Science.gov

Sample records for lead-free piezoelectric materials

  1. Advances in lead-free piezoelectric materials for sensors and actuators.

    PubMed

    Aksel, Elena; Jones, Jacob L

    2010-01-01

    Piezoelectrics have widespread use in today's sensor and actuator technologies. However, most commercially available piezoelectric materials, e.g., Pb [Zr(x)Ti(1-x)] O(3) (PZT), are comprised of more than 60 weight percent lead (Pb). Due to its harmful effects, there is a strong impetus to identify new lead-free replacement materials with comparable properties to those of PZT. This review highlights recent developments in several lead-free piezoelectric materials including BaTiO(3), Na(0.5)Bi(0.5)TiO(3), K(0.5)Bi(0.5)TiO(3), Na(0.5)K(0.5)NbO(3), and their solid solutions. The factors that contribute to strong piezoelectric behavior are described and a summary of the properties for the various systems is provided.

  2. Lead-free piezoelectric materials and ultrasonic transducers for medical imaging

    NASA Astrophysics Data System (ADS)

    Taghaddos, Elaheh; Hejazi, Mehdi; Safari, Ahmad

    2015-06-01

    Piezoelectric materials have been vastly used in ultrasonic transducers for medical imaging. In this paper, firstly, the most promising lead-free compositions with perovskite structure for medical imaging applications have been reviewed. The electromechanical properties of various lead-free ceramics, composites, and single crystals based on barium titanate, bismuth sodium titanate, potassium sodium niobate, and lithium niobate are presented. Then, fundamental principles and design considerations of ultrasonic transducers are briefly described. Finally, recent developments in lead-free ultrasonic probes are discussed and their acoustic performance is compared to lead-based transducers. Focused transducers with different beam focusing methods such as lens focusing and mechanical shaping are explained. Additionally, acoustic characteristics of lead-free probes including the pulse-echo results as well as their imaging capabilities for various applications such as phantom imaging, in vitro intravascular ultrasound imaging of swine aorta, and in vivo or ex vivo imaging of human eyes and skin are reviewed.

  3. Performance of lead-free piezoelectric materials in cantilever-based energy harvesting devices

    NASA Astrophysics Data System (ADS)

    Kumar, Anuruddh; Kumar, Rajeev; Chauhan, Vishal S.; Vaish, Rahul

    2014-05-01

    Energy harvesting is one of the emerging applications of piezoelectric materials. In order to replace conventional lead-based materials with lead-free materials, it is important to evaluate their performance for such applications. In the present study, finite element method-based simulation shows mean power density produced from (K0.475Na0.475Li0.05)(Nb0.92Ta0.05Sb0.03)O3 add with 0.4 wt.% CeO2 and 0.4 wt.% MnO2 (KNLNTS) bimorph is 96.64% of lead zirconate titanate (Pb [ZrxTi1-x] O3) (PZT) ceramics. Load resistance (R), length of proof mass (Lm) and thickness of host layer (th) are optimized (using genetic algorithm) for maximum power density and tuning the operating frequency range which is near to natural frequency of the structure. The lead-free piezoelectric material KNLNTS has comparable results to that of PZT for piezoelectric energy harvester in the ambient frequency range of 90 Hz to 110 Hz. Results show that KNLNTS ceramics can be potentially used in energy harvesting devices.

  4. Evaluation of the performance of a lead-free piezoelectric material for energy harvesting

    NASA Astrophysics Data System (ADS)

    Machado, S. P.; Febbo, M.; Rubio-Marcos, F.; Ramajo, L. A.; Castro, M. S.

    2015-11-01

    Vibration-based energy harvesting has been explored as an auxiliary power source, which can provide small amounts of energy to power remote sensors installed in inaccessible locations. This paper presents an experimental and analytical study of an energy harvesting device using a lead-free piezoelectric material based on {{MoO}}3-doped ({{{K}}}0.44{{Na}}0.52{{Li}}0.04)({{Nb}}0.86{{Ta}}0.10{{Sb}}0.04){{{O}}}3 KNL-(NTS)Mo. The harvesting model corresponds to a cantilever beam with a KNL-(NTS)Mo piezoelectric disc attached to it. We analyze the effect of electromechanical coupling and load resistance on the generated electrical power. Electromechanical frequency response functions that relate the voltage output to the translational base acceleration are shown for experimental and analytical results.

  5. Development of Bismuth-based Lead-free Piezoelectric Materials: Thin Film Piezoelectric Materials via PVD and CSD Routes

    NASA Astrophysics Data System (ADS)

    Jeon, Yu Hong

    Piezoelectric materials have been widely used in electromechanical actuators, sensors, and ultrasonic transducers. Among these materials, lead zirconate titanate Pb(Zr1-xTix)O3 (PZT) has been primarily investigated due to its excellent piezoelectric properties. However, environmental concerns due to the toxicity of PbO have led to investigations into alternative materials systems. Bismuth-based perovskite piezoelectric materials such as (Bi0.5,Na0.5)TiO3 - (Bi0.5K 0.5)TiO3 (BNT - BKT), (Bi0.5,Na0.5 )TiO3 - (Bi0.5K0.5)TiO3 - BaTiO3(BNT - BKT - BT), (Bi0.5K 0.5)TiO3 - Bi(Zn0.5,Ti0.5)O 3 (BKT - BZT), and (Bi0.5,Na0.5)TiO 3 - (Bi0.5K0.5)TiO3 - Bi(Mg 0.5,Ti0.5)O3 (BNT - BKT - BMgT) have been explored as potential alternatives to PZT. These materials systems have been extensively studied in bulk ceramic form, however many of the ultimate applications will be in thin film embodiments (i.e., microelectromechanical systems). For this reason, in this thesis these lead-free piezoelectrics are synthesized in thin film form to understand the structure-property-processing relationships and their impact on the ultimate device response. Fabrication of high quality of 0.95BKT - 0.05BZT thin films on platinized silicon substrates was attempted by pulsed laser deposition. Due to cation volatility, deposition parameters such as substrate temperature, deposition pressure, and target-substrate distance, as well as target overdoping were explored to achieve phase pure materials. This route led to high dielectric loss, indicative of poor ferroelectric behavior. This was likely a result of the poor thin film morphology observed in films deposited via this method. Subsequently, 0.8BNT - 0.2BKT, 85BNT - 10BKT - 5BT, and 72.5BNT - 22.5BKT - 5BMgT (near morphotropic phase boundary composition) were synthesized via chemical solution deposition. To compensate the loss of A-site cations, overdoped precursor solutions were prepared. Crystallization after each spin cast layer were required to

  6. Lead-Free Metamaterials with Enormous Apparent Piezoelectric Response.

    PubMed

    Zhou, Wanfeng; Chen, Pan; Pan, Qi; Zhang, Xiaotong; Chu, Baojin

    2015-11-01

    Lead-free flexoelectric piezoelectric metamaterials are created by applying an asymmetric chemical reduction to Na1/2 Bi1/2 TiO3 -BaTiO3 ceramics. The reduction induces two gradient-generating mechanisms, curvature structure and chemical inhomogeneity, and enhances the flexoelectric effect. The ceramics behave like piezoelectric materials, exhibiting an enormous and high-temperature stable apparent piezoelectric response, outperforming existing lead-oxide-based piezoelectrics.

  7. Defect Engineering of Lead-Free Piezoelectrics with High Piezoelectric Properties and Temperature-Stability.

    PubMed

    Feng, Yu; Li, Wei-Li; Xu, Dan; Qiao, Yu-Long; Yu, Yang; Zhao, Yu; Fei, Wei-Dong

    2016-04-13

    The high piezoelectricity of ABO3-type lead-free piezoelectric materials can be achieved with the help of either morphotropic phase boundary (MPB) or polymorphic phase transition (PPT). Here, we propose a new defect engineering route to the excellent piezoelectric properties, in which doped smaller acceptor and donor ions substituting bivalent A-sites are utilized to bring local lattice distortion and lower symmetry. A concrete paradigm is presented, (Li-Al) codoped BaTiO3 perovskite, that exhibits a largely thermo-stable piezoelectric constant (>300 pC/N) and huge mechanical quality factor (>2000). A systematic analysis including theoretical analysis and simulation results indicates that the Li(+) and Al(3+) ions are inclined to occupy the neighboring A-sites in the lattice and constitute a defect dipole (ionic pairs). The defect dipoles possess a kind of dipole moment which tends to align directionally after thermo-electric treatment. A mechanism related to the defect symmetry principle, phase transition, and defect migration is proposed to explain the outstanding piezoelectric properties. The present study opens a new development window for excellent piezoelectricity and provides a promising route to the potential utilization of lead-free piezoelectrics in high power applications.

  8. Defect Engineering of Lead-Free Piezoelectrics with High Piezoelectric Properties and Temperature-Stability.

    PubMed

    Feng, Yu; Li, Wei-Li; Xu, Dan; Qiao, Yu-Long; Yu, Yang; Zhao, Yu; Fei, Wei-Dong

    2016-04-13

    The high piezoelectricity of ABO3-type lead-free piezoelectric materials can be achieved with the help of either morphotropic phase boundary (MPB) or polymorphic phase transition (PPT). Here, we propose a new defect engineering route to the excellent piezoelectric properties, in which doped smaller acceptor and donor ions substituting bivalent A-sites are utilized to bring local lattice distortion and lower symmetry. A concrete paradigm is presented, (Li-Al) codoped BaTiO3 perovskite, that exhibits a largely thermo-stable piezoelectric constant (>300 pC/N) and huge mechanical quality factor (>2000). A systematic analysis including theoretical analysis and simulation results indicates that the Li(+) and Al(3+) ions are inclined to occupy the neighboring A-sites in the lattice and constitute a defect dipole (ionic pairs). The defect dipoles possess a kind of dipole moment which tends to align directionally after thermo-electric treatment. A mechanism related to the defect symmetry principle, phase transition, and defect migration is proposed to explain the outstanding piezoelectric properties. The present study opens a new development window for excellent piezoelectricity and provides a promising route to the potential utilization of lead-free piezoelectrics in high power applications. PMID:27010869

  9. Piezoelectric properties of polymer/lead-free ceramic composites

    NASA Astrophysics Data System (ADS)

    Alexandre, M.; Bessaguet, C.; David, C.; Dantras, E.; Lacabanne, C.

    2016-08-01

    Thermoplastic/lead-free piezoelectric ceramic composite have been prepared. Sodium niobate (NaNbO3) has been chosen for its high Curie temperature. Moreover, it could be synthesized with two different morphologies: NaNbO3 nanowires (NN NW's) and NaNbO3 particles (NN P's). The filler has been dispersed in thermoplastic matrices with different dielectric permittivities ?: PA11 ( ? and polyvinylidene fluoride (PVDF) (?. Due to polarization conditions, only ceramic particles are poled. The piezoelectric coefficient (d33) has been measured in composites. The higher d33 is recorded in composites based on PA11 (d33 = 6.5 pC.N-1 for 30 vol. % NN NW's). The influence of the NN aspect ratio on PVDF/NN composites has been analysed: the higher d33 (d33 = 2.6 pC.N-1 for 25 vol. %) is recorded in PVDF/NN P's. The major interest of these hybrid lead-free piezoelectric composites is mild poling conditions, ductility and thermal stability of piezoelectric performances.

  10. Development, Characterization and Piezoelectric Fatigue Behavior of Lead-Free Perovskite Piezoelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Patterson, Eric Andrew

    Much recent research has focused on the development lead-free perovskite piezoelectrics as environmentally compatible alternatives to lead zirconate titanate (PZT). Two main categories of lead free perovskite piezoelectric ceramic systems were investigated as potential replacements to lead zirconate titanate (PZT) for actuator devices. First, solid solutions based on Li, Ta, and Sb modified (K0.5Na0.5)NbO3 (KNN) lead-free perovskite systems were created using standard solid state methods. Secondly, Bi-based materials a variety of compositions were explored for (1-x)(Bi 0.5Na0.5)TiO3-xBi(Zn0.5Ti0.5)O 3 (BNT-BZT) and Bi(Zn0.5Ti0.5)O3-(Bi 0.5K0.5)TiO3-(Bi0.5Na0.5)TiO 3 (BZT-BKT-BNT). It was shown that when BNT-BKT is combined with increasing concentrations of Bi(Zn1/2i1/2)O3 (BZT), a transition from normal ferroelectric behavior to a material with large electric field induced strains was observed. The higher BZT containing compositions are characterized by large hysteretic strains(> 0.3%) with no negative strains that might indicate domain switching. This work summarizes and analyzes the fatigue behavior of the new generation of Pb-free piezoelectric materials. In piezoelectric materials, fatigue is observed as a degradation in the electromechanical properties under the application of a bipolar or unipolar cyclic electrical load. In Pb-based materials such as lead zirconate titanate (PZT), fatigue has been studied in great depth for both bulk and thin film applications. In PZT, fatigue can result from microcracking or electrode effects (especially in thin films). Ultimately, however, it is electronic and ionic point defects that are the most influential mechanism. Therefore, this work also analyzes the fatigue characteristics of bulk polycrystalline ceramics of the modified-KNN and BNT-BKT-BZT compositions developed. The defect chemistry that underpins the fatigue behavior will be examined and the results will be compared to the existing body of work on PZT. It will

  11. Domain evolution in lead-free thin film piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Dubelman, Meredith Elissa

    Due to environmental and health concerns lead-free piezoelectric systems are currently being evaluated for use as replacements for lead-based ceramics. Sodium Bismuth Titanate, Na0.5Bi0.5TiO 3 (NBT) - based materials offer possible alternatives. NBT is a perovskite-type, ABO3, compound and is ferroelectric at room temperature. It has a relatively high Curie temperature, a large remnant polarization, and a high coercive field at room temperature. NBT can be modified by additives, such as BaTiO3 (BT), to improve its properties further. NBT-xBT was originally reported to have a morphotropic phase boundary which lies at x = 0.06. The structure transforms from rhombohedral for x < 0.06 to tetragonal for x > 0.06. However, recent studies have shown that for some compositions NBT-xBT develop a relaxor phase at room temperature. NBT xBT materials in the compositional range between 0.05 ≤ x ≤ 0.11have been shown to contain nanodomains embedded in a non-polar cubic matrix. The fluctuations of these nanodomains give rise to the relaxor behavior which in some cases is referred to as "relaxor antiferroelectric". In contrast to ferroelectric materials, in relaxor ferroelectrics thermal fluctuations can cause the poled nanodomains to relax to an unpoled state. It is necessary to understand local structure effects on the piezoelectric response at the grain level in order to develop materials with improved performance. Using Piezoresponse Force Microscopy (PFM), this study examines the domain motion within individual grains and domain evolution over time under locally applied electric fields as well as single-point hysteresis loop measurements in thin film NBT and NBT-xBT. These experiments provide an understanding of the domain behavior that cannot be acquired through bulk, macroscopic measurements. Thin films are fabricated using hydrothermal deposition and pulsed laser deposition. The films are highly oriented and exhibit relaxor behavior at room temperature.

  12. Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K₀̣₅Bi₀̣₅TiO₃-BaTiO₃-Na₀̣₅Bi₀̣₅TiO₃ piezoelectric materials

    DOE PAGESBeta

    Maurya, Deepam; Zhou, Yuan; Wang, Yaojin; Yan, Yongke; Li, Jiefang; Viehland, Dwight; Priya, Shashank

    2015-02-26

    We synthesized grain-oriented lead-free piezoelectric materials in (K₀̣₅Bi₀̣₅TiO₃-BaTiO₃-xNa₀̣₅Bi₀̣₅TiO₃ (KBT-BT-NBT) system with high degree of texturing along the [001]c (c-cubic) crystallographic orientation. We demonstrate giant field induced strain (~0.48%) with an ultra-low hysteresis along with enhanced piezoelectric response (d₃₃ ~ 190pC/N) and high temperature stability (~160°C). Transmission electron microscopy (TEM) and piezoresponse force microscopy (PFM) results demonstrate smaller size highly ordered domain structure in grain-oriented specimen relative to the conventional polycrystalline ceramics. The grain oriented specimens exhibited a high degree of non-180° domain switching, in comparison to the randomly axed ones. These results indicate the effective solution to the lead-free piezoelectricmore » materials.« less

  13. KNN–NTK composite lead-free piezoelectric ceramic

    SciTech Connect

    Matsuoka, T. Kozuka, H.; Kitamura, K.; Yamada, H.; Kurahashi, T.; Yamazaki, M.; Ohbayashi, K.

    2014-10-21

    A (K,Na)NbO₃-based lead-free piezoelectric ceramic was successfully densified. It exhibited an enhanced electromechanical coupling factor of kₚ=0.52, a piezoelectric constant d₃₃=252 pC/N, and a frequency constant Nₚ=3170 Hz m because of the incorporation of an elaborate secondary phase composed primarily of KTiNbO₅. The ceramic's nominal composition was 0.92K₀.₄₂Na₀.₄₄Ca₀.₀₄Li₀.₀₂Nb₀.₈₅O₃–0.047K₀.₈₅Ti₀.₈₅Nb₁.₁₅O₅–0.023BaZrO₃ –0.0017Co₃O₄–0.002Fe₂O₃–0.005ZnO, abbreviated herein as KNN–NTK composite. The KNN–NTK ceramic exhibited a dense microstructure with few microvoids which significantly degraded its piezoelectric properties. Elemental maps recorded using transmission electron microscopy with energy-dispersive X-ray spectroscopy (TEM–EDS) revealed regions of high concentrations of Co and Zn inside the NTK phase. In addition, X-ray diffraction patterns confirmed that a small portion of the NTK phase was converted into K₂(Ti,Nb,Co,Zn)₆O₁₃ or CoZnTiO₄ by a possible reaction between Co and Zn solutes and the NTK phase during a programmed sintering schedule. TEM studies also clarified a distortion around the KNN/NTK interfaces. Such an NTK phase filled voids between KNN particles, resulting in an improved chemical stability of the KNN ceramic. The manufacturing process was subsequently scaled to 100 kg per batch for granulated ceramic powder using a spray-drying technique. The properties of the KNN–NTK composite ceramic produced using the scaled-up method were confirmed to be identical to those of the ceramic prepared by conventional solid-state reaction sintering. Consequently, slight changes in the NTK phase composition and the distortion around the KNN/NTK interfaces affected the KNN–NTK composite ceramic's piezoelectric characteristics.

  14. Giant piezoelectricity in potassium-sodium niobate lead-free ceramics.

    PubMed

    Wang, Xiaopeng; Wu, Jiagang; Xiao, Dingquan; Zhu, Jianguo; Cheng, Xiaojing; Zheng, Ting; Zhang, Binyu; Lou, Xiaojie; Wang, Xiangjian

    2014-02-19

    Environment protection and human health concern is the driving force to eliminate the lead from commercial piezoelectric materials. In 2004, Saito et al. [ Saito et al., Nature , 2004 , 432 , 84 . ] developed an alkali niobate-based perovskite solid solution with a peak piezoelectric constant d33 of 416 pC/N when prepared in the textured polycrystalline form, intriguing the enthusiasm of developing high-performance lead-free piezoceramics. Although much attention has been paid on the alkali niobate-based system in the past ten years, no significant breakthrough in its d33 has yet been attained. Here, we report an alkali niobate-based lead-free piezoceramic with the largest d33 of ∼490 pC/N ever reported so far using conventional solid-state method. In addition, this material system also exhibits excellent integrated performance with d33∼390-490 pC/N and TC∼217-304 °C by optimizing the compositions. This giant d33 of the alkali niobate-based lead-free piezoceramics is ascribed to not only the construction of a new rhombohedral-tetragonal phase boundary but also enhanced dielectric and ferroelectric properties. Our finding may pave the way for "lead-free at last". PMID:24499419

  15. Development of lead-free piezoelectric thin films by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Abazari Torghabeh, Maryam

    As a high performance piezoelectric material widely used in sensors, actuators and other electronic devices, lead zirconate titanate (PZT) ceramics have been the center of attention for many years. However, the toxicity of these materials and their exposure to the environment during processing steps, such as calcination, sintering, machining as well as problems in recycling and disposal have been major concerns regarding their usage all around the globe for the past couple of decades. Consequently, utilizing lead-based materials for many commercial applications have been recently restricted in Europe and Asia and measures are being taken in United States as well. Therefore, there is an urgent need for lead-free piezoelectrics whose properties are comparable to those of well-known PZT materials. Recently, the discovery of ultra-high piezoelectric activity in the ternary lead-free KNaNbO3-LiTaO 3-LiSbO3 (KNN-LT-LS) and (Bi,Na)TiO3-(Bi,K)TiO 3-BaTiO3 (BNT-BKT-BT) systems have given hope for alternatives to PZT. Furthermore, the demand for new generation of environment-friendly functional devices, utilizing piezoelectric materials, inspired a new surge in lead-free piezoelectric thin film research. In this study, an attempt has been made to explore the development of lead-free piezoelectric thin films by Pulsed Laser Deposition (PLD) on SrTiO 3 substrate. While the growth and development process of KNN-LT-LS thin films was the primary goal of this thesis, a preliminary effort was also made to fabricate and characterize BNT-BKT-BT thin films. In a comprehensive and systematic process optimization study in conjunction with X-ray diffractometry, the phase evolution, stoichiometry, and growth orientation of the films are monitored as a function of deposition conditions including temperature and ambient oxygen partial pressure. Processing parameters such as substrate temperature and pressure are shown to be highly dominant in determining the phase and composition of the

  16. Reliability of Nickel Inner Electrode Lead-Free Multilayer Piezoelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Hayashi, Hiroyuki; Kawada, Shinichiro; Kimura, Masahiko; Nakai, Yoshihiro; Tabata, Toyokazu; Shiratsuyu, Kosuke; Nada, Kazushige; Takagi, Hiroshi

    2012-09-01

    The environmental reliability of lead-free (K,Na)NbO3-based multilayer ceramics with nickel inner electrodes was studied. The multilayer specimen with good piezoelectric properties was successfully obtained by adding excess zirconium to a (K,Na)NbO3-based composition. Excess zirconium probably accelerated the solid solution of potassium into the crystal lattice and prevented potassium evaporation. The electric resistivity and piezoelectric properties of the ceramics were extremely stable at a high temperature (85 °C), a low temperature (-40 °C), and a high humidity [85 °C/85% relative humidity (RH)]. Their change rates were below 10% in 500 h studies. The stability was also high in the thermal shock (from -40 to 85 °C) test. It is thus concluded that the (K,Na)NbO3-based composition containing excess zirconium is a good candidate material for nickel electrode multilayer ceramics.

  17. Piezoelectric Active Humidity Sensors Based on Lead-Free NaNbO₃ Piezoelectric Nanofibers.

    PubMed

    Gu, Li; Zhou, Di; Cao, Jun Cheng

    2016-06-07

    The development of micro-/nano-scaled energy harvesters and the self-powered sensor system has attracted great attention due to the miniaturization and integration of the micro-device. In this work, lead-free NaNbO₃ piezoelectric nanofibers with a monoclinic perovskite structure were synthesized by the far-field electrospinning method. The flexible active humidity sensors were fabricated by transferring the nanofibers from silicon to a soft polymer substrate. The sensors exhibited outstanding piezoelectric energy-harvesting performance with output voltage up to 2 V during the vibration process. The output voltage generated by the NaNbO₃ sensors exhibited a negative correlation with the environmental humidity varying from 5% to 80%, where the peak-to-peak value of the output voltage generated by the sensors decreased from 0.40 to 0.07 V. The sensor also exhibited a short response time, good selectively against ethanol steam, and great temperature stability. The piezoelectric active humidity sensing property could be attributed to the increased leakage current in the NaNbO₃ nanofibers, which was generated due to proton hopping among the H₃O⁺ groups in the absorbed H₂O layers under the driving force of the piezoelectric potential.

  18. Piezoelectric Active Humidity Sensors Based on Lead-Free NaNbO3 Piezoelectric Nanofibers

    PubMed Central

    Gu, Li; Zhou, Di; Cao, Jun Cheng

    2016-01-01

    The development of micro-/nano-scaled energy harvesters and the self-powered sensor system has attracted great attention due to the miniaturization and integration of the micro-device. In this work, lead-free NaNbO3 piezoelectric nanofibers with a monoclinic perovskite structure were synthesized by the far-field electrospinning method. The flexible active humidity sensors were fabricated by transferring the nanofibers from silicon to a soft polymer substrate. The sensors exhibited outstanding piezoelectric energy-harvesting performance with output voltage up to 2 V during the vibration process. The output voltage generated by the NaNbO3 sensors exhibited a negative correlation with the environmental humidity varying from 5% to 80%, where the peak-to-peak value of the output voltage generated by the sensors decreased from 0.40 to 0.07 V. The sensor also exhibited a short response time, good selectively against ethanol steam, and great temperature stability. The piezoelectric active humidity sensing property could be attributed to the increased leakage current in the NaNbO3 nanofibers, which was generated due to proton hopping among the H3O+ groups in the absorbed H2O layers under the driving force of the piezoelectric potential. PMID:27338376

  19. Piezoelectric Active Humidity Sensors Based on Lead-Free NaNbO₃ Piezoelectric Nanofibers.

    PubMed

    Gu, Li; Zhou, Di; Cao, Jun Cheng

    2016-01-01

    The development of micro-/nano-scaled energy harvesters and the self-powered sensor system has attracted great attention due to the miniaturization and integration of the micro-device. In this work, lead-free NaNbO₃ piezoelectric nanofibers with a monoclinic perovskite structure were synthesized by the far-field electrospinning method. The flexible active humidity sensors were fabricated by transferring the nanofibers from silicon to a soft polymer substrate. The sensors exhibited outstanding piezoelectric energy-harvesting performance with output voltage up to 2 V during the vibration process. The output voltage generated by the NaNbO₃ sensors exhibited a negative correlation with the environmental humidity varying from 5% to 80%, where the peak-to-peak value of the output voltage generated by the sensors decreased from 0.40 to 0.07 V. The sensor also exhibited a short response time, good selectively against ethanol steam, and great temperature stability. The piezoelectric active humidity sensing property could be attributed to the increased leakage current in the NaNbO₃ nanofibers, which was generated due to proton hopping among the H₃O⁺ groups in the absorbed H₂O layers under the driving force of the piezoelectric potential. PMID:27338376

  20. Effect of poling process on piezoelectric properties of BCZT - 0.08 wt.% CeO2 lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Chandrakala, E.; Praveen, J. Paul; Das, Dibakar

    2016-05-01

    The properties of lead free piezoelectric materials can be tuned by suitable doping in the A and B sites of the perovskite structure. In the present study, cerium has been identified as a dopant to investigate the piezoelectric properties of lead-free BCZT system. BCZT - 0.08 wt.%CeO2 lead-free ceramics have been synthesized using sol-gel technique and the effects of CeO2 dopant on their phase structure and piezoelectric properties were investigated systematically. Poling conditions, such as temperature, electric field, and poling time have been optimized to get enhanced piezoelectric response. The optimized poling conditions (50°C, 3Ec and 30min) resulted in high piezoelectric charge coefficient d33 ~ 670pC/N, high electromechanical coupling coefficient kp ~ 60% and piezoelectric voltage coefficient g33 ~ 14 mV.m/N for BCZT - 0.08wt.% CeO2 ceramics.

  1. Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K0.5Bi0.5TiO3-BaTiO3-Na0.5Bi0.5TiO3 piezoelectric materials.

    PubMed

    Maurya, Deepam; Zhou, Yuan; Wang, Yaojin; Yan, Yongke; Li, Jiefang; Viehland, Dwight; Priya, Shashank

    2015-02-26

    We synthesized grain-oriented lead-free piezoelectric materials in (K0.5Bi0.5TiO3-BaTiO3-xNa0.5Bi0.5TiO3 (KBT-BT-NBT) system with high degree of texturing along the [001]c (c-cubic) crystallographic orientation. We demonstrate giant field induced strain (~0.48%) with an ultra-low hysteresis along with enhanced piezoelectric response (d33 ~ 190pC/N) and high temperature stability (~160°C). Transmission electron microscopy (TEM) and piezoresponse force microscopy (PFM) results demonstrate smaller size highly ordered domain structure in grain-oriented specimen relative to the conventional polycrystalline ceramics. The grain oriented specimens exhibited a high degree of non-180° domain switching, in comparison to the randomly axed ones. These results indicate the effective solution to the lead-free piezoelectric materials.

  2. Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K₀̣₅Bi₀̣₅TiO₃-BaTiO₃-Na₀̣₅Bi₀̣₅TiO₃ piezoelectric materials

    SciTech Connect

    Maurya, Deepam; Zhou, Yuan; Wang, Yaojin; Yan, Yongke; Li, Jiefang; Viehland, Dwight; Priya, Shashank

    2015-02-26

    We synthesized grain-oriented lead-free piezoelectric materials in (K₀̣₅Bi₀̣₅TiO₃-BaTiO₃-xNa₀̣₅Bi₀̣₅TiO₃ (KBT-BT-NBT) system with high degree of texturing along the [001]c (c-cubic) crystallographic orientation. We demonstrate giant field induced strain (~0.48%) with an ultra-low hysteresis along with enhanced piezoelectric response (d₃₃ ~ 190pC/N) and high temperature stability (~160°C). Transmission electron microscopy (TEM) and piezoresponse force microscopy (PFM) results demonstrate smaller size highly ordered domain structure in grain-oriented specimen relative to the conventional polycrystalline ceramics. The grain oriented specimens exhibited a high degree of non-180° domain switching, in comparison to the randomly axed ones. These results indicate the effective solution to the lead-free piezoelectric materials.

  3. Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K0.5Bi0.5TiO3-BaTiO3-Na0.5Bi0.5TiO3 piezoelectric materials

    PubMed Central

    Maurya, Deepam; Zhou, Yuan; Wang, Yaojin; Yan, Yongke; Li, Jiefang; Viehland, Dwight; Priya, Shashank

    2015-01-01

    We synthesized grain-oriented lead-free piezoelectric materials in (K0.5Bi0.5TiO3-BaTiO3-xNa0.5Bi0.5TiO3 (KBT-BT-NBT) system with high degree of texturing along the [001]c (c-cubic) crystallographic orientation. We demonstrate giant field induced strain (~0.48%) with an ultra-low hysteresis along with enhanced piezoelectric response (d33 ~ 190pC/N) and high temperature stability (~160°C). Transmission electron microscopy (TEM) and piezoresponse force microscopy (PFM) results demonstrate smaller size highly ordered domain structure in grain-oriented specimen relative to the conventional polycrystalline ceramics. The grain oriented specimens exhibited a high degree of non-180° domain switching, in comparison to the randomly axed ones. These results indicate the effective solution to the lead-free piezoelectric materials. PMID:25716551

  4. Lead-Free Piezoceramics: Revealing the Role of the Rhombohedral-Tetragonal Phase Coexistence in Enhancement of the Piezoelectric Properties.

    PubMed

    Rubio-Marcos, Fernando; López-Juárez, Rigoberto; Rojas-Hernandez, Rocio E; del Campo, Adolfo; Razo-Pérez, Neftalí; Fernandez, Jose F

    2015-10-21

    Until now, lead zirconate titanate (PZT) based ceramics are the most widely used in piezoelectric devices. However, the use of lead is being avoided due to its toxicity and environmental risks. Indeed, the attention in piezoelectric devices has been moved to lead-free ceramics, especially on (K,Na)NbO3-based materials, due to growing environmental concerns. Here we report a systematic evaluation of the effects of the compositional modifications induced by replacement of the B-sites with Sb(5+) ions in 0.96[(K0.48Na0.52)0.95Li0.05Nb1-xSbxO3]-0.04[BaZrO3] lead-free piezoceramics. We show that this compositional design is the driving force for the development of the high piezoelectric properties. So, we find that this phenomenon can be explained by the stabilization of a Rhombohedral-Tetragonal (R-T) phase boundary close to room temperature, that facilities the polarization process of the system and exhibits a significantly high piezoelectric response with a d33 value as high as ∼400 pC/N, which is comparable to part soft PZTs. As a result, we believe that the general strategy and design principles described in this study open the possibility of obtaining (K,Na)NbO3-based lead-free ceramics with enhanced properties, expanding their application range.

  5. Lead-Free Piezoelectric Diaphragm Biosensors Based on Micro-Machining Technology and Chemical Solution Deposition

    PubMed Central

    Li, Xiaomeng; Wu, Xiaoqing; Shi, Peng; Ye, Zuo-Guang

    2016-01-01

    In this paper, we present a new approach to the fabrication of integrated silicon-based piezoelectric diaphragm-type biosensors by using sodium potassium niobate-silver niobate (0.82KNN-0.18AN) composite lead-free thin film as the piezoelectric layer. The piezoelectric diaphragms were designed and fabricated by micro-machining technology and chemical solution deposition. The fabricated device was very sensitive to the mass changes caused by various targets attached on the surface of diaphragm. The measured mass sensitivity value was about 931 Hz/μg. Its good performance shows that the piezoelectric diaphragm biosensor can be used as a cost-effective platform for nucleic acid testing. PMID:26771617

  6. Lead-Free Piezoelectric Diaphragm Biosensors Based on Micro-Machining Technology and Chemical Solution Deposition.

    PubMed

    Li, Xiaomeng; Wu, Xiaoqing; Shi, Peng; Ye, Zuo-Guang

    2016-01-12

    In this paper, we present a new approach to the fabrication of integrated silicon-based piezoelectric diaphragm-type biosensors by using sodium potassium niobate-silver niobate (0.82KNN-0.18AN) composite lead-free thin film as the piezoelectric layer. The piezoelectric diaphragms were designed and fabricated by micro-machining technology and chemical solution deposition. The fabricated device was very sensitive to the mass changes caused by various targets attached on the surface of diaphragm. The measured mass sensitivity value was about 931 Hz/μg. Its good performance shows that the piezoelectric diaphragm biosensor can be used as a cost-effective platform for nucleic acid testing.

  7. Lead-Free Piezoelectric Diaphragm Biosensors Based on Micro-Machining Technology and Chemical Solution Deposition.

    PubMed

    Li, Xiaomeng; Wu, Xiaoqing; Shi, Peng; Ye, Zuo-Guang

    2016-01-01

    In this paper, we present a new approach to the fabrication of integrated silicon-based piezoelectric diaphragm-type biosensors by using sodium potassium niobate-silver niobate (0.82KNN-0.18AN) composite lead-free thin film as the piezoelectric layer. The piezoelectric diaphragms were designed and fabricated by micro-machining technology and chemical solution deposition. The fabricated device was very sensitive to the mass changes caused by various targets attached on the surface of diaphragm. The measured mass sensitivity value was about 931 Hz/μg. Its good performance shows that the piezoelectric diaphragm biosensor can be used as a cost-effective platform for nucleic acid testing. PMID:26771617

  8. Complete set of material constants of 0.95(Na0.5Bi0.5)TiO3-0.05BaTiO3 lead-free piezoelectric single crystal and the delineation of extrinsic contributions

    NASA Astrophysics Data System (ADS)

    Zheng, Limei; Yi, Xiujie; Zhang, Shantao; Jiang, Wenhua; Yang, Bin; Zhang, Rui; Cao, Wenwu

    2013-09-01

    Lead-free piezoelectric single crystal 0.95(Na0.5Bi0.5)TiO3 (NBT)-0.05BaTiO3 was grown by top-seeded solution growth method, which has rhombohedral symmetry with composition near morphotropic phase boundary. Full set of dielectric, piezoelectric, and elastic constants for [001]c poled domain-engineered single crystal was determined. Excellent electromechanical properties and low dielectric loss (d33 = 360 pC/N, d31 = -113 pC/N, d15 = 162 pC/N, k33 = 0.720, kt = 0.540, and tan δ = 1.1%) make it a good candidate to replace lead-based piezoelectric materials. The depolarization temperature (Td = 135 °C) is the highest among all NBT-based materials and its electromechanical coupling properties are very stable below Td. Extrinsic contributions to piezoelectric properties were investigated by Rayleigh analysis.

  9. Lead-free LiNbO3 nanowire-based nanocomposite for piezoelectric power generation

    PubMed Central

    2014-01-01

    In a flexible nanocomposite-based nanogenerator, in which piezoelectric nanostructures are mixed with polymers, important parameters to increase the output power include using long nanowires with high piezoelectricity and decreasing the dielectric constant of the nanocomposite. Here, we report on piezoelectric power generation from a lead-free LiNbO3 nanowire-based nanocomposite. Through ion exchange of ultra-long Na2Nb2O6-H2O nanowires, we synthesized long (approximately 50 μm in length) single-crystalline LiNbO3 nanowires having a high piezoelectric coefficient (d33 approximately 25 pmV-1). By blending LiNbO3 nanowires with poly(dimethylsiloxane) (PDMS) polymer (volume ratio 1:100), we fabricated a flexible nanocomposite nanogenerator having a low dielectric constant (approximately 2.7). The nanogenerator generated stable electric power, even under excessive strain conditions (approximately 105 cycles). The different piezoelectric coefficients of d33 and d31 for LiNbO3 may have resulted in generated voltage and current for the e33 geometry that were 20 and 100 times larger than those for the e31 geometry, respectively. This study suggests the importance of the blending ratio and strain geometry for higher output-power generation in a piezoelectric nanocomposite-based nanogenerator. PACS 77.65.-j; 77.84.-s; 73.21.Hb PMID:24386884

  10. Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator.

    PubMed

    Jung, Jong Hoon; Lee, Minbaek; Hong, Jung-Il; Ding, Yong; Chen, Chih-Yen; Chou, Li-Jen; Wang, Zhong Lin

    2011-12-27

    Perovskite ferroelectric nanowires have rarely been used for the conversion of tiny mechanical vibrations into electricity, in spite of their large piezoelectricity. Here we present a lead-free NaNbO(3) nanowire-based piezoelectric device as a high output and cost-effective flexible nanogenerator. The device consists of a NaNbO(3) nanowire-poly(dimethylsiloxane) (PDMS) polymer composite and Au/Cr-coated polymer films. High-quality NaNbO(3) nanowires can be grown by hydrothermal method at low temperature and can be poled by an electric field at room temperature. The NaNbO(3) nanowire-PDMS polymer composite device shows an output voltage of 3.2 V and output current of 72 nA (current density of 16 nA/cm(2)) under a compressive strain of 0.23%. These results imply that NaNbO(3) nanowires should be quite useful for large-scale lead-free piezoelectric nanogenerator applications.

  11. Piezoelectric and ferroelectric properties of lead-free niobium-rich potassium lithium tantalate niobate single crystals

    SciTech Connect

    Li, Jun; Li, Yang; Zhou, Zhongxiang; Guo, Ruyan; Bhalla, Amar S.

    2014-01-01

    Graphical abstract: - Highlights: • Lead-free K{sub 0.95}Li{sub 0.05}Ta{sub 1−x}Nb{sub x}O{sub 3} single crystals were grown using the top-seeded melt growth method. • The piezoelectric and ferroelectric properties of as-grown crystals were systematically investigated. • The piezoelectric properties are very attractive, e.g. for x = 0.60 composition, k{sub t} ≈ 70%, k{sub 31} ≈ 70%, k{sub 33} ≈ 77%, d{sub 31} ≈ 230 pC/N, d{sub 33} ≈ 600 pC/N. • The coercive fields of P–E hysteresis loops are quite small, about or less than 1 kV/mm. - Abstract: Lead-free potassium lithium tantalate niobate single crystals with the composition of K{sub 0.95}Li{sub 0.05}Ta{sub 1−x}Nb{sub x}O{sub 3} (abbreviated as KLTN, x = 0.51, 0.60, 0.69, 0.78) were grown using the top-seeded melt growth method. Their piezoelectric and ferroelectric properties in as-grown crystals have been systematically investigated. The phase transitions and Curie temperatures were determined from dielectric and pyroelectric measurements. Piezoelectric coefficients and electromechanical coupling factors in thickness mode, length-extensional mode and longitudinal mode were obtained. The piezoelectric properties are very attractive, e.g. for x = 0.60 composition, k{sub t} ≈ 70%, k{sub 31} ≈ 70%, k{sub 33} ≈ 77%, d{sub 31} ≈ 230 pC/N, d{sub 33} ≈ 600 pC/N are comparable to the lead-based PZT composition. The polarization versus electric field hysteresis loops show saturated shapes. In short, lead-free niobium-rich KLTN system possesses comparable properties to those in important lead-based piezoelectric material nowadays.

  12. Synthesis of lead-free piezoelectric powders by ultrasonic-assisted hydrothermal method and properties of sintered (K0.48Na0.52)NBO3 ceramics.

    PubMed

    Isobe, Gaku; Maeda, Takafumi; Bornmann, Peter; Hemsel, Tobias; Morita, Takeshi

    2014-02-01

    (K,Na)NbO3 ceramics have attracted much attention as lead-free piezoelectric materials with high piezoelectric properties. High-quality (K,Na)NbO3 ceramics can be sintered using KNbO3 and NaNbO3 powders synthesized by a hydrothermal method. In this study, to enhance the quality factor of the ceramics, high-power ultrasonic irradiation was employed during the hydrothermal method, which led to a reduction in the particle size of the resultant powders. PMID:24474129

  13. Study of BNT-BKT-BT lead-free piezoelectric ceramics and their application in piezoelectric devices

    NASA Astrophysics Data System (ADS)

    Choy, Siu Hong

    Lead-free piezoelectric ceramics, 0.90Bi0.5Na 0.5TiO3-0.05Bi0.5K0.5TiO3-0.05BaTiO 3 (BNKBT-5), have been fabricated by a solid-state reaction method. The dielectric, piezoelectric and ferroelectric properties of the ceramics have been measured and the microstructures studied by X-ray diffraction and SEM. In the ferroelectric hysteresis loop measurements, Pr ˜ 28.5 muC/cm2 and Ec ˜3.5 MV/m have been observed. The electromechanical coupling coefficients kp and kt are 0.31 and 0.46, respectively. Those properties are comparable to that of lead-based ceramics such as PZT. Three different compounds, including CeO2, Ca2Fe 2O5 and (Bi0.5Li0.5)TiO3, have been used as additives/dopants to improve the properties of BNKBT-5. All the samples with different compositions have been characterized. The measured properties are compared with that of BNKBT-5. It has been found that the BNKBT-5 doped with 1.5 mol% of (Bi0.5Li0.5)TiO3, namely BNKLBT-1.5, has the best performance. It can enhance kp, kt, Qm, Pr, and can reduce tandelta but do not lower the depolarization temperature. Two different types of devices have been fabricated using BNKBT-5 and BNKLBT-1.5 ceramic rings. The first device is compressive-type accelerometers. A PZT accelerometer with similar structure has also been fabricated for comparison. The accelerometers are calibrated using a back-to-back calibration method against a standard reference accelerometer. Within the +/-2.5% tolerance, the mean sensitivity of PZT, BNKBT and BNKLBT accelerometer is 4.34 pC/ms -2 (50 Hz to 8.24 kHz), 2.24 pC/ms-2 (50 Hz to 10.1 kHz) and 2.97 pC/ms-2 (50 Hz to 12.45 kHz), respectively. The BNKLBT-1.5 accelerometer has a reasonably high sensitivity and the broadest sensing frequency range which would be the most preferable choice for structural health monitoring applications. The second device is ultrasonic wirebonding transducers for microelectronic packaging. It has been found that if titanium is used as the metal parts in the

  14. High performance Aurivillius phase sodium-potassium bismuth titanate lead-free piezoelectric ceramics with lithium and cerium modification

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Ming; Wang, Jin-Feng

    2006-11-01

    The piezoelectric properties of the lithium and cerium modified A-site vacancies sodium-potassium bismuth titanate (NKBT) lead-free piezoceramics are investigated. The piezoelectric activity of NKBT ceramics is significantly improved by the modification of lithium and cerium. The Curie temperature TC, piezoelectric coefficient d33, and mechanical quality factor Qm for the NKBT ceramics modified with 0.10mol% (LiCe) are found to be 660°C, 25pC/N, and 3135, respectively. The Curie temperature gradually decreases from 675to650°C with the increase of (LiCe) modification. The dielectric spectroscopy shows that all the samples possess stable piezoelectric properties, demonstrating that the (LiCe) modified NKBT-based ceramics are the promising candidates for high temperature applications.

  15. Synthesis and piezoelectric properties of BaTiO3-doped lead-free Li0.12Na0.88NbO3 ceramics

    NASA Astrophysics Data System (ADS)

    Mitra, Supratim; Rathore, Deepshikha

    2016-05-01

    New lead-free (1-x)Li0.12Na0.88NbO3-xBaTiO3 [(1-x)LNN-xBT] (x = 0.0, 0.1, 0.2, 0.3, 0.4) piezoelectric ceramics have been synthesized using conventional ceramics processing route. The phase analysis revealed that material undergoes two phase transition: orthorhombic to tetragonal around x = 0.2 and tetragonal to cubic for x ≥ 0.3. The microstructural analysis confirms a homogeneous solid solution, well developed grains and a high sintered density. Ferroelectric and piezoelectric properties were investigated and the material is found suitable for memory, piezoelectric vibrators and low power transducers applications.

  16. Tailoring of unipolar strain in lead-free piezoelectrics using the ceramic/ceramic composite approach

    SciTech Connect

    Khansur, Neamul H.; Daniels, John E.; Groh, Claudia; Jo, Wook; Webber, Kyle G.; Reinhard, Christina; Kimpton, Justin A.

    2014-03-28

    The electric-field-induced strain response mechanism in a polycrystalline ceramic/ceramic composite of relaxor and ferroelectric materials has been studied using in situ high-energy x-ray diffraction. The addition of ferroelectric phase material in the relaxor matrix has produced a system where a small volume fraction behaves independently of the bulk under an applied electric field. Inter- and intra-grain models of the strain mechanism in the composite material consistent with the diffraction data have been proposed. The results show that such ceramic/ceramic composite microstructure has the potential for tailoring properties of future piezoelectric materials over a wider range than is possible in uniform compositions.

  17. Strain engineering effects on electrical properties of lead-free piezoelectric thin films on Si wafers.

    PubMed

    Ohno, Tomoya; Kamai, Yuto; Oda, Yuutaro; Sakamoto, Naonori; Matsuda, Takeshi; Wakiya, Naoki; Suzuki, Hisao

    2014-01-01

    Using radio frequency - magnetron sputtering, calcium-doped barium zirconate titanate ((Ba(0.85)Ca(0.15))(Zr(0.1)Ti(0.9))O(3), BCZT) thin films were deposited on Si wafers with different bottom electrodes. The obtained BCZT thin film on a lanthanum nickel oxide (LNO) electrode had a highly c-axis preferred orientation, while the BCZT thin film on a Pt bottom electrode had (111) preferred orientation. Furthermore, the out-of-plane lattice constant of the BCZT on LNO/Si was 3.4% larger than that of the reported bulk material because of the compressive thermal stress from LNO with a large thermal expansion coefficient. This compressive thermal stress engenders an increase of the Curie temperature. The local piezoelectric response of the BCZT thin film on a LNO/Si structure was measured by piezoresponse force microscope.

  18. Temperature dependent structures and properties of Bi0.5Na0.5TiO3-based lead free piezoelectric composite.

    PubMed

    Zhang, Ji; Sun, Lei; Geng, Xiao-Yu; Zhang, Bin-Bin; Yuan, Guo-Liang; Zhang, Shan-Tao

    2016-07-01

    The thermal depolarization around 100 °C of the Bi0.5Na0.5TiO3-based piezoelectric solid solutions leads to the disappearance of macroscopic ferroelectric/piezoelectric properties and remains a long-standing obstacle for their actual applications. In this communication, we report lead-free piezoelectric composites of 0.94Bi0.5Na0.5TiO3-0.06BaTiO3:0.5ZnO (BNT-6BT:0.5ZnO, where 0.5 is the mole ratio of ZnO to BNT-6BT) with deferred thermal depolarization, which is experimentally confirmed by systematic temperature dependent dielectric, ferroelectric, piezoelectric measurements. Especially, based on temperature dependent X-ray diffraction measurements on unpoled and poled samples, thermal depolarization is confirmed to have no relationship with the structural phase transition, the possible mechanism for the deferred thermal depolarization is correlated with the ZnO-induced local electric field which can suppress the depolarization field. We believe our results may be helpful for understanding the origin of thermal depolarization in BNT-based piezoelectric materials, and thus provide an effective way to overcoming this obstacle.

  19. Temperature dependent structures and properties of Bi0.5Na0.5TiO3-based lead free piezoelectric composite.

    PubMed

    Zhang, Ji; Sun, Lei; Geng, Xiao-Yu; Zhang, Bin-Bin; Yuan, Guo-Liang; Zhang, Shan-Tao

    2016-07-01

    The thermal depolarization around 100 °C of the Bi0.5Na0.5TiO3-based piezoelectric solid solutions leads to the disappearance of macroscopic ferroelectric/piezoelectric properties and remains a long-standing obstacle for their actual applications. In this communication, we report lead-free piezoelectric composites of 0.94Bi0.5Na0.5TiO3-0.06BaTiO3:0.5ZnO (BNT-6BT:0.5ZnO, where 0.5 is the mole ratio of ZnO to BNT-6BT) with deferred thermal depolarization, which is experimentally confirmed by systematic temperature dependent dielectric, ferroelectric, piezoelectric measurements. Especially, based on temperature dependent X-ray diffraction measurements on unpoled and poled samples, thermal depolarization is confirmed to have no relationship with the structural phase transition, the possible mechanism for the deferred thermal depolarization is correlated with the ZnO-induced local electric field which can suppress the depolarization field. We believe our results may be helpful for understanding the origin of thermal depolarization in BNT-based piezoelectric materials, and thus provide an effective way to overcoming this obstacle. PMID:27334673

  20. Phase Structures and Piezoelectric Properties of (K,Na,Li)(Nb,Sb)O3-(Bi,Ag)ZrO3 Lead-Free Ceramics

    NASA Astrophysics Data System (ADS)

    Li, ZhiPeng; Zhang, Yang; Li, LingYu; Li, JianKang; Zhai, JiWei

    2016-06-01

    Samples in the pseudoternary lead-free piezoelectric ceramic system 0.94KNN-(0.06 - x)LiSbO3- x(Bi0.5Ag0.5)ZrO3 were prepared using a solid-state reaction technique and their phase transition behavior and electrical properties studied. Results showed that BAZ diffuses into KNN-LS to form a new solid solution, and induces a phase transition from tetragonal to rhombohedral phase with increase of x. At 0.02 ≤ x ≤ 0.03, coexistence of tetragonal and rhombohedral phases is observed, and enhanced piezoelectric properties are achieved in this composition range due to the polymorphic phase transition near room temperature. Doping with (Bi0.5Ag0.5)ZrO3 effectively promotes densification and further enhances the piezoelectric and dielectric properties of of the ceramics. Moreover, the ceramic with x = 0.025 possesses excellent electrical properties of k p = 42.3%, {d_{33}^{*}} = 320 pm/V and d 33 = 235 pC/N, tan δ = 0.039, and T c = 326°C. This result indicates that 0.94KNN-0.035LS-0.025BAZ ceramic is a promising lead-free material for practical applications.

  1. Lead-free piezoceramics

    NASA Astrophysics Data System (ADS)

    Saito, Yasuyoshi; Takao, Hisaaki; Tani, Toshihiko; Nonoyama, Tatsuhiko; Takatori, Kazumasa; Homma, Takahiko; Nagaya, Toshiatsu; Nakamura, Masaya

    2004-11-01

    Lead has recently been expelled from many commercial applications and materials (for example, from solder, glass and pottery glaze) owing to concerns regarding its toxicity. Lead zirconium titanate (PZT) ceramics are high-performance piezoelectric materials, which are widely used in sensors, actuators and other electronic devices; they contain more than 60 weight per cent lead. Although there has been a concerted effort to develop lead-free piezoelectric ceramics, no effective alternative to PZT has yet been found. Here we report a lead-free piezoelectric ceramic with an electric-field-induced strain comparable to typical actuator-grade PZT. We achieved this through the combination of the discovery of a morphotropic phase boundary in an alkaline niobate-based perovskite solid solution, and the development of a processing route leading to highly <001> textured polycrystals. The ceramic exhibits a piezoelectric constant d33 (the induced charge per unit force applied in the same direction) of above 300picocoulombs per newton (pCN-1), and texturing the material leads to a peak d33 of 416pCN-1. The textured material also exhibits temperature-independent field-induced strain characteristics.

  2. Piezoelectric Vibrational Energy Harvester Using Lead-Free Ferroelectric BiFeO3 Films

    NASA Astrophysics Data System (ADS)

    Yoshimura, Takeshi; Murakami, Shuichi; Wakazono, Keisuke; Kariya, Kento; Fujimura, Norifumi

    2013-05-01

    We have proposed that BiFeO3 films are suitable for piezoelectric vibrational energy harvester (VEH) applications, because BiFeO3 has high spontaneous polarization and low dielectric permittivity. We demonstrated that energy can be harvested by a micromachined VEH using a BiFeO3 film deposited using a sol-gel process. A VEH with a resonant frequency of ˜98 Hz produced an output voltage of 1.5 V·G-1 and electrical power of 2.8 µW·mm-3·G-2 (G=9.8 m/s2) at a load resistance of 1 MΩ. Using the analytical model for VEH, the generalized electromechanical coupling factor was estimated to be 0.41%. These results were comparable to those of the best-performing VEHs using other piezoelectric films.

  3. Nanoscale Atomic Displacements Ordering for Enhanced Piezoelectric Properties in Lead-Free ABO3 Ferroelectrics.

    PubMed

    Pramanick, Abhijit; Jørgensen, Mads R V; Diallo, Souleymane O; Christianson, Andrew D; Fernandez-Baca, Jaime A; Hoffmann, Christina; Wang, Xiaoping; Lan, Si; Wang, Xun-Li

    2015-08-01

    In situ synchrotron X-ray diffuse scattering and inelastic neutron scattering measurements from a prototype ABO3 ferroelectric single-crystal are used to elucidate how electric fields along a nonpolar direction can enhance its piezoelectric properties. The central mechanism is found to be a nanoscale ordering of B atom displacements, which induces increased lattice instability and therefore a greater susceptibility to electric-field-induced mechanical deformation.

  4. Phase transition characteristics and associated piezoelectricity of potassium-sodium niobate lead-free ceramics.

    PubMed

    Wang, Yuanyu; Hu, Liang; Zhang, Qilong; Yang, Hui

    2015-08-14

    To achieve high piezoelectric activity and a wide sintering temperature range, the ceramic system concerning (1 - x)(K(0.48)Na(0.52))(Nb(0.96)Sb(0.04))O(3)-x[Bi(0.5)(Na(0.7)Ag(0.3))(0.5)](0.90) Zn(0.10)ZrO(3) was designed, and the rhombohedral-tetragonal (R-T) phase boundary can drive a high d(33). Phase transition characteristics as well as their effects on the electrical properties were investigated systematically. The R-T coexistence phase boundary (0.04 ≤ x ≤ 0.05) can be driven via modification with BNAZZ, and has been confirmed by XRD and temperature-dependent dielectric constants as well as Raman analysis, and the ceramics possess enhanced piezoelectric properties (d(33) ∼ 425 pC N(-1) and k(p) ∼ 0.43) and a high unipolar strain (∼0.3%). In addition, a wide sintering temperature range of 1050-1080 °C can warrant a large d(33) of 400-430 pC N(-1), which can benefit practical applications. As a result, the addition of BNAZZ is an effective method to improve the electrical properties (piezoelectricity and strain) and sintering behavior of potassium-sodium niobate ceramics. PMID:26150357

  5. Enhanced Piezoelectric Properties and Tunability of Lead-Free Ceramics Prepared by High-Energy Ball Milling

    NASA Astrophysics Data System (ADS)

    Mahesh, M. L. V.; Bhanuprasad, V. V.; James, A. R.

    2013-12-01

    Zirconium-doped barium titanate Ba(Zr0.15Ti0.85)O3 lead-free ceramics (hereinafter referred to as BZT) were synthesized using the solid-state reaction method by adopting the high-energy ball milling technique. Nanosized BZT powders resulted from high-energy ball milling, which in turn enhanced the dielectric and piezoelectric properties of the ceramics. A single-phase perovskite structure free from secondary phase peaks was observed for sintered BZT samples, and a relative density of ˜94% of the theoretical density was achieved. The electric-field-induced polarization-current data indicate the ferroelectric nature of the samples. Unipolar strain as high as 0.12% was realized for the ceramics sintered at 1350°C, indicating their potential for use in actuator applications. Very high tunability of >70% for these ceramics is also reported.

  6. Growth and properties of Li, Ta modified (K,Na)NbO3 lead-free piezoelectric single crystals.

    PubMed

    Huo, Xiaoqing; Zheng, Limei; Zhang, Shujun; Zhang, Rui; Liu, Gang; Wang, Rui; Yang, Bin; Cao, Wenwu; Shrout, Thomas R

    2014-01-01

    Li, Ta modified (K,Na)NbO3 single crystals with the size of 18 mm × 18 mm × 10 mm were successfully grown by top-seeded solution growth method, with orthorhombic-tetragonal phase transition temperature ~79 °C and Curie temperature ~276 °C. The electromechanical coupling factors k33 and kt were found to be ~88% and ~65%, respectively. The piezoelectric coefficient d33 for the [001]c poled crystals reached 255 pC/N. In addition, the electromechanical coupling factor exhibited high stability over the temperature range of -50 °C to 70 °C, making these lead free crystals good candidates for electromechanical applications.

  7. Growth and properties of Li, Ta modified (K,Na)NbO3 lead-free piezoelectric single crystals

    PubMed Central

    Huo, Xiaoqing; Zheng, Limei; Zhang, Shujun; Zhang, Rui; Liu, Gang; Wang, Rui; Yang, Bin; Cao, Wenwu; Shrout, Thomas R.

    2014-01-01

    Li, Ta modified (K,Na)NbO3 single crystals with the size of 18 mm × 18 mm × 10 mm were successfully grown by top-seeded solution growth method, with orthorhombic–tetragonal phase transition temperature ~79 °C and Curie temperature ~276 °C. The electromechanical coupling factors k33 and kt were found to be ~88% and ~65%, respectively. The piezoelectric coefficient d33 for the [001]c poled crystals reached 255 pC/N. In addition, the electromechanical coupling factor exhibited high stability over the temperature range of −50 °C to 70 °C, making these lead free crystals good candidates for electromechanical applications. PMID:25404953

  8. Piezoelectric composite materials

    NASA Technical Reports Server (NTRS)

    Kiraly, L. J. (Inventor)

    1983-01-01

    A laminated structural devices has the ability to change shape, position and resonant frequency without using discrete motive components. The laminate may be a combination of layers of a piezoelectrically active, nonconductive matrix material. A power source selectively places various levels of charge in electrically conductive filaments imbedded in the respective layers to produce various configurations in a predetermined manner. The layers may be electrically conductive having imbedded piezoelectrically active filaments. A combination of layers of electrically conductive material may be laminated to layers of piezoelectrically active material.

  9. Phase Structure, Piezoelectric and Multiferroic Properties of SmCoO3-Modified BiFeO3-BaTiO3 Lead-Free Ceramics

    NASA Astrophysics Data System (ADS)

    Jiang, Na; Tian, Mijie; Luo, Lingling; Zheng, Qiaoji; Shi, Dongliang; Lam, Kwok Ho; Xu, Chenggang; Lin, Dunmin

    2016-01-01

    (0.75- x)BiFeO3-0.25BaTiO3- xSmCoO3 + 1 mol.% MnO2 lead-free multiferroic ceramics were synthesized by a conventional ceramic fabrication technique. The effects of SmCoO3 on phase structure, piezoelectricity and multiferroicity of the ceramics were studied. All the ceramics can be well sintered at a low sintering temperature of 960°C. The crystalline structure of the ceramics is transformed from rhombohedral to tetragonal symmetry with increasing the amount of SmCoO3. A morphotropic phase boundary of rhombohedral and tetragonal phases is formed at x = 0.01-0.04. A small amount of SmCoO3 is shown to improve the ferroelectric, piezoelectric and magnetoelectric properties of the ceramics. For the ceramics with x = 0.01-0.03, enhanced resistivity ( R ˜ 1.2 × 109 Ω cm to 2.1 × 109 Ω cm), piezoelectricity ( d 33 ˜ 65 pC/N to 106 pC/N) and ferroelectricity ( P r ˜ 6.38 μC/cm2 to 22.89 μC/cm2) are obtained. The ferromagnetism of the materials is greatly enhanced by the doping of SmCoO3 such that a very high magnetoelectric coefficient of ˜742 mV/(cm Oe) is obtained at x = 0.01, suggesting a promising potential in multiferroic devices.

  10. (K, Na, Li)(Nb, Ta)O3:Mn lead-free single crystal with high piezoelectric properties

    PubMed Central

    Huo, Xiaoqing; Zhang, Rui; Zheng, Limei; Zhang, Shujun; Wang, Rui; Wang, Junjun; Sang, Shijing; Yang, Bin; Cao, Wenwu

    2016-01-01

    Lead-free single crystal, (K, Na, Li)(Nb, Ta)O3:Mn, was successfully grown using top-seeded solution growth method. Complete matrix of dielectric, piezoelectric and elastic constants for [001]C poled single crystal was determined. The piezoelectric coefficient d33 measured by the resonance method was 545 pC/N, which is almost three times that of its ceramic counterpart. The values measured by the Berlincourt meter ( d33∗=630pC/N) and strain-field curve ( d33∗∗=870pm/V) were even higher. The differences were assumed to relate with the different extrinsic contributions of domain wall vibration and domain wall translation during the measurements by different approaches, where the intrinsic contribution (on the order of 539 pm/V) was supposed to be the same. The crystal has ultrahigh electromechanical coupling factor (k33 ~ 95%) and high ultrasound velocity, which make it promising for high frequency medical transducer applications. PMID:27594704

  11. Lead-Free Piezoelectric MEMS Energy Harvesters of (K,Na)NbO3 Thin Films on Stainless Steel Cantilevers

    NASA Astrophysics Data System (ADS)

    Tsujiura, Yuichi; Suwa, Eisaku; Kurokawa, Fumiya; Hida, Hirotaka; Suenaga, Kazufumi; Shibata, Kenji; Kanno, Isaku

    2013-09-01

    We fabricated piezoelectric MEMS energy harvesters (EHs) of lead-free (K,Na)NbO3 (KNN) thin films on microfabricated stainless steel cantilevers. The use of metal substrates makes it possible to fabricate thin cantilevers owing to a large fracture toughness compared with Si substrates. KNN films were directly deposited onto Pt-coated stainless steel cantilevers by rf-magnetron sputtering, thereby simplifying the fabrication process of the EHs. From XRD measurement, we confirmed that the KNN films on Pt-coated stainless steel cantilevers had a perovskite structure with a preferential (001) orientation. The transverse piezoelectric coefficient e31f and relative dielectric constant ɛr were measured to be -3.8 C/m2 and 409, respectively. From the evaluation of the power generation performance of a KNN thin-film EH (length: 7.5 mm, width: 5.0 mm, weight of tip mass: 25 mg), we obtained a large average output power of 1.6 µW under vibration at 393 Hz and 10 m/s2.

  12. A comparison of different powder compaction processes adopted for synthesis of lead-free piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Mahesh, M. L. V.; Bhanu Prasad, V. V.; James, A. R.

    2016-04-01

    Barium zirconium titanate, Ba(Zr0.15Ti0.85)O3 nano-crystalline powders were synthesized using high energy ball milling. The calcined powders were compacted adopting two different approaches viz. the conventional uniaxial pressing and cold-isostatic pressing (CIP) and the compacts were sintered at 1350 °C. A single phase perovskite structure was observed in both cases. BZT ceramics compacted using CIP technique exhibited enhanced dielectric and ferroelectric properties compared to ceramics compacted by uniaxial pressing. The polarization current peaks have been used in this paper as an experimental evidence to prove the existence of ferroelectricity in the BZT ceramics under study. The peak polarization current was found to be ~700% higher in case of cold iso-statically compacted ceramics. Similarly electric field induces strain showed a maximum strain ( S max) of 0.08% at an electric field of 28 kV/cm. The dielectric and ferroelectric properties observed are comparable to single crystals of the same material.

  13. Piezoelectric properties and diffusion phase transition around PPT of La-doped (Na0.52K0.44Li0.04) Nb0.8Ta0.2O3 lead-free piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Yang, Wenlong; Wang, Li; Li, Haidong; Han, Junsheng; Xiu, Hanjiang; Zhou, Zhongxiang

    2016-10-01

    Lead-free ceramics (Na0.52K0.44Li0.04)1-3xLaxNb0.8Ta0.2O3 (KNLNT-Lax, x=0.00, 0.25, 0.5, 0.75, 1.00, 1.25 mol%) as non-polluting materials were prepared by solid state reaction method. The structure, piezoelectric proprieties and temperature stability of KNLNT ceramic with different La doping concentrations were investigated. The results show a transition from orthorhombic-tetragonal mix phase to tetragonal single phase with the variation of La3+ concentrations. The SEM micrographs of surface and fractured surface show a dense microstructure with few micropores. The La-doped KNLTN ceramic will be an alternative candidate contributes to excellent piezoelectric properties, which are found in the 0.75 mol% La-doped KNLNT ceramics, with d33=215pC/N, kp=42.8%and Qm=89. It has been remarkably improved that the temperature stability of KNLTN-Lax piezoelectric properties at room temperature, and the dielectric relaxation can be observed obviously. The mechanism of La doping was analyzed in terms of valence compensation and polymorphic phase transition (PPT) diffusion. The orthorhombic-tetragonal phase transition around room temperature and the relaxation transition were considered contributing to the excellent piezoelectric performance and improved temperature stability of La3+-doped KNLTN.

  14. Growth and characterization of undoped and Mn doped lead-free piezoelectric NBT–KBT single crystals

    SciTech Connect

    Babu, G. Anandha; Subramaniyan, Raja R.; Bhaumik, Indranil; Ganesamoorthy, S.; Ramasamy, P.; Gupta, P.K.

    2014-05-01

    Highlights: • Single crystals of undoped and Mn doped NKBT crystals are grown by spontaneous nucleation. • Temperature and frequency dependent dielectric constant and loss are measured. • Dielectric constant has increased and the loss has reduced on Mn doped NKBT. • Concentration of oxygen vacancies has been reduced in Mn doped NKBT. • The activation energy for undoped and Mn doped NKBT are calculated. - Abstract: Lead-free piezoelectric single crystals of undoped and 1 wt% Mn doped 0.80 Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–0.20 K{sub 0.5}Bi{sub 0.5}TiO{sub 3} (NKBT) was grown using self-flux. Powder X-ray diffraction analysis revealed that the grown crystals belong to tetragonal system at room temperature. The lattice strain was calculated from Williamson Hall relation for undoped and Mn doped NKBT crystals. A significant change is observed in dielectric behavior of Mn doped NKBT when compared to undoped sample. The diffuseness increased substantially on Mn doped NKBT which masked the ferroelectric to antiferroelectric transition in the dielectric constant plot. The AC impedance study revealed that the conduction is governed by the singly ionized oxygen vacancy. Further, the decrease in the conductivity on Mn doping suggests that Mn replaces the Bi vacancy, which reduces the oxygen vacancy.

  15. Linking large piezoelectric coefficients to highly flexible polarization of lead free BaTiO3-CaTiO3-BaZrO3 ceramics

    NASA Astrophysics Data System (ADS)

    Benabdallah, F.; Simon, A.; Khemakhem, H.; Elissalde, C.; Maglione, M.

    2011-06-01

    We report a large d31 piezoelectric coefficient and corresponding electromechanical coupling factor, Kp, of 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BCTZ50) and 0.68Ba(Zr0.2Ti0.8)O3-0.32(Ba0.7Ca0.3)TiO3 (BCTZ32) lead-free piezoceramics. The piezoelectric coefficient, d31, reaches a high value of 200 pC/N for BCTZ50 at room temperature which is comparable to the one of the soft PZT. This confirms the previously reported d33 for the same material. A useful way to achieve such performances at the expense of a smaller thermal budget is suggested, enabling better control of the ceramics composition and microstructure. Based on pyroelectric and ferroelectric hysteresis loops measurements, we show that such outstanding properties are likely due to the high flexibility of polarization under thermal and electric stresses.

  16. Origin of giant piezoelectric effect in lead-free K1−xNaxTa1−yNbyO3 single crystals

    PubMed Central

    Tian, Hao; Meng, Xiangda; Hu, Chengpeng; Tan, Peng; Cao, Xilong; Shi, Guang; Zhou, Zhongxiang; Zhang, Rui

    2016-01-01

    A series of high-quality, large-sized (maximum size of 16 × 16 × 32 mm3) K1−xNaxTa1−yNbyO3 (x = 0.61, 0.64, and 0.70 and corresponding y = 0.58, 0.60, and 0.63) single crystals were grown using the top-seed solution growth method. The segregation of the crystals, which allowed for precise control of the individual components of the crystals during growth, was investigated. The obtained crystals exhibited excellent properties without being annealed, including a low dielectric loss (0.006), a saturated hysteresis loop, a giant piezoelectric coefficient d33 (d33 = 416 pC/N, determined by the resonance method and d33* = 480 pC/N, measured using a piezo-d33 meter), and a large electromechanical coupling factor, k33 (k33 = 83.6%), which was comparable to that of lead zirconate titanate. The reason the piezoelectric coefficient d33 of K0.39Na0.61Ta0.42Nb0.58O3 was larger than those of the other two crystals grown was elucidated through first-principles calculations. The obtained results indicated that K1−xNaxTa1−yNbyO3 crystals can be used as a high-quality, lead-free piezoelectric material. PMID:27160075

  17. Origin of giant piezoelectric effect in lead-free K1-xNaxTa1-yNbyO3 single crystals.

    PubMed

    Tian, Hao; Meng, Xiangda; Hu, Chengpeng; Tan, Peng; Cao, Xilong; Shi, Guang; Zhou, Zhongxiang; Zhang, Rui

    2016-05-10

    A series of high-quality, large-sized (maximum size of 16 × 16 × 32 mm(3)) K1-xNaxTa1-yNbyO3 (x = 0.61, 0.64, and 0.70 and corresponding y = 0.58, 0.60, and 0.63) single crystals were grown using the top-seed solution growth method. The segregation of the crystals, which allowed for precise control of the individual components of the crystals during growth, was investigated. The obtained crystals exhibited excellent properties without being annealed, including a low dielectric loss (0.006), a saturated hysteresis loop, a giant piezoelectric coefficient d33 (d33 = 416 pC/N, determined by the resonance method and d33(*) = 480 pC/N, measured using a piezo-d33 meter), and a large electromechanical coupling factor, k33 (k33 = 83.6%), which was comparable to that of lead zirconate titanate. The reason the piezoelectric coefficient d33 of K0.39Na0.61Ta0.42Nb0.58O3 was larger than those of the other two crystals grown was elucidated through first-principles calculations. The obtained results indicated that K1-xNaxTa1-yNbyO3 crystals can be used as a high-quality, lead-free piezoelectric material.

