Science.gov

Sample records for leading edge aerothermodynamics

  1. Supersonic Leading Edge Receptivity

    NASA Technical Reports Server (NTRS)

    Maslov, Anatoly A.

    1998-01-01

    This paper describes experimental studies of leading edge boundary layer receptivity for imposed stream disturbances. Studies were conducted in the supersonic T-325 facility at ITAM and include data for both sharp and blunt leading edges. The data are in agreement with existing theory and should provide guidance for the development of more complete theories and numerical computations of this phenomena.

  2. Wing Leading Edge Debris Analysis

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Jerman, Gregory

    2004-01-01

    This is a slide presentation showing the Left Wing Leading Edge (WLE) heat damage observations: Heavy "slag" deposits on select RCC panels. Eroded and knife-edged RCC rib sections. Excessive overheating and slumping of carrier panel tiles. Missing or molten attachment bolts but intact bushing. Deposit mainly on "inside" RCC panel. Deposit on some fractured RCC surface

  3. Aerothermal Performance Envelopes for Hypersonic Small Radius Unswept Leading Edges and Nosetips

    NASA Technical Reports Server (NTRS)

    Kolodziej, Paul; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    Small radius leading edges and nosetips were utilized to minimize wave drag in early hypersonic vehicle concepts until further analysis demonstrated that extreme aerothermodynamic heating would cause severe ablation or blunting of the available thermal protection system materials. Recent studies indicate that diboride composite materials are shape stable under extreme aerothermodynamic heating at ultra high temperatures. Aerothermal performance envelopes for sharp components made from these materials are presented in this work to demonstrate the effects of convective blocking, surface catalycity, surface emissivity, and rarefied flow effects on steady state operation at altitudes from sea level to 90 km. These components are capable of steady state operation at velocities up to 7.9 km/s at altitudes near 90 km.

  4. Moveable Leading Edge Device for a Wing

    NASA Technical Reports Server (NTRS)

    Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)

    2013-01-01

    A method and apparatus for managing a flight control surface system. A leading edge section on a wing of an aircraft is extended into a deployed position. A deformable section connects the leading edge section to a trailing section. The deformable section changes from a deformed shape to an original shape when the leading edge section is moved into the deployed position. The leading edge section on the wing is moved from the deployed position to an undeployed position. The deformable section changes to the deformed shape inside of the wing.

  5. Aerothermal Performance Constraints for Small Radius Leading Edges Operating at Hypervelocity

    NASA Technical Reports Server (NTRS)

    Kolodziej, Paul; Bull, Jeffrey D.; Milos, Frank S.; Squire, Thomas H.

    1997-01-01

    Small radius leading edges and nosetips were used to minimize wave drag in early hypervelocity vehicle concepts until further analysis demonstrated that extreme aerothermodynamic heating blunted the available thermal protection system materials. Recent studies indicate that ultra-high temperature composite (UHTC) materials are shape stable at temperatures approaching 3033 K and will be available for use as sharp leading edge components in the near future. Steady-state aerothermal performance constraints for UHTC components are presented in this paper to identify their non-ablating operational capability at altitudes from sea level to 90 km. An integrated design tool was developed to estimate these constraints. The tool couples aerothermodynamic heating with material response using commercial finite element analysis software and is capable of both steady-state and transient analysis. Performance during entry is analyzed by transient thermal analysis along the trajectory. The thermal load condition from the transient thermal analysis is used to estimate thermal stress. Applying the tool to UHTC materials shows that steady-state, non-ablating operation of a HfB2/SiC(A-7) (A-7) component is possible at velocities approaching Earth's circular orbital velocity of 7.9 km/s at altitudes approaching 70 km.

  6. Aerothermal Performance Constraints for Hypervelocity Small Radius Unswept Leading Edges and Nosetips

    NASA Technical Reports Server (NTRS)

    Kolodziej, Paul

    1997-01-01

    Small radius leading edges and nosetips were utilized to minimize wave drag in early hypervelocity vehicle concepts until further analysis demonstrated that extreme aerothermodynamic heating would cause severe ablation or blunting of the available thermal protection system materials. Recent studies indicate that ultrahigh temperature ceramic (UHTC) materials are shape stable at temperatures approaching 3033 K and will be available for use as sharp UHTC leading edge components in the near future. Aerothermal performance constraints for sharp components made from these materials are presented in this work to demonstrate the effects of convective blocking, surface catalycity, surface emissivity, and rarefied flow effects on steady state operation at altitudes from sea level to 90 km. These components are capable of steady state operation at velocities up to 7.9 km/s at attitudes near 90 km.

  7. Applications of Hydrofoils with Leading Edge Protuberances

    DTIC Science & Technology

    2012-03-30

    APPLICATIONS OF HYDROFOILS WITH LEADING EDGE PROTUBERANCES Final Technical Report for Office of Naval Research contract...To) 03/30/2012 Final Technical Report 01-08-2008 to 31-12-2011 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Applications of Hydrofoils with Leading...AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The leading edge modified hydrofoils

  8. Cavitation on hydrofoils with sinusoidal leading edge

    NASA Astrophysics Data System (ADS)

    Johari, H.

    2015-12-01

    Cavitation characteristics of hydrofoils with sinusoidal leading edge were examined experimentally at a Reynolds number of 7.2 × 105. The hydrofoils had an underlying NACA 634-021 profile and an aspect ratio of 4.3. The sinusoidal leading edge geometries included three amplitudes of 2.5%, 5%, and 12% and two wavelengths of 25% and 50% of the mean chord length. Results revealed that cavitation on the leading edge-modified hydrofoils existed in pockets behind the troughs whereas the baseline hydrofoil produced cavitation along its entire span. Moreover, cavitation on the modified hydrofoils appeared at consistently lower angles of attack than on the baseline hydrofoil.

  9. Leading edge protection for composite blades

    NASA Technical Reports Server (NTRS)

    Brantley, J. W.; Irwin, T. P. (Inventor)

    1977-01-01

    A laminated filament composite structure, such as an airfoil for use in an environment in which it is subjected to both foreign object impact and bending is provided with improved leading edge protection. At least one fine wire mesh layer is partially bonded within the composite structure along its neutral bending axis. A portion of the wire mesh layer extends beyond the neutral bending axis and partially around the leading edge where it is bonded to the outer periphery of the primary composite structure. The wire mesh is clad with a metal such as nickel to provide an improved leading edge protective device which is firmly anchored within the composite structure. Also described is a novel method of constructing a composite airfoil so as to further minimize the possibility of losing the leading edge protective device due to delamination caused by impact and bending.

  10. Leading-edge effects in bypass transition

    NASA Astrophysics Data System (ADS)

    Nagarajan, S.; Lele, S. K.; Ferziger, J. H.

    The effect of a blunt leading edge on bypass transition is studied by numerical simulation. A mixed direct and large-eddy simulation of a flat plate with a super-ellipse leading edge is carried out at various conditions. Onset and completion of transition is seen to move upstream with increasing bluntness. For sharper leading edges, at lower levels of turbulence, transition usually occurs through instabilities on low-speed streaks as observed by Jacobs & Durbin (2001) and Brandt et al. (2004) whereas increasing either the turbulence intensity or the leading-edge bluntness brings into play another mechanism. Free-stream vortices are amplified at the leading edge because of stretching. In the case of particularly strong vortices, this interaction induces a localized streamwise vortical disturbance in the boundary layer which then grows as it convects downstream and eventually breaks down to form a turbulent spot. These disturbances, which are localized and hence wavepacket-like, move at speeds in the range 0.55 U_{infty} 0.65 U_{infty} and occur in the lower portion of the boundary layer. Simulations conducted with isolated vortices confirm such a response of the boundary layer.

  11. Wing Leading Edge Concepts for Noise Reduction

    NASA Technical Reports Server (NTRS)

    Shmilovich, Arvin; Yadlin, Yoram; Pitera, David M.

    2010-01-01

    This study focuses on the development of wing leading edge concepts for noise reduction during high-lift operations, without compromising landing stall speeds, stall characteristics or cruise performance. High-lift geometries, which can be obtained by conventional mechanical systems or morphing structures have been considered. A systematic aerodynamic analysis procedure was used to arrive at several promising configurations. The aerodynamic design of new wing leading edge shapes is obtained from a robust Computational Fluid Dynamics procedure. Acoustic benefits are qualitatively established through the evaluation of the computed flow fields.

  12. Airplane wing leading edge variable camber flap

    NASA Technical Reports Server (NTRS)

    Cole, J. B.

    1980-01-01

    The invention and design of an aerodynamic high lift device which provided a solution to an aircraft performance problem are described. The performance problem of converting a high speed cruise airfoil into a low speed aerodynamic shape that would provide landing and take-off characteristics superior to those available with contemporary high lift devices are addressed. The need for an improved wing leading edge device that would complement the high lift performance of a triple slotted trailing edge flap is examined. The mechanical and structural aspects of the variable camber flap are discussed and the aerodynamic performance aspects only as they relate to the invention and design of the device are presented.

  13. Leading-edge vortices in insect flight

    NASA Astrophysics Data System (ADS)

    Ellington, Charles P.; van den Berg, Coen; Willmott, Alexander P.; Thomas, Adrian L. R.

    1996-12-01

    INSECTS cannot fly, according to the conventional laws of aerodynamics: during flapping flight, their wings produce more lift than during steady motion at the same velocities and angles of attack1-5. Measured instantaneous lift forces also show qualitative and quantitative disagreement with the forces predicted by conventional aerodynamic theories6-9. The importance of high-life aerodynamic mechanisms is now widely recognized but, except for the specialized fling mechanism used by some insect species1,10-13, the source of extra lift remains unknown. We have now visualized the airflow around the wings of the hawkmoth Manduca sexta and a 'hovering' large mechanical model-the flapper. An intense leading-edge vortex was found on the down-stroke, of sufficient strength to explain the high-lift forces. The vortex is created by dynamic stall, and not by the rotational lift mechanisms that have been postulated for insect flight14-16. The vortex spirals out towards the wingtip with a spanwise velocity comparable to the flapping velocity. The three-dimensional flow is similar to the conical leading-edge vortex found on delta wings, with the spanwise flow stabilizing the vortex.

  14. A fast leading-edge pulse generator

    NASA Astrophysics Data System (ADS)

    Wang, R.

    1986-01-01

    The pulse generator consists of ECL semiconductor integrated circuits, high speed transistors and step restorer diodes, among others; its circuitry is simple. The leading edge of the output pulse is less than 100 ps, and the output impedance is 50 ohms. An ECL four-wire receiver connected as a closed loop circut is used in the oscillator section of the set. The pulse frequency varies as low as 10 Hz and as high as 100 MHz. The control of pulse with is based on the subtraction of two pulse widths. The output pulse width may be less than 10 ns and the maximum width may be as wide as an oscillator half cycle. The pulse amplitude is continuously adjustable from + or - 35 mV to + or - 5 V. The operating principle of the oscillator stage, a simplified logic diagram, waveforms at various points, a rectifier circuit in the first stage, positive pulse channel circuit, and an adjustable power source are shown.

  15. Observations on Leading-Edge Vortex Development

    NASA Astrophysics Data System (ADS)

    Glenn, Michael; Lang, Amy; Wahidi, Redha; Wilroy, Jacob

    2016-11-01

    Most of an insect's lift comes from the leading edge vortex (LEV) that they produce when flapping their wings. There are many variables that make a LEV either stronger or weaker such as: roughness from the scales on their wings, angle of attack (AoA) of wing, size of the wing, and speed of the wing during flapping motion. Experiments were conducted to study LEV development to gain a better understanding of butterfly flight and the importance of LEV formation. The variables emphasized in this particular experiment were the chord length Reynolds numbers. Two smooth plates of 4 inches and 7 inches were compared in this experiment with Re of 1500 and 3000. Matlab was used to track the LEV location and calculate the vorticity and circulation magnitudes. Differences in LEV vortex strength as a function of chord length will be presented. Funding was provided by NSF REU site Grant EEC 1358991 and CBET Grant 1628600.

  16. Wing Leading Edge Joint Laminar Flow Tests

    NASA Technical Reports Server (NTRS)

    Drake, Aaron; Westphal, Russell V.; Zuniga, Fanny A.; Kennelly, Robert A., Jr.; Koga, Dennis J.

    1996-01-01

    An F-104G aircraft at NASA's Dryden Flight Research Center has been equipped with a specially designed and instrumented test fixture to simulate surface imperfections of the type likely to be present near the leading edge on the wings of some laminar flow aircraft. The simulated imperfections consisted of five combinations of spanwise steps and gaps of various sizes. The unswept fixture yielded a pressure distribution similar to that of some laminar flow airfoils. The experiment was conducted at cruise conditions typical for business-jets and light transports: Mach numbers were in the range 0.5-0.8, and unit Reynolds numbers were 1.5-2.5 million per foot. Skin friction measurements indicated that laminar flow was often maintained for some distance downstream of the surface imperfections. Further work is needed to more precisely define transition location and to extend the experiments to swept-wing conditions and a broader range of imperfection geometries.

  17. Experimental investigation of leading-edge thrust at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Wood, R. M.; Miller, D. S.

    1983-01-01

    Wings, designed for leading edge thrust at supersonic speeds, were investigated in the Unitary Plan Wind Tunnel at Mach numbers of 1.60, 1.80, 2.00, 2.16, and 2.36. Experimental data were obtained on a uncambered wing which had three interchangeable leading edges that varied from sharp to blunt. The leading edge thrust concept was evaluated. Results from the investigation showed that leading edge flow separation characteristics of all wings tested agree well with theoretical predictions. The experimental data showed that significant changes in wing leading edge bluntness did not affect the zero lift drag of the uncambered wings.

  18. Textbook Multigrid Efficiency for Leading Edge Stagnation

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.; Mineck, Raymond E.

    2004-01-01

    A multigrid solver is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work which is a small (less than 10) multiple of the operation count in evaluating the discrete residuals. TME in solving the incompressible inviscid fluid equations is demonstrated for leading- edge stagnation flows. The contributions of this paper include (1) a special formulation of the boundary conditions near stagnation allowing convergence of the Newton iterations on coarse grids, (2) the boundary relaxation technique to facilitate relaxation and residual restriction near the boundaries, (3) a modified relaxation scheme to prevent initial error amplification, and (4) new general analysis techniques for multigrid solvers. Convergence of algebraic errors below the level of discretization errors is attained by a full multigrid (FMG) solver with one full approximation scheme (F.4S) cycle per grid. Asymptotic convergence rates of the F.4S cycles for the full system of flow equations are very fast, approaching those for scalar elliptic equations.

  19. Textbook Multigrid Efficiency for Leading Edge Stagnation

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.; Mineck, Raymond E.

    2004-01-01

    A multigrid solver is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work which is a small (less than 10) multiple of the operation count in evaluating the discrete residuals. TME in solving the incompressible inviscid fluid equations is demonstrated for leading-edge stagnation flows. The contributions of this paper include (1) a special formulation of the boundary conditions near stagnation allowing convergence of the Newton iterations on coarse grids, (2) the boundary relaxation technique to facilitate relaxation and residual restriction near the boundaries, (3) a modified relaxation scheme to prevent initial error amplification, and (4) new general analysis techniques for multigrid solvers. Convergence of algebraic errors below the level of discretization errors is attained by a full multigrid (FMG) solver with one full approximation scheme (FAS) cycle per grid. Asymptotic convergence rates of the FAS cycles for the full system of flow equations are very fast, approaching those for scalar elliptic equations.

  20. Laminar Flow Control Leading Edge Systems in Simulated Airline Service

    NASA Technical Reports Server (NTRS)

    Wagner, R. D.; Maddalon, D. V.; Fisher, D. F.

    1988-01-01

    Achieving laminar flow on the wings of a commercial transport involves difficult problems associated with the wing leading edge. The NASA Leading Edge Flight Test Program has made major progress toward the solution of these problems. The effectiveness and practicality of candidate laminar flow leading edge systems were proven under representative airline service conditions. This was accomplished in a series of simulated airline service flights by modifying a JetStar aircraft with laminar flow leading edge systems and operating it out of three commercial airports in the United States. The aircraft was operated as an airliner would under actual air traffic conditions, in bad weather, and in insect infested environments.

  1. Development of X-43A Mach 10 Leading Edges

    NASA Technical Reports Server (NTRS)

    Ohlhorst, Craig W.; Glass, David E.; Bruce, Walter E., III; Lindell, Michael C.; Vaughn, Wallace L.; Dirling, R. B., Jr.; Hogenson, P. A.; Nichols, J. M.; Risner, N. W.; Thompson, D. R.

    2005-01-01

    The nose leading edge of the Hyper-X Mach 10 vehicle was orginally anticipated to reach temperatures near 4000 F at the leading-edge stagnation line. A SiC coated carbon/carbon (C/C) leading-edge material will not survive that extreme temperature for even a short duration single flight. To identify a suitable leading edge for the Mach 10 vehicle, arc-jet testing was performed on thirteen leading-edge segments fabricated from different material systems to evaluate their performance in a simulated flight environment. Hf, Zr, Si, and Ir based materials, in most cases as a coating on C/C, were included in the evaluation. Afterwards, MER, Tucson, AZ was selected as the supplier of the flight vehicle leading edges. The nose and the vertical and horizontal tail leading edges were fabricated out of a 3:1 biased high thermal conductivity C/C. The leading edges were coated with a three layer coating comprised of a SiC conversion of the top surface of the C/C, followed by a chemical vapor deposited layer of SiC, followed by a thin chemical vapor deposited layer of HfC. This paper will describe the fabrication of the Mach 10 C/C leading edges and the testing performed to validate performance.

  2. Turbulent Wing-Leading-Edge Correlation Assessment for the Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    King, Rudolph A.; Vaughan, Matthew P.

    2009-01-01

    This study was conducted in support of the Orbiter damage assessment activity that takes place for each Shuttle mission since STS-107 (STS - Space Transportation System). As part of the damage assessment activity, the state of boundary layer (laminar or turbulent) during reentry needs to be estimated in order to define the aerothermal environment on the Orbiter. Premature turbulence on the wing leading edge (WLE) is possible if a surface irregularity promotes early transition and the resulting turbulent wedge flow contaminates the WLE flow. The objective of this analysis is to develop a criterion to determine if and when the flow along the WLE experiences turbulent heating given an incoming turbulent boundary layer that contaminates the attachment line. The data to be analyzed were all obtained as part of the MH-13 Space Shuttle Orbiter Aerothermodynamic Test conducted on a 1.8%-scale Orbiter model at Calspan/University of Buffalo Research Center in the Large Energy National Shock Tunnels facility. A rational framework was used to develop a means to assess the state of the WLE flow on the Orbiter during reentry given a contaminated attachment-line flow. Evidence of turbulent flow on the WLE has been recently documented for a few STS missions during the Orbiter s flight history, albeit late in the reentry trajectory. The criterion developed herein will be compared to these flight results.

  3. Numerical study of delta wing leading edge blowing

    NASA Technical Reports Server (NTRS)

    Yeh, David; Tavella, Domingo; Roberts, Leonard

    1988-01-01

    Spanwise and tangential leading edge blowing as a means of controlling the position and strength of the leading edge vortices are studied by numerical solution of the three-dimensional Navier-Stokes equations. The leading edge jet is simulated by defining a permeable boundary, corresponding to the jet slot, where suitable boundary conditions are implemented. Numerical results are shown to compare favorably with experimental measurements. It is found that the use of spanwise leading edge blowing at moderate angle of attack magnifies the size and strength of the leading edge vortices, and moves the vortex cores outboard and upward. The increase in lift primarily comes from the greater nonlinear vortex lift. However, spanwise blowing causes earlier vortex breakdown, thus decreasing the stall angle. The effects of tangential blowing at low to moderate angles of attack tend to reduce the pressure peaks associated with leading edge vortices and to increase the suction peak around the leading edge, so that the integrated value of the surface pressure remains about the same. Tangential leading edge blowing in post-stall conditions is shown to re-establish vortical flow and delay vortex bursting, thus increasing C sub L sub max and stall angle.

  4. Timing discriminator using leading-edge extrapolation

    DOEpatents

    Gottschalk, B.

    1981-07-30

    A discriminator circuit to recover timing information from slow-rising pulses by means of an output trailing edge, a fixed time after the starting corner of the input pulse, which is nearly independent of risetime and threshold setting is described. This apparatus comprises means for comparing pulses with a threshold voltage; a capacitor to be charged at a certain rate when the input signal is one-third threshold voltage, and at a lower rate when the input signal is two-thirds threshold voltage; current-generating means for charging the capacitor; means for comparing voltage capacitor with a bias voltage; a flip-flop to be set when the input pulse reaches threshold voltage and reset when capacitor voltage reaches the bias voltage; and a clamping means for discharging the capacitor when the input signal returns below one-third threshold voltage.

  5. Timing discriminator using leading-edge extrapolation

    DOEpatents

    Gottschalk, Bernard

    1983-01-01

    A discriminator circuit to recover timing information from slow-rising pulses by means of an output trailing edge, a fixed time after the starting corner of the input pulse, which is nearly independent of risetime and threshold setting. This apparatus comprises means for comparing pulses with a threshold voltage; a capacitor to be charged at a certain rate when the input signal is one-third threshold voltage, and at a lower rate when the input signal is two-thirds threshold voltage; current-generating means for charging the capacitor; means for comparing voltage capacitor with a bias voltage; a flip-flop to be set when the input pulse reaches threshold voltage and reset when capacitor voltage reaches the bias voltage; and a clamping means for discharging the capacitor when the input signal returns below one-third threshold voltage.

  6. Vortex leading edge flap assembly for supersonic airplanes

    NASA Technical Reports Server (NTRS)

    Rudolph, Peter K. C. (Inventor)

    1997-01-01

    A leading edge flap (16) for supersonic transport airplanes is disclosed. In its stowed position, the leading edge flap forms the lower surface of the wing leading edge up to the horizontal center of the leading edge radius. For low speed operation, the vortex leading edge flap moves forward and rotates down. The upward curve of the flap leading edge triggers flow separation on the flap and rotational flow on the upper surface of the flap (vortex). The rounded shape of the upper fixed leading edge provides the conditions for a controlled reattachment of the flow on the upper wing surface and therefore a stable vortex. The vortex generates lift and a nose-up pitching moment. This improves maximum lift at low speed, reduces attitude for a given lift coefficient and improves lift to drag ratio. The mechanism (27) to move the vortex flap consists of two spanwise supports (24) with two diverging straight tracks (64 and 68) each and a screw drive mechanism (62) in the center of the flap panel (29). The flap motion is essentially normal to the airloads and therefore requires only low actuation forces.

  7. Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Yap, Keng C.

    2010-01-01

    This viewgraph presentation reviews Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge. The Wing Leading Edge Impact Detection System (WLE IDS) and the Impact Analysis Process are also described to monitor WLE debris threats. The contents include: 1) Risk Management via SHM; 2) Hardware Overview; 3) Instrumentation; 4) Sensor Configuration; 5) Debris Hazard Monitoring; 6) Ascent Response Summary; 7) Response Signal; 8) Distribution of Flight Indications; 9) Probabilistic Risk Analysis (PRA); 10) Model Correlation; 11) Impact Tests; 12) Wing Leading Edge Modeling; 13) Ascent Debris PRA Results; and 14) MM/OD PRA Results.

  8. Sharp Refractory Composite Leading Edges on Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.; Sullivan, Brian J.

    2003-01-01

    On-going research of advanced sharp refractory composite leading edges for use on hypersonic air-breathing vehicles is presented in this paper. Intense magnitudes of heating and of heating gradients on the leading edge lead to thermal stresses that challenge the survivability of current material systems. A fundamental understanding of the problem is needed to further design development. Methodology for furthering the technology along with the use of advanced fiber architectures to improve the thermal-structural response is explored in the current work. Thermal and structural finite element analyses are conducted for several advanced fiber architectures of interest. A tailored thermal shock parameter for sharp orthotropic leading edges is identified for evaluating composite material systems. The use of the tailored thermal shock parameter has the potential to eliminate the need for detailed thermal-structural finite element analyses for initial screening of material systems being considered for a leading edge component.

  9. Leading-Edge Learning: Two Views.

    ERIC Educational Resources Information Center

    Abernathy, Donna J.

    1999-01-01

    Peter Senge and Jack Welch share thoughts about what it means to learn and lead into the next century. Senge urges leaders to be aware of the economic and the natural environment. Welch asserts that an organization's ability to learn and translate learning into action is the ultimate competitive advantage. (JOW)

  10. Aerothermodynamic Data Base

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Space shuttle aerothermodynamic data, collected from a continuing series of wind tunnel tests, are permanently stored with the Data Management Services (DMS) system. Information pertaining to current baseline configuration definition is also stored. A list of documentation of DMS processed data arranged sequentially and by space shuttle configuration is presented. The listing provides an up to date record of all applicable aerothermodynamic data collected, processed, or summarized during the space shuttle program. Tables are designed to provide survey information to the various space shuttle managerial and technical levels.

  11. Dynamic Stall Characteristics of Drooped Leading Edge Airfoils

    NASA Technical Reports Server (NTRS)

    Sankar, Lakshmi N.; Sahin, Mehmet; Gopal, Naveen

    2000-01-01

    Helicopters in high-speed forward flight usually experience large regions of dynamic stall over the retreating side of the rotor disk. The rapid variations in the lift and pitching moments associated with the stall process can result in vibratory loads, and can cause fatigue and failure of pitch links. In some instances, the large time lag between the aerodynamic forces and the blade motion can trigger stall flutter. A number of techniques for the alleviation of dynamic stall have been proposed and studied by researchers. Passive and active control techniques have both been explored. Passive techniques include the use of high solidity rotors that reduce the lift coefficients of individual blades, leading edge slots and leading edge slats. Active control techniques include steady and unsteady blowing, and dynamically deformable leading edge (DDLE) airfoils. Considerable amount of experimental and numerical data has been collected on the effectiveness of these concepts. One concept that has not received as much attention is the drooped-leading edge airfoil idea. It has been observed in wind tunnel studies and flight tests that drooped leading edge airfoils can have a milder dynamic stall, with a significantly milder load hysteresis. Drooped leading edge airfoils may not, however, be suitable at other conditions, e.g. in hover, or in transonic flow. Work needs to be done on the analysis and design of drooped leading edge airfoils for efficient operation in a variety of flight regimes (hover, dynamic stall, and transonic flow). One concept that is worthy of investigation is the dynamically drooping airfoil, where the leading edge shape is changed roughly once-per-rev to mitigate the dynamic stall.

  12. Leading-edge receptivity for blunt-nose bodies

    NASA Technical Reports Server (NTRS)

    Hammerton, P. W.; Kerschen, E. J.

    1992-01-01

    Boundary-layer receptivity in the leading edge region for bodies with blunt leading edges is investigated in this research program. Receptivity theory provides the link between the unsteady disturbance environment in the freestream and the initial amplitudes of instability waves in the boundary layer. This is a critical problem which must be addressed in order to develop more accurate prediction methods for boundary-layer transition.

  13. Symmetric airfoil geometry effects on leading edge noise.

    PubMed

    Gill, James; Zhang, X; Joseph, P

    2013-10-01

    Computational aeroacoustic methods are applied to the modeling of noise due to interactions between gusts and the leading edge of real symmetric airfoils. Single frequency harmonic gusts are interacted with various airfoil geometries at zero angle of attack. The effects of airfoil thickness and leading edge radius on noise are investigated systematically and independently for the first time, at higher frequencies than previously used in computational methods. Increases in both leading edge radius and thickness are found to reduce the predicted noise. This noise reduction effect becomes greater with increasing frequency and Mach number. The dominant noise reduction mechanism for airfoils with real geometry is found to be related to the leading edge stagnation region. It is shown that accurate leading edge noise predictions can be made when assuming an inviscid meanflow, but that it is not valid to assume a uniform meanflow. Analytic flat plate predictions are found to over-predict the noise due to a NACA 0002 airfoil by up to 3 dB at high frequencies. The accuracy of analytic flat plate solutions can be expected to decrease with increasing airfoil thickness, leading edge radius, gust frequency, and Mach number.

  14. A Thermostructural Analysis of a Diboride Composite Leading Edge

    NASA Technical Reports Server (NTRS)

    Kowalski, Tom; Buesking, Kent; Kolodziej, Paul; Bull, Jeff

    1996-01-01

    In an effort to support the design of zirconium diboride composite leading edges for hypersonic vehicles, a finite element model (FEM) of a prototype leading edge was created and finite element analysis (FEA) was employed to assess its thermal and structural response to aerothermal boundary conditions. Unidirectional material properties for the structural components of the leading edge, a continuous fiber reinforced diboride composite, were computed with COSTAR. These properties agree well with those experimentally measured. To verify the analytical approach taken with COSMOS/M, an independent FEA of one of the leading edge assembly components was also done with COSTAR. Good agreement was obtained between the two codes. Both showed that a unidirectional lay-up had the best margin of safety for a simple loading case. Both located the maximum stress in the same region and ply. The magnitudes agreed within 4 percent. Trajectory based aerothermal heating was then applied to the leading edge assembly FEM created with COSMOS/M to determine steady state temperature response, displacement, stresses, and contact forces due to thermal expansion and thermal strains. Results show that the leading edge stagnation line temperature reached 4700 F. The maximum computed failure index for the laminated composite components peaks at 4.2, and is located at the bolt flange in layer 2 of the side bracket. The temperature gradient in the tip causes a compressive stress of 279 ksi along its width and substantial tensile stresses within its depth.

  15. Task 4 supporting technology. Part 1: Detailed test plan for leading edge tile development. Leading edge material development and testing

    NASA Technical Reports Server (NTRS)

    Hogenson, P. A.; Staszak, Paul; Hinkle, Karrie

    1995-01-01

    This task develops two alternative candidate tile materials for leading edge applications: coated alumina enhanced thermal barrier (AETB) tile and silicone impregnated reusable ceramic ablator (SIRCA) tile. Upon reentry of the X-33/RLV space vehicle, the leading edges experience the highest heating rates and temperatures. The wing leading edge and nose cap experience peak temperatures in the range 2000 to 2700 F. Replacing reinforced carbon-carbon (RCC) with tile-based thermal protection system (TPS) materials is the primary objective. Weight, complexity, coating impact damage, and repairability are among the problems that this tile technology development addresses. The following subtasks will be performed in this development effort: tile coating development; SIRCA tile development; robustness testing of tiles; tile repair development; tile operations/processing; tile leading edge configuration; and life cycle testing.

  16. The effects of leading edge roughness on dynamic stall

    NASA Astrophysics Data System (ADS)

    Hrynuk, John

    2016-11-01

    Dynamic stall is a fundamental flow phenomenon that is commonly observed for insect flight and rotorcraft. Under certain conditions a leading edge vortex forms generating large but temporary lift forces. Historically, computations studying dynamic stall on airfoil shapes have struggled to predict this vortex formation time and separation point. Reduced order models and CFD have performed well when experiments have been performed to develop separation models, but this has limited the development of robust design tools. The current study looks at the effect of leading edge surface roughness on the formation of the Dynamic Stall Vortex (DSV). Roughness elements were applied to the leading edge of a NACA 0012 airfoil and PIV data of the vortex formation process was recorded. Measurements were taken at a Reynolds number of Re = 12,000 and baseline smooth NACA 0012 data was also recorded for comparison. Surface roughness elements, below the typical scale modeled by CFD, are shown to change DSV formation angle and location.

  17. Design and Analysis of UHTC Leading Edge Attachment

    NASA Technical Reports Server (NTRS)

    Thomas, David J.; Nemeth, Noel N. (Technical Monitor)

    2002-01-01

    NASA Glenn Research Center was contacted to provide technical support to NASA Ames Research Center in the design and analysis of an ultra high temperature ceramic (UHTC) leading edge. UHTC materials are being considered for reusable launch vehicles because their high temperature capability may allow for un-cooled sharp leading edge designs. While ceramic materials have the design benefit of allowing subcomponents to run hot, they also provide a design challenge in that they invariably must be in contact with cooler subcomponents elsewhere in the structure. NASA Glenn Research Center proposed a modification to an existing attachment design. Thermal and structural analyses of the leading edge assembly were carried out using ABAQUS finite element software. Final results showed that the proposed modifications aided in thermally isolating hot and cold subcomponents and reducing bearing stresses at the attachment location.

  18. Effect of Leading Edge Tubercles on Marine Tidal Turbine Blades

    NASA Astrophysics Data System (ADS)

    Murray, Mark; Gruber, Timothy; Fredriksson, David

    2010-11-01

    This project investigated the impact that the addition of leading edge protuberances (tubercles) have on the effectiveness of marine tidal turbine blades, especially at lower flow speeds. The addition of leading edge tubercles to lifting foils has been shown, in previous research, to delay the onset of stall without significant hydrodynamic costs. The experimental results obtained utilizing three different blade designs (baseline and two tubercle modified) are compared. All blades were designed in SolidWorks and manufactured utilizing rapid prototype techniques. All tests were conducted in the 120 ft tow tank at the U.S. Naval Academy using a specifically designed experimental apparatus. Results for power coefficients are presented for a range of tip speed ratios. Cut-in velocity is also compared between the blade designs. For all test criteria, the tubercle modified blades significantly outperformed the smooth leading edge baseline design blades.

  19. Fluid-thermal-structural study of aerodynamically heated leading edges

    NASA Technical Reports Server (NTRS)

    Deuchamphai, Pramote; Thornton, Earl A.; Wieting, Allan R.

    1988-01-01

    A finite element approach for integrated fluid-thermal-structural analysis of aerodynamically heated leading edges is presented. The Navier-Stokes equations for high speed compressible flow, the energy equation, and the quasi-static equilibrium equations for the leading edge are solved using a single finite element approach in one integrated, vectorized computer program called LIFTS. The fluid-thermal-structural coupling is studied for Mach 6.47 flow over a 3-in diam cylinder for which the flow behavior and the aerothermal loads are calibrated by experimental data. Issues of the thermal-structural response are studied for hydrogen-cooled, super thermal conducting leading edges subjected to intense aerodynamic heating.

  20. Orbiter entry aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Ried, R. C.

    1985-01-01

    The challenge in the definition of the entry aerothermodynamic environment arising from the challenge of a reliable and reusable Orbiter is reviewed in light of the existing technology. Select problems pertinent to the orbiter development are discussed with reference to comprehensive treatments. These problems include boundary layer transition, leeward-side heating, shock/shock interaction scaling, tile gap heating, and nonequilibrium effects such as surface catalysis. Sample measurements obtained from test flights of the Orbiter are presented with comparison to preflight expectations. Numerical and wind tunnel simulations gave efficient information for defining the entry environment and an adequate level of preflight confidence. The high quality flight data provide an opportunity to refine the operational capability of the orbiter and serve as a benchmark both for the development of aerothermodynamic technology and for use in meeting future entry heating challenges.

  1. Laminar flow control leading edge glove flight test article development

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.; Mcnay, D. E.; Thelander, J. A.

    1984-01-01

    A laminar flow control (LFC) flight test article was designed and fabricated to fit into the right leading edge of a JetStar aircraft. The article was designed to attach to the front spar and fill in approx. 70 inches of the leading edge that are normally occupied by the large slipper fuel tank. The outer contour of the test article was constrained to align with an external fairing aft of the front spar which provided a surface pressure distribution over the test region representative of an LFC airfoil. LFC is achieved by applying suction through a finely perforated surface, which removes a small fraction of the boundary layer. The LFC test article has a retractable high lift shield to protect the laminar surface from contamination by airborne debris during takeoff and low altitude operation. The shield is designed to intercept insects and other particles that could otherwise impact the leading edge. Because the shield will intercept freezing rain and ice, a oozing glycol ice protection system is installed on the shield leading edge. In addition to the shield, a liquid freezing point depressant can be sprayed on the back of the shield.

  2. Pulsed Film Cooling on a Turbine Blade Leading Edge

    DTIC Science & Technology

    2009-09-01

    F = 0.590, DC = 50% ........................................................... 142 Fig. 6.4 Leading edge model and camera positions...steady M = 0.25. ( Camera Angle 1...147 Fig. 7.2 Near parallel to surface view of coolant, steady M = 0.25. ( Camera Angle 2

  3. Detail view of the leading and top edge of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the leading and top edge of the vertical stabilizer of the Orbiter Discovery showing the thermal protection system components with the white Advanced Flexible Reusable Surface Insulation (AFRSI) blanket and the black High-temperature Reusable Surface Insulation (HRSI) tiles along the outer edges. The marks seen on the HRSI tiles are injection point marks and holes for the application of waterproofing material. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  4. The fish tail motion forms an attached leading edge vortex.

    PubMed

    Borazjani, Iman; Daghooghi, Mohsen

    2013-04-07

    The tail (caudal fin) is one of the most prominent characteristics of fishes, and the analysis of the flow pattern it creates is fundamental to understanding how its motion generates locomotor forces. A mechanism that is known to greatly enhance locomotor forces in insect and bird flight is the leading edge vortex (LEV) reattachment, i.e. a vortex (separation bubble) that stays attached at the leading edge of a wing. However, this mechanism has not been reported in fish-like swimming probably owing to the overemphasis on the trailing wake, and the fact that the flow does not separate along the body of undulating swimmers. We provide, to our knowledge, the first evidence of the vortex reattachment at the leading edge of the fish tail using three-dimensional high-resolution numerical simulations of self-propelled virtual swimmers with different tail shapes. We show that at Strouhal numbers (a measure of lateral velocity to the axial velocity) at which most fish swim in nature (approx. 0.25) an attached LEV is formed, whereas at a higher Strouhal number of approximately 0.6 the LEV does not reattach. We show that the evolution of the LEV drastically alters the pressure distribution on the tail and the force it generates. We also show that the tail's delta shape is not necessary for the LEV reattachment and fish-like kinematics is capable of stabilising the LEV. Our results suggest the need for a paradigm shift in fish-like swimming research to turn the focus from the trailing edge to the leading edge of the tail.

  5. Nondestructive Evaluation for the Space Shuttle's Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Winfree, William P.; Prosser, William H.; Wincheski, Russell A.; Cramer, K. Elliot

    2005-01-01

    The loss of the Space Shuttle Columbia highlighted concerns about the integrity of the Shuttle's thermal protection system, which includes Reinforced Carbon-Carbon (RCC) on the leading edge. This led NASA to investigate nondestructive evaluation (NDE) methods for certifying the integrity of the Shuttle's wing leading edge. That investigation was performed simultaneously with a large study conducted to understand the impact damage caused by errant debris. Among the many advanced NDE methods investigated for applicability to the RCC material, advanced digital radiography, high resolution computed tomography, thermography, ultrasound, acoustic emission and eddy current systems have demonstrated the maturity and success for application to the Shuttle RCC panels. For the purposes of evaluating the RCC panels while they are installed on the orbiters, thermographic detection incorporating principal component analysis (PCA) and eddy current array scanning systems demonstrated the ability to measure the RCC panels from one side only and to detect several flaw types of concern. These systems were field tested at Kennedy Space Center (KSC) and at several locations where impact testing was being conducted. Another advanced method that NASA has been investigating is an automated acoustic based detection system. Such a system would be based in part on methods developed over the years for acoustic emission testing. Impact sensing has been demonstrated through numerous impact tests on both reinforced carbon-carbon (RCC) leading edge materials as well as Shuttle tile materials on representative aluminum wing structures. A variety of impact materials and conditions have been evaluated including foam, ice, and ablator materials at ascent velocities as well as simulated hypervelocity micrometeoroid and orbital debris impacts. These tests have successfully demonstrated the capability to detect and localize impact events on Shuttle's wing structures. A first generation impact sensing

  6. Defining aerothermodynamic methodology

    NASA Astrophysics Data System (ADS)

    Neumann, Richard D.

    1989-05-01

    The present evaluation of current aerothermodynamics-related understanding focuses on the hypersonic phenomena associated with lift-generating reentry vehicles. Attention is given to the basic equations of equilibrium glide trajectories, point-mass trajectories with initial equilibration, the geometric modeling of the NASA Space Shuttle, the relationship of wind tunnel data to CFD results, the acquisition of appropriate wind tunnel data, and the control requirements of hypersonic reentry glide vehicles. Recent experience with shock-interaction phenomena and real-gas effects are noted.

  7. Applications of Euler equations to sharp edge delta wings with leading edge vortices

    NASA Technical Reports Server (NTRS)

    Murman, Earll M.; Rizzi, Arthur

    1986-01-01

    Studies on the solution of discrete Euler equations past swept delta wing configurations with sharp leding edges are presented. Freestream Mach numbers range from zero to supersonic, although the Mach number normal to the leading edge is subsonic for all cases discussed. A few examples are given to show the application of the numerical methods to representative problems. The major dicussion is directed at the application of Computational Fluid Dynamics to the understanding of the fundamental fluid mechanic mechanisms of this class of flows.

  8. Probabilistic Structural Health Monitoring of the Orbiter Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Yap, Keng C.; Macias, Jesus; Kaouk, Mohamed; Gafka, Tammy L.; Kerr, Justin H.

