Science.gov

Sample records for lead-free piezoelectric materials

  1. Tonpilz Underwater Acoustic Transducer Integrating Lead-free Piezoelectric Material

    NASA Astrophysics Data System (ADS)

    Rouffaud, Rémi; Granger, Christian; Hladky-Hennion, Anne-Christine; Thi, Mai Pham; Levassort, Franck

    A Tonpilz transducer based on lead-free piezoelectric material was fabricated, modeled and characterized. The stack is composed of two rings of doped BaTiO3. This composition was initially chosen due to good electromechanical performance (kt at 40%) and high mechanical quality factor (Qm over 500). Comparison of the displacement at the center of the head mass was performed with a PZT-based Tonpilz with the same design for a center frequency at 22 kHz.

  2. Advances in Lead-Free Piezoelectric Materials for Sensors and Actuators

    PubMed Central

    Aksel, Elena; Jones, Jacob L.

    2010-01-01

    Piezoelectrics have widespread use in today’s sensor and actuator technologies. However, most commercially available piezoelectric materials, e.g., Pb [ZrxTi1−x] O3 (PZT), are comprised of more than 60 weight percent lead (Pb). Due to its harmful effects, there is a strong impetus to identify new lead-free replacement materials with comparable properties to those of PZT. This review highlights recent developments in several lead-free piezoelectric materials including BaTiO3, Na0.5Bi0.5TiO3, K0.5Bi0.5TiO3, Na0.5K0.5NbO3, and their solid solutions. The factors that contribute to strong piezoelectric behavior are described and a summary of the properties for the various systems is provided. PMID:22294907

  3. Lead-free piezoelectric materials and ultrasonic transducers for medical imaging

    NASA Astrophysics Data System (ADS)

    Taghaddos, Elaheh; Hejazi, Mehdi; Safari, Ahmad

    2015-06-01

    Piezoelectric materials have been vastly used in ultrasonic transducers for medical imaging. In this paper, firstly, the most promising lead-free compositions with perovskite structure for medical imaging applications have been reviewed. The electromechanical properties of various lead-free ceramics, composites, and single crystals based on barium titanate, bismuth sodium titanate, potassium sodium niobate, and lithium niobate are presented. Then, fundamental principles and design considerations of ultrasonic transducers are briefly described. Finally, recent developments in lead-free ultrasonic probes are discussed and their acoustic performance is compared to lead-based transducers. Focused transducers with different beam focusing methods such as lens focusing and mechanical shaping are explained. Additionally, acoustic characteristics of lead-free probes including the pulse-echo results as well as their imaging capabilities for various applications such as phantom imaging, in vitro intravascular ultrasound imaging of swine aorta, and in vivo or ex vivo imaging of human eyes and skin are reviewed.

  4. First-principles study on novel lead-free piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Uetsuji, Y.; Tsuchiya, K.; Nakamachi, E.

    2011-12-01

    In this study, we investigated systematically on perovskite oxides ABO3 through first-principles calculations based on density functional theory to find novel biocompatible lead-free piezoelectric materials. Biocompatible elements were picked out with HSAB ( Hard Soft Acids and Bases ) principle at the viewpoint of interaction energy with in-vivo molecules and they were applied to A and B of perovskite oxides ABO3. The stable combinations of constituent elements were specified with consideration for geometric and electric equilibrium condition. Then the stable cubic structure and the phonon properties were analyzed for the paraelectric non-polar phase. The soft modes, which induce a structural phase transition to non-centrosymmetric crystal structures, were distinguished with the phonon eigenfrequency and eigenvector. Additionally, insulation properties were estimated from band structure. As a result, five perovskite oxides, MgSiO3, MnSiO3, FeSiO3, ZnSiO3 and CaSiO3, were discovered as probable materials, which have band gap and soft modes progressing into tetragonal structure of ferroelectric phases. After the stable tetragonal structures were evaluated through initial setting of atomic positions based on soft modes, their material properties such as spontaneous polarization and piezoelectric stress constant were analyzed. Computations indicated tetragonal MgSiO3 exhibits relatively-large piezoelectricity.

  5. Progress in engineering high strain lead-free piezoelectric ceramics

    PubMed Central

    Leontsev, Serhiy O; Eitel, Richard E

    2010-01-01

    Environmental concerns are strongly driving the need to replace the lead-based piezoelectric materials currently employed as multilayer actuators. The current review describes both compositional and structural engineering approaches to achieve enhanced piezoelectric properties in lead-free materials. The review of the compositional engineering approach focuses on compositional tuning of the properties and phase behavior in three promising families of lead-free perovskite ferroelectrics: the titanate, alkaline niobate and bismuth perovskites and their solid solutions. The ‘structural engineering’ approaches focus instead on optimization of microstructural features including grain size, grain orientation or texture, ferroelectric domain size and electrical bias field as potential paths to induce large piezoelectric properties in lead-free piezoceramics. It is suggested that a combination of both compositional and novel structural engineering approaches will be required in order to realize viable lead-free alternatives to current lead-based materials for piezoelectric actuator applications. PMID:27877343

  6. Characterization of Hard Piezoelectric Lead-Free Ceramics

    PubMed Central

    Zhang, Shujun; Lim, Jong Bong; Lee, Hyeong Jae; Shrout, Thomas R.

    2010-01-01

    K4CuNb8O23 doped K0.45Na0.55NbO3 (KNN-KCN) ferroelectric ceramics were found to exhibit asymmetrical polarization hysteresis loops, related to the development of an internal bias field. The internal bias field is believed to be the result of defect dipoles of acceptor ions and oxygen vacancies, which lead to piezoelectric “hardening” effect, by stabilizing and pinning of the domain wall motion. The dielectric loss for the hard lead-free piezoelectric ceramic was found to be 0.6%, with mechanical quality factors Q on the order of >1500. Furthermore, the piezoelectric properties were found to decrease and the coercive field increased, when compared with the undoped material, exhibiting a typical characteristic of “hard” behavior. The temperature usage range was limited by the polymorphic phase transition temperature, being 188°C. The full set of material constants was determined for the KNN-KCN materials. Compared with conventional hard PZT ceramics, the lead-free possessed lower dielectric and piezoelectric properties; however, comparable values of mechanical Q, dielectric loss, and coercive fields were obtained, making acceptor modified KNN based lead-free piezoelectric material promising for high-power applications, where lead-free materials are desirable. PMID:19686966

  7. Defect Engineering of Lead-Free Piezoelectrics with High Piezoelectric Properties and Temperature-Stability.

    PubMed

    Feng, Yu; Li, Wei-Li; Xu, Dan; Qiao, Yu-Long; Yu, Yang; Zhao, Yu; Fei, Wei-Dong

    2016-04-13

    The high piezoelectricity of ABO3-type lead-free piezoelectric materials can be achieved with the help of either morphotropic phase boundary (MPB) or polymorphic phase transition (PPT). Here, we propose a new defect engineering route to the excellent piezoelectric properties, in which doped smaller acceptor and donor ions substituting bivalent A-sites are utilized to bring local lattice distortion and lower symmetry. A concrete paradigm is presented, (Li-Al) codoped BaTiO3 perovskite, that exhibits a largely thermo-stable piezoelectric constant (>300 pC/N) and huge mechanical quality factor (>2000). A systematic analysis including theoretical analysis and simulation results indicates that the Li(+) and Al(3+) ions are inclined to occupy the neighboring A-sites in the lattice and constitute a defect dipole (ionic pairs). The defect dipoles possess a kind of dipole moment which tends to align directionally after thermo-electric treatment. A mechanism related to the defect symmetry principle, phase transition, and defect migration is proposed to explain the outstanding piezoelectric properties. The present study opens a new development window for excellent piezoelectricity and provides a promising route to the potential utilization of lead-free piezoelectrics in high power applications.

  8. Crystal Growth and Electrical Properties of Lead-Free Piezoelectric Material (Na1/2Bi1/2)TiO3-BaTiO3

    NASA Astrophysics Data System (ADS)

    Hosono, Yasuharu; Harada, Kouichi; Yamashita, Yohachi

    2001-09-01

    Single crystals of lead-free piezoelectric material x(Na1/2Bi1/2)TiO3-yBaTiO3 (NBBT 100x/100y) have been successfully grown by the flux method and the Bridgman method. Using the flux method, crystals having an edge length of 2-8 mm were obtained using Bi2O3 flux with cooling from 1350°C to 800°C at a rate of 3.5°C/h. Using the Bridgman method, comparatively good crystal of 15 mm diameter and 50 mm length was obtained using Bi2O3 flux with the Pt crucible driven down through the heat zone at a speed of 1.0 mm/h. The resulting crystals showed single-phase perovskite structure. Inductively charged plasma (ICP) chemical analysis revealed that the composition of the pulverized powder of these crystals is NBBT 97/3, which is slightly different from the charged composition of NBBT 94/6. One of the single crystals grown by the Bridgman method showed a dielectric constant of 1230 at room temperature and a dielectric constant peak at 313°C.

  9. Lead-free KNLNT piezoelectric ceramics for high-frequency ultrasonic transducer application.

    PubMed

    Wu, D W; Chen, R M; Zhou, Q F; Shung, K K; Lin, D M; Chan, H L W

    2009-03-01

    This paper presents the latest development of a lead-free piezoelectric ceramic and its application to transducers suitable for high-frequency ultrasonic imaging. A lead-free piezoelectric ceramic with formula of (K(0.5)Na(0.5))(0.97)Li(0.03)(Nb(0.9) Ta(0.1))O(3) (abbreviated as KNLNT-0.03/0.10) was fabricated and characterized. The material was found to have a clamped dielectric constant epsilon(33)(S)/epsilon(0)=890, piezoelectric coefficient d(33)=245 pC/N, electromechanical coupling factor k(t)=0.42 and Curie temperature T(c)>300 degrees C. High-frequency (40 MHz) ultrasound transducers were successfully fabricated with the lead-free material. A representative lead-free transducer had a bandwidth of 45%, two-way insertion loss of -18 dB. This performance is comparable to reported performances of popular lead-based transducers. The comparison results suggest that the lead-free piezoelectric material may serve as an alternative to lead-based piezoelectric materials for high-frequency ultrasonic transducer applications.

  10. Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K₀̣₅Bi₀̣₅TiO₃-BaTiO₃-Na₀̣₅Bi₀̣₅TiO₃ piezoelectric materials

    DOE PAGES

    Maurya, Deepam; Zhou, Yuan; Wang, Yaojin; ...

    2015-02-26

    We synthesized grain-oriented lead-free piezoelectric materials in (K₀̣₅Bi₀̣₅TiO₃-BaTiO₃-xNa₀̣₅Bi₀̣₅TiO₃ (KBT-BT-NBT) system with high degree of texturing along the [001]c (c-cubic) crystallographic orientation. We demonstrate giant field induced strain (~0.48%) with an ultra-low hysteresis along with enhanced piezoelectric response (d₃₃ ~ 190pC/N) and high temperature stability (~160°C). Transmission electron microscopy (TEM) and piezoresponse force microscopy (PFM) results demonstrate smaller size highly ordered domain structure in grain-oriented specimen relative to the conventional polycrystalline ceramics. The grain oriented specimens exhibited a high degree of non-180° domain switching, in comparison to the randomly axed ones. These results indicate the effective solution to the lead-free piezoelectricmore » materials.« less

  11. KNN–NTK composite lead-free piezoelectric ceramic

    SciTech Connect

    Matsuoka, T. Kozuka, H.; Kitamura, K.; Yamada, H.; Kurahashi, T.; Yamazaki, M.; Ohbayashi, K.

    2014-10-21

    A (K,Na)NbO₃-based lead-free piezoelectric ceramic was successfully densified. It exhibited an enhanced electromechanical coupling factor of kₚ=0.52, a piezoelectric constant d₃₃=252 pC/N, and a frequency constant Nₚ=3170 Hz m because of the incorporation of an elaborate secondary phase composed primarily of KTiNbO₅. The ceramic's nominal composition was 0.92K₀.₄₂Na₀.₄₄Ca₀.₀₄Li₀.₀₂Nb₀.₈₅O₃–0.047K₀.₈₅Ti₀.₈₅Nb₁.₁₅O₅–0.023BaZrO₃ –0.0017Co₃O₄–0.002Fe₂O₃–0.005ZnO, abbreviated herein as KNN–NTK composite. The KNN–NTK ceramic exhibited a dense microstructure with few microvoids which significantly degraded its piezoelectric properties. Elemental maps recorded using transmission electron microscopy with energy-dispersive X-ray spectroscopy (TEM–EDS) revealed regions of high concentrations of Co and Zn inside the NTK phase. In addition, X-ray diffraction patterns confirmed that a small portion of the NTK phase was converted into K₂(Ti,Nb,Co,Zn)₆O₁₃ or CoZnTiO₄ by a possible reaction between Co and Zn solutes and the NTK phase during a programmed sintering schedule. TEM studies also clarified a distortion around the KNN/NTK interfaces. Such an NTK phase filled voids between KNN particles, resulting in an improved chemical stability of the KNN ceramic. The manufacturing process was subsequently scaled to 100 kg per batch for granulated ceramic powder using a spray-drying technique. The properties of the KNN–NTK composite ceramic produced using the scaled-up method were confirmed to be identical to those of the ceramic prepared by conventional solid-state reaction sintering. Consequently, slight changes in the NTK phase composition and the distortion around the KNN/NTK interfaces affected the KNN–NTK composite ceramic's piezoelectric characteristics.

  12. A lead-free piezoelectric transformer in radial vibration modes.

    PubMed

    Guo, Mingsen; Lin, D M; Lam, K H; Wang, S; Chan, Helen L W; Zhao, X Z

    2007-03-01

    In this study, a disk-shaped piezoelectric transformer was fabricated using lead-free (K,Na)NbO(3)-based ceramics with high mechanical quality factor. The transformer can operate in the fundamental or the third radial vibration mode. The transformer is poled along the thickness direction. The top surface is covered by ring/dot silver electrodes separated by an annular gap which serve as the input and output parts of the transformer, respectively. The bottom surface, fully covered with a silver electrode, is grounded as a common electrode. The dimensions of the top ring/dot electrodes are designed such that the third radial vibration mode can be strongly excited. The electrical properties of the transformer with diameter of 34.2 mm and thickness of 1.9 mm were measured. For a temperature rise of 35 degrees C, the transformer has a maximum output power of 12 W. With the matching load, its maximum efficiency is >95%, and maximum voltage gains are 6.5 and 3.9 for the fundamental and the third radial vibration modes, respectively. It has potential to be used in power supply units and other electronic circuits.

  13. Giant piezoelectricity in potassium-sodium niobate lead-free ceramics.

    PubMed

    Wang, Xiaopeng; Wu, Jiagang; Xiao, Dingquan; Zhu, Jianguo; Cheng, Xiaojing; Zheng, Ting; Zhang, Binyu; Lou, Xiaojie; Wang, Xiangjian

    2014-02-19

    Environment protection and human health concern is the driving force to eliminate the lead from commercial piezoelectric materials. In 2004, Saito et al. [ Saito et al., Nature , 2004 , 432 , 84 . ] developed an alkali niobate-based perovskite solid solution with a peak piezoelectric constant d33 of 416 pC/N when prepared in the textured polycrystalline form, intriguing the enthusiasm of developing high-performance lead-free piezoceramics. Although much attention has been paid on the alkali niobate-based system in the past ten years, no significant breakthrough in its d33 has yet been attained. Here, we report an alkali niobate-based lead-free piezoceramic with the largest d33 of ∼490 pC/N ever reported so far using conventional solid-state method. In addition, this material system also exhibits excellent integrated performance with d33∼390-490 pC/N and TC∼217-304 °C by optimizing the compositions. This giant d33 of the alkali niobate-based lead-free piezoceramics is ascribed to not only the construction of a new rhombohedral-tetragonal phase boundary but also enhanced dielectric and ferroelectric properties. Our finding may pave the way for "lead-free at last".

  14. Piezoelectric Active Humidity Sensors Based on Lead-Free NaNbO3 Piezoelectric Nanofibers

    PubMed Central

    Gu, Li; Zhou, Di; Cao, Jun Cheng

    2016-01-01

    The development of micro-/nano-scaled energy harvesters and the self-powered sensor system has attracted great attention due to the miniaturization and integration of the micro-device. In this work, lead-free NaNbO3 piezoelectric nanofibers with a monoclinic perovskite structure were synthesized by the far-field electrospinning method. The flexible active humidity sensors were fabricated by transferring the nanofibers from silicon to a soft polymer substrate. The sensors exhibited outstanding piezoelectric energy-harvesting performance with output voltage up to 2 V during the vibration process. The output voltage generated by the NaNbO3 sensors exhibited a negative correlation with the environmental humidity varying from 5% to 80%, where the peak-to-peak value of the output voltage generated by the sensors decreased from 0.40 to 0.07 V. The sensor also exhibited a short response time, good selectively against ethanol steam, and great temperature stability. The piezoelectric active humidity sensing property could be attributed to the increased leakage current in the NaNbO3 nanofibers, which was generated due to proton hopping among the H3O+ groups in the absorbed H2O layers under the driving force of the piezoelectric potential. PMID:27338376

  15. Piezoelectric Active Humidity Sensors Based on Lead-Free NaNbO₃ Piezoelectric Nanofibers.

    PubMed

    Gu, Li; Zhou, Di; Cao, Jun Cheng

    2016-06-07

    The development of micro-/nano-scaled energy harvesters and the self-powered sensor system has attracted great attention due to the miniaturization and integration of the micro-device. In this work, lead-free NaNbO₃ piezoelectric nanofibers with a monoclinic perovskite structure were synthesized by the far-field electrospinning method. The flexible active humidity sensors were fabricated by transferring the nanofibers from silicon to a soft polymer substrate. The sensors exhibited outstanding piezoelectric energy-harvesting performance with output voltage up to 2 V during the vibration process. The output voltage generated by the NaNbO₃ sensors exhibited a negative correlation with the environmental humidity varying from 5% to 80%, where the peak-to-peak value of the output voltage generated by the sensors decreased from 0.40 to 0.07 V. The sensor also exhibited a short response time, good selectively against ethanol steam, and great temperature stability. The piezoelectric active humidity sensing property could be attributed to the increased leakage current in the NaNbO₃ nanofibers, which was generated due to proton hopping among the H₃O⁺ groups in the absorbed H₂O layers under the driving force of the piezoelectric potential.

  16. Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K0.5Bi0.5TiO3-BaTiO3-Na0.5Bi0.5TiO3 piezoelectric materials

    PubMed Central

    Maurya, Deepam; Zhou, Yuan; Wang, Yaojin; Yan, Yongke; Li, Jiefang; Viehland, Dwight; Priya, Shashank

    2015-01-01

    We synthesized grain-oriented lead-free piezoelectric materials in (K0.5Bi0.5TiO3-BaTiO3-xNa0.5Bi0.5TiO3 (KBT-BT-NBT) system with high degree of texturing along the [001]c (c-cubic) crystallographic orientation. We demonstrate giant field induced strain (~0.48%) with an ultra-low hysteresis along with enhanced piezoelectric response (d33 ~ 190pC/N) and high temperature stability (~160°C). Transmission electron microscopy (TEM) and piezoresponse force microscopy (PFM) results demonstrate smaller size highly ordered domain structure in grain-oriented specimen relative to the conventional polycrystalline ceramics. The grain oriented specimens exhibited a high degree of non-180° domain switching, in comparison to the randomly axed ones. These results indicate the effective solution to the lead-free piezoelectric materials. PMID:25716551

  17. Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K₀̣₅Bi₀̣₅TiO₃-BaTiO₃-Na₀̣₅Bi₀̣₅TiO₃ piezoelectric materials

    SciTech Connect

    Maurya, Deepam; Zhou, Yuan; Wang, Yaojin; Yan, Yongke; Li, Jiefang; Viehland, Dwight; Priya, Shashank

    2015-02-26

    We synthesized grain-oriented lead-free piezoelectric materials in (K₀̣₅Bi₀̣₅TiO₃-BaTiO₃-xNa₀̣₅Bi₀̣₅TiO₃ (KBT-BT-NBT) system with high degree of texturing along the [001]c (c-cubic) crystallographic orientation. We demonstrate giant field induced strain (~0.48%) with an ultra-low hysteresis along with enhanced piezoelectric response (d₃₃ ~ 190pC/N) and high temperature stability (~160°C). Transmission electron microscopy (TEM) and piezoresponse force microscopy (PFM) results demonstrate smaller size highly ordered domain structure in grain-oriented specimen relative to the conventional polycrystalline ceramics. The grain oriented specimens exhibited a high degree of non-180° domain switching, in comparison to the randomly axed ones. These results indicate the effective solution to the lead-free piezoelectric materials.

  18. Lead-Free Piezoceramics: Revealing the Role of the Rhombohedral-Tetragonal Phase Coexistence in Enhancement of the Piezoelectric Properties.

    PubMed

    Rubio-Marcos, Fernando; López-Juárez, Rigoberto; Rojas-Hernandez, Rocio E; del Campo, Adolfo; Razo-Pérez, Neftalí; Fernandez, Jose F

    2015-10-21

    Until now, lead zirconate titanate (PZT) based ceramics are the most widely used in piezoelectric devices. However, the use of lead is being avoided due to its toxicity and environmental risks. Indeed, the attention in piezoelectric devices has been moved to lead-free ceramics, especially on (K,Na)NbO3-based materials, due to growing environmental concerns. Here we report a systematic evaluation of the effects of the compositional modifications induced by replacement of the B-sites with Sb(5+) ions in 0.96[(K0.48Na0.52)0.95Li0.05Nb1-xSbxO3]-0.04[BaZrO3] lead-free piezoceramics. We show that this compositional design is the driving force for the development of the high piezoelectric properties. So, we find that this phenomenon can be explained by the stabilization of a Rhombohedral-Tetragonal (R-T) phase boundary close to room temperature, that facilities the polarization process of the system and exhibits a significantly high piezoelectric response with a d33 value as high as ∼400 pC/N, which is comparable to part soft PZTs. As a result, we believe that the general strategy and design principles described in this study open the possibility of obtaining (K,Na)NbO3-based lead-free ceramics with enhanced properties, expanding their application range.

  19. Complete set of material constants of 0.95(Na0.5Bi0.5)TiO3-0.05BaTiO3 lead-free piezoelectric single crystal and the delineation of extrinsic contributions

    NASA Astrophysics Data System (ADS)

    Zheng, Limei; Yi, Xiujie; Zhang, Shantao; Jiang, Wenhua; Yang, Bin; Zhang, Rui; Cao, Wenwu

    2013-09-01

    Lead-free piezoelectric single crystal 0.95(Na0.5Bi0.5)TiO3 (NBT)-0.05BaTiO3 was grown by top-seeded solution growth method, which has rhombohedral symmetry with composition near morphotropic phase boundary. Full set of dielectric, piezoelectric, and elastic constants for [001]c poled domain-engineered single crystal was determined. Excellent electromechanical properties and low dielectric loss (d33 = 360 pC/N, d31 = -113 pC/N, d15 = 162 pC/N, k33 = 0.720, kt = 0.540, and tan δ = 1.1%) make it a good candidate to replace lead-based piezoelectric materials. The depolarization temperature (Td = 135 °C) is the highest among all NBT-based materials and its electromechanical coupling properties are very stable below Td. Extrinsic contributions to piezoelectric properties were investigated by Rayleigh analysis.

  20. Lead-Free Piezoelectric Diaphragm Biosensors Based on Micro-Machining Technology and Chemical Solution Deposition

    PubMed Central

    Li, Xiaomeng; Wu, Xiaoqing; Shi, Peng; Ye, Zuo-Guang

    2016-01-01

    In this paper, we present a new approach to the fabrication of integrated silicon-based piezoelectric diaphragm-type biosensors by using sodium potassium niobate-silver niobate (0.82KNN-0.18AN) composite lead-free thin film as the piezoelectric layer. The piezoelectric diaphragms were designed and fabricated by micro-machining technology and chemical solution deposition. The fabricated device was very sensitive to the mass changes caused by various targets attached on the surface of diaphragm. The measured mass sensitivity value was about 931 Hz/μg. Its good performance shows that the piezoelectric diaphragm biosensor can be used as a cost-effective platform for nucleic acid testing. PMID:26771617

  1. Lead-Free Piezoelectric Diaphragm Biosensors Based on Micro-Machining Technology and Chemical Solution Deposition.

    PubMed

    Li, Xiaomeng; Wu, Xiaoqing; Shi, Peng; Ye, Zuo-Guang

    2016-01-12

    In this paper, we present a new approach to the fabrication of integrated silicon-based piezoelectric diaphragm-type biosensors by using sodium potassium niobate-silver niobate (0.82KNN-0.18AN) composite lead-free thin film as the piezoelectric layer. The piezoelectric diaphragms were designed and fabricated by micro-machining technology and chemical solution deposition. The fabricated device was very sensitive to the mass changes caused by various targets attached on the surface of diaphragm. The measured mass sensitivity value was about 931 Hz/μg. Its good performance shows that the piezoelectric diaphragm biosensor can be used as a cost-effective platform for nucleic acid testing.

  2. Ferroelectric instabilities and enhanced piezoelectric response in Ce modified BaTiO3 lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Brajesh, Kumar; Kalyani, Ajay Kumar; Ranjan, Rajeev

    2015-01-01

    The crystal structure, ferroelectric, and piezoelectric behaviors of the Ba(Ti1-xCex)O3 solid solution have been investigated at close composition intervals in the dilute concentration regime. Ce concentration as low as 2 mol. % induces tetragonal-orthorhombic instability and coexistence of the phases, leading to enhanced high-field strain and direct piezoelectric response. Detailed structural analysis revealed tetragonal + orthorhombic phase coexistence for x = 0.02, orthorhombic for 0.03 ≤ x ≤ 0.05, and orthorhombic + rhombohedral for 0.06 ≤ x ≤ 0.08. The results suggest that Ce-modified BaTiO3 is a potential lead-free piezoelectric material.

  3. Lead-free LiNbO3 nanowire-based nanocomposite for piezoelectric power generation

    PubMed Central

    2014-01-01

    In a flexible nanocomposite-based nanogenerator, in which piezoelectric nanostructures are mixed with polymers, important parameters to increase the output power include using long nanowires with high piezoelectricity and decreasing the dielectric constant of the nanocomposite. Here, we report on piezoelectric power generation from a lead-free LiNbO3 nanowire-based nanocomposite. Through ion exchange of ultra-long Na2Nb2O6-H2O nanowires, we synthesized long (approximately 50 μm in length) single-crystalline LiNbO3 nanowires having a high piezoelectric coefficient (d33 approximately 25 pmV-1). By blending LiNbO3 nanowires with poly(dimethylsiloxane) (PDMS) polymer (volume ratio 1:100), we fabricated a flexible nanocomposite nanogenerator having a low dielectric constant (approximately 2.7). The nanogenerator generated stable electric power, even under excessive strain conditions (approximately 105 cycles). The different piezoelectric coefficients of d33 and d31 for LiNbO3 may have resulted in generated voltage and current for the e33 geometry that were 20 and 100 times larger than those for the e31 geometry, respectively. This study suggests the importance of the blending ratio and strain geometry for higher output-power generation in a piezoelectric nanocomposite-based nanogenerator. PACS 77.65.-j; 77.84.-s; 73.21.Hb PMID:24386884

  4. Piezoelectric and ferroelectric properties of lead-free niobium-rich potassium lithium tantalate niobate single crystals

    SciTech Connect

    Li, Jun; Li, Yang; Zhou, Zhongxiang; Guo, Ruyan; Bhalla, Amar S.

    2014-01-01

    Graphical abstract: - Highlights: • Lead-free K{sub 0.95}Li{sub 0.05}Ta{sub 1−x}Nb{sub x}O{sub 3} single crystals were grown using the top-seeded melt growth method. • The piezoelectric and ferroelectric properties of as-grown crystals were systematically investigated. • The piezoelectric properties are very attractive, e.g. for x = 0.60 composition, k{sub t} ≈ 70%, k{sub 31} ≈ 70%, k{sub 33} ≈ 77%, d{sub 31} ≈ 230 pC/N, d{sub 33} ≈ 600 pC/N. • The coercive fields of P–E hysteresis loops are quite small, about or less than 1 kV/mm. - Abstract: Lead-free potassium lithium tantalate niobate single crystals with the composition of K{sub 0.95}Li{sub 0.05}Ta{sub 1−x}Nb{sub x}O{sub 3} (abbreviated as KLTN, x = 0.51, 0.60, 0.69, 0.78) were grown using the top-seeded melt growth method. Their piezoelectric and ferroelectric properties in as-grown crystals have been systematically investigated. The phase transitions and Curie temperatures were determined from dielectric and pyroelectric measurements. Piezoelectric coefficients and electromechanical coupling factors in thickness mode, length-extensional mode and longitudinal mode were obtained. The piezoelectric properties are very attractive, e.g. for x = 0.60 composition, k{sub t} ≈ 70%, k{sub 31} ≈ 70%, k{sub 33} ≈ 77%, d{sub 31} ≈ 230 pC/N, d{sub 33} ≈ 600 pC/N are comparable to the lead-based PZT composition. The polarization versus electric field hysteresis loops show saturated shapes. In short, lead-free niobium-rich KLTN system possesses comparable properties to those in important lead-based piezoelectric material nowadays.

  5. Giant Piezoelectricity and High Curie Temperature in Nanostructured Alkali Niobate Lead-Free Piezoceramics through Phase Coexistence.

    PubMed

    Wu, Bo; Wu, Haijun; Wu, Jiagang; Xiao, Dingquan; Zhu, Jianguo; Pennycook, Stephen J

    2016-11-30

    Because of growing environmental concerns, the development of lead-free piezoelectric materials with enhanced properties has become of great interest. Here, we report a giant piezoelectric coefficient (d33) of 550 pC/N and a high Curie temperature (TC) of 237 °C in (1-x-y)K1-wNawNb1-zSbzO3-xBiFeO3-yBi0.5Na0.5ZrO3 (KNwNSz-xBF-yBNZ) ceramics by optimizing x, y, z, and w. Atomic-resolution polarization mapping by Z-contrast imaging reveals the intimate coexistence of rhombohedral (R) and tetragonal (T) phases inside nanodomains, that is, a structural origin for the R-T phase boundary in the present KNN system. Hence, the physical origin of high piezoelectric performance can be attributed to a nearly vanishing polarization anisotropy and thus low domain wall energy, facilitating easy polarization rotation between different states under an external field.

  6. Synthesis of lead-free piezoelectric powders by ultrasonic-assisted hydrothermal method and properties of sintered (K0.48Na0.52)NBO3 ceramics.

    PubMed

    Isobe, Gaku; Maeda, Takafumi; Bornmann, Peter; Hemsel, Tobias; Morita, Takeshi

    2014-02-01

    (K,Na)NbO3 ceramics have attracted much attention as lead-free piezoelectric materials with high piezoelectric properties. High-quality (K,Na)NbO3 ceramics can be sintered using KNbO3 and NaNbO3 powders synthesized by a hydrothermal method. In this study, to enhance the quality factor of the ceramics, high-power ultrasonic irradiation was employed during the hydrothermal method, which led to a reduction in the particle size of the resultant powders.

  7. High performance Aurivillius phase sodium-potassium bismuth titanate lead-free piezoelectric ceramics with lithium and cerium modification

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Ming; Wang, Jin-Feng

    2006-11-01

    The piezoelectric properties of the lithium and cerium modified A-site vacancies sodium-potassium bismuth titanate (NKBT) lead-free piezoceramics are investigated. The piezoelectric activity of NKBT ceramics is significantly improved by the modification of lithium and cerium. The Curie temperature TC, piezoelectric coefficient d33, and mechanical quality factor Qm for the NKBT ceramics modified with 0.10mol% (LiCe) are found to be 660°C, 25pC/N, and 3135, respectively. The Curie temperature gradually decreases from 675to650°C with the increase of (LiCe) modification. The dielectric spectroscopy shows that all the samples possess stable piezoelectric properties, demonstrating that the (LiCe) modified NKBT-based ceramics are the promising candidates for high temperature applications.

  8. Tailoring of unipolar strain in lead-free piezoelectrics using the ceramic/ceramic composite approach

    SciTech Connect

    Khansur, Neamul H.; Daniels, John E.; Groh, Claudia; Jo, Wook; Webber, Kyle G.; Reinhard, Christina; Kimpton, Justin A.

    2014-03-28

    The electric-field-induced strain response mechanism in a polycrystalline ceramic/ceramic composite of relaxor and ferroelectric materials has been studied using in situ high-energy x-ray diffraction. The addition of ferroelectric phase material in the relaxor matrix has produced a system where a small volume fraction behaves independently of the bulk under an applied electric field. Inter- and intra-grain models of the strain mechanism in the composite material consistent with the diffraction data have been proposed. The results show that such ceramic/ceramic composite microstructure has the potential for tailoring properties of future piezoelectric materials over a wider range than is possible in uniform compositions.

  9. Strain engineering effects on electrical properties of lead-free piezoelectric thin films on Si wafers.

    PubMed

    Ohno, Tomoya; Kamai, Yuto; Oda, Yuutaro; Sakamoto, Naonori; Matsuda, Takeshi; Wakiya, Naoki; Suzuki, Hisao

    2014-01-01

    Using radio frequency - magnetron sputtering, calcium-doped barium zirconate titanate ((Ba(0.85)Ca(0.15))(Zr(0.1)Ti(0.9))O(3), BCZT) thin films were deposited on Si wafers with different bottom electrodes. The obtained BCZT thin film on a lanthanum nickel oxide (LNO) electrode had a highly c-axis preferred orientation, while the BCZT thin film on a Pt bottom electrode had (111) preferred orientation. Furthermore, the out-of-plane lattice constant of the BCZT on LNO/Si was 3.4% larger than that of the reported bulk material because of the compressive thermal stress from LNO with a large thermal expansion coefficient. This compressive thermal stress engenders an increase of the Curie temperature. The local piezoelectric response of the BCZT thin film on a LNO/Si structure was measured by piezoresponse force microscope.

  10. Direct Writing of Patterned, Lead-Free Nanowire Aligned Flexible Piezoelectric Device.

    PubMed

    Gao, Meng; Li, Lihong; Li, Wenbo; Zhou, Haihua; Song, Yanlin

    2016-08-01

    A high-performance flexible piezoelectric nanogenerator (PNG) is fabricated by a direct writing method, which acquires both patterned piezoelectric structure and aligned piezoelectric nanowires simultaneously. The voltage output of the as-prepared PNG is nearly 400% compared with that of the traditional spin-coated device due to the effective utilization of stress. This facile printing approach provides an efficient strategy for significant improvement of the piezoresponse.

  11. Miniature Ultrasonic Motor Using Shear Mode of Potassium Sodium Niobate-Based Lead-Free Piezoelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Li, Enzhu; Sasaki, Ryo; Hoshina, Takuya; Takeda, Hiroaki; Tsurumi, Takaaki

    2009-09-01

    A miniature piezoelectric ultrasonic motor (USM) using the shear mode of (K,Na)NbO3 (KNN)-based lead-free piezoelectric ceramics was developed. The motor can be driven in the shearing and bending vibration modes. By using the finite-element method, the motor vibration modes and driving mechanism were modeled. Both the “soft-type” (high-d USM) and “hard-type” (high-Qm USM) KNN-based lead-free piezoelectric ceramics were employed to clarify the characteristics of USMs. The experimental results reveal that the high-d USM widens the band of operational frequency in both vibration modes. In the shearing vibration mode, the high-d USM showed a revolution speed of 416 rpm, a torque of 41.5 µN m, and an efficiency of 0.6%, whereas the high-Qm USM showed the same characteristics of 313 rpm, 19.6 µN m and 1.6%, respectively. In the bending vibration mode, the characteristics of the high-Qm USM were 376 rpm, 51.4 µN m and 0.4%; however, the characters of the high-d USM deteriorated owing to the shift in resonance frequency caused by heat generation.

  12. Temperature dependent structures and properties of Bi0.5Na0.5TiO3-based lead free piezoelectric composite.

    PubMed

    Zhang, Ji; Sun, Lei; Geng, Xiao-Yu; Zhang, Bin-Bin; Yuan, Guo-Liang; Zhang, Shan-Tao

    2016-07-05

    The thermal depolarization around 100 °C of the Bi0.5Na0.5TiO3-based piezoelectric solid solutions leads to the disappearance of macroscopic ferroelectric/piezoelectric properties and remains a long-standing obstacle for their actual applications. In this communication, we report lead-free piezoelectric composites of 0.94Bi0.5Na0.5TiO3-0.06BaTiO3:0.5ZnO (BNT-6BT:0.5ZnO, where 0.5 is the mole ratio of ZnO to BNT-6BT) with deferred thermal depolarization, which is experimentally confirmed by systematic temperature dependent dielectric, ferroelectric, piezoelectric measurements. Especially, based on temperature dependent X-ray diffraction measurements on unpoled and poled samples, thermal depolarization is confirmed to have no relationship with the structural phase transition, the possible mechanism for the deferred thermal depolarization is correlated with the ZnO-induced local electric field which can suppress the depolarization field. We believe our results may be helpful for understanding the origin of thermal depolarization in BNT-based piezoelectric materials, and thus provide an effective way to overcoming this obstacle.

  13. Piezoelectric d36 in-plane shear-mode of lead-free BZT-BCT single crystals for torsion actuation

    NASA Astrophysics Data System (ADS)

    Berik, P.; Chang, W.-Y.; Jiang, X.

    2017-01-01

    We report the study of piezoelectric direct torsion actuation mechanism using lead-free piezoelectric d36 in-plane shear-mode BZT-BCT single crystals. The generated angle of twist of the piezoelectric torsion actuator was obtained from the transverse deflection measurement using a laser vibrometer. The bi-morph torsional actuator, consisting of two lead-free piezoelectric BZT-BCT in-plane shear-mode single crystals with a giant piezoelectric d36 shear strain coefficient of 1590 pC/N, provided a rate of twist of 34.12 mm/m under a quasi-static 15 V drive. The experimental benchmark was further modelled and verified by the ANSYS software using three dimensional (3D) piezoelectric finite elements. The experimental results revealed that lead-free piezoelectric BZT-BCT d36-mode single crystal is a superior candidate for piezoelectric torsion actuation. This lead-free piezoelectric BZT-BCT d36-mode torsion actuator can be effectively applied in torsional deformation control by taking into account the environmental considerations.

  14. A new lead-free radiation shielding material for radiotherapy.

    PubMed

    Yue, Kun; Luo, Wenyun; Dong, Xiaoqing; Wang, Chuanshan; Wu, Guohua; Jiang, Mawei; Zha, Yuanzi

    2009-02-01

    Lead has recently been recognised as a source of environmental pollution, including the lead used for radiation shielding in radiotherapy. The bremsstrahlung radiation caused by the interaction between the electron beam and lead may reduce the accuracy of radiotherapy. To avoid the use of lead, a new material composed of tungsten and hydrogenated styrene-butadiene-styrene copolymer is studied with the Monte Carlo (MC) method and experiment in this paper. The component of the material is chosen after simulation with the MC method and the practical measurement is taken to validate the shielding ability of the material. The result shows that the shielding ability of the new material is good enough to fulfill the requirement for application in radiotherapy. Compared with lead alloy, the present new material is so flexible that can be easily customized into arbitrary shapes. Moreover, the material is environmentally friendly and can be recycled conveniently. Therefore, the material can be used as an effective lead substitute for shielding against electron beams in radiotherapy.

  15. Phase transition and piezoelectric properties of Nd3+ doped nonstoichiometric (K,Na)NbO3-based lead free ceramics

    NASA Astrophysics Data System (ADS)

    Xing, Jie; Tan, Zhi; Jiang, Laiming; Wu, Yangjie; Yue, Yang; Chen, Qiang; Wu, Jiagang; Zhang, Wen; Xiao, Dingquan; Zhu, Jianguo

    2017-01-01

    0.968[(K0.48Na0.52)]1-3xNdxNb0.95+ySb0.05O3-0.032(Bi0.5Na0.5)ZrO3[KNNdxNb0.95+yS-BNZ] lead-free piezoelectric ceramics were prepared via conventional solid state technique for improving the piezoelectric properties. The influences of Nd3+ with excess Nb5+ on the phase structure, electrical properties, and temperature stability were investigated systematically. The rhombohedral-tetragonal phase boundary was observed in the ceramics with 0.001 ≤ x ≤ 0.004, y ≥ 0.01 at room temperature. Rietveld refinement is performed to explore the phase evolution in ceramics. There is a piezoelectric property enhancement in the ceramic with x = 0.001 y = 0.01: d33 = 414 pC/N, kp ˜ 48%, and TC ˜ 227 °C. All results suggest that KNNdxNb0.95+yS-BNZ ceramics developed in this study are expected to be suitable substitutes for lead-based ceramics.

  16. Effect of orthorhombic-tetragonal phase transition on structure and piezoelectric properties of KNN-based lead-free ceramics.

    PubMed

    Zhang, Yang; Li, Lingyu; Shen, Bo; Zhai, Jiwei

    2015-05-07

    (1 - x)(K0.5Na0.5)0.95Li0.05Nb0.93Sb0.07O3-xSrZrO3 ((1 - x)KNLNS-xSZ) lead free piezoelectric ceramics have been prepared by the conventional solid state reaction method, via adjusting the orthorhombic-tetragonal phase transition temperature to near room temperature with doping SrZrO3, and the effects of SrZrO3 content on polymorphic phase transition have been investigated. These results show that the phase structure of the ceramics was changed from orthorhombic to tetragonal at x ≥ 0.02 mol, and the orthorhombic-tetragonal phase transition temperature was modified to around room temperature with increasing SrZrO3. Remarkable piezoelectric and ferroelectric properties has been obtained in (1 - x)KNLNS-xSZ system with x = 0.02, which showed a piezoelectric parameter of d33 = 256 pC N(-1), Curie temperature Tc = 270 °C, strain levels of 0.16% at 50 kV cm(-1), remnant polarization Pr = 24.9 μC cm(-2) and coercive field Ec = 10.6 kV cm(-1).

  17. Development of a Lead-free Piezoelectric (K,Na)NbO3 Thin Film Deposited on Nickel-based Electrodes

    NASA Astrophysics Data System (ADS)

    Bani Milhim, Alaeddin

    It is desirable to replace noble metals used as electrode materials for piezoelectric thin film with base metals. This will reduce the piezoelectric thin film fabrication cost. A nickel?based layer in conjunction with other protective layers is proposed as a bottom electrode for lead-free piezoelectric KNN thin film. The obtained results do not indicate the oxidation of the nickel?based bottom electrode after the deposition of KNN at 600 °C for 10 hours in the presence of oxygen and/or after annealing the sample at 400 °C for an hour in air. The fabricated KNN thin film was fully characterized in this work. The effective piezoelectric coefficients d33 and d31 were estimated to be 37 pm/V and 17.2 pm/V, respectively, at 100 kV/cm. The piezoelectric properties of the fabricated KNN/Ni/Ti/SiO2/Si are affected by the crystal orientation of the KNN layer, which was preferentially oriented in the (110) direction. Optimization of the deposition parameters of the fabricated KNN/Ni/Ti/SiO2/Si film is expected to further enhance the piezoelectric properties. Two novel systems utilizing the developed KNN piezoelectric thin film are proposed and their performance simulated based on the achieved KNN thin film parameters. The first is a precision automated nanomanipulation system using an AFM as a sensor and piezo-actuated manipulators. Real-time feedback of the particle being manipulated can be achieved using the proposed system. The length of the manipulators needs to be at least 2 mm to be incorporated with a commercial AFM system. To fabricate the required manipulators, a three-step electrochemical etching technique was developed. Tungsten tips combining well-defined conical shape, a length as large as 2 mm, and sharpness with a radius of curvature of around 20 nm were fabricated using the proposed technique. By depositing the KNN thin film on the fabricated manipulator, nanomanipulators with out-of-plane actuation can be produced. Ultrasonic piezoelectric fan array, the

  18. Lead-Free Piezoelectric MEMS Energy Harvesters of (K,Na)NbO3 Thin Films on Stainless Steel Cantilevers

    NASA Astrophysics Data System (ADS)

    Tsujiura, Yuichi; Suwa, Eisaku; Kurokawa, Fumiya; Hida, Hirotaka; Suenaga, Kazufumi; Shibata, Kenji; Kanno, Isaku

    2013-09-01

    We fabricated piezoelectric MEMS energy harvesters (EHs) of lead-free (K,Na)NbO3 (KNN) thin films on microfabricated stainless steel cantilevers. The use of metal substrates makes it possible to fabricate thin cantilevers owing to a large fracture toughness compared with Si substrates. KNN films were directly deposited onto Pt-coated stainless steel cantilevers by rf-magnetron sputtering, thereby simplifying the fabrication process of the EHs. From XRD measurement, we confirmed that the KNN films on Pt-coated stainless steel cantilevers had a perovskite structure with a preferential (001) orientation. The transverse piezoelectric coefficient e31f and relative dielectric constant ɛr were measured to be -3.8 C/m2 and 409, respectively. From the evaluation of the power generation performance of a KNN thin-film EH (length: 7.5 mm, width: 5.0 mm, weight of tip mass: 25 mg), we obtained a large average output power of 1.6 µW under vibration at 393 Hz and 10 m/s2.

  19. Relaxor ferroelectricity and electric-field-driven structural transformation in the giant lead-free piezoelectric (Ba ,Ca ) (Ti ,Zr ) O3

    NASA Astrophysics Data System (ADS)

    Brajesh, Kumar; Tanwar, Khagesh; Abebe, Mulualem; Ranjan, Rajeev

    2015-12-01

    There is great interest in lead-free (B a0.85C a0.15 ) (T i0.90Z r0.10 ) O3 (15/10BCTZ) because of its exceptionally large piezoelectric response [Liu and Ren, Phys. Rev. Lett. 103, 257602 (2009), 10.1103/PhysRevLett.103.257602]. In this paper, we have analyzed the nature of: (i) crystallographic phase coexistence at room temperature, (ii) temperature- and field-induced phase transformation to throw light on the atomistic mechanisms associated with the large piezoelectric response of this system. A detailed temperature-dependent dielectric and lattice thermal expansion study proved that the system exhibits a weak dielectric relaxation, characteristic of a relaxor ferroelectric material on the verge of exhibiting a normal ferroelectric-paraelectric transformation. Careful structural analysis revealed that a ferroelectric state at room temperature is composed of three phase coexistences, tetragonal (P 4 m m )+ orthorhombic(Amm 2 )+rhombohedral(R 3 m ) . We also demonstrate that the giant piezoresponse is associated with a significant fraction of the tetragonal phase transforming to rhombohedral. It is argued that the polar nanoregions associated with relaxor ferroelectricity amplify the piezoresponse by providing an additional degree of intrinsic structural inhomogeneity to the system.

  20. Origin of giant piezoelectric effect in lead-free K1−xNaxTa1−yNbyO3 single crystals

    PubMed Central

    Tian, Hao; Meng, Xiangda; Hu, Chengpeng; Tan, Peng; Cao, Xilong; Shi, Guang; Zhou, Zhongxiang; Zhang, Rui

    2016-01-01

    A series of high-quality, large-sized (maximum size of 16 × 16 × 32 mm3) K1−xNaxTa1−yNbyO3 (x = 0.61, 0.64, and 0.70 and corresponding y = 0.58, 0.60, and 0.63) single crystals were grown using the top-seed solution growth method. The segregation of the crystals, which allowed for precise control of the individual components of the crystals during growth, was investigated. The obtained crystals exhibited excellent properties without being annealed, including a low dielectric loss (0.006), a saturated hysteresis loop, a giant piezoelectric coefficient d33 (d33 = 416 pC/N, determined by the resonance method and d33* = 480 pC/N, measured using a piezo-d33 meter), and a large electromechanical coupling factor, k33 (k33 = 83.6%), which was comparable to that of lead zirconate titanate. The reason the piezoelectric coefficient d33 of K0.39Na0.61Ta0.42Nb0.58O3 was larger than those of the other two crystals grown was elucidated through first-principles calculations. The obtained results indicated that K1−xNaxTa1−yNbyO3 crystals can be used as a high-quality, lead-free piezoelectric material. PMID:27160075

  1. Origin of giant piezoelectric effect in lead-free K1-xNaxTa1-yNbyO3 single crystals.

    PubMed

    Tian, Hao; Meng, Xiangda; Hu, Chengpeng; Tan, Peng; Cao, Xilong; Shi, Guang; Zhou, Zhongxiang; Zhang, Rui

    2016-05-10

    A series of high-quality, large-sized (maximum size of 16 × 16 × 32 mm(3)) K1-xNaxTa1-yNbyO3 (x = 0.61, 0.64, and 0.70 and corresponding y = 0.58, 0.60, and 0.63) single crystals were grown using the top-seed solution growth method. The segregation of the crystals, which allowed for precise control of the individual components of the crystals during growth, was investigated. The obtained crystals exhibited excellent properties without being annealed, including a low dielectric loss (0.006), a saturated hysteresis loop, a giant piezoelectric coefficient d33 (d33 = 416 pC/N, determined by the resonance method and d33(*) = 480 pC/N, measured using a piezo-d33 meter), and a large electromechanical coupling factor, k33 (k33 = 83.6%), which was comparable to that of lead zirconate titanate. The reason the piezoelectric coefficient d33 of K0.39Na0.61Ta0.42Nb0.58O3 was larger than those of the other two crystals grown was elucidated through first-principles calculations. The obtained results indicated that K1-xNaxTa1-yNbyO3 crystals can be used as a high-quality, lead-free piezoelectric material.

  2. Origin of giant piezoelectric effect in lead-free K1‑xNaxTa1‑yNbyO3 single crystals

    NASA Astrophysics Data System (ADS)

    Tian, Hao; Meng, Xiangda; Hu, Chengpeng; Tan, Peng; Cao, Xilong; Shi, Guang; Zhou, Zhongxiang; Zhang, Rui

    2016-05-01

    A series of high-quality, large-sized (maximum size of 16 × 16 × 32 mm3) K1‑xNaxTa1‑yNbyO3 (x = 0.61, 0.64, and 0.70 and corresponding y = 0.58, 0.60, and 0.63) single crystals were grown using the top-seed solution growth method. The segregation of the crystals, which allowed for precise control of the individual components of the crystals during growth, was investigated. The obtained crystals exhibited excellent properties without being annealed, including a low dielectric loss (0.006), a saturated hysteresis loop, a giant piezoelectric coefficient d33 (d33 = 416 pC/N, determined by the resonance method and d33* = 480 pC/N, measured using a piezo-d33 meter), and a large electromechanical coupling factor, k33 (k33 = 83.6%), which was comparable to that of lead zirconate titanate. The reason the piezoelectric coefficient d33 of K0.39Na0.61Ta0.42Nb0.58O3 was larger than those of the other two crystals grown was elucidated through first-principles calculations. The obtained results indicated that K1‑xNaxTa1‑yNbyO3 crystals can be used as a high-quality, lead-free piezoelectric material.

  3. Lead-Free Piezoelectric (Ba,Ca)(Zr,Ti)O3 Thin Films for Biocompatible and Flexible Devices.

    PubMed

    Scarisoreanu, N D; Craciun, F; Ion, V; Birjega, R; Bercea, A; Dinca, V; Dinescu, M; Sima, L E; Icriverzi, M; Roseanu, A; Gruionu, L; Gruionu, G

    2017-01-11

    In this work, we report the synthesis of functional biocompatible piezoelectric (1 - x)Ba(Ti0.8Zr0.2)TiO3-x(Ba0.7Ca0.3)TiO3, x = 0.45 (BCZT45), thin films with high piezoelectric properties. Pulsed-laser-based techniques, classical pulsed-laser deposition and matrix-assisted pulsed-laser evaporation, were used to synthesize the BCZT45 thin films. The second technique was employed in order to ensure growth on polymer flexible Kapton substrates. The BCZT45 thin films grown by both techniques show similar structural properties and high piezoelectric coefficient coupling between the mechanical loading and electrical potential. While it has long been shown that the electrical potential favors biological processes like osteogenesis, the assessment of cell adhesion and osteogenic differentiation onto BCZT materials has not yet been demonstrated. We prove here for the first time that BCZT 45 coatings on Kapton polymer substrates provide optimal support for osteogenic differentiation of mesenchymal stem cells in the bone marrow.

  4. Effects of K content on the dielectric, piezoelectric, and ferroelectric properties of 0.95(KxNa1-x)NbO3-0.05LiSbO3 lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Wu, Jiagang; Xiao, Dingquan; Wang, Yuanyu; Zhu, Jianguo; Yu, Ping

    2008-01-01

    The effects of K content on the dielectric, piezoelectric, and ferroelectric properties of 0.95(KxNa1-x)NbO3-0.05LiSbO3 (0.95KxNN-0.05LS) (x =0.25-0.75) lead-free piezoelectric ceramics prepared by conventional solid-state sintering were studied. The experimental results show that the dielectric, piezoelectric, and ferroelectric properties strongly depend on K content in the 0.95KxNN-0.05LS ceramics. The 0.95KxNN-0.05LS (x =0.40) ceramics exhibit enhanced electrical properties (d33≈280 pC/N; kp≈49.4%; Tc˜364 °C; To-t=25 °C; ɛr≈1463; tan δ ≈2.3%; Pr˜30.8 μC/cm2; Ec˜14.0 kV/cm). The enhanced electrical properties of 0.95KxNN-0.05LS (x =0.40) ceramics are attributed to the polymorphic phase transition near room temperature. These results show that 0.95KxNN-0.05LS (x =0.40) ceramic is a promising lead-free piezoelectric material.

  5. High Curie point CaBi2Nb2O9 thin films: A potential candidate for lead-free thin-film piezoelectrics

    NASA Astrophysics Data System (ADS)

    Simões, A. Z.; Ries, A.; Riccardi, C. S.; Gonzalez, A. H. M.; Longo, E.; Varela, J. A.

    2006-10-01

    CaBi2Nb2O9 (CBNO) thin films deposited on platinum coated silicon substrates by the polymeric precursor method exhibited good structural, dielectric, and piezoelectric characteristics. Capacitance-voltage measurements indicated good ferroelectric polarization switching characteristics. Remanent polarization and drive voltage values were 4.2μC /cm2 and 1.7V for a maximum applied voltage of 10V. The film has a piezoelectric coefficient d33 equal to 60pm/V, current density of 0.7μA/cm2, and Curie temperature of 940°C. The polar-axis-oriented CBNO is a promising candidate for use in lead-free high Curie point in ferroelectric and piezoelectric devices.

  6. Piezoelectric Properties of CuO-Doped (K,Na)NbO3 Lead-Free Ceramics Synthesized with Hydrothermal Powders

    NASA Astrophysics Data System (ADS)

    Yokouchi, Yuriko; Maeda, Takafumi; Bornmann, Peter; Hemsel, Tobias; Morita, Takeshi

    2013-07-01

    We report the piezoelectric properties of CuO-doped hydrothermal (K,Na)NbO3 ceramics that can be applied as hard-type lead-free piezoelectric ceramics. To date, we have succeeded in synthesizing high-quality KNbO3 and NaNbO3 powders by the hydrothermal method, which is based on an ionic reaction at high temperature (around 210 °C) and pressure. Increasing both the piezoelectric constant d and the mechanical quality factor (Qm) is important for resonance-type piezoelectric devices, such as ultrasonic motors and transformers. CuO doping into hydrothermal (K,Na)NbO3 ceramics was examined to realize hard-type lead-free piezoelectric ceramics. By doping with 1.2 mol % CuO, Qm was increased and the dielectric loss (tan δ) was decreased to 0.5%. The grain size was also influenced by the amount of CuO doping, which indicates that Qm is related to the density. To achieve a higher Qm value, the grain size is required to be less than 5 µm however, excessive CuO doping leads to anomalous grain growth. Optimal piezoelectric properties were obtained for 1.2 mol % CuO-doped (K,Na)NbO3; k31 = 0.32, d31 = -44 pC/N, Qm (radial) = 959, and tan δ= 0.5%. These characteristics showed that CuO doping with hydrothermal powders is effective for obtaining hard-type ceramics, and the mechanical quality factor is more than ten times higher than that of nondoped hydrothermal (K,Na)NbO3 ceramics. Therefore, compared with the conventional solid-state method, we could succeed in obtaining hard-type ceramics by a simple and short process.

  7. The ageing and de-ageing behaviour of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Zhang, Yichi; Glaum, Julia; Ehmke, Matthias C.; Bowman, Keith J.; Blendell, John E.; Hoffman, Mark J.

    2015-09-01

    Ageing behaviour usually occurs in acceptor-doped piezoelectric materials (e.g., hard lead zirconate titanate) and exhibits the development of a pinched or shifted hysteresis loop over time. Although no pinched hysteresis loop was observed for lead-free (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 material, this study showed that the piezoelectric properties change over time in the poled state. The shift of the hysteresis loop along the electric field axis and the development of asymmetry in strain and permittivity hysteresis loop were observed during the ageing process. The origin of this ageing behaviour is proposed to be local defect dipoles and the migration of the charged defects to the grain boundaries. The reorientation of the defect dipole contributes to a fast but unstable ageing mechanism in this material while the migration of the charged defects contributes to a slow but more stable mechanism.

  8. Lead-free piezoelectrics: V3+ to V5+ ion conversion promoting the performances of V-doped Zinc Oxide

    NASA Astrophysics Data System (ADS)

    Laurenti, M.; Castellino, M.; Perrone, D.; Asvarov, A.; Canavese, G.; Chiolerio, A.

    2017-02-01

    Vanadium doped ZnO (VZO) thin films were grown by RF magnetron sputtering, starting from a ZnO:V ceramic target. The crystal structure, chemical composition, electric and piezoelectric properties of the films were investigated either on the as-grown thin films or after a post-deposition rapid thermal annealing (RTA) treatment performed at 600 °C for different lengths of time (1 and 5 min) in an oxygen atmosphere. Substitutional doping of Zn2+ with V3+ and V5+ ions strongly deteriorated the hexagonal wurtzite ZnO structure of the as-grown thin films due to lattice distortion. The resulting slight amorphization led to a poor piezoelectric response and higher resistivity. After the RTA treatment, strong c-axis oriented VZO thin films were obtained, together with a partial conversion of the starting V3+ ions into V5+. The improvement of the crystal structure and the stronger polarity of both V3+ – O and V5+ – O chemical bonds, together with the corresponding easier rotation under the application of an external electric field, positively affected the piezoelectric response and increased conductivity. This was confirmed by closed-loop butterfly piezoelectric curves, by a maximum d33 piezoelectric coefficient of 85 pm·V‑1, and also by ferroelectric switching domains with a well-defined polarization hysteresis curve, featuring a residual polarization of 12.5 μC•cm‑2.

  9. Lead-free piezoelectrics: V3+ to V5+ ion conversion promoting the performances of V-doped Zinc Oxide

    PubMed Central

    Laurenti, M.; Castellino, M.; Perrone, D.; Asvarov, A.; Canavese, G.; Chiolerio, A.

    2017-01-01

    Vanadium doped ZnO (VZO) thin films were grown by RF magnetron sputtering, starting from a ZnO:V ceramic target. The crystal structure, chemical composition, electric and piezoelectric properties of the films were investigated either on the as-grown thin films or after a post-deposition rapid thermal annealing (RTA) treatment performed at 600 °C for different lengths of time (1 and 5 min) in an oxygen atmosphere. Substitutional doping of Zn2+ with V3+ and V5+ ions strongly deteriorated the hexagonal wurtzite ZnO structure of the as-grown thin films due to lattice distortion. The resulting slight amorphization led to a poor piezoelectric response and higher resistivity. After the RTA treatment, strong c-axis oriented VZO thin films were obtained, together with a partial conversion of the starting V3+ ions into V5+. The improvement of the crystal structure and the stronger polarity of both V3+ – O and V5+ – O chemical bonds, together with the corresponding easier rotation under the application of an external electric field, positively affected the piezoelectric response and increased conductivity. This was confirmed by closed-loop butterfly piezoelectric curves, by a maximum d33 piezoelectric coefficient of 85 pm·V−1, and also by ferroelectric switching domains with a well-defined polarization hysteresis curve, featuring a residual polarization of 12.5 μC∙cm−2. PMID:28165040

  10. Lead-free piezoelectrics: V(3+) to V(5+) ion conversion promoting the performances of V-doped Zinc Oxide.

    PubMed

    Laurenti, M; Castellino, M; Perrone, D; Asvarov, A; Canavese, G; Chiolerio, A

    2017-02-06

    Vanadium doped ZnO (VZO) thin films were grown by RF magnetron sputtering, starting from a ZnO:V ceramic target. The crystal structure, chemical composition, electric and piezoelectric properties of the films were investigated either on the as-grown thin films or after a post-deposition rapid thermal annealing (RTA) treatment performed at 600 °C for different lengths of time (1 and 5 min) in an oxygen atmosphere. Substitutional doping of Zn(2+) with V(3+) and V(5+) ions strongly deteriorated the hexagonal wurtzite ZnO structure of the as-grown thin films due to lattice distortion. The resulting slight amorphization led to a poor piezoelectric response and higher resistivity. After the RTA treatment, strong c-axis oriented VZO thin films were obtained, together with a partial conversion of the starting V(3+) ions into V(5+). The improvement of the crystal structure and the stronger polarity of both V(3+) - O and V(5+) - O chemical bonds, together with the corresponding easier rotation under the application of an external electric field, positively affected the piezoelectric response and increased conductivity. This was confirmed by closed-loop butterfly piezoelectric curves, by a maximum d33 piezoelectric coefficient of 85 pm·V(-1), and also by ferroelectric switching domains with a well-defined polarization hysteresis curve, featuring a residual polarization of 12.5 μC∙cm(-2).

  11. Improvement of the piezoelectric properties in (K,Na)NbO{sub 3}-based lead-free piezoelectric ceramic with two-phase co-existing state

    SciTech Connect

    Yamada, H. Matsuoka, T.; Kozuka, H.; Yamazaki, M.; Ohbayashi, K.; Ida, T.

    2015-06-07

    Two phases of (K,Na)NbO{sub 3} (KNN) co-exist in a KNN-based composite lead-free piezoelectric ceramic 0.910(K{sub 1−x}Na{sub x}){sub 0.86}Ca{sub 0.04}Li{sub 0.02}Nb{sub 0.85}O{sub 3−δ}–0.042K{sub 0.85}Ti{sub 0.85}Nb{sub 1.15}O{sub 5} –0.036BaZrO{sub 3}–0.0016Co{sub 3}O{sub 4}– 0.0025Fe{sub 2}O{sub 3}–0.0069ZnO system, over a wide range of Na fractions, where 0.56 ≤ x ≤ 0.75. The crystal systems of the two KNN phases are identified to tetragonal and orthorhombic by analyzing the synchrotron powder X-ray diffraction (XRD) data, high-resolution transmission electron microscopy (HR-TEM), and selected-area electron diffraction (SAD). In the range 0.33 ≤ x ≤ 0.50, the main component of the composite system is found to be single-phase KNN with a tetragonal structure. Granular nanodomains of the orthorhombic phase dispersed in the tetragonal matrix have been identified by HR-TEM and SAD for 0.56 ≤ x ≤ 0.75. Only a trace amount of the orthorhombic phase has been found in the SAD patterns at the composition x = 0.56. However, the number of orthorhombic nanodomains gradually increases with increasing Na content up to x < 0.75, as observed from the HR-TEM images. An abrupt increase and agglomeration of the nanodomains are observed at x = 0.75, where weak diffraction peaks of the orthorhombic phase have also become detectable from the XRD data. The maximum value of the electromechanical coupling coefficient, k{sub p} = 0.56, has been observed at the composition x = 0.56.

  12. Phase transition behavior and electrical properties of lead-free (Ba1-xCax)(Zr0.1Ti0.9)O3 piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Chao, Xiaolian; Wei, Lingling; Liang, Pengfei; Yang, Zupei

    2013-05-01

    Lead-free (Ba1-xCax)(Zr0.1Ti0.9)O3(BCZT) ceramics were synthesized by conventional solid-state sintering process. The Ca ion substitutions on phase transition behavior, microstructure, ferroelectric and piezoelectric properties of BCZT ceramics were systemically investigated. The diffuse phase transition (DPT) behavior was suppressed, while the orthorhombic → tetragonal (O→T) and rhombohedral → orthorhombic (R→O) phase transitions were observed when the Ca content is at x = 0.05. Further increasing the Ca content, the DPT behavior gradually enhanced, and both the O→T and R→O phase transitions gradually evolved into R→T phase transition when the Ca content increases up to 0.15 at 25 °C. This behavior was related with phase structure and morphology, which significantly impacted the ferroelectric and piezoelectric properties near the R→T phase boundary. As a result, the sample with Ca contents of 0.15 shows the outstanding piezoelectric properties (with d33 = 572 pC/N, kp = 57%, Qm = 125, ɛr = 4821, and tan δ = 0.015) while negligible change for the ferroelectric properties. The abnormal ferroelectric behavior and potential factor contributing to large piezoelectric response also were discussed.

  13. Discovering lead-free perovskite solar materials with a split-anion approach.

    PubMed

    Sun, Yi-Yang; Shi, Jian; Lian, Jie; Gao, Weiwei; Agiorgousis, Michael L; Zhang, Peihong; Zhang, Shengbai

    2016-03-28

    Organic-inorganic hybrid perovskite solar materials, being low-cost and high-performance, are promising for large-scale deployment of the photovoltaic technology. A key challenge that remains to be addressed is the toxicity of these materials since the high-efficiency solar cells are made of lead-containing materials, in particular, CH3NH3PbI3. Here, based on first-principles calculation, we search for lead-free perovskite materials based on the split-anion approach, where we replace Pb with non-toxic elements while introducing dual anions (i.e., splitting the anion sites) that preserve the charge neutrality. We show that CH3NH3BiSeI2 and CH3NH3BiSI2 exhibit improved band gaps and optical absorption over CH3NH3PbI3. The split-anion approach could also be applied to pure inorganic perovskites, significantly enlarging the pool of candidate materials in the design of low-cost, high-performance and environmentally-friendly perovskite solar materials.

  14. Pairing High Piezoelectric Coefficients, d33, with High Curie Temperature (TC) in Lead-Free (K,Na)NbO3.

    PubMed

    Rafiq, Muhammad Asif; Costa, Maria Elisabete; Vilarinho, Paula Maria

    2016-12-14

    The largest piezoelectric properties, d33 = 416 pC/N and 490 pC/N, in KxNa1-xNbO3 ceramics have been reported for compositions close to polymorphic phase transition (PPT); however, they also have Curie temperatures, TC, of around 217-304 °C, considerably lower than those of undoped KNN ceramics (420 °C). High d33 along with high TC remains the ideal choice for applications but, unfortunately, not attained up to now. Here, we show that using KNN single crystals as seeds for template grain growth (TGG) of KNN ceramics enables dramatic improvements in the electromechanical properties while maintaining a high TC. The (001)-oriented (K0.5Na0.5)0.98Li0.02NbO3 ceramics engineered by TGG using (K0.5Na0.5)NbO3 crystals as templates exhibit a high d33 of 280 pC/N while maintaining the high TC of 430 °C. Enhanced piezoelectricity is attributed to long-range ordered ferroelectric domain patterns consisting of 90° and 180° domains, similar to single crystals. It is the first time that pairing high d33 and high TC in KNN, keeping a high PPT temperature, is achieved. This study is an unequivocal proof that it is possible to maximize d33, keeping a high TC in KNN without resorting to heavily doped compositions. This work opens the door to high-performance, rare-earth free, compositionally simple lead-free and low-cost electromechanical compounds, which can largely expand lead-free piezoelectrics applications.

  15. Lead-free BNBT-6 piezoelectric ceramic fibre/epoxy 1-3 composites for ultrasonic transducer applications

    NASA Astrophysics Data System (ADS)

    Wang, D. Y.; Li, K.; Chan, H. L. W.