  18. Origin of giant piezoelectric effect in lead-free K1‑xNaxTa1‑yNbyO3 single crystals

    NASA Astrophysics Data System (ADS)

    Tian, Hao; Meng, Xiangda; Hu, Chengpeng; Tan, Peng; Cao, Xilong; Shi, Guang; Zhou, Zhongxiang; Zhang, Rui

    2016-05-01

    A series of high-quality, large-sized (maximum size of 16 × 16 × 32 mm3) K1‑xNaxTa1‑yNbyO3 (x = 0.61, 0.64, and 0.70 and corresponding y = 0.58, 0.60, and 0.63) single crystals were grown using the top-seed solution growth method. The segregation of the crystals, which allowed for precise control of the individual components of the crystals during growth, was investigated. The obtained crystals exhibited excellent properties without being annealed, including a low dielectric loss (0.006), a saturated hysteresis loop, a giant piezoelectric coefficient d33 (d33 = 416 pC/N, determined by the resonance method and d33* = 480 pC/N, measured using a piezo-d33 meter), and a large electromechanical coupling factor, k33 (k33 = 83.6%), which was comparable to that of lead zirconate titanate. The reason the piezoelectric coefficient d33 of K0.39Na0.61Ta0.42Nb0.58O3 was larger than those of the other two crystals grown was elucidated through first-principles calculations. The obtained results indicated that K1‑xNaxTa1‑yNbyO3 crystals can be used as a high-quality, lead-free piezoelectric material.

  19. Origin of giant piezoelectric effect in lead-free K1-xNaxTa1-yNbyO3 single crystals.

    PubMed

    Tian, Hao; Meng, Xiangda; Hu, Chengpeng; Tan, Peng; Cao, Xilong; Shi, Guang; Zhou, Zhongxiang; Zhang, Rui

    2016-01-01

    A series of high-quality, large-sized (maximum size of 16 × 16 × 32 mm(3)) K1-xNaxTa1-yNbyO3 (x = 0.61, 0.64, and 0.70 and corresponding y = 0.58, 0.60, and 0.63) single crystals were grown using the top-seed solution growth method. The segregation of the crystals, which allowed for precise control of the individual components of the crystals during growth, was investigated. The obtained crystals exhibited excellent properties without being annealed, including a low dielectric loss (0.006), a saturated hysteresis loop, a giant piezoelectric coefficient d33 (d33 = 416 pC/N, determined by the resonance method and d33(*) = 480 pC/N, measured using a piezo-d33 meter), and a large electromechanical coupling factor, k33 (k33 = 83.6%), which was comparable to that of lead zirconate titanate. The reason the piezoelectric coefficient d33 of K0.39Na0.61Ta0.42Nb0.58O3 was larger than those of the other two crystals grown was elucidated through first-principles calculations. The obtained results indicated that K1-xNaxTa1-yNbyO3 crystals can be used as a high-quality, lead-free piezoelectric material. PMID:27160075

  20. Reactive sintering of (K0.5Bi0.5)TiO3-BiFeO3 lead-free piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Fisher, John G.; Kim, Min-Gu; Kim, Daeung; Cha, Su-Jeong; Vu, Hung Van; Nguyen, Dieu; Kim, Young-Hun; Moon, Su-Hyun; Lee, Jong-Sook; Hussain, Ali; Kim, Myong-Ho

    2015-05-01

    Ceramics based on BiFeO3 are potential lead-free replacements for Pb(Zr,Ti)O3 in a variety of applications such as sensors, transducers and actuators. Recently, ceramics in the (K0.5Bi0.5)TiO3-BiFeO3 system were developed which have excellent piezoelectric properties. However, these ceramics are difficult to sinter to high density. The present work studies the use of reactive sintering to prepare 0.4(K0.5Bi0.5)TiO3-0.6BiFeO3 ceramics. Undoped and MnO-doped powders were prepared by ball milling K2CO3, (BiO)2CO3, TiO2, α-FeO(OH) and MnCO3 in ethanol with zirconia milling media. The decomposition and calcination reactions of the starting materials were studied using differential scanning calorimetry/thermogravimetric analysis, X-ray diffraction and Fourier transform infra-red analysis. Samples were sintered in the temperature range from 1000 to 1075°C and their structures and microstructures examined using X-ray diffraction, micro-Raman scattering and scanning electron microscopy. MnO doping reduced the rhombohedral distortion of the unit cell. The dielectric, ferroelectric and piezoelectric properties of selected undoped and MnO-doped samples were measured. Both undoped and MnO-doped samples displayed relaxor-type behavior. MnO doping reduced the conductivity of the samples, which exhibit a well-defined activation energy of 1.21 eV. Undoped samples have strain vs. electric field properties comparable to those reported in the literature.

  1. Interface cracks in piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Govorukha, V.; Kamlah, M.; Loboda, V.; Lapusta, Y.

    2016-02-01

    Due to their intrinsic electromechanical coupling behavior, piezoelectric materials are widely used in sensors, actuators and other modern technologies. It is well known that piezoelectric ceramics are very brittle and susceptible to fracture. In many cases, fracture occurs at interfaces as debonding and cracks. This leads to an undesired degradation of electrical and mechanical performance. Because of the practical and fundamental importance of the problem, interface cracks in piezoelectric materials have been actively studied in the last few decades. This review provides a comprehensive survey of recent works on cracks situated at the interface of two materials, at least one of which has piezoelectric or piezoelectromagnetic properties. Different electric boundary conditions along the crack faces are discussed. The oscillating and contact zone models for in-plane straight interface cracks between two dissimilar piezoelectric materials or between piezoelectric and non-piezoelectric ones are reviewed. Different peculiarities related to the investigation of interface cracks in piezoelectric materials for the anti-plane case, for functionally graded and thermopiezoelectric materials are presented. Papers related to magnetoelectroelastic bimaterials, to steady state motion of interface cracks in piezoelectric bimaterials and to circular arc-cracks at the interface of piezoelectric materials are reviewed, and various methods used to address these problems are discussed. The review concludes with an outlook on future research directions.

  2. Piezoelectric Properties of CuO-Doped (K,Na)NbO3 Lead-Free Ceramics Synthesized with Hydrothermal Powders

    NASA Astrophysics Data System (ADS)

    Yokouchi, Yuriko; Maeda, Takafumi; Bornmann, Peter; Hemsel, Tobias; Morita, Takeshi

    2013-07-01

    We report the piezoelectric properties of CuO-doped hydrothermal (K,Na)NbO3 ceramics that can be applied as hard-type lead-free piezoelectric ceramics. To date, we have succeeded in synthesizing high-quality KNbO3 and NaNbO3 powders by the hydrothermal method, which is based on an ionic reaction at high temperature (around 210 °C) and pressure. Increasing both the piezoelectric constant d and the mechanical quality factor (Qm) is important for resonance-type piezoelectric devices, such as ultrasonic motors and transformers. CuO doping into hydrothermal (K,Na)NbO3 ceramics was examined to realize hard-type lead-free piezoelectric ceramics. By doping with 1.2 mol % CuO, Qm was increased and the dielectric loss (tan δ) was decreased to 0.5%. The grain size was also influenced by the amount of CuO doping, which indicates that Qm is related to the density. To achieve a higher Qm value, the grain size is required to be less than 5 µm however, excessive CuO doping leads to anomalous grain growth. Optimal piezoelectric properties were obtained for 1.2 mol % CuO-doped (K,Na)NbO3; k31 = 0.32, d31 = -44 pC/N, Qm (radial) = 959, and tan δ= 0.5%. These characteristics showed that CuO doping with hydrothermal powders is effective for obtaining hard-type ceramics, and the mechanical quality factor is more than ten times higher than that of nondoped hydrothermal (K,Na)NbO3 ceramics. Therefore, compared with the conventional solid-state method, we could succeed in obtaining hard-type ceramics by a simple and short process.

  3. Ferroelectric and piezoelectric properties of lead-free 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ti0.48)O3 ceramics with various sintering temperatures

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Hwan; Baek, Sang-don; Kim, Hyun-Ju; Lee, Sung-Gap; Lee, Young-Hie

    2012-04-01

    We studied sintering temperature to enhance the piezoelectric and ferroelectric properties of 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ti0.48)O3 lead free piezoelectric ceramics. The synthesis and sintering method were the conventional ceramic techniques, and sintering was executed at 1080-1120°C. We found that the NKN-BZT ceramics showed the highest piezoelectric properties and ferroelectric properties at an optimal sintering temperature. The NKN-BZT ceramics sintered at 1100°C showed superior performance, with piezoelectric constant d 33= 213 ρC/N, and electromechanical coupling factor k p = 0.41%. These results reveal that NKN-BZT ceramics are promising candidate materials for lead-free piezoelectric applications.

  4. A review of the structure-property relationships in lead-free piezoelectric (1-x)Na0.5Bi0.5TiO3-(x)BaTiO3

    NASA Astrophysics Data System (ADS)

    McQuade, Ryan R.; Dolgos, Michelle R.

    2016-10-01

    Piezoelectric materials are increasingly being investigated for energy harvesting applications where (1-x)Na0.5Bi0.5TiO3-(x)BaTiO3 (NBT-BT) is an important lead-free piezoelectric material with potential to be used as an actuator in energy harvesting devices. Much effort has been put into modifying NBT-BT to tune the properties for specific applications, but there is currently no consensus regarding the structure-property relationships in this material, making targeted, rational design a major challenge. In this review, we will summarize the current body of knowledge of NBT-BT and discuss contradicting studies, unresolved problems, and future directions in the field.

  5. Improvement of the piezoelectric properties in (K,Na)NbO{sub 3}-based lead-free piezoelectric ceramic with two-phase co-existing state

    SciTech Connect

    Yamada, H. Matsuoka, T.; Kozuka, H.; Yamazaki, M.; Ohbayashi, K.; Ida, T.

    2015-06-07

    Two phases of (K,Na)NbO{sub 3} (KNN) co-exist in a KNN-based composite lead-free piezoelectric ceramic 0.910(K{sub 1−x}Na{sub x}){sub 0.86}Ca{sub 0.04}Li{sub 0.02}Nb{sub 0.85}O{sub 3−δ}–0.042K{sub 0.85}Ti{sub 0.85}Nb{sub 1.15}O{sub 5} –0.036BaZrO{sub 3}–0.0016Co{sub 3}O{sub 4}– 0.0025Fe{sub 2}O{sub 3}–0.0069ZnO system, over a wide range of Na fractions, where 0.56 ≤ x ≤ 0.75. The crystal systems of the two KNN phases are identified to tetragonal and orthorhombic by analyzing the synchrotron powder X-ray diffraction (XRD) data, high-resolution transmission electron microscopy (HR-TEM), and selected-area electron diffraction (SAD). In the range 0.33 ≤ x ≤ 0.50, the main component of the composite system is found to be single-phase KNN with a tetragonal structure. Granular nanodomains of the orthorhombic phase dispersed in the tetragonal matrix have been identified by HR-TEM and SAD for 0.56 ≤ x ≤ 0.75. Only a trace amount of the orthorhombic phase has been found in the SAD patterns at the composition x = 0.56. However, the number of orthorhombic nanodomains gradually increases with increasing Na content up to x < 0.75, as observed from the HR-TEM images. An abrupt increase and agglomeration of the nanodomains are observed at x = 0.75, where weak diffraction peaks of the orthorhombic phase have also become detectable from the XRD data. The maximum value of the electromechanical coupling coefficient, k{sub p} = 0.56, has been observed at the composition x = 0.56.

  6. Discovering lead-free perovskite solar materials with a split-anion approach

    NASA Astrophysics Data System (ADS)

    Sun, Yi-Yang; Shi, Jian; Lian, Jie; Gao, Weiwei; Agiorgousis, Michael L.; Zhang, Peihong; Zhang, Shengbai

    2016-03-01

    Organic-inorganic hybrid perovskite solar materials, being low-cost and high-performance, are promising for large-scale deployment of the photovoltaic technology. A key challenge that remains to be addressed is the toxicity of these materials since the high-efficiency solar cells are made of lead-containing materials, in particular, CH3NH3PbI3. Here, based on first-principles calculation, we search for lead-free perovskite materials based on the split-anion approach, where we replace Pb with non-toxic elements while introducing dual anions (i.e., splitting the anion sites) that preserve the charge neutrality. We show that CH3NH3BiSeI2 and CH3NH3BiSI2 exhibit improved band gaps and optical absorption over CH3NH3PbI3. The split-anion approach could also be applied to pure inorganic perovskites, significantly enlarging the pool of candidate materials in the design of low-cost, high-performance and environmentally-friendly perovskite solar materials.Organic-inorganic hybrid perovskite solar materials, being low-cost and high-performance, are promising for large-scale deployment of the photovoltaic technology. A key challenge that remains to be addressed is the toxicity of these materials since the high-efficiency solar cells are made of lead-containing materials, in particular, CH3NH3PbI3. Here, based on first-principles calculation, we search for lead-free perovskite materials based on the split-anion approach, where we replace Pb with non-toxic elements while introducing dual anions (i.e., splitting the anion sites) that preserve the charge neutrality. We show that CH3NH3BiSeI2 and CH3NH3BiSI2 exhibit improved band gaps and optical absorption over CH3NH3PbI3. The split-anion approach could also be applied to pure inorganic perovskites, significantly enlarging the pool of candidate materials in the design of low-cost, high-performance and environmentally-friendly perovskite solar materials. Electronic supplementary information (ESI) available: Detailed descriptions on

  7. Architectured Materials to Improve the Reliability of Power Electronics Modules: Substrate and Lead-Free Solder

    NASA Astrophysics Data System (ADS)

    Kaabi, Abderrahmen; Bienvenu, Yves; Ryckelynck, David; Pierre, Bertrand

    2013-07-01

    Power electronics modules (>100 A, >500 V) are essential components for the development of electrical and hybrid vehicles. These modules are formed from silicon chips (transistors and diodes) assembled on copper substrates by soldering. Owing to the fact that the assembly is heterogeneous, and because of thermal gradients, shear stresses are generated in the solders and cause premature damage to such electronics modules. This work focuses on architectured materials for the substrate and on lead-free solders to reduce the mechanical effects of differential expansion, improve the reliability of the assembly, and achieve a suitable operating temperature (<175°C). These materials are composites whose thermomechanical properties have been optimized by numerical simulation and validated experimentally. The substrates have good thermal conductivity (>280 W m-1 K-1) and a macroscopic coefficient of thermal expansion intermediate between those of Cu and Si, as well as limited structural evolution in service conditions. An approach combining design, optimization, and manufacturing of new materials has been followed in this study, leading to improved thermal cycling behavior of the component.

  8. Polymorphic structure evolution and large piezoelectric response of lead-free (Ba,Ca)(Zr,Ti)O{sub 3} ceramics

    SciTech Connect

    Tian, Ye; Chao, Xiaolian E-mail: yangzp@snnu.edu.cn; Wei, Lingling; Liang, Pengfei; Yang, Zupei E-mail: yangzp@snnu.edu.cn; Jin, Li

    2014-03-17

    The polymorphic structure evolution of (Ba,Ca)(Zr,Ti)O{sub 3} piezoelectric ceramics was investigated by analysis of the in situ X-ray diffraction and dielectric spectra. The results indicated that a confined orthorhombic (O) phase region induced by the approach of the rhombohedral (R) and tetragonal (T) phases existed in an extremely narrow temperature range of (Ba{sub 0.85}Ca{sub 0.15})(Zr{sub 0.1}Ti{sub 0.9})O{sub 3} composition. The electric properties near the O–T phase boundaries of (Ba{sub 0.95}Ca{sub 0.05})(Zr{sub 0.05}Ti{sub 0.95})O{sub 3} and (Ba{sub 0.85}Ca{sub 0.15})(Zr{sub 0.1}Ti{sub 0.9})O{sub 3} were compared. The results suggested that the confined O phase region is an important factor that contributes to the extremely large piezoelectric response.

  9. Quenching effects for piezoelectric properties on lead-free (Bi1/2Na1/2)TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Muramatsu, Hiroki; Nagata, Hajime; Takenaka, Tadashi

    2016-10-01

    Lead-free ferroelectric and piezoelectric ceramics, (Bi0.5Na0.5)TiO3 (BNT), were fabricated by a quenching procedure after sintering, and then their electrical properties were investigated with the aim to increase their depolarization temperature T d. From the measurement of the temperature dependence of dielectric properties, T d increased with increasing quench temperature. The T d of a BNT sample quenched from 1100 °C was 223 °C, which was almost 50 °C higher than that prepared by the ordinary cooling process. From the measurement of P-E hysteresis loops, both the remanent polarization P r and the coercive field E c of BNT samples prepared by ordinary firing were almost the same as those quenched from 1100 °C. Additionally, from the measurements by a resonance-antiresonance method, the electromechanical coupling factor k 33 of ordinarily fired BNT was 0.45, and that of the quenched BNT was 0.46. From these results, it is clarified that the quenching procedure is an effective way to increase the T d of BNT ceramics without deteriorating ferroelectric and piezoelectric properties.

  10. Electric field-induced giant strain and photoluminescence-enhancement effect in rare-earth modified lead-free piezoelectric ceramics.

    PubMed

    Yao, Qirong; Wang, Feifei; Xu, Feng; Leung, Chung Ming; Wang, Tao; Tang, Yanxue; Ye, Xiang; Xie, Yiqun; Sun, Dazhi; Shi, Wangzhou

    2015-03-11

    In this work, an electric field-induced giant strain response and excellent photoluminescence-enhancement effect was obtained in a rare-earth ion modified lead-free piezoelectric system. Pr(3+)-modified 0.93(Bi0.5Na0.5)TiO3-0.07BaTiO3 ceramics were designed and fabricated by a conventional fabrication process. The ferroelectric, dielectric, piezoelectric, and photoluminescence performances were systematically studied, and a schematic phase diagram was constructed. It was found the Pr(3+) substitution induced a transition from ferroelectric a long-range order structure to a relaxor pseudocubic phase with short-range coherence structure. Around a critical composition of 0.8 mol % Pr(3+), a giant reversible strain of ∼0.43% with a normalized strain Smax/Emax of up to 770 pm/V was obtained at ∼5 kV/mm. Furthermore, the in situ electric field enhanced the photoluminescence intensity by ∼40% in the proposed system. These findings have great potential for actuator and multifunctional device applications, which may also open up a range of new applications. PMID:25664585

  11. Response of intergrown microstructure to an electric field and its consequences in the lead-free piezoelectric bismuth sodium titanate

    SciTech Connect

    Liu Yun; Noren, Lasse; Studer, Andrew J.; Withers, Ray L.; Guo Yiping; Li Yongxiang; Yang Hui; Wang Jian

    2012-03-15

    We investigate the R3c average structure and micro-structure of the ceramic Bi{sub 0.5}Na{sub 0.5}TiO{sub 3} (BNT) in situ under applied electric fields using diffraction techniques. Electron diffraction implies the presence of significant octahedral tilt twin disorder, corresponding to the existence of a fine scale intergrown microstructural (IGMS) 'phase' within the R3c rhombohedral average structure matrix. A careful neutron refinement suggests not only that the off-centre displacements of the cations relative to the oxygens in the R3c regions increases systematically on application of an electric field but also that the phase fraction of the IGMS regions increases systematically. The latter change in phase fraction on application of the electric field enhances the polar displacement of the cations relative to the oxygen anions and affects the overall strain response. These IGMS regions form local polar nano regions that are not correlated with one another, resulting in polarisation relaxation and strain behaviour observed in BNT-containing materials. - Graphical abstract: The intergrown microstructure at very fine scales within the R3c rhombohedral phase matrix of BNT, originating from octahedral tilt twinning disorder, will increase with respect to an external field. Highlights: Black-Right-Pointing-Pointer The existence of an intergrown microstructural 'phase' within the average structure matrix. Black-Right-Pointing-Pointer This phase fraction of the intergrown microstructural regions changes. Black-Right-Pointing-Pointer Such regions form local polar nano regions that are not correlated with one another.

  12. Piezoelectric materials used in underwater acoustic transducers

    SciTech Connect

    Li, Huidong; Deng, Zhiqun; Carlson, Thomas J.

    2012-07-07

    Piezoelectric materials have been used in underwater acoustic transducers for nearly a century. In this paper, we reviewed four different types of piezoelectric materials: piezoelectric ceramics, single crystals, composites, and polymers, which are widely used in underwater acoustic transducers nowadays. Piezoelectric ceramics are the most dominant material type and are used as a single-phase material or one of the end members in composites. Piezoelectric single crystals offer outstanding electromechanical response but are limited by their manufacturing cost. Piezoelectric polymers provide excellent acoustic impedance matching and transducer fabrication flexibility although their piezoelectric properties are not as good as ceramics and single crystals. Composites combined the merits of ceramics and polymers and are receiving increased attention. The typical structure and electromechanical properties of each type of materials are introduced and discussed with respect to underwater acoustic transducer applications. Their advantages and disadvantages are summarized. Some of the critical design considerations when developing underwater acoustic transducers with these materials are also touched upon.

  13. Flexible High-Performance Lead-Free Na0.47K0.47Li0.06NbO3 Microcube-Structure-Based Piezoelectric Energy Harvester.

    PubMed

    Gupta, Manoj Kumar; Kim, Sang-Woo; Kumar, Binay

    2016-01-27

    Lead-free piezoelectric nano- and microstructure-based generators have recently attracted much attention due to the continuous demand of self-powered body implantable devices. We report the fabrication of a high-performance flexible piezoelectric microgenerator based on lead-free inorganic piezoelectric Na0.47K0.47Li0.06NbO3 (NKLN) microcubes for the first time. The composite generator is fabricated using NKLN microcubes and polydimethylsiloxane (PDMS) polymer on a flexible substrate. The flexible device exhibits excellent performance with a large recordable piezoelectric output voltage of 48 V and output current density of 0.43 μA/cm(2) under vertical compressive force of 2 kgf, for which an energy conversion efficiency of about 11% has been achieved. Piezoresponse and ferroelectric studies reveal that NKLN microcubes exhibited high piezoelectric charge coefficient (d33) as high as 460 pC/N and a well-defined hysteresis loops with remnant polarization and coercive field of 13.66 μC/cm(2) and 19.45 kV/cm, respectively. The piezoelectric charge generation mechanism from NKLN microgenerator are discussed in the light of the high d33 and alignment of electric dipoles in polymer matrix and dielectric constant of NKLN microcubes. It has been demonstrated that the developed power generator has the potential to generate high electric output power under mechanical vibration for powering biomedical devices in the near future.

  14. Flexible High-Performance Lead-Free Na0.47K0.47Li0.06NbO3 Microcube-Structure-Based Piezoelectric Energy Harvester.

    PubMed

    Gupta, Manoj Kumar; Kim, Sang-Woo; Kumar, Binay

    2016-01-27

    Lead-free piezoelectric nano- and microstructure-based generators have recently attracted much attention due to the continuous demand of self-powered body implantable devices. We report the fabrication of a high-performance flexible piezoelectric microgenerator based on lead-free inorganic piezoelectric Na0.47K0.47Li0.06NbO3 (NKLN) microcubes for the first time. The composite generator is fabricated using NKLN microcubes and polydimethylsiloxane (PDMS) polymer on a flexible substrate. The flexible device exhibits excellent performance with a large recordable piezoelectric output voltage of 48 V and output current density of 0.43 μA/cm(2) under vertical compressive force of 2 kgf, for which an energy conversion efficiency of about 11% has been achieved. Piezoresponse and ferroelectric studies reveal that NKLN microcubes exhibited high piezoelectric charge coefficient (d33) as high as 460 pC/N and a well-defined hysteresis loops with remnant polarization and coercive field of 13.66 μC/cm(2) and 19.45 kV/cm, respectively. The piezoelectric charge generation mechanism from NKLN microgenerator are discussed in the light of the high d33 and alignment of electric dipoles in polymer matrix and dielectric constant of NKLN microcubes. It has been demonstrated that the developed power generator has the potential to generate high electric output power under mechanical vibration for powering biomedical devices in the near future. PMID:26735739

  15. LARGE PIEZOELECTRIC EFFECT IN LOW-TEMPERATURE-SINTERED LEAD-FREE (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 THICK FILMS

    NASA Astrophysics Data System (ADS)

    Feng, Zuyong; Shi, Dongqi; Dou, Shixue; Hu, Yihua; Tang, Xingui

    2012-09-01

    High-quality piezoelectric (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 thick films with dense and homogenous microstructures were fabricated at a low sintering temperature (900°C) using a CuBi2O4 sintering aid. The 10 μm thick film exhibited a high longitudinal piezoelectric constant d33,eff of 210 pC/N with estimated unconstrained d33 value of 560 pC/N very close to that in the corresponding bulks. Such excellent piezoelectric effect in the low-temperature sintered (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 thick films is comparable to the case of lead-based PZT thick films, and may be a promising application in lead-free microdevices such as piezoelectric microelectromechanical systems (MEMS).

  16. Giant electric-field-induced strain in lead-free piezoelectric materials.

    PubMed

    Chen, Lan; Yang, Yurong; Meng, X K

    2016-05-03

    First-principles calculations are performed to investigate the structures, electrical, and magnetic properties of compressive BiFeO3 films under electric-field and pressure perpendicular to the films. A reversible electric-field-induced strain up 10% is achieved in the compressive BiFeO3 films. The giant strain originates from rhombohedral-tetragonal (R-T) phase transition under electric-filed, and is recoverable from tetragonal-rhombohedral (T-R) phase transition by compressive stress. Additionally, the weak ferromagnetism in BiFeO3 films is largely changed in R-T phase transition under electric-filed and T-R phase transition under pressure - reminiscent of magnetoelectric effect and magnetoelastic effect. These results suggest exciting device opportunities arising from the giant filed-induced strain, large magnetoelectric effect and magnetoelastic effect.

  17. Giant electric-field-induced strain in lead-free piezoelectric materials

    PubMed Central

    Chen, Lan; Yang, Yurong; Meng, X. K.

    2016-01-01

    First-principles calculations are performed to investigate the structures, electrical, and magnetic properties of compressive BiFeO3 films under electric-field and pressure perpendicular to the films. A reversible electric-field-induced strain up 10% is achieved in the compressive BiFeO3 films. The giant strain originates from rhombohedral-tetragonal (R-T) phase transition under electric-filed, and is recoverable from tetragonal-rhombohedral (T-R) phase transition by compressive stress. Additionally, the weak ferromagnetism in BiFeO3 films is largely changed in R-T phase transition under electric-filed and T-R phase transition under pressure – reminiscent of magnetoelectric effect and magnetoelastic effect. These results suggest exciting device opportunities arising from the giant filed-induced strain, large magnetoelectric effect and magnetoelastic effect. PMID:27139526

  18. Giant electric-field-induced strain in lead-free piezoelectric materials.

    PubMed

    Chen, Lan; Yang, Yurong; Meng, X K

    2016-01-01

    First-principles calculations are performed to investigate the structures, electrical, and magnetic properties of compressive BiFeO3 films under electric-field and pressure perpendicular to the films. A reversible electric-field-induced strain up 10% is achieved in the compressive BiFeO3 films. The giant strain originates from rhombohedral-tetragonal (R-T) phase transition under electric-filed, and is recoverable from tetragonal-rhombohedral (T-R) phase transition by compressive stress. Additionally, the weak ferromagnetism in BiFeO3 films is largely changed in R-T phase transition under electric-filed and T-R phase transition under pressure - reminiscent of magnetoelectric effect and magnetoelastic effect. These results suggest exciting device opportunities arising from the giant filed-induced strain, large magnetoelectric effect and magnetoelastic effect. PMID:27139526

  19. Enhanced piezoelectricity in (1 -x)Bi1.05Fe1-yAyO3-xBaTiO3 lead-free ceramics: site engineering and wide phase boundary region.

    PubMed

    Zheng, Ting; Jiang, Zhenggen; Wu, Jiagang

    2016-07-28

    Site engineering has been employed to modulate the piezoelectric activity of high temperature (1 -x)Bi1.05Fe1-yScyO3-xBaTiO3 lead-free ceramics fabricated by a conventional solid-state method together with a quenching technique. The effects of x and y content on the phase structure, microstructure, and electrical properties have been investigated in detail. A wide rhombohedral (R) to pseudo-cubic (C) phase boundary was formed in the ceramics with x = 0.30 and 0 ≤y≤ 0.07, thus leading to enhanced piezoelectricity (d33 = 120-180 pC N(-1)), ferroelectricity (Pr = 19-22 μC cm(-2)) and a high Curie temperature (TC = 478-520 °C). In addition, the influence of different element substitutions for Fe(3+) on phase structure and electrical behavior was also investigated. Improved piezoelectricity (d33 = 160-180 pC N(-1)) and saturated P-E loops can be simultaneously achieved in the ceramics with A = Sc, Ga, and Al due to the R-C phase boundary. As a result, site engineering may be an efficient way to modulate the piezoelectricity of BiFeO3-BaTiO3 lead-free ceramics. PMID:27357104

  20. How to Identify Lead-Free Certification Marks for Drinking Water System & Plumbing Materials

    EPA Science Inventory

    In 2011, Congress passed the “Reduction of Lead in Drinking Water Act,” which effectively reduces the lead content allowed in material used for potable water plumbing. The Act, which will go into effect on January 4, 2014, changes the definition of “lead-free” by reducing allowed...

  1. How to Identify Lead-Free Certification Marks for Drinking Water System & Plumbing Materials - Presentation

    EPA Science Inventory

    In 2011, Congress passed the “Reduction of Lead in Drinking Water Act,” which effectively reduces the lead content allowed in material used for potable water plumbing. The Act, which will go into effect on January 4, 2014, changes the definition of “lead-free” by reducing allowed...

  2. Designing lead-free and stable perovskite materials for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Sun, Yiyang; Zhang, Shengbai

    A critical barrier for large-scale deployment of the current perovskite solar materials is the use of Pb to achieve high power conversion efficiency. While this appears to be a technical issue, there are more fundamental reasons behind. The current research has mainly focused on the replacement of Pb by other elements, in particular, Sn. However, in halide perovskites (i.e., I-II-VII3 composition), Sn is in its less stable 2 + state. The formation of more stable 4 + centers in the Sn(II)-based materials under ambient conditions makes the device efficiency very low. Worse, there might be no other elements across the Periodic Table that can replace Pb while maintaining the desirable properties, such as band gap. Out-of-the-box ideas are therefore called for to stimulate the research in this field. In this talk, two approaches are proposed based on state-of-the-art first-principles calculations. Through a screening of chalcogenide perovskite materials, CaTiS3, BaZrS3, CaZrSe3, and CaHfSe3 have been predicted to have suitable band gaps for making solar cells. Among these materials, BaZrS3 have been synthesized experimentally. Another proposed approach is to introduce dual anions (i.e., splitting the anion sites) that allow the composition to satisfy charge neutrality, while replacing Pb by more environmentally benign elements. One of the candidate materials is CH3NH3BiSI2, which is predicted to have band gap around 1.4 eV and high optical absorption.

  3. Dual-enhancement of ferro-/piezoelectric and photoluminescent performance in Pr{sup 3+} doped (K{sub 0.5}Na{sub 0.5})NbO{sub 3} lead-free ceramics

    SciTech Connect

    Wei, Yongbin; Jia, Yanmin E-mail: ymjia@zjnu.edu.cn; Wu, Jiang; Shen, Yichao; Wu, Zheng E-mail: ymjia@zjnu.edu.cn; Luo, Haosu

    2014-07-28

    A mutual enhancement action between the ferro-/piezoelectric polarization and the photoluminescent performance of rare earth Pr{sup 3+} doped (K{sub 0.5}Na{sub 0.5})NbO{sub 3} (KNN) lead-free ceramics is reported. After Pr{sup 3+} doping, the KNN ceramics exhibit the maximum enhancement of ∼1.2 times in the ferroelectric remanent polarization strength and ∼1.25 times in the piezoelectric coefficient d{sub 33}, respectively. Furthermore, after undergoing a ferro-/piezoelectric polarization treatment, the maximum enhancement of ∼1.3 times in photoluminescence (PL) was observed in the poled 0.3% Pr{sup 3+} doped sample. After the trivalent Pr{sup 3+} unequivalently substituting the univalent (K{sub 0.5}Na{sub 0.5}){sup +}, A-sites ionic vacancies will occur to maintain charge neutrality, which may reduce the inner stress and ease the domain wall motions, yielding to the enhancement in ferro-/piezoelectric performance. The polarization-induced enhancement in PL is attributed to the decrease of crystal symmetry abound the Pr{sup 3+} ions after polarization. The dual-enhancement of the ferro-/piezoelectric and photoluminescent performance makes the Pr{sup 3+} doped KNN ceramic hopeful for piezoelectric/luminescent multifunctional devices.

  4. Coupled improvement between thermoelectric and piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Montgomery, David; Hewitt, Corey; Dun, Chaochao; Carroll, David

    A novel coupling effect in a thermoelectric and piezoelectric meta-structure is discussed. Thermo-piezoelectric generators (TPEGs) exhibit a synergistic effect that amplifies output voltage, and has been observed to increase piezoelectric voltages over 500% of initial values a time dependent thermoelectric/pyroelectric effect. The resulting improvement in voltage has been observed in carbon nanotubes as well as inorganics such as two-dimensional Bismuth Selenide platelets and Telluride nanorods thin-film thermoelectrics. TPEGs are built by integrating insulating layers of polyvinylidene fluoride (PVDF) piezoelectric films between flexible thin film p-type and n-type thermoelectrics. The physical phenomena arising in the interaction between thermoelectric and piezoelectrics is discussed and a model is presented to quantify the expected coupling voltage as a function of stress, thermal gradient, and different thermoelectric materials. TPEG are ideal to capture waste heat and vibrational energy while creating larger voltages and minimizing space when compared with similar thermoelectric or piezoelectric generators.

  5. Domain-orientation-controlled potassium niobate family piezoelectric materials with hydrothermal powders.

    PubMed

    Fujiuchi, Yukiko; Morita, Takeshi

    2014-10-01

    Materials of the potassium niobate family, as lead-free piezoelectric materials, are expected to be alternative materials to Pb(Zr,Ti)O3 (PZT) because of their good piezoelectric properties, high Curie temperature, and so on. In particular, single-crystal potassium niobate is a promising ferroelectric material as a surface acoustic substrate and for functional optical effects. It is, however, well known that single crystals are difficult to fabricate because of the instability caused by temperature, external stress, and other factors.

  6. Applications of piezoelectric materials in oilfield services.

    PubMed

    Goujon, Nicolas; Hori, Hiroshi; Liang, Kenneth K; Sinha, Bikash K

    2012-09-01

    Piezoelectric materials are used in many applications in the oilfield services industry. Four illustrative examples are given in this paper: marine seismic survey, precision pressure measurement, sonic logging-while-drilling, and ultrasonic bore-hole imaging. In marine seismics, piezoelectric hydrophones are deployed on a massive scale in a relatively benign environment. Hence, unit cost and device reliability are major considerations. The remaining three applications take place downhole in a characteristically harsh environment with high temperature and high pressure among other factors. The number of piezoelectric devices involved is generally small but otherwise highly valued. The selection of piezoelectric materials is limited, and the devices have to be engineered to withstand the operating conditions. With the global demand for energy increasing in the foreseeable future, the search for hydrocarbon resources is reaching into deeper and hotter wells. There is, therefore, a continuing and pressing need for high-temperature and high-coupling piezoelectric materials.

  7. Lead-free Mn-doped (K0.5,Na0.5)NbO3 piezoelectric thin films for MEMS-based vibrational energy harvester applications

    NASA Astrophysics Data System (ADS)

    Won, Sung Sik; Lee, Joonhee; Venugopal, Vineeth; Kim, Dong-Joo; Lee, Jinkee; Kim, Ill Won; Kingon, Angus I.; Kim, Seung-Hyun

    2016-06-01

    Lead-free Mn-doped (K0.5, Na0.5)NbO3 (KNN) thin films were fabricated by the chemical solution deposition method. The addition of small concentration of Mn dopant effectively reduced the leakage current density and enhanced the piezoelectric properties of the films. The leakage current density of 0.5 mol. % Mn-doped KNN film showed the lowest value of ˜10-7 A/cm2 at 10 V compared to the films with other doping concentrations and the piezoelectric d33 and e31 coefficients of this film were ˜90 pm/V and -8.5 C/m2, respectively. The maximum power and power density of the lead-free thin film-based vibrational energy harvesting device were 3.62 μW and 1800 μW/cm3 at the resonance frequency of 132 Hz and the acceleration of 1.0 G. The results prove that the 0.5 mol. % Mn-doped KNN film is an attractive candidate transducer layer for the piezoelectric MEMS energy harvesting device applications with a small volume and a long-lasting power source.

  8. Determination of crystallographic orientation of lead-free piezoelectric (K,Na)NbO{sub 3} epitaxial thin films grown on SrTiO{sub 3} (100) surfaces

    SciTech Connect

    Yu, Qi; Zhu, Fang-Yuan; Cheng, Li-Qian; Wang, Ke; Li, Jing-Feng

    2014-03-10

    Crystallographic structure of sol-gel-processed lead-free (K,Na)NbO{sub 3} (KNN) epitaxial films on [100]-cut SrTiO{sub 3} single-crystalline substrates was investigated for a deeper understanding of its piezoelectric response. Lattice parameter measurement by high-resolution X-ray diffraction and transmission electron microscopy revealed that the orthorhombic KNN films on SrTiO{sub 3} (100) surfaces are [010] oriented (b-axis-oriented) rather than commonly identified c-axis orientation. Based on the crystallographic orientation and corresponding ferroelectric domain structure investigated by piezoresponse force microscopy, the superior piezoelectric property along b-axis of epitaxial KNN films than other orientations can be explained.

  9. Lead-free intravascular ultrasound transducer using BZT-50BCT ceramics.

    PubMed

    Yan, Xingwei; Lam, Kwok Ho; Li, Xiang; Chen, Ruimin; Ren, Wei; Ren, Xiaobing; Zhou, Qifa; Shung, K Kirk

    2013-06-01

    This paper reports the fabrication and evaluation of a high-frequency ultrasonic transducer based on a new lead-free piezoelectric material for intravascular imaging application. Lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO4(BZT-50BCT) ceramic with a high dielectric constant (~2800) was employed to develop a high-frequency (~30 MHz) needle-type ultrasonic transducer. With superior piezoelectric performance (piezoelectric coefficient d33 ~ 600 pC/N), the lead-free transducer was found to exhibit a -6-dB bandwidth of 53% with an insertion loss of 18.7 dB. In vitro intravascular ultrasound (IVUS) imaging of a human cadaver coronary artery was performed to demonstrate the potential of the lead-free transducer for biomedical imaging applications. This is the first time that a lead-free transducer has been used for IVUS imaging application. The experimental results suggest that the BZT-50BCT ceramic is a promising lead-free piezoelectric material for high-frequency intravascular imaging applications.

  10. Lead-Free Intravascular Ultrasound Transducer Using BZT-50BCT Ceramics

    PubMed Central

    Yan, Xingwei; Lam, Kwok Ho; Li, Xiang; Chen, Ruimin; Ren, Wei; Ren, Xiaobing; Zhou, Qifa; Shung, K. Kirk

    2013-01-01

    This paper reports the fabrication and evaluation of a high-frequency ultrasonic transducer based on a new lead-free piezoelectric material for intravascular imaging application. Lead-free 0.5Ba(Zr0.2Ti0.8)O3−0.5(Ba0.7Ca0.3)TiO3 (BZT-50BCT) ceramic with a high dielectric constant (~2800) was employed to develop a high-frequency (~30 MHz) needle-type ultrasonic transducer. With superior piezoelectric performance (piezoelectric coefficient d33 ~ 600 pC/N), the lead-free transducer was found to exhibit a −6-dB bandwidth of 53% with an insertion loss of 18.7 dB. In vitro intravascular ultrasound (IVUS) imaging of a human cadaver coronary artery was performed to demonstrate the potential of the lead-free transducer for biomedical imaging applications. This is the first time that a lead-free transducer has been used for IVUS imaging application. The experimental results suggest that the BZT-50BCT ceramic is a promising lead-free piezoelectric material for high-frequency intravascular imaging applications. PMID:25004492

  11. Lead-free intravascular ultrasound transducer using BZT-50BCT ceramics.

    PubMed

    Yan, Xingwei; Lam, Kwok Ho; Li, Xiang; Chen, Ruimin; Ren, Wei; Ren, Xiaobing; Zhou, Qifa; Shung, K Kirk

    2013-06-01

    This paper reports the fabrication and evaluation of a high-frequency ultrasonic transducer based on a new lead-free piezoelectric material for intravascular imaging application. Lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO4(BZT-50BCT) ceramic with a high dielectric constant (~2800) was employed to develop a high-frequency (~30 MHz) needle-type ultrasonic transducer. With superior piezoelectric performance (piezoelectric coefficient d33 ~ 600 pC/N), the lead-free transducer was found to exhibit a -6-dB bandwidth of 53% with an insertion loss of 18.7 dB. In vitro intravascular ultrasound (IVUS) imaging of a human cadaver coronary artery was performed to demonstrate the potential of the lead-free transducer for biomedical imaging applications. This is the first time that a lead-free transducer has been used for IVUS imaging application. The experimental results suggest that the BZT-50BCT ceramic is a promising lead-free piezoelectric material for high-frequency intravascular imaging applications. PMID:25004492

  12. Investigation of a new lead-free Bi0.5(Na0.40K0.10)TiO3-(Ba0.7Sr0.3)TiO3 piezoelectric ceramic

    PubMed Central

    2012-01-01

    Lead-free piezoelectric compositions of the (1-x)Bi0.5(Na0.40K0.10)TiO3-x(Ba0.7Sr0.3)TiO3 system (when x = 0, 0.05, 0.10, 0.15, and 0.20) were fabricated using a solid-state mixed oxide method and sintered between 1,050°C and 1,175°C for 2 h. The effect of (Ba0.7Sr0.3)TiO3 [BST] content on phase, microstructure, and electrical properties was investigated. The optimum sintering temperature was 1,125°C at which all compositions had densities of at least 98% of their theoretical values. X-ray diffraction patterns that showed tetragonality were increased with the increasing BST. Scanning electron micrographs showed a slight reduction of grain size when BST was added. The addition of BST was also found to improve the dielectric and piezoelectric properties of the BNKT ceramic. A large room-temperature dielectric constant, εr (1,609), and piezoelectric coefficient, d33 (214 pC/N), were obtained at an optimal composition of x = 0.10. PMID:22221833

  13. Polar nanoregions and dielectric properties in high-strain lead-free 0.93(Bi1/2Na1/2)TiO3-0.07BaTiO3 piezoelectric single crystals

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Sao; Chen, Pin-Yi; Tu, Chi-Shun

    2014-01-01

    A structural coexistence of rhombohedral (R) and tetragonal (T) phases has been revealed in the (001)c-cut lead-free 0.93(Bi1/2Na1/2)TiO3-0.07BaTiO3 (BNB7T) piezoelectric crystals, which grown by the self-flux method, in the lower temperatures by high-resolution synchrotron X-ray diffraction, reciprocal space mapping, and transmission electron microscopy. The dielectric permittivity exhibits a thermal hysteresis in the region of 120-260 °C, implying a first-order-like phase transition from R+T to T. The real part (ɛ') of dielectric permittivity begins to deviates from the Curie-Weiss equation, ɛ' = C/(T - To), from the Burns temperature TB = 460 °C, below which the polar nanoregions (or nanoclusters) develop and attenuate dielectric responses. The polar nanoregions of 5-10 nm were revealed by high-resolution transmission electron microscope. The normal piezoelectric coefficient d33 exhibits a rapid increase at E = 15-20 kV/cm and reaches a maximum of d33 ˜450 pC/N. The high piezoelectric response and E-field induced strain in BNB7T single crystals can be attributed to structural phase transitions under an E-field application.

  14. Smart actuators with piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Janocha, Hartmut; Jendritza, Daniel J.; Scheer, Peter

    1996-04-01

    Piezoelectric solid-state actuators continue to gain in technical and economic significance for a great variety of applications such as quick fine-positioning tasks, control of structural stability and active noise and vibration control due to the high driving forces, short reaction times and compact construction of these actuators. Microelectronics and signal processing must be combined intelligently to form `smart actuators' in order to do justice to the growing demand for precision, miniaturization, efficiency and cost. Energy transducers with piezoelectric PZT ceramics (PZT: lead-zirconate-titanate) simultaneously possess actuator and sensor capacities. An important requirement for the construction of smart actuators is fulfilled by separating the sensor information (charge approximately external force) from the actuator control quantities (elongation approximately electric field strength). A closed-loop control structure with digital signal processing and a voltage controlled power amplifier were developed to enable nearly load-independent linearization of the actuator's response characteristic (elongation-voltage curve) even under dynamic operating conditions by making use of the `self-sensing' effect and without using extra force or displacement sensors. The effectiveness of the developed approach for realizing smart actuators was verified and specified with the help of a computerized large-signal measurement set-up using a low-voltage piezoelectric ceramic stack as an example.

  15. Piezoelectric and electrostrictive materials for transducer applications

    NASA Astrophysics Data System (ADS)

    Cross, L. E.; Newnham, R. E.; Barsch, G. R.; Biggers, J. V.

    1984-05-01

    A wide range of materials and devices were covered, including composite materials for transducer applications, electrostriction, and conventional piezoelectrics. In piezoelectric composites, progress was made in 3:1 and 3:2 perforated PZT polymer composites, and in transverse reinforced composites. Finite element calculations of stress distributions in 1:3 PZT polymer composites were carried out. Fresnoite glass ceramics have exhibited extreme stability to hydrostatic pressure, and high sensitivity. A new water quenching technique was used to develop PbTiO3, and a detailed analysis of resonant modes of 1:3 PZT epoxy composites was carried out.

  16. Determination of temperature dependences of material constants for lead-free (Na0.5K0.5)NbO3-Ba2NaNb5O15 piezoceramics by inverse method

    NASA Astrophysics Data System (ADS)

    Yoshida, Katsuya; Kakimoto, Ken-ichi; Weiß, Manuel; Rupitsch, Stefan J.; Lerch, Reinhard

    2016-10-01

    The enhancement of the piezoelectric, dielectric, and elastic properties of lead-free piezoceramics is essential to achieving a usable alternative to common lead-based piezoceramics. In this contribution, the temperature dependences of the material constants for 0.985(Na0.5K0.5)NbO3-0.015Ba2NaNb5O15 (NKN-1.5BNN) were characterized and compared with those of MnO-doped (Na0.5K0.5)NbO3 (NKN-Mn). The material constants were determined by the simulation-based inverse method. As a result, NKN-Mn and NKN-1.5BNN were found to show significant differences in the temperature behaviors of piezoelectric, elastic, and dielectric constants. In particular, for temperatures less than 40 °C, material constants that mainly affect shear mode vibration in NKN-1.5BNN gradually increased with increasing temperature, whereas those of NKN-Mn remained constant because of a different crystal structure. In addition, we explain the observed mechanical softness of NKN-1.5BNN in the shear direction on the basis of characteristic material constant relations, macroscopic (scanning electron microscopy), and crystal structure examinations (X-ray diffractometry).

  17. Dielectric, Ferroelectric, and Piezoelectric Properties of Mn-Doped K0.5Na0.5NbO3 Lead-Free Ceramics

    NASA Astrophysics Data System (ADS)

    Lopez-Juarez, Rigoberto; Gomez-Vidales, Virginia; Cruz, M. P.; Villafuerte-Castrejon, M. E.

    2015-08-01

    In this work, study of manganese-doped potassium-sodium niobate ceramics was performed. It was found that, with increasing Mn2+ content from 1 mol.% to 1.5 mol.%, the Q m changed from 60 to near 500 with no appreciable detriment in piezoelectric properties. These properties first increased with 0.5 mol.%, and remained almost constant with 1 mol.% of manganese. Maximum values for d 33, d 31, and k p were 120 pC N-1, 33 pC N-1, and 36%, respectively. Thus, manganese-doped K0.5Na0.5NbO3 ceramics represent an option for high-power applications.

  18. Assessment of the effects of the Japanese shift to lead-free solders and its impact on material substitution and environmental emissions by a dynamic material flow analysis.

    PubMed

    Fuse, Masaaki; Tsunemi, Kiyotaka

    2012-11-01

    Lead-free electronics has been extensively studied, whereas their adoption by society and their impact on material substitution and environmental emissions are not well understood. Through a material flow analysis (MFA), this paper explores the life cycle flows for solder-containing metals in Japan, which leads the world in the shift to lead-free solders in electronics. The results indicate that the shift has been progressing rapidly for a decade, and that substitutes for lead in solders, which include silver and copper, are still in the early life cycle stages. The results also show, however, that such substitution slows down during the late life cycle stages owing to long electronic product lifespans. This deceleration of material substitution in the solder life cycle may not only preclude a reduction in lead emissions to air but also accelerate an increase in silver emissions to air and water. As an effective measure against ongoing lead emissions, our scenario analysis suggests an aggressive recycling program for printed circuit boards that utilizes an existing recycling scheme.

  19. Dielectric properties in lead-free piezoelectric (Bi0.5Na0.5)TiO3-BaTiO3 single crystals and ceramics

    NASA Astrophysics Data System (ADS)

    Chen, C.-S.; Tu, C. S.; Chen, P.-Y.; Ting, Y.; Chiu, S.-J.; Hung, C. M.; Lee, H.-Y.; Wang, S.-F.; Anthoninappen, J.; Schmidt, V. H.; Chien, R. R.

    2014-05-01

    The 0.93(Bi0.5Na0.5)TiO3-0.07BaTiO3 (BNB7T) piezoelectric single crystals and ceramics have been grown respectively by using the self-flux and solid-state-reaction methods. The real (ε‧) and imaginary (ε″) parts of the dielectric permittivity of BNB7T crystals and ceramics were investigated with and without an electric (E) poling as functions of temperature and frequency. The BNB7T crystal shows a stronger dielectric maximum at Tm~240 °C than the ceramic at Tm~300 °C. The dielectric permittivity of BNB7T ceramic shows an extra peak after poling at an electric field E=40 kV/cm in the region of 80-100 °C designated as the depolarization temperature (Td). A wide-range dielectric thermal hysteresis was observed in BNB7T crystal and ceramic, suggesting a first-order-like phase transition. The dielectric permittivity ε‧ obeys the Curie-Weiss equation, ε‧=C/(T-To), above 500 °C, which is considered as the Burns temperature (TB), below which polar nanoregions begin to develop and attenuate dielectric responses.

  20. Properties of Miniature Cantilever-Type Ultrasonic Motor Using Lead-Free Array-Type Multilayer Piezoelectric Ceramics of (Sr,Ca)2NaNb5O15 under High Input Power

    NASA Astrophysics Data System (ADS)

    Doshida, Yutaka; Shimizu, Hiroyuki; Mizuno, Youich; Tamura, Hideki

    2012-07-01

    The properties of miniature cantilever-type ultrasonic motors using lead-free array-type multilayer piezoelectric ceramics of (Sr,Ca)2NaNb5O15 (SCNN) developed using the design rule were investigated under high input power by comparison with the high-power properties of SCNN ceramics. The frequency dependence of the revolution speed reflected the nonlinear behavior of SCNN ceramics with the hard-spring effect and showed a mirror-reversed image relative to that of the motor of Pb(Zr,Ti)O3 (PZT) ceramics. The output power increased linearly with increasing input power up to 110 mW without heat generation, and the driving properties were almost the same as the expectations under low input power. The output power density characteristics of the motors were high in comparison with those of the commercialized motors of PZT ceramics. It appeared that the motors have a high potential as an environmental friendly piezoelectric device with excellent properties, reflecting the high-power properties of SCNN ceramics.

  1. Fabrication of lead-free (Na{sub 0.82}K{sub 0.18}){sub 0.5}Bi{sub 0.5}TiO{sub 3} piezoelectric nanofiber by electrospinning

    SciTech Connect

    Chen, Y.Q.; Zheng, X.J.; Feng, X.; Dai, S.H.; Zhang, D.Z.

    2010-06-15

    (Na{sub 0.82}K{sub 0.18}){sub 0.5}Bi{sub 0.5}TiO{sub 3} nanofibers were synthesized by sol-gel process and electrospinning. Scanning electron microscopy was used to verify that the diameters and lengths are in the range of 150-600 nm and several hundreds of micrometer. Perovskite structure and grain size (20-70 nm) were verified by X-ray diffraction and transmission electron microscopy. The high effective piezoelectric coefficient d{sub 33} (96 pm/V) was measured by scanning force microscopy. It may be attributed to easily tilting the polar vector of domain for an electric field and the increase in the number of possible spontaneous polarization direction near the rhombohedral-tetragonal morphotropic phase boundary. The research shows that there are potentional applications for (Na{sub 0.82}K{sub 0.18}){sub 0.5}Bi{sub 0.5}TiO{sub 3} nanofiber in nanoscale lead-free piezoelectric devices.

  2. Phase evolution and electrical properties of a new system of (1-x)[BNT-BKT-KNN]-xBCTZ lead-free piezoelectric ceramics synthesized by the solid-state combustion technique

    NASA Astrophysics Data System (ADS)

    Thawong, Pichittra; Kornphom, Chittakorn; Chootin, Suphornpun; Bongkarn, Theerachai

    2016-03-01

    Lead-free piezoelectric ? ceramics with x content from 0 to 0.1 step 0.02 were prepared via the solid-state combustion technique. The effect of x concentration on the phase evolution, microstructure and electrical properties was methodically investigated. The XRD result of ? showed a tetragonal phase. The coexistence phase between the rhombohedral and the tetragonal structure was observed at ? The phase structure at a composition between 0.08 and 0.1 was dominated by a higher rhombohedral phase. The ceramics grain exhibited a cubic shape and the average grain size decreased from 1.15 to 0.83 µm with an increase in x content from 0 to 0.1. The temperature of ɛFA and ɛSA of the ceramics tended to decrease with increasing x concentration. The MPB composition was suggested at x around 0.06 where this ceramic exhibited its highest dielectric constant ? good ferroelectric properties ? μC/cm2 and ? kV/cm) and excellent piezoelectric constant ?

  3. Elastomer degradation sensor using a piezoelectric material

    DOEpatents

    Olness, Dolores U.; Hirschfeld, deceased, Tomas B.

    1990-01-01

    A method and apparatus for monitoring the degradation of elastomeric materials is provided. Piezoelectric oscillators are placed in contact with the elastomeric material so that a forced harmonic oscillator with damping is formed. The piezoelectric material is connected to an oscillator circuit,. A parameter such as the resonant frequency, amplitude or Q value of the oscillating system is related to the elasticity of the elastomeric material. Degradation of the elastomeric material causes changes in its elasticity which, in turn, causes the resonant frequency, amplitude or Q of the oscillator to change. These changes are monitored with a peak height monitor, frequency counter, Q-meter, spectrum analyzer, or other measurement circuit. Elasticity of elastomers can be monitored in situ, using miniaturized sensors.

  4. Piezoelectric Nanoparticle-Polymer Composite Materials

    NASA Astrophysics Data System (ADS)

    McCall, William Ray

    Herein we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be synthesized and fabricated into complex microstructures using sugar-templating methods or optical printing techniques. Stretchable foams with excellent tunable piezoelectric properties are created by incorporating sugar grains directly into polydimethylsiloxane (PDMS) mixtures containing barium titanate (BaTiO3 -- BTO) nanoparticles and carbon nanotubes (CNTs), followed by removal of the sugar after polymer curing. Porosities and elasticity are tuned by simply adjusting the sugar/polymer mass ratio and the electrical performance of the foams showed a direct relationship between porosity and the piezoelectric outputs. User defined 2D and 3D optically printed piezoelectric microstructures are also fabricated by incorporating BTO nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate (PEGDA) and exposing to digital optical masks that can be dynamically altered. Mechanical-to-electrical conversion efficiency of the optically printed composite is enhanced by chemically altering the surface of the BTO nanoparticles with acrylate groups which form direct covalent linkages with the polymer matrix under light exposure. Both of these novel materials should find exciting uses in a variety of applications including energy scavenging platforms, nano- and microelectromechanical systems (NEMS/MEMS), sensors, and acoustic actuators.

  5. Optimizing electrical poling for tetragonal, lead-free BZT-BCT piezoceramic alloys

    SciTech Connect

    Li, Binzhi; Ehmke, Matthias C.; Blendell, John E.; Bowman, Keith J.

    2014-02-13

    The piezoelectric properties of tetragonal BZT–BCT materials have been shown to be improved by using the field cooling poling method. It is shown that the piezoelectric coefficient of tetragonal BZT–BCT materials increases with higher poling temperature, and the optimum poling temperature lies near the Curie temperatures for a broad range of compositions. It is also observed from in situ X-ray diffraction measurements with an applied electric field that the magnitude of domain alignment is enhanced with electrical poling at higher electric fields, whereas the remnant ferroelastic domain texture is not affected. Furthermore, these results show a direct correlation between the development of internal bias field, which is induced by the accumulation of defect charge carriers, and the enhanced piezoelectric coefficient. These observations suggest an important role played by the alignment of defect charge carriers in achieving optimum piezoelectric coefficient in lead-free piezoelectric ceramics.

  6. Ferroelastic domains in lead-free barium zirconate titanate - barium calcium titanate piezoceramics

    NASA Astrophysics Data System (ADS)

    Ehmke, Matthias Claudius

    Piezoelectricity was first discovered by Pierre and Jaque Curie in the year 1880. Nowadays, piezoelectric materials are used in many application such as high voltage generation in gas igniters, actuation in micro-positioning devices, generation and detection of acoustic waves, emitters and receivers for sonar technology, ultrasonic cleaning, ultrasound medical therapy, and micropumps for ink-jet printers. The most commonly used piezoelectric material since the 1950's is the solid solution system lead zirconate titanate (PZT) that offers high piezoelectric performance under a large range of operating conditions. However, the toxicity of lead requires the replacement of PZT. The studied lead-free alternatives are commonly based on potassium sodium niobate (KNN) and bismuth sodium titanate (BNT), and more recently zirconium and calcium substituted barium titanate (BZT-BCT). The BZT-BCT system exhibits large piezoelectric coefficients that can exceed even those of most PZT compositions under certain conditions. Piezoelectricity was first discovered by Pierre and Jaque Curie in the year 1880. Nowadays, piezoelectric materials are used in many application such as high voltage generation in gas igniters, actuation in micro-positioning devices, generation and detection of acoustic waves, emitters and receivers for sonar technology, ultrasonic cleaning, ultrasound medical therapy, and micropumps for ink-jet printers. The most commonly used piezoelectric material since the 1950's is the solid solution system lead zirconate titanate (PZT) that offers high piezoelectric performance under a large range of operating conditions. However, the toxicity of lead requires the replacement of PZT. The studied lead-free alternatives are commonly based on potassium sodium niobate (KNN) and bismuth sodium titanate (BNT), and more recently zirconium and calcium substituted barium titanate (BZT-BCT). The BZT-BCT system exhibits large piezoelectric coefficients that can exceed even those of

  7. Extrinsic response enhancement at the polymorphic phase boundary in piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Ochoa, Diego A.; Esteves, Giovanni; Jones, Jacob L.; Rubio-Marcos, Fernando; Fernández, José F.; García, José E.

    2016-04-01

    Polymorphic phase boundaries (PPBs) in piezoelectric materials have attracted significant interest in recent years, in particular, because of the unique properties that can be found in their vicinity. However, to fully harness their potential as micro-nanoscale functional entities, it is essential to achieve reliable and precise control of their piezoelectric response, which is due to two contributions known as intrinsic and extrinsic. In this work, we have used a (K,Na)NbO3-based lead-free piezoceramic as a model system to investigate the evolution of the extrinsic contribution around a PPB. X-ray diffraction measurements are performed over a wide range of temperatures in order to determine the structures and transitions. The relevance of the extrinsic contribution at the PPB region is evaluated by means of nonlinear dielectric response measurements. Though it is widely appreciated that certain intrinsic properties of ferroelectric materials increase as PPBs are approached, our results demonstrate that the extrinsic contribution also maximizes. An enhancement of the extrinsic contribution is therefore also responsible for improving the functional properties at the PPB region. Rayleigh's law is used to quantitatively analyze the nonlinear response. As a result, an evolution of the domain wall motion dynamics through the PPB region is detected. This work demonstrates that the extrinsic contribution at a PPB may have a dynamic role in lead-free piezoelectric materials, thereby exerting a far greater influence on their functional properties than that considered to date.

  8. Energy Harvesting From Low Frequency Applications Using Piezoelectric Materials

    SciTech Connect

    Li, Huidong; Tian, Chuan; Deng, Zhiqun

    2014-11-06

    This paper reviewed the state of research on piezoelectric energy harvesters. Various types of harvester configurations, piezoelectric materials, and techniques used to improve the mechanical-to-electrical energy conversion efficiency were discussed. Most of the piezoelectric energy harvesters studied today have focused on scavenging mechanical energy from vibration sources due to their abundance in both natural and industrial environments. Cantilever beams have been the most studied structure for piezoelectric energy harvester to date because of the high responsiveness to small vibrations.

  9. Magnetoelectric coupling in lead-free piezoelectric Lix(K0.5Na0.5)1 - xNb1 - yTayO3 and magnetostrictive CoFe2O4 laminated composites

    NASA Astrophysics Data System (ADS)

    Fu, Jiyong; Santa Rosa, Washington; M'Peko, Jean Claude; Algueró, Miguel; Venet, Michel

    2016-04-01

    To replace lead zirconium titanate in magnetoelectric (ME) composites owing to concerns regarding its toxicity, we investigate the ME coupling in bilayer composites comprising lead-free Lix(K0.5Na0.5)1 - xNb1 - yTayO3 (LKNNT) (piezoelectric) and CoFe2O4 (magnetostrictive) phases. We prepare the LKNNT ceramics and measure its piezoelectric coefficient d31, a crucial ingredient determining ME couplings, for several Li (x = 0.03 , 0.035 , 0.04) and Ta (y = 0.15 , 0.2 , 0.25) concentrations, and find that the highest d31 occurs at y = 0.2 for all the values of x studied here. We then evaluate both the transverse (αE,31) and the longitudinal (αE,33) low-frequency ME coupling coefficients of our composites, for each the above composition of (x , y). At x = 0.03, we find the usual scenario of αE,31 and αE,33, i.e., the strongest ME coupling occurs when d31 is maximal, namely at y = 0.2. On the other hand, interestingly, we also obtain the strongest ME coupling when the LKNNT layer has a relatively weaker d31, e.g., at y = 0.25 for x = 0.035 and y = 0.15 for x = 0.04, following from the interplay of d31 and other ingredients (e.g., dielectric constant). Our calculated ME couplings, with αE,31 in magnitude around twice of αE,33, are comparable to those in lead-based composites. The effect of the volume fraction and interface parameter on the ME coupling is also discussed.

  10. Microstructure, dielectric and piezoelectric properties of (K0.5Na0.5)NbO3-Ba(Ti0.95Zr0.05)O3 lead-free ceramics with CuO sintering aid

    NASA Astrophysics Data System (ADS)

    Lin, D.; Kwok, K. W.; Chan, H. L. W.

    2007-08-01

    Using an ordinary ceramic fabrication technique, we fabricated lead-free (1-x)(K0.5Na0.5)NbO3-xBa(Ti0.95Zr0.05)O3 ceramics with CuO sintering aid . Ba(Ti0.95Zr0.05)O3 diffuses into (K0.5Na0.5)NbO3 to form a new solid solution. The ceramics with perovskite structure possess orthorhombic phase at x≤0.04 and become tetragonal phase at x≥0.06. Both the paraelectric cubic-ferroelectric tetragonal and the ferroelectric tetragonal-ferroelectric orthorhombic phase transition temperatures decrease with increasing the concentration of Ba(Ti0.95Zr0.05)O3. The doping of CuO effectively promotes the densification of the ceramics. The coexistence of the orthorhombic and tetragonal phases at 0.04piezoelectric and dielectric properties at room temperature. The ceramics with x=0.04-0.06 and y=0.75-1.50 possess excellent properties: d33=119-185 pC/N, kP=37-44%, kt=35-49%, ɛ=341-1129, cosδ=0.7-4.4% and Tc=312-346 °C.

  11. Structural crossover from nonmodulated to long-period modulated tetragonal phase and anomalous change in ferroelectric properties in the lead-free piezoelectric N a1 /2B i1 /2Ti O3-BaTi O3

    NASA Astrophysics Data System (ADS)

    Rao, Badari Narayana; Khatua, Dipak Kumar; Garg, Rohini; Senyshyn, Anatoliy; Ranjan, Rajeev

    2015-06-01

    The highly complex structure-property interrelationship in the lead-free piezoelectric (x )N a1 /2B i1 /2Ti O3- (1 -x ) BaTi O3 is a subject of considerable contemporary debate. Using comprehensive x-ray, neutron diffraction, dielectric, and ferroelectric studies, we have shown the existence of a new criticality in this system at x =0.80 , i.e., well within the conventional tetragonal phase field. This criticality manifests as a nonmonotonic variation of the tetragonality and coercivity and is shown to be associated with a crossover from a nonmodulated tetragonal phase (for x <0.8 ) to a long-period modulated tetragonal phase (for x >0.80 ). It is shown that the stabilization of long-period modulation introduces a characteristic depolarization temperature in the system. While differing qualitatively from the two-phase model often suggested for the critical compositions of this system, our results support the view with regard to the tendency in perovskites to stabilize long-period modulated structures as a result of complex interplay of antiferrodistortive modes [Bellaiche and Iniguez, Phys. Rev. B 88, 014104 (2013), 10.1103/PhysRevB.88.014104; Prosandeev, Wang, Ren, Iniguez, ands Bellaiche, Adv. Funct. Mater. 23, 234 (2013), 10.1002/adfm.201201467].

  12. Phase structure and piezoelectric properties of (1-x)K0.48Na0.52Nb0.95Sb0.05O3-x(Bi0.5Na0.5)0.9(Li0.5Ce0.5)0.1ZrO3 lead-free piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Xing, Jie; Tan, Zhi; Jiang, Laiming; Chen, Qiang; Wu, Jiagang; Zhang, Wen; Xiao, Dingquan; Zhu, Jianguo

    2016-01-01

    (1-x)K0.48Na0.52Nb0.95Sb0.05O3-x(Bi0.5Na0.5)0.9(Li0.5Ce0.5)0.1ZrO3 [(1-x)KNNS-xBNLCZ] lead-free piezoceramics were prepared by the conventional solid state sintering method. The effects of BNLCZ contents on their phase structure, microstructure, and piezoelectric properties were investigated. All the samples show a pure perovskite structure, and no secondary phases were formed in the detected range. The rhombohedral and tetragonal phases of (1-x)KNNS-xBNLCZ coexist in the composition range of 0.0325 ≤ x ≤ 0.0425 at room temperature. A remarkably strong piezoelectricity was obtained by the addition of appropriate BNLCZ contents. The excellent piezoelectric properties of the ceramics with x = 0.04 were obtained: d33 ˜ 485 pC/N, kp ˜ 48%, and TC ˜ 227 °C. All the results show that the introduction of (Bi0.5Na0.5)0.9(Li0.5Ce0.5)0.1ZrO3 is a very effective way to form the rhombohedral and tetragonal phase coexistence of potassium-sodium niobate-based ceramics, which can improve its piezoelectric properties.

  13. Dielectric and piezoelectric properties of lead-free 0.5Ba(Zr0.2 Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 piezoelectric ceramics with glass additive.

    PubMed

    Im, In-Ho; Chung, Kwang-Hyun

    2014-12-01

    We have investigated the dielectric and piezoelectric properties of lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramics with BaO-CaO-SiO2 glass additive as a function of sintering temperatures. With adding BaO-CaO-SiO2 glass additive, diffusivity of lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramics was increased. The dispersion constant γ of BZT-BCT ceramics with BaO-CaO-SiO2 glass was changed from 1.9683 to 1.7673 by decreasing sintering temperature ranging from 1450 degrees C to 1350 degrees C, while 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramics at sintered 1450 degrees C showed γ = 1.5055. The piezoelectric properties such as electromechanical coupling factor (k(p)) and piezoelectric constant (d33) of lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramics with BaO-CaO-SiO2 glass additive sintered at 1400 degrees C showed similar values compared with 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramics without BaO-CaO-SiO2 glass additive sintered at 1450 degrees C. The addition of BaO-CaO-SiO2 glass additive can be of help to decrease sintering temperature of lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramics.

  14. Dielectric and piezoelectric properties of lead-free 0.5Ba(Zr0.2 Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 piezoelectric ceramics with glass additive.

