Active Thorium and Uranium Metallocene Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Karla A.; Kiplinger, Jaqueline L.

    In the thorium and uranium complexes (C 5Me 5) 2AnMe 2, [(C 5Me 5) 2An(H)(μ-H)] 2 (An = Th, U) and [(C 5Me 5) 2U(H)] 2 dehydrogenate dimethylamine borane (Me2NH·BH3) at room temperature. Upon mild heating at 45 °C, turnover frequencies (TOFs) of 400 h –1 are obtained, which is comparable to some of the fastest Me 2NH·BH 3 dehydrogenation catalysts known in the literature. We propose a β-hydride elimination mechanism for dehydrogenation because of the observation of Me 2N=BH 2, Me 2N=BMe 2, and Me 2N=BHMe in the 11B NMR spectra of catalytic and stoichiometric reactions. The similar catalyticmore » metrics between the actinide dimethyl and hydride complexes with Me 2NH·BH 3 indicate that the actinide hydride complexes are the active catalysts in this chemistry.« less

  3. Natural radionuclides in the rocks of the Valle del Cervo Pluton in Piedmont.

    PubMed

    Sesana, Lucia; Fumagalli, Marco; Carnevale, Mauro; Polla, Giancarla; Facchini, Ugo; Colombo, Annita; Tunesi, Annalisa; De Capitani, Luisa; Rusconi, Rosella

    2006-01-01

    Monitoring of the gamma radiation in Valle del Cervo Pluton was performed by determining U and Th contents in the main rock types cropping out over the entire area and pertaining to the granitic complex, syenitic complex and monzonitic complex. In particular, syenitic rocks were largely used as building and ornamental materials (e.g. Sienite della Balma). All the samples are fresh and do not present joints or fractures filled with U minerals. In the crushed samples the activity of uranium varies from 346 to 764 Bq/kg. Concentration of thorium varies from 202 to 478 Bq/kg. For all the analysed rocks uranium activity is higher than thorium one. The lowest value of radioactive concentration is referred to rocks of the granitic complex. The most active rocks are syenites. The data confirm the high activities of Valle del Cervo rock types, strongly connected with high K content of the source magma (geochemical signature); on the contrary, the activity seems to be not related to the location of the samples.

  4. Actinium radioisotope products of enhanced purity

    DOEpatents

    Meikrantz, David Herbert; Todd, Terry Allen; Tranter, Troy Joseph; Horwitz, E. Philip

    2010-06-15

    A product includes actinium-225 (.sup.225Ac) and less than about 1 microgram (.mu.g) of iron (Fe) per millicurie (mCi) of actinium-225. The product may have a radioisotopic purity of greater than about 99.99 atomic percent (at %) actinium-225 and daughter isotopes of actinium-225, and may be formed by a method that includes providing a radioisotope mixture solution comprising at least one of uranium-233 (.sup.233U) and thorium-229 (.sup.229Th), extracting the at least one of uranium-233 and thorium-229 into an organic phase, substantially continuously contacting the organic phase with an aqueous phase, substantially continuously extracting actinium-225 into the aqueous phase, and purifying the actinium-225 from the aqueous phase. In some embodiments, the product may include less than about 1 nanogram (ng) of iron per millicurie (mCi) of actinium-225, and may include less than about 1 microgram (.mu.g) each of magnesium (Mg), Chromium (Cr), and manganese (Mn) per millicurie (mCi) of actinium-225.

  5. PREPARATION OF REFRACTORY OXIDE MICROSPHERE

    DOEpatents

    Haws, C.C. Jr.

    1963-09-24

    A method is described of preparing thorium oxide in the form of fused spherical particles about 1 to 2 microns in diameter. A combustible organic solution of thorium nitrate containing additive metal values is dispersed into a reflected, oxygen-fed flame at a temperature above the melting point of the resulting oxide. The metal additive is aluminum at a proportion such as to provide 1 to 10 weight per cent aluminum oxide in the product, silicon at the same proportion, or beryllium at a proportion of 12 to 25 weight per cent beryllium oxide in the product. A minor proportion of uranium values may also be provided in the solution. The metal additive lowers the oxide melting point and allows fusion and sphere formation in conventional equipment. The product particles are suitable for use in thorium oxide slurries for nuclear reactors. (AEC)

  6. X-ray K-edge analysis of drain lines in Wilhelm Hall, Ames Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, T.; Whitmore, C.

    1999-01-05

    From August 12--27, 1998 X-ray K-edge measurements were made on drain lines in seven rooms in Wilhelm Hall, Ames Laboratory. The purpose of these measurements was to determine the extent of thorium (and other heavy metal) contamination inside these pipes. The K-edge method is a noninvasive inspection technique that can provide accurate quantification of heavy metal contamination interior to an object. Of the seven drain lines inspected, one was found to have no significant contamination, three showed significant thorium deposits, two showed mercury contamination, and one line was found to contain mercury, thorium and uranium. The K-edge measurements were foundmore » to be consistent with readings from hand-held survey meters, and provided much greater detail on the location and amount of heavy metal contamination.« less

  7. Measurement of natural radioactivity and radon exhalation rate from rock samples of Jaduguda uranium mines and its radiological implications

    NASA Astrophysics Data System (ADS)

    Mahur, A. K.; Kumar, Rajesh; Sonkawade, R. G.; Sengupta, D.; Prasad, Rajendra

    2008-04-01

    The Singhbhum shear zone is a 200 km long arcuate belt in Jharkhand state situated in eastern India. The central part between Jaduguda-Bhatin-Nimdih, Narwapahr-Garadih-Turamdih is rich in uranium. Presence of uranium in the host rocks and the prevalence of a confined atmosphere within mines could result in enhanced concentration of radon (222Rn) gas and its progeny. Inhalation of radon daughter products is a major contributor to the radiation dose to exposed subjects. By using high resolution γ-ray spectroscopic system various radionuclides in the rock samples, collected from different places of Jaduguda uranium mines have been identified quantitatively based on the characteristic spectral peaks. The activity concentrations of the natural radionuclides, uranium (238U), thorium (232Th) and potassium (40K) were measured in the rock samples and radiological parameters were calculated. Uranium concentration was found to vary from 123 ± 7 Bq kg-1 to 40,858 ± 174 Bq kg-1. Activity of thorium was not significant in the samples, whereas, few samples have shown potassium activity from 162 ± 11 Bq kg-1 to 9024 ± 189 Bq kg-1. Radon exhalation rates from these samples were also measured using "Sealed Can technique" and found to vary from 4.2 ± 0.05 to 13.7 ± 0.08 Bq m-2 h-1. A positive correlation was found between the radon exhalation rate and the uranium activity. The absorbed dose rates vary from 63.6 to 18876.4 nGy h-1, with an average value of 7054.2 nGy h-1. The annual external effective dose rates vary from 0.7 to 23.2 mSv y-1. Radium equivalent activities (Raeq) varied from 134.3 to 40858.0 Bq kg-1. Value of external hazard index (Hex) varied from 0.4 to 110.4 with an average value of 41.2.

  8. Uranium in Surface Waters and Sediments Affected by Historical Mining in the Denver West 1:100,000 Quadrangle, Colorado

    USGS Publications Warehouse

    Zielinski, Robert A.; Otton, James K.; Schumann, R. Randall; Wirt, Laurie

    2008-01-01

    Geochemical sampling of 82 stream waters and 87 stream sediments within mountainous areas immediately west of Denver, Colorado, was conducted by the U.S. Geological Survey in October 1994. The primary purpose was to evaluate regionally the effects of geology and past mining on the concentration and distribution of uranium. The study area contains uranium- and thorium-rich bedrock, numerous noneconomic occurrences of uranium minerals, and several uranium deposits of variable size and production history. During the sampling period, local streams had low discharge and were more susceptible to uranium-bearing acid drainage originating from historical mines of base- and precious-metal sulfides. Results indicated that the spatial distribution of Precambrian granites and metamorphic rocks strongly influences the concentration of uranium in stream sediments. Within-stream transport increases the dispersion of uranium- and thorium rich mineral grains derived primarily from granitic source rocks. Dissolved uranium occurs predominantly as uranyl carbonate complexes, and concentrations ranged from less than 1 to 65 micrograms per liter. Most values were less than 5 micrograms per liter, which is less than the current drinking water standard of 30 micrograms per liter and much less than locally applied aquatic-life toxicity standards of several hundred micrograms per liter. In local streams that are affected by uranium-bearing acid mine drainage, dissolved uranium is moderated by dilution and sorptive uptake by stream sediments. Sorbents include mineral alteration products and chemical precipitates of iron- and aluminum-oxyhydroxides, which form where acid drainage enters streams and is neutralized. Suspended uranium is relatively abundant in some stream segments affected by nearby acid drainage, which likely represents mobilization of these chemical precipitates. The 234U/238U activity ratio of acid drainage (0.95-1.0) is distinct from that of local surface waters (more than 1.05), and this distinctive isotopic composition may be preserved in iron-oxyhydroxide precipitates of acid drainage origin. The study area includes a particularly large vein-type uranium deposit (Schwartzwalder mine) with past uranium production. Stream water and sediment collected downstream from the mine's surface operations have locally anomalous concentrations of uranium. Fine-grained sediments downstream from the mine contain rare minute particles (10-20 micrometers) of uraninite, which is unstable in a stream environment and thus probably of recent origin related to mining. Additional rare particles of very fine grained (less than 5 micrometer) barite likely entered the stream as discharge from settling ponds in which barite precipitation was formerly used to scavenge dissolved radium from mine effluent.

  9. Chemical aspects of uranium behavior in soils: A review

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.

    2011-08-01

    Uranium has varying degrees of oxidation (+4 and +6) and is responsive to changes in the redox potential of the environment. It is deposited at the reduction barrier with the participation of biota and at the sorption barrier under oxidative conditions. Iron (hydr)oxides are the strongest sorbents of uranium. Uranium, being an element of medium biological absorption, can accumulate (relative to thorium) in the humus horizons of some soils. The high content of uranium in uncontaminated soils is most frequently inherited from the parent rocks in the regions of positive U anomalies: in the soils developed on oil shales and in the marginal zone of bogs at the reduction barrier. The development of nuclear and coal-fired power engineering resulted in the environmental contamination with uranium. The immobilization of anthropogenic uranium at artificial geochemical barriers is based on two preconditions: the stimulation of on-site metal-reducing bacteria or the introduction of strong mineral reducers, e.g., Fe at low degrees of oxidation.

  10. Accumulation of uranium by immobilized persimmon tannin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaguchi, Takashi; Nakajima, Akira

    1994-01-01

    We have discovered that the extracted juice of unripe astringent persimmon fruit, designated as kakishibu or shibuol, has an extremely high affinity for uranium. To develop efficient adsorbents for uranium, we tried to immobilize kakishibu (persimmon tannin) with various aldehydes and mineral acids. Persimmon tannin immobilized with glutaraldehyde can accumulate 1.71 g (14 mEq U) of uranium per gram of the adsorbent. The uranium accumulating capacity of this adsorbent is several times greater than that of commercially available chelating resins (2-3 mEq/g). Immobilized persimmon tannin has the most favorable features for uranium recovery; high selective adsorption ability, rapid adsorption rate,more » and applicability in both column and batch systems. The uranium retained on immobilized persimmon tannin can be quantitatively and easily eluted with a very dilute acid, and the adsorbent can thus be easily recycled in the adsorption-desorption process. Immobilized persimmon tannin also has a high affinity for thorium. 23 refs., 13 figs., 7 tabs.« less

  11. 10 CFR 765.23 - Annual report.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Annual report. 765.23 Section 765.23 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES Procedures for Submitting and Processing Reimbursement Claims § 765.23 Annual report. The Department shall...

  12. 10 CFR 765.22 - Appeals procedures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Appeals procedures. 765.22 Section 765.22 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES Procedures for Submitting and Processing Reimbursement Claims § 765.22 Appeals procedures. (a) Any...

  13. 10 CFR 765.22 - Appeals procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Appeals procedures. 765.22 Section 765.22 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES Procedures for Submitting and Processing Reimbursement Claims § 765.22 Appeals procedures. (a) Any...

  14. 10 CFR 765.22 - Appeals procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Appeals procedures. 765.22 Section 765.22 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES Procedures for Submitting and Processing Reimbursement Claims § 765.22 Appeals procedures. (a) Any...

  15. 10 CFR 765.23 - Annual report.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Annual report. 765.23 Section 765.23 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES Procedures for Submitting and Processing Reimbursement Claims § 765.23 Annual report. The Department shall...

  16. 10 CFR 765.22 - Appeals procedures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Appeals procedures. 765.22 Section 765.22 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES Procedures for Submitting and Processing Reimbursement Claims § 765.22 Appeals procedures. (a) Any...

  17. 10 CFR 765.23 - Annual report.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Annual report. 765.23 Section 765.23 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES Procedures for Submitting and Processing Reimbursement Claims § 765.23 Annual report. The Department shall...

  18. 10 CFR 765.23 - Annual report.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Annual report. 765.23 Section 765.23 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES Procedures for Submitting and Processing Reimbursement Claims § 765.23 Annual report. The Department shall...

  19. 10 CFR 765.22 - Appeals procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Appeals procedures. 765.22 Section 765.22 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES Procedures for Submitting and Processing Reimbursement Claims § 765.22 Appeals procedures. (a) Any...

  20. 10 CFR 765.23 - Annual report.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Annual report. 765.23 Section 765.23 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES Procedures for Submitting and Processing Reimbursement Claims § 765.23 Annual report. The Department shall...

  1. Preparation of UO2, ThO2 and (Th,U)O2 pellets from photochemically-prepared nano-powders

    NASA Astrophysics Data System (ADS)

    Pavelková, Tereza; Čuba, Václav; de Visser-Týnová, Eva; Ekberg, Christian; Persson, Ingmar

    2016-02-01

    Photochemically-induced preparation of nano-powders of crystalline uranium and/or thorium oxides and their subsequent pelletizing has been investigated. The preparative method was based on the photochemically induced formation of amorphous solid precursors in aqueous solution containing uranyl and/or thorium nitrate and ammonium formate. The EXAFS analyses of the precursors shown that photon irradiation of thorium containing solutions yields a compound with little long-range order but likely "ThO2 like" and the irradiation of uranium containing solutions yields the mixture of U(IV) and U(VI) compounds. The U-containing precursors were carbon free, thus allowing direct heat treatment in reducing atmosphere without pre-treatment in the air. Subsequent heat treatment of amorphous solid precursors at 300-550 °C yielded nano-crystalline UO2, ThO2 or solid (Th,U)O2 solutions with high purity, well-developed crystals with linear crystallite size <15 nm. The prepared nano-powders of crystalline oxides were pelletized without any binder (pressure 500 MPa), the green pellets were subsequently sintered at 1300 °C under an Ar:H2 (20:1) mixture (UO2 and (Th,U)O2 pellets) or at 1600 °C in ambient air (ThO2 pellets). The theoretical density of the sintered pellets varied from 91 to 97%.

  2. METHOD OF DISSOLVING REFRACTORY ALLOYS

    DOEpatents

    Helton, D.M.; Savolainen, J.K.

    1963-04-23

    This patent relates to the dissolution of alloys of uranium with zirconium, thorium, molybdenum, or niobium. The alloy is contacted with an anhydrous solution of mercuric chloride in a low-molecular-weight monohydric alcohol to produce a mercury-containing alcohol slurry. The slurry is then converted to an aqueous system by adding water and driving off the alcohol. The resulting aqueous slurry is electrolyzed in the presence of a mercury cathode to remove the mercury and produce a uranium-bearing aqueous solution. This process is useful for dissolving irradiated nuclear reactor fuels for radiochemical reprocessing by solvent extraction. In addition, zirconium-alloy cladding is selectively removed from uranium dioxide fuel compacts by this means. (AEC)

  3. 10 CFR 40.36 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Financial assurance and recordkeeping for decommissioning. 40.36 Section 40.36 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL... licenses authorizing the receipt, possession, and use of source material for uranium or thorium milling, or...

  4. 10 CFR 765.21 - Procedures for processing reimbursement claims.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Section 765.21 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES Procedures for Submitting and Processing Reimbursement Claims § 765.21... specified in § 765.20(g) to determine the completeness of each claim. Payments from the Fund to active...

  5. 10 CFR 765.32 - Reimbursement of excess funds.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES Additional Reimbursement Procedures § 765.32 Reimbursement of excess funds. (a) No later... total number of Federal-related dry short tons of byproduct material present at the site where costs of...

  6. 40 CFR 192.41 - Provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... applicable to the element uranium shall also apply to the element thorium; (b) Provisions applicable to radon-222 shall also apply to radon-220; and (c) Provisions applicable to radium-226 shall also apply to... exposures to the planned discharge of radioactive materials, radon-220 and its daughters excepted, to the...