    2011-01-01

    A structural health monitoring (SHM) system can contribute to the risk management of a structure operating under hazardous conditions. An example is the Wing Leading Edge Impact Detection System (WLEIDS) that monitors the debris hazards to the Space Shuttle Orbiter s Reinforced Carbon-Carbon (RCC) panels. Since Return-to-Flight (RTF) after the Columbia accident, WLEIDS was developed and subsequently deployed on board the Orbiter to detect ascent and on-orbit debris impacts, so as to support the assessment of wing leading edge structural integrity prior to Orbiter re-entry. As SHM is inherently an inverse problem, the analyses involved, including those performed for WLEIDS, tend to be associated with significant uncertainty. The use of probabilistic approaches to handle the uncertainty has resulted in the successful implementation of many development and application milestones.

  9. Heat pipes for wing leading edges of hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Boman, B. L.; Citrin, K. M.; Garner, E. C.; Stone, J. E.

    1990-01-01

    Wing leading edge heat pipes were conceptually designed for three types of vehicle: an entry research vehicle, aero-space plane, and advanced shuttle. A full scale, internally instrumented sodium/Hastelloy X heat pipe was successfully designed and fabricated for the advanced shuttle application. The 69.4 inch long heat pipe reduces peak leading edge temperatures from 3500 F to 1800 F. It is internally instrumented with thermocouples and pressure transducers to measure sodium vapor qualities. Large thermal gradients and consequently large thermal stresses, which have the potential of limiting heat pipe life, were predicted to occur during startup. A test stand and test plan were developed for subsequent testing of this heat pipe. Heat pipe manufacturing technology was advanced during this program, including the development of an innovative technique for wick installation.

  10. Leading Edge Heat Shield for Wings of Spacecraft

    NASA Technical Reports Server (NTRS)

    Stewart, David A. (Inventor)

    1998-01-01

    A heat shield for thermally insulating the leading edge of a wing of a spacecraft during ascent and reentry includes a plurality of rigid tiles. Each tile is formed with a pie-shaped element which interlocks with the complementarily-formed element of another tile. The combination of structure afforded by the pie-shaped elements substantially impedes hypersonic flow of any gases that might enter the gaps between tiles.

  11. Structure of leading-edge vortex flows including vortex breakdown

    SciTech Connect

    Payne, F.M.

    1987-01-01

    An experimental investigation of the structure of leading-edge vortex flows on thin sharp-edged delta wings was carried out at low Reynolds numbers. Flow-visualization techniques were used to study the topology of the vortex and the phenomenon of vortex breakdown. Seven-hole probe-wake surveys and laser-doppler-anemometer measurements were obtained and compared. Delta wings with sweep angles of 70, 75, 80, and 85/sup 0/ were tested at angles of attack of 10, 20, 30, and 40/sup 0/. The test were conducted in a Reynolds number range of 8.5 x 10/sup 4/ to 6.4 x 10/sup 5/. Smoke-flow visualization revealed the presence of small Kelvin-Helmholtz type vortical structures in the shear layer of a leading-edge vortex. These shear-layer vortices follow a helical path and grow in the streamwise direction as they wind into the vortex core where the individual shear layers merge. The phenomenon of vortex breakdown was studied using high-speed cinema photography. The bubble and spiral types of breakdown were observed and appear to represent the extremes in a continuum of breakdown forms.

  12. An Aeroacoustic Study of a Leading Edge Slat Configuration

    NASA Technical Reports Server (NTRS)

    Mendoza, J. M.; Brooks, T. F.; Humphreys, W. M., Jr.

    2002-01-01

    Aeroacoustic evaluations of high-lift devices have been carried out in the Quiet Flow Facility of the NASA Langley Research Center. The present paper describes detailed flow and acoustic measurements that have been made in order to better understand the noise generated from airflow over a wing leading edge slat configuration, and to possibly predict and reduce this noise source. The acoustic database is obtained by a moveable Small Aperture Directional Array of microphones designed to electronically steer to different portions of models under study. The slat is shown to be a uniform distributed noise source. The data was processed such that spectra and directivity were determined with respect to a one-foot span of slat. The spectra are normalized in various fashions to demonstrate slat noise character. In order to equate portions of the spectra to different slat noise components, trailing edge noise predictions using measured slat boundary layer parameters as inputs are compared to the measured slat noise spectra.

  13. Flexible Plug Repair for Shuttle Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J.; Sikora, Joseph; Smith, Russel; Rivers, H.; Scotti, Stephen J.; Fuller, Alan M.; Klacka, Robert; Reinders, Martin; Schwind, Francis; Sullivan, Brian; Lester, Dean

    2012-01-01

    In response to the Columbia Accident Investigation Board report, a plug repair kit has been developed to enable astronauts to repair the space shuttle's wing leading edge (WLE) during orbit. The plug repair kit consists of several 17.78- cm-diameter carbon/silicon carbide (C/SiC) cover plates of various curvatures that can be attached to the refractory carbon-carbon WLE panels using a TZM refractory metal attach mechanism. The attach mechanism is inserted through the damage in the WLE panel and, as it is tightened, the cover plate flexes to conform to the curvature of the WLE panel within 0.050 mm. An astronaut installs the repair during an extravehicular activity (EVA). After installing the plug repair, edge gaps are checked and the perimeter of the repair is sealed using a proprietary material, developed to fill cracks and small holes in the WLE.

  14. Experimental Aerothermodynamics In Support Of The Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.

    2004-01-01

    The technical foundation for the most probable damage scenario reported in the Columbia Accident Investigation Board's final report was largely derived from synergistic aerodynamic/aerothermodynamic wind tunnel measurements and inviscid predictions made at NASA Langley Research Center and later corroborated with engineering analysis, high fidelity numerical viscous simulations, and foam impact testing near the close of the investigation. This report provides an overview of the hypersonic aerothermodynamic wind tunnel program conducted at NASA Langley and illustrates how the ground-based heating measurements provided early insight that guided the direction and utilization of agency resources in support of the investigation. Global surface heat transfer mappings, surface streamline patterns, and shock shapes were measured on 0.0075 scale models of the Orbiter configuration with and without postulated damage to the thermal protection system. Test parametrics include angle of attack from 38 to 42 degs, sideslip angles of 38 to 42 degs, sideslip angles of plus or minus 1 deg, Reynolds numbers based upon model length from 0.05 x 10(exp 6) to 6.5 x 10(exp 6), and normal shock density ratios of 5 (Mach 6 Air) and 12 (Mach 6 CF4). The primary objective of the testing was to provide surface heating characteristics on scaled Orbiter models with outer mold line perturbations to simulate various forms of localized surface damage to the thermal protection system. Initial experimental testing conducted within two weeks of the accident simulated a broad spectrum of thermal protection system damage to the Orbiter windward surface and was used to refute several hypothesized forms of thermal protection system damage, which included gouges in the windward thermal protection system tiles, breaches through the wing new the main landing gear door, and protuberances along the wing leading edge that produced asymmetric boundary layer transition. As the forensic phase of the investigation

  15. Aerothermodynamic heating and performance analysis of a high-lift aeromaneuvering AOTV concept

    NASA Technical Reports Server (NTRS)

    Menees, G. P.; Brown, K. G.; Wilson, J. F.; Davies, C. B.

    1985-01-01

    The thermal-control requirements for design-optimized aeromaneuvering performance are determined for space-based applications and low-earth orbit sorties involving large, multiple plane-inclination changes. The leading-edge heating analysis is the most advanced developed for hypersonic-rarefied flow over lifting surfaces at incidence. The effects of leading-edge bluntness, low-density viscous phenomena, and finite-rate flow-field chemistry and surface catalysis are accounted for. The predicted aerothermodynamic heating characteristics are correlated with thermal-control and flight-performance capabilities. The mission payload capability for delivery, retrieval, and combined operations is determined for round-trip sorties extending to polar orbits. Recommendations are given for future design refinements. The results help to identify technology issues required to develop prototype operational systems.

  16. Space Shuttle hypersonic aerodynamic and aerothermodynamic flight research and the comparison to ground test results

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Shafer, Mary F.

    1993-01-01

    Aerodynamic and aerothermodynamic comparisons between flight and ground test for the Space Shuttle at hypersonic speeds are discussed. All of the comparisons are taken from papers published by researchers active in the Space Shuttle program. The aerodynamic comparisons include stability and control derivatives, center-of-pressure location, and reaction control jet interaction. Comparisons are also discussed for various forms of heating, including catalytic, boundary layer, top centerline, side fuselage, OMS pod, wing leading edge, and shock interaction. The jet interaction and center-of-pressure location flight values exceeded not only the predictions but also the uncertainties of the predictions. Predictions were significantly exceeded for the heating caused by the vortex impingement on the OMS pods and for heating caused by the wing leading-edge shock interaction.

  17. On the leading edge vortex of thin wings

    NASA Astrophysics Data System (ADS)

    Arredondo, Abel; Viola, Ignazio Maria

    2016-11-01

    On thin wings, the sharp leading edge triggers laminar separation followed by reattachment, forming a Leading Edge Vortex (LEV). This flow feature is of paramount importance because, if periodically shed, it leads to large amplitude load fluctuations, while if stably attached to the wing, it can provide lift augmentation. We found that on asymmetric-spinnaker-type yacht sails, the LEV can be stable despite the relatively low sweep (30°). This finding, which was recently predicted numerically by Viola et al., has been confirmed through current flume tests on a 1:115th model scale sail. Forces were measured and Particle Image Velocimetry was performed on four horizontal sail sections at a Reynolds number of 1.7x104. Vortex detection revealed that the LEV becomes progressively larger and more stable towards the highest sections, where its axis has a smaller angle with respect to the freestream velocity. Mapping the sail section on a rotating cylinder through a Joukowski transformation, we quantified the lift augmentation provided by the LEV on each sail section. These results open up new sail design strategies based on the manipulation of the LEV and can be applicable to the wings of unmanned aerial vehicles and underwater vehicles. Project funded by Conacyt.

  18. HEART Aerothermodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza

    2012-01-01

    This paper presents an assessment of the aerothermodynamic environment around an 8.3 meter High Energy Atmospheric Reentry Test (HEART) vehicle. This study generated twelve nose shape configurations and compared their responses at the peak heating trajectory point against the baseline nose shape. The heat flux sensitivity to the angle of attack variations are also discussed. The possibility of a two-piece Thermal Protection System (TPS) design at the nose is also considered, as are the surface catalytic affects of the aeroheating environment of such configuration. Based on these analyses, an optimum nose shape is proposed to minimize the surface heating. A recommendation is also made for a two-piece TPS design, for which the surface catalytic uncertainty associated with the jump in heating at the nose-IAD juncture is reduced by a minimum of 93%. In this paper, the aeroshell is assumed to be rigid and the inflatable fluid interaction effect is left for future investigations.

  19. X-38 Experimental Aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Berry, Scott A.; Merski, N. Ronald; Fitzgerald, Steve M.

    2000-01-01

    The X-38 program seeks to demonstrate an autonomously returned orbital test flight vehicle to support the development of an operational Crew Return Vehicle for the International Space Station. The test flight, anticipated in 2002, is intended to demonstrate the entire mission profile of returning Space Station crew members safely back to earth in the event of medical or mechanical emergency. Integral to the formulation of the X-38 flight data book and the design of the thermal protection system, the aerothermodynamic environment is being defined through a synergistic combination of ground based testing and computational fluid dynamics. This report provides an overview of the hypersonic aerothermodynamic wind tunnel program conducted at the NASA Langley Research Center in support of the X-38 development. Global and discrete surface heat transfer force and moment, surface streamline patterns, and shock shapes were measured on scaled models of the proposed X-38 configuration in different test gases at Mach 6, 10 and 20. The test parametrics include angle of attack from 0 to 50 degs, unit Reynolds numbers from 0.3 x 10 (exp 6) to 16 x 10 (exp 6)/ ft, rudder deflections of 0, 2, and 5 deg. and body flap deflections from 0 to 30 deg. Results from hypersonic aerodynamic screening studies that were conducted as the configuration evolved to the present shape at, presented. Heavy gas simulation tests have indicated that the primary real gas effects on X-38 aerodynamics at trim conditions are expected to favorably influence flap effectiveness. Comparisons of the experimental heating and force and moment data to prediction and the current aerodynamic data book are highlighted. The effects of discrete roughness elements on boundary layer transition were investigated at Mach 6 and the development of a transition correlation for the X-38 vehicle is described. Extrapolation of ground based heating measurements to flight radiation equilibrium wall temperatures at Mach 6 and 10 were

  20. The effect of leading edge tubercles on dynamic stall

    NASA Astrophysics Data System (ADS)

    Hrynuk, John

    The effect of the leading edge tubercles of humpback whales has been heavily studied for their static benefits. These studies have shown that tubercles inhibit flow separation, limit spanwise flow, and extend the operating angle of a wing beyond the static stall point while maintaining lift, all while having a comparatively low negative impact on drag. The current study extends the prior work to investigating the effect of tubercles on dynamic stall, a fundamental flow phenomenon that occurs when wings undergo dynamic pitching motions. Flow fields around the wing models tested were studied using Laser Induced Fluorescence (LIF) and Molecular Tagging Velocimetry (MTV).Resulting velocity fields show that the dynamics of the formation and separation of the leading edge vortex were fundamentally different between the straight wing and the tubercled wing. Tracking of the Dynamic Stall Vortex (DSV) and Shear Layer Vortices (SLVs), which may have a significant impact on the overall flow behavior, was done along with calculations of vortex circulation. Proximity to the wing surface and total circulation were used to evaluate potential dynamic lift increases provided by the tubercles. The effects of pitch rate on the formation process and benefits of the tubercles were also studied and were generally consistent with prior dynamic stall studies. However, tubercles were shown to affect the SLV formation and the circulation differently at higher pitch rates.

  1. Method for a Leading Edge Slat on a Wing of an Aircraft

    NASA Technical Reports Server (NTRS)

    Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)

    2016-01-01

    A method for managing a flight control surface system. A leading edge device is moved on a leading edge from an undeployed position to a deployed position. The leading edge device has an outer surface, an inner surface, and a deformable fairing attached to the leading edge device such that the deformable fairing covers at least a portion of the inner surface. The deformable fairing changes from a deformed shape to an original shape when the leading edge device is moved to the deployed position. The leading edge device is then moved from the deployed position to the undeployed position, wherein the deformable fairing changes from the original shape to the deformed shape.

  2. Particle rebound characteristics of turbomachinery cascade leading edge geometry

    NASA Astrophysics Data System (ADS)

    Siravuri, Sastri

    The objective of this research work is to investigate and understand the complex phenomena associated with the mechanism of particle impacts on turbomachinery cascade leading edge geometry. At present, there is a need for experimental work in basic and applied research to find out the parameters that are relevant to particle rebound characteristics on turbomachinery blades. In the present work, experiments were conducted with air velocity at 15 m/s (˜50 ft/sec) and at 30 m/s (˜100 ft/sec) using high-speed photography and Laser Doppler Velocimetry (LDV). Silica sand particles of 1000--1500 micron size were used for this study. In the present investigation, particle rebound data was obtained for cylindrical targets with radius of curvature representative of leading edge geometry (cylinder diameter = 4.5mm & 6.5 mm) using LDV. The numerical simulations, which are based on non-linear dynamic analysis, were also performed using the finite element code DYNA3-D. Several different material models viz elastic-elastic, elastic-plastic, elastic-plastic with friction & isotropic-elastic-plastic with dynamic friction and particle rotation were used in the DYNA3-D numerical analysis. The computational results include a time history of the displacement, stress and strain profiles through the particle collision. Numerical results are presented for the rebound conditions of spherical silica sand particle for different pre-collision velocities. The computed particle restitution coefficients, after they reach steady rebound conditions, are compared with experimental results obtained from LDV. A probabilistic model was developed to incorporate the uncertainties in the impact velocity in the numerical model. Histograms and Cumulative Distribution Functions (CDFs) for impact velocity were obtained from experimental LDV data. Ten randomly selected probabilities for each impact angle were used to calculate the impact velocity from cumulative distribution function. This randomly selected

  3. Deformation Zones along Leading Edges of Thrust Faults

    NASA Astrophysics Data System (ADS)

    Johnsion, A. M.; Huang, W. O.

    2006-12-01

    Deformation zones and concomitant damage along earthquake ruptures were recognized long ago in studies of the 1906 San Francisco earthquake. Most of the previous investigations of deformation zones have been of features along strike slip earthquake ruptures. This research, in contrast, describes and analyzes deformation zones observed along leading edges of two thrusts—the 1999 Chi Chi rupture in Taiwan and the Sylmar segment of the 1971 San Fernando Valley rupture in California. Deformation zones along the leading edges of the Chi Chi and Sylmar thrusts have several features and conditions in common: Both formed over reverse faults that dip 30° to 45° at shallow depths. Both accommodated different amounts of strike slip as well as reverse, dip slip along their traces. Both had associated ground deformation zones containing various kinds of smaller structures, including low amplitude folds, small fractures such as strike slip and thrust faults and tension cracks. Both had broken and tilted dwellings and other man made structures within them. Also, both deformation zones were highly asymmetric: the deformation zone in the hanging wall was much wider than that in the footwall. We have combined a proper yielding criterion for permanent (plastic) deformation at the ground surface produced by slip on a buried dislocation that is propagating upward to the surface. The result is an approximate simulation of the growth of ground deformation zones analogous to those we see in the field. The specific phenomena we investigate with the method include: 1). Compressional deformation zones straddling earthquake thrust ruptures. 2). Asymmetric deformation zones. Compressional deformation zones are much wider in the hanging wall than the footwall of thrusts. 3). A thrust deformation zone also includes an extensional zone in the hanging wall. 4). Where there is also left lateral, strike shift across the deformation zone, a zone of left lateral distortion is sandwiched by zones

  4. Roughness Effects on the Formation of a Leading Edge Vortex

    NASA Astrophysics Data System (ADS)

    Elliott, Cassidy; Lang, Amy; Wahidi, Redha; Wilroy, Jacob

    2016-11-01

    Microscopic scales cover the wings of Monarch butterflies, creating a patterned surface. This patterning is an important natural flow control mechanism that is thought to delay the growth of the leading edge vortex (LEV) produced by the flapping motion of a wing. The increased skin friction caused by the scales leads to a weaker LEV being shed into the butterfly's wake, lessening drag and increasing flight efficiency. To test this theory, a plate of random roughness was designed in SolidWorks and printed on the Objet 30 Pro 3D printer. A 2x3x5 cubic foot tow tank was used to test the rough plate at Reynold's numbers of 1500, 3000, and 6000 (velocities of 8, 16, and 32 mm/s) at an angle of attack of 45 degrees. Particle Image Velocimetry (PIV) captured images of the LEV generated by the plate when towed upwards through the particle-seeded flow. Codes written in MatLab were used to automatically track and determine the strength of the LEV. Circulation values for the randomly-rough plate were then compared to the same values generated in a previous experiment that used a smooth plate and a grooved plate to determine the effect of the patterning on vortex development. Funding provided by NSF REU site Grant EEC 1358991 and CBET 1628600.

  5. Low-speed aerodynamic characteristics of a highly swept arrow wing configuration with several deflected leading edge concepts

    NASA Technical Reports Server (NTRS)

    Gentry, G. L., Jr.; Coe, P. L., Jr.

    1980-01-01

    The effectiveness of leading edge concepts for minimizing or controlling leading edge flow separation was studied. Emphasis was placed on low speed performance, stability, and control characteristics of configurations with highly swept wings. Simple deflection of the leading edge, a variable camber leading edge system, and a leading edge vortex flow system were among the concepts studied. The data are presented without analysis.

  6. Rotational accelerations stabilize leading edge vortices on revolving fly wings.

    PubMed

    Lentink, David; Dickinson, Michael H

    2009-08-01

    The aerodynamic performance of hovering insects is largely explained by the presence of a stably attached leading edge vortex (LEV) on top of their wings. Although LEVs have been visualized on real, physically modeled, and simulated insects, the physical mechanisms responsible for their stability are poorly understood. To gain fundamental insight into LEV stability on flapping fly wings we expressed the Navier-Stokes equations in a rotating frame of reference attached to the wing's surface. Using these equations we show that LEV dynamics on flapping wings are governed by three terms: angular, centripetal and Coriolis acceleration. Our analysis for hovering conditions shows that angular acceleration is proportional to the inverse of dimensionless stroke amplitude, whereas Coriolis and centripetal acceleration are proportional to the inverse of the Rossby number. Using a dynamically scaled robot model of a flapping fruit fly wing to systematically vary these dimensionless numbers, we determined which of the three accelerations mediate LEV stability. Our force measurements and flow visualizations indicate that the LEV is stabilized by the ;quasi-steady' centripetal and Coriolis accelerations that are present at low Rossby number and result from the propeller-like sweep of the wing. In contrast, the unsteady angular acceleration that results from the back and forth motion of a flapping wing does not appear to play a role in the stable attachment of the LEV. Angular acceleration is, however, critical for LEV integrity as we found it can mediate LEV spiral bursting, a high Reynolds number effect. Our analysis and experiments further suggest that the mechanism responsible for LEV stability is not dependent on Reynolds number, at least over the range most relevant for insect flight (100

  7. Leading edge vortex in a slow-flying passerine

    PubMed Central

    Muijres, Florian T.; Johansson, L. Christoffer; Hedenström, Anders

    2012-01-01

    Most hovering animals, such as insects and hummingbirds, enhance lift by producing leading edge vortices (LEVs) and by using both the downstroke and upstroke for lift production. By contrast, most hovering passerine birds primarily use the downstroke to generate lift. To compensate for the nearly inactive upstroke, weight support during the downstroke needs to be relatively higher in passerines when compared with, e.g. hummingbirds. Here we show, by capturing the airflow around the wing of a freely flying pied flycatcher, that passerines may use LEVs during the downstroke to increase lift. The LEV contributes up to 49 per cent to weight support, which is three times higher than in hummingbirds, suggesting that avian hoverers compensate for the nearly inactive upstroke by generating stronger LEVs. Contrary to other animals, the LEV strength in the flycatcher is lowest near the wing tip, instead of highest. This is correlated with a spanwise reduction of the wing's angle-of-attack, partly owing to upward bending of primary feathers. We suggest that this helps to delay bursting and shedding of the particularly strong LEV in passerines. PMID:22417792

  8. Effects of leading-edge tubercles on wing flutter speeds.

    PubMed

    Ng, B F; New, T H; Palacios, R

    2016-04-12

    The dynamic aeroelastic effects on wings modified with bio-inspired leading-edge (LE) tubercles are examined in this study. We adopt a state-space aeroelastic model via the coupling of unsteady vortex-lattice method and a composite beam to evaluate stability margins as a result of LE tubercles on a generic wing. The unsteady aerodynamics and spanwise mass variations due to LE tubercles have counteracting effects on stability margins with the former having dominant influence. When coupled, flutter speed is observed to be 5% higher, and this is accompanied by close to 6% decrease in reduced frequencies as an indication of lower structural stiffness requirements for wings with LE tubercles. Both tubercle amplitude and wavelength have similar influences over the change in flutter speeds, and such modifications to the LE would have minimal effect on stability margins when concentrated inboard of the wing. Lastly, when used in sweptback wings, LE tubercles are observed to have smaller impacts on stability margins as the sweep angle is increased.

  9. Mechanisms of leading edge protrusion in interstitial migration

    PubMed Central

    Wilson, Kerry; Lewalle, Alexandre; Fritzsche, Marco; Thorogate, Richard; Duke, Tom; Charras, Guillaume

    2013-01-01

    While the molecular and biophysical mechanisms underlying cell protrusion on two-dimensional substrates are well understood, our knowledge of the actin structures driving protrusion in three-dimensional environments is poor, despite relevance to inflammation, development and cancer. Here we report that, during chemotactic migration through microchannels with 5 μm × 5 μm cross-sections, HL60 neutrophil-like cells assemble an actin-rich slab filling the whole channel cross-section at their front. This leading edge comprises two distinct F-actin networks: an adherent network that polymerizes perpendicular to cell-wall interfaces and a ‘free’ network that grows from the free membrane at the cell front. Each network is polymerized by a distinct nucleator and, due to their geometrical arrangement, the networks interact mechanically. On the basis of our experimental data, we propose that, during interstitial migration, medial growth of the adherent network compresses the free network preventing its retrograde movement and enabling new polymerization to be converted into forward protrusion. PMID:24305616

  10. Absolute Instability in Swept Leading-Edge Boundary Layers

    NASA Astrophysics Data System (ADS)

    Lin, R.-S.; Li, F.; Malik, M. R.

    1997-11-01

    Absolute instabilities in the swept Hiemenz flow and flows over Poll's swept cylinder are studied. It is assumed that the span is infinite and the laminar flow field is subjected to a line impulsive excitation so that the spanwise wavenumber (β) is taken to be real, which is akin to the rotating disk study made by Lingwood.footnote Lingwood, R. J., J. Fluid Mech., 299, 17, 1995. We found that these flows can be absolutely unstable in the chordwise (x) direction. The pinch-point singularities formed by the coalescence of two distinct spatial branches can lie either below or above the real α-axis. The pinch points with a positive αi imply the existence of an unstable disturbance propagating against the mainstream, which has never been observed before. It is found that singularities of pinch type occur in a region very close to the leading edge, therefore the attachment-line Reynolds number is used to correlate the onset of absolute instability. The critical Reynolds number for absolute instability is found to be about R=540 compared to 583 for the attachment-line instability. Provided the non-linear behavior of this absolute instability is sufficient to trigger the laminar to turbulent transition, then it would cause a complete loss of laminar flow on a swept wing as does the attachment-line instability.

  11. Manipulation of Leading-Edge Vortex Evolution by Applied Suction

    NASA Astrophysics Data System (ADS)

    Buchholz, James; Akkala, James

    2016-11-01

    The generation and shedding of vortices from unsteady maneuvering bodies can be characterized within a framework of vorticity transport, accounting for the effects of multiple sources and sinks of vorticity on the overall circulation of the vortex system. On a maneuvering wing, the diffusive flux of secondary vorticity from the surface is a critical contributor to the strength and dynamics of the leading-edge vortex, suggesting that flow control strategies targeting the manipulation of the secondary vorticity flux and the secondary vortex may provide an effective means of manipulating vortex development. Suction has been applied in the vicinity of the secondary vortex during the downstroke of a periodically-plunging flat-plate airfoil, and the flow evolution and aerodynamic loads are compared to the baseline case in which suction is not applied. Observation of the resulting surface pressure distribution and flow evolution suggest that the secondary flux of vorticity and the evolution of the flow field can be altered subject to appropriate position of the suction ports relative to the developing vortex structures, and at a specific temporal window in the development of the vortex. This work was supported by the Air Force Office of Scientific Research, Grant Number FA9550-16-1-0107 and NSF EPSCoR Grant Number EPS1101284.

  12. Development of Advanced High Lift Leading Edge Technology for Laminar Flow Wings

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Korntheuer, Andrea; Komadina, Steve; Lin, John C.

    2013-01-01

    This paper describes the Advanced High Lift Leading Edge (AHLLE) task performed by Northrop Grumman Systems Corporation, Aerospace Systems (NGAS) for the NASA Subsonic Fixed Wing project in an effort to develop enabling high-lift technology for laminar flow wings. Based on a known laminar cruise airfoil that incorporated an NGAS-developed integrated slot design, this effort involved using Computational Fluid Dynamics (CFD) analysis and quality function deployment (QFD) analysis on several leading edge concepts, and subsequently down-selected to two blown leading-edge concepts for testing. A 7-foot-span AHLLE airfoil model was designed and fabricated at NGAS and then tested at the NGAS 7 x 10 Low Speed Wind Tunnel in Hawthorne, CA. The model configurations tested included: baseline, deflected trailing edge, blown deflected trailing edge, blown leading edge, morphed leading edge, and blown/morphed leading edge. A successful demonstration of high lift leading edge technology was achieved, and the target goals for improved lift were exceeded by 30% with a maximum section lift coefficient (Cl) of 5.2. Maximum incremental section lift coefficients ( Cl) of 3.5 and 3.1 were achieved for a blown drooped (morphed) leading edge concept and a non-drooped leading edge blowing concept, respectively. The most effective AHLLE design yielded an estimated 94% lift improvement over the conventional high lift Krueger flap configurations while providing laminar flow capability on the cruise configuration.

  13. The Columbia River--on the Leading Edge

    NASA Astrophysics Data System (ADS)

    O'Connor, J. E.

    2005-05-01

    On the leading edge of the North American plate, the Columbia River is the largest of the world's 40 or so rivers with drainage areas greater than 500,000 square kilometers to drain toward a convergent plate boundary. This unique setting results in a unique continental river basin; marked by episodic and cataclysmic geologic disturbance, but also famously fecund with perhaps 10 to 16 million salmon historically spawning in its waters each year. Now transformed by dams, transportation infrastructure, dikes and diversions, the Columbia River presents an expensive conundrum for management of its many values. Inclusion of river ecology and geomorphology in discussions of river management is generally limited to observations of the last 200 years-a time period of little natural disturbance and low sediment transport. However, consideration of longer timescales provides additional perspective of historical ecologic and geomorphic conditions. Only 230 km from its mouth, the Columbia River bisects the volcanic arc of the Cascade Range, forming the Columbia River Gorge. Cenozoic lava flows have blocked the river, forcing diversions and new canyon cutting. Holocene eruptions of Mount Mazama (Crater Lake), Mount Hood, Mount St. Helens, and Mount Rainier have shed immense quantities of sediment into the lower Columbia River, forming a large percentage of the Holocene sediment transported through the lower river. Quaternary landslides, perhaps triggered by great earthquakes, have descended from the 1000-m-high gorge walls, also blocking and diverting the river, one as recently as 550 years ago. These geologic disturbances, mostly outside the realm of historical observation and operating at timescales of 100s to 1000s of years in the gorge and elsewhere, have clearly affected basin geomorphology, riverine ecology, and past and present cultural utilization of river resources. The historic productivity of the river, however, hints at extraordinary resilience (and perhaps

  14. Morphological Variations of Leading-Edge Serrations in Owls (Strigiformes)

    PubMed Central

    Weger, Matthias; Wagner, Hermann

    2016-01-01

    Background Owls have developed serrations, comb-like structures, along the leading edge of their wings. Serrations were investigated from a morphological and a mechanical point of view, but were not yet quantitatively compared for different species. Such a comparative investigation of serrations from species of different sizes and activity patterns may provide new information about the function of the serrations. Results Serrations on complete wings and on tenth primary remiges of seven owl species were investigated. Small, middle-sized, and large owl species were investigated as well as species being more active during the day and owls being more active during the night. Serrations occurred at the outer parts of the wings, predominantly at tenth primary remiges, but also on further wing feathers in most species. Serration tips were oriented away from the feather rachis so that they faced into the air stream during flight. The serrations of nocturnal owl species were higher developed as demonstrated by a larger inclination angle (the angle between the base of the barb and the rachis), a larger tip displacement angle (the angle between the tip of the serration and the base of the serration) and a longer length. Putting the measured data into a clustering algorithm yielded dendrograms that suggested a strong influence of activity pattern, but only a weak influence of size on the development of the serrations. Conclusions Serrations are supposed to be involved in noise reduction during flight and also depend on the aerodynamic properties that in turn depend on body size. Since especially nocturnal owls have to rely on hearing during prey capture, the more pronounced serrations of nocturnal species lend further support to the notion that serrations have an important function in noise reduction. The differences in shape of the serrations investigated indicate that a silent flight requires well-developed serrations. PMID:26934104

  15. Trailing edges projected to move faster than leading edges for large pelagic fish habitats under climate change

    NASA Astrophysics Data System (ADS)

    Robinson, L. M.; Hobday, A. J.; Possingham, H. P.; Richardson, A. J.

    2015-03-01

    There is mounting evidence to suggest that many species are shifting their ranges in concordance with the climate velocity of their preferred environmental conditions/habitat. While accelerated rates in species' range shifts have been noted in areas of intense warming, due to climate change, few studies have considered the influence that both spatial temperature gradients and rates of warming (i.e., the two components of climate velocity) could have on rates of movement in species habitats. We compared projected shifts in the core habitat of nine large pelagic fish species (five tuna, two billfish and two shark species) off the east coast of Australia at different spatial points (centre, leading and trailing edges of the core habitat), during different seasons (summer and winter), in the near-(2030) and long-term (2070), using independent species distribution models and habitat suitability models. Model projections incorporated depth integrated temperature data from 11 climate models with a focus on the IPCC SRES A2 general emission scenario. Projections showed a number of consistent patterns: southern (poleward) shifts in all species' core habitats; trailing edges shifted faster than leading edges; shifts were faster by 2070 than 2030; and there was little difference in shifts among species and between seasons. Averaging across all species and climate models, rates of habitat shifts for 2030 were 45-60 km decade-1 at the trailing edge, 40-45 km decade-1 at the centre, and 20-30 km decade-1 at the leading edge. Habitat shifts for 2070 were 60-70 km decade-1 at the trailing edge, 50-55 km decade-1 at the centre, and 30-40 km decade-1 at the leading edge. It is often assumed that the leading edge of a species range will shift faster than the trailing edge, but there are few projections or observations in large pelagic fish to validate this assumption. We found that projected shifts at the trailing edge were greater than at the centre and leading of core habitats in

  16. Method and Apparatus for a Leading Edge Slat on a Wing of an Aircraft

    NASA Technical Reports Server (NTRS)

    Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)

    2013-01-01

    A method and apparatus for managing a flight control surface system. A leading edge device is moved on a leading edge from an undeployed position to a deployed position. The leading edge device has an outer surface, an inner surface, and a deformable fairing attached to the leading edge device such that the deformable fairing covers at least a portion of the inner surface. The deformable fairing changes from a deformed shape to an original shape when the leading edge device is moved to the deployed position. The leading edge device is then moved from the deployed position to the undeployed position, wherein the deformable fairing changes from the original shape to the deformed shape.

  17. Interaction between leading and trailing edge vortex shedding: effects of bluff body geometry

    NASA Astrophysics Data System (ADS)

    Taylor, Zachary; Kopp, Gregory; Gurka, Roi

    2011-11-01

    Elongated bluff bodies are distinguished from shorter bluff bodies (e.g., circular cylinders) by the fact that they have separating-reattaching flow at the leading edge as well as having vortex shedding at the trailing edge. Engineering examples of these bodies include heat exchanger fins and long-span suspension bridges. We have performed experiments on elongated bluff bodies of varying geometry. These experiments have been performed at Reynolds numbers O(104) based on the thickness of the model. Both surface pressure measurements (using 512 simultaneously sampled pressure taps) and PIV are used to quantify the flow fields of these bodies. The leading edge separation angle is controlled by changing the leading edge geometry. It is observed that the size of the leading edge separation bubble increases with increasing leading edge separation angle. As the size of the leading edge separation bubble increases, it is shown to continually decrease the shedding frequency for a given elongation ratio. It is suggested that the shedding frequency is diminished because the trailing edge vortex shedding is affected by the structures being shed from the leading edge separation bubble. The implications of this competition between leading and trailing edge flows will be explored.

  18. Development of a cyber physical apparatus for investigating fluid structure interaction on leading edge vortex evolution

    NASA Astrophysics Data System (ADS)

    Raghu Gowda, Belagumba Venkatachalaiah

    This dissertation examines how simple structural compliance impacts a specific transient vortex phenomenon that occurs on high angle of attack lifting surfaces termed dynamic stall. In many Fluid structure interaction (FSI) research efforts, a purely physical or purely computational approach is taken. In this work a low cost cyber-physical (CPFD) system is designed and developed for representing the FSI in the leading edge vortex (LEV) development problem. The leading edge compliance appears to be favorable in a specific spring constant range for a given wing. When the leading edge compliance prescribed via CPFD system is too low compared with the moment due to dynamic pressure or fluid unsteady effect, the LEV behavior is similar to that of a rigid wing system. When the leading edge compliance is too high, excessive compliance is introduced into the wing system and the leading edge vortex evolution is affected by the large change in wing angle. At moderate leading edge compliance, a balance appears to be achieved in which the leading edge vorticity shedding rate supports the long term evolution of the leading edge vortex. Further investigation is required to determine specific parameters governing these leading edge compliance ranges.

  19. A numerical model for the platelet heat-pipe-cooled leading edge of hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Liu, Hongpeng; Liu, Weiqiang

    2016-01-01

    A new design, the platelet heat-pipe-cooled leading edge, is discussed for the thermal management to prevent damage to hypersonic vehicle leading edge component. For calculating the steady state behavior of platelet heat-pipe-cooled leading edge, a numerical model based on the principles of evaporation, convection, and condensation of a working fluid is presented. And then its effectiveness is validated by comparing the wall and vapor temperature against experimental data for a conventional heat pipe. Further investigations indicate that alloy IN718, with sodium as the working fluid is a feasible combination for Mach 8 flight with a 15 mm leading edge radius.

  20. Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings.

    PubMed

    Zhao, Liang; Deng, Xinyan; Sane, Sanjay P

    2011-09-01

    In diverse biological flight systems, the leading edge vortex has been implicated as a flow feature of key importance in the generation of flight forces. Unlike fixed wings, flapping wings can translate at higher angles of attack without stalling because their leading edge vorticity is more stable than the corresponding fixed wing case. Hence, the leading edge vorticity has often been suggested as the primary determinant of the high forces generated by flapping wings. To test this hypothesis, it is necessary to modulate the size and strength of the leading edge vorticity independently of the gross kinematics while simultaneously monitoring the forces generated by the wing. In a recent study, we observed that forces generated by wings with flexible trailing margins showed a direct dependence on the flexural stiffness of the wing. Based on that study, we hypothesized that trailing edge flexion directly influences leading edge vorticity, and thereby the magnitude of aerodynamic forces on the flexible flapping wings. To test this hypothesis, we visualized the flows on wings of varying flexural stiffness using a custom 2D digital particle image velocimetry system, while simultaneously monitoring the magnitude of the aerodynamic forces. Our data show that as flexion decreases, the magnitude of the leading edge vorticity increases and enhances aerodynamic forces, thus confirming that the leading edge vortex is indeed a key feature for aerodynamic force generation in flapping flight. The data shown here thus support the hypothesis that camber influences instantaneous aerodynamic forces through modulation of the leading edge vorticity.

  1. Effects of leading-edge camber on low-speed characteristics of slender delta wings

    NASA Technical Reports Server (NTRS)

    Wentz, W. H., Jr.

    1972-01-01

    Wind-tunnel studies have been conducted to determine the effects of leading-edge camber on the low-speed aerodynamic characteristics of a thin, sharp-edge 74 deg delta wing. The results include force and moment measurements, pressure distributions, and flow visualization patterns determined from oil flow, tuft and water vapor observations. The study indicated that leading-edge camber near the apex is effective in controlling the pitch-up tendency of slender delta wings.

  2. Aerothermodynamics of the Mars Global Surveyor Spacecraft

    NASA Technical Reports Server (NTRS)

    Shane, Russell W.; Tolson, Robert H.

    1998-01-01

    The aerothermodynamics characteristics of the Mars Global Surveyor spacecraft are investigated and reported. These results have been used by the Mars Global Surveyor mission planners to design the aerobraking phase of the mission. Analytical and Direct Simulation Monte Carlo computer codes were used with a detailed, three dimensional model of the spacecraft to evaluate spacecraft aerobraking characteristics for flight in free molecular and transitional flow regimes. The spacecraft is found to be aerodynamically stable in aerobraking and planned contingency configurations. Aerodynamic forces, moments, and heating are found to be highly dependent on atmospheric density. Accommodation coefficient. is seen to strongly influence drag coefficient. Transitional flow effects are found to reduce overall solar panel heating. Attitude control thruster plumes are shown to interact with the freestream, diminishing the effectiveness of the attitude control system and even leading to thrust reversal. These plume-freestream interaction effects are found to be highly dependent on freestream density.

  3. Case Studies of Leading Edge Small Urban High Schools. Relevance Strategic Designs: 6. Perspectives Charter School

    ERIC Educational Resources Information Center

    Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley

    2008-01-01

    This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…

  4. Preparation and Support of a Tap Test on the Leading Edge Surfaces of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Bohr, Jerry

    2009-01-01

    This slide presentation reports on a Tap test for the leading edge surfaces of the Space Shuttle. A description of the Wing Leading Edge Impact Detection System (WLEIDS) flight system is given, and the rationale and approach for improving the WLEIDS system. The three phases of the strategy of the test project amd the results of the tests are reviewed.

  5. Leading Edge. Volume 7, Number 3. Systems Safety Engineering

    DTIC Science & Technology

    2010-01-01

    including both the MOGAS Stowage Room and MOGAS Transfer Room • Remove the external 1,500‑gallon bladder stowage rack and replace with modified low‑ sulfur...the 01 level on the port side deck edge. One rack holds six 55‑gallon drums and the other, a MOGAS stowage locker that is adjacent to the drum...requirements and standards for the safe handling, stowage , and use of all ammunition and explosives afloat. It is applicable to all ships owned or

  6. A method for computing the leading-edge suction in a higher-order panel method

    NASA Technical Reports Server (NTRS)

    Ehlers, F. E.; Manro, M. E.