    2005-04-01

    Barium-modified bismuth sodium titanate, 0.94 ×(Bi0.5Na0.5)TiO3-0.06BaTiO3 (BNBT-6), fine-scale piezoelectric fibres were fabricated using a viscous suspension spinning process (VSSP). The sintered BNBT-6 fibres with diameters of ˜300 μm were fabricated into 1-3 composites with fibre volume fraction vf of 0.2-0.5. Piezoelectric and dielectric properties of the 1-3 composites were measured. The electromechanical coupling coefficient kt of a vf=0.40 composite is 0.52. Properties of the VSSP fibres were calculated using the measured properties of the 1-3 composites. A vf=0.40 composite was thinned down to ˜213-μm thickness and constructed into an ultrasonic transducer. The pulse-echo response, bandwidth and insertion loss of the transducers were studied. The VSSP fibre composite transducer with vf=0.40 has a centre frequency of ˜7 MHz with a bandwidth of 88%. The good performance indicated that the BNBT-6/epoxy 1-3 fibre composite transducer has potential for medical imaging applications.

  16. Diffuse phase transition and electrical properties of lead-free piezoelectric (LixNa1-x)NbO3 (0.04 ≤ x ≤ 0.20) ceramics near morphotropic phase boundary

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Kulkarni, A. R.; Prakash, Om

    2013-08-01

    Temperature-dependent dielectric permittivity of lead-free (LixNa1-x)NbO3 for nominal x = 0.04-0.20, prepared by solid state reaction followed by sintering, was studied to resolve often debated issue pertaining to exactness of morphotropic phase boundary (MPB) location besides structural aspects and phase stability in the system near MPB. Interestingly, a diffuse phase transition has been observed in the dielectric permittivity peak arising from the disorder induced in A-site and structural frustration in the perovskite cell due to Li substitution. A partial phase diagram has been proposed based on temperature-dependent dielectric permittivity studies. The room temperature piezoelectric and ferroelectric properties were investigated and the ceramics with x = 0.12 showed relatively good electrical properties (d33 = 28 pC/N, kp = 13.8%, Qm = 440, Pr = 12.5 μC/cm2, Ec = 43.2 kV/cm, and Tm = 340 °C). These parameter values make this material suitable for piezoelectric resonator and filter applications. Moreover, a high dielectric permittivity (ɛ'r = 2703) with broad diffuse peak near transition temperature, and low dielectric loss (<4%) over a wide temperature range (50-250 °C) found in this material may also have a potential application in high-temperature multilayer capacitors in automotive and aerospace related industries.

  17. Phase transition and electrical properties of (K0.5Na0.5)(Nb1-xTax)O3 lead-free piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Lin, Dunmin; Kwok, K. W.; Chan, H. L. W.

    2008-04-01

    (K0.5Na0.5)(Nb1-xTax)O3 lead-free piezoelectric ceramics have been prepared by an ordinary sintering technique. The results of X-ray diffraction reveal that Ta5+ diffuses into the K0.5Na0.5NbO3 lattices to form a solid solution with an orthorhombic perovskite structure. Because of the high melting temperature of KTaO3, the (K0.5Na0.5)(Nb1-xTax)O3 ceramics can be sintered at higher temperatures. The partial substitution of Ta5+ for the B-site ion Nb5+ decreases both paraelectric/cubic ferroelectric/tetragonal and ferroelectric/tetragonal ferroelectric/orthorhombic phase transition temperatures, TC and TO-T. It also induces a relaxor phase transition and weakens the ferroelectricity of the ceramics. The ceramics become ‘softened’, leading to improvements in d33, kp, kt and ɛr and a decease in Ec, Qm and Np. The ceramics with x=0.075 0.15 become optimum, having d33=127 151 pC/N, kp=0.43 0.44, kt=0.43 0.44, ɛr=541 712, tanδ=1.75 2.48% and TC=378 329 °C.

  18. Thermally stable electrostrains of morphotropic 0.875NaNbO3-0.1BaTiO3-0.025CaZrO3 lead-free piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Qi, He; Zuo, Ruzhong; Fu, Jian; Dou, Mengxian

    2017-03-01

    The 0.875NaNbO3-0.1BaTiO3-0.025CaZrO3 relaxor ferroelectric ceramics were reported to exhibit thermally stable electrostrains (˜0.15% @ 6 kV/mm) from room temperature (RT) to ˜175 °C and comparable strain hysteresis (<13%) to that of typical lead-based piezoelectric ceramics. Dominant strain contribution mechanisms with increasing temperature were analyzed by means of temperature-dependent permittivity, polarization, and strain measurements and synchrotron x-ray diffraction. The rhombohedral (R) and tetragonal (T) morphotropic phase boundary provided a solid structural base for temperature-stable piezoelectric strains from RT to ˜140 °C. The growth of polar nanoregions (pseudocubic) into microdomains (R) and subsequent field-induced R-T phase transition, as well as large electrostrictive effects, sequentially contributed to high electrostrain levels in the proximity of the Curie temperature (from 140 to 175 °C). In addition, the observed low strain hysteresis was attributed to the small strain fraction from domain switching. These experimental results demonstrated that NaNbO3-based relaxor ferroelectrics might be potential lead-free materials for actuator applications.

  19. Piezoelectric materials used in underwater acoustic transducers

    SciTech Connect

    Li, Huidong; Deng, Zhiqun; Carlson, Thomas J.

    2012-07-07

    Piezoelectric materials have been used in underwater acoustic transducers for nearly a century. In this paper, we reviewed four different types of piezoelectric materials: piezoelectric ceramics, single crystals, composites, and polymers, which are widely used in underwater acoustic transducers nowadays. Piezoelectric ceramics are the most dominant material type and are used as a single-phase material or one of the end members in composites. Piezoelectric single crystals offer outstanding electromechanical response but are limited by their manufacturing cost. Piezoelectric polymers provide excellent acoustic impedance matching and transducer fabrication flexibility although their piezoelectric properties are not as good as ceramics and single crystals. Composites combined the merits of ceramics and polymers and are receiving increased attention. The typical structure and electromechanical properties of each type of materials are introduced and discussed with respect to underwater acoustic transducer applications. Their advantages and disadvantages are summarized. Some of the critical design considerations when developing underwater acoustic transducers with these materials are also touched upon.

  20. Flexible High-Performance Lead-Free Na0.47K0.47Li0.06NbO3 Microcube-Structure-Based Piezoelectric Energy Harvester.

    PubMed

    Gupta, Manoj Kumar; Kim, Sang-Woo; Kumar, Binay

    2016-01-27

    Lead-free piezoelectric nano- and microstructure-based generators have recently attracted much attention due to the continuous demand of self-powered body implantable devices. We report the fabrication of a high-performance flexible piezoelectric microgenerator based on lead-free inorganic piezoelectric Na0.47K0.47Li0.06NbO3 (NKLN) microcubes for the first time. The composite generator is fabricated using NKLN microcubes and polydimethylsiloxane (PDMS) polymer on a flexible substrate. The flexible device exhibits excellent performance with a large recordable piezoelectric output voltage of 48 V and output current density of 0.43 μA/cm(2) under vertical compressive force of 2 kgf, for which an energy conversion efficiency of about 11% has been achieved. Piezoresponse and ferroelectric studies reveal that NKLN microcubes exhibited high piezoelectric charge coefficient (d33) as high as 460 pC/N and a well-defined hysteresis loops with remnant polarization and coercive field of 13.66 μC/cm(2) and 19.45 kV/cm, respectively. The piezoelectric charge generation mechanism from NKLN microgenerator are discussed in the light of the high d33 and alignment of electric dipoles in polymer matrix and dielectric constant of NKLN microcubes. It has been demonstrated that the developed power generator has the potential to generate high electric output power under mechanical vibration for powering biomedical devices in the near future.

  1. Crystal structure and phase transition behavior in (K1-xNax)NbO3-based lead-free piezoelectric ceramic over a wide range of temperatures

    NASA Astrophysics Data System (ADS)

    Yamada, H.; Matsuoka, T.; Kozuka, H.; Yamazaki, M.; Ohbayashi, K.; Ida, T.

    2016-12-01

    The phase transition temperature in a (K, Na)NbO3 (KNN) phase of a KNN-based composite lead-free piezoelectric ceramic with a KTiNbO5 system ((K1-xNax)0.86Ca0.04Li0.02Nb0.85O3-δ-K0.85Ti0.85Nb1.15O5-BaZrO3-Co3O4-Fe2O3-ZnO) is lower than that in an undoped KNN ceramic by approximately 200 °C. We have studied the structural changes around the phase transition by using synchrotron powder X-ray diffraction and transmission electron microscopy. The crystal system of the main KNN phase is assigned to tetragonal as a stable structure at room temperature and does not change to orthorhombic on lowering the temperature all at once. The crystal structure changes from tetragonal to orthorhombic through the successive transition state. The curve of the phase transition temperature from x = 0.33 to 0.75 has a V shape and reaches its lowest value of approximately 0 °C in the vicinity of x = 0.56. From selected-area electron diffraction patterns of the KNN phase, weak superlattice spots owing to the tilt-ordered NbO6 octahedra are observed for x ≥ 0.56. This tilt-ordered NbO6 octahedral phase is formed at the nanometer-scale (nanodomains) in the tetragonal and orthorhombic KNN matrices, regardless of the phase transition. The minimum x to generate the nanodomains is substantially equal to the Na fraction at which the starting temperature of the successive phase transition shifts to the lowest.

  2. LARGE PIEZOELECTRIC EFFECT IN LOW-TEMPERATURE-SINTERED LEAD-FREE (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 THICK FILMS

    NASA Astrophysics Data System (ADS)

    Feng, Zuyong; Shi, Dongqi; Dou, Shixue; Hu, Yihua; Tang, Xingui

    2012-09-01

    High-quality piezoelectric (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 thick films with dense and homogenous microstructures were fabricated at a low sintering temperature (900°C) using a CuBi2O4 sintering aid. The 10 μm thick film exhibited a high longitudinal piezoelectric constant d33,eff of 210 pC/N with estimated unconstrained d33 value of 560 pC/N very close to that in the corresponding bulks. Such excellent piezoelectric effect in the low-temperature sintered (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 thick films is comparable to the case of lead-based PZT thick films, and may be a promising application in lead-free microdevices such as piezoelectric microelectromechanical systems (MEMS).

  3. How to Identify Lead-Free Certification Marks for Drinking Water System & Plumbing Materials

    EPA Science Inventory

    In 2011, Congress passed the “Reduction of Lead in Drinking Water Act,” which effectively reduces the lead content allowed in material used for potable water plumbing. The Act, which will go into effect on January 4, 2014, changes the definition of “lead-free” by reducing allowed...

  4. How to Identify Lead-Free Certification Marks for Drinking Water System & Plumbing Materials - Presentation

    EPA Science Inventory

    In 2011, Congress passed the “Reduction of Lead in Drinking Water Act,” which effectively reduces the lead content allowed in material used for potable water plumbing. The Act, which will go into effect on January 4, 2014, changes the definition of “lead-free” by reducing allowed...

  5. Giant electric-field-induced strain in lead-free piezoelectric materials

    PubMed Central

    Chen, Lan; Yang, Yurong; Meng, X. K.

    2016-01-01

    First-principles calculations are performed to investigate the structures, electrical, and magnetic properties of compressive BiFeO3 films under electric-field and pressure perpendicular to the films. A reversible electric-field-induced strain up 10% is achieved in the compressive BiFeO3 films. The giant strain originates from rhombohedral-tetragonal (R-T) phase transition under electric-filed, and is recoverable from tetragonal-rhombohedral (T-R) phase transition by compressive stress. Additionally, the weak ferromagnetism in BiFeO3 films is largely changed in R-T phase transition under electric-filed and T-R phase transition under pressure – reminiscent of magnetoelectric effect and magnetoelastic effect. These results suggest exciting device opportunities arising from the giant filed-induced strain, large magnetoelectric effect and magnetoelastic effect. PMID:27139526

  6. Designing lead-free and stable perovskite materials for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Sun, Yiyang; Zhang, Shengbai

    A critical barrier for large-scale deployment of the current perovskite solar materials is the use of Pb to achieve high power conversion efficiency. While this appears to be a technical issue, there are more fundamental reasons behind. The current research has mainly focused on the replacement of Pb by other elements, in particular, Sn. However, in halide perovskites (i.e., I-II-VII3 composition), Sn is in its less stable 2 + state. The formation of more stable 4 + centers in the Sn(II)-based materials under ambient conditions makes the device efficiency very low. Worse, there might be no other elements across the Periodic Table that can replace Pb while maintaining the desirable properties, such as band gap. Out-of-the-box ideas are therefore called for to stimulate the research in this field. In this talk, two approaches are proposed based on state-of-the-art first-principles calculations. Through a screening of chalcogenide perovskite materials, CaTiS3, BaZrS3, CaZrSe3, and CaHfSe3 have been predicted to have suitable band gaps for making solar cells. Among these materials, BaZrS3 have been synthesized experimentally. Another proposed approach is to introduce dual anions (i.e., splitting the anion sites) that allow the composition to satisfy charge neutrality, while replacing Pb by more environmentally benign elements. One of the candidate materials is CH3NH3BiSI2, which is predicted to have band gap around 1.4 eV and high optical absorption.

  7. Piezoelectric and electrostrictive materials for transducer applications

    NASA Astrophysics Data System (ADS)

    Cross, L. E.; Newnham, R. E.; Barsch, G. R.; Biggers, J. V.

    1985-05-01

    This report covers work accomplished on the second year of contract No. N00014-82-K0339 for the study of Piezoelectric and Electrostrictive Materials for Transducer Applications. The work accomplished covers a rather wide range of topics and for convenience, it is divided into four major sub-topics: (1) composite materials, (2) electrostriction, (3) conventional piezoelectrics, and (4) preparative studies.

  8. Dual-enhancement of ferro-/piezoelectric and photoluminescent performance in Pr{sup 3+} doped (K{sub 0.5}Na{sub 0.5})NbO{sub 3} lead-free ceramics

    SciTech Connect

    Wei, Yongbin; Jia, Yanmin E-mail: ymjia@zjnu.edu.cn; Wu, Jiang; Shen, Yichao; Wu, Zheng E-mail: ymjia@zjnu.edu.cn; Luo, Haosu

    2014-07-28

    A mutual enhancement action between the ferro-/piezoelectric polarization and the photoluminescent performance of rare earth Pr{sup 3+} doped (K{sub 0.5}Na{sub 0.5})NbO{sub 3} (KNN) lead-free ceramics is reported. After Pr{sup 3+} doping, the KNN ceramics exhibit the maximum enhancement of ∼1.2 times in the ferroelectric remanent polarization strength and ∼1.25 times in the piezoelectric coefficient d{sub 33}, respectively. Furthermore, after undergoing a ferro-/piezoelectric polarization treatment, the maximum enhancement of ∼1.3 times in photoluminescence (PL) was observed in the poled 0.3% Pr{sup 3+} doped sample. After the trivalent Pr{sup 3+} unequivalently substituting the univalent (K{sub 0.5}Na{sub 0.5}){sup +}, A-sites ionic vacancies will occur to maintain charge neutrality, which may reduce the inner stress and ease the domain wall motions, yielding to the enhancement in ferro-/piezoelectric performance. The polarization-induced enhancement in PL is attributed to the decrease of crystal symmetry abound the Pr{sup 3+} ions after polarization. The dual-enhancement of the ferro-/piezoelectric and photoluminescent performance makes the Pr{sup 3+} doped KNN ceramic hopeful for piezoelectric/luminescent multifunctional devices.

  9. Coupled improvement between thermoelectric and piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Montgomery, David; Hewitt, Corey; Dun, Chaochao; Carroll, David

    A novel coupling effect in a thermoelectric and piezoelectric meta-structure is discussed. Thermo-piezoelectric generators (TPEGs) exhibit a synergistic effect that amplifies output voltage, and has been observed to increase piezoelectric voltages over 500% of initial values a time dependent thermoelectric/pyroelectric effect. The resulting improvement in voltage has been observed in carbon nanotubes as well as inorganics such as two-dimensional Bismuth Selenide platelets and Telluride nanorods thin-film thermoelectrics. TPEGs are built by integrating insulating layers of polyvinylidene fluoride (PVDF) piezoelectric films between flexible thin film p-type and n-type thermoelectrics. The physical phenomena arising in the interaction between thermoelectric and piezoelectrics is discussed and a model is presented to quantify the expected coupling voltage as a function of stress, thermal gradient, and different thermoelectric materials. TPEG are ideal to capture waste heat and vibrational energy while creating larger voltages and minimizing space when compared with similar thermoelectric or piezoelectric generators.

  10. Determination of crystallographic orientation of lead-free piezoelectric (K,Na)NbO{sub 3} epitaxial thin films grown on SrTiO{sub 3} (100) surfaces

    SciTech Connect

    Yu, Qi; Zhu, Fang-Yuan; Cheng, Li-Qian; Wang, Ke; Li, Jing-Feng

    2014-03-10

    Crystallographic structure of sol-gel-processed lead-free (K,Na)NbO{sub 3} (KNN) epitaxial films on [100]-cut SrTiO{sub 3} single-crystalline substrates was investigated for a deeper understanding of its piezoelectric response. Lattice parameter measurement by high-resolution X-ray diffraction and transmission electron microscopy revealed that the orthorhombic KNN films on SrTiO{sub 3} (100) surfaces are [010] oriented (b-axis-oriented) rather than commonly identified c-axis orientation. Based on the crystallographic orientation and corresponding ferroelectric domain structure investigated by piezoresponse force microscopy, the superior piezoelectric property along b-axis of epitaxial KNN films than other orientations can be explained.

  11. Origin of Room Temperature Ferromagnetism in Cr-Doped Lead-Free Ferroelectric Bi0.5Na0.5TiO3 Materials

    NASA Astrophysics Data System (ADS)

    Thanh, L. T. H.; Doan, N. B.; Dung, N. Q.; Cuong, L. V.; Bac, L. H.; Duc, N. A.; Bao, P. Q.; Dung, D. D.

    2017-01-01

    The development of multiferroic materials based on lead-free ferroelectric material provides an opportunity to fabricate next-generation electronic devices. In this work, Cr-doped lead-free ferroelectric Bi0.5Na0.5TiO3 materials were synthesized by using the sol-gel method. The optical band gap was reduced from 3.12 eV to 2.12 eV for undoped and 9 mol.% Cr-doped Bi0.5Na0.5TiO3 with the substitution of Cr at the Ti-site. Cr-doped Bi0.5Na0.5TiO3 materials exhibited weak ferromagnetism at room temperature. Saturation magnetization was approximately 0.08 μ B/Cr at 5 K. Our work will facilitate the further understanding of the role of transition metal ferromagnetism in lead-free ferroelectric materials at room temperature.

  12. FAST TRACK COMMUNICATION: Phase structure and electrical properties of K0.5Na0.5(Nb0.94Sb0.06)O3-LiTaO3 lead-free piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Lin, Dunmin; Kwok, K. W.; Lam, K. H.; Chan, H. L. W.

    2008-03-01

    Lead-free piezoelectric ceramics (1-x)K0.5Na0.5(Nb0.94Sb0.06)O3-xLiTaO3 have been fabricated by a conventional solid-state sintering technique. The ceramics can be well sintered at 1080-1110 °C and exhibit a dense, single-phase perovskite structure at x <= 0.06. Coexistence of the tetragonal and orthorhombic phases is formed in the ceramics with 0.02 < x < 0.05, leading to a significant enhancement in piezoelectric properties. For the ceramic with x = 0.04, the piezoelectric properties become optimum: piezoelectric constant d33 = 271 pC N-1, electromechanical coupling coefficients kP = 0.53 and kt = 0.43. Moreover, the ceramics are non-deliquescent and exhibit excellent performance in transducer applications, indicating that the ceramics are ready for replacing lead-containing ceramics in practical applications.

  13. Strong anisotropy of ferroelectricity in lead-free bismuth silicate

    NASA Astrophysics Data System (ADS)

    Seol, Daehee; Taniguchi, Hiroki; Hwang, Jae-Yeol; Itoh, Mitsuru; Shin, Hyunjung; Kim, Sung Wng; Kim, Yunseok

    2015-07-01

    Bismuth silicate (Bi2SiO5) was recently suggested as a potential silicate based lead-free ferroelectric material. Here, we show the existence of ferroelectricity and explore the strong anisotropy of local ferroelectricity using piezoresponse force microscopy (PFM). Domain structures are reconstructed using angle-resolved PFM. Furthermore, piezoresponse hysteresis loops and piezoelectric coefficients are spatially investigated at the nanoscale. The obtained results confirm the existence of ferroelectricity with strong c-axis polarization. These results could provide basic information on the anisotropic ferroelectricity in Bi2SiO5 and furthermore suggest its considerable potential for lead-free ferroelectric applications with silicon technologies.Bismuth silicate (Bi2SiO5) was recently suggested as a potential silicate based lead-free ferroelectric material. Here, we show the existence of ferroelectricity and explore the strong anisotropy of local ferroelectricity using piezoresponse force microscopy (PFM). Domain structures are reconstructed using angle-resolved PFM. Furthermore, piezoresponse hysteresis loops and piezoelectric coefficients are spatially investigated at the nanoscale. The obtained results confirm the existence of ferroelectricity with strong c-axis polarization. These results could provide basic information on the anisotropic ferroelectricity in Bi2SiO5 and furthermore suggest its considerable potential for lead-free ferroelectric applications with silicon technologies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03161c

  14. Computational homogenization of fibrous piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Maruccio, Claudio; De Lorenzis, Laura; Persano, Luana; Pisignano, Dario

    2015-05-01

    Flexible piezoelectric devices made of polymeric materials are widely used for micro- and nano-electro-mechanical systems. In particular, numerous recent applications concern energy harvesting. Due to the importance of computational modeling to understand the influence that microscale geometry and constitutive variables exert on the macroscopic behavior, a numerical approach is developed here for multiscale and multiphysics modeling of thin piezoelectric sheets made of aligned arrays of polymeric nanofibers, manufactured by electrospinning. At the microscale, the representative volume element consists in piezoelectric polymeric nanofibers, assumed to feature a piezoelastic behavior and subjected to electromechanical contact constraints. The latter are incorporated into the virtual work equations by formulating suitable electric, mechanical and coupling potentials and the constraints are enforced by using the penalty method. From the solution of the micro-scale boundary value problem, a suitable scale transition procedure leads to identifying the performance of a macroscopic thin piezoelectric shell element.

  15. PHASE TRANSITION, DIELECTRIC AND PIEZOELECTRIC PROPERTIES OF NaNbO3-Ba0.85Ca0.15(Ti0.9Zr0.1)O3 LEAD-FREE CERAMICS

    NASA Astrophysics Data System (ADS)

    Lei, Yuqing; Wu, Hong; Lin, Dunmin; Zheng, Qiaoji; Wu, Xiaochun; Fan, Ximing

    2012-09-01

    A new lead-free solid solution of (1-x)NaNbO3-xBa0.85Ca0.15(Ti0.9Zr0.1)O3 was prepared by a traditional sintering method and its phase transition, dielectric and piezoelectric properties were studied. Ba0.85Ca0.15(Ti0.9Zr0.1)O3 diffuses into NaNbO3 lattices to form a new solid solution with perovskite structure. The addition of Ba0.85Ca0.15(Ti0.9Zr0.1)O3(x≥0.025) transforms NaNbO3 from antiferroelectric to ferroelectric. The diffusive ferroelectric-paraelectric phase transition is induced in the ceramics with high concentration of Ba0.85Ca0.15(Ti0.9Zr0.1)O3. The ceramics with x = 0.05-0.125 possess large Pr values of 18.6-25.5 μC/cm2. A morphotropic phase boundary between tetragonal and orthorhombic phases is formed at 0.05 < x < 0.15, leading to a significant enhancement of piezoelectric properties. The ceramic with x = 0.125 situated near the morphotropic phase boundary exhibits the optimum piezoelectric properties: d33 = 151 pC/N and kp = 31.6%.

  16. Piezoelectric and electrostrictive materials for transducer applications

    NASA Astrophysics Data System (ADS)

    Cross, L. E.; Newnham, R. E.; Barsch, G. R.; Biggers, J. V.

    1984-05-01

    A wide range of materials and devices were covered, including composite materials for transducer applications, electrostriction, and conventional piezoelectrics. In piezoelectric composites, progress was made in 3:1 and 3:2 perforated PZT polymer composites, and in transverse reinforced composites. Finite element calculations of stress distributions in 1:3 PZT polymer composites were carried out. Fresnoite glass ceramics have exhibited extreme stability to hydrostatic pressure, and high sensitivity. A new water quenching technique was used to develop PbTiO3, and a detailed analysis of resonant modes of 1:3 PZT epoxy composites was carried out.

  17. Assessment of the effects of the Japanese shift to lead-free solders and its impact on material substitution and environmental emissions by a dynamic material flow analysis.

    PubMed

    Fuse, Masaaki; Tsunemi, Kiyotaka

    2012-11-01

    Lead-free electronics has been extensively studied, whereas their adoption by society and their impact on material substitution and environmental emissions are not well understood. Through a material flow analysis (MFA), this paper explores the life cycle flows for solder-containing metals in Japan, which leads the world in the shift to lead-free solders in electronics. The results indicate that the shift has been progressing rapidly for a decade, and that substitutes for lead in solders, which include silver and copper, are still in the early life cycle stages. The results also show, however, that such substitution slows down during the late life cycle stages owing to long electronic product lifespans. This deceleration of material substitution in the solder life cycle may not only preclude a reduction in lead emissions to air but also accelerate an increase in silver emissions to air and water. As an effective measure against ongoing lead emissions, our scenario analysis suggests an aggressive recycling program for printed circuit boards that utilizes an existing recycling scheme.

  18. Strong piezoelectricity in (1 - x)(K0.4Na0.6)(Nb0.96Sb0.04)O3-xBi0.5K0.5Zr1-ySnyO3 lead-free binary system: identification and role of multiphase coexistence.

    PubMed

    Zheng, Ting; Wu, Jiagang; Xiao, Dingquan; Zhu, Jianguo; Wang, Xiangjian; Xin, Lipeng; Lou, Xiaojie

    2015-03-18

    Here we report a strong piezoelectric activity in (1 - x)(K0.4Na0.6)(Nb0.96Sb0.04)O3-xBi0.5K0.5Zr1-ySnyO3 lead-free ceramics by designing different phase boundaries. The phase boundaries concerning rhombohedral-orthorhombic-tetragonal (R-O-T) and rhombohedral-tetragonal (R-T) multiphase coexistence were attained by changing BKZS and Sn contents and then were identified by the X-ray diffraction patterns as well as temperature-dependent permittivity and ν1 Raman modes associated with BO6 perovskite octahedron. A high strain (strain = 0.21-0.28% and d33* = 707-880 pm/V) and a strong piezoelectric coefficient (d33 = 415-460 pC/N) were shown in the ceramics located at the multiphase coexistence region. The reported results of this work are superior to that (d33* ∼ 570 pm/V and d33 ∼ 416 pC/N) of the textured (K,Na,Li)(Nb,Ta,Sb)O3 ceramics [Nature 2004, 432, 84]. We believe that the material system of this work will become one of the most promising candidates for piezoelectric actuators.

  19. Properties of Miniature Cantilever-Type Ultrasonic Motor Using Lead-Free Array-Type Multilayer Piezoelectric Ceramics of (Sr,Ca)2NaNb5O15 under High Input Power

    NASA Astrophysics Data System (ADS)

    Doshida, Yutaka; Shimizu, Hiroyuki; Mizuno, Youich; Tamura, Hideki

    2012-07-01

    The properties of miniature cantilever-type ultrasonic motors using lead-free array-type multilayer piezoelectric ceramics of (Sr,Ca)2NaNb5O15 (SCNN) developed using the design rule were investigated under high input power by comparison with the high-power properties of SCNN ceramics. The frequency dependence of the revolution speed reflected the nonlinear behavior of SCNN ceramics with the hard-spring effect and showed a mirror-reversed image relative to that of the motor of Pb(Zr,Ti)O3 (PZT) ceramics. The output power increased linearly with increasing input power up to 110 mW without heat generation, and the driving properties were almost the same as the expectations under low input power. The output power density characteristics of the motors were high in comparison with those of the commercialized motors of PZT ceramics. It appeared that the motors have a high potential as an environmental friendly piezoelectric device with excellent properties, reflecting the high-power properties of SCNN ceramics.

  20. Elastomer degradation sensor using a piezoelectric material

    DOEpatents

    Olness, Dolores U.; Hirschfeld, deceased, Tomas B.

    1990-01-01

    A method and apparatus for monitoring the degradation of elastomeric materials is provided. Piezoelectric oscillators are placed in contact with the elastomeric material so that a forced harmonic oscillator with damping is formed. The piezoelectric material is connected to an oscillator circuit,. A parameter such as the resonant frequency, amplitude or Q value of the oscillating system is related to the elasticity of the elastomeric material. Degradation of the elastomeric material causes changes in its elasticity which, in turn, causes the resonant frequency, amplitude or Q of the oscillator to change. These changes are monitored with a peak height monitor, frequency counter, Q-meter, spectrum analyzer, or other measurement circuit. Elasticity of elastomers can be monitored in situ, using miniaturized sensors.

  1. Piezoelectric Nanoparticle-Polymer Composite Materials

    NASA Astrophysics Data System (ADS)

    McCall, William Ray

    Herein we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be synthesized and fabricated into complex microstructures using sugar-templating methods or optical printing techniques. Stretchable foams with excellent tunable piezoelectric properties are created by incorporating sugar grains directly into polydimethylsiloxane (PDMS) mixtures containing barium titanate (BaTiO3 -- BTO) nanoparticles and carbon nanotubes (CNTs), followed by removal of the sugar after polymer curing. Porosities and elasticity are tuned by simply adjusting the sugar/polymer mass ratio and the electrical performance of the foams showed a direct relationship between porosity and the piezoelectric outputs. User defined 2D and 3D optically printed piezoelectric microstructures are also fabricated by incorporating BTO nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate (PEGDA) and exposing to digital optical masks that can be dynamically altered. Mechanical-to-electrical conversion efficiency of the optically printed composite is enhanced by chemically altering the surface of the BTO nanoparticles with acrylate groups which form direct covalent linkages with the polymer matrix under light exposure. Both of these novel materials should find exciting uses in a variety of applications including energy scavenging platforms, nano- and microelectromechanical systems (NEMS/MEMS), sensors, and acoustic actuators.

  2. Optimizing electrical poling for tetragonal, lead-free BZT-BCT piezoceramic alloys

    SciTech Connect

    Li, Binzhi; Ehmke, Matthias C.; Blendell, John E.; Bowman, Keith J.

    2014-02-13

    The piezoelectric properties of tetragonal BZT–BCT materials have been shown to be improved by using the field cooling poling method. It is shown that the piezoelectric coefficient of tetragonal BZT–BCT materials increases with higher poling temperature, and the optimum poling temperature lies near the Curie temperatures for a broad range of compositions. It is also observed from in situ X-ray diffraction measurements with an applied electric field that the magnitude of domain alignment is enhanced with electrical poling at higher electric fields, whereas the remnant ferroelastic domain texture is not affected. Furthermore, these results show a direct correlation between the development of internal bias field, which is induced by the accumulation of defect charge carriers, and the enhanced piezoelectric coefficient. These observations suggest an important role played by the alignment of defect charge carriers in achieving optimum piezoelectric coefficient in lead-free piezoelectric ceramics.

  3. Ferroelastic domains in lead-free barium zirconate titanate - barium calcium titanate piezoceramics

    NASA Astrophysics Data System (ADS)

    Ehmke, Matthias Claudius

    Piezoelectricity was first discovered by Pierre and Jaque Curie in the year 1880. Nowadays, piezoelectric materials are used in many application such as high voltage generation in gas igniters, actuation in micro-positioning devices, generation and detection of acoustic waves, emitters and receivers for sonar technology, ultrasonic cleaning, ultrasound medical therapy, and micropumps for ink-jet printers. The most commonly used piezoelectric material since the 1950's is the solid solution system lead zirconate titanate (PZT) that offers high piezoelectric performance under a large range of operating conditions. However, the toxicity of lead requires the replacement of PZT. The studied lead-free alternatives are commonly based on potassium sodium niobate (KNN) and bismuth sodium titanate (BNT), and more recently zirconium and calcium substituted barium titanate (BZT-BCT). The BZT-BCT system exhibits large piezoelectric coefficients that can exceed even those of most PZT compositions under certain conditions. Piezoelectricity was first discovered by Pierre and Jaque Curie in the year 1880. Nowadays, piezoelectric materials are used in many application such as high voltage generation in gas igniters, actuation in micro-positioning devices, generation and detection of acoustic waves, emitters and receivers for sonar technology, ultrasonic cleaning, ultrasound medical therapy, and micropumps for ink-jet printers. The most commonly used piezoelectric material since the 1950's is the solid solution system lead zirconate titanate (PZT) that offers high piezoelectric performance under a large range of operating conditions. However, the toxicity of lead requires the replacement of PZT. The studied lead-free alternatives are commonly based on potassium sodium niobate (KNN) and bismuth sodium titanate (BNT), and more recently zirconium and calcium substituted barium titanate (BZT-BCT). The BZT-BCT system exhibits large piezoelectric coefficients that can exceed even those of

  4. Energy Harvesting From Low Frequency Applications Using Piezoelectric Materials

    SciTech Connect

    Li, Huidong; Tian, Chuan; Deng, Zhiqun

    2014-11-06

    This paper reviewed the state of research on piezoelectric energy harvesters. Various types of harvester configurations, piezoelectric materials, and techniques used to improve the mechanical-to-electrical energy conversion efficiency were discussed. Most of the piezoelectric energy harvesters studied today have focused on scavenging mechanical energy from vibration sources due to their abundance in both natural and industrial environments. Cantilever beams have been the most studied structure for piezoelectric energy harvester to date because of the high responsiveness to small vibrations.

  5. Technology Study on Piezoelectric Materials

    DTIC Science & Technology

    1979-07-20

    transducer. These are 1) the peth length changes caused by x-ray 5 k . - .. ~*,.’.’*.. ANODE • SOLAR CELL DRIVE DRIVERANODE REMOTE ’ READOUT CATHODE...broken down into five classes: 1) perovskite -type oxides, 2) aqueous solution grown crystals, 3) semiconductive compounds, 4) other oxides and 5...three times that of sodium, sodium would 24 be heated three times as much as water by identical x-rays. " Perovskite -Type Oxides Sixteen of the materials

  6. Piezoelectric and electrostrictive materials for transducer applications

    NASA Astrophysics Data System (ADS)

    Cross, L. E.; Newnham, R. E.; Barsch, G. R.; Biggers, J. V.

    1986-07-01

    On the topic of piezoelectric composites, work over the year has focused primarily upon materials with 0:3 phase connectivity. Using chemically co-precipitated powders with high purity and surface perfection, it has been possible to raise the poling field substantially and realize markedly improved properties in lead titanate based materials. X-ray measurements confirm excellent poling and the dhgh figure of merit of 4200x10 to the minus 15th power sq m/N is comparable to the best NGK materials. Work on fired composites which use a low temperature pre-firing yield materials with high d33 and gh values which pole at low fields. New studies of piezoelectrics generated using paint technology permit surprisingly high powder loading and show promising properties for large area receptors. Modelling studies of Safari type 3:1 and 3:2 composites using finite element methods show excellent agreement with measured properties and provide new insights into complex stress distributions in Holey composites. To explore the possibility of patterning ceramics by semiconductor type techniques, etches have been explored for PZT family materials and photo resist defined structures have been produced. In electrostriction, the basic theoretical work has continued upon CaF2, SrF2 and BaF2. Good agreement is found for calculations of third order elastic constants, and for hydrostatic electrostriction, but Q11 and Q12 show large discrepancies with both theoretical models tried.

  7. Dielectric and piezoelectric properties of lead-free 0.5Ba(Zr0.2 Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 piezoelectric ceramics with glass additive.

    PubMed

    Im, In-Ho; Chung, Kwang-Hyun

    2014-12-01

    We have investigated the dielectric and piezoelectric properties of lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramics with BaO-CaO-SiO2 glass additive as a function of sintering temperatures. With adding BaO-CaO-SiO2 glass additive, diffusivity of lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramics was increased. The dispersion constant γ of BZT-BCT ceramics with BaO-CaO-SiO2 glass was changed from 1.9683 to 1.7673 by decreasing sintering temperature ranging from 1450 degrees C to 1350 degrees C, while 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramics at sintered 1450 degrees C showed γ = 1.5055. The piezoelectric properties such as electromechanical coupling factor (k(p)) and piezoelectric constant (d33) of lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramics with BaO-CaO-SiO2 glass additive sintered at 1400 degrees C showed similar values compared with 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramics without BaO-CaO-SiO2 glass additive sintered at 1450 degrees C. The addition of BaO-CaO-SiO2 glass additive can be of help to decrease sintering temperature of lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramics.

  8. Ab Initio Prediction of Piezoelectricity in Two-Dimensional Materials.

    PubMed

    Blonsky, Michael N; Zhuang, Houlong L; Singh, Arunima K; Hennig, Richard G

    2015-10-27

    Two-dimensional (2D) materials present many unique materials concepts, including material properties that sometimes differ dramatically from those of their bulk counterparts. One of these properties, piezoelectricity, is important for micro- and nanoelectromechanical systems applications. Using symmetry analysis, we determine the independent piezoelectric coefficients for four groups of predicted and synthesized 2D materials. We calculate with density-functional perturbation theory the stiffness and piezoelectric tensors of these materials. We determine the in-plane piezoelectric coefficient d11 for 37 materials within the families of 2D metal dichalcogenides, metal oxides, and III-V semiconductor materials. A majority of the structures, including CrSe2, CrTe2, CaO, CdO, ZnO, and InN, have d11 coefficients greater than 5 pm/V, a typical value for bulk piezoelectric materials. Our symmetry analysis shows that buckled 2D materials exhibit an out-of-plane coefficient d31. We find that d31 for 8 III-V semiconductors ranges from 0.02 to 0.6 pm/V. From statistical analysis, we identify correlations between the piezoelectric coefficients and the electronic and structural properties of the 2D materials that elucidate the origin of the piezoelectricity. Among the 37 2D materials, CdO, ZnO, and CrTe2 stand out for their combination of large piezoelectric coefficient and low formation energy and are recommended for experimental exploration.

  9. Piezoactuator design considering the optimum placement of FGM piezoelectric material

    NASA Astrophysics Data System (ADS)

    Carbonari, Ronny C.; Nishiwaki, Shinji; Paulino, Glaucio H.; Nelli Silva, Emílio C.

    2007-04-01

    Functionally Graded Materials (FGMs) possess continuous variation of material properties and are characterized by spatially varying microstructures. Recently, the FGM concept has been explored in piezoelectric materials to improve properties and to increase the lifetime of piezoelectric actuators. Elastic, piezoelectric, and dielectric properties are graded along the thickness of a piezoceramic FGM. Thus, the gradation of piezoceramic properties can influence the performance of piezoactuators, and an optimum gradation can be sought through optimization techniques. However, the design of these FGM piezoceramics are usually limited to simple shapes. An interesting approach to be investigated is the design of FGM piezoelectric mechanisms which essentially can be defined as a FGM structure with complex topology made of piezoelectric and non-piezoelectric material that must generate output displacement and force at a certain specified point of the domain and direction. This can be achieved by using topology optimization method. Thus, in this work, a topology optimization formulation that allows the simultaneous distribution of void and FGM piezoelectric material (made of piezoelectric and non-piezoelectric material) in the design domain, to achieve certain specified actuation movements, will be presented. The method is implemented based on the SIMP material model where fictitious densities are interpolated in each finite element, providing a continuum material distribution in the domain. The optimization algorithm employed is based on sequential linear programming (SLP) and the finite element method is based on the graded finite element concept where the properties change smoothly inside the element. This approach provides a continuum approximation of material distribution, which is appropriate to model FGMs. Some FGM piezoelectric mechanisms were designed to demonstrate the usefulness of the proposed method. Examples are limited to two-dimensional models, due to FGM

  10. Lead-free epitaxial ferroelectric material integration on semiconducting (100) Nb-doped SrTiO3 for low-power non-volatile memory and efficient ultraviolet ray detection.

    PubMed

    Kundu, Souvik; Clavel, Michael; Biswas, Pranab; Chen, Bo; Song, Hyun-Cheol; Kumar, Prashant; Halder, Nripendra N; Hudait, Mantu K; Banerji, Pallab; Sanghadasa, Mohan; Priya, Shashank

    2015-07-23

    We report lead-free ferroelectric based resistive switching non-volatile memory (NVM) devices with epitaxial (1-x)BaTiO3-xBiFeO3 (x = 0.725) (BT-BFO) film integrated on semiconducting (100) Nb (0.7%) doped SrTiO3 (Nb:STO) substrates. The piezoelectric force microscopy (PFM) measurement at room temperature demonstrated ferroelectricity in the BT-BFO thin film. PFM results also reveal the repeatable polarization inversion by poling, manifesting its potential for read-write operation in NVM devices. The electroforming-free and ferroelectric polarization coupled electrical behaviour demonstrated excellent resistive switching with high retention time, cyclic endurance, and low set/reset voltages. X-ray photoelectron spectroscopy was utilized to determine the band alignment at the BT-BFO and Nb:STO heterojunction, and it exhibited staggered band alignment. This heterojunction is found to behave as an efficient ultraviolet photo-detector with low rise and fall time. The architecture also demonstrates half-wave rectification under low and high input signal frequencies, where the output distortion is minimal. The results provide avenue for an electrical switch that can regulate the pixels in low or high frequency images. Combined this work paves the pathway towards designing future generation low-power ferroelectric based microelectronic devices by merging both electrical and photovoltaic properties of BT-BFO materials.

  11. Lead-free epitaxial ferroelectric material integration on semiconducting (100) Nb-doped SrTiO3 for low-power non-volatile memory and efficient ultraviolet ray detection

    NASA Astrophysics Data System (ADS)

    Kundu, Souvik; Clavel, Michael; Biswas, Pranab; Chen, Bo; Song, Hyun-Cheol; Kumar, Prashant; Halder, Nripendra N.; Hudait, Mantu K.; Banerji, Pallab; Sanghadasa, Mohan; Priya, Shashank

    2015-07-01

    We report lead-free ferroelectric based resistive switching non-volatile memory (NVM) devices with epitaxial (1-x)BaTiO3-xBiFeO3 (x = 0.725) (BT-BFO) film integrated on semiconducting (100) Nb (0.7%) doped SrTiO3 (Nb:STO) substrates. The piezoelectric force microscopy (PFM) measurement at room temperature demonstrated ferroelectricity in the BT-BFO thin film. PFM results also reveal the repeatable polarization inversion by poling, manifesting its potential for read-write operation in NVM devices. The electroforming-free and ferroelectric polarization coupled electrical behaviour demonstrated excellent resistive switching with high retention time, cyclic endurance, and low set/reset voltages. X-ray photoelectron spectroscopy was utilized to determine the band alignment at the BT-BFO and Nb:STO heterojunction, and it exhibited staggered band alignment. This heterojunction is found to behave as an efficient ultraviolet photo-detector with low rise and fall time. The architecture also demonstrates half-wave rectification under low and high input signal frequencies, where the output distortion is minimal. The results provide avenue for an electrical switch that can regulate the pixels in low or high frequency images. Combined this work paves the pathway towards designing future generation low-power ferroelectric based microelectronic devices by merging both electrical and photovoltaic properties of BT-BFO materials.

  12. Effect of material uncertainties on dynamic analysis of piezoelectric fans

    NASA Astrophysics Data System (ADS)

    Srivastava, Swapnil; Yadav, Shubham Kumar; Mukherjee, Sujoy

    2015-04-01

    A piezofan is a resonant device that uses a piezoceramic material to induce oscillations in a cantilever beam. In this study, lumped-mass modelling is used to analyze a piezoelectric fan. Uncertainties are associated with the piezoelectric structures due to several reasons such as variation during manufacturing process, temperature, presence of adhesive layer between the piezoelectric actuator/sensor and the shim stock etc. Presence of uncertainty in the piezoelectric materials can influence the dynamic behavior of the piezoelectric fan such as natural frequency, tip deflection etc. Moreover, these quantities will also affect the performance parameters of the piezoelectric fan. Uncertainty analysis is performed using classical Monte Carlo Simulation (MCS). It is found that the propagation of uncertainty causes significant deviations from the baseline deterministic predictions, which also affect the achievable performance of the piezofan. The numerical results in this paper provide useful bounds on several performance parameters of the cooling fan and will enhance confidence in the design process.

  13. New piezoelectric materials for SAW filters

    NASA Astrophysics Data System (ADS)

    Anghelescu, Adrian; Nedelcu, Monica

    2010-11-01

    Scientific research of surface acoustic wave (SAW) devices had an early start by the end of 1960s and led to the development of high frequency and small size piezo devices. A sustained effort was dedicated for these components to be transformed into many more interesting applications for telecom market. Recently the employment of new piezo materials and crystallographic orientations open new opportunities for SAW filters. New piezoelectric crystals of gallium orthophosphate (GaPO4) provide higher electromechanical coupling than quartz, while maintaining temperature compensated characteristics similar to quartz. Based on this material phase transition of 970°C, development of new piezo devices to operate at higher temperatures up to 800°C can be done. SAW velocities about 30% lower than ST-X quartz, favors smaller and more compact devices. Other advantages of GaPO4 are: stability with high resistance to stress induced twinning, 3~4 times higher electromechanical coupling than quartz and existence of SAW temperature compensated orientations. Another family of new materials of the trigonal 32 class has received much attention recently because of their temperature behavior similar to quartz and the promise of higher electromechanical coupling coefficients. It is the family of langasite (LGS, La3Ga5SiO14), langatate (LGT, La3Ga5.5Ta0.5O14) and langanite (La3Ga5.5Nb0.5O14). Langasite crystals, easier to obtain and with the value of electromechanical coupling coefficient intermediate between quartz and lithium tantalate (k2=0.32% for 0°, 140°, 22.5° orientation and k2=0.38% for 0°, 140°, 25° orientation), enable us to design SAW filters with a relative pass band of 0.3% to 0.85%. Other piezoelectric materials are reviewed for comparison.

  14. Energy harvesting from low frequency applications using piezoelectric materials

    SciTech Connect

    Li, Huidong; Tian, Chuan; Deng, Z. Daniel

    2014-12-15

    In an effort to eliminate the replacement of the batteries of electronic devices that are difficult or impractical to service once deployed, harvesting energy from mechanical vibrations or impacts using piezoelectric materials has been researched over the last several decades. However, a majority of these applications have very low input frequencies. This presents a challenge for the researchers to optimize the energy output of piezoelectric energy harvesters, due to the relatively high elastic moduli of piezoelectric materials used to date. This paper reviews the current state of research on piezoelectric energy harvesting devices for low frequency (0–100 Hz) applications and the methods that have been developed to improve the power outputs of the piezoelectric energy harvesters. Various key aspects that contribute to the overall performance of a piezoelectric energy harvester are discussed, including geometries of the piezoelectric element, types of piezoelectric material used, techniques employed to match the resonance frequency of the piezoelectric element to input frequency of the host structure, and electronic circuits specifically designed for energy harvesters.

  15. A new Bi{sub 0.5}Na{sub 0.5}TiO{sub 3} based lead-free piezoelectric system with calculated end-member Bi(Zn{sub 0.5}Hf{sub 0.5})O{sub 3}

    SciTech Connect

    Liu, Feng; Wahyudi, Olivia; Li, Yongxiang

    2014-03-21

    The phase structure, dielectric and piezoelectric properties of a new lead-free piezoelectric system (1 − x)Bi{sub 0.5}Na{sub 0.5}TiO{sub 3}–xBi(Zn{sub 0.5}Hf{sub 0.5})O{sub 3} [(1 − x)BNT–xBZH, x = 0, 0.01, 0.02, 0.03, and 0.04] were investigated. The structure of Bi(Zn{sub 0.5}Hf{sub 0.5})O{sub 3} was calculated using first-principles method and (1 − x)BNT–xBZH ceramics were fabricated by conventional solid-state process. At room temperature, a morphotropic phase boundary (MPB) from rhombohedral to pseudocubic is identified near x = 0.02 by the analysis of X-ray diffraction patterns. The ceramics with MPB near room temperature exhibit excellent electrical properties: the Curie temperature, maximum polarization, remnant polarization, and coercive field are 340 °C, 56.3 μC/cm{sup 2}, 43.5 μC/cm{sup 2}, and 5.4 kV/mm, respectively, while the maximum positive bipolar strain and piezoelectric coefficient are 0.09% and 92 pC/N, respectively. In addition, a linear relationship between the MPB phase boundary composition and the calculated tetragonality of non-BNT end-member was demonstrated. Thus, this study not only shows a new BNT-based lead-free piezoelectric system but also suggest a new way to predict the composition at MPB a priori when designing new lead-free piezoelectric system.

  16. System and Method for Monitoring Piezoelectric Material Performance

    NASA Technical Reports Server (NTRS)

    Moses, Robert W. (Inventor); Fox, Christopher L. (Inventor); Fox, Melanie L. (Inventor); Chattin, Richard L. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor)

    2007-01-01

    A system and method are provided for monitoring performance capacity of a piezoelectric material that may form part of an actuator or sensor device. A switch is used to selectively electrically couple an inductor to the piezoelectric material to form an inductor-capacitor circuit. Resonance is induced in the inductor-capacitor circuit when the switch is operated to create the circuit. The resonance of the inductor-capacitor circuit is monitored with the frequency of the resonance being indicative of performance capacity of the device's piezoelectric material.

  17. Multifunctional devices combining shape-memory alloy and piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Sato, Hiroshi

    2014-03-01

    We succeeded in the deposition of piezoelectric thin film on a titanium substrate and on nickel-titanium alloy (shapememory alloy) by employing the hydrothermal synthesis method for the direct deposition of PZT thin film, which is a piezoelectric material, on a titanium substrate. The formed film is quite thin (tens of micrometers), and the density is low (theoretical density of ~70%). As the thin piezoelectric film is formed by the layering of many crystals, it is capable of responding to large deformations (up to 5%), which would have been inconceivable with the existing piezoelectric materials without any structural damages. The hydrothermal synthesis method was used in this research study to form films of PZT piezoelectric films on the surfaces of nickel-titanium shape-memory alloy wires to fabricate and evaluate a new multifunctional device that features a combination of four effects, namely, the shape-memory effect, super-elasticity effect, piezoelectric effect, and pyroelectric effect. The fabricated fiber was subjected to a tensile test in the super-elastic state, and the amount of deformation thereof was read from the piezoelectric effect to show the functioning of both the super-elastic effect and the piezoelectric effect.

  18. Improved Piezoelectricity in (K0.44Na0.52Li0.04) (Nb0.91Ta0.05Sb0.04)O3- xBi0.25Na0.25NbO3 Lead-Free Piezoelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Xu, Zhijun; Li, Huaiyong; Hao, Jigong; Du, Juan; Chu, Ruiqing; Wei, Dongdong; Li, Guorong

    2017-01-01

    (1 - x)[(K0.44Na0.52Li0.04)(Nb0.91Ta0.05Sb0.04)O3]- xBi0.25Na0.25NbO3 (KNLNTS- xBNN) lead-free piezoelectric ceramics have been prepared using a conventional solid-state reaction method and the effects of BNN on their phase structure, microstructure, and electrical properties systematically studied. X-ray diffraction analysis suggested that BNN substitution into KNLNTS induced coexistence of orthorhombic-tetragonal mixed phase and thus improved the ferroelectric and piezoelectric properties. The surface morphologies indicated that different amounts of BNN had two different effects on grain growth. Good electrical properties ( d 33 = 256 pC N-1, T c = 354.27°C, k p = 43.43%, P r = 26.85 μC cm-2, E c = 24.47 kV cm-1) were simultaneously obtained at x = 0.0025, suggesting that our research could benefit development of (K,Na)NbO3-based ceramics and widen their application range.

  19. Effect of composition on electrical properties of lead-free Bi{sub 0.5}(Na{sub 0.80}K{sub 0.20}){sub 0.5}TiO{sub 3}-(Ba{sub 0.98}Nd{sub 0.02})TiO{sub 3} piezoelectric ceramics

    SciTech Connect

    Jaita, Pharatree; Watcharapasorn, Anucha; Jiansirisomboon, Sukanda

    2013-07-14

    Lead-free piezoelectric ceramics with the composition of (1-x)Bi{sub 0.5}(Na{sub 0.80}K{sub 0.20}){sub 0.5}TiO{sub 3}-x(Ba{sub 0.98}Nd{sub 0.02})TiO{sub 3} or (1-x) BNKT-xBNdT (with x = 0-0.20 mol fraction) have been synthesized by a conventional mixed-oxide method. The compositional dependence of phase structure and electrical properties of the ceramics were systemically studied. The optimum sintering temperature of all BNKT-BNdT ceramics was found to be 1125 Degree-Sign C. X-ray diffraction pattern suggested that BNdT effectively diffused into BNKT lattice during sintering to form a solid solution with a perovskite structure. Scanning electron micrographs showed a slight reduction of grain size when BNdT was added. It was found that BNKT-0.10BNdT ceramic exhibited optimum electrical properties ({epsilon}{sub r} = 1716, tan{delta} = 0.0701, T{sub c} = 327 Degree-Sign C, and d{sub 33} = 211 pC/N), suggesting that this composition has a potential to be one of a promising lead-free piezoelectric candidate for dielectric and piezoelectric applications.

  20. Enhanced temperature stability and quality factor with Hf substitution for Sn and MnO2 doping of (Ba0.97Ca0.03)(Ti0.96Sn0.04)O3 lead-free piezoelectric ceramics with high Curie temperature

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Che; Chao, Wei-Hsiang; Chu, Sheng-Yuan; Hong, Cheng-Shong; Weng, Chung-Ming; Su, Hsiu-Hsien

    2016-12-01

    In this work, the process of two-stage modifications for (Ba0.97Ca0.03)(Ti0.96Sn0.04-xHfx)O3 (BCTS4-100xH100x) ceramics was studied. The trade-off composition was obtained by Hf substitution for Sn and MnO2 doping (two-stage modification) which improves the temperature stability and piezoelectric properties. The phase structure ratio, microstructure, and dielectric, piezoelectric, ferroelectric, and temperature stability properties were systematically investigated. Results showed that BCTS4-100xH100x piezoelectric ceramics with x=0.035 had a relatively high Curie temperature (TC) of about 112 °C, a piezoelectric charge constant (d33) of 313 pC/N, an electromechanical coupling factor (kp) of 0.49, a mechanical quality factor (Qm) of 122, and a remnant polarization (Pr) of 19 μ C /cm2 . In addition, the temperature stability of the resonant frequency (fr), kp, and aging d33 could be tuned via Hf content. Good piezoelectric temperature stability (up to 110 °C) was found with x =0.035. BCTS0.5H3.5 + a mol% Mn (BCTSH + a Mn) piezoelectric ceramics with a = 2 had a high TC of about 123 °C, kp ˜ 0.39, d33 ˜ 230 pC/N, Qm ˜ 341, and high temperature stability due to the produced oxygen vacancies. This mechanism can be depicted using the complex impedance analysis associated with a valence compensation model on electric properties. Two-stage modification for lead-free (Ba0.97Ca0.03)(Ti0.96Sn0.04)O3 ceramics suitably adjusts the compositions for applications in piezoelectric motors and actuators.

  1. Piezoelectric Ignition of Nanocomposite Energetic Materials

    DTIC Science & Technology

    2013-01-01

    incorporated a piezoelectric valveless micropump as the fuel delivery system and established the feasibility of DMFC in power electronics applications [2... micropump for fuel delivery in direct mathanol fuel cell (DMFC) devices," Journal of Power Sources, vol. 140, n 1, p. 72-80, 2005. [3] C. Rossi, K

  2. Bright reddish-orange emission and good piezoelectric properties of Sm{sub 2}O{sub 3}-modified (K{sub 0.5}Na{sub 0.5})NbO{sub 3}-based lead-free piezoelectric ceramics

    SciTech Connect

    Hao, Jigong; Xu, Zhijun Chu, Ruiqing; Li, Wei; Du, Juan

    2015-05-21

    Reddish orange-emitting 0.948(K{sub 0.5}Na{sub 0.5})NbO{sub 3}-0.052LiSbO{sub 3}-xmol%Sm{sub 2}O{sub 3} (KNN-5.2LS-xSm{sub 2}O{sub 3}) lead-free piezoelectric ceramics with good piezoelectric properties were fabricated in this study, and the photoluminescence and electrical properties of the ceramics were systematically studied. Results showed that Sm{sub 2}O{sub 3} substitution into KNN-5.2LS induces a phase transition from the coexistence of orthorhombic and tetragonal phases to a pseudocubic phase and shifts the polymorphic phase transition (PPT) to below room temperature. The temperature stability and fatigue resistance of the modified ceramics were significantly improved by Sm{sub 2}O{sub 3} substitution. The KNN-5.2LS ceramic with 0.4 mol. % Sm{sub 2}O{sub 3} exhibited temperature-independent properties (25–150 °C), fatigue-free behavior (up to 10{sup 6} cycles), and good piezoelectric properties (d{sub 33}{sup * }= 230 pm/V, d{sub 33} = 176 pC/N, k{sub p} = 35%). Studies on the photoluminescence properties of the samples showed strong reddish-orange emission upon blue light excitation; these emission intensities were strongly dependent on the doping concentration and sintering temperature. The 0.4 mol. % Sm{sub 2}O{sub 3}-modified sample exhibited temperature responses over a wide temperature range of 10–443 K. The maximum sensing sensitivity of the sample was 7.5 × 10{sup −4} K at 293 K, at which point PPT occurred. A relatively long decay lifetime τ of 1.27–1.40 ms and a large quantum yield η of 0.17–0.19 were obtained from the Sm-modified samples. These results suggest that the KNN-5.2LS-xSm{sub 2}O{sub 3} system presents multifunctional properties and significant technological potential in novel multifunctional devices.

  3. Breakthrough: Lead-free Solder

    SciTech Connect

    Anderson, Iver

    2012-01-01

    Ames Laboratory senior metallurgist Iver Anderson explains the importance of lead-free solder in taking hazardous lead out of the environment by eliminating it from discarded computers and electronics that wind up in landfills. Anderson led a team that developed a tin-silver-copper replacement for traditional lead-tin solder that has been adopted by more than 50 companies worldwide.

  4. Lead-free primary explosives

    DOEpatents

    Huynh, My Hang V.

    2010-06-22

    Lead-free primary explosives of the formula (cat).sub.Y[M.sup.II(T).sub.X(H.sub.2O).sub.6-X].sub.Z, where T is 5-nitrotetrazolate, and syntheses thereof are described. Substantially stoichiometric equivalents of the reactants lead to high yields of pure compositions thereby avoiding dangerous purification steps.

  5. Breakthrough: Lead-free Solder

    ScienceCinema

    Anderson, Iver

    2016-07-12

    Ames Laboratory senior metallurgist Iver Anderson explains the importance of lead-free solder in taking hazardous lead out of the environment by eliminating it from discarded computers and electronics that wind up in landfills. Anderson led a team that developed a tin-silver-copper replacement for traditional lead-tin solder that has been adopted by more than 50 companies worldwide.

  6. A database to enable discovery and design of piezoelectric materials.

    PubMed

    de Jong, Maarten; Chen, Wei; Geerlings, Henry; Asta, Mark; Persson, Kristin Aslaug

    2015-01-01

    Piezoelectric materials are used in numerous applications requiring a coupling between electrical fields and mechanical strain. Despite the technological importance of this class of materials, for only a small fraction of all inorganic compounds which display compatible crystallographic symmetry, has piezoelectricity been characterized experimentally or computationally. In this work we employ first-principles calculations based on density functional perturbation theory to compute the piezoelectric tensors for nearly a thousand compounds, thereby increasing the available data for this property by more than an order of magnitude. The results are compared to select experimental data to establish the accuracy of the calculated properties. The details of the calculations are also presented, along with a description of the format of the database developed to make these computational results publicly available. In addition, the ways in which the database can be accessed and applied in materials development efforts are described.

  7. A database to enable discovery and design of piezoelectric materials

    PubMed Central

    de Jong, Maarten; Chen, Wei; Geerlings, Henry; Asta, Mark; Persson, Kristin Aslaug

    2015-01-01

    Piezoelectric materials are used in numerous applications requiring a coupling between electrical fields and mechanical strain. Despite the technological importance of this class of materials, for only a small fraction of all inorganic compounds which display compatible crystallographic symmetry, has piezoelectricity been characterized experimentally or computationally. In this work we employ first-principles calculations based on density functional perturbation theory to compute the piezoelectric tensors for nearly a thousand compounds, thereby increasing the available data for this property by more than an order of magnitude. The results are compared to select experimental data to establish the accuracy of the calculated properties. The details of the calculations are also presented, along with a description of the format of the database developed to make these computational results publicly available. In addition, the ways in which the database can be accessed and applied in materials development efforts are described. PMID:26451252

  8. A Resonant Damping Study Using Piezoelectric Materials

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Duffy, K. P.; Choi, B. B.; Morrison, C. R.; Jansen, R. H.; Provenza, A. J.

    2008-01-01

    Excessive vibration of turbomachinery blades causes high cycle fatigue (HCF) problems requiring damping treatments to mitigate vibration levels. Based on the technical challenges and requirements learned from previous turbomachinery blade research, a feasibility study of resonant damping control using shunted piezoelectric patches with passive and active control techniques has been conducted on cantilever beam specimens. Test results for the passive damping circuit show that the optimum resistive shunt circuit reduces the third bending resonant vibration by almost 50%, and the optimum inductive circuit reduces the vibration by 90%. In a separate test, active control reduced vibration by approximately 98%.

  9. Electrocaloric effect and luminescence properties of lanthanide doped (Na{sub 1/2}Bi{sub 1/2})TiO{sub 3} lead free materials

    SciTech Connect

    Zannen, M.; Lahmar, A. E-mail: zdravko.kutnjak@ijs.si; Asbani, B.; El Marssi, M.; Khemakhem, H.; Kutnjak, Z. E-mail: zdravko.kutnjak@ijs.si; Es Souni, M.

    2015-07-20

    Polycrystalline lead-free Sodium Bismuth Titanate (NBT) ferroelectric ceramics doped with rare earth (RE) element are prepared using solid state reaction method. Optical, ferroelectric, and electrocaloric properties were investigated. The introduction of RE{sup 3+} ions in the NBT host lattice shows different light emissions over the wavelength range from visible to near infrared region. The ferroelectric P-E hysteresis loops exhibit an antiferroelectric-like character near room temperature indicating possible existence of a morphotropic phase boundary. The enhanced electrocaloric response was observed in a broad temperature range due to nearly merged phase transitions. Coexistence of optical and electrocaloric properties is very promising for photonics or optoelectronic device applications.

  10. Electrocaloric effect and luminescence properties of lanthanide doped (Na1/2Bi1/2)TiO3 lead free materials

    NASA Astrophysics Data System (ADS)

    Zannen, M.; Lahmar, A.; Asbani, B.; Khemakhem, H.; El Marssi, M.; Kutnjak, Z.; Es Souni, M.

    2015-07-01

    Polycrystalline lead-free Sodium Bismuth Titanate (NBT) ferroelectric ceramics doped with rare earth (RE) element are prepared using solid state reaction method. Optical, ferroelectric, and electrocaloric properties were investigated. The introduction of RE3+ ions in the NBT host lattice shows different light emissions over the wavelength range from visible to near infrared region. The ferroelectric P-E hysteresis loops exhibit an antiferroelectric-like character near room temperature indicating possible existence of a morphotropic phase boundary. The enhanced electrocaloric response was observed in a broad temperature range due to nearly merged phase transitions. Coexistence of optical and electrocaloric properties is very promising for photonics or optoelectronic device applications.

  11. Cellulose Nanofibril Film as a Piezoelectric Sensor Material.

    PubMed

    Rajala, Satu; Siponkoski, Tuomo; Sarlin, Essi; Mettänen, Marja; Vuoriluoto, Maija; Pammo, Arno; Juuti, Jari; Rojas, Orlando J; Franssila, Sami; Tuukkanen, Sampo

    2016-06-22

    Self-standing films (45 μm thick) of native cellulose nanofibrils (CNFs) were synthesized and characterized for their piezoelectric response. The surface and the microstructure of the films were evaluated with image-based analysis and scanning electron microscopy (SEM). The measured dielectric properties of the films at 1 kHz and 9.97 GHz indicated a relative permittivity of 3.47 and 3.38 and loss tangent tan δ of 0.011 and 0.071, respectively. The films were used as functional sensing layers in piezoelectric sensors with corresponding sensitivities of 4.7-6.4 pC/N in ambient conditions. This piezoelectric response is expected to increase remarkably upon film polarization resulting from the alignment of the cellulose crystalline regions in the film. The CNF sensor characteristics were compared with those of polyvinylidene fluoride (PVDF) as reference piezoelectric polymer. Overall, the results suggest that CNF is a suitable precursor material for disposable piezoelectric sensors, actuators, or energy generators with potential applications in the fields of electronics, sensors, and biomedical diagnostics.

  12. Novel composite piezoelectric material for energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Janusas, Giedrius; Guobiene, Asta; Palevicius, Arvydas; Prosycevas, Igoris; Ponelyte, Sigita; Baltrusaitis, Valentinas; Sakalys, Rokas

    2015-04-01

    Past few decades were concentrated on researches related to effective energy harvesting applied in modern technologies, MEMS or MOEMS systems. There are many methods for harvesting energy as, for example, usage of electromagnetic devices, but most dramatic changes were noticed in the usage of piezoelectric materials in small scale devices. Major limitation faced was too small generated power by piezoelectric materials or high resonant frequencies of such smallscale harvesters. In this research, novel composite piezoelectric material was created by mixing PZT powder with 20% solution of polyvinyl butyral in benzyl alcohol. Obtained paste was screen printed on copper foil using 325 mesh stainless steel screen and dried for 30 min at 100 °C. Polyvinyl butyral ensures good adhesion and flexibility of a new material at the conditions that requires strong binding. Five types of a composite piezoelectric material with different concentrations of PZT (40%, 50%, 60%, 70% and 80 %) were produced. As the results showed, these harvesters were able to transform mechanical strain energy into electric potential and, v.v. In experimental setup, electromagnetic shaker was used to excite energy harvester that is fixed in the custom-built clamp, while generated electric potential were registered with USB oscilloscope PICO 3424. The designed devices generate up to 80 μV at 50 Hz excitation. This property can be applied to power microsystem devices or to use them in portable electronics and wireless sensors. However, the main advantage of the created composite piezoelectric material is possibility to apply it on any uniform or nonuniform vibrating surface and to transform low frequency vibrations into electricity.

  13. Piezoelectric properties of rhombohedral ferroelectric materials with phase transition

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaofang; Soh, A. K.

    2015-12-01

    The temporal evolution of domain structure and its piezoelectric behavior of ferroelectric material BaTiO3 during the transition process from rhombohedral to tetragonal phase under an applied electric field have been studied by employing Landau-Ginzburg theory and the phase-field method. The results obtained show that, during the transformation process, the intermediate phase was monoclinic MA phase, and several peak values of piezoelectric coefficient appeared at the stage where obvious change of domain pattern occurred. In addition, by comparing the cases of applied electric field with different frequencies, it was found that the maximum piezoelectric coefficient obtained decreased with increasing frequency value. These results are of great significance in tuning the properties of engineering domains in ferroelectrics, and could provide more fundamentals to the design of ferroelectric devices.