  7. 40 CFR 192.41 - Provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... applicable to the element uranium shall also apply to the element thorium; (b) Provisions applicable to radon-222 shall also apply to radon-220; and (c) Provisions applicable to radium-226 shall also apply to... exposures to the planned discharge of radioactive materials, radon-220 and its daughters excepted, to the...

  8. Effect of Using Thorium Molten Salts on the Neutronic Performance of PACER

    NASA Astrophysics Data System (ADS)

    Acır, Adem; Übeyli, Mustafa

    2010-04-01

    Utilization of nuclear explosives can produce a significant amount of energy which can be converted into electricity via a nuclear fusion power plant. An important fusion reactor concept using peaceful nuclear explosives is called as PACER which has an underground containment vessel to handle the nuclear explosives safely. In this reactor, Flibe has been considered as a working coolant for both tritium breeding and heat transferring. However, the rich neutron source supplied from the peaceful nuclear explosives can be used also for fissile fuel production. In this study, the effect of using thorium molten salts on the neutronic performance of the PACER was investigated. The computations were performed for various coolants bearing thorium and/or uranium-233 with respect to the molten salt zone thickness in the blanket. Results pointed out that an increase in the fissile content of the salt increased the neutronic performance of the reactor remarkably. In addition, higher energy production was obtained with thorium molten salts compared to the pure mode of the reactor. Moreover, a large quantity of 233U was produced in the blanket in all cases.

  9. Probing Chemical Bonding and Electronic Structures in ThO- by Anion Photoelectron Imaging and Theoretical Calculations.

    PubMed

    Li, Yanli; Zou, Jinghan; Xiong, Xiao-Gen; Su, Jing; Xie, Hua; Fei, Zejie; Tang, Zichao; Liu, Hongtao

    2017-03-16

    Because of renewed research on thorium-based molten salt reactors, there is growing demand and interest in enhancing the knowledge of thorium chemistry both experimentally and theoretically. Compared with uranium, thorium has few chemical studies reported up to the present. Here we report the vibrationally resolved photoelectron imaging of the thorium monoxide anion. The electron affinity of ThO is first reported to be 0.707 ± 0.020 eV. Vibrational frequencies of the ThO molecule and its anion are determined from Franck-Condon simulation. Spectroscopic evidence is obtained for the two-electron transition in ThO - , indicating the strong electron correlation among the (7s σ ) 2 (6d δ ) 1 electrons in ThO - and the (7s σ ) 2 electrons in ThO. These findings are explained by using quantum-chemical calculations including spin-orbit coupling, and the chemical bonding of gaseous ThO molecules is analyzed. The present work will enrich our understanding of bonding capacities with the 6d valence shell.

  10. A Novel Fuel/Reactor Cycle to Implement the 300 Years Nuclear Waste Policy Approach - 12377

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carelli, M.D.; Franceschini, F.; Lahoda, E.J.

    2012-07-01

    A thorium-based fuel cycle system can effectively burn the currently accumulated commercial used nuclear fuel and move to a sustainable equilibrium where the actinide levels in the high level waste are low enough to yield a radiotoxicity after 300 years lower than that of the equivalent uranium ore. The second step of the Westinghouse approach to solving the waste 'problem' has been completed. The thorium fuel cycle has indeed the potential of burning the legacy TRU and achieve the waste objective proposed. Initial evaluations have been started for the third step, development and selection of appropriate reactors. Indications are thatmore » the probability of show-stoppers is rather remote. It is, therefore, believed that development of the thorium cycle and associated technologies will provide a permanent solution to the waste management. Westinghouse is open to the widest collaboration to make this a reality. (authors)« less

  11. Hybrid fusion-fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    NASA Astrophysics Data System (ADS)

    Shmelev, A. N.; Kulikov, G. G.; Kurnaev, V. A.; Salahutdinov, G. H.; Kulikov, E. G.; Apse, V. A.

    2015-12-01

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the 231Pa-232U-233U-Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of 232U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  12. Energy and remote sensing. [satellite exploration, monitoring, siting

    NASA Technical Reports Server (NTRS)

    Summers, R. A.; Smith, W. L.; Short, N. M.

    1977-01-01

    Exploration for uranium, thorium, oil, gas and geothermal activity through remote sensing techniques is considered; satellite monitoring of coal-derived CO2 in the atmosphere, and the remote assessment of strip mining and land restoration are also mentioned. Reference is made to color ratio composites based on Landsat data, which may aid in the detection of uranium deposits, and to computer-enhanced black and white airborne scanning imagery, which may locate geothermal anomalies. Other applications of remote sensing to energy resources management, including mapping of transportation networks and power plant siting, are discussed.

  13. Thermodynamic calculations of oxygen self-diffusion in mixed-oxide nuclear fuels

    DOE PAGES

    Parfitt, David C.; Cooper, Michael William; Rushton, Michael J.D.; ...

    2016-07-29

    Mixed-oxide fuels containing uranium with thorium and/or plutonium may play an important part in future nuclear fuel cycles. There are, however, significantly less data available for these materials than conventional uranium dioxide fuel. In the present study, we employ molecular dynamics calculations to simulate the elastic properties and thermal expansivity of a range of mixed oxide compositions. These are then used to support equations of state and oxygen self-diffusion models to provide a self-consistent prediction of the behaviour of these mixed oxide fuels at arbitrary compositions.

  14. Actinides in the Geosphere

    NASA Astrophysics Data System (ADS)

    Runde, Wolfgang; Neu, Mary P.

    Since the 1950s actinides have been used to benefit industry, science, health, and national security. The largest industrial application, electricity generation from uranium and thorium fuels, is growing worldwide. Thus, more actinides are being mined, produced, used and processed than ever before. The future of nuclear energy hinges on how these increasing amounts of actinides are contained in each stage of the fuel cycle, including disposition. In addition, uranium and plutonium were built up during the Cold War between the United States and the Former Soviet Union for defense purposes and nuclear energy.

  15. Uranium series dating of human skeletal remains from the Del Mar and Sunnyvale sites, California

    USGS Publications Warehouse

    Bischoff, J.L.; Rosenbauer, R.J.

    1981-01-01

    Uranium series analyses of human bone samples from the Del Mar and Sunnyvale sites indicate ages of 11,000 and 8,300 years, respectively. The dates are supported by internal concordancy between thorium-230 and protactinium-231 decay systems. These ages are significantly younger than the estimates of 48,000 and 70,000 years based on amino acid racemization, and indicate that the individuals could derive from the population waves that came across the Bering Strait during the last sea-level low. Copyright ?? 1981 AAAS.

  16. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Bernot

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this activity is to predict dissolved concentrations or solubility limits for elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) relevant to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are provided in the form of tabulated functions with pH andmore » log fCO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. Even though selection of an appropriate set of radionuclides documented in Radionuclide Screening (BSC 2002 [DIRS 160059]) includes actinium, transport of Ac is not modeled in the total system performance assessment for the license application (TSPA-LA) model because of its extremely short half-life. Actinium dose is calculated in the TSPA-LA by assuming secular equilibrium with {sup 231}Pa (Section 6.10); therefore, Ac is not analyzed in this report. The output data from this report are fundamental inputs for TSPA-LA used to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for the actinides discussed in this report. These models cover broad ranges of environmental conditions so they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.« less

  17. Colonie Interim Storage Site annual environmental report for calendar year 1991, Colonie, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-01

    This document describes the environmental monitoring program at the Colonie Interim Storage Site (CISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring at CISS began in 1984 when Congress added the site to the US Department of Energy's Formerly Utilized Sites Remedial Action Program. CISS property and surrounding areas were radioactively contaminated by operations conducted by National Lead Industries, which manufactured various components from uranium and thorium from 1958 to 1984. The environmental monitoring program at CISS includes sampling networks for external gamma radiation exposure and for radium-226, thorium-232, and total uranium concentrations inmore » surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in groundwater. In 1992 the program will also include sampling networks for radioactive and chemical contaminants in stormwater to meet permit application requirements under the Clean Water Act. Monitoring results are compared with applicable Environmental Protection Agency (EPA) standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE.orders. Environmental standards are established to protect public health and the environment. Results of environmental monitoring during 1991 indicate that average concentrations of radioactive contaminants of concern were well below applicable standards and DCGS. Concentrations of some chemical contaminants in groundwater were above-the New York State Department of Environmental Conservation (Class GA) and EPA guidelines for drinking water. The potential annual radiation exposure (excluding background) calculated for a hypothetical maximally exposed individual is 0.23 mrem (milliroentgen equivalent man), which is less than an individual would receive while traveling in an airplane at 12,000 meters (39,000 feet) for one hour.« less

  18. Colonie Interim Storage Site annual environmental report for calendar year 1991, Colonie, New York. Formerly Utilized Sites Remedial Action Program (FUSRAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-01

    This document describes the environmental monitoring program at the Colonie Interim Storage Site (CISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring at CISS began in 1984 when Congress added the site to the US Department of Energy`s Formerly Utilized Sites Remedial Action Program. CISS property and surrounding areas were radioactively contaminated by operations conducted by National Lead Industries, which manufactured various components from uranium and thorium from 1958 to 1984. The environmental monitoring program at CISS includes sampling networks for external gamma radiation exposure and for radium-226, thorium-232, and total uranium concentrations inmore » surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in groundwater. In 1992 the program will also include sampling networks for radioactive and chemical contaminants in stormwater to meet permit application requirements under the Clean Water Act. Monitoring results are compared with applicable Environmental Protection Agency (EPA) standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE.orders. Environmental standards are established to protect public health and the environment. Results of environmental monitoring during 1991 indicate that average concentrations of radioactive contaminants of concern were well below applicable standards and DCGS. Concentrations of some chemical contaminants in groundwater were above-the New York State Department of Environmental Conservation (Class GA) and EPA guidelines for drinking water. The potential annual radiation exposure (excluding background) calculated for a hypothetical maximally exposed individual is 0.23 mrem (milliroentgen equivalent man), which is less than an individual would receive while traveling in an airplane at 12,000 meters (39,000 feet) for one hour.« less

  19. Absorbed Dose Rate Due to Intake of Natural Radionuclides by Tilapia Fish (Tilapia nilotica,Linnaeus, 1758) Estimated Near Uranium Mining at Caetité, Bahia, Brazil

    NASA Astrophysics Data System (ADS)

    Pereira, Wagner de S.; Kelecom, Alphonse; Py Júnior, Delcy de Azevedo

    2008-08-01

    The uranium mining at Caetité (Uranium Concentrate Unit—URA) is in its operational phase. Aiming to estimate the radiological environmental impact of the URA, a monitoring program is underway. In order to preserve the biota of the deleterious effects from radiation and to act in a pro-active way as expected from a licensing body, the present work aims to use an environmental protection methodology based on the calculation of absorbed dose rate in biota. Thus, selected target organism was the Tilapia fish (Tilapia nilotica, Linnaeus, 1758) and the radionuclides were: uranium (U-238), thorium (Th-232), radium (Ra-226 and Ra-228) and lead (Pb-210). As, in Brazil there are no radiation exposure limits adopted for biota the value proposed by the Department of Energy (DOE) of the United States of 3.5×103 μGy y-1 has been used. The derived absorbed dose rate calculated for Tilapia was 2.51×100 μGy y-1, that is less than 0.1% of the dose limit established by DOE. The critical radionuclide was Ra-226, with 56% of the absorbed dose rate, followed by U-238 with 34% and Th-232 with 9%. This value of 0.1% of the limit allows to state that, in the operational conditions analyzed, natural radionuclides do not represent a radiological problem to biota.

  20. Absorbed Dose Rate Due to Intake of Natural Radionuclides by Tilapia Fish (Tilapia nilotica,Linnaeus, 1758) Estimated Near Uranium Mining at Caetite, Bahia, Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, Wagner de S; Universidade Federal Fluminense, Programa de Pos-graduacao em Biologia Marinha; Kelecom, Alphonse

    2008-08-07

    The uranium mining at Caetite (Uranium Concentrate Unit--URA) is in its operational phase. Aiming to estimate the radiological environmental impact of the URA, a monitoring program is underway. In order to preserve the biota of the deleterious effects from radiation and to act in a pro-active way as expected from a licensing body, the present work aims to use an environmental protection methodology based on the calculation of absorbed dose rate in biota. Thus, selected target organism was the Tilapia fish (Tilapia nilotica, Linnaeus, 1758) and the radionuclides were: uranium (U-238), thorium (Th-232), radium (Ra-226 and Ra-228) and lead (Pb-210).more » As, in Brazil there are no radiation exposure limits adopted for biota the value proposed by the Department of Energy (DOE) of the United States of 3.5x10{sup 3} {mu}Gy y{sup -1} has been used. The derived absorbed dose rate calculated for Tilapia was 2.51x10{sup 0} {mu}Gy y{sup -1}, that is less than 0.1% of the dose limit established by DOE. The critical radionuclide was Ra-226, with 56% of the absorbed dose rate, followed by U-238 with 34% and Th-232 with 9%. This value of 0.1% of the limit allows to state that, in the operational conditions analyzed, natural radionuclides do not represent a radiological problem to biota.« less

  1. 75 FR 28626 - Subcommittee on Procedures Review, Advisory Board on Radiation and Worker Health (ABRWH...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ...''), OTIB-0051 (``Effect of Threshold Energy and Angular Response of NTA Film on Missed Neutron Dose at the... Reconstruction During Residual Radioactivity Periods at Atomic Weapons Employer Facilities''), and TBD 6000 (``Site Profile for Atomic Weapons Employers that Worked Uranium and Thorium Metals''); and a continuation...

  2. 75 FR 58408 - Subcommittee on Procedures Review, Advisory Board on Radiation and Worker Health (ABRWH...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... Period''), OTIB-0051 (``Effect of Threshold Energy and Angular Response of NTA Film on Missed Neutron... During Residual Radioactivity Periods at Atomic Weapons Employer Facilities''), and TBD 6000 (``Site Profile for Atomic Weapons Employers that Worked Uranium and Thorium Metals''); and a continuation of the...

  3. 10 CFR 765.31 - Designation of funds available for subsequent remedial action.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Designation of funds available for subsequent remedial action. 765.31 Section 765.31 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES Additional Reimbursement Procedures § 765.31 Designation of...

  4. 10 CFR 765.31 - Designation of funds available for subsequent remedial action.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Designation of funds available for subsequent remedial action. 765.31 Section 765.31 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES Additional Reimbursement Procedures § 765.31 Designation of...

  5. 10 CFR 765.31 - Designation of funds available for subsequent remedial action.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Designation of funds available for subsequent remedial action. 765.31 Section 765.31 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES Additional Reimbursement Procedures § 765.31 Designation of...

  6. 10 CFR 765.31 - Designation of funds available for subsequent remedial action.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Designation of funds available for subsequent remedial action. 765.31 Section 765.31 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES Additional Reimbursement Procedures § 765.31 Designation of...

  7. 10 CFR 171.16 - Annual fees: Materials licensees, holders of certificates of compliance, holders of sealed source...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in devices used in industrial measuring systems, including x-ray fluorescence analyzers [Program Code... of ores containing source material for extraction of metals other than uranium or thorium, including.... 4 Other facilities include licenses for extraction of metals, heavy metals, and rare earths. 5 There...

  8. 10 CFR 171.16 - Annual fees: Materials licensees, holders of certificates of compliance, holders of sealed source...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... contained in devices used in industrial measuring systems, including x-ray fluorescence analyzers [Program... ores containing source material for extraction of metals other than uranium or thorium, including.... 4 Another license includes licenses for extraction of metals, heavy metals, and rare earths. 5 There...

  9. 10 CFR 765.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Purpose. 765.1 Section 765.1 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES General § 765.1... Title X of the Energy Policy Act of 1992. These regulations are authorized by section 1002 of the Act...

  10. 10 CFR 765.31 - Designation of funds available for subsequent remedial action.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Designation of funds available for subsequent remedial action. 765.31 Section 765.31 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES Additional Reimbursement Procedures § 765.31 Designation of...

  11. 10 CFR 75.2 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... location of a uranium or thorium mine or concentration plant (e.g., in-situ leach mines and activities... holders: (1) A facility, as defined in § 75.4, and the site of the facility; (2) A location performing nuclear fuel cycle-related research and development, as defined in § 75.4; (3) A location manufacturing...

  12. 10 CFR 75.2 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... location of a uranium or thorium mine or concentration plant (e.g., in-situ leach mines and activities... holders: (1) A facility, as defined in § 75.4, and the site of the facility; (2) A location performing nuclear fuel cycle-related research and development, as defined in § 75.4; (3) A location manufacturing...

  13. 10 CFR 75.2 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... location of a uranium or thorium mine or concentration plant (e.g., in-situ leach mines and activities... holders: (1) A facility, as defined in § 75.4, and the site of the facility; (2) A location performing nuclear fuel cycle-related research and development, as defined in § 75.4; (3) A location manufacturing...

  14. 10 CFR 75.2 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... location of a uranium or thorium mine or concentration plant (e.g., in-situ leach mines and activities... holders: (1) A facility, as defined in § 75.4, and the site of the facility; (2) A location performing nuclear fuel cycle-related research and development, as defined in § 75.4; (3) A location manufacturing...