    1984-01-01

    Experimental data show that the phenomenon of a separation induced leading edge vortex is influenced by the wing thickness and the shape of the leading edge. Both thickness and leading edge shape (rounded rather than point) delay the formation of a vortex. Existing computer programs used to predict the effect of a leading edge vortex do not include a procedure for determining whether or not a vortex actually exists. Studies under NASA Contract NAS1-15678 have shown that the vortex development can be predicted by using the relationship between the leading edge suction coefficient and the parabolic nose drag. The linear theory FLEXSTAB was used to calculate the leading edge suction coefficient. This report describes the development of a method for calculating leading edge suction using the capabilities of the higher order panel methods (exact boundary conditions). For a two dimensional case, numerical methods were developed using the double strength and downwash distribution along the chord. A Gaussian quadrature formula that directly incorporates the logarithmic singularity in the downwash distribution, at all panel edges, was found to be the best method.

  7. Study of supersonic wings employing the attainable leading-edge thrust concept

    NASA Technical Reports Server (NTRS)

    Middleton, W. D.

    1982-01-01

    A theoretical study was made of supersonic wing geometries at Mach 1.8, using the attainable leading-edge thrust concept. The attainable thrust method offers a powerful means to improve overall aerodynamic efficiency by identifying wing leading-edge geometries that promote attached flow and by defining a local angle-of-attack range over which attached flow may be obtained. The concept applies to flat and to cambered wings, which leads to the consideration of drooped-wing leading edges for attached flow at high lift coefficients.

  8. Subsonic loads on wings having sharp leading edges and tips

    NASA Technical Reports Server (NTRS)

    Kandil, O. A.; Mook, D. T.; Nayfeh, A. H.

    1976-01-01

    A vortex-lattice method for predicting the aerodynamics of wings having separation at the sharp edges in incompressible flows is extended to compressible subsonic flows using a modified Prandtl-Glauert transformation. Numerical results showing the effect of freestream Mach number on the aerodynamic coefficients are compared with available experimental data for several planforms. It is shown that the proposed method is suitable for predicting the aerodynamic loads on low-aspect wings at moderate angles of attack for high subsonic freestream Mach number. The method is limited to angles of attack up to 12 deg for high subsonic freestream Mach number and to angles of attack up to 20 deg for Mach number not exceeding 0.5.

  9. Generation of instability waves at a leading edge

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.

    1982-01-01

    Two cases are considered. The first is concerned with mean flows of the Blasius type wherein the instabilities are represented by Tollmien-Schlichting waves. It is shown that the latter are generated fairly far downstream of the edge and are the result of a wave length reduction process that tunes the free stream disturbances to the Tollmien-Schlichting wave length. The other case is concerned with inflectional, uni-directional, transversely sheared mean flows. Such idealized flows provide a fairly good local representation to the nearly parallel flows in jets. They can support inviscid instabilities of the Kelvin-Helmholtz type. The various mathematically permissible mechanisms that can couple these instabilities to the upstream disturbances are discussed.

  10. Leading-edge vortex burst on a low-aspect-ratio rotating flat plate

    NASA Astrophysics Data System (ADS)

    Medina, Albert; Jones, Anya R.

    2016-08-01

    This study experimentally investigates the phenomenon of leading-edge-vortex burst on rotating flat plate wings. An aspect-ratio-2 wing was driven in pure rotation at a Reynolds number of Re=2500 . Of primary interest is the evolution of the leading-edge vortex along the wing span over a single-revolution wing stroke. Direct force measurements of the lift produced by the wing revealed a single global lift maximum relatively early in the wing stroke. Stereoscopic particle image velocimetry was applied to several chordwise planes to quantify the structure and strength of the leading-edge vortex and its effect on lift production. This analysis revealed opposite-sign vorticity entrainment into the core of the leading-edge vortex, originating from a layer of secondary vorticity along the wing surface. Coincident with the lift peak, there emerged both a concentration of opposite vorticity in the leading-edge-vortex core, as well as axial flow stagnation within the leading-edge-vortex core. Planar control volume analysis was performed at the midspan to quantify the contributions of vorticity transport mechanisms to the leading-edge-vortex circulation. The rate of circulation annihilation by opposite-signed vorticity entrainment was found to be minimal during peak lift production, where convection balanced the flux of vorticity resulting in stagnation and eventually reversal of axial flow. Finally, vortex burst was found to be correlated with swirl number, where bursting occurs at a swirl threshold of Sw<0.6 .

  11. The influence of leading-edge load alleviation on supersonic wing design

    NASA Technical Reports Server (NTRS)

    Darden, C. M.

    1984-01-01

    A theoretical and experimental program to assess the effect of leading-edge load constraints on wing design and performance was conducted. For a planform characterized by a highly swept leading edge on the inboard region, linear theory was used to design camber surfaces which produced minimum drag-due-to-lift at the design lift coefficient of 0.08 and a design Mach number of 2.4. In an effort to delay the formation of leading edge vortices which often occur on highly swept wings, two approaches were used in the design criteria to limit the loadings on the leading edge. One wing was constrained to have the normal Mach number less than one everywhere along the leading edge and the second wing was constrained to have a pressure coefficient of zero on the leading edge. Force tests were run on the two constrained wings, on a flat reference wing and on an optimized wing with no leading edge constraints. All wings had identical planforms and thicknesses and were tested over a range of Mach numbers from 1.8 to 2.8 and a range in angles of attack from -5 deg to 8 deg. A comparison of the experimental performance of these four models is shown. Correlations of these results with theoretical predictions and flow visualization photographs are also included.

  12. Compressibility and Leading-Edge Bluntness Effects for a 65 Deg Delta Wing

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    2004-01-01

    A 65 deg. delta wing has been tested in the National Transonic Facility (NTF) at mean aerodynamic chord Reynolds numbers from 6 million to 120 million at subsonic and transonic speeds. The configuration incorporated a systematic variation of the leading edge bluntness. The analysis for this paper is focused on the compressibility and bluntness effects primarily at a Reynolds number of 6 million from this data set. Emphasis is placed upon on the onset and progression of leading-edge vortex separation, and compressibility is shown to promote this separation. Comparisons with recent publications show that compressibility and Reynolds number have opposite effects on blunt leading edge vortex separation

  13. Effect of leading-edge load constraints on the design and performance of supersonic wings

    NASA Technical Reports Server (NTRS)

    Darden, C. M.

    1985-01-01

    A theoretical and experimental investigation was conducted to assess the effect of leading-edge load constraints on supersonic wing design and performance. In the effort to delay flow separation and the formation of leading-edge vortices, two constrained, linear-theory optimization approaches were used to limit the loadings on the leading edge of a variable-sweep planform design. Experimental force and moment tests were made on two constrained camber wings, a flat uncambered wing, and an optimum design with no constraints. Results indicate that vortex strength and separation regions were mildest on the severely and moderately constrained wings.

  14. Direct simulation Monte Carlo of rarefied hypersonic flow on power law shaped leading edges

    NASA Astrophysics Data System (ADS)

    Santos, Wilson Fernando Nogueira Dos

    A numerical study of several parameters that influence the flowfield structure, aerodynamic surface quantities and shock wave structure at rarefied hypersonic flow conditions is conducted on power law shaped leading edges. The calculations are performed with a detailed computer code that properly accounts for nonequilibrium effects and that has been demonstrated to yield excellent comparisons with flight- and ground-test data. The flowfield structure, aerodynamic surface quantities and shock wave structure of power law shaped leading edges are examined in order to provide information on how well these shapes could stand as possible candidates for blunting geometries of hypersonic leading edges. Newtonian flow analysis has shown that these shapes exhibit both blunt and sharp aerodynamic properties. Moreover, computational investigation of minimum-drag bodies at supersonic and moderate hypersonic speeds has indicated that power law shapes for certain exponents yield the lowest wave drag. These qualities make power law shapes strong candidates for leading edge design. A very detailed description of the impact on the flow properties, such as velocity, density, temperature and pressure, has been presented separately in the vicinity of the nose of the leading edges due to changes in their shapes. Numerical solutions show that the shape of the leading edge disturbed the flowfield far upstream, where the domain of influence decreased as the leading edge became aerodynamically sharp. A detailed procedure is presented to predict the pressure gradient along the body surface in a rarefied environment. Numerical solutions show that the pressure gradient behavior follows that predicted by Newtonian theory. It is found that the pressure gradient along the body surface goes to zero at the nose of the leading edge for power law exponents less than 2/3, a characteristic of a blunt body. It is finite for power law exponent of 2/3 and goes to minus infinite for power law exponents

  15. Simulated airline service experience with laminar-flow control leading-edge systems

    NASA Technical Reports Server (NTRS)

    Maddalon, Dal V.; Fisher, David F.; Jennett, Lisa A.; Fischer, Michael C.

    1987-01-01

    The first JetStar leading edge flight test was made November 30, 1983. The JetStar was flown for more than 3 years. The titanium leading edge test articles today remain in virtually the same condition as they were in on that first flight. No degradation of laminar flow performance has occurred as a result of service. The JetStar simulated airline service flights have demonstrated that effective, practical leading edge systems are available for future commercial transports. Specific conclusions based on the results of the simulated airline service test program are summarized.

  16. Aerothermodynamic Reentry Flight Experiments - EXPERT

    DTIC Science & Technology

    2005-10-01

    today’s capabilities for measuring time-dependent 3D phenomena using non- intrusive techniques, an infrared camera (Figure 40) will be mounted inside the...material ContainerSeals Vapour exhaust Cover plate TUD Passenger Experiment : Enhanced Radiation Cooling Hypersonic Flight Measurement Technique...AEROCAPTURING PHYSICS • ADVANCED INSTRUMENTATION; NON INTRUSIVE MEASUREMENT TECHNIQUES • MHD , RCS INTERACTION, • SHARP LEADING EDGE OR SHARP NOSE ADVANCED

  17. User's manual for interfacing a leading edge, vortex rollup program with two linear panel methods

    NASA Technical Reports Server (NTRS)

    Desilva, B. M. E.; Medan, R. T.

    1979-01-01

    Sufficient instructions are provided for interfacing the Mangler-Smith, leading edge vortex rollup program with a vortex lattice (POTFAN) method and an advanced higher order, singularity linear analysis for computing the vortex effects for simple canard wing combinations.

  18. Simulation of brush insert for leading-edge-passage convective heat transfer

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Canacci, V.; Mullen, R. L.

    1991-01-01

    Current and proposed high speed aircraft have high leading edge heat transfer (to 160 MW/sq m, 100 Btu/sq in/sec) and surface temperatures to 1370 K (2000 F). Without cooling, these surfaces could not survive. In one proposal the coolant hydrogen is circulated to the leading edge through a passage and returned to be consumed by the propulsion system. Simulated flow studies and visualizations have shown flow separation within the passage with a stagnation locus that isolates a zone of recirculation at the most critical portion of the passage, namely the leading edge itself. A novel method is described for mitigating the flow separation and the isolated recirculation zones by using a brush insert in the flow passage near the leading edge zone, thus providing a significant increase in heat transfer.

  19. Advanced leading edge thermal-structure concept. Direct bond reusable surface insulation to a composite structure

    NASA Technical Reports Server (NTRS)

    Riccitiello, S. R.; Figueroa, H.; Coe, C. F.; Kuo, C. P.

    1984-01-01

    An advanced leading-edge concept was analyzed using the space shuttle leading edge system as a reference model. The comparison indicates that a direct-bond system utilizing a high temperature (2700 F) fibrous refractory composite insulation tile bonded to a high temperature (PI/graphite) composite structure can result in a weight savings of up to 800 lb. The concern that tile damage or loss during ascent would result in adverse entry aerodynamics if a leading edge tile system were used is addressed. It was found from experiment that missing tiles (as many as 22) on the leading edge would not significantly affect the basic force-and-moment aerodynamic coefficients. Additionally, this concept affords a degree of redundancy to a thermal protection system in that the base structure (being a composite material) ablates and neither melts nor burns through when subjected to entry heating in the event tiles are actually lost or damaged during ascent.

  20. Reynolds Number Effects on Leading Edge Radius Variations of a Supersonic Transport at Transonic Conditions

    NASA Technical Reports Server (NTRS)

    Rivers, S. M. B.; Wahls, R. A.; Owens, L. R.

    2001-01-01

    A computational study focused on leading-edge radius effects and associated Reynolds number sensitivity for a High Speed Civil Transport configuration at transonic conditions was conducted as part of NASA's High Speed Research Program. The primary purposes were to assess the capabilities of computational fluid dynamics to predict Reynolds number effects for a range of leading-edge radius distributions on a second-generation supersonic transport configuration, and to evaluate the potential performance benefits of each at the transonic cruise condition. Five leading-edge radius distributions are described, and the potential performance benefit including the Reynolds number sensitivity for each is presented. Computational results for two leading-edge radius distributions are compared with experimental results acquired in the National Transonic Facility over a broad Reynolds number range.

  1. FORTRAN program for calculating leading and trailing-edge geometry of turbomachine blades

    NASA Technical Reports Server (NTRS)

    Schumann, L. F.

    1977-01-01

    A FORTRAN IV program which calculates leading- and trailing-edge circle radii, tangency angles on the leading- and trailing-edge circles, and stagger angles of turbomachinery blade sections using only spline points defining the blade surfaces is described. The program shifts the origin of the blade coordinates to the leading edge of the blade. Required input includes (m, theta) coordinates of a sufficient number of spline points to adequately define the two surfaces of the blade. Other required input are the radii from the axis of rotation of the leading- and trailing-edges. The output from this program is used directly as the geometrical input for a NASA developed program for calculating transonic velocities on a blade-to-blade stream surface of a turbomachine. The program is used for axial, radial, and mixed flow turbomachine blades.

  2. Two leading-edge droop modifications for tailoring stall characteristics of a general aviation trainer configuration

    NASA Technical Reports Server (NTRS)

    Ross, Holly M.; Perkins, John N.

    1992-01-01

    The high-angle-of-attack testing intended to develop leading-edge modifications for tailoring the stall characteristics of model is described. Two different leading-edge modifications are considered: a small profile leading-edge droop on the outboard 24 percent of the wing and a large profile leading-edge droop on the outboard 50 percent of the wing. Results indicate that the longitudinal stability for the unmodified and both modified configurations was good for low angle of attack, but the modified configurations exhibited neutral longitudinal stability just prior to stall. The unmodified and both modified configurations demonstrated good lateral stability characteristics for low angles of attack, but all configurations were directionally unstable for high angles of attack.

  3. What is the critical height of leading edge roughness for aerodynamics?

    NASA Astrophysics Data System (ADS)

    Bak, Christian; Gaunaa, Mac; Olsen, Anders S.; Kruse, Emil K.

    2016-09-01

    In this paper the critical leading edge roughness height is analyzed in two cases: 1) leading edge roughness influencing the lift-drag ratio and 2) leading edge roughness influencing the maximum lift. The analysis was based on wind tunnel measurements on the airfoils NACA0015, Risoe-B1-18 and Risoe-C2-18 and at three different Reynolds numbers with two different leading edge roughness tape heights. Firstly, an analysis of the momentum thickness as function of Reynolds number was carried out based on the boundary layer theory by Thwaites. Secondly, the wind tunnel measurements combined with panel code predictions of the boundary layer momentum thickness created the basis for determining the impact of roughness on the aerodynamic performance. The critical heights were related to the Reynolds numbers and thereby the size of the wind turbines.

  4. Manipulation of upstream rotor leading edge vortex and its effects on counter rotating propeller noise

    NASA Technical Reports Server (NTRS)

    Squires, Becky

    1993-01-01

    The leading edge vortex of a counter rotating propeller (CRP) model was altered by using shrouds and by turning the upstream rotors to a forward sweep configuration. Performance, flow, and acoustic data were used to determine the effect of vortex impingement on the noise signature of the CRP system. Forward sweep was found to eliminate the leading edge vortex of the upstream blades. Removal of the vortex had little effect on the tone noise at the forward and rear blade passing frequencies (BPF's) but significantly altered both the sound pressure level and directivity of the interaction tone which occurs at the sum of the two BPF's. A separate manipulation of the leading edge vortex performed by installing shrouds of various inlet length on the CRP verified that diverting the vortex path increases the noise level of the interaction tone. An unexpected link has been established between the interaction tone and the leading edge vortex-blade interaction phenomenon.

  5. Extension of a vortex-lattice method to include the effects of leading-edge separation

    NASA Technical Reports Server (NTRS)

    Mook, D. T.; Maddox, S. A.

    1974-01-01

    Vortex-lattice methods have been used successfully to obtain the aerodynamic coefficients of lifting surfaces without leading-edge separation. It is shown how an existing vortex-lattice method can be modified to include the effects of leading-edge separation. The modified version is then used to calculate the aerodynamic loads on a highly swept delta wing. The results are compared with Peckham's (1958) experimental data.

  6. Space shuttle orbiter leading-edge flight performance compared to design goals

    NASA Technical Reports Server (NTRS)

    Curry, D. M.; Johnson, D. W.; Kelly, R. E.

    1983-01-01

    Thermo-structural performance of the Space Shuttle orbiter Columbia's leading-edge structural subsystem for the first five (5) flights is compared with the design goals. Lessons learned from thse initial flights of the first reusable manned spacecraft are discussed in order to assess design maturity, deficiencies, and modifications required to rectify the design deficiencies. Flight data and post-flight inspections support the conclusion that the leading-edge structural subsystem hardware performance was outstanding for the initial five (5) flights.

  7. Design and fabrication of a high temperature leading edge heating array, phase 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Progress during a Phase 1 program to design a high temperature heating array is reported for environmentally testing full-scale shuttle leading edges (30 inch span, 6 to 15 inch radius) at flight heating rates and pressures. Heat transfer analyses of the heating array, individual modules, and the shuttle leading edge were performed, which influenced the array design, and the design, fabrication, and testing of a prototype heater module.

  8. Reduction of wing rock amplitudes using leading-edge vortex manipulations

    NASA Technical Reports Server (NTRS)

    Walton, James; Katz, Joseph

    1992-01-01

    A mechanically operated leading edge flap system was used to perturb leading edge vortex position on a free-to-roll double-delta wing. The motion of the flaps was synchronized with the wing rolling oscillations and the effect of the phase shift between the oscillations of the wing and the flaps was investigated. Experimental results indicated that this simple approach was effective in reducing the amplitude of the unintended rolling motion and its implementation to actual airplane configurations is rather simple.

  9. Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil

    PubMed Central

    Wang, Yan; Zheng, Xiaojing; Hu, Ruifeng; Wang, Ping

    2016-01-01

    Background Unexpected performance degradation occurs in wind turbine blades due to leading edge defect when suffering from continuous impacts with rain drops, hails, insects, or solid particles during its operation life. To assess this issue, this paper numerically investigates the steady and dynamic stall characteristics of an S809 airfoil with various leading edge defects. More leading edge defect sizes and much closer to practical parameters are investigated in the paper. Methodology Numerical computation is conducted using the SST k-ω turbulence model, and the method has been validated by comparison with existed published data. In order to ensure the calculation convergence, the residuals for the continuity equation are set to be less than 10−7 and 10−6 in steady state and dynamic stall cases. The simulations are conducted with the software ANSYS Fluent 13.0. Results It is found that the characteristics of aerodynamic coefficients and flow fields are sensitive to leading edge defect both in steady and dynamic conditions. For airfoils with the defect thickness of 6%tc, leading edge defect has a relative small influence on the aerodynamics of S809 airfoil. For other investigated defect thicknesses, leading edge defect has much greater influence on the flow field structures, pressure coefficients and aerodynamic characteristics of airfoil at relative small defect lengths. For example, the lift coefficients decrease and drag coefficients increase sharply after the appearance of leading edge defect. However, the aerodynamic characteristics could reach a constant value when the defect length is large enough. The flow field, pressure coefficient distribution and aerodynamic coefficients do not change a lot when the defect lengths reach to 0.5%c,1%c, 2%c and 3%c with defect thicknesses of 6%tc, 12%tc,18%tc and 25%tc, respectively. In addition, the results also show that the critical defect length/thickness ratio is 0.5, beyond which the aerodynamic characteristics

  10. Analytical model and stability analysis of the leading edge spar of a passively morphing ornithopter wing.

    PubMed

    Wissa, Aimy; Calogero, Joseph; Wereley, Norman; Hubbard, James E; Frecker, Mary

    2015-10-26

    This paper presents the stability analysis of the leading edge spar of a flapping wing unmanned air vehicle with a compliant spine inserted in it. The compliant spine is a mechanism that was designed to be flexible during the upstroke and stiff during the downstroke. Inserting a variable stiffness mechanism into the leading edge spar affects its structural stability. The model for the spar-spine system was formulated in terms of the well-known Mathieu's equation, in which the compliant spine was modeled as a torsional spring with a sinusoidal stiffness function. Experimental data was used to validate the model and results show agreement within 11%. The structural stability of the leading edge spar-spine system was determined analytically and graphically using a phase plane plot and Strutt diagrams. Lastly, a torsional viscous damper was added to the leading edge spar-spine model to investigate the effect of damping on stability. Results show that for the un-damped case, the leading edge spar-spine response was stable and bounded; however, there were areas of instability that appear for a range of spine upstroke and downstroke stiffnesses. Results also show that there exist a damping ratio between 0.2 and 0.5, for which the leading edge spar-spine system was stable for all values of spine upstroke and downstroke stiffnesses.

  11. Hypersonic Engine Leading Edge Experiments in a High Heat Flux, Supersonic Flow Environment

    NASA Technical Reports Server (NTRS)

    Gladden, Herbert J.; Melis, Matthew E.

    1994-01-01

    A major concern in advancing the state-of-the-art technologies for hypersonic vehicles is the development of an aeropropulsion system capable of withstanding the sustained high thermal loads expected during hypersonic flight. Three aerothermal load related concerns are the boundary layer transition from laminar to turbulent flow, articulating panel seals in high temperature environments, and strut (or cowl) leading edges with shock-on-shock interactions. A multidisciplinary approach is required to address these technical concerns. A hydrogen/oxygen rocket engine heat source has been developed at the NASA Lewis Research Center as one element in a series of facilities at national laboratories designed to experimentally evaluate the heat transfer and structural response of the strut (or cowl) leading edge. A recent experimental program conducted in this facility is discussed and related to cooling technology capability. The specific objective of the experiment discussed is to evaluate the erosion and oxidation characteristics of a coating on a cowl leading edge (or strut leading edge) in a supersonic, high heat flux environment. Heat transfer analyses of a similar leading edge concept cooled with gaseous hydrogen is included to demonstrate the complexity of the problem resulting from plastic deformation of the structures. Macro-photographic data from a coated leading edge model show progressive degradation over several thermal cycles at aerothermal conditions representative of high Mach number flight.

  12. An experimental investigation of leading-edge vortex augmentation by blowing

    NASA Technical Reports Server (NTRS)

    Bradley, R. G.; Wray, W. O.; Smith, C. W.

    1974-01-01

    A wind tunnel test was conducted to determine the effects of over-the-wing blowing as a means of augmenting the leading-edge vortex flow of several pointed-tip, sharp-edged planforms. Arrow, delta, and diamond wings with leading-edge sweeps of 30 and 45 degrees were mounted on a body-of-revolution fuselage and tested in a low-speed wind tunnel at a Mach number of 0.2. Nozzle location data, pitch data, and flow-visualization pictures were obtained for a range of blowing rates. Results show pronounced increases in vortex lift due to the blowing.

  13. Aerothermodynamic Flight Simulation Capabilities for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Miller, Charles G.

    1998-01-01

    Aerothermodynamics, encompassing aerodynamics, aeroheating, and fluid dynamics and physical processes, is the genesis for the design and development of advanced space transportation vehicles and provides crucial information to other disciplines such as structures, materials, propulsion, avionics, and guidance, navigation and control. Sources of aerothermodynamic information are ground-based facilities, Computational Fluid Dynamic (CFD) and engineering computer codes, and flight experiments. Utilization of this aerothermodynamic triad provides the optimum aerothermodynamic design to safely satisfy mission requirements while reducing design conservatism, risk and cost. The iterative aerothermodynamic process for initial screening/assessment of aerospace vehicle concepts, optimization of aerolines to achieve/exceed mission requirements, and benchmark studies for final design and establishment of the flight data book are reviewed. Aerothermodynamic methodology centered on synergism between ground-based testing and CFD predictions is discussed for various flow regimes encountered by a vehicle entering the Earth s atmosphere from low Earth orbit. An overview of the resources/infrastructure required to provide accurate/creditable aerothermodynamic information in a timely manner is presented. Impacts on Langley s aerothermodynamic capabilities due to recent programmatic changes such as Center reorganization, downsizing, outsourcing, industry (as opposed to NASA) led programs, and so forth are discussed. Sample applications of these capabilities to high Agency priority, fast-paced programs such as Reusable Launch Vehicle (RLV)/X-33 Phases I and 11, X-34, Hyper-X and X-38 are presented and lessons learned discussed. Lastly, enhancements in ground-based testing/CFD capabilities necessary to partially/fully satisfy future requirements are addressed.

  14. Introduction: Assessment of aerothermodynamic flight prediction tools through ground and flight experimentation

    NASA Astrophysics Data System (ADS)

    Schmisseur, John D.; Erbland, Peter

    2012-01-01

    This article provides an introduction and overview to the efforts of NATO Research and Technology Organization Task Group AVT-136, Assessment of Aerothermodynamic Flight Prediction Tools through Ground and Flight Experimentation. During the period of 2006-2010, AVT-136 coordinated international contributions to assess the state-of-the-art and research challenges for the prediction of critical aerothermodynamic flight phenomena based on the extrapolation of ground test and numerical simulation. To achieve this goal, efforts were organized around six scientific topic areas: (1) Noses and leading edges, (2) Shock Interactions and Control Surfaces, (3) Shock Layers and Radiation, (4) Boundary Layer Transition, (5) Gas-Surface Interactions, and (6) Base and Afterbody Flows. A key component of the AVT-136 strategy was comparison of state-of-the-art numerical simulations with data to be acquired from planned flight research programs. Although it was recognized from the onset of AVT-136 activities that reliance on flight research data yet to be collected posed a significant risk, the group concluded the substantial benefit to be derived from comparison of computational simulations with flight data warranted pursuit of such a program of work. Unfortunately, program delays and failures in the flight programs contributing to the AVT-136 effort prevented timely access to flight research data. Despite this setback, most of the scientific topic areas developed by the Task Group made significant progress in the assessment of current capabilities. Additionally, the activities of AVT-136 generated substantial interest within the international scientific research community and the work of the Task Group was prominently featured in a total of six invited sessions in European and American technical conferences. In addition to this overview, reviews of the state-of-the-art and research challenges identified by the six research thrusts of AVT-136 are also included in this special

  15. Aerothermodynamics in Europe: ESA Achievements and Challenges

    NASA Astrophysics Data System (ADS)

    Muylaert, J.-M.

    2005-02-01

    Europe is faced with challenging aerothermodynamic problems for several of ESA's human space flight and exploration, science, application and launcher programmes. The Aerothermodynamic section at ESA/ESTEC provided technical support to these programmes and implemented research and development programmes to improve industrial tools for design in a way to strengthen the co-operation between universities, research establishments and industry. The ESA programmes involving Aerothermodynamics are: • Human space flight and exploration: CARV, PARES, IRDT, EXPERT, EVD, ATV, COLUMBUS • Science programmes : Huygens, MARS, VEX • Launcher programmes: ARIANE, VEGA, Future Launchers Preparatory Programme (FLPP). • Satellite telecommunication and earth observation programmes: MSG, EOLUS, CRYOSAT, GOCE • Technological Research programmes: improvements of the tools for design and analysis of space vehicles (ground-based facilities, flight test and measurement techniques and numerical/physical modelling validation activities) The paper will review past ESA aerothermodynamic activities by highlighting achievements obtained on the occasion of the past 4 Aerothermodynamics symposia. Critical aerothermodynamic issues for the design of reentry space vehicles and launchers will be addressed. A number of analysis and test results will be presented, the need for advanced numerical tools will be addressed and the importance of flight-testing will be identified for the validation of the methods and procedures for flight extrapolation of results obtained from ground-based facilities.

  16. Shuttle Wing Leading Edge Root Cause NDE Team Findings and Implementation of Quantitative Flash Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Burke, Eric R.

    2009-01-01

    Comparison metrics can be established to reliably and repeatedly establish the health of the joggle region of the Orbiter Wing Leading Edge reinforced carbon carbon (RCC) panels. Using these metrics can greatly reduced the man hours needed to perform, wing leading edge scanning for service induced damage. These time savings have allowed for more thorough inspections to be preformed in the necessary areas with out affecting orbiter flow schedule. Using specialized local inspections allows for a larger margin of safety by allowing for more complete characterizations of panel defects. The presence of the t-seal during thermographic inspection can have adverse masking affects on ability properly characterize defects that exist in the joggle region of the RCC panels. This masking affect dictates the final specialized inspection should be preformed with the t-seal removed. Removal of the t-seal and use of the higher magnification optics has lead to the most effective and repeatable inspection method for characterizing and tracking defects in the wing leading edge. Through this study some inadequacies in the main health monitoring system for the orbiter wing leading edge have been identified and corrected. The use of metrics and local specialized inspection have lead to a greatly increased reliability and repeatable inspection of the shuttle wing leading edge.

  17. Overview of the Aerothermodynamics Analysis Conducted in Support of the STS-107 Accident Investigation

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.

    2004-01-01

    A graphic presentation of the aerothermodynamics analysis conducted in support of the STS-107 accident investigation. Investigation efforts were conducted as part of an integrated AATS team (Aero, Aerothermal, Thermal, Stress) directed by OVEWG. Graphics presented are: STS-107 Entry trajectory and timeline (1st off-nominal event to Post-LOS); Indications from OI telemetry data; Aero/aerothermo/thermal analysis process; Selected STS-107 side fuselage/OMS pod off-nominal temperatures; Leading edge structural subsystem; Relevant forensics evidence; External aerothermal environments; STS-107 Pre-entry EOM3 heating profile; Surface heating and temperatures; Orbiter wing leading edge damage survey; Internal aerothermal environments; Orbiter wing CAD model; Aerodynamic flight reconstruction; Chronology of aerodynamic/aerothermoydynamic contributions; Acreage TPS tile damage; Larger OML perturbations; Missing RCC panel(s); Localized damage to RCC panel/missing T-seal; RCC breach with flow ingestion; and Aero-aerothermal closure. NAIT served as the interface between the CAIB and NASA investigation teams; and CAIB requests for study were addressed.

  18. Opportunities for research in aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Graham, R. W.

    1983-01-01

    "Aerothermodynamics' involves the disciplines of chemistry, thermodynamics, fluid mechanics and heat transfer which have collaborative importance in propulsion systems. There are growing opportunities for the further application of these disciplines to improve the methodology for the design of advanced gas turbines; particularly, the combustor and turbine. Design procedures follow empirical or cut and try guidelines. The tremendous advances in computational analysis and in instrumentation techniques hold promise for research answers to complex physical processes that are currently not well understood. The transfer of basic research understanding to engineering design should result in shorter, less expensive development commitments for engines. The status and anticipated opportunities in research topics relevant to combustors and turbines is reviewed.

  19. Aerothermodynamics Overview and Prediction Assessment

    NASA Technical Reports Server (NTRS)

    Heidmann, James D.

    2007-01-01

    An overview of the Aerothermodynamics Discipline within NASA s Subsonic Fixed Wing Project is given. The primary focus of the presentation is on the research efforts conducted in fiscal year 2007. This year (2007), the work primarily consisted of efforts under level 1 (foundational research) and level 2 (tools and technology development). Examples of work under level 1 are large eddy simulation development, advanced turbine cooling concept development, and turbomachinery flow control development. Examples of level 2 research are the development of highly-loaded compressor and turbine test programs and advanced turbomachinery simulation development, including coupled inlet-fan simulations. An overview of the NRA research activity is also provided. This NRA focused on plasma and aspiration flow control for low pressure turbine application. Finally, a status report on the turbomachinery CFD code assessment activity is provided. This activity focuses on the use of several NASA in-house codes for the NASA rotor 37 and stage 35 test cases.

  20. Extension of leading-edge-suction analogy to wings with separated flow around the side edges at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Lamar, J. E.

    1974-01-01

    A method for determining the lift, drag, and pitching moment for wings which have separated flow at the leading and side edges with subsequently reattached flow downstream and inboard is presented. Limiting values of the contribution to lift of the side-edge reattached flow are determined for rectangular wings. The general behavior of this contribution is computed for rectangular, cropped-delta, cropped-diamond, and cropped-arrow wings. Comparisons of the results of the method and experiment indicate reasonably good correlation of the lift, drag, and pitching moment for a wide planform range. The agreement of the method with experiment was as good as, or better than, that obtained by other methods. The procedure is computerized and is available from COSMIC as NASA Langley computer program A0313.

  1. Evaluation of cloud detection instruments and performance of laminar-flow leading-edge test articles during NASA Leading-Edge Flight-Test Program

    NASA Technical Reports Server (NTRS)

    Davis, Richard E.; Maddalon, Dal V.; Wagner, Richard D.; Fisher, David F.; Young, Ronald

    1989-01-01

    Summary evaluations of the performance of laminar-flow control (LFC) leading edge test articles on a NASA JetStar aircraft are presented. Statistics, presented for the test articles' performance in haze and cloud situations, as well as in clear air, show a significant effect of cloud particle concentrations on the extent of laminar flow. The cloud particle environment was monitored by two instruments, a cloud particle spectrometer (Knollenberg probe) and a charging patch. Both instruments are evaluated as diagnostic aids for avoiding laminar-flow detrimental particle concentrations in future LFC aircraft operations. The data base covers 19 flights in the simulated airline service phase of the NASA Leading-Edge Flight-Test (LEFT) Program.

  2. Numerical prediction of vortex cores of the leading and trailing edges of delta wings

    NASA Technical Reports Server (NTRS)

    Kandil, O. A.

    1980-01-01

    The purpose of the present paper is to predict the roll-up of the vortex sheets emanating from the leading- and trailing-edges of delta wings with emphasis on the interaction of vortex cores beyond the trailing edge. The motivation behind the present work is the recent experimental data published by Hummel. The Nonlinear Discrete-Vortex method (NDV-method) is modified and extended to predict the leading- and trailing-vortex cores beyond the trailing edge. The present model alleviates the problems previously encountered in predicting satisfactory pressure distributions. This is accomplished by lumping the free-vortex lines during the iteration procedure. The leading- and trailing-edge cores and their feeding sheets are obtained as parts of the solution. The numerical results show that the NDV-method is successful in confirming the formation of a trailing-edge core with opposite circulation and opposite roll-up to those of the leading-edge core. This work is a breakthrough in the high angle of attack aerodynamics and moreover, it is the first numerical prediction done on this problem

  3. Aerodynamic and Aerothermodynamic Layout of the Hypersonic Flight Experiment Shefex

    NASA Astrophysics Data System (ADS)

    Eggers, Th.

    2005-02-01

    The purpose of the SHarp Edge Flight EXperiment SHEFEX is the investigation of possible new shapes for future launcher or reentry vehicles [1]. The main focus is the improvement of common space vehicle shapes by application of facetted surfaces and sharp edges. The experiment will enable the time accurate investigation of the flow effects and their structural answer during the hypersonic flight from 90 km down to an altitude of 20 km. The project, being performed under responsibility of the German Aerospace Center (DLR) is scheduled to fly on top of a two-stage solid propellant sounding rocket for the first half of 2005. The paper contains a survey of the aerodynamic and aerothermodynamic layout of the experimental vehicle. The results are inputs for the definition of the structural layout, the TPS and the flight instrumentation as well as for the preparation of the flight test performed by the Mobile Rocket Base of DLR.

  4. Transonic flight test of a laminar flow leading edge with surface excrescences

    NASA Technical Reports Server (NTRS)

    Zuniga, Fanny A.; Drake, Aaron; Kennelly, Robert A., Jr.; Koga, Dennis J.; Westphal, Russell V.

    1994-01-01

    A flight experiment, conducted at NASA Dryden Flight Research Center, investigated the effects of surface excrescences, specifically gaps and steps, on boundary-layer transition in the vicinity of a leading edge at transonic flight conditions. A natural laminar flow leading-edge model was designed for this experiment with a spanwise slot manufactured into the leading-edge model to simulate gaps and steps like those present at skin joints of small transonic aircraft wings. The leading-edge model was flown with the flight test fixture, a low-aspect ratio fin mounted beneath an F-104G aircraft. Test points were obtained over a unit Reynolds number range of 1.5 to 2.5 million/ft and a Mach number range of 0.5 to 0.8. Results for a smooth surface showed that laminar flow extended to approximately 12 in. behind the leading edge at Mach number 0.7 over a unit Reynolds number range of 1.5 to 2.0 million/ft. The maximum size of the gap-and-step configuration over which laminar flow was maintained consisted of two 0.06-in. gaps with a 0.02-in. step at a unit Reynolds number of 1.5 million/ft.

  5. Subsonic balance and pressure investigation of a 60 deg delta wing with leading edge devices

    NASA Technical Reports Server (NTRS)

    Tingas, S. A.; Rao, D. M.

    1982-01-01

    Low supersonic wave drag makes the thin highly swept delta wing the logical choice for use on aircraft designed for supersonic cruise. However, the high-lift maneuver capability of the aircraft is limited by severe induced-drag penalties attributed to loss of potential flow leading-edge suction. This drag increase may be alleviated through leading-edge flow control to recover lost aerodynamic thrust through either retention of attached leading-edge flow to higher angles of attack or exploitation of the increased suction potential of separation-induced vortex flow. A low-speed wind-tunnel investigation was undertaken to examine the high-lift devices such as fences, chordwise slots, pylon vortex generators, leading-edge vortex flaps, and sharp leading-edge extensions. The devices were tested individually and in combinations in an attempt to improve high-alpha drag performance with a minimum of low-alpha drag penalty. This report presents an analysis of the force, moment, and static pressure data obtained in angles of attack up to 23 deg, at Mach and Reynolds numbers of 0.16 and 3.85 x 10 to the 6th power per meter, respectively. The results indicate that all the devices produced drag and longitudinal/lateral stability improvements at high lift with, in most cases, minor drag penalties at low angles of attack.

  6. Studies on wake-affected heat transfer around the circular leading edge of blunt body

    SciTech Connect

    Funazaki, K.

    1996-07-01

    Detailed measurements are performed about time-averaged heat transfer distributions around the leading edge of a blunt body, which is affected by incoming periodic wakes from the upstream moving bars. The blunt body is a test model of a front portion of a turbine blade in gas turbines and consists of a semicircular cylindrical leading edge and a flat plate afterbody. A wide range of the steady and unsteady flow conditions are adopted as for the Reynolds number based on the diameter of the leading edge and the bar-passing Strouhal number. The measured heat transfer distributions indicate that the wakes passing over the leading edge cause a significant increase in heat transfer before the separation and the higher Strouhal number results in higher heat transfer. From this experiment, a correlation for the heat transfer enhancement around the leading edge due to the periodic wakes is deduced as a function of the Stanton number and it is reviewed by comparison with the other experimental works.

  7. SiC/SiC Leading Edge Turbine Airfoil Tested Under Simulated Gas Turbine Conditions

    NASA Technical Reports Server (NTRS)

    Robinson, R. Craig; Hatton, Kenneth S.

    1999-01-01

    Silicon-based ceramics have been proposed as component materials for use in gas turbine engine hot-sections. A high pressure burner rig was used to expose both a baseline metal airfoil and ceramic matrix composite leading edge airfoil to typical gas turbine conditions to comparatively evaluate the material response at high temperatures. To eliminate many of the concerns related to an entirely ceramic, rotating airfoil, this study has focused on equipping a stationary metal airfoil with a ceramic leading edge insert to demonstrate the feasibility and benefits of such a configuration. Here, the idea was to allow the SiC/SiC composite to be integrated as the airfoil's leading edge, operating in a "free-floating" or unrestrained manner. and provide temperature relief to the metal blade underneath. The test included cycling the airfoils between simulated idle, lift, and cruise flight conditions. In addition, the airfoils were air-cooled, uniquely instrumented, and exposed to the same internal and external conditions, which included gas temperatures in excess of 1370 C (2500 F). Results show the leading edge insert remained structurally intact after 200 simulated flight cycles with only a slightly oxidized surface. The instrumentation clearly suggested a significant reduction (approximately 600 F) in internal metal temperatures as a result of the ceramic leading edge. The object of this testing was to validate the design and analysis done by Materials Research and Design of Rosemont, PA and to determine the feasibility of this design for the intended application.

  8. GOLPH3 drives cell migration by promoting Golgi reorientation and directional trafficking to the leading edge

    PubMed Central

    Xing, Mengke; Peterman, Marshall C.; Davis, Robert L.; Oegema, Karen; Shiau, Andrew K.; Field, Seth J.