  14. Orientation-dependent piezoelectric properties in lead-free epitaxial 0.5BaZr0.2Ti0.8O3-0.5Ba0.7Ca0.3TiO3 thin films

    NASA Astrophysics Data System (ADS)

    Luo, B. C.; Wang, D. Y.; Duan, M. M.; Li, S.

    2013-09-01

    Orientation-engineered 0.5BaZr0.2Ti0.8O3-0.5Ba0.7Ca0.3TiO3 (BZT-BCT) thin films were deposited on La0.7Sr0.3MnO3-coated SrTiO3 single-crystalline (001), (110), and (111) substrates by off-axis radio-frequency magnetron sputtering. X-ray diffraction confirmed a highly epitaxial growth of all the as-deposited films. It is believed the strong orientation dependence of ferroelectric and piezoelectric properties on the films is attributed to the relative alignment of crystallites and spontaneous polarization vector. The optimal ferroelectric response lies in the [001] direction, whereas a comparatively large effective piezoelectric coefficient d33,eff of 100.1 ± 5 pm/V was attained in [111] BZT-BCT thin film, suggesting its potential application for high-performance lead-free piezoelectric devices.

  15. Orientation-dependent piezoelectric properties in lead-free epitaxial 0.5BaZr{sub 0.2}Ti{sub 0.8}O{sub 3}-0.5Ba{sub 0.7}Ca{sub 0.3}TiO{sub 3} thin films

    SciTech Connect

    Luo, B. C.; Wang, D. Y.; Li, S.; Duan, M. M.

    2013-09-16

    Orientation-engineered 0.5BaZr{sub 0.2}Ti{sub 0.8}O{sub 3}-0.5Ba{sub 0.7}Ca{sub 0.3}TiO{sub 3} (BZT-BCT) thin films were deposited on La{sub 0.7}Sr{sub 0.3}MnO{sub 3}-coated SrTiO{sub 3} single-crystalline (001), (110), and (111) substrates by off-axis radio-frequency magnetron sputtering. X-ray diffraction confirmed a highly epitaxial growth of all the as-deposited films. It is believed the strong orientation dependence of ferroelectric and piezoelectric properties on the films is attributed to the relative alignment of crystallites and spontaneous polarization vector. The optimal ferroelectric response lies in the [001] direction, whereas a comparatively large effective piezoelectric coefficient d{sub 33,eff} of 100.1 ± 5 pm/V was attained in [111] BZT-BCT thin film, suggesting its potential application for high-performance lead-free piezoelectric devices.

  16. Synchronization of oscillations in hybrid gel-piezoelectric active materials

    NASA Astrophysics Data System (ADS)

    Yashin, Victor V.; Levitan, Steven P.; Balazs, Anna C.

    We model the hybrid gel-piezoelectric active material that could perform oscillator based unconventional computing tasks (``materials that compute''). The material is assumed to have a cellular structure, where each cell contains a polymer gel, which undergoes cyclic swelling and deswelling due to the oscillatory Belousov-Zhabotinsky (BZ) reaction, and is coupled to a piezoelectric (PZ) film. Upon electrical connection, oscillations in the BZ-PZ units get synchronized, and the mode of synchronization is shown to depend on the number of units in the system, type of circuit connection, etc. Introduction of capacitors into the circuits allows us to further manipulate the synchronization modes, i.e., the distinctive patterns in phase of oscillations. The results indicate the BZ-PZ systems could be used for spatio-temporal pattern recognition.

  17. Piezoelectric material for use in a nuclear reactor core

    SciTech Connect

    Parks, D. A.; Reinhardt, Brian; Tittmann, B. R.

    2012-05-17

    In radiation environments ultrasonic nondestructive evaluation has great potential for improving reactor safety and furthering the understanding of radiation effects and materials. In both nuclear power plants and materials test reactors, elevated temperatures and high levels of radiation present challenges to ultrasonic NDE methodologies. The challenges are primarily due to the degradation of the ultrasonic sensors utilized. We present results from the operation of a ultrasonic piezoelectric transducer, composed of bulk single crystal AlN, in a nuclear reactor core for over 120 MWHrs. The transducer was coupled to an aluminum cylinder and operated in pulse echo mode throughout the irradiation. In addition to the pulse echo testing impedance data were obtained. Further, the piezoelectric coefficient d{sub 33} was measured prior to irradiation and found to be 5.5 pC/N which is unchanged from as-grown samples, and in fact higher than the measured d{sub 33} for many as-grown samples.

  18. Characterization of piezoelectric materials for simultaneous strain and temperature sensing for ultra-low frequency applications

    NASA Astrophysics Data System (ADS)

    Nouroz Islam, Mohammad; Seethaler, Rudolf; Shahria Alam, M.

    2015-08-01

    Piezoelectric materials are used extensively in a number of sensing applications ranging from aerospace industries to medical diagnostics. Piezoelectric materials generate charge when they are subjected to strain. However, since measuring charge is difficult at low frequencies, traditional piezoelectric sensors are limited to dynamic applications. In this research an alternative technique is proposed to determine static strain that relies upon the measurement of piezoelectric capacitance and resistance using piezoelectric sensors. To demonstrate the validity of this approach, the capacitance and resistance of a piezoelectric patch sensor was characterized for a wide range of strain and temperature. The study shows that the piezoelectric capacitance is sensitive to both strain and temperature while the resistance is mostly dependent on the temperature variation. The findings can be implemented to obtain thermally compensated static strain from piezoelectric sensors, which does not require an additional temperature sensor.

  19. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2009-01-01

    In response to concerns about risks from lead-free induced faults to high reliability products, NASA has initiated a multi-year project to provide manufacturers and users with data to clarify the risks of lead-free materials in their products. The project will also be of interest to component manufacturers supplying to high reliability markets. The project was launched in November 2006. The primary technical objective of the project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: - Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with solder interconnects consisting of lead-free alloys - Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with solder interconnects consisting of mixed alloys, lead component finish/lead-free solder and lead-free component finish/SnPb solder.

  20. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2009-01-01

    In response to concerns about risks from lead-free induced faults to high reliability products, NASA has initiated a multi-year project to provide manufacturers and users with data to clarify the risks of lead-free materials in their products. The project will also be of interest to component manufacturers supplying to high reliability markets. The project was launched in November 2006. The primary technical objective of the project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: - Packages (e.g., TSOP, BOA, PDIP) assembled and reworked with solder interconnects consisting of lead-free alloys - Packages (e.g., TSOP, BOA, PDIP) assembled and reworked with solder interconnects consisting of mixed alloys, lead component finish/lead-free solder and lead-free component finish/SnPb solder.

  1. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2009-01-01

    In response to concerns about risks from lead-free induced faults to high reliability products, NASA has initiated a multi-year project to provide manufacturers and users with data to clarify the risks of lead-free materials in their products. The project will also be of interest to component manufacturers supplying to high reliability markets. The project was launched in November 2006. The primary technical objective of the project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: (1) Packages (e.g., Thin Small Outline Package [TSOP], Ball Grid Array [BGA], Plastic Dual In-line Package [PDIP]) assembled and reworked with solder interconnects consisting of lead-free alloys (2) Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with solder interconnects consisting of mixed alloys, lead component finish/lead-free solder and lead-free component finish/SnPb solder

  2. Piezoelectric and Electrostrictive Materials for Transducer Applications.

    DTIC Science & Technology

    1986-07-01

    breakdown in BaTiO3 materials. Identification of the stress field may result in alternate manufacturing techniques and improved quality control, by...possible to raise the poling field substantially anci realize imarkedly improved properties in lead titanate based materials. X-ray measure- urents...6.1 Publications o. . . .. . . . .. . . . 11 6.2 Presentations at National and International Meetings ... . . 1 6.2.1 Invited Papers . . . . . o

  3. Analysis of Lead-Free Piezoceramic-Based Power Ultrasonic Transducers for Wire Bonding.

    PubMed

    Mathieson, Andrew; DeAngelis, Dominick A

    2016-01-01

    Since the 1950s, lead zirconate-titanate (PZT) has been the dominant transduction material utilized in power ultrasonics, while lead-free piezoceramics have been largely neglected due to their relatively poor piezoelectric and electromechanical properties. However, the implementation of environmental directives that regulate and control the use of hazardous materials, such as lead, triggered a search for new high-performance lead-free piezoceramics. Recent advances have led to lead-free piezoceramics exhibiting properties similar to PZT, but despite this, reports utilizing these novel piezoceramics in practice are limited. This research employs a modified variant of bismuth sodium titanate (BNT) in a power ultrasonic transducer used for metal welding during the manufacture of semiconductors. The important factors for transducer reliability and performance are investigated, such as piezoceramic aging and stack preload level. It is reported that BNT-based transducers exhibit good stability, and can withstand a stack preload level of 90 MPa without depoling. Although the BNT-based transducers exhibited larger dissipative losses compared to identical PZT8-based transducers, the tool displacement gain was larger under constant current conditions. Semiconductor wire bonds which satisfied the commercial quality control requirements were also formed by this BNT-based transducer.

  4. Mechanical and Vibration Testing of Carbon Fiber Composite Material with Embedded Piezoelectric Sensors

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Lerch, Bradley A.; Wilmoth, Nathan G.; Kray, Nicholas; Gemeinhardt, Gregory

    2012-01-01

    Piezoelectric materials have been proposed as a means of decreasing turbomachinery blade vibration either through a passive damping scheme, or as part of an active vibration control system. For polymer matrix fiber composite (PMFC) blades, the piezoelectric elements could be embedded within the blade material, protecting the brittle piezoceramic material from the airflow and from debris. Before implementation of a piezoelectric element within a PMFC blade, the effect on PMFC mechanical properties needs to be understood. This study attempts to determine how the inclusion of a packaged piezoelectric patch affects the material properties of the PMFC. Composite specimens with embedded piezoelectric patches were tested in four-point bending, short beam shear, and flatwise tension configurations. Results show that the embedded piezoelectric material does decrease the strength of the composite material, especially in flatwise tension, attributable to failure at the interface or within the piezoelectric element itself. In addition, the sensing properties of the post-cured embedded piezoelectric materials were tested, and performed as expected. The piezoelectric materials include a non-flexible patch incorporating solid piezoceramic material, and two flexible patch types incorporating piezoelectric fibers. The piezoceramic material used in these patches was Navy Type-II PZT.

  5. Evaluation of piezoelectric material properties for a higher power output from energy harvesters with insight into material selection using a coupled piezoelectric-circuit-finite element method.

    PubMed

    Daniels, Alice; Zhu, Meiling; Tiwari, Ashutosh

    2013-12-01

    Piezoelectric material properties have substantial influence on electrical power output from piezoelectric energy harvesters (PEHs). Understanding their influences is the first step in designing effective PEHs to generate higher power outputs. This paper uses a coupled piezoelectric-circuit-finite element method to study the power outputs of different types of piezoelectric materials, including single crystal, polyvinylidene fluoride (PVDF), and soft and hard lead zirconate titanate (PZT) materials. The purpose of this study is to try to gain an understanding of which piezoelectric material property--the elastic compliance s11, the piezoelectric strain constant d31, the piezoelectric stress constant g31, and the relative dielectric constant ϵ(T)r33, and the associated material properties of the d31 × g31, called the figure of merit (FOM), and the coupling coefficient k31--dominates the power output. A rectangular piezoelectric plate under a low-frequency excitation is used to evaluate piezoelectric material properties for a higher power output. It was found that 1) d31 is a more dominant material property over other material properties for higher power output; 2) FOM was more linearly related to the power output than either the k31 or the d31; and 3) ϵ(T)r33 had some role; when the materials have an identical d31; a lower ϵ(T)r33 was preferred. Because of unexplained outliers, no single material parameter was able to be recommended as selection criteria, but combined FOM with d31 parameters is recommended for selection of piezoelectric material for a higher power output from PEHs.

  6. Periodical Microstructures Based on Novel Piezoelectric Material for Biomedical Applications

    PubMed Central

    Janusas, Giedrius; Ponelyte, Sigita; Brunius, Alfredas; Guobiene, Asta; Prosycevas, Igoris; Vilkauskas, Andrius; Palevicius, Arvydas

    2015-01-01

    A novel cantilever type piezoelectric sensing element was developed. Cost-effective and simple fabrication design allows the use of this element for various applications in the areas of biomedicine, pharmacy, environmental analysis and biosensing. This paper proposes a novel piezoelectric composite material whose basic element is PZT and a sensing platform where this material was integrated. Results showed that a designed novel cantilever-type element is able to generate a voltage of up to 80 µV at 50 Hz frequency. To use this element for sensing purposes, a four micron periodical microstructure was imprinted. Silver nanoparticles were precipitated on the grating to increase the sensitivity of the designed element, i.e., Surface Plasmon Resonance (SPR) effect appears in the element. To tackle some issues (a lack of sensitivity, signal delays) the element must have certain electronic and optical properties. One possible solution, proposed in this paper, is a combination of piezoelectricity and SPR in a single element. PMID:26694398

  7. Polar nanoregions and dielectric properties in high-strain lead-free 0.93(Bi{sub 1/2}Na{sub 1/2})TiO{sub 3}-0.07BaTiO{sub 3} piezoelectric single crystals

    SciTech Connect

    Chen, Cheng-Sao; Chen, Pin-Yi; Tu, Chi-Shun

    2014-01-07

    A structural coexistence of rhombohedral (R) and tetragonal (T) phases has been revealed in the (001){sub c}-cut lead-free 0.93(Bi{sub 1/2}Na{sub 1/2})TiO{sub 3}–0.07BaTiO{sub 3} (BNB7T) piezoelectric crystals, which grown by the self-flux method, in the lower temperatures by high-resolution synchrotron X-ray diffraction, reciprocal space mapping, and transmission electron microscopy. The dielectric permittivity exhibits a thermal hysteresis in the region of 120–260 °C, implying a first-order-like phase transition from R+T to T. The real part (ε′) of dielectric permittivity begins to deviates from the Curie-Weiss equation, ε′ = C/(T − T{sub o}), from the Burns temperature T{sub B} = 460 °C, below which the polar nanoregions (or nanoclusters) develop and attenuate dielectric responses. The polar nanoregions of 5–10 nm were revealed by high-resolution transmission electron microscope. The normal piezoelectric coefficient d{sub 33} exhibits a rapid increase at E = 15–20 kV/cm and reaches a maximum of d{sub 33} ∼450 pC/N. The high piezoelectric response and E-field induced strain in BNB7T single crystals can be attributed to structural phase transitions under an E-field application.

  8. Selecting a radiation tolerant piezoelectric material for nuclear reactor applications

    NASA Astrophysics Data System (ADS)

    Parks, D. A.; Reinhardt, B. T.; Tittmann, B. R.

    2013-01-01

    Bringing systems for online monitoring of nuclear reactors to fruition has been delayed by the lack of suitable ultrasonic sensors. Recent work has demonstrated the capability of an AlN sensor to perform ultrasonic evaluation in an actual nuclear reactor. Although the AlN demonstrated sustainability, no loss in signal amplitude and d33 up to a fast and thermal neutron fluence of 1.85×1018 n/cm2 and 5.8×1018 n/cm2 respectively, no formal process to selecting a suitable sensor material was made. It would be ideal to use first principles approaches to somehow reduce each candidate piezoelectric material to a simple ranking showing directly which materials one should expect to be most radiation tolerant. However, the complexity of the problem makes such a ranking impractical and one must appeal to experimental observations. This should not be of any surprise to one whom is familiar with material science as most material properties are obtained in this manner. Therefore, this work adopts a similar approach, the mechanisms affecting radiation tolerance are discussed and a good engineering sense is used for material qualification of the candidate piezoelectric materials.

  9. Selecting a radiation tolerant piezoelectric material for nuclear reactor applications

    SciTech Connect

    Parks, D. A.; Reinhardt, B. T.; Tittmann, B. R.

    2013-01-25

    Bringing systems for online monitoring of nuclear reactors to fruition has been delayed by the lack of suitable ultrasonic sensors. Recent work has demonstrated the capability of an AlN sensor to perform ultrasonic evaluation in an actual nuclear reactor. Although the AlN demonstrated sustainability, no loss in signal amplitude and d{sub 33} up to a fast and thermal neutron fluence of 1.85 Multiplication-Sign 1018 n/cm{sup 2} and 5.8 Multiplication-Sign 1018 n/cm{sup 2} respectively, no formal process to selecting a suitable sensor material was made. It would be ideal to use first principles approaches to somehow reduce each candidate piezoelectric material to a simple ranking showing directly which materials one should expect to be most radiation tolerant. However, the complexity of the problem makes such a ranking impractical and one must appeal to experimental observations. This should not be of any surprise to one whom is familiar with material science as most material properties are obtained in this manner. Therefore, this work adopts a similar approach, the mechanisms affecting radiation tolerance are discussed and a good engineering sense is used for material qualification of the candidate piezoelectric materials.

  10. Domain wall motion and electromechanical strain in lead-free piezoelectrics: Insight from the model system (1 − x)Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}–x(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} using in situ high-energy X-ray diffraction during application of electric fields

    SciTech Connect

    Tutuncu, Goknur; Li, Binzhi; Bowman, Keith; Jones, Jacob L.

    2014-04-14

    The piezoelectric compositions (1 − x)Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}–x(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} (BZT-xBCT) span a model lead-free morphotropic phase boundary (MPB) between room temperature rhombohedral and tetragonal phases at approximately x = 0.5. In the present work, in situ X-ray diffraction measurements during electric field application are used to elucidate the origin of electromechanical strain in several compositions spanning the tetragonal compositional range 0.6 ≤ x ≤ 0.9. As BCT concentration decreases towards the MPB, the tetragonal distortion (given by c/a-1) decreases concomitantly with an increase in 90° domain wall motion. The increase in observed macroscopic strain is predominantly attributed to the increased contribution from 90° domain wall motion. The results demonstrate that domain wall motion is a significant factor in achieving high strain and piezoelectric coefficients in lead-free polycrystalline piezoelectrics.

  11. Domain wall motion and electromechanical strain in lead-free piezoelectrics: Insight from the model system (1 - x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 using in situ high-energy X-ray diffraction during application of electric fields

    SciTech Connect

    Tutuncu, Goknur; Li, Binzhi; Bowman, Keith; Jones, Jacob L.

    2014-07-17

    The piezoelectric compositions (1 - x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 (BZT-xBCT) span a model lead-free morphotropic phase boundary (MPB) between room temperature rhombohedral and tetragonal phases at approximately x = 0.5. In the present work, in situ X-ray diffraction measurements during electric field application are used to elucidate the origin of electromechanical strain in several compositions spanning the tetragonal compositional range 0.6 ≤ x ≤ 0.9. As BCT concentration decreases towards the MPB, the tetragonal distortion (given by c/a-1) decreases concomitantly with an increase in 90° domain wall motion. The increase in observed macroscopic strain is predominantly attributed to the increased contribution from 90° domain wall motion. The results demonstrate that domain wall motion is a significant factor in achieving high strain and piezoelectric coefficients in lead-free polycrystalline piezoelectrics.

  12. Piezoelectric and electrostrictive materials for transducers applications, volume 4

    NASA Astrophysics Data System (ADS)

    Cross, L. E.; Newnham, R. E.; Bhalla, A. S.; Dougherty, J. P.; Adair, J. H.; Varadan, V. K.; Varadan, V. V.

    1992-01-01

    The topics discussed are as follows: A Study of Y1Ba2Cu3O(7-x) Thick Films on Ferroelectric Substrates; Y1Ba2Cu30(7-x) as an Electrode Material for Ferroelectric Devices; Polarization Reversal and High Dielectric Permittivity in Lead Magnesium Niobate Titanate Thin Films; Ferroelectric Switching in Lead Zirconate-Lead Zinc Niobate Thin Films; Lead Zirconate Titanate Stannate Thin Films for Large Strian Microactuator Applications; Ferroelectric Thin Film Ultrasonic Micromotors; and Piezoelectric Micromotors for Microrobots.

  13. High-temperature piezoelectric materials for elements of linear piezo motors

    NASA Astrophysics Data System (ADS)

    Khramtsov, A. M.; Spitsin, A. I.; Segalla, A. G.; Ponomarev, S. V.; Rikkonen, S. V.

    2016-11-01

    This paper discusses technological and construction ways to achieve a high working temperature with a high displacement in linear piezo motors. The first part reviews the results of the piezoelectric material development, its temperature stability testing and basic parameters for piezo motors. The second part focuses on the multilayer structure of piezoelectric elements, which are based on high-temperature piezoelectric materials (HTPM). Also analyzed are working temperatures of multilayer piezoelectric elements (MPE) and their hysteresis. Finally, the third part shows a comparison of three recent prototypes of high-temperature MPEs that were in our lab using different materials.

  14. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2010-01-01

    Original Equipment Manufacturers (OEMs), depots, and support contract ors have to be prepared to deal with an electronics supply chain that increasingly provides parts with lead-free finishes, some labeled no differently and intermingled with their SnPb counterparts. Allowance of lead-free components presents one of the greatest risks to the r eliability of military and aerospace electronics. The introduction of components with lead-free terminations, termination finishes, or cir cuit boards presents a host of concerns to customers, suppliers, and maintainers of aerospace and military electronic systems such as: 1. Electrical shorting due to tin whiskers 2. Incompatibility of lead-f ree processes and parameters (including higher melting points of lead -free alloys) with other materials in the system 3. Unknown material properties and incompatibilities that could reduce solder joint reli ability As the transition to lead-free becomes a certain reality for military and aerospace applications, it will be critical to fully un derstand the implications of reworking lead-free assemblies.

  15. Large Field-Induced Strain Properties of Sr(K0.25Nb0.75) O3-Modified Bi1/2(Na0.82K0.18)1/2TiO3 Lead-Free Piezoelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Tran, Vu Diem Ngoc; Ullah, Aman; Dinh, Thi Hinh; Lee, Jae-Shin

    2016-05-01

    Lead-free piezoelectric ceramics with compositions of (1 - x)Bi1/2(Na0.82 K0.18)1/2TiO3 + xSr(K0.25Nb0.75)O3, which are abbreviated as (1 - x)BNKT- xSKN with x = 0, 0.01, 0.02, 0.03, 0.04, and 0.05, were synthesized using a conventional solid-state reaction method. The effects of SKN addition on the BNKT system were examined in terms of the phase transition, strain behavior, and ferroelectric and dielectric properties. X-ray diffraction revealed a single perovskite phase for all compositions. The results showed that with increasing SKN content, BNKT-SKN underwent a phase transition from the coexistence of rhombohedral and tetragonal phases to a tetragonal phase. The addition of SKN shifted the depolarization temperature, T d, to a lower temperature and enhanced the diffuseness of the dielectric peaks. The polarization and bipolar strain hysteresis loops of BNKT-SKN showed that the addition of SKN induced a ferroelectric to ergodic relaxor phase transition with a disruption of the ferroelectric order of pure BNKT. As a result, the strain of BNKT-SKN improved significantly with increasing SKN content and reached the highest value of a normalized strain, S max/ E max, of 557 pm/V, when modified with 3 mol.% SKN.

  16. Performance of Transducers with Segmented Piezoelectric Stacks using Materials with High Electromechanical Coupling Coefficient

    DTIC Science & Technology

    2012-12-03

    transducers , particularly tonpilz transducer elements. Included is discussion of transducer designs using single crystal piezoelectric material with... tonpilz transducer elements. Included is discussion of transducer designs using single crystal piezoelectric material with high coupling coefficient...Conclusions 14 References 16 Appendix 18 v This page intentionally left blank. vi List of Figures Figure 1 The tonpilz transducer element used in this

  17. Piezoelectric and electrostrictive sensors and actuators for adaptive structures and smart materials

    NASA Astrophysics Data System (ADS)

    Cross, L. E.

    Developments in composite materials for piezoelectric sensors are briefly reviewed, and new systems using bias field control of the piezoelectric response in relaxor ferroelectric compositions in the PMN:PT and in the PLZT family materials are discussed. For actuator applications, multilayer actuator materials are evaluated, and possibilities for ultrahigh-strain materials are explored. Attention is also given to the composite systems incorporating both a sensor and a responder in the same material together with active solid state electronics. It is shown that a piezoelectric sensor/actuator system mimics an ultrasoft material for weak AC stress, maintaining the load-bearing capability of a stiff ceramic.

  18. Acceleration of osteogenesis by using barium titanate piezoelectric ceramic as an implant material

    NASA Astrophysics Data System (ADS)

    Furuya, K.; Morita, Y.; Tanaka, K.; Katayama, T.; Nakamachi, E.

    2011-04-01

    As bone has piezoelectric properties, it is expected that activity of bone cells and bone formation can be accelerated by applying piezoelectric ceramics to implants. Since lead ions, included in ordinary piezoelectric ceramics, are harmful, a barium titanate (BTO) ceramic, which is a lead-free piezoelectric ceramic, was used in this study. The purpose of this study was to investigate piezoelectric effects of surface charge of BTO on cell differentiation under dynamic loading in vitro. Rat bone marrow cells seeded on surfaces of BTO ceramics were cultured in culture medium supplemented with dexamethasone, β-glycerophosphate and ascorbic acid while a dynamic load was applied to the BTO ceramics. After 10 days of cultivation, the cell layer and synthesized matrix on the BTO surfaces were scraped off, and then DNA content, alkaline phosphtase (ALP) activity and calcium content were measured, to evaluate osteogenic differentiation. ALP activity on the charged BTO surface was slightly higher than that on the non-charged BTO surface. The amount of calcium on the charged BTO surface was also higher than that on the non-charged BTO surface. These results showed that the electric charged BTO surface accelerated osteogenesis.

  19. Hot-stage transmission electron microscopy study of (Na, K)NbO{sub 3} based lead-free piezoceramics

    SciTech Connect

    Lu, Shengbo; Xu, Zhengkui; Kwok, K. W.; Chan, Helen L. W.

    2014-07-28

    Hierarchical nanodomains assembled into micron-sized stripe domains, which is believed to be associated with outstanding piezoelectric properties, were observed at room temperature in a typical lead free piezoceramics, (Na{sub 0.52}K{sub 0.48−x})(Nb{sub 0.95−x}Ta{sub 0.05})-xLiSbO{sub 3}, with finely tuned polymorphic phase boundaries (x = 0.0465) by transmission electron microscopy. The evolution of domain morphology and crystal structure under heating and cooling cycles in the ceramic was investigated by in-situ hot stage study. It is found that the nanodomains are irreversibly transformed into micron-sized rectangular domains during heating and cooling cycles, which lead to the thermal instability of piezoelectric properties of the materials.

  20. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2011-01-01

    Original Equipment Manufacturers (OEMs). depots. and support contractors have to be prepared to deal with an electronics supply chain thaI increasingly provides parts with lead-free finishes. some labeled no differently and intenningled with their SnPb counterparts. Allowance oflead-free components presents one of the greatest risks to the reliability of military and aerospace electronics. The introduction of components with lead-free lenninations, tennination finishes, or circuit boards presents a host of concerns to customers. suppliers, and maintainers of aerospace and military electronic systems such as: 1. Electrical shorting due to tin whiskers; 2. Incompatibility oflead-free processes and parameters (including higher melting points of lead-free alloys) with other materials in the system; and 3. Unknown material properties and incompatibilities that could reduce solder joint re liability.

  1. Fundamental analysis of piezocatalysis process on the surfaces of strained piezoelectric materials.

    PubMed

    Starr, Matthew B; Wang, Xudong

    2013-01-01

    Recently, the strain state of a piezoelectric electrode has been found to impact the electrochemical activity taking place between the piezoelectric material and its solution environment. This effect, dubbed piezocatalysis, is prominent in piezoelectric materials because the strain state and electronic state of these materials are strongly coupled. Herein we develop a general theoretical analysis of the piezocatalysis process utilizing well-established piezoelectric, semiconductor, molecular orbital and electrochemistry frameworks. The analysis shows good agreement with experimental results, reproducing the time-dependent voltage drop and H₂ production behaviors of an oscillating piezoelectric Pb(Mg₁/₃Nb₂/₃)O₃-32PbTiO₃ (PMN-PT) cantilever in deionized water environment. This study provides general guidance for future experiments utilizing different piezoelectric materials, such as ZnO, BaTiO₃, PbTiO₃, and PMN-PT. Our analysis indicates a high piezoelectric coupling coefficient and a low electrical conductivity are desired for enabling high electrochemical activity; whereas electrical permittivity must be optimized to balance piezoelectric and capacitive effects.

  2. NASA DOD Lead Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2008-01-01

    The primary'technical objective of this project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: Packages (e.g., Thin Small Outline Package [TSOP], Ball Grid Array [BGA], Plastic Dual In-line Package [PDIPD assembled and reworked with lead-free alloys Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with mixed (lead/lead-free) alloys.

  3. Development of lead-free single-element ultrahigh frequency (170-320MHz) ultrasonic transducers.

    PubMed

    Lam, Kwok Ho; Ji, Hong Fen; Zheng, Fan; Ren, Wei; Zhou, Qifa; Shung, K Kirk

    2013-07-01

    This paper presents the design, fabrication and characterization of single-element ultrahigh frequency (UHF) ultrasonic transducers in which the center frequency ranged from 170 to 320MHz. The center frequency of >300MHz is the highest value of lead-free ceramic ultrasonic transducers ever reported. With concern in the environmental pollution of lead-based materials, the transducer elements presented in this work were lead-free K0.5Na0.5NbO3/Bi0.5Na0.5TiO3 (KNN/BNT) composite thick films. All transducers were evaluated in a pulse-echo arrangement. The measured -6dB bandwidth of the transducers ranged from 35% to 64%. With the optimized piezoelectric properties of the composite film, the insertion loss of the UHF transducers was measured and determined to range from -50 to -60dB. In addition to the pulse-echo measurement, a 6μm tungsten wire phantom was also imaged with a 205MHz transducer to demonstrate the imaging capability. The measured -6dB axial and lateral resolutions were found to be 12μm and 50μm, respectively. The transducer performance presented in this work is shown to be better or comparable to previously reported results even though the frequency is much higher.

  4. Enhancing the piezoelectric properties of flexible hybrid AlN materials using semi-crystalline parylene

    NASA Astrophysics Data System (ADS)

    Jackson, Nathan; Mathewson, Alan

    2017-04-01

    Flexible piezoelectric materials are desired for numerous applications including biomedical, wearable, and flexible electronics. However, most flexible piezoelectric materials are not compatible with CMOS fabrication technology, which is desired for most MEMS applications. This paper reports on the development of a hybrid flexible piezoelectric material consisting of aluminium nitride (AlN) and a semi-crystalline polymer substrate. Various types of semi-crystalline parylene and polyimide materials were investigated as the polymer substrate. The crystallinity and surfaces of the polymer substrates were modified by micro-roughening and annealing in order to determine the effects on the AlN quality. The AlN crystallinity and piezoelectric properties decreased when the polymer surfaces were treated with O2 plasma. However, increasing the crystallinity of the parylene substrate prior to deposition of AlN caused enhanced c-axis (002) AlN crystallinity and piezoelectric response of the AlN. Piezoelectric properties of 200 °C annealed parylene-N substrate resulted in an AlN d 33 value of 4.87 pm V‑1 compared to 2.17 pm V‑1 for AlN on polyimide and 4.0 pm V‑1 for unannealed AlN/parylene-N. The electrical response measurements to an applied force demonstrated that the parylene/AlN hybrid material had higher V pp (0.918 V) than commercial flexible piezoelectric material (PVDF) (V pp 0.36 V). The results in this paper demonstrate that the piezoelectric properties of a flexible AlN hybrid material can be enhanced by increasing the crystallinity of the polymer substrate, and the enhanced properties can function better than previous flexible piezoelectrics.

  5. Piezoelectric Polymers

    NASA Technical Reports Server (NTRS)

    Harrison, J. S.; Ounaies, Z.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The purpose of this review is to detail the current theoretical understanding of the origin of piezoelectric and ferroelectric phenomena in polymers; to present the state-of-the-art in piezoelectric polymers and emerging material systems that exhibit promising properties; and to discuss key characterization methods, fundamental modeling approaches, and applications of piezoelectric polymers. Piezoelectric polymers have been known to exist for more than forty years, but in recent years they have gained notoriety as a valuable class of smart materials.

  6. Unleashing the Full Sustainable Potential of Thick Films of Lead-Free Potassium Sodium Niobate (K0.5Na0.5NbO3) by Aqueous Electrophoretic Deposition.

    PubMed

    Mahajan, Amit; Pinho, Rui; Dolhen, Morgane; Costa, M Elisabete; Vilarinho, Paula M

    2016-05-31

    A current challenge for the fabrication of functional oxide-based devices is related with the need of environmental and sustainable materials and processes. By considering both lead-free ferroelectrics of potassium sodium niobate (K0.5Na0.5NbO3, KNN) and aqueous-based electrophoretic deposition here we demonstrate that an eco-friendly aqueous solution-based process can be used to produce KNN thick coatings with improved electromechanical performance. KNN thick films on platinum substrates with thickness varying between 10 and 15 μm have a dielectric permittivity of 495, dielectric losses of 0.08 at 1 MHz, and a piezoelectric coefficient d33 of ∼70 pC/N. At TC these films display a relative permittivity of 2166 and loss tangent of 0.11 at 1 MHz. A comparison of the physical properties between these films and their bulk ceramics counterparts demonstrates the impact of the aqueous-based electrophoretic deposition (EPD) technique for the preparation of lead-free ferroelectric thick films. This opens the door to the possible development of high-performance, lead-free piezoelectric thick films by a sustainable low-cost process, expanding the applicability of lead-free piezoelectrics.

  7. Structural, Optical, and Magnetic Properties of Lead-Free Ferroelectric Bi0.5K0.5TiO3 Solid Solution with BiFeO3 Materials

    NASA Astrophysics Data System (ADS)

    Tuan, Nguyen Hoang; Bac, Luong Huu; Cuong, Le Viet; Van Thiet, Duong; Van Tam, Tran; Dung, Dang Duc

    2017-02-01

    A solid solution of Bi0.5K0.5TiO3-BiFeO3 was fabricated by a sol-gel technique. The pure Bi0.5K0.5TO3 samples exhibited weak room-temperature ferromagnetism. The room-temperature ferromagnetism was observed in BiFeO3 solid solution in Bi0.5K0.5TiO3. The optical band gap of Bi0.5K0.5TiO3 was reduced from 3.22 eV to 1.39 eV with the increase in the amount of BiFeO3 solid solution. The room-temperature ferromagnetism and band gap reduction were attributed to the diffusion of BiFeO3 into Bi0.5K0.5TiO3 to form a solid solution. Our work provided a simple method of realizing room-temperature ferromagnetism in lead-free ferroelectric materials.

  8. Mechanical properties of metal-core piezoelectric fiber

    NASA Astrophysics Data System (ADS)

    Sato, Hiroshi; Nagamine, Masaru

    2005-05-01

    In the previous conference, we produced a new metal core-containing piezoelectric ceramics fiber by the hydrothermal method and extrusion method. The insertion of metal core is significant in view of its greater strength than ceramics materials, and electrodes are not required in the fiber's sensor and actuator applications. A new smart board was designed by mounting these piezoelectric fibers onto the surface of a CFRP composite. After that, this board is able to use this board to a sensor, actuator and vibration suppression. In this paper, we measured s mechanical properties of metal core piezoelectric fiber. We examined the tension test of a piezo-electric fiber, and measured the Young's modulus and breaking strength. Moreover, the expansion in the fiber unit was measured, and the displacement of the direction of d31 was measured. In addition, a piezo-electric fiber that used lead free material (BNT-BT-BKT) to correspond to environmental problems in recent years was made.

  9. Crack identification through scan-tuning of vibration characteristics using piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Zhao, Shengjie; Wu, Nan; Wang, Quan

    2017-02-01

    This research develops a frequency-based methodology with a scan vibration tuning process for crack identification in beam-type structures coupled with piezoelectric materials. Piezoelectric sensor and actuator patches are mounted on the surface of the host beam synchronously to generate feedback excitations for a tuning process by applying a feedback voltage output from the piezoelectric sensors. The feedback excitations can adjust the stiffness at local section of the beam covered by piezoelectric patches so as to tune its natural vibration mode shapes to amplify the natural frequency change due to the existence of the crack. Piezoelectric patches located at different positions of the beam are activated one by one to realize the scan-tuning process. The crack is identified since the natural frequency change is magnified by the piezoelectric sensor and actuator located at the crack position. Theoretical and finite element models of the scan-tuned beam structures coupled with piezoelectric materials are established. From simulation results, the crack existence and location can be effectively detected through the scan-tuning process with 25% natural frequency change due to a crack located at the middle of the beam. Further parameter studies are conducted to study the effects of the crack location and size on the detection sensitivity.

  10. Accelerated Aging of Lead-Free Propellant

    NASA Technical Reports Server (NTRS)

    Furrow, Keith W.; Jervey, David D.

    2000-01-01

    Following higher than expected 2-NDPA depletion rates in a lead-free doublebase formulation (RPD-422), an accelerated aging study was conducted to verify the depletion rates. A test plan was prepared to compare the aging characteristics of lead-free propellant and NOSIH-AA2. The study was also designed to determine which lead-free ballistic modifiers accelerated 2-NDPA depletion. The increased depletion rate occurred in propellants containing monobasic copper salicylate. Four lead-free propellants were then formulated to improved aging characteristics over previous lead-free propellant formulations. The new formulations reduced or replaced the monobasic copper salicylate. The new formulations had improved aging characteristics. Their burn rates, however, were unacceptable for use in a 2.75 inch rocket. To compare aging characteristics, stabilizer depletion rates of RPD-422, AA2, M28, and RLC 470/6A were measured or taken from the literature. The data were fit to a kinetic model. The model contained first and zero order terms which allowed the stabilizer concentration to go to zero. In the model, only the concentration of the primary stabilizer was considered. Derivatives beyond the first nitrated or nitroso derivative of 2-NPDA were not considered. The rate constants were fit to the Arrhenius equation and extrapolated to lower temperatures. The time to complete stabilizer depletion was estimated using the kinetic model. The four propellants were compared and the RPD-422 depleted faster at 45 C than both A22 and M28. These types of predictions depend on the validity of the model and on confidence in the Arrhenius relationship holding at lower temperatures. At 45 C, the zero order portion of the model dominates the depletion rate.

  11. Growth and orientation dependence of electrical properties of 0.92Na0.5Bi0.5TiO3-0.08 K0.5Bi0.5TiO3 lead-free piezoelectric single crystal

    NASA Astrophysics Data System (ADS)

    Sun, Renbing; Zhao, Xiangyong; Zhang, Qinhui; Fang, Bijun; Zhang, Haiwu; Li, Xiaobing; Lin, Di; Wang, Sheng; Luo, Haosu

    2011-06-01

    A 0.92Na0.5Bi0.5TiO3-0.08 K0.5Bi0.5TiO3 (0.92NBT-0.08KBT) lead-free piezoelectric single crystal with dimensions of Φ 35 × 10 mm was successfully grown by the top-seeded solution growth method. The effective segregation coefficient for K was calculated to be 0.27. An x-ray powder diffraction measurement showed that the as-grown crystal possesses a rhombohedral perovskite structure at room temperature. The room-temperature dielectric constants for poled <001>, <110>, and <111> oriented crystal samples are found to be 683, 567, and 435 at 1 kHz, respectively. The (Tm, ɛm) values for <001>, <110>, and <111> oriented crystals are (316 °C, 4318), (317 °C, 4160), and (318 °C, 4348) at 1 kHz, which indicate that the dielectric parameters of the as-grown crystals show weaker anisotropy. The curves, ɛ(T), for the three crystallographic orientations show two anomalies at about 170 and 320 °C, respectively, relating to the ferroelectric-antiferroelectric phase and the antiferroelectric-paraelectric phase. There is a thermal hysteresis, ΔT ≈ 35 °C for the ferroelectric-antiferroelectric phase transformation between heating and cooling. The antiferroelectric phase, the thermal hysteresis, and the dielectric relaxor behavior around 170 °C can be attributed to the formation of an intermediate orthorhombic modulated phase at 170-320 °C. For the <001>, <110>, and <111> crystal samples, the room-temperature piezoelectric constants, d33, reach 175, 130, and 70 pC/N, respectively. The remanent polarization for the <001>, <110>, and <111> crystal samples are 8.1, 10.8, and 13.5 μC/cm2, respectively, and the ratio is 1:1.33:1.67, close to 1:√2 :√3 . The diffusive factors, α, are found to be 1.94, 1.91, and 1.50 for the <001>, <110>, and <111> oriented crystal samples, which indicate that the antiferroelectric-paraelectric phase transition of the as-grown 0.92NBT-0.08KBT crystal is a strong diffuse one. The electromechanical coupling coefficients for the <001>, <110

  12. Application review of dielectric electroactive polymers (DEAPs) and piezoelectric materials for vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Yuan, Xuan; Changgeng, Shuai; Yan, Gao; Zhenghong, Zhao

    2016-09-01

    This paper reviews recent advances in vibration energy harvesting with particular emphasis on the solutions by using dielectric electroactive polymers (DEAPs) and piezoelectric materials. These smart materials are in essence capable of converting wasted vibration energy in the environment to usable electrical energy. Much previous researches have been devoted to studying the technology of harvesting mechanical energy using piezoelectric materials. The recent introduction of the DEAPs that exhibits large displacements under electric activation has led to their consideration as promising replacement for conventional piezoelectric materials. The properties of the two materials are described in this paper together with a comparison of their performance in relation with energy harvesting. Finally comparisons are made in the applications of vibration energy harvesting using these two materials. This paper has been written with reference to a large number of published papers listed in the reference section.

  13. Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material.

    PubMed

    Yan, Yongke; Zhou, Jie E; Maurya, Deepam; Wang, Yu U; Priya, Shashank

    2016-10-11

    A rapid surge in the research on piezoelectric sensors is occurring with the arrival of the Internet of Things. Single-phase oxide piezoelectric materials with giant piezoelectric voltage coefficient (g, induced voltage under applied stress) and high Curie temperature (Tc) are crucial towards providing desired performance for sensing, especially under harsh environmental conditions. Here, we report a grain-oriented (with 95% <001> texture) modified PbTiO3 ceramic that has a high Tc (364 °C) and an extremely large g33 (115 × 10(-3) Vm N(-1)) in comparison with other known single-phase oxide materials. Our results reveal that self-polarization due to grain orientation along the spontaneous polarization direction plays an important role in achieving large piezoelectric response in a domain motion-confined material. The phase field simulations confirm that the large piezoelectric voltage coefficient g33 originates from maximized piezoelectric strain coefficient d33 and minimized dielectric permittivity ɛ33 in [001]-textured PbTiO3 ceramics where domain wall motions are absent.

  14. Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material

    PubMed Central

    Yan, Yongke; Zhou, Jie E.; Maurya, Deepam; Wang, Yu U.; Priya, Shashank

    2016-01-01

    A rapid surge in the research on piezoelectric sensors is occurring with the arrival of the Internet of Things. Single-phase oxide piezoelectric materials with giant piezoelectric voltage coefficient (g, induced voltage under applied stress) and high Curie temperature (Tc) are crucial towards providing desired performance for sensing, especially under harsh environmental conditions. Here, we report a grain-oriented (with 95% <001> texture) modified PbTiO3 ceramic that has a high Tc (364 °C) and an extremely large g33 (115 × 10−3 Vm N−1) in comparison with other known single-phase oxide materials. Our results reveal that self-polarization due to grain orientation along the spontaneous polarization direction plays an important role in achieving large piezoelectric response in a domain motion-confined material. The phase field simulations confirm that the large piezoelectric voltage coefficient g33 originates from maximized piezoelectric strain coefficient d33 and minimized dielectric permittivity ɛ33 in [001]-textured PbTiO3 ceramics where domain wall motions are absent. PMID:27725634

  15. Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material

    NASA Astrophysics Data System (ADS)

    Yan, Yongke; Zhou, Jie E.; Maurya, Deepam; Wang, Yu U.; Priya, Shashank

    2016-10-01

    A rapid surge in the research on piezoelectric sensors is occurring with the arrival of the Internet of Things. Single-phase oxide piezoelectric materials with giant piezoelectric voltage coefficient (g, induced voltage under applied stress) and high Curie temperature (Tc) are crucial towards providing desired performance for sensing, especially under harsh environmental conditions. Here, we report a grain-oriented (with 95% <001> texture) modified PbTiO3 ceramic that has a high Tc (364 °C) and an extremely large g33 (115 × 10-3 Vm N-1) in comparison with other known single-phase oxide materials. Our results reveal that self-polarization due to grain orientation along the spontaneous polarization direction plays an important role in achieving large piezoelectric response in a domain motion-confined material. The phase field simulations confirm that the large piezoelectric voltage coefficient g33 originates from maximized piezoelectric strain coefficient d33 and minimized dielectric permittivity ε33 in [001]-textured PbTiO3 ceramics where domain wall motions are absent.

  16. Compliant Electrode and Composite Material for Piezoelectric Wind and Mechanical Energy Conversions

    NASA Technical Reports Server (NTRS)

    Chen, Bin (Inventor)

    2015-01-01

    A thin film device for harvesting energy from wind. The thin film device includes one or more layers of a compliant piezoelectric material formed from a composite of a polymer and an inorganic material, such as a ceramic. Electrodes are disposed on a first side and a second side of the piezoelectric material. The electrodes are formed from a compliant material, such as carbon nanotubes or graphene. The thin film device exhibits improved resistance to structural fatigue upon application of large strains and repeated cyclic loadings.

  17. Enhanced torsional actuation and stress coupling in Mn-modified 0.93(Na0.5Bi0.5TiO3)-0.07BaTiO3 lead-free piezoceramic system

    PubMed Central

    Berik, Pelin; Maurya, Deepam; Kumar, Prashant; Kang, Min Gyu; Priya, Shashank

    2017-01-01

    Abstract This paper is concerned with the development of a piezoelectric d 15 shear-induced torsion actuator made of a lead-free piezoceramic material exhibiting giant piezoelectric shear stress coefficient (e 15) and piezoelectric transverse shear actuation force comparable to that of lead-based shear-mode piezoceramics. The Mn-modified 0.93(Na0.5Bi0.5TiO3)-0.07BaTiO3 (NBT-BT-Mn) composition exhibited excellent properties as a torsional transducer with piezoelectric shear stress coefficient on the order of 11.6 C m–2. The torsional transducer, consisting of two oppositely polarized NBT-BT-Mn d 15 mode piezoceramic shear patches, provided a rate of twist of 0.08 mm m–1 V–1 under quasi-static 150 V drive. The high value of piezoelectric shear d 15 coefficient in NBT-BT-Mn sample further demonstrated its potential in practical applications. These results confirm that the lead-free piezoceramics can be as effective as their lead-based counterparts. PMID:28179958

  18. Enhanced torsional actuation and stress coupling in Mn-modified 0.93(Na0.5Bi0.5TiO3)-0.07BaTiO3 lead-free piezoceramic system

    DOE PAGES

    Berik, Pelin; Maurya, Deepam; Kumar, Prashant; ...

    2017-01-09

    This paper is concerned with the development of a piezoelectric d15 shear-induced torsion actuator made of a lead-free piezoceramic material exhibiting giant piezoelectric shear stress coefficient (e15) and piezoelectric transverse shear actuation force comparable to that of leadbased shear-mode piezoceramics. The Mn-modified 0.93(Na0.5Bi0.5TiO3)-0.07BaTiO3 (NBT-BTMn) composition exhibited excellent properties as a torsional transducer with piezoelectric shear stress coefficient on the order of 11.6 C m–2. The torsional transducer, consisting of two oppositely polarized NBT-BT-Mn d15 mode piezoceramic shear patches, provided a rate of twist of 0.08 mm m–1 V–1 under quasi-static 150 V drive. The high value of piezoelectric shear d15more » coefficient in NBT-BT-Mn sample further demonstrated its potential in practical applications. Lastly, these results confirm that the lead-free piezoceramics can be as effective as their lead-based counterparts.« less

  19. The Effect of Temperature Dependent Material Nonlinearities on the Response of Piezoelectric Composite Plates

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun; Saravanos, Dimitris A.

    1997-01-01

    Previously developed analytical formulations for piezoelectric composite plates are extended to account for the nonlinear effects of temperature on material properties. The temperature dependence of the composite and piezoelectric properties are represented at the material level through the thermopiezoelectric constitutive equations. In addition to capturing thermal effects from temperature dependent material properties, this formulation also accounts for thermal effects arising from: (1) coefficient of thermal expansion mismatch between the various composite and piezoelectric plies and (2) pyroelectric effects on the piezoelectric material. The constitutive equations are incorporated into a layerwise laminate theory to provide a unified representation of the coupled mechanical, electrical, and thermal behavior of smart structures. Corresponding finite element equations are derived and implemented for a bilinear plate element with the inherent capability to model both the active and sensory response of piezoelectric composite laminates. Numerical studies are conducted on a simply supported composite plate with attached piezoceramic patches under thermal gradients to investigate the nonlinear effects of material property temperature dependence on the displacements, sensory voltages, active voltages required to minimize thermal deflections, and the resultant stress states.

  20. Lamb wave Propagation in Functionally Graded Piezoelectric Material Created by Internal Temperature Gradient

    NASA Astrophysics Data System (ADS)

    Dammak, Y.; Thomas, J. H.; Ghozlen, M. H. Ben

    This work presents a theoretical study of the propagation behavior of lamb wave in a functionally graded piezoelectric material (FGPM). The piezoelectric material is polarized when the six fold symmetry axis is put along the propagation direction x1 and the material properties change gradually perpendicularly to the plate. The FGPM behavior is created by forming a temperature variation across the plate. The ordinary differential equation (ODE) and the Stiffness Matrix Method (SMM) are used to investigate the propagation of the lowest-order symmetric (S0) and antisymmetric (A0) Lamb wave modes.

  1. Lead-Free Experiment in a Space Environment

    NASA Technical Reports Server (NTRS)

    Blanche, J. F.; Strickland, S. M.

    2012-01-01

    This Technical Memorandum addresses the Lead-Free Technology Experiment in Space Environment that flew as part of the seventh Materials International Space Station Experiment outside the International Space Station for approximately 18 months. Its intent was to provide data on the performance of lead-free electronics in an actual space environment. Its postflight condition is compared to the preflight condition as well as to the condition of an identical package operating in parallel in the laboratory. Some tin whisker growth was seen on a flight board but the whiskers were few and short. There were no solder joint failures, no tin pest formation, and no significant intermetallic compound formation or growth on either the flight or ground units.

  2. Reduction of the piezoelectric performance in lead-free (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 piezoceramics under uniaxial compressive stress

    NASA Astrophysics Data System (ADS)

    Ehmke, Matthias C.; Daniels, John; Glaum, Julia; Hoffman, Mark; Blendell, John E.; Bowman, Keith J.

    2012-12-01

    The effect of a uniaxial compressive stress on the properties of BZT-BCT samples across the morphotropic phase boundary (MPB) is investigated using direct piezoelectric coefficient measurements. In contrast to many lead zirconate titanate compositions, the piezoelectric coefficient decreases monotonically with increasing stress and does not show an initial increase or plateau. Electrically softer rhombohedral and MPB compositions are found to be more susceptible to a decrease in piezoelectric coefficient under an increasing pre-stress than tetragonal compositions. Depoling due to ferroelastic domain switching alone, as observed by x-ray diffraction, does not explain this reduction, but instead a decreasing domain wall density is proposed to be responsible for reduced piezoelectric coefficients under increasing compressive stress. The relaxation of the piezoelectric response after complete unloading supports this proposed mechanism.

  3. Using piezo-electric material to simulate a vibration environment

    DOEpatents

    Jepsen, Richard A.; Davie, Neil T.; Vangoethem, Douglas J.; Romero, Edward F.

    2010-12-14

    A target object can be vibrated using actuation that exploits the piezo-electric ("PE") property. Under combined conditions of vibration and centrifugal acceleration, a centrifugal load of the target object on PE vibration actuators can be reduced by using a counterweight that offsets the centrifugal loading. Target objects are also subjected to combinations of: spin, vibration, and acceleration; spin and vibration; and spin and acceleration.

  4. Piezoelectric and Electrostrictive Materials for Transducers Applications. Volume 1

    DTIC Science & Technology

    1992-01-31

    cooling through Tc has been used to Initiate the cracking in Niobium modified lead titanate. The method was also used to confirm the healing of microcracks...strong grain orientation. Studies are now being extended to explore possible poling methods to achieve piezoelectric response. 13 Two studies relevant to...the production of ultra fine Lead titanate powders by hydrothermal methods have been accomplished. In Appendix 33 the effects of pH and of H2 0 2

  5. Cylinder-shaped ultrasonic motors 4.8 mm in diameter using electroactive piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Luo, Laihui; Zhu, Hua; Zhao, Chunsheng; Wang, Haixia; Luo, Haosu

    2007-01-01

    Two cylinder-shaped ultrasonic motors 4.8mm in diameter were developed. This kind of motor was driven by four pieces of piezoelectric materials, which were used to excite the two first-bending vibrations. Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMNT) crystal and Pb(Zr ,Ti)O3 (PZT) ceramic piezoelectric materials were used as drive elements. The motor based on PMNT crystals could operate at a voltage of 25Vp-p (peak to peak). When driven by a 100Vp-p voltage, the motor could run at frequency ranging from 26to68kHz and the revolution speed reached 450rpm. Its maximum output torque was 0.6mNm. The motor based on the PZT ceramic did not exhibit high performance as the PMNT crystal motor. The piezoelectric materials affect the performance of the motors greatly.

  6. Piezoelectrically-induced trap-depth reduction model of elastico-mechanoluminescent materials

    NASA Astrophysics Data System (ADS)

    Chandra, B. P.; Chandra, V. K.; Jha, Piyush

    2015-03-01

    Considering the detrapping of charge carriers due to reduction in trap-depth caused by piezoelectric field produced by applied pressure, an expression is derived for the detrapping rate of electrons. Then, an expression is obtained for the rate of generation of excited ions produced during capture of detrapped electrons by Eu3+ ions in persistent luminescent materials or by the energy released during electron-hole recombination in ZnS:Mn crystals. Finally, an expression is explored for the elastico-mechanoluminescence (EML) intensity, which is able to explain satisfactorily the characteristics of EML for the application of static pressure as well as for impact pressure. The total number of detrapped electrons and the total EML intensity are found to increase linearly with the electrostatic energy of the crystals in piezoelectric field. It is shown that the EML intensity should increase with the EML efficiency, number of crystallites (volume of sample), concentration of local piezoelectric regions in crystallites, piezoelectric constant of local piezoelectric regions, average length of the local piezoelectric regions, total number of electron traps, pressing rate, and applied pressure, and it should be higher for the materials having low value of threshold pressure and low value of trap-depth in unstressed condition. On the basis of the piezoelectrically-induced trap-depth reduction model of EML reported in the present investigation novel intense elastico mechanoluminescent materials having repetitive EML with undiminished intensity for successive loadings can be tailored which may find applications in sensing, imaging, lighting, colored displays, and other mechano-optical devices.

  7. Preparation and characterization of Sr0.5Ba0.5Nb2O6 glass-ceramic on piezoelectric properties

    NASA Astrophysics Data System (ADS)

    Shan, Jiang; Xuan-Ming, Wang; Jia-Yu, Li; Yong, Zhang; Tao, Zheng; Jing-Wen, Lv

    2016-03-01

    We studied the influence of heat treatment time on the optical, thermal, electrical, and mechanical properties of strontium barium niobate (Sr1-xBaxNb2O6 hereafter SBN) piezoelectric glass-ceramics with tungsten bronze-type structure, which have good piezoelectric properties and are important lead-free piezoelectric materials. We found that the best heat treatment time is 4 h. The properties of the prepared materials are better than that of SBN ceramics and the glass-ceramic growth is faster than the SBN crystal when the heat treatment time of the SBN piezoelectric glass-ceramic is controlled, reducing the preparation costs greatly.

  8. Electric fatigue process in lead-free alkali niobate ceramics at various pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Martin, Alexander; Kakimoto, Ken-ichi

    2015-10-01

    Electric fatigue tests are important for evaluating the reliability of piezoceramics. However, these tests have not been the focus of studies of lead-free alkali niobate (NKN) ceramics so far. For this purpose, two different materials, Li0.06Na0.47K0.47NbO3 (LNKN6) and Na0.55K0.45NbO3 + 0.25% MnO (Mn-NKN), have been examined at various uniaxial pressures ranging from 0.1 to 100 MPa and various temperatures ranging from room temperature to 150 °C. It was shown that the harder ferroelectric Mn-NKN could maintain its piezoelectric properties at pressures up to 25 MPa. When bipolar fatigue occurred under pressures over the coercive stress of ∼30 MPa, the sample depolarized and formed microcracks. In contrast, the softer LNKN6 did not show fatigue at higher pressures between 25 and 50 MPa. However, in both materials, higher temperatures enhanced domain wall and charge carrier movements and conclusively domain wall pinning.

  9. 3D optical printing of piezoelectric nanoparticle-polymer composite materials.

    PubMed

    Kim, Kanguk; Zhu, Wei; Qu, Xin; Aaronson, Chase; McCall, William R; Chen, Shaochen; Sirbuly, Donald J

    2014-10-28

    Here we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be optically printed into three-dimensional (3D) microstructures using digital projection printing. Piezoelectric polymers were fabricated by incorporating barium titanate (BaTiO3, BTO) nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate and exposing to digital optical masks that could be dynamically altered to generate user-defined 3D microstructures. To enhance the mechanical-to-electrical conversion efficiency of the composites, the BTO nanoparticles were chemically modified with acrylate surface groups, which formed direct covalent linkages with the polymer matrix under light exposure. The composites with a 10% mass loading of the chemically modified BTO nanoparticles showed piezoelectric coefficients (d(33)) of ∼ 40 pC/N, which were over 10 times larger than composites synthesized with unmodified BTO nanoparticles and over 2 times larger than composites containing unmodified BTO nanoparticles and carbon nanotubes to boost mechanical stress transfer efficiencies. These results not only provide a tool for fabricating 3D piezoelectric polymers but lay the groundwork for creating highly efficient piezoelectric polymer materials via nanointerfacial tuning.

  10. Hybrid fundamental-solution-based FEM for piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Cao, Changyong; Qin, Qing-Hua; Yu, Aibing

    2012-10-01

    In this paper, a new type of hybrid finite element method (FEM), hybrid fundamental-solution-based FEM (HFS-FEM), is developed for analyzing plane piezoelectric problems by employing fundamental solutions (Green's functions) as internal interpolation functions. A modified variational functional used in the proposed model is first constructed, and then the assumed intra-element displacement fields satisfying a priori the governing equations of the problem are constructed by using a linear combination of fundamental solutions at a number of source points located outside the element domain. To ensure continuity of fields over inter-element boundaries, conventional shape functions are employed to construct the independent element frame displacement fields defined over the element boundary. The proposed methodology is assessed by several examples with different boundary conditions and is also used to investigate the phenomenon of stress concentration in infinite piezoelectric medium containing a hole under remote loading. The numerical results show that the proposed algorithm has good performance in numerical accuracy and mesh distortion insensitivity compared with analytical solutions and those from ABAQUS. In addition, some new insights on the stress concentration have been clarified and presented in the paper.

  11. Criterion for material selection in design of bulk piezoelectric energy harvesters.

    PubMed

    Priya, Shashank

    2010-12-01

    Vibration energy harvesting has gained tremendous attention in the past decade and continues to grow rapidly. There are various transduction mechanisms for converting the vibration energy into electrical energy, out of which the piezoelectric mechanism has been shown to provide advantages at the micro-to-meso scale. In the past few years, several studies have tried to address the question of which piezoelectric composition is better for energy harvesting; however, discussion on this subject continues. The intent of this letter is to provide an answer for this question through a simple criterion which can be used in routine material evaluation.

  12. Active Vibration Reduction of Titanium Alloy Fan Blades (FAN1) Using Piezoelectric Materials

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Kauffman, Jeffrey; Duffy, Kirsten; Provenza, Andrew; Morrison, Carlos

    2010-01-01

    The NASA Glenn Research Center is developing smart adaptive structures to improve fan blade damping at resonances using piezoelectric (PE) transducers. In this paper, a digital resonant control technique emulating passive shunt circuits is used to demonstrate vibration reduction of FAN1 Ti real fan blade at the several target modes. Single-mode control and multi-mode control using one piezoelectric material are demonstrated. Also a conceptual study of how to implement this digital control system into the rotating fan blade is discussed.

  13. Underfill process development for lead free flip chip assembly

    NASA Astrophysics Data System (ADS)

    Chaware, Raghunandan

    Underfills are used to enhance the long-term reliability of the flip-chip solder joints. More specifically, the function of the underfill is to couple the chip to the substrate, wherein the shear stresses experienced by the solder joints are converted to bending stresses. The underfill flows under the die due to the influence of strong capillary forces. The flow of the underfill under the chip depends on various factors such as the viscosity of the underfill, contact angle, surface tension, temperature, underfill gap, substrate design, bump pattern, bump density, and size of the chip. The flow of underfill is also influenced by the cleanliness of the substrate, the cleanliness of the underside of the chip, and the flux residues. The interaction between the underfill and the substrate affects not only gap filling, but also the filleting of the underfill. Similarly, the underfill-flux interaction directly affects the quality of underfilling and the reliability of the flip chip assembly. In the case of lead free flip chip assembly, the major concerns vis-a-vis process development for a large chip with a small bump pitch (less than 190 mum) include lower throughput, voiding under the chip, and critical reliability performance. The principal objective of this research endeavor was to investigate the fundamental issues that relate to the process and reliability aspects of underfilling of lead free flip chip assemblies. In order to develop a robust underfilling process, the effect of different process parameters and their interaction with the material properties were studied. In order to improve the compatibility between the underfill and the flux, a new epoxy flux that was compatible with the lead free assembly process was developed. The performance of the epoxy was also compared with the performance of various rosin based fluxes. This study also helped in identifying the critical parameters that can affect the assembly yields. This research endeavor successfully

  14. Origin of discrepancy between electrical and mechanical anomalies in lead-free (K ,Na ) NbO3 -based ceramics

    NASA Astrophysics Data System (ADS)

    Mazuera, A. M.; Silva, P. S.; Rodrigues, A. D.; Pizani, P. S.; Romaguera-Barcelay, Y.; Venet, M.; Algueró, M.

    2016-11-01

    Ferroelectric polymorphic phase coexistence, associated with either the presence of a morphotropic phase boundary or a temperature-driven polymorphic phase transition, is currently acknowledged as the key to high piezoelectric activity and is searched when new perovskite materials are developed, like lead-free alternatives to state-of-the-art Pb (Zr ,Ti ) O3 . This requires characterization tools that allow phase coexistence and transitions to be readily identified, among which measurements of the temperature dependences of Young's modulus and mechanical losses by dynamical mechanical analysis stand out as a powerful technique to complement standard electrical characterizations. We report here the application of this technique to (K1 -xNax )NbO3-based materials, which are under extensive investigation as environmentally friendly high sensitivity piezoelectrics. The elastic anomalies associated with the different phase transitions are identified and are shown to be distinctively shifted in relation to the dielectric ones. The origin of this discrepancy is discussed with the help of temperature-dependent Raman spectroscopy and is proposed to be a characteristic of diffuse phase transitions.

  15. Feasibility study of thermal energy harvesting using lead free pyroelectrics

    NASA Astrophysics Data System (ADS)

    Karim, Hasanul; Sarker, Md Rashedul H.; Shahriar, Shaimum; Arif Ishtiaque Shuvo, Mohammad; Delfin, Diego; Hodges, Deidra; (Bill Tseng, Tzu-Liang; Roberson, David; Love, Norman; Lin, Yirong

    2016-05-01

    Energy harvesting has significant potential for applications in energizing wireless sensors and charging energy storage devices. To date, one of the most widely investigated materials for mechanical and thermal energy harvesting is lead zirconate titanate (PZT). However, lead has detrimental effects on the environment and on health. Hence, alternative materials are required for this purpose. In this paper, a lead free material, lithium niobate (LNB) is investigated as a potential material for pyroelectric energy harvesting. Although its theoretical pyroelectric properties are lower compared to PZT, it has better properties than other lead free alternatives such as ZnO. In addition, LNB has a high Curie temperature of about 1142 °C, which makes it applicable for high temperature energy harvesting, where other pyroelectric ceramics are not suitable. Herein, an energy harvesting and storage system composed of a single crystal LNB and a porous carbon-based super-capacitor was investigated. It is found that with controlled heating and cooling, a single wafer of LNB (75 mm diameter and 0.5 mm thickness) could generate 437.72 nW cm-3 of power and it could be used to charge a super-capacitor with a charging rate of 2.63 mV (h cm3)-1.

  16. Piezoelectric and electrostrictive materials for transducers applications, volume 1

    NASA Astrophysics Data System (ADS)

    Cross, L. E.; Newnham, R. E.; Bhalla, A. S.; Dougherty, J. P.; Adair, J. H.; Varadan, V. K.; Varadan, V. V.

    1992-01-01

    Highlights of the past year's activities include: An increased emphasis upon the flextensional (moonie) type actuators, modeling both the internal stress distribution as a function of geometry, and the very interesting resonant mode structure of the composites; a more refined focus upon the performance of piezoelectric ceramic transducers, particularly under high drive levels is developing with concern for the extrinsic domain and phase boundary contributions to response. Measurement and modelling are being used to explore the nonlinearity and the frequency response and to examine the phase partitioning at the rhombohedral:tetragonal morphotropic phase boundary in the PZT system. Phenomena limiting lifetime in polarization and phase switching actuators are being explored to separate surface and volume effects and those due to grain size and flaw population differences. New work has been initiated to examine Acoustic Emission as a technique, in combination with Barkhausen current pulse analysis, to separate and evaluate domain switching and microcracking in polarization switching systems.

  17. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2010-01-01

    This slide presentation reviews the current state of the lead-free electronics project. It characterizes the test articles, which were built with lead-free solder and lead-free component finishes. The tests performed and reported on are: thermal cycling, combine environments testing, mechanical shock testing, vibration testing and drop testing.

  18. Method for generation of THz frequency radiation and sensing of large amplitude material strain waves in piezoelectric materials

    DOEpatents

    Reed, Evan J.; Armstrong, Michael R.

    2010-09-07

    Strain waves of THz frequencies can coherently generate radiation when they propagate past an interface between materials with different piezoelectric coefficients. Such radiation is of detectable amplitude and contains sufficient information to determine the time-dependence of the strain wave with unprecedented subpicosecond, nearly atomic time and space resolution.

  19. Piezoelectric cellular micro-structured PDMS material for micro-sensors and energy harvesting

    NASA Astrophysics Data System (ADS)

    Kachroudi, A.; Basrour, S.; Rufer, L.; Jomni, F.

    2015-12-01

    This paper reports a novel low-cost fabrication process of a charged cellular microstructured polydimethylsiloxane (PDMS) material referred as piezo-electret or ferro-electret for micro-sensors applications. The dielectric spectra reached on these structures exhibit a high piezoelectric longitudinal coefficient d33 of 350pC/N. A mechanical characterization method proves the reliability of this material for low-frequencies applications around 100Hz.

  20. Development of a tactile sensing system using piezoelectric robot skin materials

    NASA Astrophysics Data System (ADS)

    Hwang, S. K.; Hwang, H. Y.

    2013-05-01

    Since service robots perform their functions in close proximity to humans, they are much more likely than other types of robot to come into contact with humans. This means that safety regarding robot-human interaction is of particular concern and requires investigation. Existing tactile sensing methods are very effective at detecting external dangerous loadings; however, until now, they have been very expensive. Recently, a new type of self-sensing tactile technology for service robots has been introduced, which harnesses the piezoelectric effect of several robot skin materials. In these kinds of system, relatively cheap materials are used as sensors themselves. In this research, a robot system with a self-sensing tactile technology was developed using piezoelectric robot skin materials. The test results indicate that this type of system is appropriate for application to service robots.