  15. 10 CFR 75.2 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... location of a uranium or thorium mine or concentration plant (e.g., in-situ leach mines and activities... holders: (1) A facility, as defined in § 75.4, and the site of the facility; (2) A location performing nuclear fuel cycle-related research and development, as defined in § 75.4; (3) A location manufacturing...

  16. Uranium and thorium in the Kupferschiefer formation, Lower Zechstein, Poland

    NASA Astrophysics Data System (ADS)

    Piestrzyński, A.

    1990-05-01

    The Kupferschiefer in Poland has an increased U content. The facies high in organic matter are significantly enriched in U. The maximum values of U are mostly in the lower part of the Kupferschiefer sequence. The mean (x) U content in the Kupferschiefer from the Lubin-Sieroszowice district is 61.5 ppm and from the rest of the Polish Zechstein basin is about 26 ppm. Thorium occurs only in small quantities (x) = 1.5 and 5 ppm respectively). The high variance of U and Th in the Kupferschiefer is due to multistage diagenetic processes. The main U carrier is thucholite. The investigated thucholite showed a Th-content below 0.36 ppm. Thucholite with uraninite exolutions showed small (up to 1.0 wt.%) admixtures of U and thucholite without microscopically visible exsolutions (up to 37.85 wt.% U). The phosphates showed significant amounts of U (up to 0.24 wt.). The U content in the Kupferschiefer is significantly lower than in black shales from other part of the world. Uranium in the Lubin district is not economic.

  17. RADIOACTIVITY DOSAGE OF ORNAMENTAL GRANITIC ROCKS BASED ON CHEMICAL, MINERALOGICAL AND LITHOLOGICAL DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salas, H.T.; Nalini, H.A. Jr.; Mendes, J.C.

    2004-10-03

    One hundred samples of granitic rock were collected from granite traders in Belo Horizonte. Autoradiography, optical microscopy, diffractometry, and chemical analysis (X-ray spectrometry, X-ray fluorescence, neutron activation, gravimetry and electron probe microanalysis) were used to determine the mineral assemblages and lithotypes. Autoradiographic results for several samples showed the presence of monazite, allanite and zircon. Chemical analysis revealed concentrations of uranium of {le} 30ppm, and thorium {le} 130ppm. Higher concentrations generally correlated with high concentrations of light rare earths in silica-rich rocks of granitic composition. Calculations were made of radioactive doses for floor tiles in a standard room for samples withmore » total concentration of uranium and thorium greater than 60ppm. On the basis of calculations of {sup 232}Th, {sup 40}K and {sup 226}Ra from Th, K and U analysis, the doses calculated were between 0.11 and 0.34 mSv/year, which are much lower than the acceptable international exposure standard of 1.0 mSv/year.« less

  18. Profiles of gamma-ray and magnetic data for aerial surveys over parts of the Western United States from longitude 108 to 126 degrees W. and from latitude 34 to 49 degrees N.

    USGS Publications Warehouse

    Duval, Joseph S.

    1995-01-01

    This CD-ROM contains images generated from geophysical data, software for displaying and analyzing the images and software for displaying and examining profile data from aerial surveys flown as part of the National Uranium Resource Evaluation (NURE) Program of the U.S. Department of Energy. The images included are of gamma-ray data (uranium, thorium, and potassium channels), Bouguer gravity data, isostatic residual gravity data, aeromagnetic anomalies, topography, and topography with bathymetry. This publication contains image data for the conterminous United States and profile data for the conterminous United States within the area longitude 108 to 126 degrees W. and latitude 34 to 49 degrees N. The profile data include apparent surface concentrations of potassium, uranium, and thorium, the residual magnetic field, and the height above the ground. The images on this CD-ROM include graytone and color images of each data set, color shaded-relief images of the potential-field and topographic data, and color composite images of the gamma-ray data. The image display and analysis software can register images with geographic and geologic overlays. The profile display software permits the user to view the profiles as well as obtain data listings and export ASCII versions of data for selected flight lines.

  19. Dioxins, furans, biphenyls, arsenic, thorium and uranium in natural and anthropogenic sources of phosphorus and calcium used in agriculture.

    PubMed

    Avelar, A C; Ferreira, W M; Pemberthy, D; Abad, E; Amaral, M A

    2016-05-01

    The aim of this study was to assess the presence of dioxins, furans and biphenyls, and the inorganic contaminants such as arsenic (As), thorium (Th) and uranium (U) in three main products used in Agriculture in Brazil: feed grade dicalcium phosphate, calcined bovine bone meal and calcitic limestone. The first two are anthropogenic sources of phosphorus and calcium, while calcitic limestone is a natural unprocessed mineral. Regarding to dioxin-like substances, all samples analyzed exhibited dioxins (PCDD) and furans (PCDF) and dioxin-like polychlorinated biphenyls (dl-PCBs) concentrations below limit of detection (LOD). In general, achieved is in accordance with regulation in Brazil where is established a maximum limit in limestone used in the citric pulp production (0.50pg WHO-TEQ g(-1)). In addition, reported data revealed very low levels for limestone in comparison with similar materials reported by European legislation. As result for toxic metals, achieved data were obtained using Instrumental Neutron Activation Analysis (INAA). On one hand, limestone sample exhibits the largest arsenic concentration. On another hand, dicalcium phosphate exhibited the largest uranium concentration, which represents a standard in animal nutrition. Therefore, it is phosphorus source in the animal feed industry can be a goal of concern in the feed field. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Irradiation performance of HTGR fuel rods in HFIR experiments HRB-7 and -8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valentine, K.H.; Homan, F.J.; Long, E.L. Jr.

    1977-05-01

    The HRB-7 and -8 experiments were designed as a comprehensive test of mixed thorium-uranium oxide fissile particles with Th:U ratios from 0 to 8 for HTGR recycle application. In addition, fissile particles derived from Weak-Acid Resin (WAR) were tested as a potential backup type of fissile particle for HTGR recycle. These experiments were conducted at two temperatures (1250 and 1500/sup 0/C) to determine the influence of operating temperature on the performance parameters studied. The minor objectives were comparison of advanced coating designs where ZrC replaced SiC in the Triso design, testing of fuel coated in laboratory-scale equipment with fuel coatedmore » in production-scale coaters, comparison of the performance of /sup 233/U-bearing particles with that of /sup 235/U-bearing particles, comparison of the performance of Biso coatings with Triso coatings for particles containing the same type of kernel, and testing of multijunction tungsten-rhenium thermocouples. All objectives were accomplished. As a result of these experiments the mixed thorium-uranium oxide fissile kernel was replaced by a WAR-derived particle in the reference recycle design. A tentative decision to make this change had been reached before the HRB-7 and -8 capsules were examined, and the results of the examination confirmed the accuracy of the previous decision. Even maximum dilution (Th/U approximately equal to 8) of the mixed thorium-uranium oxide kernel was insufficient to prevent amoeba of the kernels at rates that are unacceptable in a large HTGR. Other results showed the performance of /sup 233/U-bearing particles to be identical to that of /sup 235/U-bearing particles, the performance of fuel coated in production-scale equipment to be at least as good as that of fuel coated in laboratory-scale coaters, the performance of ZrC coatings to be very promising, and Biso coatings to be inferior to Triso coatings relative to fission product retention.« less

  1. UDATE1: A computer program for the calculation of uranium-series isotopic ages

    USGS Publications Warehouse

    Rosenbauer, R.J.

    1991-01-01

    UDATE1 is a FORTRAN-77 program with an interface for an Apple Macintosh computer that calculates isotope activities from measured count rates to date geologic materials by uranium-series disequilibria. Dates on pure samples can be determined directly by the accumulation of 230Th from 234U and of 231Pa from 235U. Dates for samples contaminated by clays containing abundant natural thorium can be corrected by the program using various mixing models. Input to the program and file management are made simple and user friendly by a series of Macintosh modal dialog boxes. ?? 1991.

  2. Airborne gamma-ray spectrometer and magnetometer survey: Victoria quadrangle (Washington). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-01-01

    One uranium anomaly meets the minimum statistical requirements. Potassium (%K), equivalent Uranium (ppM eU), equivalent Thorium (ppM eT), eU/eT, eU/K, eT/K, and magnetic pseudo-contour maps are presented. Stacked Profiles showing geologic strip maps along each flight-line, together with sensor data, and ancillary data are presented. All maps and profiles were prepared on a scale of 1:250,000, but have been reduced to 1:500,000 for presentation. Anomaly number 1 is over an exposure of the Permian Shuksan metamorphic suite which is predominantly phyllite (Trps).

  3. Scanning Transmission Electron Microscopy at High Resolution

    PubMed Central

    Wall, J.; Langmore, J.; Isaacson, M.; Crewe, A. V.

    1974-01-01

    We have shown that a scanning transmission electron microscope with a high brightness field emission source is capable of obtaining better than 3 Å resolution using 30 to 40 keV electrons. Elastic dark field images of single atoms of uranium and mercury are shown which demonstrate this fact as determined by a modified Rayleigh criterion. Point-to-point micrograph resolution between 2.5 and 3.0 Å is found in dark field images of micro-crystallites of uranium and thorium compounds. Furthermore, adequate contrast is available to observe single atoms as light as silver. Images PMID:4521050

  4. Preliminary study of a radiological survey in an abandoned uranium mining area in Madagascar

    NASA Astrophysics Data System (ADS)

    N, Rabesiranana; M, Rasolonirina; F, Solonjara A.; Andriambololona., Raoelina; L, Mabit

    2010-05-01

    The region of Vinaninkarena located in central Madagascar (47°02'40"E, 19°57'17"S), is known to be a high natural radioactive area. Uranium ore was extracted in this region during the 1950s and the early 1960s. In the mid-1960s, mining activities were stopped and the site abandoned. In the meantime, the region, which used to be without any inhabitants, has recently been occupied by new settlers with presumed increase in exposure of the local population to natural ionizing radiation. In order to assess radiological risk, a survey to assess the soil natural radioactivity background was conducted during the year 2004. This study was implemented in the frame of the FADES Project SP99v1b_21 entitled: Assessment of the environmental pollution by multidisciplinary approach, and the International Atomic Energy Agency Technical Cooperation Project MAG 7002 entitled: Effects of air and water pollution on human health. Global Positioning System (GPS) was used to determine the geographical coordinates of the top soil samples (0-15cm) collected. The sampling was performed using a multi integrated scale approach to estimate the spatial variability of the parameters under investigation (U, Th and K) using geo-statistical approach. A total of 205 soil samples was collected in the study site (16 km2). After humidity correction, the samples were sealed in 100 cm3 cylindrical air-tight plastic containers and stored for more than 6 months to reach a secular equilibrium between parents and short-lived progeny (226Ra and progeny, 238U and 234Th). Measurements were performed using a high-resolution HPGe Gamma-detector with a 30% relative efficiency and an energy resolution of 1.8 keV at 1332.5 keV, allowing the determination of the uranium and thorium series and 40K. In case of secular equilibrium, a non-gamma-emitting radionuclide activity was deduced from its gamma emitting progeny. This was the case for 238U (from 234Th), 226Ra (from 214Pb and 214Bi) and 232Th (from 228Ac, 212Pb or 208Tl). Furthermore, in order to assess the radiological effect, the kerma rate in the air at 1 m above ground level was calculated for each sampled points using standard activity-kerma rate conversion coefficients for uranium, thorium series and potassium. Geostatistical interpolation tools (e.g. Inverse Distance Weighting power 2 and Ordinary Kriging) were used to optimize the data set mapping. The measured Potassium-40 activity was 333 Bq kg-1 ± 95% (Mean ± Coefficient of Variation), the Uranium activity was 195 Bq kg-1 ± 53% and the Thorium activity was 139 Bq kg-1 ± 29%. The world average concentrations are reported by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) as 400 Bq kg-1 for 40K, 35 Bq kg-1 for 238U and 30 Bq kg-1 for 232Th. The results show that generally, 40K concentrations in soils of the area are slightly lower than the world average value, whereas uranium and thorium series activities are noticeably higher. On average the kerma rate reaches 143 nGy h-1 with a standard deviation of 41 nGy h-1 and a coefficient of variation of 28%. The information obtained was mapped and the dose exposition was also assessed for the local settlers. Key-words: soil contamination, environmental radioactivity, radioecology, dose exposure.

  5. Control of a laser inertial confinement fusion-fission power plant

    DOEpatents

    Moses, Edward I.; Latkowski, Jeffery F.; Kramer, Kevin J.

    2015-10-27

    A laser inertial-confinement fusion-fission energy power plant is described. The fusion-fission hybrid system uses inertial confinement fusion to produce neutrons from a fusion reaction of deuterium and tritium. The fusion neutrons drive a sub-critical blanket of fissile or fertile fuel. A coolant circulated through the fuel extracts heat from the fuel that is used to generate electricity. The inertial confinement fusion reaction can be implemented using central hot spot or fast ignition fusion, and direct or indirect drive. The fusion neutrons result in ultra-deep burn-up of the fuel in the fission blanket, thus enabling the burning of nuclear waste. Fuels include depleted uranium, natural uranium, enriched uranium, spent nuclear fuel, thorium, and weapons grade plutonium. LIFE engines can meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the highly undesirable stockpiles of depleted uranium, spent nuclear fuel and excess weapons materials.

  6. Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle

    NASA Astrophysics Data System (ADS)

    Alekseev, P. N.; Bobrov, E. A.; Chibinyaev, A. V.; Teplov, P. S.; Dudnikov, A. A.

    2015-12-01

    The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U-Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium-plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: 235U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or 233U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no use of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.

  7. Facile and Efficient Decontamination of Thorium from Rare Earths Based on Selective Selenite Crystallization.

    PubMed

    Wang, Yaxing; Lu, Huangjie; Dai, Xing; Duan, Tao; Bai, Xiaojing; Cai, Yawen; Yin, Xuemiao; Chen, Lanhua; Diwu, Juan; Du, Shiyu; Zhou, Ruhong; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Liu, Ning; Wang, Shuao

    2018-02-19

    The coexistence of radioactive contaminants (e.g., thorium, uranium, and their daughters) in rare earth minerals introduces significant environmental, economic, and technological hurdles in modern rare earth production. Efficient, low cost, and green decontamination strategies are therefore desired to ameliorate this problem. We report here a single-step and quantitative decontamination strategy of thorium from rare earths based on a unique periodic trend in the formation of crystalline selenite compounds across the lanthanide series, where Ce(III) is fully oxidized in situ to Ce(IV). This gives rise to a crystallization system that is highly selective to trap tetravalent f-blocks while all other trivalent lanthanides completely remain in solution when coexist. These results are bolstered by first-principles calculations of lattice energies and an examination of bonding in these compounds. This system is contrasted with typical natural and synthetic systems, where trivalent and tetravalent f-block elements often cocrystallize. The separation factors after one round of crystallization were determined from binary systems of Th(IV)/La(III), Th(IV)/Eu(III), and Th(IV)/Yb(III) to reach 2.1 × 10 5 , 1.2 × 10 5 , and 9 × 10 4 , respectively. Selective crystallization of thorium from a simulated monazite composite yields a separation factor of 1.9 × 10 3 with nearly quantitative removal of thorium.

  8. Uranium hydrogeochemical and stream sediment reconnaissance of the Newcastle NTMS quadrangle, Wyoming, including concentrations of forty-two additional elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goff, S.J.; Sandoval, W.F.; Gallimore, D.L.

    1980-06-01

    During the summer and fall of 1977, 533 water and 1226 sediment samples were collected from 1740 locations within the 18,000 km/sup 2/ area of the Newcastle quadrangle, Wyoming. Water samples were collected from wells and springs; sediment samples were collected from stream channels and from springs. Each water sample was analyzed for uranium, and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit of 0.02 ppB to 702.26 ppB and have a median of 1.73 ppB and a mean of 11.76 ppB. Water samples containingmore » high uranium concentrations (>20 ppB) generally are associated with known uranium mining activity or units known to be uranium bearing. About one-third of the water samples containing high uranium concentrations were collected from locations within the Pumpkin Buttes and Turnercrest-Ross Districts. Nearly half of the water samples containing high uranium concentrations were collected from locations just west of the Monument Hill and Highland Flats-Box Creek Districts. Similar anomalous uranium concentrations in this region have been reported updip from Exxon's Highland uranium deposits. High uranium concentrations were also found associated with the Lance Creek-Old Woman Anticline District.« less

  9. 10 CFR 765.30 - Reimbursement of costs incurred in accordance with a plan for subsequent remedial action.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES Additional Reimbursement... satisfied in full by the licensee, and (2) The total cost of remedial action required at the site, together... at the site, as determined in the approved plan for subsequent remedial action, by the Federal...

  10. 75 FR 43425 - Distribution of Source Material to Exempt Persons and to General Licensees and Revision of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ... requirements with current health and safety standards. Finally, the NRC is proposing to revise, clarify, or... lung and liver diseases.\\2\\ Because of the potential for uranium and thorium to produce health effects... order to better evaluate potential impacts to public health and safety. \\1\\ U.S. Department of Health...