    2016-01-01

    The mechanism of directional cell migration remains an important problem, with relevance to cancer invasion and metastasis. GOLPH3 is a common oncogenic driver of human cancers, and is the first oncogene that functions at the Golgi in trafficking to the plasma membrane. Overexpression of GOLPH3 is reported to drive enhanced cell migration. Here we show that the phosphatidylinositol-4-phosphate/GOLPH3/myosin 18A/F-actin pathway that is critical for Golgi–to–plasma membrane trafficking is necessary and limiting for directional cell migration. By linking the Golgi to the actin cytoskeleton, GOLPH3 promotes reorientation of the Golgi toward the leading edge. GOLPH3 also promotes reorientation of lysosomes (but not other organelles) toward the leading edge. However, lysosome function is dispensable for migration and the GOLPH3 dependence of lysosome movement is indirect, via GOLPH3’s effect on the Golgi. By driving reorientation of the Golgi to the leading edge and driving forward trafficking, particularly to the leading edge, overexpression of GOLPH3 drives trafficking to the leading edge of the cell, which is functionally important for directional cell migration. Our identification of a novel pathway for Golgi reorientation controlled by GOLPH3 provides new insight into the mechanism of directional cell migration with important implications for understanding GOLPH3’s role in cancer. PMID:27708138

  9. Acoustic Receptivity of Mach 4.5 Boundary Layer with Leading- Edge Bluntness

    NASA Technical Reports Server (NTRS)

    Malik, Mujeeb R.; Balakumar, Ponnampalam

    2007-01-01

    Boundary layer receptivity to two-dimensional slow and fast acoustic waves is investigated by solving Navier-Stokes equations for Mach 4.5 flow over a flat plate with a finite-thickness leading edge. Higher order spatial and temporal schemes are employed to obtain the solution whereby the flat-plate leading edge region is resolved by providing a sufficiently refined grid. The results show that the instability waves are generated in the leading edge region and that the boundary-layer is much more receptive to slow acoustic waves (by almost a factor of 20) as compared to the fast waves. Hence, this leading-edge receptivity mechanism is expected to be more relevant in the transition process for high Mach number flows where second mode instability is dominant. Computations are performed to investigate the effect of leading-edge thickness and it is found that bluntness tends to stabilize the boundary layer. Furthermore, the relative significance of fast acoustic waves is enhanced in the presence of bluntness. The effect of acoustic wave incidence angle is also studied and it is found that the receptivity of the boundary layer on the windward side (with respect to the acoustic forcing) decreases by more than a factor of 4 when the incidence angle is increased from 0 to 45 deg. However, the receptivity coefficient for the leeward side is found to vary relatively weakly with the incidence angle.

  10. The three-dimensional leading-edge vortex of a 'hovering' model hawkmoth

    PubMed Central

    Berg, C. van den; Ellington, C.P.

    1997-01-01

    Recent flow visualisation experiments with the hawkmoth, Manduca sexta, revealed small but clear leading-edge vortex and a pronounced three-dimensional flow. Details of this flow pattern were studied with a scaled-up, robotic insect ('the flapper') that accurately mimicked the wing movements of a hovering hawkmoth. Smoke released from the leading edge of the flapper wing confirmed the existence of a small, strong and stable leading-edge vortex, increasing in size from wingbase to wingtip. Between 25 and 75 per cent of the wing length, its diameter increased approximately from 10 to 50 per cent of the wing chord. The leading-edge vortex had a strong axial flow veolocity, which stabilized it and reduced its diamater. The vortex separated from the wing at approximately 75 per cent of the wing length and thus fed vorticity into a large, tangled tip vortex. If the circulation of the leading-edge vortex were fully used for lift generation, it could support up to two-thirds of the hawkmoth's weight during the downstroke. The growth of this circulation with time and spanwise position clearly identify dynamic stall as the unsteady aerodynamic mechanism responsible for high lift production by hovering hawkmoths and possibly also by many other insect species.

  11. Simulated big sagebrush regeneration supports predicted changes at the trailing and leading edges of distribution shifts

    USGS Publications Warehouse

    Schlaepfer, Daniel R.; Taylor, Kyle A.; Pennington, Victoria E.; Nelson, Kellen N.; Martin, Trace E.; Rottler, Caitlin M.; Lauenroth, William K.; Bradford, John B.

    2015-01-01

    Many semi-arid plant communities in western North America are dominated by big sagebrush. These ecosystems are being reduced in extent and quality due to economic development, invasive species, and climate change. These pervasive modifications have generated concern about the long-term viability of sagebrush habitat and sagebrush-obligate wildlife species (notably greater sage-grouse), highlighting the need for better understanding of the future big sagebrush distribution, particularly at the species' range margins. These leading and trailing edges of potential climate-driven sagebrush distribution shifts are likely to be areas most sensitive to climate change. We used a process-based regeneration model for big sagebrush, which simulates potential germination and seedling survival in response to climatic and edaphic conditions and tested expectations about current and future regeneration responses at trailing and leading edges that were previously identified using traditional species distribution models. Our results confirmed expectations of increased probability of regeneration at the leading edge and decreased probability of regeneration at the trailing edge below current levels. Our simulations indicated that soil water dynamics at the leading edge became more similar to the typical seasonal ecohydrological conditions observed within the current range of big sagebrush ecosystems. At the trailing edge, an increased winter and spring dryness represented a departure from conditions typically supportive of big sagebrush. Our results highlighted that minimum and maximum daily temperatures as well as soil water recharge and summer dry periods are important constraints for big sagebrush regeneration. Overall, our results confirmed previous predictions, i.e., we see consistent changes in areas identified as trailing and leading edges; however, we also identified potential local refugia within the trailing edge, mostly at sites at higher elevation. Decreasing

  12. Characterizing a burst leading-edge vortex on a rotating flat plate wing

    NASA Astrophysics Data System (ADS)

    Jones, Anya R.; Medina, Albert; Spooner, Hannah; Mulleners, Karen

    2016-04-01

    Identifying, characterizing, and tracking incoherent vortices in highly separated flows is of interest for the development of new low-order models for unsteady lift prediction. The current work examines several methods to identify vortex burst and characterize a burst leading-edge vortex. Time-resolved stereoscopic PIV was performed on a rotating flat plate wing at Re = 2500. The burst process was found to occur at mid-span and is characterized by axial flow reversal, the entrainment of opposite-sign vorticity, and a rapid expansion of vortex size. A POD analysis revealed that variations in certain mode coefficients are indicative of the flow state changes characteristics of burst. During burst, the leading-edge vortex evolves to a region of inhomogeneous vorticity distributed over a large area. Several methods of defining the vortex size and circulation are evaluated and a combination of these can be used to characterize the leading-edge vortex both pre- and post-burst.

  13. Closed Form Equations for the Preliminary Design of a Heat-Pipe-Cooled Leading Edge

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    1998-01-01

    A set of closed form equations for the preliminary evaluation and design of a heat-pipe-cooled leading edge is presented. The set of equations can provide a leading-edge designer with a quick evaluation of the feasibility of using heat-pipe cooling. The heat pipes can be embedded in a metallic or composite structure. The maximum heat flux, total integrated heat load, and thermal properties of the structure and heat-pipe container are required input. The heat-pipe operating temperature, maximum surface temperature, heat-pipe length, and heat pipe-spacing can be estimated. Results using the design equations compared well with those from a 3-D finite element analysis for both a large and small radius leading edge.

  14. Test and Analysis Correlation of Form Impact onto Space Shuttle Wing Leading Edge RCC Panel 8

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Lyle, Karen H.; Gabrys, Jonathan; Melis, Matthew; Carney, Kelly

    2004-01-01

    Soon after the Columbia Accident Investigation Board (CAIB) began their study of the space shuttle Columbia accident, "physics-based" analyses using LS-DYNA were applied to characterize the expected damage to the Reinforced Carbon-Carbon (RCC) leading edge from high-speed foam impacts. Forensic evidence quickly led CAIB investigators to concentrate on the left wing leading edge RCC panels. This paper will concentrate on the test of the left-wing RCC panel 8 conducted at Southwest Research Institute (SwRI) and the correlation with an LS-DYNA analysis. The successful correlation of the LS-DYNA model has resulted in the use of LS-DYNA as a predictive tool for characterizing the threshold of damage for impacts of various debris such as foam, ice, and ablators onto the RCC leading edge for shuttle return-to-flight.

  15. Influence of blade angle distribution along leading edge on cavitation performance of a centrifugal pump

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Tan, L.; Cao, S. L.; Wang, Y. C.; Meng, G.; Qu, W. S.

    2015-01-01

    The influence of blade angle distribution along leading edge on cavitation performance of centrifugal pumps is analysed in the present paper. Three sets of blade angle distribution along leading edge for three blade inlet angles are chosen to design nine centrifugal pump impellers. The RNG k-epsilon turbulence model and the Zwart-Gerber-Belamri cavitation model are employed to simulate the cavitation flows in centrifugal pumps with different impellers and the same volute. The numerical results are compared with the experimental data, and the comparison proves that the numerical simulation can accurately predict the cavitation performance of centrifugal pumps. On the basis of the numerical simulations, the pump head variations with pump inlet pressure, and the flow details in centrifugal pump are revealed to demonstrate the influence of blade angle distribution along leading edge on cavitation performances of centrifugal pumps.

  16. Fabrication and Testing of a Leading-Edge-Shaped Heat Pipe

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Merrigan, Michael A.; Sena, J. Tom; Reid, Robert S.

    1998-01-01

    The development of a refractory-composite/heat-pipe-cooled leading edge has evolved from the design stage to the fabrication and testing of a full size, leading-edge-shaped heat pipe. The heat pipe had a 'D-shaped' cross section and was fabricated from arc cast Mo-4lRe. An artery was included in the wick. Several issues were resolved with the fabrication of the sharp leading edge radius heat pipe. The heat pipe was tested in a vacuum chamber at Los Alamos National Laboratory using induction heating and was started up from the frozen state several times. However, design temperatures and heat fluxes were not obtained due to premature failure of the heat pipe resulting from electrical discharge between the induction heating apparatus and the heat pipe. Though a testing anomaly caused premature failure of the heat pipe, successful startup and operation of the heat pipe was demonstrated.

  17. Application of local indentations for film cooling of gas turbine blade leading edge

    NASA Astrophysics Data System (ADS)

    Petelchyts, V. Yu.; Khalatov, A. A.; Pysmennyi, D. N.; Dashevskyy, Yu. Ya.

    2016-09-01

    The paper presents results of computer simulation of the film cooling on the turbine blade leading edge model where the air coolant is supplied through radial holes and row of cylindrical inclined holes placed inside hemispherical dimples or trench. The blowing factor was varied from 0.5 to 2.0. The model size and key initial parameters for simulation were taken as for a real blade of a high-pressure high-performance gas turbine. Simulation was performed using commercial software code ANSYS CFX. The simulation results were compared with reference variant (no dimples or trench) both for the leading edge area and for the flat plate downstream of the leading edge.

  18. Improved Method for Prediction of Attainable Wing Leading-Edge Thrust

    NASA Technical Reports Server (NTRS)

    Carlson, Harry W.; McElroy, Marcus O.; Lessard, Wendy B.; McCullers, L. Arnold

    1996-01-01

    Prediction of the loss of wing leading-edge thrust and the accompanying increase in drag due to lift, when flow is not completely attached, presents a difficult but commonly encountered problem. A method (called the previous method) for the prediction of attainable leading-edge thrust and the resultant effect on airplane aerodynamic performance has been in use for more than a decade. Recently, the method has been revised to enhance its applicability to current airplane design and evaluation problems. The improved method (called the present method) provides for a greater range of airfoil shapes from very sharp to very blunt leading edges. It is also based on a wider range of Reynolds numbers than was available for the previous method. The present method, when employed in computer codes for aerodynamic analysis, generally results in improved correlation with experimental wing-body axial-force data and provides reasonable estimates of the measured drag.

  19. c-Jun is essential for organization of the epidermal leading edge.

    PubMed

    Li, Guochun; Gustafson-Brown, Cindy; Hanks, Steven K; Nason, Katie; Arbeit, Jeffrey M; Pogliano, Kit; Wisdom, Ronald M; Johnson, Randall S

    2003-06-01

    The migration of epithelial layers requires specific and coordinated organization of the cells at the leading edge of the sheet. Mice that are conditionally deleted for the c-jun protooncogene in epidermis are born at expected frequencies, but with open eyes and with defects in epidermal wound healing. Keratinocytes lacking c-Jun are unable to migrate or elongate properly in culture at the border of scratch assays. Histological analyses in vitro and in vivo demonstrate an inability to activate EGF receptor at the leading edge of wounds, and we demonstrate that this can be rescued by supplementation with conditioned medium or the EGF receptor ligand HB-EGF. Lack of c-Jun prevents EGF-induced expression of HB-EGF, indicating that c-jun controls formation of the epidermal leading edge through its control of an EGF receptor autocrine loop.

  20. A feasibility study of heat-pipe-cooled leading edges for hypersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Silverstein, C. C.

    1971-01-01

    A theoretical study of the use of heat pipe structures for cooling the leading edges of hypersonic cruise aircraft was carried out over a Mach number range of 6 to 12. Preliminary design studies showed that a heat pipe cooling structure with a 33-in. chordwise length could maintain the maximum temperature of a 65 deg sweepback wing with a 0.5-in. leading edge radius below 1600 F during cruise at Mach 8. A few relatively minor changes in the steady-state design of the structure were found necessary to insure satisfactory cooling during the climb to cruise speed and altitude. It was concluded that heat pipe cooling is an attractive, feasible technique for limiting leading edge temperatures of hypersonic cruise aircraft.

  1. An analytical design procedure for the determination of effective leading edge extensions on thick delta wings

    NASA Technical Reports Server (NTRS)

    Ghaffari, F.; Chaturvedi, S. K.

    1984-01-01

    An analytical design procedure for leading edge extensions (LEE) was developed for thick delta wings. This LEE device is designed to be mounted to a wing along the pseudo-stagnation stream surface associated with the attached flow design lift coefficient of greater than zero. The intended purpose of this device is to improve the aerodynamic performance of high subsonic and low supersonic aircraft at incidences above that of attached flow design lift coefficient, by using a vortex system emanating along the leading edges of the device. The low pressure associated with these vortices would act on the LEE upper surface and the forward facing area at the wing leading edges, providing an additional lift and effective leading edge thrust recovery. The first application of this technique was to a thick, round edged, twisted and cambered wing of approximately triangular planform having a sweep of 58 deg and aspect ratio of 2.30. The panel aerodynamics and vortex lattice method with suction analogy computer codes were employed to determine the pseudo-stagnation stream surface and an optimized LEE planform shape.

  2. Reynolds Number and Leading-Edge Bluntness Effects on a 65 Deg Delta Wing

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    2002-01-01

    A 65 deg delta wing has been tested in the National Transonic Facility (NTF) at mean aerodynamic chord Reynolds numbers from 6 million to 120 million at subsonic and transonic speeds. The configuration incorporated systematic variation of the leading edge bluntness. The analysis for this paper is focused on the Reynolds number and bluntness effects at subsonic speeds (M = 0.4) from this data set. The results show significant effects of both these parameters on the onset and progression of leading-edge vortex separation.

  3. Reynolds Number and Leading-Edge Bluntness Effects on a 65 deg Delta Wing

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    2002-01-01

    A 65 degree delta wing has been tested in the National Transonic Facility (NTF) at mean aerodynamic chord Reynolds numbers from 6 million to 120 million at subsonic and transonic speeds. The configuration incorporated systematic variation of the leading edge bluntness. The analysis for this paper is focused on the Reynolds number and bluntness effects at subsonic speeds (M = 0.4) from this data set. The results show significant effects of both these parameters on the onset and progression of leading-edge vortex separation.

  4. Transonic Reynolds Number and Leading-Edge Bluntness Effects on a 65 deg Delta Wing

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    2003-01-01

    A 65 deg delta wing has been tested in the National Transonic Facility (NTF) at mean aerodynamic chord Reynolds numbers from 6 million to 120 million at subsonic and transonic speeds. The configuration incorporated a systematic variation of the leading edge bluntness. The analysis for this paper is focused on the Reynolds number and bluntness effects at transonic speeds (M = 0.85) from this data set. The results show significant effects of both these parameters on the onset and progression of leading- edge vortex separation.

  5. Transonic Reynolds Number and Leading-Edge Bluntness Effects on a 65 deg Delta Wing

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    2003-01-01

    A 65 deg delta wing has been tested in the National Transonic Facility (NTF) at mean aerodynamic chord Reynolds numbers from 6 million to 120 million at subsonic and transonic speeds. The configuration incorporated a systematic variation of the leading edge bluntness. The analysis for this paper is focused on the Reynolds number and bluntness effects at transonic speeds (M=0.85) from this data set. The results show significant effects of both these parameters on the onset and progression of leading-edge vortex separation.

  6. Reynolds Number, Compressibility, and Leading-Edge Bluntness Effects on Delta-Wing Aerodynamics

    NASA Technical Reports Server (NTRS)

    Luckring, James M.

    2004-01-01

    An overview of Reynolds number, compressibility, and leading edge bluntness effects is presented for a 65 degree delta wing. The results of this study address both attached and vortex-flow aerodynamics and are based upon a unique data set obtained in the NASA-Langley National Transonic Facility (NTF) for i) Reynolds numbers ranging from conventional wind-tunnel to flight values, ii) Mach numbers ranging from subsonic to transonic speeds, and iii) leading-edge bluntness values that span practical slender wing applications. The data were obtained so as to isolate the subject effects and they present many challenges for Computational Fluid Dynamics (CFD) studies.

  7. Transonic Reynolds Number and Leading-Edge Bluntness Effects on a 65 deg Delta Wing

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    2003-01-01

    A 65 degree delta wing has been tested in the National Transonic Facility (NTF) at mean aerodynamic chord Reynolds numbers from 6 million to 120 million at subsonic and transonic speeds. The configuration incorporated a systematic variation of the leading edge bluntness. The analysis for this paper is focused on the Reynolds number and bluntness effects at transonic speeds (M = 0.85) from this data set. The results show significant effects of both these parameters on the onset and progression of leading edge vortex separation.

  8. Thermoviscoplastic analysis of engine cowl leading edge subjected to oscillating shock-shock interaction

    NASA Technical Reports Server (NTRS)

    Pandey, Ajay K.

    1992-01-01

    A finite element thermoviscoplastic analysis method, which employs a unified constitutive model proposed by Bodner and Partom, is used to predict rate-dependent nonlinear structural behavior. The method is evaluated by predicting stress-strain behavior of a uniaxially loaded bar of nickel-based superalloy (B1900 + Hf) material. The method is used to predict the time-dependent thermoviscoplastic response of a B1900 + Hf leading edge subjected to oscillating shock-shock interaction loading. Viscoplastic analysis shows that the leading edge experiences significant plastic straining. The plastic region increases with cyclic loading in the high heat flux area.

  9. Experimental study of delta wing leading-edge devices for drag reduction at high lift

    NASA Technical Reports Server (NTRS)

    Johnson, T. D., Jr.; Rao, D. M.

    1982-01-01

    The drag reduction devices selected for evaluation were the fence, slot, pylon-type vortex generator, and sharp leading-edge extension. These devices were tested on a 60 degree flatplate delta (with blunt leading edges) in the Langley Research Center 7- by 10-foot high-speed tunnel at low speed and to angles of attack of 28 degrees. Balance and static pressure measurements were taken. The results indicate that all the devices had significant drag reduction capability and improved longitudinal stability while a slight loss of lift and increased cruise drag occurred.

  10. Summary of past experience in natural laminar flow and experimental program for resilient leading edge

    NASA Technical Reports Server (NTRS)

    Carmichael, B. H.

    1979-01-01

    The potential of natural laminar flow for significant drag reduction and improved efficiency for aircraft is assessed. Past experience with natural laminar flow as reported in published and unpublished data and personal observations of various researchers is summarized. Aspects discussed include surface contour, waviness, and smoothness requirements; noise and vibration effects on boundary layer transition, boundary layer stability criteria; flight experience with natural laminar flow and suction stabilized boundary layers; and propeller slipstream, rain, frost, ice and insect contamination effects on boundary layer transition. The resilient leading edge appears to be a very promising method to prevent leading edge insect contamination.

  11. Development flight tests of JetStar LFC leading-edge flight test experiment

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Fischer, Michael C.

    1987-01-01

    The overall objective of the flight tests on the JetStar aircraft was to demonstrate the effectiveness and reliability of laminar flow control under representative flight conditions. One specific objective was to obtain laminar flow on the JetStar leading-edge test articles for the design and off-design conditions. Another specific objective was to obtain operational experience on a Laminar Flow Control (LFC) leading-edge system in a simulated airline service. This included operational experience with cleaning requirements, the effect of clogging, possible foreign object damage, erosion, and the effects of ice particle and cloud encounters. Results are summarized.

  12. Turbine Airfoil With CMC Leading-Edge Concept Tested Under Simulated Gas Turbine Conditions

    NASA Technical Reports Server (NTRS)

    Robinson, R. Craig; Hatton, Kenneth S.

    2000-01-01

    Silicon-based ceramics have been proposed as component materials for gas turbine engine hot-sections. When the Navy s Harrier fighter experienced engine (Pegasus F402) failure because of leading-edge durability problems on the second-stage high-pressure turbine vane, the Office of Naval Research came to the NASA Glenn Research Center at Lewis Field for test support in evaluating a concept for eliminating the vane-edge degradation. The High Pressure Burner Rig (HPBR) was selected for testing since it could provide temperature, pressure, velocity, and combustion gas compositions that closely simulate the engine environment. The study focused on equipping the stationary metal airfoil (Pegasus F402) with a ceramic matrix composite (CMC) leading-edge insert and evaluating the feasibility and benefits of such a configuration. The test exposed the component, with and without the CMC insert, to the harsh engine environment in an unloaded condition, with cooling to provide temperature relief to the metal blade underneath. The insert was made using an AlliedSignal Composites, Inc., enhanced HiNicalon (Nippon Carbon Co. LTD., Yokohama, Japan) fiber-reinforced silicon carbide composite (SiC/SiC CMC) material fabricated via chemical vapor infiltration. This insert was 45-mils thick and occupied a recessed area in the leading edge and shroud of the vane. It was designed to be free floating with an end cap design. The HPBR tests provided a comparative evaluation of the temperature response and leading-edge durability and included cycling the airfoils between simulated idle, lift, and cruise flight conditions. In addition, the airfoils were aircooled, uniquely instrumented, and exposed to the exact set of internal and external conditions, which included gas temperatures in excess of 1370 C (2500 F). In addition to documenting the temperature response of the metal vane for comparison with the CMC, a demonstration of improved leading-edge durability was a primary goal. First, the

  13. Effect of leading-edge geometry on boundary-layer receptivity to freestream sound

    NASA Technical Reports Server (NTRS)

    Lin, Nay; Reed, Helen L.; Saric, W. S.

    1991-01-01

    The receptivity to freestream sound of the laminar boundary layer over a semi-infinite flat plate with an elliptic leading edge is simulated numerically. The incompressible flow past the flat plate is computed by solving the full Navier-Stokes equations in general curvilinear coordinates. A finite-difference method which is second-order accurate in space and time is used. Spatial and temporal developments of the Tollmien-Schlichting wave in the boundary layer, due to small-amplitude time-harmonic oscillations of the freestream velocity that closely simulate a sound wave travelling parallel to the plate, are observed. The effect of leading-edge curvature is studied by varying the aspect ratio of the ellipse. The boundary layer over the flat plate with a sharper leading edge is found to be less receptive. The relative contribution of the discontinuity in curvature at the ellipse-flat-plate juncture to receptivity is investigated by smoothing the juncture with a polynomial. Continuous curvature leads to less receptivity. A new geometry of the leading edge, a modified super ellipse, which provides continuous curvature at the juncture with the flat plate, is used to study the effect of continuous curvature and inherent pressure gradient on receptivity.

  14. On the effect of leading edge blowing on circulation control airfoil aerodynamics

    NASA Technical Reports Server (NTRS)

    Mclachlan, B. G.

    1987-01-01

    In the present context the term circulation control is used to denote a method of lift generation that utilizes tangential jet blowing over the upper surface of a rounded trailing edge airfoil to determine the location of the boundary layer separation points, thus setting an effective Kutta condition. At present little information exists on the flow structure generated by circulation control airfoils under leading edge blowing. Consequently, no theoretical methods exist to predict airfoil performance under such conditions. An experimental study of the flow field generated by a two dimensional circulation control airfoil under steady leading and trailing edge blowing was undertaken. The objective was to fundamentally understand the overall flow structure generated and its relation to airfoil performance. Flow visualization was performed to define the overall flow field structure. Measurements of the airfoil forces were also made to provide a correlation of the observed flow field structure to airfoil performance. Preliminary results are presented, specifically on the effect on the flow field structure of leading edge blowing, alone and in conjunction with trailing edge blowing.

  15. The Leading Edge of Early Childhood Education: Linking Science to Policy for a New Generation

    ERIC Educational Resources Information Center

    Lesaux, Nonie K., Ed.; Jones, Stephanie M., Ed.

    2016-01-01

    "The Leading Edge of Early Childhood Education" aims to support the effort to simultaneously scale up and improve the quality of early childhood education by bringing together relevant insights from emerging research to provide guidance for this critical, fledgling field. It reflects the growing recognition that early childhood…

  16. Effects of Fin Leading Edge Sweep on Shock-Shock Interaction at Mach 6

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Nowak, Robert J.

    1996-01-01

    The effects of fin leading edge sweep on peak heating rates due to shock-shock interaction have been experimentally examined in the Langley 20-Inch Mach 6 Tunnel. The shock interaction was produced by the intersection of a planar incident shock (16.8 deg shock angle relative to the freestream, generated by a 9 deg wedge) with the bow shock formed around a O.5-inch diameter cylindrical leading edge fin. Heating distributions along the leading edge stagnation line have been obtained using densely spaced thin film resistive-type sensors. Schlieren images were obtained to illustrate the very complex shock-shock interactions. The fin leading edge sweep angle was varied from 15-degrees swept back to 45-degrees swept forward for a freestream unit Reynolds number of 2 x 10(exp 6)/ft. Two models were utilized during the study, one with 0.025-inch spacing between gage centers, and the other 0.015-inch spacing. Gage spatial resolution on the order of 0.015-in appeared to accurately capture the narrow spike in heating. Peak heating due to shock interaction was maximized when the fin was swept forward 15 deg and 25 deg, both promoting augmentations about 7 times the baseline value. The schlieren images for these cases revealed Type 4 and Type 3 interactions, respectively.

  17. The Leading Edge: A Career Development Workshop Series for Young Adults. Facilitator Guide.

    ERIC Educational Resources Information Center

    Canadian Career Development Foundation, Ottawa (Ontario).

    This booklet is designed to be used by facilitators of the Canadian Career Development Foundation's "The Leading Edge: A Career Development Workshop Series for Young Adults." The guide provides information, including objectives of the workshops and lists of required materials, needed in order to facilitate an introductory session as well…

  18. A leading edge heating array and a flat surface heating array - operation, maintenance and repair manual

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A general description of the leading edge/flat surface heating array is presented along with its components, assembly instructions, installation instructions, operation procedures, maintenance instructions, repair procedures, schematics, spare parts lists, engineering drawings of the array, and functional acceptance test log sheets. The proper replacement of components, correct torque values, step-by-step maintenance instructions, and pretest checkouts are described.

  19. Guidance signalling regulates leading edge behaviour during collective cell migration of cardiac cells in Drosophila.

    PubMed

    Raza, Qanber; Jacobs, J Roger

    2016-11-15

    Collective cell migration is the coordinated movement of cells, which organize tissues during morphogenesis, repair and some cancers. The motile cell membrane of the advancing front in collective cell migration is termed the Leading Edge. The embryonic development of the vertebrate and Drosophila hearts are both characterized by the coordinated medial migration of a bilateral cluster of mesodermal cells. In Drosophila, the cardioblasts form cohesive bilateral rows that migrate collectively as a unit towards the dorsal midline to form the dorsal vessel. We have characterized the collective cell migration of cardioblasts as an in vivo quantitative model to study the behaviour of the Leading Edge. We investigated whether guidance signalling through Slit and Netrin pathways plays a role in cell migration during heart development. Through time-lapse imaging and quantitative assessment of migratory behaviour of the cardioblasts in loss-of-function mutants, we demonstrate that both Slit and Netrin mediated signals are autonomously and concomitantly required to maximize migration velocity, filopodial and lamellipodial activities. Additionally, we show that another Slit and Netrin receptor, Dscam1, the role of which during heart development was previously unknown, is required for both normal migration of cardioblasts and luminal expansion. Leading edge behaviour analysis revealed a dosage dependent genetic interaction between Slit and Netrin receptors suggesting that downstream signalling through these receptors converge on a common output that increases leading edge activity of the cardioblasts. Finally, we found that guidance signalling maintains the balance between epithelial and mesenchymal characteristics of the migrating cardioblasts.

  20. Evaluation of a sodium/Hastelloy-X heat pipe for wing leading edge cooling

    SciTech Connect

    Merrigan, M.A.; Sena, J.T.; Glass, D.E.

    1996-12-31

    This report covers assembly of a sodium heat pipe, testing to verify performance during start-up and under steady-state conditions with stagnation point heat loads to about 80 W/cm{sup 2}, performance analysis and evaluation. Evaluation of this leading edge cooling concept is offered and recommendations for further research discussed.

  1. Project 2000-3 Leading Edge Enterprise: Insights into Employment and Training Practices. Working Paper.

    ERIC Educational Resources Information Center

    Long, Michael; Fischer, John

    Leading-edge firms (LEFs)--at the forefront of their industry in terms of growth or market share--may influence skill development through diffusion of technology, products, or practices and use of market power to set standards or change customer businesses. Study of LEFs can identify the type and mix of skills needed in the industry. LEFs are…

  2. Weak Force Stalls Protrusion at the Leading Edge of the Lamellipodium

    PubMed Central

    Bohnet, Sophie; Ananthakrishnan, Revathi; Mogilner, Alex; Meister, Jean-Jacques; Verkhovsky, Alexander B.

    2006-01-01

    Protrusion, the first step of cell migration, is driven by actin polymerization coupled to adhesion at the cell's leading edge. Polymerization and adhesive forces have been estimated, but the net protrusion force has not been measured accurately. We arrest the leading edge of a moving fish keratocyte with a hydrodynamic load generated by a fluid flow from a micropipette. The flow arrests protrusion locally as the cell approaches the pipette, causing an arc-shaped indentation and upward folding of the leading edge. The effect of the flow is reversible upon pipette removal and dependent on the flow direction, suggesting that it is a direct effect of the external force rather than a regulated cellular response. Modeling of the fluid flow gives a surprisingly low value for the arresting force of just a few piconewtons per micrometer. Enhanced phase contrast, fluorescence, and interference reflection microscopy suggest that the flow does not abolish actin polymerization and does not disrupt the adhesions formed before the arrest but rather interferes with weak nascent adhesions at the very front of the cell. We conclude that a weak external force is sufficient to reorient the growing actin network at the leading edge and to stall the protrusion. PMID:16326894

  3. New American High Schools: Profiles of the Nation's Leading Edge Schools.

    ERIC Educational Resources Information Center

    Department of Education, Washington, DC.

    This booklet profiles "leading edge" schools committed to ensuring that all students meet challenging academic standards and are prepared for college and careers. In 1996, these 10 New American High Schools were chosen by the U.S. Department of Education for their innovation and commitment to academic excellence. As these award-winning,…

  4. A Perspective on Computational Aerothermodynamics at NASA

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2007-01-01

    The evolving role of computational aerothermodynamics (CA) within NASA over the past 20 years is reviewed. The presentation highlights contributions to understanding the Space Shuttle pitching moment anomaly observed in the first shuttle flight, prediction of a static instability for Mars Pathfinder, and the use of CA for damage assessment in post-Columbia mission support. In the view forward, several current challenges in computational fluid dynamics and aerothermodynamics for hypersonic vehicle applications are discussed. Example simulations are presented to illustrate capabilities and limitations. Opportunities to advance the state-of-art in algorithms, grid generation and adaptation, and code validation are identified.

  5. Space Shuttle aerothermodynamic data report, phase C

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Space shuttle aerothermodynamic data, collected from a continuing series of wind tunnel tests, are permanently stored with the Data Management Services (DMS) system. Information pertaining to current baseline configuration definition is also stored. Documentation of DMS processed data arranged sequentially and by space shuttle configuration are included. An up-to-date record of all applicable aerothermodynamic data collected, processed, or summarized during the space shuttle program is provided. Tables are designed to provide suvery information to the various space shuttle managerial and technical levels.

  6. Methodology for heat flux investigation on leading edges using infrared thermography

    NASA Astrophysics Data System (ADS)

    Corre, Y.; Gardarein, J.-L.; Dejarnac, R.; Gaspar, J.; Gunn, J. P.; Aumeunier, M.-H.; Courtois, X.; Missirlian, M.; Rigollet, F.

    2017-01-01

    During steady state plasma operation in fusion devices, leading edges of the actively cooled plasma-facing components can be impacted by plasma flux with nearly normal angle of incidence, causing local overheating. The overheating can be a critical issue in high-power machines, especially in the presence of mechanical misalignments. Due to heat diffusion through the material, the edge power overload also leads to a local increase of temperature on the top part of the tile that can be detected by the infrared imaging system (viewed from the top of the machine). In the Tore Supra tokamak, heat flux impinging on the top and the leading edge of the carbon fibre composite (CFC) flat tiles are characterized with both an infrared (IR) thermographic system and 2D thermal modelling of the tile. A specific sensor correction based on a laboratory blackbody-slit experiment has been developed to simulate the spatial resolution related effects (necessary here since the temperature gradient near the leading edge is smaller than the pixel size of the IR system). The transfer function of the IR system is characterized by a Gaussian distribution function. The standard deviation is found to be σ  =  1.75 mm for a pixel size of 3.1 mm. The heat flux calculation is applied to CFC flat tiles and, after being processed with the transfer function, compared to experimental IR data for two geometrical situations: one with 0.2 mm misalignment between two adjacent tiles and the other without misalignment (well-aligned tiles). The heat flux ratio between the leading edge and top is found to be ~25 in the case of the protruding tile, which is lower than the expected ratio using the guiding-centre ballistic approximation with no cross-field heat flux (57).

  7. Design & fabrication of two seated aircraft with an advanced rotating leading edge wing

    NASA Astrophysics Data System (ADS)

    Al Ahmari, Saeed Abdullah Saeed

    The title of this thesis is "Design & Fabrication of two Seated Aircraft with an Advanced Rotating Leading Edge Wing", this gives almost a good description of the work has been done. In this research, the moving surface boundary-layer control (MSBC) concept was investigated and implemented. An experimental model was constructed and tested in wind tunnel to determine the aerodynamic characteristics using the leading edge moving surface of modified semi-symmetric airfoil NACA1214. The moving surface is provided by a high speed rotating cylinder, which replaces the leading edge of the airfoil. The angle of attack, the cylinder surfaces velocity ratio Uc/U, and the flap deflection angle effects on the lift and drag coefficients and the stall angle of attack were investigated. This new technology was applied to a 2-seat light-sport aircraft that is designed and built in the Aerospace Engineering Department at KFUPM. The project team is led by the aerospace department chairman Dr. Ahmed Z. AL-Garni and Dr. Wael G. Abdelrahman and includes graduate and under graduate student. The wing was modified to include a rotating cylinder along the leading edge of the flap portion. This produced very promising results such as the increase of the maximum lift coefficient at Uc/U=3 by 82% when flaps up and 111% when flaps down at 40° and stall was delayed by 8degrees in both cases. The laboratory results also showed that the effective range of the leading-edge rotating cylinder is at low angles of attack which reduce the need for higher angles of attack for STOL aircraft.

  8. Spanwise flow and the attachment of the leading-edge vortex on insect wings.

    PubMed

    Birch, J M; Dickinson, M H

    2001-08-16

    The flow structure that is largely responsible for the good performance of insect wings has recently been identified as a leading-edge vortex. But because such vortices become detached from a wing in two-dimensional flow, an unknown mechanism must keep them attached to (three-dimensional) flapping wings. The current explanation, analogous to a mechanism operating on delta-wing aircraft, is that spanwise flow through a spiral vortex drains energy from the vortex core. We have tested this hypothesis by systematically mapping the flow generated by a dynamically scaled model insect while simultaneously measuring the resulting aerodynamic forces. Here we report that, at the Reynolds numbers matching the flows relevant for most insects, flapping wings do not generate a spiral vortex akin to that produced by delta-wing aircraft. We also find that limiting spanwise flow with fences and edge baffles does not cause detachment of the leading-edge vortex. The data support an alternative hypothesis-that downward flow induced by tip vortices limits the growth of the leading-edge vortex.

  9. Experimental And Numerical Study Of CMC Leading Edges In Hypersonic Flows

    NASA Astrophysics Data System (ADS)

    Kuhn, Markus; Esser, Burkard; Gulhan, Ali; Dalenbring, Mats; Cavagna, Luca

    2011-05-01

    Future transportation concepts aim at high supersonic or hypersonic speeds, where the formerly sharp boundaries between aeronautic and aerospace applications become blurred. One of the major issues involved to high speed flight are extremely high aerothermal loads, which especially appear at the leading edges of the plane’s wings and at sharp edged air intake components of the propulsion system. As classical materials like metals or simple ceramics would thermally and structurally fail here, new materials have to be applied. In this context, lightweight ceramic matrix composites (CMC) seem to be prospective candidates as they are high-temperature resistant and offer low thermal expansion along with high specific strength at elevated temperature levels. A generic leading edge model with a ceramic wing assembly with a sweep back angle of 53° was designed, which allowed for easy leading edge sample integration of different CMC materials. The samples consisted of the materials C/C-SiC (non-oxide), OXIPOL and WHIPOX (both oxide) with a nose radius of 2 mm. In addition, a sharp edged C/C-SiC sample was prepared to investigate the nose radius influence. Overall, 13 thermocouples were installed inside the entire model to measure the temperature evolution at specific locations, whereby 5 thermocouples were placed inside the leading edge sample itself. In addition, non-intrusive techniques were applied for surface temperature measurements: An infrared camera was used to measure the surface temperature distribution and at specific spots, the surface temperature was also measured by pyrometers. Following, the model was investigated in DLR’s arc-heated facility L3K at a total enthalpy of 8.5 MJ/kg, Mach number of 7.8, different angles of attack and varying wing inclination angles. These experiments provide a sound basis for the simulation of aerothermally loaded CMC leading edge structures. Such fluid-structure coupled approaches have been performed by FOI, basing on a

  10. Aerothermodynamic Analyses of Towed Ballutes

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Buck, Greg; Moss, James N.; Nielsen, Eric; Berger, Karen; Jones, William T.; Rudavsky, Rena

    2006-01-01

    A ballute (balloon-parachute) is an inflatable, aerodynamic drag device for application to planetary entry vehicles. Two challenging aspects of aerothermal simulation of towed ballutes are considered. The first challenge, simulation of a complete system including inflatable tethers and a trailing toroidal ballute, is addressed using the unstructured-grid, Navier-Stokes solver FUN3D. Auxiliary simulations of a semi-infinite cylinder using the rarefied flow, Direct Simulation Monte Carlo solver, DSV2, provide additional insight into limiting behavior of the aerothermal environment around tethers directly exposed to the free stream. Simulations reveal pressures higher than stagnation and corresponding large heating rates on the tether as it emerges from the spacecraft base flow and passes through the spacecraft bow shock. The footprint of the tether shock on the toroidal ballute is also subject to heating amplification. Design options to accommodate or reduce these environments are discussed. The second challenge addresses time-accurate simulation to detect the onset of unsteady flow interactions as a function of geometry and Reynolds number. Video of unsteady interactions measured in the Langley Aerothermodynamic Laboratory 20-Inch Mach 6 Air Tunnel and CFD simulations using the structured grid, Navier-Stokes solver LAURA are compared for flow over a rigid spacecraft-sting-toroid system. The experimental data provides qualitative information on the amplitude and onset of unsteady motion which is captured in the numerical simulations. The presence of severe unsteady fluid - structure interactions is undesirable and numerical simulation must be able to predict the onset of such motion.

  11. Computational Aerothermodynamic Design Issues for Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Weilmuenster, K. James; Hamilton, H. Harris, II; Olynick, David R.; Venkatapathy, Ethiraj

    1997-01-01

    A brief review of the evolutionary progress in computational aerothermodynamics is presented. The current status of computational aerothermodynamics is then discussed, with emphasis on its capabilities and limitations for contributions to the design process of hypersonic vehicles. Some topics to be highlighted include: (1) aerodynamic coefficient predictions with emphasis on high temperature gas effects; (2) surface heating and temperature predictions for thermal protection system (TPS) design in a high temperature, thermochemical nonequilibrium environment; (3) methods for extracting and extending computational fluid dynamic (CFD) solutions for efficient utilization by all members of a multidisciplinary design team; (4) physical models; (5) validation process and error estimation; and (6) gridding and solution generation strategies. Recent experiences in the design of X-33 will be featured. Computational aerothermodynamic contributions to Mars Pathfinder, METEOR, and Stardust (Comet Sample return) will also provide context for this discussion. Some of the barriers that currently limit computational aerothermodynamics to a predominantly reactive mode in the design process will also be discussed, with the goal of providing focus for future research.