  1. A FEM-based method to determine the complex material properties of piezoelectric disks.

    PubMed

    Pérez, N; Carbonari, R C; Andrade, M A B; Buiochi, F; Adamowski, J C

    2014-08-01

    Numerical simulations allow modeling piezoelectric devices and ultrasonic transducers. However, the accuracy in the results is limited by the precise knowledge of the elastic, dielectric and piezoelectric properties of the piezoelectric material. To introduce the energy losses, these properties can be represented by complex numbers, where the real part of the model essentially determines the resonance frequencies and the imaginary part determines the amplitude of each resonant mode. In this work, a method based on the Finite Element Method (FEM) is modified to obtain the imaginary material properties of piezoelectric disks. The material properties are determined from the electrical impedance curve of the disk, which is measured by an impedance analyzer. The method consists in obtaining the material properties that minimize the error between experimental and numerical impedance curves over a wide range of frequencies. The proposed methodology starts with a sensitivity analysis of each parameter, determining the influence of each parameter over a set of resonant modes. Sensitivity results are used to implement a preliminary algorithm approaching the solution in order to avoid the search to be trapped into a local minimum. The method is applied to determine the material properties of a Pz27 disk sample from Ferroperm. The obtained properties are used to calculate the electrical impedance curve of the disk with a Finite Element algorithm, which is compared with the experimental electrical impedance curve. Additionally, the results were validated by comparing the numerical displacement profile with the displacements measured by a laser Doppler vibrometer. The comparison between the numerical and experimental results shows excellent agreement for both electrical impedance curve and for the displacement profile over the disk surface. The agreement between numerical and experimental displacement profiles shows that, although only the electrical impedance curve is

  2. Buckling analysis of cracked functionally graded material column with piezoelectric patches

    NASA Astrophysics Data System (ADS)

    Maleki, Vahid A.; Mohammadi, Nader

    2017-03-01

    In the current study, stability analysis of cracked functionally graded material (FGM) columns under the effect of piezoelectric patches is analytically investigated. Configuration of the patches is somehow chosen to create axial load in the column. The crack is modeled by a rotational massless spring which connects the two intact parts of the column at the crack location. After applying the boundary and compatibility conditions at the crack location and the ends of the piezoelectric patches, the governing equation of buckling behavior of the cracked FGM column is derived. The effect of important parameters on the first and second buckling load of the column such as crack parameters (location and depth), location and length of the patches and also applied voltage is studied and discussed. Results show that a crack significantly reduces the column load capacity which is dependent on location and depth of the crack. By applying static load to the column, piezoelectric patches produce local torque, and controlling this torque leads to reduced crack effects on the column. Using piezoelectric patches with proper location and length compensates the effect of the crack. Despite the first buckling load, positive voltage increases the second buckling load of the column.

  3. Performance of tonpilz transducers with segmented piezoelectric stacks using materials with high electromechanical coupling coefficient.

    PubMed

    Thompson, Stephen C; Meyer, Richard J; Markley, Douglas C

    2014-01-01

    Tonpilz acoustic transducers for use underwater often include a stack of piezoelectric material pieces polarized along the length of the stack and having alternating polarity. The pieces are interspersed with electrodes, bonded together, and electrically connected in parallel. The stack is normally much shorter than a quarter wavelength at the fundamental resonance frequency so that the mechanical behavior of the transducer is not affected by the segmentation. When the transducer bandwidth is less than a half octave, as has conventionally been the case, for example, with lead zirconate titanate (PZT) material, stack segmentation has no significant effect on the mechanical behavior of the device in its normal operating band near the fundamental resonance. However, when a high coupling coefficient material such as lead magnesium niobate-lead titanate (PMN-PT) is used to achieve a wider bandwidth with the tonpilz, the performance difference between a segmented stack and a similar piezoelectric section with electrodes only at the two ends can be significant. This paper investigates the effects of stack segmentation on the performance of wideband underwater tonpilz acoustic transducers. Included is a discussion of a particular tonpilz transducer design using single crystal piezoelectric material with high coupling coefficient compared with a similar design using more traditional PZT ceramics.

  4. Lead-free bearing alloys for engine applications

    NASA Astrophysics Data System (ADS)

    Ratke, Lorenz; Ågren, John; Ludwig, Andreas; Tonn, Babette; Gránásy, László; Mathiesen, Ragnvald; Arnberg, Lars; Anger, Gerd; Reifenhäuser, Bernd; Lauer, Michael; Garen, Rune; Gust, Edgar

    2005-10-01

    Recent developments to reduce the fuel consumption, emission and air pollution, size and weight of engines for automotive, truck, ship propulsion and electrical power generation lead to temperature and load conditions within the engines that cannot be borne by conventional bearings. Presently, only costly multilayer bearings with electroplated or sputtered surface coatings can cope with the load/speed combinations required. Ecological considerations in recent years led to a ban by the European Commission on the use of lead in cars a problem for the standard bronze-lead bearing material. This MAP project is therefore developing an aluminium-based lead-free bearing material with sufficient hardness, wear and friction properties and good corrosion resistance. Only alloys made of components immiscible in the molten state can meet the demanding requirements. Space experimentation plays a crucial role in optimising the cast microstructure for such applications.

  5. Piezoelectric thin films: an integrated review of transducers and energy harvesting

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Abas, Zafar; Kim, Heung Soo; Oh, Il-Kwon

    2016-05-01

    Piezoelectric thin films offer a number of advantages in various applications, such as high energy density harvesters, a wide dynamic range, and high sensitivity sensors, as well as large displacement and low power consumption actuators. This review covers the available material forms and applications of piezoelectric thin films: lead zirconate titanate (PZT)-based thin films, lead-free piezoelectric thin films, piezopolymer films, cellulose-based electroactive paper (EAPap), and many other thin films used for electromechanical transduction. The electromechanical properties and performances of piezoelectric films are compared and their suitability for particular applications are reported. The key ideas of piezoelectric thin films are reviewed and discussed for sensory and actuation systems, energy harvesting, and medical and acoustic transducers. In the last section, an insight into the future outlook and possibilities for thin film-based devices and their integration into real-world applications is presented.

  6. Design and analysis of a piezoelectric material based touch screen with additional pressure and its acceleration measurement functions

    NASA Astrophysics Data System (ADS)

    Chu, Xiang-Cheng; Liu, Jia-Yi; Gao, Ren-Long; Chang, Jie; Li, Long-Tu

    2013-12-01

    Touch screens are becoming more and more prevalent in everyday environments due to their convenience and humanized operation. In this paper, a piezoelectric material based touch screen is developed and investigated. Piezoelectric ceramics arrayed under the touch panel at the edges or corners are used as tactile sensors to measure the touch positioning point similarly to conventional touch screens. However, additional touch pressure and its acceleration performance can also be obtained to obtain a higher-level human-machine interface. The piezoelectric ceramics can also be added to a traditional touch screen structure, or they can be used independently to construct a novel touch screen with a high light transmittance approach to a transparent glass. The piezoelectric ceramics were processed from PZT piezoelectric ceramic powder into a round or rectangular shape. According to the varied touch position and physical press strength of a finger, or even a gloved hand or fingernail, the piezoelectric tactile sensors will have different output voltage responses. By calculating the ratio of different piezoelectric tactile sensors’ responses and summing up all piezoelectric tactile sensors’ output voltages, the touch point position, touch pressure and touch force acceleration can be detected. A prototype of such a touch screen is manufactured and its position accuracy, touch pressure and response speed are measured in detail. The experimental results show that the prototype has many advantages such as high light transmittance, low energy cost and high durability.

  7. Magnetoelectric effect in lead free piezoelectric Bi1/2Na1/2TiO3-modified CFO based magnetostrictive (Co0.6Zn0.4Fe1.7 Mn0.3O4) particulate nanocomposite prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Thakur, Megha; Sharma, Puneet; Kumari, Mukesh; Singh, Anoop Pratap; Tyagi, Mintu

    2017-03-01

    Lead free magnetoelectric composites that comprise Co0.6Zn0.4Fe1.7Mn0.3O4 (CZFMO) and Bi1/2Na1/2TiO3 (BNT) were synthesized using sol-gel method and it's structural, dielectric, magnetic, ferroelectric and magnetoelectric (ME) properties were studied. The X-ray diffraction displayed the single phase formation of parent phases and the presence of two phases in the composites. The temperature dependent dielectric spectra of samples indicates two anomalies at 220 °C and 320 °C were ascribed to ferroelectric to antiferroelectric, and anti-ferroelectric to paraelectric phase transitions respectively. Room temperature (RT) magnetic measurements show that composites are soft magnetic. The composite with x=0.2, showed the large value of ME voltage coefficient (αE) 58 mV/cmOe. Moreover, these ME composites provide a great opportunity as potential lead free systems for multifunctional devices.

  8. Evaluation on mass sensitivity of SAW sensors for different piezoelectric materials using finite-element analysis.

    PubMed

    Abdollahi, Amir; Jiang, Zhongwei; Arabshahi, Sayyed Alireza

    2007-12-01

    The mass sensitivity of the piezoelectric surface acoustic wave (SAW) sensors is an important factor in the selection of the best gravimetric sensors for different applications. To determine this value without facing the practical problems and the long theoretical calculation time, we have shown that the mass sensitivity of SAW sensors can be calculated by a simple three-dimensional (3-D) finite-element analysis (FEA) using a commercial finite-element platform. The FEA data are used to calculate the wave propagation speed, surface particle displacements, and wave energy distribution on different cuts of various piezoelectric materials. The results are used to provide a simple method for evaluation of their mass sensitivities. Meanwhile, to calculate more accurate results from FEA data, surface and bulk wave reflection problems are considered in the analyses. In this research, different cuts of lithium niobate, quartz, lithium tantalate, and langasite piezoelectric materials are applied to investigate their acoustic wave properties. Our analyses results for these materials have a good agreement with other researchers' results. Also, the mass sensitivity value for the novel cut of langasite was calculated through these analyses. It was found that its mass sensitivity is higher than that of the conventional Rayleigh mode quartz sensor.

  9. Piezoelectricity in two-dimensional materials: Comparative study between lattice dynamics and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Michel, K. H.; ćakır, D.; Sevik, C.; Peeters, F. M.

    2017-03-01

    The elastic constant C11 and piezoelectric stress constant e1 ,11 of two-dimensional (2D) dielectric materials comprising h-BN, 2 H -MoS2 , and other transition-metal dichalcogenides and dioxides are calculated using lattice dynamical theory. The results are compared with corresponding quantities obtained with ab initio calculations. We identify the difference between clamped-ion and relaxed-ion contributions with the dependence on inner strains which are due to the relative displacements of the ions in the unit cell. Lattice dynamics allows us to express the inner-strain contributions in terms of microscopic quantities such as effective ionic charges and optoacoustical couplings, which allows us to clarify differences in the piezoelectric behavior between h-BN and MoS2. Trends in the different microscopic quantities as functions of atomic composition are discussed.

  10. Evaluation of electromechanical coupling parameters of piezoelectric materials by using piezoelectric cantilever with coplanar electrode structure in quasi-stasis.

    PubMed

    Zheng, Xuejun; Zhu, Yuankun; Liu, Xun; Liu, Jing; Zhang, Yong; Chen, Jianguo

    2014-02-01

    Based on Timoshenko beam theory, a principle model is proposed to establish the relationship between electric charge and excitation acceleration, and in quasi-stasis we apply the direct piezoelectric effect of multilayer cantilever with coplanar electrode structure to evaluate the piezoelectric strain coefficient d15 and electromechanical coupling coefficient k15. They are measured as 678 pC/N and 0.74 for the commercial piezoelectric ceramic lead zirconate titanate (PZT-51) bulk specimen and 656 pC/N and 0.63 for the lead magnesium niobate (PMN) bulk specimen, and they are in agreement with the calibration and simulation values. The maximum of relative errors is less than 4.2%, so the proposed method is reliable and convenient.

  11. Fabrication by Annealing at Approximately 1030°C and Electrical Characterization of Lead-Free (1 - x)Bi0.5K0.5TiO3-xBa(Fe0.5Nb0.5)0.05Ti0.95O3 Piezoelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Truong-Tho, N.; Nghi-Nhan, N. T.

    2017-03-01

    Sintered (1 - x)Bi0.5K0.5TiO3-xBa(Fe0.5Nb0.5)0.05Ti0.95O3 [(1 - x)BKT-xBFNT] piezoelectric ceramics have been fabricated by conventional annealing at 1000°C to 1050°C. X-ray diffraction (XRD) analysis revealed that the 0.9BKT-0.1BFNT ceramic sintered at 1030°C showed high transition temperature of T C = 514°C due to presence of Bi4Ti3O12 in solid solution. Although the P-E ferroelectric loop was not yet saturated, the remanent polarization and coercive electric field of the 0.9BKT-0.1BFNT showed good values of P r = 18.5 μC/cm2 and E c = 4.3 kV/cm, respectively. The piezoelectric parameters of the ceramic included planar-mode electromechanical coupling factor of k p = 0.17 and mechanical quality factor of Q m = 145, larger than the values of 0.17 and 57, respectively, obtained for BKT ceramic.

  12. Phase transitions and the piezoelectricity around morphotropic phase boundary in Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}-x(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} lead-free solid solution

    SciTech Connect

    Zhang, Le; Zhang, Ming; Wang, Liang; Zhou, Chao; Zhang, Zhen; Yao, Yonggang; Zhang, Lixue; Xue, Dezhen E-mail: xlou03@mail.xjtu.edu.cn Lou, Xiaojie E-mail: xlou03@mail.xjtu.edu.cn; Ren, Xiaobing E-mail: xlou03@mail.xjtu.edu.cn

    2014-10-20

    In this paper, two displacive phase transitions around the morphotropic phase boundary (MPB) in Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}-x(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} (BZT-xBCT) ceramics were detected by inspecting two anomalies of the Raman Ti{sup 4+}-O{sup 2−} longitudinal optical mode (∼725 cm{sup −1}). Further, permittivity and X-ray diffraction results demonstrated these two phase transitions originate from tetragonal (T) to rhombohedral (R) through an intermediate orthorhombic (O) phase. Importantly, we found that the maximum piezoelectric response (d{sub 33} = 545pC/N) was achieved at the boundary between the T and O phase, indicating that the giant piezoelectricity of BZT-xBCT may mainly stem from the T-O phase boundary due to easier polarization rotation and larger lattice softening.

  13. Piezoelectric and Electrostrictive Materials for Transducers Applications. Volume 3

    DTIC Science & Technology

    1992-01-31

    Lyon. P. Fleury. J. Negron. and H. Carter. Phys. lev. B 36. 240 equilibrium. (1987). 𔃺U. Hochi, P. Kofel, and M . Maglione . Phys. Rev. B 32 4546...1987). 13, 3576(1976). 26U. Hochli, P. Kole], and M . Maglione , Phys. Rev. B 32, 4546 31E. Courtens, T. Rosenbaum, S. Nagler, and P. Horn, Phys. (1985...PENNSTATE V THE MATERIALS RESEARCH LABORATORY UNIVERSITY PARK, PA 92 6 01 158 92-14489 REPORT DOCUJMENTATION PAGE. eOSM m - I. WIORT SICUNIY CLAW� 1b

  14. Piezoelectric and Electrostrictive Materials for Transducer Applications. Volume 1

    DTIC Science & Technology

    1991-01-31

    establishes a global K. Lyon, P. Pleury, J. Negron, and H. Carter, Phy. Rev. B 36. 2465 equilibrium. (1987). "U. Hochis. P. Kofel, and M . Maglione ...P.W., J. Phys. F 5, 965 (1975). Ferre, J., Rajchenbach, J., and Maletta, H., J. Appl. Phys. 52, 1697 (1981). Hochli, U., Kofel, P., and Maglione , M ...J- 1689 Ga.. NAME OF PERFORMING ORAGiLAIION (Sb. OFFICE SYMOL ft. NA04 of mamiOPJNG OP.G~ m "TLioN Materials Research Laboratory (i 64g £004155 (Gir

  15. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2007-01-01

    The primary technical objective of the project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with lead-free alloys Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with mixed (lead/lead-free) alloys.

  16. External ultrasound can generate microampere direct currents in vivo from implanted piezoelectric materials.

    PubMed

    Cochran, G V; Kadaba, M P; Palmieri, V R

    1988-01-01

    Under development is an internal fixation plate that incorporates a piezoelectric element to generate current when excited mechanically by either weight bearing or external application of ultrasound. The intent is to deliver this current to electrodes at a fracture or osteotomy site to aid in prevention or treatment of nonunion. The present study examines quantitatively the ability of external ultrasound to generate current from small piezoelectric ceramic elements implanted in tissue. An ultrasonic transducer (2.25 MHz, 10-20 V input, less than 10 mW/cm2 output) was employed to excite small test coupons of a piezoelectric ceramic in vitro and in vivo with various materials, including water, PVC gel, cortical bone, and living soft tissues, interposed. In all instances, it was possible to generate currents of up to 20 microA after rectification; currents up to 1 mA were achieved in some cases. The work indicates that external ultrasonic energy could effectively power small internal devices designed to stimulate bone healing, without the need for implanted batteries or percutaneous leads.

  17. Passively minimizing structural sound radiation using shunted piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Bulent Ozer, M.; Royston, Thomas J.

    2003-10-01

    Two methods are presented to determine optimal inductance and resistance values of the shunt circuit across a piezoceramic material, which is bonded to a simply supported plate in order to minimize sound radiation from the plate. The first method (DH) makes use of den Hartog's damped vibration absorber principle. The second method (SM) uses the Sherman Morrison matrix inversion theorem. The effectiveness of each method is compared with regard to minimizing total acoustic sound-power radiation and acoustic pressure at a point. Optimization algorithms and case studies are presented using a linearized model for the piezoceramic and using a nonlinear model for the piezoceramic that accounts for the inherent dielectric hysteresis. Case studies demonstrate that the second method (SM) results in superior performance, under both linear and nonlinear system assumptions. Studies also illustrate that, if the nonlinearity in the system is significant, it must be incorporated in the optimization process.

  18. Using iridium films to compensate for piezo-electric materials processing stresses in adjustable x-ray optics

    NASA Astrophysics Data System (ADS)

    Ames, A.; Bruni, R.; Cotroneo, V.; Johnson-Wilke, R.; Kester, T.; Reid, P.; Romaine, S.; Tolier-McKinstry, S.; Wilke, R. H. T.

    2015-09-01

    Adjustable X-ray optics represent a potential enabling technology for simultaneously achieving large effective area and high angular resolution for future X-ray Astronomy missions. The adjustable optics employ a bimorph mirror composed of a thin (1.5 μm) film of piezoelectric material deposited on the back of a 0.4 mm thick conical mirror segment. The application of localized electric fields in the piezoelectric material, normal to the mirror surface, result in localized deformations in mirror shape. Thus, mirror fabrication and mounting induced figure errors can be corrected, without the need for a massive reaction structure. With this approach, though, film stresses in the piezoelectric layer, resulting from deposition, crystallization, and differences in coefficient of thermal expansion, can distort the mirror. The large relative thickness of the piezoelectric material compared to the glass means that even 100MPa stresses can result in significant distortions. We have examined compensating for the piezoelectric processing related distortions by the deposition of controlled stress chromium/iridium films on the front surface of the mirror. We describe our experiments with tuning the product of the chromium/iridium film stress and film thickness to balance that resulting from the piezoelectric layer. We also evaluated the repeatability of this deposition process, and the robustness of the iridium coating.

  19. Lead-free piezoelectric ceramics based on (0.97 - x)K0.48Na0.52NbO3-0.03Bi0.5(Na0.7K0.2Li0.1)0.5ZrO3-xB0.5Na0.5TiO3 ternary system

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaojing; Wu, Jiagang; Wang, Xiaopeng; Zhang, Binyu; Zhu, Jianguo; Xiao, Dingquan; Wang, Xiangjian; Lou, Xiaojie; Liang, Wenfeng

    2013-09-01

    In this work, the ternary system of potassium-sodium niobate has been designed to enhance the piezoelectric properties without sacrificing the Curie temperature greatly, and (0.97 - x)K0.48Na0.52NbO3-0.03Bi0.5(Na0.7K0.2Li0.1)0.5ZrO3-xB0.5Na0.5TiO3 ceramics have been prepared by the conventional solid-state method. The effect of B0.5Na0.5TiO3 content on the microstructure and electrical properties of the ceramics is studied. The phase diagram shows a phase boundary of the rhombohedral-tetragonal (R-T) phase coexistence in the composition range of 0.5% < x < 1.5%, and then an enhanced dielectric, ferroelectric, and piezoelectric behavior is obtained at such a phase boundary zone. The ceramic with x = 0.01 has an optimum electrical behavior of d33 ˜ 285 pC/N, kp ˜ 0.40, ɛr ˜ 1235, tan δ ˜ 0.031, Pr ˜ 14.9 μC/cm2, and Ec ˜ 15.2 kV/cm, together with a high Curie temperature of ˜347 °C. The large d33 in such a ternary system is due to a composition-induced R-T phase transition and a higher ɛrPr, and the thermal stability performance is strongly dependent on the phase structure. As a result, the design of the ternary system is an effective way to enhance the piezoelectric properties of potassium-sodium niobate materials.

  20. Piezoelectric and electrostrictive materials for transducers applications, volume 3

    NASA Astrophysics Data System (ADS)

    Cross, L. E.; Newnham, R. E.; Bhalla, A. S.; Dougherty, J. P.; Adair, J. H.; Varadan, V. K.; Varadan, V. V.

    1992-01-01

    The topics discussed are as follows: Distribution Functions of Coexisting Phases in a Complete Solid Solution System; The Glassy Behavior of Relaxor Ferroelectrics; The Dielectric Relaxation of Lead Magnesium Niobate Relaxor Ferroelectrics; An Elastic Relaxation and Internal Strain in Lead Magnesium Niobate Relaxors; Dipolar-Glass Model for Lead Magnesium Niobate; Ferroelectric Properties of Lead Barium Niobate Compositions Near the Morphotropic Phase Boundary; Pyroelectric Properties of Lead Barium Niobate Single Crystals; Microstructure-Property Relations in Tungsten Bronze Lead Barium Niobate, Pb(1-x)BaxNb2O6; An Investigation of the Lead Scandium Tantalate-Lead Titanate Solid Solution System; Pyroelectric Response and Depolarization Behavior of (1-x)Pb(Sc(1/2)Ta(1/2)O3 - (x)PbTiO3 Materials; Pyroelectric and Dielectric Properties of PMN-Based Ceramics Under DC Bias; Chemical Reactions of Lead Magnesium Niobate Titanate in the Presence of a Glass; La2Ti2O7 Ceramics; Effects of pH and H2O2 Upon Coprecipitated PbTiO3 Powders; and Kinetics of the Hydrothermal Crystallization of the Perovskite Lead Titanate.

  1. Lead-free solders: issues of toxicity, availability and impacts of extraction

    NASA Technical Reports Server (NTRS)

    Ku, A.; Shapiro, A. A.; Kua, A.; Ogunseitan, O.; Saphores, J. D.; Schoenung, J. M.

    2003-01-01

    This project set out to evaluate the critical issues of toxicity and public health effects, material availability, and the environmental impacts of raw material extraction and metal finishing, with the goal of using environmental impact as a factor in selecting feasible lead-free alloys.

  2. Structural dependence of piezoelectric, dielectric and ferroelectric properties of K{sub 0.5}Na{sub 0.5}(Nb{sub 1−2x/5}Cu{sub x})O{sub 3} lead-free ceramics with high Q{sub m}

    SciTech Connect

    Tan, Xiaohui; Fan, Huiqing; Ke, Shanming; Zhou, Limin; Mai, Yiu-Wing; Huang, Haitao

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Double hysteresis loops were observed in K{sub 0.5}Na{sub 0.5}(Nb{sub 1−2x/5}Cu{sub x})O{sub 3}. ► Cu substitution caused structural discontinuity in KNNC. ► Dimeric defect complex (Cu{sup ‴}{sub Nb}–V{sub O}··){sup ′} with a dipole moment was formed in KNNC. -- Abstract: (K{sub 0.5}Na{sub 0.5})(Nb{sub 1−2x/5}Cu{sub x})O{sub 3} (abbreviated as KNNC, x = 0–2%) lead-free ceramics were synthetized by the solid state solution method. Pure perovskite phase with orthorhombic symmetry was observed. The evolution of the structure of KNNC was examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman scattering spectra techniques. Our results revealed that, defect dipoles (Cu{sup ‴}{sub Nb}–V{sub O}··){sup ′} were formed and provided a restoring force to reverse the switched polarization, which resulted in double P–E hysteresis loops in KNNC with Cu doping at x = 0.75% and 1%. However, non-polar defect complex (V{sub O}··–Cu{sup ‴}{sub Nb}–V{sub O}··)· caused a lattice shrinkage and the observed square shaped P–E loops in KNNC ceramics under high doping levels (x > 1%).

  3. Targeted basic studies of ferroelectric and ferroelastic materials for piezoelectric transducer applications

    NASA Astrophysics Data System (ADS)

    Cross, L. E.; Newnham, R. E.; Barsch, G. R.; Biggers, J. V.

    1983-03-01

    The work reported covers the fifth and final year of the program of targeted basic studies of ferroelectric and ferroelastic materials for piezoelectric transducer applications. Major achievements include: the development of a physical approach to understanding active composites, leading to the development of several new families of PZT, polymer piezoelectric composites for hydrophone application. These are new advances in the phenomenology and microscopic theory of electrostriction, and the evolution of a new family of high strain ferroelectric relaxor materials for practical application. New basic understanding of the polarization mechanisms in ferroelectric relaxors has been aided by the study of order disorder of the cation arrangement in lead scandium tantalate, and the results correlate well with studies of relaxor behavior, and of shape memory effects in PLZT ceramics. Low temperature studies on pure and doped PZTs have given the first clear indication of the intrinsic (averaged) single domain in response and correlate exceedingly well with earlier phenomenological theory. Crystal growth and ceramic processing studies have developed hand in hand with program needs providing new forms of conventional materials, new grain oriented structures and single crystals.

  4. A theoretical study of the propagation of Rayleigh waves in a functionally graded piezoelectric material (FGPM).

    PubMed

    Ben Salah, Issam; Njeh, Anouar; Ben Ghozlen, Mohamed Hédi

    2012-02-01

    An exact approach is used to investigate Rayleigh waves in a functionally graded piezoelectric material (FGPM) layer bonded to a semi infinite homogenous solid. The piezoelectric material is polarized when the six fold symmetry axis is put along the propagation direction x(1). The FGPM character imposes that the material properties change gradually with the thickness of the layer. Contrary to the analytical approach, the adopted numerical methods, including the ordinary differential equation (ODE) and the stiffness matrix method (SMM), treat separately the electrical and mechanical gradients. The influences of graded variations applied to FGPM film coefficients on the dispersion curves of Rayleigh waves are discussed. The effects of gradient coefficients on electromechanical coupling factor, displacement fields, stress distributions and electrical potential, are reported. The obtained deviations in comparison with the ungraded homogenous film are plotted with respect to the dimensionless wavenumber. Opposite effects are observed on the coupling factor when graded variations are applied separately. A particular attention has been devoted to the maximum of the coupling factor and it dependence on the stratification rate and the gradient coefficient. This work provides with a theoretical foundation for the design and practical applications of SAW devices with high performance.

  5. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2009-01-01

    The primary technical objective of this project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: (1) Packages (e.g., Thin Small Outline Package [TSOP], Ball Grid Array [BGA], Plastic Dual In-line Package [PDIP]) assembled and reworked with lead-free alloys, (2) Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with mixed (lead/lead-free) alloys.

  6. High voltage generation from lead-free magnetoelectric coaxial nanotube arrays and their applications in nano energy harvesters

    NASA Astrophysics Data System (ADS)

    Lekha, C. S. Chitra; Kumar, Ajith S.; Vivek, S.; Rasi, U. P. Mohammed; Venkata Saravanan, K.; Nandakumar, K.; Nair, Swapna S.

    2017-02-01

    Harvesting energy from surrounding vibrations and developing self-powered portable devices for wireless and mobile electronics have recently become popular. Here the authors demonstrate the synthesis of piezoelectric energy harvesters based on nanotube arrays by a wet chemical route, which requires no sophisticated instruments. The energy harvester gives an output voltage of 400 mV. Harvesting energy from a sinusoidal magnetic field is another interesting phenomenon for which the authors fabricated a magnetoelectric energy harvester based on piezoelectric-magnetostrictive coaxial nanotube arrays. Piezoelectric K0.5Na0.5NbO3 (KNN) is fabricated as the shell and magnetostrictive CoFe2O4 (CFO) as the core of the composite coaxial nanotubes. The delivered voltages are as high as 300 mV at 500 Hz and at a weak ac magnetic field of 100 Oe. Further tailoring of the thickness of the piezoelectric and magnetic layers can enhance the output voltage by several orders. Easy, single-step wet chemical synthesis enhances the industrial upscaling potential of these nanotubes as energy harvesters. In view of the excellent properties reported here, the lead-free piezoelectric component (KNN) in this nanocomposite should be explored for eco-friendly piezoelectric as well as magnetoelectric power generators in nanoelectromechanical systems (NEMS).

  7. High voltage generation from lead-free magnetoelectric coaxial nanotube arrays and their applications in nano energy harvesters.

    PubMed

    Lekha, C S Chitra; Kumar, Ajith S; Vivek, S; Rasi, U P Mohammed; Saravanan, K Venkata; Nandakumar, K; Nair, Swapna S

    2017-02-03

    Harvesting energy from surrounding vibrations and developing self-powered portable devices for wireless and mobile electronics have recently become popular. Here the authors demonstrate the synthesis of piezoelectric energy harvesters based on nanotube arrays by a wet chemical route, which requires no sophisticated instruments. The energy harvester gives an output voltage of 400 mV. Harvesting energy from a sinusoidal magnetic field is another interesting phenomenon for which the authors fabricated a magnetoelectric energy harvester based on piezoelectric-magnetostrictive coaxial nanotube arrays. Piezoelectric K0.5Na0.5NbO3 (KNN) is fabricated as the shell and magnetostrictive CoFe2O4 (CFO) as the core of the composite coaxial nanotubes. The delivered voltages are as high as 300 mV at 500 Hz and at a weak ac magnetic field of 100 Oe. Further tailoring of the thickness of the piezoelectric and magnetic layers can enhance the output voltage by several orders. Easy, single-step wet chemical synthesis enhances the industrial upscaling potential of these nanotubes as energy harvesters. In view of the excellent properties reported here, the lead-free piezoelectric component (KNN) in this nanocomposite should be explored for eco-friendly piezoelectric as well as magnetoelectric power generators in nanoelectromechanical systems (NEMS).

  8. Identification of combustible material with piezoelectric crystal sensor array using pattern-recognition techniques.

    PubMed

    He, X W; Xing, W L; Fang, Y H

    1997-11-01

    A promising way of increasing the selectivity and sensitivity of gas sensors is to treat the signals from a number of different gas sensors with pattern recognition (PR) method. A gas sensor array with seven piezoelectric crystals each coated with a different partially selective coating material was constructed to identify four kinds of combustible materials which generate smoke containing different components. The signals from the sensors were analyzed with both conventional multivariate analysis, stepwise discriminant analysis (SDA), and artificial neural networks (ANN) models. The results show that the predictions were even better with ANN models. In our experiment, we have reported a new method for training data selection, 'training set stepwise expending method' to solve the problem that the network can not converge at the beginning of the training. We also discussed how the parameters of neural networks, learning rate eta, momentum term alpha and few bad training data affect the performance of neural networks.

  9. Investigations of thickness-shear mode elastic constant and damping of shunted piezoelectric materials with a coupling resonator

    NASA Astrophysics Data System (ADS)

    Hu, Ji-Ying; Li, Zhao-Hui; Sun, Yang; Li, Qi-Hu

    2016-12-01

    Shear-mode piezoelectric materials have been widely used to shunt the damping of vibrations where utilizing surface or interface shear stresses. The thick-shear mode (TSM) elastic constant and the mechanical loss factor can change correspondingly when piezoelectric materials are shunted to different electrical circuits. This phenomenon makes it possible to control the performance of a shear-mode piezoelectric damping system through designing the shunt circuit. However, due to the difficulties in directly measuring the TSM elastic constant and the mechanical loss factor of piezoelectric materials, the relationships between those parameters and the shunt circuits have rarely been investigated. In this paper, a coupling TSM electro-mechanical resonant system is proposed to indirectly measure the variations of the TSM elastic constant and the mechanical loss factor of piezoelectric materials. The main idea is to transform the variations of the TSM elastic constant and the mechanical loss factor into the changes of the easily observed resonant frequency and electrical quality factor of the coupling electro-mechanical resonator. Based on this model, the formular relationships are set up theoretically with Mason equivalent circuit method and they are validated with finite element (FE) analyses. Finally, a prototype of the coupling electro-mechanical resonator is fabricated with two shear-mode PZT5A plates to investigate the TSM elastic constants and the mechanical loss factors of different circuit-shunted cases of the piezoelectric plate. Both the resonant frequency shifts and the bandwidth changes observed in experiments are in good consistence with the theoretical and FE analyses under the same shunt conditions. The proposed coupling resonator and the obtained relationships are validated with but not limited to PZT5A. Project supported by the National Defense Foundation of China (Grant No. 9149A12050414JW02180).

  10. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials.

    PubMed

    Wang, Shupeng; Zhang, Zhihui; Ren, Luquan; Zhao, Hongwei; Liang, Yunhong; Zhu, Bing

    2014-06-01

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principle of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.

  11. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials

    NASA Astrophysics Data System (ADS)

    Wang, Shupeng; Zhang, Zhihui; Ren, Luquan; Zhao, Hongwei; Liang, Yunhong; Zhu, Bing

    2014-06-01

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principle of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.

  12. Analysis of a Griffith crack at the interface of two piezoelectric materials under anti-plane loading

    NASA Astrophysics Data System (ADS)

    Gherrous, M.; Ferdjani, H.

    2016-11-01

    The main objective of this work is the contribution to the study of the piezoelectric structures which contain preexisting defect (crack). For that, we consider a Griffith crack located at the interface of two piezoelectric materials in a semi-infinite plane structure. The structure is subjected to an anti-plane shearing combined with an in-plane electric displacement. Using integral Fourier transforms, the equations of piezoelectricity are converted analytically to a system of singular integral equations. The singular integral equations are further reduced to a system of algebraic equations and solved numerically by using Chebyshev polynomials. The stress intensity factor and the electric displacement intensity factor are calculated and used for the determination of the energy release rate which will be taken as fracture criterion. At the end, numerical results are presented for various parameters of the problem; they are also presented for an infinite plane structure.

  13. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials

    SciTech Connect

    Wang, Shupeng; Zhang, Zhihui Ren, Luquan; Liang, Yunhong; Zhao, Hongwei; Zhu, Bing

    2014-06-15

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principle of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.

  14. Structural And Electrical Analysis Of Lead Free BZT-xBCT Ceramics

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Chandan; Kumar, Ashvani; Kaur, Davinder

    2010-12-01

    A comparative study of structural and electric properties of a recently discovered lead free electroceramic, Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 or BZT-xBCT, was conducted in the entire range from x = 0 to x = 1. This novel ceramic composite is being seen as a genuine understudy for commercially one of the most widely used piezoelectric ceramic, PZT, which is facing worldwide criticism due to its lead toxicity. The new system can be very extensively used like PZT in transduction applications as sensor, actuator and ultrasonic devices apart from numerous other utilities. The XRD, SEM and Ferroelectric studies establish the structural transition and different phases as function of Zr /Ti and Ba /Ca ratios.

  15. Structural And Electrical Analysis Of Lead Free BZT-xBCT Ceramics

    SciTech Connect

    Bhardwaj, Chandan; Kumar, Ashvani; Kaur, Davinder

    2010-12-01

    A comparative study of structural and electric properties of a recently discovered lead free electroceramic, Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}-x(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} or BZT-xBCT, was conducted in the entire range from x = 0 to x = 1. This novel ceramic composite is being seen as a genuine understudy for commercially one of the most widely used piezoelectric ceramic, PZT, which is facing worldwide criticism due to its lead toxicity. The new system can be very extensively used like PZT in transduction applications as sensor, actuator and ultrasonic devices apart from numerous other utilities. The XRD, SEM and Ferroelectric studies establish the structural transition and different phases as function of Zr /Ti and Ba /Ca ratios.

  16. Achieving synchronization with active hybrid materials: Coupling self-oscillating gels and piezoelectric films

    PubMed Central

    Yashin, Victor V.; Levitan, Steven P.; Balazs, Anna C.

    2015-01-01

    Lightweight, deformable materials that can sense and respond to human touch and motion can be the basis of future wearable computers, where the material itself will be capable of performing computations. To facilitate the creation of “materials that compute”, we draw from two emerging modalities for computation: chemical computing, which relies on reaction-diffusion mechanisms to perform operations, and oscillatory computing, which performs pattern recognition through synchronization of coupled oscillators. Chemical computing systems, however, suffer from the fact that the reacting species are coupled only locally; the coupling is limited by diffusion as the chemical waves propagate throughout the system. Additionally, oscillatory computing systems have not utilized a potentially wearable material. To address both these limitations, we develop the first model for coupling self-oscillating polymer gels to a piezoelectric (PZ) micro-electro-mechanical system (MEMS). The resulting transduction between chemo-mechanical and electrical energy creates signals that can be propagated quickly over long distances and thus, permits remote, non-diffusively coupled oscillators to communicate and synchronize. Moreover, the oscillators can be organized into arbitrary topologies because the electrical connections lift the limitations of diffusive coupling. Using our model, we predict the synchronization behavior that can be used for computational tasks, ultimately enabling “materials that compute”. PMID:26105979

  17. A magnetic-piezoelectric smart material-structure utilizing magnetic force interaction to optimize the sensitivity of current sensing

    NASA Astrophysics Data System (ADS)

    Yeh, Po-Chen; Chung, Tien-Kan; Lai, Chen-Hung; Wang, Chieh-Min

    2016-01-01

    This paper presents a magnetic-piezoelectric smart material-structure using a novel magnetic-force-interaction approach to optimize the sensitivity of conventional piezoelectric current sensing technologies. The smart material-structure comprises a CuBe-alloy cantilever beam, a piezoelectric PZT sheet clamped to the fixed end of the beam, and an NdFeB permanent magnet mounted on the free end of the beam. When the smart material-structure is placed close to an AC conductor, the magnet on the beam of the smart structure experiences an alternating magnetic attractive and repulsive force produced by the conductor. Thus, the beam vibrates and subsequently generates a strain in the PZT sheet. The strain produces a voltage output because of the piezoelectric effect. The magnetic force interaction is specifically enhanced through the optimization approach (i.e., achieved by using SQUID and machining method to reorient the magnetization to different directions to maximize the magnetic force interaction). After optimizing, the beam's vibration amplitude is significantly enlarged and, consequently, the voltage output is substantially increased. The experimental results indicated that the smart material-structure optimized by the proposed approach produced a voltage output of 4.01 Vrms with a sensitivity of 501 m Vrms/A when it was placed close to a conductor with a current of 8 A at 60 Hz. The optimized voltage output and sensitivity of the proposed smart structure were approximately 316 % higher than those (1.27 Vrms with 159 m Vrms/A) of representative piezoelectric-based current sensing technologies presented in other studies. These improvements can significantly enable the development of more self-powered wireless current sensing applications in the future.

  18. Conceptual design for 12 V "lead-free" accumulators for automobile and stationary applications

    NASA Astrophysics Data System (ADS)

    Ariyoshi, Kingo; Ohzuku, Tsutomu

    Conceptual design for 12 V lead-free accumulators is presented using basic research results on lithium insertion materials. Among possible materials, Li[Li 1/3Ti 5/3]O 4 is selected for a negative-electrode material, and Li[Ni 1/2Mn 3/2]O 4, LiMn 2O 4, LiCo 1/3Ni 1/3Mn 1/3O 2, and LiFePO 4 are specifically considered as positive-electrode materials. Combination of these materials with Li[Li 1/3Ti 5/3]O 4 gives a 2, 2.5 or 3 V lithium-ion battery. Series connection of such a lithium-ion battery makes 12 V lead-free accumulators possible. Characteristic features of the lead-free accumulators are discussed in terms of energy density for deep charge and discharge cycles, power density for short period of time, material economy, environmental friendliness, and safety compared with those of lead-acid batteries currently hold a position in automobile, large uninterruptible power supply, and off-grid solar home systems.

  19. Lead-free Organic-Inorganic Hybrid Perovskites for Photovoltaic Applications: Recent Advances and Perspectives.

    PubMed

    Shi, Zejiao; Guo, Jia; Chen, Yonghua; Li, Qi; Pan, Yufeng; Zhang, Haijuan; Xia, Yingdong; Huang, Wei

    2017-02-03

    Organic-inorganic hybrid halide perovskites (e.g., MAPbI3 ) have recently emerged as novel active materials for photovoltaic applications with power conversion efficiency over 22%. Conventional perovskite solar cells (PSCs); however, suffer the issue that lead is toxic to the environment and organisms for a long time and is hard to excrete from the body. Therefore, it is imperative to find environmentally-friendly metal ions to replace lead for the further development of PSCs. Previous work has demonstrated that Sn, Ge, Cu, Bi, and Sb ions could be used as alternative ions in perovskite configurations to form a new environmentally-friendly lead-free perovskite structure. Here, we review recent progress on lead-free PSCs in terms of the theoretical insight and experimental explorations of the crystal structure of lead-free perovskite, thin film deposition, and device performance. We also discuss the importance of obtaining further understanding of the fundamental properties of lead-free hybrid perovskites, especially those related to photophysics.

  20. Properties of photocured epoxy resin materials for application in piezoelectric ultrasonic transducer matching layers.

    PubMed

    Trogé, Alexandre; O'Leary, Richard L; Hayward, Gordon; Pethrick, Richard A; Mullholland, Anthony J

    2010-11-01

    This paper describes the acoustic properties of a range of epoxy resins prepared by photocuring that are suitable for application in piezoelectric ultrasonic transducer matching layers. Materials, based on blends of diglycidyl ether of Bisphenol A and 1,4-cyclohexanedimethanol diglycidyl ether, are described. Furthermore, in order to vary the elastic character of the base resin, samples containing polymer microspheres or barium sulfate particles are also described. The acoustic properties of the materials are determined by a liquid coupled through transmission methodology, capable of determining the velocity and attenuation of longitudinal and shear waves propagating in an isotropic layer. Measured acoustic properties are reported which demonstrate materials with specific acoustic impedance varying in the range 0.88-6.25 MRayls. In the samples comprising blends of resin types, a linear variation in the acoustic velocities and density was observed. In the barium sulfate filled samples, acoustic impedance showed an approximately linear variation with composition, reflecting the dominance of the density variation. While such variations can be predicted by simple mixing laws, relaxation and scattering effects influence the attenuation in both the blended and filled resins. These phenomena are discussed with reference to dynamic mechanical thermal analysis and differential scanning calorimetry of the samples.

  1. Study of BNKLBT-1.5 lead-free ceramic/epoxy 1-3 composites

    SciTech Connect

    Choy, S. H.; Li, W. K.; Li, H. K.; Lam, K. H.; Chan, H. L. W.

    2007-12-01

    Bismuth sodium titanate based lead-free ceramic fiber with the chemical formula of 0.885(Bi{sub 0.5}Na{sub 0.5})TiO{sub 3}-0.05(Bi{sub 0.5}K{sub 0.5})TiO{sub 3}-0.015(Bi{sub 0.5}Li{sub 0.5}= )TiO{sub 3}-0.05BaTiO{sub 3}, BNKLBT-1.5, has been fabricated by a powder-based extrusion method. The ceramic fibers with 400 {mu}m diameter were well crystallized after being calcined at 800 deg. C and sintered at 1170 deg. C. The piezoelectric and ferroelectric properties of the single fiber were found to be 155 pC/N and {approx}34.5 {mu}C/cm{sup 2}, respectively, which is comparable with that in bulk sample. 1-3 ceramic/polymer composites were fabricated by two routes, including dice and filled method and fiber pick-and-place method. Theoretical models were used to calculate the piezoelectric properties of the composites and compared with experimental results.

  2. Study of BNKLBT-1.5 lead-free ceramic/epoxy 1-3 composites

    NASA Astrophysics Data System (ADS)

    Choy, S. H.; Li, W. K.; Li, H. K.; Lam, K. H.; Chan, H. L. W.

    2007-12-01

    Bismuth sodium titanate based lead-free ceramic fiber with the chemical formula of 0.885(Bi0.5Na0.5)TiO3-0.05(Bi0.5K0.5)TiO3-0.015(Bi0.5Li0.5)TiO3-0.05BaTiO3, BNKLBT-1.5, has been fabricated by a powder-based extrusion method. The ceramic fibers with 400μm diameter were well crystallized after being calcined at 800°C and sintered at 1170°C. The piezoelectric and ferroelectric properties of the single fiber were found to be 155pC/N and ˜34.5μC/cm2, respectively, which is comparable with that in bulk sample. 1-3 ceramic/polymer composites were fabricated by two routes, including dice and filled method and fiber pick-and-place method. Theoretical models were used to calculate the piezoelectric properties of the composites and compared with experimental results.

  3. Characterization of Full Set Material Constants and Their Temperature Dependence for Piezoelectric Materials Using Resonant Ultrasound Spectroscopy

    PubMed Central

    Tang, Liguo; Cao, Wenwu

    2016-01-01

    During the operation of high power electromechanical devices, a temperature rise is unavoidable due to mechanical and electrical losses, causing the degradation of device performance. In order to evaluate such degradations using computer simulations, full matrix material properties at elevated temperatures are needed as inputs. It is extremely difficult to measure such data for ferroelectric materials due to their strong anisotropic nature and property variation among samples of different geometries. Because the degree of depolarization is boundary condition dependent, data obtained by the IEEE (Institute of Electrical and Electronics Engineers) impedance resonance technique, which requires several samples with drastically different geometries, usually lack self-consistency. The resonant ultrasound spectroscopy (RUS) technique allows the full set material constants to be measured using only one sample, which can eliminate errors caused by sample to sample variation. A detailed RUS procedure is demonstrated here using a lead zirconate titanate (PZT-4) piezoceramic sample. In the example, the complete set of material constants was measured from room temperature to 120 °C. Measured free dielectric constants ε11T and ε33T were compared with calculated ones based on the measured full set data, and piezoelectric constants d15 and d33 were also calculated using different formulas. Excellent agreement was found in the entire range of temperatures, which confirmed the self-consistency of the data set obtained by the RUS. PMID:27168336

  4. Lead-Free Propellant for Propellant Actuated Devices

    NASA Technical Reports Server (NTRS)

    Goodwin, John L.

    2000-01-01

    Naval Surface Warfare Center, Indian Head Division's CAD/PAD Department has been working to remove toxic compounds from our products for about a decade. In 1992, we embarked on an effort to develop a lead-free double base propellant to replace that of a foreign sole source. At the time there were availability concerns. In 1995, the department developed a strategic proposal to include a wider range of products. Efforts included such efforts as removing lead sheathing from linear explosives and replacing lead azide and lead styphnate compounds. This paper will discuss efforts specifically related to developing non-leaded double base propellant for use in various Propellant Actuated Devices (PADs) for aircrew escape systems. The propellants can replace their leaded counterparts, mitigating lead handling, processing, or toxic exposure to the environment and personnel. This work eliminates the use of leaded compounds, replacing them with a more environmentally benign metal-organic salt. Historically double-base propellants have held an advantage over other families of energetic materials through their relative insensitivity of the burning rate to changes in temperature and pressure. This desirable ballistic effect has been obtained with the use of a lead-organic salt alone or in a physical mixture with a copper-organic salt, or more recently with a lead-copper complex. These ballistic modifiers are typically added to the double-base 'paste' prior to gelatinization on heated calendars or one type or another. The effect of constant burning rate over a pressure range is called a 'plateau' while an even more beneficial effect of decreasing burning rate with increasing pressure is termed a 'mesa.' The latter effect results in very low temperature sensitivity of the propellant burning rate. Propellants with such effects are ideal tactical rocket motor propellants. The use of lead compounds poses a concern for the environment and personnel safety due to the metal's toxic

  5. Characterization of full set material constants of piezoelectric materials based on ultrasonic method and inverse impedance spectroscopy using only one sample

    NASA Astrophysics Data System (ADS)

    Li, Shiyang; Zheng, Limei; Jiang, Wenhua; Sahul, Raffi; Gopalan, Venkatraman; Cao, Wenwu

    2013-09-01

    The most difficult task in the characterization of complete set material properties for piezoelectric materials is self-consistency. Because there are many independent elastic, dielectric, and piezoelectric constants, several samples are needed to obtain the full set constants. Property variation from sample to sample often makes the obtained data set lack of self-consistency. Here, we present a method, based on pulse-echo ultrasound and inverse impedance spectroscopy, to precisely determine the full set physical properties of piezoelectric materials using only one small sample, which eliminated the sample to sample variation problem to guarantee self-consistency. The method has been applied to characterize the [001]C poled Mn modified 0.27Pb(In1/2Nb1/2)O3-0.46Pb(Mg1/3Nb2/3)O3-0.27PbTiO3 single crystal and the validity of the measured data is confirmed by a previously established method. For the inverse calculations using impedance spectrum, the stability of reconstructed results is analyzed by fluctuation analysis of input data. In contrast to conventional regression methods, our method here takes the full advantage of both ultrasonic and inverse impedance spectroscopy methods to extract all constants from only one small sample. The method provides a powerful tool for assisting novel piezoelectric materials of small size and for generating needed input data sets for device designs using finite element simulations.

  6. Characterization of full set material constants of piezoelectric materials based on ultrasonic method and inverse impedance spectroscopy using only one sample.

    PubMed

    Li, Shiyang; Zheng, Limei; Jiang, Wenhua; Sahul, Raffi; Gopalan, Venkatraman; Cao, Wenwu

    2013-09-14

    The most difficult task in the characterization of complete set material properties for piezoelectric materials is self-consistency. Because there are many independent elastic, dielectric, and piezoelectric constants, several samples are needed to obtain the full set constants. Property variation from sample to sample often makes the obtained data set lack of self-consistency. Here, we present a method, based on pulse-echo ultrasound and inverse impedance spectroscopy, to precisely determine the full set physical properties of piezoelectric materials using only one small sample, which eliminated the sample to sample variation problem to guarantee self-consistency. The method has been applied to characterize the [001]C poled Mn modified 0.27Pb(In1/2Nb1/2)O3-0.46Pb(Mg1/3Nb2/3)O3-0.27PbTiO3 single crystal and the validity of the measured data is confirmed by a previously established method. For the inverse calculations using impedance spectrum, the stability of reconstructed results is analyzed by fluctuation analysis of input data. In contrast to conventional regression methods, our method here takes the full advantage of both ultrasonic and inverse impedance spectroscopy methods to extract all constants from only one small sample. The method provides a powerful tool for assisting novel piezoelectric materials of small size and for generating needed input data sets for device designs using finite element simulations.

  7. Predictive modeling of composite material degradation using piezoelectric wafer sensors electromechanical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Gresil, Matthieu; Yu, Lingyu; Sutton, Mike; Guo, Siming; Pollock, Patrick

    2012-04-01

    The advancement of composite materials in aircraft structures has led to on increased need for effective structural health monitoring (SHM) technologies that are able to detect and assess damage present in composites structures. The work presented in this paper is interested in understanding using self-sensing piezoelectric wafer active sensors (PWAS) to conduct electromechanical impedance spectroscopy (EMIS) in glass fiber reinforced plastic (GFRP) to perform structures health monitoring. PWAS are bonded to the composite material and the EMIS method is used to analyze the changes in the structural resonance and anti-resonance. As the damage progresses in the specimen, the impedance spectrum will change. In addition, multi-physics based finite element method (MP-FEM) is used to model the electromechanical behavior of a free PWAS and its interaction with the host structure on which it is bonded. The MPFEM permits the input and the output variables to be expressed directly in electric terms while the two way electromechanical conversion is done internally in the MP_FEM formulation. To reach the goal of using the EMIS approach to detect damage, several damages models are generated on laminated GFRP structures. The effects of the modeling are carefully studied through experimental validation. A good match has been observed for low and very high frequencies.

  8. Targeted basic studies of ferroelectric and ferroelastic materials for piezoelectric transducer applications

    NASA Astrophysics Data System (ADS)

    Cross, L. E.; Newnham, R. E.; Barsch, G. R.; Biggers, J. V.

    1983-03-01

    The report delineates the new progress made in the fifth and final year and discusses the major accomplishments of the full five year program both in the basic science and in the spin off to practical transducer applications. Possible new areas of study which are suggested by the present studies are briefly reported. Major achievements include the development of a physical approach to understanding active composites, leading to the development of several new families of PZT:polymer piezoelectric composites for hydrophone application. New advances in the phenomenology and microscopic theory of electrostriction, and the evolution of a new family of high strain ferroelectric relaxor materials for practical application. New basic understanding of the polarization mechanisms in ferroelectric relaxors has been aided by the study of order-disorder of the cation arrangement in lead scandium tantalate, and the results correlate well with studies of relaxor behavior, and of shape memory effects in PLZT ceramics. Low temperature studies on pure and doped PZTs have given the first clear indication of the intrinsic (averaged) single domain response and correlate exceedingly well with earlier phenomenological theory. Crystal growth and ceramic processing studies have developed hand-in-hand with program needs providing new forms of conventional materials, new grain oriented structures and single crystals.

  9. Lamb waves propagation in functionally graded piezoelectric materials by Peano-series method.

    PubMed

    Ben Amor, Morched; Ben Ghozlen, Mohamed Hédi

    2015-01-01

    The Peano-series expansion is used to investigate the propagation of the lowest-order symmetric (S0) and antisymmetric (A0) Lamb wave modes in a functionally graded piezoelectric material (FGPM) plate. Aluminum nitride has been retained for illustration, it is polarized along the thickness axis, and at the same time the material properties change gradually perpendicularly to the plate with an exponential variation. The effects of the gradient variation on the phase velocity and the coupling electromechanical factor are obtained. Appropriate curves are given to reflect their behavior with respect to frequency. The highest value of the electromechanical coupling factor has been observed for S0 mode, it is close to six percent, conversely for A0 mode it does not exceed 1.5%. The coupling factor maxima undergo a shift toward the high frequency area when the corresponding gradient coefficient increases. The Peano-series method computed under Matlab software, gives rapid convergence and accurate phase velocity when analysing Lamb waves in FGPM plate. The obtained numerical results can be used to design different sensors with high performance working at different frequency ranges by adjusting the extent of the gradient property.

  10. Microcantilever Fracture Testing of Intermetallic Cu3Sn in Lead-Free Solder Interconnects

    NASA Astrophysics Data System (ADS)

    Philippi, Bastian; Matoy, Kurt; Zechner, Johannes; Kirchlechner, Christoph; Dehm, Gerhard

    2017-01-01

    Driven by legislation and the abolishment of harmful and hazardous lead-containing solders, lead-free replacement materials are in continuous development. Assessment of the mechanical properties of intermetallic phases such as Cu3Sn that evolve at the interface between solder and copper metalization is crucial to predict performance and meet the high reliability demands in typical application fields of microelectronics. While representative material parameters and fracture properties are required to assess mechanical behavior, indentation-based testing produces different results depending on the sample type. In this work, focused ion beam machined cantilevers were used to unravel the impact of microstructure on the fracture behavior of Sn-Ag-Cu lead-free solder joints. Fracture testing on notched cantilevers showed brittle fracture for Cu3Sn. Unnotched samples allowed measurement of the fracture stress, to estimate the critical defect size in unnotched Cu3Sn microcantilevers.

  11. Microcantilever Fracture Testing of Intermetallic Cu3Sn in Lead-Free Solder Interconnects

    NASA Astrophysics Data System (ADS)

    Philippi, Bastian; Matoy, Kurt; Zechner, Johannes; Kirchlechner, Christoph; Dehm, Gerhard

    2017-03-01

    Driven by legislation and the abolishment of harmful and hazardous lead-containing solders, lead-free replacement materials are in continuous development. Assessment of the mechanical properties of intermetallic phases such as Cu3Sn that evolve at the interface between solder and copper metalization is crucial to predict performance and meet the high reliability demands in typical application fields of microelectronics. While representative material parameters and fracture properties are required to assess mechanical behavior, indentation-based testing produces different results depending on the sample type. In this work, focused ion beam machined cantilevers were used to unravel the impact of microstructure on the fracture behavior of Sn-Ag-Cu lead-free solder joints. Fracture testing on notched cantilevers showed brittle fracture for Cu3Sn. Unnotched samples allowed measurement of the fracture stress, to estimate the critical defect size in unnotched Cu3Sn microcantilevers.

  12. Piezoelectric Ceramics and Their Applications

    ERIC Educational Resources Information Center

    Flinn, I.

    1975-01-01

    Describes the piezoelectric effect in ceramics and presents a quantitative representation of this effect. Explains the processes involved in the manufacture of piezoelectric ceramics, the materials used, and the situations in which they are applied. (GS)

  13. New (1 - x)K0.45Na0.55Nb0.96Sb0.04O3-xBi0.5Na0.5HfO3 lead-free ceramics: Phase boundary and their electrical properties

    NASA Astrophysics Data System (ADS)

    Tao, Hong; Wu, Jiagang; Zheng, Ting; Wang, Xiangjian; Lou, Xiaojie

    2015-07-01

    Here, we reported a high unipolar strain and large piezoelectricity in new (1 - x)K0.45Na0.55Nb0.96Sb0.04O3-xBi0.5Na0.5HfO3 ceramics. The rhombohedral-tetragonal (R-T) phase boundary was constructed in the ceramics with 0.03 < x ≤ 0.05, which shows a large d33 value of ˜419 pC/N. More importantly, a high unipolar strain of ˜0.31% was observed due to the multiphase coexistence. In addition, the piezoelectricity of the ceramics could be effectively enhanced if their compositions are located at the phase boundaries region, where a very low electric field of ˜1.2 kV/mm can readily rotate the R/T domains. We also noticed that the deviation from phase boundary induced by applying an external electric field results in the deterioration of piezoelectricity after the "second-poling" method. We believe that as a potassium-sodium-niobate based material, the ceramics developed in this work may find practical applications in lead-free piezoelectric devices such as actuators and fuel injectors in the future owing to the significant enhancement in their piezoelectricity as well as strain.

  14. Developing dual-beam laser Doppler interferometry system for opto-piezoelectric materials based ultrasonic parking sensors and optofluidics sensors

    NASA Astrophysics Data System (ADS)

    Lai, Po-Cheng; Lee, Chih-Kung

    2014-03-01

    Adopting opto-piezoelectric materials, which utilized optical illumination pattern to effect the spatial force distribution induced by piezoelectric materials, to ultrasonic parking sensors and optofluidic chips represent a new research direction in industrial sub-system development. To accommodate performance requirements include wide bandwidth, ultrahigh precision, non-contact measurement mode, linear and angular measurement, etc. associated with the evaluation of the above-mentioned systems, a laser Doppler interferometer was implemented to facilitate the system development. The completely orthogonal alignment design configuration, system performance verified, signal processing algorithms developed as well as the experimental results obtained were all discussed in this paper. Emphasis is on the experimental data obtained from the interferometer and the design changes developed based on the metrology outcome. The system performance improvements induced by the experimental verification achieved by the interferometer were discussed in detail.

  15. [Shielding evaluation of lead-free board for diagnostic X-rays].

    PubMed

    Katoh, Yoh; Tsukada, Masaru; Mita, Sogo; Fukushi, Masahiro; Nyui, Yoshiyuki; Abe, Shinji; Kimura, Junichi

    2010-12-20

    For physical foundation data used in the shielding calculation of structural facilities such as a radiation room, there are air kerma transmissions concerning the thickness of shielding objects, and half value layers and tenth value layers concerning a greatly attenuated wide X-ray beam. Accordingly, we evaluated the above-mentioned items with a lead-free board, which is mixed sulfuric acid calcium and barium sulfate with equiponderance for the amount of sulfuric acid calcium included in the usual plasterboard. Permeability in NCRP Report 147 is expressed by 3 parameters, α, β and γ, and shielding objects x. It showed that it corresponds to the measurement point and permeability curve with parameters, α, β and γ obtained by nonlinear regression analysis. Furthermore, we calculated the half value layer and tenth value layer concerning the greatly attenuated wide X-ray beam. The evaluated lead-free board, used in this examination, is useful as the shielding material for the diagnosis X-ray and, moreover, the partition wall materials are hard enough, with a board that is even heavier than the usual plaster board. Besides, the use of lead-free materials is friendly to the general environment.

  16. Novel High-Activity Organic Piezoelectric Materials - From Single-Molecule Response to Energy Harvesting Films

    DTIC Science & Technology

    2015-08-24

    predict the piezoresponse of conventional hydrogen-bonded organic crystals and polymers . Using these methods, we determined a theoretical maximum for...piezoelectric. Studying conventional organic piezoelectric crystals and polymers (e.g., polyvinylidene difluoride, PVDF) revealed a theoretical maximum for the...PVDF polymers and other organic solids with polar order derives from deformations among intermolecular hydrogen bonds (Fig. 1). H-bonds are weak

  17. Periodic contact between piezoelectric materials and a rigid body with a wavy surface

    NASA Astrophysics Data System (ADS)

    Zhou, Yue-Ting; Kim, Tae-Won

    2015-01-01

    An exact analysis is conducted for periodic, two-dimensional (2D) contact of piezoelectric materials in contact with a rigid body with a wavy surface pressed by uniform stresses at infinity. For three cases of eigenvalue distribution, three harmonic functions automatically satisfying the periodicity conditions are carefully constructed to facilitate the derivation of the solution of the considered problem. The stresses and electric displacements are obtained as infinite series. It is found that for the full contact case, the disturbance stress and electric displacement fields remain only the first harmonic which has the slowest decay in the y-direction. The convergence behaviours of the infinite series are checked, which shows that the external loading p and different positions have a great effect on the convergence behaviours of the infinite series and 400 terms are enough to get accurate solution at each position. Numerical results are presented to justify the validity of the present derivation and show the effect of the external loading on the contact behaviours.

  18. Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method

    NASA Astrophysics Data System (ADS)

    Shen-Shen, Chen; Juan, Wang; Qing-Hua, Li

    2016-04-01

    A scaled boundary node method (SBNM) is developed for two-dimensional fracture analysis of piezoelectric material, which allows the stress and electric displacement intensity factors to be calculated directly and accurately. As a boundary-type meshless method, the SBNM employs the moving Kriging (MK) interpolation technique to an approximate unknown field in the circumferential direction and therefore only a set of scattered nodes are required to discretize the boundary. As the shape functions satisfy Kronecker delta property, no special techniques are required to impose the essential boundary conditions. In the radial direction, the SBNM seeks analytical solutions by making use of analytical techniques available to solve ordinary differential equations. Numerical examples are investigated and satisfactory solutions are obtained, which validates the accuracy and simplicity of the proposed approach. Project supported by the National Natural Science Foundation of China (Grant Nos. 11462006 and 21466012), the Foundation of Jiangxi Provincial Educational Committee, China (Grant No. KJLD14041), and the Foundation of East China Jiaotong University, China (Grant No. 09130020).

  19. TOPICAL REVIEW: A review of power harvesting using piezoelectric materials (2003 2006)

    NASA Astrophysics Data System (ADS)

    Anton, Steven R.; Sodano, Henry A.

    2007-06-01

    The field of power harvesting has experienced significant growth over the past few years due to the ever-increasing desire to produce portable and wireless electronics with extended lifespans. Current portable and wireless devices must be designed to include electrochemical batteries as the power source. The use of batteries can be troublesome due to their limited lifespan, thus necessitating their periodic replacement. In the case of wireless sensors that are to be placed in remote locations, the sensor must be easily accessible or of a disposable nature to allow the device to function over extended periods of time. Energy scavenging devices are designed to capture the ambient energy surrounding the electronics and convert it into usable electrical energy. The concept of power harvesting works towards developing self-powered devices that do not require replaceable power supplies. A number of sources of harvestable ambient energy exist, including waste heat, vibration, electromagnetic waves, wind, flowing water, and solar energy. While each of these sources of energy can be effectively used to power remote sensors, the structural and biological communities have placed an emphasis on scavenging vibrational energy with piezoelectric materials. This article will review recent literature in the field of power harvesting and present the current state of power harvesting in its drive to create completely self-powered devices.

  20. Piezoelectric enhancement under negative pressure

    PubMed Central

    Kvasov, Alexander; McGilly, Leo J.; Wang, Jin; Shi, Zhiyong; Sandu, Cosmin S.; Sluka, Tomas; Tagantsev, Alexander K.; Setter, Nava

    2016-01-01

    Enhancement of ferroelectric properties, both spontaneous polarization and Curie temperature under negative pressure had been predicted in the past from first principles and recently confirmed experimentally. In contrast, piezoelectric properties are expected to increase by positive pressure, through polarization rotation. Here we investigate the piezoelectric response of the classical PbTiO3, Pb(Zr,Ti)O3 and BaTiO3 perovskite ferroelectrics under negative pressure from first principles and find significant enhancement. Piezoelectric response is then tested experimentally on free-standing PbTiO3 and Pb(Zr,Ti)O3 nanowires under self-sustained negative pressure, confirming the theoretical prediction. Numerical simulations verify that negative pressure in nanowires is the origin of the enhanced electromechanical properties. The results may be useful in the development of highly performing piezoelectrics, including lead-free ones. PMID:27396411

  1. Piezoelectric enhancement under negative pressure

    NASA Astrophysics Data System (ADS)

    Kvasov, Alexander; McGilly, Leo J.; Wang, Jin; Shi, Zhiyong; Sandu, Cosmin S.; Sluka, Tomas; Tagantsev, Alexander K.; Setter, Nava

    2016-07-01

    Enhancement of ferroelectric properties, both spontaneous polarization and Curie temperature under negative pressure had been predicted in the past from first principles and recently confirmed experimentally. In contrast, piezoelectric properties are expected to increase by positive pressure, through polarization rotation. Here we investigate the piezoelectric response of the classical PbTiO3, Pb(Zr,Ti)O3 and BaTiO3 perovskite ferroelectrics under negative pressure from first principles and find significant enhancement. Piezoelectric response is then tested experimentally on free-standing PbTiO3 and Pb(Zr,Ti)O3 nanowires under self-sustained negative pressure, confirming the theoretical prediction. Numerical simulations verify that negative pressure in nanowires is the origin of the enhanced electromechanical properties. The results may be useful in the development of highly performing piezoelectrics, including lead-free ones.

  2. Lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanowires for energy harvesting.

    PubMed

    Zhou, Zhi; Bowland, Christopher C; Malakooti, Mohammad H; Tang, Haixiong; Sodano, Henry A

    2016-03-07

    Lead-free piezoelectric nanowires (NWs) show strong potential in sensing and energy harvesting applications due to their flexibility and ability to convert mechanical energy to electric energy. Currently, most lead-free piezoelectric NWs are produced through low yield synthesis methods and result in low electromechanical coupling, which limit their efficiency as energy harvesters. In order to alleviate these issues, a scalable method is developed to synthesize perovskite type 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-BCT) NWs with high piezoelectric coupling coefficient. The piezoelectric coupling coefficient of the BZT-BCT NWs is measured by a refined piezoresponse force microscopy (PFM) testing method and shows the highest reported coupling coefficient for lead-free piezoelectric nanowires of 90 ± 5 pm V(-1). Flexible nanocomposites utilizing dispersed BZT-BCT NWs are fabricated to demonstrate an energy harvesting application with an open circuit voltage of up to 6.25 V and a power density of up to 2.25 μW cm(-3). The high electromechanical coupling coefficient and high power density demonstrated with these lead-free NWs produced via a scalable synthesis method shows the potential for high performance NW-based devices.