  11. 78 FR 32309 - Distribution of Source Material to Exempt Persons and to General Licensees and Revision of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... align the requirements with current health and safety standards. Finally, the rule revises, clarifies... potential for uranium and thorium to produce health effects from both chemical toxicity and radiological... impacts to public health and safety. \\1\\ U.S. Department of Health and Human Services, Agency for Toxic...

  12. 75 FR 71677 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... fiscal year (FY) 2011. SUMMARY: This Notice announces the Department of Energy (DOE) acceptance of claims... the American Recovery and Reinvestment Act of 2009 (Recovery Act). In addition, Congress provided $10... approximately $24.3 million of Recovery Act funds available for reimbursement in FY 2011, as well as the $10...

  13. 77 FR 18270 - Acceptance Decision for the Unrestricted Use of the Former Michigan Chemical Company-Breckenridge...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    .... Louis plant generated a dense, clay-like waste known as ``filter cake,'' which contained elevated levels of uranium and thorium, two naturally- occurring radioactive materials. The radioactive filter cake was buried at the BDS. Burial of the filter cake at the BDS was permitted under AEC license number SMB...

  14. Hybrid fusion–fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shmelev, A. N., E-mail: shmelan@mail.ru; Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Kurnaev, V. A., E-mail: kurnaev@yandex.ru

    2015-12-15

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the {sup 231}Pa–{sup 232}U–{sup 233}U–Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be bettermore » protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of {sup 232}U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.« less

  15. Genetic relations of oceanic basalts as indicated by lead isotopes

    USGS Publications Warehouse

    Tatsumoto, M.

    1966-01-01

    The isotopic compositions of lead and the concentrations of lead, uranium, and thorium in samples of oceanic tholeiite and alkali suites are determined, and the genetic relations of the oceanic basalts are discussed. Lead of the oceanic tholeiites has a varying lead-206 : lead-204 ratio between 17.8 and 18.8, while leads of the alkali basalt suites from Easter Island and Guadalupe Island are very radiogenic with lead-206 : lead-204 ratios between 19.3 and 20.4. It is concluded that (i) the isotopic composition of lead in oceanic tholeiite suggests that the upper mantle source region of the tholeiite was differentiated from an original mantle material more than 1 billion years ago and that the upper mantle is not homogeneous at the present time, (ii) less than 20 million years was required for the crystal differentiation within the alkali suite from Easter Island, (iii) no crustal contamination was involved in the course of differentiation of rocks from Easter Island; however, some crustal contamination may have affected Guadalupe Island rocks, and (iv) alkali basalt may be produced from the tholeiite in the oceanic region by crystal differentiation. Alternatively the difference in the isotopic composition of lead in oceanic basalts may be produced by partial melting at different depths of a differentiated upper mantle.

  16. Extractive procedure for uranium determination in water samples by liquid scintillation counting.

    PubMed

    Gomez Escobar, V; Vera Tomé, F; Lozano, J C; Martín Sánchez, A

    1998-07-01

    An extractive procedure for uranium determination using liquid scintillation counting with the URAEX cocktail is described. Interference from radon and a strong influence of nitrate ion were detected in this procedure. Interference from radium, thorium and polonium emissions were very low when optimal operating conditions were reached. Quenching effects were considered and the minimum detectable activity was evaluated for different sample volumes. Isotopic analysis of samples can be performed using the proposed method. Comparisons with the results obtained with the general procedure used in alpha spectrometry with passivated implanted planar silicon detectors showed good agreement. The proposed procedure is thus suitable for uranium determination in water samples and can be considered as an alternative to the laborious conventional chemical preparations needed for alpha spectrometry methods using semiconductor detectors.

  17. Evaluation of new geological reference materials for uranium-series measurements: Chinese Geological Standard Glasses (CGSG) and macusanite obsidian.

    PubMed

    Denton, J S; Murrell, M T; Goldstein, S J; Nunn, A J; Amato, R S; Hinrichs, K A

    2013-10-15

    Recent advances in high-resolution, rapid, in situ microanalytical techniques present numerous opportunities for the analytical community, provided accurately characterized reference materials are available. Here, we present multicollector thermal ionization mass spectrometry (MC-TIMS) and multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) uranium and thorium concentration and isotopic data obtained by isotope dilution for a suite of newly available Chinese Geological Standard Glasses (CGSG) designed for microanalysis. These glasses exhibit a range of compositions including basalt, syenite, andesite, and a soil. Uranium concentrations for these glasses range from ∼2 to 14 μg g(-1), Th/U weight ratios range from ∼4 to 6, (234)U/(238)U activity ratios range from 0.93 to 1.02, and (230)Th/(238)U activity ratios range from 0.98 to 1.12. Uranium and thorium concentration and isotopic data are also presented for a rhyolitic obsidian from Macusani, SE Peru (macusanite). This glass can also be used as a rhyolitic reference material, has a very low Th/U weight ratio (around 0.077), and is approximately in (238)U-(234)U-(230)Th secular equilibrium. The U-Th concentration data agree with but are significantly more precise than those previously measured. U-Th concentration and isotopic data agree within estimated errors for the two measurement techniques, providing validation of the two methods. The large (238)U-(234)U-(230)Th disequilibria for some of the glasses, along with the wide range in their chemical compositions and Th/U ratios should provide useful reference points for the U-series analytical community.

  18. 238U-234U-230Th disequilibrium in hydrogenous oceanic Fe-Mn crusts: Palaeoceanographic record or diagenetic alteration?

    USGS Publications Warehouse

    Chabaux, F.; O'Nions, R. K.; Cohen, A.S.; Hein, J.R.

    1997-01-01

    A detailed TIMS study of (234Uexc/238U), (230Th/232Th), and Th/U ratios have been performed on the outermost margin of ten hydrogenous Fe-Mn crusts from the equatorial Pacific Ocean and west-central Indian Ocean. Th/U concentration ratios generally decrease from the crust's surface down to 0.5-1 mm depth and growth rates estimated by uranium and thorium isotope ratios are significantly different in Fe-Mn crusts from the Peru Basin and the west-central Indian Ocean. Fe-Mn crusts from the same geographical area define a single trend in plots of Ln (234Uexc/238U) vs. Ln(230Th/232Th) and Th/U ratios vs. age of the analysed fractions. Results suggest that (1) hydrogenous Fe-Mn crusts remain closed-systems after formation, and consequently (2) the discrepancy observed between the 230Th and 234U chronometers in Fe-Mn crusts, and the variations of the Th/U ratios through the margin of Fe-Mn crusts, are not due to redistribution of uranium and thorium isotopes after oxyhydroxide precipitation, but rather to temporal variations of both Th/U and initial thorium activity ratios recorded by the Fe-Mn layers. Implications of these observations for determination of Fe-Mn crust growth-rates are discussed. Variations of both Th/U and initial Th activity ratios in Fe-Mn crusts might be related to changes in particle input to seawater and/or changes in ocean circulation during the last 150 ka. Copyright ?? 1997 Elsevier Science Ltd.

  19. Synthesis of ion-exchange resin for selective thorium and uranyl ions sorption

    NASA Astrophysics Data System (ADS)

    Konovalov, Konstantin; Sachkov, Victor

    2017-11-01

    In this work, the method of ion-exchange resin synthesis selective to radionuclides (uranium and thorium) is presented. The method includes synthesis of polymeric styrene-divinylbenzene macroporous matrix with size of 0.1-0.2 mm, and its subsequent transformation by nitration and then reduction by tin (II) chloride. For passivation of active primary amines partially oxidation by oxygen from air is used. Obtained ion-exchange resin has ratio of sorption sum U+Th to sorption sum of other total rare-earth elements as 1:1.88 at ratio of solid to liquid phase 1:200. The proposed method of ion-exchange resin synthesis is scaled-up for laboratory reactors with volume of 5 and 50 liters.

  20. A Mercury-like component of early Earth yields uranium in the core and high mantle (142)Nd.

    PubMed

    Wohlers, Anke; Wood, Bernard J

    2015-04-16

    Recent (142)Nd isotope data indicate that the silicate Earth (its crust plus the mantle) has a samarium to neodymium elemental ratio (Sm/Nd) that is greater than that of the supposed chondritic building blocks of the planet. This elevated Sm/Nd has been ascribed either to a 'hidden' reservoir in the Earth or to loss of an early-formed terrestrial crust by impact ablation. Since removal of crust by ablation would also remove the heat-producing elements--potassium, uranium and thorium--such removal would make it extremely difficult to balance terrestrial heat production with the observed heat flow. In the 'hidden' reservoir alternative, a complementary low-Sm/Nd layer is usually considered to reside unobserved in the silicate lower mantle. We have previously shown, however, that the core is a likely reservoir for some lithophile elements such as niobium. We therefore address the question of whether core formation could have fractionated Nd from Sm and also acted as a sink for heat-producing elements. We show here that addition of a reduced Mercury-like body (or, alternatively, an enstatite-chondrite-like body) rich in sulfur to the early Earth would generate a superchondritic Sm/Nd in the mantle and an (142)Nd/(144)Nd anomaly of approximately +14 parts per million relative to chondrite. In addition, the sulfur-rich core would partition uranium strongly and thorium slightly, supplying a substantial part of the 'missing' heat source for the geodynamo.

  1. A Mercury-like component of early Earth yields uranium in the core and high mantle 142Nd

    NASA Astrophysics Data System (ADS)

    Wohlers, Anke; Wood, Bernard J.

    2015-04-01

    Recent 142Nd isotope data indicate that the silicate Earth (its crust plus the mantle) has a samarium to neodymium elemental ratio (Sm/Nd) that is greater than that of the supposed chondritic building blocks of the planet. This elevated Sm/Nd has been ascribed either to a `hidden' reservoir in the Earth or to loss of an early-formed terrestrial crust by impact ablation. Since removal of crust by ablation would also remove the heat-producing elements--potassium, uranium and thorium--such removal would make it extremely difficult to balance terrestrial heat production with the observed heat flow. In the `hidden' reservoir alternative, a complementary low-Sm/Nd layer is usually considered to reside unobserved in the silicate lower mantle. We have previously shown, however, that the core is a likely reservoir for some lithophile elements such as niobium. We therefore address the question of whether core formation could have fractionated Nd from Sm and also acted as a sink for heat-producing elements. We show here that addition of a reduced Mercury-like body (or, alternatively, an enstatite-chondrite-like body) rich in sulfur to the early Earth would generate a superchondritic Sm/Nd in the mantle and an 142Nd/144Nd anomaly of approximately +14 parts per million relative to chondrite. In addition, the sulfur-rich core would partition uranium strongly and thorium slightly, supplying a substantial part of the `missing' heat source for the geodynamo.

  2. [Maria Skłodowska-Curie and Piotr Curie an epoch-makingin year 1898].

    PubMed

    Wielogórski, Zbigniew

    2012-01-01

    For many reasons the year 1898 was unusual for Maria Skłodowska-Curie and her husband. After defining the subject of the doctoral thesis and choosing Henri Becqerel as thesis supervisor, Maria started intensive experimental work. In the allotted room called storeroom, in conditions that were far too inadequate, they managed to put up a unique measuring equipment composed of instruments whose originator was Pierre Curie. In the ionization chamber and in the piezoelectric quartz charges formed, whose mutual neutralization was shown by the quadrant electrometer. Ionization current, which was measured quantitatively, was proportional to the radiation of the sample. Studying many elements, their compounds and minerals enabled Maria to state that uranium is not the only element endowed with the power of radiation; the second one turned out to be thorium. Anomaly detected in the radiation of uranium minerals made it possible for Maria to draw an extremely important conclusion: radioactive uranium and thorium are not the only elements endowed with such an attribute. Pitchblende, which was studied by the Curie couple, had to contain also other radioactive substances. Gustave Bémont also participated in the chemical analysis of the uranium ore and it is worth reminding that he was involved in the discovery of polonium and uranium. The phenomenon of radioactivity couldn't have been explained if it was not for the sources of strong radioactivity. Those sources undoubtedly could have been the discovered elements but their scanty content in the uranium ore made their isolation very difficult and laborious. Access to industrial remains after procession of pitchblende from Jachymov (Sankt Joachimstahl), obtained owing to the mediation of Eduard Suess, provided the source of this raw material. From it, in a shack also called le hangar, the Curie couple isolated the first samples of the radium salt. This element, later extracted by discoverers on a grand scale and handed over in a various forms to researchers and institutions, became a foundation of physics and chemistry of radioactive elements.

  3. Monitored Natural Attenuation of Inorganic Contaminants in Ground Water Volume 3 Assessment for Radionuclides IncludingTritium, Radon, Strontium, Technetium, Uranium, Iodine, Radium, Thorium, Cesium, and Plutonium-Americium

    EPA Science Inventory

    The current document represents the third volume of a set of three volumes that address the technical basis and requirements for assessing the potential applicability of MNA as part of a ground-water remedy for plumes with nonradionuclide and/or radionuclide inorganic contamina...

  4. 77 FR 3460 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ... Processing Sites AGENCY: Department of Energy. ACTION: Notice of the acceptance of Title X claims during... under Title X of the Energy Policy Act of 1992. In FY 2009, Congress appropriated $70 million for Title X in the American Recovery and Reinvestment Act of 2009 (Recovery Act). Also in FY 2009, Congress...

  5. Breeding of 233U in the thorium-uranium fuel cycle in VVER reactors using heavy water

    NASA Astrophysics Data System (ADS)

    Marshalkin, V. E.; Povyshev, V. M.

    2015-12-01

    A method is proposed for achieving optimal neutron kinetics and efficient isotope transmutation in the 233U-232Th oxide fuel of water-moderated reactors with variable water composition (D2O, H2O) that ensures breeding of the 233U and 235U isotopes. The method is comparatively simple to implement.

  6. Results from the (U-Th)/He dating systems in Japan Atomic Energy Agency

    NASA Astrophysics Data System (ADS)

    Yamada, K.; Hanamuro, T.; Tagami, T.; Yamada, R.; Umeda, K.

    2007-12-01

    Japan Atomic Energy Agency (JAEA) has jointly set up the lab of the (U-Th)/He dating in cooperation with Kyoto University and National Research Institute for Earth Science and Disaster Prevention. We use the MM5400 rare gas mass spectrometer and the SPQ9000 ICP quadrupole mass spectrometer, belonging to JAEA, and built a new vacuum heater using infrared laser to extract helium. HF decomposes zircon after the alkali-fusion method using XRF bead sampler and LiBO3 in the preparation of ICP solution. Helium is quantified using sensitivity method. Uranium and thorium are using standard addition method. Quantifications of uranium-238 and thorium-232 are only need for parent isotopes to date samples because they are expected that the state of secular equilibrium becomes established and samarium does not compose the samples. At the present stage, we calibrate our systems by dating some standards, such as zircon from the Fish Canyon Tuff and apatite from the Durango, those are the international age standard, and apatite and zircon from the Tanzawa Tonalite Complex, that was dated in Yamada's PhD thesis, as a working standard. We report the results and detailed views of the dating systems.

  7. The measurement of alpha particle emissions from semiconductor memory materials

    NASA Astrophysics Data System (ADS)

    Bouldin, D. P.

    1981-07-01

    With the increasing concern for the affects of alpha particles on the reliability of semiconductor memories, an interest has arisen in characterizing semiconductor manufacturing materials for extremely low-level alpha-emitting contaminants. It is shown that four elements are of primary concern: uranium, thorium, radium, and polonium. Measurement of contamination levels are given relevance by first correlating them with alpha flux emission levels and then corre1ating these flux values with device soft error rates. Measurement techniques involve either measurements of elemental concentrations-applicable to only uranium and thorium - or direct measurements of alpha emission fluxes. Alpha fluxes are most usefully measured by means of ZnS scintillation counting, practical details of which are discussed. Materials measurements are reported for ceramics, solder, silicon, quartz, and various metals and organic materials. Ceramics and most metals have contamination levels of concern, but the high temperature processing normally used in semiconductor manufacturing and low total amounts reduce problems, at least for metals. Silicon, silicon compounds, and organic materials have been found to have no detectable alpha emitters. Finally, a brief discussion of the calibration of alpha sources for accelerated device testing is given, including practical details on the affects of source/chip separation and alignment variations.