  12. Preliminary aerothermodynamic design method for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Harloff, G. J.; Petrie, S. L.

    1987-01-01

    Preliminary design methods are presented for vehicle aerothermodynamics. Predictions are made for Shuttle orbiter, a Mach 6 transport vehicle and a high-speed missile configuration. Rapid and accurate methods are discussed for obtaining aerodynamic coefficients and heat transfer rates for laminar and turbulent flows for vehicles at high angles of attack and hypersonic Mach numbers.

  13. Computational Aerothermodynamic Design Issues for Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Olynick, David R.; Venkatapathy, Ethiraj

    2004-01-01

    A brief review of the evolutionary progress in computational aerothermodynamics is presented. The current status of computational aerothermodynamics is then discussed, with emphasis on its capabilities and limitations for contributions to the design process of hypersonic vehicles. Some topics to be highlighted include: (1) aerodynamic coefficient predictions with emphasis on high temperature gas effects; (2) surface heating and temperature predictions for thermal protection system (TPS) design in a high temperature, thermochemical nonequilibrium environment; (3) methods for extracting and extending computational fluid dynamic (CFD) solutions for efficient utilization by all members of a multidisciplinary design team; (4) physical models; (5) validation process and error estimation; and (6) gridding and solution generation strategies. Recent experiences in the design of X-33 will be featured. Computational aerothermodynamic contributions to Mars Pathfinder, METEOR, and Stardust (Comet Sample return) will also provide context for this discussion. Some of the barriers that currently limit computational aerothermodynamics to a predominantly reactive mode in the design process will also be discussed, with the goal of providing focus for future research.

  14. Computational Aerothermodynamic Design Issues for Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Weilmuenster, K. James; Hamilton, H. Harris, II; Olynick, David R.; Venkatapathy, Ethiraj

    2005-01-01

    A brief review of the evolutionary progress in computational aerothermodynamics is presented. The current status of computational aerothermodynamics is then discussed, with emphasis on its capabilities and limitations for contributions to the design process of hypersonic vehicles. Some topics to be highlighted include: (1) aerodynamic coefficient predictions with emphasis on high temperature gas effects; (2) surface heating and temperature predictions for thermal protection system (TPS) design in a high temperature, thermochemical nonequilibrium environment; (3) methods for extracting and extending computational fluid dynamic (CFD) solutions for efficient utilization by all members of a multidisciplinary design team; (4) physical models; (5) validation process and error estimation; and (6) gridding and solution generation strategies. Recent experiences in the design of X-33 will be featured. Computational aerothermodynamic contributions to Mars Path finder, METEOR, and Stardust (Comet Sample return) will also provide context for this discussion. Some of the barriers that currently limit computational aerothermodynamics to a predominantly reactive mode in the design process will also be discussed, with the goal of providing focus for future research.

  15. Thermostructural applications of heat pipes for cooling leading edges of high-speed aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J.; Glass, David E.

    1992-01-01

    Heat pipes have been considered for use on wing leading edge for over 20 years. Early concepts envisioned metal heat pipes cooling a metallic leading edge. Several superalloy/sodium heat pipes were fabricated and successfully tested for wing leading edge cooling. Results of radiant heat and aerothermal testing indicate the feasibility of using heat pipes to cool the stagnation region of shuttle-type space transportation systems. The test model withstood a total seven radiant heating tests, eight aerothermal tests, and twenty-seven supplemental radiant heating tests. Cold-wall heating rates ranged from 21 to 57 Btu/sq ft-s and maximum operating temperatures ranged from 1090 to 1520 F. Follow-on studies investigated the application of heat pipes to cool the stagnation regions of single-stage-to-orbit and advanced shuttle vehicles. Results of those studies indicate that a 'D-shaped' structural design can reduce the mass of the heat-pipe concept by over 44 percent compared to a circular heat-pipe geometry. Simple analytical models for heat-pipe startup from the frozen state (working fluid initially frozen) were adequate to approximate transient, startup, and steady-state heat-pipe performance. Improvement in analysis methods has resulted in the development of a finite-element analysis technique to predict heat-pipe startup from the frozen state. However, current requirements of light-weight design and reliability suggest that metallic heat pipes embedded in a refractory composite material should be used. This concept is the concept presently being evaluated for NASP. A refractory-composite/heat-pipe-cooled wing leading edge is currently being considered for the National Aero-Space Plane (NASP). This concept uses high-temperature refractory-metal/lithium heat pipes embedded within a refractory-composite structure and is significantly lighter than an actively cooled wing leading edge because it eliminates the need for active cooling during ascent and descent. Since the

  16. Effects of leading and trailing edge flaps on the aerodynamics of airfoil/vortex interactions

    NASA Technical Reports Server (NTRS)

    Hassan, Ahmed A.; Sankar, L. N.; Tadghighi, H.

    1994-01-01

    A numerical procedure has been developed for predicting the two-dimensional parallel interaction between a free convecting vortex and a NACA 0012 airfoil having leading and trailing edge integral-type flaps. Special emphasis is placed on the unsteady flap motion effects which result in alleviating the interaction at subcritical and supercritical onset flows. The numerical procedure described here is based on the implicit finite-difference solutions to the unsteady two-dimensional full potential equation. Vortex-induced effects are computed using the Biot-Savart Law with allowance for a finite core radius. The vortex-induced velocities at the surface of the airfoil are incorporated into the potential flow model via the use of the velocity transpiration approach. Flap motion effects are also modeled using the transpiration approach. For subcritical interactions, our results indicate that trailing edge flaps can be used to alleviate the impulsive loads experienced by the airfoil. For supercritical interactions, our results demonstrate the necessity of using a leading edge flap, rather than a trailing edge flap, to alleviate the interaction. Results for various time-dependent flap motions and their effect on the predicted temporal sectional loads, differential pressures, and the free vortex trajectories are presented

  17. Navier-Stokes computation of wing leading edge tangential blowing for a tilt rotor in hover

    NASA Technical Reports Server (NTRS)

    Fejtek, Ian; Roberts, Leonard

    1992-01-01

    The effect of a thin tangential jet located at the leading edge of the wing of a tilt rotor configuration in hover is computed using the thin-layer Navier-stokes equations. Computations showed that leading edge tangential blowing is effective in reducing the download caused by the impingement of the rotor download caused by the impingement of the rotor downwash on the wing. Results from the numerical model support previous experimental findings that download reduction is due mainly to a decrease in upper surface pressure and not an increase in pressure on the lower surface. The numerical solution clearly shows that because of the three-dimensionality of the flow field, the download could be reduced further by allowing a spanwise variation in blowing strength.

  18. High-order aberration control during exposure for leading-edge lithography projection optics

    NASA Astrophysics Data System (ADS)

    Ohmura, Yasuhiro; Tsuge, Yosuke; Hirayama, Toru; Ikezawa, Hironori; Inoue, Daisuke; Kitamura, Yasuhiro; Koizumi, Yukio; Hasegawa, Keisuke; Ishiyama, Satoshi; Nakashima, Toshiharu; Kikuchi, Takahisa; Onda, Minoru; Takase, Yohei; Nagahiro, Akimasa; Isago, Susumu; Kawahara, Hidetaka

    2016-03-01

    High throughput with high resolution imaging has been key to the development of leading-edge microlithography. However, management of thermal aberrations due to lens heating during exposure has become critical for simultaneous achievement of high throughput and high resolution. Thermal aberrations cause CD drift and overlay error, and these errors lead directly to edge placement errors (EPE). Management and control of high order thermal aberrations is a critical requirement. In this paper, we will show practical performance of the lens heating with dipole and other typical illumination conditions for finer patterning. We confirm that our new control system can reduce the high-order aberrations and enable critical-dimension uniformity CDU during the exposure.

  19. Cooling Strategies for Vane Leading Edges in a Syngas Environment Including Effects of Deposition and Turbulence

    SciTech Connect

    Ames, Forrest; Bons, Jeffrey

    2014-09-30

    The Department of Energy has goals to move land based gas turbine systems to alternate fuels including coal derived synthetic gas and hydrogen. Coal is the most abundant energy resource in the US and in the world and it is economically advantageous to develop power systems which can use coal. Integrated gasification combined cycles are (IGCC) expected to allow the clean use of coal derived fuels while improving the ability to capture and sequester carbon dioxide. These cycles will need to maintain or increase turbine entry temperatures to develop competitive efficiencies. The use of coal derived syngas introduces a range of potential contaminants into the hot section of the gas turbine including sulfur, iron, calcium, and various alkali metals. Depending on the effectiveness of the gas clean up processes, there exists significant likelihood that the remaining materials will become molten in the combustion process and potentially deposit on downstream turbine surfaces. Past evidence suggests that deposition will be a strong function of increasing temperature. Currently, even with the best gas cleanup processes a small level of particulate matter in the syngas is expected. Consequently, particulate deposition is expected to be an important consideration in the design of turbine components. The leading edge region of first stage vanes most often have higher deposition rates than other areas due to strong fluid acceleration and streamline curvature in the vicinity of the surface. This region remains one of the most difficult areas in a turbine nozzle to cool due to high inlet temperatures and only a small pressure ratio for cooling. The leading edge of a vane often has relatively high heat transfer coefficients and is often cooled using showerhead film cooling arrays. The throat of the first stage nozzle is another area where deposition potentially has a strongly adverse effect on turbine performance as this region meters the turbine inlet flow. Based on roughness

  20. Wind-tunnel studies of advanced cargo aircraft concepts. [leading edge vortex flaps for drag reduction

    NASA Technical Reports Server (NTRS)

    Rao, D. M.; Goglia, G. L.

    1981-01-01

    Accomplishments in vortex flap research are summarized. A singular feature of the vortex flap is that, throughout the range of angle of attack range, the flow type remains qualitatively unchanged. Accordingly, no large or sudden change in the aerodynamic characteristics, as happens when forcibly maintained attached flow suddenly reverts to separation, will occur with the vortex flap. Typical wind tunnel test data are presented which show the drag reduction potential of the vortex flap concept applied to a supersonic cruise airplane configuration. The new technology offers a means of aerodynamically augmenting roll-control effectiveness on slender wings at higher angles of attack by manipulating the vortex flow generated from leading edge separation. The proposed manipulator takes the form of a flap hinged at or close to the leading edge, normally retracted flush with the wing upper surface to conform to the airfoil shape.

  1. A Reduced-Complexity Investigation of Blunt Leading-Edge Separation Motivated by UCAV Aerodynamics

    NASA Technical Reports Server (NTRS)

    Luckring, James M.; Boelens, Okko J.

    2015-01-01

    A reduced complexity investigation for blunt-leading-edge vortical separation has been undertaken. The overall approach is to design the fundamental work in such a way so that it relates to the aerodynamics of a more complex Uninhabited Combat Air Vehicle (UCAV) concept known as SACCON. Some of the challenges associated with both the vehicle-class aerodynamics and the fundamental vortical flows are reviewed, and principles from a hierarchical complexity approach are used to relate flow fundamentals to system-level interests. The work is part of roughly 6-year research program on blunt-leading-edge separation pertinent to UCAVs, and was conducted under the NATO Science and Technology Organization, Applied Vehicle Technology panel.

  2. AMPK activity regulates trafficking of mitochondria to the leading edge during cell migration and matrix invasion

    PubMed Central

    Cunniff, Brian; McKenzie, Andrew J.; Heintz, Nicholas H.; Howe, Alan K.

    2016-01-01

    Cell migration is a complex behavior involving many energy-expensive biochemical events that iteratively alter cell shape and location. Mitochondria, the principal producers of cellular ATP, are dynamic organelles that fuse, divide, and relocate to respond to cellular metabolic demands. Using ovarian cancer cells as a model, we show that mitochondria actively infiltrate leading edge lamellipodia, thereby increasing local mitochondrial mass and relative ATP concentration and supporting a localized reversal of the Warburg shift toward aerobic glycolysis. This correlates with increased pseudopodial activity of the AMP-activated protein kinase (AMPK), a critically important cellular energy sensor and metabolic regulator. Furthermore, localized pharmacological activation of AMPK increases leading edge mitochondrial flux, ATP content, and cytoskeletal dynamics, whereas optogenetic inhibition of AMPK halts mitochondrial trafficking during both migration and the invasion of three-dimensional extracellular matrix. These observations indicate that AMPK couples local energy demands to subcellular targeting of mitochondria during cell migration and invasion. PMID:27385336

  3. Test and Analysis of a Hyper-X Carbon-Carbon Leading Edge Chine

    NASA Technical Reports Server (NTRS)

    Smith, Russell W.; Sikora, Joseph G.; Lindell, Michael C.

    2005-01-01

    During parts production for the X43A Mach 10 hypersonic vehicle nondestructive evaluation (NDE) of a leading edge chine detected on imbedded delamination near the lower surface of the part. An ultimate proof test was conducted to verify the ultimate strength of this leading edge chine part. The ultimate proof test setup used a pressure bladder design to impose a uniform distributed pressure field over the bi-planar surface of the chine test article. A detailed description of the chine test article and experimental test setup is presented. Analysis results from a linear status model of the test article are also presented and discussed. Post-test inspection of the specimen revealed no visible failures or areas of delamination.

  4. A Study of Aerodynamic Control in Stalled Flight Leading-Edge Vortex Formation Analysis.

    DTIC Science & Technology

    1985-02-01

    RD-R153 758 A STUDY OF RERODYNAMIC CONTROL IN STALLED FLIGHT 1/1 LEADING-EDGE VORTEX FORMRTION RNALYSIS(U) ANRLYTICRL METHODS INC REDMOND NR J K...FORMATION ANALYSIS James K. Nathman ANALYTICAL METHODS , INC. 2047 - 152nd Avenue N.E. Redmond, Washington 98052 I February 1985 = Final Report for Period...ORGANIZATION Analytical Methods , Inc. (Ifapplicable) AF Flight Dynamics LaboratoryAFWAL (AFS0C 6c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS

  5. Effects of Nose Radius and Aerodynamic Loading on Leading Edge Receptivity

    NASA Technical Reports Server (NTRS)

    Hammerton, P. W.; Kerschen, E. J.

    1998-01-01

    An analysis is presented of the effects of airfoil thickness and mean aerodynamic loading on boundary-layer receptivity in the leading-edge region. The case of acoustic free-stream disturbances, incident on a thin cambered airfoil with a parabolic leading edge in a low Mach number flow, is considered. An asymptotic analysis based on large Reynolds number is developed, supplemented by numerical results. The airfoil thickness distribution enters the theory through a Strouhal number based on the nose radius of the airfoil, S = (omega)tau(sub n)/U, where omega is the frequency of the acoustic wave and U is the mean flow speed. The influence of mean aerodynamic loading enters through an effective angle-of-attack parameter ti, related to flow around the leading edge from the lower surface to the upper. The variation of the receptivity level is analyzed as a function of S, mu, and characteristics of the free-stream acoustic wave. For an unloaded leading edge, a finite nose radius dramatically reduces the receptivity level compared to that for a flat plate, the amplitude of the instability waves in the boundary layer being decreased by an order of magnitude when S = 0.3. Modest levels of aerodynamic loading are found to further decrease the receptivity level for the upper surface of the airfoil, while an increase in receptivity level occurs for the lower surface. For larger angles of attack close to the critical angle for boundary layer separation, a local rise in the receptivity level occurs for the upper surface, while for the lower surface the receptivity decreases. The effects of aerodynamic loading are more pronounced at larger values of S. Oblique acoustic waves produce much higher receptivity levels than acoustic waves propagating downstream parallel to the airfoil chord.

  6. A theory for the core of a three-dimensional leading-edge vortex

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    1985-01-01

    A theory is presented for the flow in the core of a separation-induced leading-edge vortex. The theory is based on matching inner and outer representations of the vortex. The inner representation models continuously distributed vorticity and includes an asymptotic viscous subcore. The outer representation models concentrated spiral sheets of vorticity and is fully three dimensional. A parameter is identified which closely tracks the vortex breakdown stability boundary for delta, arrow, and diamond wings.

  7. Fracture Mechanics Analyses of the Slip-Side Joggle Regions of Wing-Leading-Edge Panels

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Knight, Norman F., Jr.; Song, Kyongchan; Phillips, Dawn R.

    2011-01-01

    The Space Shuttle wing-leading edge consists of panels that are made of reinforced carbon-carbon. Coating spallation was observed near the slip-side region of the panels that experience extreme heating. To understand this phenomenon, a root-cause investigation was conducted. As part of that investigation, fracture mechanics analyses of the slip-side joggle regions of the hot panels were conducted. This paper presents an overview of the fracture mechanics analyses.

  8. Effect of leading-edge vortex flaps on aerodynamic performance of delta wings

    NASA Technical Reports Server (NTRS)

    Reddy, C. S.

    1981-01-01

    The effect of leading-edge vortex flaps on the aerodynamic characteristics of highly swept-back wings is analytically investigated, using the free vortex sheet method. The method, based on a three-dimensional inviscid flow model, is an advanced panel type employing quadratic doublet distributions to represent the wing surface, rolled-up vortex sheet and wake and is capable of computing forces, moments and surface pressures.

  9. Visualization of leading edge vortices on a series of flat plate delta wings

    NASA Technical Reports Server (NTRS)

    Payne, Francis M.; Ng, T. Terry; Nelson, Robert C.

    1991-01-01

    A summary of flow visualization data obtained as part of NASA Grant NAG2-258 is presented. During the course of this study, many still and high speed motion pictures were taken of the leading edge vortices on a series of flat plate delta wings at varying angles of attack. The purpose is to present a systematic collection of photographs showing the state of vortices as a function of the angle of attack for the four models tested.

  10. Thermal-structural analysis of the platelet heat-pipe-cooled leading edge of hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Hongpeng, Liu; Weiqiang, Liu

    2016-10-01

    One of the main challenges for the hypersonic vehicle is its thermal protection, more specifically, the cooling of its leading edge. To investigate the feasibility of a platelet heat-pipe-cooled leading edge structure, thermal/stress distributions for steady-state flight conditions are calculated numerically. Studies are carried on for IN718/Na, C-103/Na and T-111/Li compatible material combinations of heat pipe under nominal operations and a central heat pipe failure cases, and the influence of wall thickness on the design robustness is also investigated. And the heat transfer limits (the sonic limit, the capillary limit and the boiling limit) are also computed to check the operation of platelet heat pipes. The results indicate that, with a 15 mm leading edge radius and a wall thickness of 0.5 mm, C-103/Na and T-111/Li combinations of heat pipe is capable of withstanding both nominal and failure conditions for Mach 8 and Mach 10 flight respectively.

  11. Application of a flush airdata sensing system to a wing leading edge (LE-FADS)

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Moes, Timothy R.; Czerniejewski, Mark W.; Nichols, Douglas A.

    1993-01-01

    The feasibility of locating a flush airdata sensing (FADS) system on a wing leading edge where the operation of the avionics or fire control radar system will not be hindered is investigated. The leading-edge FADS system (LE-FADS) was installed on an unswept symmetrical airfoil and a series of low-speed wind-tunnel tests were conducted to evaluate the performance of the system. As a result of the tests it is concluded that the aerodynamic models formulated for use on aircraft nosetips are directly applicable to wing leading edges and that the calibration process is similar. Furthermore, the agreement between the airdata calculations for angle of attack and total pressure from the LE-FADS and known wind-tunnel values suggest that wing-based flush airdata systems can be calibrated to a high degree of accuracy. Static wind-tunnel tests for angles of attack from -50 deg to 50 deg and dynamic pressures from 3.6 to 11.4 lb/sq ft were performed.

  12. Direct Numerical Simulation of an Airfoil with Sand Grain Roughness on the Leading Edge

    NASA Technical Reports Server (NTRS)

    Ribeiro, Andre F. P.; Casalino, Damiano; Fares, Ehab; Choudhari, Meelan

    2016-01-01

    As part of a computational study of acoustic radiation due to the passage of turbulent boundary layer eddies over the trailing edge of an airfoil, the Lattice-Boltzmann method is used to perform direct numerical simulations of compressible, low Mach number flow past an NACA 0012 airfoil at zero degrees angle of attack. The chord Reynolds number of approximately 0.657 million models one of the test conditions from a previous experiment by Brooks, Pope, and Marcolini at NASA Langley Research Center. A unique feature of these simulations involves direct modeling of the sand grain roughness on the leading edge, which was used in the abovementioned experiment to trip the boundary layer to fully turbulent flow. This report documents the findings of preliminary, proof-of-concept simulations based on a narrow spanwise domain and a limited time interval. The inclusion of fully-resolved leading edge roughness in this simulation leads to significantly earlier transition than that in the absence of any roughness. The simulation data is used in conjunction with both the Ffowcs Williams-Hawkings acoustic analogy and a semi-analytical model by Roger and Moreau to predict the farfield noise. The encouraging agreement between the computed noise spectrum and that measured in the experiment indicates the potential payoff from a full-fledged numerical investigation based on the current approach. Analysis of the computed data is used to identify the required improvements to the preliminary simulations described herein.

  13. LFC leading edge glove flight: Aircraft modification design, test article development and systems integration

    NASA Technical Reports Server (NTRS)

    Etchberger, F. R.

    1983-01-01

    Reduction of skin friction drag by suction of boundary layer air to maintain laminar flow has been known since Prandtl's published work in 1904. The dramatic increases in fuel costs and the potential for periods of limited fuel availability provided the impetus to explore technologies to reduce transport aircraft fuel consumption. NASA sponsored the Aircraft Energy Efficiency (ACEE) program in 1976 to develop technologies to improve fuel efficiency. This report documents the Lockheed-Georgia Company accomplishments in designing and fabricating a leading-edge flight test article incorporating boundary layer suction slots to be flown by NASA on their modified JetStar aircraft. Lockheed-Georgia Company performed as the integration contractor to design the JetStar aircraft modification to accept both a Lockheed and a McDonnell Douglas flight test article. McDonnell Douglas uses a porous skin concept. The report describes aerodynamic analyses, fabrication techniques, JetStar modifications, instrumentation requirements, and structural analyses and testing for the Lockheed test article. NASA will flight test the two LFC leading-edge test articles in a simulated commercial environment over a 6 to 8 month period in 1984. The objective of the flight test program is to evaluate the effectiveness of LFC leading-edge systems in reducing skin friction drag and consequently improving fuel efficiency.

  14. A theory for the core flow of leading-edge vortices

    NASA Technical Reports Server (NTRS)

    Luckring, James M.

    1986-01-01

    Separation-induced leading-edge vortices can dominate the flow about slender wings at moderate to high angles of attack, often with favorable aerodynamic effects. However, at the high angles of attack which are desirable for takeoff and landing as well as subsonic-transonic maneuver the vortices can breakdown or burst in the vicinity of the aircraft causing many adverse effects; these include lift loss, pitchup, and buffet. The flow in the core of leading-edge vortices is generally affiliated with the vortex breakdown phenomenon. A theory is presented for the flow in the core of separation-induced, leading-edge vortices at practical Reynolds numbers. The theory is based on matching inner and outer representations of the vortex. The inner representation models continuously distributed vorticity and includes an asymptotic viscous subcore. The outer representation models concentrated spiral sheets of vorticity and is fully three dimensional. A parameter is identified which closely tracks the vortex breakdown stability boundary for delta, arrow, and diamond wings.

  15. Lesson from Tungsten Leading Edge Heat Load Analysis in KSTAR Divertor

    NASA Astrophysics Data System (ADS)

    Hong, Suk-Ho; Pitts, Richard Anthony; Lee, Hyeong-Ho; Bang, Eunnam; Kang, Chan-Soo; Kim, Kyung-Min; Kim, Hong-Tack; ITER Organization Collaboration; Kstar Team Team

    2016-10-01

    An important design issue for the ITER tungsten (W) divertor and in fact for all such components using metallic plasma-facing elements and which are exposed to high parallel power fluxes, is the question of surface shaping to avoid melting of leading edges. We have fabricated a series of tungsten blocks with a variety of leading edge heights (0.3, 0.6, 1.0, and 2.0 mm), from the ITER worst case to heights even beyond the extreme value tested on JET. They are mounted into adjacent, inertially cooled graphite tile installed in the central divertor region of KSTAR, within the field of view of an infra-red (IR) thermography system with a spatial resolution to 0.4 mm/pixel. Adjustment of the outer divertor strike point position is used to deposit power on the different blocks in different discharges. The measured power flux density on flat regions of the surrounding graphite tiles is used to obtain the parallel power flux, q|| impinging on the various W blocks. Experiments have been performed in Type I ELMing H-mode with Ip = 600 kA, BT = 2 T, PNBI = 3.5 MW, leading to a hot attached divertor with typical pulse lengths of 10 s. Three dimensional ANSYS simulations using q|| and assuming geometric projection of the heat flux are found to be consistent with the observed edge loading. This research was partially supported by Ministry of Science, ICT, and Future Planning under KSTAR project.

  16. Controlled vortical flow on delta wings through unsteady leading edge blowing

    NASA Technical Reports Server (NTRS)

    Lee, K. T.; Roberts, Leonard

    1990-01-01

    The vortical flow over a delta wing contributes an important part of the lift - the so called nonlinear lift. Controlling this vortical flow with its favorable influence would enhance aircraft maneuverability at high angle of attack. Several previous studies have shown that control of the vortical flow field is possible through the use of blowing jets. The present experimental research studies vortical flow control by applying a new blowing scheme to the rounded leading edge of a delta wing; this blowing scheme is called Tangential Leading Edge Blowing (TLEB). Vortical flow response both to steady blowing and to unsteady blowing is investigated. It is found that TLEB can redevelop stable, strong vortices even in the post-stall angle of attack regime. Analysis of the steady data shows that the effect of leading edge blowing can be interpreted as an effective change in angle of attack. The examination of the fundamental time scales for vortical flow re-organization after the application of blowing for different initial states of the flow field is studied. Different time scales for flow re-organization are shown to depend upon the effective angle of attack. A faster response time can be achieved at angles of attack beyond stall by a suitable choice of the initial blowing momentum strength. Consequently, TLEB shows the potential of controlling the vortical flow over a wide range of angles of attack; i.e., in both for pre-stall and post-stall conditions.

  17. Simulation of Flow Through Breach in Leading Edge at Mach 24

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Alter, Stephen J.

    2004-01-01

    A baseline solution for CFD Point 1 (Mach 24) in the STS-107 accident investigation was modified to include effects of holes through the leading edge into a vented cavity. The simulations were generated relatively quickly and early in the investigation by making simplifications to the leading edge cavity geometry. These simplifications in the breach simulations enabled: 1) A very quick grid generation procedure; 2) High fidelity corroboration of jet physics with internal surface impingements ensuing from a breach through the leading edge, fully coupled to the external shock layer flow at flight conditions. These simulations provided early evidence that the flow through a 2 inch diameter (or larger) breach enters the cavity with significant retention of external flow directionality. A normal jet directed into the cavity was not an appropriate model for these conditions at CFD Point 1 (Mach 24). The breach diameters were of the same order or larger than the local, external boundary-layer thickness. High impingement heating and pressures on the downstream lip of the breach were computed. It is likely that hole shape would evolve as a slot cut in the direction of the external streamlines. In the case of the 6 inch diameter breach the boundary layer is fully ingested.

  18. Formation and Development of the Dynamic Stall Vortex on a Wing with Leading Edge Tubercles

    NASA Astrophysics Data System (ADS)

    Hrynuk, John; Bohl, Douglas

    2015-11-01

    Humpback whales are unique in that their flippers have leading edge ``bumps'' or tubercles. Past work on airfoils inspired by whale flippers has centered on the static aerodynamic characteristics of these airfoils. The current study uses Molecular Tagging Velocimetry (MTV) to investigate the effects of tubercles on dynamically pitching NACA 0012 airfoils. A baseline (i.e. straight leading edge) wing and one modified with leading edge tubercles are investigated. Tracking of the Dynamic Stall Vortex (DSV) is performed to quantitatively compare the DSV formation location, path, and convective velocity for tubercled and baseline wings. The results show that there is a spanwise variation in the initial formation location and motion of the DSV on the modified wing. Once formed, the DSV aligns into a more uniform spanwise structure. As the pitching motion progresses, the DSV on the modified wing convects away from the airfoil surface later and slower than is observed for the baseline airfoil. The results indicate that the tubercles may delay stall when compared to the baseline airfoil. This work was supported by NSF Grant # 0845882.

  19. Case Studies of Leading Edge Small Urban High Schools. Relevance Strategic Designs: 5. Life Academy of Health and Bioscience

    ERIC Educational Resources Information Center

    Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley

    2008-01-01

    This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…

  20. A Reynolds Number Study of Wing Leading-Edge Effects on a Supersonic Transport Model at Mach 0.3

    NASA Technical Reports Server (NTRS)

    Williams, M. Susan; Owens, Lewis R., Jr.; Chu, Julio

    1999-01-01

    A representative supersonic transport design was tested in the National Transonic Facility (NTF) in its original configuration with small-radius leading-edge flaps and also with modified large-radius inboard leading-edge flaps. Aerodynamic data were obtained over a range of Reynolds numbers at a Mach number of 0.3 and angles of attack up to 16 deg. Increasing the radius of the inboard leading-edge flap delayed nose-up pitching moment to a higher lift coefficient. Deflecting the large-radius leading-edge flap produced an overall decrease in lift coefficient and delayed nose-up pitching moment to even higher angles of attack as compared with the undeflected large- radius leading-edge flap. At angles of attack corresponding to the maximum untrimmed lift-to-drag ratio, lift and drag coefficients decreased while lift-to-drag ratio increased with increasing Reynolds number. At an angle of attack of 13.5 deg., the pitching-moment coefficient was nearly constant with increasing Reynolds number for both the small-radius leading-edge flap and the deflected large-radius leading-edge flap. However, the pitching moment coefficient increased with increasing Reynolds number for the undeflected large-radius leading-edge flap above a chord Reynolds number of about 35 x 10 (exp 6).

  1. Characterization of Unsteady Flow Structures Near Leading-Edge Slat. Part 1; PIV Measurements

    NASA Technical Reports Server (NTRS)

    Jenkins, Luther N.; Khorrami, Mehdi R.; Choudhari, Meelan

    2004-01-01

    A comprehensive computational and experimental study has been performed at the NASA Langley Research Center as part of the Quiet Aircraft Technology (QAT) Program to investigate the unsteady flow near a leading-edge slat of a two-dimensional, high-lift system. This paper focuses on the experimental effort conducted in the NASA Langley Basic Aerodynamics Research Tunnel (BART) where Particle Image Velocimetry (PIV) data was acquired in the slat cove and at the slat trailing edge of a three-element, high-lift model at 4, 6, and 8 degrees angle of attack and a freestream Mach Number of 0.17. Instantaneous velocities obtained from PIV images are used to obtain mean and fluctuating components of velocity and vorticity. The data show the recirculation in the cove, reattachment of the shear layer on the slat lower surface, and discrete vortical structures within the shear layer emanating from the slat cusp and slat trailing edge. Detailed measurements are used to examine the shear layer formation at the slat cusp, vortex shedding at the slat trailing edge, and convection of vortical structures through the slat gap. Selected results are discussed and compared with unsteady, Reynolds-Averaged Navier-Stokes (URANS) computations for the same configuration in a companion paper by Khorrami, Choudhari, and Jenkins (2004). The experimental dataset provides essential flow-field information for the validation of near-field inputs to noise prediction tools.

  2. The effects of leading-edge serrations on reducing flow unsteadiness about airfoils.

    NASA Technical Reports Server (NTRS)

    Schwind, R. G.; Allen, H. J.

    1973-01-01

    High frequency surface pressure measurements were obtained from wind-tunnel tests over the Reynolds number range 1.2 x 1,000,000 to 6.2 x 1,000,000 on a rectangular wing of NACA 63-009 airfoil section. A wide selection of leading-edge serrations were also added to the basic airfoil. Under a two-dimensional laminar bubble very close to the leading edge of the basic airfoil there is a large peak in rms pressure, which is interpreted as an oscillation in size and position of the bubble. The serrations divide the bubble into segments and reduce the peak rms pressures. A low Reynolds number flow visualization test on a hydrofoil in water was also conducted. A von Karman vortex street was found trailing from the rear of the foil. Its frequency is at a much lower Strouhal number than in the high Reynolds number experiment, and is related mathematically to the airfoil trailing-edge and boundary-layer thicknesses.

  3. Analysis of the Flow About Delta Wings with Leading Edge Separation at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Nenni, J. P.; Tung, C.

    1973-01-01

    A research program was conducted to develop an improved theoretical flow model for the flow about sharp edge delta wings with leading-edge separation at supersonic speeds. The flow model incorporates a representation of the secondary separation region which occurs just inboard of the leading edge on such wings and is based on a slender-wing theory whereby the full three-dimensional problem is reduced to a quasi two-dimensional problem in the cross-flow plane. The secondary separation region was modeled by a surface distribution of singularities or a linearized type of cavity representation. The primary vortex and separation were modeled by a concentrated vortex and cut in the cross-flow potential which represents its feeding sheet. The cross-flow solutions for the cavity model were obtained, but these solutions have physical significance only in a very restricted range of angle of attack. The reasons for the failure of the flow model are discussed. The analysis is presented so that other interested researchers may critically review the work.

  4. Precocious reproduction increases at the leading edge of a mangrove range expansion.

    PubMed

    Dangremond, Emily M; Feller, Ilka C

    2016-07-01

    Climate change-driven shifts in species ranges are ongoing and expected to increase. However, life-history traits may interact with climate to influence species ranges, potentially accelerating or slowing range shifts in response to climate change. Tropical mangroves have expanded their ranges poleward in the last three decades. Here, we report on a shift at the range edge in life-history traits related to reproduction and dispersal. With a common garden experiment and field observations, we show that Rhizophora mangle individuals from northern populations reproduce at a younger age than those from southern populations. In a common garden at the northern range limit, 38% of individuals from the northernmost population were reproductive by age 2, but less than 10% of individuals from the southernmost population were reproductive by the same age, with intermediate amounts of reproduction from intermediate latitudes. Field observations show a similar pattern of younger reproductive individuals toward the northern range limit. We also demonstrate a shift toward larger propagule size in populations at the leading range edge, which may aid seedling growth. The substantial increase in precocious reproduction at the leading edge of the R. mangle range could accelerate population growth and hasten the expansion of mangroves into salt marshes.

  5. Prediction of unsteady aerodynamic loadings caused by leading edge and trailing edge control surface motions in subsonic compressible flow: Computer program description

    NASA Technical Reports Server (NTRS)

    Redman, M. C.; Rowe, W. S.

    1975-01-01

    A digital computer program has been developed to calculate unsteady loadings caused by motions of lifting surfaces with leading edge or trailing edge controls based on the subsonic kernel function approach. The pressure singularities at hinge line and side edges have been extracted analytically as a preliminary step to solving the integral equation by collocation. The program calculates generalized aerodynamic forces for user supplied deflection modes. Optional intermediate output includes pressure at an array of points, and sectional generalized forces. From one to six controls on the half span can be accommodated.

  6. Overview of aerothermodynamic loads definition study

    NASA Technical Reports Server (NTRS)

    Gaugler, Raymond E.

    1989-01-01

    Over the years, NASA has been conducting the Advanced Earth-to-Orbit (AETO) Propulsion Technology Program to provide the knowledge, understanding, and design methodology that will allow the development of advanced Earth-to-orbit propulsion systems with high performance, extended service life, automated operations, and diagnostics for in-flight health monitoring. The objective of the Aerothermodynamic Loads Definition Study is to develop methods to more accurately predict the operating environment in AETO propulsion systems, such as the Space Shuttle Main Engine (SSME) powerhead. The approach taken consists of 2 parts: to modify, apply, and disseminate existing computational fluid dynamics tools in response to current needs and to develop new technology that will enable more accurate computation of the time averaged and unsteady aerothermodynamic loads in the SSME powerhead. The software tools are detailed. Significant progress was made in the area of turbomachinery, where there is an overlap between the AETO efforts and research in the aeronautical gas turbine field.

  7. Effects of Alternate Leading Edge Cutback on the Space Shuttle Main Engine Low Pressure Fuel Pump

    NASA Technical Reports Server (NTRS)

    Mulder, Andrew; Skelley, Stephen

    2016-01-01

    A higher order cavitation oscillation observed in the SSME low pressure fuel pump has been eliminated in water flow testing of a modified subscale replica of the inducer. The low pressure pump was modified by removing the outboard sections of two opposing blades of the four-bladed inducer, blending the "cutback" regions into the blades at the leading edge and tip, and removing material on the suction sides to decrease the exposed leading edge thickness. The leading edge tips of the cutback blades were moved approximately 25 degrees from their previous locations, thereby increasing one blade to blade spacing, decreasing the second, while simultaneously moving the cutback tips downstream. The test was conducted in MSFC's inducer test loop at scaled operating conditions in degassed and filtered water. In addition to eliminating HOC across the entire scaled operating regime, rotating cavitation was suppressed while the range of both alternate blade and asymmetric cavitation were increased. These latter phenomena, and more significantly, the shifts between these cavitation modes also resulted in significant changes to the head coefficient at low cavitation numbers. Reverse flow was detected at a slightly larger flow coefficient with the cutback inducer and suction capability was reduced by approximately 1 velocity head at and above approximately 90% of the reference flow coefficient. These performance changes along with more intense reverse flow are consistent with poor flow area management and increased incidence in the cutback region. Although the test demonstrated that the inducer modification was successful at eliminating the higher order cavitation across the entire scaled operating regime, different, previously unobserved, cavitation oscillations were introduced and significant performance penalties were imposed.

  8. Flexible Metallic Overwrap Concept Developed for On-Orbit Repair of Space Shuttle Orbiter Leading Edges

    NASA Technical Reports Server (NTRS)

    Ritzert, Frank J.; Nesbitt, James A.

    2005-01-01

    The Columbia accident has focused attention on the critical need for on-orbit repair concepts for leading edges in the event that damage is incurred during space shuttle orbiter flight. Damage that is considered as potentially catastrophic for orbiter leading edges ranges from simple cracks to holes as large as 16 in. in diameter. NASA is particularly interested in examining potential solutions for areas of larger damage since such a problem was identified as the cause for the Columbia disaster. One possible idea for the on-orbit repair of the reinforced carbon/carbon (RCC) leading edges is an overwrap concept that would use a metallic sheet flexible enough to conform to the contours of the orbiter and robust enough to protect any problem area from catastrophic failure during reentry. The simplified view of the application of a refractory metal sheet over a mockup of shuttle orbiter panel 9, which experiences the highest temperatures on the shuttle during reentry is shown. The metallic overwrap concept is attractive because of its versatility as well as the ease with which it can be included in an onboard repair kit. Reentry of the orbiter into Earth's atmosphere imposes extreme requirements on repair materials. Temperatures can exceed 1650 C for up to 15 min in the presence of an extremely oxidizing plasma environment. Several other factors are critical, including catalysity, emissivity, and vibrational and aerodynamic loads. Materials chosen for this application will need to be evaluated with respect to high-temperature capability, resistance to oxidation, strength, coefficient of thermal expansion, and thermal conductivity. The temperature profile across panel 9 during reentry as well as a schematic of the overwrap concept itself is shown.

  9. Flow visualization of leading-edge vortex enhancement by spanwise blowing. [swept wings - wind tunnel stability tests

    NASA Technical Reports Server (NTRS)

    Erickson, G. E.; Campbell, J. F.

    1975-01-01

    Flow visualization studies were conducted in a small pilot wind tunnel to determine qualitative effects of blowing a discrete jet essentially parallel to the leading edge of a 45 deg-swept trapezoidal wing featuring leading- and trailing-edge flaps. Test parameters included wing angle-of-attack, jet momentum coefficient, leading- and trailing-edge flap deflections, and nozzle chordwise displacement. Results of this study indicate that blowing from a reflection plane over the wing enhances the leading-edge vortex and delays vortex bursting to higher angles-of-attack and greater span distances. Increased blowing rates decrease vortex size, growth rate, and vertical displacement above the wing surface at a given span station and also extend the spanwise effectiveness of lateral blowing. Deflection of a leading-edge flap delays the beneficial effects of spanwise blowing to higher angles-of-attack. Nozzle chordwise locations investigated for the wing with and without leading-edge flap deflection appear equally effective in enhancing the separated leading-edge flow.

  10. Hypersonic aerospace vehicle leading-edge cooling using heat-pipe, transpiration and film-cooling techniques

    SciTech Connect

    Modlin, J.M.