  3. Lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanowires for energy harvesting

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; Bowland, Christopher C.; Malakooti, Mohammad H.; Tang, Haixiong; Sodano, Henry A.

    2016-02-01

    Lead-free piezoelectric nanowires (NWs) show strong potential in sensing and energy harvesting applications due to their flexibility and ability to convert mechanical energy to electric energy. Currently, most lead-free piezoelectric NWs are produced through low yield synthesis methods and result in low electromechanical coupling, which limit their efficiency as energy harvesters. In order to alleviate these issues, a scalable method is developed to synthesize perovskite type 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-BCT) NWs with high piezoelectric coupling coefficient. The piezoelectric coupling coefficient of the BZT-BCT NWs is measured by a refined piezoresponse force microscopy (PFM) testing method and shows the highest reported coupling coefficient for lead-free piezoelectric nanowires of 90 +/- 5 pm V-1. Flexible nanocomposites utilizing dispersed BZT-BCT NWs are fabricated to demonstrate an energy harvesting application with an open circuit voltage of up to 6.25 V and a power density of up to 2.25 μW cm-3. The high electromechanical coupling coefficient and high power density demonstrated with these lead-free NWs produced via a scalable synthesis method shows the potential for high performance NW-based devices.

  4. Properties of lead-free BZT-BCT ceramics synthesized using nanostructured ZnO as a sintering aid

    NASA Astrophysics Data System (ADS)

    Tuan, Dang Anh; Tung, Vo Thanh; Chuong, Truong Van; Hong, Le Van

    2015-11-01

    This article studies the microstructure and piezoelectric properties of low sintering temperature lead-free ceramics 0.52(Ba0.7Ca0.3)TiO3 - 0.48Ba(Zr0.2Ti0.8)O3-doped with ZnO nanoparticles (noted as 0.48BZT-y, y is content of ZnO in wt%, y =0.00, 0.05, 0.10, 0.15, 0.20 and 0.25). The obtained results of Raman scattering and dielectric measurements have confirmed that Zn2+ has occupied B site, to cause a deformation in the ABO3-type lattice of the 0.48BZT-y compounds. The 0.15 wt% ZnO-doped ceramic sintered at 1350∘C exhibited excellent piezoelectric parameters: d33 = 420pC/N, d31 = -174pC/N, kp = 0.483, kt = 0.423 and k33 = 0.571. The obtained results indicate that the high-quality lead-free BZT-BCT ceramic could be successfully synthesized at a low sintering temperature of 1350∘C by doping an appropriated amount of ZnO.

  5. High temperature lead-free solder for microelectronics

    NASA Astrophysics Data System (ADS)

    Gayle, Frank W.; Becka, Gary; Syed, Ahmer; Badgett, Jerry; Whitten, Gordon; Pan, Tsung-Yu; Grusd, Angela; Bauer, Brian; Lathrop, Rick; Slattery, Jim; Anderson, Iver; Foley, Jim; Gickler, Alan; Napp, Duane; Mather, John; Olson, Chris

    2001-06-01

    This paper reports results of a four-year industrial consortium effort to develop lead-free solders for high-temperature applications (up to 160°C). Work included preliminary evaluations of 32 tin-based alloys, a screening of the thermomechanical fatigue performance of 13 promising alloys, and a full manufacturability and fatigue testing of the seven most promising of those alloys, namely Sn-3.5Ag, Sn-4Ag-1Cu, Sn-4Ag-0.5Cu, Sn-2.5Ag-0.8Cu-0.5Sb, Sn-4.6Ag-1.6Cu-1Sb-1Bi, Sn-3.3Ag-1Cu-3.3Bi, and Sn-3.5Ag-1.5In (compositions in weight percent). Eight different components were used on the reliability test vehicle, and the alloys were compared through Weibull analysis. In addition, the same seven experimental alloys were tested with ball grid array packages cycled up to 100°C or 125°C. All the lead-free alloys performed well, but those containing bismuth showed especially outstanding performance. In general, the ternary and higher alloys performed as well or better than the industry standard tin-silver eutectic, suggesting that solders other than the tin-silver eutectic should be considered for high-reliability, high-temperature applications.

  6. Characterizing the effects of friction liner materials on the performance of piezoelectric motors using finite element analysis

    SciTech Connect

    Gute, G.D.; Halter, S.L.

    1995-10-01

    A finite element model of a Panasonic USM-40D piezoelectric motor`s rotor was coupled with a finite element model of the motor`s friction liner/rotor so that the frictional interface could be further studied. Results from the model were used to study the affects of various friction liner material properties on motor stall torque. Statistical methods were used to determine the significant friction liner material properties and their interactions. An equation for predicting the stall torque as a function of the significant variables and their interactions was established.

  7. Low cost fabrication of polymer composite (h-ZnO + PDMS) material for piezoelectric device application

    NASA Astrophysics Data System (ADS)

    Singh, Akanksha; Das, Sonatan; Bharathkumar, Mareddi; Revanth, D.; Karthik, ARB; Sudhakara Sastry, Bala; Ramgopal Rao, V.

    2016-07-01

    Flexible piezoelectric composites offer alternative and/or additional solutions to sensor, actuator and transducer applications. Here in this work, we have successfully fabricated highly flexible piezoelectric composites with poly dimethyl siloxane (PDMS) using herbal zinc oxide (h-ZnO) as filler having weight fractions up to 50 wt.% by solution casting of dispersions of h-ZnO in PDMS. Excellent piezo properties (Resonant frequency 935 Hz, d*33 29.76 pm V-1), physiochemical properties (Wurtzite structure ZnO, 380 nm absorbance) and mechanical properties (Young modulus 16.9 MPa) have been optimized with theoretical simulations and observed experimentally for h-ZnO + PDMS. As such, the demonstrated piezoelectric PDMS membranes combined with the excellent properties of these composites open new ways to ‘soft touch’ applications and could serve as a variety of soft and sensitive electromechanical transducers, which are desired for a variety of sensor and energy harvesting applications.

  8. Actuation Using Piezoelectric Materials: Application in Augmenters, Energy Harvesters, and Motors

    NASA Technical Reports Server (NTRS)

    Hasenoehrl, Jennifer

    2012-01-01

    Piezoelectric actuators are used in many manipulation, movement, and mobility applications as well as transducers and sensors. When used at the resonance frequencies of the piezoelectric stack, the actuator performs at its maximum actuation capability. In this Space Grant internship, three applications of piezoelectric actuators were investigated including hammering augmenters of rotary drills, energy harvesters, and piezo-motors. The augmenter shows improved drill performance over rotation only. The energy harvesters rely on moving fluid to convert mechanical energy into electrical power. Specific designs allow the harvesters more freedom to move, which creates more power. The motor uses the linear movement of the actuator with a horn applied to the side of a rotor to create rotational motion. Friction inhibits this motion and is to be minimized for best performance. Tests and measurements were made during this internship to determine the requirements for optimal performance of the studied mechanisms and devices.

  9. Unprecedented Electro-Optic Performance in Lead-Free Transparent Ceramics.

    PubMed

    Dupuy, Alexander D; Kodera, Yasuhiro; Garay, Javier E

    2016-09-01

    A high-performance lead-free electro-optic (EO) transparent material is introduced and used in an EO device operating up to 10 kHz. The BZT-BCT ceramic, named as BXT, has an effective DC EO coefficient, rc = 530 pm V(-1) , which is higher than state-of-the-art materials such as LiNbO3 . The high EO response can be leveraged for miniaturization and/or reduction of the operating voltage of EO devices.

  10. Piezoelectric step-motion actuator

    DOEpatents

    Mentesana; Charles P.

    2006-10-10

    A step-motion actuator using piezoelectric material to launch a flight mass which, in turn, actuates a drive pawl to progressively engage and drive a toothed wheel or rod to accomplish stepped motion. Thus, the piezoelectric material converts electrical energy into kinetic energy of the mass, and the drive pawl and toothed wheel or rod convert the kinetic energy of the mass into the desired rotary or linear stepped motion. A compression frame may be secured about the piezoelectric element and adapted to pre-compress the piezoelectric material so as to reduce tensile loads thereon. A return spring may be used to return the mass to its resting position against the compression frame or piezoelectric material following launch. Alternative embodiment are possible, including an alternative first embodiment wherein two masses are launched in substantially different directions, and an alternative second embodiment wherein the mass is eliminated in favor of the piezoelectric material launching itself.

  11. Active vibration control of flexible cantilever plates using piezoelectric materials and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Abdeljaber, Osama; Avci, Onur; Inman, Daniel J.

    2016-02-01

    The study presented in this paper introduces a new intelligent methodology to mitigate the vibration response of flexible cantilever plates. The use of the piezoelectric sensor/actuator pairs for active control of plates is discussed. An intelligent neural network based controller is designed to control the optimal voltage applied on the piezoelectric patches. The control technique utilizes a neurocontroller along with a Kalman Filter to compute the appropriate actuator command. The neurocontroller is trained based on an algorithm that incorporates a set of emulator neural networks which are also trained to predict the future response of the cantilever plate. Then, the neurocontroller is evaluated by comparing the uncontrolled and controlled responses under several types of dynamic excitations. It is observed that the neurocontroller reduced the vibration response of the flexible cantilever plate significantly; the results demonstrated the success and robustness of the neurocontroller independent of the type and distribution of the excitation force.

  12. Vortex shedding induced energy harvesting from piezoelectric materials in heating, ventilation and air conditioning flows

    NASA Astrophysics Data System (ADS)

    Weinstein, L. A.; Cacan, M. R.; So, P. M.; Wright, P. K.

    2012-04-01

    A cantilevered piezoelectric beam is excited in a heating, ventilation and air conditioning (HVAC) flow. This excitation is amplified by the interactions between (a) an aerodynamic fin attached at the end of the piezoelectric cantilever and (b) the vortex shedding downstream from a bluff body placed in the air flow ahead of the fin/cantilever assembly. The positioning of small weights along the fin enables tuning of the energy harvester to operate at resonance for flow velocities from 2 to 5 m s-1, which are characteristic of HVAC ducts. In a 15 cm diameter air duct, power generation of 200 μW for a flow speed of 2.5 m s-1 and power generation of 3 mW for a flow speed of 5 m s-1 was achieved. These power outputs are sufficient to power a wireless sensor node for HVAC monitoring systems or other sensors for smart building technology.

  13. Local and Global Properties of a Lead-Free Solder

    NASA Astrophysics Data System (ADS)

    Ma, Z.; Chalon, F.; Leroy, R.; Ranganathan, N.; Beake, B. D.

    2013-07-01

    Elastic and viscous properties including Young's modulus, hardness, creep rate sensitivity, and fatigue resistance of Sn-1.2Ag-0.5Cu-0.05Ni lead-free solder have been investigated. The properties of bulk specimens and in situ solder balls are compared. Experiments show good correlations of Young's modulus and creep rate sensitivity between conventional measurements and nanoindentation results on bulk specimens. Further mechanical properties of the beach-ball microstructure in solder balls are characterized by nanoindentation. The load-partial unload technique has been used to determine the variation in mechanical properties with increasing depth of penetration into the intermetallic inclusions in the in situ solder. The fatigue resistances of the bulk specimens and solder balls are compared by using the novel nanoimpact method. In comparison with bulk specimens, it is found that in situ solder has higher Young's modulus, lower creep strain rate sensitivity, and better fatigue resistance. The effects of soldering and the scale differences strongly affect the mechanical and fatigue properties of in situ solder.

  14. Compact Sensitive Piezoelectric Mass Balance for Measurement of Unconsolidated Materials in Space

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Trebi-Ollennu, Ashitey; Bonitz, Robert; Bar-Cohen, Yoseph; Yen, Jesse T.

    2010-01-01

    In many in-situ instruments information about the mass of the sample could aid in the interpretation of the data and portioning instruments might require an accurate sizing of the sample mass before dispensing the sample. In addition, on potential sample return missions a method to directly assess the captured sample size would be required to determine if the sampler could return or needs to continue attempting to acquire sample. In an effort to meet these requirements piezoelectric balances were developed using flextensional actuators which are capable of monitoring the mass using two methods. A piezoelectric balance could be used to measure mass directly by monitoring the voltage developed across the piezoelectric which is linear with force, or it could be used in resonance to produce a frequency change proportional to the mass change. In this case of the latter, the piezoelectric actuator/balance would be swept in frequency through its fundamental resonance. If a mass is added to the balance the resonance frequency would shift down proportionally to the mass. By monitoring the frequency shift the mass could be determined. This design would allow for two independent measurements of the mass. In microgravity environments spacecraft thrusters could be used to provide acceleration in order to produce the required force for the first technique or to bring the mass into contact with the balance in the second approach. In addition, the measuring actuators, if driven at higher voltages, could be used to fluidize the powder to aid sample movement. In this paper, we outline some of our design considerations and present the results of a few prototype balances that we have developed.

  15. Piezoelectric Energy Harvesting Solutions

    PubMed Central

    Caliò, Renato; Rongala, Udaya Bhaskar; Camboni, Domenico; Milazzo, Mario; Stefanini, Cesare; de Petris, Gianluca; Oddo, Calogero Maria

    2014-01-01

    This paper reviews the state of the art in piezoelectric energy harvesting. It presents the basics of piezoelectricity and discusses materials choice. The work places emphasis on material operating modes and device configurations, from resonant to non-resonant devices and also to rotational solutions. The reviewed literature is compared based on power density and bandwidth. Lastly, the question of power conversion is addressed by reviewing various circuit solutions. PMID:24618725

  16. High response piezoelectric and piezoresistive materials for fast, low voltage switching: simulation and theory of transduction physics at the nanometer-scale.

    PubMed

    Newns, Dennis M; Elmegreen, Bruce G; Liu, Xiao-Hu; Martyna, Glenn J

    2012-07-17

    Field effect transistors are reaching the limits imposed by the scaling of materials and the electrostatic gating physics underlying the device. In this Communication, a new type of switch based on different physics, which combines known piezoelectric and piezoresistive materials, is described and is shown by theory and simulation to achieve gigahertz digital switching at low voltage (0.1 V).

  17. Mechanical Properties and Microstructure Investigation of Lead Free Solder

    NASA Technical Reports Server (NTRS)

    Wang, Qing; Gail, William F.; Johnson, R. Wayne; Strickland, Mark; Blanche, Jim

    2005-01-01

    While the electronics industry appears to be focusing on Sn-Ag-Cu as the alloy of choice for lead free electronics assembly, ,the exact composition varies by geographic region, supplier and user. Add to that dissolved copper and silver from the printed circuit board traces and surface finish, and there can be significant variation in the final solder joint composition. A systematic study of the mechanical and microstructural properties of Sn-Ag-Cu alloys with Ag varying from 2wt% to 4wt% and Cu varying from 0.5wt% to lSwt%, was undertaken in this research study. Different sample preparation techniques (water quenched, oil quenched and water quenched followed by reflow) were explored and the resulting microstructure compared to that of a typical reflowed lead free chip scale package (CSP) solder joint. Tensile properties (modulus, 0.2% yield strength and the ultimate tensile strength) and creep behavior of selected alloy compositions (Sn-4Ag-1 X u , Sn-4Ag-OSCu, Sn- 2Ag-1 X u , Sn-2Ag-OSCu, Sn-3.5Ag-O.SCu) were determined for three conditions: as- cast; aged for 100 hours at 125OC; and aged for 250 hours at 125OC. There was no significant difference in Young's Modulus as a function of alloy composition. After an initial decrease in modulus after 100 hours at 125"C, there was an insignificant change with further aging. The distribution of 0.2% strain yield stress and ultimate tensile strength as a function of alloy composition was more significant and decreased with aging time and temperature. The microstructures of these alloys were examined using light and scanning electron microscopy (LM and SEM) respectively and SEM based energy dispersive x-ray spectroscopy (EDS). Fracture surface and cross-section analysis were performed on the specimens after creep testing. The creep testing results and the effect of high temperature aging on mechanical properties is presented for the oil quenched samples. In general the microstructure of oil quenched specimen exhibited a

  18. Effects of K4CuNb8O23 on phase structure and electrical properties of K0.5Na0.5NbO3-LiSbO3 lead-free piezoceramics

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Chu, Ruiqing; Xu, Zhijun; Lv, Huiqin; Wu, Liming; Yang, Yizheng; Li, Guorong

    2012-07-01

    Dense K4CuNb8O23 (KCN) modified 0.948K0.5Na0.5NbO3-0.052LiSbO3 (KNNLS) ceramics were prepared by conventional solid state reaction method. The effect of addition of K4CuNb8O23 liquid phase sintering aid on the phase structure and electrical properties of ceramics was studied. Results showed that K4CuNb8O23 induced a perovskite structure transition from coexistence of orthorhombic and tetragonal phases to orthorhombic symmetry. The addition of K4CuNb8O23 promoted the sintering of KNNLS ceramics. In particular, the K4CuNb8O23 addition to the KNNLS greatly improved the mechanical quality factor Qm value. The ceramics with x=0.8 sintered at 1090 °C possess the optimum properties (Qm=192, d33=135 pC/N, tan δ=0.024 and kp=0.357). These results indicate that the ceramic is a promising candidate for lead-free high-power piezoelectric devices, such as piezoelectric actuators, transformers and filter materials.

  19. An Approach for Impression Creep of Lead Free Microelectronic Solders

    NASA Astrophysics Data System (ADS)

    Anastasio, Onofrio A.

    2002-06-01

    Currently, the microelectronics industry is transitioning from lead-containing to lead-free solders in response to legislation in the EU and Japan. Before an alternative alloy can be designated as a replacement for current Pb-Sn extensive testing must be accomplished. One major characteristic of the alloy that must be considered is creep. Traditionally, creep testing requires numerous samples and a long tin, which thwarts the generation of comprehensive creep databases for difficult to prepare samples such as microelectronic solder joints. However, a relatively new technique, impression creep enables us to rapidly generate creep data. This test uses a cylindrical punch with a flat end to make an impression on the surface of a specimen under constant load. The steady state velocity of the indenter is found to have the same stress and temperature dependence as the conventional unidirectional creep test using bulk specimens. This thesis examines impression creep tests of eutectic Sn-Ag. A testing program and apparatus was developed constructed based on a servo hydraulic test frame. The apparatus is capable of a load resolution of 0.01N with a stability of plus/minus 0.1N, and a displacement resolution of 0.05 microns with a stability of plus/minus 0.1 microns. Samples of eutectic Sn-Ag solder were reflowed to develop the microstructure used in microelectronic packaging. Creep tests were conducted at various stresses and temperatures and showed that coarse microstructures creep more rapidly than the microstructures in the tested regime.

  20. Improved Piezoelectric Loudspeakers And Transducers

    NASA Technical Reports Server (NTRS)

    Regan, Curtis Randall; Jalink, Antony; Hellbaum, Richard F.; Rohrbach, Wayne W.

    1995-01-01

    Loudspeakers and related acoustic transducers of improved type feature both light weight and energy efficiency of piezoelectric transducers and mechanical coupling efficiency. Active component of transducer made from wafer of "rainbow" piezoelectric material, ceramic piezoelectric material chemically reduced on one face. Chemical treatment forms wafer into dishlike shallow section of sphere. Both faces then coated with electrically conductive surface layers serving as electrodes. Applications include high-fidelity loudspeakers, and underwater echo ranging devices.

  1. Visualization of polar nanoregions in lead-free relaxors via piezoresponse force microscopy in torsional dual AC resonance tracking mode

    NASA Astrophysics Data System (ADS)

    Liu, Na; Dittmer, Robert; Stark, Robert W.; Dietz, Christian

    2015-07-01

    Polar nanoregions (PNRs) play a key role in the functionality of relaxor ferroelectrics; however, visualizing them in lead-free relaxor ferroelectrics with high lateral resolution is still challenging. Thus, we studied herein the local ferroelectric domain distribution of the lead-free bismuth-based (1 - x)(Bi1/2Na1/2TiO3-Bi1/2K1/2TiO3) - x(Bi1/2Mg1/2TiO3) piezoceramics which show a relaxor behavior using dual AC resonance tracking (DART) piezoresponse force microscopy (PFM). By using excitation frequencies at either side of the contact resonance peak of the torsional cantilever vibration, an enhanced contrast in the amplitude and phase images of the piezoresponse can be achieved. Additionally, this tracking technique reduces the topographical crosstalk while mapping the local electromechanical properties. The true drive amplitude, drive phase, contact resonant frequency and quality factor can be estimated from DART-PFM data obtained with vertically or torsionally vibrating cantilevers. This procedure yields a three-dimensional quantitative map of the local piezoelectric properties of the relaxor ferroelectric samples. With this approach, torsional DART allowed for the visualization of fine substructures within the monodomains, suggesting the existence of PNRs in relaxor ferroelectrics. The domain structures of the PNRs were visualized with high precision, and the local electromechanical characteristics of the lead-free relaxor ferroelectrics were quantitatively mapped.Polar nanoregions (PNRs) play a key role in the functionality of relaxor ferroelectrics; however, visualizing them in lead-free relaxor ferroelectrics with high lateral resolution is still challenging. Thus, we studied herein the local ferroelectric domain distribution of the lead-free bismuth-based (1 - x)(Bi1/2Na1/2TiO3-Bi1/2K1/2TiO3) - x(Bi1/2Mg1/2TiO3) piezoceramics which show a relaxor behavior using dual AC resonance tracking (DART) piezoresponse force microscopy (PFM). By using excitation

  2. Piezoelectric valve

    SciTech Connect

    Petrenko, Serhiy Fedorovich

    2013-01-15

    A motorized valve has a housing having an inlet and an outlet to be connected to a pipeline, a saddle connected with the housing, a turn plug having a rod, the turn plug cooperating with the saddle, and a drive for turning the valve body and formed as a piezoelectric drive, the piezoelectric drive including a piezoelectric generator of radially directed standing acoustic waves, which is connected with the housing and is connectable with a pulse current source, and a rotor operatively connected with the piezoelectric generator and kinematically connected with the rod of the turn plug so as to turn the turn plug when the rotor is actuated by the piezoelectric generator.

  3. Piezoelectrically Enhanced Photocathodes

    NASA Technical Reports Server (NTRS)

    Beach, Robert A.; Nikzad, Shouleh; Bell, Lloyd Douglas; Strittmatter, Robert

    2011-01-01

    Doping of photocathodes with materials that have large piezoelectric coefficients has been proposed as an alternative means of increasing the desired photoemission of electrons. Treating cathode materials to increase emission of electrons is called "activation" in the art. It has been common practice to activate photocathodes by depositing thin layers of suitable metals (usually, cesium). Because cesium is unstable in air, fabrication of cesiated photocathodes and devices that contain them must be performed in sealed tubes under vacuum. It is difficult and costly to perform fabrication processes in enclosed, evacuated spaces. The proposed piezoelectrically enhanced photocathodes would have electron-emission properties similar to those of cesiated photocathodes but would be stable in air, and therefore could be fabricated more easily and at lower cost. Candidate photocathodes include nitrides of elements in column III of the periodic table . especially compounds of the general formula Al(x)Ga(1.x)N (where 0< or = x < or =.1). These compounds have high piezoelectric coefficients and are suitable for obtaining response to ultraviolet light. Fabrication of a photocathode according to the proposal would include inducement of strain in cathode layers during growth of the layers on a substrate. The strain would be induced by exploiting structural mismatches among the various constituent materials of the cathode. Because of the piezoelectric effect in this material, the strain would give rise to strong electric fields that, in turn, would give rise to a high concentration of charge near the surface. Examples of devices in which piezoelectrically enhanced photocathodes could be used include microchannel plates, electron- bombarded charge-coupled devices, image tubes, and night-vision goggles. Piezoelectrically enhanced photocathode materials could also be used in making highly efficient monolithic photodetectors. Highly efficient and stable piezoelectrically enhanced

  4. Study on active vibration control for high order mode of flexible beam using smart material piezoelectric ceramic

    NASA Astrophysics Data System (ADS)

    Wu, Da-fang; Huang, Liang; Mu, Meng; Wang, Yue-wu; Wu, Shuang

    2011-11-01

    In order to reduce effective load and lower the launch cost, many light-weight flexible structures are employed in spacecraft. The research of active control on flexible structural vibration is very important in spacecraft design. Active vibration control on a flexible beam with smart material piezoelectric pieces bonded in surface is investigated experimentally using independent modal space control method, which is able to control the first three modes independently. A comparison between the systems responses before and after control indicates that the modal damping of flexible structure is greatly improved after active control is performed, indicating remarkable vibration suppression effect. Dynamic equation of the flexible beam is deducted by Hamilton principle, and numerical simulation of active vibration control on the first three order vibration modes is also conducted in this paper. The simulation result matches experimental result very well. Both experimental and numerical results indicate that the independent modal control method using piezoelectric patch as driving element is a very effective approach to realize vibration suppression, which has promising applications in aerospace field.

  5. Study on active vibration control for high order mode of flexible beam using smart material piezoelectric ceramic

    NASA Astrophysics Data System (ADS)

    Wu, Da-fang; Huang, Liang; Mu, Meng; Wang, Yue-wu; Wu, Shuang

    2012-04-01

    In order to reduce effective load and lower the launch cost, many light-weight flexible structures are employed in spacecraft. The research of active control on flexible structural vibration is very important in spacecraft design. Active vibration control on a flexible beam with smart material piezoelectric pieces bonded in surface is investigated experimentally using independent modal space control method, which is able to control the first three modes independently. A comparison between the systems responses before and after control indicates that the modal damping of flexible structure is greatly improved after active control is performed, indicating remarkable vibration suppression effect. Dynamic equation of the flexible beam is deducted by Hamilton principle, and numerical simulation of active vibration control on the first three order vibration modes is also conducted in this paper. The simulation result matches experimental result very well. Both experimental and numerical results indicate that the independent modal control method using piezoelectric patch as driving element is a very effective approach to realize vibration suppression, which has promising applications in aerospace field.

  6. Intermetallic phase detection in lead-free solders using synchrotron x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Jackson, Gavin J.; Lu, Hua; Durairaj, Raj; Hoo, Nick; Bailey, Chris; Ekere, Ndy N.; Wright, Jon

    2004-12-01

    The high-intensity, high-resolution x-ray source at the European Synchrotron Radiation Facility (ESRF) has been used in x-ray diffraction (XRD) experiments to detect intermetallic compounds (IMCs) in lead-free solder bumps. The IMCs found in 95.5Sn3.8Ag0.7Cu solder bumps on Cu pads with electroplated-nickel immersion-gold (ENIG) surface finish are consistent with results based on traditional destructive methods. Moreover, after positive identification of the IMCs from the diffraction data, spatial distribution plots over the entire bump were obtained. These spatial distributions for selected intermetallic phases display the layer thickness and confirm the locations of the IMCs. For isothermally aged solder samples, results have shown that much thicker layers of IMCs have grown from the pad interface into the bulk of the solder. Additionally, the XRD technique has also been used in a temperature-resolved mode to observe the formation of IMCs, in situ, during the solidification of the solder joint. The results demonstrate that the XRD technique is very attractive as it allows for nondestructive investigations to be performed on expensive state-of-the-art electronic components, thereby allowing new, lead-free materials to be fully characterized.

  7. Study on Dynamic Failure Model of Lead-Free Solders Using Shpb Techniques

    NASA Astrophysics Data System (ADS)

    Niu, Xiaoyan; Yuan, Guozheng; Li, Zhigang; Shu, Xuefeng

    The dynamic compressive properties of 96.3Sn3Ag0.7Cu and 99.3Sn0.7Cu solders were studied by means of a split Hopkinson pressure bar at strain rates ranging from 500 to 2000 s-1. Tests were conducted at room temperature and under uniaxial compressive conditions. Eutectic SnPb solders were used as the reference. From the data of tests, it was found that yield strength and flow stress increased remarkably with the increase of strain rate. On logarithmic scales, the yield strength increased linearly with strain rate. These lead-free solders revealed certain visco-plastic behavior and strain rate sensitivity, which predicted using Johnson-Cook material model. Related parameters in the model were determined from the experiment. Compared with the typical Pb-containing solder Sn63Pb37, these lead-free solders showed some fine properties and could substitute some Pb-containing solder alloys in microelectronic components packaging and interconnects.

  8. Effect of gamma radiation on micromechanical hardness of lead-free solder joint

    SciTech Connect

    Paulus, Wilfred; Rahman, Irman Abdul; Jalar, Azman; Kamil, Insan; Bakar, Maria Abu; Yusoff, Wan Yusmawati Wan

    2015-09-25

    Lead-free solders are important material in nano and microelectronic surface mounting technology for various applications in bio medicine, environmental monitoring, spacecraft and satellite instrumentation. Nevertheless solder joint in radiation environment needs higher reliability and resistance to any damage caused by ionizing radiations. In this study a lead-free 99.0Sn0.3Ag0.7Cu wt.% (SAC) solder joint was developed and subjected to various doses of gamma radiation to investigate the effects of the ionizing radiation to micromechanical hardness of the solder. Averaged hardness of the SAC joint was obtained from nanoindentation test. The results show a relationship between hardness values of indentations and the increment of radiation dose. Highest mean hardness, 0.2290 ± 0.0270 GPa was calculated on solder joint which was exposed to 5 Gray dose of gamma radiation. This value indicates possible radiation hardening effect on irradiated solder. The hardness gradually decreased to 0.1933 ± 0.0210 GPa and 0.1631 ± 0.0173 GPa when exposed to doses 50 and 500 gray respectively. These values are also lower than the hardness of non irradiated sample which was calculated as 0.2084 ± 0.0.3633 GPa indicating possible radiation damage and needs further related atomic dislocation study.

  9. Enhancing electromechanical properties of lead-free ferroelectrics with bilayer ceramic/ceramic composites.

    PubMed

    Ayrikyan, Azatuhi; Rojas, Virginia; Molina-Luna, Leopoldo; Acosta, Matias; Koruza, Jurij; Webber, Kyle G

    2015-06-01

    The macroscopic electromechanical behavior of lead-free bilayer composites was characterized at room temperature. One layer consisted of a nonergodic relaxor, (Bi1/2Na1/2)TiO3-7BaTiO3, with an electric-field-induced longrange ferroelectric order, whereas the other is understood to be an ergodic relaxor [(Bi1/2Na1/2)TiO3-25SrTiO3] that undergoes a reversible electric-field-induced macroscopic nonpolar-to-polar transition. Microstructural evidence of a bilayer with low diffusion between the two components is also demonstrated. By taking advantage of the different macroscopic strain- and polarization-electric-field responses of the two constituents, internal mechanical and electrical fields can be developed that enhance the unipolar strain over that expected by a rule of mixtures approximation, thereby improving the properties needed for application of such materials to actuator systems. It is possible through further tailoring of the volume fractions and macroscopic properties of the constituents to optimize the electromechanical properties of multilayer lead-free ferroelectrics.

  10. Attenuation of empennage buffet response through active control of damping using piezoelectric material

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Miller, Jonathan M.; Doggett, Robert V., Jr.

    1993-01-01

    Dynamic response and damping data obtained from buffet studies conducted in a low-speed wind tunnel by using a simple, rigid model attached to spring supports are presented. The two parallel leaf spring supports provided a means for the model to respond in a vertical translation mode, thus simulating response in an elastic first bending mode. Wake-induced buffeting flow was created by placing an airfoil upstream of the model of that the wake of the airfoil impinged on the model. Model response was sensed by a strain gage mounted on one of the springs. The output signal from the strain gage was fed back through a control law implemented on a desktop computer. The processed signals were used to 'actuate' a piezoelectric bending actuator bonded to the other spring in such a way as to add damping as the model responded. The results of this 'proof-of-concept' study show that the piezoelectric actuator was effective in attenuating the wake-induced buffet response over the range of parameters investigated.

  11. Piezoelectric cantilever sensors

    NASA Technical Reports Server (NTRS)

    Shih, Wan Y. (Inventor); Shih, Wei-Heng (Inventor); Shen, Zuyan (Inventor)

    2008-01-01

    A piezoelectric cantilever with a non-piezoelectric, or piezoelectric tip useful as mass and viscosity sensors. The change in the cantilever mass can be accurately quantified by monitoring a resonance frequency shift of the cantilever. For bio-detection, antibodies or other specific receptors of target antigens may be immobilized on the cantilever surface, preferably on the non-piezoelectric tip. For chemical detection, high surface-area selective absorbent materials are coated on the cantilever tip. Binding of the target antigens or analytes to the cantilever surface increases the cantilever mass. Detection of target antigens or analytes is achieved by monitoring the cantilever's resonance frequency and determining the resonance frequency shift that is due to the mass of the adsorbed target antigens on the cantilever surface. The use of a piezoelectric unimorph cantilever allows both electrical actuation and electrical sensing. Incorporating a non-piezoelectric tip (14) enhances the sensitivity of the sensor. In addition, the piezoelectric cantilever can withstand damping in highly viscous liquids and can be used as a viscosity sensor in wide viscosity range.

  12. Assessment of the Radiation Attenuation Properties of Several Lead Free Composites by Monte Carlo Simulation

    PubMed Central

    Kazempour, M.; Saeedimoghadam, M.; Shekoohi Shooli, F.; Shokrpour, N.

    2015-01-01

    Background: In diagnostic radiology lead apron, are usually used to protect patients and radiology staff against ionizing radiation. Lead apron is a desirable shield due to high absorption and effective attenuation of x-ray photons in the diagnostic radiology range. Objective: Although lead aprons have good radiation protection properties, in recent years, researchers have been looking for alternative materials to be used instead of lead apron because of some problems derived from lead-content of aprons. Because of its lead-content, these radiation protection garments are so heavy and uncomfortable for the staff to wear, particularly in long-time uses. In addition, lead is a toxic element and its disposal is associated with environmental and human-health hazards. Method: In this study, several new combinations of lead free materials ((W-Si), (W-Sn-Ba-EPVC ), (W-Sn-Cd-EPVC)) have been investigated in the energy range of diagnostic radiology in two geometries: narrow and broad beam. Geometries of the radiation attenuation characteristics of these materials was assessed in 40, 60, 90 and 120 kVp and the results compared with those of some lead-containing materials ((Pb-Si), (Pb-EPVC)). Results: Lead shields still provide better protection in low energies (below 40 kVp). Combination of W-Sn-Cd-EPVC has shown the best radiation attenuation features in 60 and 90 kVp and the composition of (W-Sn-Ba-EPVC) represents the best attenuation in 120 kVp, even better than previously mentioned lead- containing composites. Conclusion: Lead free shields are completely effective for protection against X-ray energies in the range of 60 to 120 kVp. PMID:26157732

  13. (100)-Textured KNN-based thick film with enhanced piezoelectric property for intravascular ultrasound imaging

    PubMed Central

    Zhu, Benpeng; Zhang, Zhiqiang; Ma, Teng; Yang, Xiaofei; Li, Yongxiang; Shung, K. Kirk; Zhou, Qifa

    2015-01-01

    Using tape-casting technology, 35 μm free-standing (100)-textured Li doped KNN (KNLN) thick film was prepared by employing NaNbO3 (NN) as template. It exhibited similar piezoelectric behavior to lead containing materials: a longitudinal piezoelectric coefficient (d33) of ∼150 pm/V and an electromechanical coupling coefficient (kt) of 0.44. Based on this thick film, a 52 MHz side-looking miniature transducer with a bandwidth of 61.5% at −6 dB was built for Intravascular ultrasound (IVUS) imaging. In comparison with 40 MHz PMN-PT single crystal transducer, the rabbit aorta image had better resolution and higher noise-to-signal ratio, indicating that lead-free (100)-textured KNLN thick film may be suitable for IVUS (>50 MHz) imaging. PMID:25991874

  14. (100)-Textured KNN-based thick film with enhanced piezoelectric property for intravascular ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Benpeng; Zhang, Zhiqiang; Ma, Teng; Yang, Xiaofei; Li, Yongxiang; Shung, K. Kirk; Zhou, Qifa

    2015-04-01

    Using tape-casting technology, 35 μm free-standing (100)-textured Li doped KNN (KNLN) thick film was prepared by employing NaNbO3 (NN) as template. It exhibited similar piezoelectric behavior to lead containing materials: a longitudinal piezoelectric coefficient (d33) of ˜150 pm/V and an electromechanical coupling coefficient (kt) of 0.44. Based on this thick film, a 52 MHz side-looking miniature transducer with a bandwidth of 61.5% at -6 dB was built for Intravascular ultrasound (IVUS) imaging. In comparison with 40 MHz PMN-PT single crystal transducer, the rabbit aorta image had better resolution and higher noise-to-signal ratio, indicating that lead-free (100)-textured KNLN thick film may be suitable for IVUS (>50 MHz) imaging.

  15. SU-E-P-09: Radiation Transmission Measurements and Evaluation of Diagnostic Lead-Based and Lead-Free Aprons

    SciTech Connect

    Syh, J

    2014-06-01

    Purpose: This study was conducted to ensure that various lead shield apron manufacturers provided accurate attenuation factors regardless of whether the apron was made of lead-based or lead-free equivalent material. Methods: A calibrated ionization survey meter was placed at chest height and 36 cm horizontally away from a solid water phantom on a simulator couch. Measurements were done with or without apron. Radiation field was set to 24cmx24cm with the phantom at 100cm source-to-surface distance. Irradiation time was set for 1 minute at voltages of 60, 80, 100 and 120 kVp. Current was set at 6mA. Results: Between 60 kVp and 120 kVp, the transmission through 0.50 mm of lead-based apron was between 1.0% and 6.5% with a mean value of 3.2% and a standard deviation (s.d.) of 1.4%. The transmissions through the 0.50 mm lead-free aprons were 1.0 % to 12.0% with a mean value of 6.1% and s.d. of 2.6%. At 120 kVp, the transmission value was 6.5% for 0.50 mm lead-based apron and 11.1% to 12.0% for 0.50 mm lead-free aprons. The radiation transmissions at 80 kVp, measured in two different 0.5 mm lead-free aprons, were 4.3% each. However, only 1.4% transmission was found through the lead-based apron. Overall, the radiation transmitted through the lead-based apron was 1/3 transmission of lead-free at 80kVp, and half value of lead-free aprons at 100 and 120 kVp. Conclusion: Even though lead-based and lead-free aprons all claimed to have the same lead equivalent thickness, the transmission might not be the same. The precaution was needed to exercise diligence in quality assurance program to assure adequate protection to staff who wear it during diagnostic procedures. The requirement for aprons not only should be in certain thickness to meet state regulation but also to keep reasonably achievable low exposure with the accurate labeling from manufacturers.

  16. Bonding nature of rare-earth-containing lead-free solders

    NASA Astrophysics Data System (ADS)

    Ramirez, Ainissa G.; Mavoori, Hareesh; Jin, Sungho

    2002-01-01

    The ability of rare-earth-containing lead-free solders to wet and bond to silica was investigated. Small additions of Lu (0.5-2 wt. %) added to eutectic Sn-Ag or Au-Sn solder render it directly solderable to a silicon oxide surface. The bonding is attributed to the migration of the rare-earth element to the solder-silica interface for chemical reaction and the creation of an interfacial layer that contains a rare-earth oxide. It was found that additions of rare-earth materials did not significantly modify the solidification microstructure or the melting point. Such oxide-bondable solders can be useful for assembly of various optical communication devices.

  17. Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Le Goupil, Florian; McKinnon, Ruth; Koval, Vladimir; Viola, Giuseppe; Dunn, Steve; Berenov, Andrey; Yan, Haixue; Alford, Neil Mcn.

    2016-06-01

    The need for more energy-efficient and environmentally-friendly alternatives in the refrigeration industry to meet global emission targets has driven efforts towards materials with a potential for solid state cooling. Adiabatic depolarisation cooling, based on the electrocaloric effect (ECE), is a significant contender for efficient new solid state refrigeration techniques. Some of the highest ECE performances reported are found in compounds close to the morphotropic phase boundary (MPB). This relationship between performance and the MPB makes the ability to tune the position of the MPB an important challenge in electrocaloric research. Here, we report direct ECE measurements performed on MPB tuned NBT-06BT bulk ceramics with a combination of A-site substitutions. We successfully shift the MPB of these lead-free ceramics closer to room temperature, as required for solid state refrigeration, without loss of the criticality of the system and the associated ECE enhancement.

  18. Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics.

    PubMed

    Le Goupil, Florian; McKinnon, Ruth; Koval, Vladimir; Viola, Giuseppe; Dunn, Steve; Berenov, Andrey; Yan, Haixue; Alford, Neil McN

    2016-06-17

    The need for more energy-efficient and environmentally-friendly alternatives in the refrigeration industry to meet global emission targets has driven efforts towards materials with a potential for solid state cooling. Adiabatic depolarisation cooling, based on the electrocaloric effect (ECE), is a significant contender for efficient new solid state refrigeration techniques. Some of the highest ECE performances reported are found in compounds close to the morphotropic phase boundary (MPB). This relationship between performance and the MPB makes the ability to tune the position of the MPB an important challenge in electrocaloric research. Here, we report direct ECE measurements performed on MPB tuned NBT-06BT bulk ceramics with a combination of A-site substitutions. We successfully shift the MPB of these lead-free ceramics closer to room temperature, as required for solid state refrigeration, without loss of the criticality of the system and the associated ECE enhancement.

  19. Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics

    PubMed Central

    Le Goupil, Florian; McKinnon, Ruth; Koval, Vladimir; Viola, Giuseppe; Dunn, Steve; Berenov, Andrey; Yan, Haixue; Alford, Neil McN.

    2016-01-01

    The need for more energy-efficient and environmentally-friendly alternatives in the refrigeration industry to meet global emission targets has driven efforts towards materials with a potential for solid state cooling. Adiabatic depolarisation cooling, based on the electrocaloric effect (ECE), is a significant contender for efficient new solid state refrigeration techniques. Some of the highest ECE performances reported are found in compounds close to the morphotropic phase boundary (MPB). This relationship between performance and the MPB makes the ability to tune the position of the MPB an important challenge in electrocaloric research. Here, we report direct ECE measurements performed on MPB tuned NBT-06BT bulk ceramics with a combination of A-site substitutions. We successfully shift the MPB of these lead-free ceramics closer to room temperature, as required for solid state refrigeration, without loss of the criticality of the system and the associated ECE enhancement. PMID:27312287

  20. Electrocaloric enhancement near the morphotropic phase boundary in lead-free NBT-KBT ceramics

    NASA Astrophysics Data System (ADS)

    Le Goupil, Florian; Bennett, James; Axelsson, Anna-Karin; Valant, Matjaz; Berenov, Andrey; Bell, Andrew J.; Comyn, Tim P.; Alford, Neil McN.

    2015-10-01

    The electrocaloric effects (ECEs) of the morphotropic phase boundary (MPB) composition 0.82(Na0.5Bi0.5)TiO3-0.18(K0.5Bi0.5)TiO3 (NBT-18KBT) are studied by direct measurements. The maximum ECE ΔTmax = 0.73 K is measured at 160 °C under 22 kV/cm. This corresponds to an ECE responsivity (ΔT/ΔE) of 0.33 × 10-6 K m/V, which is comparable with the best reported values for lead-free ceramics. A comparison between the direct and indirect ECE measurements shows significant discrepancies. The direct measurement of both positive and negative electrocaloric effect confirms the presence of numerous polar phases near the MPB of NBT-based materials and highlights their potential for solid-state cooling based on high field-induced entropy changes.

  1. The Lead Free Electronics Manhattan Project - Phase I

    DTIC Science & Technology

    2009-07-30

    of intermetallic fracture under extensive high temperature aging. Alternatively, it is also true that Pb-free alloy material properties can change...in microstructure and other constitutive material properties of Pb-free alloys , strongly suggest that linear cumulative damage theories like Miner’s...model. 6.3.1 Stabilization and Other Annealing Treatments Mechanical and physical properties of metal alloys are sensitive to the as-solidified

  2. Acoustic method of investigating the material properties and humidity sensing behavior of polymer coated piezoelectric substrates

    NASA Astrophysics Data System (ADS)

    Caliendo, Cinzia

    2006-09-01

    The relative humidity (RH) sensing behavior of a polymeric film was investigated by means of polymer coated surface acoustic wave (SAW) delay lines implemented on single crystal piezoelectric substrates, such as quartz and LiNbO3, and on thin piezoelectric polycrystalline films, such as ZnO and AlN, on Si and GaAs. The same SAW delay line configuration was implemented on each substrate and the obtained devices' operating frequency was in the range of 105-156MHz, depending on the type of the substrate, on its crystallographic orientation, and on the SAW propagation direction. The surface of each SAW device was covered by the same type RH sensitive film of the same thickness and the RH sensitivity of each polymer coated substrate, i.e., the SAW relative phase velocity shift per RH unit changes, was investigated in the 0%—80% RH range. The perturbational approach was used to relate the SAW sensor velocity response to the RH induced changes in the physical parameters of the sensitive polymer film: the incremental change in the mass density and shear modulus of the polymer film per unit RH change were estimated. The shift of the bare SAW delay lines operating frequency induced by the presence of the polymer film, at RH =0% and at T =-10°C, allowed the experimental estimation of the mass sensitivity values of each substrate. These values were in good accordance with those reported in the literature and with those theoretically evaluated by exact numerical calculation. The shift of the bare SAW delay lines propagation loss induced by the polymer coating of the device surface, at RH =0% and at ambient temperature, allowed the experimental estimation of the elastic sensitivity of each substrate. These values were found in good accordance with those available from the literature. The temperature coefficient of delay and the electromechanical coupling coefficient of the bare substrates were also estimated. The membrane sensitivity to ethanol, methanol and isopropylic

  3. Method of Fabricating a Piezoelectric Composite Apparatus

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats (Inventor); Bryant, Robert (Inventor); Fox, Robert L. (Inventor); Hellbaum, Richard F. (Inventor); High, James W. (Inventor); Jalink, Antony, Jr. (Inventor); Little, Bruce D. (Inventor); Mirick, Paul H. (Inventor)

    2003-01-01

    A method for fabricating a piezoelectric macro-fiber composite actuator comprises providing a piezoelectric material that has two sides and attaching one side upon an adhesive backing sheet. The method further comprises slicing the piezoelectric material to provide a plurality of piezoelectric fibers in juxtaposition. A conductive film is then adhesively bonded to the other side of the piezoelectric material, and the adhesive backing sheet is removed. The conductive film has first and second conductive patterns formed thereon which are electrically isolated from one another and in electrical contact with the piezoelectric material. The first and second conductive patterns of the conductive film each have a plurality of electrodes to form a pattern of interdigitated electrodes. A second film is then bonded to the other side of the piezoelectric material. The second film may have a pair of conductive patterns similar to the conductive patterns of the first film.

  4. Stretchable piezoelectric nanocomposite generator.

    PubMed

    Park, Kwi-Il; Jeong, Chang Kyu; Kim, Na Kyung; Lee, Keon Jae

    2016-01-01

    Piezoelectric energy conversion that generate electric energy from ambient mechanical and vibrational movements is promising energy harvesting technology because it can use more accessible energy resources than other renewable natural energy. In particular, flexible and stretchable piezoelectric energy harvesters which can harvest the tiny biomechanical motions inside human body into electricity properly facilitate not only the self-powered energy system for flexible and wearable electronics but also sensitive piezoelectric sensors for motion detectors and in vivo diagnosis kits. Since the piezoelectric ZnO nanowires (NWs)-based energy harvesters (nanogenerators) were proposed in 2006, many researchers have attempted the nanogenerator by using the various fabrication process such as nanowire growth, electrospinning, and transfer techniques with piezoelectric materials including polyvinylidene fluoride (PVDF) polymer and perovskite ceramics. In 2012, the composite-based nanogenerators were developed using simple, low-cost, and scalable methods to overcome the significant issues with previously-reported energy harvester, such as insufficient output performance and size limitation. This review paper provides a brief overview of flexible and stretchable piezoelectric nanocomposite generator for realizing the self-powered energy system with development history, power performance, and applications.

  5. Stretchable piezoelectric nanocomposite generator

    NASA Astrophysics Data System (ADS)

    Park, Kwi-Il; Jeong, Chang Kyu; Kim, Na Kyung; Lee, Keon Jae

    2016-06-01

    Piezoelectric energy conversion that generate electric energy from ambient mechanical and vibrational movements is promising energy harvesting technology because it can use more accessible energy resources than other renewable natural energy. In particular, flexible and stretchable piezoelectric energy harvesters which can harvest the tiny biomechanical motions inside human body into electricity properly facilitate not only the self-powered energy system for flexible and wearable electronics but also sensitive piezoelectric sensors for motion detectors and in vivo diagnosis kits. Since the piezoelectric ZnO nanowires (NWs)-based energy harvesters (nanogenerators) were proposed in 2006, many researchers have attempted the nanogenerator by using the various fabrication process such as nanowire growth, electrospinning, and transfer techniques with piezoelectric materials including polyvinylidene fluoride (PVDF) polymer and perovskite ceramics. In 2012, the composite-based nanogenerators were developed using simple, low-cost, and scalable methods to overcome the significant issues with previously-reported energy harvester, such as insufficient output performance and size limitation. This review paper provides a brief overview of flexible and stretchable piezoelectric nanocomposite generator for realizing the self-powered energy system with development history, power performance, and applications.

  6. Analysis of lead free tin-silver-copper and tin-lead solder wetting reactions

    NASA Astrophysics Data System (ADS)

    Anson, Scott J.

    Lead free electronics soldering is driven by a combination of health and environmental concerns, international legislation and marketing pressure by lead free electronics manufacturing competitors. Since July 1, 2006, companies that do not comply with the European Union legislation are not able to sell circuit assemblies with lead solder in the European Union. China has developed its own regulations, based on the European Union documents with a compliance date of March 1, 2007. Extensive testing by the electronics community has determined that the Sn - Ag - Cu (SAC) family of alloys is the preferred choice for lead free Surface Mount Technology (SMT) soldering. The 96.5Sn/3.0Ag/0.5Cu alloy was used in this study. Lead free soldering requires an increase in reflow peak temperatures which further aggravates component moisture sensitivity risks and thereby decreases assembly yield. Prior research has revealed an enhanced solder spreading phenomena at lower peak temperature and shorter time above liquidus with 63Sn/37Pb solder. This current research investigated solder wetting reactions in 63Sn/37Pb and 96.5Sn/3.0Ag/0.5Cu (SAC305) using materials and manufacturing systems that are industry relevant. The objective was to advance the knowledge base of metal wetting while developing a reflow assembly process that minimized the component defect rates. The components are damaged during reflow by popcorn delamination, which is the result of moisture absorption and subsequent rapid evaporation. A classical Design Of Experiments (DOE) approach was used, with wetted area as the response variable. Outside of the DOE, substrate dissolution depth, and substrate surface new phase formation (reaction product) distance from the triple line (solder wetting front) and reaction product thickness in the solder joint (under the solder) were also analyzed. The samples were analyzed for correlation of reflow peak temperature, reflow Time Above Liquidus (TAL), wetted area, reaction product

  7. Polymer Piezoelectric Transducers for Ultrasonic NDE

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Xue, Tianji; Lih, Shyh-Shiuh

    1996-01-01

    Piezoelectric polymers are associated with a low noise and inherent damping that makes them very effective receivers as well as broadband transmitters for high frequencies tasks. This paper reviews polymer piezoelectric materials, the origin of their piezoelectric behavior and their applications to ultrasonic NDE.

  8. Lead-Free vs Tin-Lead Reliability of Advanced Electronic Assemblies

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2005-01-01

    This presentation will provide the technical background and specific information published in literature related to reliability test, analyses, modeling, and associated issues for lead-free solder package assemblies in comparison to their tin-lead solder alloys. It also presents current understanding of lead-free thermal cycle test performance in support.

  9. Effects of Ge4+ acceptor dopant on sintering and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoceramics

    NASA Astrophysics Data System (ADS)

    Chen, Kepi; Jiao, Yanlin

    2017-03-01

    Lead-free (K0.5Na0.5)(Nb1- x Ge x )O3 (KNN- xGe, where x = 0-0.01) piezoelectric ceramics were prepared by conventional ceramic processing. The effects of Ge4+ cation doping on the phase compositions, microstructure and electrical properties of KNN ceramics were studied. SEM images show that Ge4+ cation doping improved the sintering and promoted the grain growth of the KNN ceramics. Dielectric and ferroelectric measurements proved that Ge4+ cations substituted Nb5+ ions as acceptors, and the Curie temperature ( T C) shows an almost linear decrease with increasing the Ge4+ content. Combining this result with microstructure observations and electrical measurements, it is concluded that the optimal sintering temperature for KNN- xGe ceramics was 1020°C. Ge4+ doping less than 0.4 mol.%can improve the compositional homogeneity and piezoelectric properties of KNN ceramics. The KNN- xGe ceramics with x = 0.2% exhibited the best piezoelectric properties: piezoelectric constant d 33 = 120 pC/N, planar electromechanical coupling coefficient k p = 34.7%, mechanical quality factor Q m = 130, and tan δ = 3.6%.

  10. Effects of Ge4+ acceptor dopant on sintering and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoceramics

    NASA Astrophysics Data System (ADS)

    Chen, Kepi; Jiao, Yanlin

    2017-01-01

    Lead-free (K0.5Na0.5)(Nb1-x Ge x )O3 (KNN-xGe, where x = 0-0.01) piezoelectric ceramics were prepared by conventional ceramic processing. The effects of Ge4+ cation doping on the phase compositions, microstructure and electrical properties of KNN ceramics were studied. SEM images show that Ge4+ cation doping improved the sintering and promoted the grain growth of the KNN ceramics. Dielectric and ferroelectric measurements proved that Ge4+ cations substituted Nb5+ ions as acceptors, and the Curie temperature (T C) shows an almost linear decrease with increasing the Ge4+ content. Combining this result with microstructure observations and electrical measurements, it is concluded that the optimal sintering temperature for KNN-xGe ceramics was 1020°C. Ge4+ doping less than 0.4 mol.%can improve the compositional homogeneity and piezoelectric properties of KNN ceramics. The KNN-xGe ceramics with x = 0.2% exhibited the best piezoelectric properties: piezoelectric constant d 33 = 120 pC/N, planar electromechanical coupling coefficient k p = 34.7%, mechanical quality factor Q m = 130, and tanδ = 3.6%.

  11. A novel method for direct solder bump pull testing using lead-free solders

    NASA Astrophysics Data System (ADS)

    Turner, Gregory Alan

    This thesis focuses on the design, fabrication, and evaluation of a new method for testing the adhesion strength of lead-free solders, named the Isotraction Bump Pull method (IBP). In order to develop a direct solder joint-strength testing method that did not require customization for different solder types, bump sizes, specific equipment, or trial-and-error, a combination of two widely used and accepted standards was created. First, solder bumps were made from three types of lead free solder were generated on untreated copper PCB substrates using an in-house fabricated solder bump-on-demand generator, Following this, the newly developed method made use of a polymer epoxy to encapsulate the solder bumps that could then be tested under tension using a high precision universal vertical load machine. The tests produced repeatable and predictable results for each of the three alloys tested that were in agreement with the relative behavior of the same alloys using other testing methods in the literature. The median peak stress at failure for the three solders tested were 2020.52 psi, 940.57 psi, and 2781.0 psi, and were within one standard deviation of the of all data collected for each solder. The assumptions in this work that brittle fracture occurred through the Intermetallic Compound layer (IMC) were validated with the use of Energy-Dispersive X-Ray Spectrometry and high magnification of the fractured surface of both newly exposed sides of the test specimens. Following this, an examination of the process to apply the results from the tensile tests into standard material science equations for the fracture of the systems was performed..

  12. Lead-free solder technology transfer from ASE Americas

    SciTech Connect

    FTHENAKIS,V.

    1999-10-19

    To safeguard the environmental friendliness of photovoltaics, the PV industry follows a proactive, long-term environmental strategy involving a life-of-cycle approach to prevent environmental damage by its processes and products from cradle to grave. Part of this strategy is to examine substituting lead-based solder on PV modules with other solder alloys. Lead is a toxic metal that, if ingested, can damage the brain, nervous system, liver and kidneys. Lead from solder in electronic products has been found to leach out from municipal waste landfills and municipal incinerator ash was found to be high in lead also because of disposed consumer electronics and batteries. Consequently, there is a movement in Europe and Japan to ban lead altogether from use in electronic products and to restrict the movement across geographical boundaries of waste containing lead. Photovoltaic modules may contain small amounts of regulated materials, which vary from one technology to another. Environmental regulations impact the cost and complexity of dealing with end-of-life PV modules. If they were classified as hazardous according to Federal or State criteria, then special requirements for material handling, disposal, record-keeping and reporting would escalate the cost of decommissioning the modules. Fthenakis showed that several of today's x-Si modules failed the US-EPA Toxicity Characteristic Leaching Procedure (TCLP) for potential leaching of Pb in landfills and also California's standard on Total Threshold Limit Concentration (TTLC) for Pb. Consequently, such modules may be classified as hazardous waste. He highlighted potential legislation in Europe and Japan which could ban or restrict the use of lead and the efforts of the printed-circuit industries in developing Pb-free solder technologies in response to such expected legislation. Japanese firms already have introduced electronic products with Pb-free solder, and one PV manufacturer in the US, ASE Americas has used a Pb

  13. High-temperature piezoelectric sensing.

    PubMed

    Jiang, Xiaoning; Kim, Kyungrim; Zhang, Shujun; Johnson, Joseph; Salazar, Giovanni

    2013-12-20

    Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  14. High-Temperature Piezoelectric Sensing

    PubMed Central

    Jiang, Xiaoning; Kim, Kyungrim; Zhang, Shujun; Johnson, Joseph; Salazar, Giovanni

    2014-01-01

    Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented. PMID:24361928

  15. Magnetoelectric coupling effect in lead-free Bi4Ti3O12/CoFe2O4 composite films derived from chemistry solution deposition

    NASA Astrophysics Data System (ADS)

    Tang, Zhehong; Chen, Jieyu; Bai, Yulong; Zhao, Shifeng

    2016-08-01

    Lead-free magnetoelectric composite films combining Bi4Ti3O12 and CoFe2O4 were synthesized by chemical solution deposition on Pt (100)/Ti/SiO2/Si substrate. Morphological and electrical domain structure, ferroelectric, leakage, dielectric, piezoelectric, magnetic and magnetoelectric properties were investigated for Bi4Ti3O12/CoFe2O4 composite films. Well-defined interfaces between Bi4Ti3O12 and CoFe2O4 film layers and electrical domain structure were observed. The composite films show the coexistence of ferroelectric and ferromagnetic orders at room temperature. Larger piezoelectric coefficient and magnetization are obtained for the composite films, which is contributed to the magnetoelectric effect since it originates from the interface coupling through mechanical strain transfer. This work presents a feasible way to modulate the magnetoelectric coupling in ferromagnetic/ferroelectric composite films for developing lead-free micro-electro-mechanical system and information storage devices.

  16. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun

    2009-01-01

    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  17. Piezoelectric Film.

    ERIC Educational Resources Information Center

    Garrison, Steve

    1992-01-01

    Presents activities that utilize piezoelectric film to familiarize students with fundamental principles of electricity. Describes classroom projects involving chemical sensors, microbalances, microphones, switches, infrared sensors, and power generation. (MDH)

  18. UHV piezoelectric translator

    SciTech Connect

    Oversluizen, T.; Watson, G.

    1985-01-01

    A UHV compatible piezoelectric translator has been developed to correct for angular misalignments in the crysals of a UHV x-ray monochromator. The unit is small, bakeable to 150/sup 0/C, and uses only ceramic materials for insulation. We report on the construction details, vacuum compatibility, mechanical properties, and uses of the device.

  19. Piezoelectric actuator renaissance

    NASA Astrophysics Data System (ADS)

    Uchino, Kenji

    2015-03-01

    This paper resumes the content of the invited talk of the author, read at the occasion of the International Workshop on Relaxor Ferroelectrics, IWRF 14, held on October 12-16, 2014 in Stirin, Czech Republic. It reviews the recent advances in materials, designing concepts, and new applications of piezoelectric actuators, as well as the future perspectives of this area.

  20. NASA-DoD Lower Process Temperature Lead-Free Solder Project Overview

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2014-01-01

    This project is a follow-on effort to the Joint Council on Aging AircraftJoint Group on Pollution Prevention (JCAAJG-PP) Pb-free Solder Project and NASA-DoD Lead-Free Electronics Project which were the first projects to test the reliability of Pb-free solder joints against the requirements of the aerospace and military community. This effort would continue to build on the results from the JCAAJG-PP Lead-Free Solder Project and NASA-DoD Lead-Free Electronics Project while focusing on a particular failure mechanism currently plaguing Pb-free assemblies, pad cratering.The NASA-DoD Lead-Free Electronics Project confirmed that pad cratering is one of the dominant failure modes that occur in various board level reliability tests, especially under dynamic loading. Pad Cratering is a latent defect that may occur during assembly, rework, and post assembly handling and testing.

  1. Lead-free hunting rifle ammunition: product availability, price, effectiveness, and role in global wildlife conservation.

    PubMed

    Thomas, Vernon George

    2013-10-01

    Proposals to end the use of lead hunting ammunition because of the established risks of lead exposure to wildlife and humans are impeded by concerns about the availability, price, and effectiveness of substitutes. The product availability and retail prices of different calibers of lead-free bullets and center-fire rifle ammunition were assessed for ammunition sold in the USA and Europe. Lead-free bullets are made in 35 calibers and 51 rifle cartridge designations. Thirty-seven companies distribute internationally ammunition made with lead-free bullets. There is no major difference in the retail price of equivalent lead-free and lead-core ammunition for most popular calibers. Lead-free ammunition has set bench-mark standards for accuracy, lethality, and safety. Given the demonstrated wide product availability, comparable prices, and the effectiveness of high-quality lead-free ammunition, it is possible to phase out the use of lead hunting ammunition world-wide, based on progressive policy and enforceable legislation.

  2. Virus-based piezoelectric energy generation.

    PubMed

    Lee, Byung Yang; Zhang, Jinxing; Zueger, Chris; Chung, Woo-Jae; Yoo, So Young; Wang, Eddie; Meyer, Joel; Ramesh, Ramamoorthy; Lee, Seung-Wuk

    2012-05-13

    Piezoelectric materials can convert mechanical energy into electrical energy, and piezoelectric devices made of a variety of inorganic materials and organic polymers have been demonstrated. However, synthesizing such materials often requires toxic starting compounds, harsh conditions and/or complex procedures. Previously, it was shown that hierarchically organized natural materials such as bones, collagen fibrils and peptide nanotubes can display piezoelectric properties. Here, we demonstrate that the piezoelectric and liquid-crystalline properties of M13 bacteriophage (phage) can be used to generate electrical energy. Using piezoresponse force microscopy, we characterize the structure-dependent piezoelectric properties of the phage at the molecular level. We then show that self-assembled thin films of phage can exhibit piezoelectric strengths of up to 7.8 pm V(-1). We also demonstrate that it is possible to modulate the dipole strength of the phage, hence tuning the piezoelectric response, by genetically engineering the major coat proteins of the phage. Finally, we develop a phage-based piezoelectric generator that produces up to 6 nA of current and 400 mV of potential and use it to operate a liquid-crystal display. Because biotechnology techniques enable large-scale production of genetically modified phages, phage-based piezoelectric materials potentially offer a simple and environmentally friendly approach to piezoelectric energy generation.

  3. Virus-based piezoelectric energy generation

    NASA Astrophysics Data System (ADS)

    Lee, Byung Yang; Zhang, Jinxing; Zueger, Chris; Chung, Woo-Jae; Yoo, So Young; Wang, Eddie; Meyer, Joel; Ramesh, Ramamoorthy; Lee, Seung-Wuk

    2012-06-01

    Piezoelectric materials can convert mechanical energy into electrical energy, and piezoelectric devices made of a variety of inorganic materials and organic polymers have been demonstrated. However, synthesizing such materials often requires toxic starting compounds, harsh conditions and/or complex procedures. Previously, it was shown that hierarchically organized natural materials such as bones, collagen fibrils and peptide nanotubes can display piezoelectric properties. Here, we demonstrate that the piezoelectric and liquid-crystalline properties of M13 bacteriophage (phage) can be used to generate electrical energy. Using piezoresponse force microscopy, we characterize the structure-dependent piezoelectric properties of the phage at the molecular level. We then show that self-assembled thin films of phage can exhibit piezoelectric strengths of up to 7.8 pm V-1. We also demonstrate that it is possible to modulate the dipole strength of the phage, hence tuning the piezoelectric response, by genetically engineering the major coat proteins of the phage. Finally, we develop a phage-based piezoelectric generator that produces up to 6 nA of current and 400 mV of potential and use it to operate a liquid-crystal display. Because biotechnology techniques enable large-scale production of genetically modified phages, phage-based piezoelectric materials potentially offer a simple and environmentally friendly approach to piezoelectric energy generation.

  4. Finite Element Method Mesh Study for Efficient Modeling of Piezoelectric Material

    DTIC Science & Technology

    2013-01-01

    MATERIAL L. Reinhardt Dr. Aisha Haynes Dr. J. Cordes January 2013 Approved for public release; distribution...Dr. Aisha Haynes, and Dr. J. Cordes 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS

  5. Materials Research of Novel Organic Piezoelectric/Ferroelectric Compounds at a H.S.I

    DTIC Science & Technology

    2015-07-06

    compounds such as chlorine gas and ammonia gas. These considerations seriously restrict when this material can be prepared (limited to summer months only...are duplicating the procedures of Serratosa3 for this synthesis. This synthesis requires the use of compounds such as chlorine gas and ammonia gas

  6. Enhanced electrocaloric effect near polymorphic phase boundary in lead-free potassium sodium niobate ceramics

    NASA Astrophysics Data System (ADS)

    Wang, Xiangjian; Wu, Jiagang; Dkhil, Brahim; Xu, Baixiang; Wang, Xiaopeng; Dong, Guohua; Yang, Guang; Lou, Xiaojie

    2017-02-01

    The electrocaloric (EC) effect in lead-free (1-x)(K0.48Na0.52)(Nb0.95Sb0.05)O3-xBi0.5(Na0.82K0.18)0.5ZrO3 ceramics was investigated using an indirect thermodynamic method. Large EC temperature changes were obtained in the vicinity of a polymorphic phase boundary at 40 kV/cm, e.g., 0.32 K at 359 K for x = 0.03, 0.51 K at 350 K for x = 0.04, and 0.48 K at 300 K for x = 0.05, respectively. These values are larger than the previous results at inter-ferroelectric phase transition and, more interestingly, are found to be comparable to those usually explored at the Curie temperature. The operational temperature window is broad near the polymorphic phase boundary due to the diffuseness of the phase transition. The enhanced electrocaloric effect is attributed to the formation of nanodomains near the polymorphic phase boundary, which reduces domain wall energy and facilitates the polarization rotation. The construction of a polymorphic phase boundary and the arrangement of coexisting phases at the nanoscale may open a promising route to explore EC materials.

  7. Subterahertz dielectric relaxation in lead-free Ba(Zr,Ti)O3 relaxor ferroelectrics

    NASA Astrophysics Data System (ADS)

    Wang, D.; Bokov, A. A.; Ye, Z.-G.; Hlinka, J.; Bellaiche, L.

    2016-04-01

    Relaxors are complex materials with unusual properties that have been puzzling the scientific community since their discovery. The main characteristic of relaxors, that is, their dielectric relaxation, remains unclear and is still under debate. The difficulty to conduct measurements at frequencies ranging from ~=1 GHz to ~=1 THz and the challenge of developing models to capture their complex dynamical responses are among the reasons for such a situation. Here, we report first-principles-based molecular dynamic simulations of lead-free Ba(Zr0.5Ti0.5)O3, which allows us to obtain its subterahertz dynamics. This approach reproduces the striking characteristics of relaxors including the dielectric relaxation, the constant-loss behaviour, the diffuse maximum in the temperature dependence of susceptibility, the substantial widening of dielectric spectrum on cooling and the resulting Vogel-Fulcher law. The simulations further relate such features to the decomposed dielectric responses, each associated with its own polarization mechanism, therefore, enhancing the current understanding of relaxor behaviour.