    PubMed

    Im, In-Ho; Chung, Kwang-Hyun

    2014-12-01

    We have investigated the dielectric and piezoelectric properties of lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramics with BaO-CaO-SiO2 glass additive as a function of sintering temperatures. With adding BaO-CaO-SiO2 glass additive, diffusivity of lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramics was increased. The dispersion constant γ of BZT-BCT ceramics with BaO-CaO-SiO2 glass was changed from 1.9683 to 1.7673 by decreasing sintering temperature ranging from 1450 degrees C to 1350 degrees C, while 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramics at sintered 1450 degrees C showed γ = 1.5055. The piezoelectric properties such as electromechanical coupling factor (k(p)) and piezoelectric constant (d33) of lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramics with BaO-CaO-SiO2 glass additive sintered at 1400 degrees C showed similar values compared with 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramics without BaO-CaO-SiO2 glass additive sintered at 1450 degrees C. The addition of BaO-CaO-SiO2 glass additive can be of help to decrease sintering temperature of lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramics. PMID:25970982

  15. Integration of bulk piezoelectric materials into microsystems

    NASA Astrophysics Data System (ADS)

    Aktakka, Ethem Erkan

    Bulk piezoelectric ceramics, compared to deposited piezoelectric thin-films, provide greater electromechanical coupling and charge capacity, which are highly desirable in many MEMS applications. In this thesis, a technology platform is developed for wafer-level integration of bulk piezoelectric substrates on silicon, with a final film thickness of 5-100microm. The characterized processes include reliable low-temperature (200°C) AuIn diffusion bonding and parylene bonding of bulk-PZT on silicon, wafer-level lapping of bulk-PZT with high-uniformity (+/-0.5microm), and low-damage micro-machining of PZT films via dicing-saw patterning, laser ablation, and wet-etching. Preservation of ferroelectric and piezoelectric properties is confirmed with hysteresis and piezo-response measurements. The introduced technology offers higher material quality and unique advantages in fabrication flexibility over existing piezoelectric film deposition methods. In order to confirm the preserved bulk properties in the final film, diaphragm and cantilever beam actuators operating in the transverse-mode are designed, fabricated and tested. The diaphragm structure and electrode shapes/sizes are optimized for maximum deflection through finite-element simulations. During tests of fabricated devices, greater than 12microm PP displacement is obtained by actuation of a 1mm2 diaphragm at 111kHz with <7mW power consumption. The close match between test data and simulation results suggests that the piezoelectric properties of bulk-PZT5A are mostly preserved without any necessity of repolarization. Three generations of resonant vibration energy harvesters are designed, simulated and fabricated to demonstrate the competitive performance of the new fabrication process over traditional piezoelectric deposition systems. An unpackaged PZT/Si unimorph harvester with 27mm3 active device volume produces up to 205microW at 1.5g/154Hz. The prototypes have achieved the highest figure-of-merits (normalized

  16. Ab Initio Prediction of Piezoelectricity in Two-Dimensional Materials.

    PubMed

    Blonsky, Michael N; Zhuang, Houlong L; Singh, Arunima K; Hennig, Richard G

    2015-10-27

    Two-dimensional (2D) materials present many unique materials concepts, including material properties that sometimes differ dramatically from those of their bulk counterparts. One of these properties, piezoelectricity, is important for micro- and nanoelectromechanical systems applications. Using symmetry analysis, we determine the independent piezoelectric coefficients for four groups of predicted and synthesized 2D materials. We calculate with density-functional perturbation theory the stiffness and piezoelectric tensors of these materials. We determine the in-plane piezoelectric coefficient d11 for 37 materials within the families of 2D metal dichalcogenides, metal oxides, and III-V semiconductor materials. A majority of the structures, including CrSe2, CrTe2, CaO, CdO, ZnO, and InN, have d11 coefficients greater than 5 pm/V, a typical value for bulk piezoelectric materials. Our symmetry analysis shows that buckled 2D materials exhibit an out-of-plane coefficient d31. We find that d31 for 8 III-V semiconductors ranges from 0.02 to 0.6 pm/V. From statistical analysis, we identify correlations between the piezoelectric coefficients and the electronic and structural properties of the 2D materials that elucidate the origin of the piezoelectricity. Among the 37 2D materials, CdO, ZnO, and CrTe2 stand out for their combination of large piezoelectric coefficient and low formation energy and are recommended for experimental exploration. PMID:26312745

  17. Ab Initio Prediction of Piezoelectricity in Two-Dimensional Materials.

    PubMed

    Blonsky, Michael N; Zhuang, Houlong L; Singh, Arunima K; Hennig, Richard G

    2015-10-27

    Two-dimensional (2D) materials present many unique materials concepts, including material properties that sometimes differ dramatically from those of their bulk counterparts. One of these properties, piezoelectricity, is important for micro- and nanoelectromechanical systems applications. Using symmetry analysis, we determine the independent piezoelectric coefficients for four groups of predicted and synthesized 2D materials. We calculate with density-functional perturbation theory the stiffness and piezoelectric tensors of these materials. We determine the in-plane piezoelectric coefficient d11 for 37 materials within the families of 2D metal dichalcogenides, metal oxides, and III-V semiconductor materials. A majority of the structures, including CrSe2, CrTe2, CaO, CdO, ZnO, and InN, have d11 coefficients greater than 5 pm/V, a typical value for bulk piezoelectric materials. Our symmetry analysis shows that buckled 2D materials exhibit an out-of-plane coefficient d31. We find that d31 for 8 III-V semiconductors ranges from 0.02 to 0.6 pm/V. From statistical analysis, we identify correlations between the piezoelectric coefficients and the electronic and structural properties of the 2D materials that elucidate the origin of the piezoelectricity. Among the 37 2D materials, CdO, ZnO, and CrTe2 stand out for their combination of large piezoelectric coefficient and low formation energy and are recommended for experimental exploration.

  18. New piezoelectric materials for SAW filters

    NASA Astrophysics Data System (ADS)

    Anghelescu, Adrian; Nedelcu, Monica

    2010-11-01

    Scientific research of surface acoustic wave (SAW) devices had an early start by the end of 1960s and led to the development of high frequency and small size piezo devices. A sustained effort was dedicated for these components to be transformed into many more interesting applications for telecom market. Recently the employment of new piezo materials and crystallographic orientations open new opportunities for SAW filters. New piezoelectric crystals of gallium orthophosphate (GaPO4) provide higher electromechanical coupling than quartz, while maintaining temperature compensated characteristics similar to quartz. Based on this material phase transition of 970°C, development of new piezo devices to operate at higher temperatures up to 800°C can be done. SAW velocities about 30% lower than ST-X quartz, favors smaller and more compact devices. Other advantages of GaPO4 are: stability with high resistance to stress induced twinning, 3~4 times higher electromechanical coupling than quartz and existence of SAW temperature compensated orientations. Another family of new materials of the trigonal 32 class has received much attention recently because of their temperature behavior similar to quartz and the promise of higher electromechanical coupling coefficients. It is the family of langasite (LGS, La3Ga5SiO14), langatate (LGT, La3Ga5.5Ta0.5O14) and langanite (La3Ga5.5Nb0.5O14). Langasite crystals, easier to obtain and with the value of electromechanical coupling coefficient intermediate between quartz and lithium tantalate (k2=0.32% for 0°, 140°, 22.5° orientation and k2=0.38% for 0°, 140°, 25° orientation), enable us to design SAW filters with a relative pass band of 0.3% to 0.85%. Other piezoelectric materials are reviewed for comparison.

  19. Lead-free epitaxial ferroelectric material integration on semiconducting (100) Nb-doped SrTiO3 for low-power non-volatile memory and efficient ultraviolet ray detection

    NASA Astrophysics Data System (ADS)

    Kundu, Souvik; Clavel, Michael; Biswas, Pranab; Chen, Bo; Song, Hyun-Cheol; Kumar, Prashant; Halder, Nripendra N.; Hudait, Mantu K.; Banerji, Pallab; Sanghadasa, Mohan; Priya, Shashank

    2015-07-01

    We report lead-free ferroelectric based resistive switching non-volatile memory (NVM) devices with epitaxial (1-x)BaTiO3-xBiFeO3 (x = 0.725) (BT-BFO) film integrated on semiconducting (100) Nb (0.7%) doped SrTiO3 (Nb:STO) substrates. The piezoelectric force microscopy (PFM) measurement at room temperature demonstrated ferroelectricity in the BT-BFO thin film. PFM results also reveal the repeatable polarization inversion by poling, manifesting its potential for read-write operation in NVM devices. The electroforming-free and ferroelectric polarization coupled electrical behaviour demonstrated excellent resistive switching with high retention time, cyclic endurance, and low set/reset voltages. X-ray photoelectron spectroscopy was utilized to determine the band alignment at the BT-BFO and Nb:STO heterojunction, and it exhibited staggered band alignment. This heterojunction is found to behave as an efficient ultraviolet photo-detector with low rise and fall time. The architecture also demonstrates half-wave rectification under low and high input signal frequencies, where the output distortion is minimal. The results provide avenue for an electrical switch that can regulate the pixels in low or high frequency images. Combined this work paves the pathway towards designing future generation low-power ferroelectric based microelectronic devices by merging both electrical and photovoltaic properties of BT-BFO materials.

  20. Lead-free epitaxial ferroelectric material integration on semiconducting (100) Nb-doped SrTiO3 for low-power non-volatile memory and efficient ultraviolet ray detection.

    PubMed

    Kundu, Souvik; Clavel, Michael; Biswas, Pranab; Chen, Bo; Song, Hyun-Cheol; Kumar, Prashant; Halder, Nripendra N; Hudait, Mantu K; Banerji, Pallab; Sanghadasa, Mohan; Priya, Shashank

    2015-01-01

    We report lead-free ferroelectric based resistive switching non-volatile memory (NVM) devices with epitaxial (1-x)BaTiO3-xBiFeO3 (x = 0.725) (BT-BFO) film integrated on semiconducting (100) Nb (0.7%) doped SrTiO3 (Nb:STO) substrates. The piezoelectric force microscopy (PFM) measurement at room temperature demonstrated ferroelectricity in the BT-BFO thin film. PFM results also reveal the repeatable polarization inversion by poling, manifesting its potential for read-write operation in NVM devices. The electroforming-free and ferroelectric polarization coupled electrical behaviour demonstrated excellent resistive switching with high retention time, cyclic endurance, and low set/reset voltages. X-ray photoelectron spectroscopy was utilized to determine the band alignment at the BT-BFO and Nb:STO heterojunction, and it exhibited staggered band alignment. This heterojunction is found to behave as an efficient ultraviolet photo-detector with low rise and fall time. The architecture also demonstrates half-wave rectification under low and high input signal frequencies, where the output distortion is minimal. The results provide avenue for an electrical switch that can regulate the pixels in low or high frequency images. Combined this work paves the pathway towards designing future generation low-power ferroelectric based microelectronic devices by merging both electrical and photovoltaic properties of BT-BFO materials.

  1. Energy harvesting from low frequency applications using piezoelectric materials

    SciTech Connect

    Li, Huidong; Tian, Chuan; Deng, Z. Daniel

    2014-12-15

    In an effort to eliminate the replacement of the batteries of electronic devices that are difficult or impractical to service once deployed, harvesting energy from mechanical vibrations or impacts using piezoelectric materials has been researched over the last several decades. However, a majority of these applications have very low input frequencies. This presents a challenge for the researchers to optimize the energy output of piezoelectric energy harvesters, due to the relatively high elastic moduli of piezoelectric materials used to date. This paper reviews the current state of research on piezoelectric energy harvesting devices for low frequency (0–100 Hz) applications and the methods that have been developed to improve the power outputs of the piezoelectric energy harvesters. Various key aspects that contribute to the overall performance of a piezoelectric energy harvester are discussed, including geometries of the piezoelectric element, types of piezoelectric material used, techniques employed to match the resonance frequency of the piezoelectric element to input frequency of the host structure, and electronic circuits specifically designed for energy harvesters.

  2. A new Bi{sub 0.5}Na{sub 0.5}TiO{sub 3} based lead-free piezoelectric system with calculated end-member Bi(Zn{sub 0.5}Hf{sub 0.5})O{sub 3}

    SciTech Connect

    Liu, Feng; Wahyudi, Olivia; Li, Yongxiang

    2014-03-21

    The phase structure, dielectric and piezoelectric properties of a new lead-free piezoelectric system (1 − x)Bi{sub 0.5}Na{sub 0.5}TiO{sub 3}–xBi(Zn{sub 0.5}Hf{sub 0.5})O{sub 3} [(1 − x)BNT–xBZH, x = 0, 0.01, 0.02, 0.03, and 0.04] were investigated. The structure of Bi(Zn{sub 0.5}Hf{sub 0.5})O{sub 3} was calculated using first-principles method and (1 − x)BNT–xBZH ceramics were fabricated by conventional solid-state process. At room temperature, a morphotropic phase boundary (MPB) from rhombohedral to pseudocubic is identified near x = 0.02 by the analysis of X-ray diffraction patterns. The ceramics with MPB near room temperature exhibit excellent electrical properties: the Curie temperature, maximum polarization, remnant polarization, and coercive field are 340 °C, 56.3 μC/cm{sup 2}, 43.5 μC/cm{sup 2}, and 5.4 kV/mm, respectively, while the maximum positive bipolar strain and piezoelectric coefficient are 0.09% and 92 pC/N, respectively. In addition, a linear relationship between the MPB phase boundary composition and the calculated tetragonality of non-BNT end-member was demonstrated. Thus, this study not only shows a new BNT-based lead-free piezoelectric system but also suggest a new way to predict the composition at MPB a priori when designing new lead-free piezoelectric system.

  3. System and Method for Monitoring Piezoelectric Material Performance

    NASA Technical Reports Server (NTRS)

    Moses, Robert W. (Inventor); Fox, Christopher L. (Inventor); Fox, Melanie L. (Inventor); Chattin, Richard L. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor)

    2007-01-01

    A system and method are provided for monitoring performance capacity of a piezoelectric material that may form part of an actuator or sensor device. A switch is used to selectively electrically couple an inductor to the piezoelectric material to form an inductor-capacitor circuit. Resonance is induced in the inductor-capacitor circuit when the switch is operated to create the circuit. The resonance of the inductor-capacitor circuit is monitored with the frequency of the resonance being indicative of performance capacity of the device's piezoelectric material.

  4. Improved Piezoelectricity in (K0.44Na0.52Li0.04) (Nb0.91Ta0.05Sb0.04)O3-xBi0.25Na0.25NbO3 Lead-Free Piezoelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Xu, Zhijun; Li, Huaiyong; Hao, Jigong; Du, Juan; Chu, Ruiqing; Wei, Dongdong; Li, Guorong

    2016-08-01

    (1 - x)[(K0.44Na0.52Li0.04)(Nb0.91Ta0.05Sb0.04)O3]-xBi0.25Na0.25NbO3 (KNLNTS-xBNN) lead-free piezoelectric ceramics have been prepared using a conventional solid-state reaction method and the effects of BNN on their phase structure, microstructure, and electrical properties systematically studied. X-ray diffraction analysis suggested that BNN substitution into KNLNTS induced coexistence of orthorhombic-tetragonal mixed phase and thus improved the ferroelectric and piezoelectric properties. The surface morphologies indicated that different amounts of BNN had two different effects on grain growth. Good electrical properties (d 33 = 256 pC N-1, T c = 354.27°C, k p = 43.43%, P r = 26.85 μC cm-2, E c = 24.47 kV cm-1) were simultaneously obtained at x = 0.0025, suggesting that our research could benefit development of (K,Na)NbO3-based ceramics and widen their application range.

  5. Piezoelectric Ignition of Nanocomposite Energetic Materials

    SciTech Connect

    Eric Collins; Michelle Pantoya; Andreas A. Neuber; Michael Daniels; Daniel Prentice

    2014-01-01

    Piezoelectric initiators are a unique form of ignition for energetic material because the current and voltage are tied together by impact loading on the crystal. This study examines the ignition response of an energetic composite composed of aluminum and molybdenum trioxide nanopowders to the arc generated from a lead zirconate and lead titanate piezocrystal. The mechanical stimuli used to activate the piezocrystal varied to assess ignition voltage, power, and delay time of aluminum–molybdenum trioxide for a range of bulk powder densities. Results show a high dielectric strength leads to faster ignition times because of the higher voltage delivered to the energetic. Ignition delay is under 0.4 ms, which is faster than observed with thermal or shock ignition. Electric ignition of composite energetic materials is a strong function of interparticle connectivity, and thus the role of bulk density on electrostatic discharge ignition sensitivity is a focus of this study. Results show that the ignition delay times are dependent on the powder bulk density with an optimum bulk density of 50%. Packing fractions and electrical conductivity were analyzed and aid in explaining the resulting ignition behavior as a function of bulk density.

  6. Lead-free electric matches.

    SciTech Connect

    Son, S. F.; Hiskey, M. A.; Naud, D.; Busse, J. R.; Asay, B. W.

    2002-01-01

    Electric matches are used in pyrotechnics to initiate devices electrically rather than by burning fuses. Fuses have the disadvantage of burning with a long delay before igniting a pyrotechnic device, while electric matches can instantaneously fire a device at a user's command. In addition, electric matches can be fired remotely at a safe distance. Unfortunately, most current commercial electric match compositions contain lead as thiocyanate, nitroresorcinate or tetroxide, which when burned, produces lead-containing smoke. This lead pollutant presents environmental exposure problems to cast, crew, and audience. The reason that these lead containing compounds are used as electric match compositions is that these mixtures have the required thermal stability, yet are simultaneously able to be initiated reliably by a very small thermal stimulus. A possible alternative to lead-containing compounds is nanoscale thermite materials (metastable intermolecular composites or MIC). These superthermite materials can be formulated to be extremely spark sensitive with tunable reaction rate and yield high temperature products. We have formulated and manufactured lead-free electric matches based on nanoscale Al/MoO{sub 3} mixtures. We have determined that these matches fire reliably and to consistently ignite a sample of black powder. Initial safety, ageing and performance results are presented in this paper.

  7. Domain wall motion and electromechanical strain in lead-free piezoelectrics: Insight from the model system (1 - x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 using in situ high-energy X-ray diffraction during application of electric fields

    NASA Astrophysics Data System (ADS)

    Tutuncu, Goknur; Li, Binzhi; Bowman, Keith; Jones, Jacob L.

    2014-04-01

    The piezoelectric compositions (1 - x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 (BZT-xBCT) span a model lead-free morphotropic phase boundary (MPB) between room temperature rhombohedral and tetragonal phases at approximately x = 0.5. In the present work, in situ X-ray diffraction measurements during electric field application are used to elucidate the origin of electromechanical strain in several compositions spanning the tetragonal compositional range 0.6 ≤ x ≤ 0.9. As BCT concentration decreases towards the MPB, the tetragonal distortion (given by c/a-1) decreases concomitantly with an increase in 90° domain wall motion. The increase in observed macroscopic strain is predominantly attributed to the increased contribution from 90° domain wall motion. The results demonstrate that domain wall motion is a significant factor in achieving high strain and piezoelectric coefficients in lead-free polycrystalline piezoelectrics.

  8. Effect of composition on electrical properties of lead-free Bi{sub 0.5}(Na{sub 0.80}K{sub 0.20}){sub 0.5}TiO{sub 3}-(Ba{sub 0.98}Nd{sub 0.02})TiO{sub 3} piezoelectric ceramics

    SciTech Connect

    Jaita, Pharatree; Watcharapasorn, Anucha; Jiansirisomboon, Sukanda

    2013-07-14

    Lead-free piezoelectric ceramics with the composition of (1-x)Bi{sub 0.5}(Na{sub 0.80}K{sub 0.20}){sub 0.5}TiO{sub 3}-x(Ba{sub 0.98}Nd{sub 0.02})TiO{sub 3} or (1-x) BNKT-xBNdT (with x = 0-0.20 mol fraction) have been synthesized by a conventional mixed-oxide method. The compositional dependence of phase structure and electrical properties of the ceramics were systemically studied. The optimum sintering temperature of all BNKT-BNdT ceramics was found to be 1125 Degree-Sign C. X-ray diffraction pattern suggested that BNdT effectively diffused into BNKT lattice during sintering to form a solid solution with a perovskite structure. Scanning electron micrographs showed a slight reduction of grain size when BNdT was added. It was found that BNKT-0.10BNdT ceramic exhibited optimum electrical properties ({epsilon}{sub r} = 1716, tan{delta} = 0.0701, T{sub c} = 327 Degree-Sign C, and d{sub 33} = 211 pC/N), suggesting that this composition has a potential to be one of a promising lead-free piezoelectric candidate for dielectric and piezoelectric applications.

  9. Parylene-C as a New Piezoelectric Material

    NASA Astrophysics Data System (ADS)

    Kim, Justin Young-Hyun

    The goal of this thesis is to develop a proper microelectromechanical systems (MEMS) process to manufacture piezoelectric Parylene-C (PA-C), which is famous for its chemical inertness, mechanical and thermal properties and electrical insulation. Furthermore, piezoelectric PA-C is used to build miniature, inexpensive, non-biased piezoelectric microphones. These piezoelectric PA-C MEMS microphones are to be used in any application where a conventional piezoelectric and electret microphone can be used, such as in cell phones and hearing aids. However, they have the advantage of a simplified fabrication process compared with existing technology. In addition, as a piezoelectric polymer, PA-C has varieties of applications due to its low dielectric constant, low elastic stiffness, low density, high voltage sensitivity, high temperature stability and low acoustic and mechanical impedance. Furthermore, PA-C is an FDA approved biocompatible material and is able to maintain operate at a high temperature. To accomplish piezoelectric PA-C, a MEMS-compatible poling technology has been developed. The PA-C film is poled by applying electrical field during heating. The piezoelectric coefficient, -3.75pC/N, is obtained without film stretching. The millimeter-scale piezoelectric PA-C microphone is fabricated with an in-plane spiral arrangement of two electrodes. The dynamic range is from less than 30 dB to above 110 dB SPL (referenced 20 microPa) and the open-circuit sensitivities are from 0.001 - 0.11 mV/Pa over a frequency range of 1 - 10 kHz. The total harmonic distortion of the device is less than 20% at 110 dB SPL and 1 kHz.

  10. Piezoelectric properties of 0.5(Ba0.7Ca0.3TiO3) - 0.5[Ba(Zr0.2Ti0.8)O3] ferroelectric lead-free laser deposited thin films

    NASA Astrophysics Data System (ADS)

    Piorra, A.; Petraru, A.; Kohlstedt, H.; Wuttig, M.; Quandt, E.

    2011-05-01

    Ferroelectric lead-free thin films of 0.5(Ba0.7Ca0.3TiO3) - 0.5[Ba(Zr0.2Ti0.8)O3] (BCZT) were successfully deposited by pulsed laser deposition on Pt/TiO2/SiO2/Si substrates using a ceramic BCZT target prepared by conventional solid state reaction. The in (111) direction orientated 600 nm thick films shows a clamped piezoelectric response of approximately d33,f = 80 pm/V and a dielectric coefficient of about ɛr = 1010; these are close to values obtained for lead zirconate titanate (PZT) films.

  11. Bright reddish-orange emission and good piezoelectric properties of Sm{sub 2}O{sub 3}-modified (K{sub 0.5}Na{sub 0.5})NbO{sub 3}-based lead-free piezoelectric ceramics

    SciTech Connect

    Hao, Jigong; Xu, Zhijun Chu, Ruiqing; Li, Wei; Du, Juan

    2015-05-21

    Reddish orange-emitting 0.948(K{sub 0.5}Na{sub 0.5})NbO{sub 3}-0.052LiSbO{sub 3}-xmol%Sm{sub 2}O{sub 3} (KNN-5.2LS-xSm{sub 2}O{sub 3}) lead-free piezoelectric ceramics with good piezoelectric properties were fabricated in this study, and the photoluminescence and electrical properties of the ceramics were systematically studied. Results showed that Sm{sub 2}O{sub 3} substitution into KNN-5.2LS induces a phase transition from the coexistence of orthorhombic and tetragonal phases to a pseudocubic phase and shifts the polymorphic phase transition (PPT) to below room temperature. The temperature stability and fatigue resistance of the modified ceramics were significantly improved by Sm{sub 2}O{sub 3} substitution. The KNN-5.2LS ceramic with 0.4 mol. % Sm{sub 2}O{sub 3} exhibited temperature-independent properties (25–150 °C), fatigue-free behavior (up to 10{sup 6} cycles), and good piezoelectric properties (d{sub 33}{sup * }= 230 pm/V, d{sub 33} = 176 pC/N, k{sub p} = 35%). Studies on the photoluminescence properties of the samples showed strong reddish-orange emission upon blue light excitation; these emission intensities were strongly dependent on the doping concentration and sintering temperature. The 0.4 mol. % Sm{sub 2}O{sub 3}-modified sample exhibited temperature responses over a wide temperature range of 10–443 K. The maximum sensing sensitivity of the sample was 7.5 × 10{sup −4} K at 293 K, at which point PPT occurred. A relatively long decay lifetime τ of 1.27–1.40 ms and a large quantum yield η of 0.17–0.19 were obtained from the Sm-modified samples. These results suggest that the KNN-5.2LS-xSm{sub 2}O{sub 3} system presents multifunctional properties and significant technological potential in novel multifunctional devices.

  12. Research on applications of piezoelectric materials in smart structures

    NASA Astrophysics Data System (ADS)

    Qiu, Jinhao; Ji, Hongli

    2011-03-01

    Piezoelectric materials have become the most attractive functional materials for sensors and actuators in smart structures because they can directly convert mechanical energy to electrical energy and vise versa. They have excellent electromechanical coupling characteristics and excellent frequency response. In this article, some research activities on the applications of piezoelectric materials in smart structures, including semi-active vibration control based on synchronized switch damping using negative capacitance, energy harvesting using new electronic interfaces, structural health monitoring based on a new type of piezoelectric fibers with metal core, and active hysteresis control based on new modified Prandtl-Ishlinskii model at the Aeronautical Science Key Laboratory for Smart Materials and Structures, Nanjing University of Aeronautics and Astronautics are introduced.

  13. A database to enable discovery and design of piezoelectric materials

    PubMed Central

    de Jong, Maarten; Chen, Wei; Geerlings, Henry; Asta, Mark; Persson, Kristin Aslaug

    2015-01-01

    Piezoelectric materials are used in numerous applications requiring a coupling between electrical fields and mechanical strain. Despite the technological importance of this class of materials, for only a small fraction of all inorganic compounds which display compatible crystallographic symmetry, has piezoelectricity been characterized experimentally or computationally. In this work we employ first-principles calculations based on density functional perturbation theory to compute the piezoelectric tensors for nearly a thousand compounds, thereby increasing the available data for this property by more than an order of magnitude. The results are compared to select experimental data to establish the accuracy of the calculated properties. The details of the calculations are also presented, along with a description of the format of the database developed to make these computational results publicly available. In addition, the ways in which the database can be accessed and applied in materials development efforts are described. PMID:26451252

  14. A database to enable discovery and design of piezoelectric materials.

    PubMed

    de Jong, Maarten; Chen, Wei; Geerlings, Henry; Asta, Mark; Persson, Kristin Aslaug

    2015-01-01

    Piezoelectric materials are used in numerous applications requiring a coupling between electrical fields and mechanical strain. Despite the technological importance of this class of materials, for only a small fraction of all inorganic compounds which display compatible crystallographic symmetry, has piezoelectricity been characterized experimentally or computationally. In this work we employ first-principles calculations based on density functional perturbation theory to compute the piezoelectric tensors for nearly a thousand compounds, thereby increasing the available data for this property by more than an order of magnitude. The results are compared to select experimental data to establish the accuracy of the calculated properties. The details of the calculations are also presented, along with a description of the format of the database developed to make these computational results publicly available. In addition, the ways in which the database can be accessed and applied in materials development efforts are described.

  15. Breakthrough: Lead-free Solder

    ScienceCinema

    Anderson, Iver

    2016-07-12

    Ames Laboratory senior metallurgist Iver Anderson explains the importance of lead-free solder in taking hazardous lead out of the environment by eliminating it from discarded computers and electronics that wind up in landfills. Anderson led a team that developed a tin-silver-copper replacement for traditional lead-tin solder that has been adopted by more than 50 companies worldwide.

  16. Lead-free primary explosives

    DOEpatents

    Huynh, My Hang V.

    2010-06-22

    Lead-free primary explosives of the formula (cat).sub.Y[M.sup.II(T).sub.X(H.sub.2O).sub.6-X].sub.Z, where T is 5-nitrotetrazolate, and syntheses thereof are described. Substantially stoichiometric equivalents of the reactants lead to high yields of pure compositions thereby avoiding dangerous purification steps.

  17. Breakthrough: Lead-free Solder

    SciTech Connect

    Anderson, Iver

    2012-01-01

    Ames Laboratory senior metallurgist Iver Anderson explains the importance of lead-free solder in taking hazardous lead out of the environment by eliminating it from discarded computers and electronics that wind up in landfills. Anderson led a team that developed a tin-silver-copper replacement for traditional lead-tin solder that has been adopted by more than 50 companies worldwide.

  18. Periodical Microstructures Based on Novel Piezoelectric Material for Biomedical Applications.

    PubMed

    Janusas, Giedrius; Ponelyte, Sigita; Brunius, Alfredas; Guobiene, Asta; Prosycevas, Igoris; Vilkauskas, Andrius; Palevicius, Arvydas

    2015-12-15

    A novel cantilever type piezoelectric sensing element was developed. Cost-effective and simple fabrication design allows the use of this element for various applications in the areas of biomedicine, pharmacy, environmental analysis and biosensing. This paper proposes a novel piezoelectric composite material whose basic element is PZT and a sensing platform where this material was integrated. Results showed that a designed novel cantilever-type element is able to generate a voltage of up to 80 µV at 50 Hz frequency. To use this element for sensing purposes, a four micron periodical microstructure was imprinted. Silver nanoparticles were precipitated on the grating to increase the sensitivity of the designed element, i.e., Surface Plasmon Resonance (SPR) effect appears in the element. To tackle some issues (a lack of sensitivity, signal delays) the element must have certain electronic and optical properties. One possible solution, proposed in this paper, is a combination of piezoelectricity and SPR in a single element.

  19. Underlying memory-dominant nature of hysteresis in piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Bashash, Saeid; Jalili, Nader

    2006-07-01

    Although the existence of nonlocal memories in hysteresis behavior of piezoelectric materials has been demonstrated, their detailed and thorough properties have yet to be revealed. Along this line, we disclose and demonstrate the underlying memory-dominant nature of hysteresis, and characterize its important properties that must be considered for the accurate prediction of hysteresis trajectory in piezoelectric materials. More specifically, the concept of recording the turning points, targeting the previously recorded turning points, curve alignment, and wiping-out effects at these points are introduced as the basic intellectual properties of hysteresis nonlinearity. A constitutive memory-based mathematical modeling framework is then developed and trained for the precise prediction of a hysteresis path for arbitrarily assigned input profiles. Utilizing a piezoelectric-driven actuator, it is experimentally demonstrated that if the number of memory units is sufficiently selected, model response in the prediction of a hysteresis track is significantly improved.

  20. Love wave propagation in functionally graded piezoelectric material layer.

    PubMed

    Du, Jianke; Jin, Xiaoying; Wang, Ji; Xian, Kai

    2007-03-01

    An exact approach is used to investigate Love waves in functionally graded piezoelectric material (FGPM) layer bonded to a semi-infinite homogeneous solid. The piezoelectric material is polarized in z-axis direction and the material properties change gradually with the thickness of the layer. We here assume that all material properties of the piezoelectric layer have the same exponential function distribution along the x-axis direction. The analytical solutions of dispersion relations are obtained for electrically open or short circuit conditions. The effects of the gradient variation of material constants on the phase velocity, the group velocity, and the coupled electromechanical factor are discussed in detail. The displacement, electric potential, and stress distributions along thickness of the graded layer are calculated and plotted. Numerical examples indicate that appropriate gradient distributing of the material properties make Love waves to propagate along the surface of the piezoelectric layer, or a bigger electromechanical coupling factor can be obtained, which is in favor of acquiring a better performance in surface acoustic wave (SAW) devices.

  1. A Resonant Damping Study Using Piezoelectric Materials

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Duffy, K. P.; Choi, B. B.; Morrison, C. R.; Jansen, R. H.; Provenza, A. J.

    2008-01-01

    Excessive vibration of turbomachinery blades causes high cycle fatigue (HCF) problems requiring damping treatments to mitigate vibration levels. Based on the technical challenges and requirements learned from previous turbomachinery blade research, a feasibility study of resonant damping control using shunted piezoelectric patches with passive and active control techniques has been conducted on cantilever beam specimens. Test results for the passive damping circuit show that the optimum resistive shunt circuit reduces the third bending resonant vibration by almost 50%, and the optimum inductive circuit reduces the vibration by 90%. In a separate test, active control reduced vibration by approximately 98%.

  2. Hierarchical domain structure of lead-free piezoelectric (Na1/2 Bi1/2)TiO3-(K1/2 Bi1/2)TiO3 single crystals

    NASA Astrophysics Data System (ADS)

    Luo, Chengtao; Wang, Yaojin; Ge, Wenwei; Li, Jiefang; Viehland, Dwight; Delaire, Olivier; Li, Xiaobin; Luo, Haosu

    2016-05-01

    We report a unique hierarchical domain structure in single crystals of (Na1/2Bi1/2)TiO3-xat. %(K1/2Bi1/2)TiO3 for x = 5 and 8 by transmission electron microscopy (TEM). A high density of polar nano-domains with a lamellar morphology was found, which were self-assembled into a quadrant-like configuration, which then assembled into conventional ferroelectric macro-domains. Studies by high resolution TEM revealed that the polar lamellar regions contained a coexistence of in-phase and anti-phase oxygen octahedral tilt regions of a few nanometers in size. Domain frustration over multiple length scales may play an important role in the stabilization of the hierarchy, and in reducing the piezoelectric response of this Pb-free piezoelectric solid solution.

  3. Cellulose Nanofibril Film as a Piezoelectric Sensor Material.

    PubMed

    Rajala, Satu; Siponkoski, Tuomo; Sarlin, Essi; Mettänen, Marja; Vuoriluoto, Maija; Pammo, Arno; Juuti, Jari; Rojas, Orlando J; Franssila, Sami; Tuukkanen, Sampo

    2016-06-22

    Self-standing films (45 μm thick) of native cellulose nanofibrils (CNFs) were synthesized and characterized for their piezoelectric response. The surface and the microstructure of the films were evaluated with image-based analysis and scanning electron microscopy (SEM). The measured dielectric properties of the films at 1 kHz and 9.97 GHz indicated a relative permittivity of 3.47 and 3.38 and loss tangent tan δ of 0.011 and 0.071, respectively. The films were used as functional sensing layers in piezoelectric sensors with corresponding sensitivities of 4.7-6.4 pC/N in ambient conditions. This piezoelectric response is expected to increase remarkably upon film polarization resulting from the alignment of the cellulose crystalline regions in the film. The CNF sensor characteristics were compared with those of polyvinylidene fluoride (PVDF) as reference piezoelectric polymer. Overall, the results suggest that CNF is a suitable precursor material for disposable piezoelectric sensors, actuators, or energy generators with potential applications in the fields of electronics, sensors, and biomedical diagnostics.

  4. Cellulose Nanofibril Film as a Piezoelectric Sensor Material.

    PubMed

    Rajala, Satu; Siponkoski, Tuomo; Sarlin, Essi; Mettänen, Marja; Vuoriluoto, Maija; Pammo, Arno; Juuti, Jari; Rojas, Orlando J; Franssila, Sami; Tuukkanen, Sampo

    2016-06-22

    Self-standing films (45 μm thick) of native cellulose nanofibrils (CNFs) were synthesized and characterized for their piezoelectric response. The surface and the microstructure of the films were evaluated with image-based analysis and scanning electron microscopy (SEM). The measured dielectric properties of the films at 1 kHz and 9.97 GHz indicated a relative permittivity of 3.47 and 3.38 and loss tangent tan δ of 0.011 and 0.071, respectively. The films were used as functional sensing layers in piezoelectric sensors with corresponding sensitivities of 4.7-6.4 pC/N in ambient conditions. This piezoelectric response is expected to increase remarkably upon film polarization resulting from the alignment of the cellulose crystalline regions in the film. The CNF sensor characteristics were compared with those of polyvinylidene fluoride (PVDF) as reference piezoelectric polymer. Overall, the results suggest that CNF is a suitable precursor material for disposable piezoelectric sensors, actuators, or energy generators with potential applications in the fields of electronics, sensors, and biomedical diagnostics. PMID:27232271

  5. Piezoelectric properties of rhombohedral ferroelectric materials with phase transition

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaofang; Soh, A. K.

    2015-12-01

    The temporal evolution of domain structure and its piezoelectric behavior of ferroelectric material BaTiO3 during the transition process from rhombohedral to tetragonal phase under an applied electric field have been studied by employing Landau-Ginzburg theory and the phase-field method. The results obtained show that, during the transformation process, the intermediate phase was monoclinic MA phase, and several peak values of piezoelectric coefficient appeared at the stage where obvious change of domain pattern occurred. In addition, by comparing the cases of applied electric field with different frequencies, it was found that the maximum piezoelectric coefficient obtained decreased with increasing frequency value. These results are of great significance in tuning the properties of engineering domains in ferroelectrics, and could provide more fundamentals to the design of ferroelectric devices.

  6. Novel composite piezoelectric material for energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Janusas, Giedrius; Guobiene, Asta; Palevicius, Arvydas; Prosycevas, Igoris; Ponelyte, Sigita; Baltrusaitis, Valentinas; Sakalys, Rokas

    2015-04-01

    Past few decades were concentrated on researches related to effective energy harvesting applied in modern technologies, MEMS or MOEMS systems. There are many methods for harvesting energy as, for example, usage of electromagnetic devices, but most dramatic changes were noticed in the usage of piezoelectric materials in small scale devices. Major limitation faced was too small generated power by piezoelectric materials or high resonant frequencies of such smallscale harvesters. In this research, novel composite piezoelectric material was created by mixing PZT powder with 20% solution of polyvinyl butyral in benzyl alcohol. Obtained paste was screen printed on copper foil using 325 mesh stainless steel screen and dried for 30 min at 100 °C. Polyvinyl butyral ensures good adhesion and flexibility of a new material at the conditions that requires strong binding. Five types of a composite piezoelectric material with different concentrations of PZT (40%, 50%, 60%, 70% and 80 %) were produced. As the results showed, these harvesters were able to transform mechanical strain energy into electric potential and, v.v. In experimental setup, electromagnetic shaker was used to excite energy harvester that is fixed in the custom-built clamp, while generated electric potential were registered with USB oscilloscope PICO 3424. The designed devices generate up to 80 μV at 50 Hz excitation. This property can be applied to power microsystem devices or to use them in portable electronics and wireless sensors. However, the main advantage of the created composite piezoelectric material is possibility to apply it on any uniform or nonuniform vibrating surface and to transform low frequency vibrations into electricity.

  7. Electrocaloric effect and luminescence properties of lanthanide doped (Na{sub 1/2}Bi{sub 1/2})TiO{sub 3} lead free materials

    SciTech Connect

    Zannen, M.; Lahmar, A. E-mail: zdravko.kutnjak@ijs.si; Asbani, B.; El Marssi, M.; Khemakhem, H.; Kutnjak, Z. E-mail: zdravko.kutnjak@ijs.si; Es Souni, M.

    2015-07-20

    Polycrystalline lead-free Sodium Bismuth Titanate (NBT) ferroelectric ceramics doped with rare earth (RE) element are prepared using solid state reaction method. Optical, ferroelectric, and electrocaloric properties were investigated. The introduction of RE{sup 3+} ions in the NBT host lattice shows different light emissions over the wavelength range from visible to near infrared region. The ferroelectric P-E hysteresis loops exhibit an antiferroelectric-like character near room temperature indicating possible existence of a morphotropic phase boundary. The enhanced electrocaloric response was observed in a broad temperature range due to nearly merged phase transitions. Coexistence of optical and electrocaloric properties is very promising for photonics or optoelectronic device applications.

  8. Orientation-dependent piezoelectric properties in lead-free epitaxial 0.5BaZr0.2Ti0.8O3-0.5Ba0.7Ca0.3TiO3 thin films

    NASA Astrophysics Data System (ADS)

    Luo, B. C.; Wang, D. Y.; Duan, M. M.; Li, S.

    2013-09-01

    Orientation-engineered 0.5BaZr0.2Ti0.8O3-0.5Ba0.7Ca0.3TiO3 (BZT-BCT) thin films were deposited on La0.7Sr0.3MnO3-coated SrTiO3 single-crystalline (001), (110), and (111) substrates by off-axis radio-frequency magnetron sputtering. X-ray diffraction confirmed a highly epitaxial growth of all the as-deposited films. It is believed the strong orientation dependence of ferroelectric and piezoelectric properties on the films is attributed to the relative alignment of crystallites and spontaneous polarization vector. The optimal ferroelectric response lies in the [001] direction, whereas a comparatively large effective piezoelectric coefficient d33,eff of 100.1 ± 5 pm/V was attained in [111] BZT-BCT thin film, suggesting its potential application for high-performance lead-free piezoelectric devices.

  9. Orientation-dependent piezoelectric properties in lead-free epitaxial 0.5BaZr{sub 0.2}Ti{sub 0.8}O{sub 3}-0.5Ba{sub 0.7}Ca{sub 0.3}TiO{sub 3} thin films

    SciTech Connect

    Luo, B. C.; Wang, D. Y.; Li, S.; Duan, M. M.

    2013-09-16

    Orientation-engineered 0.5BaZr{sub 0.2}Ti{sub 0.8}O{sub 3}-0.5Ba{sub 0.7}Ca{sub 0.3}TiO{sub 3} (BZT-BCT) thin films were deposited on La{sub 0.7}Sr{sub 0.3}MnO{sub 3}-coated SrTiO{sub 3} single-crystalline (001), (110), and (111) substrates by off-axis radio-frequency magnetron sputtering. X-ray diffraction confirmed a highly epitaxial growth of all the as-deposited films. It is believed the strong orientation dependence of ferroelectric and piezoelectric properties on the films is attributed to the relative alignment of crystallites and spontaneous polarization vector. The optimal ferroelectric response lies in the [001] direction, whereas a comparatively large effective piezoelectric coefficient d{sub 33,eff} of 100.1 ± 5 pm/V was attained in [111] BZT-BCT thin film, suggesting its potential application for high-performance lead-free piezoelectric devices.

  10. Piezoelectric properties of (K0.5Na0.5)NbO3-BaTiO3 lead-free ceramics prepared by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Men, Tian-Lu; Yao, Fang-Zhou; Zhu, Zhi-Xiang; Wang, Ke; Li, Jing-Feng

    2016-07-01

    (K,Na)NbO3 (KNN)-based lead-free piezoceramics have been the spotlight in search for practically viable candidates to replace the hazardous but dominating lead-containing counterparts. In this work, BaTiO3 (BT) modified KNN ceramics were fabricated by spark plasma sintering (SPS) and the influence of BT content as well as sintering temperature on the phase structure, microstructure, and electrical properties were investigated. It was found that the 0.96(Na0.5K0.5)NbO3-0.04BaTiO3 (BT4) ceramics sintered at 1000∘C have the optimal performance. Additionally, in-depth analysis of the electrical hysteresis revealed that the internal bias field originating from accumulation of space charges at grain boundaries is responsible for the asymmetry in the hysteresis loops.

  11. Dielectric and piezoelectric properties of lead-free Ba0.85Ca0.15Ti0.9-xZr0.1CuxO3 ceramics synthesized by a hydrothermal method

    NASA Astrophysics Data System (ADS)

    Hunpratub, Sitchai; Phokha, Sumalin; Maensiri, Santi; Chindaprasirt, Prinya

    2016-04-01

    Ba0.85Ca0.15Ti0.9Zr0.1-xCuxO3 (BCTZC) nanopowders were synthesized using a hydrothermal method after which they were pressed into discs and sintered in air at 1300 °C for 3 h to form ceramic samples. The phase and microstructure of the powder and ceramic samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD results indicated that the ceramic samples exhibited a tetragonal structure and that CuO, BaZrO3 or CaTiO3 impurity phases, which had been present in the powder samples, were not observed. The average grain sizes in the ceramic samples were found to be 17.0, 16.1, 20.0, 18.1 and 19.6 μm for Cu mole fractions x of 0.002, 0.004, 0.006, 0.008 and 0.01, respectively. The dielectric constants, ferroelectric hysteresis loops and piezoelectric charge coefficients of the BCZTC ceramic samples were also investigated. Optimum values for the relative dielectric constant (ɛ‧), tan δ and piezoelectric charge coefficient (d33) of the samples were 3830, 0.03 and 306 pC/N, respectively, in the Cu mole fraction samples with x = 0.002.

  12. Piezoelectric PVDF materials performance and operation limits in space environments.

    SciTech Connect

    Dargaville, Tim Richard; Assink, Roger Alan; Clough, Roger Lee; Celina, Mathias Christopher

    2004-11-01

    Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes. Dimensional adjustments of adaptive polymer films are achieved via charge deposition and require a detailed understanding of the piezoelectric material responses which are expected to suffer due to strong vacuum UV, gamma, X-ray, energetic particles and atomic oxygen under low earth orbit exposure conditions. The degradation of PVDF and its copolymers under various stress environments has been investigated. Initial radiation aging studies using gamma- and e-beam irradiation have shown complex material changes with significant crosslinking, lowered melting and Curie points (where observable), effects on crystallinity, but little influence on overall piezoelectric properties. Surprisingly, complex aging processes have also been observed in elevated temperature environments with annealing phenomena and cyclic stresses resulting in thermal depoling of domains. Overall materials performance appears to be governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and AO exposure is evident as depoling and surface erosion. Major differences between individual copolymers have been observed providing feedback on material selection strategies.

  13. Piezoelectric material for use in a nuclear reactor core

    SciTech Connect

    Parks, D. A.; Reinhardt, Brian; Tittmann, B. R.

    2012-05-17

    In radiation environments ultrasonic nondestructive evaluation has great potential for improving reactor safety and furthering the understanding of radiation effects and materials. In both nuclear power plants and materials test reactors, elevated temperatures and high levels of radiation present challenges to ultrasonic NDE methodologies. The challenges are primarily due to the degradation of the ultrasonic sensors utilized. We present results from the operation of a ultrasonic piezoelectric transducer, composed of bulk single crystal AlN, in a nuclear reactor core for over 120 MWHrs. The transducer was coupled to an aluminum cylinder and operated in pulse echo mode throughout the irradiation. In addition to the pulse echo testing impedance data were obtained. Further, the piezoelectric coefficient d{sub 33} was measured prior to irradiation and found to be 5.5 pC/N which is unchanged from as-grown samples, and in fact higher than the measured d{sub 33} for many as-grown samples.

  14. Characterization of piezoelectric materials for simultaneous strain and temperature sensing for ultra-low frequency applications

    NASA Astrophysics Data System (ADS)

    Nouroz Islam, Mohammad; Seethaler, Rudolf; Shahria Alam, M.

    2015-08-01

    Piezoelectric materials are used extensively in a number of sensing applications ranging from aerospace industries to medical diagnostics. Piezoelectric materials generate charge when they are subjected to strain. However, since measuring charge is difficult at low frequencies, traditional piezoelectric sensors are limited to dynamic applications. In this research an alternative technique is proposed to determine static strain that relies upon the measurement of piezoelectric capacitance and resistance using piezoelectric sensors. To demonstrate the validity of this approach, the capacitance and resistance of a piezoelectric patch sensor was characterized for a wide range of strain and temperature. The study shows that the piezoelectric capacitance is sensitive to both strain and temperature while the resistance is mostly dependent on the temperature variation. The findings can be implemented to obtain thermally compensated static strain from piezoelectric sensors, which does not require an additional temperature sensor.

  15. Lead-free KNbO3 ferroelectric nanorod based flexible nanogenerators and capacitors.

    PubMed

    Jung, Jong Hoon; Chen, Chih-Yen; Yun, Byung Kil; Lee, Nuri; Zhou, Yusheng; Jo, William; Chou, Li-Jen; Wang, Zhong Lin

    2012-09-21

    In spite of high piezoelectricity, only a few one-dimensional ferroelectric nano-materials with perovskite structure have been used for piezoelectric nanogenerator applications. In this paper, we report high output electrical signals, i.e. an open-circuit voltage of 3.2 V and a closed-circuit current of 67.5 nA (current density 9.3 nA cm(-2)) at 0.38% strain and 15.2% s(-1) strain rate, using randomly aligned lead-free KNbO(3) ferroelectric nanorods (~1 μm length) with piezoelectric coefficient (d(33) ~ 55 pm V (-1)). A flexible piezoelectric nanogenerator is mainly composed of KNbO(3)-poly(dimethylsiloxane) (PDMS) composite sandwiched by Au/Cr-coated polymer substrates. We deposit a thin poly(methyl methacrylate) (PMMA) layer between the KNbO(3)-PDMS composite and the Au/Cr electrode to completely prevent dielectric breakdown during electrical poling and to significantly reduce leakage current during excessive straining. The flexible KNbO(3)-PDMS composite device shows a nearly frequency-independent dielectric constant (~3.2) and low dielectric loss (<0.006) for the frequency range of 10(2)-10(5) Hz. These results imply that short and randomly aligned ferroelectric nanorods can be used for a flexible high output nanogenerator as well as high-k capacitor applications by performing electrical poling and further optimizing the device structure.

  16. Electrical properties of lead-free 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ti0.48)O3 piezoelectric ceramics by optimizing sintering temperature

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Hwan; Lee, Sung-Gap; Lee, Young-Hie

    2012-01-01

    Lead-free 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ti0.48)O3 [0.98NKN-0.02BZT] ceramics were fabricated by the conventional mixed oxide method with sintering temperature at 1,080°C to 1,120°C. The results indicate that the sintering temperature obviously influences the structural and electrical properties of the sample. For the 0.98NKN-0.02BZT ceramics sintered at 1,080°C to 1,120°C, the bulk density increased with increasing sintering temperature and showed a maximum value at a sintering temperature of 1,090°C. The dielectric constant, piezoelectric constant [ d 33], electromechanical coupling coefficient [ k p], and remnant polarization [ P r] increased with increasing sintering temperature, which might be related to the increase in the relative density. However, the samples would be deteriorated when they are sintered above the optimum temperature. High piezoelectric properties of d 33 = 217 pC/N, k p = 41%, dielectric constant = 1,951, and ferroelectric properties of P r = 10.3 μC/cm2 were obtained for the 0.98NKN-0.02BZT ceramics sintered at 1,090°C for 4 h.

  17. Electrical properties of lead-free 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ti0.48)O3 piezoelectric ceramics by optimizing sintering temperature

    PubMed Central

    2012-01-01

    Lead-free 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ti0.48)O3 [0.98NKN-0.02BZT] ceramics were fabricated by the conventional mixed oxide method with sintering temperature at 1,080°C to 1,120°C. The results indicate that the sintering temperature obviously influences the structural and electrical properties of the sample. For the 0.98NKN-0.02BZT ceramics sintered at 1,080°C to 1,120°C, the bulk density increased with increasing sintering temperature and showed a maximum value at a sintering temperature of 1,090°C. The dielectric constant, piezoelectric constant [d33], electromechanical coupling coefficient [kp], and remnant polarization [Pr] increased with increasing sintering temperature, which might be related to the increase in the relative density. However, the samples would be deteriorated when they are sintered above the optimum temperature. High piezoelectric properties of d33 = 217 pC/N, kp = 41%, dielectric constant = 1,951, and ferroelectric properties of Pr = 10.3 μC/cm2 were obtained for the 0.98NKN-0.02BZT ceramics sintered at 1,090°C for 4 h. PMID:22221445

  18. Mechanical and Vibration Testing of Carbon Fiber Composite Material with Embedded Piezoelectric Sensors

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Lerch, Bradley A.; Wilmoth, Nathan G.; Kray, Nicholas; Gemeinhardt, Gregory

    2012-01-01

    Piezoelectric materials have been proposed as a means of decreasing turbomachinery blade vibration either through a passive damping scheme, or as part of an active vibration control system. For polymer matrix fiber composite (PMFC) blades, the piezoelectric elements could be embedded within the blade material, protecting the brittle piezoceramic material from the airflow and from debris. Before implementation of a piezoelectric element within a PMFC blade, the effect on PMFC mechanical properties needs to be understood. This study attempts to determine how the inclusion of a packaged piezoelectric patch affects the material properties of the PMFC. Composite specimens with embedded piezoelectric patches were tested in four-point bending, short beam shear, and flatwise tension configurations. Results show that the embedded piezoelectric material does decrease the strength of the composite material, especially in flatwise tension, attributable to failure at the interface or within the piezoelectric element itself. In addition, the sensing properties of the post-cured embedded piezoelectric materials were tested, and performed as expected. The piezoelectric materials include a non-flexible patch incorporating solid piezoceramic material, and two flexible patch types incorporating piezoelectric fibers. The piezoceramic material used in these patches was Navy Type-II PZT.

  19. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2009-01-01

    In response to concerns about risks from lead-free induced faults to high reliability products, NASA has initiated a multi-year project to provide manufacturers and users with data to clarify the risks of lead-free materials in their products. The project will also be of interest to component manufacturers supplying to high reliability markets. The project was launched in November 2006. The primary technical objective of the project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: (1) Packages (e.g., Thin Small Outline Package [TSOP], Ball Grid Array [BGA], Plastic Dual In-line Package [PDIP]) assembled and reworked with solder interconnects consisting of lead-free alloys (2) Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with solder interconnects consisting of mixed alloys, lead component finish/lead-free solder and lead-free component finish/SnPb solder

  20. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2009-01-01

    In response to concerns about risks from lead-free induced faults to high reliability products, NASA has initiated a multi-year project to provide manufacturers and users with data to clarify the risks of lead-free materials in their products. The project will also be of interest to component manufacturers supplying to high reliability markets. The project was launched in November 2006. The primary technical objective of the project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: - Packages (e.g., TSOP, BOA, PDIP) assembled and reworked with solder interconnects consisting of lead-free alloys - Packages (e.g., TSOP, BOA, PDIP) assembled and reworked with solder interconnects consisting of mixed alloys, lead component finish/lead-free solder and lead-free component finish/SnPb solder.

  1. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2009-01-01

    In response to concerns about risks from lead-free induced faults to high reliability products, NASA has initiated a multi-year project to provide manufacturers and users with data to clarify the risks of lead-free materials in their products. The project will also be of interest to component manufacturers supplying to high reliability markets. The project was launched in November 2006. The primary technical objective of the project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: - Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with solder interconnects consisting of lead-free alloys - Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with solder interconnects consisting of mixed alloys, lead component finish/lead-free solder and lead-free component finish/SnPb solder.

  2. Magnetic sensor for high temperature using a laminate composite of magnetostrictive material and piezoelectric material

    NASA Astrophysics Data System (ADS)

    Ueno, Toshiyuki; Higuchi, Toshiro

    2005-05-01

    A high sensitive and heat-resistive magnetic sensor using a magnetostrictive/piezoelectric laminate composite is investigated. The sensing principle is based on the magnetostrictive- and piezoelectric effect, whereby a detected yoke displacement is transduced into a voltage on the piezoelectric materials. The sensor is intended to detect the displacement of a ferromagnetic object in a high temperature environment, where conventional magnetic sensors are not useful. Such applications include sensors in engine of automobile and machinery used in material processing. The sensor features combination of a laminate composite of magnetostrictive/piezoelectric materials with high Curie temperatures and an appropriate magnetic circuit to convert mechanical displacement to sensor voltages and suppress temperature fluctuation. This paper describes the sensing principle and shows experimental results using a composite of Terfenol-D and Lithium Niobate to assure high sensitivity of 50V/mm at bias gap of 0.1mm and a temperature operating range over 200 °C.

  3. Evaluation of piezoelectric material properties for a higher power output from energy harvesters with insight into material selection using a coupled piezoelectric-circuit-finite element method.

    PubMed

    Daniels, Alice; Zhu, Meiling; Tiwari, Ashutosh

    2013-12-01

    Piezoelectric material properties have substantial influence on electrical power output from piezoelectric energy harvesters (PEHs). Understanding their influences is the first step in designing effective PEHs to generate higher power outputs. This paper uses a coupled piezoelectric-circuit-finite element method to study the power outputs of different types of piezoelectric materials, including single crystal, polyvinylidene fluoride (PVDF), and soft and hard lead zirconate titanate (PZT) materials. The purpose of this study is to try to gain an understanding of which piezoelectric material property--the elastic compliance s11, the piezoelectric strain constant d31, the piezoelectric stress constant g31, and the relative dielectric constant ϵ(T)r33, and the associated material properties of the d31 × g31, called the figure of merit (FOM), and the coupling coefficient k31--dominates the power output. A rectangular piezoelectric plate under a low-frequency excitation is used to evaluate piezoelectric material properties for a higher power output. It was found that 1) d31 is a more dominant material property over other material properties for higher power output; 2) FOM was more linearly related to the power output than either the k31 or the d31; and 3) ϵ(T)r33 had some role; when the materials have an identical d31; a lower ϵ(T)r33 was preferred. Because of unexplained outliers, no single material parameter was able to be recommended as selection criteria, but combined FOM with d31 parameters is recommended for selection of piezoelectric material for a higher power output from PEHs.

  4. Analysis of Lead-Free Piezoceramic-Based Power Ultrasonic Transducers for Wire Bonding.

    PubMed

    Mathieson, Andrew; DeAngelis, Dominick A

    2016-01-01

    Since the 1950s, lead zirconate-titanate (PZT) has been the dominant transduction material utilized in power ultrasonics, while lead-free piezoceramics have been largely neglected due to their relatively poor piezoelectric and electromechanical properties. However, the implementation of environmental directives that regulate and control the use of hazardous materials, such as lead, triggered a search for new high-performance lead-free piezoceramics. Recent advances have led to lead-free piezoceramics exhibiting properties similar to PZT, but despite this, reports utilizing these novel piezoceramics in practice are limited. This research employs a modified variant of bismuth sodium titanate (BNT) in a power ultrasonic transducer used for metal welding during the manufacture of semiconductors. The important factors for transducer reliability and performance are investigated, such as piezoceramic aging and stack preload level. It is reported that BNT-based transducers exhibit good stability, and can withstand a stack preload level of 90 MPa without depoling. Although the BNT-based transducers exhibited larger dissipative losses compared to identical PZT8-based transducers, the tool displacement gain was larger under constant current conditions. Semiconductor wire bonds which satisfied the commercial quality control requirements were also formed by this BNT-based transducer.

  5. Analysis of Lead-Free Piezoceramic-Based Power Ultrasonic Transducers for Wire Bonding.

    PubMed

    Mathieson, Andrew; DeAngelis, Dominick A

    2016-01-01

    Since the 1950s, lead zirconate-titanate (PZT) has been the dominant transduction material utilized in power ultrasonics, while lead-free piezoceramics have been largely neglected due to their relatively poor piezoelectric and electromechanical properties. However, the implementation of environmental directives that regulate and control the use of hazardous materials, such as lead, triggered a search for new high-performance lead-free piezoceramics. Recent advances have led to lead-free piezoceramics exhibiting properties similar to PZT, but despite this, reports utilizing these novel piezoceramics in practice are limited. This research employs a modified variant of bismuth sodium titanate (BNT) in a power ultrasonic transducer used for metal welding during the manufacture of semiconductors. The important factors for transducer reliability and performance are investigated, such as piezoceramic aging and stack preload level. It is reported that BNT-based transducers exhibit good stability, and can withstand a stack preload level of 90 MPa without depoling. Although the BNT-based transducers exhibited larger dissipative losses compared to identical PZT8-based transducers, the tool displacement gain was larger under constant current conditions. Semiconductor wire bonds which satisfied the commercial quality control requirements were also formed by this BNT-based transducer. PMID:26584490

  6. Polar nanoregions and dielectric properties in high-strain lead-free 0.93(Bi{sub 1/2}Na{sub 1/2})TiO{sub 3}-0.07BaTiO{sub 3} piezoelectric single crystals

    SciTech Connect

    Chen, Cheng-Sao; Chen, Pin-Yi; Tu, Chi-Shun

    2014-01-07

    A structural coexistence of rhombohedral (R) and tetragonal (T) phases has been revealed in the (001){sub c}-cut lead-free 0.93(Bi{sub 1/2}Na{sub 1/2})TiO{sub 3}–0.07BaTiO{sub 3} (BNB7T) piezoelectric crystals, which grown by the self-flux method, in the lower temperatures by high-resolution synchrotron X-ray diffraction, reciprocal space mapping, and transmission electron microscopy. The dielectric permittivity exhibits a thermal hysteresis in the region of 120–260 °C, implying a first-order-like phase transition from R+T to T. The real part (ε′) of dielectric permittivity begins to deviates from the Curie-Weiss equation, ε′ = C/(T − T{sub o}), from the Burns temperature T{sub B} = 460 °C, below which the polar nanoregions (or nanoclusters) develop and attenuate dielectric responses. The polar nanoregions of 5–10 nm were revealed by high-resolution transmission electron microscope. The normal piezoelectric coefficient d{sub 33} exhibits a rapid increase at E = 15–20 kV/cm and reaches a maximum of d{sub 33} ∼450 pC/N. The high piezoelectric response and E-field induced strain in BNB7T single crystals can be attributed to structural phase transitions under an E-field application.

  7. Periodical Microstructures Based on Novel Piezoelectric Material for Biomedical Applications

    PubMed Central

    Janusas, Giedrius; Ponelyte, Sigita; Brunius, Alfredas; Guobiene, Asta; Prosycevas, Igoris; Vilkauskas, Andrius; Palevicius, Arvydas

    2015-01-01

    A novel cantilever type piezoelectric sensing element was developed. Cost-effective and simple fabrication design allows the use of this element for various applications in the areas of biomedicine, pharmacy, environmental analysis and biosensing. This paper proposes a novel piezoelectric composite material whose basic element is PZT and a sensing platform where this material was integrated. Results showed that a designed novel cantilever-type element is able to generate a voltage of up to 80 µV at 50 Hz frequency. To use this element for sensing purposes, a four micron periodical microstructure was imprinted. Silver nanoparticles were precipitated on the grating to increase the sensitivity of the designed element, i.e., Surface Plasmon Resonance (SPR) effect appears in the element. To tackle some issues (a lack of sensitivity, signal delays) the element must have certain electronic and optical properties. One possible solution, proposed in this paper, is a combination of piezoelectricity and SPR in a single element. PMID:26694398

  8. Electromechanical nonlinearities and losses in piezoelectric sonar transducer materials.

    PubMed

    Sherlock, Nevin P; Meyer, Richard J

    2012-08-01

    Next-generation sonar projectors rely on piezoelectric single crystals such as lead magnesium niobate-lead titanate to induce mechanical strain and generate ever greater acoustic output, but the performance of these materials under high-power operation is not well understood. As the electrical driving force increases, the linear piezoelectric relationships give way to nonlinear, amplitude-dependent properties. Such behavior is impossible to predict solely from small signal, linear measurements. This work has characterized the behavior of single crystals by examining the dynamic relaxation from initial strain levels of 0.1 to 0.2%. Strain-dependent values of the mechanical quality factor and resonance frequency are reported for single crystals, and these properties are compared with conventional high-power piezoceramics.

  9. High electrostrictive coefficient Q33 in lead-free Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Li, Fei; Jin, Li; Guo, Runping

    2014-12-01

    In this study, the electrostrictive effect in Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 (BZT-xBCT, x = 0.4, 0.5, and 0.6) ceramics was investigated to gain understanding of their high piezoelectric activity. The electrostrictive coefficient Q33 of the BZT-xBCT ceramics was observed to be around 0.04 m4/C2, twice that reported for Pb(Zr,Ti)O3-based ceramics. The Q33 was found to be quite stable with respect to temperature and composition for the BZT-xBCT ceramics. The addition of Fe3+ dopant to the ceramics greatly decreased their Curie temperature without affecting their Q33, which remained 0.04 m4/C2. Moreover, a high and hysteresis-free electric-field-induced strain was obtained for 2 at. % Fe-doped BZT-0.5BCT ceramics at room temperature, caused by their high Q33 coefficient and lower-than-room-temperature Curie temperature. The small-signal M33 coefficient of 2 at. % Fe-doped BZT-0.5BCT ceramics was found to be 1.5 × 10-16 m2/V2 (0.32 × 10-16 m2/V2 for undoped counterpart). These results indicate that 2 at. % Fe-doped BZT-0.5BCT ceramics have great potential as alternatives for hard Pb(Zr,Ti)O3 ceramics in actuator applications, where reproducible and non-hysteretic deformation responses are required.

  10. Selecting a radiation tolerant piezoelectric material for nuclear reactor applications

    SciTech Connect

    Parks, D. A.; Reinhardt, B. T.; Tittmann, B. R.

    2013-01-25

    Bringing systems for online monitoring of nuclear reactors to fruition has been delayed by the lack of suitable ultrasonic sensors. Recent work has demonstrated the capability of an AlN sensor to perform ultrasonic evaluation in an actual nuclear reactor. Although the AlN demonstrated sustainability, no loss in signal amplitude and d{sub 33} up to a fast and thermal neutron fluence of 1.85 Multiplication-Sign 1018 n/cm{sup 2} and 5.8 Multiplication-Sign 1018 n/cm{sup 2} respectively, no formal process to selecting a suitable sensor material was made. It would be ideal to use first principles approaches to somehow reduce each candidate piezoelectric material to a simple ranking showing directly which materials one should expect to be most radiation tolerant. However, the complexity of the problem makes such a ranking impractical and one must appeal to experimental observations. This should not be of any surprise to one whom is familiar with material science as most material properties are obtained in this manner. Therefore, this work adopts a similar approach, the mechanisms affecting radiation tolerance are discussed and a good engineering sense is used for material qualification of the candidate piezoelectric materials.

  11. New potassium-sodium niobate lead-free piezoceramic: Giant-d33 vs. sintering temperature

    NASA Astrophysics Data System (ADS)

    Wu, Jiagang; Wang, Xiaopeng; Cheng, Xiaojing; Zheng, Ting; Zhang, Binyu; Xiao, Dingquan; Zhu, Jianguo; Lou, Xiaojie

    2014-03-01

    The objective of this work is to achieve a giant piezoelectric constant in (K,Na)NbO3-based lead-free ceramics, and then 0.96K0.46Na0.54Nb0.95Sb0.05O3-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 lead-free piezoceramics were designed and prepared by optimizing the sintering temperature (TS). The rhombohedral-tetragonal phase boundary is found in the ceramics sintered at 1070 ˜ 1105 °C and is suppressed when sintered at low TS of 1060 ˜ 1065 °C. The threshold for TS is 1070 °C in terms of their ferroelectric and piezoelectric properties owing to the difference in the phase boundary and the microstructure, and a large d33 of 388 ˜ 465 pC/N could be attained in a wide TS range of 1070 ˜ 1105 °C, benefiting their practical applications because of broad TS. More interestingly, the ceramic sintered at 1075 °C has a giant d33 of ˜465 pC/N. We think that such a giant d33 of this material system can benefit the development of (K,Na)NbO3-based piezoceramics.

  12. Lead-free BNT composite film for high-frequency broadband ultrasonic transducer applications.

    PubMed

    Yan, Xingwei; Ji, Hongfen; Lam, Kwok Ho; Chen, Ruimin; Zheng, Fan; Ren, Wei; Zhou, Qifa; Shung, K Kirk

    2013-07-01

    A lead-free Bi0.5Na0.5TiO3 (BNT) piezoelectric composite thick film with a thickness of ~11 μm has been fabricated using a modified sol-gel method. Dielectric constant, remnant polarization, and coercive field of the BNT composite film were found to be 1018, 22.6 μC/cm2, and 76.1 kV/cm, respectively. The film was used to fabricate a high-frequency needle transducer and the performance of the transducer was measured. The transducer without a matching layer exhibits a center frequency of 98 MHz and a -6-dB bandwidth of 86%. A wire phantom image acquired using the transducer shows an axial resolution of 15 ¿m and lateral resolution of 68 μm, respectively. Results from this study suggest that the BNT composite film is a promising lead-free piezoelectric material for high-frequency broadband ultrasonic transducer applications. PMID:25004521

  13. Domain wall motion and electromechanical strain in lead-free piezoelectrics: Insight from the model system (1 − x)Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}–x(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} using in situ high-energy X-ray diffraction during application of electric fields

    SciTech Connect

    Tutuncu, Goknur; Li, Binzhi; Bowman, Keith; Jones, Jacob L.

    2014-04-14

    The piezoelectric compositions (1 − x)Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}–x(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} (BZT-xBCT) span a model lead-free morphotropic phase boundary (MPB) between room temperature rhombohedral and tetragonal phases at approximately x = 0.5. In the present work, in situ X-ray diffraction measurements during electric field application are used to elucidate the origin of electromechanical strain in several compositions spanning the tetragonal compositional range 0.6 ≤ x ≤ 0.9. As BCT concentration decreases towards the MPB, the tetragonal distortion (given by c/a-1) decreases concomitantly with an increase in 90° domain wall motion. The increase in observed macroscopic strain is predominantly attributed to the increased contribution from 90° domain wall motion. The results demonstrate that domain wall motion is a significant factor in achieving high strain and piezoelectric coefficients in lead-free polycrystalline piezoelectrics.

  14. Domain wall motion and electromechanical strain in lead-free piezoelectrics: Insight from the model system (1 - x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 using in situ high-energy X-ray diffraction during application of electric fields

    SciTech Connect

    Tutuncu, Goknur; Li, Binzhi; Bowman, Keith; Jones, Jacob L.

    2014-07-17

    The piezoelectric compositions (1 - x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 (BZT-xBCT) span a model lead-free morphotropic phase boundary (MPB) between room temperature rhombohedral and tetragonal phases at approximately x = 0.5. In the present work, in situ X-ray diffraction measurements during electric field application are used to elucidate the origin of electromechanical strain in several compositions spanning the tetragonal compositional range 0.6 ≤ x ≤ 0.9. As BCT concentration decreases towards the MPB, the tetragonal distortion (given by c/a-1) decreases concomitantly with an increase in 90° domain wall motion. The increase in observed macroscopic strain is predominantly attributed to the increased contribution from 90° domain wall motion. The results demonstrate that domain wall motion is a significant factor in achieving high strain and piezoelectric coefficients in lead-free polycrystalline piezoelectrics.

  15. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2010-01-01

    Original Equipment Manufacturers (OEMs), depots, and support contract ors have to be prepared to deal with an electronics supply chain that increasingly provides parts with lead-free finishes, some labeled no differently and intermingled with their SnPb counterparts. Allowance of lead-free components presents one of the greatest risks to the r eliability of military and aerospace electronics. The introduction of components with lead-free terminations, termination finishes, or cir cuit boards presents a host of concerns to customers, suppliers, and maintainers of aerospace and military electronic systems such as: 1. Electrical shorting due to tin whiskers 2. Incompatibility of lead-f ree processes and parameters (including higher melting points of lead -free alloys) with other materials in the system 3. Unknown material properties and incompatibilities that could reduce solder joint reli ability As the transition to lead-free becomes a certain reality for military and aerospace applications, it will be critical to fully un derstand the implications of reworking lead-free assemblies.

  16. Long ranged structural modulation in the pre-morphotropic phase boundary cubic-like state of the lead-free piezoelectric Na{sub 1/2}Bi{sub 1/2}TiO{sub 3}-BaTiO{sub 3}

    SciTech Connect

    Garg, Rohini; Narayana Rao, Badari; Ranjan, Rajeev; Senyshyn, Anatoliy

    2013-12-21

    The nature of the pre-morphotropic phase boundary (MPB) cubic-like state in the lead-free piezoelectric ceramics (1−x)Na{sub 1/2}Bi{sub 1/2}TiO{sub 3}-(x)BaTiO{sub 3} at x ∼ 0.06 has been examined in detail by electric field and temperature dependent neutron diffraction, x-ray diffraction, dielectric and ferroelectric characterization. The superlattice reflections in the neutron diffraction patterns cannot be explained with the tetragonal P4bm and the rhombohedral (R3c) phase coexistence model. The cubic like state is rather a result of long ranged modulated complex octahedral tilt. This modulated structure exhibits anomalously large dielectric dispersion. The modulated structure transforms to a MPB state on poling. The field-stabilized MPB state is destroyed and the modulated structure is restored on heating the poled specimen above the Vogel-Fulcher freezing temperature. The results show the predominant role of competing octahedral tilts in determining the nature of structural and polar states in Na{sub 1/2}Bi{sub 1/2}TiO{sub 3}-based ferroelectrics.