    1991-01-01

    The feasibility of cooling hypersonic-vehicle leading-edge structures exposed to severe aerodynamic surface heat fluxes was studied, using a combination of liquid-metal heat pipes and surface-mass-transfer cooling techniques. A generalized, transient, finite-difference-based hypersonic leading-edge cooling model was developed that incorporated these effects and was demonstrated on an assumed aerospace plane-type wing leading edge section and a SCRAMJET engine inlet leading-edge section. The hypersonic leading-edge cooling model was developed using an existing, experimentally verified heat-pipe model. Then the existing heat-pipe model was modified by adding both transpiration and film-cooling options as new surface boundary conditions. The models used to predict the leading-edge surface heat-transfer reduction effects of the transpiration and film cooling were modifications of more-generalized, empirically based models obtained from the literature. It is concluded that cooling leading-edge structures exposed to severe hypersonic-flight environments using a combination of liquid-metal heat pipe, surface transpiration, and film cooling methods appears feasible.

  11. Aerothermodynamic Insight From The HIFIRE Program

    NASA Astrophysics Data System (ADS)

    Kimmel, Roger L.; Adamczak, David; Dolvin, Douglas; Borg, Matthew; Stanfield, Scott

    2011-05-01

    The HIFiRE (Hypersonic International Flight Research and Experimentation) program is a joint venture of the United States Air Force Research Laboratory and Australian Defence Science and Technology Organisation to utilize economical flight research opportunities in the exploration of flight science issues for space access systems. Flights 1 and 5 focus on collecting high-resolution experimental data on critical aerothermodynamic phenomena, including laminar-turbulent transition and shock/boundary layer interactions. Flight 1, successfully flown in March 2010, employed a test article composed of a 7-deg right angle cone, followed by a cylinder and flare. The test article remained attached to the second-stage booster throughout the ballistic trajectory. Flight 5, to be launched in a similar fashion, will feature a 2:1 elliptic cross-section cone as the test article. For both flights significant resources have been invested in pre-flight aerothermodynamic analysis and testing. This manuscript will summarize the overall strategy of the HIFiRE program, review the pre-flight aerothermodynamic analysis for Flights 1 and 5, and present a brief look at preliminary results from the post-flight analysis of Flight 1.

  12. The Leading Edge 250: Oblique wing aircraft configuration project, volume 4

    NASA Technical Reports Server (NTRS)

    Schmidt, Andre; Moore, Peri; Nguyen, Dan; Oganesyan, Petros; Palmer, Charles

    1988-01-01

    The design of a high speed transport aircraft using the oblique wing concept as a part of the High Speed Civil Transport (HSCT) aircraft study is the Leading Edge 250 capable of travelling at Mach 4 with 250 passengers and has a 6,500 nautical mile range. Its innovation lies within its use of the unconventional oblique wing to provide efficient flight at any Mach number. Wave drag is kept to a minimum at high speed, while high lift is attained during critical takeoff and landing maneuvers by varying the sweep of the wing.

  13. Estimating Blade Section Airloads from Blade Leading-Edge Pressure Measurements

    NASA Technical Reports Server (NTRS)

    vanAken, Johannes M.

    2003-01-01

    The Tilt-Rotor Aeroacoustic Model (TRAM) test in the Duitse-Nederlandse Wind (DNW) Tunnel acquired blade pressure data for forward flight test conditions of a tiltrotor in helicopter mode. Chordwise pressure data at seven radial locations were integrated to obtain the blade section normal force. The present investigation evaluates the use of linear regression analysis and of neural networks in estimating the blade section normal force coefficient from a limited number of blade leading-edge pressure measurements and representative operating conditions. These network models are subsequently used to estimate the airloads at intermediate radial locations where only blade pressure measurements at the 3.5% chordwise stations are available.

  14. Measurement of Leading Edge Vortices from a Delta Wing Using a Three Component Laser Velocimeter

    NASA Technical Reports Server (NTRS)

    Meyers, James F.; Hepner, Timothy E.

    1988-01-01

    A demonstration of the capabilities of a three component laser velocimeter to provide a detailed experimental database of a complex flow field i s presented. The orthogonal three component laser velocimeter was used to measure the leading edge vortex flow field above a 75 degrees delta wing at angles-of-attack of 20.5 degrees and 40.0 degrees. The resulting mean velocity and turbulence intensity measurements are presented. The laser velocimeter is described in detail including a description of the data processing algorithm. A full error analysis was conducted and the results presented.

  15. Case study: on the leading edge of new curricula concepts: systems and safety in nursing education.

    PubMed

    Dick, Diana Davidson; Weisbrod, Lorna; Gregory, David; Dyck, Netha; Neudorf, Kim

    2006-09-01

    The Nursing Division of the Saskatchewan Institute of Applied Science and Technology (SIAST) first included systems and patient safety as a priority in its institutional business and strategic plan in 2003. Three interrelated leading-edge, two-year projects (2004-2006) were launched: Best Practice, Mentorship and Patient Safety, with the intent that each project would enhance the others. This case study focuses on the work of the Patient Safety Project Team. The team developed a project framework and strategic plan, conducted a literature review and identified key concepts related to systems and patient safety. Strategies to integrate these concepts into the school's 15 nursing education programs are being implemented.

  16. Initial development of an ablative leading edge for the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Daforno, G.; Rose, L.; Graham, J.; Roy, P.

    1974-01-01

    A state-of-the-art preliminary design for typical wing areas is developed. Seven medium-density ablators (with/without honeycomb, flown on Apollo, Prime, X15A2) are evaluated. The screening tests include: (1) leading-edge models sequentially subjected to ascent heating, cold soak, entry heating, post-entry pressure fluctuations, and touchdown shock, and (2) virgin/charred models subjected to bondline strains. Two honeycomb reinforced 30 pcf elastomeric ablators were selected. Roughness/recession degradation of low speed aerodynamics appears acceptable. The design, including attachments, substructure and joints, is presented.

  17. Compressible Navier-Stokes equations: A study of leading edge effects

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Karbhari, P. R.

    1987-01-01

    A computational method is developed that allows numerical calculations of the time dependent compressible Navier-Stokes equations.The current results concern a study of flow past a semi-infinite flat plate.Flow develops from given inflow conditions upstream and passes over the flat plate to leave the computational domain without reflecting at the downstream boundary. Leading edge effects are included in this paper. In addition, specification of a heated region which gets convected with the flow is considered. The time history of this convection is obtained, and it exhibits a wave phenomena.

  18. Electrogasdynamic excitation of controlling disturbances near a swept wing leading edge

    NASA Astrophysics Data System (ADS)

    Chernyshev, Sergey; Kiselev, Andrey; Kuryachii, Aleksandr

    2016-10-01

    New design of multiple plasma actuator intended for the excitation of disturbances in boundary layer near a leading edge of a swept wing is proposed. The excited disturbances have to suppress the cross-flow-type instability modes provoking laminar-to-turbulent transition in usual conditions. Numerical modeling of the excitation of controlling disturbances by plasma actuator has been executed in stationary approximation for the case of infinite span swept wing at subsonic cruise flight conditions. Localized volumetric force and heat impact of actuator periodic along a wing span has been considered. Calculations have been executed for physical parameters of impact typical for surface dielectric barrier discharge.

  19. An attached flow design of a noninterfering leading edge extension to a thick delta wing

    NASA Technical Reports Server (NTRS)

    Ghaffari, F.; Lamar, J. E.

    1985-01-01

    The analytical procedure presented for leading edge extension (LEE) determination, in keeping with such design criteria as noninterference at the wing design point, is applied to thick delta wings. The LEE device thus defined is to be mounted on a wing along a dividing stream surface that is associated with an attached flow design lift coefficient greater than zero. The delta wing in question is of twisted and cambered type. It is demonstrated that span reductions for the candidate LEEs has the most detrimental effect on overall aerodynamic efficiency, irrespective of area or shape.

  20. Analysis of In-Flight Structural Failures of P-3C Wing Leading Edge Segments

    DTIC Science & Technology

    1992-06-01

    the remaining distance from the outboard engines to the wing tips. The length (fore and aft) of these leading-edge sections is 15% of the chord (total... Chord , Root (ft) 18.9 Tip 7.6 Aileron Area, S. (ft 2 ) 45.5 Hinge Line (cw) 0.725 Deflection Limit, Up (degrees) -23.3 Down +16.2 Horizontal Tail Area...playing a large role in the problem because of the location of the wing’s elastic axis at a constant 40 percent of chord , according to available

  1. Spanwise pressure distribution on delta wing with leading-edge vortex flap

    NASA Technical Reports Server (NTRS)

    Reddy, C. S.

    1987-01-01

    The aerodynamic characteristics of a highly swept planar delta wing employing conical leading edge flaps are numerically investigated, using a free vortex sheet method that is based on an advanced, three-dimensional inviscid flow panel method employing quadratic doublet distributions to represent the wing surface and the rolled-up vortex sheet and wake. Upward flap deflection shifts the negative pressure peak inboard of the basic wing and develops a significant suction pressure on the flap that then produces thrust component in the direction of flight; overall drag is thereby reduced.

  2. Compilation of Information on the Transonic Attachment of Flows at the Leading Edges of Airfoils

    NASA Technical Reports Server (NTRS)

    Lindsey, Walter F; Landrum, Emma Jean

    1958-01-01

    Schlieren photographs have been compiled of the two-dimensional flow at transonic speeds past 37 airfoils. These airfoils have variously shaped profiles, and some are related in thickness and camber. The data for these airfoils were analyzed to provide basic information on the flow changes involved and to determine factors affecting transonic-flow attachment, which is a transition from separated to unseparated flow at the leading edges of two-dimensional airfoils at fixed angles as the subsonic Mach number is increased.

  3. Nondestructive Evaluation Tests Performed on Space Shuttle Leading- Edge Materials Subjected to Impact

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Martin, Richard E.; Bodis, James R.

    2005-01-01

    In support of the space shuttle Return To Flight efforts at the NASA Glenn Research Center, a series of nondestructive evaluation (NDE) tests were performed on reinforced carbon/carbon (RCC) composite panels subjected to ballistic foam impact. The impact tests were conducted to refine and verify analytical models of an external tank foam strike on the space shuttle leading edge. The NDE tests were conducted to quantify the size and location of the resulting damage zone as well as to identify hidden damage.

  4. Increased heat transfer to elliptical leading edges due to spanwise variations in the freestream momentum: Numerical and experimental results

    NASA Technical Reports Server (NTRS)

    Rigby, D. L.; Vanfossen, G. J.

    1992-01-01

    A study of the effect of spanwise variation in momentum on leading edge heat transfer is discussed. Numerical and experimental results are presented for both a circular leading edge and a 3:1 elliptical leading edge. Reynolds numbers in the range of 10,000 to 240,000 based on leading edge diameter are investigated. The surface of the body is held at a constant uniform temperature. Numerical and experimental results with and without spanwise variations are presented. Direct comparison of the two-dimensional results, that is, with no spanwise variations, to the analytical results of Frossling is very good. The numerical calculation, which uses the PARC3D code, solves the three-dimensional Navier-Stokes equations, assuming steady laminar flow on the leading edge region. Experimentally, increases in the spanwise-averaged heat transfer coefficient as high as 50 percent above the two-dimensional value were observed. Numerically, the heat transfer coefficient was seen to increase by as much as 25 percent. In general, under the same flow conditions, the circular leading edge produced a higher heat transfer rate than the elliptical leading edge. As a percentage of the respective two-dimensional values, the circular and elliptical leading edges showed similar sensitivity to span wise variations in momentum. By equating the root mean square of the amplitude of the spanwise variation in momentum to the turbulence intensity, a qualitative comparison between the present work and turbulent results was possible. It is shown that increases in leading edge heat transfer due to spanwise variations in freestream momentum are comparable to those due to freestream turbulence.

  5. Localized deformation zones in the offshore leading edge of the Yakutat microplate, Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Lowe, L. A.; Gulick, S. P.; Pavlis, T.; Bruhn, R. L.; Mann, P.

    2006-12-01

    The Gulf of Alaska margin is dominated by the collision and subduction of the Yakutat microplate as it travels northwest with respect to North America at near Pacific Plate velocities (\\~45 mm/yr). The oblique Yakutat block collision with North America is in transition between convergence to the west and translation along the Queen Charlotte-Fairweather-Denali Fault system to the east and north. Industry seismic reflection and high- resolution seismic reflection data collected by the R/V Maurice Ewing (2004) provides insight into how the Yakutat-North America collision is accommodated by active offshore structures near the leading edge of the Yakutat microplate. A \\~200 km wide area bounded by the Ten Fathom Fault, the offshore N. America-Yakutat contact, to the west and the eastern edge of the Pamplona Zone (PZ) to the east has previously been mapped as a continuous deformation zone consisting of NE-SW trending imbricate thrusts and folds. Though this mapping corroborates onshore measurements of active deformation west of the Bering Glacier in the Yakutat block, the relationship between current onshore deformation and the observed offshore structures remains unclear. Our observations indicate that neotectonic deformation is accommodated offshore by highly localized, asynchronous thrusts that, when analyzed in an accretionary context, may be connected by a sub-horizontal decollement. Data from the eastern edge of the PZ, the proposed deformation front, shows surface deformation caused by east-verging thrust faults. Seismic reflection profiles in the western PZ and the Bering Trough show no evidence of active tectonic deformation and up to \\~200 m of undisturbed sediments indicating that faulting in this part of the Yakutat block has been inactive since the Last Glacial Maximum or earlier. Farther west, above the Kayak Island fault zone, directly east of the Ten Fathom Fault, the presence of up to \\~50 m of undeformed sediments suggests a recent (ca. 14 ka

  6. Subsonic balance and pressure investigation of a 60-deg delta wing with leading-edge devices (data report)

    NASA Technical Reports Server (NTRS)

    Rao, D. M.; Tingas, S. A.

    1981-01-01

    The drag reduction potential of leading edge devices on a 60 degree delta wing at high lift was examined. Geometric variations of fences, chordwise slots, pylon type vortex generators, leading edge vortex flaps, and sharp leading edge extensions were tested individually and in specific combinations to improve high-alpha drag performance with a minimum of low-alpha drag penalty. The force, moment, and surface static pressure data for angles of attack up to 23 degrees, at Mach and Reynolds numbers of 0.16 and 3.85 x 10 to the 6th power per meter are documented.

  7. Low-order phenomenological modeling of leading-edge vortex formation

    NASA Astrophysics Data System (ADS)

    Wang, Chengjie; Eldredge, Jeff D.

    2013-09-01

    A low-order point vortex model for the two-dimensional unsteady aerodynamics of a flat plate wing section is developed. A vortex is released from both the trailing and leading edges of the flat plate, and the strength of each is determined by enforcing the Kutta condition at the edges. The strength of a vortex is frozen when it reaches an extremum, and a new vortex is released from the corresponding edge. The motion of variable-strength vortices is computed in one of two ways. In the first approach, the Brown-Michael equation is used in order to ensure that no spurious force is generated by the branch cut associated with each vortex. In the second approach, we propose a new evolution equation for a vortex by equating the rate of change of its impulse with that of an equivalent surrogate vortex with identical properties but constant strength. This impulse matching approach leads to a model that admits more general criteria for shedding, since the variable-strength vortex can be exchanged for its constant-strength surrogate at any instant. We show that the results of the new model, when applied to a pitching or perching plate, agree better with experiments and high-fidelity simulations than the Brown-Michael model, using fewer than ten degrees of freedom. We also assess the model performance on the impulsive start of a flat plate at various angles of attack. Current limitations of the model and extensions to more general unsteady aerodynamic problems are discussed.

  8. Analytical observations on the aerodynamics of a delta wing with leading edge flaps

    NASA Technical Reports Server (NTRS)

    Oh, S.; Tavella, D.

    1986-01-01

    The effect of a leading edge flap on the aerodynamics of a low aspect ratio delta wing is studied analytically. The separated flow field about the wing is represented by a simple vortex model composed of a conical straight vortex sheet and a concentrated vortex. The analysis is carried out in the cross flow plane by mapping the wing trace, by means of the Schwarz-Christoffel transformation into the real axis of the transformed plane. Particular attention is given to the influence of the angle of attack and flap deflection angle on lift and drag forces. Both lift and drag decrease with flap deflection, while the lift-to-drag ratioe increases. A simple coordinate transformation is used to obtain a closed form expression for the lift-to-drag ratio as a function of flap deflection. The main effect of leading edge flap deflection is a partial suppression of the separated flow on the leeside of the wing. Qualitative comparison with experiments is presented, showing agreement in the general trends.

  9. Leading edge vortex dynamics on a pitching delta wing. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Lemay, Scott P.

    1988-01-01

    The leading edge flow structure was investigated on a 70 deg flat plate delta wing which was pitched about its 1/2 chord position, to increase understanding of the high angle of attack aerodynamics on an unsteady delta wing. The wing was sinusoidally pitched at reduced frequencies ranging from k being identical with 2pi fc/u = 0.05 to 0.30 at chord Reynolds numbers between 90,000 and 350,000, for angle of attack ranges of alpha = 29 to 39 deg and alpha = 0 to 45 deg. The wing was also impulsively pitched at an approximate rate of 0.7 rad/s. During these dynamic motions, visualization of the leading edge vorticies was obtained by entraining titanium tetrachloride into the flow at the model apex. The location of vortex breakdown was recorded using 16mm high speed motion picture photography. When the wing was sinusoidally pitched, a hysteresis was observed in the location of breakdown position. This hysteresis increased with reduced frequency. The velocity of breakdown propagation along the wing, and the phase lag between model motion and breakdown location were also determined. When the wing was impulsively pitched, several convective times were required for the vortex flow to reach a steady state. Detailed information was also obtained on the oscillation of breakdown position in both static and dynamic cases.

  10. Dynamic Impact Tolerance of Shuttle RCC Leading Edge Panels using LS-DYNA

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin; Jackson, Karen E.; Lyle, Karen H.; Jones, Lisa E.; Hardy, Robin C.; Spellman, Regina L.; Carney, Kelly S.; Melis, Matthew E.; Stockwell, Alan E.

    2008-01-01

    This paper describes a research program conducted to enable accurate prediction of the impact tolerance of the shuttle Orbiter leading-edge wing panels using 'physics-based- codes such as LS-DYNA, a nonlinear, explicit transient dynamic finite element code. The shuttle leading-edge panels are constructed of Reinforced-Carbon-Carbon (RCC) composite material, which issued because of its thermal properties to protect the shuttle during re-entry into the Earth's atmosphere. Accurate predictions of impact damage from insulating foam and other debris strikes that occur during launch required materials characterization of expected debris, including strain-rate effects. First, analytical models of individual foam and RCC materials were validated. Next, analytical models of individual foam cylinders impacting 6-in. x 6-in. RCC flat plates were developed and validated. LS-DYNA pre-test models of the RCC flat plate specimens established the impact velocity of the test for three damage levels: no-detectable damage, non-destructive evaluation (NDE) detectable damage, or visible damage such as a through crack or hole. Finally, the threshold of impact damage for RCC on representative Orbiter wing panels was predicted for both a small through crack and for NDE-detectable damage.

  11. Dynamics Impact Tolerance of Shuttle RCC Leading Edge Panels Using LS-DYNA

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Jones, Lisa E.; Hardy, Robin C.; Spellman, Regina L.; Carney, Kelly S.; Melis, Matthew E.; Stockwell, Alan E.

    2005-01-01

    This paper describes a research program conducted to enable accurate prediction of the impact tolerance of the shuttle Orbiter leading-edge wing panels using physics-based codes such as LS-DYNA, a nonlinear, explicit transient dynamic finite element code. The shuttle leading-edge panels are constructed of Reinforced-Carbon-Carbon (RCC) composite material, which is used because of its thermal properties to protect the shuttle during reentry into the Earth's atmosphere. Accurate predictions of impact damage from insulating foam and other debris strikes that occur during launch required materials characterization of expected debris, including strain-rate effects. First, analytical models of individual foam and RCC materials were validated. Next, analytical models of foam cylinders impacting 6- in. x 6-in. RCC flat plates were developed and validated. LS-DYNA pre-test models of the RCC flat plate specimens established the impact velocity of the test for three damage levels: no-detectable damage, non-destructive evaluation (NDE) detectable damage, or visible damage such as a through crack or hole. Finally, the threshold of impact damage for RCC on representative Orbiter wing panels was predicted for both a small through crack and for NDE-detectable damage.

  12. Navier-Stokes analysis of airfoils with leading edge ice accretions

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark G.

    1993-01-01

    A numerical analysis of the flowfield characteristics and the performance degradation of an airfoil with leading edge ice accretions was performed. The important fluid dynamic processes were identified and calculated. Among these were the leading edge separation bubble at low angles of attack, complete separation on the low pressure surface resulting in premature shell, drag rise due to the ice shape, and the effects of angle of attack on the separated flow field. Comparisons to experimental results were conducted to confirm these calculations. A computer code which solves the Navier-Stokes equations in two dimensions, ARC2D, was used to perform the calculations. A Modified Mixing Length turbulence model was developed to produce grids for several ice shape and airfoil combinations. Results indicate that the ability to predict overall performance characteristics, such as lift and drag, at low angles of attack is excellent. Transition location is important for accurately determining separation bubble shape. Details of the flowfield in and downstream of the separated regions requires some modifications. Calculations for the stalled airfoil indicate periodic shedding of vorticity that was generated aft of the ice accretion. Time averaged pressure values produce results which compare favorably with experimental information. A turbulence model which accounts for the history effects in the flow may be justified.

  13. Experimental Measurement and CFD Model Development of Thick Wind Turbine Airfoils with Leading Edge Erosion

    NASA Astrophysics Data System (ADS)

    Maniaci, David C.; White, Edward B.; Wilcox, Benjamin; Langel, Christopher M.; van Dam, C. P.; Paquette, Joshua A.

    2016-09-01

    Leading edge erosion and roughness accumulation is an issue observed with great variability by wind plant operators, but with little understanding of the effect on wind turbine performance. In wind tunnels, airfoil models are typically tested with standard grit roughness and trip tape to simulate the effects of roughness and erosion observed in field operation, but there is a lack of established relation between field measurements and wind tunnel test conditions. A research collaboration between lab, academic, and industry partners has sought to establish a method to estimate the effect of erosion in wind turbine blades that correlates to roughness and erosion measured in the field. Measurements of roughness and erosion were taken off of operational utility wind turbine blades using a profilometer. The field measurements were statistically reproduced in the wind tunnel on representative tip and midspan airfoils. Simultaneously, a computational model was developed and calibrated to capture the effect of roughness and erosion on airfoil transition and performance characteristics. The results indicate that the effects of field roughness fall between clean airfoil performance and the effects of transition tape. Severe leading edge erosion can cause detrimental performance effects beyond standard roughness. The results also indicate that a heavily eroded wind turbine blade can reduce annual energy production by over 5% for a utility scale wind turbine.

  14. Reynolds number effects on leading edge vortex development on a waving wing

    NASA Astrophysics Data System (ADS)

    Jones, A. R.; Babinsky, H.

    2011-07-01

    The waving wing experiment is a fully three-dimensional simplification of the flapping wing motion observed in nature. The spanwise velocity gradient and wing starting and stopping acceleration that exist on an insect-like flapping wing are generated by rotational motion of a finite span wing. The flow development around a waving wing at Reynolds number between 10,000 and 60,000 has been studied using flow visualization and high-speed PIV to capture the unsteady velocity field. Lift and drag forces have been measured over a range of angles of attack, and the lift curve shape was similar in all cases. A transient high-lift peak approximately 1.5 times the quasi-steady value occurred in the first chord length of travel, caused by the formation of a strong attached leading edge vortex. This vortex appears to develop and shed more quickly at lower Reynolds numbers. The circulation of the leading edge vortex has been measured and agrees well with force data.

  15. Analog filtering methods improve leading edge timing performance of multiplexed SiPMs

    NASA Astrophysics Data System (ADS)

    Bieniosek, M. F.; Cates, J. W.; Grant, A. M.; Levin, C. S.

    2016-08-01

    Multiplexing many SiPMs to a single readout channel is an attractive option to reduce the readout complexity of high performance time of flight (TOF) PET systems. However, the additional dark counts and shaping from each SiPM cause significant baseline fluctuations in the output waveform, degrading timing measurements using a leading edge threshold. This work proposes the use of a simple analog filtering network to reduce the baseline fluctuations in highly multiplexed SiPM readouts. With 16 SiPMs multiplexed, the FWHM coincident timing resolution for single 3~\\text{mm}× 3~\\text{mm}× 20 mm LYSO crystals was improved from 401  ±  4 ps without filtering to 248  ±  5 ps with filtering. With 4 SiPMs multiplexed, using an array of 3~\\text{mm}× 3~\\text{mm}× 20 mm LFS crystals the mean time resolution was improved from 436  ±  6 ps to 249  ±  2 ps. Position information was acquired with a novel binary positioning network. All experiments were performed at room temperature with no active temperature regulation. These results show a promising technique for the construction of high performance multiplexed TOF PET readout systems using analog leading edge timing pickoff.

  16. Polarization of chemokine receptors to the leading edge during lymphocyte chemotaxis.

    PubMed

    Nieto, M; Frade, J M; Sancho, D; Mellado, M; Martinez-A, C; Sánchez-Madrid, F

    1997-07-07

    Leukocyte migration in response to cell attractant gradients or chemotaxis is a key phenomenon both in cell movement and in the inflammatory response. Chemokines are quite likely to be the key molecules directing migration of leukocytes that involve cell polarization with generation of specialized cell compartments. The precise mechanism of leukocyte chemoattraction is not known, however. In this study, we demonstrate that the CC chemokine receptors CCR2 and CCR5, but not cytokine receptors such as interleukin (IL)-2Ralpha, IL-2Rbeta, tumor necrosis factor receptor 1, or transforming growth factor betaR, are redistributed to a pole in T cells that are migrating in response to chemokines. Immunofluorescence and confocal microscopy studies show that the chemokine receptors concentrate at the leading edge of the cell on the flattened cell-substratum contact area, induced specifically by the signals that trigger cell polarization. The redistribution of chemokine receptors is blocked by pertussis toxin and is dependent on cell adhesion through integrin receptors, which mediate cell migration. Chemokine receptor expression on the leading edge of migrating polarized lymphocytes appears to act as a sensor mechanism for the directed migration of leukocytes through a chemoattractant gradient.

  17. The leading-edge stall of airfoils with various nose shapes

    NASA Astrophysics Data System (ADS)

    Kraljic, Matthew; Rusak, Zvi; Wang, Shixiao

    2015-11-01

    We study the inception of leading-edge stall on stationary, smooth thin airfoils with various nose shapes of the form xa (where 0 < a < 1 / 2) at low to moderately high chord Reynolds number flows. A reduced-order, multi-scale model problem is developed and solved using numerical simulations. The asymptotic theory demonstrates that a subsonic flow about a thin airfoil can be described in terms of an outer region, around most of the airfoil's chord, and an inner region, around the nose, that asymptotically match each other. The flow in the outer region is dominated by the classical thin airfoil theory. Scaled (magnified) coordinates and a modified (smaller) Reynolds number ReM are used to correctly account for the nonlinear behavior and extreme velocity changes in the inner region, where both the near-stagnation and high suction areas occur. The inner region problem is solved numerically to determine the inception of leading-edge stall on the nose. It is found that stall is delayed to higher angles of attack with the decrease of nose parameter a. Specifically, new airfoil shapes are proposed with increased stall angle at subsonic speeds and higher critical Mach numbers at transonic speeds.

  18. Measurements in a leading-edge separation bubble due to a simulated airfoil ice accretion

    NASA Technical Reports Server (NTRS)

    Bragg, M. B.; Khodadoust, A.; Spring, S. A.

    1992-01-01

    The separation bubble formed on an airfoil at low Reynolds number behind a simulated leading-edge glaze ice accretion is studied experimentally. Surface pressure and split hot-film measurements as well as flow visualization studies of the bubble reattachment point are reported. The simulated ice generates an adverse pressure gradient that causes a laminar separation bubble of the long bubble type to form. The boundary layer separates at a location on the ice accretion that is independent of angle of attack and reattaches at a downstream location 5-40 percent chord behind the leading edge, depending on the angle of attack. Velocity profiles show a large region of reverse flow that extends up from the airfoil surface as much as 2.5 percent chord. After reattachment, a thick distorted turbulent boundary layer exists. The separation bubble growth and reattachment are clearly seen in the plots of boundary-layer momentum thickness vs surface distance. Local minima and maxima in the boundary-layer momentum thickness development compare well with the shear layer transition point as indicated by the surface pressures and the reattachment point as measured from surface oil flow, respectively.

  19. Experimental investigation of the transonic flow around the leading edge of an eroded fan airfoil

    NASA Astrophysics Data System (ADS)

    Klinner, Joachim; Hergt, Alexander; Willert, Christian

    2014-09-01

    The influence of leading edge modification on the time-averaged and instantaneous flow around a fan airfoil is investigated by particle image velocimetry (PIV), schlieren imaging and high-speed shock shadowgraphs in a transonic cascade windtunnel. In addition to a global characterization of the time-averaged flow using PIV, the instantaneous passage shock position was extracted from single-shot PIV measurements by matching the tracer velocity across the normal shock with an exponential fit. The instantaneous shock positions are assigned to a probability density distribution in order to obtain the average position and the range of fluctuations of the eroded and reference leading edge. The profiles are used to estimate the response time of the particles to the normal shock which was found to be in the sub-microsecond range. Averaged PIV measurements and the probability density of shock position from both geometries are obtained at near stall and choked conditions. In order to extract the frequency range of the shock motion, the shadow of the shock wave was tracked using high-speed shadowgraphy. The paper also provides details on the experimental implementation such as a specifically designed light-sheet probe.

  20. The effects of leading edge and downstream film cooling on turbine vane heat transfer

    NASA Technical Reports Server (NTRS)

    Hylton, L. D.; Nirmalan, V.; Sultanian, B. K.; Kaufman, R. M.

    1988-01-01

    The progress under contract NAS3-24619 toward the goal of establishing a relevant data base for use in improving the predictive design capabilities for external heat transfer to turbine vanes, including the effect of downstream film cooling with and without leading edge showerhead film cooling. Experimental measurements were made in a two-dimensional cascade previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils under contract NAS3-22761 and leading edge showerhead film cooled airfoils under contract NAS3-23695. The principal independent parameters (Mach number, Reynolds number, turbulence, wall-to-gas temperature ratio, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio) were maintained over ranges consistent with actual engine conditions and the test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. Data provide a data base for downstream film cooled turbine vanes and extends the data bases generated in the two previous studies. The vane external heat transfer obtained indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The data obtained and presented illustrate the interaction of the variables and should provide the airfoil designer and computational analyst the information required to improve heat transfer design capabilities for film cooled turbine airfoils.

  1. Experimental Study of Shock Wave Interference Heating on a Cylindrical Leading Edge. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wieting, Allan R.

    1987-01-01

    An experimental study of shock wave interference heating on a cylindrical leading edge representative of the cowl of a rectangular hypersonic engine inlet at Mach numbers of 6.3, 6.5, and 8.0 is presented. Stream Reynolds numbers ranged from 0.5 x 106 to 4.9 x 106 per ft. and stream total temperature ranged from 2100 to 3400 R. The model consisted of a 3" dia. cylinder and a shock generation wedge articulated to angles of 10, 12.5, and 15 deg. A fundamental understanding was obtained of the fluid mechanics of shock wave interference induced flow impingement on a cylindrical leading edge and the attendant surface pressure and heat flux distributions. The first detailed heat transfer rate and pressure distributions for two dimensional shock wave interference on a cylinder was provided along with insight into the effects of specific heat variation with temperature on the phenomena. Results show that the flow around a body in hypersonic flow is altered significantly by the shock wave interference pattern that is created by an oblique shock wave from an external source intersecting the bow shock wave produced in front of the body.

  2. The effects of leading edge and downstream film cooling on turbine vane heat transfer

    NASA Astrophysics Data System (ADS)

    Hylton, L. D.; Nirmalan, V.; Sultanian, B. K.; Kaufman, R. M.

    1988-11-01

    The progress under contract NAS3-24619 toward the goal of establishing a relevant data base for use in improving the predictive design capabilities for external heat transfer to turbine vanes, including the effect of downstream film cooling with and without leading edge showerhead film cooling. Experimental measurements were made in a two-dimensional cascade previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils under contract NAS3-22761 and leading edge showerhead film cooled airfoils under contract NAS3-23695. The principal independent parameters (Mach number, Reynolds number, turbulence, wall-to-gas temperature ratio, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio) were maintained over ranges consistent with actual engine conditions and the test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. Data provide a data base for downstream film cooled turbine vanes and extends the data bases generated in the two previous studies. The vane external heat transfer obtained indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The data obtained and presented illustrate the interaction of the variables and should provide the airfoil designer and computational analyst the information required to improve heat transfer design capabilities for film cooled turbine airfoils.

  3. Analytical impact models and experimental test validation for the Columbia shuttle wing leading edge panels.

    SciTech Connect

    Lu, Wei-Yang; Metzinger, Kurt Evan; Gwinn, Kenneth West; Antoun, Bonnie R.; Korellis, John S.

    2004-10-01

    This paper describes the analyses and the experimental mechanics program to support the National Aeronautics and Space Administration (NASA) investigation of the Shuttle Columbia accident. A synergism of the analysis and experimental effort is required to insure that the final analysis is valid - the experimental program provides both the material behavior and a basis for validation, while the analysis is required to insure the experimental effort provides behavior in the correct loading regime. Preliminary scoping calculations of foam impact onto the Shuttle Columbia's wing leading edge determined if enough energy was available to damage the leading edge panel. These analyses also determined the strain-rate regimes for various materials to provide the material test conditions. Experimental testing of the reinforced carbon-carbon wing panels then proceeded to provide the material behavior in a variety of configurations and strain-rates for flown or conditioned samples of the material. After determination of the important failure mechanisms of the material, validation experiments were designed to provide a basis of comparison for the analytical effort. Using this basis, the final analyses were used for test configuration, instrumentation location, and calibration definition in support of full-scale testing of the panels in June 2003. These tests subsequently confirmed the accident cause.

  4. Fracture Mechanics Analyses of the Slip-Side Joggle Regions of Wing-Leading Edge Panels

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Knight, Norman F., Jr.; Song, Kyongchan; Phillips, Dawn R.

    2010-01-01

    The Space Shuttle Orbiter wing comprises of 22 leading edge panels on each side of the wing. These panels are part of the thermal protection system that protects the Orbiter wings from extreme heating that take place on the reentry in to the earth atmosphere. On some panels that experience extreme heating, liberation of silicon carbon (SiC) coating was observed on the slip side regions of the panels. Global structural and local fracture mechanics analyses were performed on these panels as a part of the root cause investigation of this coating liberation anomaly. The wing-leading-edge reinforced carbon-carbon (RCC) panels, Panel 9, T-seal 10, and Panel 10, are shown in Figure 1 and the progression of the stress analysis models is presented in Figure 2. The global structural analyses showed minimal interaction between adjacent panels and the T-seal that bridges the gap between the panels. A bounding uniform temperature is applied to a representative panel and the resulting stress distribution is examined. For this loading condition, the interlaminar normal stresses showed negligible variation in the chord direction and increased values in the vicinity of the slip-side joggle shoulder. As such, a representative span wise slice on the panel can be taken and the cross section can be analyzed using plane strain analysis.

  5. Analog filtering methods improve leading edge timing performance of multiplexed SiPMs.

    PubMed

    Bieniosek, M F; Cates, J W; Grant, A M; Levin, C S

    2016-08-21

    Multiplexing many SiPMs to a single readout channel is an attractive option to reduce the readout complexity of high performance time of flight (TOF) PET systems. However, the additional dark counts and shaping from each SiPM cause significant baseline fluctuations in the output waveform, degrading timing measurements using a leading edge threshold. This work proposes the use of a simple analog filtering network to reduce the baseline fluctuations in highly multiplexed SiPM readouts. With 16 SiPMs multiplexed, the FWHM coincident timing resolution for single [Formula: see text] mm LYSO crystals was improved from 401  ±  4 ps without filtering to 248  ±  5 ps with filtering. With 4 SiPMs multiplexed, using an array of [Formula: see text] mm LFS crystals the mean time resolution was improved from 436  ±  6 ps to 249  ±  2 ps. Position information was acquired with a novel binary positioning network. All experiments were performed at room temperature with no active temperature regulation. These results show a promising technique for the construction of high performance multiplexed TOF PET readout systems using analog leading edge timing pickoff.

  6. Space Shuttle Orbiter Wing-Leading-Edge Panel Thermo-Mechanical Analysis for Entry Conditions

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Song, Kyongchan; Raju, Ivatury S.

    2010-01-01

    Linear elastic, thermo-mechanical stress analyses of the Space Shuttle Orbiter wing-leading-edge panels is presented for entry heating conditions. The wing-leading-edge panels are made from reinforced carbon-carbon and serve as a part of the overall thermal protection system. Three-dimensional finite element models are described for three configurations: integrated configuration, an independent single-panel configuration, and a local lower-apex joggle segment. Entry temperature conditions are imposed and the through-the-thickness response is examined. From the integrated model, it was concluded that individual panels can be analyzed independently since minimal interaction between adjacent components occurred. From the independent single-panel model, it was concluded that increased through-the-thickness stress levels developed all along the chord of a panel s slip-side joggle region, and hence isolated local joggle sections will exhibit the same trend. From the local joggle models, it was concluded that two-dimensional plane-strain models can be used to study the influence of subsurface defects along the slip-side joggle region of these panels.

  7. DSMC simulations of leading edge flat-plate boundary layer flows at high Mach number

    NASA Astrophysics Data System (ADS)

    Pradhan, Sahadev, , Dr.

    2017-01-01

    The flow over a 2D leading-edge flat plate is studied at Mach number Ma = (Uinf /√{kBTinf / m }) in the range leading-edge flat plate boundary layer at high Mach number. Here, LT is the characteristic dimension, Uinf and Tinf are the free stream velocity and temperature, rhoinf is the free stream density, m is the molecular mass, muinf is the molecular viscosity based on the free stream temperature Tinf , and kB is the Boltzmann constant. The variation of streamwise velocity, temperature, number-density, and mean free path along the wall normal direction away from the plate surface is studied. The qualitative nature of the streamwise velocity at high Mach number is similar to those in the incompressible limit (parabolic profile). However, there are important differences. The amplitudes of the streamwise velocity increase as the Mach number increases and turned into a more flatter profile near the wall. There is significant velocity and temperature slip at the surface of the plate, and the slip increases as the Mach number is increased. It is interesting to note that for the highest Mach numbers considered here, the streamwise velocity at the wall exceeds the sound speed, and the flow is supersonic throughout the flow domain.

  8. Some Effects of Leading-Edge Sweep on Boundary-Layer Transition at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Chapman, Gray T.

    1961-01-01

    The effects of crossflow and shock strength on transition of the laminar boundary layer behind a swept leading edge have been investigated analytically and with the aid of available experimental data. An approximate method of determining the crossflow Reynolds number on a leading edge of circular cross section at supersonic speeds is presented. The applicability of the critical crossflow criterion described by Owen and Randall for transition on swept wings in subsonic flow was examined for the case of supersonic flow over swept circular cylinders. A wide range of applicability of the subsonic critical values is indicated. The corresponding magnitude of crossflow velocity necessary to cause instability on the surface of a swept wing at supersonic speeds was also calculated and found to be small. The effects of shock strength on transition caused by Tollmien-Schlichting type of instability are discussed briefly. Changes in local Reynolds number, due to shock strength, were found analytically to have considerably more effect on transition caused by Tollmien-Schlichting instability than on transition caused by crossflow instability. Changes in the mechanism controlling transition from Tollmien-Schlichting instability to crossflow instability were found to be possible as a wing is swept back and to result in large reductions in the length of laminar flow.

  9. Water tunnel results of leading-edge vortex flap tests on a delta wing vehicle

    NASA Technical Reports Server (NTRS)

    Delfrate, J. H.

    1986-01-01

    A water tunnel flow visualization test on leading edge vortex flaps was conducted at the flow visualization facility of the NASA Ames Research Center's Dryden Flight Research Facility. The purpose of the test was to visually examine the vortex structures caused by various leading edge vortex flaps on the delta wing of an F-106 model. The vortex flaps tested were designed analytically and empirically at the NASA Langley Research Center. The three flap designs were designated as full-span gothic flap, full-span untapered flap, and part-span flap. The test was conducted at a Reynolds number of 76,000/m (25,000/ft). This low Reynolds number was used because of the 0.076-m/s (0.25-ft/s) test section flow speed necessary for high quality flow visualization. However, this low Reynolds number may have influenced the results. Of the three vortex flaps tested, the part-span flap produced what appeared to be the strongest vortex structure over the flap area. The full-span gothic flap provided the next best performance.