  8. First-Principles Investigations of Lead-Free Formamidinium Based Hybrid Perovskites

    NASA Astrophysics Data System (ADS)

    Murat, Altynbek; Schwingenschlögl, Udo

    2015-03-01

    Hybrid organic-inorganic perovskite solar cells have recently emerged as the next-generation photovoltaic technology. Most of the research work has been focused on the prototype MAPbI3 perovskite (MA = Methylammonium = CH3NH3+) and its analogues that have lead to power conversion efficiencies in excess of 15%. Despite the huge success, these materials are still non-optimal in terms of optical absorption where the bandgaps are greater than 1.6 eV as well as the toxicology issue of lead. Thus, investigation and development of lead-free perovskites with bandgaps closer to optimal, allowing greater spectral absorption, is of great interest. In this work, we perform first principles calculations to study the structural, optical, and electronic properties of new derivatives of MAPbI3 in which the organic MA cation is replaced by other organic amines of similar size such as Formamidinium (FA) and/or the Pb cation replaced by similar elements such as Sn. In particular, we investigate the role and effect of FA and Pb cations on the electronic and optical properties and analyze to which extend the bandgaps can be tuned.

  9. Enhancement of Q(m) by co-doping of Li and Cu to potassium sodium niobate lead-free ceramics.

    PubMed

    Li, E; Kakemoto, H; Wada, S; Tsurumi, T

    2008-05-01

    Lead-free piezoelectric ceramics KNN modified by Li-substitution and CuO addition have been synthesized, and the piezoelectric and dielectric properties were measured. A morphotropic phase boundary (MPB) between orthorhombic and tetragonal phases was formed with Li-substitution. The co doping of Li and Cu markedly enhanced the mechanical quality factor (Q(m)) in comparison with the sole doping of Li and Cu. Anomalous anti ferroelectric-like hysteresis curves were observed in 2 mol% CuO-doped ceramics. The anti-ferroelectric-like curves were changed to that of normal ferroelectrics following poling. A model based on the formation of the internal bias field (Ei) due to the movements of space charges was proposed to explain these phenomena. It was considered that the Ei stabilized the spontaneous polarization (Ps) and suppressed the domain wall motion to enhance the Q(m). The highest Qm obtained in this study was 742. The [(Na0(0.5)K0(0.5))(0.96)Li0(0.04) ] NbO(3) + 0.45 mol% CuO ceramics showed a high Q(m) value of 414 with a high piezoelectric constant d(33) of 100 pC/N.

  10. Characterization of a Piezoelectric Buzzer Using a Michelson Interferometer

    ERIC Educational Resources Information Center

    Lloyd, S.; Paetkau, M.

    2010-01-01

    A piezoelectric material generates an electric potential across its surface when subjected to mechanical stress; conversely, the inverse piezoelectric effect describes the expansion or contraction of the material when subjected to some applied voltage. Piezoelectric materials are used in devices such as doorbell buzzers, barbeque igniters, and…

  11. Synthesis and characterization of lead-free tin silver nanosolders and their application to halogen free nanosolder pastes

    NASA Astrophysics Data System (ADS)

    Wernicki, Evan

    Solder paste is a key material used in attaching electronic components to printed circuit boards (PCBs). Commonly used lead-based solders, such as eutectic Sn/37Pb, are currently being replaced by lead-free alloy materials due to health and environmental concerns associated with lead. Many solder pastes, both lead-containing and lead-free, contain halogens which act as activators to remove surface oxide and enhance surface wetting, posing further environmental concern from the halogen species. Difficulties in obtaining reliable joints can occur since lead-free solder material candidates have higher melting temperatures (30-50 °C) than that of lead-based solders. Differences in material properties between the numerous materials used in assembly and packaging processes can lead to component damage during manufacturing. Furthermore, designs that include more electrical interconnects in smaller areas give rise for the need for new materials to allow this trend to continue. A surfactant-assisted chemical reduction method was used to synthesize Sn/Ag alloy nanoparticles with a target composition range of 3.5-5 wt% Ag that served as the lead-free solder material within a nanosolder paste. Structure and size characterization via SEM and TEM showed Sn-Ag nanosolders size average approximately 19 nm. Differential scanning calorimetry (DSC) measurements of the nanosolder samples containing 4.5 wt% Ag showed an endothermic peak at 222.5 °C and an onset of 219.2 °C, indicating up to 17.5 °C melting temperature depression when compared to the bulk liquidus value of 240 °C. Composition of the nanosolder material was confirmed using energy dispersive x-ray spectroscopy (EDS) and structures formed were analyzed via x-ray diffraction (XRD). Both halogen-free and halogen-containing flux materials were combined with the nanosolder material, respectively, with varying preparation parameters to form a design of experiments (DoE) for nanosolder paste preparation. Solder pastes

  12. Lead-Free MA2CuCl(x)Br(4-x) Hybrid Perovskites.

    PubMed

    Cortecchia, Daniele; Dewi, Herlina Arianita; Yin, Jun; Bruno, Annalisa; Chen, Shi; Baikie, Tom; Boix, Pablo P; Grätzel, Michael; Mhaisalkar, Subodh; Soci, Cesare; Mathews, Nripan

    2016-02-01

    Despite their extremely good performance in solar cells with efficiencies approaching 20% and the emerging application for light-emitting devices, organic-inorganic lead halide perovskites suffer from high content of toxic, polluting, and bioaccumulative Pb, which may eventually hamper their commercialization. Here, we present the synthesis of two-dimensional (2D) Cu-based hybrid perovskites and study their optoelectronic properties to investigate their potential application in solar cells and light-emitting devices, providing a new environmental-friendly alternative to Pb. The series (CH3NH3)2CuCl(x)Br(4-x) was studied in detail, with the role of Cl found to be essential for stabilization. By exploiting the additional Cu d-d transitions and appropriately tuning the Br/Cl ratio, which affects ligand-to-metal charge transfer transitions, the optical absorption in this series of compounds can be extended to the near-infrared for optimal spectral overlap with the solar irradiance. In situ formation of Cu(+) ions was found to be responsible for the green photoluminescence of this material set. Processing conditions for integrating Cu-based perovskites into photovoltaic device architectures, as well as the factors currently limiting photovoltaic performance, are discussed: among them, we identified the combination of low absorption coefficient and heavy mass of the holes as main limitations for the solar cell efficiency. To the best of our knowledge, this is the first demonstration of the potential of 2D copper perovskite as light harvesters and lays the foundation for further development of perovskite based on transition metals as alternative lead-free materials. Appropriate molecular design will be necessary to improve the material's properties and solar cell performance filling the gap with the state-of-the-art Pb-based perovskite devices.

  13. Fundamental formulations and recent achievements in piezoelectric nano-structures: a review.

    PubMed

    Fang, Xue-Qian; Liu, Jin-Xi; Gupta, Vijay

    2013-03-07

    Piezoelectric nano-structures have been regarded as the next-generation piezoelectric material due to their inherent nano-sized piezoelectricity. This review summarizes the recent theoretical and experimental findings in piezoelectric nano-structures, including piezoelectric nanowires, nanoplates, nanobeams, nanofilms, nanoparticles, and piezoelectric heterogeneous materials containing piezoelectric nano-inhomogeneities. To begin, the types of piezoelectric nano-structured materials and the wide application of piezoelectric nano-structures in recent years are delineated. Next, the theoretical foundations including the definition of surface stress and electric displacement, the surface constitutive relations, the surface equilibrium equations, and nonlocal piezoelectricity, and their applications, are illustrated. Then, the effective mechanical and piezoelectric properties are depicted. Furthermore, the experimental investigations are classified, and some important observations are discussed. Finally, the perspectives and challenges for the future development of piezoelectric nano-structures are pointed out.

  14. Production of continuous piezoelectric ceramic fibers for smart materials and active control devices

    NASA Astrophysics Data System (ADS)

    French, Jonathan D.; Weitz, Gregory E.; Luke, John E.; Cass, Richard B.; Jadidian, Bahram; Bhargava, Parag; Safari, Ahmad

    1997-05-01

    Advanced Cerametrics Inc. has conceived of and developed the Viscous-Suspension-Spinning Process (VSSP) to produce continuous fine filaments of nearly any powdered ceramic materials. VSSP lead zirconate titanate (PZT) fiber tows with 100 and 790 filaments have been spun in continuous lengths exceeding 1700 meters. Sintered PZT filaments typically are 10 - 25 microns in diameter and have moderate flexibility. Prior to carrier burnout and sintering, VSSP PZT fibers can be formed into 2D and 3D shapes using conventional textile and composite forming processes. While the extension of PZT is on the order of 20 microns per linear inch, a woven, wound or braided structure can contain very long lengths of PZT fiber and generate comparatively large output strokes from relatively small volumes. These structures are intended for applications such as bipolar actuators for fiber optic assembly and repair, vibration and noise damping for aircraft, rotorcraft, automobiles and home applications, vibration generators and ultrasonic transducers for medical and industrial imaging. Fiber and component cost savings over current technologies, such as the `dice-and-fill' method for transducer production, and the range of unique structures possible with continuous VSSP PZT fiber are discussed. Recent results have yielded 1-3 type composites (25 vol% PZT) with d33 equals 340 pC/N, K equals 470, and g33 equals 80 mV/N, kt equals 0.54, kp equals 0.19, dh equals 50.1pC/N and gh equals 13 mV/N.

  15. Ferroelectromagnetic solid solutions on the base piezoelectric ceramic materials for components of micromechatronics

    NASA Astrophysics Data System (ADS)

    Bochenek, Dariusz; Zachariasz, Radosław; Niemiec, Przemysław; Ilczuk, Jan; Bartkowska, Joanna; Brzezińska, Dagmara

    2016-10-01

    In the presented work, a ferroelectromagnetic solid solutions based on PZT and ferrite powders have been obtained. The main aim of combination of ferroelectric and magnetic powders was to obtain material showing both electric and magnetic properties. Ferroelectric ceramic powder (in amount of 90%) was based on the doped PZT type solid solution while magnetic component was nickel-zinc ferrite Ni1-xZnxFe2O4 (in amount of 10%). The synthesis of components of ferroelectromagnetic solid solutions was performed using the solid phase sintering. Final densification of synthesized powder has been done using free sintering. The aim of the work was to obtain and examine in the first multicomponent PZT type ceramics admixed with chromium with the following chemical composition Pb0.94Sr0.06(Zr0.46Ti0.54)O3+0.25 at% Cr2O3 and next ferroelectromagnetic solid solution based on a PZT type ferroelectric powder (Pb0.94Sr0.06(Zr0.46Ti0.54)O3+0.25 at% Cr2O3) and nickel-zinc ferrite (Ni0.64Zn0.36Fe2O4), from the point of view of their mechanical and electric properties, such as: electric permittivity, ε; dielectric loss, tanδ; mechanical losses, Q-1; and Young modulus, E.

  16. Piezoelectric transducer

    NASA Technical Reports Server (NTRS)

    Conragan, J.; Muller, R. S.

    1970-01-01

    Transducer consists of a hybrid thin film and a piezoelectric transistor that acts as a stress-sensitive device with built-in gain. It provides a stress/strain transducer that incorporates a signal amplification stage and sensor in a single package.

  17. Performance of Lead-Free versus Lead-Based Hunting Ammunition in Ballistic Soap

    PubMed Central

    Gremse, Felix; Krone, Oliver; Thamm, Mirko; Kiessling, Fabian; Tolba, René Hany; Rieger, Siegfried; Gremse, Carl

    2014-01-01

    Background Lead-free hunting bullets are an alternative to lead-containing bullets which cause health risks for humans and endangered scavenging raptors through lead ingestion. However, doubts concerning the effectiveness of lead-free hunting bullets hinder the wide-spread acceptance in the hunting and wildlife management community. Methods We performed terminal ballistic experiments under standardized conditions with ballistic soap as surrogate for game animal tissue to characterize dimensionally stable, partially fragmenting, and deforming lead-free bullets and one commonly used lead-containing bullet. The permanent cavities created in soap blocks are used as a measure for the potential wound damage. The soap blocks were imaged using computed tomography to assess the volume and shape of the cavity and the number of fragments. Shots were performed at different impact speeds, covering a realistic shooting range. Using 3D image segmentation, cavity volume, metal fragment count, deflection angle, and depth of maximum damage were determined. Shots were repeated to investigate the reproducibility of ballistic soap experiments. Results All bullets showed an increasing cavity volume with increasing deposited energy. The dimensionally stable and fragmenting lead-free bullets achieved a constant conversion ratio while the deforming copper and lead-containing bullets showed a ratio, which increases linearly with the total deposited energy. The lead-containing bullet created hundreds of fragments and significantly more fragments than the lead-free bullets. The deflection angle was significantly higher for the dimensionally stable bullet due to its tumbling behavior and was similarly low for the other bullets. The deforming bullets achieved higher reproducibility than the fragmenting and dimensionally stable bullets. Conclusion The deforming lead-free bullet closely resembled the deforming lead-containing bullet in terms of energy conversion, deflection angle, cavity shape

  18. Lead-free precussion primer mixes based on metastable interstitial composite (MIC) technology

    DOEpatents

    Dixon, George P.; Martin, Joe A.; Thompson, Don

    1998-01-01

    A lead-free percussion primer composition and a percussion cup containing e composition. The lead-free percussion primer composition is comprised of a mixture of about 45 wt % aluminum powder having an outer coating of aluminum oxide and molybdenum trioxide powder or a mixture of about 50 wt % aluminum powder having an outer coating of aluminum oxide and polytetrafluoroethylene powder. The aluminum powder, molybdenum trioxide powder and polytetrafluoroethylene powder has a particle size of 0.1 .mu.m or less, more preferably a particle size of from about 200-500 angstroms.

  19. Piezoelectric properties and stabilities of CuO-modified Ba(Ti,Zr)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Zheng, P.; Zhang, J. L.; Shao, S. F.; Tan, Y. Q.; Wang, C. L.

    2009-01-01

    Due to the orthorhombic-tetragonal polymorphic phase transition near room temperature, undesirable large temperature dependence of piezoelectric properties is observed over common usage temperature range in BaTiO3 ceramics with high d33 values. Whereas shifting the phase transition temperature upward by partially substituting Ti with Zr is effective in reducing the piezoelectric temperature dependence, serious long-term degradation occurs. However, it is found that this could be overcome by incorporating a small amount of CuO additive. CuO-modified Ba(Ti0.9625Zr0.0375)O3 ceramics possess excellent piezoelectric properties of d33=300 pC/N, kp=0.493, and k33=0.651 with tan δ=0.011, and its kp remains larger than 0.40 in the broad temperature range from -43 to 73 °C and is almost constant between -25 and 55 °C. The results indicate that CuO-modified Ba(Ti,Zr)O3 ceramics are a promising low-cost lead-free material for practical applications.

  20. Polarization and Characterization of Piezoelectric Polymers

    NASA Technical Reports Server (NTRS)

    Bodiford, Hollie N.

    1995-01-01

    Piezoelectric materials exhibit an electrical response, such as voltage or charge, in reaction to a mechanical stimuli. The mechanical stimuli can be force, pressure, light, or heat. Therefore, these materials are excellent sensors for various properties. The major disadvantage of state of the art piezoelectric polymers is their lack of utility at elevated temperatures. The objective of this research is to study the feasibility of inducing piezoelectricity in high performance polymer systems. The three aspects of the research include experimental poling, characterization of the capacitance, and demonstration of the use of a piezoelectric polymer as a speaker.

  1. α-β Transition in Quartz: Temperature and Pressure Dependence of the Thermodynamic Quantities for β-Quartz and β-Cristobalite as Piezoelectric Materials

    NASA Astrophysics Data System (ADS)

    Lider, M. C.; Yurtseven, H.

    2014-12-01

    Temperature and pressure dependencies of the thermal expansivity (αp), isothermal compressibility (κT) and the specific heat (Cp - Cv) are studied for piezoelectric materials, in particular, for β-quartz. By analyzing the temperature (at 1 atm) and pressure (at 848 K) dependence of the observed volume V from the literature, the thermodynamic functions (αp, κT and Cp - Cv) are obtained and the Pippard relations (Cp - Cv vs. Vαp and αp vs. κT) close to the transition from the β-quartz to the β-cristobalite are examined.

  2. Concentration dependent luminescence properties of Dy3+ doped lead free zinc phosphate glasses for visible applications

    NASA Astrophysics Data System (ADS)

    Reddy Prasad, V.; Babu, S.; Ratnakaram, Y. C.

    2016-10-01

    Dysprosium (Dy3+) doped lead free zinc phosphate glasses with chemical compositions (60 - x) NH4H2PO4 + 20ZnO + 10BaF2 + 10NaF + xDy2O3 (where x = 0.5, 1.0, 1.5, 2.0 mol%) have been prepared by melt quenching technique. The functional groups of vibrational bands have been assigned and clearly elucidated by FTIR and Raman spectral profiles for all these glass samples. Judd-Ofelt (J-O) intensity parameters (Ωλ: λ = 2, 4, 6) have been obtained from spectral intensities of different absorption bands of Dy3+ doped glasses. Radiative properties such as radiative transition probabilities ( A R ), radiative lifetimes ( τ R ), branching ratios ( β R ) and integrated absorption cross-sections ( Σ) for different excited states are calculated by using J-O parameters. Luminescence spectra exhibit three emission bands (from 4F9/2 level to 6H15/2, 6H13/2 and 6H11/2) for all the concentrations of Dy3+ ions before and after gamma irradiation. Various luminescence properties have been studied by varying the Dy3+ concentration for the three spectral profiles. Fluorescence decay curves of 4F9/2 level have been recorded. The energy transfer mechanism that leads to quenching of 4F9/2 state lifetime has been discussed by the variation of Dy3+ concentration. These glasses are expected to be useful for yellow luminescent materials.

  3. Piezoelectric Power Requirements for Active Vibration Control

    NASA Technical Reports Server (NTRS)

    Brennan, Matthew C.; McGowan, Anna-Maria Rivas

    1997-01-01

    This paper presents a method for predicting the power consumption of piezoelectric actuators utilized for active vibration control. Analytical developments and experimental tests show that the maximum power required to control a structure using surface-bonded piezoelectric actuators is independent of the dynamics between the piezoelectric actuator and the host structure. The results demonstrate that for a perfectly-controlled system, the power consumption is a function of the quantity and type of piezoelectric actuators and the voltage and frequency of the control law output signal. Furthermore, as control effectiveness decreases, the power consumption of the piezoelectric actuators decreases. In addition, experimental results revealed a non-linear behavior in the material properties of piezoelectric actuators. The material non- linearity displayed a significant increase in capacitance with an increase in excitation voltage. Tests show that if the non-linearity of the capacitance was accounted for, a conservative estimate of the power can easily be determined.

  4. Good Quality Factor in GdMnO3-Doped (K0.5Na0.5)NbO3 Piezoelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Bucur, Raul Alin; Badea, Iuliana; Bucur, Alexandra Ioana; Novaconi, Stefan

    2016-06-01

    (1 - x)(K0.5Na0.5)NbO3 - xGdMnO3 (KNN- xGM) ferroelectric ceramics (0 ≤ x ≤ 5 mol.%) were obtained through a solid state technique. For all the studied compositions, orthorhombic perovskite crystalline structures were obtained at room temperature. GdMnO3 suppresses the grain growth and gives rather homogenous microstructures as the concentration increases. The doped ceramics exhibita good dielectric response, a "hard" ferroelectric behavior and good piezoelectric properties. An improved mechanical quality factor of 1180 and a high Curie temperature T C = 400°C, coupled with k p = 0.426, makes the composition x = 1 mol.% GdMnO3 suitable for lead-free piezoelectric materials for high-power and high-temperature applications.

  5. High-Performance Lead-Free Piezoceramics with High Curie Temperatures.

    PubMed

    Lee, Myang Hwan; Kim, Da Jeong; Park, Jin Su; Kim, Sang Wook; Song, Tae Kwon; Kim, Myong-Ho; Kim, Won-Jeong; Do, Dalhyun; Jeong, Il-Kyoung

    2015-11-18

    A bismuth ferrite and barium titanate solid solution compound can achieve good piezoelectric properties with a high Curie temperature when fabricated with low-temperature sintering followed by a water-quenching process, with no complicated grain alignment processes performed. By adding the super-tetragonal bismuth gallium oxide to the compound, the piezoelectric properties are as good as those of lead zirconate titanate ceramics.

  6. Plausible domain configurations and phase contents in two- and three-phase BaTiO3-based lead-free ferroelectrics

    NASA Astrophysics Data System (ADS)

    Topolov, Vitaly Yu; Brajesh, Kumar; Ranjan, Rajeev; Panich, Anatoly E.

    2017-02-01

    We have carried out a comparative study of plausible non-180° domain configurations in the two- and three-phase states of lead-free ferroelectrics Ba(Ti1-x Zr x )O3 (0.02  ⩽  x  ⩽  0.08) and (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3, respectively, using the elastic matching approach. The phase contents and stress-relief conditions in Ba(Ti0.93Zr0.07)O3 and (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 strongly depend on domain types in the rhombohedral R3m phase, whereas domains of the orthorhombic Amm2 phase influence two-phase states in Ba(Ti0.98Zr0.02)O3. Changes in unit-cell parameters of (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 at poling lead to the complete stress relief in three-phase (P4mm  +  Amm2  +  R3m) structures by increasing the volume fraction of the R3m phase. A link between the heterophase/domain structures and high piezoelectric activity in (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 is discussed. Based on our results, we state that equal or almost equal volume fractions of the domain types at the three-phase coexistence in (Ba0.85Ca0.15). .(Ti0.90Zr0.10)O3 can lead to an enhanced contribution from domain-wall displacements and therefore, to the large piezoelectric response in this important lead-free ferroelectric compound.

  7. 25 MHz ultrasonic transducers with lead-free piezoceramic, 1-3 PZT fiber-epoxy composite, and PVDF polymer active elements.

    PubMed

    Jadidian, Bahram; Hagh, Nader Marandian; Winder, Alan A; Safari, Ahmad

    2009-02-01

    This paper presents the fabrication and characterization of single-element ultrasonic transducers whose active elements are made of lead-free piezoceramic, 1-3 PZT/polymer composite and PVDF film. The lead free piezoelectric KNNLT- LS(K(0.44)Na(0.52)Li(0.04))(Nb(0.84)Ta(0.10)S(0.06)b)O(3) powders and ceramics were prepared under controlled humidity and oxygen flow rate during sintering. Due to its moderate longitudinal piezoelectric charge coefficient (175 pC/N) and k(t) of 0.50, the KNN-LT-LS composition may be a good candidate for high frequency transducer applications. PZT fibers with 25 microm diameter formed by the viscose suspension spinning process were incorporated into epoxy to fabricate 1-3 composites with the averaged k(t) = 0.64 and d(33) = 400 pC/N. Using KNN-LS-LT ceramic, 1-3 PZT fiber composite, and PVDF film, 3 different unfocused single element transducers with center frequencies of 25 MHz were fabricated. The acoustic characterization of the transducers demonstrated that wideband and low insertion loss could be obtained employing KNN-LS-LT ceramic. The -6 dB bandwidth and insertion loss were 70% and -21 dB, respectively. In comparison, the insertion loss of the ceramic transducer was much smaller than those made with 1-3 composite and PVDF film. This was attributed to closer electrical impedance match to 50 ohm and higher thickness coupling coefficient of the ceramic transducer.

  8. Temperature Compensated Piezoelectric Materials

    DTIC Science & Technology

    1975-07-15

    Barsch, et al Pennsylvania State University Prepared fo •: Air Force Cambridge Research Laboratories 15 July 1975 DISTRIBUTED BY: KUri National...time and for the resonance frequency, respectively, are shown as a function of rotation angle. The plots in Fig. 4 are qualitatively very similar to...the corresponding plots for a-quartz (19). The resonance frequency passes through a maximum at -60°, and a minimum at 29°. The rotation angles

  9. Temperature Compensated Piezoelectric Materials

    DTIC Science & Technology

    1979-08-01

    earth vanadates and tungstates are now being used to determine the crystallization range of SrlxBaxNb206. The LiVO 3, K2WO4 , Li2WO4 and KVO 3 fluxes...actions technique. It was found that the lattice constant cA is much more sensitive as compared to the lattice constant aA to determine the Sr:Ba ratio in

  10. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  11. Shielding properties of lead-free protective clothing and their impact on radiation doses.

    PubMed

    Schlattl, Helmut; Zankl, Maria; Eder, Heinrich; Hoeschen, Christoph

    2007-11-01

    The shielding properties of two different lead-free materials-tin and a compound of 80% tin and 20% bismuth-for protective clothing are compared with those of lead for three typical x-ray spectra generated at tube voltages of 60, 75, and 120 kV. Three different quantities were used to compare the shielding capability of the different materials: (1) Air-kerma attenuation factors in narrow-beam geometry, (2) air-kerma attenuation factors in broad-beam geometry, and (3) ratios of organ and effective doses in the human body for a whole-body irradiation with a parallel beam directed frontally at the body. The thicknesses of tin (0.45 mm) and the tin/bismuth compound (0.41 mm) to be compared against lead correspond to a lead equivalence value of 0.35 mm for the 75 kV spectrum. The narrow-beam attenuation factors for 0.45 mm tin are 54% and 32% lower than those for 0.35 mm lead for 60 and 120 kV; those for 0.41 mm tin/bismuth are 12% and 32% lower, respectively. The decrease of the broad-beam air-kerma attenuation factors compared to lead is 74%, 46%, and 41% for tin and 42%, 26%, and 33% for tin/bismuth and the spectra at 60, 75, and 120 kV, respectively. Therefore, it is recommended that the characterization of the shielding potential of a material should be done by measurements in broad-beam geometry. Since the secondary radiation that is mainly responsible for the shielding reduction in broad-beam geometry is of low penetrability, only more superficially located organs receive significantly enhanced doses. The increase for the dose to the glandular breast tissue (female) compared to being shielded by lead is 143%, 37%, and 45% when shielded by tin, and 35%, 15%, and 39% when shielded by tin/bismuth for 60, 75, and 120 kV, respectively. The effective dose rises by 60%, 6%, and 38% for tin, and 14%, 3% and, 35% for tin/bismuth shielding, respectively.

  12. Intermetallics Characterization of Lead-Free Solder Joints under Isothermal Aging

    NASA Astrophysics Data System (ADS)

    Choubey, Anupam; Yu, Hao; Osterman, Michael; Pecht, Michael; Yun, Fu; Yonghong, Li; Ming, Xu

    2008-08-01

    Solder interconnect reliability is influenced by environmentally imposed loads, solder material properties, and the intermetallics formed within the solder and the metal surfaces to which the solder is bonded. Several lead-free metallurgies are being used for component terminal plating, board pad plating, and solder materials. These metallurgies react together and form intermetallic compounds (IMCs) that affect the metallurgical bond strength and the reliability of solder joint connections. This study evaluates the composition and extent of intermetallic growth in solder joints of ball grid array components for several printed circuit board pad finishes and solder materials. Intermetallic growth during solid state aging at 100°C and 125°C up to 1000 h for two solder alloys, Sn-3.5Ag and Sn-3.0Ag-0.5Cu, was investigated. For Sn-3.5Ag solder, the electroless nickel immersion gold (ENIG) pad finish was found to result in the lowest IMC thickness compared to immersion tin (ImSn), immersion silver (ImAg), and organic solderability preservative (OSP). Due to the brittle nature of the IMC, a lower IMC thickness is generally preferred for optimal solder joint reliability. A lower IMC thickness may make ENIG a desirable finish for long-life applications. Activation energies of IMC growth in solid-state aging were found to be 0.54 ± 0.1 eV for ENIG, 0.91 ± 0.12 eV for ImSn, and 1.03 ± 0.1 eV for ImAg. Cu3Sn and Cu6Sn5 IMCs were found between the solder and the copper pad on boards with the ImSn and ImAg pad finishes. Ternary (Cu,Ni)6Sn5 intermetallics were found for the ENIG pad finish on the board side. On the component side, a ternary IMC layer composed of Ni-Cu-Sn was found. Along with intermetallics, microvoids were observed at the interface between the copper pad and solder, which presents some concern if devices are subject to shock and vibration loading.

  13. Ultrahigh Energy Storage Performance of Lead-Free Oxide Multilayer Film Capacitors via Interface Engineering.

    PubMed

    Sun, Zixiong; Ma, Chunrui; Liu, Ming; Cui, Jin; Lu, Lu; Lu, Jiangbo; Lou, Xiaojie; Jin, Lei; Wang, Hong; Jia, Chun-Lin

    2017-02-01

    Ultrahigh energy storage density of 52.4 J cm(-3) with optimistic efficiency of 72.3% is achieved by interface engineering of epitaxial lead-free oxide multilayers at room temperature. Moreover, the excellent thermal stability of the performances provides solid basis for widespread applications of the thin film systems in modern electronic and power modules in harsh working environments.

  14. How to Identify Lead Free Certification Marks for Drinking Water System & Plumbing Products

    EPA Science Inventory

    The Reduction of Lead in Drinking Water Act went into effect on January 4, 2014. The Act has reduced the lead content allowed in water system and plumbing products by changing the definition of lead free in Section 1417 of the Safe Drinking Water Act (SDWA) from not more than 8% ...

  15. Combined effects of Li content and sintering temperature on polymorphic phase boundary and electrical properties of Li/Ta co-doped (Na, K)NbO3 lead-free piezoceramics

    NASA Astrophysics Data System (ADS)

    Shen, Zong-Yang; Wang, Ke; Li, Jing-Feng

    2009-12-01

    Crystallographic structure, phase transition and electrical properties of lead-free (Na0.535K0.485)1- x Li x (Nb0.942Ta0.058)O3 ( x=0.042-0.098) (NKL x NT) piezoelectric ceramics were investigated. The experimental results show that both Li content and sintering temperature strongly affect the orthorhombic-tetragonal polymorphic phase boundary (PPB), which results in remarkable differences of the piezoelectric property and its temperature stability in the NKL x NT ceramics. Chemical analysis indicates that sodium volatilizes more seriously than potassium and lithium with increasing sintering temperature. Due to the comprehensively optimized effects of Li content and sintering temperature, an enhanced piezoelectric constant d 33 (276 pC/N) was obtained at room temperature in the ceramics with x=0.074 sintered at 1000°C. In the same composition, a further high d 33 up to 354 pC/N was obtained at 43°C, which is close to its T o-t temperature. Furthermore, better temperature stability can be obtained when x=0.082 sintered at 1000°C, whose piezoelectric constant d 33 (236 pC/N) keeps almost constant from room temperature to 100°C. Such a temperature-independent piezoelectric property is available in the NKL x NT ceramics with high Li content because its T o-t was moved below room temperature.

  16. Joint Lead-Free Solder Test Program for High Reliability Military and Space Applications

    NASA Technical Reports Server (NTRS)

    Brown, Christina

    2004-01-01

    Current and future space and defense systems face potential risks from the continued use of tin-lead solder, including: compliance with current environmental regulations, concerns about potential environmental legislation banning lead-containing products, reduced mission readiness, and component obsolescence with lead surface finishes. For example, the United States Environmental Protection Agency (USEPA) has lowered the Toxic Chemical Release reporting threshold for lead to 100 pounds. Overseas, the Waste Electrical and Electronic Equipment (WEEE) and the Restriction on Hazardous Substances (RoHS) Dicctives in Europe and similar mandates in Japan have instilled concern that a legislative body will prohibit the use of lead in aerospace/military electronics soldering. Any potential banning of lead compounds could reduce the supplier base and adversely affect the readiness of missions led by the National Aeronautics and Space Administration (NASA) and the U.S. Department of Defense (DoD). Before considering lead-free electronics for system upgrades or future designs, however, it is important for the DoD and NASA to know whether lead-free solders can meet their systems' requirements. No single lead-free solder is likely to qualify for all defense and space applications. Therefore, it is important to validate alternative solders for discrete applications. As a result of the need for comprehensive test data on the reliability of lead-free solders, a partnership was formed between the DoD, NASA, and several original equipment manufactures (OEMs) to conduct solder-joint reliability (laboratory) testing of three lead-free solder alloys on newly manufactured and reworked circuit cards to generate performance data for high-reliability (IPC Class 3) applications.

  17. Enhanced piezoelectric and mechanical properties of AlN-modified BaTiO3 composite ceramics.

    PubMed

    Xu, Dan; Wang, Lidong; Li, Weili; Wang, Wei; Hou, Yafei; Cao, Wenping; Feng, Yu; Fei, Weidong

    2014-07-14

    BaTiO3-xAlN (BT-xAlN) composite ceramics were prepared by conventional solid state reaction sintering. The effects of the AlN content on the crystalline structures, densities, and electrical and mechanical properties of the BT ceramics were investigated. The BT-1.5%AlN ceramic exhibits a good piezoelectric constant of 305 pC N(-1) and an improved Vickers hardness of 5.9 GPa. The enhanced piezoelectricity originates from interactions between defect dipoles and spontaneous polarization inside the domains due to the occurrence of local symmetry, caused by the preferential distribution of the Al(3+)-N(3-) pairs vertical to the c axis. The hardening of the material is attributed to the improved density, and particle and grain boundary strengthening. Our work indicates that if a suitable doping ion pair is designed, lead-free ceramic systems prepared from ordinary raw materials by a conventional sintering method have a high probability of exhibiting good piezoelectric and mechanical properties simultaneously.

  18. Investigation of Metastable Interstitial Composite (MIC) Materials for Electrically Initiated Lead Free Primers

    DTIC Science & Technology

    2004-07-15

    metals such as lead ( Pb ). The U. S. Army accepted this challenge for small caliber ammunition several years ago and established the ‘Green Ammunition...Program. One of the elements of this effort was to eliminate the use of lead ( Pb ) in percussion primers for small caliber gun ammunition. The U...proposed to engage parallel problems associated with the use of lead ( Pb ) in electric primers for medium caliber gun ammunition. The various MIC

  19. Piezoelectric Properties of Non-Polar Block Copolymers

    SciTech Connect

    Pester, Christian; Ruppel, Markus A; Schoberth, Heiko; Schmidt, K.; Liedel, Clemens; Van Rijn, Patrick; Littrell, Ken; Schindler, Kerstin; Hiltl, Stephanie; Czubak, Thomas; Mays, Jimmy; Urban, Volker S; Boker, Alexander

    2011-01-01

    Piezoelectric properties in non-polar block copolymers are a novelty in the field of electroactive polymers. The piezoelectric susceptibility of poly(styrene-b-isoprene) block copolymer lamellae is found to be up to an order of magnitude higher when compared to classic piezoelectric materials. The electroactive response increases with temperature and is found to be strongest in the disordered phase.

  20. Experiments to Demonstrate Piezoelectric and Pyroelectric Effects

    ERIC Educational Resources Information Center

    Erhart, Jirí

    2013-01-01

    Piezoelectric and pyroelectric materials are used in many current applications. The purpose of this paper is to explain the basic properties of pyroelectric and piezoelectric effects and demonstrate them in simple experiments. Pyroelectricity is presented on lead zirconium titanate (PZT) ceramics as an electric charge generated by the temperature…

  1. LC Circuits for Diagnosing Embedded Piezoelectric Devices

    NASA Technical Reports Server (NTRS)

    Chattin, Richard L.; Fox, Robert Lee; Moses, Robert W.; Shams, Qamar A.

    2005-01-01

    A recently invented method of nonintrusively detecting faults in piezoelectric devices involves measurement of the resonance frequencies of inductor capacitor (LC) resonant circuits. The method is intended especially to enable diagnosis of piezoelectric sensors, actuators, and sensor/actuators that are embedded in structures and/or are components of multilayer composite material structures.

  2. Wetting Kinetics of Eutectic Lead and Lead-Free Solders: Spreading over the Cu Surface

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Nalagatla, Dinesh Reddy; Sekulic, Dusan P.

    2009-02-01

    Wetting kinetics of Sn, eutectic Sn-Ag, eutectic Sn-Cu, and eutectic Pb-Sn was studied using real-time in situ monitoring of the triple-line movement, facilitated by a hot-stage microscopy system under a controlled atmosphere. Significantly different kinetics of lead versus lead-free solders is documented. In case of the eutectic lead solder, four characteristic spreading stages were identified. Spreading of lead-free solders features two stages with a sharp change of the spreading rate at the early stages of rather insignificant spreading. Scanning electron microscopy and energy-dispersive x-ray spectroscopy analysis of the resolidified solder surface within a halo region is discussed.

  3. An integrated microfluidic chip with 40 MHz lead-free transducer for fluid analysis.

    PubMed

    Lee, S T F; Lam, K H; Lei, L; Zhang, X M; Chan, H L W

    2011-02-01

    The design, fabrication, and evaluation of a high-frequency transducer made from lead-free piezoceramic for the application of microfluidic analysis is described. Barium strontium zirconate titanate [(Ba(0.95)Sr(0.05))(Zr(0.05)Ti(0.95))O(3), abbreviated as BSZT] ceramic has been chosen to be the active element of the transducer. The center frequency and bandwidth of this high-frequency ultrasound transducer have been measured to be 43 MHz and 56.1%, respectively. The transducer was integrated into a microfluidic channel and used to measure the sound velocity and attenuation of the liquid flowing in the channel. Results suggest that lead-free high-frequency transducers could be used for in situ analysis of property of the fluid flowing through the microfluidic system.

  4. NASA-DoD Lead-Free Electronics Project: Vibration Test

    NASA Technical Reports Server (NTRS)

    Woodrow, Thomas A.

    2010-01-01

    Vibration testing was conducted by Boeing Research and Technology (Seattle) for the NASA-DoD Lead-Free Electronics Solder Project. This project is a follow-on to the Joint Council on Aging Aircraft/Joint Group on Pollution Prevention (JCAA/JG-PP) Lead-Free Solder Project which was the first group to test the reliability of lead-free solder joints against the requirements of the aerospace/miLItary community. Twenty seven test vehicles were subjected to the vibration test conditions (in two batches). The random vibration Power Spectral Density (PSD) input was increased during the test every 60 minutes in an effort to fail as many components as possible within the time allotted for the test. The solder joints on the components were electrically monitored using event detectors and any solder joint failures were recorded on a Labview-based data collection system. The number of test minutes required to fail a given component attached with SnPb solder was then compared to the number of test minutes required to fail the same component attached with lead-free solder. A complete modal analysis was conducted on one test vehicle using a laser vibrometer system which measured velocities, accelerations, and displacements at one . hundred points. The laser vibrometer data was used to determine the frequencies of the major modes of the test vehicle and the shapes of the modes. In addition, laser vibrometer data collected during the vibration test was used to calculate the strains generated by the first mode (using custom software). After completion of the testing, all of the test vehicles were visually inspected and cross sections were made. Broken component leads and other unwanted failure modes were documented.

  5. Lead free KNN/P(VDF-TrFE) 0-3 pyroelectric composite films and its infrared sensor

    NASA Astrophysics Data System (ADS)

    Zhang, W. L.; Yu, Y. C.; Luo, W. B.; Shuai, Y.; Pan, X. Q.; Wu, Q. Q.; Wu, C. G.

    2017-01-01

    (K0.5Na0.5)NbO3 (KNN)/[P(VDF-TrFE)70:30] composite thick films with different KNN weight ratios have been fabricated and the effect of KNN mass content on the material structure and properties have been studied in this paper. Properties of the infrared sensor based KNN/[P(VDF-TrFE)70:30] composite thick film were also systematically studied. It was found that the sample containing 30 wt.% KNN show optimal properties for pyroelectric appliance and the highest pyroelectric coefficient was 63 μCm-2 K-1. Infrared sensors using 30 wt.% KNN-70 wt.%[P(VDF-TrFE)70:30] show highest detectivity (D∗ = 3.21 × 108 cm Hz1/2 W-1) at 137.3 Hz, indicating it is an promising candidate in lead-free quick response infrared detectors.

  6. Mechanical confinement for improved energy storage density in BNT-BT-KNN lead-free ceramic capacitors

    SciTech Connect

    Chauhan, Aditya; Patel, Satyanarayan; Vaish, Rahul

    2014-08-15

    With the advent of modern power electronics, embedded circuits and non-conventional energy harvesting, the need for high performance capacitors is bound to become indispensible. The current state-of-art employs ferroelectric ceramics and linear dielectrics for solid state capacitance. However, lead-free ferroelectric ceramics propose to offer significant improvement in the field of electrical energy storage owing to their high discharge efficiency and energy storage density. In this regards, the authors have investigated the effects of compressive stress as a means of improving the energy storage density of lead-free ferroelectric ceramics. The energy storage density of 0.91(Bi{sub 0.5}Na{sub 0.5})TiO{sub 3}-0.07BaTiO{sub 3}-0.02(K{sub 0.5}Na{sub 0.5})NbO{sub 3} ferroelectric bulk ceramic was analyzed as a function of varying levels of compressive stress and operational temperature .It was observed that a peak energy density of 387 mJ.cm{sup -3} was obtained at 100 MPa applied stress (25{sup o}C). While a maximum energy density of 568 mJ.cm{sup -3} was obtained for the same stress at 80{sup o}C. These values are indicative of a significant, 25% and 84%, improvement in the value of stored energy compared to an unloaded material. Additionally, material's discharge efficiency has also been discussed as a function of operational parameters. The observed phenomenon has been explained on the basis of field induced structural transition and competitive domain switching theory.

  7. High Performance Flexible Piezoelectric Nanogenerators based on BaTiO3 Nanofibers in Different Alignment Modes.

    PubMed

    Yan, Jing; Jeong, Young Gyu

    2016-06-22

    Piezoelectric nanogenerators, harvesting energy from mechanical stimuli in our living environments, hold great promise to power sustainable self-sufficient micro/nanosystems and mobile/portable electronics. BaTiO3 as a lead-free material with high piezoelectric coefficient and dielectric constant has been widely examined to realize nanogenerators, capacitors, sensors, etc. In this study, polydimethylsiloxane (PDMS)-based flexible composites including BaTiO3 nanofibers with different alignment modes were manufactured and their piezoelectric performance was examined. For the study, BaTiO3 nanofibers were prepared by an electrospinning technique utilizing a sol-gel precursor and following calcination process, and they were then aligned vertically or horizontally or randomly in PDMS matrix-based nanogenerators. The morphological structures of BaTiO3 nanofibers and their nanogenerators were analyzed by using SEM images. The crystal structures of the nanogenerators before and after poling were characterized by X-ray diffraction. The dielectric and piezoelectric properties of the nanogenerators were investigated as a function of the nanofiber alignment mode. The nanogenerator with BaTiO3 nanofibers aligned vertically in the PDMS matrix sheet achieved high piezoelectric performance of an output power of 0.1841 μW with maximum voltage of 2.67 V and current of 261.40 nA under a low mechanical stress of 0.002 MPa, in addition to a high dielectric constant of 40.23 at 100 Hz. The harvested energy could thus power a commercial LED directly or be stored into capacitors after rectification.

  8. Development of dielectric barrier discharge-type ozone generator constructed with piezoelectric transformers: effect of dielectric electrode materials on ozone generation

    NASA Astrophysics Data System (ADS)

    Teranishi, Kenji; Shimomura, Naoyuki; Suzuki, Susumu; Itoh, Haruo

    2009-11-01

    The dependence of ozone generation on the types of dielectric electrode material has been investigated using an ozone generator constructed with the piezoelectric transformer developed in our laboratory. The ozone generator is based on the excitation of the dielectric barrier discharge (DBD), which has the advantage of a compact configuration for generating ozone. Four kinds of dielectric materials are prepared for dielectric barrier electrodes. Electrical properties of the DBD and the ozone generation characteristics are investigated for the different dielectric materials. Differences in the discharge mode among the barrier electrode materials are recognized and discussed on the basis of the results of the Lissajous figures and voltage-current waveforms. During the continuous running of the generator, a temporal decrease in ozone concentration is observed owing to the temperature increase inside the reactor. Although the ozone generation characteristics are influenced by many properties of dielectrics, two important factors for achieving high-efficiency ozone generation are identified in this study. One is the use of a high-thermal conductivity material for the dielectric electrode, which functions well as a heat sink for transferring the generated heat to the outside through the material. The other factor is the control of the discharge mode. Our results show that the discharge mode that is considered as Townsend-like DBD is suitable for high-efficiency ozone generation.

  9. Orthotropic Piezoelectricity in 2D Nanocellulose

    NASA Astrophysics Data System (ADS)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  10. Orthotropic Piezoelectricity in 2D Nanocellulose

    PubMed Central

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-01-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V−1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies. PMID:27708364

  11. Orthotropic Piezoelectricity in 2D Nanocellulose.

    PubMed

    García, Y; Ruiz-Blanco, Yasser B; Marrero-Ponce, Yovani; Sotomayor-Torres, C M

    2016-10-06

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V(-1), ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  12. Analysis of nonlinear transient responses of piezoelectric resonators.

    PubMed

    Hagiwara, Manabu; Takahashi, Seita; Hoshina, Takuya; Takeda, Hiroaki; Tsurumi, Takaaki

    2011-09-01

    The electric transient response method is an effective technique to evaluate material constants of piezoelectric ceramics under high-power driving. In this study, we tried to incorporate nonlinear piezoelectric behaviors in the analysis of transient responses. As a base for handling the nonlinear piezoelectric responses, we proposed an assumption that the electric displacement is proportional to the strain without phase lag, which could be described by a real and constant piezoelectric e-coefficient. Piezoelectric constitutive equations including nonlinear responses were proposed to calculate transient responses of a piezoelectric resonator. The envelopes and waveforms of current and vibration velocity in transient responses observed in some piezoelectric ceramics could be fitted with the calculation including nonlinear responses. The procedure for calculation of mechanical quality factor Q(m) for piezoelectric resonators with nonlinear behaviors was also proposed.

  13. [Estimation of energy expenditure and the validity of pitch counting during walking and jogging by piezoelectric materials].

    PubMed

    Yoshida, T; Udo, M; Mizuno, C; Yamanaka, H; Tasaka, I

    1992-09-01

    The purpose of the present study was to assess the validity of Piezo-electric accelerometer for estimating energy expenditure in walking and jogging. Energy consumption by oxygen uptake was determined during steady state level of treadmill walking at the speed of 60, 80 and 100 m/min and jogging at the speed of 100, 120, 140, and 160 m/min for 10 subjects. There was a highly significant correlation between the energy consumption and the estimated energy expenditure by an accelerometer despite the attached position (r = 0.912 at the waist, r = 0.915 at the chest, P < 0.001), which suggests accurate estimating energy expenditure in the field.

  14. Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Karan, Sumanta Kumar; Mandal, Dipankar; Khatua, Bhanu Bhusan

    2015-06-01

    In this work, we report the superior piezoelectric energy harvester ability of a non-electrically poled Fe-doped reduced graphene oxide (Fe-RGO)/poly(vinylidene fluoride) (PVDF) nanocomposite film prepared through a simple solution casting technique that favors the nucleation and stabilization of ~99% relative proportion of polar γ-phase. The piezoelectric energy harvester was made with non-electrically poled Fe-RGO/PVDF nanocomposite film that gives an open circuit output voltage and short circuit current up to 5.1 V and 0.254 μA by repetitive human finger imparting. The improvement of the output performance is influenced by the generation of the electroactive polar γ-phase in the PVDF, due to the electrostatic interactions among the -CH2-/-CF2- dipoles of PVDF and the delocalized π-electrons and remaining oxygen functionalities of Fe-doped RGO via ion-dipole and/or hydrogen bonding interactions. Fourier transform infrared spectroscopy (FT-IR) confirmed the nucleation of the polar γ-phase of PVDF by electrostatic interactions and Raman spectroscopy also supported the molecular interactions between the dipoles of PVDF and the Fe-doped RGO nanosheets. In addition, the nanocomposite shows a higher electrical energy density of ~0.84 J cm-3 at an electric field of 537 kV cm-1, which indicates that it is appropriate for energy storage capabilities. Moreover, the surface of the prepared nanocomposite film is electrically conducting and shows an electrical conductivity of ~3.30 × 10-3 S cm-1 at 2 wt% loading of Fe-RGO.In this work, we report the superior piezoelectric energy harvester ability of a non-electrically poled Fe-doped reduced graphene oxide (Fe-RGO)/poly(vinylidene fluoride) (PVDF) nanocomposite film prepared through a simple solution casting technique that favors the nucleation and stabilization of ~99% relative proportion of polar γ-phase. The piezoelectric energy harvester was made with non-electrically poled Fe-RGO/PVDF nanocomposite film that gives

  15. Structure, dielectric tunability, thermal stability and diffuse phase transition behavior of lead free BZT-BCT ceramic capacitors

    NASA Astrophysics Data System (ADS)

    Sreenivas Puli, Venkata; Pradhan, Dhiren K.; Pérez, W.; Katiyar, R. S.

    2013-03-01

    This paper reports the development of a lead free {Ba(Zr0.2Ti0.8)O3}(1-x){(Ba0.7Ca0.3)TiO3}x - x=0.10, 0.15 and 0.20 - BZT-BCT ceramic solid solution system prepared using a solid-state reaction technique. The evolution of the Raman spectra with temperature was used to study the variation of the basic phase transition of BaTiO3 in these compositions. The phase transition temperature on heating was found to decrease to 310 K, 300 K, and 300 K, respectively, with increasing Ca content on BCT end and decreasing Zr content on BZT end of lead free pseudobinary ferroelectric BZT-BCT system. Tetragonal and rhombohedral phase coexistence is observed at room temperature from X-ray diffraction (XRD) spectra. Rhombohedral phase is identified between the 83 K and 273 K from temperature dependent Raman studies. Raman results are in excellent agreement with those obtained from temperature dependent dielectric measurements. Bulk ceramic BZT-BCT materials have shown interesting temperature dependent dielectric properties and as well as higher values of room temperature dielectric constant ˜7800, 8400, 5200, dielectric tunability ˜82%, figure of merit (FOM) ˜93.71 % with low dielectric loss (tan δ) ˜0.015 to 0.024 and good thermal stability at high sintering temperature (1600 °C); they might be one of the strong candidates for dielectric tunable capacitor applications in an environmentally protective atmosphere.

  16. High temperature, high power piezoelectric composite transducers.

    PubMed

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-08-08

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  17. High Temperature, High Power Piezoelectric Composite Transducers

    PubMed Central

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  18. Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Quantum Rods with High-Performance Solar Cell Application.

    PubMed

    Chen, Lin-Jer; Lee, Chia-Rong; Chuang, Yu-Ju; Wu, Zhao-Han; Chen, Chienyi

    2016-12-15

    Herein, the fabrication of a lead-free cesium tin halide perovskite produced via a simple solvothermal process is reported for the first time. The resulting CsSnX3 (X = Cl, Br, and I) quantum rods show composition-tunable photoluminescence (PL) emissions over the entire visible spectral window (from 625 to 709 nm), as well as significant tunability of the optical properties. In this study, we demonstrate that through hybrid materials (CsSnX3) with different halides, the system can be tunable in terms of PL. By replacing the halide of the CsSnX3 quantum rods, a power conversion efficiency of 12.96% under AM 1.5 G has been achieved. This lead-free quantum rod replacement has demonstrated to be an effective method to create an absorber layer that increases light harvesting and charge collection for photovoltaic applications in its perovskite phase.

  19. Using Diffusion Bonding in Making Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Sager, Frank E.

    2003-01-01

    A technique for the fabrication of piezoelectric actuators that generate acceptably large forces and deflections at relatively low applied voltages involves the stacking and diffusion bonding of multiple thin piezoelectric layers coated with film electrodes. The present technique stands in contrast to an older technique in which the layers are bonded chemically, by use of urethane or epoxy agents. The older chemical-bonding technique entails several disadvantages, including the following: It is difficult to apply the bonding agents to the piezoelectric layers. It is difficult to position the layers accurately and without making mistakes. There is a problem of disposal of hazardous urethane and epoxy wastes. The urethane and epoxy agents are nonpiezoelectric materials. As such, they contribute to the thickness of a piezoelectric laminate without contributing to its performance; conversely, for a given total thickness, the performance of the laminate is below that of a unitary piezoelectric plate of the same thickness. The figure depicts some aspects of the fabrication of a laminated piezoelectric actuator by the present diffusion- bonding technique. First, stock sheets of the piezoelectric material are inspected and tested. Next, the hole pattern shown in the figure is punched into the sheets. Alternatively, if the piezoelectric material is not a polymer, then the holes are punched in thermoplastic films. Then both faces of each punched piezoelectric sheet or thermoplastic film are coated with a silver-ink electrode material by use of a silkscreen printer. The electrode and hole patterns are designed for minimal complexity and minimal waste of material. After a final electrical test, all the coated piezoelectric layers (or piezoelectric layers and coated thermoplastic films) are stacked in an alignment jig, which, in turn, is placed in a curved press for the diffusion-bonding process. In this process, the stack is pressed and heated at a specified curing temperature

  20. Lead-Free Double-Base Propellant for the 2.75 Inch Rocket Motor

    NASA Technical Reports Server (NTRS)

    Magill, B. T.; Nauflett, G. W.; Furrow, K. W.

    2000-01-01

    The current MK 66 2.75 inch Rocket Motor double-base propellant contains the lead-based ballistic modifier LC-12-15 to achieve the desired plateau and mesa burning rate characteristics. The use of lead compounds poses a concern for the environment and for personal safety due to the metal's toxic nature when introduced into the atmosphere by propellant manufacture, rocket motor firing, and disposal. Copper beta-resorcylate (copper 2,4-di-hydroxy-benzoate) was successfully used in propellant as a simple modifier in the mid 1970's. This and other compounds have also been mixed with lead salts to obtain more beneficial ballistic results. Synthesized complexes of lead and copper compounds soon replaced the mixtures. The complexes incorporate the lead, copper lack of organic liquids, which allows for easier propellant processing. About ten years ago, the Indian Head Division, Naval Surface Warfare Center (NSWC), initiated an effort to develop a lead-free propellant for use in missile systems. Several lead-free propellant candidate formulations were developed. About five years ago, NSWC, in conjunction with Alliant Techsystems, Radford Army Ammunition Plant, continued ballistic modifier investigations. A four component ballistic modifier system without lead for double-base propellants that provide adequate plateau and mesa burn rate characteristics was developed and patented. The ballistic modifier's system contains bismuth subsalicylate, 1.5 percent; copper salicylate, 1.0 percent, copper stannate, 0.77 percent; and carbon black, 0.1 percent. Action time and impulse data obtained through multiple static firings indicate that the new lead-free double-base propellant, while not a match for NOSIH-AA-2, will be a very suitable replacement in the 2.75 inch Rocket Motor. Accelerated aging of the double-base propellant containing the lead-free ballistic modifier showed that it had a much higher rate of stabilizer depletion than the AA-2. A comprehensive study showed that an

  1. Voiding in lead-free soldering of components with large solder pads

    NASA Astrophysics Data System (ADS)

    Dziurdzia, Barbara; Mikołajek, Janusz

    2016-12-01

    The paper presents the quantification of void formation in lead-free solder joints underneath bottom terminated components (BTCs) through X-ray inspection. Experiments were designed to investigate how void formation is affected by using vacuum in reflow soldering on the example of light emitted diode (LED) packages on metal core printed circuit boards (PCBs). Convection and vapour phase reflow soldering were used for LED assembly. X-ray inspection system analyzed the statistical distribution, mean value, standard deviation and process capability value Cpk of thermal pads coverage for various technological versions of LEDs.

  2. Roles of service parameters on the mechanical behavior of lead-free solder joints

    NASA Astrophysics Data System (ADS)

    Rhee, Hongjoo

    2005-07-01

    Lead-based solders have been extensively used as interconnects in various electronic applications due to their low cost and suitable material properties. However, in view of environmental and health concerns, the electronics industry is forced to develop lead-free alternative solders. Eutectic Sn-3.5Ag based solders are being considered as suitable substitutes due to their non-toxicity, tolerable melting temperatures, and comparable mechanical as well as electrical properties. Smaller electronic packaging and emerging new technologies impose several constraints on the solder interconnect that require better inherent properties in the solder to resist failure during operation. Hence, it is important to develop a clear understanding of the deformation behavior of eutectic Sn-Ag solder joints. Mechanical characterization was performed to investigate the behavior of eutectic Sn-Ag solder joints. Peak shear stress and flow stress decreased with increasing testing temperature and with decreasing simple shear-strain rate. The effect of simple shear-strain rate on the peak shear stress was found to be more significant at temperature regimes less than 125°C. The deformation structure of specimens deformed at higher temperatures was dominated by grain boundary deformation, while at lower temperatures it was dominated by shear banding. Stress relaxation studies on eutectic Sn-Ag solder joints were carried out to provide a better understanding of various parameters contributing to thermomechanical damage accumulation. Monotonic stress relaxation tests at various pre-strain conditions and testing temperatures can provide information relevant to the effects of ramp rates during heating and cooling excursions experienced during thermomechanical fatigue. Peak shear stress and residual shear stress, resulting from stress relaxation period, decreased with increasing testing temperature for a given pre-strain condition. A faster ramp rate was found to cause higher resultant residual

  3. Continuous cross-over from ferroelectric to relaxor state and piezoelectric properties of BaTiO{sub 3}-BaZrO{sub 3}-CaTiO{sub 3} single crystals

    SciTech Connect

    Benabdallah, F.; Veber, P. Prakasam, M.; Viraphong, O.; Maglione, M.; Shimamura, K.

    2014-04-14

    Optimal properties like piezoelectricity can be found in polarizable materials for which the structure changes sharply under small composition variations in the vicinity of their morphotropic phase boundary or the triple point in their isobaric temperature-composition phase diagram. In the latter, lead-free (Ba{sub 0.850}Ca{sub 0.150})(Ti{sub 0.900}Zr{sub 0.100})O{sub 3} ceramics exhibit outstanding piezoelectric coefficients. For the first time, we report the growth of piezoelectric lead-free single crystals in the BaTiO{sub 3}-BaZrO{sub 3}-CaTiO{sub 3} pseudo-ternary system. The stoichiometry control in the CaO-BaO-TiO{sub 2}-ZrO{sub 2} solid solution led to single crystals with various compositions ranging from (Ba{sub 0.857}Ca{sub 0.143})(Ti{sub 0.928}Zr{sub 0.072})O{sub 3} to (Ba{sub 0.953}Ca{sub 0.047})(Ti{sub 0.427}Zr{sub 0.573})O{sub 3}. We evidenced a continuous cross-over from a ferroelectric state at high titanium content to a relaxor one on increasing the zirconium content. Such a property tuning is rather seldom observed in lead-free ferroelectrics and confirms what was already reported for ceramics. Single crystal with (Ba{sub 0.838}Ca{sub 0.162})(Ti{sub 0.854}Zr{sub 0.146})O{sub 3} composition, which has been grown and oriented along [001] crystallographic direction, displayed electromechanical coefficients d{sub 31} and k{sub 31} of 93 pC.N{sup −1} and 0.18, respectively, near the room temperature (T = 305 K)

  4. Continuous cross-over from ferroelectric to relaxor state and piezoelectric properties of BaTiO3-BaZrO3-CaTiO3 single crystals

    NASA Astrophysics Data System (ADS)

    Benabdallah, F.; Veber, P.; Prakasam, M.; Viraphong, O.; Shimamura, K.; Maglione, M.

    2014-04-01

    Optimal properties like piezoelectricity can be found in polarizable materials for which the structure changes sharply under small composition variations in the vicinity of their morphotropic phase boundary or the triple point in their isobaric temperature-composition phase diagram. In the latter, lead-free (Ba0.850Ca0.150)(Ti0.900Zr0.100)O3 ceramics exhibit outstanding piezoelectric coefficients. For the first time, we report the growth of piezoelectric lead-free single crystals in the BaTiO3-BaZrO3-CaTiO3 pseudo-ternary system. The stoichiometry control in the CaO-BaO-TiO2-ZrO2 solid solution led to single crystals with various compositions ranging from (Ba0.857Ca0.143)(Ti0.928Zr0.072)O3 to (Ba0.953Ca0.047)(Ti0.427Zr0.573)O3. We evidenced a continuous cross-over from a ferroelectric state at high titanium content to a relaxor one on increasing the zirconium content. Such a property tuning is rather seldom observed in lead-free ferroelectrics and confirms what was already reported for ceramics. Single crystal with (Ba0.838Ca0.162)(Ti0.854Zr0.146)O3 composition, which has been grown and oriented along [001] crystallographic direction, displayed electromechanical coefficients d31 and k31 of 93 pC.N-1 and 0.18, respectively, near the room temperature (T = 305 K).

  5. Correlation of Bulk Dielectric and Piezoelectric Properties to the Local Scale Phase Transformations, Domain Morphology, and Crystal Structure Modified

    SciTech Connect

    Priya, Shashank; Viehland, Dwight

    2014-12-14

    Three year program entitled “Correlation of bulk dielectric and piezoelectric properties to the local scale phase transformations, domain morphology, and crystal structure in modified lead-free grain-textured ceramics and single crystals” was supported by the Department of Energy. This was a joint research program between D. Viehland and S. Priya at Virginia Tech. Single crystal and textured ceramics have been synthesized and characterized. Our goals have been (i) to conduct investigations of lead-free piezoelectric systems to establish the local structural and domain morphologies that result in enhanced properties, and (ii) to synthesize polycrystalline and grain oriented ceramics for understanding the role of composition, microstructure, and anisotropy

  6. Giant piezoelectricity on Si for hyperactive MEMS.

    PubMed

    Baek, S H; Park, J; Kim, D M; Aksyuk, V A; Das, R R; Bu, S D; Felker, D A; Lettieri, J; Vaithyanathan, V; Bharadwaja, S S N; Bassiri-Gharb, N; Chen, Y B; Sun, H P; Folkman, C M; Jang, H W; Kreft, D J; Streiffer, S K; Ramesh, R; Pan, X Q; Trolier-McKinstry, S; Schlom, D G; Rzchowski, M S; Blick, R H; Eom, C B

    2011-11-18

    Microelectromechanical systems (MEMS) incorporating active piezoelectric layers offer integrated actuation, sensing, and transduction. The broad implementation of such active MEMS has long been constrained by the inability to integrate materials with giant piezoelectric response, such as Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PMN-PT). We synthesized high-quality PMN-PT epitaxial thin films on vicinal (001) Si wafers with the use of an epitaxial (001) SrTiO(3) template layer with superior piezoelectric coefficients (e(31,f) = -27 ± 3 coulombs per square meter) and figures of merit for piezoelectric energy-harvesting systems. We have incorporated these heterostructures into microcantilevers that are actuated with extremely low drive voltage due to thin-film piezoelectric properties that rival bulk PMN-PT single crystals. These epitaxial heterostructures exhibit very large electromechanical coupling for ultrasound medical imaging, microfluidic control, mechanical sensing, and energy harvesting.

  7. Evaluation of Bulk Mechanical Properties of Selected Lead-Free Solders in Tension and in Shear

    NASA Astrophysics Data System (ADS)

    Devaki Rani, S.; Murthy, G. S.

    2013-08-01

    Lead-free solders are fast emerging as better alternatives to Sn-Pb solders. The reliability of a soldered joint to withstand imposed stresses in an assembly is decided by its mechanical properties. The present work is about the investigation of tensile and shear properties of four binary eutectic alloys Sn-3.5Ag, Sn-58Bi, Sn-0.7Cu, Sn-9Zn and a ternary alloy Sn-57Bi-1.3Zn in comparison with conventional Sn-38Pb alloy. It is observed that the lead-free solders have better mechanical properties than the latter. SEM studies of tensile and shear fracture show ductile dimples circular in tension and parabolic in shear modes supporting the mechanical behavior of the alloys investigated. Eutectic alloys Sn-Ag, Sn-Zn, and Sn-Cu form potential substitutes for Sn-Pb for electronic interconnects exposed to high temperatures, while Sn-Bi and Sn-Bi-Zn are attractive alternatives in addressing the need of lower processing temperatures in printed circuit boards and other applications.

  8. Wettability of electroless Ni in the under bump metallurgy with lead free solder

    NASA Astrophysics Data System (ADS)

    Young, Bi-Lian; Duh, Jenq-Gong; Chiou, Bi-Shiou

    2001-05-01

    This study investigates the wettability of several lead-free solders, including Sn, Sn-Ag, and Sn-Bi, on electroless Ni (EN) with various phosphorus content. The role of phosphorus on solder wettability is studied. Microstructure evolution in the lead-free solder/EN joint is investigated with the aid of electron probe microanalyzer (EPMA) to relate metallurgical reactions between the solder and the EN. The SN solder exhibits better wettability on EN, while the Si-Bi solder has a larger contact angle. Wettability degrades as the phosphorus content in EN decreases. The dependence of wetting angle on the phosphorous content can be attributed to the surface roughness and density of EN, along with the interfacial reaction between the solders and EN. An EPMA analysis reveals the presence of a Sn-Bi-Ni-P solid solution at the interface of solder/EN joints due to the interdiffusion of major constituent Ni and Sn. The interaction zone of the solid solution increases with increasing temperature. Wettability of Pb-free solders on EN degrades with the presence of NiO due to oxidation or the existence of Ni3P due to precipitation after annealing. For an adequate wetting behavior in the Sn (Sn-Bi, Sn-Ag)/EN joint, EN deposited with phosphorus contents in the range of 9 to 12 wt% is suggested.

  9. Assessment of circuit board surface finishes for electronic assembly with lead-free solders

    SciTech Connect

    Ray, U.; Artaki, I.; Finley, D.W.; Wenger, G.M.; Pan, T.; Blair, H.D.; Nicholson, J.M.; Vianco, P.T.

    1996-10-01

    The suitability of various metallic printed wiring board surface finishes was assessed for new technology applications that incorporate assembly with Lead-free solders. The manufacture of a lead-free product necessitates elimination of lead (Pb) from the solder, the circuit board as well as the component lead termination. It is critical however for the selected interconnect Pb-free solder and the corresponding printed wiring board (PWB) and component lead finishes to be mutually compatible. Baseline compatibility of select Pb-free solders with Pb containing PWB surface finish and components was assessed. This was followed by examining the compatibility of the commercially available CASTIN{trademark} (SnAgCuSb) Pb-free solder with a series of PWB metallic finishes: Ni/Au, Ni/Pd, and Pd/Cu. The compatibility was assessed with respect to assembly performance, solder joint integrity and long term attachment reliability. Solder joint integrity and mechanical behavior of representative 50 mil pitch 20I/O SOICs was determined before and after thermal stress. Mechanical pull test studies demonstrated that the strength of SnAgCuSb solder interconnections is notably greater than that of SnPb interconnections.

  10. Sn-Pb and lead free solders containing active carbon particles

    NASA Astrophysics Data System (ADS)

    Talas, S.; Gökçe, B.; Çakmakkaya, M.

    2016-08-01

    Upon the legislations issued by the governmental agencies, many companies are in effort of using lead free solders for their electronic products. Many researchers have also focused on lead free solders and determined their physical properties to the merit of their desired strength and conductivity which turns out to be a potentially advantageous after all. The addition of nano particles into the solder alloys has been attempted to investigate the property change caused by such addition from which a main outcome was a limited improved mechanical and physical properties such as lowering the melting temperature. In this study, the addition of nano active carbon particles to Pb-Sn and Pb-free solder alloys were made and characterization studies were conducted to determine their basic properties such as electrical conductivity, microstructural study and also phase transformations. The results indicate that the addition of active carbon particles brings about a change in thermal properties more markedly than other properties with respect to the amount of addition.

  11. Cosmic ray modulation studies with Lead-Free Gulmarg Neutron Monitor

    NASA Astrophysics Data System (ADS)

    Darzi, M. A.; Ishtiaq, P. M.; Mir, T. A.; Mufti, S.; Shah, G. N.