  17. Large Field-Induced Strain Properties of Sr(K0.25Nb0.75) O3-Modified Bi1/2(Na0.82K0.18)1/2TiO3 Lead-Free Piezoelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Tran, Vu Diem Ngoc; Ullah, Aman; Dinh, Thi Hinh; Lee, Jae-Shin

    2016-05-01

    Lead-free piezoelectric ceramics with compositions of (1 - x)Bi1/2(Na0.82 K0.18)1/2TiO3 + xSr(K0.25Nb0.75)O3, which are abbreviated as (1 - x)BNKT- xSKN with x = 0, 0.01, 0.02, 0.03, 0.04, and 0.05, were synthesized using a conventional solid-state reaction method. The effects of SKN addition on the BNKT system were examined in terms of the phase transition, strain behavior, and ferroelectric and dielectric properties. X-ray diffraction revealed a single perovskite phase for all compositions. The results showed that with increasing SKN content, BNKT-SKN underwent a phase transition from the coexistence of rhombohedral and tetragonal phases to a tetragonal phase. The addition of SKN shifted the depolarization temperature, T d, to a lower temperature and enhanced the diffuseness of the dielectric peaks. The polarization and bipolar strain hysteresis loops of BNKT-SKN showed that the addition of SKN induced a ferroelectric to ergodic relaxor phase transition with a disruption of the ferroelectric order of pure BNKT. As a result, the strain of BNKT-SKN improved significantly with increasing SKN content and reached the highest value of a normalized strain, S max/ E max, of 557 pm/V, when modified with 3 mol.% SKN.

  18. A miniature airflow energy harvester from piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Sun, H.; Zhu, D.; White, N. M.; Beeby, S. P.

    2013-12-01

    This paper describes design, simulation, fabrication, and testing of a miniature wind energy harvester based on a flapping cantilevered piezoelectric beam. The wind generator is based on oscillations of a cantilever that faces the direction of the airflow. The oscillation is amplified by interactions between an aerofoil attached on the cantilever and a bluff body placed in front of the aerofoil. A piezoelectric transducer with screen printed PZT materials is used to extract electrical energy. To achieve the optimum design of the harvester, both computational simulations and experiments have been carried out to investigate the structure. A prototype of the wind harvester, with the volume of 37.5 cm3 in total, was fabricated by thick-film screen printing technique. Wind tunnel test results are presented to determine the optimum structure and to characterize the performance of the harvester. The optimized device finally achieved a working wind speed range from 1.5 m/s to 8 m/s. The power output was ranging from 0.1 to 0.86 μW and the open-circuit output voltage was from 0.5 V to 1.32 V.

  19. Hot-stage transmission electron microscopy study of (Na, K)NbO{sub 3} based lead-free piezoceramics

    SciTech Connect

    Lu, Shengbo; Xu, Zhengkui; Kwok, K. W.; Chan, Helen L. W.

    2014-07-28

    Hierarchical nanodomains assembled into micron-sized stripe domains, which is believed to be associated with outstanding piezoelectric properties, were observed at room temperature in a typical lead free piezoceramics, (Na{sub 0.52}K{sub 0.48−x})(Nb{sub 0.95−x}Ta{sub 0.05})-xLiSbO{sub 3}, with finely tuned polymorphic phase boundaries (x = 0.0465) by transmission electron microscopy. The evolution of domain morphology and crystal structure under heating and cooling cycles in the ceramic was investigated by in-situ hot stage study. It is found that the nanodomains are irreversibly transformed into micron-sized rectangular domains during heating and cooling cycles, which lead to the thermal instability of piezoelectric properties of the materials.

  20. Fundamental analysis of piezocatalysis process on the surfaces of strained piezoelectric materials.

    PubMed

    Starr, Matthew B; Wang, Xudong

    2013-01-01

    Recently, the strain state of a piezoelectric electrode has been found to impact the electrochemical activity taking place between the piezoelectric material and its solution environment. This effect, dubbed piezocatalysis, is prominent in piezoelectric materials because the strain state and electronic state of these materials are strongly coupled. Herein we develop a general theoretical analysis of the piezocatalysis process utilizing well-established piezoelectric, semiconductor, molecular orbital and electrochemistry frameworks. The analysis shows good agreement with experimental results, reproducing the time-dependent voltage drop and H₂ production behaviors of an oscillating piezoelectric Pb(Mg₁/₃Nb₂/₃)O₃-32PbTiO₃ (PMN-PT) cantilever in deionized water environment. This study provides general guidance for future experiments utilizing different piezoelectric materials, such as ZnO, BaTiO₃, PbTiO₃, and PMN-PT. Our analysis indicates a high piezoelectric coupling coefficient and a low electrical conductivity are desired for enabling high electrochemical activity; whereas electrical permittivity must be optimized to balance piezoelectric and capacitive effects.

  1. Fundamental Analysis of Piezocatalysis Process on the Surfaces of Strained Piezoelectric Materials

    PubMed Central

    Starr, Matthew B.; Wang, Xudong

    2013-01-01

    Recently, the strain state of a piezoelectric electrode has been found to impact the electrochemical activity taking place between the piezoelectric material and its solution environment. This effect, dubbed piezocatalysis, is prominent in piezoelectric materials because the strain state and electronic state of these materials are strongly coupled. Herein we develop a general theoretical analysis of the piezocatalysis process utilizing well-established piezoelectric, semiconductor, molecular orbital and electrochemistry frameworks. The analysis shows good agreement with experimental results, reproducing the time-dependent voltage drop and H2 production behaviors of an oscillating piezoelectric Pb(Mg1/3Nb2/3)O3-32PbTiO3 (PMN-PT) cantilever in deionized water environment. This study provides general guidance for future experiments utilizing different piezoelectric materials, such as ZnO, BaTiO3, PbTiO3, and PMN-PT. Our analysis indicates a high piezoelectric coupling coefficient and a low electrical conductivity are desired for enabling high electrochemical activity; whereas electrical permittivity must be optimized to balance piezoelectric and capacitive effects. PMID:23831736

  2. Fundamental analysis of piezocatalysis process on the surfaces of strained piezoelectric materials.

    PubMed

    Starr, Matthew B; Wang, Xudong

    2013-01-01

    Recently, the strain state of a piezoelectric electrode has been found to impact the electrochemical activity taking place between the piezoelectric material and its solution environment. This effect, dubbed piezocatalysis, is prominent in piezoelectric materials because the strain state and electronic state of these materials are strongly coupled. Herein we develop a general theoretical analysis of the piezocatalysis process utilizing well-established piezoelectric, semiconductor, molecular orbital and electrochemistry frameworks. The analysis shows good agreement with experimental results, reproducing the time-dependent voltage drop and H₂ production behaviors of an oscillating piezoelectric Pb(Mg₁/₃Nb₂/₃)O₃-32PbTiO₃ (PMN-PT) cantilever in deionized water environment. This study provides general guidance for future experiments utilizing different piezoelectric materials, such as ZnO, BaTiO₃, PbTiO₃, and PMN-PT. Our analysis indicates a high piezoelectric coupling coefficient and a low electrical conductivity are desired for enabling high electrochemical activity; whereas electrical permittivity must be optimized to balance piezoelectric and capacitive effects. PMID:23831736

  3. High-Temperature Piezoelectrics with Large Piezoelectric Coefficients

    NASA Astrophysics Data System (ADS)

    Shinekumar, K.; Dutta, Soma

    2015-02-01

    High-temperature piezoelectric materials are of interest for sensors and actuators in various industrial applications in which the devices are exposed to high temperature. A lot of research has been conducted in this area to bring forth a suitable piezoelectric material having a high Curie temperature for suitable usage at a high temperature with good piezoelectric properties. This report is an attempt to review the state of the art in high-temperature piezoelectric materials, covering their issues and concerns at elevated temperatures. Among the non-ferroelectric crystal classes, langasite and oxyborate crystals retain their piezoelectricity up to a very high temperature, but their piezoelectric coefficient is much smaller compared to a standard piezoelectric material such as lead zirconate titanate. A similar trend has also been observed in ferroelectric crystal class which shows poor piezoelectricity but retains it until a high temperature. Recent studies on solid solutions of bismuth-based oxides and lead titanate with the chemical formulae Bi(Me3+) O3-PbTiO3 and Bi(Me1Me2)O3-PbTiO3 (Me3+ represents a trivalent cation and Me1 and Me2 are cations having a combined valency of 3) show a much application potential of these materials due to improved piezoelectric property and high Curie temperature. BiScO3-PbTiO3, Bi(Mg0.5Ti0.5)O3-PbTiO3, (Bi(Ni0.5Ti0.5)O3-PbTiO3 and Bi(Zn0.5T0.5)O3-PbTiO3 are some interesting high-temperature piezoelectrics from the group of Bi(Me3+)O3-PbTiO3 and Bi(Me1Me2) O3-PbTiO3 which shows superior piezoelectric properties at high temperatures. Among the lead-free piezoelectrics, (K0.5Na0.5)NbO3 demands a special interest for further studies due to its plausible good piezoelectric property at elevated temperature.

  4. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2011-01-01

    Original Equipment Manufacturers (OEMs). depots. and support contractors have to be prepared to deal with an electronics supply chain thaI increasingly provides parts with lead-free finishes. some labeled no differently and intenningled with their SnPb counterparts. Allowance oflead-free components presents one of the greatest risks to the reliability of military and aerospace electronics. The introduction of components with lead-free lenninations, tennination finishes, or circuit boards presents a host of concerns to customers. suppliers, and maintainers of aerospace and military electronic systems such as: 1. Electrical shorting due to tin whiskers; 2. Incompatibility oflead-free processes and parameters (including higher melting points of lead-free alloys) with other materials in the system; and 3. Unknown material properties and incompatibilities that could reduce solder joint re liability.

  5. Lead-free acoustic emission sensors

    SciTech Connect

    Lam, K. H.; Lin, D. M.; Chan, H. L. W.

    2007-11-15

    Acoustic emission (AE) sensors have been fabricated using both soft- and hard-type lead-free (Na{sub 0.5}K{sub 0.5})NbO{sub 3}-based ceramics. The acoustic and electromechanical properties of the ceramics have been determined using the resonance technique. The lead-free AE sensors were calibrated using a laser source and compared to a commercial sensor. A lead zirconate titanate (PZT) 5H ceramics AE sensor has also been fabricated and calibrated for comparison. It was found that the sensitivity of lead-free AE sensors is comparable to that of the lead-based PZT sensor. To evaluate the sensors for potential application, they have been used in the detection of AE in an impact test. The lead-free sensors can reproduce AE signals accurately without giving artifacts and have potential use in commercial AE systems.

  6. Lead-free acoustic emission sensors.

    PubMed

    Lam, K H; Lin, D M; Chan, H L W

    2007-11-01

    Acoustic emission (AE) sensors have been fabricated using both soft- and hard-type lead-free (Na0.5K0.5)NbO3-based ceramics. The acoustic and electromechanical properties of the ceramics have been determined using the resonance technique. The lead-free AE sensors were calibrated using a laser source and compared to a commercial sensor. A lead zirconate titanate (PZT) 5H ceramics AE sensor has also been fabricated and calibrated for comparison. It was found that the sensitivity of lead-free AE sensors is comparable to that of the lead-based PZT sensor. To evaluate the sensors for potential application, they have been used in the detection of AE in an impact test. The lead-free sensors can reproduce AE signals accurately without giving artifacts and have potential use in commercial AE systems.

  7. NASA DOD Lead Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2008-01-01

    The primary'technical objective of this project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: Packages (e.g., Thin Small Outline Package [TSOP], Ball Grid Array [BGA], Plastic Dual In-line Package [PDIPD assembled and reworked with lead-free alloys Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with mixed (lead/lead-free) alloys.

  8. Piezoelectric Polymers

    NASA Technical Reports Server (NTRS)

    Harrison, J. S.; Ounaies, Z.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The purpose of this review is to detail the current theoretical understanding of the origin of piezoelectric and ferroelectric phenomena in polymers; to present the state-of-the-art in piezoelectric polymers and emerging material systems that exhibit promising properties; and to discuss key characterization methods, fundamental modeling approaches, and applications of piezoelectric polymers. Piezoelectric polymers have been known to exist for more than forty years, but in recent years they have gained notoriety as a valuable class of smart materials.

  9. Development of lead-free single-element ultrahigh frequency (170 – 320 MHz) ultrasonic transducers

    PubMed Central

    Lam, Kwok Ho; Ji, Hong Fen; Zheng, Fan; Ren, Wei; Zhou, Qifa; Shung, K. Kirk

    2013-01-01

    This paper presents the design, fabrication and characterization of single-element ultrahigh frequency (UHF) ultrasonic transducers in which the center frequency ranged from 170 to 320 MHz. The center frequency of > 300 MHz is the highest value of lead-free ceramic ultrasonic transducers ever reported. With concern in the environmental pollution of lead-based materials, the transducer elements presented in this work were lead-free K0.5Na0.5NbO3/Bi0.5Na0.5TiO3 (KNN/BNT) composite thick films. All transducers were evaluated in a pulse-echo arrangement. The measured −6 dB bandwidth of the transducers ranged from 35 to 64 %. With the optimized piezoelectric properties of the composite film, the insertion loss of the UHF transducers was measured and determined to range from −50 to −60 dB. In addition to the pulse-echo measurement, a 6-μm tungsten wire phantom was also imaged with a 205 MHz transducer to demonstrate the imaging capability. The measured −6 dB axial and lateral resolutions were found to be 12 μm and 50 μm, respectively. The transducer performance presented in this work is shown to be better or comparable to previously reported results even though the frequency is much higher. PMID:23485349

  10. Development of lead-free single-element ultrahigh frequency (170-320MHz) ultrasonic transducers.

    PubMed

    Lam, Kwok Ho; Ji, Hong Fen; Zheng, Fan; Ren, Wei; Zhou, Qifa; Shung, K Kirk

    2013-07-01

    This paper presents the design, fabrication and characterization of single-element ultrahigh frequency (UHF) ultrasonic transducers in which the center frequency ranged from 170 to 320MHz. The center frequency of >300MHz is the highest value of lead-free ceramic ultrasonic transducers ever reported. With concern in the environmental pollution of lead-based materials, the transducer elements presented in this work were lead-free K0.5Na0.5NbO3/Bi0.5Na0.5TiO3 (KNN/BNT) composite thick films. All transducers were evaluated in a pulse-echo arrangement. The measured -6dB bandwidth of the transducers ranged from 35% to 64%. With the optimized piezoelectric properties of the composite film, the insertion loss of the UHF transducers was measured and determined to range from -50 to -60dB. In addition to the pulse-echo measurement, a 6μm tungsten wire phantom was also imaged with a 205MHz transducer to demonstrate the imaging capability. The measured -6dB axial and lateral resolutions were found to be 12μm and 50μm, respectively. The transducer performance presented in this work is shown to be better or comparable to previously reported results even though the frequency is much higher.

  11. Wettability analysis of tin-based, lead free solders

    SciTech Connect

    Vianco, P T; Hosking, F M; Rejent, J A

    1992-01-01

    The overall program is comprised of two efforts. The first effort studies the wettability of tin-based, lead free solders on two commonly used substrate materials: copper and gold-nickel plated Kovar{trademark}. The evaluation is being conducted by the meniscometer/wetting balance technique which uses the contact angle as the primary metric to quantify wettability. Information about the rate of wetting is also obtainable with this test. The second part of the program is comprised of an assessment of the solderability of actual circuit board assemblies (surface mount and through-hole). This report will describe data from the wettability analysis of lead free solders on copper.

  12. Soft-materials elastic and shear moduli measurement using piezoelectric cantilevers

    NASA Astrophysics Data System (ADS)

    Markidou, Anna; Shih, Wan Y.; Shih, Wei-Heng

    2005-06-01

    We have developed a soft-material elastic modulus and shear modulus sensor using piezoelectric cantilevers. A piezoelectric cantilever is consisted of a highly piezoelectric layer, e.g., lead-zirconate-titanate bonded to a nonpiezoelectric layer, e.g., stainless steel. Applying an electric field in the thickness direction causes a piezoelectric cantilever to bend, generating an axial displacement or force. When a piezoelectric cantilever is in contact with an object, this electric field-generated axial displacement is reduced due to the resistance by the object. With a proper design of the piezoelectric cantilever's geometry, its axial displacements with and without contacting the object could be accurately measured. From these measurements the elastic modulus of the object can be deduced. In this study, we tailored the piezoelectric cantilevers for measuring the elastic and shear moduli of tissue-like soft materials with forces in the submilli Newton to milliNewton range. Elastic moduli and shear moduli of soft materials were measured using piezoelectric cantilevers with a straight tip and an L-shaped tip, respectively. Using gelatin and commercial rubber material as model soft tissues, we showed that a piezoelectric cantilever 1.5-2cm long could measure the elastic modulus and the shear modulus of a small soft material sample (1-3mm wide) in the small strain range (<1%). For samples 5mm high, the resultant compressive (shear) strains were less than 0.5% (1%). The measurements were validated by (1) comparing the measured Young's modulus of the commercial rubber sample with its known value and (2) by measuring both the Young's modulus and shear modulus on the samples and confirming the thus deduced Poisson's ratios with the separately measured Poisson's ratios.

  13. Unleashing the Full Sustainable Potential of Thick Films of Lead-Free Potassium Sodium Niobate (K0.5Na0.5NbO3) by Aqueous Electrophoretic Deposition.

    PubMed

    Mahajan, Amit; Pinho, Rui; Dolhen, Morgane; Costa, M Elisabete; Vilarinho, Paula M

    2016-05-31

    A current challenge for the fabrication of functional oxide-based devices is related with the need of environmental and sustainable materials and processes. By considering both lead-free ferroelectrics of potassium sodium niobate (K0.5Na0.5NbO3, KNN) and aqueous-based electrophoretic deposition here we demonstrate that an eco-friendly aqueous solution-based process can be used to produce KNN thick coatings with improved electromechanical performance. KNN thick films on platinum substrates with thickness varying between 10 and 15 μm have a dielectric permittivity of 495, dielectric losses of 0.08 at 1 MHz, and a piezoelectric coefficient d33 of ∼70 pC/N. At TC these films display a relative permittivity of 2166 and loss tangent of 0.11 at 1 MHz. A comparison of the physical properties between these films and their bulk ceramics counterparts demonstrates the impact of the aqueous-based electrophoretic deposition (EPD) technique for the preparation of lead-free ferroelectric thick films. This opens the door to the possible development of high-performance, lead-free piezoelectric thick films by a sustainable low-cost process, expanding the applicability of lead-free piezoelectrics.

  14. Unleashing the Full Sustainable Potential of Thick Films of Lead-Free Potassium Sodium Niobate (K0.5Na0.5NbO3) by Aqueous Electrophoretic Deposition.

    PubMed

    Mahajan, Amit; Pinho, Rui; Dolhen, Morgane; Costa, M Elisabete; Vilarinho, Paula M

    2016-05-31

    A current challenge for the fabrication of functional oxide-based devices is related with the need of environmental and sustainable materials and processes. By considering both lead-free ferroelectrics of potassium sodium niobate (K0.5Na0.5NbO3, KNN) and aqueous-based electrophoretic deposition here we demonstrate that an eco-friendly aqueous solution-based process can be used to produce KNN thick coatings with improved electromechanical performance. KNN thick films on platinum substrates with thickness varying between 10 and 15 μm have a dielectric permittivity of 495, dielectric losses of 0.08 at 1 MHz, and a piezoelectric coefficient d33 of ∼70 pC/N. At TC these films display a relative permittivity of 2166 and loss tangent of 0.11 at 1 MHz. A comparison of the physical properties between these films and their bulk ceramics counterparts demonstrates the impact of the aqueous-based electrophoretic deposition (EPD) technique for the preparation of lead-free ferroelectric thick films. This opens the door to the possible development of high-performance, lead-free piezoelectric thick films by a sustainable low-cost process, expanding the applicability of lead-free piezoelectrics. PMID:27136116

  15. Equivalent circuit with complex physical constants and equivalent-parameters-expressed dissipation factors of piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Wen, Yu-Mei; Li, Ping

    2006-06-01

    The equivalent circuit with complex physical constants for a piezoelectric ceramic in thickness mode is established. In the equivalent circuit, electric components (equivalent circuit parameters) are connected to real and imaginary parts of complex physical coefficients of piezoelectric materials. Based on definitions of dissipation factors, three of them (dielectric, elastic and piezoelectric dissipation factors) are represented by equivalent circuit parameters. Since the equivalent circuit parameters are detectable, the dissipation factors can be easily obtained. In the experiments, the temperature and the stress responses of the three dissipation factors are measured.

  16. Accelerated Aging of Lead-Free Propellant

    NASA Technical Reports Server (NTRS)

    Furrow, Keith W.; Jervey, David D.

    2000-01-01

    Following higher than expected 2-NDPA depletion rates in a lead-free doublebase formulation (RPD-422), an accelerated aging study was conducted to verify the depletion rates. A test plan was prepared to compare the aging characteristics of lead-free propellant and NOSIH-AA2. The study was also designed to determine which lead-free ballistic modifiers accelerated 2-NDPA depletion. The increased depletion rate occurred in propellants containing monobasic copper salicylate. Four lead-free propellants were then formulated to improved aging characteristics over previous lead-free propellant formulations. The new formulations reduced or replaced the monobasic copper salicylate. The new formulations had improved aging characteristics. Their burn rates, however, were unacceptable for use in a 2.75 inch rocket. To compare aging characteristics, stabilizer depletion rates of RPD-422, AA2, M28, and RLC 470/6A were measured or taken from the literature. The data were fit to a kinetic model. The model contained first and zero order terms which allowed the stabilizer concentration to go to zero. In the model, only the concentration of the primary stabilizer was considered. Derivatives beyond the first nitrated or nitroso derivative of 2-NPDA were not considered. The rate constants were fit to the Arrhenius equation and extrapolated to lower temperatures. The time to complete stabilizer depletion was estimated using the kinetic model. The four propellants were compared and the RPD-422 depleted faster at 45 C than both A22 and M28. These types of predictions depend on the validity of the model and on confidence in the Arrhenius relationship holding at lower temperatures. At 45 C, the zero order portion of the model dominates the depletion rate.

  17. Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material

    NASA Astrophysics Data System (ADS)

    Yan, Yongke; Zhou, Jie E.; Maurya, Deepam; Wang, Yu U.; Priya, Shashank

    2016-10-01

    A rapid surge in the research on piezoelectric sensors is occurring with the arrival of the Internet of Things. Single-phase oxide piezoelectric materials with giant piezoelectric voltage coefficient (g, induced voltage under applied stress) and high Curie temperature (Tc) are crucial towards providing desired performance for sensing, especially under harsh environmental conditions. Here, we report a grain-oriented (with 95% <001> texture) modified PbTiO3 ceramic that has a high Tc (364 °C) and an extremely large g33 (115 × 10-3 Vm N-1) in comparison with other known single-phase oxide materials. Our results reveal that self-polarization due to grain orientation along the spontaneous polarization direction plays an important role in achieving large piezoelectric response in a domain motion-confined material. The phase field simulations confirm that the large piezoelectric voltage coefficient g33 originates from maximized piezoelectric strain coefficient d33 and minimized dielectric permittivity ε33 in [001]-textured PbTiO3 ceramics where domain wall motions are absent.

  18. Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material

    PubMed Central

    Yan, Yongke; Zhou, Jie E.; Maurya, Deepam; Wang, Yu U.; Priya, Shashank

    2016-01-01

    A rapid surge in the research on piezoelectric sensors is occurring with the arrival of the Internet of Things. Single-phase oxide piezoelectric materials with giant piezoelectric voltage coefficient (g, induced voltage under applied stress) and high Curie temperature (Tc) are crucial towards providing desired performance for sensing, especially under harsh environmental conditions. Here, we report a grain-oriented (with 95% <001> texture) modified PbTiO3 ceramic that has a high Tc (364 °C) and an extremely large g33 (115 × 10−3 Vm N−1) in comparison with other known single-phase oxide materials. Our results reveal that self-polarization due to grain orientation along the spontaneous polarization direction plays an important role in achieving large piezoelectric response in a domain motion-confined material. The phase field simulations confirm that the large piezoelectric voltage coefficient g33 originates from maximized piezoelectric strain coefficient d33 and minimized dielectric permittivity ɛ33 in [001]-textured PbTiO3 ceramics where domain wall motions are absent. PMID:27725634

  19. Compliant Electrode and Composite Material for Piezoelectric Wind and Mechanical Energy Conversions

    NASA Technical Reports Server (NTRS)

    Chen, Bin (Inventor)

    2015-01-01

    A thin film device for harvesting energy from wind. The thin film device includes one or more layers of a compliant piezoelectric material formed from a composite of a polymer and an inorganic material, such as a ceramic. Electrodes are disposed on a first side and a second side of the piezoelectric material. The electrodes are formed from a compliant material, such as carbon nanotubes or graphene. The thin film device exhibits improved resistance to structural fatigue upon application of large strains and repeated cyclic loadings.

  20. Semiconductor/relaxor 0-3 type composites without thermal depolarization in Bi₀.₅Na₀.₅TiO₃-based lead-free piezoceramics.

    PubMed

    Zhang, Ji; Pan, Zhao; Guo, Fei-Fei; Liu, Wen-Chao; Ning, Huanpo; Chen, Y B; Lu, Ming-Hui; Yang, Bin; Chen, Jun; Zhang, Shan-Tao; Xing, Xianran; Rödel, Jürgen; Cao, Wenwu; Chen, Yan-Feng

    2015-03-19

    Commercial lead-based piezoelectric materials raised worldwide environmental concerns in the past decade. Bi₀.₅Na₀.₅TiO₃-based solid solution is among the most promising lead-free piezoelectric candidates; however, depolarization of these solid solutions is a longstanding obstacle for their practical applications. Here we use a strategy to defer the thermal depolarization, even render depolarization-free Bi₀.₅Na₀.₅TiO₃-based 0-3-type composites. This is achieved by introducing semiconducting ZnO particles into the relaxor ferroelectric 0.94Bi₀.₅Na₀.₅TiO₃-0.06BaTiO₃ matrix. The depolarization temperature increases with increasing ZnO concentration until depolarization disappears at 30 mol% ZnO. The semiconducting nature of ZnO provides charges to partially compensate the ferroelectric depolarization field. These results not only pave the way for applications of Bi₀.₅Na₀.₅TiO₃-based piezoceramics, but also have great impact on the understanding of the mechanism of depolarization so as to provide a new design to optimize the performance of lead-free piezoelectrics.

  1. Piezoelectric materials selection for sensor applications using finite element and multiple attribute decision-making approaches

    NASA Astrophysics Data System (ADS)

    Kumar, Anuruddh; Sharma, Anshul; Kumar, Rajeev; Vaish, Rahul; Chauhan, Vishal S.; Bowen, C. R.

    2015-03-01

    This paper examines the selection and performance evaluation of a variety of piezoelectric materials for cantilever-based sensor applications. The finite element analysis method is implemented to evaluate the relative importance of materials properties such as Young's Modulus (E), piezoelectric stress constants (e31), dielectric constant (ɛ) and Poisson's ratio (υ) for cantilever-based sensor applications. An analytic hierarchy process (AHP) is used to assign weights to the properties that are studied for the sensor structure under study. A technique for order preference by similarity to ideal solution (TOPSIS) is used to rank the performance of the piezoelectric materials in the context of sensor voltage outputs. The ranking achieved by the TOPSIS analysis is in good agreement with the results obtained from finite element method simulation. The numerical simulations show that K0.5Na0.5NbO3-LiSbO3 (KNN-LS) materials family is important for sensor application. Young's modulus (E) is most influencing material's property followed by piezoelectric constant (e31), dielectric constant (ɛ) and Poisson's ratio (υ) for cantilever-based piezoelectric sensor applications.

  2. The Effect of Temperature Dependent Material Nonlinearities on the Response of Piezoelectric Composite Plates

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun; Saravanos, Dimitris A.

    1997-01-01

    Previously developed analytical formulations for piezoelectric composite plates are extended to account for the nonlinear effects of temperature on material properties. The temperature dependence of the composite and piezoelectric properties are represented at the material level through the thermopiezoelectric constitutive equations. In addition to capturing thermal effects from temperature dependent material properties, this formulation also accounts for thermal effects arising from: (1) coefficient of thermal expansion mismatch between the various composite and piezoelectric plies and (2) pyroelectric effects on the piezoelectric material. The constitutive equations are incorporated into a layerwise laminate theory to provide a unified representation of the coupled mechanical, electrical, and thermal behavior of smart structures. Corresponding finite element equations are derived and implemented for a bilinear plate element with the inherent capability to model both the active and sensory response of piezoelectric composite laminates. Numerical studies are conducted on a simply supported composite plate with attached piezoceramic patches under thermal gradients to investigate the nonlinear effects of material property temperature dependence on the displacements, sensory voltages, active voltages required to minimize thermal deflections, and the resultant stress states.

  3. Reduction of the piezoelectric performance in lead-free (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 piezoceramics under uniaxial compressive stress

    NASA Astrophysics Data System (ADS)

    Ehmke, Matthias C.; Daniels, John; Glaum, Julia; Hoffman, Mark; Blendell, John E.; Bowman, Keith J.

    2012-12-01

    The effect of a uniaxial compressive stress on the properties of BZT-BCT samples across the morphotropic phase boundary (MPB) is investigated using direct piezoelectric coefficient measurements. In contrast to many lead zirconate titanate compositions, the piezoelectric coefficient decreases monotonically with increasing stress and does not show an initial increase or plateau. Electrically softer rhombohedral and MPB compositions are found to be more susceptible to a decrease in piezoelectric coefficient under an increasing pre-stress than tetragonal compositions. Depoling due to ferroelastic domain switching alone, as observed by x-ray diffraction, does not explain this reduction, but instead a decreasing domain wall density is proposed to be responsible for reduced piezoelectric coefficients under increasing compressive stress. The relaxation of the piezoelectric response after complete unloading supports this proposed mechanism.

  4. Using piezo-electric material to simulate a vibration environment

    DOEpatents

    Jepsen, Richard A.; Davie, Neil T.; Vangoethem, Douglas J.; Romero, Edward F.

    2010-12-14

    A target object can be vibrated using actuation that exploits the piezo-electric ("PE") property. Under combined conditions of vibration and centrifugal acceleration, a centrifugal load of the target object on PE vibration actuators can be reduced by using a counterweight that offsets the centrifugal loading. Target objects are also subjected to combinations of: spin, vibration, and acceleration; spin and vibration; and spin and acceleration.

  5. Lead-Free Experiment in a Space Environment

    NASA Technical Reports Server (NTRS)

    Blanche, J. F.; Strickland, S. M.

    2012-01-01

    This Technical Memorandum addresses the Lead-Free Technology Experiment in Space Environment that flew as part of the seventh Materials International Space Station Experiment outside the International Space Station for approximately 18 months. Its intent was to provide data on the performance of lead-free electronics in an actual space environment. Its postflight condition is compared to the preflight condition as well as to the condition of an identical package operating in parallel in the laboratory. Some tin whisker growth was seen on a flight board but the whiskers were few and short. There were no solder joint failures, no tin pest formation, and no significant intermetallic compound formation or growth on either the flight or ground units.

  6. Preparation and characterization of Sr0.5Ba0.5Nb2O6 glass-ceramic on piezoelectric properties

    NASA Astrophysics Data System (ADS)

    Shan, Jiang; Xuan-Ming, Wang; Jia-Yu, Li; Yong, Zhang; Tao, Zheng; Jing-Wen, Lv

    2016-03-01

    We studied the influence of heat treatment time on the optical, thermal, electrical, and mechanical properties of strontium barium niobate (Sr1-xBaxNb2O6 hereafter SBN) piezoelectric glass-ceramics with tungsten bronze-type structure, which have good piezoelectric properties and are important lead-free piezoelectric materials. We found that the best heat treatment time is 4 h. The properties of the prepared materials are better than that of SBN ceramics and the glass-ceramic growth is faster than the SBN crystal when the heat treatment time of the SBN piezoelectric glass-ceramic is controlled, reducing the preparation costs greatly.

  7. Physics of failure modes in accelerometers utilizing single crystal piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Wlodkowski, Paul Alexander

    1999-11-01

    For over forty years, the lead zirconate -- lead titanate system (PZT) has been the industrial standard of sensing materials for piezoelectric accelerometers. This ceramic has established a reliability benchmark given the uniformity of its electromechanical properties, the negligible dependence of these properties on temperature and pre-stress, and the ability to manufacture the sensing element cost-effectively into a myriad of geometries. Today, revolutionary advances in the growth of single crystal piezoelectric materials have spawned the evolution of novel sensor designs. With piezoelectric coefficients exceeding 2000 pC/N, and electromechanical coupling factors above 90%, single crystals of Pb(Mg1/3Nb2/3)O3-PbTiO3 [PMNT] and Pb(Zn1/3Nb2/3)O3-PbTiO3 [PZNT] have the potential of superseding PZT ceramics in certain critical applications. This dissertation reports the first results of the design, development and performance characterization for an accelerometer utilizing bulk, single crystal piezoelectric materials. Numerous prototypes, developed in the compression and flexural-mode design configurations, exhibit charge sensitivities that exceed that of their PZT-counterparts by a factor of greater than three times. The introduction of accelerometer prototypes employing single crystal piezoelectric material is an important advancement for the sensor industry. Root-cause failure processes were identified and subsequently used as a reliability enhancement tool to prevent device failures through robust design and manufacturing practices. Crystal machining techniques were analyzed in which a scanning electron microscope was used to inspect the crystal surface for defects. Inhomogeneity in the piezoelectric properties over the surface of the crystal was quantified and recognized as a major obstacle to commercialization. Measurements were made on the material's fracture toughness and electromechanical properties over a wide temperature range. Effects of aging and

  8. 3D optical printing of piezoelectric nanoparticle-polymer composite materials.

    PubMed

    Kim, Kanguk; Zhu, Wei; Qu, Xin; Aaronson, Chase; McCall, William R; Chen, Shaochen; Sirbuly, Donald J

    2014-10-28

    Here we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be optically printed into three-dimensional (3D) microstructures using digital projection printing. Piezoelectric polymers were fabricated by incorporating barium titanate (BaTiO3, BTO) nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate and exposing to digital optical masks that could be dynamically altered to generate user-defined 3D microstructures. To enhance the mechanical-to-electrical conversion efficiency of the composites, the BTO nanoparticles were chemically modified with acrylate surface groups, which formed direct covalent linkages with the polymer matrix under light exposure. The composites with a 10% mass loading of the chemically modified BTO nanoparticles showed piezoelectric coefficients (d(33)) of ∼ 40 pC/N, which were over 10 times larger than composites synthesized with unmodified BTO nanoparticles and over 2 times larger than composites containing unmodified BTO nanoparticles and carbon nanotubes to boost mechanical stress transfer efficiencies. These results not only provide a tool for fabricating 3D piezoelectric polymers but lay the groundwork for creating highly efficient piezoelectric polymer materials via nanointerfacial tuning.

  9. Lead-free BaTiO3 nanowires-based flexible nanocomposite generator

    NASA Astrophysics Data System (ADS)

    Park, Kwi-Il; Bae, Soo Bin; Yang, Seong Ho; Lee, Hyung Ik; Lee, Kisu; Lee, Seung Jun

    2014-07-01

    We have synthesized BaTiO3 nanowires (NWs) via a simple hydrothermal method at low temperature and developed a lead-free, flexible nanocomposite generator (NCG) device by a simple, low-cost, and scalable spin-coating method. The hydrothermally grown BaTiO3 NWs are mixed in a polymer matrix without a toxic dispersion enhancer to produce a piezoelectric nanocomposite (p-NC). During periodical and regular bending and unbending motions, the NCG device fabricated by utilizing a BaTiO3 NWs-polydimethylsiloxane (PDMS) composite successfully harvests the output voltage of ~7.0 V and current signals of ~360 nA, which are utilized to drive a liquid crystal display (LCD). We also characterized the instantaneous power (~1.2 μW) of the NCG device by calculating the load voltage and current through the connected external resistance.We have synthesized BaTiO3 nanowires (NWs) via a simple hydrothermal method at low temperature and developed a lead-free, flexible nanocomposite generator (NCG) device by a simple, low-cost, and scalable spin-coating method. The hydrothermally grown BaTiO3 NWs are mixed in a polymer matrix without a toxic dispersion enhancer to produce a piezoelectric nanocomposite (p-NC). During periodical and regular bending and unbending motions, the NCG device fabricated by utilizing a BaTiO3 NWs-polydimethylsiloxane (PDMS) composite successfully harvests the output voltage of ~7.0 V and current signals of ~360 nA, which are utilized to drive a liquid crystal display (LCD). We also characterized the instantaneous power (~1.2 μW) of the NCG device by calculating the load voltage and current through the connected external resistance. Electronic supplementary information (ESI) available: PDF materials involve the linear superposition test results (Fig. S1) and the durability test results (Fig. S2) of BaTiO3 NWs-based NCG device. A video file (Video S1) shows the power up of an LCD screen by the NCG device without any external energy source. See DOI: 10.1039/c4nr

  10. Effect of various shapes and materials on the generated power for piezoelectric energy harvesting system

    NASA Astrophysics Data System (ADS)

    Kaur, Sarabjeet; Graak, Pinki; Gupta, Ankita; Chhabra, Priya; Kumar, Dinesh; Shetty, Arjun

    2016-04-01

    Piezoelectric energy harvesting systems are used to convert vicinity vibrations into useful electrical energy. Effect of various shapes and materials open the gateway towards the choice of maximum power generation for the micro and nano world. Comsol Multiphysics was used to simulate the four designed shapes named as Pi, E, Rectangular and T in the size range of less than 1mm but greater than 1 micron. Designed shapes worked under the impact of ambient vibrations using few piezoelectric materials for the maximum power generation so that traditional power sources can be replaced with such piezoelectric energy harvester. A layer of piezoelectric material (PZT-5H, AlN, BaTiO3) of thickness 0.5 µm is added to the cantilever and the base material is silicon of thickness 1.5 µm. Simulations were performed using the piezoelectric device module of Comsol Multiphysics. All three materials were studied for the all four cantilever geometries. The generated power was observed maximum as 382.5 µW in case of the barium titanate material with rectangular shape geometry but the displacement is 0.132 µm which is very less whereas E shape cantilever shows the maximum displacement of 0.6078 µm in case of PZT-5H, Hence rectangular shape with barium titanate material is concluded to be good for maximum power generation but the displacement factor cannot be neglected, hence the cantilever with E shape geometry is considered as the best with a generated power of 49.005 µW and a displacement of 0.6078 µm.

  11. Active Vibration Reduction of Titanium Alloy Fan Blades (FAN1) Using Piezoelectric Materials

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Kauffman, Jeffrey; Duffy, Kirsten; Provenza, Andrew; Morrison, Carlos

    2010-01-01

    The NASA Glenn Research Center is developing smart adaptive structures to improve fan blade damping at resonances using piezoelectric (PE) transducers. In this paper, a digital resonant control technique emulating passive shunt circuits is used to demonstrate vibration reduction of FAN1 Ti real fan blade at the several target modes. Single-mode control and multi-mode control using one piezoelectric material are demonstrated. Also a conceptual study of how to implement this digital control system into the rotating fan blade is discussed.

  12. Feasibility study of thermal energy harvesting using lead free pyroelectrics

    NASA Astrophysics Data System (ADS)

    Karim, Hasanul; Sarker, Md Rashedul H.; Shahriar, Shaimum; Arif Ishtiaque Shuvo, Mohammad; Delfin, Diego; Hodges, Deidra; (Bill Tseng, Tzu-Liang; Roberson, David; Love, Norman; Lin, Yirong

    2016-05-01

    Energy harvesting has significant potential for applications in energizing wireless sensors and charging energy storage devices. To date, one of the most widely investigated materials for mechanical and thermal energy harvesting is lead zirconate titanate (PZT). However, lead has detrimental effects on the environment and on health. Hence, alternative materials are required for this purpose. In this paper, a lead free material, lithium niobate (LNB) is investigated as a potential material for pyroelectric energy harvesting. Although its theoretical pyroelectric properties are lower compared to PZT, it has better properties than other lead free alternatives such as ZnO. In addition, LNB has a high Curie temperature of about 1142 °C, which makes it applicable for high temperature energy harvesting, where other pyroelectric ceramics are not suitable. Herein, an energy harvesting and storage system composed of a single crystal LNB and a porous carbon-based super-capacitor was investigated. It is found that with controlled heating and cooling, a single wafer of LNB (75 mm diameter and 0.5 mm thickness) could generate 437.72 nW cm-3 of power and it could be used to charge a super-capacitor with a charging rate of 2.63 mV (h cm3)-1.

  13. Piezoelectric MEMS for energy harvesting

    NASA Astrophysics Data System (ADS)

    Kanno, Isaku

    2015-12-01

    Recently, piezoelectric MEMS have been intensively investigated to create new functional microdevices, and some of them have already been commercialized such as MEMS gyrosensors or miropumps of inkjet printer head. Piezoelectric energy harvesting is considered to be one of the promising future applications of piezoelectric MEMS. In this report, we introduce the deposition of the piezoelectric PZT thin films as well as lead-free KNN thin films. We fabricated piezoelectric energy harvesters of PZT and KNN thin films deposited on stainless steel cantilevers and compared their power generation performance.

  14. Method for generation of THz frequency radiation and sensing of large amplitude material strain waves in piezoelectric materials

    DOEpatents

    Reed, Evan J.; Armstrong, Michael R.

    2010-09-07

    Strain waves of THz frequencies can coherently generate radiation when they propagate past an interface between materials with different piezoelectric coefficients. Such radiation is of detectable amplitude and contains sufficient information to determine the time-dependence of the strain wave with unprecedented subpicosecond, nearly atomic time and space resolution.

  15. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2010-01-01

    This slide presentation reviews the current state of the lead-free electronics project. It characterizes the test articles, which were built with lead-free solder and lead-free component finishes. The tests performed and reported on are: thermal cycling, combine environments testing, mechanical shock testing, vibration testing and drop testing.

  16. Comparative study of 2mol% Li- and Mn-substituted lead-free potassium sodium niobate ceramics

    NASA Astrophysics Data System (ADS)

    Dahiya, Asha; Thakur, O. P.; Juneja, J. K.; Singh, Sangeeta; Dipti

    2014-12-01

    The effect of Li and Mn substitution on the dielectric, ferroelectric and piezoelectric properties of lead free K0.5Na0.5NbO3 (KNN) was investigated. Samples were prepared using a conventional solid state reaction method. The sintering temperature for all the samples was 1050°C. The optimum doping concentration for the enhancement of different properties without the introduction of any other co-dopants such as Ti, Sb, and La was investigated. X-ray diffraction analysis confirmed that all the samples crystallize in a single phase perovskite structure. The dielectric properties were investigated as a function of temperature and applied electric field frequency. Compared with Li-substituted KNN (KLNN), Mn-substituted KNN (KMNN) exhibited a higher dielectric constant ɛ max (i.e., 4840) at its critical transition temperature T c (i.e., 421°C) along with a lower value of tangent loss at 10 kHz and greater values of saturation polarisation P s (i.e., 20.14 μC/cm2) and remnant polarisation P r (i.e., 15.48 μC/cm2). The piezoelectric constant ( d 33) of KMNN was 178 pC/N, which is comparable to that of lead-based hard ceramics. The results presented herein suggest that B-site or Mn substitution at the optimum concentration results in good enhancement of different properties required for materials used in memory devices and other applications.

  17. Development of a tactile sensing system using piezoelectric robot skin materials

    NASA Astrophysics Data System (ADS)

    Hwang, S. K.; Hwang, H. Y.

    2013-05-01

    Since service robots perform their functions in close proximity to humans, they are much more likely than other types of robot to come into contact with humans. This means that safety regarding robot-human interaction is of particular concern and requires investigation. Existing tactile sensing methods are very effective at detecting external dangerous loadings; however, until now, they have been very expensive. Recently, a new type of self-sensing tactile technology for service robots has been introduced, which harnesses the piezoelectric effect of several robot skin materials. In these kinds of system, relatively cheap materials are used as sensors themselves. In this research, a robot system with a self-sensing tactile technology was developed using piezoelectric robot skin materials. The test results indicate that this type of system is appropriate for application to service robots.

  18. A FEM-based method to determine the complex material properties of piezoelectric disks.

    PubMed

    Pérez, N; Carbonari, R C; Andrade, M A B; Buiochi, F; Adamowski, J C

    2014-08-01

    Numerical simulations allow modeling piezoelectric devices and ultrasonic transducers. However, the accuracy in the results is limited by the precise knowledge of the elastic, dielectric and piezoelectric properties of the piezoelectric material. To introduce the energy losses, these properties can be represented by complex numbers, where the real part of the model essentially determines the resonance frequencies and the imaginary part determines the amplitude of each resonant mode. In this work, a method based on the Finite Element Method (FEM) is modified to obtain the imaginary material properties of piezoelectric disks. The material properties are determined from the electrical impedance curve of the disk, which is measured by an impedance analyzer. The method consists in obtaining the material properties that minimize the error between experimental and numerical impedance curves over a wide range of frequencies. The proposed methodology starts with a sensitivity analysis of each parameter, determining the influence of each parameter over a set of resonant modes. Sensitivity results are used to implement a preliminary algorithm approaching the solution in order to avoid the search to be trapped into a local minimum. The method is applied to determine the material properties of a Pz27 disk sample from Ferroperm. The obtained properties are used to calculate the electrical impedance curve of the disk with a Finite Element algorithm, which is compared with the experimental electrical impedance curve. Additionally, the results were validated by comparing the numerical displacement profile with the displacements measured by a laser Doppler vibrometer. The comparison between the numerical and experimental results shows excellent agreement for both electrical impedance curve and for the displacement profile over the disk surface. The agreement between numerical and experimental displacement profiles shows that, although only the electrical impedance curve is

  19. Piezoelectric thin films: an integrated review of transducers and energy harvesting

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Abas, Zafar; Kim, Heung Soo; Oh, Il-Kwon

    2016-05-01

    Piezoelectric thin films offer a number of advantages in various applications, such as high energy density harvesters, a wide dynamic range, and high sensitivity sensors, as well as large displacement and low power consumption actuators. This review covers the available material forms and applications of piezoelectric thin films: lead zirconate titanate (PZT)-based thin films, lead-free piezoelectric thin films, piezopolymer films, cellulose-based electroactive paper (EAPap), and many other thin films used for electromechanical transduction. The electromechanical properties and performances of piezoelectric films are compared and their suitability for particular applications are reported. The key ideas of piezoelectric thin films are reviewed and discussed for sensory and actuation systems, energy harvesting, and medical and acoustic transducers. In the last section, an insight into the future outlook and possibilities for thin film-based devices and their integration into real-world applications is presented.

  20. Performance of tonpilz transducers with segmented piezoelectric stacks using materials with high electromechanical coupling coefficient.

    PubMed

    Thompson, Stephen C; Meyer, Richard J; Markley, Douglas C

    2014-01-01

    Tonpilz acoustic transducers for use underwater often include a stack of piezoelectric material pieces polarized along the length of the stack and having alternating polarity. The pieces are interspersed with electrodes, bonded together, and electrically connected in parallel. The stack is normally much shorter than a quarter wavelength at the fundamental resonance frequency so that the mechanical behavior of the transducer is not affected by the segmentation. When the transducer bandwidth is less than a half octave, as has conventionally been the case, for example, with lead zirconate titanate (PZT) material, stack segmentation has no significant effect on the mechanical behavior of the device in its normal operating band near the fundamental resonance. However, when a high coupling coefficient material such as lead magnesium niobate-lead titanate (PMN-PT) is used to achieve a wider bandwidth with the tonpilz, the performance difference between a segmented stack and a similar piezoelectric section with electrodes only at the two ends can be significant. This paper investigates the effects of stack segmentation on the performance of wideband underwater tonpilz acoustic transducers. Included is a discussion of a particular tonpilz transducer design using single crystal piezoelectric material with high coupling coefficient compared with a similar design using more traditional PZT ceramics.

  1. Performance of tonpilz transducers with segmented piezoelectric stacks using materials with high electromechanical coupling coefficient.

    PubMed

    Thompson, Stephen C; Meyer, Richard J; Markley, Douglas C

    2014-01-01

    Tonpilz acoustic transducers for use underwater often include a stack of piezoelectric material pieces polarized along the length of the stack and having alternating polarity. The pieces are interspersed with electrodes, bonded together, and electrically connected in parallel. The stack is normally much shorter than a quarter wavelength at the fundamental resonance frequency so that the mechanical behavior of the transducer is not affected by the segmentation. When the transducer bandwidth is less than a half octave, as has conventionally been the case, for example, with lead zirconate titanate (PZT) material, stack segmentation has no significant effect on the mechanical behavior of the device in its normal operating band near the fundamental resonance. However, when a high coupling coefficient material such as lead magnesium niobate-lead titanate (PMN-PT) is used to achieve a wider bandwidth with the tonpilz, the performance difference between a segmented stack and a similar piezoelectric section with electrodes only at the two ends can be significant. This paper investigates the effects of stack segmentation on the performance of wideband underwater tonpilz acoustic transducers. Included is a discussion of a particular tonpilz transducer design using single crystal piezoelectric material with high coupling coefficient compared with a similar design using more traditional PZT ceramics. PMID:24437755

  2. Synthesis of tin, silver and their alloy nanoparticles for lead-free interconnect applications

    NASA Astrophysics Data System (ADS)

    Jiang, Hongjin

    SnPb solders have long been used as interconnect materials in microelectronic packaging. Due to the health threat of lead to human beings, the use of lead-free interconnect materials is imperative. Three kinds of lead-free interconnect materials are being investigated, namely lead-free metal solders (SnAg, SnAgCu, etc.), electrically conductive adhesives (ECAs) and carbon nanotubes (CNTs). However, there are still limitations for the full utilization of these lead-free interconnect materials in the microelectronic packaging, such as higher melting point of lead-free metal solders, lower electrical conductivity of the ECAs and poor adhesion of CNTs to substrates. This thesis is devoted to the research and development of low processing temperature lead-free interconnect materials for microelectronic packaging applications with an emphasis on fundamental studies of nanoparticles synthesis, dispersion and oxidation prevention, and nanocomposites fabrication. Oxide-free tin (Sn), tin/silver (96.5Sn3.5Ag) and tin/silver/copper (96.5Sn3.0Ag0.5Cu) alloy nanoparticles with different sizes were synthesized by a low temperature chemical reduction method. Both size dependent melting point and latent heat of fusion of the synthesized nanoparticles were obtained. The nano lead-free solder pastes/composites created by dispersing the SnAg or SnAgCu alloy nanoparticles into an acidic type flux spread and wet on the cleaned copper surface at 220 to 230°C. This study demonstrated the feasibility of nano sized SnAg or SnAgCu alloy particle pastes for low processing temperature lead-free interconnect applications in microelectronic packaging.

  3. Phase transitions and the piezoelectricity around morphotropic phase boundary in Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 lead-free solid solution

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Zhang, Ming; Wang, Liang; Zhou, Chao; Zhang, Zhen; Yao, Yonggang; Zhang, Lixue; Xue, Dezhen; Lou, Xiaojie; Ren, Xiaobing

    2014-10-01

    In this paper, two displacive phase transitions around the morphotropic phase boundary (MPB) in Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 (BZT-xBCT) ceramics were detected by inspecting two anomalies of the Raman Ti4+-O2- longitudinal optical mode (˜725 cm-1). Further, permittivity and X-ray diffraction results demonstrated these two phase transitions originate from tetragonal (T) to rhombohedral (R) through an intermediate orthorhombic (O) phase. Importantly, we found that the maximum piezoelectric response (d33 = 545pC/N) was achieved at the boundary between the T and O phase, indicating that the giant piezoelectricity of BZT-xBCT may mainly stem from the T-O phase boundary due to easier polarization rotation and larger lattice softening.

  4. Achieving synchronization with active hybrid materials: Coupling self-oscillating gels and piezoelectric films

    NASA Astrophysics Data System (ADS)

    Yashin, Victor V.; Levitan, Steven P.; Balazs, Anna C.

    Our goal is to develop materials that compute by using non-linear oscillating chemical reactions to perform spatio-temporal recognition tasks. The material of choice is a polymer gel undergoing the oscillatory Belousov-Zhabotinsky reaction. The novelty of our approach is in employing hybrid gel-piezoelectric micro-electro-mechanical systems (MEMS) to couple local chemo-mechanical oscillations over long distances by electrical connection. Our modeling revealed that (1) interaction between the MEMS units is sufficiently strong for synchronization; (2) the mode of synchronization depends on the number of units, type of circuit connection (serial of parallel), and polarity of the units; (3) each mode has a distinctive pattern in phase of oscillations and generated voltage. The results indicate feasibility of using the hybrid gel-piezoelectric MEMS for oscillator based unconventional computing.

  5. Determination of depolarization temperature of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics

    NASA Astrophysics Data System (ADS)

    Anton, Eva-Maria; Jo, Wook; Damjanovic, Dragan; Rödel, Jürgen

    2011-11-01

    The depolarization temperature Td of piezoelectric materials is an important figure of merit for their application at elevated temperatures. Until now, there are several methods proposed in the literature to determine the depolarization temperature of piezoelectrics, which are based on different physical origins. Their validity and inter-correlation have not been clearly manifested. This paper applies the definition of depolarization temperature as the temperature of the steepest decrease of remanent polarization and evaluates currently used methods, both in terms of this definition and practical applicability. For the investigations, the lead-free piezoceramics (1-y)(Bi1/2Na1/2TiO3-xBi1/2K1/2TiO3)-yK0.5Na0.5NbO3 in a wide compositional range were chosen. Results were then compared to those for BaTiO3 and a commercial Pb(Zr,Ti)O3-based material as references. Thermally stimulated depolarization current and in situ temperature-dependent piezoelectric coefficient d33 are recommended to determine Td according to the proposed definition. Methods based on inflection point of the real part of permittivity or the peak in dielectric loss give consistently higher temperature values.

  6. Lead-free bearing alloys for engine applications

    NASA Astrophysics Data System (ADS)

    Ratke, Lorenz; Ågren, John; Ludwig, Andreas; Tonn, Babette; Gránásy, László; Mathiesen, Ragnvald; Arnberg, Lars; Anger, Gerd; Reifenhäuser, Bernd; Lauer, Michael; Garen, Rune; Gust, Edgar

    2005-10-01

    Recent developments to reduce the fuel consumption, emission and air pollution, size and weight of engines for automotive, truck, ship propulsion and electrical power generation lead to temperature and load conditions within the engines that cannot be borne by conventional bearings. Presently, only costly multilayer bearings with electroplated or sputtered surface coatings can cope with the load/speed combinations required. Ecological considerations in recent years led to a ban by the European Commission on the use of lead in cars a problem for the standard bronze-lead bearing material. This MAP project is therefore developing an aluminium-based lead-free bearing material with sufficient hardness, wear and friction properties and good corrosion resistance. Only alloys made of components immiscible in the molten state can meet the demanding requirements. Space experimentation plays a crucial role in optimising the cast microstructure for such applications.

  7. Evaluation on mass sensitivity of SAW sensors for different piezoelectric materials using finite-element analysis.

    PubMed

    Abdollahi, Amir; Jiang, Zhongwei; Arabshahi, Sayyed Alireza

    2007-12-01

    The mass sensitivity of the piezoelectric surface acoustic wave (SAW) sensors is an important factor in the selection of the best gravimetric sensors for different applications. To determine this value without facing the practical problems and the long theoretical calculation time, we have shown that the mass sensitivity of SAW sensors can be calculated by a simple three-dimensional (3-D) finite-element analysis (FEA) using a commercial finite-element platform. The FEA data are used to calculate the wave propagation speed, surface particle displacements, and wave energy distribution on different cuts of various piezoelectric materials. The results are used to provide a simple method for evaluation of their mass sensitivities. Meanwhile, to calculate more accurate results from FEA data, surface and bulk wave reflection problems are considered in the analyses. In this research, different cuts of lithium niobate, quartz, lithium tantalate, and langasite piezoelectric materials are applied to investigate their acoustic wave properties. Our analyses results for these materials have a good agreement with other researchers' results. Also, the mass sensitivity value for the novel cut of langasite was calculated through these analyses. It was found that its mass sensitivity is higher than that of the conventional Rayleigh mode quartz sensor.

  8. Green's functions of one-dimensional quasicrystal bi-material with piezoelectric effect

    NASA Astrophysics Data System (ADS)

    Zhang, Liangliang; Wu, Di; Xu, Wenshuai; Yang, Lianzhi; Ricoeur, Andreas; Wang, Zhibin; Gao, Yang

    2016-09-01

    Based on the Stroh formalism of one-dimensional quasicrystals with piezoelectric effect, the problems of an infinite plane composed of two different quasicrystal half-planes are taken into account. The solutions of the internal and interfacial Green's functions of quasicrystal bi-material are obtained. Moreover, numerical examples are analyzed for a quasicrystal bi-material subjected to line forces or line dislocations, showing the contour maps of the coupled fields. The impacts of changing material constants on the coupled field components are investigated.

  9. Structure and electrical properties of 0.80 Na0.5 Bi0.5 TiO3-0.16 K0.5 Bi0.5 TiO3-0.04 BaTiO3 lead-free piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Aravinth, K.; Muneeswaran, M.; Babu, G. Anandha; Giridharan, N. V.; Ramasamy, P.

    2016-05-01

    Lead free pervoskite 0.80 Na0.5 Bi0.5 TiO3-0.16 K0.5 Bi0.5 TiO3-0.04 BaTiO3 (NKBBT) ceramics were fabricated via conventional solid state processing technique sintered at 1200 °C and their crystal structures and electrical properties were systematically studied. Structure of the prepared NKBBT ceramics was confirmed by Powder X-ray diffraction analysis. The dependence of dielectric constant on temperature for various frequencies (100 Hz-100 KHz) has been determined. The diffuse transition is observed in the variation of dielectric constant and it provides evidence for the relaxor characteristics. The ferroelectric response of the NKBBT ceramics with different frequency was studied. Polarisation electric field hysteresis loops revealed that the remnant polarization is 6.88 µC/cm2 and coercive electric field is 66.42 kV/cm.

  10. Semiconductor/relaxor 0-3 type composites without thermal depolarization in Bi0.5Na0.5TiO3-based lead-free piezoceramics

    NASA Astrophysics Data System (ADS)

    Zhang, Ji; Pan, Zhao; Guo, Fei-Fei; Liu, Wen-Chao; Ning, Huanpo; Chen, Y. B.; Lu, Ming-Hui; Yang, Bin; Chen, Jun; Zhang, Shan-Tao; Xing, Xianran; Rödel, Jürgen; Cao, Wenwu; Chen, Yan-Feng

    2015-03-01

    Commercial lead-based piezoelectric materials raised worldwide environmental concerns in the past decade. Bi0.5Na0.5TiO3-based solid solution is among the most promising lead-free piezoelectric candidates; however, depolarization of these solid solutions is a longstanding obstacle for their practical applications. Here we use a strategy to defer the thermal depolarization, even render depolarization-free Bi0.5Na0.5TiO3-based 0-3-type composites. This is achieved by introducing semiconducting ZnO particles into the relaxor ferroelectric 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 matrix. The depolarization temperature increases with increasing ZnO concentration until depolarization disappears at 30 mol% ZnO. The semiconducting nature of ZnO provides charges to partially compensate the ferroelectric depolarization field. These results not only pave the way for applications of Bi0.5Na0.5TiO3-based piezoceramics, but also have great impact on the understanding of the mechanism of depolarization so as to provide a new design to optimize the performance of lead-free piezoelectrics.

  11. Evaluation of electromechanical coupling parameters of piezoelectric materials by using piezoelectric cantilever with coplanar electrode structure in quasi-stasis.

    PubMed

    Zheng, Xuejun; Zhu, Yuankun; Liu, Xun; Liu, Jing; Zhang, Yong; Chen, Jianguo

    2014-02-01

    Based on Timoshenko beam theory, a principle model is proposed to establish the relationship between electric charge and excitation acceleration, and in quasi-stasis we apply the direct piezoelectric effect of multilayer cantilever with coplanar electrode structure to evaluate the piezoelectric strain coefficient d15 and electromechanical coupling coefficient k15. They are measured as 678 pC/N and 0.74 for the commercial piezoelectric ceramic lead zirconate titanate (PZT-51) bulk specimen and 656 pC/N and 0.63 for the lead magnesium niobate (PMN) bulk specimen, and they are in agreement with the calibration and simulation values. The maximum of relative errors is less than 4.2%, so the proposed method is reliable and convenient.

  12. Phase transitions and the piezoelectricity around morphotropic phase boundary in Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}-x(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} lead-free solid solution

    SciTech Connect

    Zhang, Le; Zhang, Ming; Wang, Liang; Zhou, Chao; Zhang, Zhen; Yao, Yonggang; Zhang, Lixue; Xue, Dezhen E-mail: xlou03@mail.xjtu.edu.cn Lou, Xiaojie E-mail: xlou03@mail.xjtu.edu.cn; Ren, Xiaobing E-mail: xlou03@mail.xjtu.edu.cn

    2014-10-20

    In this paper, two displacive phase transitions around the morphotropic phase boundary (MPB) in Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}-x(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} (BZT-xBCT) ceramics were detected by inspecting two anomalies of the Raman Ti{sup 4+}-O{sup 2−} longitudinal optical mode (∼725 cm{sup −1}). Further, permittivity and X-ray diffraction results demonstrated these two phase transitions originate from tetragonal (T) to rhombohedral (R) through an intermediate orthorhombic (O) phase. Importantly, we found that the maximum piezoelectric response (d{sub 33} = 545pC/N) was achieved at the boundary between the T and O phase, indicating that the giant piezoelectricity of BZT-xBCT may mainly stem from the T-O phase boundary due to easier polarization rotation and larger lattice softening.

  13. The peculiarities of energy characteristics of acoustic waves in piezoelectric materials and structures.

    PubMed

    Zaitsev, Boris D; Teplykh, Andrei A; Kuznetsova, Iren E

    2007-03-01

    This paper is devoted to detailed theoretical investigation of energy density and power flow of homogeneous (bulk) and inhomogeneous (surface and plate) plane acoustic waves in piezoelectric materials and structures. The analysis of these waves in different materials of various crystallographic orientations allowed us to establish some energy regularities. These regularities are the same for instantaneous energy characteristics of homogeneous waves and for time-average energy characteristics on unit of aperture of inhomogeneous waves if the electrical energy and power flow in vacuum are taken into account. It has been shown that, for strong piezoactive waves, the electric energy density may exceed the mechanical energy density more than three times.

  14. Love waves in functionally graded piezoelectric materials by stiffness matrix method.

    PubMed

    Ben Salah, Issam; Wali, Yassine; Ben Ghozlen, Mohamed Hédi

    2011-04-01

    A numerical matrix method relative to the propagation of ultrasonic guided waves in functionally graded piezoelectric heterostructure is given in order to make a comparative study with the respective performances of analytical methods proposed in literature. The preliminary obtained results show a good agreement, however numerical approach has the advantage of conceptual simplicity and flexibility brought about by the stiffness matrix method. The propagation behaviour of Love waves in a functionally graded piezoelectric material (FGPM) is investigated in this article. It involves a thin FGPM layer bonded perfectly to an elastic substrate. The inhomogeneous FGPM heterostructure has been stratified along the depth direction, hence each state can be considered as homogeneous and the ordinary differential equation method is applied. The obtained solutions are used to study the effect of an exponential gradient applied to physical properties. Such numerical approach allows applying different gradient variation for mechanical and electrical properties. For this case, the obtained results reveal opposite effects. The dispersive curves and phase velocities of the Love wave propagation in the layered piezoelectric film are obtained for electrical open and short cases on the free surface, respectively. The effect of gradient coefficients on coupled electromechanical factor, on the stress fields, the electrical potential and the mechanical displacement are discussed, respectively. Illustration is achieved on the well known heterostructure PZT-5H/SiO(2), the obtained results are especially useful in the design of high-performance acoustic surface devices and accurately prediction of the Love wave propagation behaviour.

  15. Using iridium films to compensate for piezo-electric materials processing stresses in adjustable x-ray optics

    NASA Astrophysics Data System (ADS)

    Ames, A.; Bruni, R.; Cotroneo, V.; Johnson-Wilke, R.; Kester, T.; Reid, P.; Romaine, S.; Tolier-McKinstry, S.; Wilke, R. H. T.

    2015-09-01

    Adjustable X-ray optics represent a potential enabling technology for simultaneously achieving large effective area and high angular resolution for future X-ray Astronomy missions. The adjustable optics employ a bimorph mirror composed of a thin (1.5 μm) film of piezoelectric material deposited on the back of a 0.4 mm thick conical mirror segment. The application of localized electric fields in the piezoelectric material, normal to the mirror surface, result in localized deformations in mirror shape. Thus, mirror fabrication and mounting induced figure errors can be corrected, without the need for a massive reaction structure. With this approach, though, film stresses in the piezoelectric layer, resulting from deposition, crystallization, and differences in coefficient of thermal expansion, can distort the mirror. The large relative thickness of the piezoelectric material compared to the glass means that even 100MPa stresses can result in significant distortions. We have examined compensating for the piezoelectric processing related distortions by the deposition of controlled stress chromium/iridium films on the front surface of the mirror. We describe our experiments with tuning the product of the chromium/iridium film stress and film thickness to balance that resulting from the piezoelectric layer. We also evaluated the repeatability of this deposition process, and the robustness of the iridium coating.

  16. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2007-01-01

    The primary technical objective of the project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with lead-free alloys Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with mixed (lead/lead-free) alloys.

  17. Fin-buffet alleviation via distributed piezoelectric actuators: materials qualification program

    NASA Astrophysics Data System (ADS)

    Zaglauer, Helmut W.; Duerr, Johannes K.; Floeth, Erik; Ihler, Elmar; Herold-Schmidt, Ursula; Dittrich, Kay W.; Simpson, John; Becker, Juergen

    1999-07-01

    One of the most innovative concepts for active fin-buffet alleviation in vertical tail aircraft is the use of piezoelectric patch actuators distributed across the tail surface to actively induce a counter-strain into the structure. This concept involves the development of a novel material compound structure consisting of a fiber-composite aircraft skin, a ceramic patch actuator and the bonding layer between both components. This actively controllable structure has to provide enough authority to dampen the fin- buffet vibrations. It also has to function reliably during long-term aircraft operation under severe mechanical and environmental load conditions.

  18. Structural dependence of piezoelectric, dielectric and ferroelectric properties of K{sub 0.5}Na{sub 0.5}(Nb{sub 1−2x/5}Cu{sub x})O{sub 3} lead-free ceramics with high Q{sub m}

    SciTech Connect

    Tan, Xiaohui; Fan, Huiqing; Ke, Shanming; Zhou, Limin; Mai, Yiu-Wing; Huang, Haitao

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Double hysteresis loops were observed in K{sub 0.5}Na{sub 0.5}(Nb{sub 1−2x/5}Cu{sub x})O{sub 3}. ► Cu substitution caused structural discontinuity in KNNC. ► Dimeric defect complex (Cu{sup ‴}{sub Nb}–V{sub O}··){sup ′} with a dipole moment was formed in KNNC. -- Abstract: (K{sub 0.5}Na{sub 0.5})(Nb{sub 1−2x/5}Cu{sub x})O{sub 3} (abbreviated as KNNC, x = 0–2%) lead-free ceramics were synthetized by the solid state solution method. Pure perovskite phase with orthorhombic symmetry was observed. The evolution of the structure of KNNC was examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman scattering spectra techniques. Our results revealed that, defect dipoles (Cu{sup ‴}{sub Nb}–V{sub O}··){sup ′} were formed and provided a restoring force to reverse the switched polarization, which resulted in double P–E hysteresis loops in KNNC with Cu doping at x = 0.75% and 1%. However, non-polar defect complex (V{sub O}··–Cu{sup ‴}{sub Nb}–V{sub O}··)· caused a lattice shrinkage and the observed square shaped P–E loops in KNNC ceramics under high doping levels (x > 1%).

  19. A theoretical study of the propagation of Rayleigh waves in a functionally graded piezoelectric material (FGPM).

    PubMed

    Ben Salah, Issam; Njeh, Anouar; Ben Ghozlen, Mohamed Hédi

    2012-02-01

    An exact approach is used to investigate Rayleigh waves in a functionally graded piezoelectric material (FGPM) layer bonded to a semi infinite homogenous solid. The piezoelectric material is polarized when the six fold symmetry axis is put along the propagation direction x(1). The FGPM character imposes that the material properties change gradually with the thickness of the layer. Contrary to the analytical approach, the adopted numerical methods, including the ordinary differential equation (ODE) and the stiffness matrix method (SMM), treat separately the electrical and mechanical gradients. The influences of graded variations applied to FGPM film coefficients on the dispersion curves of Rayleigh waves are discussed. The effects of gradient coefficients on electromechanical coupling factor, displacement fields, stress distributions and electrical potential, are reported. The obtained deviations in comparison with the ungraded homogenous film are plotted with respect to the dimensionless wavenumber. Opposite effects are observed on the coupling factor when graded variations are applied separately. A particular attention has been devoted to the maximum of the coupling factor and it dependence on the stratification rate and the gradient coefficient. This work provides with a theoretical foundation for the design and practical applications of SAW devices with high performance.

  20. Lead-free solders: issues of toxicity, availability and impacts of extraction

    NASA Technical Reports Server (NTRS)

    Ku, A.; Shapiro, A. A.; Kua, A.; Ogunseitan, O.; Saphores, J. D.; Schoenung, J. M.

    2003-01-01

    This project set out to evaluate the critical issues of toxicity and public health effects, material availability, and the environmental impacts of raw material extraction and metal finishing, with the goal of using environmental impact as a factor in selecting feasible lead-free alloys.