  10. Metallic Concepts for Repair of Reinforced Carbon-Carbon Space Shuttle Leading Edges

    NASA Technical Reports Server (NTRS)

    Ritzert, Frank; Nesbitt, James

    2007-01-01

    The Columbia accident has focused attention on the critical need for on-orbit repair concepts for wing leading edges in the event that potentially catastrophic damage is incurred during Space Shuttle Orbiter flight. The leading edge of the space shuttle wings consists of a series of eleven panels on each side of the orbiter. These panels are fabricated from reinforced carbon-carbon (RCC) which is a light weight composite with attractive strength at very high temperatures. The damage that was responsible for the loss of the Colombia space shuttle was deemed due to formation of a large hole in one these RCC leading edge panels produced by the impact of a large piece of foam. However, even small cracks in the RCC are considered as potentially catastrophic because of the high temperature re-entry environment. After the Columbia accident, NASA has explored various means to perform on-orbit repairs in the event that damage is sustained in future shuttle flights. Although large areas of damage, such as that which doomed Columbia, are not anticipated to re-occur due to various improvements to the shuttle, especially the foam attachment, NASA has also explored various options for both small and large area repair. This paper reports one large area repair concept referred to as the "metallic over-wrap." Environmental conditions during re-entry of the orbiter impose extreme requirements on the RCC leading edges as well as on any repair concepts. These requirements include temperatures up to 3000 F (1650 C) for up to 15 minutes in the presence of an extremely oxidizing plasma environment. Figure 1 shows the temperature profile across one panel (#9) which is subject to the highest temperatures during re-entry. Although the RCC possesses adequate mechanical strength at these temperatures, it lacks oxidation resistance. Oxidation protection is afforded by converting the outer layers of the RCC to SiC by chemical vapor deposition (CVD). At high temperatures in an oxidizing

  11. Formation of Leading-Edge Pinholes in the Space Shuttle Wings Investigated

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    2000-01-01

    The space shuttle wing leading edge and nose cap are composed of a carbon/carbon composite that is protected by silicon carbide. The coefficient of thermal expansion mismatch leads to cracks in the silicon carbide. The outer coating of the silicon carbide is a sodium-silicate-based glass that becomes fluid at the shuttles high reentry temperatures and fills these cracks. Small pinholes roughly 0.1 mm in diameter have been observed on these materials after 12 or more flights. These pinholes have been investigated by researchers at the NASA Johnson Space Center, Rockwell International, the Boeing Company, Lockheed Martin Corporation, and the NASA Glenn Research Center at Lewis Field to determine the possible sources and the extent of damage. A typical pinhole is illustrated in the photomicrographs. These pinholes are found primarily on the wing leading edges and not on the nose cap, which is covered when the orbiter is on the launch pad. The pinholes are generally associated with a bead of zincrich glass. Examination of the orbiter and launch structure indicates that weathering paint on the launch structure leads to deposits of zinc-containing paint flakes on the wing leading edge. These may become embedded in the crevices of the wing leading edge and form the observed zinc-rich glass. Laboratory experiments indicate that zinc oxide reacts vigorously with the glass coating on the silicon carbide. Thus, it is likely that this is the reaction that leads to pinhole formation (Christensen, S.V.: Reinforced Carbon/Carbon Pin Hole Formation Through Zinc Oxide Attack. Rockwell International Internal Letter, RDW 96 057, May 1996). Cross-sectional examination of pinholes suggests that they are enlarged thermal expansion mismatch cracks. This is illustrated in the photomicrographs. A careful microstructural analysis indicates that the pinhole walls consist of layers of zinc-containing glass. Thus, pinholes are likely formed by zinc oxide particles lodging in crevices and

  12. Effects of increased leading-edge thickness on performance of a transonic rotor blade. [in single stage transonic compressor

    NASA Technical Reports Server (NTRS)

    Reid, L.; Urasek, D. C.

    1972-01-01

    A single-stage transonic compressor was tested with two rotor blade leading-edge configurations to investigate the effect of increased leading-edge thickness on the performance of a transonic blade row. The original rotor blade configuration was modified by cutting back the leading edge sufficiently to double the blade leading-edge thickness and thus the blade gap blockage in the tip region. At design speed this modification resulted in a decrease in rotor overall peak efficiency of four points. The major portion of this decrement in rotor overall peak efficienty was attributed to the flow conditions in the outer 30 percent of the blade span. At 70 and 90 percent of design speed, the modification had very little effect on rotor overall performance.

  13. Experimental Pressure Distributions over Wing Tips at Mach Number 1.9 I : Wing Tip with Subsonic Leading Edge

    NASA Technical Reports Server (NTRS)

    Jagger, James M; Mirels, Harold

    1949-01-01

    An investigation was conducted at a Mach number of 1.91 to determine spanwise pressure distribution over a wing tip in a region influenced by a sharp subsonic leading edge swept back at 70 degrees. Except for pressure distribution on the top surface in the immediate vicinity of the subsonic leading edge, the maximum difference between linearized theory and experimental data was 2 1/2 percent (of free-stream dynamic pressure) for angles of attack up to 4 degrees and 7 percent for angles of attack up to 8 degrees. Pressures on the top surface nearest the subsonic edge indicated local expansions beyond values predicted by linearized theory.

  14. Quasi-chemostat behavior in the leading edge of B. subtilis biofilms

    NASA Astrophysics Data System (ADS)

    Srinivasan, Siddarth; Mahadevan, Lakshminarayanan; Rubinstein, Shmuel

    2015-11-01

    Bacillus subtilis is a gram positive bacterium that is a model system commonly used to study biofilm formation. By performing wide-field time-lapse microscopy on a fluorescently labeled B. subtilis strain, we observe a well defined steady boundary layer at the edge of a biofilm growing on an nutrient infused agar gel substrate, within which the outward radial expansion growth predominantly occurs. Using distinct fluorescent protein markers as proxies of gene expression, we quantitatively measure how the width, velocity and ratio of motile cell to matrix cell phenotypes within this boundary layer responds to changes in environmental conditions (such as substrate agar percentage & temperature). We further propose that the steady state at the leading edge can be interpreted as a quasi-chemostat which may enable well controlled response experiments on a colony scale. Finally, we show that for low agar concentration (0.5 wt%), the cells exhibit swarming behavior, whose dynamics and swimming velocities are characterized using differential dynamic microscopy. We show the swarming state is associated with an unstable front which gives rise to fingering and branching growth patterns, illustrating the varied morphological response of the biofilm to environmental conditions

  15. A computer program for calculating aerodynamic characteristics of low aspect-ratio wings with partial leading-edge separation

    NASA Technical Reports Server (NTRS)

    Mehrotra, S. C.; Lan, C. E.

    1978-01-01

    The necessary information for using a computer program to predict distributed and total aerodynamic characteristics for low aspect ratio wings with partial leading-edge separation is presented. The flow is assumed to be steady and inviscid. The wing boundary condition is formulated by the Quasi-Vortex-Lattice method. The leading edge separated vortices are represented by discrete free vortex elements which are aligned with the local velocity vector at midpoints to satisfy the force free condition. The wake behind the trailing edge is also force free. The flow tangency boundary condition is satisfied on the wing, including the leading and trailing edges. The program is restricted to delta wings with zero thickness and no camber. It is written in FORTRAN language and runs on CDC 6600 computer.

  16. Application of superplastically formed and diffusion bonded aluminum to a laminar flow control leading edge

    NASA Technical Reports Server (NTRS)

    Goodyear, M. D.

    1987-01-01

    NASA sponsored the Aircraft Energy Efficiency (ACEE) program in 1976 to develop technologies to improve fuel efficiency. Laminar flow control was one such technology. Two approaches for achieving laminar flow were designed and manufactured under NASA sponsored programs: the perforated skin concept used at McDonnell Douglas and the slotted design used at Lockheed-Georgia. Both achieved laminar flow, with the slotted design to a lesser degree (JetStar flight test program). The latter design had several fabrication problems concerning springback and adhesive flow clogging the air flow passages. The Lockheed-Georgia Company accomplishments is documented in designing and fabricating a small section of a leading edge article addressing a simpler fabrication method to overcome the previous program's manufacturing problems, i.e., design and fabrication using advanced technologies such as diffusion bonding of aluminum, which has not been used on aerospace structures to date, and the superplastic forming of aluminum.

  17. New convergence criteria for the vortex-lattice models of the leading-edge separation

    NASA Technical Reports Server (NTRS)

    Kandil, O. A.; Mook, D. T.; Nayfeh, A. H.

    1976-01-01

    The convergence criterion for the vortex-lattice technique which deals with delta wings exhibiting significant leading-edge separation was studied. It was shown that one can predict pressure distributions without irregularities which agree fairly well with experimental data (which show some irregularities of their own) by replacing the system of discrete vortex lines with a single concentrated core. This core has a circulation equal to the algebraic sum of the circulations around the discrete lines and is located at the centroid of these lines. Moreover, there is a requirement that the position and strength of the core must converge as the number of elements increases. Because the calculation of the position and strength of the core is much less involved than the calculation of the loads, this approach has the additional desirable feature of requiring less computational time.

  18. Comparison of two leading uniform theories of edge diffraction with the exact uniform asymptotic solution

    NASA Technical Reports Server (NTRS)

    Boersma, J.; Rahmat-Samii, Y.

    1980-01-01

    The diffraction of an arbitrary cylindrical wave by a half-plane has been treated by Rahmat-Samii and Mittra who used a spectral domain approach. In this paper, their exact solution for the total field is expressed in terms of a new integral representation. For large wave number k, two rigorous procedures are described for the exact uniform asymptotic expansion of the total field solution. The uniform expansions obtained are valid in the entire space, including transition regions around the shadow boundaries. The final results are compared with the formulations of two leading uniform theories of edge diffraction, namely, the uniform asymptotic theory and the uniform theory of diffraction. Some unique observations and conclusions are made in relating the two theories.

  19. Computation of leading edge film cooling from a CONSOLE geometry (CONverging Slot hOLE)

    NASA Astrophysics Data System (ADS)

    Guelailia, A.; Khorsi, A.; Hamidou, M. K.

    2016-01-01

    The aim of this study is to investigate the effect of mass flow rate on film cooling effectiveness and heat transfer over a gas turbine rotor blade with three staggered rows of shower-head holes which are inclined at 30° to the spanwise direction, and are normal to the streamwise direction on the blade. To improve film cooling effectiveness, the standard cylindrical holes, located on the leading edge region, are replaced with the converging slot holes (console). The ANSYS CFX has been used for this computational simulation. The turbulence is approximated by a k-ɛ model. Detailed film effectiveness distributions are presented for different mass flow rate. The numerical results are compared with experimental data.

  20. Application of finite element and remeshing technique to shock interference on a cylindrical leading edge

    NASA Technical Reports Server (NTRS)

    Stewart, James R.; Thareja, Rajiv R.; Wieting, Allan R.; Morgan, Ken

    1988-01-01

    The problem of planar oblique shock impingement on a cylindrical leading edge in hypersonic flow is modeled using a Galerkin-Runge Kutta finite element method. The method utilizes a four stage Runge-Kutta time stepping scheme to solve the compressible Euler equations. Freestream Mach numbers of 6.5, 8.0 and 16.0 are studied. The computed surface pressure distributions consistently agree well with available experimental data. The peak pressure amplification ranges from 5.45 at M = 6.5 to approximately 17.0 at M = 16.0. Stagnation point heat transfer rate amplifications are calculated from the inviscid solution using the method of Fay and Riddell. The value and wall location of the peak pressure and heat transfer rate amplifications are extremely sensitive to the location of the impinging shock/bow shock intersection point.

  1. Pressure investigation of NASA leading edge vortex flaps on a 60 deg Delta wing

    NASA Technical Reports Server (NTRS)

    Marchman, J. F., III; Donatelli, D. A.; Terry, J. E.

    1983-01-01

    Pressure distributions on a 60 deg Delta Wing with NASA designed leading edge vortex flaps (LEVF) were found in order to provide more pressure data for LEVF and to help verify NASA computer codes used in designing these flaps. These flaps were intended to be optimized designs based on these computer codes. However, the pressure distributions show that the flaps wre not optimum for the size and deflection specified. A second drag-producing vortex forming over the wing indicated that the flap was too large for the specified deflection. Also, it became apparent that flap thickness has a possible effect on the reattachment location of the vortex. Research is continuing to determine proper flap size and deflection relationships that provide well-behaved flowfields and acceptable hinge-moment characteristics.

  2. An experimental study of pressures on 60 deg Delta wings with leading edge vortex flaps

    NASA Technical Reports Server (NTRS)

    Marchman, J. F., III; Terry, J. E.; Donatelli, D. A.

    1983-01-01

    An experimental study was conducted in the Virginia Tech Stability Wind Tunnel to determine surface pressures over a 60 deg sweep delta wing with three vortex flap designs. Extensive pressure data was collected to provide a base data set for comparison with computational design codes and to allow a better understanding of the flow over vortex flaps. The results indicated that vortex flaps can be designed which will contain the leading edge vortex with no spillage onto the wing upper surface. However, the tests also showed that flaps designed without accounting for flap thickness will not be optimum and the result can be oversized flaps, early flap vortex reattachment and a second separation and vortex at the wing/flap hinge line.

  3. An experimental study of turbine vane heat transfer with leading edge and downstream film cooling

    NASA Astrophysics Data System (ADS)

    Nirmalan, V.; Hylton, L. D.

    1989-06-01

    This paper presents the effects of downstream film cooling, with and without leading edge showerhead film cooling, on turbine-vane external heat transfer. Steady-state experimental measurements were made in a three-vane linear two-dimensional cascade. The principal independent parameters were maintained over ranges consistent with actual engine conditions. The test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. The data obtained indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The downstream film cooling process was shown to be a complex interaction of two competing mechanisms. The thermal dilution effect, associated with the injection of relatively cold fluid, results in a decrease in the heat transfer to the airfoil. Conversely, the turbulence augmentation, produced by the injection process, results in increased heat transfer to the airfoil.

  4. Computational Modeling of a Mechanized Benchtop Apparatus for Leading-Edge Slat Noise Treatment Device Prototypes

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Moore, James B.; Long, David L.

    2017-01-01

    Airframe noise is a growing concern in the vicinity of airports because of population growth and gains in engine noise reduction that have rendered the airframe an equal contributor during the approach and landing phases of flight for many transport aircraft. The leading-edge-slat device of a typical high-lift system for transport aircraft is a prominent source of airframe noise. Two technologies have significant potential for slat noise reduction; the slat-cove filler (SCF) and the slat-gap filler (SGF). Previous work was done on a 2D section of a transport-aircraft wing to demonstrate the implementation feasibility of these concepts. Benchtop hardware was developed in that work for qualitative parametric study. The benchtop models were mechanized for quantitative measurements of performance. Computational models of the mechanized benchtop apparatus for the SCF were developed and the performance of the system for five different SCF assemblies is demonstrated.

  5. Leading-edge vortex improves lift in slow-flying bats.

    PubMed

    Muijres, F T; Johansson, L C; Barfield, R; Wolf, M; Spedding, G R; Hedenström, A

    2008-02-29

    Staying aloft when hovering and flying slowly is demanding. According to quasi-steady-state aerodynamic theory, slow-flying vertebrates should not be able to generate enough lift to remain aloft. Therefore, unsteady aerodynamic mechanisms to enhance lift production have been proposed. Using digital particle image velocimetry, we showed that a small nectar-feeding bat is able to increase lift by as much as 40% using attached leading-edge vortices (LEVs) during slow forward flight, resulting in a maximum lift coefficient of 4.8. The airflow passing over the LEV reattaches behind the LEV smoothly to the wing, despite the exceptionally large local angles of attack and wing camber. Our results show that the use of unsteady aerodynamic mechanisms in flapping flight is not limited to insects but is also used by larger and heavier animals.

  6. Development of a Transition Edge Sensor Gamma Ray Microcalorimeter with an Epoxy Coupled Bulk Lead Absorber

    SciTech Connect

    Damayanthi, R. M. T.; Iyomoto, N.; Takahashi, H.; Minamigawa, Y.; Nishimura, K.; Ohno, M.

    2009-12-16

    Transition edge sensor (TES)-based gamma ray detectors have been developed primarily for use up to energies of {approx}100 keV. However, there are many interesting applications at higher energies. We have started to develop a TES gamma-ray detector to apply to Positron Annihilation Spectroscopy analysis at 511 keV. Our detector is composed of a bulk lead absorber, which is coupled to a thin-film TES using a small amount of epoxy. The response of our first detector showed a very long decay tail of {approx}135 ms. To improve the device response time we have designed a new detector in which the response time is improved by a factor of five.

  7. Leading edge serrations which reduce the noise of low-speed rotors

    NASA Technical Reports Server (NTRS)

    Soderman, P. T.

    1973-01-01

    Acoustic effects of serrated brass strips attached near the leading edges of two different size rotors were investigated. The two bladed rotors were tested in hover. Rotor rotational speed, blade angle, serration shape, and serration position were varied. The serrations were more effective as noise suppressors at rotor tip speeds less than 135 m/sec (444 ft/sec) than at higher speeds. high frequency noise was reduced but the low frequency rotational noise was little affected. Noise reductions from 4 to 8 db overall sound pressure level and 3 to 17 db in the upper octave bands were achieved on the 1.52 m (5.0 ft) diameter rotor. Noise reductions up to 4 db overall sound pressure level were measured for the 2.59 m (8.5 ft) diameter rotor at some conditions.

  8. Calibration of sonic valves for the laminar flow control, leading-edge flight test

    NASA Technical Reports Server (NTRS)

    Petley, D. H.; Alexander, W., Jr.; Wright, A. S., Jr.; Vallas, M.

    1985-01-01

    Sonic needle valves were calibrated to measure and control airflow in the suction system for the leading-edge flight test. The procedure and results for the calibration flow test of 4:41 flight valves are given. Mass-flow rates, which ranged from 0.001 to 0.012 lbm/sec, and maximum back pressure were measured for total temperatures from -30 F to 75 F and total pressures from 120 to 540 psf. Correlating equations are obtained for mass-flow rate as a function of total pressure, total temperature, and valve opening length. The most important aspect of flow measurement and control is found to be the measurement of valve opening length.

  9. Insect Residue Contamination on Wing Leading Edge Surfaces: A Materials Investigation for Mitigation

    NASA Technical Reports Server (NTRS)

    Lorenzi, Tyler M.; Wohl, Christopher J.; Penner, Ronald K.; Smith, Joseph G.; Siochi, Emilie J.

    2011-01-01

    Flight tests have shown that residue from insect strikes on aircraft wing leading edge surfaces may induce localized transition of laminar to turbulent flow. The highest density of insect populations have been observed between ground level and 153 m during light winds (2.6 -- 5.1 m/s), high humidity, and temperatures from 21 -- 29 C. At a critical residue height, dependent on the airfoil and Reynolds number, boundary layer transition from laminar to turbulent results in increased drag and fuel consumption. Although this represents a minimal increase in fuel burn for conventional transport aircraft, future aircraft designs will rely on maintaining laminar flow across a larger portion of wing surfaces to reduce fuel burn during cruise. Thus, insect residue adhesion mitigation is most critical during takeoff and initial climb to maintain laminar flow in fuel-efficient aircraft configurations. Several exterior treatments investigated to mitigate insect residue buildup (e.g., paper, scrapers, surfactants, flexible surfaces) have shown potential; however, implementation has proven to be impractical. Current research is focused on evaluation of wing leading edge surface coatings that may reduce insect residue adhesion. Initial work under NASA's Environmentally Responsible Aviation Program focused on evaluation of several commercially available products (commercial off-the-shelf, COTS), polymers, and substituted alkoxy silanes that were applied to aluminum (Al) substrates. Surface energies of these coatings were determined from contact angle data and were correlated to residual insect excrescence on coated aluminum substrates using a custom-built "bug gun." Quantification of insect excrescence surface coverage was evaluated by a series of digital photographic image processing techniques.

  10. Cavitation on a semicircular leading-edge plate and NACA0015 hydrofoil: Visualization and velocity measurement

    NASA Astrophysics Data System (ADS)

    Kravtsova, A. Yu.; Markovich, D. M.; Pervunin, K. S.; Timoshevskii, M. V.; Hanjalić, K.

    2014-12-01

    Using high-speed visualization and particle image velocimetry (PIV), cavitating flows near a plane plate with a rounded leading edge and NACA0015 hydrofoil at angles of attack from 0° to 9° are studied. In the experiments, several known types of cavitation, as well as some differences, were detected with variation of the cavitation number. In particular, at small angles of attack (up to 3°), cavitation on the plate appears in the form of a streak array; on the hydrofoil, it appears in the form of individual bubbles. For the NACA0015 hydrofoil, isolated and intermittent streaks are divided and grow in regimes with developed cavitation; then, however, they merge in bubble clouds and form an extremely regular cellular structure. With an increase in the angle of attack to 9°, the structure of the cavitation cavity on the hydrofoil is changed by the streak structure, like in the case with the plate. In this work, it is shown that PIV permits one to measure the velocity in cavitating flows, in particular, within the gas-vapor phase. It was established from the analysis of distributions of the average flow velocity and moments of velocity fluctuations that the cavitation generation is caused by the development of the carrier fluid flow near the leading edge of the hydrofoil. Down the stream, however, the flow structure strongly depends on the cavitation regime, which is seen from the comparison of the distributions with the case of a single-phase flow. The presented measurements qualitatively verify general trends and show some quantitative distinctions for the two considered flowpast bodies.

  11. Vibration and sound of an elastic wing actuated at its leading edge

    NASA Astrophysics Data System (ADS)

    Manela, A.

    2012-01-01

    The motion and sound of a thin elastic plate, subject to uniform low-Mach flow and actuated at its leading edge, is studied. The linearized response to arbitrary small-amplitude translation and rotation is analyzed using Fourier decomposition of the forcing signal. Both periodic (sinusoidal) and non-periodic ("step-jump") actuations are investigated. When the frequency spectrum of the forcing signal contains an eigenfrequency Ωres of the unforced system, a resonance motion is excited and the plate oscillates at the corresponding eigenmode. The dynamical description is applied to formulate the acoustic problem, where the sources of sound include the plate velocity and fluid vorticity. Acoustic radiation of a dipole type is calculated and discussed in the limit where the plate is acoustically compact. In the case of sinusoidal excitation, plate elasticity has two opposite effects on sound radiation, depending on the forcing frequency: at frequencies close to Ωres, the near-resonance motion results in the generation of high sound levels; however, at frequencies far from Ωres, plate elasticity reduces the amplitude of plate deflection (compared to that of a rigid plate), leading to noise reduction. In the case of non-periodic actuation, the plate-fluid system amplifies those frequencies that are closest to Ωres, which, in turn, dominate the acoustic signature. The results identify the trailing edge noise as the main source of sound, dominating the sound generated by direct plate motion. We suggest the present theory as a preliminary tool for examining the acoustic signature of flapping flight, common in insects and flapping micro-air-vehicles.

  12. Investigation of airfoil leading edge separation control with nanosecond plasma actuator

    NASA Astrophysics Data System (ADS)

    Zheng, J. G.; Cui, Y. D.; Zhao, Z. J.; Li, J.; Khoo, B. C.

    2016-11-01

    A combined numerical and experimental investigation of airfoil leading edge flow separation control with a nanosecond dielectric barrier discharge (DBD) plasma actuator is presented. Our study concentrates on describing dynamics of detailed flow actuation process and elucidating the nanosecond DBD actuation mechanism. A loose coupling methodology is employed to perform simulation, which consists of a self-similar plasma model for the description of pulsed discharge and two-dimensional Reynolds averaged Navier-Stokes (RANS) equations for the calculation of external airflow. A series of simulations of poststall flows around a NACA0015 airfoil is conducted with a Reynolds number range covering both low and high Re at Re=(0.05 ,0.15 ,1.2 ) ×106 . Meanwhile, wind-tunnel experiment is performed for two low Re flows to measure aerodynamic force on airfoil model and transient flow field with time-resolved particle image velocimetry (PIV). The PIV measurement provides possibly the clearest view of flow reattachment process under the actuation of a nanosecond plasma actuator ever observed in experiments, which is highly comparable to that predicted by simulation. It is found from the detailed simulation that the discharge-induced residual heat rather than shock wave plays a dominant role in flow control. For any leading edge separations, the preliminary flow reattachment is realized by residual heat-induced spanwise vortices. After that, the nanosecond actuator functions by continuing exciting flow instability at poststall attack angles or acting as an active trip near stall angle. As a result, the controlled flow is characterized by a train of repetitive, downstream moving vortices over suction surface or an attached turbulent boundary layer, which depends on both angle of attack and Reynolds number. The advection of residual temperature with external flow offers a nanosecond plasma actuator a lot of flexibility to extend its influence region. Animations are provided for

  13. An Attached Flow Design of a Noninterferring Leading Edge Extension to a Thick Delta Wing

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Ghaffari, Farhad

    1985-01-01

    An analytical procedure for the determination of the shape of a Leading-Edge Extension (LEE) which satisfies design criteria, including especially noninterference at the wing design point, has been developed for thick delta wings. The LEE device best satisfying all criteria is designed to be mounted on a wing along a dividing stream surface associated with an attached flow design lift coefficient (C(sub L,d)) of greater than zero. This device is intended to improve the aerodynamic performance of transonic aircraft at C(sub L) greater than C(sub L,d) system emanating from the LEE leading edge. In order to quantify this process a twisted and cambered thick delta wing was chosen for the initial application of this design procedure. Appropriate computer codes representing potential and vortex flows were employed to determine the dividing stream surface at C(sub L,d) and an optimized LEE planform shape at C(sub L) greater than C(sub L,d), respectively. To aid in the LEE selection, the aerodynamic effectiveness of 36 planforms was investigated at C(sub L) greater than C(sub L,d). This study showed that reducing the span of the candidate LEEs has the most detrimental effect on overall aerodynamic efficiency, regardless of the shape or area. Furthermore, for a fixed area, constant-chord LEE candidates were relatively more efficient than those with sweep less than the wing. At C(sub L,d), the presence of the LEE planform best satisfying the design criteria was found to have no effect on the wing alone aerodynamic performance.

  14. Aerothermodynamics research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Deiwert, George S.

    1987-01-01

    Research activity in the aerothermodynamics branch at the NASA Ames Research Center is reviewed. Advanced concepts and mission studies relating to the next generation aerospace transportation systems are summarized and directions for continued research identified. Theoretical and computational studies directed at determining flow fields and radiative and convective heating loads in real gases are described. Included are Navier-Stokes codes for equilibrium and thermochemical nonequilibrium air. Experimental studies in the 3.5-ft hypersonic wind tunnel, the ballistic ranges, and the electric arc driven shock tube are described. Tested configurations include generic hypersonic aerospace plane configurations, aeroassisted orbital transfer vehicle shapes and Galileo probe models.

  15. Effect of leading- and trailing-edge flaps on clipped delta wings with and without wing camber at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Hernandez, Gloria; Wood, Richard M.; Covell, Peter F.

    1994-01-01

    An experimental investigation of the aerodynamic characteristics of thin, moderately swept fighter wings has been conducted to evaluate the effect of camber and twist on the effectiveness of leading- and trailing-edge flaps at supersonic speeds in the Langley Unitary Plan Wind Tunnel. The study geometry consisted of a generic fuselage with camber typical of advanced fighter designs without inlets, canopy, or vertical tail. The model was tested with two wing configurations an uncambered (flat) wing and a cambered and twisted wing. Each wing had an identical clipped delta planform with an inboard leading edge swept back 65 deg and an outboard leading edge swept back 50 deg. The trailing edge was swept forward 25 deg. The leading-edge flaps were deflected 4 deg to 15 deg, and the trailing-edge flaps were deflected from -30 deg to 10 deg. Longitudinal force and moment data were obtained at Mach numbers of 1.60, 1.80, 2.00, and 2.16 for an angle-of-attack range 4 deg to 20 deg at a Reynolds number of 2.16 x 10(exp 6) per foot and for an angle-of-attack range 4 deg to 20 deg at a Reynolds number of 2.0 x 10(exp 6) per foot. Vapor screen, tuft, and oil flow visualization data are also included.

  16. A Mesh Refinement Study on the Impact Response of a Shuttle Leading-Edge Panel Finite Element Simulation

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Spellman, Regina L.

    2006-01-01

    A study was performed to examine the influence of varying mesh density on an LS-DYNA simulation of a rectangular-shaped foam projectile impacting the space shuttle leading edge Panel 6. The shuttle leading-edge panels are fabricated of reinforced carbon-carbon (RCC) material. During the study, nine cases were executed with all possible combinations of coarse, baseline, and fine meshes of the foam and panel. For each simulation, the same material properties and impact conditions were specified and only the mesh density was varied. In the baseline model, the shell elements representing the RCC panel are approximately 0.2-in. on edge, whereas the foam elements are about 0.5-in. on edge. The element nominal edge-length for the baseline panel was halved to create a fine panel (0.1-in. edge length) mesh and doubled to create a coarse panel (0.4-in. edge length) mesh. In addition, the element nominal edge-length of the baseline foam projectile was halved (0.25-in. edge length) to create a fine foam mesh and doubled (1.0-in. edge length) to create a coarse foam mesh. The initial impact velocity of the foam was 775 ft/s. The simulations were executed in LS-DYNA for 6 ms of simulation time. Contour plots of resultant panel displacement and effective stress in the foam were compared at four discrete time intervals. Also, time-history responses of internal and kinetic energy of the panel, kinetic and hourglass energy of the foam, and resultant contact force were plotted to determine the influence of mesh density.

  17. A Three-Dimensional Solution of Flows over Wings with Leading-Edge Vortex Separation. Part 1: Engineering Document

    NASA Technical Reports Server (NTRS)

    Brune, G. W.; Weber, J. A.; Johnson, F. T.; Lu, P.; Rubbert, P. E.

    1975-01-01

    A method of predicting forces, moments, and detailed surface pressures on thin, sharp-edged wings with leading-edge vortex separation in incompressible flow is presented. The method employs an inviscid flow model in which the wing and the rolled-up vortex sheets are represented by piecewise, continuous quadratic doublet sheet distributions. The Kutta condition is imposed on all wing edges. Computed results are compared with experimental data and with the predictions of the leading-edge suction analogy for a selected number of wing planforms over a wide range of angle of attack. These comparisons show the method to be very promising, capable of producing not only force predictions, but also accurate predictions of detailed surface pressure distributions, loads, and moments.

  18. The effect of butterfly scales on flight efficiency and leading edge vortex formation

    NASA Astrophysics Data System (ADS)

    Lang, Amy; Wilroy, Jacob; Wahidi, Redha; Slegers, Nathan; Heilman, Micahel; Cranford, Jacob

    2016-11-01

    It is hypothesized that the scales on a butterfly wing lead to increased flight efficiency. Recent testing of live butterflies tracked their motion over 246 flights for 11 different specimens. Results show a 37.8 percent mean decrease in flight efficiency and a flapping amplitude reduction of 6.7 percent once the scales were removed. This change could be largely a result of how the leading edge vortex (LEV) interacts with the wing. To simplify this complex flow problem, an experiment was designed to focus on the alteration of 2-D vortex development with a variation in surface patterning. Specifically, the secondary vorticity generated by the LEV interacting at the patterned surface was studied, as well as the subsequent effect on the LEV's growth rate and peak circulation. For this experiment butterfly inspired grooves were created using additive manufacturing and were attached to a flat plate with a chordwise orientation, thus increasing plate surface area. The vortex generated by the grooved plate was then compared to a smooth case as the plate translated vertically through a tow tank at Re = 1500, 3000, and 6000. Using DPIV, the vortex formation was documented and a maximum vortex formation time of 4.22 was found based on the flat plate travel distance and chord length. Results indicate that the patterned surface slows down the growth of the vortex which corroborates the flight test results. Funding from NSF CBET Fluid Dynamcis is gratefully acknowledged.

  19. Influence of leading edge bluntness on hypersonic flow in a generic internal-compression inlet

    NASA Astrophysics Data System (ADS)

    Borovoy, V.; Egorov, I.; Mosharov, V.; Radchenko, V.; Skuratov, A.; Struminskaya, I.

    2015-06-01

    Flow and heat transfer inside a generic inlet are investigated experimentally. The cross section of the inlet is rectangular. The inlet is installed on a flat plat at a significant distance from the leading edge. The experiments are performed in TsAGI wind tunnel UT-1M working in the Ludwieg tube mode at Mach number M∞ = 5 and Reynolds numbers (based on the plate length L = 320 mm) Re∞L = 23 · 106 and 13 · 106. Steady flow duration is 40 ms. Optical panoramic methods are used for investigation of flow outside and inside the inlet as well. For this purpose, the cowl and one of two compressing wedges are made of a transparent material. Heat flux distribution is measured by thin luminescent Temperature Sensitive Paint (TSP). Surface flow and shear stress visualization is performed by viscous oil containing luminophor particles. The investigation shows that at high contraction ratio of the inlet, an increase of plate or cowl bluntness to some critical value leads to sudden change of the flow structure.

  20. A simplified method for thermal analysis of a cowl leading edge subject to intense local shock-wave-interference heating

    NASA Technical Reports Server (NTRS)

    Mcgowan, David M.; Camarda, Charles J.; Scotti, Stephen J.

    1992-01-01

    Type IV shock wave interference heating on a blunt body causes extremely intense heating over a very localized region of the body. An analytical solution is presented to a heat transfer problem that approximates the shock wave interference heating of an engine cowl leading edge of the National Aero-Space Plane. The problem uses a simplified geometry to represent the leading edge. An analytical solution is developed that provides a means for approximating maximum temperature differences between the outer and inner surface temperatures of the leading edge. The solution is computationally efficient and, as a result, is well suited for conceptual and preliminary design or trade studies. Transient and steady state analyses are conducted, and results obtained from the analytical solution are compared with results of 2-D thermal finite element analyses over a wide range of design parameters. Isotropic materials as well as laminated composite materials are studied. Results of parametric studies are presented to indicate the effects of the thickness of the cowl leading edge and the width of the region heated by the shock wave interference on the thermal response of the leading edge.

  1. SIMS chemical analysis of extended impacts on the leading and trailing edges of LDEF experiment AO187-2

    NASA Technical Reports Server (NTRS)

    Amari, S.; Foote, J.; Simon, Charles G.; Swan, P.; Walker, R. M.; Zinner, E.; Jessberger, E. K.; Lange, G.; Stadermann, F.

    1992-01-01

    The Long Duration Exposure Facility (LDEF) Experiment AO187-2 consisted of 237 capture cells, 120 on the leading edge and 117 on the trailing edge. Each cell was made of polished Ge plates covered with 2.5 micron thick mylar foil at 200 microns from the Ge. Although all leading edge cells and 105 trailing edge cells had lost their plastic covers during flight, optical and electron microscope examination revealed extended impacts in bare cells from either edge that apparently were produced by high velocity projectiles while the plastic foils were still in place. Detailed optical scanning yielded 53 extended impacts on 100 bare cells from the trailing edge that were selected for SIMS chemical analysis. Lateral multi-element ion probe profiles were obtained on 40 of these impacts. Material that can be attributed to the incoming projectiles was found in all analyzed extended compact features and most seem to be associated with cosmic dust particles. However, LDEF deposits are systematically enriched in the refractory elements Al, Ca, and Ti relative to Mg and Fe when compared to IDP's collected in the stratosphere and to chondritic compositions. These differences are most likely due to elemental fractionation effects during the high velocity impact but real differences between interplanetary particles captured on LDEF and stratospheric IDP's cannot be excluded. Recently we extended our studies to cells from the leading edge and the covered cells from the trailing edge. The 12 covered cells contain 20 extended impact candidates. Ion probe analysis of 3 yielded results similar to those obtained for impacts on the bare cells from the trailing edge. Optical scanning of the bare leading edge cell also reveals many extended impacts (42 on 22 cells scanned to date), demonstrating that the cover foils remained intact at least for some time. However, SIMS analysis showed elements that can reasonably be attributed to micrometeoroids in only 2 out of 11 impacts. Eight impacts

  2. SIMS chemical analysis of extended impacts on the leading and trailing edges of LDEF experiment AO187-2

    NASA Technical Reports Server (NTRS)

    Amari, S.; Foote, J.; Swan, P.; Walker, R. M.; Zinner, E.; Lange, G.

    1993-01-01

    Numerous 'extended impacts' found in both leading and trailing edge capture cells were successfully analyzed for the chemical composition of projectile residues by secondary ion mass spectrometry (SIMS). Most data were obtained from the trailing edge cells where 45 of 58 impacts were classified as 'probably natural' and the remainder as 'possibly man-made debris.' This is in striking contrast to leading edge cells where 9 of 11 impacts so far measured are definitely classified as orbital debris. Although all the leading edge cells had lost their plastic entrance foils during flight, the rate of foil failure was similar to that of the trailing edge cells, 10 percent of which were recovered intact. Ultraviolet embrittlement is suspected as the major cause of failure on both leading and trailing edges. The major impediment to the accurate determination of projectile chemistry is the fractionation of volatile and refractory elements in the hypervelocity impact and redeposition processes. This effect had been noted in a simulation experiment but is more pronounced in the LDEF capture cells, probably due to the higher average velocities of the space impacts. Surface contamination of the pure Ge surfaces with a substance rich in Si, but also containing Mg and Al, provides an additional problem for the accurate determination of impactor chemistry. The effect is variable, being much larger on surfaces that were exposed to space than in those cells that remained intact. Future work will concentrate on the analyses of more leading edge impacts and the development of new SIMS techniques for the measurement of elemental abundances in extended impacts.

  3. Atmospheric Entry Aerothermodynamics Flight Test on CubeSat Platform

    NASA Astrophysics Data System (ADS)

    Sakraker, I.; Umit, E.; van der Haegen, V.; Chazot, O.

    2014-06-01

    The challenging aerothermochemistry of atmospheric entry is aimed to be experimented on a triple CubeSat platform having ablative TPS in the front unit and ceramic TPS on the side panels. Five aerothermodynamics payloads are presented in this paper.

  4. Preservation of wing leading edge suction at the plane of symmetry as a factor in wing-fuselage design

    NASA Technical Reports Server (NTRS)

    Larrabee, E. E.

    1975-01-01

    Most fuselage geometries cover a portion of the wing leading edge near the plane of symmetry, and it seems reasonable to expect that a large fraction of the leading edge suction which would be developed by the covered wing at high angles of attack is not developed on the fuselage. This is one of the reasons that the Oswald span efficiency factor for the wing body combination fails to approach the value predicted by lifting line theory for the isolated wing. Some traditional and recent literature on wing-body interference is discussed and high Reynolds number data on wing-body-nacelle drag are reviewed. An exposed central leading edge geometry has been developed for a sailplane configuration. Low Reynolds number tests have not validated the design concept.

  5. Influence of high-intensity turbulence on laminar boundary layer development on a cylindrical leading edge: Enhancement to eddy diffusivity

    NASA Astrophysics Data System (ADS)

    Pearson, Juli K.

    The growing demand for increased efficiency in turbine engine designs has sparked a growing interest for research of air flow around curved surfaces. The turbine's operating conditions result in material property constraints, especially in the first stage turbine vanes and blades. These turbine vane components experience extreme loading conditions of both high temperature and high turbulence intensities exiting the combustor. The surface of the turbine blades has cylindrical leading edges that promote stabilizing flow accelerations. These convex surfaces can cause a reduced eddy diffusivity across the boundary layer. This thesis reviews measurements of velocity and turbulence intensities taken just shy of the thirty degrees offset from the stagnation line of a two-dimensional cylindrical leading edge under a wide range of turbulence and flow conditions flow conditions. Flow conditions and velocity measurements were gathered with respect to the distance to the surface. The length of the measurements extended from the surface to beyond the boundary layer's edge. The instrumentation used to collect data was a single wire driven by a constant temperature anemometer bridge. The hot wire is specially modified to measure data near the cylindrical leading edges curved surface. The traversing system allowed the acquisition of high-resolution boundary layer data. The traversing system was installed internally to the cylindrical leading edge to reduce probe blockage.

  6. Leading edge embedded fan airfoil concept -- A new powered high lift technology

    NASA Astrophysics Data System (ADS)

    Phan, Nhan Huu

    A new powered-lift airfoil concept called Leading Edge Embedded Fan (LEEF) is proposed for Extremely Short Take-Off and Landing (ESTOL) and Vertical Take-Off and Landing (VTOL) applications. The LEEF airfoil concept is a powered-lift airfoil concept capable of generating thrust and very high lift-coefficient at extreme angles-of attack (AoA). It is designed to activate only at the take-off and landing phases, similar to conventional flaps or slats, allowing the aircraft to operate efficiently at cruise in its conventional configuration. The LEEF concept consists of placing a crossflow fan (CFF) along the leading-edge (LE) of the wing, and the housing is designed to alter the airfoil shape between take-off/landing and cruise configurations with ease. The unique rectangular cross section of the crossflow fan allows for its ease of integration into a conventional subsonic wing. This technology is developed for ESTOL aircraft applications and is most effectively applied to General Aviation (GA) aircraft. Another potential area of application for LEEF is tiltrotor aircraft. Unlike existing powered high-lift systems, the LEEF airfoil uses a local high-pressure air source from cross-flow fans, does not require ducting, and is able to be deployed using distributed electric power systems throughout the wing. In addition to distributed lift augmentation, the LEEF system can provide additional thrust during takeoff and landing operation to supplement the primary cruise propulsion system. Two-dimensional (2D) and three-dimensional (3D) Computational Fluid Dynamics (CFD) simulations of a conventional airfoil/wing using the NACA 63-3-418 section, commonly used in GA, and a LEEF airfoil/wing embedded into the same airfoil section were carried out to evaluate the advantages of and the costs associated with implementing the LEEF concept. Computational results show that significant lift and augmented thrust are available during LEEF operation while requiring only moderate fan power

  7. Aerothermodynamic data base. Data file contents report, phase C

    NASA Technical Reports Server (NTRS)

    Lutz, G. R.