    2014-02-01

    A lead-free neutron monitor operating at High Altitude Research Laboratory (HARL), Gulmarg optimized for detecting 2.45 MeV neutron bursts produced during the atmospheric lightning discharges is also concurrently used for studying background neutron component present in the atmosphere. These background neutrons are produced due to the interaction of primary cosmic rays with the atmospheric constituents. In order to study and extract the information about the yield of the neutron production during transient atmospheric lightning discharges, the system is continuously operated to monitor and record the cosmic ray produced background secondary neutrons in the atmosphere. The data analysis of the background neutrons recorded by Lead-Free Gulmarg Neutron Monitor (LFGNM) has convincingly established that the modulation effects due to solar activity phenomena compare very well with those monitored by the worldwide IGY or NM64 type neutron monitors which have optimum energy response relatively towards the higher energy regime of the cosmic rays. The data has revealed various types of modulation phenomena like diurnal variation, Forbush decrease etc. during its entire operational period. However, a new kind of a periodic/seasonal variation pattern is also revealed in the data from September 2007 to September 2012, which is seen to be significantly consistent with the data recorded by Emilio Segre observatory, Israel (ESOI) Neutron Monitor. Interestingly, both these neutron monitors have comparable latitude and altitude. However, the same type of consistency is not observed in the data recorded by the other conventional neutron monitors operating across the globe.

  12. Half-Heusler semiconductors as piezoelectrics.

    PubMed

    Roy, Anindya; Bennett, Joseph W; Rabe, Karin M; Vanderbilt, David

    2012-07-20

    We use a first-principles rational-design approach to demonstrate the potential of semiconducting half-Heusler compounds as a previously unrecognized class of piezoelectric materials. We perform a high-throughput scan of a large number of compounds, testing for insulating character and calculating structural, dielectric, and piezoelectric properties. Our results provide guidance for the experimental realization and characterization of high-performance materials in this class that may be suitable for practical applications.

  13. Optimal Topology and Experimental Evaluation of Piezoelectric Materials for Actively Shunted General Electric Polymer Matrix Fiber Composite Blades

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.; Duffy, Kirsten; Kauffman, Jeffrey L.; Kray, Nicholas

    2012-01-01

    NASA Glenn Research Center, in collaboration with GE Aviation, has begun the development of a smart adaptive structure system with piezoelectric (PE) transducers to improve composite fan blade damping at resonances. Traditional resonant damping approaches may not be realistic for rotating frame applications such as engine blades. The limited space in which the blades reside in the engine makes it impossible to accommodate the circuit size required to implement passive resonant damping. Thus, a novel digital shunt scheme has been developed to replace the conventional electric passive shunt circuits. The digital shunt dissipates strain energy through the load resistor on a power amplifier. General Electric (GE) designed and fabricated a variety of polymer matrix fiber composite (PMFC) test specimens. Investigating the optimal topology of PE sensors and actuators for each test specimen has revealed the best PE transducer location for each target mode. Also a variety of flexible patches, which can conform to the blade surface, have been tested to identify the best performing PE patch. The active damping control achieved significant performance at target modes. This work has been highlighted by successful spin testing up to 5000 rpm of subscale GEnx composite blades in Glenn s Dynamic Spin Rig.

  14. Nonlinear kinematics for piezoelectricity in ALEGRA-EMMA.

    SciTech Connect

    Mitchell, John Anthony; Fuller, Timothy Jesse

    2013-09-01

    This report develops and documents nonlinear kinematic relations needed to implement piezoelectric constitutive models in ALEGRA-EMMA [5], where calculations involving large displacements and rotations are routine. Kinematic relationships are established using Gausss law and Faradays law; this presentation on kinematics goes beyond piezoelectric materials and is applicable to all dielectric materials. The report then turns to practical details of implementing piezoelectric models in an application code where material principal axes are rarely aligned with user defined problem coordinate axes. This portion of the report is somewhat pedagogical but is necessary in order to establish documentation for the piezoelectric implementation in ALEGRA-EMMA. This involves transforming elastic, piezoelectric, and permittivity moduli from material principal axes to problem coordinate axes. The report concludes with an overview of the piezoelectric implementation in ALEGRA-EMMA and small verification examples.

  15. Temperature Evolution of Physical Properties of BaTi0.9(Nb0.5Yb0.5)0.1O3 Lead-Free Ceramic

    NASA Astrophysics Data System (ADS)

    Abdelkafi, Z.; Abdelmoula, N.; Khemakhem, H.

    2016-11-01

    BaTi0.9(Nb0.5Yb0.5)0.1O3 lead-free ceramic was prepared by a solid-state reaction method. The structure of BaTi0.9(Nb0.5Yb0.5)0.1O3 has been characterized by means of x-ray diffraction, showing the coexistence of cubic (31.1%) and tetragonal (68.9%) phases at room temperature. Dielectric spectroscopy shows that BaTi0.9(Nb0.5Yb0.5)0.1O3 composition sintered at 1380°C exhibits a relaxor behavior with a weak diffuse phase transition obeying a Lorentz-type quadratic relationship. The ferroelectric-paraelectric phase transition T C decreased from 420 K for BaTiO3 to 284 K for BaTi0.9(Nb0.5Yb0.5)0.1O3. The dielectric loss of this ceramic was <0.09 over a wide temperature range (<400 K). The temperature behavior of the main piezoelectric parameters, such as the piezoelectric coefficient d 31 and the electromechanical coupling factor k p, was investigated. d 31 sets a maximum about 32.5 pC/N at temperature of 220 K. Nevertheless, k p undergoes more or less important changes between 120 K and 200 K. Over 200 K, k p degrades very rapidly due to the depoling effect deduced from the hysterisis measurements. Dielectric and structural properties of BaTi0.9(Nb0.5Yb0.5)0.1O3 were confirmed by Raman spectroscopy.

  16. Piezoelectric ultrasonic motors

    SciTech Connect

    Wallaschek, J.

    1994-12-31

    Piezoelectric ultrasonic motors are a new type of actuator. They are characterized by high torque at low rotational speed, simple mechanical design and good controllability. They also provide a high holding torque even if no power is applied. Compared to electromagnetic actuators the torque per volume ratio of piezoelectric ultrasonic motors can be higher by an order of magnitude. Recently various types of piezoelectric ultrasonic motors have been developed for industrial applications. This paper describes several types of piezoelectric ultrasonic motors.

  17. Thermomechanical Fatigue Performance of Lead-Free Chip Scale Package Assemblies with Fast Cure and Reworkable Capillary Flow Underfills

    NASA Astrophysics Data System (ADS)

    Shi, Hongbin; Tian, Cuihua; Ueda, Toshitsugu

    2012-05-01

    In this paper, we present the results of temperature cycling test for full and partial capillary flow underfilled lead-free chip scale packages (CSPs), the tests were carried out on the basis of JEDEC standard. Two kinds of representative fast cure and reworkable underfill materials are used in this study, and CSPs without underfills were also tested for comparison. The test results show that the two underfill materials reduce the thermomechanical fatigue performance of CSP assemblies. The underfill with high Tg and storage modulus yielded better performance; indeed, the coefficient of thermal expansion (CTE) is also very critical to the thermomechanical fatigue performance, but its effects is not so obvious in this study owing to the similar CTEs of the underfills used. In addition, the negative effect of a partial underfill pattern is smaller than that of a full underfill pattern. Failure analysis shows that the dominant failure mode observed is solder cracking near the package and/or printed circuit board pads.

  18. Studying insect motion with piezoelectric sensors

    NASA Astrophysics Data System (ADS)

    Mika, Bartosz; Lee, Hyungoo; González, Jorge M.; Vinson, S. Bradleigh; Liang, Hong

    2007-04-01

    Piezoelectric materials have been widely used in applications such as transducers, acoustic components, as well as motion, pressure and airborne sensors. Because of the material's biocompatibility and flexibility, we have been able to apply small piezoelectric sensors, made of PVDF, to cockroaches. We built a laboratory test system to study the piezoelectric properties of a bending sensor. The tested motion was compared with that of the sensor attached to a cockroach. Surface characterization and finite element analysis revealed the effects of microstructure on piezoelectric response. The sensor attachment enables us to monitor the insects' locomotion and study their behaviors. The applications of engineering materials to insects opens the door to innovating approaches to integrating biological, mechanical and electrical systems.

  19. "Mighty Worm" Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Bamford, Robert M.; Wada, Ben K.; Moore, Donald M.

    1994-01-01

    "Mighty Worm" piezoelectric actuator used as adjustable-length structural member, active vibrator or vibration suppressor, and acts as simple (fixed-length) structural member when inactive. Load force not applied to piezoelectric element in simple-structural-member mode. Piezoelectric element removed from load path when not in use.

  20. Piezoelectric drive circuit

    DOEpatents

    Treu, C.A. Jr.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.

  1. Piezoelectric drive circuit

    DOEpatents

    Treu, Jr., Charles A.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

  2. Electrical properties of (1−x)(Bi{sub 0.5}Na{sub 0.5})TiO{sub 3}–xKNbO{sub 3} lead-free ceramics

    SciTech Connect

    Jiang, Xijie; Wang, Baoyin; Luo, Laihui; Li, Weiping; Zhou, Jun; Chen, Hongbing

    2014-05-01

    In this investigation, a simple compound (1−x)(Bi{sub 0.5}Na{sub 0.5})TiO{sub 3}–xKNbO{sub 3} (BNT–xKN, x=0–0.08) lead-free ceramics were synthesized successfully by conventional solid state reaction method. The piezoelectric, dielectric and ferroelectric characteristics of the ceramics were investigated and discussed. The results shows that moderate KN addition can enhance the piezoelectric response without an obvious decline of ferroelectric properties. The largest piezoelectric response is obtained in BNT–0.05KN, whereas largest electric-field-induced strain is obtained in BNT–0.06KN. An effective d{sub 33}{sup eff} of ∼400 pC/N calculated from electric-field-induced strain is obtained in BNT–0.06KN. The present investigation demonstrates that addition KN effectively reduces the depolarization temperature of the BNT–xKN ceramics. The electrical properties of the ceramics are tightly related to their depolarization temperature. - Graphical abstract: Unipolar electric-field-induced strain for the BNT–xKN ceramics. A maximum strain of 0.28% is achieved with a low field in BNT–0.06KN. - Highlights: • Moderate KNbO{sub 3} addition enhances the piezoelectric properties of the ceramics. • A maximum strain of 0.28% is achieved with a low field. • A large piezoelectric response is achieved in 0.95(Bi{sub 0.5}Na{sub 0.5})TiO{sub 3}–0.05KNbO{sub 3}. • The electrical properties are tightly related to the depolarization temperature T{sub d}.

  3. Development and application of a new lead-free steel for making distributor parts of Otto engines

    NASA Astrophysics Data System (ADS)

    Aliev, A. A.

    2012-07-01

    Results of the development and introduction into commercial production of lead-free fine-machining steel to replace the lead-bearing steel AS45G2 for making distributor spindles and cams of automotive Otto engines are presented.

  4. Piezoelectric paint sensor for ultrasonic NDE

    NASA Astrophysics Data System (ADS)

    Li, X.; Zhang, Y.

    2007-04-01

    This paper deals with a distributed acoustic emission sensing method, which is especially suitable for piezoelectric paint. Piezoelectric paint is a composite piezoelectric material that is comprised of tiny piezoelectric particles randomly dispersed within a polymer matrix phase. An overview of the distributed acoustic emission sensing method for defect monitoring is given in this paper. The use of piezoelectric materials for ultrasonic signal measurements is next discussed along with a series of ultrasonic tests performed to verify the ultrasonic sensing capability of piezoelectric paint. To examine the mechanism of the distributed acoustic emission sensing method for crack initiation detection, the results of a finite element simulation based study is presented in this paper. The finite element model used in the parametric study is calibrated with experimental data. The effect of sensor numbers included in the array has been studied using both simulation and experimental data. Based on the preliminary results of this study, piezoelectric paint sensor appears to hold a potential for use in on-line monitoring of cracks such as those caused by fatigue in metal structures although more work is still needed before successful practical application can be made.

  5. Anomalous change in leakage and displacement currents after electrical poling on lead-free ferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Borkar, Hitesh; Tomar, M.; Gupta, Vinay; Scott, J. F.; Kumar, Ashok

    2015-09-01

    We report the polarization, displacement current, and leakage current behavior of a trivalent nonpolar cation (Al3+) substituted lead free ferroelectric (Na0.46Bi0.46-xAlxBa0.08)TiO3 (NBAT-BT) (x = 0, 0.05, 0.07 and 0.10) electroceramics with tetragonal phase and P4 mm space group symmetry. Almost, three orders of magnitude decrease in leakage current were observed under electrical poling, which significantly improves microstructure, polarization, and displacement current. Effective poling neutralizes the domain pinning, traps charges at grain boundaries and fills oxygen vacancies with free charge carriers in matrix, thus saturated macroscopic polarization in contrast to that in unpoled samples. E-poling changes "bananas" type polarization loops to real ferroelectric loops.

  6. Piezoelectric and Dielectric Properties of Fe2O3-Doped 0.57Pb(Sc1/2Nb1/2)O3 0.43PbTiO3 Ceramic Materials

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Soo; Kim, So-Jung; Kim, Ho-Gi; Lee, Duck-Chool; Uchino, Kenji

    1999-03-01

    High-power piezoelectric materials are presently being extensively developed for applications such as ultrasonic motors and piezoelectric transformers. In this study, the piezoelectric and dielectric properties of Fe2O3-doped 0.57Pb(Sc1/2Nb1/2)O3 0.43PbTiO3 (hereafter 0.57PSN 0.43PT), which is the morphotropic phase boundary composition of the PSN PT system, were investigated. The maximum dielectric constant (ɛ33/ɛ0=2551) and the minimum dielectric loss (tanδ=0.51%) at room temperature were obtained at Fe2O3 additions of 0.1 wt% and 0.3 wt%, respectively. The temperature dependence of the dielectric constant and the dielectric loss was measured between room temperature and 350°C. With the addition of Fe2O3, the piezoelectric constant d33 and electromechanical coupling factor kp were slightly decreased, but the mechanical quality factor Qm was significantly increased. The highest mechanical quality factor (Qm=297) was obtained at 0.3 wt% Fe2O3, which is 4.4 times higher than that of nondoped 0.57PSN 0.43PT ceramics. The P E and S E loops of the samples at room temperature and at 1.0 Hz were measured at the same time using an automated polarization measuring system.

  7. A piezoelectric pseudo-bimorph actuator

    NASA Astrophysics Data System (ADS)

    Shi, Huaduo; Chen, Jianguo; Liu, Guoxi; Xiao, Wenlei; Dong, Shuxiang

    2013-06-01

    We report a piezoelectric pseudo-bimorph actuator, which is made of only one single plate with interdigitated electrodes on both sides and polarized alternately in longitudinal direction. Like a bimorph actuator, it can also produce a large bending actuation based on anti-symmetrically longitudinal piezoelectric d33 strain effect under an applied electric field. The presented pseudo-bimorph actuator shows much better temperature stability than conventional piezoelectric bimorph actuators from room temperature to the depolarization temperature of the material due to lacking of interface strain loss.

  8. Power enhancement of piezoelectric transformers by adding thermal pad

    NASA Astrophysics Data System (ADS)

    Su, Y. H.; Liu, Y. P.; Vasic, D.; Costa, F.

    2012-04-01

    It is well known that power density of piezoelectric transformers is limited by mechanical stress. The power density of piezoelectric transformers calculated by the stress boundary can reach 330 W/cm3. However, no piezoelectric transformer has ever reached such a high power density in practice. The power density of the piezoelectric transformer is limited to 33 W/cm3 typically. This fact implies that there is another physical limitation in piezoelectric transformer. In fact, it is also known that piezoelectric material is constrained by vibration velocity. Once the vibration velocity is too large, the piezoelectric transformer generates heat until it cracks. To explain the instability of piezoelectric transformer, we will first model the relationship between vibration velocity and resulting heat by a physical feedback loop. It will be shown that the vibration velocity as well as the heat generation determines the loop gain. A large vibration velocity and heat may cause the feedback loop to enter into an unstable state. Therefore, to enhance the power capacity of piezoelectric transformer, the heat needs to be dissipated. In this paper, we used commercial thermal pads on the surface of the piezoelectric transformer to dissipate the heat. The mechanical current of piezoelectric transformers can move from 0.382A/2W to 0.972A/9W at a temperature of 55°C experimentally. It implies that the power capacity possibly increases 3 times in the piezoelectric material. Moreover, piezoelectric transformers that are well suited in applications of high voltage/low current becomes also well suited for low voltage/high current power supplies that are widely spread. This technique not only increases the power capacity of the piezoelectric transformer but also allows it to be used in enlarged practical applications. In this paper, the theoretical modeling will be detailed and verified by experiments.

  9. Integration of lead-free ferroelectric on HfO2/Si (100) for high performance non-volatile memory applications

    PubMed Central

    Kundu, Souvik; Maurya, Deepam; Clavel, Michael; Zhou, Yuan; Halder, Nripendra N.; Hudait, Mantu K.; Banerji, Pallab; Priya, Shashank

    2015-01-01

    We introduce a novel lead-free ferroelectric thin film (1-x)BaTiO3-xBa(Cu1/3Nb2/3)O3 (x = 0.025) (BT-BCN) integrated on to HfO2 buffered Si for non-volatile memory (NVM) applications. Piezoelectric force microscopy (PFM), x-ray diffraction, and high resolution transmission electron microscopy were employed to establish the ferroelectricity in BT-BCN thin films. PFM study reveals that the domains reversal occurs with 180° phase change by applying external voltage, demonstrating its effectiveness for NVM device applications. X-ray photoelectron microscopy was used to investigate the band alignments between atomic layer deposited HfO2 and pulsed laser deposited BT-BCN films. Programming and erasing operations were explained on the basis of band-alignments. The structure offers large memory window, low leakage current, and high and low capacitance values that were easily distinguishable even after ~106 s, indicating strong charge storage potential. This study explains a new approach towards the realization of ferroelectric based memory devices integrated on Si platform and also opens up a new possibility to embed the system within current complementary metal-oxide-semiconductor processing technology. PMID:25683062

  10. Integration of lead-free ferroelectric on HfO2/Si (100) for high performance non-volatile memory applications

    NASA Astrophysics Data System (ADS)

    Kundu, Souvik; Maurya, Deepam; Clavel, Michael; Zhou, Yuan; Halder, Nripendra N.; Hudait, Mantu K.; Banerji, Pallab; Priya, Shashank

    2015-02-01

    We introduce a novel lead-free ferroelectric thin film (1-x)BaTiO3-xBa(Cu1/3Nb2/3)O3 (x = 0.025) (BT-BCN) integrated on to HfO2 buffered Si for non-volatile memory (NVM) applications. Piezoelectric force microscopy (PFM), x-ray diffraction, and high resolution transmission electron microscopy were employed to establish the ferroelectricity in BT-BCN thin films. PFM study reveals that the domains reversal occurs with 180° phase change by applying external voltage, demonstrating its effectiveness for NVM device applications. X-ray photoelectron microscopy was used to investigate the band alignments between atomic layer deposited HfO2 and pulsed laser deposited BT-BCN films. Programming and erasing operations were explained on the basis of band-alignments. The structure offers large memory window, low leakage current, and high and low capacitance values that were easily distinguishable even after ~106 s, indicating strong charge storage potential. This study explains a new approach towards the realization of ferroelectric based memory devices integrated on Si platform and also opens up a new possibility to embed the system within current complementary metal-oxide-semiconductor processing technology.

  11. Integration of lead-free ferroelectric on HfO2/Si (100) for high performance non-volatile memory applications.

    PubMed

    Kundu, Souvik; Maurya, Deepam; Clavel, Michael; Zhou, Yuan; Halder, Nripendra N; Hudait, Mantu K; Banerji, Pallab; Priya, Shashank

    2015-02-16

    We introduce a novel lead-free ferroelectric thin film (1-x)BaTiO3-xBa(Cu1/3Nb2/3)O3 (x = 0.025) (BT-BCN) integrated on to HfO2 buffered Si for non-volatile memory (NVM) applications. Piezoelectric force microscopy (PFM), x-ray diffraction, and high resolution transmission electron microscopy were employed to establish the ferroelectricity in BT-BCN thin films. PFM study reveals that the domains reversal occurs with 180° phase change by applying external voltage, demonstrating its effectiveness for NVM device applications. X-ray photoelectron microscopy was used to investigate the band alignments between atomic layer deposited HfO2 and pulsed laser deposited BT-BCN films. Programming and erasing operations were explained on the basis of band-alignments. The structure offers large memory window, low leakage current, and high and low capacitance values that were easily distinguishable even after ~10(6) s, indicating strong charge storage potential. This study explains a new approach towards the realization of ferroelectric based memory devices integrated on Si platform and also opens up a new possibility to embed the system within current complementary metal-oxide-semiconductor processing technology.

  12. Fabrication of highly oriented lead-free (Na, K)NbO 3 thin films at low temperature by Sol-Gel process

    NASA Astrophysics Data System (ADS)

    Tanaka, Kiyotaka; Kakimoto, Ken-ichi; Ohsato, Hitoshi

    2006-09-01

    Lead-free piezoelectric (Na 0.5K 0.5)NbO 3 (NKN) thin films were fabricated on SiO 2/Si substrates by sol-gel process. The NKN precursor solution was prepared from Na-ethoxide, K-ethoxide, Nb-pentaethoxide, and 2-methoxyethanol. From thermogravimetry differential thermal analysis (TG-DTA) curve of the precursor dried-gel, weight loss and exothermic peaks appeared at about 300-500 °C at heating period. By using optimum fabrication conditions established from the TG-DTA, highly oriented single- phase NKN thin films were obtained at 500 °C by spin-coating technique. Average grain size and root mean square roughness obtained from atomic force microscope (AFM) image of the NKN thin film sintered at 500 °C were estimated to be about 250 and 8.35 nm, respectively. From TG curve, crystallinity and surface morphology, it is found that volatilization of alkaline elements seems to have been suppressible at temperature lower than 600 °C.

  13. Piezoelectric nanoparticle-polymer composite foams.

    PubMed

    McCall, William R; Kim, Kanguk; Heath, Cory; La Pierre, Gina; Sirbuly, Donald J

    2014-11-26

    Piezoelectric polymer composite foams are synthesized using different sugar-templating strategies. By incorporating sugar grains directly into polydimethylsiloxane mixtures containing barium titanate nanoparticles and carbon nanotubes, followed by removal of the sugar after polymer curing, highly compliant materials with excellent piezoelectric properties can be fabricated. Porosities and elasticity are tuned by simply adjusting the sugar/polymer mass ratio which gave an upper bound on the porosity of 73% and a lower bound on the elastic coefficient of 32 kPa. The electrical performance of the foams showed a direct relationship between porosity and the piezoelectric outputs, giving piezoelectric coefficient values of ∼112 pC/N and a power output of ∼18 mW/cm3 under a load of 10 N for the highest porosity samples. These novel materials should find exciting use in a variety of applications including energy scavenging platforms, biosensors, and acoustic actuators.

  14. Effect of B-site isovalent doping on electrical and ferroelectric properties of lead free bismuth titanate ceramics

    NASA Astrophysics Data System (ADS)

    Subohi, Oroosa; Kumar, G. S.; Malik, M. M.; Kurchania, Rajnish

    2016-06-01

    In the present work, zirconium modified bismuth titanate ceramics have been studied as potential lead-free ferroelectric materials over a broad temperature range (RT - 800 °C). Polycrystalline samples of Bi4Ti3-xZrxO12 (x=0.2, 0.4, 0.6) (BZrT) with high electrical resistivity were prepared using the solution combustion technique. The effect of Zr doping on the crystalline structure, ferroelectric properties and electrical conduction characteristics of BZrT ceramics were explored. Addition of zirconium to bismuth titanate enhances its dielectric constant and reduces the loss factor as it introduces orthorhombic distortion in bismuth titanate lattice which is exhibited by the growth along (00_10) lattice plane. Activation energy due to relaxation is found to be greater than that due to conduction thus confirming that electrical conduction in these ceramics is not due to relaxation of dipoles. Remanent polarization of the doped samples increases as the Zirconium content increases.

  15. Radial Field Piezoelectric Diaphragms

    NASA Technical Reports Server (NTRS)

    Bryant, R. G.; Effinger, R. T., IV; Copeland, B. M., Jr.

    2002-01-01

    A series of active piezoelectric diaphragms were fabricated and patterned with several geometrically defined Inter-Circulating Electrodes "ICE" and Interdigitated Ring Electrodes "ICE". When a voltage potential is applied to the electrodes, the result is a radially distributed electric field that mechanically strains the piezoceramic along the Z-axis (perpendicular to the applied electric field). Unlike other piezoelectric bender actuators, these Radial Field Diaphragms (RFDs) strain concentrically yet afford high displacements (several times that of the equivalent Unimorph) while maintaining a constant circumference. One of the more intriguing aspects is that the radial strain field reverses itself along the radius of the RFD while the tangential strain remains relatively constant. The result is a Z-deflection that has a conical profile. This paper covers the fabrication and characterization of the 5 cm. (2 in.) diaphragms as a function of poling field strength, ceramic thickness, electrode type and line spacing, as well as the surface topography, the resulting strain field and displacement as a function of applied voltage at low frequencies. The unique features of these RFDs include the ability to be clamped about their perimeter with little or no change in displacement, the environmentally insulated packaging, and a highly repeatable fabrication process that uses commodity materials.

  16. Piezoelectric Measurement Of Bulk Modulus

    NASA Technical Reports Server (NTRS)

    Butler, Barry L.

    1992-01-01

    In method of measuring bulk modulus of elasticity of elastomeric material, piezoelectric crystals of various sizes and energized by alternating voltage embedded in material. Concept demonstrated in test cell in which piezoelectric crystal mounted either unconstrained or between two rubber pads and connected as actuator in loud-speaker. The 1-in. diameter crystal excited with 24 Vac at 60 Hz. When crystal was unconstrained, it drew current of 0.8 mA. When crystal was constrained between rubber pads, current fell to 0.65 mA. Low current, minimal heating, and absence of arcing makes technique suitable for measurement of bulk moduli of elasticity of flammable or explosive rubbery materials.

  17. Design and Development for Capacitive Humidity Sensor Applications of Lead-Free Ca,Mg,Fe,Ti-Oxides-Based Electro-Ceramics with Improved Sensing Properties via Physisorption

    PubMed Central

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Bhuyan, Satyanarayan; Azrin Shah, Nabila Farhana; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-01-01

    Despite the many attractive potential uses of ceramic materials as humidity sensors, some unavoidable drawbacks, including toxicity, poor biocompatibility, long response and recovery times, low sensitivity and high hysteresis have stymied the use of these materials in advanced applications. Therefore, in present investigation, we developed a capacitive humidity sensor using lead-free Ca,Mg,Fe,Ti-Oxide (CMFTO)-based electro-ceramics with perovskite structures synthesized by solid-state step-sintering. This technique helps maintain the submicron size porous morphology of the developed lead-free CMFTO electro-ceramics while providing enhanced water physisorption behaviour. In comparison with conventional capacitive humidity sensors, the presented CMFTO-based humidity sensor shows a high sensitivity of up to 3000% compared to other materials, even at lower signal frequency. The best also shows a rapid response (14.5 s) and recovery (34.27 s), and very low hysteresis (3.2%) in a 33%–95% relative humidity range which are much lower values than those of existing conventional sensors. Therefore, CMFTO nano-electro-ceramics appear to be very promising materials for fabricating high-performance capacitive humidity sensors. PMID:27455263

  18. Distributed structural control using multilayered piezoelectric actuators

    NASA Technical Reports Server (NTRS)

    Cudney, Harley H.; Inman, Daniel J.; Oshman, Yaakov

    1990-01-01

    A method of segmenting piezoelectric sensors and actuators is proposed which can preclude the currently experienced cancelation of sensor signals, or the reduction of actuator effectiveness, due to the integration of the property undergoing measurement or control. The segmentation method is demonstrated by a model developed for beam structures, to which multiple layers of piezoelectric materials are attached. A numerical study is undertaken of increasing active and passive damping of a beam using the segmented sensors and actuators over unsegmented sensors and actuators.

  19. Characterization of tin crystal orientation evolution during thermal cycling in lead-free solder joints

    NASA Astrophysics Data System (ADS)

    Zhou, Bite

    To address the long term reliability of lead-free solder joints in electronic devices during thermal cycling, the fundamental understanding of deformation mechanisms was studied using polarized light optical microscopy (PLM), electron backscatter diffraction (EBSD) in scanning electron microscopy (SEM), and synchrotron X-ray diffraction (XRD). Near-eutectic Sn-3.0(wt %) Ag-0.5(wt %) Cu (SAC305) lead-free solder joints were assessed in three different package designs: low-strain plastic ball grid array (PBGA), medium-strain fine-pitch ball grid array (BGA), and high-strain wafer-level-chip-scale package (WLCSP). The effect of microstructure evolution on solder failure is correlated with dislocation slip activities. The major failure mode in lead-free solder joints during thermal cycling that causes the electrical failure of the device is cracking in the bulk Sn near the Si chip/solder interface. Microstructure and Sn grain orientation evolution usually precedes crack development. A combined approach of both statistical analysis of a large number of solder joints, and detailed studies of individual solder balls was used to investigate the causes of fracture. Sn crystal orientation evolution and its effect on deformation was characterized in solder joints with different thermal histories, and compared with those from other package designs with different effective strain levels. The relationship between the initial dominant and localized recrystallized Sn grain orientations on crack development was investigated. It is found that in the low-strain package design, cracking is strongly correlated with Sn grain orientations with the [001] direction (c-axis) nearly aligned with the chip/solder interface. But no cracks were observed in solder balls with dominant orientations that have the c-axis normal to the interface plane. In higher-strain packages, however, cracking occurred in a variety of Sn grain orientations, and even solder balls with dominant orientations that are

  20. Synthesis and Properties of [Bi0.5(Na1-xAgx)0.5]1-yBayTiO3 Piezoelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Wu, Lang; Xiao, Ding-Quan; Lin, Dun-Min; Zhu, Jian-Guo; Yu, Ping

    2005-12-01

    A new group of ABO3-type lead-free piezoelectric ceramics, [Bi0.5(Na1-xAgx)0.5]1-yBayTiO3, was developed, and the corresponding invention patent was submitted. The ceramics were synthesized by the conventional ceramic sintering technique using electronic grade raw materials, and the preparation techniques are very stable and convenient. The crystalline phase, microstructure and electric properties of the ceramics were also investigated. All the ceramics have high densities of about 5.70-5.84 g/cm3, which are more than 95% of the theoretical values. This system provides high piezoelectric performances: d33=168 pC/N, kp=0.31 when x=0.06, y=0.06. Moreover, the samples doped with a moderate amount of Mn could increase the mechanical quality factor Qm and reduce the dielectric loss \\mathop{tg}δ simultaneously. The temperature dependence of piezoelectric properties measured show that at up to 180°C, d33 can still remain 126 pC/N for [Bi0.5(Na0.96Ag0.04)0.5]0.90Ba0.10TiO3 ceramics, which has a d33 of 137 pC/N at room temperature.

  1. Cylindrical Piezoelectric Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  2. Piezoelectrically assisted ultrafiltration

    SciTech Connect

    Ahner, N.; Gottschlich, D.; Narang, S.; Roberts, D.; Sharma, S.; Ventura, S.

    1993-01-01

    The authors have demonstrated the feasibility of using piezoelectrically assisted ultrafiltration to reduce membrane fouling and enhance the flux through ultrafiltration membranes. A preliminary economic evaluation, accounting for the power consumption of the piezoelectric driver and the extent of permeate flow rate enhancement, has also shown that piezoelectrically assisted ultrafiltration is cost effective and economically competitive in comparison with traditional separation processes. Piezoelectric transducers, such as a piezoelectric lead zirconate titanate (PZT) disc or a piezoelectric horn, driven by moderate power, significantly enhance the permeate flux on fouled membranes, presumably because they promote local turbulence. Several experiments were conducted on polysulfone and regenerated cellulose UF membranes fouled during filtration of model feed solutions. Solutions of poly(ethylene glycol) and of high-molecular weight dextran were used as models. The authors found that they could significantly increase the permeate flux by periodically driving the piezoelectric transducer, horn or PZT disc, by application of moderate power over short periods of time, from 20 to 90 seconds. Enhancements as high as a factor of 8 were recorded within a few seconds, and enhanced permeate fluxes were maintained over a prolonged period (up to 3 hours). The prolonged flux enhancement makes it feasible to drive the piezoelectric transducer intermittently, thereby reducing the power consumption of the piezoelectric driver. As piezoelectric drivers of sonically assisted ultrafiltration, PZT disc transducers are preferred over the piezoelectric horn because of their small size and ease of adaptability to ultrafiltration test cells. The horn transmits sonic energy to the UF membrane through a titanium element driven by a separate piezoelectric transducer, but a piezoelectric ceramic disc transmits energy directly to the UF membrane.

  3. In Situ Synchrotron Characterization of Melting, Dissolution, and Resolidification in Lead-Free

    SciTech Connect

    Zhou, Bite; Bieler, Thomas R.; Wu, Guilin; Zaefferer, Stefan; Lee, Tae-Kyu; Liu, Kuo-Chuan

    2013-04-08

    Melting and solidification of SAC 305 lead-free solder joints in a wafer-level chip-scale package were examined in situ with synchrotron x-ray diffraction. The chips with balls attached (but not assembled to a circuit board) were reflowed one to three times using a temperature and time history similar to an industrial reflow process. Diffraction patterns from the same joint were collected every 0.5 s during the melting and solidification process. The solidification of the Sn phase in the solder joint occurred between 0.5 s and 1 s. During melting, most of the Sn melted in about 0.5 s, but in some cases took 2-5 s for the Sn peak to completely disappear. In one instance, the Sn peak persisted for 30 s. The Ag{sub 3}Sn peaks dissolved in about 1-2 s, but the Cu{sub 6}Sn{sub 5} peaks from the interface were persistent and did not change throughout the melting and solidification process. Completely different Sn crystal orientations were always developed upon resolidification.

  4. Developing a NASA Lead-Free Policy for Electronics - Lessons Learned

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) is not required by United States or international law to use lead-free (Pb-free) electronic systems but international pressure in the world market is making it increasingly important that NASA have a Pb-free policy. In fact, given the international nature of the electronics market, all organizations need a Pb-free policy. This paper describes the factors which must be taken into account in formulating the policy, the tools to aid in structuring the policy and the unanticipated and difficult challenges encountered. NASA is participating in a number of forums and teams trying to develop effective approaches to controlling Pb-free adoption in high reliability systems. The activities and status of the work being done by these teams will be described. NASA also continues to gather information on metal whiskers, particularly tin based, and some recent examples will be shared. The current lack of a policy is resulting in "surprises" and the need to disposition undesirable conditions on a case-by-case basis. This is inefficient, costly and can result in sub-optimum outcomes.

  5. Thermodynamic Stability and Defect Chemistry of Bismuth-Based Lead-Free Double Perovskites.

    PubMed

    Xiao, Zewen; Meng, Weiwei; Wang, Jianbo; Yan, Yanfa

    2016-09-22

    Bismuth- or antimony-based lead-free double perovskites represented by Cs2 AgBiBr6 have recently been considered promising alternatives to the emerging lead-based perovskites for solar cell applications. These new perovskites belong to the Fm3‾ m space group and consist of two types of octahedra alternating in a rock-salt face-centered cubic structure. We show, by density functional theory calculations, that the stable chemical potential region for pure Cs2 AgBiBr6 is narrow. Ag vacancies are a shallow accepters and can easily form, leading to intrinsic p-type conductivity. Bi vacancies and AgBi antisites are deep acceptors and should be the dominant defects under the Br-rich growth conditions. Our results suggest that the growth of Cs2 AgBiBr6 under Br-poor/Bi-rich conditions is preferred for suppressing the formation of the deep defects, which is beneficial for maximizing the photovoltaic performance.

  6. Enhanced interfacial thermal transport in pnictogen tellurides metallized with a lead-free solder alloy

    SciTech Connect

    Devender,; Ramanath, Ganpati; Lofgreen, Kelly; Devasenathipathy, Shankar; Swan, Johanna; Mahajan, Ravi; Borca-Tasciuc, Theodorian

    2015-11-15

    Controlling thermal transport across metal–thermoelectric interfaces is essential for realizing high efficiency solid-state refrigeration and waste-heat harvesting power generation devices. Here, the authors report that pnictogen chalcogenides metallized with bilayers of Sn{sub 96.5}Ag{sub 3}Cu{sub 0.5} solder and Ni barrier exhibit tenfold higher interfacial thermal conductance Γ{sub c} than that obtained with In/Ni bilayer metallization. X-ray diffraction and x-ray spectroscopy indicate that reduced interdiffusion and diminution of interfacial SnTe formation due to Ni layer correlates with the higher Γ{sub c}. Finite element modeling of thermoelectric coolers metallized with Sn{sub 96.5}Ag{sub 3}Cu{sub 0.5}/Ni bilayers presages a temperature drop ΔT ∼ 22 K that is 40% higher than that obtained with In/Ni metallization. Our results underscore the importance of controlling chemical intermixing at solder–metal–thermoelectric interfaces to increase the effective figure of merit, and hence, the thermoelectric cooling efficiency. These findings should facilitate the design and development of lead-free metallization for pnictogen chalcogenide-based thermoelectrics.

  7. Comparative shear tests of some low temperature lead-free solder pastes

    NASA Astrophysics Data System (ADS)

    Branzei, Mihai; Plotog, Ioan; Varzaru, Gaudentiu; Cucu, Traian C.

    2016-12-01

    The range of electronic components and as a consequence, all parts of automotive electronic equipment operating temperatures in a vehicle is given by the location of that equipment, so the maximum temperature can vary between 358K and 478K1. The solder joints could be defined as passive parts of the interconnection structure of automotive electronic equipment, at a different level, from boards of electronic modules to systems. The manufacturing costs reduction necessity and the RoHS EU Directive3, 7 consequences generate the trend to create new Low-Temperature Lead-Free (LTLF) solder pastes family9. In the paper, the mechanical strength of solder joints and samples having the same transversal section as resistor 1206 case type made using the same LTLF alloys into Vapour Phase Soldering (VPS) process characterized by different cooling rates (slow and rapid) and two types of test PCBs pads finish, were benchmarked at room temperature. The presented work extends the theoretical studies and experiments upon heat transfer in VPSP in order to optimize the technology for soldering process (SP) of automotive electronic modules and could be extended for home and modern agriculture appliances industry. The shear forces (SF) values of the LTLF alloy samples having the same transversal section as resistor 1206 case type will be considered as references values of a database useful in the new solder alloy creation processes and their qualification for automotive electronics domain.

  8. Tin pest in Sn-0.5 wt.% Cu lead-free solder

    NASA Astrophysics Data System (ADS)

    Kariya, Yoshiharu; Williams, Naomi; Gagg, Colin; Plumbridge, William

    2001-06-01

    Tin pest (the product of the allotropic transformation of β-tin into α-tin at temperatures below 286 K) has been observed in a Sn-0.5 wt.% Cu solder alloy. Some 40 percent of the specimen surface was transformed into gray tin after aging at 255K for 1.5 years, and after 1.8 years, the proportion increased to about 70 percent. The degree of transformation in work-hardened areas is much higher than in other areas, suggesting residual stress might provide an additional driving force for the transformation into α-tin. The allotropic change results in a 26 percent increase in volume, and cracks are initiated to accommodate the changes in volume. Results indicate that tin pest could lead to total disintegration of micro-electronic solder joints. The tin-copper eutectic system may become a prominent lead-free solder, and tin pest could have major ramifications on service lifetime of electronic assemblies.

  9. Characterization of Low-Melting-Point Sn-Bi-In Lead-Free Solders

    NASA Astrophysics Data System (ADS)

    Li, Qin; Ma, Ninshu; Lei, YongPing; Lin, Jian; Fu, HanGuang; Gu, Jian

    2016-11-01

    Development of lead-free solders with low melting temperature is important for substitution of Pb-based solders to reduce direct risks to human health and the environment. In the present work, Sn-Bi-In solders were studied for different ratios of Bi and Sn to obtain solders with low melting temperature. The microstructure, thermal properties, wettability, mechanical properties, and reliability of joints with Cu have been investigated. The results show that the microstructures of the Sn-Bi-In solders were composed of β-Sn, Bi, and InBi phases. The intermetallic compound (IMC) layer was mainly composed of Cu6Sn5, and its thickness increased slightly as the Bi content was increased. The melting temperature of the solders was around 100°C to 104°C. However, when the Sn content exceeded 50 wt.%, the melting range became larger and the wettability became worse. The tensile strength of the solder alloys and solder joints declined with increasing Bi content. Two fracture modes (IMC layer fracture and solder/IMC mixed fracture) were found in solder joints. The fracture mechanism of solder joints was brittle fracture. In addition, cleavage steps on the fracture surface and coarse grains in the fracture structure were comparatively apparent for higher Bi content, resulting in decreased elongation for both solder alloys and solder joints.

  10. Polarization Stability of Amorphous Piezoelectric Polyimides

    NASA Technical Reports Server (NTRS)

    Park, C.; Ounaies, Z.; Su, J.; Smith, J. G., Jr.; Harrison, J. S.

    2000-01-01

    Amorphous polyimides containing polar functional groups have been synthesized and investigated for potential use as high temperature piezoelectric sensors. The thermal stability of the piezoelectric effect of one polyimide was evaluated as a function of various curing and poling conditions under dynamic and static thermal stimuli. First, the polymer samples were thermally cycled under strain by systematically increasing the maximum temperature from 50 C to 200 C while the piezoelectric strain coefficient was being measured. Second, the samples were isothermally aged at an elevated temperature in air, and the isothermal decay of the remanent polarization was measured at room temperature as a function of time. Both conventional and corona poling methods were evaluated. This material exhibited good thermal stability of the piezoelectric properties up to 100 C.

  11. Piezoelectric devices for generating low power

    NASA Astrophysics Data System (ADS)

    Chilibon, Irinela

    2016-12-01

    This paper reviews concepts and applications in low-power electronics and energy harvesting technologies. Various piezoelectric materials and devices for small power generators useful in renewable electricity are presented. The vibrating piezoelectric device differs from the typical electrical power source in that it has capacitive rather than inductive source impedance, and may be driven by mechanical vibrations of varying amplitude. In general, vibration energy could be converted into electrical energy using one of three techniques: electrostatic charge, magnetic fields and piezoelectric. A low power piezoelectric generator, having a PZT element was realised in order to supply small electronic elements, such as optoelectronic small devices, LEDs, electronic watches, small sensors, interferometry with lasers or Micro-electro-mechanical System (MEMS) array with multi-cantilevers.

  12. A piezoelectric transformer

    NASA Technical Reports Server (NTRS)

    Won, C. C.

    1993-01-01

    This work describes a modeling and design method whereby a piezoelectric system is formulated by two sets of second-order equations, one for the mechanical system, and the other for the electrical system, coupled through the piezoelectric effect. The solution to this electromechanical coupled system gives a physical interpretation of the piezoelectric effect as a piezoelectric transformer that is a part of the piezoelectric system, which transfers the applied mechanical force into a force-controlled current source, and short circuit mechanical compliance into capacitance. It also transfers the voltage source into a voltage-controlled relative velocity input, and free motional capacitance into mechanical compliance. The formulation and interpretation simplify the modeling of smart structures and lead to physical insight that aids the designer. Due to its physical realization, the smart structural system can be unconditional stable and effectively control responses. This new concept has been demonstrated in three numerical examples for a simple piezoelectric system.

  13. Pyro-electric energy harvesting with a high Curie temperature material LiNbO3

    NASA Astrophysics Data System (ADS)

    Karim, Hasanul; Sarker, MD Rashedul Hasan; Shahriar, Shaimum; Shuvo, Mohammad Arif Ishtiaque; Delfin, Diego; Hodges, Deidra; Love, Norman; Lin, Yirong

    2016-04-01

    Energy harvesting has been gaining significant interest as a potential solution for energizing next generation sensor and energy storage devices. The most widely investigated material for piezoelectric and pyro-electric energy harvesting to date is PZT (Lead Zirconate Titanate), owing to its good piezoelectric and pyro-electric properties. However, Lead is detrimental to human health and to the environment. Hence, alternative materials are required to be investigated for this purpose. In this paper, a lead free material Lithium Niobate (LNB) is reported as a potential material for pyro-electric energy harvesting. Although, it has lower pyro-electric properties than PZT, it has better properties than other lead free alternatives of PZT such as ZnO. In addition, LNB has a high curie point of 1142 °C, which makes it suitable for high temperature environment where other pyro-electric materials are not suitable. Therefore, a single crystal LNB has been investigated as a source of energy harvesting under alternative heating and cooling environment. A commercial 0.2 F super-capacitor was used as the energy storage device.

  14. Electrocaloric effect and energy storage in lead free Gd0.02Na0.48Bi0.5TiO3 ceramic

    NASA Astrophysics Data System (ADS)

    Zannen, M.; Lahmar, A.; Kutnjak, Z.; Belhadi, J.; Khemakhem, H.; El Marssi, M.

    2017-04-01

    The electrocaloric effect (EC) was investigated in the ferroelectric lead-free Na1/2(Bi0.98 Gd0.02)1/2TiO3 (GdNBT) ceramics. A pure perovskite structure was observed by the X-ray diffraction in GdNBT ceramics synthesized by a solid-state reaction method. Dielectric measurements revealed the existence of different ferroelectric and antiferroelectric transformations in this material. Based on the temperature dependence of P-E loops, reversible electrocaloric temperature changes of about ΔT = 0.75 K at the electric field of 90 kV/cm and the EC responsivity ΔT/ΔE ≈ 0.08 × 10-6 K m V-1 were obtained in the GdNBT ceramics. The energy-storage density W = 0.85 J cm-3 and the associated efficiency (η = 65%) at 413 K were determined from the P-E loops data. The simultaneous existence of EC responsivity and energy-storage density makes GdNBT very promising lead-free material and opens a great potential for its application in electronic devices.

  15. Temperature Dependence of the Electromechanical Properties of O-3 PbTiO3-Polymer Piezoelectric Composite Materials

    DTIC Science & Technology

    1994-07-01

    WLF theory), which explains the influence of the glass transition on the elastic properties of polymers, is used to describe temperature dependence ...of the elastic and dielectric properties of the composite materials. The temperature dependence of the dielectric permittivity is shown to be similar...in form to the temperature dependence of the elastic properties. The application of the time-temperature superposition principle for shifting

  16. The Measurement of Thermal Conductivity Variation with Temperature for Sn-Based Lead-Free Binary Solders

    NASA Astrophysics Data System (ADS)

    Demir, Mustafa; Aksöz, Sezen; Öztürk, Esra; Maraşlı, Necmettin

    2014-10-01

    The variations of thermal conductivity with temperature in the Sn-based lead-free binary solders, Sn-10 wt pct X (X = Ag, In, Bi, Cu, Sb, Zn), were measured by using the linear heat flow apparatus. The thermal conductivities of Sn-based lead-free solders at their melting temperature were obtained from graphs of thermal conductivity variation with temperature. The variations of electrical conductivity with temperature for same solders were also determined from the Wiedemann-Franz (W-F) equation by using the measured values of thermal conductivity.

  17. Nanoindentation on SnAgCu lead-free solder joints and analysis

    NASA Astrophysics Data System (ADS)

    Xu, Luhua; Pang, John H. L.

    2006-12-01

    The lead-free SnAgCu (SAC) solder joint on copper pad with organic solderability preservative (Cu-OSP) and electroless nickel and immersion gold (ENIG) subjected to thermal testing leads to intermetallic growth. It causes corresponding reliability concerns at the interface. Nanoindentation characterization on SnAgCu solder alloy, intermetallic compounds (IMCs), and the substrates subjected to thermal aging is reported. The modulus and hardness of thin IMC layers were measured by nanoindentation continuous stiffness measurement (CSM) from planar IMC surface. When SAC/Ni(Au) solder joints were subject to thermal aging, the Young’s modulus of the NiCuSn IMC at the SAC/ENIG specimen changed from 207 GPa to 146 GPa with different aging times up to 500 h. The hardness decreased from 10.0 GPa to 7.3 GPa. For the SAC/Cu-OSP reaction couple, the Young’s modulus of Cu6Sn5 stayed constant at 97.0 GPa and hardness about 5.7 GPa. Electron-probe microanalysis (EPMA) was used to thermal aging. The creep effect on the measured result was analyzed when measuring SnAgCu solder; it was found that the indentation penetration, and thus the hardness, is loading rate dependent. With the proposed constant P/P experiment, a constant indentation strain rate h/h and hardness could be achieved. The log-log plot of indentation strain rate versus hardness for the data from the constant P/P experiments yields a slope of 7.52. With the optimized test method and CSM Technique, the Modulus of SAC387 solder alloy and all the layers in a solder joint were investigated.

  18. Development of lead-free copper alloy-graphite casting. Annual report, January--December 1994

    SciTech Connect

    Rohatgi, P.K.

    1996-02-01

    Water model experiments were conducted to develop a two-stage stirring method for obtaining higher yields and a more uniform distribution of particles in copper alloys. This was followed by several melts for synthesis of copper-graphite alloys in which T1 was used as a wetting agent to improve the wettability of graphite in the copper melt. In the first stage, a vortex method was employed to facilitate the suction of graphite particles into the copper melt. In the second stage, the specially designed stirrer was used to avoid the formation of vortex in melt. The two stage stirring was found to considerably improve the recovery of graphite, over those obtained with the prior practice of single stage stirring. In addition, graphite recoveries increased with increasing Ti content. Flotation, fluidity, and directional solidification experiments were also conducted on copper-graphite alloys synthesized in this study. Tests showed that the spiral fluidity length of the yellow brass alloy increased with temperature and decreased with graphite. The fluidity of copper-graphite alloys investigated to date remained adequate to make a variety of castings. The observations of microstructure of directional solidification and flotation showed that in certain castings the graphite particles were agglomerated and they float to the upper part of the castings where they reduced the size of grains. However, in the agglomerated form, the graphite particles improved the machinability of copper alloys in a manner similar to lead. The result of the first years work provide an improved method of synthesis of lead free copper graphite alloys with improved machinability and adequate fluidity. Future work will continue to further improve the distribution of graphite particles in casting while retaining adequate fluidity and improved machinability. Techniques like centrifugal casting will be developed to concentrate graphite in regions where it is required for machinability in bearings.

  19. Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system

    NASA Astrophysics Data System (ADS)

    Zhang, Shan-Tao; Kounga, Alain Brice; Aulbach, Emil; Ehrenberg, Helmut; Rödel, Jürgen

    2007-09-01

    Piezoelectric actuators convert electrical into mechanical energy and are implemented for many large-scale applications such as piezoinjectors and ink jet printers. The performance of these devices is governed by the electric-field-induced strain. Here, the authors describe the development of a class of lead-free (0.94-x)Bi0.5Na0.5TiO3-0.06BaTiO3-xK0.5Na0.5NbO3 ceramics. These can deliver a giant strain (0.45%) under both unipolar and bipolar field loadings, which is even higher than the strain obtained with established ferroelectric Pb(Zr ,Ti)O3 ceramics and is comparable to strains obtained in Pb-based antiferroelectrics.

  20. High-Temperature Piezoelectric Crystals for Acoustic Wave Sensor Applications.

    PubMed

    Zu, Hongfei; Wu, Huiyan; Wang, Qing-Ming

    2016-03-01

    In this review paper, nine different types of high-temperature piezoelectric crystals and their sensor applications are overviewed. The important materials' properties of these piezoelectric crystals including dielectric constant, elastic coefficients, piezoelectric coefficients, electromechanical coupling coefficients, and mechanical quality factor are discussed in detail. The determination methods of these physical properties are also presented. Moreover, the growth methods, structures, and properties of these piezoelectric crystals are summarized and compared. Of particular interest are langasite and oxyborate crystals, which exhibit no phase transitions prior to their melting points ∼ 1500 °C and possess high electrical resistivity, piezoelectric coefficients, and mechanical quality factor at ultrahigh temperature ( ∼ 1000 °C). Finally, some research results on surface acoustic wave (SAW) and bulk acoustic wave (BAW) sensors developed using this high-temperature piezoelectric crystals are discussed.

  1. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications

    PubMed Central

    Zhou, Qifa; Lau, Sienting; Wu, Dawei; Shung, K. Kirk

    2011-01-01

    Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the current status of the piezoelectric films and recent progress in the development of high frequency ultrasonic transducers will be discussed. Then details for preparation and structure of the materials derived from piezoelectric thick film technologies will be described. Both chemical and physical methods are included in the discussion, namely, the sol–gel approach, aerosol technology and hydrothermal method. The electric and piezoelectric properties of the piezoelectric films, which are very important for transducer applications, such as permittivity and electromechanical coupling factor, are also addressed. Finally, the recent developments in the high frequency transducers and arrays with piezoelectric ZnO and PZT thick film using MEMS technology are presented. In addition, current problems and further direction of the piezoelectric films for very high frequency ultrasound application (up to GHz) are also discussed. PMID:21720451

  2. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications.

    PubMed

    Zhou, Qifa; Lau, Sienting; Wu, Dawei; Shung, K Kirk

    2011-02-01

    Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the current status of the piezoelectric films and recent progress in the development of high frequency ultrasonic transducers will be discussed. Then details for preparation and structure of the materials derived from piezoelectric thick film technologies will be described. Both chemical and physical methods are included in the discussion, namely, the sol-gel approach, aerosol technology and hydrothermal method. The electric and piezoelectric properties of the piezoelectric films, which are very important for transducer applications, such as permittivity and electromechanical coupling factor, are also addressed. Finally, the recent developments in the high frequency transducers and arrays with piezoelectric ZnO and PZT thick film using MEMS technology are presented. In addition, current problems and further direction of the piezoelectric films for very high frequency ultrasound application (up to GHz) are also discussed.

  3. Dielectric loss against piezoelectric power harvesting

    NASA Astrophysics Data System (ADS)

    Liang, Junrui; Shu-Hung Chung, Henry; Liao, Wei-Hsin

    2014-09-01

    Piezoelectricity is one of the most popular electromechanical transduction mechanisms for constructing kinetic energy harvesting systems. When a standard energy harvesting (SEH) interface circuit, i.e., bridge rectifier plus filter capacitor, is utilized for collecting piezoelectric power, the previous literature showed that the power conversion can be well predicted without much consideration for the effect of dielectric loss. Yet, as the conversion power gets higher by adopting power-boosting interface circuits, such as synchronized switch harvesting on inductor (SSHI), the neglect of dielectric loss might give rise to deviation in harvested power estimation. Given the continuous progress on power-boosting interface circuits, the role of dielectric loss in practical piezoelectric energy harvesting (PEH) systems should receive attention with better evaluation. Based on the integrated equivalent impedance network model, this fast track communication provides a comprehensive study on the susceptibility of harvested power in PEH systems under different conditions. It shows that, dielectric loss always counteracts piezoelectric power harvesting by causing charge leakage across piezoelectric capacitance. In particular, taking corresponding ideal lossless cases as references, the counteractive effect might be aggravated under one of the five conditions: larger dielectric loss tangent, lower vibration frequency, further away from resonance, weaker electromechanical coupling, or using power-boosting interface circuit. These relationships are valuable for the study of PEH systems, as they not only help explain the role of dielectric loss in piezoelectric power harvesting, but also add complementary insights for material, structure, excitation, and circuit considerations towards holistic evaluation and design for practical PEH systems.

  4. Characterization of porous piezoelectric ceramics: The length expander case

    SciTech Connect

    Gomez Alvarez-Arenas, T.E.; Montero de Espinosa, F.

    1997-12-01

    Porous piezoelectric ceramics and 0{endash}3/3{endash}3 connectivity piezoelectric composites are normally characterized following the Standards on Piezoelectricity. Nevertheless, these materials are not homogeneous and losses are significant. New constitutive and wave equations have been obtained recently for these kind of materials. The objective of this paper is to derive new definitions for the electromechanical coupling coefficients and a suitable characterization procedure according to the new constitutive and wave equations previously mentioned. In particular, the case of the length expander bar mode is analyzed in detail. The study of resonant elements requires the use of suitable boundary conditions. In this case the boundary conditions are borrowed from the theory of poroelasticity and extended for a piezoelectric material. Finally the procedure is applied to characterize a commercial porous piezoelectric ceramic. {copyright} {ital 1997 Acoustical Society of America.}

  5. Low-Temperature Solution Processable Electrodes for Piezoelectric Sensors Applications

    NASA Astrophysics Data System (ADS)

    Tuukkanen, Sampo; Julin, Tuomas; Rantanen, Ville; Zakrzewski, Mari; Moilanen, Pasi; Lupo, Donald

    2013-05-01

    Piezoelectric thin-film sensors are suitable for a wide range of applications from physiological measurements to industrial monitoring systems. The use of flexible materials in combination with high-throughput printing technologies enables cost-effective manufacturing of custom-designed, highly integratable piezoelectric sensors. This type of sensor can, for instance, improve industrial process control or enable the embedding of ubiquitous sensors in our living environment to improve quality of life. Here, we discuss the benefits, challenges and potential applications of piezoelectric thin-film sensors. The piezoelectric sensor elements are fabricated by printing electrodes on both sides of unmetallized poly(vinylidene fluoride) film. We show that materials which are solution processable in low temperatures, biocompatible and environmental friendly are suitable for use as electrode materials in piezoelectric sensors.

  6. Lead free CH3NH3SnI3 perovskite thin-film with p-type semiconducting nature and metal-like conductivity

    NASA Astrophysics Data System (ADS)

    Iefanova, Anastasiia; Adhikari, Nirmal; Dubey, Ashish; Khatiwada, Devendra; Qiao, Qiquan

    2016-08-01

    Lead free CH3NH3SnI3 perovskite thin film was prepared by low temperature solution processing and characterized using current sensing atomic force microscopy (CS-AFM). Analysis of electrical, optical, and optoelectrical properties reveals unique p-type semiconducting nature and metal like conductivity of this material. CH3NH3SnI3 film also showed a strong absorption in visible and near infrared spectrum with absorption onset of 1.3 eV. X-ray Diffraction analysis and scanning electron microscopy (SEM) confirmed a structure of this compound and uniform film formation. The morphology, film uniformity, light harvesting and electrical properties strongly depend on preparation method and precursor solution. CH3NH3SnI3 films prepared based on dimethylformamide (DMF) showed higher crystallinity and light harvesting capability compared to the film based on combination of dimethyl sulfoxide (DMSO) with gamma-butyrolactone (GBL). Local photocurrent mapping analysis showed that CH3NH3SnI3 can be used as an active layer and have a potential to fabricate lead free photovoltaic devices.

  7. Large electrocaloric effect in lead-free K0.5Na0.5NbO3-SrTiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Koruza, J.; Rožič, B.; Cordoyiannis, G.; Malič, B.; Kutnjak, Z.

    2015-05-01

    The electrocaloric effect (ECE), i.e., the adiabatic temperature change ΔTEC, of the lead-free relaxor ferroelectric 0.85K0.5Na0.5NbO3-0.15SrTiO3 (KNN-STO) ceramics is investigated. The ECE data obtained by a direct method show the existence of a large ECE near the temperature of the dielectric permittivity maximum. Due to the high break-down electric field, a large ΔTEC exceeding 1.2 K at 300 K and 1.9 K at 340 K was observed at 159 kV/cm in a broad temperature range of 80 K. Such a high ECE response near the room temperature is comparable to that found in lead-based ceramic materials, thus making KNN-STO a strong candidate to replace lead-based materials in future electrocaloric applications.

  8. High Power Piezoelectric Characterization for Piezoelectric Transformer Development

    NASA Astrophysics Data System (ADS)

    Ural, Seyit O.

    The major goal was to develop characterization techniques to identify and define guidelines to manufacture high power density actuators. We particularly aim at improving the strengths of piezoelectric transformers, namely the high efficiency, ease of manufacturing, low electromagnetic noise, and high power to weight ratio resulting in an adaptor application by identifying material limitations, geometrical limitations and offer guidelines to counter drawbacks limiting the power density. There are 3 losses present in piezoelectrics. Namely dielectric, elastic and piezoelectric losses. These losses can be calculated using mechanical quality factors of the resonating piezoelectric actuator. But in order to calculate all three losses, the mechanical quality factor for resonance and anti resonance need to be measured. Although the mechanical quality factor for resonance is conventionally measured, measurements in antiresonance have been ignored. Since there was no unique measurement technique to address antiresonance and resonance Q in one single sweep, in this study constant vibration velocity method was developed. During the constant vibration velocity measurement, the input electrical energy is monitored and significant differences between resonance and antiresonance drives are observed. For the same output work (identical vibration velocity) significant differences in the losses were observed. Thermographic images have shown increasing temperature differences for resonance and antiresonance nodal point temperatures, with higher vibration velocities. The theoretical evaluation identified the difference observed in the mechanical quality factors at resonance and antiresonance to stem from the piezoelectric loss. In order to investigate losses in the absence of thermal effects a transient characterization technique was adopted. The burst technique, originally developed for characterization of the mechanical quality factor at resonance, has been modified with a switch

  9. Effect of garment design on piezoelectricity harvesting from joint movement

    NASA Astrophysics Data System (ADS)

    Yang, Jin-Hee; Cho, Hyun-Seung; Park, Seon-Hyung; Song, Seung-Hwan; Yun, Kwang-Seok; Lee, Joo Hyeon

    2016-03-01

    The harvesting of piezoelectricity through the human body involves the conversion of mechanical energy, mostly generated by the repeated movements of the body, to electrical energy, irrespective of the time and location. In this research, it was expected that the garment design would play an important role in increasing the efficiency of piezoelectricity scavenged in a garment because the mechanical deformation imposed on the energy harvester could increase through an optimal design configuration for the garment parts supporting a piezoelectricity harvester. With this expectation, this research aimed to analyze the effect of the clothing factors, and that of human factors on the efficiency of piezoelectricity harvesting through clothing in joint movements. These analyses resulted in that the efficiency of the piezoelectricity harvesting was affected from both two clothing factors, tightness level depending upon the property of the textile material and design configuration of the garment part supporting the piezoelectricity harvesting. Among the three proposed designs of the garment part supporting the piezoelectricity harvesting, ‘reinforced 3D module design,’ which maximized the value of radius in the piezoelectricity harvester, showed the highest efficiency across all areas of the joints in the human body. The two human factors, frequency of movement and body part, affected the efficiency of the piezoelectricity harvesting as well.

  10. NASA-DoD Lead-Free Electronics Project. DRAFT Joint Test Report

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2011-01-01

    The use of conventional tin-lead (SnPb) in circuit board manufacturing is under ever-increasing political scrutiny due to increasing regulations concerning lead. The "Restriction of Hazardous Substances" (RoHS) directive enacted by the European Union (EU) and a pact between the United States National Electronics Manufacturing Initiative (NEMI), Europe's Soldertec at Tin Technology Ltd. and the Japan Electronics and Information Technology Industries Association (JEITA) are just two examples where worldwide legislative actions and partnerships/agreements are affecting the electronics industry. As a result, many global commercial-grade electronic component suppliers are initiating efforts to transition to lead-free (Pb-free) in order to retain their worldwide market. Pb-free components are likely to find their way into the inventory of aerospace or military assembly processes under current government acquisition reform initiatives. Inventories "contaminated" by Pb-free will result in increased risks associated with the manufacturing, product reliability, and subsequent repair of aerospace and military electronic systems. Although electronics for military and aerospace applications are not included in the RoHS legislation, engineers are beginning to find that the commercial industry's move towards RoHS compliance has affected their supply chain and changed their parts. Most parts suppliers plan to phase out their non-compliant, leaded production and many have already done so. As a result, the ability to find leaded components is getting harder and harder. Some buyers are now attempting to acquire the remaining SnPb inventory, if it's not already obsolete. Original Equipment Manufacturers (OEMs), depots, and support contractors have to be prepared to deal with an electronics supply chain that increasingly provides more and more parts with Pb-free finishes-some labeled no differently than their Pb counterparts-while at the same time providing the traditional Pb parts

  11. Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration.

    PubMed

    Tang, Yufei; Wu, Cong; Wu, Zixiang; Hu, Long; Zhang, Wei; Zhao, Kang

    2017-02-27

    The piezoelectric effect of biological piezoelectric materials promotes bone growth. However, the material should be subjected to stress before it can produce an electric charge that promotes bone repair and reconstruction conducive to fracture healing. A novel method for in vitro experimentation of biological piezoelectric materials with physiological load is presented. A dynamic loading device that can simulate the force of human motion and provide periodic load to piezoelectric materials when co-cultured with cells was designed to obtain a realistic expression of piezoelectric effect on bone repair. Hydroxyapatite (HA)/barium titanate (BaTiO3) composite materials were fabricated by slip casting, and their piezoelectric properties were obtained by polarization. The d33 of HA/BaTiO3 piezoelectric ceramics after polarization was 1.3 pC/N to 6.8 pC/N with BaTiO3 content ranging from 80% to 100%. The in vitro biological properties of piezoelectric bioceramics with and without cycle loading were investigated. When HA/BaTiO3 piezoelectric bioceramics were affected by cycle loading, the piezoelectric effect of BaTiO3 promoted the growth of osteoblasts and interaction with HA, which was better than the effect of HA alone. The best biocompatibility and bone-inducing activity were demonstrated by the 10%HA/90%BaTiO3 piezoelectric ceramics.

  12. Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration

    PubMed Central

    Tang, Yufei; Wu, Cong; Wu, Zixiang; Hu, Long; Zhang, Wei; Zhao, Kang

    2017-01-01

    The piezoelectric effect of biological piezoelectric materials promotes bone growth. However, the material should be subjected to stress before it can produce an electric charge that promotes bone repair and reconstruction conducive to fracture healing. A novel method for in vitro experimentation of biological piezoelectric materials with physiological load is presented. A dynamic loading device that can simulate the force of human motion and provide periodic load to piezoelectric materials when co-cultured with cells was designed to obtain a realistic expression of piezoelectric effect on bone repair. Hydroxyapatite (HA)/barium titanate (BaTiO3) composite materials were fabricated by slip casting, and their piezoelectric properties were obtained by polarization. The d33 of HA/BaTiO3 piezoelectric ceramics after polarization was 1.3 pC/N to 6.8 pC/N with BaTiO3 content ranging from 80% to 100%. The in vitro biological properties of piezoelectric bioceramics with and without cycle loading were investigated. When HA/BaTiO3 piezoelectric bioceramics were affected by cycle loading, the piezoelectric effect of BaTiO3 promoted the growth of osteoblasts and interaction with HA, which was better than the effect of HA alone. The best biocompatibility and bone-inducing activity were demonstrated by the 10%HA/90%BaTiO3 piezoelectric ceramics. PMID:28240268

  13. Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration

    NASA Astrophysics Data System (ADS)

    Tang, Yufei; Wu, Cong; Wu, Zixiang; Hu, Long; Zhang, Wei; Zhao, Kang

    2017-02-01

    The piezoelectric effect of biological piezoelectric materials promotes bone growth. However, the material should be subjected to stress before it can produce an electric charge that promotes bone repair and reconstruction conducive to fracture healing. A novel method for in vitro experimentation of biological piezoelectric materials with physiological load is presented. A dynamic loading device that can simulate the force of human motion and provide periodic load to piezoelectric materials when co-cultured with cells was designed to obtain a realistic expression of piezoelectric effect on bone repair. Hydroxyapatite (HA)/barium titanate (BaTiO3) composite materials were fabricated by slip casting, and their piezoelectric properties were obtained by polarization. The d33 of HA/BaTiO3 piezoelectric ceramics after polarization was 1.3 pC/N to 6.8 pC/N with BaTiO3 content ranging from 80% to 100%. The in vitro biological properties of piezoelectric bioceramics with and without cycle loading were investigated. When HA/BaTiO3 piezoelectric bioceramics were affected by cycle loading, the piezoelectric effect of BaTiO3 promoted the growth of osteoblasts and interaction with HA, which was better than the effect of HA alone. The best biocompatibility and bone-inducing activity were demonstrated by the 10%HA/90%BaTiO3 piezoelectric ceramics.