  8. Assessment of radionuclides (uranium and thorium) atmospheric pollution around Manjung district, Perak using moss as bio-indicator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arshad, Nursyairah, E-mail: nursyairah1990@gmail.com; Hamzah, Zaini; Wood, Ab. Khalik

    2016-01-22

    Bio-monitoring method using mosses have been widely done around the world and the effectiveness has been approved. Mosses can be used to assess the levels of atmospheric pollution as mosses pick up nutrients from the atmosphere and deposition retaining many trace elements. In this study, the deposition of two radionuclides; uranium (U) and thorium (Th) around Manjung districts have been evaluated using Leucobryum aduncum as bio-monitoring medium. The samples were collected from 24 sampling sites covering up to 40 km radius to the North, North-East and South-East directions from Teluk Rubiah. The concentrations of U and Th in moss samples weremore » analysed using Energy Dispersive X-Ray Fluorescence (EDXRF) Spectrometer. The concentrations of Th are in the range of 0.07-2.09 mg/kg. Meanwhile, the concentrations of U in the moss are in the range of 0.03-0.18 mg/kg. The Enrichment Factor (EF) was calculated to determine the origin of the radionuclides distributions. Other than that, the distribution maps were developed to observe the distribution of the radionuclides around the study area.« less

  9. Hydrothermal Synthesis and Crystal Structures of Actinide Compounds

    NASA Astrophysics Data System (ADS)

    Runde, Wolfgang; Neu, Mary P.

    Since the 1950s actinides have been used to benefit industry, science, health, and national security. The largest industrial application, electricity generation from uranium and thorium fuels, is growing worldwide. Thus, more actinides are being mined, produced, used and processed than ever before. The future of nuclear energy hinges on how these increasing amounts of actinides are contained in each stage of the fuel cycle, including disposition. In addition, uranium and plutonium were built up during the Cold War between the United States and the Former Soviet Union for defense purposes and nuclear energy. These stockpiles have been significantly reduced in the last decade.

  10. Lunar sample studies. [breccias basalts, and anorthosites

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Lunar samples discussed and the nature of their analyses are: (1) an Apollo 15 breccia which is thoroughly analyzed as to the nature of the mature regolith from which it derived and the time and nature of the lithification process, (2) two Apollo 11 and one Apollo 12 basalts analyzed in terms of chemistry, Cross-Iddings-Pirsson-Washington norms, mineralogy, and petrography, (3) eight Apollo 17 mare basalts, also analyzed in terms of chemistry, Cross-Iddings-Pirsson-Washington norms, mineralogy, and petrography. The first seven are shown to be chemically similar although of two main textural groups; the eighth is seen to be distinct in both chemistry and mineralogy, (4) a troctolitic clast from a Fra Mauro breccia, analyzed and contrasted with other high-temperature lunar mineral assemblages. Two basaltic clasts from the same breccia are shown to have affinities with rock 14053, and (5) the uranium-thorium-lead systematics of three Apollo 16 samples are determined; serious terrestrial-lead contamination of the first two samples is attributed to bandsaw cutting in the lunar curatorial facility.

  11. Mineral and energy resources of the BLM Roswell Resource Area, east-central New Mexico

    USGS Publications Warehouse

    Bartsch-Winkler, Susan B.

    1992-01-01

    The sedimentary formations of the Roswell Resource Area have significant mineral and energy resources. Some of the pre-Pennsylvanian sequences in the Northwestern Shelf of the Permian Basin are oil and gas reservoirs, and Pennsylvanian rocks in Tucumcari basin are reservoirs of oil and gas as well as source rocks for oil and gas in Triassic rocks. Pre-Permian rocks also contain minor deposits of uranium and vanadium, limestone, and associated gases. Hydrocarbon reservoirs in Permian rocks include associated gases such as carbon dioxide, helium, and nitrogen. Permian rocks are mineralized adjacent to the Lincoln County porphyry belt, and include deposits of copper, uranium, manganese, iron, polymetallic veins, and Mississippi-valley-type (MVT) lead-zinc. Industrial minerals in Permian rocks include fluorite, barite, potash, halite, polyhalite, gypsum, anhydrite, sulfur, limestone, dolomite, brine deposits (iodine and bromine), aggregate (sand), and dimension stone. Doubly terminated quartz crystals, called "Pecos diamonds" and collected as mineral specimens, occur in Permian rocks along the Pecos River. Mesozoic sedimentary rocks are hosts for copper, uranium, and small quantities of gold-silver-tellurium veins, as well as significant deposits of oil and gas, COa, asphalt, coal, and dimension stone. Mesozoic rocks contain limited amounts of limestone, gypsum, petrified wood, dinosaur remains, and clays. Tertiary rocks host ore deposits commonly associated with intrusive rocks, including platinum group elements, iron skarns, manganese, uranium and vanadium, molybdenum, polymetallic vein deposits, gold-silver- tellurium veins, and thorium-rare earth veins. Museum-quality quartz crystals in Lincoln County were formed in association with intrusive rocks in the Lincoln County porphyry belt. Industrial minerals in Tertiary rocks include fluorite, vein- and bedded-barite, caliche, limestone, and aggregate. Tertiary and Quaternary sediments host important placer deposits of gold and titanium, and minor silver, uranium occurrences, as well as important industrial commodities, including caliche, limestone and dolomite, and aggregate (sand). Quaternary basalt contains sub-ore-grade uranium, scoria, and clay deposits.

  12. Mineral and energy resources of the Roswell Resource Area, East-Central New Mexico

    USGS Publications Warehouse

    Bartsch-Winkler, Susan B.; Donatich, Alessandro J.

    1995-01-01

    The sedimentary formations of the Roswell Resource Area have significant mineral and energy resources. Some of the pre-Pennsylvanian sequences in the Northwestern Shelf of the Permian Basin are oil and gas reservoirs, and Pennsylvanian rocks in Tucumcari Basin are reservoirs of oil and gas as well as source rocks for oil and gas in Triassic rocks. Pre-Permian rocks also contain minor deposits of uranium and vanadium, limestone, and gases. Hydrocarbon reservoirs in Permian rocks include associated gases such as carbon dioxide, helium, and nitrogen. Permian rocks are mineralized adjacent to the Lincoln County porphyry belt, and include deposits of copper, uranium, manganese, iron, polymetallic veins, and Mississippi-Valley-type lead-zinc. Industrial minerals in Permian rocks include fluorite, barite, potash, halite, polyhalite, gypsum, anhydrite, sulfur, limestone, dolomite, brine deposits (iodine and bromine), aggregate (sand), and dimension stone. Doubly terminated quartz crystals, called 'Pecos diamonds' and collected as mineral specimens, occur in Permian rocks along the Pecos River. Mesozoic sedimentary rocks are hosts for copper, uranium, and small quantities of gold-silver-tellurium veins, as well as significant deposits of oil and gas, carbon dioxide, asphalt, coal, and dimension stone. Mesozoic rocks contain limited amounts of limestone, gypsum, petrified wood, and clay. Tertiary rocks host ore deposits commonly associated with intrusive rocks, including platinum-group elements, iron skarns, manganese, uranium and vanadium, molybdenum, polymetallic vein deposits, gold-silver-tellurium veins, and thorium-rare-earth veins. Museum-quality quartz crystals are associated with Tertiary intrusive rocks. Industrial minerals in Tertiary rocks include fluorite, vein- and bedded-barite, caliche, limestone, and aggregate. Tertiary and Quaternary sediments host important placer deposits of gold and titanium, and occurrences of silver and uranium. Important industrial commodities include caliche, limestone and dolomite, and aggregate. Quaternary basalt contains sub-ore-grade uranium, scoria, and clay deposits.

  13. Bridging the gap between tribal risk perceptions and scientific decision-making for uranium legacy sites located in Native American communities

    NASA Astrophysics Data System (ADS)

    Joseph, C.; Waugh, W.; Glenn, E.; Chief, K.

    2017-12-01

    There are approximately 15,000 abandoned uranium mines (AUM) in the western United States, of which 500 AUMs are located in the Colorado Plateau Four-Corners region. Uranium mill tailings, referred to as legacy waste, compromise the largest volume of any category of radioactive waste in the nation. Today, the Department of Energy Legacy Management is responsible for long-term stewardship and maintenance of inactive uranium processing sites that have been remediated to prevent further migration and exposure of tailings to the environment and surrounding communities. In collaboration with the DOE-LM, I am investigating the impact of climate change and community adaptation on the long-term performance of disposal cell covers for uranium mill tailings located in Native American communities, as well as how these communities have adapted to and perceive these areas. I am interested in how abiotic engineered cell covers may be candidate sites for future conversion to vegetated evapotranspirative caps for arid to semi-arid climates. The objectives are to: 1) assess above-ground tissue of plants encroaching engineered cell covers for concentrations of uranium, radium, selenium, molybdenum, thorium, arsenic, lead, and manganese and compare them to control sites; 2) determine if above-cell plant tissue is accumulating to toxic levels that may create an exposure pathway, 3) identify climate scenarios for site locations and determine how short-and long-scale climate projections will influence spatial and temporal plant distribution for specific woody species; and 4) evaluate the risk perceptions of Hopi villages located five miles downstream of one site location. To date, risk perception and stakeholder outreach to the Hopi communities has been absent. This study will help inform how land use, water use, and sustenance practices may contribute to environmental health disparities for one of the few tribes that has maintained physical continuity within their ancestral homeland.

  14. A Uranium-Lead Chronology of Speleothem Deposition in the Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Gambino, C.; Shakun, J. D.; McGee, D.; Ramezani, J.; Khadivi, S.; Wong, C. I.

    2017-12-01

    The Artic is one of the fastest warming regions on the planet. Currently much of the Arctic is covered by permafrost, which contains approximately 1,700 gigatons of organic carbon. Permafrost thaw could release a substantial amount of this carbon as greenhouse gases into the atmosphere through microbial decomposition, potentially dramatically amplifying anthropogenic warming. However, the risk of permafrost thaw is uncertain, with models exhibiting a wide range of possibilities. Assessing the stability of permafrost during past interglacial periods enables evaluation of the sensitivity of permafrost to warming. Cave mineral deposits (speleothems) in areas currently covered with permafrost can act as a proxy for past permafrost thaw, as liquid water is one criteria of speleothem growth and thus implies thawed ground conditions. Previous uranium-thorium (U-Th) dating of speleothems (n=67) from a wide range of latitudes and permafrost zones across the southern Canadian Rockies, Northwest Territories, and the northern Yukon suggest deposition during Marine Isotope Stage (MIS) 11 and 13. The majority of U-Th dates of these speleothems, however, exceed the U-Th dating limit of 600 ka. In this study, we apply uranium-lead (U-Pb) geochronology to several of these speleothems to extend the records of speleothem growth further back in time. Initial results include a U-Pb age of 428 ± 14 ka that replicates a previous U-Th age of 416.8 ± 7.9 ka, and U-Pb ages on two other speleothems of 870 ± 100 ka and 1502 ± 30 ka. The results of currently in progress U-Pb analyses and a comparison of results with paleo-temperature and ice volume reconstructions will also be presented.

  15. Mineral resources of the Mount Tipton Wilderness Study Area, Mohave County, Arizona

    USGS Publications Warehouse

    Greene, Robert C.; Turner, Robert L.; Jachens, Robert C.; Lawson, William A.; Almquist, Carl L.

    1989-01-01

    The Mount Tipton Wilderness Study Area (AZ-020-012/ 042) comprises 33,950 acres in Mohave County, Ariz. At the request of the U.S. Bureau of Land Management, this area was evaluated for identified mineral resources (known) and mineral resource potential (undiscovered). This work was carried out by the U.S. Bureau of Mines and the U.S. Geological Survey in 1984-87. In this report, the area studied is referred to as the "wilderness study area" or simply "the study area." There are no identified mineral resources in the study area. The southernmost part of the study area is adjacent to the Wallapai (Chloride) mining district and has low mineral resource potential for gold, silver, copper, lead, zinc, and molybdenum in hydrothermal veins. This area also has a low mineral resource potential for tungsten in vein deposits and for uranium in vein deposits or pegmatites. In the central part of the wilderness study area, one small area has low mineral resource potential for uranium in vein deposits or pegmatites and another small area has low resource potential for thorium in vein deposits. The entire study area has low resource potential for geothermal energy but no potential for oil or gas resources.

  16. Sustainable Thorium Nuclear Fuel Cycles: A Comparison of Intermediate and Fast Neutron Spectrum Systems

    DOE PAGES

    Brown, Nicholas R.; Powers, Jeffrey J.; Feng, B.; ...

    2015-05-21

    This paper presents analyses of possible reactor representations of a nuclear fuel cycle with continuous recycling of thorium and produced uranium (mostly U-233) with thorium-only feed. The analysis was performed in the context of a U.S. Department of Energy effort to develop a compendium of informative nuclear fuel cycle performance data. The objective of this paper is to determine whether intermediate spectrum systems, having a majority of fission events occurring with incident neutron energies between 1 eV and 10 5 eV, perform as well as fast spectrum systems in this fuel cycle. The intermediate spectrum options analyzed include tight latticemore » heavy or light water-cooled reactors, continuously refueled molten salt reactors, and a sodium-cooled reactor with hydride fuel. All options were modeled in reactor physics codes to calculate their lattice physics, spectrum characteristics, and fuel compositions over time. Based on these results, detailed metrics were calculated to compare the fuel cycle performance. These metrics include waste management and resource utilization, and are binned to accommodate uncertainties. The performance of the intermediate systems for this selfsustaining thorium fuel cycle was similar to a representative fast spectrum system. However, the number of fission neutrons emitted per neutron absorbed limits performance in intermediate spectrum systems.« less

  17. Thorium and Molten Salt Reactors: Essential Questions for Classroom Discussions

    NASA Astrophysics Data System (ADS)

    DiLisi, Gregory A.; Hirsch, Allison; Murray, Meredith; Rarick, Richard

    2018-04-01

    A little-known type of nuclear reactor called the "molten salt reactor" (MSR), in which nuclear fuel is dissolved in a liquid carrier salt, was proposed in the 1940s and developed at the Oak Ridge National Laboratory in the 1960s. Recently, the MSR has generated renewed interest as a remedy for the drawbacks associated with conventional uranium-fueled light-water reactors (LWRs) in use today. Particular attention has been given to the "thorium molten salt reactor" (TMSR), an MSR engineered specifically to use thorium as its fuel. The purpose of this article is to encourage the TPT community to incorporate discussions of MSRs and the thorium fuel cycle into courses such as "Physics and Society" or "Frontiers of Physics." With this in mind, we piloted a pedagogical approach with 27 teachers in which we described the underlying physics of the TMSR and posed five essential questions for classroom discussions. We assumed teachers had some preexisting knowledge of nuclear reactions, but such prior knowledge was not necessary for inclusion in the classroom discussions. Overall, our material was perceived as a real-world example of physics, fit into a standards-based curriculum, and filled a need in the teaching community for providing unbiased references of alternative energy technologies.

  18. Spectroscopic characterization of Greek dolomitic marble surface interacted with uranium and thorium in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Godelitsas, A.; Kokkoris, M.; Chatzitheodoridis, E.; Misaelides, P.

    2008-05-01

    The surface of a typical Greek (Thassian) dolomitic marble was studied after interaction with U- and Th-containing aqueous solutions (1000 mg/L, free-drift experiments for 1 week at atmospheric PCO2), using 12C-RBS and Laser μ-Raman spectroscopy. Powder-XRD and SEM-EDS were also applied to investigate the phases deposited on the surface of the interacted samples. The obtained results indicated a considerable removal of U from the aqueous medium mainly due to massive surface precipitation of amorphous UO2-hydroxide phases forming a relatively thick (μm-sized) coating on the carbonate substrate. The interaction of Th with dolomitic marble surface is also intense leading to a formation of an amorphous Th-hydroxide layer of similar thickness but of significantly lower elemental atomic proportion.

  19. Extreme isotopologue disequilibrium in molecular SIMS species during SHRIMP geochronology

    NASA Astrophysics Data System (ADS)

    Magee, Charles W., Jr.; Danišík, Martin; Mernagh, Terry

    2017-12-01

    The current limitation in the accuracy and precision of inter-element analysis in secondary ion mass spectrometry (SIMS) is the ability to find measurable quantities that allow relative differences in ionization and transmission efficiency of secondary ions to be normalized. In uranium-thorium-lead geochronology, the ability to make these corrections, or "calibrate" the data, results in an accuracy limit of approximately 1 %. This study looks at the ionization of uranium and thorium oxide species, which are traditionally used in U-Pb calibration, to explore the conditions under which isotopologues, or molecular species whose composition differs only in the isotopic composition of one or more atoms in the molecule, remain in or deviate from equilibrium. Isotopologue deficits of up to 0.2 (200 ‰) below ideal mixing are observed in UO2+ species during SIMS gechronological analyses using the SHRIMP IIe SIMS instrument. These are identified by bombarding natural U-bearing minerals with an 18O2- primary beam. The large anomalies are associated with repeat analyses down a single SIMS sputtering crater (Compston et al., 1984), analysis of high-uranium, radiation-damaged zircon, and analysis of baddeleyite. Analysis of zircon under routine conditions yield UO2+ isotopologue anomalies generally within a few percent of equilibrium. The conditions under which the isotopologue anomalies are observed are also conditions in which the UOx-based corrections, or calibration, for relative U vs. Pb ionization efficiencies fail. The existence of these isotopologue anomalies suggest that failure of the various UOx species to equilibrate with each other is the reason that none of them will successfully correct the U  / Pb ratio. No simple isotopologue-based correction is apparent. However, isotopologue disequilibrium appears to be a more sensitive tool for detecting high-U calibration breakdowns than Raman spectroscopy, which showed sharper peaks for ˜ 37 Ma high-uranium zircons than for reference zircons OG1 and Temora. U-Th-Sm / He ages were determined for aliquots of reference zircons OG1 (755±71 Ma) and Temora (323±43 Ma), suggesting that the broader Raman lines for the Temora reference zircons may be due to something other than accumulated radiation damage. Isotopologue abundances for UO+ and ThO+ and their energy spectra are consistent with most or all molecular species being the product of atomic recombination when the primary beam impact energy is greater than 5.7 keV. This, in addition to the large UO2+ instrumentally generated isotopologue disequilibria, suggests that any attempts to use SIMS to detect naturally occurring isotopologue deviations could be tricky.