  1. Piezoelectric properties of polyamide 11/NaNbO3 nanowire composites

    NASA Astrophysics Data System (ADS)

    David, Charlotte; Capsal, Jean-Fabien; Laffont, Lydia; Dantras, Eric; Lacabanne, Colette

    2012-10-01

    Polyamide 11(PA 11)/sodium niobate nanowire (NW) 0-3 composites with different volume fractions of NWs were synthesized. The electric polarization (P) was measured as a function of the applied electric field (E). The P-E hysteresis loop was used to work out the remanent polarization Pr of these materials. The dielectric permittivity and the piezoelectric strain constant were determined. Good impedance matching between inorganic and organic phases leads to higher electroactivity than conventional lead-free 0-3 composites. The piezoelectric voltage of the PA 11/NaNbO3 NW composites is of the same order as those obtained for fluorinated piezoelectric polymers. These composites could have some applications in flexible, low-cost, environmentally friendly piezoelectric sensors and actuators.

  2. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2009-01-01

    The primary technical objective of this project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: (1) Packages (e.g., Thin Small Outline Package [TSOP], Ball Grid Array [BGA], Plastic Dual In-line Package [PDIP]) assembled and reworked with lead-free alloys, (2) Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with mixed (lead/lead-free) alloys.

  3. Piezoelectric Nanoindentation

    SciTech Connect

    Rar, Andrei; Pharr, George Mathews; Oliver, Warren C.; Karapetian, Edgar; Kalinin, Sergei V

    2006-01-01

    Piezoelectric nanoindentation (PNI) has been developed to quantitatively address electromechanical coupling and pressure-induced dynamic phenomena in ferroelectric materials on the nanoscale. In PNI, an oscillating voltage is applied between the back side of the sample and the indenter tip, and the first harmonic of bias-induced surface displacement at the area of indenter contact is detected. PNI is implemented using a standard nanoindentation system equipped with a continuous stiffness measurement system. The piezoresponse of polycrystalline lead zirconate titanate (PZT) and BaTiO{sub 3} piezoceramics was studied during a standard nanoindentation experiment. For PZT, the response was found to be load independent, in agreement with theoretical predictions. In polycrystalline barium titanate, a load dependence of the piezoresponse was observed. The potential of piezoelectric nanoindentation for studies of phase transitions and local structure-property relations in piezoelectric materials is discussed.

  4. Microstorms in cellular polymers: a route to soft piezoelectric transducer materials with engineered macroscopic dipoles.

    PubMed

    Wegener, Michael; Bauer, Siegfried

    2005-06-13

    Cellular polymers can be internally charged by "microstorms" (silent or partial discharges) within the voids of the polymer foam. The resulting material, which carries positive and negative charges on the internal void surfaces, is called a ferroelectret. Ferroelectrets behave like typical ferroelectrics, hence they provide a novel class of ferroic materials. The soft foams are strongly piezoelectric and can be used, in a wide range of applications, as transducers for interconverting mechanical and electrical signals. Herein, an overview is provided on the preparation of cellular polymers by physical foaming (extrusion, biaxial stretching, and controlled inflation by pressure treatments), on their charging by "microstorms", on their piezo- and pyroelectricity, and on analogies to ferroelectrics. Finally, a survey of selected applications is presented.

  5. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials.

    PubMed

    Wang, Shupeng; Zhang, Zhihui; Ren, Luquan; Zhao, Hongwei; Liang, Yunhong; Zhu, Bing

    2014-06-01

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principle of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.

  6. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials

    NASA Astrophysics Data System (ADS)

    Wang, Shupeng; Zhang, Zhihui; Ren, Luquan; Zhao, Hongwei; Liang, Yunhong; Zhu, Bing

    2014-06-01

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principle of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.

  7. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials

    SciTech Connect

    Wang, Shupeng; Zhang, Zhihui Ren, Luquan; Liang, Yunhong; Zhao, Hongwei; Zhu, Bing

    2014-06-15

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principle of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.

  8. Analysis of a Griffith crack at the interface of two piezoelectric materials under anti-plane loading

    NASA Astrophysics Data System (ADS)

    Gherrous, M.; Ferdjani, H.

    2016-11-01

    The main objective of this work is the contribution to the study of the piezoelectric structures which contain preexisting defect (crack). For that, we consider a Griffith crack located at the interface of two piezoelectric materials in a semi-infinite plane structure. The structure is subjected to an anti-plane shearing combined with an in-plane electric displacement. Using integral Fourier transforms, the equations of piezoelectricity are converted analytically to a system of singular integral equations. The singular integral equations are further reduced to a system of algebraic equations and solved numerically by using Chebyshev polynomials. The stress intensity factor and the electric displacement intensity factor are calculated and used for the determination of the energy release rate which will be taken as fracture criterion. At the end, numerical results are presented for various parameters of the problem; they are also presented for an infinite plane structure.

  9. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials.

    PubMed

    Wang, Shupeng; Zhang, Zhihui; Ren, Luquan; Zhao, Hongwei; Liang, Yunhong; Zhu, Bing

    2014-06-01

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principle of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument. PMID:24985848

  10. Structural And Electrical Analysis Of Lead Free BZT-xBCT Ceramics

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Chandan; Kumar, Ashvani; Kaur, Davinder

    2010-12-01

    A comparative study of structural and electric properties of a recently discovered lead free electroceramic, Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 or BZT-xBCT, was conducted in the entire range from x = 0 to x = 1. This novel ceramic composite is being seen as a genuine understudy for commercially one of the most widely used piezoelectric ceramic, PZT, which is facing worldwide criticism due to its lead toxicity. The new system can be very extensively used like PZT in transduction applications as sensor, actuator and ultrasonic devices apart from numerous other utilities. The XRD, SEM and Ferroelectric studies establish the structural transition and different phases as function of Zr /Ti and Ba /Ca ratios.

  11. Structural And Electrical Analysis Of Lead Free BZT-xBCT Ceramics

    SciTech Connect

    Bhardwaj, Chandan; Kumar, Ashvani; Kaur, Davinder

    2010-12-01

    A comparative study of structural and electric properties of a recently discovered lead free electroceramic, Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}-x(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} or BZT-xBCT, was conducted in the entire range from x = 0 to x = 1. This novel ceramic composite is being seen as a genuine understudy for commercially one of the most widely used piezoelectric ceramic, PZT, which is facing worldwide criticism due to its lead toxicity. The new system can be very extensively used like PZT in transduction applications as sensor, actuator and ultrasonic devices apart from numerous other utilities. The XRD, SEM and Ferroelectric studies establish the structural transition and different phases as function of Zr /Ti and Ba /Ca ratios.

  12. Achieving synchronization with active hybrid materials: Coupling self-oscillating gels and piezoelectric films.

    PubMed

    Yashin, Victor V; Levitan, Steven P; Balazs, Anna C

    2015-06-24

    Lightweight, deformable materials that can sense and respond to human touch and motion can be the basis of future wearable computers, where the material itself will be capable of performing computations. To facilitate the creation of "materials that compute", we draw from two emerging modalities for computation: chemical computing, which relies on reaction-diffusion mechanisms to perform operations, and oscillatory computing, which performs pattern recognition through synchronization of coupled oscillators. Chemical computing systems, however, suffer from the fact that the reacting species are coupled only locally; the coupling is limited by diffusion as the chemical waves propagate throughout the system. Additionally, oscillatory computing systems have not utilized a potentially wearable material. To address both these limitations, we develop the first model for coupling self-oscillating polymer gels to a piezoelectric (PZ) micro-electro-mechanical system (MEMS). The resulting transduction between chemo-mechanical and electrical energy creates signals that can be propagated quickly over long distances and thus, permits remote, non-diffusively coupled oscillators to communicate and synchronize. Moreover, the oscillators can be organized into arbitrary topologies because the electrical connections lift the limitations of diffusive coupling. Using our model, we predict the synchronization behavior that can be used for computational tasks, ultimately enabling "materials that compute".

  13. Achieving synchronization with active hybrid materials: Coupling self-oscillating gels and piezoelectric films

    NASA Astrophysics Data System (ADS)

    Yashin, Victor V.; Levitan, Steven P.; Balazs, Anna C.

    2015-06-01

    Lightweight, deformable materials that can sense and respond to human touch and motion can be the basis of future wearable computers, where the material itself will be capable of performing computations. To facilitate the creation of “materials that compute”, we draw from two emerging modalities for computation: chemical computing, which relies on reaction-diffusion mechanisms to perform operations, and oscillatory computing, which performs pattern recognition through synchronization of coupled oscillators. Chemical computing systems, however, suffer from the fact that the reacting species are coupled only locally; the coupling is limited by diffusion as the chemical waves propagate throughout the system. Additionally, oscillatory computing systems have not utilized a potentially wearable material. To address both these limitations, we develop the first model for coupling self-oscillating polymer gels to a piezoelectric (PZ) micro-electro-mechanical system (MEMS). The resulting transduction between chemo-mechanical and electrical energy creates signals that can be propagated quickly over long distances and thus, permits remote, non-diffusively coupled oscillators to communicate and synchronize. Moreover, the oscillators can be organized into arbitrary topologies because the electrical connections lift the limitations of diffusive coupling. Using our model, we predict the synchronization behavior that can be used for computational tasks, ultimately enabling “materials that compute”.

  14. Achieving synchronization with active hybrid materials: Coupling self-oscillating gels and piezoelectric films.

    PubMed

    Yashin, Victor V; Levitan, Steven P; Balazs, Anna C

    2015-01-01

    Lightweight, deformable materials that can sense and respond to human touch and motion can be the basis of future wearable computers, where the material itself will be capable of performing computations. To facilitate the creation of "materials that compute", we draw from two emerging modalities for computation: chemical computing, which relies on reaction-diffusion mechanisms to perform operations, and oscillatory computing, which performs pattern recognition through synchronization of coupled oscillators. Chemical computing systems, however, suffer from the fact that the reacting species are coupled only locally; the coupling is limited by diffusion as the chemical waves propagate throughout the system. Additionally, oscillatory computing systems have not utilized a potentially wearable material. To address both these limitations, we develop the first model for coupling self-oscillating polymer gels to a piezoelectric (PZ) micro-electro-mechanical system (MEMS). The resulting transduction between chemo-mechanical and electrical energy creates signals that can be propagated quickly over long distances and thus, permits remote, non-diffusively coupled oscillators to communicate and synchronize. Moreover, the oscillators can be organized into arbitrary topologies because the electrical connections lift the limitations of diffusive coupling. Using our model, we predict the synchronization behavior that can be used for computational tasks, ultimately enabling "materials that compute". PMID:26105979

  15. Achieving synchronization with active hybrid materials: Coupling self-oscillating gels and piezoelectric films

    PubMed Central

    Yashin, Victor V.; Levitan, Steven P.; Balazs, Anna C.

    2015-01-01

    Lightweight, deformable materials that can sense and respond to human touch and motion can be the basis of future wearable computers, where the material itself will be capable of performing computations. To facilitate the creation of “materials that compute”, we draw from two emerging modalities for computation: chemical computing, which relies on reaction-diffusion mechanisms to perform operations, and oscillatory computing, which performs pattern recognition through synchronization of coupled oscillators. Chemical computing systems, however, suffer from the fact that the reacting species are coupled only locally; the coupling is limited by diffusion as the chemical waves propagate throughout the system. Additionally, oscillatory computing systems have not utilized a potentially wearable material. To address both these limitations, we develop the first model for coupling self-oscillating polymer gels to a piezoelectric (PZ) micro-electro-mechanical system (MEMS). The resulting transduction between chemo-mechanical and electrical energy creates signals that can be propagated quickly over long distances and thus, permits remote, non-diffusively coupled oscillators to communicate and synchronize. Moreover, the oscillators can be organized into arbitrary topologies because the electrical connections lift the limitations of diffusive coupling. Using our model, we predict the synchronization behavior that can be used for computational tasks, ultimately enabling “materials that compute”. PMID:26105979

  16. A magnetic-piezoelectric smart material-structure utilizing magnetic force interaction to optimize the sensitivity of current sensing

    NASA Astrophysics Data System (ADS)

    Yeh, Po-Chen; Chung, Tien-Kan; Lai, Chen-Hung; Wang, Chieh-Min

    2016-01-01

    This paper presents a magnetic-piezoelectric smart material-structure using a novel magnetic-force-interaction approach to optimize the sensitivity of conventional piezoelectric current sensing technologies. The smart material-structure comprises a CuBe-alloy cantilever beam, a piezoelectric PZT sheet clamped to the fixed end of the beam, and an NdFeB permanent magnet mounted on the free end of the beam. When the smart material-structure is placed close to an AC conductor, the magnet on the beam of the smart structure experiences an alternating magnetic attractive and repulsive force produced by the conductor. Thus, the beam vibrates and subsequently generates a strain in the PZT sheet. The strain produces a voltage output because of the piezoelectric effect. The magnetic force interaction is specifically enhanced through the optimization approach (i.e., achieved by using SQUID and machining method to reorient the magnetization to different directions to maximize the magnetic force interaction). After optimizing, the beam's vibration amplitude is significantly enlarged and, consequently, the voltage output is substantially increased. The experimental results indicated that the smart material-structure optimized by the proposed approach produced a voltage output of 4.01 Vrms with a sensitivity of 501 m Vrms/A when it was placed close to a conductor with a current of 8 A at 60 Hz. The optimized voltage output and sensitivity of the proposed smart structure were approximately 316 % higher than those (1.27 Vrms with 159 m Vrms/A) of representative piezoelectric-based current sensing technologies presented in other studies. These improvements can significantly enable the development of more self-powered wireless current sensing applications in the future.

  17. Doping effects of Li-Sb content on the structure and electrical properties of [(Na{sub 0.5}K{sub 0.5}){sub 1-x}(Li){sub x}(Sb){sub x}(Nb){sub 1} {sub -x}O{sub 3}] lead-free piezoelectric ceramics

    SciTech Connect

    Rani, Rashmi; Sharma, Seema; Rai, Radheshyam; Kholkin, Andrei L.

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer [Na{sub 0.5}K{sub 0.5}]{sub 1-x}(Li){sub x}(Sb){sub x}(Nb){sub 1-x}O{sub 3} were prepared by solid-state reaction method. Black-Right-Pointing-Pointer XRD analysis of the powder suggests the formation of a single-phase material. Black-Right-Pointing-Pointer The crystal structure changes from orthorhombic to tetragonal with increase in x. Black-Right-Pointing-Pointer Dielectric studies show a diffuse phase transition at 100 Degree-Sign C and 330 Degree-Sign C. Black-Right-Pointing-Pointer The composition x = 0.050 shows maximum remanent polarization (Pr {approx} 0.66 C m{sup -2}). -- Abstract: Ceramic samples of [Na{sub 0.5}K{sub 0.5}]{sub 1-x}(Li){sub x}(Sb){sub x}(Nb){sub 1-x}O{sub 3} (NKNLS) (x = 0.04-0.06) were prepared by high temperature solid-state reaction method. X-ray diffraction analysis of the powder samples suggests the formation of a single-phase material with transformation from orthorhombic to tetragonal crystal structure with increase in Sb content. Dielectric studies show a diffuse phase transition about 100 Degree-Sign C and another phase ferroelectric-paraelectric transition at 330 Degree-Sign C. Polarization vs. electric field (P-E) hysteresis studies show maximum remanent polarization (Pr {approx} 0.66 C m{sup -2}) for composition x = 0.05. AC conductivity in the compound increases with increase in temperature which may be attributed due to oxygen vacancies and show negative temperature coefficient of resistance (NTCR) effect.

  18. Conceptual design for 12 V "lead-free" accumulators for automobile and stationary applications

    NASA Astrophysics Data System (ADS)

    Ariyoshi, Kingo; Ohzuku, Tsutomu

    Conceptual design for 12 V lead-free accumulators is presented using basic research results on lithium insertion materials. Among possible materials, Li[Li 1/3Ti 5/3]O 4 is selected for a negative-electrode material, and Li[Ni 1/2Mn 3/2]O 4, LiMn 2O 4, LiCo 1/3Ni 1/3Mn 1/3O 2, and LiFePO 4 are specifically considered as positive-electrode materials. Combination of these materials with Li[Li 1/3Ti 5/3]O 4 gives a 2, 2.5 or 3 V lithium-ion battery. Series connection of such a lithium-ion battery makes 12 V lead-free accumulators possible. Characteristic features of the lead-free accumulators are discussed in terms of energy density for deep charge and discharge cycles, power density for short period of time, material economy, environmental friendliness, and safety compared with those of lead-acid batteries currently hold a position in automobile, large uninterruptible power supply, and off-grid solar home systems.

  19. Properties of photocured epoxy resin materials for application in piezoelectric ultrasonic transducer matching layers.

    PubMed

    Trogé, Alexandre; O'Leary, Richard L; Hayward, Gordon; Pethrick, Richard A; Mullholland, Anthony J

    2010-11-01

    This paper describes the acoustic properties of a range of epoxy resins prepared by photocuring that are suitable for application in piezoelectric ultrasonic transducer matching layers. Materials, based on blends of diglycidyl ether of Bisphenol A and 1,4-cyclohexanedimethanol diglycidyl ether, are described. Furthermore, in order to vary the elastic character of the base resin, samples containing polymer microspheres or barium sulfate particles are also described. The acoustic properties of the materials are determined by a liquid coupled through transmission methodology, capable of determining the velocity and attenuation of longitudinal and shear waves propagating in an isotropic layer. Measured acoustic properties are reported which demonstrate materials with specific acoustic impedance varying in the range 0.88-6.25 MRayls. In the samples comprising blends of resin types, a linear variation in the acoustic velocities and density was observed. In the barium sulfate filled samples, acoustic impedance showed an approximately linear variation with composition, reflecting the dominance of the density variation. While such variations can be predicted by simple mixing laws, relaxation and scattering effects influence the attenuation in both the blended and filled resins. These phenomena are discussed with reference to dynamic mechanical thermal analysis and differential scanning calorimetry of the samples.

  20. Study of BNKLBT-1.5 lead-free ceramic/epoxy 1-3 composites

    SciTech Connect

    Choy, S. H.; Li, W. K.; Li, H. K.; Lam, K. H.; Chan, H. L. W.

    2007-12-01

    Bismuth sodium titanate based lead-free ceramic fiber with the chemical formula of 0.885(Bi{sub 0.5}Na{sub 0.5})TiO{sub 3}-0.05(Bi{sub 0.5}K{sub 0.5})TiO{sub 3}-0.015(Bi{sub 0.5}Li{sub 0.5}= )TiO{sub 3}-0.05BaTiO{sub 3}, BNKLBT-1.5, has been fabricated by a powder-based extrusion method. The ceramic fibers with 400 {mu}m diameter were well crystallized after being calcined at 800 deg. C and sintered at 1170 deg. C. The piezoelectric and ferroelectric properties of the single fiber were found to be 155 pC/N and {approx}34.5 {mu}C/cm{sup 2}, respectively, which is comparable with that in bulk sample. 1-3 ceramic/polymer composites were fabricated by two routes, including dice and filled method and fiber pick-and-place method. Theoretical models were used to calculate the piezoelectric properties of the composites and compared with experimental results.

  1. Piezoelectric Ceramics and Their Applications

    ERIC Educational Resources Information Center

    Flinn, I.

    1975-01-01

    Describes the piezoelectric effect in ceramics and presents a quantitative representation of this effect. Explains the processes involved in the manufacture of piezoelectric ceramics, the materials used, and the situations in which they are applied. (GS)

  2. Characterization of Full Set Material Constants and Their Temperature Dependence for Piezoelectric Materials Using Resonant Ultrasound Spectroscopy.

    PubMed

    Tang, Liguo; Cao, Wenwu

    2016-04-27

    During the operation of high power electromechanical devices, a temperature rise is unavoidable due to mechanical and electrical losses, causing the degradation of device performance. In order to evaluate such degradations using computer simulations, full matrix material properties at elevated temperatures are needed as inputs. It is extremely difficult to measure such data for ferroelectric materials due to their strong anisotropic nature and property variation among samples of different geometries. Because the degree of depolarization is boundary condition dependent, data obtained by the IEEE (Institute of Electrical and Electronics Engineers) impedance resonance technique, which requires several samples with drastically different geometries, usually lack self-consistency. The resonant ultrasound spectroscopy (RUS) technique allows the full set material constants to be measured using only one sample, which can eliminate errors caused by sample to sample variation. A detailed RUS procedure is demonstrated here using a lead zirconate titanate (PZT-4) piezoceramic sample. In the example, the complete set of material constants was measured from room temperature to 120 °C. Measured free dielectric constants and  were compared with calculated ones based on the measured full set data, and piezoelectric constants d15 and d33 were also calculated using different formulas. Excellent agreement was found in the entire range of temperatures, which confirmed the self-consistency of the data set obtained by the RUS.

  3. Characterization of Full Set Material Constants and Their Temperature Dependence for Piezoelectric Materials Using Resonant Ultrasound Spectroscopy

    PubMed Central

    Tang, Liguo; Cao, Wenwu

    2016-01-01

    During the operation of high power electromechanical devices, a temperature rise is unavoidable due to mechanical and electrical losses, causing the degradation of device performance. In order to evaluate such degradations using computer simulations, full matrix material properties at elevated temperatures are needed as inputs. It is extremely difficult to measure such data for ferroelectric materials due to their strong anisotropic nature and property variation among samples of different geometries. Because the degree of depolarization is boundary condition dependent, data obtained by the IEEE (Institute of Electrical and Electronics Engineers) impedance resonance technique, which requires several samples with drastically different geometries, usually lack self-consistency. The resonant ultrasound spectroscopy (RUS) technique allows the full set material constants to be measured using only one sample, which can eliminate errors caused by sample to sample variation. A detailed RUS procedure is demonstrated here using a lead zirconate titanate (PZT-4) piezoceramic sample. In the example, the complete set of material constants was measured from room temperature to 120 °C. Measured free dielectric constants ε11T and ε33T were compared with calculated ones based on the measured full set data, and piezoelectric constants d15 and d33 were also calculated using different formulas. Excellent agreement was found in the entire range of temperatures, which confirmed the self-consistency of the data set obtained by the RUS. PMID:27168336

  4. Characterization of Full Set Material Constants and Their Temperature Dependence for Piezoelectric Materials Using Resonant Ultrasound Spectroscopy.

    PubMed

    Tang, Liguo; Cao, Wenwu

    2016-01-01

    During the operation of high power electromechanical devices, a temperature rise is unavoidable due to mechanical and electrical losses, causing the degradation of device performance. In order to evaluate such degradations using computer simulations, full matrix material properties at elevated temperatures are needed as inputs. It is extremely difficult to measure such data for ferroelectric materials due to their strong anisotropic nature and property variation among samples of different geometries. Because the degree of depolarization is boundary condition dependent, data obtained by the IEEE (Institute of Electrical and Electronics Engineers) impedance resonance technique, which requires several samples with drastically different geometries, usually lack self-consistency. The resonant ultrasound spectroscopy (RUS) technique allows the full set material constants to be measured using only one sample, which can eliminate errors caused by sample to sample variation. A detailed RUS procedure is demonstrated here using a lead zirconate titanate (PZT-4) piezoceramic sample. In the example, the complete set of material constants was measured from room temperature to 120 °C. Measured free dielectric constants and  were compared with calculated ones based on the measured full set data, and piezoelectric constants d15 and d33 were also calculated using different formulas. Excellent agreement was found in the entire range of temperatures, which confirmed the self-consistency of the data set obtained by the RUS. PMID:27168336

  5. Characterization of full set material constants of piezoelectric materials based on ultrasonic method and inverse impedance spectroscopy using only one sample.

    PubMed

    Li, Shiyang; Zheng, Limei; Jiang, Wenhua; Sahul, Raffi; Gopalan, Venkatraman; Cao, Wenwu

    2013-09-14

    The most difficult task in the characterization of complete set material properties for piezoelectric materials is self-consistency. Because there are many independent elastic, dielectric, and piezoelectric constants, several samples are needed to obtain the full set constants. Property variation from sample to sample often makes the obtained data set lack of self-consistency. Here, we present a method, based on pulse-echo ultrasound and inverse impedance spectroscopy, to precisely determine the full set physical properties of piezoelectric materials using only one small sample, which eliminated the sample to sample variation problem to guarantee self-consistency. The method has been applied to characterize the [001]C poled Mn modified 0.27Pb(In1/2Nb1/2)O3-0.46Pb(Mg1/3Nb2/3)O3-0.27PbTiO3 single crystal and the validity of the measured data is confirmed by a previously established method. For the inverse calculations using impedance spectrum, the stability of reconstructed results is analyzed by fluctuation analysis of input data. In contrast to conventional regression methods, our method here takes the full advantage of both ultrasonic and inverse impedance spectroscopy methods to extract all constants from only one small sample. The method provides a powerful tool for assisting novel piezoelectric materials of small size and for generating needed input data sets for device designs using finite element simulations.

  6. Lamb waves propagation in functionally graded piezoelectric materials by Peano-series method.

    PubMed

    Ben Amor, Morched; Ben Ghozlen, Mohamed Hédi

    2015-01-01

    The Peano-series expansion is used to investigate the propagation of the lowest-order symmetric (S0) and antisymmetric (A0) Lamb wave modes in a functionally graded piezoelectric material (FGPM) plate. Aluminum nitride has been retained for illustration, it is polarized along the thickness axis, and at the same time the material properties change gradually perpendicularly to the plate with an exponential variation. The effects of the gradient variation on the phase velocity and the coupling electromechanical factor are obtained. Appropriate curves are given to reflect their behavior with respect to frequency. The highest value of the electromechanical coupling factor has been observed for S0 mode, it is close to six percent, conversely for A0 mode it does not exceed 1.5%. The coupling factor maxima undergo a shift toward the high frequency area when the corresponding gradient coefficient increases. The Peano-series method computed under Matlab software, gives rapid convergence and accurate phase velocity when analysing Lamb waves in FGPM plate. The obtained numerical results can be used to design different sensors with high performance working at different frequency ranges by adjusting the extent of the gradient property.

  7. Lead-Free Propellant for Propellant Actuated Devices

    NASA Technical Reports Server (NTRS)

    Goodwin, John L.

    2000-01-01

    Naval Surface Warfare Center, Indian Head Division's CAD/PAD Department has been working to remove toxic compounds from our products for about a decade. In 1992, we embarked on an effort to develop a lead-free double base propellant to replace that of a foreign sole source. At the time there were availability concerns. In 1995, the department developed a strategic proposal to include a wider range of products. Efforts included such efforts as removing lead sheathing from linear explosives and replacing lead azide and lead styphnate compounds. This paper will discuss efforts specifically related to developing non-leaded double base propellant for use in various Propellant Actuated Devices (PADs) for aircrew escape systems. The propellants can replace their leaded counterparts, mitigating lead handling, processing, or toxic exposure to the environment and personnel. This work eliminates the use of leaded compounds, replacing them with a more environmentally benign metal-organic salt. Historically double-base propellants have held an advantage over other families of energetic materials through their relative insensitivity of the burning rate to changes in temperature and pressure. This desirable ballistic effect has been obtained with the use of a lead-organic salt alone or in a physical mixture with a copper-organic salt, or more recently with a lead-copper complex. These ballistic modifiers are typically added to the double-base 'paste' prior to gelatinization on heated calendars or one type or another. The effect of constant burning rate over a pressure range is called a 'plateau' while an even more beneficial effect of decreasing burning rate with increasing pressure is termed a 'mesa.' The latter effect results in very low temperature sensitivity of the propellant burning rate. Propellants with such effects are ideal tactical rocket motor propellants. The use of lead compounds poses a concern for the environment and personnel safety due to the metal's toxic

  8. Ferroelectric and octahedral tilt twin disorder and the lead-free piezoelectric, sodium potassium niobate system

    SciTech Connect

    Schiemer, Jason; Withers, Ray L.; Liu, Yun; Yi, Zhiguo

    2012-11-15

    Using electron diffraction, trends in the local structural behaviour of the K{sub x}Na{sub 1-x}NbO{sub 3} (KNN x) 'solid solution' system are investigated and interpreted using an order/disorder based theoretical framework. At room temperature, electron diffraction shows a single plane of transverse polarised, diffuse intensity perpendicular to [0 1 0]{sub p} Low-Asterisk (p for parent sub-structure) across the entire phase diagram, indicative of ferroelectric disorder along the [0 1 0]{sub p} direction co-existing with long range ferroelectric order along the orthogonal [1 0 0]{sub p} and [0 0 1]{sub p} directions. An additional characteristic pattern of diffuse scattering is also observed, involving rods of diffuse intensity running along the [1 0 0]{sub p}* and [0 0 1]{sub p}* directions of the perovskite sub-structure and indicative of octahedral tilt disorder about the [1 0 0]{sub p} and [0 0 1]{sub p} axes co-existing with long range ordered octahedral tilting around the [0 1 0]{sub p} direction. A possible crystal chemical explanation for the existence of this latter octahedral tilt disorder is explored through bond valence sum calculations. The possible influence of both types of disorder on the previously refined, room temperature space group/s and average crystal structure/s is examined. - Graphical abstract: [-3,0.-1]p zone axis EDP of K{sub 0.46}Na{sub 0.54}NbO{sub 3} indexed according to both the relevant Pcm21 space groups (no subscripts) and the parent perovskite subcell (denoted by a subscript p). Highlights: Black-Right-Pointing-Pointer Characterises ferroelectric and octahedral tilt disorder in the KNN solid solution. Black-Right-Pointing-Pointer Discusses the possible driving forces for this disorder. Black-Right-Pointing-Pointer Discusses the implications of this disorder for physical properties. Black-Right-Pointing-Pointer Discusses the effects of this disorder on powder diffraction data.

  9. Dielectric and piezoelectric properties of 0.95(Na0.5K0.5)NbO3-0.05CaTiO3 ceramics with Ag2O contents

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Hwan; Baek, Sang-Don; Kim, Hyun-Ju; Kim, Seung-Hyun; Lee, Sung-Gap; Kim, Dae-Young; Lee, Young-Hie; Nam, Sung-Pill; Lee, Ku-Tak

    2012-12-01

    Lead-Free ceramics 0.95(Na0.5K0.5)NbO3-0.05CaTiO3- x mol. % Ag2O have been fabricated as a function of the amount of Ag2O content. NKN-CT ceramics showed the highest piezoelectric properties and ferroelectric properties at the 0.5 mol. %Ag2O content. The NKN-CT-Ag2O0.5 mol. % ceramics show a good performance with piezoelectric constant d 33 = 221 ρC/N, k p = 0.38%, respectively. The corresponding Curie temperature and remnant polarization reached 370°C and 22.5 µC/cm2, respectively. These results appear that NKN-CTAg2O ceramics are promising candidate materials for lead-free piezoelectric application.

  10. Piezoelectric enhancement under negative pressure

    PubMed Central

    Kvasov, Alexander; McGilly, Leo J.; Wang, Jin; Shi, Zhiyong; Sandu, Cosmin S.; Sluka, Tomas; Tagantsev, Alexander K.; Setter, Nava

    2016-01-01

    Enhancement of ferroelectric properties, both spontaneous polarization and Curie temperature under negative pressure had been predicted in the past from first principles and recently confirmed experimentally. In contrast, piezoelectric properties are expected to increase by positive pressure, through polarization rotation. Here we investigate the piezoelectric response of the classical PbTiO3, Pb(Zr,Ti)O3 and BaTiO3 perovskite ferroelectrics under negative pressure from first principles and find significant enhancement. Piezoelectric response is then tested experimentally on free-standing PbTiO3 and Pb(Zr,Ti)O3 nanowires under self-sustained negative pressure, confirming the theoretical prediction. Numerical simulations verify that negative pressure in nanowires is the origin of the enhanced electromechanical properties. The results may be useful in the development of highly performing piezoelectrics, including lead-free ones. PMID:27396411

  11. Piezoelectric enhancement under negative pressure.

    PubMed

    Kvasov, Alexander; McGilly, Leo J; Wang, Jin; Shi, Zhiyong; Sandu, Cosmin S; Sluka, Tomas; Tagantsev, Alexander K; Setter, Nava

    2016-01-01

    Enhancement of ferroelectric properties, both spontaneous polarization and Curie temperature under negative pressure had been predicted in the past from first principles and recently confirmed experimentally. In contrast, piezoelectric properties are expected to increase by positive pressure, through polarization rotation. Here we investigate the piezoelectric response of the classical PbTiO3, Pb(Zr,Ti)O3 and BaTiO3 perovskite ferroelectrics under negative pressure from first principles and find significant enhancement. Piezoelectric response is then tested experimentally on free-standing PbTiO3 and Pb(Zr,Ti)O3 nanowires under self-sustained negative pressure, confirming the theoretical prediction. Numerical simulations verify that negative pressure in nanowires is the origin of the enhanced electromechanical properties. The results may be useful in the development of highly performing piezoelectrics, including lead-free ones. PMID:27396411

  12. Piezoelectric enhancement under negative pressure.

    PubMed

    Kvasov, Alexander; McGilly, Leo J; Wang, Jin; Shi, Zhiyong; Sandu, Cosmin S; Sluka, Tomas; Tagantsev, Alexander K; Setter, Nava

    2016-07-11

    Enhancement of ferroelectric properties, both spontaneous polarization and Curie temperature under negative pressure had been predicted in the past from first principles and recently confirmed experimentally. In contrast, piezoelectric properties are expected to increase by positive pressure, through polarization rotation. Here we investigate the piezoelectric response of the classical PbTiO3, Pb(Zr,Ti)O3 and BaTiO3 perovskite ferroelectrics under negative pressure from first principles and find significant enhancement. Piezoelectric response is then tested experimentally on free-standing PbTiO3 and Pb(Zr,Ti)O3 nanowires under self-sustained negative pressure, confirming the theoretical prediction. Numerical simulations verify that negative pressure in nanowires is the origin of the enhanced electromechanical properties. The results may be useful in the development of highly performing piezoelectrics, including lead-free ones.

  13. Piezoelectric enhancement under negative pressure

    NASA Astrophysics Data System (ADS)

    Kvasov, Alexander; McGilly, Leo J.; Wang, Jin; Shi, Zhiyong; Sandu, Cosmin S.; Sluka, Tomas; Tagantsev, Alexander K.; Setter, Nava

    2016-07-01

    Enhancement of ferroelectric properties, both spontaneous polarization and Curie temperature under negative pressure had been predicted in the past from first principles and recently confirmed experimentally. In contrast, piezoelectric properties are expected to increase by positive pressure, through polarization rotation. Here we investigate the piezoelectric response of the classical PbTiO3, Pb(Zr,Ti)O3 and BaTiO3 perovskite ferroelectrics under negative pressure from first principles and find significant enhancement. Piezoelectric response is then tested experimentally on free-standing PbTiO3 and Pb(Zr,Ti)O3 nanowires under self-sustained negative pressure, confirming the theoretical prediction. Numerical simulations verify that negative pressure in nanowires is the origin of the enhanced electromechanical properties. The results may be useful in the development of highly performing piezoelectrics, including lead-free ones.

  14. TOPICAL REVIEW: A review of power harvesting using piezoelectric materials (2003 2006)

    NASA Astrophysics Data System (ADS)

    Anton, Steven R.; Sodano, Henry A.

    2007-06-01

    The field of power harvesting has experienced significant growth over the past few years due to the ever-increasing desire to produce portable and wireless electronics with extended lifespans. Current portable and wireless devices must be designed to include electrochemical batteries as the power source. The use of batteries can be troublesome due to their limited lifespan, thus necessitating their periodic replacement. In the case of wireless sensors that are to be placed in remote locations, the sensor must be easily accessible or of a disposable nature to allow the device to function over extended periods of time. Energy scavenging devices are designed to capture the ambient energy surrounding the electronics and convert it into usable electrical energy. The concept of power harvesting works towards developing self-powered devices that do not require replaceable power supplies. A number of sources of harvestable ambient energy exist, including waste heat, vibration, electromagnetic waves, wind, flowing water, and solar energy. While each of these sources of energy can be effectively used to power remote sensors, the structural and biological communities have placed an emphasis on scavenging vibrational energy with piezoelectric materials. This article will review recent literature in the field of power harvesting and present the current state of power harvesting in its drive to create completely self-powered devices.

  15. Hybrid thermoelectric piezoelectric generator

    NASA Astrophysics Data System (ADS)

    Montgomery, D. S.; Hewitt, C. A.; Carroll, D. L.

    2016-06-01

    This work presents an integration of flexible thermoelectric and piezoelectric materials into a single device structure. This device architecture overcomes several prohibitive issues facing the combination of traditional thermoelectric and piezoelectric generators, while optimizing performance of the combined power output. The structure design uses a carbon nanotube/polymer thin film as a flexible thermoelectric generator that doubles as an electrode on a piezoelectric generator made of poly(vinylidene fluoride). An example 2 × 2 array of devices is shown to generate 89% of the maximum thermoelectric power, and provide 5.3 times more piezoelectric voltage when compared with a traditional device.

  16. Lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanowires for energy harvesting

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; Bowland, Christopher C.; Malakooti, Mohammad H.; Tang, Haixiong; Sodano, Henry A.

    2016-02-01

    Lead-free piezoelectric nanowires (NWs) show strong potential in sensing and energy harvesting applications due to their flexibility and ability to convert mechanical energy to electric energy. Currently, most lead-free piezoelectric NWs are produced through low yield synthesis methods and result in low electromechanical coupling, which limit their efficiency as energy harvesters. In order to alleviate these issues, a scalable method is developed to synthesize perovskite type 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-BCT) NWs with high piezoelectric coupling coefficient. The piezoelectric coupling coefficient of the BZT-BCT NWs is measured by a refined piezoresponse force microscopy (PFM) testing method and shows the highest reported coupling coefficient for lead-free piezoelectric nanowires of 90 +/- 5 pm V-1. Flexible nanocomposites utilizing dispersed BZT-BCT NWs are fabricated to demonstrate an energy harvesting application with an open circuit voltage of up to 6.25 V and a power density of up to 2.25 μW cm-3. The high electromechanical coupling coefficient and high power density demonstrated with these lead-free NWs produced via a scalable synthesis method shows the potential for high performance NW-based devices.

  17. Lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanowires for energy harvesting.

    PubMed

    Zhou, Zhi; Bowland, Christopher C; Malakooti, Mohammad H; Tang, Haixiong; Sodano, Henry A

    2016-03-01

    Lead-free piezoelectric nanowires (NWs) show strong potential in sensing and energy harvesting applications due to their flexibility and ability to convert mechanical energy to electric energy. Currently, most lead-free piezoelectric NWs are produced through low yield synthesis methods and result in low electromechanical coupling, which limit their efficiency as energy harvesters. In order to alleviate these issues, a scalable method is developed to synthesize perovskite type 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-BCT) NWs with high piezoelectric coupling coefficient. The piezoelectric coupling coefficient of the BZT-BCT NWs is measured by a refined piezoresponse force microscopy (PFM) testing method and shows the highest reported coupling coefficient for lead-free piezoelectric nanowires of 90 ± 5 pm V(-1). Flexible nanocomposites utilizing dispersed BZT-BCT NWs are fabricated to demonstrate an energy harvesting application with an open circuit voltage of up to 6.25 V and a power density of up to 2.25 μW cm(-3). The high electromechanical coupling coefficient and high power density demonstrated with these lead-free NWs produced via a scalable synthesis method shows the potential for high performance NW-based devices. PMID:26868967

  18. Lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanowires for energy harvesting.

    PubMed

    Zhou, Zhi; Bowland, Christopher C; Malakooti, Mohammad H; Tang, Haixiong; Sodano, Henry A

    2016-03-01

    Lead-free piezoelectric nanowires (NWs) show strong potential in sensing and energy harvesting applications due to their flexibility and ability to convert mechanical energy to electric energy. Currently, most lead-free piezoelectric NWs are produced through low yield synthesis methods and result in low electromechanical coupling, which limit their efficiency as energy harvesters. In order to alleviate these issues, a scalable method is developed to synthesize perovskite type 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-BCT) NWs with high piezoelectric coupling coefficient. The piezoelectric coupling coefficient of the BZT-BCT NWs is measured by a refined piezoresponse force microscopy (PFM) testing method and shows the highest reported coupling coefficient for lead-free piezoelectric nanowires of 90 ± 5 pm V(-1). Flexible nanocomposites utilizing dispersed BZT-BCT NWs are fabricated to demonstrate an energy harvesting application with an open circuit voltage of up to 6.25 V and a power density of up to 2.25 μW cm(-3). The high electromechanical coupling coefficient and high power density demonstrated with these lead-free NWs produced via a scalable synthesis method shows the potential for high performance NW-based devices.

  19. Effect of initial stress on Love waves in a piezoelectric structure carrying a functionally graded material layer.

    PubMed

    Qian, Zheng-Hua; Jin, Feng; Lu, Tianjian; Kishimoto, Kikuo; Hirose, Sohichi

    2010-01-01

    The effect of initial stress on the propagation behavior of Love waves in a piezoelectric half-space of polarized ceramics carrying a functionally graded material (FGM) layer is analytically investigated in this paper from the three-dimensional equations of linear piezoelectricity. The analytical solutions are obtained for the dispersion relations of Love wave propagating in this kind of structure with initial stress for both electrical open case and electrical short case, respectively. One numerical example is given to graphically illustrate the effect of initial stress on dispersive curve, phase velocity and electromechanical coupling factor of the Love wave propagation. The results reported here are meaningful for the design of surface acoustic wave (SAW) devices with high performance.

  20. Properties of lead-free BZT-BCT ceramics synthesized using nanostructured ZnO as a sintering aid

    NASA Astrophysics Data System (ADS)

    Tuan, Dang Anh; Tung, Vo Thanh; Chuong, Truong Van; Hong, Le Van

    2015-11-01

    This article studies the microstructure and piezoelectric properties of low sintering temperature lead-free ceramics 0.52(Ba0.7Ca0.3)TiO3 - 0.48Ba(Zr0.2Ti0.8)O3-doped with ZnO nanoparticles (noted as 0.48BZT-y, y is content of ZnO in wt%, y =0.00, 0.05, 0.10, 0.15, 0.20 and 0.25). The obtained results of Raman scattering and dielectric measurements have confirmed that Zn2+ has occupied B site, to cause a deformation in the ABO3-type lattice of the 0.48BZT-y compounds. The 0.15 wt% ZnO-doped ceramic sintered at 1350∘C exhibited excellent piezoelectric parameters: d33 = 420pC/N, d31 = -174pC/N, kp = 0.483, kt = 0.423 and k33 = 0.571. The obtained results indicate that the high-quality lead-free BZT-BCT ceramic could be successfully synthesized at a low sintering temperature of 1350∘C by doping an appropriated amount of ZnO.

  1. Characterizing the effects of friction liner materials on the performance of piezoelectric motors using finite element analysis

    SciTech Connect

    Gute, G.D.; Halter, S.L.

    1995-10-01

    A finite element model of a Panasonic USM-40D piezoelectric motor`s rotor was coupled with a finite element model of the motor`s friction liner/rotor so that the frictional interface could be further studied. Results from the model were used to study the affects of various friction liner material properties on motor stall torque. Statistical methods were used to determine the significant friction liner material properties and their interactions. An equation for predicting the stall torque as a function of the significant variables and their interactions was established.

  2. Low cost fabrication of polymer composite (h-ZnO + PDMS) material for piezoelectric device application

    NASA Astrophysics Data System (ADS)

    Singh, Akanksha; Das, Sonatan; Bharathkumar, Mareddi; Revanth, D.; Karthik, ARB; Sudhakara Sastry, Bala; Ramgopal Rao, V.

    2016-07-01

    Flexible piezoelectric composites offer alternative and/or additional solutions to sensor, actuator and transducer applications. Here in this work, we have successfully fabricated highly flexible piezoelectric composites with poly dimethyl siloxane (PDMS) using herbal zinc oxide (h-ZnO) as filler having weight fractions up to 50 wt.% by solution casting of dispersions of h-ZnO in PDMS. Excellent piezo properties (Resonant frequency 935 Hz, d*33 29.76 pm V-1), physiochemical properties (Wurtzite structure ZnO, 380 nm absorbance) and mechanical properties (Young modulus 16.9 MPa) have been optimized with theoretical simulations and observed experimentally for h-ZnO + PDMS. As such, the demonstrated piezoelectric PDMS membranes combined with the excellent properties of these composites open new ways to ‘soft touch’ applications and could serve as a variety of soft and sensitive electromechanical transducers, which are desired for a variety of sensor and energy harvesting applications.

  3. Actuation Using Piezoelectric Materials: Application in Augmenters, Energy Harvesters, and Motors

    NASA Technical Reports Server (NTRS)

    Hasenoehrl, Jennifer

    2012-01-01

    Piezoelectric actuators are used in many manipulation, movement, and mobility applications as well as transducers and sensors. When used at the resonance frequencies of the piezoelectric stack, the actuator performs at its maximum actuation capability. In this Space Grant internship, three applications of piezoelectric actuators were investigated including hammering augmenters of rotary drills, energy harvesters, and piezo-motors. The augmenter shows improved drill performance over rotation only. The energy harvesters rely on moving fluid to convert mechanical energy into electrical power. Specific designs allow the harvesters more freedom to move, which creates more power. The motor uses the linear movement of the actuator with a horn applied to the side of a rotor to create rotational motion. Friction inhibits this motion and is to be minimized for best performance. Tests and measurements were made during this internship to determine the requirements for optimal performance of the studied mechanisms and devices.

  4. The importance of lead-free electronics processes

    SciTech Connect

    Meltzer, M

    1999-10-21

    The Environmental Protection Agency (EPA) is placing increased importance on reducing lead-bearing wastes. Toward this end, the EPA has proposed that reporting thresholds for the Toxic Release Inventory (TRI) be lowered to ten pounds of lead content per year. The US electronics industry is also placing a high priority on lead reduction or elimination. The Association of Connecting Electronics Industries, which is the major trade association for electronics packaging, including printed circuit (PC) board manufacturers, has launched a lead-free initiative that seeks to eliminate lead in solder, in PC board etch resists and finish coats, and as tinning for component leads. Europe and Japan are also considering various regulations that will phase out lead in the next few years. In response to EPA and electronics industry priorities, the DOE complex will soon need to address lead phase-out issues. LLNL is now developing approaches for eliminating lead from PC board etch-resist operations. LLNL is seeking funding to continue this work and to eliminate other major uses of lead in electronics operations, particularly in hot-air solder leveling as a PC board finish, and tin-lead solder for component assembly operations. LLNL seeks to take a proactive leadership role in the DOE complex with respect to the elimination of lead. The envisioned lead-elimination project will be approximately two years in length. During the first year, lead-free etch resists and finish coats will be analyzed, and the best ones identified for electronics assembly and PC board fabrication. During the second year, lead-free solders will be examined and tested for compatibility with alternative PC board finish coats. Cost avoidance opportunities resulting from lead elimination include avoided TRI reporting expenses and reduction in PC board fabrication-related wastes through implementation of more efficient fabrication processes. Integrated Safety Management considerations are also relevant. Handling

  5. Temperature dependent properties and poling effect of K4CuNb8O23 modified (Na0.5K0.5)NbO3 lead free piezoceramics

    NASA Astrophysics Data System (ADS)

    Chen, Qiang; Chen, Yu; Peng, Zhihang; Wu, Jiagang; Liu, Hong; Xiao, Dingquan; Yu, Ping; Zhu, Jiliang; Zhu, Jianguo

    2015-03-01

    Lead free piezoelectric ceramics (Na0.5K0.5)NbO3 modified by 4% mol. K4CuNb8O23 (abbreviated NKN:4KCN hereinafter) contain moderate piezoelectric constant d33 ˜ 100 pC N-1 and large mechanical quality factor Qm > 1000, showing possible replacement of the lead-based ones (Chen et al., J Appl. Phys. 102, 104109 (2007)). In terms of practical use, however, the temperature stability of NKN:4KCN is not clear to date. We made a systematic investigation on the properties versus temperature of NKN:4KCN to evaluate whether it can be practically used. In the range from room temperature (RT ˜ 25 °C) to 100 °C, the ferroelectricity of poled NKN:4KCN material is nearly temperature independent, remanent polarization Pr is about 27.6 ±1 μC cm-2. When the as-studied NKN:4KCN ceramics were thermal depolarized in temperature range from RT to 450 °C, piezoelectric constant d33 changed little, retaining about 99 pC N-1, 77 ± 3 pC N-1, from RT to 150 °C, 200 °C to 350 °C, respectively. The poled NKN:4KCN material showed higher orthorhombic to tetragonal phase transition temperature (TO-T ˜ 200 °C) compared to unpoled sample (TO-T ˜ 194 °C). Moreover, this kind of lead free material displayed negative temperature coefficient of frequency (TCF) and positive TCF in orthorhombic and tetragonal phase state, respectively. The TCF was about -360 ppm K-1 in the range from RT to 125 °C, close to some lead-based commercial ones. The significance of this work lies in evaluating whether such a material can be practically used or not. We believe such a material might be the most promising candidate for replacing lead-based ones in some areas in the future.

  6. Piezoelectric step-motion actuator

    DOEpatents

    Mentesana; Charles P.

    2006-10-10

    A step-motion actuator using piezoelectric material to launch a flight mass which, in turn, actuates a drive pawl to progressively engage and drive a toothed wheel or rod to accomplish stepped motion. Thus, the piezoelectric material converts electrical energy into kinetic energy of the mass, and the drive pawl and toothed wheel or rod convert the kinetic energy of the mass into the desired rotary or linear stepped motion. A compression frame may be secured about the piezoelectric element and adapted to pre-compress the piezoelectric material so as to reduce tensile loads thereon. A return spring may be used to return the mass to its resting position against the compression frame or piezoelectric material following launch. Alternative embodiment are possible, including an alternative first embodiment wherein two masses are launched in substantially different directions, and an alternative second embodiment wherein the mass is eliminated in favor of the piezoelectric material launching itself.

  7. Experiments to demonstrate piezoelectric and pyroelectric effects

    NASA Astrophysics Data System (ADS)

    Erhart, Jiří

    2013-07-01

    Piezoelectric and pyroelectric materials are used in many current applications. The purpose of this paper is to explain the basic properties of pyroelectric and piezoelectric effects and demonstrate them in simple experiments. Pyroelectricity is presented on lead zirconium titanate (PZT) ceramics as an electric charge generated by the temperature change. The direct piezoelectric effect is demonstrated by the electric charge generated from the bending of the piezoelectric ceramic membrane or from the gas igniter. The converse piezoelectric effect is presented in the experiments by the deflection of the bending piezoelectric element (piezoelectric bimorph).

  8. High pyroelectricity in lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Yao, Shanshan; Ren, Wei; Ji, Hongfen; Wu, Xiaoqing; Shi, Peng; Xue, Dezhen; Ren, Xiaobing; Ye, Zuo-Guang

    2012-05-01

    We report high pyroelectricity in lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-50BCT) ceramics which were previously reported to exhibit high piezoelectricity. The pyroelectric coefficient measured by the Byer-Roundy method upon heating for dc-poled samples shows a high value of 5.84 × 10-4 C m-2 K-1 at 300 K, comparable to those of PZT-based ceramics and significantly higher than many other lead-free pyroelectric materials. The pyroelectric coefficient calculated from the remanent polarization versus temperature relationship obtained during a cooling process is 17.17 × 10-4 C m-2 K-1 at 300 K, which is considerably larger than the value obtained by the Byer-Roundy method. This difference is attributed to the thermal hysteresis of the rhombohedral-tetragonal phase transition between the heating and cooling processes.

  9. Piezoelectric Energy Harvesting Solutions

    PubMed Central

    Caliò, Renato; Rongala, Udaya Bhaskar; Camboni, Domenico; Milazzo, Mario; Stefanini, Cesare; de Petris, Gianluca; Oddo, Calogero Maria

    2014-01-01

    This paper reviews the state of the art in piezoelectric energy harvesting. It presents the basics of piezoelectricity and discusses materials choice. The work places emphasis on material operating modes and device configurations, from resonant to non-resonant devices and also to rotational solutions. The reviewed literature is compared based on power density and bandwidth. Lastly, the question of power conversion is addressed by reviewing various circuit solutions. PMID:24618725

  10. Active vibration control of flexible cantilever plates using piezoelectric materials and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Abdeljaber, Osama; Avci, Onur; Inman, Daniel J.

    2016-02-01

    The study presented in this paper introduces a new intelligent methodology to mitigate the vibration response of flexible cantilever plates. The use of the piezoelectric sensor/actuator pairs for active control of plates is discussed. An intelligent neural network based controller is designed to control the optimal voltage applied on the piezoelectric patches. The control technique utilizes a neurocontroller along with a Kalman Filter to compute the appropriate actuator command. The neurocontroller is trained based on an algorithm that incorporates a set of emulator neural networks which are also trained to predict the future response of the cantilever plate. Then, the neurocontroller is evaluated by comparing the uncontrolled and controlled responses under several types of dynamic excitations. It is observed that the neurocontroller reduced the vibration response of the flexible cantilever plate significantly; the results demonstrated the success and robustness of the neurocontroller independent of the type and distribution of the excitation force.

  11. Compact Sensitive Piezoelectric Mass Balance for Measurement of Unconsolidated Materials in Space

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Trebi-Ollennu, Ashitey; Bonitz, Robert; Bar-Cohen, Yoseph; Yen, Jesse T.

    2010-01-01

    In many in-situ instruments information about the mass of the sample could aid in the interpretation of the data and portioning instruments might require an accurate sizing of the sample mass before dispensing the sample. In addition, on potential sample return missions a method to directly assess the captured sample size would be required to determine if the sampler could return or needs to continue attempting to acquire sample. In an effort to meet these requirements piezoelectric balances were developed using flextensional actuators which are capable of monitoring the mass using two methods. A piezoelectric balance could be used to measure mass directly by monitoring the voltage developed across the piezoelectric which is linear with force, or it could be used in resonance to produce a frequency change proportional to the mass change. In this case of the latter, the piezoelectric actuator/balance would be swept in frequency through its fundamental resonance. If a mass is added to the balance the resonance frequency would shift down proportionally to the mass. By monitoring the frequency shift the mass could be determined. This design would allow for two independent measurements of the mass. In microgravity environments spacecraft thrusters could be used to provide acceleration in order to produce the required force for the first technique or to bring the mass into contact with the balance in the second approach. In addition, the measuring actuators, if driven at higher voltages, could be used to fluidize the powder to aid sample movement. In this paper, we outline some of our design considerations and present the results of a few prototype balances that we have developed.

  12. Nanoscale Insight into Lead-Free BNT-BT-xKNN

    SciTech Connect

    Dittmer, Robert; Jo, Wook; Rödel, Jürgen; Kalinin, Sergei V

    2012-01-01

    Piezoresponse force microscopy (PFM) is used to afford insight into the nanoscale electromechanical behavior of lead-free piezoceramics. Materials based on Bi{sub 1/2}Na{sub 1/2}TiO{sub 3} exhibit high strains mediated by a field-induced phase transition. Using the band excitation technique the initial domain morphology, the poling behavior, the switching behavior, and the time-dependent phase stability in the pseudo-ternary system (1-x)(0.94Bi{sub 1/2}Na{sub 1/2}TiO{sub 3}-0.06BaTiO{sub 3})-xK{sub 0.5}Na{sub 0.5}NbO{sub 3} (0 {le} x {ge} 18 mol%) are revealed. In the base material (x = 0 mol%), macroscopic domains and ferroelectric switching can be induced from the initial relaxor state with sufficiently high electric field, yielding large macroscopic remanent strain and polarization. The addition of KNN increases the threshold field required to induce long range order and decreases the stability thereof. For x = 3 mol% the field-induced domains relax completely, which is also reflected in zero macroscopic remanence. Eventually, no long range order can be induced for x {ge} 3 mol%. This PFM study provides a novel perspective on the interplay between macroscopic and nanoscopic material properties in bulk lead-free piezoceramics.

  13. Improved Piezoelectric Loudspeakers And Transducers

    NASA Technical Reports Server (NTRS)

    Regan, Curtis Randall; Jalink, Antony; Hellbaum, Richard F.; Rohrbach, Wayne W.

    1995-01-01

    Loudspeakers and related acoustic transducers of improved type feature both light weight and energy efficiency of piezoelectric transducers and mechanical coupling efficiency. Active component of transducer made from wafer of "rainbow" piezoelectric material, ceramic piezoelectric material chemically reduced on one face. Chemical treatment forms wafer into dishlike shallow section of sphere. Both faces then coated with electrically conductive surface layers serving as electrodes. Applications include high-fidelity loudspeakers, and underwater echo ranging devices.

  14. Piezoelectric valve

    DOEpatents

    Petrenko, Serhiy Fedorovich

    2013-01-15

    A motorized valve has a housing having an inlet and an outlet to be connected to a pipeline, a saddle connected with the housing, a turn plug having a rod, the turn plug cooperating with the saddle, and a drive for turning the valve body and formed as a piezoelectric drive, the piezoelectric drive including a piezoelectric generator of radially directed standing acoustic waves, which is connected with the housing and is connectable with a pulse current source, and a rotor operatively connected with the piezoelectric generator and kinematically connected with the rod of the turn plug so as to turn the turn plug when the rotor is actuated by the piezoelectric generator.

  15. Wide Compositional Range In Situ Electric Field Investigations on Lead-Free Ba (Zr0.2Ti0.8)O3-x (Ba0.7Ca0.3)TiO3 Piezoceramic

    NASA Astrophysics Data System (ADS)

    Zakhozheva, M.; Schmitt, L. A.; Acosta, M.; Guo, H.; Jo, W.; Schierholz, R.; Kleebe, H.-J.; Tan, X.

    2015-06-01

    The evolution of ferroelectric domains in the lead-free Ba (Zr0.2Ti0.8)O3-x (Ba0.7Ca0.3)TiO3 (abbreviated as BZT -x BCT ) piezoelectric ceramic is investigated in situ under an applied electric field using transmission electron microscopy (TEM). Poling-induced, reversible, transformation from a multidomain to a single-domain state is monitored for a large variety of compositions. For all studied materials, this transformation occurs with the appearance of an intermediate nanodomain state at moderate poling fields. According to our results, under high poling fields, a single-domain state vanishes and multiple domains reappear within the grains. Upon further cycling, switching between two different multidomain states occurs. For all BZT -x BCT compositions that we investigate, no sign of the electric-field-induced structural changes is detected using the selected area electron-diffraction (SAED) patterns, which are devoid of the reflection splitting or any detectable changes during electrical poling. The extrinsic contribution to the piezoelectric properties is found to dominate in the BZT -x BCT piezoceramic.

  16. The effect of CuO and NiO doping on dielectric and ferroelectric properties of Na0.5Bi0.5TiO3 lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Kakroo, Sunanda; Kumar, Arvind; Mishra, S. K.; Singh, Vijay; Singh, Pramod K.

    2016-03-01

    In the present work, lead-free piezoelectric ceramics (Na0.5Bi0.5)TiO3 -xCuO-yNiO (for x = 0.0, 0.02, 0.04 and 0.06) have been prepared by a conventional solid-state reaction method. An investigation of CuO and NiO doping in bismuth sodium titanate (BNT) and a study of the structure, morphology, and dielectric and ferroelectric properties of the NBT-CuNi system have been conducted. Phase and microstructural analysis of the (Na0.5Bi0.5)TiO3 (NBT) based ceramics has been carried out using X-ray diffraction and scanning electron microscopy (SEM) techniques. Field emission scanning electron microscopy (FE-SEM) images showed that inhibition of grain growth takes place with increasing Cu and Ni concentration. The results indicate that the co-doping of NiO and CuO is effective in improving the dielectric and ferroelectric properties of NBT ceramics. Temperature-dependent dielectric studies have also been carried out at room temperature to 400 °C at different frequencies. The NBT ceramics co-doped with x = 0.06 and y = 0.06 exhibited an excellent dielectric constant ɛr = 1514. The study suggests that there is enormous scope of application of such materials in the future for actuators, ultrasonic transducers and high-frequency piezoelectric devices.

  17. Piezoelectrically Enhanced Photocathodes

    NASA Technical Reports Server (NTRS)

    Beach, Robert A.; Nikzad, Shouleh; Bell, Lloyd Douglas; Strittmatter, Robert

    2011-01-01

    Doping of photocathodes with materials that have large piezoelectric coefficients has been proposed as an alternative means of increasing the desired photoemission of electrons. Treating cathode materials to increase emission of electrons is called "activation" in the art. It has been common practice to activate photocathodes by depositing thin layers of suitable metals (usually, cesium). Because cesium is unstable in air, fabrication of cesiated photocathodes and devices that contain them must be performed in sealed tubes under vacuum. It is difficult and costly to perform fabrication processes in enclosed, evacuated spaces. The proposed piezoelectrically enhanced photocathodes would have electron-emission properties similar to those of cesiated photocathodes but would be stable in air, and therefore could be fabricated more easily and at lower cost. Candidate photocathodes include nitrides of elements in column III of the periodic table . especially compounds of the general formula Al(x)Ga(1.x)N (where 0< or = x < or =.1). These compounds have high piezoelectric coefficients and are suitable for obtaining response to ultraviolet light. Fabrication of a photocathode according to the proposal would include inducement of strain in cathode layers during growth of the layers on a substrate. The strain would be induced by exploiting structural mismatches among the various constituent materials of the cathode. Because of the piezoelectric effect in this material, the strain would give rise to strong electric fields that, in turn, would give rise to a high concentration of charge near the surface. Examples of devices in which piezoelectrically enhanced photocathodes could be used include microchannel plates, electron- bombarded charge-coupled devices, image tubes, and night-vision goggles. Piezoelectrically enhanced photocathode materials could also be used in making highly efficient monolithic photodetectors. Highly efficient and stable piezoelectrically enhanced

  18. Mechanical Properties and Microstructure Investigation of Lead Free Solder

    NASA Technical Reports Server (NTRS)

    Wang, Qing; Gail, William F.; Johnson, R. Wayne; Strickland, Mark; Blanche, Jim

    2005-01-01

    While the electronics industry appears to be focusing on Sn-Ag-Cu as the alloy of choice for lead free electronics assembly, ,the exact composition varies by geographic region, supplier and user. Add to that dissolved copper and silver from the printed circuit board traces and surface finish, and there can be significant variation in the final solder joint composition. A systematic study of the mechanical and microstructural properties of Sn-Ag-Cu alloys with Ag varying from 2wt% to 4wt% and Cu varying from 0.5wt% to lSwt%, was undertaken in this research study. Different sample preparation techniques (water quenched, oil quenched and water quenched followed by reflow) were explored and the resulting microstructure compared to that of a typical reflowed lead free chip scale package (CSP) solder joint. Tensile properties (modulus, 0.2% yield strength and the ultimate tensile strength) and creep behavior of selected alloy compositions (Sn-4Ag-1 X u , Sn-4Ag-OSCu, Sn- 2Ag-1 X u , Sn-2Ag-OSCu, Sn-3.5Ag-O.SCu) were determined for three conditions: as- cast; aged for 100 hours at 125OC; and aged for 250 hours at 125OC. There was no significant difference in Young's Modulus as a function of alloy composition. After an initial decrease in modulus after 100 hours at 125"C, there was an insignificant change with further aging. The distribution of 0.2% strain yield stress and ultimate tensile strength as a function of alloy composition was more significant and decreased with aging time and temperature. The microstructures of these alloys were examined using light and scanning electron microscopy (LM and SEM) respectively and SEM based energy dispersive x-ray spectroscopy (EDS). Fracture surface and cross-section analysis were performed on the specimens after creep testing. The creep testing results and the effect of high temperature aging on mechanical properties is presented for the oil quenched samples. In general the microstructure of oil quenched specimen exhibited a

  19. Piezoelectric cantilever sensors

    NASA Technical Reports Server (NTRS)

    Shih, Wan Y. (Inventor); Shih, Wei-Heng (Inventor); Shen, Zuyan (Inventor)

    2008-01-01

    A piezoelectric cantilever with a non-piezoelectric, or piezoelectric tip useful as mass and viscosity sensors. The change in the cantilever mass can be accurately quantified by monitoring a resonance frequency shift of the cantilever. For bio-detection, antibodies or other specific receptors of target antigens may be immobilized on the cantilever surface, preferably on the non-piezoelectric tip. For chemical detection, high surface-area selective absorbent materials are coated on the cantilever tip. Binding of the target antigens or analytes to the cantilever surface increases the cantilever mass. Detection of target antigens or analytes is achieved by monitoring the cantilever's resonance frequency and determining the resonance frequency shift that is due to the mass of the adsorbed target antigens on the cantilever surface. The use of a piezoelectric unimorph cantilever allows both electrical actuation and electrical sensing. Incorporating a non-piezoelectric tip (14) enhances the sensitivity of the sensor. In addition, the piezoelectric cantilever can withstand damping in highly viscous liquids and can be used as a viscosity sensor in wide viscosity range.

  20. Attenuation of empennage buffet response through active control of damping using piezoelectric material

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Miller, Jonathan M.; Doggett, Robert V., Jr.

    1993-01-01

    Dynamic response and damping data obtained from buffet studies conducted in a low-speed wind tunnel by using a simple, rigid model attached to spring supports are presented. The two parallel leaf spring supports provided a means for the model to respond in a vertical translation mode, thus simulating response in an elastic first bending mode. Wake-induced buffeting flow was created by placing an airfoil upstream of the model of that the wake of the airfoil impinged on the model. Model response was sensed by a strain gage mounted on one of the springs. The output signal from the strain gage was fed back through a control law implemented on a desktop computer. The processed signals were used to 'actuate' a piezoelectric bending actuator bonded to the other spring in such a way as to add damping as the model responded. The results of this 'proof-of-concept' study show that the piezoelectric actuator was effective in attenuating the wake-induced buffet response over the range of parameters investigated.

  1. Performance of PIN-PMN-PT Single Crystal Piezoelectric versus PZT8 Piezoceramic Materials in Ultrasonic Transducers

    NASA Astrophysics Data System (ADS)

    DeAngelis, D. A.; Schulze, G. W.

    The recent advancements in the manufacturing of single crystal PIN-PMN-PT piezoelectric materials now make them a cost-competitive alternative to PZT4 and PZT8 (Navy Types I and III) piezoceramic materials, which have been the workhorse of power ultrasonic applications (e.g., welding, cutting, sonar, etc.) for over 50 years. Although there are great benefits to the use of single crystal materials with respect to high output, as well as added actuating and sensing abilities, many transducer designers are still reluctant to explore these materials due to inadequate design guidelines for substituting the familiar PZT materials; for example, what are the implications of the higher capacitance, sensitivity to chipping/cracks, aging effects, frequency shifts, or how much preload can be used are all common questions. This research is a case study on the performance of identical ultrasonic transducer bodies, used for semiconductor wire bonding, assembled with either PZT8 or PIN-PMN-PT piezo material. The main purpose of the study is to establish rule-of-thumb design guidelines for direct substitution of single crystal materials in existing PZT8 transducer designs, along with a side-by-side performance comparison to highlight benefits. Several metrics are investigated such as impedance, frequency, displacement gain, quality factor and electromechanical coupling factor.

  2. Effect of gamma radiation on micromechanical hardness of lead-free solder joint

    SciTech Connect

    Paulus, Wilfred; Rahman, Irman Abdul; Jalar, Azman; Kamil, Insan; Bakar, Maria Abu; Yusoff, Wan Yusmawati Wan

    2015-09-25

    Lead-free solders are important material in nano and microelectronic surface mounting technology for various applications in bio medicine, environmental monitoring, spacecraft and satellite instrumentation. Nevertheless solder joint in radiation environment needs higher reliability and resistance to any damage caused by ionizing radiations. In this study a lead-free 99.0Sn0.3Ag0.7Cu wt.% (SAC) solder joint was developed and subjected to various doses of gamma radiation to investigate the effects of the ionizing radiation to micromechanical hardness of the solder. Averaged hardness of the SAC joint was obtained from nanoindentation test. The results show a relationship between hardness values of indentations and the increment of radiation dose. Highest mean hardness, 0.2290 ± 0.0270 GPa was calculated on solder joint which was exposed to 5 Gray dose of gamma radiation. This value indicates possible radiation hardening effect on irradiated solder. The hardness gradually decreased to 0.1933 ± 0.0210 GPa and 0.1631 ± 0.0173 GPa when exposed to doses 50 and 500 gray respectively. These values are also lower than the hardness of non irradiated sample which was calculated as 0.2084 ± 0.0.3633 GPa indicating possible radiation damage and needs further related atomic dislocation study.

  3. (100)-Textured KNN-based thick film with enhanced piezoelectric property for intravascular ultrasound imaging

    PubMed Central

    Zhu, Benpeng; Zhang, Zhiqiang; Ma, Teng; Yang, Xiaofei; Li, Yongxiang; Shung, K. Kirk; Zhou, Qifa

    2015-01-01

    Using tape-casting technology, 35 μm free-standing (100)-textured Li doped KNN (KNLN) thick film was prepared by employing NaNbO3 (NN) as template. It exhibited similar piezoelectric behavior to lead containing materials: a longitudinal piezoelectric coefficient (d33) of ∼150 pm/V and an electromechanical coupling coefficient (kt) of 0.44. Based on this thick film, a 52 MHz side-looking miniature transducer with a bandwidth of 61.5% at −6 dB was built for Intravascular ultrasound (IVUS) imaging. In comparison with 40 MHz PMN-PT single crystal transducer, the rabbit aorta image had better resolution and higher noise-to-signal ratio, indicating that lead-free (100)-textured KNLN thick film may be suitable for IVUS (>50 MHz) imaging. PMID:25991874

  4. (100)-Textured KNN-based thick film with enhanced piezoelectric property for intravascular ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Benpeng; Zhang, Zhiqiang; Ma, Teng; Yang, Xiaofei; Li, Yongxiang; Shung, K. Kirk; Zhou, Qifa

    2015-04-01

    Using tape-casting technology, 35 μm free-standing (100)-textured Li doped KNN (KNLN) thick film was prepared by employing NaNbO3 (NN) as template. It exhibited similar piezoelectric behavior to lead containing materials: a longitudinal piezoelectric coefficient (d33) of ˜150 pm/V and an electromechanical coupling coefficient (kt) of 0.44. Based on this thick film, a 52 MHz side-looking miniature transducer with a bandwidth of 61.5% at -6 dB was built for Intravascular ultrasound (IVUS) imaging. In comparison with 40 MHz PMN-PT single crystal transducer, the rabbit aorta image had better resolution and higher noise-to-signal ratio, indicating that lead-free (100)-textured KNLN thick film may be suitable for IVUS (>50 MHz) imaging.