  14. Green piezoelectric for autonomous smart textile

    NASA Astrophysics Data System (ADS)

    Lemaire, E.; Borsa, C. J.; Briand, D.

    2015-12-01

    In this work, the fabrication of Rochelle salt based piezoelectric textiles are shown. Structures composed of fibers and Rochelle salt are easily produced using green processes. Both manufacturing and the material itself are really efficient in terms of environmental impact, considering the fabrication processes and the material resources involved. Additionally Rochelle salt is biocompatible. In this green paradigm, active sensing or actuating textiles are developed. Thus processing method and piezoelectric properties have been studied: (1) pure crystals are used as acoustic actuator, (2) fabrication of the textile-based composite is detailed, (3) converse effective d33 is evaluated and compared to lead zirconate titanate ceramic. The utility of textile-based piezoelectric merits its use in a wide array of applications.

  15. Contact mechanics of piezoelectric ultrasonic motors

    NASA Astrophysics Data System (ADS)

    Wallaschek, Jörg

    1998-06-01

    Piezoelectric ultrasonic motors are driven by tangential stresses in the interface between stator and rotor. These stresses are generated by the elliptical motion of the material points of the stator or rotor surface and depend on frictional processes in the contact area. The contact mechanics of piezoelectric ultrasonic motors determines the operational characteristics, like rotational speed and torque or transmitted mechanical power and efficiency. Wear properties and lifetime of piezoelectric ultrasonic motors are also determined by contact mechanics. The goal of the present paper is to summarize the state of the art in the understanding of some fundamental processes governing the contact mechanics of piezoelectric ultrasonic motors. After a short introduction, a survey of publications devoted to the subject will be given. Then, an attempt will be made to classify the mechanical models, which were developed in order to explain the contact mechanics of piezoelectric ultrasonic motors, according to the physical effects which have been taken into account in their derivation. Some results concerning the choice of proper contact materials, wear and lifetime of ultrasonic motors will be addressed in a separate section. Finally a summary and outlook will be given and open questions for future research will be formulated.

  16. Enhancement on wettability and intermetallic compound formation with an addition of Al on Sn-0.7Cu lead-free solder fabricated via powder metallurgy method

    NASA Astrophysics Data System (ADS)

    Adli, Nisrin; Razak, Nurul Razliana Abdul; Saud, Norainiza

    2016-07-01

    Due to the toxicity of lead (Pb), the exploration of another possibility for lead-free solder is necessary. Nowadays, SnCu alloys are being established as one of the lead-free solder alternatives. In this study, Sn-0.7Cu lead-free solder with an addition of 1wt% and 5wt% Al were investigated by using powder metallurgy method. The effect of Al addition on the wettability and intermetallic compound thickness (IMC) of Sn-0.7Cu-Al lead-free solder were appraised. Results showed that Al having a high potential to enhance Sn-0.7Cu lead-free solder due to its good wetting and reduction of IMC thickness. The contact angle and IMC of the Sn-0.7Cu-Al lead-free solder were decreased by 14.32% and 40% as the Al content increased from 1 wt% to 5 wt%.

  17. Adaptive piezoelectric sensoriactuator

    NASA Technical Reports Server (NTRS)

    Clark, Jr., Robert L. (Inventor); Vipperman, Jeffrey S. (Inventor); Cole, Daniel G. (Inventor)

    1996-01-01

    An adaptive algorithm implemented in digital or analog form is used in conjunction with a voltage controlled amplifier to compensate for the feedthrough capacitance of piezoelectric sensoriactuator. The mechanical response of the piezoelectric sensoriactuator is resolved from the electrical response by adaptively altering the gain imposed on the electrical circuit used for compensation. For wideband, stochastic input disturbances, the feedthrough capacitance of the sensoriactuator can be identified on-line, providing a means of implementing direct-rate-feedback control in analog hardware. The device is capable of on-line system health monitoring since a quasi-stable dynamic capacitance is indicative of sustained health of the piezoelectric element.

  18. Notes on Piezoelectricity

    SciTech Connect

    Redondo, Antonio

    2016-02-03

    These notes provide a pedagogical discussion of the physics of piezoelectricity. The exposition starts with a brief analysis of the classical (continuum) theory of piezoelectric phenomena in solids. The main subject of the notes is, however, a quantum mechanical analysis. We first derive the Frohlich Hamiltonian as part of the description of the electron-phonon interaction. The results of this analysis are then employed to derive the equations of piezoelectricity. A couple of examples with the zinc blende and and wurtzite structures are presented at the end

  19. Aging in the relaxor and ferroelectric state of Fe-doped (1-x)(Bi{sub 1/2}Na{sub 1/2})TiO₃-xBaTiO₃ piezoelectric ceramics

    SciTech Connect

    Sapper, Eva; Dittmer, Robert; Rödel, Jürgen; Damjanovic, Dragan; Erdem, Emre; Keeble, David J.; Jo, Wook; Granzow, Torsten

    2014-09-14

    Aging of piezoelectric properties was investigated in lead-free (1–x)(Bi{sub 1/2}Na{sub 1/2})TiO₃-xBaTiO₃ doped with 1at.% Fe. The relaxor character of the un-poled material prevents macroscopic aging effects, while in the field-induced ferroelectric phase aging phenomena are similar to those found in lead zirconate titanate or barium titanate. Most prominent aging effects are the development of an internal bias field and the decrease of switchable polarization. These effects are temperature activated, and can be explained in the framework of defect complex reorientation. This picture is further supported by electron paramagnetic resonance spectra indicating the existence of (Fe{sub Ti}´-V{sub O}{sup ••}){sup •} defect complexes in the Fe-doped material.

  20. Cantilevered probe detector with piezoelectric element

    SciTech Connect

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2014-04-29

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  1. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D.; Sulchek, Todd A.; Feigin, Stuart C.

    2010-04-06

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  2. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2013-04-30

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  3. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D [Reno, NV; Sulchek, Todd A [Oakland, CA; Feigin, Stuart C [Reno, NV

    2012-07-10

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  4. Multiscale Modeling of Piezoelectric Materials

    DTIC Science & Technology

    2008-11-01

    atoms are randomly distributed on the B sites. Using first-principles calculations Grinberg and colleagues2 show that each Pb atom displaces...and a paraelectric cubic phase (C) at high temperatures. Grinberg et al. show that the complex phase behaviour of different Zr/Ti compositions can...property tensors is identical . We make repeated use of the chain rule to analytically determine the derivatives. Let us consider the following

  5. Piezoelectric Templates - New Views on Biomineralization and Biomimetics.

    PubMed

    Stitz, Nina; Eiben, Sabine; Atanasova, Petia; Domingo, Neus; Leineweber, Andreas; Burghard, Zaklina; Bill, Joachim

    2016-05-23

    Biomineralization in general is based on electrostatic interactions and molecular recognition of organic and inorganic phases. These principles of biomineralization have also been utilized and transferred to bio-inspired synthesis of functional materials during the past decades. Proteins involved in both, biomineralization and bio-inspired processes, are often piezoelectric due to their dipolar character hinting to the impact of a template's piezoelectricity on mineralization processes. However, the piezoelectric contribution on the mineralization process and especially the interaction of organic and inorganic phases is hardly considered so far. We herein report the successful use of the intrinsic piezoelectric properties of tobacco mosaic virus (TMV) to synthesize piezoelectric ZnO. Such films show a two-fold increase of the piezoelectric coefficient up to 7.2 pm V(-1) compared to films synthesized on non-piezoelectric templates. By utilizing the intrinsic piezoelectricity of a biotemplate, we thus established a novel synthesis pathway towards functional materials, which sheds light on the whole field of biomimetics. The obtained results are of even broader and general interest since they are providing a new, more comprehensive insight into the mechanisms involved into biomineralization in living nature.

  6. Terminal Performance of Lead Free Pistol Bullets in Ballistic Gelatin Using Retarding Force Analysis from High Speed Video

    DTIC Science & Technology

    2016-04-04

    Comparative Analysis of Airborne Chemical Exposure to Air Force Small Arms Range In- structors, Air Force Institute of Technology, AFIT/GES...Terminal Performance of Lead-Free Pistol Bullets in Ballistic Gelatin Using Retarding Force Analysis from High Speed Video ELIJAH COURTNEY, AMY...for comparison with earlier analysis of jacketed lead bullets. Peak retard- ing force and energy deposit in calibrated ballistic gelatin are

  7. Piezoelectric micromotors for microrobots

    NASA Astrophysics Data System (ADS)

    Flynn, Anita M.; Tavrow, Lee S.; Bart, Stephen F.; Brooks, Rodney A.; Ehrlich, Daniel J.; Udayakumar, K. R.; Cross, L. E.

    1992-03-01

    The authors have begun research into piezoelectric ultrasonic motors using ferroelectric thin films. The authors have fabricated the stator components of these millimeter diameter motors on silicon wafers. Ultrasonic motors consist of two pieces: a stator and a rotor. The stator includes a piezoelectric film in which bending is induced in the form of a traveling wave. A small glass lens placed upon the stator becomes the spinning rotor. Piezoelectric micromotors overcome the problems currently associated with electrostatic micromotors such as low torque, friction, and the need for high voltage excitation. More importantly, they may offer a much simpler mechanism for coupling power out. Using thin films of lead zirconate titanate on silicon nitride membranes, various types of actuator structures can be fabricated. By combining new robot control systems with piezoelectric motors and micromechanics, the authors propose creating micromechanical systems that are small, cheap and completely autonomous.

  8. Energy collection via Piezoelectricity

    NASA Astrophysics Data System (ADS)

    Naveen Kumar, Ch

    2015-12-01

    In the present days, wireless data transmission techniques are commonly used in electronic devices. For powering them connection needs to be made to the power supply through wires else power may be supplied from batteries. Batteries require charging, replacement and other maintenance efforts. So, some alternative methods need to be developed to keep the batteries full time charged and to avoid the need of any consumable external energy source to charge the batteries. Mechanical energy harvesting utilizes piezoelectric components where deformations produced by different means are directly converted to electrical charge via piezoelectric effect. The proposed work in this research recommends Piezoelectricity as a alternate energy source. The motive is to obtain a pollution-free energy source and to utilize and optimize the energy being wasted. Current work also illustrates the working principle of piezoelectric crystal and various sources of vibration for the crystal.

  9. Enhanced Piezoelectric Response due to Polarization Rotation in Cobalt-Substituted BiFeO3 Epitaxial Thin Films.

    PubMed

    Shimizu, Keisuke; Hojo, Hajime; Ikuhara, Yuichi; Azuma, Masaki

    2016-10-01

    Polarization rotation induced by an external electric field in piezoelectric materials such as PbZr1-x Tix O3 is generally regarded as the origin of their large piezoelectric responses. Here, the piezoelectric responses of high-quality cobalt-substituted BiFeO3 epitaxial thin films with monoclinic distortions are systematically examined. It is demonstrated that polarization rotation plays a crucial role in improving the piezoelectric responses in this material.

  10. Novel optically active lead-free relaxor ferroelectric (Ba0.6Bi0.2Li0.2)TiO3

    NASA Astrophysics Data System (ADS)

    Borkar, Hitesh; Rao, Vaibhav; Dutta, Soma; Barvat, Arun; Pal, Prabir; Tomar, M.; Gupta, Vinay; Scott, J. F.; Kumar, Ashok

    2016-07-01

    We discovered a near-room-temperature lead-free relaxor-ferroelectric (Ba0.6Bi0.2Li0.2)TiO3 (BBLT) having A-site compositionally disordered ABO3 perovskite structure. Microstructure-property relations revealed that the chemical inhomogeneities and development of local polar nano-regions (PNRs) are responsible for dielectric dispersion as a function of probe frequencies and temperatures. Rietveld analysis indicates mixed crystal structure with 80% tetragonal structure (space group P4mm) and 20% orthorhombic structure (space group Amm2), which is confirmed by the high resolution transmission electron diffraction (HRTEM). Dielectric constant and tangent loss dispersion with and without illumination of light obey nonlinear Vogel-Fulcher (VF) relations. The material shows slim polarization-hysteresis (P-E) loops and excellent displacement coefficients (d 33 ~ 233 pm V-1) near room temperature, which gradually diminish near the maximum dielectric dispersion temperature (T m ). The underlying physics for light-sensitive dielectric dispersion was probed by x-ray photon spectroscopy (XPS), which strongly suggests that mixed valence of bismuth ions, especially Bi5+ ions, comprise most of the optically active centers. Ultraviolet photoemission measurements showed most of the Ti ions are in 4 +  states and sit at the centers of the TiO6 octahedra; along with asymmetric hybridization between O 2p and Bi 6s orbitals, this appears to be the main driving force for net polarization. This BBLT material may open a new path for environmental friendly lead-free relaxor-ferroelectric research.

  11. Design considerations for piezoelectric polymer ultrasound transducers.

    PubMed

    Brown, L F

    2000-01-01

    Much work has been published on the design of ultrasound transducers using piezoelectric ceramics, but a great deal of this work does not apply when using the piezoelectric polymers because of their unique electrical and mechanical properties. The purpose of this paper is to review and present new insight into seven important considerations for the design of active piezoelectric polymer ultrasound transducers: piezoelectric polymer materials selection, transducer construction and packaging requirements, materials characterization and modeling, film thickness and active area design, electroding selection, backing material design, and front protection/matching layer design. Besides reviewing these design considerations, this paper also presents new insight into the design of active piezoelectric polymer ultrasonic transducers. The design and fabrication of an immersible ultrasonic transducer, which has no adhesive layer between the active element and backing layer, is included. The transducer features direct deposition of poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer onto an insulated aluminum backing substrate. Pulse-echo tests indicated a minimum insertion loss of 37 dB and -6 dB bandwidth of 9.8 to 22 MHz (71%). The use of polymer wear-protection/quarter-wave matching layers is also discussed. Test results on a P(VDF-TrFE) transducer showed that a Mylar/sup TM/ front layer provided a slight increase in pulse-echo amplitude of 15% (or 1.2 dB) and an increase in -6 dB pulse-echo fractional bandwidth from 86 to 95%. Theoretical derivations are reported for optimizing the active area of the piezoelectric polymer element for maximum power transfer at resonance. These derivations are extended to the special case for a low profile (i.e., thin) shielded transducer. A method for modeling the non-linear loading effects of a commercial pulser-receiver is also included.

  12. Laminated piezoelectric transformer

    NASA Technical Reports Server (NTRS)

    Vazquez Carazo, Alfredo (Inventor)

    2006-01-01

    A laminated piezoelectric transformer is provided using the longitudinal vibration modes for step-up voltage conversion applications. The input portions are polarized to deform in a longitudinal plane and are bonded to an output portion. The deformation of the input portions is mechanically coupled to the output portion, which deforms in the same longitudinal direction relative to the input portion. The output portion is polarized in the thickness direction relative its electrodes, and piezoelectrically generates a stepped-up output voltage.

  13. Piezoelectrically Initiated Pyrotechnic Igniter

    NASA Technical Reports Server (NTRS)

    Quince, Asia; Dutton, Maureen; Hicks, Robert; Burnham, Karen

    2013-01-01

    This innovation consists of a pyrotechnic initiator and piezoelectric initiation system. The device will be capable of being initiated mechanically; resisting initiation by EMF, RF, and EMI (electromagnetic field, radio frequency, and electromagnetic interference, respectively); and initiating in water environments and space environments. Current devices of this nature are initiated by the mechanical action of a firing pin against a primer. Primers historically are prone to failure. These failures are commonly known as misfires or hang-fires. In many cases, the primer shows the dent where the firing pin struck the primer, but the primer failed to fire. In devices such as "T" handles, which are commonly used to initiate the blowout of canopies, loss of function of the device may result in loss of crew. In devices such as flares or smoke generators, failure can result in failure to spot a downed pilot. The piezoelectrically initiated ignition system consists of a pyrotechnic device that plugs into a mechanical system (activator), which on activation, generates a high-voltage spark. The activator, when released, will strike a stack of electrically linked piezo crystals, generating a high-voltage, low-amperage current that is then conducted to the pyro-initiator. Within the initiator, an electrode releases a spark that passes through a pyrotechnic first-fire mixture, causing it to combust. The combustion of the first-fire initiates a primary pyrotechnic or explosive powder. If used in a "T" handle, the primary would ramp the speed of burn up to the speed of sound, generating a shock wave that would cause a high explosive to go "high order." In a flare or smoke generator, the secondary would produce the heat necessary to ignite the pyrotechnic mixture. The piezo activator subsystem is redundant in that a second stack of crystals would be struck at the same time with the same activation force, doubling the probability of a first strike spark generation. If the first

  14. Postbuckling Investigations of Piezoelectric Microdevices Considering Damage Effects

    PubMed Central

    Sun, Zhigang; Wang, Xianqiao

    2014-01-01

    Piezoelectric material has been emerging as a popular building block in MEMS devices owing to its unique mechanical and electrical material properties. However, the reliability of MEMS devices under buckling deformation environments remains elusive and needs to be further explored. Based on the Talreja's tensor valued internal state damage variables as well as the Helmhotlz free energy of piezoelectric material, a constitutive model of piezoelectric materials with damage is presented. The Kachanvo damage evolution law under in-plane compressive loads is employed. The model is applied to the specific case of the postbuckling analysis of the piezoelectric plate with damage. Then, adopting von Karman's plate theory, the nonlinear governing equations of the piezoelectric plates with initial geometric deflection including damage effects under in-plane compressive loads are established. By using the finite difference method and the Newmark scheme, the damage evolution for damage accumulation is developed and the finite difference procedure for postbuckling equilibrium path is simultaneously employed. Numerical results show the postbuckling behaviors of initial flat and deflected piezoelectric plates with damage or no damage under different sets of electrical loading conditions. The effects of applied voltage, aspect ratio of plate, thick-span ratio of plate, damage as well as initial geometric deflections on the postbuckling behaviors of the piezoelectric plate are discussed. PMID:24618774

  15. Postbuckling investigations of piezoelectric microdevices considering damage effects.

    PubMed

    Sun, Zhigang; Wang, Xianqiao

    2014-03-11

    Piezoelectric material has been emerging as a popular building block in MEMS devices owing to its unique mechanical and electrical material properties. However, the reliability of MEMS devices under buckling deformation environments remains elusive and needs to be further explored. Based on the Talreja's tensor valued internal state damage variables as well as the Helmhotlz free energy of piezoelectric material, a constitutive model of piezoelectric materials with damage is presented. The Kachanvo damage evolution law under in-plane compressive loads is employed. The model is applied to the specific case of the postbuckling analysis of the piezoelectric plate with damage. Then, adopting von Karman's plate theory, the nonlinear governing equations of the piezoelectric plates with initial geometric deflection including damage effects under in-plane compressive loads are established. By using the finite difference method and the Newmark scheme, the damage evolution for damage accumulation is developed and the finite difference procedure for postbuckling equilibrium path is simultaneously employed. Numerical results show the postbuckling behaviors of initial flat and deflected piezoelectric plates with damage or no damage under different sets of electrical loading conditions. The effects of applied voltage, aspect ratio of plate, thick-span ratio of plate, damage as well as initial geometric deflections on the postbuckling behaviors of the piezoelectric plate are discussed.

  16. Improved dielectric constant and breakdown strength of γ-phase dominant super toughened polyvinylidene fluoride/TiO2 nanocomposite film: an excellent material for energy storage applications and piezoelectric throughput.

    PubMed

    Alam, Md Mehebub; Ghosh, Sujoy Kumar; Sarkar, Debabrata; Sen, Shrabanee; Mandal, Dipankar

    2017-01-06

    Titanium dioxide (TiO2) nanoparticles (NPs) embedded γ-phase containing polyvinylidene fluoride (PVDF) nanocomposite (PNC) film turns to an excellent material for energy storage application due to an increased dielectric constant (32 at 1 kHz), enhanced electric breakdown strength (400 MV m(-1)). It also exhibits a high energy density of 4 J cm(-3) which is 25 times higher than that of virgin PVDF. 98% of the electroactive γ-phase has been acheived by the incorporation of TiO2 NPs and the resulting PNC behaves like a super-toughened material due to a dramatic improvement (more than 80%) in the tensile strength. Owing to their electroactive nature and extraordinary mechanical properties, PNC films have a strong ability to fabricate the piezoelectric nanogenerators (PNGs) that have recently been an area of focus regarding mechanical energy harvesting. The feasibility of piezoelectric voltage generation from PNGs is demostrated under the rotating fan that also promises further utility such as rotational speed (RPM) determination.

  17. Improved dielectric constant and breakdown strength of γ-phase dominant super toughened polyvinylidene fluoride/TiO2 nanocomposite film: an excellent material for energy storage applications and piezoelectric throughput

    NASA Astrophysics Data System (ADS)

    Mehebub Alam, Md; Ghosh, Sujoy Kumar; Sarkar, Debabrata; Sen, Shrabanee; Mandal, Dipankar

    2017-01-01

    Titanium dioxide (TiO2) nanoparticles (NPs) embedded γ-phase containing polyvinylidene fluoride (PVDF) nanocomposite (PNC) film turns to an excellent material for energy storage application due to an increased dielectric constant (32 at 1 kHz), enhanced electric breakdown strength (400 MV m-1). It also exhibits a high energy density of 4 J cm-3 which is 25 times higher than that of virgin PVDF. 98% of the electroactive γ-phase has been acheived by the incorporation of TiO2 NPs and the resulting PNC behaves like a super-toughened material due to a dramatic improvement (more than 80%) in the tensile strength. Owing to their electroactive nature and extraordinary mechanical properties, PNC films have a strong ability to fabricate the piezoelectric nanogenerators (PNGs) that have recently been an area of focus regarding mechanical energy harvesting. The feasibility of piezoelectric voltage generation from PNGs is demostrated under the rotating fan that also promises further utility such as rotational speed (RPM) determination.

  18. Constitutive Modeling of Piezoelectric Polymer Composites

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Tom (Technical Monitor)

    2003-01-01

    A new modeling approach is proposed for predicting the bulk electromechanical properties of piezoelectric composites. The proposed model offers the same level of convenience as the well-known Mori-Tanaka method. In addition, it is shown to yield predicted properties that are, in most cases, more accurate or equally as accurate as the Mori-Tanaka scheme. In particular, the proposed method is used to determine the electromechanical properties of four piezoelectric polymer composite materials as a function of inclusion volume fraction. The predicted properties are compared to those calculated using the Mori-Tanaka and finite element methods.

  19. Broadening the potential bandwidth of piezoelectric transducers by partial depolarization

    SciTech Connect

    Hariti, Sid Ahmed; Hole, Stephane; Lewiner, Jacques

    2001-06-18

    Elastic waves are used more and more in a nondestructive way to probe the physical properties of materials. The resolution of the images or the accuracy of the measurements is directly associated with the ultrasonic signal bandwidth and amplitude a system can generate or detect. The authors propose a technique to broaden the potential bandwidth of piezoelectric generators and sensors, which is based on utilizing a nonuniformly-polarized piezoelectric material. Both simulated and experimental responses are shown. They are in good agreement and exhibit a useful bandwidth over several natural harmonics of the piezoelectric transducer. {copyright} 2001 American Institute of Physics.

  20. Giant piezoelectricity of monolayer group IV monochalcogenides

    NASA Astrophysics Data System (ADS)

    Fei, Ruixiang; Li, Wenbin; Li, Ju; Yang, Li

    We predict enormous, anisotropic piezoelectric effects in intrinsic monolayer group IV monochalcogenides (MX, M =Sn or Ge, X =Se or S), including SnSe, SnS, GeSe, and GeS. Using first-principle simulations based on the modern theory of polarization, we find that their piezoelectric coefficients are about one to two orders of magnitude larger than those of other 2D materials, such as MoS2 and GaSe, and bulk quartz and AlN which are widely used in industry. This enhancement is a result of the unique ``puckered'' C2v symmetry and electronic structure of monolayer group IV monochalcogenides. Given the achieved experimental advances in the fabrication of monolayers, their flexible character, and ability to withstand enormous strain, these 2D structures with giant piezoelectric effects may be promising for a broad range of applications such as nano-sized sensors, piezotronics, and energy harvesting in portable electronic devices.

  1. Piezoelectricity in planar boron nitride via a geometric phase

    NASA Astrophysics Data System (ADS)

    Droth, Matthias; Burkard, Guido; Pereira, Vitor M.

    2016-08-01

    Due to their low surface mass density, two-dimensional materials with a strong piezoelectric response are interesting for nanoelectromechanical systems with high force sensitivity. Unlike graphene, the two sublattices in a monolayer of hexagonal boron nitride (hBN) are occupied by different elements, which breaks inversion symmetry and allows for piezoelectricity. This has been confirmed with density functional theory calculations of the piezoelectric constant of hBN. Here, we formulate an entirely analytical derivation of the electronic contribution to the piezoelectric response in this system based on the concepts of strain-induced pseudomagnetic vector potential and the modern theory of polarization that relates the polar moment to the Berry curvature. Our findings agree with the symmetry restrictions expected for the hBN lattice and reproduce well the magnitude of the piezoelectric effect previously obtained ab initio.

  2. Flexible Piezoelectric Energy Harvesting from Mouse Click Motions.

    PubMed

    Cha, Youngsu; Hong, Jin; Lee, Jaemin; Park, Jung-Min; Kim, Keehoon

    2016-07-06

    In this paper, we study energy harvesting from the mouse click motions of a robot finger and a human index finger using a piezoelectric material. The feasibility of energy harvesting from mouse click motions is experimentally and theoretically assessed. The fingers wear a glove with a pocket for including the piezoelectric material. We model the energy harvesting system through the inverse kinematic framework of parallel joints in a finger and the electromechanical coupling equations of the piezoelectric material. The model is validated through energy harvesting experiments in the robot and human fingers with the systematically varying load resistance. We find that energy harvesting is maximized at the matched load resistance to the impedance of the piezoelectric material, and the harvested energy level is tens of nJ.

  3. Flexible Piezoelectric Energy Harvesting from Mouse Click Motions

    PubMed Central

    Cha, Youngsu; Hong, Jin; Lee, Jaemin; Park, Jung-Min; Kim, Keehoon

    2016-01-01

    In this paper, we study energy harvesting from the mouse click motions of a robot finger and a human index finger using a piezoelectric material. The feasibility of energy harvesting from mouse click motions is experimentally and theoretically assessed. The fingers wear a glove with a pocket for including the piezoelectric material. We model the energy harvesting system through the inverse kinematic framework of parallel joints in a finger and the electromechanical coupling equations of the piezoelectric material. The model is validated through energy harvesting experiments in the robot and human fingers with the systematically varying load resistance. We find that energy harvesting is maximized at the matched load resistance to the impedance of the piezoelectric material, and the harvested energy level is tens of nJ. PMID:27399705

  4. Analytical analysis of a beam flexural-mode piezoelectric actuator for deformable mirrors

    NASA Astrophysics Data System (ADS)

    Wang, Hairen

    2015-10-01

    A beam flexural-mode piezoelectric bimorph actuator is analyzed based on linear piezoelectricity, and the performance of the actuator is studied. The beam bimorph piezoelectric actuator (BBPA), which is a sandwich compound consisting of a lower and an upper piezoelectric ceramic surface layer and a middle layer made of metal, is driven to flexural deformation. The statistical analytical solution and dynamical solutions from the three-dimensional equations of linear piezoelectricity are derived, and the dependence of the performance upon the physical parameters of the BBPA is evaluated. Numerical results illustrate the strengthened performance achieved by adjusting the geometrical and material parameters of the BBPA.

  5. Power enhancement of piezoelectric transformers by adding heat transfer equipment.

    PubMed

    Su, Yu-Hao; Liu, Yuan-Ping; Vasic, Dejan; Wu, Wen-Jong; Costa, François; Lee, Chih-Kung

    2012-10-01

    It is known that piezoelectric transformers have several inherent advantages compared with conventional electromagnetic transformers. However, the maximum power capacity of piezoelectric transformers is not as large as electromagnetic transformers in practice, especially in the case of high output current. The theoretical power density of piezoelectric transformers calculated by stress boundary can reach 330 W/cm(3), but no piezoelectric transformer has ever reached such a high power density in practice. The power density of piezoelectric transformers is limited to 33 W/cm(3) in practical applications. The underlying reason is that the maximum passing current of the piezoelectric material (mechanical current) is limited by the temperature rise caused by heat generation. To increase this current and the power capacity, we proposed to add a thermal pad to the piezoelectric transformer to dissipate heat. The experimental results showed that the proposed techniques can increase by 3 times the output current of the piezoelectric transformer. A theoretical-phenomenological model which explains the relationship between vibration velocity and generated heat is also established to verify the experimental results.

  6. Development of Lead Free Energy Absorber for Space Shuttle Blast Container

    NASA Technical Reports Server (NTRS)

    Ingram, T.; Balles, D.; Schricker, A.; Novak, H.

    1998-01-01

    The Space Shuttle vehicle (SSV) is connected to the mobile launch platform (MLP) by four aft skirt hold down studs on each solid rocket booster (SRB). Prior to lift-off, the frangible nuts inside the aft skirt blast containers (BC) are severed into two nut halves by two pyrotechnic booster cartridges. This action releases the SSV and allows the hold down studs to eject through the aft skirt bore and then down into the MLP. USBI has been tasked to upgrade the BC for two specific reasons; 1. to eliminate lead for environmental concerns, and 2. to reduce the chance of nut recontact with the holddown stud. Nut recontact with the stud has been identified as a likely contributor to stud hangups. This upgrade will replace the lead liner with an aluminum foam material. The aluminum foam used as a energy absorber is a proven design in many other aerospace/defense applications. Additional benefits of using the open cell, energy absorbent aluminum foam in place of the solid lead liner are: A. Lead handling/ exposure, and possible contamination, along with hazardous waste disposal will be eliminated; B. Approximately 200 lbs. weight savings will be contributed to each Space Shuttle flight by using aluminum foam over lead; C. The new aluminum liner is designed to catch all shrapnel from frangible nuts thus virtually eliminating chance of foreign object debris (FOD) exiting the HDP, and causing potential damage to the vehicle; D. Potential of using the lighter aluminum liner over lead, allows for easier assembly and disassembly of blast container elements, also allowing for improvements in safety, operator handling, and efficiency of operations. Six BC firing tests will be required to determine if the new liner material will perform in a way to decrease the chance of stud hangups and enhance the ability of the BC to retain blast debris. Testing will be performed at the Kennedy Space Center (KSC) facility known as the Launch Equipment Test Facility (LETF), and will simulate the

  7. Thick lead-free ferroelectric films with high Curie temperatures through nanocomposite-induced strain.

    PubMed

    Harrington, Sophie A; Zhai, Junyi; Denev, Sava; Gopalan, Venkatraman; Wang, Haiyan; Bi, Zhenxing; Redfern, Simon A T; Baek, Seung-Hyub; Bark, Chung W; Eom, Chang-Beom; Jia, Quanxi; Vickers, Mary E; Macmanus-Driscoll, Judith L

    2011-07-03

    Ferroelectric materials are used in applications ranging from energy harvesting to high-power electronic transducers. However, industry-standard ferroelectric materials contain lead, which is toxic and environmentally unfriendly. The preferred alternative, BaTiO(3), is non-toxic and has excellent ferroelectric properties, but its Curie temperature of ∼130 °C is too low to be practical. Strain has been used to enhance the Curie temperature of BaTiO(3) (ref. 4) and SrTiO(3) (ref. 5) films, but only for thicknesses of tens of nanometres, which is not thick enough for many device applications. Here, we increase the Curie temperature of micrometre-thick films of BaTiO(3) to at least 330 °C, and the tetragonal-to-cubic structural transition temperature to beyond 800 °C, by interspersing stiff, self-assembled vertical columns of Sm(2)O(3) throughout the film thickness. The columns, which are 10 nm in diameter, strain the BaTiO(3) matrix by 2.35%, forcing it to maintain its tetragonal structure and resulting in the highest BaTiO(3) transition temperatures so far.

  8. Thick lead-free ferroelectric films with high Curie temperatures through nanocomposite-induced strain

    NASA Astrophysics Data System (ADS)

    Harrington, Sophie A.; Zhai, Junyi; Denev, Sava; Gopalan, Venkatraman; Wang, Haiyan; Bi, Zhenxing; Redfern, Simon A. T.; Baek, Seung-Hyub; Bark, Chung W.; Eom, Chang-Beom; Jia, Quanxi; Vickers, Mary E.; MacManus-Driscoll, Judith L.

    2011-08-01

    Ferroelectric materials are used in applications ranging from energy harvesting to high-power electronic transducers. However, industry-standard ferroelectric materials contain lead, which is toxic and environmentally unfriendly. The preferred alternative, BaTiO3, is non-toxic and has excellent ferroelectric properties, but its Curie temperature of ~130 °C is too low to be practical. Strain has been used to enhance the Curie temperature of BaTiO3 (ref. 4) and SrTiO3 (ref. 5) films, but only for thicknesses of tens of nanometres, which is not thick enough for many device applications. Here, we increase the Curie temperature of micrometre-thick films of BaTiO3 to at least 330 °C, and the tetragonal-to-cubic structural transition temperature to beyond 800 °C, by interspersing stiff, self-assembled vertical columns of Sm2O3 throughout the film thickness. The columns, which are 10 nm in diameter, strain the BaTiO3 matrix by 2.35%, forcing it to maintain its tetragonal structure and resulting in the highest BaTiO3 transition temperatures so far.

  9. Study on the electromechanical coupling coefficient of Rayleigh-type surface acoustic waves in semi-infinite piezoelectrics/non-piezoelectrics superlattices.

    PubMed

    Chen, Shi; Zhang, Yinhong; Lin, Shuyu; Fu, Zhiqiang

    2014-02-01

    The electromechanical coupling coefficient of Rayleigh-type surface acoustic waves in semi-infinite piezoelectrics/non-piezoelectrics superlattices is investigated by the transfer matrix method. Research results show the high electromechanical coupling coefficient can be obtained in these systems. The optimization design of it is also discussed fully. It is significantly influenced by electrical boundary conditions on interfaces, thickness ratios of piezoelectric and non-piezoelectric layers, and material parameters (such as velocities of pure longitudinal and transversal bulk waves in non-piezoelectric layers). In order to obtain higher electromechanical coupling coefficient, shorted interfaces, non-piezoelectric materials with large velocities of longitudinal and transversal bulk waves, and proper thickness ratios should be chosen.

  10. Upper limit of the electrocaloric peak in lead-free ferroelectric relaxor ceramics

    NASA Astrophysics Data System (ADS)

    Le Goupil, Florian; Alford, Neil McN.

    2016-06-01

    The electrocaloric effect (ECE) of two compositions (x = 0.06 and 0.07) of (1 - x)(Na0.5Bi0.5)TiO3-xKNbO3 in the vicinity of the morphotropic phase boundary is studied by direct measurements. ΔTmax = 1.5 K is measured at 125 °C under 70 kV/cm for NBT-6KN while ΔTmax = 0.8 K is measured at 75 °C under 55 kV/cm for NBT-7KN. We show that the "shoulder," TS, in the dielectric permittivity, marks the upper limit of the ECE peak under high applied electric fields. These results imply that the range of temperature with high ECE can be quickly identified for a given composition, which will significantly speed up the process of materials selection for ECE cooling.

  11. Electrical Analysis of Piezoelectric Transformers and Associated High-Voltage Output Circuits

    DTIC Science & Technology

    2011-06-01

    investigations have also been performed to eliminate the problem of surface flashover on the piezoelectric material [14]. Additionally, the use of output...actuators or sensors [1], [2]. However, by combining the piezoelectric and inverse-piezoelectric effects of certain materials into a single design , one...Additionally, these voltages are compared with theoretical values that were calculated based on the loads’ equivalent impedances. II. EXPERIMENTAL

  12. Radial-Electric-Field Piezoelectric Diaphragm Pumps

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G.; Working, Dennis C.; Mossi, Karla; Castro, Nicholas D.; Mane, Pooma

    2009-01-01

    In a recently invented class of piezoelectric diaphragm pumps, the electrode patterns on the piezoelectric diaphragms are configured so that the electric fields in the diaphragms have symmetrical radial (along-the-surface) components in addition to through-the-thickness components. Previously, it was accepted in the piezoelectric-transducer art that in order to produce the out-of-plane bending displacement of a diaphragm needed for pumping, one must make the electric field asymmetrical through the thickness, typically by means of electrodes placed on only one side of the piezoelectric material. In the present invention, electrodes are placed on both sides and patterned so as to produce substantial radial as well as through-the-thickness components. Moreover, unlike in the prior art, the electric field can be symmetrical through the thickness. Tests have shown in a given diaphragm that an electrode configuration according to this invention produces more displacement than does a conventional one-sided electrode pattern. The invention admits of numerous variations characterized by various degrees of complexity. Figure 1 is a simplified depiction of a basic version. As in other piezoelectric diaphragm pumps of similar basic design, the prime mover is a piezoelectric diaphragm. Application of a suitable voltage to the electrodes on the diaphragm causes it to undergo out-of-plane bending. The bending displacement pushes a fluid out of, or pulls the fluid into, a chamber bounded partly by the diaphragm. Also as in other diaphragm pumps in general, check valves ensure that the fluid flows only in through one port and only out through another port.

  13. Theoretical insights into a potential lead-free hybrid perovskite: substituting Pb2+ with Ge2+

    NASA Astrophysics Data System (ADS)

    Sun, Ping-Ping; Li, Quan-Song; Yang, Li-Na; Li, Ze-Sheng

    2016-01-01

    In recent years, perovskite solar cells have been considerably developed, however the lead in the absorber MAPbI3 is a potential threat to the environment. To explore potential alternatives, the structural and electronic properties of MAGeX3 (X = Cl, Br, I) were investigated using different density functional theory methods, including GGA-PBE, PBE-SOC, HSE06 and HSE-SOC. The results implied that MAGeI3 exhibits an analogous band gap, substantial stability, remarkable optical properties, and significant hole and electron conductive behavior compared with the so far widely used absorber MAPbI3. Moreover, the calculations revealed that the energy splitting resulting from the spin-orbit coupling is evident on Pb, moderate on Ge, I and Br, and negligible on Cl. Our work not only sheds some light on screening novel absorbers for perovskite solar cells but also deepens the understanding of these functional materials.In recent years, perovskite solar cells have been considerably developed, however the lead in the absorber MAPbI3 is a potential threat to the environment. To explore potential alternatives, the structural and electronic properties of MAGeX3 (X = Cl, Br, I) were investigated using different density functional theory methods, including GGA-PBE, PBE-SOC, HSE06 and HSE-SOC. The results implied that MAGeI3 exhibits an analogous band gap, substantial stability, remarkable optical properties, and significant hole and electron conductive behavior compared with the so far widely used absorber MAPbI3. Moreover, the calculations revealed that the energy splitting resulting from the spin-orbit coupling is evident on Pb, moderate on Ge, I and Br, and negligible on Cl. Our work not only sheds some light on screening novel absorbers for perovskite solar cells but also deepens the understanding of these functional materials. Electronic supplementary information (ESI) available: Optimized structures of the MAPbI3 and MASnI3 perovskites, band structures of the different

  14. Active Piezoelectric Diaphragms

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G.; Effinger, Robert T., IV; Aranda, Isaiah, Jr.; Copeland, Ben M.; Covington, Ed W., III

    2002-01-01

    Several active piezoelectric diaphragms were fabricated by placing unelectroded piezoelectric disks between copper clad films patterned with Inter-Circulating Electrodes "ICE". When a voltage potential is applied to the electrodes, the result is radially distributed electric field that mechanically strains the piezo-ceramic along the Z-axis (perpendicular to the applied electric field), rather than the expected in-plane (XY-axis) direction. Unlike other out of plane piezoelectric actuators, which are benders, these Radial Field Diaphragms (RFDs) strain concentrically yet afford high displacements while maintaining a constant circumference. This paper covers the fabrication and characterization of these diaphragms as a function of poling field strength, ceramic diameter and line spacing, as well as the surface topography, the resulting strain field and displacement as a function of applied voltage ranging from DC to 10 Hz.

  15. Piezoelectric Motors and Transformers

    NASA Astrophysics Data System (ADS)

    Uchino, K.

    Piezoelectric ceramics forms a new field between electronic and structural ceramics [1-4]. Application fields are classified into three categories: positioners, motors, and vibration suppressors. From the market research result for 80 Japanese component industries in 1992, tiny motors in the range of 5-8 mm are required in large numbers for office and portable equipment; the conventional electromagnetic (EM) motors are rather difficult to produce in this size with sufficient energy efficiency, while Silicon MEMS actuators are too small to be used in practice. Piezoelectric ultrasonic motors whose efficiency is insensitive to size are superior in the millimeter motor area. The manufacturing precision of optical instruments such as lasers and cameras, and the positioning accuracy for fabricating semiconductor chips are of the order of 0.1μm which is much smaller than the backlash of the EM motors. Vibration suppression in space structures and military vehicles also require compact but mighty piezoelectric actuators.

  16. Piezoelectric micromotors for microrobots

    NASA Astrophysics Data System (ADS)

    Flynn, Anita M.; Tavrow, Lee S.; Bart, Stephen F.; Brooks, Rodney A.

    1991-02-01

    Mobile robots are able to carry more and more intelligence (and in smaller packages) onboard everyday. Now we would like to match the brawn of our robots to the same scale as the brain. Towards this end, we have fabricated some small, a few millimeters in diameter, piezoelectric motors using ferroelectric thin films. These motors consist of two pieces: a stator and a rotor. The stationary stator includes a piezoelectric film in which we induce bending in the form of a traveling wave. Anything which sits atop the stator is propelled by the wave. A small glass lens placed upon the stator becomes the spinning rotor. Piezoelectric micromotors overcome the problems currently associated with electrostatic micromotors such as low torque, friction, and the need for high voltage excitation.

  17. Piezoelectric wave motor

    DOEpatents

    Yerganian, Simon Scott

    2003-02-11

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase-shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in the direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  18. Piezoelectric wave motor

    DOEpatents

    Yerganian, Simon Scott

    2001-07-17

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  19. Magnetoelectric studies on CoFe2O4/0.5(BaTi0.8Zr0.2O3)-0.5(Ba0.7Ca0.3TiO3) lead-free bilayer thin films derived by the chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Venkata Ramana, E.; Zavašnik, Janez; Graça, M. P. F.; Valente, M. A.

    2016-08-01

    Lead-free multiferroic bilayer thin films were fabricated on (111)Pt/Si substrate via a simple sol-gel chemical solution deposition, by altering the position of piezoelectric (Ba0.85Ca0.15) (Ti0.9Zr0.1)O3 (BCTZO) and ferromagnetic CoFe2O4 (CFO). Single layer BCTZO experiences the out-of-plane compressive stress, while this layer is under tensile strain in both the bilayers. The microstructural study confirms the formation of bilayers with expected chemical composition composed of multiple well-developed crystallites having no crystallographic dependencies. Thin films of BCTZO and CFO/BCTZO exhibited saturated ferroelectric hysteresis loops at room temperature with a Pr of 7.2 and 5.6 μC/cm2. The magnetic field induced shift in phonon vibrations coupled with direct magnetoelectric (ME) measurements demonstrated a stress-mediated coupling mechanism in the bilayers. We found a superior ME coefficient (105 MV/cm Oe) and dielectric tunability (˜52%) for CFO/BCTZO bilayer compared to the BCTZO/CFO bilayer, which demonstrates that the modification of strain state in bilayers is useful for the desired ME coupling. The BCTZO having piezoelectricity on par with that of lead-based ones can be useful to tailor lead-free ME applications.

  20. Dual strain mechanisms in a lead-free morphotropic phase boundary ferroelectric.

    PubMed

    Walker, Julian; Simons, Hugh; Alikin, Denis O; Turygin, Anton P; Shur, Vladimir Y; Kholkin, Andrei L; Ursic, Hana; Bencan, Andreja; Malic, Barbara; Nagarajan, Valanoor; Rojac, Tadej

    2016-01-21

    Electromechanical properties such as d33 and strain are significantly enhanced at morphotropic phase boundaries (MPBs) between two or more different crystal structures. Many actuators, sensors and MEMS devices are therefore systems with MPBs, usually between polar phases in lead (Pb)-based ferroelectric ceramics. In the search for Pb-free alternatives, systems with MPBs between polar and non-polar phases have recently been theorized as having great promise. While such an MPB was identified in rare-earth (RE) modified bismuth ferrite (BFO) thin films, synthesis challenges have prevented its realization in ceramics. Overcoming these, we demonstrate a comparable electromechanical response to Pb-based materials at the polar-to-non-polar MPB in Sm modified BFO. This arises from 'dual' strain mechanisms: ferroelectric/ferroelastic switching and a previously unreported electric-field induced transition of an anti-polar intermediate phase. We show that intermediate phases play an important role in the macroscopic strain response, and may have potential to enhance electromechanical properties at polar-to-non-polar MPBs.

  1. Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals.

    PubMed

    Volonakis, George; Filip, Marina R; Haghighirad, Amir Abbas; Sakai, Nobuya; Wenger, Bernard; Snaith, Henry J; Giustino, Feliciano

    2016-04-07

    Lead-based halide perovskites are emerging as the most promising class of materials for next-generation optoelectronics; however, despite the enormous success of lead-halide perovskite solar cells, the issues of stability and toxicity are yet to be resolved. Here we report on the computational design and the experimental synthesis of a new family of Pb-free inorganic halide double perovskites based on bismuth or antimony and noble metals. Using first-principles calculations we show that this hitherto unknown family of perovskites exhibits very promising optoelectronic properties, such as tunable band gaps in the visible range and low carrier effective masses. Furthermore, we successfully synthesize the double perovskite Cs2BiAgCl6, perform structural refinement using single-crystal X-ray diffraction, and characterize its optical properties via optical absorption and photoluminescence measurements. This new perovskite belongs to the Fm3̅m space group and consists of BiCl6 and AgCl6 octahedra alternating in a rock-salt face-centered cubic structure. From UV-vis and photoluminescence measurements we obtain an indirect gap of 2.2 eV.

  2. Dual strain mechanisms in a lead-free morphotropic phase boundary ferroelectric

    PubMed Central

    Walker, Julian; Simons, Hugh; Alikin, Denis O.; Turygin, Anton P.; Shur, Vladimir Y.; Kholkin, Andrei L.; Ursic, Hana; Bencan, Andreja; Malic, Barbara; Nagarajan, Valanoor; Rojac, Tadej

    2016-01-01

    Electromechanical properties such as d33 and strain are significantly enhanced at morphotropic phase boundaries (MPBs) between two or more different crystal structures. Many actuators, sensors and MEMS devices are therefore systems with MPBs, usually between polar phases in lead (Pb)-based ferroelectric ceramics. In the search for Pb-free alternatives, systems with MPBs between polar and non-polar phases have recently been theorized as having great promise. While such an MPB was identified in rare-earth (RE) modified bismuth ferrite (BFO) thin films, synthesis challenges have prevented its realization in ceramics. Overcoming these, we demonstrate a comparable electromechanical response to Pb-based materials at the polar-to-non-polar MPB in Sm modified BFO. This arises from ‘dual’ strain mechanisms: ferroelectric/ferroelastic switching and a previously unreported electric-field induced transition of an anti-polar intermediate phase. We show that intermediate phases play an important role in the macroscopic strain response, and may have potential to enhance electromechanical properties at polar-to-non-polar MPBs. PMID:26791098

  3. Composition- and temperature-driven phase transition characteristics and associated electromechanical properties in Bi0.5Na0.5TiO3-based lead-free ceramics.

    PubMed

    Bai, Wangfeng; Chen, Daqin; Zheng, Peng; Shen, Bo; Zhai, Jiwei; Ji, Zhenguo

    2016-05-17

    In this study, a lead-free ceramic system comprising (0.94 - x)Bi0.5Na0.5TiO3-0.06BaTiO3-xBi(Zn0.5Ti0.5)O3 (BNT-BT-BZT) was designed and prepared by a conventional solid-state reaction method. The effect of the addition of BZT on the phase transition characteristics and associated electromechanical properties of BNT-BT was systematically discussed and a schematic phase diagram was established. The addition of BZT had a strong impact on the phase transition as well as the strain and piezoelectric activity. The phase coexistence, which involves ferroelectric rhombohedral-relaxor pseudocubic phases, can be driven by modification with BZT and increases in temperature and can be confirmed by XRD measurements, analysis of Raman spectra and temperature-dependent changes in polarization and strain hysteresis loops. Accompanied by a shift in the ferroelectric-to-relaxor temperature TF-R to below room temperature on the addition of BZT, a compositionally induced ferroelectric-to-relaxor phase transition occurred, which gave rise to a large strain of 0.33% with a normalized strain Smax/Emax of 550 pm V(-1) at the critical BZT content x of 0.0275. The results were closely correlated with the composition and dependence on temperature of the phase transition, which significantly influenced the electromechanical properties, and the origin of the large strain observed in the present system was also addressed in detail. As a result, the design principles provided in this study open the possibility of obtaining BNT-based lead-free ceramics with enhanced electromechanical properties for actuator applications.

  4. Preparation and dielectric properties of the lead-free BaFe1/2Nb1/2O3 ceramics obtained from mechanically triggered powder

    NASA Astrophysics Data System (ADS)

    Bochenek, Dariusz; Niemiec, Przemysław; Szafraniak-Wiza, Izabela; Adamczyk, Małgorzata; Skulski, Ryszard

    2015-10-01

    In the paper the influence of mechanical activation of the powder on the final dielectric properties lead-free Ba(Fe1/2Nb1/2)O3 (BFN) ceramic was examined. The BFN ceramics were obtained by 3-steps route. Firstly, the substrates were pre-homogenized in a planetary ball mill. Than, the powder was activated in vibratory mill (the shaker type SPEX 8000 Mixer Mill) for different duration between 25 h and 100 h. The influence of the milling time on the BFN powder was monitored by X-ray diffraction. The diffraction data confirmed that the milling process of the starting components is accompanied by partial synthesis of the BFN materials. The longer of the high-energy milling duration the powders results in increasing the amount of amorphous/nanocrystalline content. The mechanically activated materials were sintered in order to obtain the ceramic samples. During this temperature treatment the final crystallisation of the powder appeared what was confirmed by XRD studies. The performed dielectric measurements have revealed the reduction of the dielectric loss of the BFN ceramics compared to materials obtained by classic methods.

  5. Development of Lead Free Energy Absorber for Space Shuttle Blast Container

    NASA Technical Reports Server (NTRS)

    Balles, Donald; Ingram, Thomas; Novak, Howard; Schricker, Albert

    1999-01-01

    The Space Shuttle is connected to the mobile launch platform (MLP) by four aft skirt hold down studs on each solid rocket booster (SRB). Prior to lift-off, the frangible nuts inside the aft skirt blast containers are severed into two nut halves by two pyrotechnic booster cartridges. This action releases the Space Shuttle and allows the hold down studs to eject through the aft skirt bore and then down into the MLP. USBI has been tasked to upgrade the blast container for two specific reasons: (1) To eliminate lead for environmental concerns, and (2) To reduce the chance of nut recontact with the holddown stud. Nut recontact with the stud has been identified as a likely contributor to stud hang-ups. This upgrade will replace the lead liner with a unique open cell aluminum foam material, that has commercial and military uses. The aluminum foam used as an energy absorber is a proven design in many other aerospace/defense applications. Additional benefits of using the open cell, energy absorbent aluminum foam in place of the solid lead liner are: (1) Lead handling / exposure and possible contamination, along with hazardous waste disposal, will be eliminated; (2) Approximately 200 lbs. weight savings will be contributed to each Space Shuttle flight by using aluminum foam instead of lead; (3) The new aluminum liner is designed to catch all shrapnel from frangible nuts, thus virtually eliminating chance of debris exiting the HDP and causing potential damage to the vehicle; (4) Using the lighter aluminum liner instead of lead, allows for easier assembly and disassembly of blast container elements, which also improves safety, operator handling, and the efficiency of operations.

  6. Development of Lead Free Energy Absorber for Space Shuttle Blast Container

    NASA Technical Reports Server (NTRS)

    Balles, Donald; Ingram, Thomas; Novak, Howard; Schricker, Albert

    1998-01-01

    The Space Shuttle is connected to the mobile launch platform (MLP) by four aft skirt hold down studs on each solid rocket booster (SRB). Prior to lift-off, the frangible nuts inside the aft skirt blast containers are severed into two nut halves by two pyrotechnic booster cartridges. This action releases the Space Shuttle and allows the hold down studs to eject through the aft skirt bore and then down into the MLP. USBI has been tasked to upgrade the blast container for two specific reasons: (1) To eliminate lead for environmental concerns, and (2) To reduce the chance of nut recontact with the holddown stud. Nut recontact with the stud has been identified as a likely contributor to stud hang-ups. This upgrade will replace the lead liner with a unique open cell aluminum foam material, that has commercial and military uses. The aluminum foam used as an energy absorber is a proven design in many other aerospace/defense applications. Additional benefits of using the open cell, energy absorbent aluminum foam in place of the solid lead liner are: (A) Lead handling/exposure and possible contamination, along with hazardous waste disposal, will be eliminated; (B) Approximately 200 lbs. weight savings will be contributed to each Space Shuttle flight by using aluminum foam instead of lead; (C) The new aluminum liner is designed to catch all shrapnel from frangible nuts, thus virtually eliminating chance of debris exiting the HDP and causing potential damage to the vehicle; and (D) Using the lighter aluminum liner instead of lead, allows for easier assembly and disassembly of blast container elements, which also improves safety, operator handling, and the efficiency of operations.

  7. Evaluation of Lead Release in a Simulated Lead-Free Premise Plumbing System Using a Sequential Sampling Approach.

    PubMed

    Ng, Ding-Quan; Lin, Yi-Pin

    2016-02-27

    In this pilot study, a modified sampling protocol was evaluated for the detection of lead contamination and locating the source of lead release in a simulated premise plumbing system with one-, three- and seven-day stagnation for a total period of 475 days. Copper pipes, stainless steel taps and brass fittings were used to assemble the "lead-free" system. Sequential sampling using 100 mL was used to detect lead contamination while that using 50 mL was used to locate the lead source. Elevated lead levels, far exceeding the World Health Organization (WHO) guideline value of 10 µg · L(-1), persisted for as long as five months in the system. "Lead-free" brass fittings were identified as the source of lead contamination. Physical disturbances, such as renovation works, could cause short-term spikes in lead release. Orthophosphate was able to suppress total lead levels below 10 µg · L(-1), but caused "blue water" problems. When orthophosphate addition was ceased, total lead levels began to spike within one week, implying that a continuous supply of orthophosphate was required to control total lead levels. Occasional total lead spikes were observed in one-day stagnation samples throughout the course of the experiments.

  8. Direct and indirect characterization of electrocaloric effect in (Na,K)NbO3 based lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Li, Jianting; Bai, Yang; Qin, Shiqiang; Fu, Jian; Zuo, Ruzhong; Qiao, Lijie

    2016-10-01

    This paper demonstrated the electrocaloric effect (ECE) of (Na0.52K0.48-x)(Nb0.92-xSb0.08)O3-xLiTaO3 lead-free ceramics by direct differential scanning calorimetry measurement and indirect thermodynamic method. Both results show good consistency, where the direct one more accurately depicts ECE value and its evolution according to phase diagram. Due to the diffuse orthorhombic-tetragonal phase transition, the samples show a broad ECE peak which shifts to lower temperature with increasing LiTaO3 amount. Compared to previous direct results in lead-free ceramics at corresponding temperatures, they show a competitive ECE performance with ΔTmax of 0.41 K (@80 °C), 0.30 K (@35 °C) and 0.16 K (@15 °C) under 20 kV/cm fields for x = 0.02, 0.0375 and 0.045.

  9. Analysis and Testing of Plates with Piezoelectric Sensors and Actuators

    NASA Technical Reports Server (NTRS)

    Bevan, Jeffrey S.

    1998-01-01

    Piezoelectric material inherently possesses coupling between electrostatics and structural dynamics. Utilizing linear piezoelectric theory results in an intrinsically coupled pair of piezoelectric constitutive equations. One equation describes the direct piezoelectric effect where strains produce an electric field and the other describes the converse effect where an applied electrical field produces strain. The purpose of this study is to compare finite element analysis and experiments of a thin plate with bonded piezoelectric material. Since an isotropic plate in combination with a thin piezoelectric layer constitutes a special case of a laminated composite, the classical laminated plate theory is used in the formulation to accommodated generic laminated composite panels with multiple bonded and embedded piezoelectric layers. Additionally, the von Karman large deflection plate theory is incorporated. The formulation results in laminate constitutive equations that are amiable to the inclusion of the piezoelectric constitutive equations yielding in a fully electro-mechanically coupled composite laminate. Using the finite element formulation, the governing differential equations of motion of a composite laminate with embedded piezoelectric layers are derived. The finite element model not only considers structural degrees of freedom (d.o.f.) but an additional electrical d.o.f. for each piezoelectric layer. Comparison between experiment and numerical prediction is performed by first treating the piezoelectric as a sensor and then again treating it as an actuator. To assess the piezoelectric layer as a sensor, various uniformly distributed pressure loads were simulated in the analysis and the corresponding generated voltages were calculated using both linear and nonlinear finite element analyses. Experiments were carried out by applying the same uniformly distributed loads and measuring the resulting generated voltages and corresponding maximum plate deflections. It is

  10. Piezoelectric allostery of protein

    NASA Astrophysics Data System (ADS)

    Ohnuki, Jun; Sato, Takato; Takano, Mitsunori

    2016-07-01

    Allostery is indispensable for a protein to work, where a locally applied stimulus is transmitted to a distant part of the molecule. While the allostery due to chemical stimuli such as ligand binding has long been studied, the growing interest in mechanobiology prompts the study of the mechanically stimulated allostery, the physical mechanism of which has not been established. By molecular dynamics simulation of a motor protein myosin, we found that a locally applied mechanical stimulus induces electrostatic potential change at distant regions, just like the piezoelectricity. This novel allosteric mechanism, "piezoelectric allostery", should be of particularly high value for mechanosensor/transducer proteins.

  11. Use of piezoelectric multicomponent force measuring devices in fluid mechanics

    NASA Technical Reports Server (NTRS)

    Richter, A.; Stefan, K.

    1979-01-01

    The characterisitics of piezoelectric multicomponent transducers are discussed, giving attention to the advantages of quartz over other materials. The main advantage of piezoelectric devices in aerodynamic studies is their ability to indicate rapid changes in the values of physical parameters. Problems in the accuracy of measurments by piezoelectric devices can be overcome by suitable design approaches. A practical example is given of how such can be utilized to measure rapid fluctuations of fluid forces exerted on a circular cylinder mounted in a water channel.

  12. Large piezoelectric effects in charged, heterogeneous fluoropolymer electrets

    NASA Astrophysics Data System (ADS)

    Neugschwandtner, G. S.; Schwödiauer, R.; Bauer-Gogonea, S.; Bauer, S.

    Large piezoelectric d33 coefficients around 600 pC/N are found in corona-charged non-uniform electrets consisting of elastically ``soft'' (microporous polytetrafluoroethylene PTFE) and ``stiff'' (perfluorinated cyclobutene PFCB) polymer layers. The piezoelectric activity of the two-layer fluoropolymer stack exceeds the d33 coefficient of the ferroelectric ceramic lead zirconate titanate (PZT) by more than a factor of two and that of the ferroelectric polymer polyvinylidene fluoride (PVDF) by a factor of 20. Soft piezoelectric materials may become interesting for a large number of sensor and transducer applications, in areas such as security systems, medical diagnostics, and nondestructive testing.

  13. Shared inductor hybrid topology for weight constrained piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Elliott, A. D. T.; Caccia, A.; Thomas, A.; Astolfi, A.; Mitcheson, P. D.

    2016-11-01

    This paper presents a new circuit topology designed to minimise the weight of the control circuit required to actuate multiple piezoelectric actuators. It can independently set the phase and bias voltage on each piezoelectric actuator through the use of a single inductor. This is highly desirable in weight constrained applications such as unmanned aerial vehicles as the ferroelectric material required for the inductor is heavy. Furthermore, the circuit topology can also use the same inductor to generate the high bias voltage required to drive the actuators. The full system has been verified in PSpice and a pair of piezoelectric actuators have been successfully driven using off the shelf components.

  14. Structural integrity of composites with embedded piezoelectric ceramic transducers

    NASA Astrophysics Data System (ADS)

    Paget, Christophe A.; Levin, Klas

    1999-06-01

    The objective of this paper is to determine the strength reduction due to the embedment of a piezoelectric ceramic transducer in a composite. The composite was made from carbon/epoxy prepreg with a cross-ply lay-up. The transducer was embedded in the mid-plane of the composite material. The specimens were tested in tensile and compressive static loading. It was found that the embedded piezoelectric ceramic element with its interconnectors did not reduce the strength of the composite. In tensile and compressive static tests, the final failure did not coincide with the embedded piezoelectric ceramic transducer location in the composite.

  15. Flexoelectric piezoelectric metamaterials based on the bending of ferroelectric ceramic wafers

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaotong; Liu, Jiliang; Chu, Mingjin; Chu, Baojin

    2016-08-01

    Conventional piezoelectric ceramics lose their piezoelectric properties near the Curie temperature (Tc), which limits their application at high temperatures. One approach to resolving this issue is to design flexoelectric piezoelectric composites or piezoelectric metamaterials by exploiting the flexoelectric effect of the ferroelectric materials. In this work, an experimental study on two designs of flexoelectric metamaterials is demonstrated. When a ferroelectric ceramic wafer is placed on a metal ring or has a domed shape, which is produced through the diffusion between two pieces of ferroelectric ceramic of different compositions at high temperatures, an apparent piezoelectric response originating from the flexoelectric effect can be measured under a stress. The apparent piezoelectric response of the materials based on the designs can be sustained well above Tc. This study provides an approach to designing materials for high-temperature electromechanical applications.

  16. Shunted Piezoelectric Vibration Damping Analysis Including Centrifugal Loading Effects

    NASA Technical Reports Server (NTRS)

    Min, James B.; Duffy, Kirsten P.; Provenza, Andrew J.

    2011-01-01

    Excessive vibration of turbomachinery blades causes high cycle fatigue problems which require damping treatments to mitigate vibration levels. One method is the use of piezoelectric materials as passive or active dampers. Based on the technical challenges and requirements learned from previous turbomachinery rotor blades research, an effort has been made to investigate the effectiveness of a shunted piezoelectric for the turbomachinery rotor blades vibration control, specifically for a condition with centrifugal rotation. While ample research has been performed on the use of a piezoelectric material with electric circuits to attempt to control the structural vibration damping, very little study has been done regarding rotational effects. The present study attempts to fill this void. Specifically, the objectives of this study are: (a) to create and analyze finite element models for harmonic forced response vibration analysis coupled with shunted piezoelectric circuits for engine blade operational conditions, (b) to validate the experimental test approaches with numerical results and vice versa, and (c) to establish a numerical modeling capability for vibration control using shunted piezoelectric circuits under rotation. Study has focused on a resonant damping control using shunted piezoelectric patches on plate specimens. Tests and analyses were performed for both non-spinning and spinning conditions. The finite element (FE) shunted piezoelectric circuit damping simulations were performed using the ANSYS Multiphysics code for the resistive and inductive circuit piezoelectric simulations of both conditions. The FE results showed a good correlation with experimental test results. Tests and analyses of shunted piezoelectric damping control, demonstrating with plate specimens, show a great potential to reduce blade vibrations under centrifugal loading.

  17. Piezoelectric enhancement by surface effect in hydrofluorinated graphene bilayer

    SciTech Connect

    Kim, Hye Jung; Noor-A-Alam, Mohammad; Shin, Young-Han

    2015-04-14

    We investigated the piezoelectricity of dipolar hydrofluorinated graphene (C{sub 2}HF){sub n} multilayers with first-principles calculations. Our results reveal that the dipole moment decreases as the number of layers increases, because electron and hole carriers are induced at the top and bottom layers due to the depolarization field. These carriers make (C{sub 2}HF){sub n} multilayers more stable by decreasing the depolarization field in the material. Through the calculation of the average layer piezoelectric stress constant e{sub 31}/ℓ in ℓ-layer chair (C{sub 2}HF){sub n} multilayers, we confirmed that the piezoelectricity of the bilayer is about three times larger than that of the monolayer and bulk material. Moreover, we found that the electron and hole carriers on the top and bottom layers played a significant role in the piezoelectric enhancement of the bilayer.

  18. Monitoring of acoustic emission activity using thin wafer piezoelectric sensors

    NASA Astrophysics Data System (ADS)

    Trujillo, Blaine; Zagrai, Andrei; Meisner, Daniel; Momeni, Sepand

    2014-03-01

    Acoustic emission (AE) is a well-known technique for monitoring onset and propagation of material damage. The technique has demonstrated utility in assessment of metallic and composite materials in applications ranging from civil structures to aerospace vehicles. While over the course of few decades AE hardware has changed dramatically with the sensors experiencing little changes. A traditional acoustic emission sensor solution utilizes a thickness resonance of the internal piezoelectric element which, coupled with internal amplification circuit, results in relatively large sensor footprint. Thin wafer piezoelectric sensors are small and unobtrusive, but they have seen limited AE applications due to low signal-to-noise ratio and other operation difficulties. In this contribution, issues and possible solutions pertaining to the utility of thin wafer piezoelectrics as AE sensors are discussed. Results of AE monitoring of fatigue damage using thin wafer piezoelectric and conventional AE sensors are presented.

  19. Static aeroelastic behavior of an adaptive laminated piezoelectric composite wing

    NASA Technical Reports Server (NTRS)

    Weisshaar, T. A.; Ehlers, S. M.

    1990-01-01

    The effect of using an adaptive material to modify the static aeroelastic behavior of a uniform wing is examined. The wing structure is idealized as a laminated sandwich structure with piezoelectric layers in the upper and lower skins. A feedback system that senses the wing root loads applies a constant electric field to the piezoelectric actuator. Modification of pure torsional deformaton behavior and pure bending deformation are investigated, as is the case of an anisotropic composite swept wing. The use of piezoelectric actuators to create an adaptive structure is found to alter static aeroelastic behavior in that the proper choice of the feedback gain can increase or decrease the aeroelastic divergence speed. This concept also may be used to actively change the lift effectiveness of a wing. The ability to modify static aeroelastic behavior is limited by physical limitations of the piezoelectric material and the manner in which it is integrated into the parent structure.

  20. Giant self-biased magnetoelectric response with obvious hysteresis in layered homogeneous composites of negative magnetostrictive material Samfenol and piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Zhang, Jitao; Li, Ping; Wen, Yumei; He, Wei; Yang, Aichao; Lu, Caijiang

    2013-11-01

    Giant self-biased magnetoelectric (ME) response and obvious hysteresis are observed in trilayer homogenous ME laminate composite consisting of negative magnetostrictive Samfenol (SmFe2) plates and piezoelectric ceramic PZT (Pb(Zr,Ti)O3) plates. The large anisotropic field of SmFe2 oriented the direction [111] of easy magnetization results in an enhanced internal bias due to its huge intrinsic anisotropic constant. The experimental results demonstrate that this composite exhibits ˜30 times higher ME voltage coefficient than that of composite FeNi/PZT/FeNi with weak ME coupling at zero bias. These results provide the possibility of this homogeneous ME composite for ultra-sensitive magnetic field sensing without bias.