  20. Distribution of uranium and thorium in groundwater of arid climate region

    NASA Astrophysics Data System (ADS)

    Murad, Ahmed; Alshamsi, Dalal; Aldahan, Ala; Hou, Xiaolin

    2014-05-01

    Uranium, thorium and their decay products are the most common radionuclides in groundwater in addition to potassium-40. Once groundwater is used for drinking, domestic and irrigation purposes, the radionuclides will then pose environmental and health related hazard originating from radioactivity and toxicity. In the investigation presented here, assessment of 238U, 235U and 232Th concentrations in groundwater across of the United Arab Emirates (UAE) is evaluated in terms of quality and sources. The region is dominated by arid climate conditions and radioactivity assessment of groundwater is essential for safe use of groundwater. Furthermore, the results were linked to data from other arid regions and worldwide. Groundwater samples (total dissolved solids,TDS, 142.5 mg L-1 to 12770 mg L-1) from 67 different wells were collected across geomorphologically different areas and most of the wells are actively used for agriculture. The aquifers are recent sand dunes, Quaternary (3 million years to present) sediments, and older carbonate rocks (230-10 million years). The 235U, 238U and 232Th measurements were carried out using ICP-MS system equipped with an Xt-skimmer cone and a concentric nebulizer under hot plasma conditions. Concentrations of 235U, 238U and 232Th range at (0.125-508.4) ng L-1, (25.81-69237) ng L-1 and (0.236-2529) ng L-1, respectively. Apparently, most 235U, 238U, 232Th concentrations in the sampled groundwater are below the WHO proposed permissible level of 60000 ng/L for total uranium (1 Bq L-1 for 235U and 10 Bq L-1 for 238U) and 5000 ng L-1 (1Bq L-1) for 232Th. A few samples show high concentrations of uranium that are associated with high TDS values and occur within interbedded limestones and shales aquifer. Comparison with worldwide groundwater data suggests that 238U concentration is highest in the arid regions groundwater where the recharge to aquifers is relatively low. The situation for 232Th concentrations seems less affected by climatic conditions, most likely is related to its less solubility in water compared to uranium. We calculated the accumulated TU and 232Th concentration in the irrigation water annually to estimate the cumulative concentrations after twenty years on specific agricultural areas. The TU and 232Th are expected not to reach more than 1.14 x 10-3 g (1.14 mg) and 4.32 x 10-6 g (4.32 μg) respectively after twenty years if the daily irrigation is at its maximum amount (10 m3). Despite these obtained values of concentrations in irrigation water, the transfer of uranium and thorium into crop is not readily and it is expected that only a tiny fraction of the element end into the body. However, further research is needed to quantify the dietary exposures in the UAE with detailed data from crops and consumers.

  1. Hydrogeochemical and stream sediment reconnaissance basic data report for Kingman NTMS Quadrangle, Arizona, California, and Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qualheim, B.J.

    This report presents the results of the geochemical reconnaissance sampling in the Kingman 1 x 2 quadrangle of the National Topographical Map Series (NTMS). Wet and dry sediment samples were collected throughout the 18,770-km arid to semiarid area and water samples at available streams, springs, and wells. Neutron activation analysis of uranium and trace elements and other measurements made in the field and laboratory are presented in tabular hardcopy and microfiche format. The report includes five full-size overlays for use with the Kingman NTMS 1 : 250,000 quadrangle. Water sampling sites, water sample uranium concentrations, water-sample conductivity, sediment sampling sites,more » and sediment-sample total uranium and thorium concentrations are shown on the separate overlays. General geological and structural descriptions of the area are included and known uranium occurrences on this quadrangle are delineated. Results of the reconnaissance are briefly discussed and related to rock types in the final section of the report. The results are suggestive of uranium mineralization in only two areas: the Cerbat Mountains and near some of the western intrusives.« less

  2. Checkerboard seed-blanket thorium fuel core concepts for heavy water moderated reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromley, B.P.; Hyland, B.

    2013-07-01

    New reactor concepts to implement thorium-based fuel cycles have been explored to achieve maximum resource utilization. Pressure tube heavy water reactors (PT-HWR) are highly advantageous for implementing the use of thorium-based fuels because of their high neutron economy and on-line re-fuelling capability. The use of heterogeneous seed-blanket core concepts in a PT-HWR where higher-fissile-content seed fuel bundles are physically separate from lower-fissile-content blanket bundles allows more flexibility and control in fuel management to maximize the fissile utilization and conversion of fertile fuel. The lattice concept chosen was a 35-element bundle made with a homogeneous mixture of reactor grade Pu (aboutmore » 67 wt% fissile) and Th, and with a central zirconia rod to help reduce coolant void reactivity. Several checkerboard heterogeneous seed-blanket core concepts with plutonium-thorium-based fuels in a 700-MWe-class PT-HWR were analyzed, using a once-through thorium (OTT) cycle. Different combinations of seed and blanket fuel were tested to determine the impact on core-average burnup, fissile utilization, power distributions, and other performance parameters. It was found that various checkerboard core concepts can achieve a fissile utilization that is up to 26% higher than that achieved in a PT-HWR using more conventional natural uranium fuel bundles. Up to 60% of the Pu is consumed; up to 43% of the energy is produced from thorium, and up to 303 kg/year of Pa-233/U-233/U-235 are produced. Checkerboard cores with about 50% of low-power blanket bundles may require power de-rating (65% to 74%) to avoid exceeding maximum limits for channel and bundle powers and linear element ratings. (authors)« less

  3. Annular seed-blanket thorium fuel core concepts for heavy water moderated reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromley, B.P.; Hyland, B.

    2013-07-01

    New reactor concepts to implement thorium-based fuel cycles have been explored to achieve maximum resource utilization. Pressure tube heavy water reactors (PT-HWR) are highly advantageous for implementing the use of thorium-based fuels because of their high neutron economy and on-line re-fuelling capability. The use of heterogeneous seed-blanket core concepts in a PT-HWR where higher-fissile-content seed fuel bundles are physically separate from lower-fissile-content blanket bundles allows more flexibility and control in fuel management to maximize the fissile utilization and conversion of fertile fuel. The lattice concept chosen is a 35-element bundle made with a homogeneous mixture of reactor grade Pu andmore » Th, and with a central zirconia rod to help reduce coolant void reactivity. Several annular heterogeneous seed-blanket core concepts with plutonium-thorium-based fuels in a 700-MWe-class PT-HWR were analyzed, using a once-through thorium (OTT) cycle. Different combinations of seed and blanket fuel were tested to determine the impact on core-average burnup, fissile utilization, power distributions, and other performance parameters. It was found that the various core concepts can achieve a fissile utilization that is up to 30% higher than is currently achieved in a PT-HWR using conventional natural uranium fuel bundles. Up to 67% of the Pu is consumed; up to 43% of the energy is produced from thorium, and up to 363 kg/year of U-233 is produced. Seed-blanket cores with ∼50% content of low-power blanket bundles may require power de-rating (∼58% to 65%) to avoid exceeding maximum limits for peak channel power, bundle power and linear element ratings. (authors)« less

  4. Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alekseev, P. N.; Bobrov, E. A., E-mail: evgeniybobrov89@rambler.ru; Chibinyaev, A. V.

    2015-12-15

    The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U–Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium–plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: {sup 235}U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or {sup 233}U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no usemore » of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.« less

  5. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  6. 76 FR 24871 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... Processing Sites AGENCY: Department of Energy. ACTION: Notice of change in the acceptance of Title X claims... reimbursement under Title X of the Energy Policy Act of 1992. DATES: In our Federal Register Notice of November... Register on May 23, 1994, (59 FR 26714) to carry out the requirements of Title X of the Energy Policy Act...

  7. Nuclear Explosion Monitoring Research and Development Roadmaps

    DTIC Science & Technology

    2010-09-01

    environment, a radionuclide event is the release of radioactive atoms. Radionuclide sources include nuclear explosions, normal or anomalous reactor ...isotopes (e.g., potassium, uranium, and thorium and their decay products) and isotopes produced from the interactions of cosmic rays with the...and reactor emissions. For example, the IMS detected a pair of xenon isotopes at a Japanese station shortly after the 2009 DPRK event. The ratio of

  8. Modeling to optimize operational practices to limit shallow dose and dose to the lens at the Weldon Spring Site Remedial Action Project.

    PubMed

    Hillman, D J; Green, S W

    1994-10-01

    The Weldon Spring Site Remedial Action Project (WSSRAP) began remediation of its chemical plant buildings in June 1992. The chemical plant was used by the Atomic Energy Commission in the 1950's and 1960's to process uranium ore and natural thorium. Many remaining equipment surfaces were highly contaminated with uranium and thorium product residues, which are relatively weak gamma emitters, but are strong beta emitters that deposit the majority of their energy within the first centimeter of tissue. An essential part of the remediation, therefore, is to control the dose to the skin, extremities, and the lens of the eye from the broad range of betas emitted by uranium and thorium decay series radionuclides. The WSSRAP planned to quantitatively record the dose to the skin, extremities, and the lens of the eye, when warranted, through selection and use of appropriate passive dosimeters. That would not, however, constitute control. A direct-reading instrument was needed that could be used by field technicians to anticipate and prevent work methods and situations that would otherwise result in the unnecessary commitment of dose. However, the interpretation of real-time instrument readings produced by a broad spectrum of beta energies is typically challenging at best, particularly when the shallow dose rate and the lens dose rate are both of interest. The purpose of this effort was, therefore, to (1) select a direct-reading instrument for use in the buildings that could be used to provide rule-of-thumb action levels for field technicians, which, if exceeded, would warrant worker protective measures; (2) determine the approximate conversions between the instrument readings and the shallow (including extremity) dose rate and lens of the eye dose rate; and (3) specify protective measures and dosimetry for the lens of the eye, if warranted. Methods described in the literature are used to estimate action levels for direct instrument readings and to demonstrate that lens dosimetry and special protective measures for the lens of the eye are not necessary at the WSSRAP.

  9. Reconnaissance for radioactive materials in northeastern United States during 1952

    USGS Publications Warehouse

    McKeown, Francis A.; Klemic, Harry

    1953-01-01

    Reconnaissance for radioactive materials was made in parts of Maine, New York, New Jersey, and Pennsylvania. The primary objective was to examine the iron ore deposits and associated rocks in the Adirondack Mountains of New York and the Highlands of New Jersey. In addition, several deposits known or reported to contain radioactive minerals were examined to delimit their extent. Most of the deposits examined are not significant as possible sources of radioactive elements and the data pertaining to them are summarized in table form. Deposits that do warrant more description than can be given in table form are: Benson Mines, St. Lawrence County, N. Y.; Rutgers mine, Clinton County, N. Y.; Mineville Mines, Essex County, N. Y.l Canfield phosphate mine, Morris County, N. J.; Mullgan quarry, Hunterdon County, N. J.; and the Chestnut Hill-Marble Mountain area, Pennsylvania and New Jersey. The Old Bed in the Mineville district is the only deposit that may be economically significant. Apatite from Old Bed ore contains as much as 4.9 percent total rare earth. 0.04 percent thorium, and 0.018 percent uranium. Magnetite ore at the Rutgers mine contains radioactive zircon and apatite. Radioactivity measurements of outcrops and dump material show that the ore contains from 0.005 to 0.010 percent equivalent uranium. One sample of lean magnetite ore contains 0.006 percent equivalent uranium. Garnet-rich zones in the Benson Mines magnetite deposit contain as much as 0.017 equivalent uranium. Most of the rock and ore, however, contains about 0.005 percent equivalent uranium. Available data indicate that the garnet-rich zones are enriched in radioactive allanite. A shear zone in the Kittatinny limestone of Cambrian age at the Mulligan quarry contains uraniferous material. Radioactivity anomalies elsewhere in the quarry and in adjacent fields indicate that there may be other uraniferous shear zones. Assays of samples and measurements of outcrop radioactivity indicate that the uranium content of these zones is low; samples contain from 0.008 to 0.068 percent equivalent uranium. The anomalies, however, may indicate greater concentrations of uranium below surficial leached zones. The Chestnut Hill-Marble Mountain area contains radioactivity anomalies for about 2 miles along the strike of the contact of pre-Cambrian Pickering gneiss and Franklin limestone formations. In places this contact is injected with pegmatite, which probably was the source of the radioelements. The most favorable area for further study is at Marble Mountain, where a nearly continuous anomaly extends for about 1500 feet. Samples from part of this area contain as much as 0.044 percent equivalent uranium and 0.005 percent uranium. Radioactive hematite and florencite, in which thorium may have substituted for cerium, are the only radioactive minerals observed in the Marble Mountain area.

  10. Some thorium prospects, Lemhi Pass area, Beaverhead County, Montana

    USGS Publications Warehouse

    Armstrong, Frank C.

    1955-01-01

    The Last Chance group> Brown Bear and Shady Tree claims in Beaverhead County, Mont., were explored for thorium under a Defense Minerals Exploration Administration Contract in 1951 and 1952. The project was undertaken to explore northwest-trending moderately to steep dipping, thorite-bearing quartz-barite-hematite veins. The veins are wall-rock replacements and fissure fillings in faults and shears that cut rocks of the Precambrian Belt series. Recurrent movement along the faults has intense fractured the veins. Quartz iron-oxide minerals, and thorite have been deposited in these fractures. The iron oxides and thorite are intimately associated and were among the last minerals deposited. Because no rare earth or uranium minerals have been found in the veins, it is thought that the small amounts of these elements reported in the analyses must substitute for thorium in the thorite. Under the D. M. E. A. contract the Last Chance vein was traced on surface for a distance of about 1,300 feet; the thickness ranges from about 35 feet to a few inches. Two diamond drill holes cut the vein 240 and 290 feet below the outcrop.

  11. Electrodeposition of uranium and thorium onto small platinum electrodes

    NASA Astrophysics Data System (ADS)

    Reichenberger, Michael A.; Ito, Takashi; Ugorowski, Philip B.; Montag, Benjamin W.; Stevenson, Sarah R.; Nichols, Daniel M.; McGregor, Douglas S.

    2016-03-01

    Preparation of thin U- and Th-coated 0.3 mm diameter Pt working electrodes by the cyclic potential sweep method is described. Uranyl- and thorium hydroxide layers were electrodeposited from ethanol solutions containing 0.02 M natural uranyl and 0.02 M natural thorium nitrate, each with 3.6 M ammonium nitrate. The cell for electrodeposition was specially developed in order to accommodate the small working electrodes for this research by including a working electrode probe, 3-D translation stage, and microscope. The source material deposition was analyzed using digital microscopy and scanning electron microscopy, and confirmed using x-ray fluorescence measurements. The appropriate potential range for electrodeposition was determined to be -0.62 V to -0.64 V for a 0.3 mm diameter Pt working electrode placed 1 cm from the counter electrode. Smooth, uniform deposition was observed near the central region of the working electrode, while surface cracking and crystalline formations were found near the edge of the working electrode. The final procedure for sample substrate preparation, electrolytic solution preparation and electrodeposition are described.

  12. Distribution of uranium and thorium in dolomitic gravel fill and shale saprolite

    DOE PAGES

    Phillips, D. H.; Watson, D. B.