  5. Modeling of resonant magneto-electric effect in a magnetostrictive and piezoelectric laminate composite structure coupled by a bonding material

    NASA Astrophysics Data System (ADS)

    Hasanyan, D.; Wang, Y.; Gao, J.; Li, M.; Shen, Y.; Li, J.; Viehland, D.

    2012-09-01

    The harmonic magneto-electro-elastic vibration of a thin laminated composite was considered. A theoretical model, including shear lag and vibration effects was developed for predicting the magneto-electric (ME) effect in a laminate composite consisting of magnetostrictive and piezoelectric layers. To avoid bending, we assumed that the composite was geometrically symmetric. For finite length symmetrically fabricated laminates, we derived the dynamic strain-stress field and ME coefficients, including shear lag and vibration effects for several boundary conditions. Parametric studies are presented to evaluate the influences of material properties and geometries on the strain distribution and the ME coefficient. Analytical expressions indicate that the shear lag and the vibration frequency strongly influence the strain distribution in the laminates and these effects strongly influence the ME coefficients.

  6. Piezoelectric activity in Perovskite ferroelectric crystals.

    PubMed

    Li, Fei; Wang, Linghang; Jin, Li; Lin, Dabin; Li, Jinglei; Li, Zhenrong; Xu, Zhuo; Zhang, Shujun

    2015-01-01

    Perovskite ferroelectrics (PFs) have been the dominant piezoelectric materials for various electromechanical applications, such as ultrasonic transducers, sensors, and actuators, to name a few. In this review article, the development of PF crystals is introduced, focusing on the crystal growth and piezoelectric activity. The critical factors responsible for the high piezoelectric activity of PFs (i.e., phase transition, monoclinic phase, domain size, relaxor component, dopants, and piezoelectric anisotropy) are surveyed and discussed. A general picture of the present understanding on the high piezoelectricity of PFs is described. At the end of this review, potential approaches to further improve the piezoelectricity of PFs are proposed.

  7. SU-E-P-09: Radiation Transmission Measurements and Evaluation of Diagnostic Lead-Based and Lead-Free Aprons

    SciTech Connect

    Syh, J

    2014-06-01

    Purpose: This study was conducted to ensure that various lead shield apron manufacturers provided accurate attenuation factors regardless of whether the apron was made of lead-based or lead-free equivalent material. Methods: A calibrated ionization survey meter was placed at chest height and 36 cm horizontally away from a solid water phantom on a simulator couch. Measurements were done with or without apron. Radiation field was set to 24cmx24cm with the phantom at 100cm source-to-surface distance. Irradiation time was set for 1 minute at voltages of 60, 80, 100 and 120 kVp. Current was set at 6mA. Results: Between 60 kVp and 120 kVp, the transmission through 0.50 mm of lead-based apron was between 1.0% and 6.5% with a mean value of 3.2% and a standard deviation (s.d.) of 1.4%. The transmissions through the 0.50 mm lead-free aprons were 1.0 % to 12.0% with a mean value of 6.1% and s.d. of 2.6%. At 120 kVp, the transmission value was 6.5% for 0.50 mm lead-based apron and 11.1% to 12.0% for 0.50 mm lead-free aprons. The radiation transmissions at 80 kVp, measured in two different 0.5 mm lead-free aprons, were 4.3% each. However, only 1.4% transmission was found through the lead-based apron. Overall, the radiation transmitted through the lead-based apron was 1/3 transmission of lead-free at 80kVp, and half value of lead-free aprons at 100 and 120 kVp. Conclusion: Even though lead-based and lead-free aprons all claimed to have the same lead equivalent thickness, the transmission might not be the same. The precaution was needed to exercise diligence in quality assurance program to assure adequate protection to staff who wear it during diagnostic procedures. The requirement for aprons not only should be in certain thickness to meet state regulation but also to keep reasonably achievable low exposure with the accurate labeling from manufacturers.

  8. Multi-physics computational grains (MPCGs) for direct numerical simulation (DNS) of piezoelectric composite/porous materials and structures

    NASA Astrophysics Data System (ADS)

    Bishay, Peter L.; Dong, Leiting; Atluri, Satya N.

    2014-11-01

    Conceptually simple and computationally most efficient polygonal computational grains with voids/inclusions are proposed for the direct numerical simulation of the micromechanics of piezoelectric composite/porous materials with non-symmetrical arrangement of voids/inclusions. These are named "Multi-Physics Computational Grains" (MPCGs) because each "mathematical grain" is geometrically similar to the irregular shapes of the physical grains of the material in the micro-scale. So each MPCG element represents a grain of the matrix of the composite and can include a pore or an inclusion. MPCG is based on assuming independent displacements and electric-potentials in each cell. The trial solutions in each MPCG do not need to satisfy the governing differential equations, however, they are still complete, and can efficiently model concentration of electric and mechanical fields. MPCG can be used to model any generally anisotropic material as well as nonlinear problems. The essential idea can also be easily applied to accurately solve other multi-physical problems, such as complex thermal-electro-magnetic-mechanical materials modeling. Several examples are presented to show the capabilities of the proposed MPCGs and their accuracy.

  9. Method of Fabricating a Piezoelectric Composite Apparatus

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats (Inventor); Bryant, Robert (Inventor); Fox, Robert L. (Inventor); Hellbaum, Richard F. (Inventor); High, James W. (Inventor); Jalink, Antony, Jr. (Inventor); Little, Bruce D. (Inventor); Mirick, Paul H. (Inventor)

    2003-01-01

    A method for fabricating a piezoelectric macro-fiber composite actuator comprises providing a piezoelectric material that has two sides and attaching one side upon an adhesive backing sheet. The method further comprises slicing the piezoelectric material to provide a plurality of piezoelectric fibers in juxtaposition. A conductive film is then adhesively bonded to the other side of the piezoelectric material, and the adhesive backing sheet is removed. The conductive film has first and second conductive patterns formed thereon which are electrically isolated from one another and in electrical contact with the piezoelectric material. The first and second conductive patterns of the conductive film each have a plurality of electrodes to form a pattern of interdigitated electrodes. A second film is then bonded to the other side of the piezoelectric material. The second film may have a pair of conductive patterns similar to the conductive patterns of the first film.

  10. Stretchable piezoelectric nanocomposite generator

    NASA Astrophysics Data System (ADS)

    Park, Kwi-Il; Jeong, Chang Kyu; Kim, Na Kyung; Lee, Keon Jae

    2016-06-01

    Piezoelectric energy conversion that generate electric energy from ambient mechanical and vibrational movements is promising energy harvesting technology because it can use more accessible energy resources than other renewable natural energy. In particular, flexible and stretchable piezoelectric energy harvesters which can harvest the tiny biomechanical motions inside human body into electricity properly facilitate not only the self-powered energy system for flexible and wearable electronics but also sensitive piezoelectric sensors for motion detectors and in vivo diagnosis kits. Since the piezoelectric ZnO nanowires (NWs)-based energy harvesters (nanogenerators) were proposed in 2006, many researchers have attempted the nanogenerator by using the various fabrication process such as nanowire growth, electrospinning, and transfer techniques with piezoelectric materials including polyvinylidene fluoride (PVDF) polymer and perovskite ceramics. In 2012, the composite-based nanogenerators were developed using simple, low-cost, and scalable methods to overcome the significant issues with previously-reported energy harvester, such as insufficient output performance and size limitation. This review paper provides a brief overview of flexible and stretchable piezoelectric nanocomposite generator for realizing the self-powered energy system with development history, power performance, and applications.

  11. Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Le Goupil, Florian; McKinnon, Ruth; Koval, Vladimir; Viola, Giuseppe; Dunn, Steve; Berenov, Andrey; Yan, Haixue; Alford, Neil Mcn.

    2016-06-01

    The need for more energy-efficient and environmentally-friendly alternatives in the refrigeration industry to meet global emission targets has driven efforts towards materials with a potential for solid state cooling. Adiabatic depolarisation cooling, based on the electrocaloric effect (ECE), is a significant contender for efficient new solid state refrigeration techniques. Some of the highest ECE performances reported are found in compounds close to the morphotropic phase boundary (MPB). This relationship between performance and the MPB makes the ability to tune the position of the MPB an important challenge in electrocaloric research. Here, we report direct ECE measurements performed on MPB tuned NBT-06BT bulk ceramics with a combination of A-site substitutions. We successfully shift the MPB of these lead-free ceramics closer to room temperature, as required for solid state refrigeration, without loss of the criticality of the system and the associated ECE enhancement.

  12. Mechanical constitutive behavior and exceptional blocking force of lead-free BZT-xBCT piezoceramics

    NASA Astrophysics Data System (ADS)

    Brandt, David R. J.; Acosta, Matias; Koruza, Jurij; Webber, Kyle G.

    2014-05-01

    The free strain during unipolar electrical activation and the blocking stress are important figures of merit for actuator applications. The lead-free (1 - x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 (BZT-xBCT) system has been shown to display exceptional unipolar strain at room temperature, making it very attractive as an electroactive material for large displacement, low frequency actuation systems. In this work, the temperature- and composition-dependent blocking stress is measured with the proportional loading method. It was found that BZT-xBCT outperformed Pb(Zr1-xTix)O3 and Bi1/2Na1/2TiO3-based ceramics for electric fields up to 2 kV/mm.

  13. Temperature stable and fatigue resistant lead-free ceramics for actuators

    NASA Astrophysics Data System (ADS)

    Khesro, Amir; Wang, Dawei; Hussain, Fayaz; Sinclair, Derek C.; Feteira, Antonio; Reaney, Ian M.

    2016-10-01

    Lead-free ceramics with the composition 0.91K1/2Bi1/2TiO3-0.09(0.82BiFeO3-0.15NdFeO3-0.03Nd2/3TiO3) were prepared using a conventional solid state, mixed oxide route. The ceramics exhibited a high strain of 0.16% at 6 kV mm-1, stable from room temperature to 175 °C, with a variation of <10%. The materials were fabricated into multilayer structures by co-firing with Pt internal electrodes. The prototype multilayer actuator exhibited constant strains up to 300 °C with a variation of ˜15%. The composition showed fatigue resistant behaviour in both monolithic and multilayer form after bipolar loading of 106 cycles.

  14. Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics.

    PubMed

    Le Goupil, Florian; McKinnon, Ruth; Koval, Vladimir; Viola, Giuseppe; Dunn, Steve; Berenov, Andrey; Yan, Haixue; Alford, Neil McN

    2016-01-01

    The need for more energy-efficient and environmentally-friendly alternatives in the refrigeration industry to meet global emission targets has driven efforts towards materials with a potential for solid state cooling. Adiabatic depolarisation cooling, based on the electrocaloric effect (ECE), is a significant contender for efficient new solid state refrigeration techniques. Some of the highest ECE performances reported are found in compounds close to the morphotropic phase boundary (MPB). This relationship between performance and the MPB makes the ability to tune the position of the MPB an important challenge in electrocaloric research. Here, we report direct ECE measurements performed on MPB tuned NBT-06BT bulk ceramics with a combination of A-site substitutions. We successfully shift the MPB of these lead-free ceramics closer to room temperature, as required for solid state refrigeration, without loss of the criticality of the system and the associated ECE enhancement. PMID:27312287

  15. Bonding nature of rare-earth-containing lead-free solders

    NASA Astrophysics Data System (ADS)

    Ramirez, Ainissa G.; Mavoori, Hareesh; Jin, Sungho

    2002-01-01

    The ability of rare-earth-containing lead-free solders to wet and bond to silica was investigated. Small additions of Lu (0.5-2 wt. %) added to eutectic Sn-Ag or Au-Sn solder render it directly solderable to a silicon oxide surface. The bonding is attributed to the migration of the rare-earth element to the solder-silica interface for chemical reaction and the creation of an interfacial layer that contains a rare-earth oxide. It was found that additions of rare-earth materials did not significantly modify the solidification microstructure or the melting point. Such oxide-bondable solders can be useful for assembly of various optical communication devices.

  16. Lead-free BFN ceramics doped by chromium, lithium or manganese

    NASA Astrophysics Data System (ADS)

    Bochenek, Dariusz; Niemiec, Przemysław; Adamczyk, Małgorzata

    2015-10-01

    The material of the study was lead-free BaFe0.5Nb0.5O3 ceramics subject to modification. The base composition BaFe0.5Nb0.5O3 as well as the chromium, lithium and manganese modified ones were obtained using conventional mixed oxides and carbonates method. Synthesis was performed by the powder calcination method at high temperature 1250 °C for 4 h, while the densification was carried out by free sintering method under conditions 1350 °C/4 h. The paper presents a complex study of admixtures influence on the crystal structure, microstructure and dielectric properties of the BFN type samples. The mentioned dopants chromium, lithium or manganese in the BFN-type ceramics among other caused the reduction of the electric permittivity maximum as well as significant decrease in value of dielectric loss.

  17. Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics

    PubMed Central

    Le Goupil, Florian; McKinnon, Ruth; Koval, Vladimir; Viola, Giuseppe; Dunn, Steve; Berenov, Andrey; Yan, Haixue; Alford, Neil McN.

    2016-01-01

    The need for more energy-efficient and environmentally-friendly alternatives in the refrigeration industry to meet global emission targets has driven efforts towards materials with a potential for solid state cooling. Adiabatic depolarisation cooling, based on the electrocaloric effect (ECE), is a significant contender for efficient new solid state refrigeration techniques. Some of the highest ECE performances reported are found in compounds close to the morphotropic phase boundary (MPB). This relationship between performance and the MPB makes the ability to tune the position of the MPB an important challenge in electrocaloric research. Here, we report direct ECE measurements performed on MPB tuned NBT-06BT bulk ceramics with a combination of A-site substitutions. We successfully shift the MPB of these lead-free ceramics closer to room temperature, as required for solid state refrigeration, without loss of the criticality of the system and the associated ECE enhancement. PMID:27312287

  18. Instantaneous reference-free crack detection based on polarization characteristics of piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Kim, Seung Bum; Sohn, Hoon

    2007-12-01

    A new methodology of guided-wave-based nondestructive testing (NDT) is developed to detect crack damage in a thin metal structure without using prior baseline data or a predetermined decision boundary. In conventional guided-wave-based techniques, damage is often identified by comparing the 'current' data obtained from a potentially damaged condition of a structure with the 'past' baseline data collected at the pristine condition of the structure. However, it has been reported that this type of pattern comparison with the baseline data can lead to increased false alarms due to its susceptibility to varying operational and environmental conditions of the structure. To develop a more robust damage diagnosis technique, a new concept of NDT is conceived so that cracks can be detected even when the system being monitored is subjected to changing operational and environmental conditions. The proposed NDT technique utilizes the polarization characteristics of the piezoelectric wafers attached on both sides of the thin metal structure. Crack formation creates Lamb wave mode conversion due to a sudden change in the thickness of the structure. Then, the proposed technique instantly detects the appearance of the crack by extracting this mode conversion from the measured Lamb waves, and the threshold value from damage classification is also obtained only from the current dataset. Numerical and experimental results are presented to demonstrate the applicability of the proposed technique to instantaneous crack detection.

  19. Solid-state conversion of (Na1/2Bi1/2)TiO3-BaTiO3-(K1/2Na1/2)NbO3 single crystals and their piezoelectric properties

    NASA Astrophysics Data System (ADS)

    Park, Ji-Hoon; Lee, Ho-Yong; Kang, Suk-Joong L.

    2014-06-01

    Piezoelectric ceramic with a composition of (94 - x)(Na1/2Bi1/2)TiO3-6BaTiO3-x(K1/2Na1/2)NbO3 (NBT-BT-xKNN) is a promising lead-free piezoelectric material for actuator applications because of its giant electric-field-induced strains, which are comparable with that of soft Pb(ZrxTi1-x)O3 (PZT) ceramics. Using the solid-state single crystal growth method, we succeeded in fabricating usable single crystals of NBT-BT-3KNN (6 mm × 6 mm × 8 mm size) with a uniform chemical composition. The room temperature piezoelectric properties of ⟨001⟩, ⟨110⟩, and ⟨111⟩ oriented single crystals were measured. Single crystals showed strong anisotropic strain characteristics. In particular, ⟨001⟩ oriented single crystals had excellent piezoelectric properties with small hysteresis and a high strain of 0.57% at 7 kV/mm. In addition, the fabricated single crystals exhibited a high converse piezoelectric constant, Smax/Emax, of over 1000 pm/V at 4 kV/mm. These values are greater than those reported for any lead-containing and lead-free ceramics and comparable with those of lead-based single crystals. Our investigation demonstrates the solid-state conversion of lead-free single crystals and their practical usability in replacement of lead-based materials.

  20. Analysis of lead free tin-silver-copper and tin-lead solder wetting reactions

    NASA Astrophysics Data System (ADS)

    Anson, Scott J.

    Lead free electronics soldering is driven by a combination of health and environmental concerns, international legislation and marketing pressure by lead free electronics manufacturing competitors. Since July 1, 2006, companies that do not comply with the European Union legislation are not able to sell circuit assemblies with lead solder in the European Union. China has developed its own regulations, based on the European Union documents with a compliance date of March 1, 2007. Extensive testing by the electronics community has determined that the Sn - Ag - Cu (SAC) family of alloys is the preferred choice for lead free Surface Mount Technology (SMT) soldering. The 96.5Sn/3.0Ag/0.5Cu alloy was used in this study. Lead free soldering requires an increase in reflow peak temperatures which further aggravates component moisture sensitivity risks and thereby decreases assembly yield. Prior research has revealed an enhanced solder spreading phenomena at lower peak temperature and shorter time above liquidus with 63Sn/37Pb solder. This current research investigated solder wetting reactions in 63Sn/37Pb and 96.5Sn/3.0Ag/0.5Cu (SAC305) using materials and manufacturing systems that are industry relevant. The objective was to advance the knowledge base of metal wetting while developing a reflow assembly process that minimized the component defect rates. The components are damaged during reflow by popcorn delamination, which is the result of moisture absorption and subsequent rapid evaporation. A classical Design Of Experiments (DOE) approach was used, with wetted area as the response variable. Outside of the DOE, substrate dissolution depth, and substrate surface new phase formation (reaction product) distance from the triple line (solder wetting front) and reaction product thickness in the solder joint (under the solder) were also analyzed. The samples were analyzed for correlation of reflow peak temperature, reflow Time Above Liquidus (TAL), wetted area, reaction product

  1. Lead-Free vs Tin-Lead Reliability of Advanced Electronic Assemblies

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2005-01-01

    This presentation will provide the technical background and specific information published in literature related to reliability test, analyses, modeling, and associated issues for lead-free solder package assemblies in comparison to their tin-lead solder alloys. It also presents current understanding of lead-free thermal cycle test performance in support.

  2. A novel method for direct solder bump pull testing using lead-free solders

    NASA Astrophysics Data System (ADS)

    Turner, Gregory Alan

    This thesis focuses on the design, fabrication, and evaluation of a new method for testing the adhesion strength of lead-free solders, named the Isotraction Bump Pull method (IBP). In order to develop a direct solder joint-strength testing method that did not require customization for different solder types, bump sizes, specific equipment, or trial-and-error, a combination of two widely used and accepted standards was created. First, solder bumps were made from three types of lead free solder were generated on untreated copper PCB substrates using an in-house fabricated solder bump-on-demand generator, Following this, the newly developed method made use of a polymer epoxy to encapsulate the solder bumps that could then be tested under tension using a high precision universal vertical load machine. The tests produced repeatable and predictable results for each of the three alloys tested that were in agreement with the relative behavior of the same alloys using other testing methods in the literature. The median peak stress at failure for the three solders tested were 2020.52 psi, 940.57 psi, and 2781.0 psi, and were within one standard deviation of the of all data collected for each solder. The assumptions in this work that brittle fracture occurred through the Intermetallic Compound layer (IMC) were validated with the use of Energy-Dispersive X-Ray Spectrometry and high magnification of the fractured surface of both newly exposed sides of the test specimens. Following this, an examination of the process to apply the results from the tensile tests into standard material science equations for the fracture of the systems was performed..

  3. High-temperature piezoelectric sensing.

    PubMed

    Jiang, Xiaoning; Kim, Kyungrim; Zhang, Shujun; Johnson, Joseph; Salazar, Giovanni

    2013-01-01

    Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented. PMID:24361928

  4. High-Temperature Piezoelectric Sensing

    PubMed Central

    Jiang, Xiaoning; Kim, Kyungrim; Zhang, Shujun; Johnson, Joseph; Salazar, Giovanni

    2014-01-01

    Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented. PMID:24361928

  5. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun

    2009-01-01

    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  6. Fundamentals and application of materials integration for low-power piezoelectrically actuated ultra-nanocrystalline diamond MEMS/NEMS.

    SciTech Connect

    Auciello, O.; Srinivasan, S.; Hiller, J.; Kabius, B.

    2009-01-01

    Most current micro/nanoelectromechanical systems (MEMS/NEMS) are based on silicon. However, silicon exhibits relatively poor mechanical/tribological properties, compromising applications to several projected MEMS/NEMS devices, particularly those that require materials with high Young's modulus for MEMS resonators or low surface adhesion forces for MEMS/NEMS working in conditions with extensive surface contact. Diamond films with superior mechanical/tribological properties provide an excellent alternative platform material. Ultrananocrystalline diamond (UNCD{cflx W}) in film form with 2-5 nm grains exhibits excellent properties for high-performance MEMS/NEMS devices. Concurrently, piezoelectric Pb(Zr{sub x}Ti{sub 1-x})O{sub 3} (PZT) films provide high sensitivity/low electrical noise for sensing/high-force actuation at relatively low voltages. Therefore, integration of PZT and UNCD films provides a high-performance platform for advanced MEMS/NEMS devices. This paper describes the bases of such integration and demonstration of low voltage piezoactuated hybrid PZT/UNCD cantilevers.

  7. Lead-free solder technology transfer from ASE Americas

    SciTech Connect

    FTHENAKIS,V.

    1999-10-19

    To safeguard the environmental friendliness of photovoltaics, the PV industry follows a proactive, long-term environmental strategy involving a life-of-cycle approach to prevent environmental damage by its processes and products from cradle to grave. Part of this strategy is to examine substituting lead-based solder on PV modules with other solder alloys. Lead is a toxic metal that, if ingested, can damage the brain, nervous system, liver and kidneys. Lead from solder in electronic products has been found to leach out from municipal waste landfills and municipal incinerator ash was found to be high in lead also because of disposed consumer electronics and batteries. Consequently, there is a movement in Europe and Japan to ban lead altogether from use in electronic products and to restrict the movement across geographical boundaries of waste containing lead. Photovoltaic modules may contain small amounts of regulated materials, which vary from one technology to another. Environmental regulations impact the cost and complexity of dealing with end-of-life PV modules. If they were classified as hazardous according to Federal or State criteria, then special requirements for material handling, disposal, record-keeping and reporting would escalate the cost of decommissioning the modules. Fthenakis showed that several of today's x-Si modules failed the US-EPA Toxicity Characteristic Leaching Procedure (TCLP) for potential leaching of Pb in landfills and also California's standard on Total Threshold Limit Concentration (TTLC) for Pb. Consequently, such modules may be classified as hazardous waste. He highlighted potential legislation in Europe and Japan which could ban or restrict the use of lead and the efforts of the printed-circuit industries in developing Pb-free solder technologies in response to such expected legislation. Japanese firms already have introduced electronic products with Pb-free solder, and one PV manufacturer in the US, ASE Americas has used a Pb

  8. Magnetoelectric coupling effect in lead-free Bi4Ti3O12/CoFe2O4 composite films derived from chemistry solution deposition

    NASA Astrophysics Data System (ADS)

    Tang, Zhehong; Chen, Jieyu; Bai, Yulong; Zhao, Shifeng

    2016-08-01

    Lead-free magnetoelectric composite films combining Bi4Ti3O12 and CoFe2O4 were synthesized by chemical solution deposition on Pt (100)/Ti/SiO2/Si substrate. Morphological and electrical domain structure, ferroelectric, leakage, dielectric, piezoelectric, magnetic and magnetoelectric properties were investigated for Bi4Ti3O12/CoFe2O4 composite films. Well-defined interfaces between Bi4Ti3O12 and CoFe2O4 film layers and electrical domain structure were observed. The composite films show the coexistence of ferroelectric and ferromagnetic orders at room temperature. Larger piezoelectric coefficient and magnetization are obtained for the composite films, which is contributed to the magnetoelectric effect since it originates from the interface coupling through mechanical strain transfer. This work presents a feasible way to modulate the magnetoelectric coupling in ferromagnetic/ferroelectric composite films for developing lead-free micro-electro-mechanical system and information storage devices.

  9. Piezoelectric Film.

    ERIC Educational Resources Information Center

    Garrison, Steve

    1992-01-01

    Presents activities that utilize piezoelectric film to familiarize students with fundamental principles of electricity. Describes classroom projects involving chemical sensors, microbalances, microphones, switches, infrared sensors, and power generation. (MDH)

  10. Piezoelectric actuator renaissance

    NASA Astrophysics Data System (ADS)

    Uchino, Kenji

    2015-03-01

    This paper resumes the content of the invited talk of the author, read at the occasion of the International Workshop on Relaxor Ferroelectrics, IWRF 14, held on October 12-16, 2014 in Stirin, Czech Republic. It reviews the recent advances in materials, designing concepts, and new applications of piezoelectric actuators, as well as the future perspectives of this area.

  11. UHV piezoelectric translator

    SciTech Connect

    Oversluizen, T.; Watson, G.

    1985-01-01

    A UHV compatible piezoelectric translator has been developed to correct for angular misalignments in the crysals of a UHV x-ray monochromator. The unit is small, bakeable to 150/sup 0/C, and uses only ceramic materials for insulation. We report on the construction details, vacuum compatibility, mechanical properties, and uses of the device.

  12. The characterisation of lead-free thick-film resistors on different low temperature Co-fired ceramics substrates

    SciTech Connect

    Hrovat, Marko; Kielbasinski, Konrad; Makarovič, Kostja; Belavič, Darko; Jakubowska, Malgorzata

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Lead free thick film resistors based on ruthenium oxide were developed. ► The compatibility of resistors with different LTCC substrates was evaluated. ► The interactions between resistors and glassy LTCC substrates were not detected. ► Electrical characteristics were comparable with commercial thick film resistors. -- Abstract: Lead-free thick-film resistors were synthesised and investigated. The thick-film resistor materials with nominal sheet resistivities from 50 ohm/sq. to 50 kohm/sq. were prepared using combinations of two lead-free glasses with reflow temperatures at 940 °C and 1240 °C, respectively, and two RuO{sub 2} powders (fine-grained and coarse-grained RuO{sub 2}). The thick-film resistors were printed and fired on alumina and on low temperature co-fired ceramics substrates and fired at 850 °C and 950 °C. The fired resistors were investigated by X-ray powder diffraction, by scanning electron microscopy and by energy dispersive X-ray analysis. The sheet resistivities, temperature coefficients of resistivity, gauge factors and noise indices were measured.

  13. A piezoelectrically actuated ball valve

    NASA Technical Reports Server (NTRS)

    Erwin, L. R.; Schwartz, H. W.; Teitelbaum, B. R.

    1972-01-01

    Bimorph strip composed of two layers of poled piezoelectric ceramic material closes and opens valve. Strip performs like capacitator, allowing initial inrush of current when valve is energized and then only small leakage current flows as valve remains energized.

  14. Numerical and Analytical Design of Functionally Graded Piezoelectric Transducers

    NASA Astrophysics Data System (ADS)

    Rubio, Wilfredo Montealegre; Buiochi, Flavio; Adamowski, Julio C.; Silva, Emílio Carlos Nelli

    2008-02-01

    This paper presents analytical and finite element methods to model broadband transducers with a graded piezoelectric parameter. The application of FGM (Functionally Graded Materials) concept to piezoelectric transducer design allows the design of composite transducers without interface between materials (e.g. piezoelectric ceramic and backing material), due to the continuous change of property values. Thus, large improvements can be achieved in their performance characteristics, mainly generating short-time waveform ultrasonic pulses. Nevertheless, recent research on functionally graded piezoelectric transducers shows lack of studies that compare numerical and analytical approaches used in their design. In this work analytical and numerical models of FGM piezoelectric transducers are developed to analyze the effects of piezoelectric material gradation, specifically, in ultrasonic applications. In addition, results using FGM piezoelectric transducers are compared with non-FGM piezoelectric transducers. We concluded that the developed modeling techniques are accurate, providing a useful tool for designing FGM piezoelectric transducers.

  15. Virus-based piezoelectric energy generation

    NASA Astrophysics Data System (ADS)

    Lee, Byung Yang; Zhang, Jinxing; Zueger, Chris; Chung, Woo-Jae; Yoo, So Young; Wang, Eddie; Meyer, Joel; Ramesh, Ramamoorthy; Lee, Seung-Wuk

    2012-06-01

    Piezoelectric materials can convert mechanical energy into electrical energy, and piezoelectric devices made of a variety of inorganic materials and organic polymers have been demonstrated. However, synthesizing such materials often requires toxic starting compounds, harsh conditions and/or complex procedures. Previously, it was shown that hierarchically organized natural materials such as bones, collagen fibrils and peptide nanotubes can display piezoelectric properties. Here, we demonstrate that the piezoelectric and liquid-crystalline properties of M13 bacteriophage (phage) can be used to generate electrical energy. Using piezoresponse force microscopy, we characterize the structure-dependent piezoelectric properties of the phage at the molecular level. We then show that self-assembled thin films of phage can exhibit piezoelectric strengths of up to 7.8 pm V-1. We also demonstrate that it is possible to modulate the dipole strength of the phage, hence tuning the piezoelectric response, by genetically engineering the major coat proteins of the phage. Finally, we develop a phage-based piezoelectric generator that produces up to 6 nA of current and 400 mV of potential and use it to operate a liquid-crystal display. Because biotechnology techniques enable large-scale production of genetically modified phages, phage-based piezoelectric materials potentially offer a simple and environmentally friendly approach to piezoelectric energy generation.

  16. NASA-DoD Lower Process Temperature Lead-Free Solder Project Overview

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2014-01-01

    This project is a follow-on effort to the Joint Council on Aging AircraftJoint Group on Pollution Prevention (JCAAJG-PP) Pb-free Solder Project and NASA-DoD Lead-Free Electronics Project which were the first projects to test the reliability of Pb-free solder joints against the requirements of the aerospace and military community. This effort would continue to build on the results from the JCAAJG-PP Lead-Free Solder Project and NASA-DoD Lead-Free Electronics Project while focusing on a particular failure mechanism currently plaguing Pb-free assemblies, pad cratering.The NASA-DoD Lead-Free Electronics Project confirmed that pad cratering is one of the dominant failure modes that occur in various board level reliability tests, especially under dynamic loading. Pad Cratering is a latent defect that may occur during assembly, rework, and post assembly handling and testing.

  17. Characterization of a Piezoelectric Buzzer Using a Michelson Interferometer

    ERIC Educational Resources Information Center

    Lloyd, S.; Paetkau, M.

    2010-01-01

    A piezoelectric material generates an electric potential across its surface when subjected to mechanical stress; conversely, the inverse piezoelectric effect describes the expansion or contraction of the material when subjected to some applied voltage. Piezoelectric materials are used in devices such as doorbell buzzers, barbeque igniters, and…

  18. Lead-free hunting rifle ammunition: product availability, price, effectiveness, and role in global wildlife conservation.

    PubMed

    Thomas, Vernon George

    2013-10-01

    Proposals to end the use of lead hunting ammunition because of the established risks of lead exposure to wildlife and humans are impeded by concerns about the availability, price, and effectiveness of substitutes. The product availability and retail prices of different calibers of lead-free bullets and center-fire rifle ammunition were assessed for ammunition sold in the USA and Europe. Lead-free bullets are made in 35 calibers and 51 rifle cartridge designations. Thirty-seven companies distribute internationally ammunition made with lead-free bullets. There is no major difference in the retail price of equivalent lead-free and lead-core ammunition for most popular calibers. Lead-free ammunition has set bench-mark standards for accuracy, lethality, and safety. Given the demonstrated wide product availability, comparable prices, and the effectiveness of high-quality lead-free ammunition, it is possible to phase out the use of lead hunting ammunition world-wide, based on progressive policy and enforceable legislation. PMID:23288616

  19. Polarity effect of electromigration on mechanical properties of lead-free solder joints

    NASA Astrophysics Data System (ADS)

    Ren, Fei

    The trend of electronic packaging is to package the chips and the associated interconnections in a compact way that allows high speed operation; that allows for sufficient heat removal; that can withstand the thermal cycling associated with the turning on and turning off of the circuits; and that protects the circuits from environmental attack. These goals require that flip chip solder joints have higher resistance to electromigration, stronger mechanical property to sustain thermal mechanical stress, and are lead-free materials to satisfy environment and health concern. With lots of work on chemical reaction, electromigration and mechanical study in flip chip solder joints, however, the interaction between different driving forces is still little known. As a matter of fact, the combination study of chemical, electrical and mechanical is more and more significant to the understanding of the behavior of flip chip solder joints. In this dissertation, I developed one dimensional Cu (wire)-eutectic SnAgCu(ball)-Cu(wire) structure to investigate the interaction between electrical and mechanical force in lead-free solder joints. Electromigration was first conducted. The mechanical behaviors of solder joints before, after, and during electromigration were examined. Electrical current and mechanical stress were applied either in serial or in parallel to the solder joints. Tensile, creep, and drop tests, combined with different electrical current densities (1˜5x10 3A/cm2) and different stressing time (3˜144 hours), have been performed to study the effect of electromigration on the mechanical behavior of solder joints. Nano-indentation test was conducted to study the localized mechanical property of IMC at both interfaces in nanometer scale. Fracture images help analyze the failure mechanism of solder joints driven by both electrical and mechanical forces. The combination study shows a strain build-up during electromigration. Furthermore, a ductile-to-brittle transition in

  20. Electrical properties of lead-free 0.98(Na0.5K0.5Lix)NbO3-0.02Ba(Zr0.52Ti0.48)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Hwan; Kim, Hyun-Ju; Lee, Sung-Gap; Koh, Jung-Hyuk; Baek, Sang-Don; Lee, Young-Hie

    2012-02-01

    Lead-free 0.98(Na0.5K0.5Lix)NbO3-0.02Ba(Zr0.52Ti0.48)O3 piezoelectric ceramics were investigated. The experimental results show that Li content strongly affects the orthorhombic-tetragonal morphotropic phase boundary (MPB) which results in different piezoelectric properties. The phase transition composition shows a range from 0.05 to 0.1. The sample with a composition of x = 0.1 showed the maximum values of piezoelectric coefficient ( d 33= 201 ρC/N), electromechanical coupling coefficient ( k p= 39%), and remnant polarization ( P r= 21 μC/cm2).

  1. Dielectric properties of lead-free BZT-KNN perovskite ceramics for energy storage.

    PubMed

    Gui, Dong-Yun; Liu, Han-Xing; Hao, Hua; Sun, Yue; Cao, Ming-He; Yu, Zhi-Yong

    2011-10-17

    Lead-free (1-x)Ba(Zr₀.₁₅Ti₀.₈₅)O₃-x(K₀.₅Na₀.₅)NbO₃ ; x=0-0.05) (BZT-KNN) perovskite ceramics, a materials with potential applications for energy storage, are investigated. The samples are prepared by a solid-state reaction method. Powder X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to study the microstructure of the samples. Their dielectric properties and impedance spectra are reported as functions of temperature and frequency. The addition of 1 mol % (K₀.₅Na₀.₅)NbO₃ to Ba(Zr₀.₁₅Ti₀.₈₅)O₃ improves the dielectric constant and enhances its diffuseness in a wide temperature range. The small amount of (K₀.₅Na₀.₅)NbO₃ is found to markedly affect the microstructure of the Ba(Zr₀.₁₅Ti₀.₈₅)O₃ ceramic (grain size and other characteristics) without changing the phase or crystal symmetry. In addition, we report that fine substructures in the grains, so-called sheet structures, are responsible for the dielectric properties (both diffuseness and dielectric constant) of (1-x)Ba(Zr₀.₁₅Ti₀.₈₅)O₃-x(K₀.₅Na₀.₅)NbO₃ (x=0-0.03; especially x=0.01) ceramics.

  2. Subterahertz dielectric relaxation in lead-free Ba(Zr,Ti)O3 relaxor ferroelectrics

    PubMed Central

    Wang, D.; Bokov, A. A.; Ye, Z.-G.; Hlinka, J.; Bellaiche, L.

    2016-01-01

    Relaxors are complex materials with unusual properties that have been puzzling the scientific community since their discovery. The main characteristic of relaxors, that is, their dielectric relaxation, remains unclear and is still under debate. The difficulty to conduct measurements at frequencies ranging from ≃1 GHz to ≃1 THz and the challenge of developing models to capture their complex dynamical responses are among the reasons for such a situation. Here, we report first-principles-based molecular dynamic simulations of lead-free Ba(Zr0.5Ti0.5)O3, which allows us to obtain its subterahertz dynamics. This approach reproduces the striking characteristics of relaxors including the dielectric relaxation, the constant-loss behaviour, the diffuse maximum in the temperature dependence of susceptibility, the substantial widening of dielectric spectrum on cooling and the resulting Vogel–Fulcher law. The simulations further relate such features to the decomposed dielectric responses, each associated with its own polarization mechanism, therefore, enhancing the current understanding of relaxor behaviour. PMID:27040174

  3. Subterahertz dielectric relaxation in lead-free Ba(Zr,Ti)O3 relaxor ferroelectrics

    NASA Astrophysics Data System (ADS)

    Wang, D.; Bokov, A. A.; Ye, Z.-G.; Hlinka, J.; Bellaiche, L.

    2016-04-01

    Relaxors are complex materials with unusual properties that have been puzzling the scientific community since their discovery. The main characteristic of relaxors, that is, their dielectric relaxation, remains unclear and is still under debate. The difficulty to conduct measurements at frequencies ranging from ~=1 GHz to ~=1 THz and the challenge of developing models to capture their complex dynamical responses are among the reasons for such a situation. Here, we report first-principles-based molecular dynamic simulations of lead-free Ba(Zr0.5Ti0.5)O3, which allows us to obtain its subterahertz dynamics. This approach reproduces the striking characteristics of relaxors including the dielectric relaxation, the constant-loss behaviour, the diffuse maximum in the temperature dependence of susceptibility, the substantial widening of dielectric spectrum on cooling and the resulting Vogel-Fulcher law. The simulations further relate such features to the decomposed dielectric responses, each associated with its own polarization mechanism, therefore, enhancing the current understanding of relaxor behaviour.

  4. First-Principles Investigations of Lead-Free Formamidinium Based Hybrid Perovskites

    NASA Astrophysics Data System (ADS)

    Murat, Altynbek; Schwingenschlögl, Udo

    2015-03-01

    Hybrid organic-inorganic perovskite solar cells have recently emerged as the next-generation photovoltaic technology. Most of the research work has been focused on the prototype MAPbI3 perovskite (MA = Methylammonium = CH3NH3+) and its analogues that have lead to power conversion efficiencies in excess of 15%. Despite the huge success, these materials are still non-optimal in terms of optical absorption where the bandgaps are greater than 1.6 eV as well as the toxicology issue of lead. Thus, investigation and development of lead-free perovskites with bandgaps closer to optimal, allowing greater spectral absorption, is of great interest. In this work, we perform first principles calculations to study the structural, optical, and electronic properties of new derivatives of MAPbI3 in which the organic MA cation is replaced by other organic amines of similar size such as Formamidinium (FA) and/or the Pb cation replaced by similar elements such as Sn. In particular, we investigate the role and effect of FA and Pb cations on the electronic and optical properties and analyze to which extend the bandgaps can be tuned.

  5. Methylammonium Bismuth Iodide as a Lead-Free, Stable Hybrid Organic-Inorganic Solar Absorber.

    PubMed

    Hoye, Robert L Z; Brandt, Riley E; Osherov, Anna; Stevanović, Vladan; Stranks, Samuel D; Wilson, Mark W B; Kim, Hyunho; Akey, Austin J; Perkins, John D; Kurchin, Rachel C; Poindexter, Jeremy R; Wang, Evelyn N; Bawendi, Moungi G; Bulović, Vladimir; Buonassisi, Tonio

    2016-02-18

    Methylammonium lead halide (MAPbX3 ) perovskites exhibit exceptional carrier transport properties. But their commercial deployment as solar absorbers is currently limited by their intrinsic instability in the presence of humidity and their lead content. Guided by our theoretical predictions, we explored the potential of methylammonium bismuth iodide (MBI) as a solar absorber through detailed materials characterization. We synthesized phase-pure MBI by solution and vapor processing. In contrast to MAPbX3, MBI is air stable, forming a surface layer that does not increase the recombination rate. We found that MBI luminesces at room temperature, with the vapor-processed films exhibiting superior photoluminescence (PL) decay times that are promising for photovoltaic applications. The thermodynamic, electronic, and structural features of MBI that are amenable to these properties are also present in other hybrid ternary bismuth halide compounds. Through MBI, we demonstrate a lead-free and stable alternative to MAPbX3 that has a similar electronic structure and nanosecond lifetimes.

  6. A brief review on relaxor ferroelectrics and selected issues in lead-free relaxors

    NASA Astrophysics Data System (ADS)

    Ahn, Chang Won; Hong, Chang-Hyo; Choi, Byung-Yul; Kim, Hwang-Pill; Han, Hyoung-Su; Hwang, Younghun; Jo, Wook; Wang, Ke; Li, Jing-Feng; Lee, Jae-Shin; Kim, Ill Won

    2016-06-01

    Relaxor ferroelectricity is one of the most widely investigated but the least understood material classes in the condensed matter physics. This is largely due to the lack of experimental tools that decisively confirm the existing theoretical models. In spite of the diversity in the models, they share the core idea that the observed features in relaxors are closely related to localized chemical heterogeneity. Given this, this review attempts to overview the existing models of importance chronologically, from the diffuse phase transition model to the random-field model and to show how the core idea has been reflected in them to better shape our insight into the nature of relaxor-related phenomena. Then, the discussion will be directed to how the models of a common consensus, developed with the so-called canonical relaxors such as Pb(Mg1/3Nb2/3)O3 (PMN) and (Pb, La)(Zr, Ti)O3 (PLZT), are compatible with phenomenological explanations for the recently identified relaxors such as (Bi1/2Na1/2)TiO3 (BNT)-based lead-free ferroelectrics. This review will be finalized with a discussion on the theoretical aspects of recently introduced 0-3 and 2-2 ferroelectric/relaxor composites as a practical tool for strain engineering.

  7. Methylammonium Bismuth Iodide as a Lead-Free, Stable Hybrid Organic-Inorganic Solar Absorber.

    PubMed

    Hoye, Robert L Z; Brandt, Riley E; Osherov, Anna; Stevanović, Vladan; Stranks, Samuel D; Wilson, Mark W B; Kim, Hyunho; Akey, Austin J; Perkins, John D; Kurchin, Rachel C; Poindexter, Jeremy R; Wang, Evelyn N; Bawendi, Moungi G; Bulović, Vladimir; Buonassisi, Tonio

    2016-02-18

    Methylammonium lead halide (MAPbX3 ) perovskites exhibit exceptional carrier transport properties. But their commercial deployment as solar absorbers is currently limited by their intrinsic instability in the presence of humidity and their lead content. Guided by our theoretical predictions, we explored the potential of methylammonium bismuth iodide (MBI) as a solar absorber through detailed materials characterization. We synthesized phase-pure MBI by solution and vapor processing. In contrast to MAPbX3, MBI is air stable, forming a surface layer that does not increase the recombination rate. We found that MBI luminesces at room temperature, with the vapor-processed films exhibiting superior photoluminescence (PL) decay times that are promising for photovoltaic applications. The thermodynamic, electronic, and structural features of MBI that are amenable to these properties are also present in other hybrid ternary bismuth halide compounds. Through MBI, we demonstrate a lead-free and stable alternative to MAPbX3 that has a similar electronic structure and nanosecond lifetimes. PMID:26866821

  8. Low cost fabrication of polymer composite (h-ZnO + PDMS) material for piezoelectric device application

    NASA Astrophysics Data System (ADS)

    Singh, Akanksha; Das, Sonatan; Bharathkumar, Mareddi; Revanth, D.; Karthik, ARB; Sudhakara Sastry, Bala; Ramgopal Rao, V.

    2016-07-01

    Flexible piezoelectric composites offer alternative and/or additional solutions to sensor, actuator and transducer applications. Here in this work, we have successfully fabricated highly flexible piezoelectric composites with poly dimethyl siloxane (PDMS) using herbal zinc oxide (h-ZnO) as filler having weight fractions up to 50 wt.% by solution casting of dispersions of h-ZnO in PDMS. Excellent piezo properties (Resonant frequency 935 Hz, d*33 29.76 pm V‑1), physiochemical properties (Wurtzite structure ZnO, 380 nm absorbance) and mechanical properties (Young modulus 16.9 MPa) have been optimized with theoretical simulations and observed experimentally for h-ZnO + PDMS. As such, the demonstrated piezoelectric PDMS membranes combined with the excellent properties of these composites open new ways to ‘soft touch’ applications and could serve as a variety of soft and sensitive electromechanical transducers, which are desired for a variety of sensor and energy harvesting applications.

  9. Room temperature nonlinear magnetoelectric effect in lead-free and Nb-doped AlFeO{sub 3} compositions

    SciTech Connect

    Cótica, Luiz F.; Santos, Guilherme M.; Santos, Ivair A.; Freitas, Valdirlei F.; Coelho, Adelino A.; Pal, Madhuparna; Guo, Ruyan; Bhalla, Amar S.; Garcia, Ducinei; Eiras, José A.

    2015-02-14

    It is still a challenging problem to obtain technologically useful materials displaying strong magnetoelectric coupling at room temperature. In the search for new effects and materials to achieve this kind of coupling, a nonlinear magnetoelectric effect was proposed in the magnetically disordered relaxor ferroelectric materials. In this context, the aluminum iron oxide (AlFeO{sub 3}), a room temperature ferroelectric relaxor and magnetic spin glass compound, emerges as an attractive lead-free magnetoelectric material along with nonlinear magnetoelectric effects. In this work, static, dynamic, and temperature dependent ferroic and magnetoelectric properties in lead-free AlFeO{sub 3} and 2 at. % Nb-doped AlFeO{sub 3} multiferroic magnetoelectric compositions are studied. Pyroelectric and magnetic measurements show changes in ferroelectric and magnetic states close to each other (∼200 K). The magnetoelectric coefficient behavior as a function of H{sub bias} suggests a room temperature nonlinear magnetoelectric coupling in both single-phase and Nb-doped AlFeO{sub 3}-based ceramic compositions.

  10. Piezoelectric composite transducers, ultrasonic materials characterization, and the ROSETTA Comet mission

    NASA Astrophysics Data System (ADS)

    Arnold, W.; Gebhardt, W.; Licht, R.; Kröning, M.

    2001-04-01

    In 2003 the ROSETTA space mission to Comet 46P/Wirtanen will be launched by the European Space Agency (ESA). On board of the spacecraft will be a lander in order to carry out measurements on the comet surface. The so-called CASSE experiment aims to investigate the surface of the comet by transmitting, receiving and passively monitoring acoustic waves at frequencies from a few hundred to several kilohertz. The knowledge of the IZFP in modeling of NDT problems, in wave propagation in complex materials, and in the design of advanced transducers eventually led to its involvement in the ROSETTA mission. .

  11. Synthesis and characterization of lead-free tin silver nanosolders and their application to halogen free nanosolder pastes

    NASA Astrophysics Data System (ADS)

    Wernicki, Evan

    Solder paste is a key material used in attaching electronic components to printed circuit boards (PCBs). Commonly used lead-based solders, such as eutectic Sn/37Pb, are currently being replaced by lead-free alloy materials due to health and environmental concerns associated with lead. Many solder pastes, both lead-containing and lead-free, contain halogens which act as activators to remove surface oxide and enhance surface wetting, posing further environmental concern from the halogen species. Difficulties in obtaining reliable joints can occur since lead-free solder material candidates have higher melting temperatures (30-50 °C) than that of lead-based solders. Differences in material properties between the numerous materials used in assembly and packaging processes can lead to component damage during manufacturing. Furthermore, designs that include more electrical interconnects in smaller areas give rise for the need for new materials to allow this trend to continue. A surfactant-assisted chemical reduction method was used to synthesize Sn/Ag alloy nanoparticles with a target composition range of 3.5-5 wt% Ag that served as the lead-free solder material within a nanosolder paste. Structure and size characterization via SEM and TEM showed Sn-Ag nanosolders size average approximately 19 nm. Differential scanning calorimetry (DSC) measurements of the nanosolder samples containing 4.5 wt% Ag showed an endothermic peak at 222.5 °C and an onset of 219.2 °C, indicating up to 17.5 °C melting temperature depression when compared to the bulk liquidus value of 240 °C. Composition of the nanosolder material was confirmed using energy dispersive x-ray spectroscopy (EDS) and structures formed were analyzed via x-ray diffraction (XRD). Both halogen-free and halogen-containing flux materials were combined with the nanosolder material, respectively, with varying preparation parameters to form a design of experiments (DoE) for nanosolder paste preparation. Solder pastes

  12. Citrate complexing sol-gel process of lead-free (K,Na)NbO3 ferroelectric films

    NASA Astrophysics Data System (ADS)

    Yao, Linlin; Zhu, Kongjun

    2016-05-01

    The citrate complexing sol-gel process to fabricate lead-free (K,Na)NbO3 ferroelectric thin films was studied. Soluble niobium source of niobium-citric acid (Nb-CA) solution was utilized as a raw material to synthesize (K,Na)NbO3 thin films, by pyrolyzing at 450-550∘C and annealing at 650∘C. The film pyrolyzed at 450∘C shows poor crystallization with porous morphology, whereas the film pyrolyzed at 550∘C appear to be well-crystallized and denser, and the ferroelectricity was also proved by the P-E hysteresis loop measurement.

  13. Ferroelectromagnetic solid solutions on the base piezoelectric ceramic materials for components of micromechatronics

    NASA Astrophysics Data System (ADS)

    Bochenek, Dariusz; Zachariasz, Radosław; Niemiec, Przemysław; Ilczuk, Jan; Bartkowska, Joanna; Brzezińska, Dagmara

    2016-10-01

    In the presented work, a ferroelectromagnetic solid solutions based on PZT and ferrite powders have been obtained. The main aim of combination of ferroelectric and magnetic powders was to obtain material showing both electric and magnetic properties. Ferroelectric ceramic powder (in amount of 90%) was based on the doped PZT type solid solution while magnetic component was nickel-zinc ferrite Ni1-xZnxFe2O4 (in amount of 10%). The synthesis of components of ferroelectromagnetic solid solutions was performed using the solid phase sintering. Final densification of synthesized powder has been done using free sintering. The aim of the work was to obtain and examine in the first multicomponent PZT type ceramics admixed with chromium with the following chemical composition Pb0.94Sr0.06(Zr0.46Ti0.54)O3+0.25 at% Cr2O3 and next ferroelectromagnetic solid solution based on a PZT type ferroelectric powder (Pb0.94Sr0.06(Zr0.46Ti0.54)O3+0.25 at% Cr2O3) and nickel-zinc ferrite (Ni0.64Zn0.36Fe2O4), from the point of view of their mechanical and electric properties, such as: electric permittivity, ε; dielectric loss, tanδ; mechanical losses, Q-1; and Young modulus, E.

  14. Production of continuous piezoelectric ceramic fibers for smart materials and active control devices

    NASA Astrophysics Data System (ADS)

    French, Jonathan D.; Weitz, Gregory E.; Luke, John E.; Cass, Richard B.; Jadidian, Bahram; Bhargava, Parag; Safari, Ahmad

    1997-05-01

    Advanced Cerametrics Inc. has conceived of and developed the Viscous-Suspension-Spinning Process (VSSP) to produce continuous fine filaments of nearly any powdered ceramic materials. VSSP lead zirconate titanate (PZT) fiber tows with 100 and 790 filaments have been spun in continuous lengths exceeding 1700 meters. Sintered PZT filaments typically are 10 - 25 microns in diameter and have moderate flexibility. Prior to carrier burnout and sintering, VSSP PZT fibers can be formed into 2D and 3D shapes using conventional textile and composite forming processes. While the extension of PZT is on the order of 20 microns per linear inch, a woven, wound or braided structure can contain very long lengths of PZT fiber and generate comparatively large output strokes from relatively small volumes. These structures are intended for applications such as bipolar actuators for fiber optic assembly and repair, vibration and noise damping for aircraft, rotorcraft, automobiles and home applications, vibration generators and ultrasonic transducers for medical and industrial imaging. Fiber and component cost savings over current technologies, such as the `dice-and-fill' method for transducer production, and the range of unique structures possible with continuous VSSP PZT fiber are discussed. Recent results have yielded 1-3 type composites (25 vol% PZT) with d33 equals 340 pC/N, K equals 470, and g33 equals 80 mV/N, kt equals 0.54, kp equals 0.19, dh equals 50.1pC/N and gh equals 13 mV/N.

  15. Generation of Tin(II) Oxide Crystals on Lead-Free Solder Joints in Deionized Water

    NASA Astrophysics Data System (ADS)

    Chang, Hong; Chen, Hongtao; Li, Mingyu; Wang, Ling; Fu, Yonggao

    2009-10-01

    The effect of the anode and cathode on the electrochemical corrosion behavior of lead-free Sn-Ag-Cu and Sn-Ag-Cu-Bi solder joints in deionized water was investigated. Corrosion studies indicate that SnO crystals were generated on the surfaces of all lead-free solder joints. The constituents of the lead-free solder alloys, such as Ag, Cu, and Bi, did not affect the corrosion reaction significantly. In contrast to lead-free solders, PbO x was formed on the surface of the traditional 63Sn-37Pb solder joint in deionized water. A cathode, such as Au or Cu, was necessary for the electrochemical corrosion reaction of solders to occur. The corrosion reaction rate decreased with reduction of the cathode area. The formation mechanism of SnO crystals was essentially a galvanic cell reaction. The anodic reaction of Sn in the lead-free solder joints occurred through solvation by water molecules to form hydrated cations. In the cathodic reaction, oxygen dissolved in the deionized water captures electrons and is deoxidized to hydroxyl at the Au or Cu cathode. By diffusion, the anodic reaction product Sn2+ and the cathodic reaction product OH- meet to form Sn(OH)2, some of which can dehydrate to form more stable SnO· xH2O crystals on the surface of the solder joints. In addition, thermodynamic analysis confirms that the Sn corrosion reaction could occur spontaneously.

  16. Effects of substrate materials on piezoelectric properties of BaTiO3 thick films deposited by aerosol deposition

    NASA Astrophysics Data System (ADS)

    Kawakami, Yoshihiro; Watanabe, Masato; Arai, Ken-Ichi; Sugimoto, Satoshi

    2016-10-01

    Piezoelectric properties were evaluated for annealed BaTiO3 (BT) films formed by aerosol deposition on yttria-stabilized zirconia (YSZ) and Fe-Cr-Al-based heat-resistant stainless steel (SS). The piezoelectric constants d 31 of BT films annealed at 1200 °C formed on YSZ and SS were -71 and -41 pm/V, respectively. The effects of different substrates on piezoelectric properties were investigated. The grain sizes of the films formed on YSZ and SS were 1.5 and 1.0 µm, respectively. X-ray diffraction analysis using a two-dimensional stress method revealed that the respective residual stresses of the films formed on YSZ and SS were -55 ± 8 and -32 ± 7 MPa, respectively, as compressive stresses. The c-domain structure was formed preferentially in the films on SS because of its larger compressive stress. These results suggest that differences in piezoelectric properties attributable to substrates result from differences in compressive stress magnitude and the volume fraction between the c- and a-domains.

  17. Polarization and Characterization of Piezoelectric Polymers

    NASA Technical Reports Server (NTRS)

    Bodiford, Hollie N.

    1995-01-01

    Piezoelectric materials exhibit an electrical response, such as voltage or charge, in reaction to a mechanical stimuli. The mechanical stimuli can be force, pressure, light, or heat. Therefore, these materials are excellent sensors for various properties. The major disadvantage of state of the art piezoelectric polymers is their lack of utility at elevated temperatures. The objective of this research is to study the feasibility of inducing piezoelectricity in high performance polymer systems. The three aspects of the research include experimental poling, characterization of the capacitance, and demonstration of the use of a piezoelectric polymer as a speaker.

  18. Piezoelectric Power Requirements for Active Vibration Control

    NASA Technical Reports Server (NTRS)

    Brennan, Matthew C.; McGowan, Anna-Maria Rivas

    1997-01-01

    This paper presents a method for predicting the power consumption of piezoelectric actuators utilized for active vibration control. Analytical developments and experimental tests show that the maximum power required to control a structure using surface-bonded piezoelectric actuators is independent of the dynamics between the piezoelectric actuator and the host structure. The results demonstrate that for a perfectly-controlled system, the power consumption is a function of the quantity and type of piezoelectric actuators and the voltage and frequency of the control law output signal. Furthermore, as control effectiveness decreases, the power consumption of the piezoelectric actuators decreases. In addition, experimental results revealed a non-linear behavior in the material properties of piezoelectric actuators. The material non- linearity displayed a significant increase in capacitance with an increase in excitation voltage. Tests show that if the non-linearity of the capacitance was accounted for, a conservative estimate of the power can easily be determined.

  19. α-β Transition in Quartz: Temperature and Pressure Dependence of the Thermodynamic Quantities for β-Quartz and β-Cristobalite as Piezoelectric Materials

    NASA Astrophysics Data System (ADS)

    Lider, M. C.; Yurtseven, H.

    2014-12-01

    Temperature and pressure dependencies of the thermal expansivity (αp), isothermal compressibility (κT) and the specific heat (Cp - Cv) are studied for piezoelectric materials, in particular, for β-quartz. By analyzing the temperature (at 1 atm) and pressure (at 848 K) dependence of the observed volume V from the literature, the thermodynamic functions (αp, κT and Cp - Cv) are obtained and the Pippard relations (Cp - Cv vs. Vαp and αp vs. κT) close to the transition from the β-quartz to the β-cristobalite are examined.

  20. Effect of gradient dielectric coefficient in a functionally graded material (FGM) substrate on the propagation behavior of love waves in an FGM-piezoelectric layered structure.

    PubMed

    Cao, Xiaoshan; Shi, Junping; Jin, Feng

    2012-06-01

    The propagation behavior of Love waves in a layered structure that includes a functionally graded material (FGM) substrate carrying a piezoelectric thin film is investigated. Analytical solutions are obtained for both constant and gradient dielectric coefficients in the FGM substrate. Numerical results show that the gradient dielectric coefficient decreases phase velocity in any mode, and the electromechanical coupling factor significantly increases in the first- and secondorder modes. In some modes, the difference in Love waves' phase velocity between these two types of structure might be more than 1%, resulting in significant differences in frequency of the surface acoustic wave devices.

  1. Performance of Lead-Free versus Lead-Based Hunting Ammunition in Ballistic Soap

    PubMed Central

    Gremse, Felix; Krone, Oliver; Thamm, Mirko; Kiessling, Fabian; Tolba, René Hany; Rieger, Siegfried; Gremse, Carl

    2014-01-01

    Background Lead-free hunting bullets are an alternative to lead-containing bullets which cause health risks for humans and endangered scavenging raptors through lead ingestion. However, doubts concerning the effectiveness of lead-free hunting bullets hinder the wide-spread acceptance in the hunting and wildlife management community. Methods We performed terminal ballistic experiments under standardized conditions with ballistic soap as surrogate for game animal tissue to characterize dimensionally stable, partially fragmenting, and deforming lead-free bullets and one commonly used lead-containing bullet. The permanent cavities created in soap blocks are used as a measure for the potential wound damage. The soap blocks were imaged using computed tomography to assess the volume and shape of the cavity and the number of fragments. Shots were performed at different impact speeds, covering a realistic shooting range. Using 3D image segmentation, cavity volume, metal fragment count, deflection angle, and depth of maximum damage were determined. Shots were repeated to investigate the reproducibility of ballistic soap experiments. Results All bullets showed an increasing cavity volume with increasing deposited energy. The dimensionally stable and fragmenting lead-free bullets achieved a constant conversion ratio while the deforming copper and lead-containing bullets showed a ratio, which increases linearly with the total deposited energy. The lead-containing bullet created hundreds of fragments and significantly more fragments than the lead-free bullets. The deflection angle was significantly higher for the dimensionally stable bullet due to its tumbling behavior and was similarly low for the other bullets. The deforming bullets achieved higher reproducibility than the fragmenting and dimensionally stable bullets. Conclusion The deforming lead-free bullet closely resembled the deforming lead-containing bullet in terms of energy conversion, deflection angle, cavity shape

  2. Good Quality Factor in GdMnO3-Doped (K0.5Na0.5)NbO3 Piezoelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Bucur, Raul Alin; Badea, Iuliana; Bucur, Alexandra Ioana; Novaconi, Stefan

    2016-06-01

    (1 - x)(K0.5Na0.5)NbO3 - xGdMnO3 (KNN- xGM) ferroelectric ceramics (0 ≤ x ≤ 5 mol.%) were obtained through a solid state technique. For all the studied compositions, orthorhombic perovskite crystalline structures were obtained at room temperature. GdMnO3 suppresses the grain growth and gives rather homogenous microstructures as the concentration increases. The doped ceramics exhibita good dielectric response, a "hard" ferroelectric behavior and good piezoelectric properties. An improved mechanical quality factor of 1180 and a high Curie temperature T C = 400°C, coupled with k p = 0.426, makes the composition x = 1 mol.% GdMnO3 suitable for lead-free piezoelectric materials for high-power and high-temperature applications.

  3. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  4. Lead-free precussion primer mixes based on metastable interstitial composite (MIC) technology

    DOEpatents

    Dixon, George P.; Martin, Joe A.; Thompson, Don

    1998-01-01

    A lead-free percussion primer composition and a percussion cup containing e composition. The lead-free percussion primer composition is comprised of a mixture of about 45 wt % aluminum powder having an outer coating of aluminum oxide and molybdenum trioxide powder or a mixture of about 50 wt % aluminum powder having an outer coating of aluminum oxide and polytetrafluoroethylene powder. The aluminum powder, molybdenum trioxide powder and polytetrafluoroethylene powder has a particle size of 0.1 .mu.m or less, more preferably a particle size of from about 200-500 angstroms.

  5. Electronic Properties of Lead-Free (Ba0.95Ca0.05)(Ti0.92Sn0.08)O3 Piezoceramic Nanofibers by Electrospinning

    NASA Astrophysics Data System (ADS)

    Sahoo, Benudhar; Panda, Prasanta Kumar

    2015-11-01

    Lead-free (Ba0.95Ca0.05)(Ti0.92Sn0.08)O3, (BCTS) piezoceramic nanofibers were prepared by electrospinning acetate precursor solutions in polyvinyl pyrrolidone, followed by calcining at 1150ºC for 2 h. X-ray diffraction of calcined nanofibers confirmed the formation of the BCTS phase and energy dispersive x-ray analysis confirmed the presence of Ca and Sn ions. The scanning electron microscope studies showed cylindrical fibers with a diameter in the range 80-275 nm. The dielectric constant and piezoelectric charge constant ( d 33) were 3485 at 100 Hz, RT and 398 pC/N, respectively.

  6. Piezoelectric deicing device

    NASA Astrophysics Data System (ADS)

    Finke, R. C.; Banks, B. A.

    1985-10-01

    A fast voltage pulse is applied to a transducer which comprises a composite of multiple layers of alternately polarized piezoelectric material. These layers are bonded together and positioned over the curved leading edge of an aircraft wing structure. Each layer is relatively thin and metallized on both sides. The strain produced in the transducer causes the composite to push forward resulting in detachment and breakup of ice on the leading edge of the aircraft wing.

  7. Friction and wear behavior of a centrifugally cast lead-free copper alloy containing graphite particles

    NASA Astrophysics Data System (ADS)

    Kestursatya, M.; Kim, J. K.; Rohatgi, P. K.

    2001-08-01

    The tribological properties of a centrifugally cast lead-free copper alloy (C90300), containing an average of 13 vol pct graphite particles (5 µm), have been studied. Friction tests were carried out at three different loads of 44, 88, and 176 N using a pin-on-disk testing method for the base copper alloy and the copper-graphite composite against a 1045 steel disk counterface. The friction coefficient, temperature rise, and weight loss of the pin and disk were measured. To understand the wear mechanism, the wear debris and the surfaces of the pin and the disk were analyzed before and after the tests, using scanning electron microscope (SEM) and energy-dispersive X-ray (EDX) analysis. The friction coefficient of the copper-graphite pins was lower than that of the base-alloy pins for all applied loads, which was attributed to the presence of the graphite in the matrix. It was also observed that the presence of graphite in the matrix reduces the transfer of iron from the counterface to the pins, but enhances the transfer of materials from the pins to the counterface. The temperature rise in the counterface running against the base-alloy pins was larger than the temperature rise in the counterface running against the copper-graphite pins, both tested under similar conditions. In addition, the effect of element transfer on the friction coefficient, variations in the weight of the pins and the counterface, as well as the surface roughness, are attributed to the formation of a graphitic tribolayer on the surface of the copper-graphite pins. An isostrain model predicting the friction coefficient of the composites is proposed, which agrees well with the measurements in the present article as well as with measurements made by other investigators.[10

  8. High-Performance Lead-Free Piezoceramics with High Curie Temperatures.

    PubMed

    Lee, Myang Hwan; Kim, Da Jeong; Park, Jin Su; Kim, Sang Wook; Song, Tae Kwon; Kim, Myong-Ho; Kim, Won-Jeong; Do, Dalhyun; Jeong, Il-Kyoung

    2015-11-18

    A bismuth ferrite and barium titanate solid solution compound can achieve good piezoelectric properties with a high Curie temperature when fabricated with low-temperature sintering followed by a water-quenching process, with no complicated grain alignment processes performed. By adding the super-tetragonal bismuth gallium oxide to the compound, the piezoelectric properties are as good as those of lead zirconate titanate ceramics.

  9. Direct observation of intrinsic piezoelectricity of Pb(Zr,Ti)O{sub 3} by time-resolved x-ray diffraction measurement using single-crystalline films

    SciTech Connect

    Fujisawa, Takashi; Ehara, Yoshitaka; Yasui, Shintaro; Kamo, Takafumi; Funakubo, Hiroshi; Yamada, Tomoaki; Sakata, Osami

    2014-07-07

    Lead zirconate titanate, Pb(Zr,Ti)O{sub 3} or PZT, is one of the most widely investigated ferroelectric and piezoelectric materials due to its superior properties. However, the intrinsic properties of PZT have not been directly measured due to the lack of fabrication of single crystals even though a basic understanding of intrinsic properties has been of interest developing lead-free piezoelectric materials. We demonstrated the direct observation of the intrinsic piezoelectric property by means of the detection of electric-field induced crystal lattice distortion of thick Pb(Zr{sub 0.35}Ti{sub 0.65})O{sub 3} single-crystalline films with single polar-axis orientation and negligible residual strain using the time-resolved X-ray diffraction (XRD) together with the polarization response. Consequently, the effective converse piezoelectric response was experimentally revealed; hence, the electrostrictive coefficient, which is the conversion coefficient between the electrical and mechanical response, was determined. The obtained effective electrostrictive coefficient was 5.2–6.3 × 10{sup −2} m{sup 4}/C{sup 2}, which agrees with theoretical prediction.

  10. Direct observation of intrinsic piezoelectricity of Pb(Zr,Ti)O3 by time-resolved x-ray diffraction measurement using single-crystalline films

    NASA Astrophysics Data System (ADS)

    Fujisawa, Takashi; Ehara, Yoshitaka; Yasui, Shintaro; Kamo, Takafumi; Yamada, Tomoaki; Sakata, Osami; Funakubo, Hiroshi

    2014-07-01

    Lead zirconate titanate, Pb(Zr,Ti)O3 or PZT, is one of the most widely investigated ferroelectric and piezoelectric materials due to its superior properties. However, the intrinsic properties of PZT have not been directly measured due to the lack of fabrication of single crystals even though a basic understanding of intrinsic properties has been of interest developing lead-free piezoelectric materials. We demonstrated the direct observation of the intrinsic piezoelectric property by means of the detection of electric-field induced crystal lattice distortion of thick Pb(Zr0.35Ti0.65)O3 single-crystalline films with single polar-axis orientation and negligible residual strain using the time-resolved X-ray diffraction (XRD) together with the polarization response. Consequently, the effective converse piezoelectric response was experimentally revealed; hence, the electrostrictive coefficient, which is the conversion coefficient between the electrical and mechanical response, was determined. The obtained effective electrostrictive coefficient was 5.2-6.3 × 10-2 m4/C2, which agrees with theoretical prediction.

  11. How to Identify Lead Free Certification Marks for Drinking Water System & Plumbing Products

    EPA Science Inventory

    The Reduction of Lead in Drinking Water Act went into effect on January 4, 2014. The Act has reduced the lead content allowed in water system and plumbing products by changing the definition of lead free in Section 1417 of the Safe Drinking Water Act (SDWA) from not more than 8% ...

  12. Shielding properties of lead-free protective clothing and their impact on radiation doses

    SciTech Connect

    Schlattl, Helmut; Zankl, Maria; Eder, Heinrich; Hoeschen, Christoph

    2007-11-15

    The shielding properties of two different lead-free materials--tin and a compound of 80% tin and 20% bismuth--for protective clothing are compared with those of lead for three typical x-ray spectra generated at tube voltages of 60, 75, and 120 kV. Three different quantities were used to compare the shielding capability of the different materials: (1) Air-kerma attenuation factors in narrow-beam geometry, (2) air-kerma attenuation factors in broad-beam geometry, and (3) ratios of organ and effective doses in the human body for a whole-body irradiation with a parallel beam directed frontally at the body. The thicknesses of tin (0.45 mm) and the tin/bismuth compound (0.41 mm) to be compared against lead correspond to a lead equivalence value of 0.35 mm for the 75 kV spectrum. The narrow-beam attenuation factors for 0.45 mm tin are 54% and 32% lower than those for 0.35 mm lead for 60 and 120 kV; those for 0.41 mm tin/bismuth are 12% and 32% lower, respectively. The decrease of the broad-beam air-kerma attenuation factors compared to lead is 74%, 46%, and 41% for tin and 42%, 26%, and 33% for tin/bismuth and the spectra at 60, 75, and 120 kV, respectively. Therefore, it is recommended that the characterization of the shielding potential of a material should be done by measurements in broad-beam geometry. Since the secondary radiation that is mainly responsible for the shielding reduction in broad-beam geometry is of low penetrability, only more superficially located organs receive significantly enhanced doses. The increase for the dose to the glandular breast tissue (female) compared to being shielded by lead is 143%, 37%, and 45% when shielded by tin, and 35%, 15%, and 39% when shielded by tin/bismuth for 60, 75, and 120 kV, respectively. The effective dose rises by 60%, 6%, and 38% for tin, and 14%, 3% and, 35% for tin/bismuth shielding, respectively.