    2014-12-05

    The objectives of this study were to examine (1) the distribution of U and Th in dolomitic gravel fill and shale saprolite, and (2) the removal of uranium from acidic groundwater by dolomitic gravel through precipitation with amorphous basaluminite at the U.S. DOE Oak Ridge Integrated Field Research Challenge (ORIFRC) field site west of the Oak Ridge Y-12 National Security Complex in East Tennessee. Media reactivity and sustainability are a technical concern with the deployment of any subsurface reactive media. Because the gravel was placed in the subsurface and exposed to contaminated groundwater for over 20 years, it provided amore » unique opportunity to study the solid and water phase geochemical conditions within the media after this length of exposure. This study illustrates that dolomite gravel can remove U from acidic contaminated groundwater with high levels of Al 3+, Ca 2+, NO 3-, and SO 4 2- over the long term. As the groundwater flows through high pH carbonate gravel, U containing amorphous basaluminite precipitates as the pH increases. This is due to an increase in groundwater pH from 3.2 to ~6.5 as it comes in contact with the gravel. Therefore, carbonate gravel could be considered as a possible treatment medium for removal and sequestration ofUand otherpHsensitive metals from acidic contaminated groundwater. Thorium concentrations are also high in the carbonate gravel. Thorium generally shows an inverse relationship with U from the surface down into the deeper saprolite. Barite precipitated in the shallow saprolite directly below the dolomitic gravel from barium present in the acidic contaminated groundwater.« less

  13. Open-system coral ages reveal persistent suborbital sea-level cycles.

    PubMed

    Thompson, William G; Goldstein, Steven L

    2005-04-15

    Sea level is a sensitive index of global climate that has been linked to Earth's orbital variations, with a minimum periodicity of about 21,000 years. Although there is ample evidence for climate oscillations that are too frequent to be explained by orbital forcing, suborbital-frequency sea-level change has been difficult to resolve, primarily because of problems with uranium/thorium coral dating. Here we use a new approach that corrects coral ages for the frequently observed open-system behavior of uranium-series nuclides, substantially improving the resolution of sea-level reconstruction. This curve reveals persistent sea-level oscillations that are too frequent to be explained exclusively by orbital forcing.

  14. Airborne gamma-ray spectrometer and magnetometer survey, Seattle quadrangle (Washington). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-01-01

    One uranium anomaly meets the minimum statistical requirements as defined. This anomaly is over the potassium (%K) contact area between undifferentiated Tertiary rocks and Pleistocene glacial deposits. Equivalent uranium (ppM eU), equivalent thorium (ppM eT), eU/eT, eU/eK, eT,K, and magnetic pseudo-contour maps are presented in Appendix E. Stacked profiles showing geologic strip maps along each flight-line, together with sensor data, and ancillary data are presented in Appendix F. All maps and profiles were prepared on a scale of 1:250,000, but have been reduced to 1:500,000 for presentation in this report.

  15. Radioactive mineral springs in Delta County, Colorado

    USGS Publications Warehouse

    Cadigan, Robert A.; Rosholt, John N.; Felmlee, J. Karen

    1976-01-01

    The system of springs in Delta County, Colo., contains geochemical clues to the nature and location of buried uranium-mineralized rock. The springs, which occur along the Gunnison River and a principal tributary between Delta and Paonia, are regarded as evidence of a still-functioning hydrothermal system. Associated with the springs are hydrogen sulfide and sulfur dioxide gas seeps, carbon dioxide gas-powered geysers, thick travertine deposits including radioactive travertine, and a flowing warm-water (41?C) radioactive well. Geochemical study of the springs is based on surface observations, on-site water-property measurements, and sampling of water, travertine, soft precipitates, and mud. The spring deposits are mostly carbonates, sulfates, sulfides, and chlorides that locally contain notable amounts of some elements, such as arsenic, barium, lithium, and radium. Samples from five localities have somewhat different trace element assemblages even though they are related to the same hydrothermal system. All the spring waters but one are dominated by sodium chloride or sodium bicarbonate. The exception is an acid sulfate water with a pH of 2.9, which contains high concentrations of aluminum and iron. Most of the detectable radioactivity is due to the presence of radium-226, a uranium daughter product, but at least one spring precipitate contains abundant radium-228, a thorium daughter product. The 5:1 ratio of radium-228 to radium-226 suggests the proximity of a vein-type deposit as a source for the radium. The proposed locus of a thorium-uranium mineral deposit is believed to lie in the vicinity of Paonia, Colo. Exact direction and depth are not determinable from data now available.

  16. Synthesis of Actinide Fluoride Complexes Using Trimethyltin Fluoride as a Mild and Selective Fluorinating Reagent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kagan, Benjamin D.; Lichtscheidl, Alejandro G.; Erickson, Karla A.

    Trimethyltin fluoride (Me₃SnF) is a mild and selective reagent for the installation of actinide fluoride bonds as demonstrated by the room temperature synthesis of a variety of organometallic and inorganic thorium(IV), uranium(IV), and uranium(V) fluoride complexes ((1,2,4-tBu₃C₅H₂)₂ThF₂, (C₅Me₅)₂U(F)(O-2,6-iPr₂C₆H₃), U(F)(O-2,6-tBu₂C₆H₃)₃, U(F)[N(SiMe₃)₂]₃ (C₅Me₅)₂UF₂(L) (L = O=PMe₃, O=PPh₃, O=PCy₃), and (C₅Me₅)₂U(F)(=N-2,6-iPr₂C₆H₃)) from their corresponding chloride, bromide, and iodide analogues. From these reactions, the new (C₅Me₅)₂UF₂(L) (L = O=PPh₃, O=PCy₃) uranium fluoride complexes were isolated and characterized by NMR spectroscopy and X-ray crystallography.

  17. Synthesis of Actinide Fluoride Complexes Using Trimethyltin Fluoride as a Mild and Selective Fluorinating Reagent

    DOE PAGES

    Kagan, Benjamin D.; Lichtscheidl, Alejandro G.; Erickson, Karla A.; ...

    2017-11-07

    Trimethyltin fluoride (Me₃SnF) is a mild and selective reagent for the installation of actinide fluoride bonds as demonstrated by the room temperature synthesis of a variety of organometallic and inorganic thorium(IV), uranium(IV), and uranium(V) fluoride complexes ((1,2,4-tBu₃C₅H₂)₂ThF₂, (C₅Me₅)₂U(F)(O-2,6-iPr₂C₆H₃), U(F)(O-2,6-tBu₂C₆H₃)₃, U(F)[N(SiMe₃)₂]₃ (C₅Me₅)₂UF₂(L) (L = O=PMe₃, O=PPh₃, O=PCy₃), and (C₅Me₅)₂U(F)(=N-2,6-iPr₂C₆H₃)) from their corresponding chloride, bromide, and iodide analogues. From these reactions, the new (C₅Me₅)₂UF₂(L) (L = O=PPh₃, O=PCy₃) uranium fluoride complexes were isolated and characterized by NMR spectroscopy and X-ray crystallography.

  18. Radioactivity of Fertilizer and China (NORM) in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michikuni, Shimo; Yuka, Matsuura; Noriko, Itoh

    2008-08-07

    Radioactivity of 6 fertilizer samples, 7 china clay samples and 5 china glaze samples, which are commonly used in Japan, was measured using a NaI(Tl) scintillation spectrometer. Potassium activity of fertilizer was almost 540-740 Bq/kg, and the highest activity was 9,100 Bq/kg. Activity of fertilizer was 10 times higher for potassium than for uranium-series. Furthermore, these activities were 25 times for potassium and 18 times for uranium-series in comparison with those in natural soil. In china clay, activities of potassium, uranium-series nuclides and thorium-series nuclides were 543-823 Bq/kg, 74.6-94.3 Bq/kg, and 86.3-128 Bq/kg, respectively. These were 1.5-2.2, 2.1-2.6 and 2.3-3.5more » times higher than activity of common soil. Activity of glaze was almost equal to that of china clay.« less

  19. The 230Th correction is the 1st priority for accurate dates of young zircons: U/Th partitioning experiments and measurements

    NASA Astrophysics Data System (ADS)

    Krawczynski, M.; McLean, N.

    2017-12-01

    One of the most accurate and useful ways of determining the age of rocks that formed more than about 500,000 years ago is uranium-lead (U-Pb) geochronology. Earth scientists use U-Pb geochronology to put together the geologic history of entire regions and of specific events, like the mass extinction of all non-avian dinosaurs about 66 million years ago or the catastrophic eruptions of supervolcanoes like the one currently centered at Yellowstone. The mineral zircon is often utilized because it is abundant, durable, and readily incorporates uranium into its crystal structure. But it excludes thorium, whose isotope 230Th is part of the naturally occurring isotopic decay chain from 238U to 206Pb. Calculating a date from the relative abundances of 206Pb and 238U therefore requires a correction for the missing 230Th. Existing experimental and observational constraints on the way U and Th behave when zircon crystallizes from a melt are not known precisely enough, and thus currently the uncertainty in dates introduced by they `Th correction' is one of the largest sources of systematic error in determining dates. Here we present preliminary results on our study of actinide partitioning between zircon and melt. Experiments have been conducted to grow zircon from melts doped with U and Th that mimic natural magmas at a range of temperatures, and compositions. Synthetic zircons are separated from their coexisting glass and using high precision and high-spatial-resolution techniques, the abundance and distribution of U and Th in each phase is determined. These preliminary experiments are the beginning of a study that will result in precise determination of the zircon/melt uranium and thorium partition coefficients under a wide variety of naturally occurring conditions. This data will be fit to a multidimensional surface using maximum likelihood regression techniques, so that the ratio of partition coefficients can be calculated for any set of known parameters. The results of this study will reduce the largest source of uncertainty in dating young zircons and improve the accuracy of U-Pb dates, improving our ability to tell time during geologic processes. The attainment of more accurate timing of the geologic timescale is important to geologists of all disciplines, from paleontology to planetary cosmochemistry to geobiology.

  20. Pennsylvania's technologically enhanced, naturally occurring radioactive material experiences and studies of the oil and gas industry.

    PubMed

    Allard, David J

    2015-02-01

    This presentation provides an overview of the Commonwealth of Pennsylvania's experiences and ongoing studies related to technologically enhanced, naturally occurring radioactive material (TENORM) in the oil and gas industry. It has been known for many years that Pennsylvania's geology is unique, with several areas having relatively high levels of natural uranium and thorium. In the 1950s, a few areas of the state were evaluated for commercial uranium production. In the late 1970s, scoping studies of radon in homes prompted the Pennsylvania Department of Environmental Protection (DEP) Bureau of Radiation Protection (BRP) to begin planning for a larger state-wide radon study. The BRP and Oil and Gas Bureau also performed a TENORM study of produced water in the early 1990s for a number of conventional oil and gas wells. More recently, BRP and the Bureau of Solid Waste developed radiation monitoring regulations for all Pennsylvania solid waste disposal facilities. These were implemented in 2001, prompting another evaluation of oil and gas operations and sludge generated from the treatment of conventionally produced water and brine but mainly focused on the disposal of TENORM solid waste in the state's Resource Conservation and Recovery Act Subtitle D landfills. However, since 2008, the increase in volumes of gas well wastewater and levels of Ra observed in the unconventional shale gas well flow-back fracking water has compelled DEP to fully re-examine these oil and gas operations. Specifically, with BRP in the lead, a new TENORM study of oil and gas operations and related wastewater treatment operations has been initiated (), supported by an American National Standards Institute standard on TENORM () and a U.S. Government Accountability Office report on shale resource development and risks (). This study began in early 2013 and will examine the potential public and worker radiation exposure and environmental impact as well as re-evaluate TENORM waste disposal. This presentation summarizes conventional and unconventional oil and gas well operations, geology and respective uranium/thorium content, radium content in oil and gas wastewater, treatment solids, radon in natural gas, the scope of other TENORM issues in the state, regulatory framework, national regulations and guidance. It also provides an overview of past and the status of ongoing TENORM studies in the Commonwealth (; Rowan and Kraemer 2012; ).

  1. Soil Sample Dissolution Development by Ultrawave Digester, Followed by Isotopic Separation and Analysis

    DTIC Science & Technology

    2017-01-09

    uranium, americium, and thorium were analyzed, along with other transition and rare earth metals, utilizing inductively coupled plasma- mass spectrometry...inductively coupled plasma- mass spectrometry and/or alpha spectrometry, following digestion. For validation of the microwave protocol, radioactive... actinide elements. HF is a hazardous acid to work with and it is highly toxic. In this evaluation and validation, the actinides are of particular

  2. Behavior and Distribution of Heavy Metals Including Rare Earth Elements, Thorium, and Uranium in Sludge from Industry Water Treatment Plant and Recovery Method of Metals by Biosurfactants Application

    PubMed Central

    Gao, Lidi; Kano, Naoki; Sato, Yuichi; Li, Chong; Zhang, Shuang; Imaizumi, Hiroshi

    2012-01-01

    In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid) elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals. Consequently, the following matters have been largely clarified. (1) Heavy metallic elements in sludge have generally larger concentrations and exist as more unstable fraction than those in natural soil. (2) Nonionic saponin including carboxyl group is more efficient than sophorolipid for the removal of heavy metals in polluted sludge. Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates) and F5 (the fraction bound to Fe-Mn oxides). (3) The recovery efficiency of heavy metals (Pb, Ni, and Cr) reached about 90–100% using a precipitation method with alkaline solution. PMID:22693485

  3. Radiological and multi-element analysis of sediments from the Proserpina reservoir (Spain) dating from Roman times.

    PubMed

    Baeza, A; Guillén, J; Ontalba Salamanca, M A; Rodríguez, A; Ager, F J

    2009-10-01

    The Proserpina dam was built in Roman times to provide drinking water to Emerita Augusta (today's Mérida in SW Spain). During maintenance work, a sediment core was extracted, offering an excellent opportunity to analyze the historical environmental impacts of the dam and its reservoir over the 2000 years since Roman times. In order to establish an accurate chronology, (14)C ages were determined by accelerator mass spectrometry (AMS). Core samples were assayed for their content in uranium and thorium series isotopes, (40)K, and the anthropogenic radionuclides (137)Cs, (90)Sr, and (239+240)Pu. Potassium-40 presented the highest activity level and was not constant with depth. The uranium and thorium series were generally in equilibrium, suggesting there had been no additional input of natural radionuclides. The presence of (137)Cs was only found in relation with the global fallout in the early 1960s. Multi-element assays were performed using the PIXE and PIGE techniques. Some variations in the multi-element concentrations were observed with depth, but the sediment core could be considered as clean, and no presumptive anthropogenic pollutants were found. Nevertheless, an unusually high Zn content was detected at depths corresponding to pre-Roman times, due to geological anomalies in the area.

  4. Method for the simultaneous preparation of radon-211, xenon-125, xenon-123, astatine-211, iodine-125 and iodine-123

    DOEpatents

    Mirzadeh, S.; Lambrecht, R.M.

    1985-07-01

    The invention relates to a practical method for commercially producing radiopharmaceutical activities and, more particularly, relates to a method for the preparation of about equal amount of Radon-211 (/sup 211/Rn) and Xenon-125 (/sup 125/Xe) including a one-step chemical procedure following an irradiation procedure in which a selected target of Thorium (/sup 232/Th) or Uranium (/sup 238/U) is irradiated. The disclosed method is also effective for the preparation in a one-step chemical procedure of substantially equal amounts of high purity /sup 123/I and /sup 211/At. In one preferred arrangement of the invention almost equal quantities of /sup 211/Rn and /sup 125/Xe are prepared using a onestep chemical procedure in which a suitably irradiated fertile target material, such as thorium-232 or uranium-238, is treated to extract those radionuclides from it. In the same one-step chemical procedure about equal quantities of /sup 211/At and /sup 123/I are prepared and stored for subsequent use. In a modified arrangement of the method of the invention, it is practiced to separate and store about equal amounts of only /sup 211/Rn and /sup 125/Xe, while preventing the extraction or storage of the radionuclides /sup 211/At and /sup 123/I.

  5. Geophysical interpretation of U, Th, and rare earth element mineralization of the Bokan Mountain peralkaline granite complex, Prince of Wales Island, southeast Alaska

    USGS Publications Warehouse

    McCafferty, Anne E.; Stoeser, Douglas B.; Van Gosen, Bradley S.

    2014-01-01

    A prospectivity map for rare earth element (REE) mineralization at the Bokan Mountain peralkaline granite complex, Prince of Wales Island, southeastern Alaska, was calculated from high-resolution airborne gamma-ray data. The map displays areas with similar radioelement concentrations as those over the Dotson REE-vein-dike system, which is characterized by moderately high %K, eU, and eTh (%K, percent potassium; eU, equivalent parts per million uranium; and eTh, equivalent parts per million thorium). Gamma-ray concentrations of rocks that share a similar range as those over the Dotson zone are inferred to locate high concentrations of REE-bearing minerals. An approximately 1300-m-long prospective tract corresponds to shallowly exposed locations of the Dotson zone. Prospective areas of REE mineralization also occur in continuous swaths along the outer edge of the pluton, over known but undeveloped REE occurrences, and within discrete regions in the older Paleozoic country rocks. Detailed mineralogical examinations of samples from the Dotson zone provide a means to understand the possible causes of the airborne Th and U anomalies and their relation to REE minerals. Thorium is sited primarily in thorite. Uranium also occurs in thorite and in a complex suite of ±Ti±Nb±Y oxide minerals, which include fergusonite, polycrase, and aeschynite. These oxides, along with Y-silicates, are the chief heavy REE (HREE)-bearing minerals. Hence, the eU anomalies, in particular, may indicate other occurrences of similar HREE-enrichment. Uranium and Th chemistry along the Dotson zone showed elevated U and total REEs east of the Camp Creek fault, which suggested the potential for increased HREEs based on their association with U-oxide minerals. A uranium prospectivity map, based on signatures present over the Ross-Adams mine area, was characterized by extremely high radioelement values. Known uranium deposits were identified in the U-prospectivity map, but the largest tract occurs over a radioelement-rich granite phase within the pluton that is likely not related to mineralization. Neither mineralization type displays a well-defined airborne magnetic signature.