  13. Intermetallics Characterization of Lead-Free Solder Joints under Isothermal Aging

    NASA Astrophysics Data System (ADS)

    Choubey, Anupam; Yu, Hao; Osterman, Michael; Pecht, Michael; Yun, Fu; Yonghong, Li; Ming, Xu

    2008-08-01

    Solder interconnect reliability is influenced by environmentally imposed loads, solder material properties, and the intermetallics formed within the solder and the metal surfaces to which the solder is bonded. Several lead-free metallurgies are being used for component terminal plating, board pad plating, and solder materials. These metallurgies react together and form intermetallic compounds (IMCs) that affect the metallurgical bond strength and the reliability of solder joint connections. This study evaluates the composition and extent of intermetallic growth in solder joints of ball grid array components for several printed circuit board pad finishes and solder materials. Intermetallic growth during solid state aging at 100°C and 125°C up to 1000 h for two solder alloys, Sn-3.5Ag and Sn-3.0Ag-0.5Cu, was investigated. For Sn-3.5Ag solder, the electroless nickel immersion gold (ENIG) pad finish was found to result in the lowest IMC thickness compared to immersion tin (ImSn), immersion silver (ImAg), and organic solderability preservative (OSP). Due to the brittle nature of the IMC, a lower IMC thickness is generally preferred for optimal solder joint reliability. A lower IMC thickness may make ENIG a desirable finish for long-life applications. Activation energies of IMC growth in solid-state aging were found to be 0.54 ± 0.1 eV for ENIG, 0.91 ± 0.12 eV for ImSn, and 1.03 ± 0.1 eV for ImAg. Cu3Sn and Cu6Sn5 IMCs were found between the solder and the copper pad on boards with the ImSn and ImAg pad finishes. Ternary (Cu,Ni)6Sn5 intermetallics were found for the ENIG pad finish on the board side. On the component side, a ternary IMC layer composed of Ni-Cu-Sn was found. Along with intermetallics, microvoids were observed at the interface between the copper pad and solder, which presents some concern if devices are subject to shock and vibration loading.

  14. Shielding properties of lead-free protective clothing and their impact on radiation doses.

    PubMed

    Schlattl, Helmut; Zankl, Maria; Eder, Heinrich; Hoeschen, Christoph

    2007-11-01

    The shielding properties of two different lead-free materials-tin and a compound of 80% tin and 20% bismuth-for protective clothing are compared with those of lead for three typical x-ray spectra generated at tube voltages of 60, 75, and 120 kV. Three different quantities were used to compare the shielding capability of the different materials: (1) Air-kerma attenuation factors in narrow-beam geometry, (2) air-kerma attenuation factors in broad-beam geometry, and (3) ratios of organ and effective doses in the human body for a whole-body irradiation with a parallel beam directed frontally at the body. The thicknesses of tin (0.45 mm) and the tin/bismuth compound (0.41 mm) to be compared against lead correspond to a lead equivalence value of 0.35 mm for the 75 kV spectrum. The narrow-beam attenuation factors for 0.45 mm tin are 54% and 32% lower than those for 0.35 mm lead for 60 and 120 kV; those for 0.41 mm tin/bismuth are 12% and 32% lower, respectively. The decrease of the broad-beam air-kerma attenuation factors compared to lead is 74%, 46%, and 41% for tin and 42%, 26%, and 33% for tin/bismuth and the spectra at 60, 75, and 120 kV, respectively. Therefore, it is recommended that the characterization of the shielding potential of a material should be done by measurements in broad-beam geometry. Since the secondary radiation that is mainly responsible for the shielding reduction in broad-beam geometry is of low penetrability, only more superficially located organs receive significantly enhanced doses. The increase for the dose to the glandular breast tissue (female) compared to being shielded by lead is 143%, 37%, and 45% when shielded by tin, and 35%, 15%, and 39% when shielded by tin/bismuth for 60, 75, and 120 kV, respectively. The effective dose rises by 60%, 6%, and 38% for tin, and 14%, 3% and, 35% for tin/bismuth shielding, respectively. PMID:18072491

  15. Exploring a Lead-free Semiconducting Hybrid Ferroelectric with a Zero-Dimensional Perovskite-like Structure.

    PubMed

    Sun, Zhihua; Zeb, Aurang; Liu, Sijie; Ji, Chengmin; Khan, Tariq; Li, Lina; Hong, Maochun; Luo, Junhua

    2016-09-19

    Perovskite lead halides (CH3 NH3 PbI3 ) have recently taken a promising position in photovoltaics and optoelectronics because of remarkable semiconducting properties and possible ferroelectricity. However, the potential toxicity of lead arouses great environmental concern for widespread application. A new chemically tailored lead-free semiconducting hybrid ferroelectric is reported, N-methylpyrrolidinium)3 Sb2 Br9 (1), which consists of a zero-dimensional (0-D) perovskite-like anionic framework connected by corner- sharing SbBr6 coordinated octahedra. It presents a large ferroelectric spontaneous polarization of approximately 7.6 μC cm(-2) , as well as notable semiconducting properties, including positive temperature-dependent conductivity and ultraviolet-sensitive photoconductivity. Theoretical analysis of electronic structure and energy gap discloses a dominant contribution of the 0-D perovskite-like structure to the semiconducting properties of the material. This finding throws light on the rational design of new perovskite-like hybrids, especially lead-free semiconducting ferroelectrics.

  16. Joint Lead-Free Solder Test Program for High Reliability Military and Space Applications

    NASA Technical Reports Server (NTRS)

    Brown, Christina

    2004-01-01

    Current and future space and defense systems face potential risks from the continued use of tin-lead solder, including: compliance with current environmental regulations, concerns about potential environmental legislation banning lead-containing products, reduced mission readiness, and component obsolescence with lead surface finishes. For example, the United States Environmental Protection Agency (USEPA) has lowered the Toxic Chemical Release reporting threshold for lead to 100 pounds. Overseas, the Waste Electrical and Electronic Equipment (WEEE) and the Restriction on Hazardous Substances (RoHS) Dicctives in Europe and similar mandates in Japan have instilled concern that a legislative body will prohibit the use of lead in aerospace/military electronics soldering. Any potential banning of lead compounds could reduce the supplier base and adversely affect the readiness of missions led by the National Aeronautics and Space Administration (NASA) and the U.S. Department of Defense (DoD). Before considering lead-free electronics for system upgrades or future designs, however, it is important for the DoD and NASA to know whether lead-free solders can meet their systems' requirements. No single lead-free solder is likely to qualify for all defense and space applications. Therefore, it is important to validate alternative solders for discrete applications. As a result of the need for comprehensive test data on the reliability of lead-free solders, a partnership was formed between the DoD, NASA, and several original equipment manufactures (OEMs) to conduct solder-joint reliability (laboratory) testing of three lead-free solder alloys on newly manufactured and reworked circuit cards to generate performance data for high-reliability (IPC Class 3) applications.

  17. Multimaterial piezoelectric fibres

    NASA Astrophysics Data System (ADS)

    Egusa, S.; Wang, Z.; Chocat, N.; Ruff, Z. M.; Stolyarov, A. M.; Shemuly, D.; Sorin, F.; Rakich, P. T.; Joannopoulos, J. D.; Fink, Y.

    2010-08-01

    Fibre materials span a broad range of applications ranging from simple textile yarns to complex modern fibre-optic communication systems. Throughout their history, a key premise has remained essentially unchanged: fibres are static devices, incapable of controllably changing their properties over a wide range of frequencies. A number of approaches to realizing time-dependent variations in fibres have emerged, including refractive index modulation, nonlinear optical mechanisms in silica glass fibres and electroactively modulated polymer fibres. These approaches have been limited primarily because of the inert nature of traditional glassy fibre materials. Here we report the composition of a phase internal to a composite fibre structure that is simultaneously crystalline and non-centrosymmetric. A ferroelectric polymer layer of 30μm thickness is spatially confined and electrically contacted by internal viscous electrodes and encapsulated in an insulating polymer cladding hundreds of micrometres in diameter. The structure is thermally drawn in its entirety from a macroscopic preform, yielding tens of metres of piezoelectric fibre. The fibres show a piezoelectric response and acoustic transduction from kilohertz to megahertz frequencies. A single-fibre electrically driven device containing a high-quality-factor Fabry-Perot optical resonator and a piezoelectric transducer is fabricated and measured.

  18. Piezoelectric Properties of Non-Polar Block Copolymers

    SciTech Connect

    Pester, Christian; Ruppel, Markus A; Schoberth, Heiko; Schmidt, K.; Liedel, Clemens; Van Rijn, Patrick; Littrell, Ken; Schindler, Kerstin; Hiltl, Stephanie; Czubak, Thomas; Mays, Jimmy; Urban, Volker S; Boker, Alexander

    2011-01-01

    Piezoelectric properties in non-polar block copolymers are a novelty in the field of electroactive polymers. The piezoelectric susceptibility of poly(styrene-b-isoprene) block copolymer lamellae is found to be up to an order of magnitude higher when compared to classic piezoelectric materials. The electroactive response increases with temperature and is found to be strongest in the disordered phase.

  19. Experiments to Demonstrate Piezoelectric and Pyroelectric Effects

    ERIC Educational Resources Information Center

    Erhart, Jirí

    2013-01-01

    Piezoelectric and pyroelectric materials are used in many current applications. The purpose of this paper is to explain the basic properties of pyroelectric and piezoelectric effects and demonstrate them in simple experiments. Pyroelectricity is presented on lead zirconium titanate (PZT) ceramics as an electric charge generated by the temperature…

  20. LC Circuits for Diagnosing Embedded Piezoelectric Devices

    NASA Technical Reports Server (NTRS)

    Chattin, Richard L.; Fox, Robert Lee; Moses, Robert W.; Shams, Qamar A.

    2005-01-01

    A recently invented method of nonintrusively detecting faults in piezoelectric devices involves measurement of the resonance frequencies of inductor capacitor (LC) resonant circuits. The method is intended especially to enable diagnosis of piezoelectric sensors, actuators, and sensor/actuators that are embedded in structures and/or are components of multilayer composite material structures.

  1. Effects of Zn Substitution on Dielectric and Piezoelectric Properties of (Na0.54K0.46)0.96Li0.04(Nb0.90Ta0.10)O3 Ceramics

    NASA Astrophysics Data System (ADS)

    Byeon, Sunmin; Yoo, Juhyun

    2012-09-01

    In this study, in order to develop lead-free composition ceramics for piezoelectric actuator and sensor applications, (Na0.54K0.46)0.96Li0.04(Nb0.90Ta0.10)1-2x/5ZnxO3 (x = 0-1.5 mol %) composition ceramics were fabricated by a conventional sintering technique at 1110 °C for 5 h. The piezoelectric properties of resultant ceramics were studied with a special emphasis on the influence of Zn-substitution amount. The crystal structure of the specimen exhibited a pure perovskite phase with the coexistence of two phases (orthorhombic and tetragonal phases). However, the phases included tetragonal-rich phases to some extent. The scanning electron microscopy (SEM) images indicated that grain size increased with increasing the content of Zn substitution. High physical properties, namely, piezoelectric constant d33 = 265 pC/N, electromechanical coupling factor kp = 47.5%, dielectric constant ɛr = 1223, and measured density ρ= 4.84 g/cm3 were obtained from the composition ceramic with x = 0.5 mol %. The mechanical quality factor (Qm) was improved from 54 of pure (Na0.54K0.46)0.96Li0.04(Nb0.90Ta0.10)O3 (abbreviated as NKLNT) to 106 by 1.5 mol % Zn substitution. The results reflect that the material is a promising candidate for lead-free high-performance piezoelectric device applications, such as piezoelectric actuators and sensors.

  2. High Performance Flexible Piezoelectric Nanogenerators based on BaTiO3 Nanofibers in Different Alignment Modes.

    PubMed

    Yan, Jing; Jeong, Young Gyu

    2016-06-22

    Piezoelectric nanogenerators, harvesting energy from mechanical stimuli in our living environments, hold great promise to power sustainable self-sufficient micro/nanosystems and mobile/portable electronics. BaTiO3 as a lead-free material with high piezoelectric coefficient and dielectric constant has been widely examined to realize nanogenerators, capacitors, sensors, etc. In this study, polydimethylsiloxane (PDMS)-based flexible composites including BaTiO3 nanofibers with different alignment modes were manufactured and their piezoelectric performance was examined. For the study, BaTiO3 nanofibers were prepared by an electrospinning technique utilizing a sol-gel precursor and following calcination process, and they were then aligned vertically or horizontally or randomly in PDMS matrix-based nanogenerators. The morphological structures of BaTiO3 nanofibers and their nanogenerators were analyzed by using SEM images. The crystal structures of the nanogenerators before and after poling were characterized by X-ray diffraction. The dielectric and piezoelectric properties of the nanogenerators were investigated as a function of the nanofiber alignment mode. The nanogenerator with BaTiO3 nanofibers aligned vertically in the PDMS matrix sheet achieved high piezoelectric performance of an output power of 0.1841 μW with maximum voltage of 2.67 V and current of 261.40 nA under a low mechanical stress of 0.002 MPa, in addition to a high dielectric constant of 40.23 at 100 Hz. The harvested energy could thus power a commercial LED directly or be stored into capacitors after rectification.

  3. High Performance Flexible Piezoelectric Nanogenerators based on BaTiO3 Nanofibers in Different Alignment Modes.

    PubMed

    Yan, Jing; Jeong, Young Gyu

    2016-06-22

    Piezoelectric nanogenerators, harvesting energy from mechanical stimuli in our living environments, hold great promise to power sustainable self-sufficient micro/nanosystems and mobile/portable electronics. BaTiO3 as a lead-free material with high piezoelectric coefficient and dielectric constant has been widely examined to realize nanogenerators, capacitors, sensors, etc. In this study, polydimethylsiloxane (PDMS)-based flexible composites including BaTiO3 nanofibers with different alignment modes were manufactured and their piezoelectric performance was examined. For the study, BaTiO3 nanofibers were prepared by an electrospinning technique utilizing a sol-gel precursor and following calcination process, and they were then aligned vertically or horizontally or randomly in PDMS matrix-based nanogenerators. The morphological structures of BaTiO3 nanofibers and their nanogenerators were analyzed by using SEM images. The crystal structures of the nanogenerators before and after poling were characterized by X-ray diffraction. The dielectric and piezoelectric properties of the nanogenerators were investigated as a function of the nanofiber alignment mode. The nanogenerator with BaTiO3 nanofibers aligned vertically in the PDMS matrix sheet achieved high piezoelectric performance of an output power of 0.1841 μW with maximum voltage of 2.67 V and current of 261.40 nA under a low mechanical stress of 0.002 MPa, in addition to a high dielectric constant of 40.23 at 100 Hz. The harvested energy could thus power a commercial LED directly or be stored into capacitors after rectification. PMID:27237223

  4. An integrated microfluidic chip with 40 MHz lead-free transducer for fluid analysis

    SciTech Connect

    Lee, S. T. F.; Lam, K. H.; Lei, L.; Zhang, X. M.; Chan, H. L. W.

    2011-02-15

    The design, fabrication, and evaluation of a high-frequency transducer made from lead-free piezoceramic for the application of microfluidic analysis is described. Barium strontium zirconate titanate [(Ba{sub 0.95}Sr{sub 0.05})(Zr{sub 0.05}Ti{sub 0.95})O{sub 3}, abbreviated as BSZT] ceramic has been chosen to be the active element of the transducer. The center frequency and bandwidth of this high-frequency ultrasound transducer have been measured to be 43 MHz and 56.1%, respectively. The transducer was integrated into a microfluidic channel and used to measure the sound velocity and attenuation of the liquid flowing in the channel. Results suggest that lead-free high-frequency transducers could be used for in situ analysis of property of the fluid flowing through the microfluidic system.

  5. NASA-DoD Lead-Free Electronics Project: Vibration Test

    NASA Technical Reports Server (NTRS)

    Woodrow, Thomas A.

    2010-01-01

    Vibration testing was conducted by Boeing Research and Technology (Seattle) for the NASA-DoD Lead-Free Electronics Solder Project. This project is a follow-on to the Joint Council on Aging Aircraft/Joint Group on Pollution Prevention (JCAA/JG-PP) Lead-Free Solder Project which was the first group to test the reliability of lead-free solder joints against the requirements of the aerospace/miLItary community. Twenty seven test vehicles were subjected to the vibration test conditions (in two batches). The random vibration Power Spectral Density (PSD) input was increased during the test every 60 minutes in an effort to fail as many components as possible within the time allotted for the test. The solder joints on the components were electrically monitored using event detectors and any solder joint failures were recorded on a Labview-based data collection system. The number of test minutes required to fail a given component attached with SnPb solder was then compared to the number of test minutes required to fail the same component attached with lead-free solder. A complete modal analysis was conducted on one test vehicle using a laser vibrometer system which measured velocities, accelerations, and displacements at one . hundred points. The laser vibrometer data was used to determine the frequencies of the major modes of the test vehicle and the shapes of the modes. In addition, laser vibrometer data collected during the vibration test was used to calculate the strains generated by the first mode (using custom software). After completion of the testing, all of the test vehicles were visually inspected and cross sections were made. Broken component leads and other unwanted failure modes were documented.

  6. Prototyping lead-free solders on hand-soldered, through-hole circuit boards

    SciTech Connect

    Vianco, P.T.; Mizik, P.M.

    1993-12-31

    The lead-free solders 96.5Sn-3.5Ag (wt %), 95.5Sn-4.0Cu-0.5Ag, 91. 84Sn-3.33Ag-4.83Bi were used in the assembly of a through-hole circuit board to determine the feasibility of their suitability in hand soldering processes. Prototypes assembled with 63Sn-37Pb solder were manufactured to serve as control units. Implementation of the lead-free alloys were performed with a rosin-based, mildly activated (RMA) flux and a 700{degree}F soldering tip. A procedure was developed to remove the tin-lead finish from the leaded components and replace it with a 100Sn hot dipped coating. Assembly feasibility was demonstrated for all three lead-free solders. Defect counts were greater than observed with the tin-lead control alloy; however, the number of defects diminished with experience gained by the operator. Visual examination of the solder joints indicated satisfactory wetting of both the device leads and circuit board land with no apparent damage to the underlying laminate nor to the device packages. Cross sections of the lead-free solder joints showed that the were more susceptible to void formation within the holes than was the case with the tin-lead solder. Some cracking was observed at the interface between the Sn-Ag-Bi solder and the copper lands; the relatively high strength of this solder and fast cooling rate of the hand assembly process was believed responsible for this defect.

  7. Orthotropic Piezoelectricity in 2D Nanocellulose

    NASA Astrophysics Data System (ADS)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  8. Orthotropic Piezoelectricity in 2D Nanocellulose

    PubMed Central

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-01-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V−1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies. PMID:27708364

  9. Resonant packaged piezoelectric power harvester for machinery health monitoring

    NASA Astrophysics Data System (ADS)

    du Plessis, Andries J.; Huigsloot, Marcel J.; Discenzo, Fred D.

    2005-05-01

    Packaged piezoelectric bi-morph actuators offer an alternative power source for health monitoring using localized vibrational power harvesting. Packaging piezoelectric wafers simplify the integration of piezoelectric ceramic wafers into products and improve the durability of the brittle piezoelectric ceramic material. This paper describes a model for predicting the power harvested from a resonant cantilevered beam piezoelectric power harvester across a resistive load. The model results are correlated with experimental power harvesting measurements made using a commercially available piezoelectric bi-morph actuator. Additionally, experimental power harvesting levels were determined under high root strain conditions and varying command frequencies. Finally, the power production capability of the packaged piezoelectric bi-morph generator was evaluated over millions of cycles at very high root strains levels, representative of the loads expected in an industrial application. Results from the testing indicate that packaged piezoelectric wafer products used in power harvesting devices are very reliable and well suited for harsh industrial application environments.

  10. Mechanical confinement for improved energy storage density in BNT-BT-KNN lead-free ceramic capacitors

    SciTech Connect

    Chauhan, Aditya; Patel, Satyanarayan; Vaish, Rahul

    2014-08-15

    With the advent of modern power electronics, embedded circuits and non-conventional energy harvesting, the need for high performance capacitors is bound to become indispensible. The current state-of-art employs ferroelectric ceramics and linear dielectrics for solid state capacitance. However, lead-free ferroelectric ceramics propose to offer significant improvement in the field of electrical energy storage owing to their high discharge efficiency and energy storage density. In this regards, the authors have investigated the effects of compressive stress as a means of improving the energy storage density of lead-free ferroelectric ceramics. The energy storage density of 0.91(Bi{sub 0.5}Na{sub 0.5})TiO{sub 3}-0.07BaTiO{sub 3}-0.02(K{sub 0.5}Na{sub 0.5})NbO{sub 3} ferroelectric bulk ceramic was analyzed as a function of varying levels of compressive stress and operational temperature .It was observed that a peak energy density of 387 mJ.cm{sup -3} was obtained at 100 MPa applied stress (25{sup o}C). While a maximum energy density of 568 mJ.cm{sup -3} was obtained for the same stress at 80{sup o}C. These values are indicative of a significant, 25% and 84%, improvement in the value of stored energy compared to an unloaded material. Additionally, material's discharge efficiency has also been discussed as a function of operational parameters. The observed phenomenon has been explained on the basis of field induced structural transition and competitive domain switching theory.

  11. High temperature, high power piezoelectric composite transducers.

    PubMed

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-08-08

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  12. High Temperature, High Power Piezoelectric Composite Transducers

    PubMed Central

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  13. High temperature, high power piezoelectric composite transducers.

    PubMed

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  14. Non-local dynamic solution of two parallel cracks in a functionally graded piezoelectric material under harmonic anti-plane shear wave

    NASA Astrophysics Data System (ADS)

    Liu, Hai-Tao; Sang, Jian-Bing; Zhou, Zhen-Gong

    2016-10-01

    This paper investigates a functionally graded piezoelectric material (FGPM) containing two parallel cracks under harmonic anti-plane shear stress wave based on the non-local theory. The electric permeable boundary condition is considered. To overcome the mathematical difficulty, a one-dimensional non-local kernel is used instead of a two-dimensional one for the dynamic fracture problem to obtain the stress and the electric displacement fields near the crack tips. The problem is formulated through Fourier transform into two pairs of dual-integral equations, in which the unknown variables are jumps of displacements across the crack surfaces. Different from the classical solutions, that the present solution exhibits no stress and electric displacement singularities at the crack tips.

  15. Using Diffusion Bonding in Making Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Sager, Frank E.

    2003-01-01

    A technique for the fabrication of piezoelectric actuators that generate acceptably large forces and deflections at relatively low applied voltages involves the stacking and diffusion bonding of multiple thin piezoelectric layers coated with film electrodes. The present technique stands in contrast to an older technique in which the layers are bonded chemically, by use of urethane or epoxy agents. The older chemical-bonding technique entails several disadvantages, including the following: It is difficult to apply the bonding agents to the piezoelectric layers. It is difficult to position the layers accurately and without making mistakes. There is a problem of disposal of hazardous urethane and epoxy wastes. The urethane and epoxy agents are nonpiezoelectric materials. As such, they contribute to the thickness of a piezoelectric laminate without contributing to its performance; conversely, for a given total thickness, the performance of the laminate is below that of a unitary piezoelectric plate of the same thickness. The figure depicts some aspects of the fabrication of a laminated piezoelectric actuator by the present diffusion- bonding technique. First, stock sheets of the piezoelectric material are inspected and tested. Next, the hole pattern shown in the figure is punched into the sheets. Alternatively, if the piezoelectric material is not a polymer, then the holes are punched in thermoplastic films. Then both faces of each punched piezoelectric sheet or thermoplastic film are coated with a silver-ink electrode material by use of a silkscreen printer. The electrode and hole patterns are designed for minimal complexity and minimal waste of material. After a final electrical test, all the coated piezoelectric layers (or piezoelectric layers and coated thermoplastic films) are stacked in an alignment jig, which, in turn, is placed in a curved press for the diffusion-bonding process. In this process, the stack is pressed and heated at a specified curing temperature

  16. Note: a high-sensitivity current sensor based on piezoelectric ceramic Pb(Zr,Ti)O3 and ferromagnetic materials.

    PubMed

    He, Wei; Li, Ping; Wen, Yumei; Zhang, Jitao; Yang, Aichao; Lu, Caijiang

    2014-02-01

    An electric current sensor using piezoelectric ceramic Pb(Zr,Ti)O3 (PZT) sandwiched between two high permeability cuboids and two NdFeB magnets is presented. The magnetic field originating from an electric wire is augmented by the high permeability cuboids. The PZT plate experiences an enhanced magnetic force and generates voltage output. When placed with a distance of d = 5.0 mm from the wire, the sensor shows a flat sensitivity of ∼5.7 mV/A in the frequency range of 30 Hz-80 Hz and an average sensitivity of 5.6 mV/A with highly linear behavior in the current range of 1 A-10 A at 50 Hz.

  17. Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Karan, Sumanta Kumar; Mandal, Dipankar; Khatua, Bhanu Bhusan

    2015-06-01

    In this work, we report the superior piezoelectric energy harvester ability of a non-electrically poled Fe-doped reduced graphene oxide (Fe-RGO)/poly(vinylidene fluoride) (PVDF) nanocomposite film prepared through a simple solution casting technique that favors the nucleation and stabilization of ~99% relative proportion of polar γ-phase. The piezoelectric energy harvester was made with non-electrically poled Fe-RGO/PVDF nanocomposite film that gives an open circuit output voltage and short circuit current up to 5.1 V and 0.254 μA by repetitive human finger imparting. The improvement of the output performance is influenced by the generation of the electroactive polar γ-phase in the PVDF, due to the electrostatic interactions among the -CH2-/-CF2- dipoles of PVDF and the delocalized π-electrons and remaining oxygen functionalities of Fe-doped RGO via ion-dipole and/or hydrogen bonding interactions. Fourier transform infrared spectroscopy (FT-IR) confirmed the nucleation of the polar γ-phase of PVDF by electrostatic interactions and Raman spectroscopy also supported the molecular interactions between the dipoles of PVDF and the Fe-doped RGO nanosheets. In addition, the nanocomposite shows a higher electrical energy density of ~0.84 J cm-3 at an electric field of 537 kV cm-1, which indicates that it is appropriate for energy storage capabilities. Moreover, the surface of the prepared nanocomposite film is electrically conducting and shows an electrical conductivity of ~3.30 × 10-3 S cm-1 at 2 wt% loading of Fe-RGO.In this work, we report the superior piezoelectric energy harvester ability of a non-electrically poled Fe-doped reduced graphene oxide (Fe-RGO)/poly(vinylidene fluoride) (PVDF) nanocomposite film prepared through a simple solution casting technique that favors the nucleation and stabilization of ~99% relative proportion of polar γ-phase. The piezoelectric energy harvester was made with non-electrically poled Fe-RGO/PVDF nanocomposite film that gives

  18. Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester.

    PubMed

    Karan, Sumanta Kumar; Mandal, Dipankar; Khatua, Bhanu Bhusan

    2015-06-28

    In this work, we report the superior piezoelectric energy harvester ability of a non-electrically poled Fe-doped reduced graphene oxide (Fe-RGO)/poly(vinylidene fluoride) (PVDF) nanocomposite film prepared through a simple solution casting technique that favors the nucleation and stabilization of ≈99% relative proportion of polar γ-phase. The piezoelectric energy harvester was made with non-electrically poled Fe-RGO/PVDF nanocomposite film that gives an open circuit output voltage and short circuit current up to 5.1 V and 0.254 μA by repetitive human finger imparting. The improvement of the output performance is influenced by the generation of the electroactive polar γ-phase in the PVDF, due to the electrostatic interactions among the -CH2-/-CF2- dipoles of PVDF and the delocalized π-electrons and remaining oxygen functionalities of Fe-doped RGO via ion-dipole and/or hydrogen bonding interactions. Fourier transform infrared spectroscopy (FT-IR) confirmed the nucleation of the polar γ-phase of PVDF by electrostatic interactions and Raman spectroscopy also supported the molecular interactions between the dipoles of PVDF and the Fe-doped RGO nanosheets. In addition, the nanocomposite shows a higher electrical energy density of ≈0.84 J cm(-3) at an electric field of 537 kV cm(-1), which indicates that it is appropriate for energy storage capabilities. Moreover, the surface of the prepared nanocomposite film is electrically conducting and shows an electrical conductivity of ≈3.30 × 10(-3) S cm(-1) at 2 wt% loading of Fe-RGO. PMID:26030744

  19. Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester.

    PubMed

    Karan, Sumanta Kumar; Mandal, Dipankar; Khatua, Bhanu Bhusan

    2015-06-28

    In this work, we report the superior piezoelectric energy harvester ability of a non-electrically poled Fe-doped reduced graphene oxide (Fe-RGO)/poly(vinylidene fluoride) (PVDF) nanocomposite film prepared through a simple solution casting technique that favors the nucleation and stabilization of ≈99% relative proportion of polar γ-phase. The piezoelectric energy harvester was made with non-electrically poled Fe-RGO/PVDF nanocomposite film that gives an open circuit output voltage and short circuit current up to 5.1 V and 0.254 μA by repetitive human finger imparting. The improvement of the output performance is influenced by the generation of the electroactive polar γ-phase in the PVDF, due to the electrostatic interactions among the -CH2-/-CF2- dipoles of PVDF and the delocalized π-electrons and remaining oxygen functionalities of Fe-doped RGO via ion-dipole and/or hydrogen bonding interactions. Fourier transform infrared spectroscopy (FT-IR) confirmed the nucleation of the polar γ-phase of PVDF by electrostatic interactions and Raman spectroscopy also supported the molecular interactions between the dipoles of PVDF and the Fe-doped RGO nanosheets. In addition, the nanocomposite shows a higher electrical energy density of ≈0.84 J cm(-3) at an electric field of 537 kV cm(-1), which indicates that it is appropriate for energy storage capabilities. Moreover, the surface of the prepared nanocomposite film is electrically conducting and shows an electrical conductivity of ≈3.30 × 10(-3) S cm(-1) at 2 wt% loading of Fe-RGO.

  20. Structure, dielectric tunability, thermal stability and diffuse phase transition behavior of lead free BZT-BCT ceramic capacitors

    NASA Astrophysics Data System (ADS)

    Sreenivas Puli, Venkata; Pradhan, Dhiren K.; Pérez, W.; Katiyar, R. S.

    2013-03-01

    This paper reports the development of a lead free {Ba(Zr0.2Ti0.8)O3}(1-x){(Ba0.7Ca0.3)TiO3}x - x=0.10, 0.15 and 0.20 - BZT-BCT ceramic solid solution system prepared using a solid-state reaction technique. The evolution of the Raman spectra with temperature was used to study the variation of the basic phase transition of BaTiO3 in these compositions. The phase transition temperature on heating was found to decrease to 310 K, 300 K, and 300 K, respectively, with increasing Ca content on BCT end and decreasing Zr content on BZT end of lead free pseudobinary ferroelectric BZT-BCT system. Tetragonal and rhombohedral phase coexistence is observed at room temperature from X-ray diffraction (XRD) spectra. Rhombohedral phase is identified between the 83 K and 273 K from temperature dependent Raman studies. Raman results are in excellent agreement with those obtained from temperature dependent dielectric measurements. Bulk ceramic BZT-BCT materials have shown interesting temperature dependent dielectric properties and as well as higher values of room temperature dielectric constant ˜7800, 8400, 5200, dielectric tunability ˜82%, figure of merit (FOM) ˜93.71 % with low dielectric loss (tan δ) ˜0.015 to 0.024 and good thermal stability at high sintering temperature (1600 °C); they might be one of the strong candidates for dielectric tunable capacitor applications in an environmentally protective atmosphere.

  1. Piezoelectric Water Drop Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Al Ahmad, Mahmoud

    2014-02-01

    Piezoelectric materials convert mechanical deformation directly into electrical charges, which can be harvested and used to drive micropower electronic devices. The low power consumption of such systems on the scale of microwatts leads to the possibility of using harvested vibrational energy due to its almost universal nature. Vibrational energy harvested using piezoelectric cantilevers provides sufficient output for small-scale power applications. This work reports on vibrational energy harvesting from free-falling droplets at the tip of lead zirconate titanate piezoelectric-based cantilevers. The harvester incorporates a multimorph clamped-free cantilever made of lead zirconate titanate piezoelectric thick films. During the impact, the droplet's kinetic energy is transferred to the form of mechanical stress, forcing the piezoelectric structure to vibrate and thereby producing charges. Experimental results show an instantaneous drop-power of 2.15 mW cm-3 g-1. The scenario of a medium intensity of falling water drops, i.e., 200 drops per second, yielded a power of 0.48 W cm-3 g-1 per second.

  2. Continuous cross-over from ferroelectric to relaxor state and piezoelectric properties of BaTiO3-BaZrO3-CaTiO3 single crystals

    NASA Astrophysics Data System (ADS)

    Benabdallah, F.; Veber, P.; Prakasam, M.; Viraphong, O.; Shimamura, K.; Maglione, M.

    2014-04-01

    Optimal properties like piezoelectricity can be found in polarizable materials for which the structure changes sharply under small composition variations in the vicinity of their morphotropic phase boundary or the triple point in their isobaric temperature-composition phase diagram. In the latter, lead-free (Ba0.850Ca0.150)(Ti0.900Zr0.100)O3 ceramics exhibit outstanding piezoelectric coefficients. For the first time, we report the growth of piezoelectric lead-free single crystals in the BaTiO3-BaZrO3-CaTiO3 pseudo-ternary system. The stoichiometry control in the CaO-BaO-TiO2-ZrO2 solid solution led to single crystals with various compositions ranging from (Ba0.857Ca0.143)(Ti0.928Zr0.072)O3 to (Ba0.953Ca0.047)(Ti0.427Zr0.573)O3. We evidenced a continuous cross-over from a ferroelectric state at high titanium content to a relaxor one on increasing the zirconium content. Such a property tuning is rather seldom observed in lead-free ferroelectrics and confirms what was already reported for ceramics. Single crystal with (Ba0.838Ca0.162)(Ti0.854Zr0.146)O3 composition, which has been grown and oriented along [001] crystallographic direction, displayed electromechanical coefficients d31 and k31 of 93 pC.N-1 and 0.18, respectively, near the room temperature (T = 305 K).

  3. Continuous cross-over from ferroelectric to relaxor state and piezoelectric properties of BaTiO{sub 3}-BaZrO{sub 3}-CaTiO{sub 3} single crystals

    SciTech Connect

    Benabdallah, F.; Veber, P. Prakasam, M.; Viraphong, O.; Maglione, M.; Shimamura, K.

    2014-04-14

    Optimal properties like piezoelectricity can be found in polarizable materials for which the structure changes sharply under small composition variations in the vicinity of their morphotropic phase boundary or the triple point in their isobaric temperature-composition phase diagram. In the latter, lead-free (Ba{sub 0.850}Ca{sub 0.150})(Ti{sub 0.900}Zr{sub 0.100})O{sub 3} ceramics exhibit outstanding piezoelectric coefficients. For the first time, we report the growth of piezoelectric lead-free single crystals in the BaTiO{sub 3}-BaZrO{sub 3}-CaTiO{sub 3} pseudo-ternary system. The stoichiometry control in the CaO-BaO-TiO{sub 2}-ZrO{sub 2} solid solution led to single crystals with various compositions ranging from (Ba{sub 0.857}Ca{sub 0.143})(Ti{sub 0.928}Zr{sub 0.072})O{sub 3} to (Ba{sub 0.953}Ca{sub 0.047})(Ti{sub 0.427}Zr{sub 0.573})O{sub 3}. We evidenced a continuous cross-over from a ferroelectric state at high titanium content to a relaxor one on increasing the zirconium content. Such a property tuning is rather seldom observed in lead-free ferroelectrics and confirms what was already reported for ceramics. Single crystal with (Ba{sub 0.838}Ca{sub 0.162})(Ti{sub 0.854}Zr{sub 0.146})O{sub 3} composition, which has been grown and oriented along [001] crystallographic direction, displayed electromechanical coefficients d{sub 31} and k{sub 31} of 93 pC.N{sup −1} and 0.18, respectively, near the room temperature (T = 305 K)

  4. Correlation of Bulk Dielectric and Piezoelectric Properties to the Local Scale Phase Transformations, Domain Morphology, and Crystal Structure Modified

    SciTech Connect

    Priya, Shashank; Viehland, Dwight

    2014-12-14

    Three year program entitled “Correlation of bulk dielectric and piezoelectric properties to the local scale phase transformations, domain morphology, and crystal structure in modified lead-free grain-textured ceramics and single crystals” was supported by the Department of Energy. This was a joint research program between D. Viehland and S. Priya at Virginia Tech. Single crystal and textured ceramics have been synthesized and characterized. Our goals have been (i) to conduct investigations of lead-free piezoelectric systems to establish the local structural and domain morphologies that result in enhanced properties, and (ii) to synthesize polycrystalline and grain oriented ceramics for understanding the role of composition, microstructure, and anisotropy

  5. Giant Piezoelectricity on Si for Hyperactive MEMS

    NASA Astrophysics Data System (ADS)

    Baek, S. H.; Park, J.; Kim, D. M.; Aksyuk, V. A.; Das, R. R.; Bu, S. D.; Felker, D. A.; Lettieri, J.; Vaithyanathan, V.; Bharadwaja, S. S. N.; Bassiri-Gharb, N.; Chen, Y. B.; Sun, H. P.; Folkman, C. M.; Jang, H. W.; Kreft, D. J.; Streiffer, S. K.; Ramesh, R.; Pan, X. Q.; Trolier-McKinstry, S.; Schlom, D. G.; Rzchowski, M. S.; Blick, R. H.; Eom, C. B.

    2011-11-01

    Microelectromechanical systems (MEMS) incorporating active piezoelectric layers offer integrated actuation, sensing, and transduction. The broad implementation of such active MEMS has long been constrained by the inability to integrate materials with giant piezoelectric response, such as Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT). We synthesized high-quality PMN-PT epitaxial thin films on vicinal (001) Si wafers with the use of an epitaxial (001) SrTiO3 template layer with superior piezoelectric coefficients (e31,f = -27 ± 3 coulombs per square meter) and figures of merit for piezoelectric energy-harvesting systems. We have incorporated these heterostructures into microcantilevers that are actuated with extremely low drive voltage due to thin-film piezoelectric properties that rival bulk PMN-PT single crystals. These epitaxial heterostructures exhibit very large electromechanical coupling for ultrasound medical imaging, microfluidic control, mechanical sensing, and energy harvesting.

  6. Damping control of 'smart' piezoelectric shell structures

    NASA Astrophysics Data System (ADS)

    Tzou, H. S.

    Advanced 'smart' structures with self-sensation and control capabilities have attracted much attention in recent years. 'Smart' piezoelectric structures (conventional structures integrated with piezoelectric sensor and actuator elements) possessing self-monitoring and adaptive static and/or dynamic characteristics are very promising in many applications. This paper presents a study on 'smart' piezoelectric shell structures. A generic piezoelastic vibration theory for a thin piezoelectric shell continuum made of a hexagonal piezoelectric material is first derived. Piezoelastic system equation and electrostatic charge equation are formulated using Hamilton's principle and Kirchhoff-Love thin shell assumptions. Dynamic adaptivity, damping control, of a simply supported cylindrical shell structure is demonstrated in a case study. It shows that the system damping increases with the increase of feedback voltage for odd modes. The control scheme is ineffective for all even modes because of the symmetrical boundary conditions.

  7. Note: Direct piezoelectric effect microscopy.

    PubMed

    Mori, T J A; Stamenov, P; Dorneles, L S

    2015-07-01

    An alternative method for investigating piezoelectric surfaces is suggested, exploiting the direct piezoeffect. The technique relies on acoustic (ultrasonic) excitation of the imaged surface and mapping of the resulting oscillatory electric potential. The main advantages arise from the spatial resolution of the conductive scanning probe microscopy in combination with the relatively large magnitude of the forward piezo signal Upf, which can be of the order of tens of mV even for non-ferroelectric piezoelectric materials. The potency of this experimental strategy is illustrated with measurements on well-crystallized quartz surfaces, where Upf ∼ 50 mV, for a piezoelectric coefficient of d33 = - 2.27  ×  10(-12) m/V, and applied stress of about T3 ∼ 5.7 kPa.

  8. Lead-Free Double-Base Propellant for the 2.75 Inch Rocket Motor

    NASA Technical Reports Server (NTRS)

    Magill, B. T.; Nauflett, G. W.; Furrow, K. W.

    2000-01-01

    The current MK 66 2.75 inch Rocket Motor double-base propellant contains the lead-based ballistic modifier LC-12-15 to achieve the desired plateau and mesa burning rate characteristics. The use of lead compounds poses a concern for the environment and for personal safety due to the metal's toxic nature when introduced into the atmosphere by propellant manufacture, rocket motor firing, and disposal. Copper beta-resorcylate (copper 2,4-di-hydroxy-benzoate) was successfully used in propellant as a simple modifier in the mid 1970's. This and other compounds have also been mixed with lead salts to obtain more beneficial ballistic results. Synthesized complexes of lead and copper compounds soon replaced the mixtures. The complexes incorporate the lead, copper lack of organic liquids, which allows for easier propellant processing. About ten years ago, the Indian Head Division, Naval Surface Warfare Center (NSWC), initiated an effort to develop a lead-free propellant for use in missile systems. Several lead-free propellant candidate formulations were developed. About five years ago, NSWC, in conjunction with Alliant Techsystems, Radford Army Ammunition Plant, continued ballistic modifier investigations. A four component ballistic modifier system without lead for double-base propellants that provide adequate plateau and mesa burn rate characteristics was developed and patented. The ballistic modifier's system contains bismuth subsalicylate, 1.5 percent; copper salicylate, 1.0 percent, copper stannate, 0.77 percent; and carbon black, 0.1 percent. Action time and impulse data obtained through multiple static firings indicate that the new lead-free double-base propellant, while not a match for NOSIH-AA-2, will be a very suitable replacement in the 2.75 inch Rocket Motor. Accelerated aging of the double-base propellant containing the lead-free ballistic modifier showed that it had a much higher rate of stabilizer depletion than the AA-2. A comprehensive study showed that an

  9. Half-Heusler semiconductors as piezoelectrics.

    PubMed

    Roy, Anindya; Bennett, Joseph W; Rabe, Karin M; Vanderbilt, David

    2012-07-20

    We use a first-principles rational-design approach to demonstrate the potential of semiconducting half-Heusler compounds as a previously unrecognized class of piezoelectric materials. We perform a high-throughput scan of a large number of compounds, testing for insulating character and calculating structural, dielectric, and piezoelectric properties. Our results provide guidance for the experimental realization and characterization of high-performance materials in this class that may be suitable for practical applications.

  10. Giant strain with low cycling degradation in Ta-doped [Bi1/2(Na0.8K0.2)1/2]TiO3 lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoming; Tan, Xiaoli

    2016-07-01

    Non-textured polycrystalline [Bi1/2(Na0.8K0.2)1/2](Ti1-xTax)O3 ceramics are fabricated and their microstructures and electrical properties are characterized. Transmission electron microscopy reveals the coexistence of the rhombohedral R3c and tetragonal P4bm phases in the form of nanometer-sized domains in [Bi1/2(Na0.8K0.2)1/2]TiO3 with low Ta concentration. When the composition is x = 0.015, the electrostrain is found to be highly asymmetric under bipolar fields of ±50 kV/cm. A very large value of 0.62% is observed in this ceramic, corresponding to a large-signal piezoelectric coefficient d33* of 1240 pm/V (1120 pm/V under unipolar loading). These values are greater than most previously reported lead-free polycrystalline ceramics and can even be compared with some lead-free piezoelectric single crystals. Additionally, this ceramic displays low cycling degradation; its electrostrain remains above 0.55% even after undergoing 10 000 cycles of ±50 kV/cm bipolar fields at 2 Hz. Therefore, Ta-doped [Bi1/2(Na0.8K0.2)1/2]TiO3 ceramics show great potential for large displacement devices.

  11. Sn-Pb and lead free solders containing active carbon particles

    NASA Astrophysics Data System (ADS)

    Talas, S.; Gökçe, B.; Çakmakkaya, M.

    2016-08-01

    Upon the legislations issued by the governmental agencies, many companies are in effort of using lead free solders for their electronic products. Many researchers have also focused on lead free solders and determined their physical properties to the merit of their desired strength and conductivity which turns out to be a potentially advantageous after all. The addition of nano particles into the solder alloys has been attempted to investigate the property change caused by such addition from which a main outcome was a limited improved mechanical and physical properties such as lowering the melting temperature. In this study, the addition of nano active carbon particles to Pb-Sn and Pb-free solder alloys were made and characterization studies were conducted to determine their basic properties such as electrical conductivity, microstructural study and also phase transformations. The results indicate that the addition of active carbon particles brings about a change in thermal properties more markedly than other properties with respect to the amount of addition.

  12. Nonlinear kinematics for piezoelectricity in ALEGRA-EMMA.

    SciTech Connect

    Mitchell, John Anthony; Fuller, Timothy Jesse

    2013-09-01

    This report develops and documents nonlinear kinematic relations needed to implement piezoelectric constitutive models in ALEGRA-EMMA [5], where calculations involving large displacements and rotations are routine. Kinematic relationships are established using Gausss law and Faradays law; this presentation on kinematics goes beyond piezoelectric materials and is applicable to all dielectric materials. The report then turns to practical details of implementing piezoelectric models in an application code where material principal axes are rarely aligned with user defined problem coordinate axes. This portion of the report is somewhat pedagogical but is necessary in order to establish documentation for the piezoelectric implementation in ALEGRA-EMMA. This involves transforming elastic, piezoelectric, and permittivity moduli from material principal axes to problem coordinate axes. The report concludes with an overview of the piezoelectric implementation in ALEGRA-EMMA and small verification examples.

  13. Optimal Topology and Experimental Evaluation of Piezoelectric Materials for Actively Shunted General Electric Polymer Matrix Fiber Composite Blades

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.; Duffy, Kirsten; Kauffman, Jeffrey L.; Kray, Nicholas

    2012-01-01

    NASA Glenn Research Center, in collaboration with GE Aviation, has begun the development of a smart adaptive structure system with piezoelectric (PE) transducers to improve composite fan blade damping at resonances. Traditional resonant damping approaches may not be realistic for rotating frame applications such as engine blades. The limited space in which the blades reside in the engine makes it impossible to accommodate the circuit size required to implement passive resonant damping. Thus, a novel digital shunt scheme has been developed to replace the conventional electric passive shunt circuits. The digital shunt dissipates strain energy through the load resistor on a power amplifier. General Electric (GE) designed and fabricated a variety of polymer matrix fiber composite (PMFC) test specimens. Investigating the optimal topology of PE sensors and actuators for each test specimen has revealed the best PE transducer location for each target mode. Also a variety of flexible patches, which can conform to the blade surface, have been tested to identify the best performing PE patch. The active damping control achieved significant performance at target modes. This work has been highlighted by successful spin testing up to 5000 rpm of subscale GEnx composite blades in Glenn s Dynamic Spin Rig.

  14. Studying insect motion with piezoelectric sensors

    NASA Astrophysics Data System (ADS)

    Mika, Bartosz; Lee, Hyungoo; González, Jorge M.; Vinson, S. Bradleigh; Liang, Hong

    2007-04-01

    Piezoelectric materials have been widely used in applications such as transducers, acoustic components, as well as motion, pressure and airborne sensors. Because of the material's biocompatibility and flexibility, we have been able to apply small piezoelectric sensors, made of PVDF, to cockroaches. We built a laboratory test system to study the piezoelectric properties of a bending sensor. The tested motion was compared with that of the sensor attached to a cockroach. Surface characterization and finite element analysis revealed the effects of microstructure on piezoelectric response. The sensor attachment enables us to monitor the insects' locomotion and study their behaviors. The applications of engineering materials to insects opens the door to innovating approaches to integrating biological, mechanical and electrical systems.

  15. "Mighty Worm" Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Bamford, Robert M.; Wada, Ben K.; Moore, Donald M.

    1994-01-01

    "Mighty Worm" piezoelectric actuator used as adjustable-length structural member, active vibrator or vibration suppressor, and acts as simple (fixed-length) structural member when inactive. Load force not applied to piezoelectric element in simple-structural-member mode. Piezoelectric element removed from load path when not in use.

  16. Piezoelectric drive circuit

    DOEpatents

    Treu, C.A. Jr.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.

  17. Piezoelectric drive circuit

    DOEpatents

    Treu, Jr., Charles A.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

  18. Temperature Evolution of Physical Properties of BaTi0.9(Nb0.5Yb0.5)0.1O3 Lead-Free Ceramic

    NASA Astrophysics Data System (ADS)

    Abdelkafi, Z.; Abdelmoula, N.; Khemakhem, H.

    2016-11-01

    BaTi0.9(Nb0.5Yb0.5)0.1O3 lead-free ceramic was prepared by a solid-state reaction method. The structure of BaTi0.9(Nb0.5Yb0.5)0.1O3 has been characterized by means of x-ray diffraction, showing the coexistence of cubic (31.1%) and tetragonal (68.9%) phases at room temperature. Dielectric spectroscopy shows that BaTi0.9(Nb0.5Yb0.5)0.1O3 composition sintered at 1380°C exhibits a relaxor behavior with a weak diffuse phase transition obeying a Lorentz-type quadratic relationship. The ferroelectric-paraelectric phase transition T C decreased from 420 K for BaTiO3 to 284 K for BaTi0.9(Nb0.5Yb0.5)0.1O3. The dielectric loss of this ceramic was <0.09 over a wide temperature range (<400 K). The temperature behavior of the main piezoelectric parameters, such as the piezoelectric coefficient d 31 and the electromechanical coupling factor k p, was investigated. d 31 sets a maximum about 32.5 pC/N at temperature of 220 K. Nevertheless, k p undergoes more or less important changes between 120 K and 200 K. Over 200 K, k p degrades very rapidly due to the depoling effect deduced from the hysterisis measurements. Dielectric and structural properties of BaTi0.9(Nb0.5Yb0.5)0.1O3 were confirmed by Raman spectroscopy.

  19. Temperature Evolution of Physical Properties of BaTi0.9(Nb0.5Yb0.5)0.1O3 Lead-Free Ceramic

    NASA Astrophysics Data System (ADS)

    Abdelkafi, Z.; Abdelmoula, N.; Khemakhem, H.

    2016-08-01

    BaTi0.9(Nb0.5Yb0.5)0.1O3 lead-free ceramic was prepared by a solid-state reaction method. The structure of BaTi0.9(Nb0.5Yb0.5)0.1O3 has been characterized by means of x-ray diffraction, showing the coexistence of cubic (31.1%) and tetragonal (68.9%) phases at room temperature. Dielectric spectroscopy shows that BaTi0.9(Nb0.5Yb0.5)0.1O3 composition sintered at 1380°C exhibits a relaxor behavior with a weak diffuse phase transition obeying a Lorentz-type quadratic relationship. The ferroelectric-paraelectric phase transition T C decreased from 420 K for BaTiO3 to 284 K for BaTi0.9(Nb0.5Yb0.5)0.1O3. The dielectric loss of this ceramic was <0.09 over a wide temperature range (<400 K). The temperature behavior of the main piezoelectric parameters, such as the piezoelectric coefficient d 31 and the electromechanical coupling factor k p, was investigated. d 31 sets a maximum about 32.5 pC/N at temperature of 220 K. Nevertheless, k p undergoes more or less important changes between 120 K and 200 K. Over 200 K, k p degrades very rapidly due to the depoling effect deduced from the hysterisis measurements. Dielectric and structural properties of BaTi0.9(Nb0.5Yb0.5)0.1O3 were confirmed by Raman spectroscopy.

  20. Piezoelectric load measurement model in knee implants.

    PubMed

    Romero, Edwar; Rincon, Amilcar

    2012-01-01

    This paper explores the feasibility of a new sensing platform for knee implant diagnostics. The proposed unit measures force and transmits the reading information wirelessly to an external receiving unit. This device is to be located in the tibial tray of the knee implant. The system measures force through the use of piezoelectric elements housed in the insert. At the same time, the piezoelectric material can generate enough energy to transmit the measurements without requiring batteries. Only the modeling of the piezoelectric voltage output is discussed at present. The force measurement can provide useful information about ligament balance while helping in the post-operative physical therapy.

  1. Electrical properties of (1−x)(Bi{sub 0.5}Na{sub 0.5})TiO{sub 3}–xKNbO{sub 3} lead-free ceramics

    SciTech Connect

    Jiang, Xijie; Wang, Baoyin; Luo, Laihui; Li, Weiping; Zhou, Jun; Chen, Hongbing

    2014-05-01

    In this investigation, a simple compound (1−x)(Bi{sub 0.5}Na{sub 0.5})TiO{sub 3}–xKNbO{sub 3} (BNT–xKN, x=0–0.08) lead-free ceramics were synthesized successfully by conventional solid state reaction method. The piezoelectric, dielectric and ferroelectric characteristics of the ceramics were investigated and discussed. The results shows that moderate KN addition can enhance the piezoelectric response without an obvious decline of ferroelectric properties. The largest piezoelectric response is obtained in BNT–0.05KN, whereas largest electric-field-induced strain is obtained in BNT–0.06KN. An effective d{sub 33}{sup eff} of ∼400 pC/N calculated from electric-field-induced strain is obtained in BNT–0.06KN. The present investigation demonstrates that addition KN effectively reduces the depolarization temperature of the BNT–xKN ceramics. The electrical properties of the ceramics are tightly related to their depolarization temperature. - Graphical abstract: Unipolar electric-field-induced strain for the BNT–xKN ceramics. A maximum strain of 0.28% is achieved with a low field in BNT–0.06KN. - Highlights: • Moderate KNbO{sub 3} addition enhances the piezoelectric properties of the ceramics. • A maximum strain of 0.28% is achieved with a low field. • A large piezoelectric response is achieved in 0.95(Bi{sub 0.5}Na{sub 0.5})TiO{sub 3}–0.05KNbO{sub 3}. • The electrical properties are tightly related to the depolarization temperature T{sub d}.

  2. KNN/BNT Composite Lead-Free Films for High-Frequency Ultrasonic Transducer Applications

    PubMed Central

    Lau, Sien Ting; Ji, Hong Fen; Li, Xiang; Ren, Wei; Zhou, Qifa; Shung, K. Kirk

    2011-01-01

    Lead-free K0.5Na0.5NbO3/Bi0.5Na0.5TiO3 (KNN/BNT) films have been fabricated by a composite sol-gel technique. Crystalline KNN fine powder was dispersed in the BNT precursor solution to form a composite slurry which was then spin-coated onto a platinum-buffered Si substrate. Repeated layering and vacuum infiltration were applied to produce 5-μm-thick dense composite film. By optimizing the sintering temperature, the films exhibited good dielectric and ferroelectric properties comparable to PZT films. A 193-MHz high-frequency ultrasonic transducer fabricated from this composite film showed a −6-dB bandwidth of approximately 34%. A tungsten wire phantom was imaged to demonstrate the capability of the transducer. PMID:21244994

  3. Anomalous change in leakage and displacement currents after electrical poling on lead-free ferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Borkar, Hitesh; Tomar, M.; Gupta, Vinay; Scott, J. F.; Kumar, Ashok

    2015-09-01

    We report the polarization, displacement current, and leakage current behavior of a trivalent nonpolar cation (Al3+) substituted lead free ferroelectric (Na0.46Bi0.46-xAlxBa0.08)TiO3 (NBAT-BT) (x = 0, 0.05, 0.07 and 0.10) electroceramics with tetragonal phase and P4 mm space group symmetry. Almost, three orders of magnitude decrease in leakage current were observed under electrical poling, which significantly improves microstructure, polarization, and displacement current. Effective poling neutralizes the domain pinning, traps charges at grain boundaries and fills oxygen vacancies with free charge carriers in matrix, thus saturated macroscopic polarization in contrast to that in unpoled samples. E-poling changes "bananas" type polarization loops to real ferroelectric loops.

  4. Piezoelectric nanoparticle-polymer composite foams.

    PubMed

    McCall, William R; Kim, Kanguk; Heath, Cory; La Pierre, Gina; Sirbuly, Donald J

    2014-11-26

    Piezoelectric polymer composite foams are synthesized using different sugar-templating strategies. By incorporating sugar grains directly into polydimethylsiloxane mixtures containing barium titanate nanoparticles and carbon nanotubes, followed by removal of the sugar after polymer curing, highly compliant materials with excellent piezoelectric properties can be fabricated. Porosities and elasticity are tuned by simply adjusting the sugar/polymer mass ratio which gave an upper bound on the porosity of 73% and a lower bound on the elastic coefficient of 32 kPa. The electrical performance of the foams showed a direct relationship between porosity and the piezoelectric outputs, giving piezoelectric coefficient values of ∼112 pC/N and a power output of ∼18 mW/cm3 under a load of 10 N for the highest porosity samples. These novel materials should find exciting use in a variety of applications including energy scavenging platforms, biosensors, and acoustic actuators.

  5. Piezoelectric energy harvesting from raised crosswalk devices

    NASA Astrophysics Data System (ADS)

    Ticali, Dario; Denaro, Mario; Barracco, Alessandro; Guerrieri, Marco

    2015-03-01

    This paper presents the main characteristics of an experimental energy harvesting device that can be used to recover energy from the vehicular and pedestrian traffic. The use of a piezoelectric bender devices leads to a innovative approach to Henergy Harvesting. The study focuses on the definition and specification of a mechanical configuration able to transfer the vibration from the main box to the piezoelectric transducer. The piezoelectric devices tested is the commonly used monolithic piezoceramic material lead-zirconate-titanate (PZT). The experimental results estimate the efficiency of this device tested and identify the feasibility of their use in real world applications. The results presented in this paper show the potential of piezoelectric materials for use in power harvesting applications.

  6. Radial Field Piezoelectric Diaphragms

    NASA Technical Reports Server (NTRS)

    Bryant, R. G.; Effinger, R. T., IV; Copeland, B. M., Jr.

    2002-01-01

    A series of active piezoelectric diaphragms were fabricated and patterned with several geometrically defined Inter-Circulating Electrodes "ICE" and Interdigitated Ring Electrodes "ICE". When a voltage potential is applied to the electrodes, the result is a radially distributed electric field that mechanically strains the piezoceramic along the Z-axis (perpendicular to the applied electric field). Unlike other piezoelectric bender actuators, these Radial Field Diaphragms (RFDs) strain concentrically yet afford high displacements (several times that of the equivalent Unimorph) while maintaining a constant circumference. One of the more intriguing aspects is that the radial strain field reverses itself along the radius of the RFD while the tangential strain remains relatively constant. The result is a Z-deflection that has a conical profile. This paper covers the fabrication and characterization of the 5 cm. (2 in.) diaphragms as a function of poling field strength, ceramic thickness, electrode type and line spacing, as well as the surface topography, the resulting strain field and displacement as a function of applied voltage at low frequencies. The unique features of these RFDs include the ability to be clamped about their perimeter with little or no change in displacement, the environmentally insulated packaging, and a highly repeatable fabrication process that uses commodity materials.

  7. Distributed structural control using multilayered piezoelectric actuators

    NASA Technical Reports Server (NTRS)

    Cudney, Harley H.; Inman, Daniel J.; Oshman, Yaakov

    1990-01-01

    A method of segmenting piezoelectric sensors and actuators is proposed which can preclude the currently experienced cancelation of sensor signals, or the reduction of actuator effectiveness, due to the integration of the property undergoing measurement or control. The segmentation method is demonstrated by a model developed for beam structures, to which multiple layers of piezoelectric materials are attached. A numerical study is undertaken of increasing active and passive damping of a beam using the segmented sensors and actuators over unsegmented sensors and actuators.

  8. Integration of lead-free ferroelectric on HfO2/Si (100) for high performance non-volatile memory applications

    PubMed Central

    Kundu, Souvik; Maurya, Deepam; Clavel, Michael; Zhou, Yuan; Halder, Nripendra N.; Hudait, Mantu K.; Banerji, Pallab; Priya, Shashank

    2015-01-01

    We introduce a novel lead-free ferroelectric thin film (1-x)BaTiO3-xBa(Cu1/3Nb2/3)O3 (x = 0.025) (BT-BCN) integrated on to HfO2 buffered Si for non-volatile memory (NVM) applications. Piezoelectric force microscopy (PFM), x-ray diffraction, and high resolution transmission electron microscopy were employed to establish the ferroelectricity in BT-BCN thin films. PFM study reveals that the domains reversal occurs with 180° phase change by applying external voltage, demonstrating its effectiveness for NVM device applications. X-ray photoelectron microscopy was used to investigate the band alignments between atomic layer deposited HfO2 and pulsed laser deposited BT-BCN films. Programming and erasing operations were explained on the basis of band-alignments. The structure offers large memory window, low leakage current, and high and low capacitance values that were easily distinguishable even after ~106 s, indicating strong charge storage potential. This study explains a new approach towards the realization of ferroelectric based memory devices integrated on Si platform and also opens up a new possibility to embed the system within current complementary metal-oxide-semiconductor processing technology. PMID:25683062

  9. Effects of Cr2O3 doping on the microstructure and electrical properties of (Ba,Ca)(Zr,Ti)O3 lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Xia, Xiang; Jiang, Xiangping; Chen, Chao; Jiang, Xingan; Tu, Na; Chen, Yunjing

    2016-06-01

    Lead-free ceramics (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3- x wt.%Cr2O3 (BCZT- xCr) were prepared via the conventional solid-state reaction method. The microstructure and electrical properties of BCZT- xCr samples were systematically studied. XRD and Raman results showed that all samples possessed a single phased perovskite structure and were close to the morphotropic phase boundary (MPB). With the increase of the Cr content, the rhombohedral-tetragonal phase transition temperature ( T R-T) increases slightly, and the Curie temperature ( T C) shifts towards the low temperature side. XPS analysis reveals that Cr3+ and Cr5 + ions co-existed in Cr-doped BCZT ceramics, indicating the different impact on the electrical properties from Cr ions as "acceptor" or "donor". For the x = 0.1 sample, relative high piezoelectric constants d 33 (˜316 pC/N) as well as high Q m (˜554) and low tanδ (˜0.8%) were obtained. In addition, the AC conductivity was also investigated. Hopping charge was considered as the main conduction mechanism at low temperature. As the temperature increases, small polarons and oxygen vacancies conduction played important roles.

  10. Cylindrical Piezoelectric Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  11. Phase transitional behavior and electrical properties of (1 - x)(K0.475Na0.48Li0.05)Nb0.95Sb0.05O3-xCaZrO3 lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Xue, Dandan; Ma, Yu; Liu, Kaihua; Chen, Zhiqian; Jiang, Xianquan

    2016-08-01

    Lead-free piezoelectric ceramics (1 - x)(K0.475Na0.48Li0.05)Nb0.95Sb0.05O3-xCaZrO3 with perovskite structure were prepared by conventional ceramic sintering technique, and the effects of the CaZrO3 content on the phase transitions, dielectric and piezoelectric properties of the ceramics were investigated. With the increase of CaZrO3, the crystal structure of the ceramics transformed from the orthorhombic-tetragonal phase coexistence to the coexistence of rhombohedral and orthorhombic phases at x = 0.01. Furthermore, both the rhombohedral-orthorhombic and orthorhombic-tetragonal phase transitions of the ceramics were found adjusted to be near room temperature with x = 0.005, which results in a significantly enhanced piezoelectric activity.

  12. Effect of B-site isovalent doping on electrical and ferroelectric properties of lead free bismuth titanate ceramics

    NASA Astrophysics Data System (ADS)

    Subohi, Oroosa; Kumar, G. S.; Malik, M. M.; Kurchania, Rajnish

    2016-06-01

    In the present work, zirconium modified bismuth titanate ceramics have been studied as potential lead-free ferroelectric materials over a broad temperature range (RT - 800 °C). Polycrystalline samples of Bi4Ti3-xZrxO12 (x=0.2, 0.4, 0.6) (BZrT) with high electrical resistivity were prepared using the solution combustion technique. The effect of Zr doping on the crystalline structure, ferroelectric properties and electrical conduction characteristics of BZrT ceramics were explored. Addition of zirconium to bismuth titanate enhances its dielectric constant and reduces the loss factor as it introduces orthorhombic distortion in bismuth titanate lattice which is exhibited by the growth along (00_10) lattice plane. Activation energy due to relaxation is found to be greater than that due to conduction thus confirming that electrical conduction in these ceramics is not due to relaxation of dipoles. Remanent polarization of the doped samples increases as the Zirconium content increases.

  13. Magnetoelectric properties of lead-free Ni0.93Co0.02Mn0.05Fe1.95O4-Na0.5Bi0.5TiO3 multiferroic composites synthesized by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Ramana Mudinepalli, Venkata; Song, S.-H.; Li, J.-Q.; Murty, B. S.

    2015-07-01

    Lead-free multiferroic ceramic composites of x Ni0.93Co0.02Mn0.05Fe1.95O4-(1-x) Na0.5Bi0.5TiO3 (x NCMF-(1-x) NBT, where x=0.1, 0.2, 0.3, 0.4 and 0.5 mol fraction) were synthesized by spark plasma sintering (SPS) in conjunction with high-energy ball milling. The phases, dielectric, piezoelectric, ferroelectric, magnetic and magnetoelectric properties of the composites were analyzed. The composites were composed of a mixture of spinel and perovskite phases. All the composite samples exhibited both apparent ferroelectric and ferromagnetic characteristics as well as considerable magnetoelectric (ME) effects. The maximum value of the ME voltage coefficient of the composites was quite high, being up to ~670 mV cm-1 Oe-1 for the 0.5 NCMF-0.5 NBT composite. Overall, the synthesized composites were promising in terms of electrical, magnetic and magnetoelectric properties, indicating that the SPS is a promising method of fabricating ME composite materials.

  14. Design and Development for Capacitive Humidity Sensor Applications of Lead-Free Ca,Mg,Fe,Ti-Oxides-Based Electro-Ceramics with Improved Sensing Properties via Physisorption.

    PubMed

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Bhuyan, Satyanarayan; Azrin Shah, Nabila Farhana; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-07-21

    Despite the many attractive potential uses of ceramic materials as humidity sensors, some unavoidable drawbacks, including toxicity, poor biocompatibility, long response and recovery times, low sensitivity and high hysteresis have stymied the use of these materials in advanced applications. Therefore, in present investigation, we developed a capacitive humidity sensor using lead-free Ca,Mg,Fe,Ti-Oxide (CMFTO)-based electro-ceramics with perovskite structures synthesized by solid-state step-sintering. This technique helps maintain the submicron size porous morphology of the developed lead-free CMFTO electro-ceramics while providing enhanced water physisorption behaviour. In comparison with conventional capacitive humidity sensors, the presented CMFTO-based humidity sensor shows a high sensitivity of up to 3000% compared to other materials, even at lower signal frequency. The best also shows a rapid response (14.5 s) and recovery (34.27 s), and very low hysteresis (3.2%) in a 33%-95% relative humidity range which are much lower values than those of existing conventional sensors. Therefore, CMFTO nano-electro-ceramics appear to be very promising materials for fabricating high-performance capacitive humidity sensors.

  15. Design and Development for Capacitive Humidity Sensor Applications of Lead-Free Ca,Mg,Fe,Ti-Oxides-Based Electro-Ceramics with Improved Sensing Properties via Physisorption.

    PubMed

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Bhuyan, Satyanarayan; Azrin Shah, Nabila Farhana; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-01-01

    Despite the many attractive potential uses of ceramic materials as humidity sensors, some unavoidable drawbacks, including toxicity, poor biocompatibility, long response and recovery times, low sensitivity and high hysteresis have stymied the use of these materials in advanced applications. Therefore, in present investigation, we developed a capacitive humidity sensor using lead-free Ca,Mg,Fe,Ti-Oxide (CMFTO)-based electro-ceramics with perovskite structures synthesized by solid-state step-sintering. This technique helps maintain the submicron size porous morphology of the developed lead-free CMFTO electro-ceramics while providing enhanced water physisorption behaviour. In comparison with conventional capacitive humidity sensors, the presented CMFTO-based humidity sensor shows a high sensitivity of up to 3000% compared to other materials, even at lower signal frequency. The best also shows a rapid response (14.5 s) and recovery (34.27 s), and very low hysteresis (3.2%) in a 33%-95% relative humidity range which are much lower values than those of existing conventional sensors. Therefore, CMFTO nano-electro-ceramics appear to be very promising materials for fabricating high-performance capacitive humidity sensors. PMID:27455263

  16. Design and Development for Capacitive Humidity Sensor Applications of Lead-Free Ca,Mg,Fe,Ti-Oxides-Based Electro-Ceramics with Improved Sensing Properties via Physisorption

    PubMed Central

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Bhuyan, Satyanarayan; Azrin Shah, Nabila Farhana; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-01-01

    Despite the many attractive potential uses of ceramic materials as humidity sensors, some unavoidable drawbacks, including toxicity, poor biocompatibility, long response and recovery times, low sensitivity and high hysteresis have stymied the use of these materials in advanced applications. Therefore, in present investigation, we developed a capacitive humidity sensor using lead-free Ca,Mg,Fe,Ti-Oxide (CMFTO)-based electro-ceramics with perovskite structures synthesized by solid-state step-sintering. This technique helps maintain the submicron size porous morphology of the developed lead-free CMFTO electro-ceramics while providing enhanced water physisorption behaviour. In comparison with conventional capacitive humidity sensors, the presented CMFTO-based humidity sensor shows a high sensitivity of up to 3000% compared to other materials, even at lower signal frequency. The best also shows a rapid response (14.5 s) and recovery (34.27 s), and very low hysteresis (3.2%) in a 33%–95% relative humidity range which are much lower values than those of existing conventional sensors. Therefore, CMFTO nano-electro-ceramics appear to be very promising materials for fabricating high-performance capacitive humidity sensors. PMID:27455263

  17. Characterization of tin crystal orientation evolution during thermal cycling in lead-free solder joints

    NASA Astrophysics Data System (ADS)

    Zhou, Bite

    To address the long term reliability of lead-free solder joints in electronic devices during thermal cycling, the fundamental understanding of deformation mechanisms was studied using polarized light optical microscopy (PLM), electron backscatter diffraction (EBSD) in scanning electron microscopy (SEM), and synchrotron X-ray diffraction (XRD). Near-eutectic Sn-3.0(wt %) Ag-0.5(wt %) Cu (SAC305) lead-free solder joints were assessed in three different package designs: low-strain plastic ball grid array (PBGA), medium-strain fine-pitch ball grid array (BGA), and high-strain wafer-level-chip-scale package (WLCSP). The effect of microstructure evolution on solder failure is correlated with dislocation slip activities. The major failure mode in lead-free solder joints during thermal cycling that causes the electrical failure of the device is cracking in the bulk Sn near the Si chip/solder interface. Microstructure and Sn grain orientation evolution usually precedes crack development. A combined approach of both statistical analysis of a large number of solder joints, and detailed studies of individual solder balls was used to investigate the causes of fracture. Sn crystal orientation evolution and its effect on deformation was characterized in solder joints with different thermal histories, and compared with those from other package designs with different effective strain levels. The relationship between the initial dominant and localized recrystallized Sn grain orientations on crack development was investigated. It is found that in the low-strain package design, cracking is strongly correlated with Sn grain orientations with the [001] direction (c-axis) nearly aligned with the chip/solder interface. But no cracks were observed in solder balls with dominant orientations that have the c-axis normal to the interface plane. In higher-strain packages, however, cracking occurred in a variety of Sn grain orientations, and even solder balls with dominant orientations that are

  18. Polarization and Piezoelectric Properties of a Nitrile Substituted Polyimide

    NASA Technical Reports Server (NTRS)

    Simpson, Joycelyn; Ounaies, Zoubeida; Fay, Catharine

    1997-01-01

    This research focuses on the synthesis and characterization of a piezoelectric (beta-CN)- APB/ODPA polyimide. The remanent polarization and piezoelectric d(sub 31) and g(sub 33) coefficients are reported to assess the effect of synthesis variations. Each of the materials exhibits a level of piezoelectricity which increases with temperature. The remanent polarization is retained at temperatures close to the glass transition temperature of the polyimide.

  19. Piezoelectric Wheel System

    NASA Astrophysics Data System (ADS)

    Juang, Puu-An

    2007-10-01

    A piezoelectric wheel system is proposed for used as a microstepping displacement device including a carrier and two displacement members, which are separately pivoted on the carrier. Each displacement member includes two wheels, and which can not rotate. In addition, each wheel includes a wheel sheet and a piezoelectric element embedded on its surface. When the piezoelectricity element generates and transmits power to the wheel sheet, the wheel induces vibration and deformation. Therefore, owing to the wheel sheets and the touched ground involving their relative motion, the displacement device can be moved or can be oriented its motion direction. The wheel system involves direct movement, and has no rotor requirement. In this research, a three-dimensional (3D) mechanical element with an extra electrical degree of freedom is employed to simulate the dynamic vibration modes of the linear piezoelectric, mechanical, and piezoelectric-mechanical behaviours of the piezoelectric wheel.

  20. Polarization Stability of Amorphous Piezoelectric Polyimides

    NASA Technical Reports Server (NTRS)

    Park, C.; Ounaies, Z.; Su, J.; Smith, J. G., Jr.; Harrison, J. S.

    2000-01-01

    Amorphous polyimides containing polar functional groups have been synthesized and investigated for potential use as high temperature piezoelectric sensors. The thermal stability of the piezoelectric effect of one polyimide was evaluated as a function of various curing and poling conditions under dynamic and static thermal stimuli. First, the polymer samples were thermally cycled under strain by systematically increasing the maximum temperature from 50 C to 200 C while the piezoelectric strain coefficient was being measured. Second, the samples were isothermally aged at an elevated temperature in air, and the isothermal decay of the remanent polarization was measured at room temperature as a function of time. Both conventional and corona poling methods were evaluated. This material exhibited good thermal stability of the piezoelectric properties up to 100 C.

  1. Adaptive piezoelectric shell structures: theory and experiments

    NASA Astrophysics Data System (ADS)

    Tzou, H. S.; Zhong, J. P.

    1993-07-01

    Active "smart" space and mechanical structures with adaptive dynamic characteristics have long been interested in a variety of high-performance systems, e.g. flexible space structures, flexible robots, "smart" machines etc. In this paper, an active adaptive structure made of piezoelectric materials is proposed and evaluated. Electromechanical equations of motion and generalised boundary conditions of a generic piezoelectric shell subjected to mechanical and electrical excitations are derived using Hamilton's principle and the linear piezoelectric theory. The structural adaptivity is achieved by a voltage feedback (open or closed loops) utilising the converse piezoelectric effect. Applications of the theory is demonstrated in a bimorph beam case and a cylindrical shell case. Frequency manipulation of the bimorph beam is studied theoretically and experimentally. Damping control of the cylindrical shell via in-plane membrane forces is also investigated.

  2. Dynamic adaptivity of "smart" piezoelectric structures

    NASA Astrophysics Data System (ADS)

    Tzou, Horn-Sen; Zhong, Jianping P.

    1990-10-01

    Active smart" space and machine structures with adaptive dynamic characteristics have long been interested in a variety of high-performance systems, e.g., flexible robots, flexible space structures, "smart" machines, etc. In this paper, an active adaptive structure made of piezoelectric materials is proposed and evaluated. The structural adaptivity is achieved by a voltage feedback (open or closed loops) utilizing the converse piezoelectric effect. A mathematical model is proposed and the electrodynamic equations of motion and the generalized boundary conditions of a generic piezoelectric shell subjected to mechanical and electrical excitations are derived using Hamilton's principle and the linear piezoelectric theory. The dynamic adaptivity of the structure is introduced using a feedback control system. The theory is demonstrated in a case study in which the structural adaptivity (natural frequency) is investigated.

  3. Enhanced interfacial thermal transport in pnictogen tellurides metallized with a lead-free solder alloy

    SciTech Connect

    Devender,; Ramanath, Ganpati; Lofgreen, Kelly; Devasenathipathy, Shankar; Swan, Johanna; Mahajan, Ravi; Borca-Tasciuc, Theodorian

    2015-11-15

    Controlling thermal transport across metal–thermoelectric interfaces is essential for realizing high efficiency solid-state refrigeration and waste-heat harvesting power generation devices. Here, the authors report that pnictogen chalcogenides metallized with bilayers of Sn{sub 96.5}Ag{sub 3}Cu{sub 0.5} solder and Ni barrier exhibit tenfold higher interfacial thermal conductance Γ{sub c} than that obtained with In/Ni bilayer metallization. X-ray diffraction and x-ray spectroscopy indicate that reduced interdiffusion and diminution of interfacial SnTe formation due to Ni layer correlates with the higher Γ{sub c}. Finite element modeling of thermoelectric coolers metallized with Sn{sub 96.5}Ag{sub 3}Cu{sub 0.5}/Ni bilayers presages a temperature drop ΔT ∼ 22 K that is 40% higher than that obtained with In/Ni metallization. Our results underscore the importance of controlling chemical intermixing at solder–metal–thermoelectric interfaces to increase the effective figure of merit, and hence, the thermoelectric cooling efficiency. These findings should facilitate the design and development of lead-free metallization for pnictogen chalcogenide-based thermoelectrics.

  4. Characterization of Low-Melting-Point Sn-Bi-In Lead-Free Solders

    NASA Astrophysics Data System (ADS)

    Li, Qin; Ma, Ninshu; Lei, YongPing; Lin, Jian; Fu, HanGuang; Gu, Jian

    2016-11-01

    Development of lead-free solders with low melting temperature is important for substitution of Pb-based solders to reduce direct risks to human health and the environment. In the present work, Sn-Bi-In solders were studied for different ratios of Bi and Sn to obtain solders with low melting temperature. The microstructure, thermal properties, wettability, mechanical properties, and reliability of joints with Cu have been investigated. The results show that the microstructures of the Sn-Bi-In solders were composed of β-Sn, Bi, and InBi phases. The intermetallic compound (IMC) layer was mainly composed of Cu6Sn5, and its thickness increased slightly as the Bi content was increased. The melting temperature of the solders was around 100°C to 104°C. However, when the Sn content exceeded 50 wt.%, the melting range became larger and the wettability became worse. The tensile strength of the solder alloys and solder joints declined with increasing Bi content. Two fracture modes (IMC layer fracture and solder/IMC mixed fracture) were found in solder joints. The fracture mechanism of solder joints was brittle fracture. In addition, cleavage steps on the fracture surface and coarse grains in the fracture structure were comparatively apparent for higher Bi content, resulting in decreased elongation for both solder alloys and solder joints.

  5. Characterization of Low-Melting-Point Sn-Bi-In Lead-Free Solders

    NASA Astrophysics Data System (ADS)

    Li, Qin; Ma, Ninshu; Lei, YongPing; Lin, Jian; Fu, HanGuang; Gu, Jian

    2016-02-01

    Development of lead-free solders with low melting temperature is important for substitution of Pb-based solders to reduce direct risks to human health and the environment. In the present work, Sn-Bi-In solders were studied for different ratios of Bi and Sn to obtain solders with low melting temperature. The microstructure, thermal properties, wettability, mechanical properties, and reliability of joints with Cu have been investigated. The results show that the microstructures of the Sn-Bi-In solders were composed of β-Sn, Bi, and InBi phases. The intermetallic compound (IMC) layer was mainly composed of Cu6Sn5, and its thickness increased slightly as the Bi content was increased. The melting temperature of the solders was around 100°C to 104°C. However, when the Sn content exceeded 50 wt.%, the melting range became larger and the wettability became worse. The tensile strength of the solder alloys and solder joints declined with increasing Bi content. Two fracture modes (IMC layer fracture and solder/IMC mixed fracture) were found in solder joints. The fracture mechanism of solder joints was brittle fracture. In addition, cleavage steps on the fracture surface and coarse grains in the fracture structure were comparatively apparent for higher Bi content, resulting in decreased elongation for both solder alloys and solder joints.

  6. Developing a NASA Lead-Free Policy for Electronics - Lessons Learned

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) is not required by United States or international law to use lead-free (Pb-free) electronic systems but international pressure in the world market is making it increasingly important that NASA have a Pb-free policy. In fact, given the international nature of the electronics market, all organizations need a Pb-free policy. This paper describes the factors which must be taken into account in formulating the policy, the tools to aid in structuring the policy and the unanticipated and difficult challenges encountered. NASA is participating in a number of forums and teams trying to develop effective approaches to controlling Pb-free adoption in high reliability systems. The activities and status of the work being done by these teams will be described. NASA also continues to gather information on metal whiskers, particularly tin based, and some recent examples will be shared. The current lack of a policy is resulting in "surprises" and the need to disposition undesirable conditions on a case-by-case basis. This is inefficient, costly and can result in sub-optimum outcomes.

  7. In Situ Synchrotron Characterization of Melting, Dissolution, and Resolidification in Lead-Free

    SciTech Connect

    Zhou, Bite; Bieler, Thomas R.; Wu, Guilin; Zaefferer, Stefan; Lee, Tae-Kyu; Liu, Kuo-Chuan

    2013-04-08

    Melting and solidification of SAC 305 lead-free solder joints in a wafer-level chip-scale package were examined in situ with synchrotron x-ray diffraction. The chips with balls attached (but not assembled to a circuit board) were reflowed one to three times using a temperature and time history similar to an industrial reflow process. Diffraction patterns from the same joint were collected every 0.5 s during the melting and solidification process. The solidification of the Sn phase in the solder joint occurred between 0.5 s and 1 s. During melting, most of the Sn melted in about 0.5 s, but in some cases took 2-5 s for the Sn peak to completely disappear. In one instance, the Sn peak persisted for 30 s. The Ag{sub 3}Sn peaks dissolved in about 1-2 s, but the Cu{sub 6}Sn{sub 5} peaks from the interface were persistent and did not change throughout the melting and solidification process. Completely different Sn crystal orientations were always developed upon resolidification.

  8. Vibration analysis of composite laminate plate excited by piezoelectric actuators.

    PubMed

    Her, Shiuh-Chuan; Lin, Chi-Sheng

    2013-03-01

    Piezoelectric materials can be used as actuators for the active vibration control of smart structural systems. In this work, piezoelectric patches are surface bonded to a composite laminate plate and used as vibration actuators. A static analysis based on the piezoelectricity and elasticity is conducted to evaluate the loads induced by the piezoelectric actuators to the host structure. The loads are then employed to develop the vibration response of a simply supported laminate rectangular plate excited by piezoelectric patches subjected to time harmonic voltages. An analytical solution of the vibration response of a simply supported laminate rectangular plate under time harmonic electrical loading is obtained and compared with finite element results to validate the present approach. The effects of location and exciting frequency of piezoelectric actuators on the vibration response of the laminate plate are investigated through a parametric study. Numerical results show that modes can be selectively excited, leading to structural vibration control.

  9. High-Temperature Piezoelectric Crystals for Acoustic Wave Sensor Applications.

    PubMed

    Zu, Hongfei; Wu, Huiyan; Wang, Qing-Ming

    2016-03-01

    In this review paper, nine different types of high-temperature piezoelectric crystals and their sensor applications are overviewed. The important materials' properties of these piezoelectric crystals including dielectric constant, elastic coefficients, piezoelectric coefficients, electromechanical coupling coefficients, and mechanical quality factor are discussed in detail. The determination methods of these physical properties are also presented. Moreover, the growth methods, structures, and properties of these piezoelectric crystals are summarized and compared. Of particular interest are langasite and oxyborate crystals, which exhibit no phase transitions prior to their melting points ∼ 1500 °C and possess high electrical resistivity, piezoelectric coefficients, and mechanical quality factor at ultrahigh temperature ( ∼ 1000 °C). Finally, some research results on surface acoustic wave (SAW) and bulk acoustic wave (BAW) sensors developed using this high-temperature piezoelectric crystals are discussed.

  10. Vibration Analysis of Composite Laminate Plate Excited by Piezoelectric Actuators

    PubMed Central

    Her, Shiuh-Chuan; Lin, Chi-Sheng

    2013-01-01

    Piezoelectric materials can be used as actuators for the active vibration control of smart structural systems. In this work, piezoelectric patches are surface bonded to a composite laminate plate and used as vibration actuators. A static analysis based on the piezoelectricity and elasticity is conducted to evaluate the loads induced by the piezoelectric actuators to the host structure. The loads are then employed to develop the vibration response of a simply supported laminate rectangular plate excited by piezoelectric patches subjected to time harmonic voltages. An analytical solution of the vibration response of a simply supported laminate rectangular plate under time harmonic electrical loading is obtained and compared with finite element results to validate the present approach. The effects of location and exciting frequency of piezoelectric actuators on the vibration response of the laminate plate are investigated through a parametric study. Numerical results show that modes can be selectively excited, leading to structural vibration control. PMID:23529121

  11. High-Temperature Piezoelectric Crystals for Acoustic Wave Sensor Applications.

    PubMed

    Zu, Hongfei; Wu, Huiyan; Wang, Qing-Ming

    2016-03-01

    In this review paper, nine different types of high-temperature piezoelectric crystals and their sensor applications are overviewed. The important materials' properties of these piezoelectric crystals including dielectric constant, elastic coefficients, piezoelectric coefficients, electromechanical coupling coefficients, and mechanical quality factor are discussed in detail. The determination methods of these physical properties are also presented. Moreover, the growth methods, structures, and properties of these piezoelectric crystals are summarized and compared. Of particular interest are langasite and oxyborate crystals, which exhibit no phase transitions prior to their melting points ∼ 1500 °C and possess high electrical resistivity, piezoelectric coefficients, and mechanical quality factor at ultrahigh temperature ( ∼ 1000 °C). Finally, some research results on surface acoustic wave (SAW) and bulk acoustic wave (BAW) sensors developed using this high-temperature piezoelectric crystals are discussed. PMID:26886982

  12. Piezoelectric resonators based on self-assembled diphenylalanine microtubes

    NASA Astrophysics Data System (ADS)

    Bosne, E. D.; Heredia, A.; Kopyl, S.; Karpinsky, D. V.; Pinto, A. G.; Kholkin, A. L.

    2013-02-01

    Piezoelectric actuation has been widely used in microelectromechanical devices including resonance-based biosensors, mass detectors, resonators, etc. These were mainly produced by micromachining of Si and deposited inorganic piezoelectrics based on metal oxides or perovskite-type materials which have to be further functionalized in order to be used in biological applications. In this work, we demonstrate piezoelectrically driven micromechanical resonators based on individual self-assembled diphenylalanine microtubes with strong intrinsic piezoelectric effect. Tubes of different diameters and lengths were grown from the solution and assembled on a rigid support. The conducting tip of the commercial atomic force microscope was then used to both excite vibrations and study resonance behavior. Efficient piezoelectric actuation at the fundamental resonance frequency ≈2.7 MHz was achieved with a quality factor of 114 for a microtube of 277 μm long. A possibility of using piezoelectric dipeptides for biosensor applications is discussed.

  13. Pyro-electric energy harvesting with a high Curie temperature material LiNbO3

    NASA Astrophysics Data System (ADS)

    Karim, Hasanul; Sarker, MD Rashedul Hasan; Shahriar, Shaimum; Shuvo, Mohammad Arif Ishtiaque; Delfin, Diego; Hodges, Deidra; Love, Norman; Lin, Yirong

    2016-04-01

    Energy harvesting has been gaining significant interest as a potential solution for energizing next generation sensor and energy storage devices. The most widely investigated material for piezoelectric and pyro-electric energy harvesting to date is PZT (Lead Zirconate Titanate), owing to its good piezoelectric and pyro-electric properties. However, Lead is detrimental to human health and to the environment. Hence, alternative materials are required to be investigated for this purpose. In this paper, a lead free material Lithium Niobate (LNB) is reported as a potential material for pyro-electric energy harvesting. Although, it has lower pyro-electric properties than PZT, it has better properties than other lead free alternatives of PZT such as ZnO. In addition, LNB has a high curie point of 1142 °C, which makes it suitable for high temperature environment where other pyro-electric materials are not suitable. Therefore, a single crystal LNB has been investigated as a source of energy harvesting under alternative heating and cooling environment. A commercial 0.2 F super-capacitor was used as the energy storage device.

  14. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications.

    PubMed

    Zhou, Qifa; Lau, Sienting; Wu, Dawei; Shung, K Kirk

    2011-02-01

    Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the current status of the piezoelectric films and recent progress in the development of high frequency ultrasonic transducers will be discussed. Then details for preparation and structure of the materials derived from piezoelectric thick film technologies will be described. Both chemical and physical methods are included in the discussion, namely, the sol-gel approach, aerosol technology and hydrothermal method. The electric and piezoelectric properties of the piezoelectric films, which are very important for transducer applications, such as permittivity and electromechanical coupling factor, are also addressed. Finally, the recent developments in the high frequency transducers and arrays with piezoelectric ZnO and PZT thick film using MEMS technology are presented. In addition, current problems and further direction of the piezoelectric films for very high frequency ultrasound application (up to GHz) are also discussed.

  15. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications

    PubMed Central

    Zhou, Qifa; Lau, Sienting; Wu, Dawei; Shung, K. Kirk

    2011-01-01

    Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the current status of the piezoelectric films and recent progress in the development of high frequency ultrasonic transducers will be discussed. Then details for preparation and structure of the materials derived from piezoelectric thick film technologies will be described. Both chemical and physical methods are included in the discussion, namely, the sol–gel approach, aerosol technology and hydrothermal method. The electric and piezoelectric properties of the piezoelectric films, which are very important for transducer applications, such as permittivity and electromechanical coupling factor, are also addressed. Finally, the recent developments in the high frequency transducers and arrays with piezoelectric ZnO and PZT thick film using MEMS technology are presented. In addition, current problems and further direction of the piezoelectric films for very high frequency ultrasound application (up to GHz) are also discussed. PMID:21720451

  16. Theoretical analysis of dynamic property for piezoelectric cantilever triple-layer benders with large piezoelectric and electromechanical coupling coefficients

    NASA Astrophysics Data System (ADS)

    Gong, Li Jiao; Pan, Cheng Liang; Pan, Qiao Sheng; Feng, Zhi Hua

    2016-06-01

    Ferroelectric single crystals, such as PZN-PT, provide novel prospects in piezoelectric bending devices such as actuators, sensors or energy harvesters because of their extraordinarily large piezoelectric coefficients. However, large errors may occur in some analyses on electromechanical behaviors using the conventional models. We find the bending rigidity of piezoelectric composited bender is affected not only by thickness, width and the modulus of elasticity of the different layers but also electromechanical coupling coefficients (EMCCs) of the piezoelectric material and the larger EMCCs mean more marked effect. This paper focuses on the derivation of the applied input excitation and output response characteristics in the circular frequency domain for piezoelectric cantilever triple-layer benders (PCTBs), taking into account the secondary piezoelectric effect. Analytic dynamic descriptions of such actuators and transducers are obtained. Based on the presented models dynamic features of PCTB composed of PZN-8%PT are calculated, and numerical results coincide with simulations using the finite element method (FEM).

  17. Development of lead-free copper alloy-graphite castings. Technical report, January 1994--December 1994

    SciTech Connect

    Rohatgi, P.K.

    1995-07-01

    Water model experiments were conducted to develop a two-stage stirring method for obtaining higher yields and a more uniform distribution of graphite particles in copper alloys. This was followed by several melts for synthesis of copper-graphite alloys in which Ti was used as a wetting agent to improve the wettability of graphite in the copper melt. In the first stage, a vortex method was employed to facilitate the addition of graphite particles into the copper melt. In the second stage, a specially designed stirrer was used for uniform particle distribution while avoiding the formation of vortex in the melt. The two-stage stirring was found to considerably improve the recovery of graphite, over those obtained with the prior practice of single-stage stirring and resulting in a more uniform particle distribution. In addition, graphite recoveries increased with increasing Ti content in the range investigated. Floatation, fluidity, and directional solidification experiments were also conducted on copper-graphite alloys synthesized in this study. Fluidity tests showed that the spiral fluidity length of the yellow brass alloy increased with temperature and decreased with graphite. The fluidity of copper-graphite alloys investigated to-date remained adequate to make a variety of castings. The observations of casting microstructure under directional solidification and floatation showed that in certain castings the graphite particles remained agglomerated, and they readily floated to the upper part of the castings where they reduced the size of gains. However, even in the agglomerated form, the graphite particles improved the machinability of copper alloys in a manner similar to lead. The results of the first year work provide an improved method of synthesis of lead free copper graphite alloys with improved machinability and adequate fluidity.

  18. Development of lead-free copper alloy-graphite casting. Annual report, January--December 1994

    SciTech Connect

    Rohatgi, P.K.

    1996-02-01

    Water model experiments were conducted to develop a two-stage stirring method for obtaining higher yields and a more uniform distribution of particles in copper alloys. This was followed by several melts for synthesis of copper-graphite alloys in which T1 was used as a wetting agent to improve the wettability of graphite in the copper melt. In the first stage, a vortex method was employed to facilitate the suction of graphite particles into the copper melt. In the second stage, the specially designed stirrer was used to avoid the formation of vortex in melt. The two stage stirring was found to considerably improve the recovery of graphite, over those obtained with the prior practice of single stage stirring. In addition, graphite recoveries increased with increasing Ti content. Flotation, fluidity, and directional solidification experiments were also conducted on copper-graphite alloys synthesized in this study. Tests showed that the spiral fluidity length of the yellow brass alloy increased with temperature and decreased with graphite. The fluidity of copper-graphite alloys investigated to date remained adequate to make a variety of castings. The observations of microstructure of directional solidification and flotation showed that in certain castings the graphite particles were agglomerated and they float to the upper part of the castings where they reduced the size of grains. However, in the agglomerated form, the graphite particles improved the machinability of copper alloys in a manner similar to lead. The result of the first years work provide an improved method of synthesis of lead free copper graphite alloys with improved machinability and adequate fluidity. Future work will continue to further improve the distribution of graphite particles in casting while retaining adequate fluidity and improved machinability. Techniques like centrifugal casting will be developed to concentrate graphite in regions where it is required for machinability in bearings.

  19. Dielectric loss against piezoelectric power harvesting

    NASA Astrophysics Data System (ADS)

    Liang, Junrui; Shu-Hung Chung, Henry; Liao, Wei-Hsin

    2014-09-01

    Piezoelectricity is one of the most popular electromechanical transduction mechanisms for constructing kinetic energy harvesting systems. When a standard energy harvesting (SEH) interface circuit, i.e., bridge rectifier plus filter capacitor, is utilized for collecting piezoelectric power, the previous literature showed that the power conversion can be well predicted without much consideration for the effect of dielectric loss. Yet, as the conversion power gets higher by adopting power-boosting interface circuits, such as synchronized switch harvesting on inductor (SSHI), the neglect of dielectric loss might give rise to deviation in harvested power estimation. Given the continuous progress on power-boosting interface circuits, the role of dielectric loss in practical piezoelectric energy harvesting (PEH) systems should receive attention with better evaluation. Based on the integrated equivalent impedance network model, this fast track communication provides a comprehensive study on the susceptibility of harvested power in PEH systems under different conditions. It shows that, dielectric loss always counteracts piezoelectric power harvesting by causing charge leakage across piezoelectric capacitance. In particular, taking corresponding ideal lossless cases as references, the counteractive effect might be aggravated under one of the five conditions: larger dielectric loss tangent, lower vibration frequency, further away from resonance, weaker electromechanical coupling, or using power-boosting interface circuit. These relationships are valuable for the study of PEH systems, as they not only help explain the role of dielectric loss in piezoelectric power harvesting, but also add complementary insights for material, structure, excitation, and circuit considerations towards holistic evaluation and design for practical PEH systems.

  20. Partial-rotating piezoelectric actuators for intracytoplasmic sperm injection

    NASA Astrophysics Data System (ADS)

    Tan, K. K.; Putra, A. S.

    2005-12-01

    In this paper, the design of a partially-rotating piezoelectric motor/actuator based on a cylindrical piezoelectric material is presented. A prototype of the motor is developed and its performance, with respect to yielding a controllable partial rotation, is evaluated. The details of the design, development and tests will be duly provided in the paper.

  1. Case study of piezoelectric flexible thin films in pulse excited electromechanical transducers

    NASA Astrophysics Data System (ADS)

    Salamon, Natalia; Gozdur, Roman; Turczyński, Marcin; Lisik, Zbigniew; Soupremanien, Ulrich; Ollier, Emmanuel; Monfray, Stéphane; Skotnicki, Thomas

    2014-08-01

    The paper presents the examination of modern flexible piezoelectric thin films made of PVDF (polyvinylidene difluoride) in terms of their application in electromechanical transducers, a brief overview of available piezoelectric materials and energy harvesting devices based on piezoelectric. In order to assess the usefulness of these films from the perspective of described devices, the energy efficiency coefficient determined under the pulse excitation conditions was taken into account. Normalized volumetric efficiency ratio allows to evaluate the commercially available flexible piezoelectric films.

  2. High Power Piezoelectric Characterization for Piezoelectric Transformer Development

    NASA Astrophysics Data System (ADS)

    Ural, Seyit O.

    The major goal was to develop characterization techniques to identify and define guidelines to manufacture high power density actuators. We particularly aim at improving the strengths of piezoelectric transformers, namely the high efficiency, ease of manufacturing, low electromagnetic noise, and high power to weight ratio resulting in an adaptor application by identifying material limitations, geometrical limitations and offer guidelines to counter drawbacks limiting the power density. There are 3 losses present in piezoelectrics. Namely dielectric, elastic and piezoelectric losses. These losses can be calculated using mechanical quality factors of the resonating piezoelectric actuator. But in order to calculate all three losses, the mechanical quality factor for resonance and anti resonance need to be measured. Although the mechanical quality factor for resonance is conventionally measured, measurements in antiresonance have been ignored. Since there was no unique measurement technique to address antiresonance and resonance Q in one single sweep, in this study constant vibration velocity method was developed. During the constant vibration velocity measurement, the input electrical energy is monitored and significant differences between resonance and antiresonance drives are observed. For the same output work (identical vibration velocity) significant differences in the losses were observed. Thermographic images have shown increasing temperature differences for resonance and antiresonance nodal point temperatures, with higher vibration velocities. The theoretical evaluation identified the difference observed in the mechanical quality factors at resonance and antiresonance to stem from the piezoelectric loss. In order to investigate losses in the absence of thermal effects a transient characterization technique was adopted. The burst technique, originally developed for characterization of the mechanical quality factor at resonance, has been modified with a switch

  3. Effect of garment design on piezoelectricity harvesting from joint movement

    NASA Astrophysics Data System (ADS)

    Yang, Jin-Hee; Cho, Hyun-Seung; Park, Seon-Hyung; Song, Seung-Hwan; Yun, Kwang-Seok; Lee, Joo Hyeon

    2016-03-01

    The harvesting of piezoelectricity through the human body involves the conversion of mechanical energy, mostly generated by the repeated movements of the body, to electrical energy, irrespective of the time and location. In this research, it was expected that the garment design would play an important role in increasing the efficiency of piezoelectricity scavenged in a garment because the mechanical deformation imposed on the energy harvester could increase through an optimal design configuration for the garment parts supporting a piezoelectricity harvester. With this expectation, this research aimed to analyze the effect of the clothing factors, and that of human factors on the efficiency of piezoelectricity harvesting through clothing in joint movements. These analyses resulted in that the efficiency of the piezoelectricity harvesting was affected from both two clothing factors, tightness level depending upon the property of the textile material and design configuration of the garment part supporting the piezoelectricity harvesting. Among the three proposed designs of the garment part supporting the piezoelectricity harvesting, ‘reinforced 3D module design,’ which maximized the value of radius in the piezoelectricity harvester, showed the highest efficiency across all areas of the joints in the human body. The two human factors, frequency of movement and body part, affected the efficiency of the piezoelectricity harvesting as well.

  4. A finite element study of piezoelectric thin films on substrates

    NASA Astrophysics Data System (ADS)

    Liu, Bo

    The overall goal of this work has been mainly to advance the understanding of the degradation in the response of piezoelectric thin films after they are deposited on substrates. To have better understanding of the difference in the response between free standing piezoelectric films and those deposited on a substrate, we calculated the normalized "effective" piezoelectric coefficients for BT/MgO, PZT/STO and ZnO/STO respectively. We also studied the impact on the effective coefficients due to the components of the bulk material's piezoelectric coefficients. After studying the clamping effects of the substrate, lattice mismatch, stiffness of the films and the substrates, we found that a periodic structure of piezoelectric thin films on substrates is a useful approach to overcome the degradation of the piezoresponse. Further, if non-piezoelectric islands are inserted between the periodic piezoelectric islands, there is an additional contribution that improves the piezoresponse of the piezoelectric films; we refer to this structure as a bi-island periodic structure. The bi-island structure may also be used as a hybrid device if the non-piezoelectric islands have special properties, e.g. piezomagnetism, ferromagnetism and shape memory. The hybrid device may thus be used for signal transduction, e.g. converting electrical signals to magnetic/mechanical/thermal signals and vice-versa, as well as energy harvesting.

  5. Lead free CH3NH3SnI3 perovskite thin-film with p-type semiconducting nature and metal-like conductivity

    NASA Astrophysics Data System (ADS)

    Iefanova, Anastasiia; Adhikari, Nirmal; Dubey, Ashish; Khatiwada, Devendra; Qiao, Qiquan

    2016-08-01

    Lead free CH3NH3SnI3 perovskite thin film was prepared by low temperature solution processing and characterized using current sensing atomic force microscopy (CS-AFM). Analysis of electrical, optical, and optoelectrical properties reveals unique p-type semiconducting nature and metal like conductivity of this material. CH3NH3SnI3 film also showed a strong absorption in visible and near infrared spectrum with absorption onset of 1.3 eV. X-ray Diffraction analysis and scanning electron microscopy (SEM) confirmed a structure of this compound and uniform film formation. The morphology, film uniformity, light harvesting and electrical properties strongly depend on preparation method and precursor solution. CH3NH3SnI3 films prepared based on dimethylformamide (DMF) showed higher crystallinity and light harvesting capability compared to the film based on combination of dimethyl sulfoxide (DMSO) with gamma-butyrolactone (GBL). Local photocurrent mapping analysis showed that CH3NH3SnI3 can be used as an active layer and have a potential to fabricate lead free photovoltaic devices.

  6. Large and broadband piezoelectricity in smart polymer-foam space-charge electrets

    NASA Astrophysics Data System (ADS)

    Neugschwandtner, G. S.; Schwödiauer, R.; Vieytes, M.; Bauer-Gogonea, S.; Bauer, S.; Hillenbrand, J.; Kressmann, R.; Sessler, G. M.; Paajanen, M.; Lekkala, J.

    2000-12-01

    Charged closed-cell microporous polypropylene foams are shown to exhibit piezoelectric resonance modes in the dielectric function, coupled with a large anisotropy in the electromechanical and elastic material properties. Strong direct and converse dynamic piezoelectricity with a piezoelectric d33 coefficient of 140 pC/N at 600 kHz is identified. The piezoelectric d33 coefficient exceeds that of the ferroelectric polymer polyvinylidene fluoride by a factor of 5 and compares favorably with ferroelectric ceramics. Applications of similar concepts should provide a broad class of easily fabricated "soft" piezoelectric materials.

  7. TECHNICAL NOTE: Dielectric and piezoelectric properties of piezoelectric ceramic sulphoaluminate cement composites

    NASA Astrophysics Data System (ADS)

    Cheng, Xin; Huang, Shifeng; Chang, Jun; Lu, Lingchao; Liu, Futian; Ye, Zengmao; Wang, Shoude

    2005-10-01

    Using cement as the matrix of piezoelectric smart composites can solve the problem of mismatch of smart composites and concrete structure in civil engineering. 0 3 cement based piezoelectric composites were fabricated by a compression technique using PMN and sulphoaluminate cement as raw materials. The influence of the PMN content on the dielectric and piezoelectric properties of the composites was investigated. The temperature dependence of the dielectric properties of the composites was discussed in detail. The results indicate that the dielectric constants are almost constant in the temperature range from -30 to 50 °C, which shows excellent dielectric temperature stability. With increasing PMN content, the piezoelectric and dielectric properties of the composites increase. The theoretical values of the dielectric constants show good agreement with the experimental values for the composites.

  8. Green piezoelectric for autonomous smart textile

    NASA Astrophysics Data System (ADS)

    Lemaire, E.; Borsa, C. J.; Briand, D.

    2015-12-01

    In this work, the fabrication of Rochelle salt based piezoelectric textiles are shown. Structures composed of fibers and Rochelle salt are easily produced using green processes. Both manufacturing and the material itself are really efficient in terms of environmental impact, considering the fabrication processes and the material resources involved. Additionally Rochelle salt is biocompatible. In this green paradigm, active sensing or actuating textiles are developed. Thus processing method and piezoelectric properties have been studied: (1) pure crystals are used as acoustic actuator, (2) fabrication of the textile-based composite is detailed, (3) converse effective d33 is evaluated and compared to lead zirconate titanate ceramic. The utility of textile-based piezoelectric merits its use in a wide array of applications.

  9. Composition-dependent structural, dielectric and ferroelectric responses of lead-free Bi0.5Na0.5TiO3-SrZrO3 ceramics

    NASA Astrophysics Data System (ADS)

    Maqbool, Adnan; Hussain, Ali; Rahman, Jamil Ur; Malik, Rizwan Ahmed; Song, Tae Kwon; Kim, Myong-Ho; Kim, Won-Jeong

    2016-06-01

    The influence of SrZrO3 (SZ) addition on the crystal structure, piezoelectric and the dielectric properties of lead-free Bi0.5Na0.5TiO3 (BNT-SZ100 x, with x = 0 - 0.10) ceramics was systematically investigated. A significant reduction in the grain size was observed with SZ substitution. The X-ray diffraction analysis of the sintered BNT-SZ ceramics revealed a single perovskite phase with a pseudocubic symmetry; however, electric poling indicated a non-cubic distortion in the poled BNT-SZ ceramics. With increase in the SZ content, the temperature of maximum dielectric constant ( T m ) shifted towards lower temperatures, and the curves became more diffuse. Enhanced piezoelectric constant ( d 33 = 102 pC/N) and polarization response were observed for the BNT-SZ5 ceramics. The results indicated that SZ substitution induced a transition from a ferroelectric to relaxor state with a field-induced strain of 0.24% for BNT-SZ9 corresponding to a normalized strain of 340 pm/V.

  10. NASA-DoD Lead-Free Electronics Project. DRAFT Joint Test Report

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2011-01-01

    The use of conventional tin-lead (SnPb) in circuit board manufacturing is under ever-increasing political scrutiny due to increasing regulations concerning lead. The "Restriction of Hazardous Substances" (RoHS) directive enacted by the European Union (EU) and a pact between the United States National Electronics Manufacturing Initiative (NEMI), Europe's Soldertec at Tin Technology Ltd. and the Japan Electronics and Information Technology Industries Association (JEITA) are just two examples where worldwide legislative actions and partnerships/agreements are affecting the electronics industry. As a result, many global commercial-grade electronic component suppliers are initiating efforts to transition to lead-free (Pb-free) in order to retain their worldwide market. Pb-free components are likely to find their way into the inventory of aerospace or military assembly processes under current government acquisition reform initiatives. Inventories "contaminated" by Pb-free will result in increased risks associated with the manufacturing, product reliability, and subsequent repair of aerospace and military electronic systems. Although electronics for military and aerospace applications are not included in the RoHS legislation, engineers are beginning to find that the commercial industry's move towards RoHS compliance has affected their supply chain and changed their parts. Most parts suppliers plan to phase out their non-compliant, leaded production and many have already done so. As a result, the ability to find leaded components is getting harder and harder. Some buyers are now attempting to acquire the remaining SnPb inventory, if it's not already obsolete. Original Equipment Manufacturers (OEMs), depots, and support contractors have to be prepared to deal with an electronics supply chain that increasingly provides more and more parts with Pb-free finishes-some labeled no differently than their Pb counterparts-while at the same time providing the traditional Pb parts

  11. Cantilevered probe detector with piezoelectric element

    SciTech Connect

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2014-04-29

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  12. Cantilevered probe detector with piezoelectric element

    SciTech Connect

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2013-04-30

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  13. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D.; Sulchek, Todd A.; Feigin, Stuart C.

    2010-04-06

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  14. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D.; Sulchek, Todd A.; Feigin, Stuart C.

    2012-07-10

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  15. Piezoelectric Templates - New Views on Biomineralization and Biomimetics.

    PubMed

    Stitz, Nina; Eiben, Sabine; Atanasova, Petia; Domingo, Neus; Leineweber, Andreas; Burghard, Zaklina; Bill, Joachim

    2016-05-23

    Biomineralization in general is based on electrostatic interactions and molecular recognition of organic and inorganic phases. These principles of biomineralization have also been utilized and transferred to bio-inspired synthesis of functional materials during the past decades. Proteins involved in both, biomineralization and bio-inspired processes, are often piezoelectric due to their dipolar character hinting to the impact of a template's piezoelectricity on mineralization processes. However, the piezoelectric contribution on the mineralization process and especially the interaction of organic and inorganic phases is hardly considered so far. We herein report the successful use of the intrinsic piezoelectric properties of tobacco mosaic virus (TMV) to synthesize piezoelectric ZnO. Such films show a two-fold increase of the piezoelectric coefficient up to 7.2 pm V(-1) compared to films synthesized on non-piezoelectric templates. By utilizing the intrinsic piezoelectricity of a biotemplate, we thus established a novel synthesis pathway towards functional materials, which sheds light on the whole field of biomimetics. The obtained results are of even broader and general interest since they are providing a new, more comprehensive insight into the mechanisms involved into biomineralization in living nature.

  16. Piezoelectric Templates - New Views on Biomineralization and Biomimetics.

    PubMed

    Stitz, Nina; Eiben, Sabine; Atanasova, Petia; Domingo, Neus; Leineweber, Andreas; Burghard, Zaklina; Bill, Joachim

    2016-01-01

    Biomineralization in general is based on electrostatic interactions and molecular recognition of organic and inorganic phases. These principles of biomineralization have also been utilized and transferred to bio-inspired synthesis of functional materials during the past decades. Proteins involved in both, biomineralization and bio-inspired processes, are often piezoelectric due to their dipolar character hinting to the impact of a template's piezoelectricity on mineralization processes. However, the piezoelectric contribution on the mineralization process and especially the interaction of organic and inorganic phases is hardly considered so far. We herein report the successful use of the intrinsic piezoelectric properties of tobacco mosaic virus (TMV) to synthesize piezoelectric ZnO. Such films show a two-fold increase of the piezoelectric coefficient up to 7.2 pm V(-1) compared to films synthesized on non-piezoelectric templates. By utilizing the intrinsic piezoelectricity of a biotemplate, we thus established a novel synthesis pathway towards functional materials, which sheds light on the whole field of biomimetics. The obtained results are of even broader and general interest since they are providing a new, more comprehensive insight into the mechanisms involved into biomineralization in living nature. PMID:27212583

  17. Constitutive model development for lead free solder alloys at multiple specimen scales

    NASA Astrophysics Data System (ADS)

    Xiao, Qiang

    A fundamental study of thermal-mechanical response of Sn3.9Ag0.6Cu at different specimen scales was conducted. The investigation includes aging effects on microstructure and tensile property. It also includes tensile creep behavior and microstructure changes. At all stages, we compared our Sn3.9Ag0.6Cu measurements with the well known 63Sn37Pb lead-tin eutectic. The constitutive models were then developed based on the experimental data. This work led to some important conclusions, which indicate that (i) the thin cast material exhibited a much finer as-quenched microstructure than the bulk material with the IMC phase restricted to a thin network. Both the bulk and thin cast materials continually softened during room temperature aging, while both materials initially softened and then subsequently hardened when aged at 120°C and 180°C. The thin cast material was in all cases significantly softer than the bulk material, and responded to aging as if it were bulk material aged at a higher temperature, (ii) the Sn3.9Ag0.6Cu alloy showed much lower absolute creep rates than the 63SnPb37. The power law defined stress exponent significantly increases with increasing stress in both the 63Sn37Pb and Sn3.9Ag0.6Cu alloys, therefore the Dorn model is unsuitable for these materials over large stress and temperature ranges. Both sets of experimental data were successfully fit with the present power law stress dependant energy barrier model and the Garofalo model, and (iii) the thin cast material is less creep-resistant than the bulk material. In the bulk material the relevant climb process occurs within a finely dispersed IMC eutectic which covers broad areas within the material. In the thin cast material the relevant climb process occurs primarily in the beta-Sn grains which continuously surround isolated, coarse IMC particles. This resulted in the activation energy of the bulk material being larger than that for the thin cast material. The strength deficiency of the thin cast

  18. Aging in the relaxor and ferroelectric state of Fe-doped (1-x)(Bi{sub 1/2}Na{sub 1/2})TiO₃-xBaTiO₃ piezoelectric ceramics

    SciTech Connect

    Sapper, Eva; Dittmer, Robert; Rödel, Jürgen; Damjanovic, Dragan; Erdem, Emre; Keeble, David J.; Jo, Wook; Granzow, Torsten

    2014-09-14

    Aging of piezoelectric properties was investigated in lead-free (1–x)(Bi{sub 1/2}Na{sub 1/2})TiO₃-xBaTiO₃ doped with 1at.% Fe. The relaxor character of the un-poled material prevents macroscopic aging effects, while in the field-induced ferroelectric phase aging phenomena are similar to those found in lead zirconate titanate or barium titanate. Most prominent aging effects are the development of an internal bias field and the decrease of switchable polarization. These effects are temperature activated, and can be explained in the framework of defect complex reorientation. This picture is further supported by electron paramagnetic resonance spectra indicating the existence of (Fe{sub Ti}´-V{sub O}{sup ••}){sup •} defect complexes in the Fe-doped material.

  19. Energy collection via Piezoelectricity

    NASA Astrophysics Data System (ADS)

    Naveen Kumar, Ch

    2015-12-01

    In the present days, wireless data transmission techniques are commonly used in electronic devices. For powering them connection needs to be made to the power supply through wires else power may be supplied from batteries. Batteries require charging, replacement and other maintenance efforts. So, some alternative methods need to be developed to keep the batteries full time charged and to avoid the need of any consumable external energy source to charge the batteries. Mechanical energy harvesting utilizes piezoelectric components where deformations produced by different means are directly converted to electrical charge via piezoelectric effect. The proposed work in this research recommends Piezoelectricity as a alternate energy source. The motive is to obtain a pollution-free energy source and to utilize and optimize the energy being wasted. Current work also illustrates the working principle of piezoelectric crystal and various sources of vibration for the crystal.

  20. Piezoelectric micromotors for microrobots

    NASA Astrophysics Data System (ADS)

    Flynn, Anita M.; Tavrow, Lee S.; Bart, Stephen F.; Brooks, Rodney A.; Ehrlich, Daniel J.; Udayakumar, K. R.; Cross, L. E.

    1992-03-01

    The authors have begun research into piezoelectric ultrasonic motors using ferroelectric thin films. The authors have fabricated the stator components of these millimeter diameter motors on silicon wafers. Ultrasonic motors consist of two pieces: a stator and a rotor. The stator includes a piezoelectric film in which bending is induced in the form of a traveling wave. A small glass lens placed upon the stator becomes the spinning rotor. Piezoelectric micromotors overcome the problems currently associated with electrostatic micromotors such as low torque, friction, and the need for high voltage excitation. More importantly, they may offer a much simpler mechanism for coupling power out. Using thin films of lead zirconate titanate on silicon nitride membranes, various types of actuator structures can be fabricated. By combining new robot control systems with piezoelectric motors and micromechanics, the authors propose creating micromechanical systems that are small, cheap and completely autonomous.

  1. Enhancement on wettability and intermetallic compound formation with an addition of Al on Sn-0.7Cu lead-free solder fabricated via powder metallurgy method

    NASA Astrophysics Data System (ADS)

    Adli, Nisrin; Razak, Nurul Razliana Abdul; Saud, Norainiza

    2016-07-01

    Due to the toxicity of lead (Pb), the exploration of another possibility for lead-free solder is necessary. Nowadays, SnCu alloys are being established as one of the lead-free solder alternatives. In this study, Sn-0.7Cu lead-free solder with an addition of 1wt% and 5wt% Al were investigated by using powder metallurgy method. The effect of Al addition on the wettability and intermetallic compound thickness (IMC) of Sn-0.7Cu-Al lead-free solder were appraised. Results showed that Al having a high potential to enhance Sn-0.7Cu lead-free solder due to its good wetting and reduction of IMC thickness. The contact angle and IMC of the Sn-0.7Cu-Al lead-free solder were decreased by 14.32% and 40% as the Al content increased from 1 wt% to 5 wt%.

  2. Laminated piezoelectric transformer

    NASA Technical Reports Server (NTRS)

    Vazquez Carazo, Alfredo (Inventor)

    2006-01-01

    A laminated piezoelectric transformer is provided using the longitudinal vibration modes for step-up voltage conversion applications. The input portions are polarized to deform in a longitudinal plane and are bonded to an output portion. The deformation of the input portions is mechanically coupled to the output portion, which deforms in the same longitudinal direction relative to the input portion. The output portion is polarized in the thickness direction relative its electrodes, and piezoelectrically generates a stepped-up output voltage.

  3. Piezoelectrically Initiated Pyrotechnic Igniter

    NASA Technical Reports Server (NTRS)

    Quince, Asia; Dutton, Maureen; Hicks, Robert; Burnham, Karen

    2013-01-01

    This innovation consists of a pyrotechnic initiator and piezoelectric initiation system. The device will be capable of being initiated mechanically; resisting initiation by EMF, RF, and EMI (electromagnetic field, radio frequency, and electromagnetic interference, respectively); and initiating in water environments and space environments. Current devices of this nature are initiated by the mechanical action of a firing pin against a primer. Primers historically are prone to failure. These failures are commonly known as misfires or hang-fires. In many cases, the primer shows the dent where the firing pin struck the primer, but the primer failed to fire. In devices such as "T" handles, which are commonly used to initiate the blowout of canopies, loss of function of the device may result in loss of crew. In devices such as flares or smoke generators, failure can result in failure to spot a downed pilot. The piezoelectrically initiated ignition system consists of a pyrotechnic device that plugs into a mechanical system (activator), which on activation, generates a high-voltage spark. The activator, when released, will strike a stack of electrically linked piezo crystals, generating a high-voltage, low-amperage current that is then conducted to the pyro-initiator. Within the initiator, an electrode releases a spark that passes through a pyrotechnic first-fire mixture, causing it to combust. The combustion of the first-fire initiates a primary pyrotechnic or explosive powder. If used in a "T" handle, the primary would ramp the speed of burn up to the speed of sound, generating a shock wave that would cause a high explosive to go "high order." In a flare or smoke generator, the secondary would produce the heat necessary to ignite the pyrotechnic mixture. The piezo activator subsystem is redundant in that a second stack of crystals would be struck at the same time with the same activation force, doubling the probability of a first strike spark generation. If the first

  4. Design considerations for piezoelectric polymer ultrasound transducers.

    PubMed

    Brown, L F

    2000-01-01

    Much work has been published on the design of ultrasound transducers using piezoelectric ceramics, but a great deal of this work does not apply when using the piezoelectric polymers because of their unique electrical and mechanical properties. The purpose of this paper is to review and present new insight into seven important considerations for the design of active piezoelectric polymer ultrasound transducers: piezoelectric polymer materials selection, transducer construction and packaging requirements, materials characterization and modeling, film thickness and active area design, electroding selection, backing material design, and front protection/matching layer design. Besides reviewing these design considerations, this paper also presents new insight into the design of active piezoelectric polymer ultrasonic transducers. The design and fabrication of an immersible ultrasonic transducer, which has no adhesive layer between the active element and backing layer, is included. The transducer features direct deposition of poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer onto an insulated aluminum backing substrate. Pulse-echo tests indicated a minimum insertion loss of 37 dB and -6 dB bandwidth of 9.8 to 22 MHz (71%). The use of polymer wear-protection/quarter-wave matching layers is also discussed. Test results on a P(VDF-TrFE) transducer showed that a Mylar/sup TM/ front layer provided a slight increase in pulse-echo amplitude of 15% (or 1.2 dB) and an increase in -6 dB pulse-echo fractional bandwidth from 86 to 95%. Theoretical derivations are reported for optimizing the active area of the piezoelectric polymer element for maximum power transfer at resonance. These derivations are extended to the special case for a low profile (i.e., thin) shielded transducer. A method for modeling the non-linear loading effects of a commercial pulser-receiver is also included.

  5. Assessment of Material Properties of Gallium Orthophosphate Piezoelectric Elements for Development of Phased Array Probes for Continuous Operation at 580°C

    NASA Astrophysics Data System (ADS)

    Kostan, Mario; Mohimi, Abbas; Nageswaran, Channa; Kappatos, Vassilios; Cheng, Liang; Gan, Tat-Hean; Wrobel, Luiz; Selcuk, Cem

    2016-03-01

    In this paper, the thickness extension mode gallium orthophosphate single crystal elements were characterised using the impedance analyser. Impedance characteristics of piezoelectric elements were investigated at temperatures from 25°C up to 580°C at first and then at a constant temperature of 580°C for a period of 25 days. The resonant and anti-resonant frequencies extracted from the impedance characteristics, capacitance (measured at 1 kHz), density and dimensions of the gallium orthophosphate elements were used to calculate electromechanical, piezoelectric and elastic properties of these elements at high temperatures as a function of time. The tested gallium orthophosphate elements proved to possess very stable efficiency and sensing capability when subjected to high temperature. The results are very encouraging for proceeding with development of phased array probes using gallium orthophosphate, for inspection and condition monitoring of high temperature pipelines in power plants at a temperature up to 580°C.

  6. Postbuckling investigations of piezoelectric microdevices considering damage effects.

    PubMed

    Sun, Zhigang; Wang, Xianqiao

    2014-03-11

    Piezoelectric material has been emerging as a popular building block in MEMS devices owing to its unique mechanical and electrical material properties. However, the reliability of MEMS devices under buckling deformation environments remains elusive and needs to be further explored. Based on the Talreja's tensor valued internal state damage variables as well as the Helmhotlz free energy of piezoelectric material, a constitutive model of piezoelectric materials with damage is presented. The Kachanvo damage evolution law under in-plane compressive loads is employed. The model is applied to the specific case of the postbuckling analysis of the piezoelectric plate with damage. Then, adopting von Karman's plate theory, the nonlinear governing equations of the piezoelectric plates with initial geometric deflection including damage effects under in-plane compressive loads are established. By using the finite difference method and the Newmark scheme, the damage evolution for damage accumulation is developed and the finite difference procedure for postbuckling equilibrium path is simultaneously employed. Numerical results show the postbuckling behaviors of initial flat and deflected piezoelectric plates with damage or no damage under different sets of electrical loading conditions. The effects of applied voltage, aspect ratio of plate, thick-span ratio of plate, damage as well as initial geometric deflections on the postbuckling behaviors of the piezoelectric plate are discussed.

  7. Postbuckling Investigations of Piezoelectric Microdevices Considering Damage Effects

    PubMed Central

    Sun, Zhigang; Wang, Xianqiao

    2014-01-01

    Piezoelectric material has been emerging as a popular building block in MEMS devices owing to its unique mechanical and electrical material properties. However, the reliability of MEMS devices under buckling deformation environments remains elusive and needs to be further explored. Based on the Talreja's tensor valued internal state damage variables as well as the Helmhotlz free energy of piezoelectric material, a constitutive model of piezoelectric materials with damage is presented. The Kachanvo damage evolution law under in-plane compressive loads is employed. The model is applied to the specific case of the postbuckling analysis of the piezoelectric plate with damage. Then, adopting von Karman's plate theory, the nonlinear governing equations of the piezoelectric plates with initial geometric deflection including damage effects under in-plane compressive loads are established. By using the finite difference method and the Newmark scheme, the damage evolution for damage accumulation is developed and the finite difference procedure for postbuckling equilibrium path is simultaneously employed. Numerical results show the postbuckling behaviors of initial flat and deflected piezoelectric plates with damage or no damage under different sets of electrical loading conditions. The effects of applied voltage, aspect ratio of plate, thick-span ratio of plate, damage as well as initial geometric deflections on the postbuckling behaviors of the piezoelectric plate are discussed. PMID:24618774

  8. Piezoelectric polydimethylsiloxane films for MEMS transducers

    NASA Astrophysics Data System (ADS)

    Wang, Jhih-Jhe; Hsu, Tsung-Hsing; Yeh, Che-Nan; Tsai, Jui-Wei; Su, Yu-Chuan

    2012-01-01

    We have successfully demonstrated the fabrication of piezoelectric polydimethylsiloxane (PDMS) films utilizing multilayer casting, stacking, surface coating and micro plasma discharge processes. To realize the desired electromechanical sensitivity, cellular PDMS structures with micrometer-sized voids are implanted with bipolar charges on the opposite inner surfaces. The implanted charge pairs function as dipoles, which respond promptly to diverse electromechanical stimulation. In the prototype demonstration, cellular PDMS films with various void geometries are fabricated and internally coated with a thin layer of polytetrafluoroethylene, which can help secure the implanted charges. An electric field up to 35 MV m-1 is applied across the fabricated PDMS films to ionize the air in the voids and to accelerate the resulting bipolar charges to bombard the opposite inner surfaces. The resulting charge-implanted, cellular PDMS films show a low effective elastic modulus (E) of about 500 kPa, and a piezoelectric coefficient (d33) higher than 300 pC N-1, which is more than ten times higher than those of common piezoelectric polymers (e.g. polyvinylidene fluoride). Furthermore, the piezoelectricity of the PDMS films can be tailored by adjusting the dimensions of the cellular structures. As such, the demonstrated piezoelectric PDMS films could potentially serve as flexible and sensitive electromechanical materials, and fulfill the needs of a variety of sensor and energy harvesting applications.

  9. Constitutive Modeling of Piezoelectric Polymer Composites

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Tom (Technical Monitor)

    2003-01-01

    A new modeling approach is proposed for predicting the bulk electromechanical properties of piezoelectric composites. The proposed model offers the same level of convenience as the well-known Mori-Tanaka method. In addition, it is shown to yield predicted properties that are, in most cases, more accurate or equally as accurate as the Mori-Tanaka scheme. In particular, the proposed method is used to determine the electromechanical properties of four piezoelectric polymer composite materials as a function of inclusion volume fraction. The predicted properties are compared to those calculated using the Mori-Tanaka and finite element methods.

  10. Piezoelectricity in planar boron nitride via a geometric phase

    NASA Astrophysics Data System (ADS)

    Droth, Matthias; Burkard, Guido; Pereira, Vitor M.

    2016-08-01

    Due to their low surface mass density, two-dimensional materials with a strong piezoelectric response are interesting for nanoelectromechanical systems with high force sensitivity. Unlike graphene, the two sublattices in a monolayer of hexagonal boron nitride (hBN) are occupied by different elements, which breaks inversion symmetry and allows for piezoelectricity. This has been confirmed with density functional theory calculations of the piezoelectric constant of hBN. Here, we formulate an entirely analytical derivation of the electronic contribution to the piezoelectric response in this system based on the concepts of strain-induced pseudomagnetic vector potential and the modern theory of polarization that relates the polar moment to the Berry curvature. Our findings agree with the symmetry restrictions expected for the hBN lattice and reproduce well the magnitude of the piezoelectric effect previously obtained ab initio.

  11. Cantilever piezoelectric energy harvester with multiple cavities

    NASA Astrophysics Data System (ADS)

    Srinivasulu Raju, S.; Umapathy, M.; Uma, G.

    2015-11-01

    Energy harvesting employing piezoelectric materials in mechanical structures such as cantilever beams, plates, diaphragms, etc, has been an emerging area of research in recent years. The research in this area is also focused on structural tailoring to improve the harvested power from the energy harvesters. Towards this aim, this paper presents a method for improving the harvested power from a cantilever piezoelectric energy harvester by introducing multiple rectangular cavities. A generalized model for a piezoelectric energy harvester with multiple rectangular cavities at a single section and two sections is developed. A method is suggested to optimize the thickness of the cavities and the number of cavities required to generate a higher output voltage for a given cantilever beam structure. The performance of the optimized energy harvesters is evaluated analytically and through experimentation. The simulation and experimental results show that the performance of the energy harvester can be increased with multiple cavities compared to the harvester with a single cavity.

  12. Flexible Piezoelectric Energy Harvesting from Mouse Click Motions.

    PubMed

    Cha, Youngsu; Hong, Jin; Lee, Jaemin; Park, Jung-Min; Kim, Keehoon

    2016-01-01

    In this paper, we study energy harvesting from the mouse click motions of a robot finger and a human index finger using a piezoelectric material. The feasibility of energy harvesting from mouse click motions is experimentally and theoretically assessed. The fingers wear a glove with a pocket for including the piezoelectric material. We model the energy harvesting system through the inverse kinematic framework of parallel joints in a finger and the electromechanical coupling equations of the piezoelectric material. The model is validated through energy harvesting experiments in the robot and human fingers with the systematically varying load resistance. We find that energy harvesting is maximized at the matched load resistance to the impedance of the piezoelectric material, and the harvested energy level is tens of nJ. PMID:27399705

  13. Flexible Piezoelectric Energy Harvesting from Mouse Click Motions.

    PubMed

    Cha, Youngsu; Hong, Jin; Lee, Jaemin; Park, Jung-Min; Kim, Keehoon

    2016-07-06

    In this paper, we study energy harvesting from the mouse click motions of a robot finger and a human index finger using a piezoelectric material. The feasibility of energy harvesting from mouse click motions is experimentally and theoretically assessed. The fingers wear a glove with a pocket for including the piezoelectric material. We model the energy harvesting system through the inverse kinematic framework of parallel joints in a finger and the electromechanical coupling equations of the piezoelectric material. The model is validated through energy harvesting experiments in the robot and human fingers with the systematically varying load resistance. We find that energy harvesting is maximized at the matched load resistance to the impedance of the piezoelectric material, and the harvested energy level is tens of nJ.

  14. Flexible Piezoelectric Energy Harvesting from Mouse Click Motions

    PubMed Central

    Cha, Youngsu; Hong, Jin; Lee, Jaemin; Park, Jung-Min; Kim, Keehoon

    2016-01-01

    In this paper, we study energy harvesting from the mouse click motions of a robot finger and a human index finger using a piezoelectric material. The feasibility of energy harvesting from mouse click motions is experimentally and theoretically assessed. The fingers wear a glove with a pocket for including the piezoelectric material. We model the energy harvesting system through the inverse kinematic framework of parallel joints in a finger and the electromechanical coupling equations of the piezoelectric material. The model is validated through energy harvesting experiments in the robot and human fingers with the systematically varying load resistance. We find that energy harvesting is maximized at the matched load resistance to the impedance of the piezoelectric material, and the harvested energy level is tens of nJ. PMID:27399705

  15. Novel optically active lead-free relaxor ferroelectric (Ba0.6Bi0.2Li0.2)TiO3

    NASA Astrophysics Data System (ADS)

    Borkar, Hitesh; Rao, Vaibhav; Dutta, Soma; Barvat, Arun; Pal, Prabir; Tomar, M.; Gupta, Vinay; Scott, J. F.; Kumar, Ashok

    2016-07-01

    We discovered a near-room-temperature lead-free relaxor-ferroelectric (Ba0.6Bi0.2Li0.2)TiO3 (BBLT) having A-site compositionally disordered ABO3 perovskite structure. Microstructure-property relations revealed that the chemical inhomogeneities and development of local polar nano-regions (PNRs) are responsible for dielectric dispersion as a function of probe frequencies and temperatures. Rietveld analysis indicates mixed crystal structure with 80% tetragonal structure (space group P4mm) and 20% orthorhombic structure (space group Amm2), which is confirmed by the high resolution transmission electron diffraction (HRTEM). Dielectric constant and tangent loss dispersion with and without illumination of light obey nonlinear Vogel-Fulcher (VF) relations. The material shows slim polarization-hysteresis (P-E) loops and excellent displacement coefficients (d 33 ~ 233 pm V-1) near room temperature, which gradually diminish near the maximum dielectric dispersion temperature (T m ). The underlying physics for light-sensitive dielectric dispersion was probed by x-ray photon spectroscopy (XPS), which strongly suggests that mixed valence of bismuth ions, especially Bi5+ ions, comprise most of the optically active centers. Ultraviolet photoemission measurements showed most of the Ti ions are in 4 +  states and sit at the centers of the TiO6 octahedra; along with asymmetric hybridization between O 2p and Bi 6s orbitals, this appears to be the main driving force for net polarization. This BBLT material may open a new path for environmental friendly lead-free relaxor-ferroelectric research.

  16. Novel optically active lead-free relaxor ferroelectric (Ba0.6Bi0.2Li0.2)TiO3.

    PubMed

    Borkar, Hitesh; Rao, Vaibhav; Dutta, Soma; Barvat, Arun; Pal, Prabir; Tomar, M; Gupta, Vinay; Scott, J F; Kumar, Ashok

    2016-07-01

    We discovered a near-room-temperature lead-free relaxor-ferroelectric (Ba0.6Bi0.2Li0.2)TiO3 (BBLT) having A-site compositionally disordered ABO3 perovskite structure. Microstructure-property relations revealed that the chemical inhomogeneities and development of local polar nano-regions (PNRs) are responsible for dielectric dispersion as a function of probe frequencies and temperatures. Rietveld analysis indicates mixed crystal structure with 80% tetragonal structure (space group P4mm) and 20% orthorhombic structure (space group Amm2), which is confirmed by the high resolution transmission electron diffraction (HRTEM). Dielectric constant and tangent loss dispersion with and without illumination of light obey nonlinear Vogel-Fulcher (VF) relations. The material shows slim polarization-hysteresis (P-E) loops and excellent displacement coefficients (d 33 ~ 233 pm V(-1)) near room temperature, which gradually diminish near the maximum dielectric dispersion temperature (T m ). The underlying physics for light-sensitive dielectric dispersion was probed by x-ray photon spectroscopy (XPS), which strongly suggests that mixed valence of bismuth ions, especially Bi(5+) ions, comprise most of the optically active centers. Ultraviolet photoemission measurements showed most of the Ti ions are in 4 +  states and sit at the centers of the TiO6 octahedra; along with asymmetric hybridization between O 2p and Bi 6s orbitals, this appears to be the main driving force for net polarization. This BBLT material may open a new path for environmental friendly lead-free relaxor-ferroelectric research. PMID:27165848

  17. Novel optically active lead-free relaxor ferroelectric (Ba0.6Bi0.2Li0.2)TiO3

    NASA Astrophysics Data System (ADS)

    Borkar, Hitesh; Rao, Vaibhav; Dutta, Soma; Barvat, Arun; Pal, Prabir; Tomar, M.; Gupta, Vinay; Scott, J. F.; Kumar, Ashok

    2016-07-01

    We discovered a near-room-temperature lead-free relaxor-ferroelectric (Ba0.6Bi0.2Li0.2)TiO3 (BBLT) having A-site compositionally disordered ABO3 perovskite structure. Microstructure-property relations revealed that the chemical inhomogeneities and development of local polar nano-regions (PNRs) are responsible for dielectric dispersion as a function of probe frequencies and temperatures. Rietveld analysis indicates mixed crystal structure with 80% tetragonal structure (space group P4mm) and 20% orthorhombic structure (space group Amm2), which is confirmed by the high resolution transmission electron diffraction (HRTEM). Dielectric constant and tangent loss dispersion with and without illumination of light obey nonlinear Vogel–Fulcher (VF) relations. The material shows slim polarization–hysteresis (P–E) loops and excellent displacement coefficients (d 33 ~ 233 pm V‑1) near room temperature, which gradually diminish near the maximum dielectric dispersion temperature (T m ). The underlying physics for light-sensitive dielectric dispersion was probed by x-ray photon spectroscopy (XPS), which strongly suggests that mixed valence of bismuth ions, especially Bi5+ ions, comprise most of the optically active centers. Ultraviolet photoemission measurements showed most of the Ti ions are in 4 +  states and sit at the centers of the TiO6 octahedra; along with asymmetric hybridization between O 2p and Bi 6s orbitals, this appears to be the main driving force for net polarization. This BBLT material may open a new path for environmental friendly lead-free relaxor-ferroelectric research.

  18. Novel optically active lead-free relaxor ferroelectric (Ba0.6Bi0.2Li0.2)TiO3.

    PubMed

    Borkar, Hitesh; Rao, Vaibhav; Dutta, Soma; Barvat, Arun; Pal, Prabir; Tomar, M; Gupta, Vinay; Scott, J F; Kumar, Ashok

    2016-07-01

    We discovered a near-room-temperature lead-free relaxor-ferroelectric (Ba0.6Bi0.2Li0.2)TiO3 (BBLT) having A-site compositionally disordered ABO3 perovskite structure. Microstructure-property relations revealed that the chemical inhomogeneities and development of local polar nano-regions (PNRs) are responsible for dielectric dispersion as a function of probe frequencies and temperatures. Rietveld analysis indicates mixed crystal structure with 80% tetragonal structure (space group P4mm) and 20% orthorhombic structure (space group Amm2), which is confirmed by the high resolution transmission electron diffraction (HRTEM). Dielectric constant and tangent loss dispersion with and without illumination of light obey nonlinear Vogel-Fulcher (VF) relations. The material shows slim polarization-hysteresis (P-E) loops and excellent displacement coefficients (d 33 ~ 233 pm V(-1)) near room temperature, which gradually diminish near the maximum dielectric dispersion temperature (T m ). The underlying physics for light-sensitive dielectric dispersion was probed by x-ray photon spectroscopy (XPS), which strongly suggests that mixed valence of bismuth ions, especially Bi(5+) ions, comprise most of the optically active centers. Ultraviolet photoemission measurements showed most of the Ti ions are in 4 +  states and sit at the centers of the TiO6 octahedra; along with asymmetric hybridization between O 2p and Bi 6s orbitals, this appears to be the main driving force for net polarization. This BBLT material may open a new path for environmental friendly lead-free relaxor-ferroelectric research.

  19. Study on the electromechanical coupling coefficient of Rayleigh-type surface acoustic waves in semi-infinite piezoelectrics/non-piezoelectrics superlattices.

    PubMed

    Chen, Shi; Zhang, Yinhong; Lin, Shuyu; Fu, Zhiqiang

    2014-02-01

    The electromechanical coupling coefficient of Rayleigh-type surface acoustic waves in semi-infinite piezoelectrics/non-piezoelectrics superlattices is investigated by the transfer matrix method. Research results show the high electromechanical coupling coefficient can be obtained in these systems. The optimization design of it is also discussed fully. It is significantly influenced by electrical boundary conditions on interfaces, thickness ratios of piezoelectric and non-piezoelectric layers, and material parameters (such as velocities of pure longitudinal and transversal bulk waves in non-piezoelectric layers). In order to obtain higher electromechanical coupling coefficient, shorted interfaces, non-piezoelectric materials with large velocities of longitudinal and transversal bulk waves, and proper thickness ratios should be chosen.

  20. Radial-Electric-Field Piezoelectric Diaphragm Pumps

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G.; Working, Dennis C.; Mossi, Karla; Castro, Nicholas D.; Mane, Pooma

    2009-01-01

    In a recently invented class of piezoelectric diaphragm pumps, the electrode patterns on the piezoelectric diaphragms are configured so that the electric fields in the diaphragms have symmetrical radial (along-the-surface) components in addition to through-the-thickness components. Previously, it was accepted in the piezoelectric-transducer art that in order to produce the out-of-plane bending displacement of a diaphragm needed for pumping, one must make the electric field asymmetrical through the thickness, typically by means of electrodes placed on only one side of the piezoelectric material. In the present invention, electrodes are placed on both sides and patterned so as to produce substantial radial as well as through-the-thickness components. Moreover, unlike in the prior art, the electric field can be symmetrical through the thickness. Tests have shown in a given diaphragm that an electrode configuration according to this invention produces more displacement than does a conventional one-sided electrode pattern. The invention admits of numerous variations characterized by various degrees of complexity. Figure 1 is a simplified depiction of a basic version. As in other piezoelectric diaphragm pumps of similar basic design, the prime mover is a piezoelectric diaphragm. Application of a suitable voltage to the electrodes on the diaphragm causes it to undergo out-of-plane bending. The bending displacement pushes a fluid out of, or pulls the fluid into, a chamber bounded partly by the diaphragm. Also as in other diaphragm pumps in general, check valves ensure that the fluid flows only in through one port and only out through another port.