  6. Probabilistic performance-assessment modeling of the mixed waste landfill at Sandia National Laboratories.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peace, Gerald; Goering, Timothy James; Miller, Mark Laverne

    2007-01-01

    A probabilistic performance assessment has been conducted to evaluate the fate and transport of radionuclides (americium-241, cesium-137, cobalt-60, plutonium-238, plutonium-239, radium-226, radon-222, strontium-90, thorium-232, tritium, uranium-238), heavy metals (lead and cadmium), and volatile organic compounds (VOCs) at the Mixed Waste Landfill (MWL). Probabilistic analyses were performed to quantify uncertainties inherent in the system and models for a 1,000-year period, and sensitivity analyses were performed to identify parameters and processes that were most important to the simulated performance metrics. Comparisons between simulated results and measured values at the MWL were made to gain confidence in the models and perform calibrations whenmore » data were available. In addition, long-term monitoring requirements and triggers were recommended based on the results of the quantified uncertainty and sensitivity analyses.« less

  7. Essential and toxic elements in meat of wild birds.

    PubMed

    Roselli, Carla; Desideri, Donatella; Meli, Maria Assunta; Fagiolino, Ivan; Feduzi, Laura

    2016-01-01

    Essential and toxic elements were determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES), mass spectrometry (MS), and atomic absorption (AS) in meat of 14 migratory birds originating from central and northern Europe to provide baseline data regarding game meat consumed in central Italy. In all samples analyzed, cobalt (Co) and chromium (Cr) (total) levels were <0.326 mg/kg ww . For nonessential or toxic elements, arsenic (As), barium (Ba), cadmium (Cd), stannous (Sn), thallium (Tl), tellurium (Te), titanium (Ti), cerium (Ce), lantanium (La), and uranium (U) concentrations were <0.326 mg/kg ww, thorium (Th) <1.63 mg/kg ww , and mercury (Hg) <0.0163 mg/kg ww . When detectable, lead (Pb) concentrations always exceeded maximal admissible levels for metal (0.1 mg/kg ww ) established by the European Commission for meat. These findings indicate that elevated Pb concentrations in game ingested by humans may be a cause for concern.

  8. Transuranic Waste Burning Potential of Thorium Fuel in a Fast Reactor - 12423

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenner, Michael; Franceschini, Fausto; Ferroni, Paolo

    Westinghouse Electric Company (referred to as 'Westinghouse' in the rest of this paper) is proposing a 'back-to-front' approach to overcome the stalemate on nuclear waste management in the US. In this approach, requirements to further the societal acceptance of nuclear waste are such that the ultimate health hazard resulting from the waste package is 'as low as reasonably achievable'. Societal acceptability of nuclear waste can be enhanced by reducing the long-term radiotoxicity of the waste, which is currently driven primarily by the protracted radiotoxicity of the transuranic (TRU) isotopes. Therefore, a transition to a more benign radioactive waste can bemore » accomplished by a fuel cycle capable of consuming the stockpile of TRU 'legacy' waste contained in the LWR Used Nuclear Fuel (UNF) while generating waste which is significantly less radio-toxic than that produced by the current open U-based fuel cycle (once through and variations thereof). Investigation of a fast reactor (FR) operating on a thorium-based fuel cycle, as opposed to the traditional uranium-based is performed. Due to a combination between its neutronic properties and its low position in the actinide chain, thorium not only burns the legacy TRU waste, but it does so with a minimal production of 'new' TRUs. The effectiveness of a thorium-based fast reactor to burn legacy TRU and its flexibility to incorporate various fuels and recycle schemes according to the evolving needs of the transmutation scenario have been investigated. Specifically, the potential for a high TRU burning rate, high U-233 generation rate if so desired and low concurrent production of TRU have been used as metrics for the examined cycles. Core physics simulations of a fast reactor core running on thorium-based fuels and burning an external TRU feed supply have been carried out over multiple cycles of irradiation, separation and reprocessing. The TRU burning capability as well as the core isotopic content have been characterized. Results will be presented showing the potential for thorium to reach a high TRU transmutation rate over a wide variety of fuel types (oxide, metal, nitride and carbide) and transmutation schemes (recycle or partition of in-bred U-233). In addition, a sustainable scheme has been devised to burn the TRU accumulated in the core inventory once the legacy TRU supply has been exhausted, thereby achieving long-term virtually TRU-free. A comprehensive 'back-to-front' approach to the fuel cycle has recently been proposed by Westinghouse which emphasizes achieving 'acceptable', low-radiotoxicity, high-level waste, with the intent not only to satisfy all technical constraints but also to improve public acceptance of nuclear energy. Following this approach, the thorium fuel cycle, due to its low radiotoxicity and high potential for TRU transmutation has been selected as a promising solution. Additional studies not shown here have shown significant reduction of decay heat. The TRU burning potential of the Th-based fuel cycle has been illustrated with a variety of fuel types, using the Toshiba ARR to perform the analysis, including scenarios with continued LWR operation of either uranium fueled or thorium fueled LWRs. These scenarios will afford overall reduction in actinide radiotoxicity, however when the TRU supply is exhausted, a continued U- 235 LWR operation must be assumed to provide TRU makeup feed. This scenario will never reach the characteristically low TRU content of a closed thorium fuel cycle with its associated potential benefits on waste radiotoxicity, as exemplified by the transition scenario studied. At present, the cases studied indicate ThC as a potential fuel for maximizing TRU burning, while ThN with nitrogen enriched to 95% N-15 shows the highest breeding potential. As a result, a transition scenario with ThN was developed to show that a sustainable, closed Th-cycle can be achieved starting from burning the legacy TRU stock and completing the transmutation of the residual TRU remaining in the core inventory after the legacy TRU external supply has been exhausted. The radiotoxicity of the actinide waste during the various phases has been characterized, showing the beneficial effect of the decreasing content of TRU in the recycled fuel as the transition to a closed Th-based fuel cycle is undertaken. Due to the back-to-front nature of the proposed methodology, detailed designs are not the first step taken when assessing a fuel cycle scenario potential. As a result, design refinement is still required and should be expected in future studies. Moreover, significant safety assessment, including determination of associated reactivity coefficients, fuel and reprocessing feasibility studies and economic assessments will still be needed for a more comprehensive and meaningful comparison against other potential solutions. With the above considerations in mind, the potential advantages of thorium fuelled reactors on HLW management optimization lead us to believe that thorium fuelled reactor systems can play a significant role in the future and deserve further consideration. (authors)« less

  9. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico.

    PubMed

    Goldstein, Steven J; Abdel-Fattah, Amr I; Murrell, Michael T; Dobson, Patrick F; Norman, Deborah E; Amato, Ronald S; Nunn, Andrew J

    2010-03-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ( approximately 10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that (230)Th/(238)U activity ratios range from 0.005 to 0.48 and (226)Ra/(238)U activity ratios range from 0.006 to 113. (239)Pu/(238)U mass ratios for the saturated zone are <2 x 10(-14), and Pu mobility in the saturated zone is >1000 times lower than the U mobility. Saturated zone mobility decreases in the order (238)U approximately (226)Ra > (230)Th approximately (239)Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  10. Simultaneous determination of thorium, niobium, lead, and zinc by photon-induced x-ray fluorescence of lateritic material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaBrecque, J.J.; Adames, D.; Parker, W.C.

    1981-01-01

    A rapid method is presented for the simultaneous determinations of thorium, niobium, lead, and zinc in lateritic material from Cerro Impacto, Estado Bolivar, Venezuela. This technique uses a PDP - 11/05 processor - based photon induced x-ray fluorescence system. The total variations of approximately 5% for concentrations of approximately 1 and 10% for concentrations of approximately 0.1% were obtained with only 500 s of fluorescent time. The values obtained by this method were in agreement with values measured by conventional flame atomic absorption spectroscopy for lead and zinc. The values for thorium measured were in agreement with the reported valuesmore » for the reference materials supplied by NBL.« less

  11. Tags to Track Illicit Uranium and Plutonium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haire, M. Jonathan; Forsberg, Charles W.

    2007-07-01

    With the expansion of nuclear power, it is essential to avoid nuclear materials from falling into the hands of rogue nations, terrorists, and other opportunists. This paper examines the idea of detection and attribution tags for nuclear materials. For a detection tag, it is proposed to add small amounts [about one part per billion (ppb)] of {sup 232}U to enriched uranium to brighten its radioactive signature. Enriched uranium would then be as detectable as plutonium and thus increase the likelihood of intercepting illicit enriched uranium. The use of rare earth oxide elements is proposed as a new type of 'attribution'more » tag for uranium and thorium from mills, uranium and plutonium fuels, and other nuclear materials. Rare earth oxides are chosen because they are chemically compatible with the fuel cycle, can survive high-temperature processing operations in fuel fabrication, and can be chosen to have minimal neutronic impact within the nuclear reactor core. The mixture of rare earths and/or rare earth isotopes provides a unique 'bar code' for each tag. If illicit nuclear materials are recovered, the attribution tag can identify the source and lot of nuclear material, and thus help police reduce the possible number of suspects in the diversion of nuclear materials based on who had access. (authors)« less

  12. TRISO Fuel Performance: Modeling, Integration into Mainstream Design Studies, and Application to a Thorium-fueled Fusion-Fission Hybrid Blanket

    NASA Astrophysics Data System (ADS)

    Powers, Jeffrey J.

    2011-12-01

    This study focused on creating a new tristructural isotropic (TRISO) coated particle fuel performance model and demonstrating the integration of this model into an existing system of neutronics and heat transfer codes, creating a user-friendly option for including fuel performance analysis within system design optimization and system-level trade-off studies. The end product enables both a deeper understanding and better overall system performance of nuclear energy systems limited or greatly impacted by TRISO fuel performance. A thorium-fueled hybrid fusion-fission Laser Inertial Fusion Energy (LIFE) blanket design was used for illustrating the application of this new capability and demonstrated both the importance of integrating fuel performance calculations into mainstream design studies and the impact that this new integrated analysis had on system-level design decisions. A new TRISO fuel performance model named TRIUNE was developed and verified and validated during this work with a novel methodology established for simulating the actual lifetime of a TRISO particle during repeated passes through a pebble bed. In addition, integrated self-consistent calculations were performed for neutronics depletion analysis, heat transfer calculations, and then fuel performance modeling for a full parametric study that encompassed over 80 different design options that went through all three phases of analysis. Lastly, side studies were performed that included a comparison of thorium and depleted uranium (DU) LIFE blankets as well as some uncertainty quantification work to help guide future experimental work by assessing what material properties in TRISO fuel performance modeling are most in need of improvement. A recommended thorium-fueled hybrid LIFE engine design was identified with an initial fuel load of 20MT of thorium, 15% TRISO packing within the graphite fuel pebbles, and a 20cm neutron multiplier layer with beryllium pebbles in flibe molten salt coolant. It operated at a system power level of 2000 MWth, took about 3.5 years to reach full plateau power, and was capable of an End of Plateau burnup of 38.7 %FIMA if considering just the neutronic constraints in the system design; however, fuel performance constraints led to a maximum credible burnup of 12.1 %FIMA due to a combination of internal gas pressure and irradiation effects on the TRISO materials (especially PyC) leading to SiC pressure vessel failures. The optimal neutron spectrum for the thorium-fueled blanket options evaluated seemed to favor a hard spectrum (low but non-zero neutron multiplier thicknesses and high TRISO packing fractions) in terms of neutronic performance but the fuel performance constraints demonstrated that a significantly softer spectrum would be needed to decrease the rate of accumulation of fast neutron fluence in order to improve the maximum credible burnup the system could achieve.

  13. Investigation of mine and industry dumps in the FRG in relation to a possible release of natural radioactive elements.

    PubMed

    Schmitz, J

    1985-10-01

    More than 350 dumps of mines and industries in two federal states of the FRG were recorded, measured radiometrically, evaluated, and some of them sampled. Most of the mine dumps belonged to old and smaller residues from lead/zinc and iron ore mining, while the largest depositions contain tailings of modern ore beneficiation or flyash disposal. All mine dumps from uranium exploration in Baden-Württemberg and Bavaria were investigated. The highest doses, up to 100 mSv/a, were found on the piles of the uranium exploration. These depositions, which are supervised and licensed, are followed, in terms of surface dose, by the old uncontrolled mine dumps of silver/cobalt mining with doses up to 20 mSv/a. The numerous porphyry and granite quarries show doses between 1 and 2 mSv/a, as do flyash and slag dumps. The lowest doses were found on the dumps of the hydrothermal Pb/Zn and iron ore deposits, while the slag piles of iron ore processing showed higher thorium values. Assays for Ra-226 and Pb-210 of the materials deposited confirmed the radiometric results. Analyses of seepage waters and gallery waters showed only very few values exceeding the derived drinking water concentrations.

  14. Modelling of radiation field around spent fuel container.

    PubMed

    Kryuchkov, E F; Opalovsky, V A; Tikhomirov, G V

    2005-01-01

    Operation of nuclear reactors leads to the production of spent nuclear fuel (SNF). There are two basic strategies of SNF management: ultimate disposal of SNF in geological formations and recycle or repeated utilisation of reprocessed SNF. In both options, there is an urgent necessity to study radiation properties of SNF. Information about SNF radiation properties is required at all stages of SNF management. In order to reach more effective utilisation of nuclear materials, new fuel cycles are under development based on uranium-plutonium, uranium-thorium and some other types of nuclear fuel. These promising types of nuclear fuel are characterised by quite different radiation properties at all the stages of nuclear fuel cycle (NFC) listed above. So, comparative analysis is required for radiation properties of different nuclear fuel types at different NFC stages. The results presented here were obtained from the numerical analysis of the radiation field around transport containers of different SNF types and in SNF storage. The calculations are carried out with the application of the computer code packages SCALE-4.3 and MCNP-4C. Comparison of the dose parameters obtained for different models of the transport container with experimental data allowed us to make certain conclusions about the errors of numerical results caused by the approximate geometrical description of the transport container.

  15. Uranium mineralization in the Wilson Creek and Cranberry Gneisses and the Grandfather Mountain Formation, North Carolina and Tennessee. National Uranium Resource Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagener, H.D.; McHone, J.G.

    1982-10-01

    Detailed petrologic investigations were conducted at 74 anomalies that have surface radioactivities of 5 to 300 times background in the Grandfather Mountain region of North Carolina and Tennessee. One or more specimens of radioactive rock and one specimen of nonanomalous (barren) rock were taken for chemical analysis from each of the 74 sites. The specimens were analyzed fluorometrically for uranium (U/sub 3/O/sub 8/) and for 29 other elements by emission spectroscopy. Of the radioactive specimens, 23 contained less than 100 ppM U/sub 3/O/sub 8/ and were either depleted in uranium because of leaching or were rich in thorium; 25 containedmore » more than 500 ppM U/sub 3/O/sub 8/, with a maximum of 33,000 ppM. Specimens collected as barren contained up to 65 ppM U/sub 3/O/sub 8/. The more uraniferous rocks of the region tend to contain the larger concentrations of trace amounts of base metals.« less

  16. K-Rb Laser Pump Lamp

    DTIC Science & Technology

    1975-11-01

    for K-Rb Lamps With Xenon and Argon Figure 25 Specimen for Protective Coating Evaluation 65 Figure 26 Specimen Coated With Fused Tin- Aluminide After...through hot titanium and copper purifiers to maia.in low levels (a few ppm) of oxygen, nitrogen and water vapor. The box also contains an integral...case with titanium , zirconium, thorium, and other common reactive metals. 15 - -’-- .--󈨑CP>4 -_ A thin strip of uranium is inserted into the fill

  17. Crystal Growth and Characterization of THO2 and UxTh1-xO2

    DTIC Science & Technology

    2013-03-01

    bulk actinide crystals would open up new possibilities for the detection of weapons of mass destruction, the study of the effect of aging on...way of growing bulk actinide materials of optical quality. These refractory oxide single crystals offer potential applications in thorium nuclear...fuel technology, wide-band-gap uranium-based direct-conversion solid state neutron detectors, and understanding how actinide fuels age with time. ThO2

  18. The Best Defense: Making Maximum Sense of Minimum Deterrence

    DTIC Science & Technology

    2011-06-01

    uranium fuel cycles and has unmatched experience in the thorium fuel cycle.25 Published sources claim India produces between 20 and 40kg of plutonium...nuclear energy was moderate at best. Pakistan‘s first reactor , which it received from the United States, did not become operational until 1965.4...In 1974 Pakistan signed an agreement with France to supply a reprocessing plant for extracting plutonium from spent fuel from power reactors

  19. Fusion breeder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moir, R.W.

    1982-02-22

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outlinemore » specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.« less

  20. Fusion breeder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moir, R.W.

    1982-04-20

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outlinemore » specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.« less

Top