    1983-01-01

    Space shuttle aerothermodynamic data, collected from a continuing series of wind tunnel tests, are permanently stored with the Data Management Services (DMS) system. Information pertaining to current baseline configuration definition is also stored. Documentation of DMS processed data arranged sequentially and by space shuttle configuration is listed to provide an up-to-date record of all applicable aerothermodynamic data collected, processed, or summarized during the space shuttle program. Tables provide survey information to the various space shuttle managerial and technical levels.

  8. Shuttle Tethered Aerothermodynamics Research Facilty (STARFAC) instrumentation requirements

    NASA Technical Reports Server (NTRS)

    Wood, G. M.; Siemers, P. M.; Carlomagno, G. M.; Hoffman, J.

    1986-01-01

    The instrumentation requirements for the Shuttle Tethered Aerothermodynamic Research Facility (STARFAC) are presented. The typical physical properties of the terrestrial atmosphere are given along with representative atmospheric daytime ion concentrations and the equilibrium and nonequilibrium gas property comparison from a point away from a wall. STARFAC science and engineering measurements are given as are the TSS free stream gas analysis. The potential nonintrusive measurement techniques for hypersonic boundary layer research are outlined along with the quantitative physical measurement methods for aerothermodynamic studies.

  9. Performance of laminar-flow leading-edge test articles in cloud encounters

    NASA Technical Reports Server (NTRS)

    Davis, Richard E.; Maddalon, Dal V.; Wagner, Richard D.

    1987-01-01

    An extensive data bank of concurrent measurements of laminar flow (LF), particle concentration, and aircraft charging state was gathered for the first time. From this data bank, 13 flights in the simulated airline service (SAS) portion were analyzed to date. A total of 6.86 hours of data at one-second resolution were analyzed. An extensive statistical analysis, for both leading-edge test articles, shows that there is a significant effect of cloud and haze particles on the extent of laminar flow obtained. Approximately 93 percent of data points simulating LFC flight were obtained in clear air conditions; approximately 7 percent were obtained in cloud and haze. These percentages are consistent with earlier USAF and NASA estimates and results. The Hall laminar flow loss criteria was verified qualitatively. Larger particles and higher particle concentrations have a more marked effect on LF than do small particles. A particle spectrometer of a charging patch are both acceptable as diagnostic indicators of the presence of particles detrimental to laminar flow.

  10. Flow characteristics of infinite-span wings with wavy leading edges

    NASA Astrophysics Data System (ADS)

    Perez-Torro, Rafael; Kim, Jae-Wook

    2016-11-01

    Implicit LES computations are performed for an infinite-span wing based on the NACA0021 aerofoil section with a sinusoidal wavy leading edge (WLE). At Re∞ = 1 . 2 ×105 and M∞ = 0 . 3 , the computations performed in this study show that three-dimensional laminar separation bubbles (LSBs) form at troughs of the undulated wing. Prior to stall, LSBs can be found in all troughs. However, past the stall angle, LSBs tend to group together in a collocated fashion, leaving regions of complete separation in between groups where a separated shear layer (SSL) is formed. It is found that the size of the LSB group is highly dependent on the number of WLE wavelengths used in the spanwise-periodic domain. The LSB group formation process is investigated by means of simulations where the geometry is slowly pitched from an angle of attack of α =10° to α =20° . The study also includes the analysis of instantaneous flow fields using Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD) techniques. The authors acknowledge the HPC facilities of the UK National Supercomputer Archer via the support of the UK Turbulence Consortium (EP/L000261/1) and the local Iridis4 at the University of Southampton.

  11. The ubiquitin-proteasome system regulates focal adhesions at the leading edge of migrating cells

    PubMed Central

    Teckchandani, Anjali; Cooper, Jonathan A

    2016-01-01

    Cell migration requires the cyclical assembly and disassembly of focal adhesions. Adhesion induces phosphorylation of focal adhesion proteins, including Cas (Crk-associated substrate/p130Cas/BCAR1). However, Cas phosphorylation stimulates adhesion turnover. This raises the question of how adhesion assembly occurs against opposition from phospho-Cas. Here we show that suppressor of cytokine signaling 6 (SOCS6) and Cullin 5, two components of the CRL5SOCS6 ubiquitin ligase, inhibit Cas-dependent focal adhesion turnover at the front but not rear of migrating epithelial cells. The front focal adhesions contain phospho-Cas which recruits SOCS6. If SOCS6 cannot access focal adhesions, or if cullins or the proteasome are inhibited, adhesion disassembly is stimulated. This suggests that the localized targeting of phospho-Cas within adhesions by CRL5SOCS6 and concurrent cullin and proteasome activity provide a negative feedback loop, ensuring that adhesion assembly predominates over disassembly at the leading edge. By this mechanism, ubiquitination provides a new level of spatio-temporal control over cell migration. DOI: http://dx.doi.org/10.7554/eLife.17440.001 PMID:27656905

  12. Effect of Impact Location on the Response of Shuttle Wing Leading Edge Panel 9

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Spellman, Regina L.; Hardy, Robin C.; Fasanella, Edwin L.; Jackson, Karen E.

    2005-01-01

    The objective of this paper is to compare the results of several simulations performed to determine the worst-case location for a foam impact on the Space Shuttle wing leading edge. The simulations were performed using the commercial non-linear transient dynamic finite element code, LS-DYNA. These simulations represent the first in a series of parametric studies performed to support the selection of the worst-case impact scenario. Panel 9 was selected for this study to enable comparisons with previous simulations performed during the Columbia Accident Investigation. The projectile for this study is a 5.5-in cube of typical external tank foam weighing 0.23 lb. Seven locations spanning the panel surface were impacted with the foam cube. For each of these cases, the foam was traveling at 1000 ft/s directly aft, along the orbiter X-axis. Results compared from the parametric studies included strains, contact forces, and material energies for various simulations. The results show that the worst case impact location was on the top surface, near the apex.

  13. Development and Validation of a Novel Bird Strike Resistant Composite Leading Edge Structure

    NASA Astrophysics Data System (ADS)

    Kermanidis, Th.; Labeas, G.; Sunaric, M.; Ubels, L.

    2005-11-01

    A novel design of a fibre-reinforced composite Leading Edge (LE) of a Horizontal Tail Plain (HTP) is proposed. The development and validation approach of the innovative composite LE structure are described. The main design goal is the satisfactory impact resistance of the novel composite LE in the case of bird strike. The design concept is based on the absorption of the major portion of the bird kinetic energy by the composite skins, in order to protect the ribs and the inner LE structure from damaging, thus preserving the tail plane functionality for safe landing. To this purpose, the LE skin is fabricated from specially designed composite panels, so called ‘tensor skin’ panels, comprising folded layers, which unfold under the impact load and increase the energy absorption capability of the LE. A numerical model simulating the bird strike process is developed and bird strike experimental testing is performed, in order to validate the proposed layout and prove the capability of the structure to successfully withstand the impact loading. The numerical modelling issues and the critical parameters of the simulation are discussed. The present work is part of the European Aeronautics Research Project, ‘Crashworthiness of aircraft for high velocity impact CRAHVI’ [1].

  14. Generation of Fullspan Leading-Edge 3D Ice Shapes for Swept-Wing Aerodynamic Testing

    NASA Technical Reports Server (NTRS)

    Camello, Stephanie C.; Lee, Sam; Lum, Christopher; Bragg, Michael B.

    2016-01-01

    The deleterious effect of ice accretion on aircraft is often assessed through dry-air flight and wind tunnel testing with artificial ice shapes. This paper describes a method to create fullspan swept-wing artificial ice shapes from partial span ice segments acquired in the NASA Glenn Icing Reserch Tunnel for aerodynamic wind-tunnel testing. Full-scale ice accretion segments were laser scanned from the Inboard, Midspan, and Outboard wing station models of the 65% scale Common Research Model (CRM65) aircraft configuration. These were interpolated and extrapolated using a weighted averaging method to generate fullspan ice shapes from the root to the tip of the CRM65 wing. The results showed that this interpolation method was able to preserve many of the highly three dimensional features typically found on swept-wing ice accretions. The interpolated fullspan ice shapes were then scaled to fit the leading edge of a 8.9% scale version of the CRM65 wing for aerodynamic wind-tunnel testing. Reduced fidelity versions of the fullspan ice shapes were also created where most of the local three-dimensional features were removed. The fullspan artificial ice shapes and the reduced fidelity versions were manufactured using stereolithography.

  15. Mechanism of Water Droplet Breakup near the Leading Edge of an Airfoil

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Sor, Suthyvann; Magarino, Adelaida Garcia

    2012-01-01

    This work presents results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de T cnica Aeroespacial (INTA) in Madrid, Spain. The airfoil model was placed at the end of the rotating arm and a monosize droplet generator produced droplets that fell from above, perpendicular to the path of the airfoil. The interaction between the droplets and the airfoil was captured with high speed imaging and allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. Image processing software was used to measure the position of the droplet centroid, equivalent diameter, perimeter, area, and the major and minor axes of an ellipse superimposed over the deforming droplet. The horizontal and vertical displacement of each droplet against time was also measured, and the velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of the droplet to the beginning of breakup. Droplet deformation is defined and studied against main parameters. The high speed imaging allowed observation of the actual mechanism of breakup and identification of the sequence of configurations from the initiation of the breakup to the disintegration of the droplet. Results and comparisons are presented for droplets of diameters in the range of 500 to 1800 micrometers, and airfoil velocities of 70 and 90 meters/second.

  16. Prediction and Assessment of Reynolds Number Sensitivities Associated with Wing Leading-Edge Radius Variations

    NASA Technical Reports Server (NTRS)

    Wahls, Richard A.; Rivers, Melissa B.; Owens, Lewis R., Jr.

    1999-01-01

    The primary objectives of this study were to expand the data base showing the effects of LE radius distribution and corresponding sensitivity to Rn at subsonic and transonic conditions, and to assess the predictive capability of CFD for these effects. Several key elements led to the initiation of this project: 1) the necessity of meeting multipoint design requirements to enable a viable HSCT, 2) the demonstration that blunt supersonic leading-edges can be associated with performance gain at supersonic speeds , and 3) limited data. A test of a modified Reference H model with the TCA planform and 2 LE radius distributions was performed in the NTF, in addition to Navier-Stokes analysis for an additional 3 LE radius distributions. Results indicate that there is a tremendous potential to improve high-lift performance through the use of a blunt LE across the span given an integrated, fully optimized design, and that low Rn data alone is probably not sufficient to demonstrate the benefit.

  17. Prediction and Assessment of Reynolds Number Sensitivities Associated with Wing Leading-Edge Radius Variations

    NASA Technical Reports Server (NTRS)

    Wahls, Richard A.; Rivers, Melissa B.; Owen, Lewis R., Jr.

    1999-01-01

    The primary objectives of this study were to expand the data base showing the effects of LE radius distribution and corresponding . sensitivity to Rn at subsonic and transonic conditions, and to assess the predictive capability of CFD for these effects. Several key elements led to the initiation of this project: 1) the necessity of meeting multipoint design requirements to enable a viable HSCT, 2) the demonstration that blunt supersonic leading-edges can be associated with performance gain at supersonic speeds , and 3) limited data. A test of a modified Reference H model with the TCA planform and 2 LE radius distributions was performed in the NTF, in addition to Navier-Stokes analysis for an additional 3 LE radius distributions. Results indicate that there is a tremendous potential to improve high-lift performance through the use of a blunt LE across the span given an integrated, fully optimized design, and that low Rn data alone is probably not sufficient to demonstrate the benefit.

  18. Modeling Shock Train Leading Edge Detection in Dual-Mode Scramjets

    NASA Astrophysics Data System (ADS)

    Ladeinde, Foluso; Lou, Zhipeng; Li, Wenhai

    2016-11-01

    The objective of this study is to accurately model the detection of shock train leading edge (STLE) in dual-mode scramjet (DMSJ) engines intended for hypersonic flight in air-breathing propulsion systems. The associated vehicles have applications in military warfare and intelligence, and there is commercial interest as well. Shock trains are of interest because they play a significant role in the inability of a DMSJ engine to develop the required propulsive force. The experimental approach to STLE detection has received some attention; as have numerical calculations. However, virtually all of the numerical work focus on mechanically- (i.e., pressure-) generated shock trains, which are much easier to model relative to the phenomenon in the real system where the shock trains are generated by combustion. A focus on combustion, as in the present studies, enables the investigation of the effects of equivalence ratio, which, together with the Mach number, constitutes an important parameter determining mode transition. The various numerical approaches implemented in our work will be reported, with result comparisons to experimental data. The development of an STLE detection procedure in an a priori manner will also be discussed.

  19. Suppression of dynamic stall with a leading-edge slat on a VR-7 airfoil

    NASA Technical Reports Server (NTRS)

    Mcalister, K. W.; Tung, C.

    1993-01-01

    The VR-7 airfoil was experimentally studied with and without a leading-edge slat at fixed angles of attack from 0 deg to 30 deg at Re = 200,000 and for unsteady pitching motions described by alpha equals alpha(sub m) + 10 deg(sin(wt)). The models were two dimensional, and the test was performed in a water tunnel at Ames Research Center. The unsteady conditions ranged over Re equals 100,000 to 250,000, k equals 0.001 to 0.2, and alpha(sub m) = 10 deg to 20 deg. Unsteady lift, drag, and pitching-moment measurements were obtained along with fluorescent-dye flow visualizations. The addition of the slat was found to delay the static-drag and static-moment stall by about 5 degrees and to eliminate completely the development of a dynamic-stall vortex during unsteady motions that reached angles as high as 25 degrees. In all of the unsteady cases studied, the slat caused a significant reduction in the force and moment hysteresis amplitudes. The reduced frequency was found to have the greatest effect on the results, whereas the Reynolds number had little effect on the behavior of either the basic or the slatted airfoil. The slat caused a slight drag penalty at low angles of attack, but generally increased the lift/drag ratio when averaged over the full cycle of oscillation.

  20. Thermostructural Evaluation of Joggle Region on the Shuttle Orbiter's Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.; Warren, Jerry E.

    2012-01-01

    An investigation was initiated to determine the cause of coating spallation occurring on the Shuttle Orbiter's wing leading edge panels in the slip-side joggle region. The coating spallation events were observed, post flight, on differing panels on different missions. As part of the investigation, the high re-entry heating occurring on the joggles was considered here as a possible cause. Thus, a thermostructural evaluation was conducted to determine the detailed state-of-stress in the joggle region during re-entry and the feasibility of a laboratory test on a local joggle specimen to replicate this state-of-stress. A detailed three-dimensional finite element model of a panel slip-side joggle region was developed. Parametric and sensitivity studies revealed significant stresses occur in the joggle during peak heating. A critical interlaminar normal stress concentration was predicted in the substrate at the coating interface and was confined to the curved joggle region. Specifically, the high interlaminar normal stress is identified to be the cause for the occurrence of failure in the form of local subsurface material separation occurring in the slip-side joggle. The predicted critical stresses are coincident with material separations that had been observed with microscopy in joggle specimens obtained from flight panels.

  1. A practical study of the aerodynamic impact of wind turbine blade leading edge erosion

    NASA Astrophysics Data System (ADS)

    Gaudern, N.

    2014-06-01

    During operation wind turbine blades are exposed to a wide variety of atmospheric and environmental conditions; inspection reports for blades that have been operating for several years show varying degrees of leading edge erosion. It is important to be able to estimate the impact of different stages of erosion on wind turbine performance, but this is very difficult even with advanced CFD models. In this study, wind tunnel testing was used to evaluate a range of complex erosion stages. Erosion patterns were transferred to thin films that were applied to 18% thick commercial wind turbine aerofoils and full lift and drag polars were measured in a wind tunnel. Tests were conducted up to a Reynolds number of 2.20 × 106 scaling based on the local roughness Reynolds number was used in combination with different film thicknesses to simulate a variety of erosion depths. The results will be very useful for conducting cost/benefit analyses of different methods of blade protection and repair, as well as for defining the appropriate timescales for these processes.

  2. Evaluation of Navier-Stokes and Euler solutions for leading-edge separation vortices

    NASA Technical Reports Server (NTRS)

    Fujii, K.; Gavali, S.; Holst, T. L.

    1987-01-01

    Extensive study on the numerical simulation of the vortical flow over a double delta wing is carried out using the thin layer Navier-Stokes and Euler equations. Two important flow characteristics, vortex interaction and vortex breakdown, are successfully simulated. Grid resolution is one of the most important factors associated with the vortex problem. Computations were performed on a series of grids with various levels of refinement, coarse, medium, and fine. Computations using either the coarse or medium grids fail to capture the proper physical phenomena. The computed result using a fine grid shows flow unsteadiness once the vortex breakdown takes place. The C sub L - alpha characteristics are well predicted up to the breakdown angle of attack for all the grid distributions. The Euler solutions show fairly good agreement with the experiment on the C sub L - alpha characteristics. However, other aspects of the solution at each angle of attack, such as the locus of the leading edge separation vortex, are not consistent with the experiment. Even for the fine grid Navier-Stokes computations, further grid resolution is required to obtain good quantitative agreement with the experiment.

  3. Fracture Mechanics Analyses of Reinforced Carbon-Carbon Wing-Leading-Edge Panels

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Phillips, Dawn R.; Knight, Norman F., Jr.; Song, Kyongchan

    2010-01-01

    Fracture mechanics analyses of subsurface defects within the joggle regions of the Space Shuttle wing-leading-edge RCC panels are performed. A 2D plane strain idealized joggle finite element model is developed to study the fracture behavior of the panels for three distinct loading conditions - lift-off and ascent, on-orbit, and entry. For lift-off and ascent, an estimated bounding aerodynamic pressure load is used for the analyses, while for on-orbit and entry, thermo-mechanical analyses are performed using the extreme cold and hot temperatures experienced by the panels. In addition, a best estimate for the material stress-free temperature is used in the thermo-mechanical analyses. In the finite element models, the substrate and coating are modeled separately as two distinct materials. Subsurface defects are introduced at the coating-substrate interface and within the substrate. The objective of the fracture mechanics analyses is to evaluate the defect driving forces, which are characterized by the strain energy release rates, and determine if defects can become unstable for each of the loading conditions.

  4. Pressure-Velocity Correlations in the Cove of a Leading Edge Slat

    NASA Astrophysics Data System (ADS)

    Wilkins, Stephen; Richard, Patrick; Hall, Joseph

    2015-11-01

    One of the major sources of aircraft airframe noise is related to the deployment of high-lift devices, such as leading-edge slats, particularly when the aircraft is preparing to land. As the engines are throttled back, the noise produced by the airframe itself is of great concern, as the aircraft is low enough for the noise to impact civilian populations. In order to reduce the aeroacoustic noise sources associated with these high lift devices for the next generation of aircraft an experimental investigation of the correlation between multi-point surface-mounted fluctuating pressures measured via flush-mounted microphones and the simultaneously measured two-component velocity field measured via Particle Image Velocimetry (PIV) is studied. The development of the resulting shear-layer within the slat cove is studied for Re =80,000, based on the wing chord. For low Mach number flows in air, the major acoustic source is a dipole acoustic source tied to fluctuating surface pressures on solid boundaries, such as the underside of the slat itself. Regions of high correlations between the pressure and velocity field near the surface will likely indicate a strong acoustic dipole source. In order to study the underlying physical mechanisms and understand their role in the development of aeroacoustic noise, Proper Orthogonal Decomposition (POD) by the method of snapshots is employed on the velocity field. The correlation between low-order reconstructions and the surface-pressure measurements are also studied.

  5. Augmentation of Fighter-Aircraft Performance by Spanwise Blowing over the Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Seginer, A.; Salomon, M.

    1983-01-01

    Spanwise blowing over the wing and canard of a 1:35 model of a close-coupled-canard fighter airplane configuration (similar to the Kfir-C2) was investigated experimentally in low-speed flow. Tests were conducted at airspeeds of 30 m/sec (Reynolds number of 1.8 x 10 to the 5th power based on mean aerodynamic chord) with angle-of-attack sweeps from -8 to 60 deg, and yaw-angle sweeps from -8 to 36 deg at fixed angles of attack 0, 10, 20, 25, 30, and 35 deg. Significant improvement in lift-curve slope, maximum lift, drag polar and lateral/directional stability was found, enlarging the flight envelope beyond its previous low-speed/maximum-lift limit. In spite of the highly swept (60 deg) leading edge, the efficiency of the lift augmentation by blowing was relatively high and was found to increase with increasing blowing momentum on the close-coupled-canard configuration. Interesting possibilities of obtaining much higher efficiencies with swirling jets were indicated.

  6. Augmentation of fighter-aircraft performance by spanwise blowing over the wing leading edge

    NASA Technical Reports Server (NTRS)

    Seginer, A.; Salomon, M.

    1983-01-01

    Spanwise blowing over the wing and canard of a 1:35 model of a close-coupled-canard fighter-airplane configuration (similar to the Kfir-C2) was investigated experimentally in low-speed flow. Tests were conducted at airspeeds of 30 m/sec (Reynolds number of 1.8 x 10 to the 5th power based on mean aerodynamic chord) with angle-of-attack sweeps from -8 deg to 60 deg, and yaw-angle sweeps from -8 deg to 36 deg at fixed angles of attack 0 deg, 10 deg, 20 deg, 25 deg, 30 deg, and 35 deg. Significant improvement in lift-curve slope, maximum lift, drag polar and lateral/directional stability was found, enlarging the flight envelope beyond its previous low-speed/maximum-lift limit. In spite of the highly swept (60 deg) leading edge, the efficiency of the lift augmentation by blowing was relatively high and was found to increase with increasing blowing momentum on the close-coupled-canard configuration. Interesting possibilities of obtaining much higher efficiencies with swirling jets were indicated.

  7. Wing Leading Edge RCC Rapid Response Damage Prediction Tool (IMPACT2)

    NASA Technical Reports Server (NTRS)

    Clark, Robert; Cottter, Paul; Michalopoulos, Constantine

    2013-01-01

    This rapid response computer program predicts Orbiter Wing Leading Edge (WLE) damage caused by ice or foam impact during a Space Shuttle launch (Program "IMPACT2"). The program was developed after the Columbia accident in order to assess quickly WLE damage due to ice, foam, or metal impact (if any) during a Shuttle launch. IMPACT2 simulates an impact event in a few minutes for foam impactors, and in seconds for ice and metal impactors. The damage criterion is derived from results obtained from one sophisticated commercial program, which requires hours to carry out simulations of the same impact events. The program was designed to run much faster than the commercial program with prediction of projectile threshold velocities within 10 to 15% of commercial-program values. The mathematical model involves coupling of Orbiter wing normal modes of vibration to nonlinear or linear springmass models. IMPACT2 solves nonlinear or linear impact problems using classical normal modes of vibration of a target, and nonlinear/ linear time-domain equations for the projectile. Impact loads and stresses developed in the target are computed as functions of time. This model is novel because of its speed of execution. A typical model of foam, or other projectile characterized by material nonlinearities, impacting an RCC panel is executed in minutes instead of hours needed by the commercial programs. Target damage due to impact can be assessed quickly, provided that target vibration modes and allowable stress are known.

  8. Clathrin regulates lymphocyte migration by driving actin accumulation at the cellular leading edge.

    PubMed

    Ramírez-Santiago, Guillermo; Robles-Valero, Javier; Morlino, Giulia; Cruz-Adalia, Aranzazu; Pérez-Martínez, Manuel; Zaldivar, Airen; Torres-Torresano, Mónica; Chichón, Francisco Javier; Sorrentino, Andrea; Pereiro, Eva; Carrascosa, José L; Megías, Diego; Sorzano, Carlos Oscar S; Sánchez-Madrid, Francisco; Veiga, Esteban

    2016-10-01

    Lymphocyte migration, which is essential for effective immune responses, belongs to the so-called amoeboid migration. The lymphocyte migration is up to 100 times faster than between mesenchymal and epithelial cell types. Migrating lymphocytes are highly polarized in three well-defined structural and functional zones: uropod, medial zone, and leading edge (LE). The actiomyosin-dependent driving force moves forward the uropod, whereas massive actin rearrangements protruding the cell membrane are observed at the LE. These actin rearrangements resemble those observed at the immunological synapse driven by clathrin, a protein normally involved in endocytic processes. Here, we used cell lines as well as primary lymphocytes to demonstrate that clathrin and clathrin adaptors colocalize with actin at the LE of migrating lymphocytes, but not in other cellular zones that accumulate both clathrin and actin. Moreover, clathrin and clathrin adaptors, including Hrs, the clathrin adaptor for multivesicular bodies, drive local actin accumulation at the LE. Clathrin recruitment at the LE resulted necessary for a complete cell polarization and further lymphocyte migration in both 2D and 3D migration models. Therefore, clathrin, including the clathrin population associated to internal vesicles, controls lymphocyte migration by regulating actin rearrangements occurring at the LE.

  9. Mechanism of Water Droplet Breakup Near the Leading Edge of an Airfoil

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Sor, Suthyvann; Magarino, Adelaida, Garcia

    2012-01-01

    This work presents results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de Tecnica Aeroespacial (INTA) in Madrid, Spain. The airfoil model was placed at the end of the rotating arm and a monosize droplet generator produced droplets that fell from above, perpendicular to the path of the airfoil. The interaction between the droplets and the airfoil was captured with high speed imaging and allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. Image processing software was used to measure the position of the droplet centroid, equivalent diameter, perimeter, area, and the major and minor axes of an ellipse superimposed over the deforming droplet. The horizontal and vertical displacement of each droplet against time was also measured, and the velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of the droplet to the beginning of breakup. Droplet deformation is defined and studied against main parameters. The high speed imaging allowed observation of the actual mechanism of breakup and identification of the sequence of configurations from the initiation of the breakup to the disintegration of the droplet. Results and comparisons are presented for droplets of diameters in the range of 500 to 1800 microns, and airfoil velocities of 70 and 90 m/sec.

  10. Drag Coefficient of Water Droplets Approaching the Leading Edge of an Airfoil

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Sor, Suthyvann; Magarino, Adelaida Garcia

    2013-01-01

    This work presents results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de Tecnica Aeroespacial (INTA) in Madrid, Spain. An airfoil model was placed at the end of the rotating arm and a monosize droplet generator produced droplets that fell from above, perpendicular to the path of the airfoil. The interaction between the droplets and the airfoil was captured with high speed imaging and allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. Image processing software was used to measure the position of the droplet centroid, equivalent diameter, perimeter, area, and the major and minor axes of an ellipse superimposed over the deforming droplet. The horizontal and vertical displacement of each droplet against time was also measured, and the velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of the droplet to the beginning of breakup. Results are presented and discussed for drag coefficients of droplets with diameters in the range of 300 to 1800 micrometers, and airfoil velocities of 50, 70 and 90 meters/second. The effect of droplet oscillation on the drag coefficient is discussed.

  11. The effect of butterfly-scale inspired patterning on leading-edge vortex growth

    NASA Astrophysics Data System (ADS)

    Wilroy, Jacob; Lang, Amy

    2015-11-01

    Leading edge vortices (LEVs) are important for generating thrust and lift in flapping flight, and the surface patterning (scales) on butterfly wings is hypothesized to play a role in the vortex formation of the LEV. To simplify this complex flow problem, an experiment was designed to focus on the alteration of 2-D vortex development with a variation in surface patterning. Specifically, the secondary vorticity generated by the LEV interacting at the patterned surface was studied and the subsequent affect on the growth rate of the circulation in the LEV. For this experiment we used butterfly inspired grooves attached to a flat plate and compared the vortex formation to a smooth plate case as the plate moved vertically. The plate is impulsively started in quiescent water and flow fields at Re = 1500, 3000, and 6000 are examined using Digital Particle Image Velocimetry (DPIV). The vortex formation time is 3.0 and is based on the flat plate travel length and chord length. We would like to thank the National Science Foundation REU Site Award 1358991 for funding this research.

  12. Numerical Predictions of Sonic Boom Signatures for a Straight Line Segmented Leading Edge Model

    NASA Technical Reports Server (NTRS)

    Elmiligui, Alaa A.; Wilcox, Floyd J.; Cliff, Susan; Thomas, Scott

    2012-01-01

    A sonic boom wind tunnel test was conducted on a straight-line segmented leading edge (SLSLE) model in the NASA Langley 4- by 4- Foot Unitary Plan Wind Tunnel (UPWT). The purpose of the test was to determine whether accurate sonic boom measurements could be obtained while continuously moving the SLSLE model past a conical pressure probe. Sonic boom signatures were also obtained using the conventional move-pause data acquisition method for comparison. The continuous data acquisition approach allows for accurate signatures approximately 15 times faster than a move-pause technique. These successful results provide an incentive for future testing with greatly increased efficiency using the continuous model translation technique with the single probe to measure sonic boom signatures. Two widely used NASA codes, USM3D (Navier-Stokes) and CART3D-AERO (Euler, adjoint-based adaptive mesh), were used to compute off-body sonic boom pressure signatures of the SLSLE model at several different altitudes below the model at Mach 2.0. The computed pressure signatures compared well with wind tunnel data. The effect of the different altitude for signature extraction was evaluated by extrapolating the near field signatures to the ground and comparing pressure signatures and sonic boom loudness levels.

  13. Signalling crosstalk at the leading edge controls tissue closure dynamics in the Drosophila embryo

    PubMed Central

    Carballès, Fabrice; Parassol, Nadège; Schaub, Sébastien; Cérézo, Delphine; Noselli, Stéphane

    2017-01-01

    Tissue morphogenesis relies on proper differentiation of morphogenetic domains, adopting specific cell behaviours. Yet, how signalling pathways interact to determine and coordinate these domains remains poorly understood. Dorsal closure (DC) of the Drosophila embryo represents a powerful model to study epithelial cell sheet sealing. In this process, JNK (JUN N-terminal Kinase) signalling controls leading edge (LE) differentiation generating local forces and cell shape changes essential for DC. The LE represents a key morphogenetic domain in which, in addition to JNK, a number of signalling pathways converges and interacts (anterior/posterior -AP- determination; segmentation genes, such as Wnt/Wingless; TGFβ/Decapentaplegic). To better characterize properties of the LE morphogenetic domain, we sought out new JNK target genes through a genomic approach: 25 were identified of which 8 are specifically expressed in the LE, similarly to decapentaplegic or puckered. Quantitative in situ gene profiling of this new set of LE genes reveals complex patterning of the LE along the AP axis, involving a three-way interplay between the JNK pathway, segmentation and HOX genes. Patterning of the LE into discrete domains appears essential for coordination of tissue sealing dynamics. Loss of anterior or posterior HOX gene function leads to strongly delayed and asymmetric DC, due to incorrect zipping in their respective functional domain. Therefore, in addition to significantly increasing the number of JNK target genes identified so far, our results reveal that the LE is a highly heterogeneous morphogenetic organizer, sculpted through crosstalk between JNK, segmental and AP signalling. This fine-tuning regulatory mechanism is essential to coordinate morphogenesis and dynamics of tissue sealing. PMID:28231245

  14. Existence of and decay to equilibrium of the filament end density along the leading edge of the lamellipodium.

    PubMed

    Manhart, Angelika; Schmeiser, Christian

    2017-01-01

    A model for the dynamics of actin filament ends along the leading edge of the lamellipodium is analyzed. It contains accounts of nucleation by branching, of deactivation by capping, and of lateral flow along the leading edge by polymerization. A nonlinearity arises from a Michaelis-Menten type modeling of the branching process. For branching rates large enough compared to capping rates, the existence and stability of nontrivial steady states is investigated. The main result is exponential convergence to nontrivial steady states, proven by investigating the decay of an appropriate Lyapunov functional.

  15. Mass loss of TEOS-coated RCC subjected to the environment at the shuttle wing leading edge

    NASA Technical Reports Server (NTRS)

    Stroud, C. W.; Rummler, D. R.

    1981-01-01

    Coated, reinforced carbon-carbon (RCC) is used for the leading edges of the Space Shuttle. The mass loss characteristics of RCC specimens coated with tetra-ethyl-ortho-silicate (TEOS) were determined for conditions which simulated the entry environment expected at the stagnation area of the wing leading edge. Maximum specimen temperature was 1632 K. Specimens were exposed for up to 100 missions. Stress levels up to 8.274 MPa caused an average increase in oxidation of 6 percent over unstressed specimens. Experimentally determined mass losses were compared with those predicted by an existing empirical analysis.

  16. Evaluation of leading- and trailing-edge flaps on flat and cambered delta wings at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Hernandez, Gloria; Wood, Richard M.; Collins, Robert E.

    1989-01-01

    An experimental investigation has been conducted to evaluate the effectiveness of leading- and trailing-edge flaps on a flat and cambered wing at superconic speeds. Results from the experimental tests showed that highly complex and three-dimensional flow can occur over the wings with leading- and/or trailing-edge flaps deflected. An analysis of the data also showed that flap effectiveness varies significantly between a cambered and flat wing of identical planform and flap geometry. Mach number effects are similar for both flat and cambered wings for all aerodynamic parameters.

  17. Method and System for Weakening Shock Wave Strength at Leading Edge Surfaces of Vehicle in Supersonic Atmospheric Flight

    NASA Technical Reports Server (NTRS)

    Daso, Endwell O. (Inventor); Pritchett, Victor E., II (Inventor); Wang, Ten-See (Inventor); Farr, Rebecca Ann (Inventor); Auslender, Aaron Howard (Inventor); Blankson, Isaiah M. (Inventor); Plotkin, Kenneth J. (Inventor)

    2015-01-01

    A method and system are provided to weaken shock wave strength at leading edge surfaces of a vehicle in atmospheric flight. One or more flight-related attribute sensed along a vehicle's outer mold line are used to control the injection of a non-heated, non-plasma-producing gas into a local external flowfield of the vehicle from at least one leading-edge surface location along the vehicle's outer mold line. Pressure and/or mass flow rate of the gas so-injected is adjusted in order to cause a Rankine-Hugoniot Jump Condition along the vehicle's outer mold line to be violated.

  18. Overview of aerothermodynamic loads definition study

    NASA Technical Reports Server (NTRS)

    Gaugler, Raymond E.

    1991-01-01

    The objective of the Aerothermodynamic Loads Definition Study is to develop methods of accurately predicting the operating environment in advanced Earth-to-Orbit (ETO) propulsion systems, such as the Space Shuttle Main Engine (SSME) powerhead. Development of time averaged and time dependent three dimensional viscous computer codes as well as experimental verification and engine diagnostic testing are considered to be essential in achieving that objective. Time-averaged, nonsteady, and transient operating loads must all be well defined in order to accurately predict powerhead life. Described here is work in unsteady heat flow analysis, improved modeling of preburner flow, turbulence modeling for turbomachinery, computation of three dimensional flow with heat transfer, and unsteady viscous multi-blade row turbine analysis.

  19. Subsonic Investigation of a Leading-Edge Boundary Layer Control Suction System on a High-Speed Civil Transport Configuration

    NASA Technical Reports Server (NTRS)

    Campbell, Bryan A.; Applin, Zachary T.; Kemmerly, Guy T.; Coe, Paul L., Jr.; Owens, D. Bruce; Gile, Brenda E.; Parikh, Pradip G.; Smith, Don

    1999-01-01

    A wind tunnel investigation of a leading edge boundary layer control system was conducted on a High Speed Civil Transport (HSCT) configuration in the Langley 14- by 22-Foot Subsonic Tunnel. Data were obtained over a Mach number range of 0.08 to 0.27, with corresponding chord Reynolds numbers of 1.79 x 10(exp 6) to 5.76 x 10(exp 6). Variations in the amount of suction, as well as the size and location of the suction area, were tested with outboard leading edge flaps deflected 0 and 30 deg and trailing-edge flaps deflected 0 and 20 deg. The longitudinal and lateral aerodynamic data are presented without analysis. A complete tabulated data listing is also presented herein.

  20. Petiolate wings: effects on the leading-edge vortex in flapping flight

    PubMed Central

    2017-01-01

    The wings of many insect species including crane flies and damselflies are petiolate (on stalks), with the wing planform beginning some distance away from the wing hinge, rather than at the hinge. The aerodynamic impact of flapping petiolate wings is relatively unknown, particularly on the formation of the lift-augmenting leading-edge vortex (LEV): a key flow structure exploited by many insects, birds and bats to enhance their lift coefficient. We investigated the aerodynamic implications of petiolation P using particle image velocimetry flow field measurements on an array of rectangular wings of aspect ratio 3 and petiolation values of P = 1–3. The wings were driven using a mechanical device, the ‘Flapperatus’, to produce highly repeatable insect-like kinematics. The wings maintained a constant Reynolds number of 1400 and dimensionless stroke amplitude Λ* (number of chords traversed by the wingtip) of 6.5 across all test cases. Our results showed that for more petiolate wings the LEV is generally larger, stronger in circulation, and covers a greater area of the wing surface, particularly at the mid-span and inboard locations early in the wing stroke cycle. In each case, the LEV was initially arch-like in form with its outboard end terminating in a focus-sink on the wing surface, before transitioning to become continuous with the tip vortex thereafter. In the second half of the wing stroke, more petiolate wings exhibit a more detached LEV, with detachment initiating at approximately 70% and 50% span for P = 1 and 3, respectively. As a consequence, lift coefficients based on the LEV are higher in the first half of the wing stroke for petiolate wings, but more comparable in the second half. Time-averaged LEV lift coefficients show a general rise with petiolation over the range tested. PMID:28163876

  1. Space environmental effects on LDEF composites: A leading edge coated graphite epoxy panel

    NASA Technical Reports Server (NTRS)

    George, Pete E.; Dursch, Harry W.; Hill, Sylvester G.

    1993-01-01

    The electronics module cover for the leading edge (Row D 9) experiment M0003-8 was fabricated from T300 graphite/934 epoxy unidirectional prepreg tape in a (O(sub 2), +/- 45, O(sub 2), +/- 45, 90, 0)(sub s) layup. This 11.75 in x 16.75 in panel was covered with thermal control coatings in three of the four quadrants with the fourth quadrant uncoated. The composite panel experienced different thermal cycling extremes in each quadrant due to the different optical properties of the coatings and bare composite. The panel also experienced ultraviolet (UV) and atomic oxygen (AO) attack as well as micrometeoroid and space debris impacts. An AO reactivity of 0.99 x 10(exp -24) cm(sup 3)/atom was calculated for the bare composite based on thickness loss. The white urethane thermal control coatings (A276 and BMS 1060) prevented AO attack of the composite substrate. However, the black urethane thermal control coating (Z306) was severely eroded by AO, allowing some AO attack of the composite substrate. An interesting banding pattern on the AO eroded bare composite surface was investigated and found to match the dimensions of the graphite fiber tow widths as prepregged. Also, erosion depths were greater in the darker bands. Five micrometeoroid/space debris impacts were cross sectioned to investigate possible structural damage as well as impact/AO interactions. Local crushing and delaminations were found to some extent in all of the impacts. No signs of coating undercutting were observed despite the extensive AO erosion patterns seen in the exposed composite material at the impact sites. An extensive microcrack study was performed on the panel along with modeling of the thermal environment to estimate temperature extremes and thermal shock. The white coated composite substrate displayed almost no microcracking while the black coated and bare composite showed extensive microcracking. Significant AO erosion was seen in many of the cracks in the bare composite.

  2. Petiolate wings: effects on the leading-edge vortex in flapping flight.

    PubMed

    Phillips, Nathan; Knowles, Kevin; Bomphrey, Richard J

    2017-02-06

    The wings of many insect species including crane flies and damselflies are petiolate (on stalks), with the wing planform beginning some distance away from the wing hinge, rather than at the hinge. The aerodynamic impact of flapping petiolate wings is relatively unknown, particularly on the formation of the lift-augmenting leading-edge vortex (LEV): a key flow structure exploited by many insects, birds and bats to enhance their lift coefficient. We investigated the aerodynamic implications of petiolation P using particle image velocimetry flow field measurements on an array of rectangular wings of aspect ratio 3 and petiolation values of P = 1-3. The wings were driven using a mechanical device, the 'Flapperatus', to produce highly repeatable insect-like kinematics. The wings maintained a constant Reynolds number of 1400 and dimensionless stroke amplitude Λ* (number of chords traversed by the wingtip) of 6.5 across all test cases. Our results showed that for more petiolate wings the LEV is generally larger, stronger in circulation, and covers a greater area of the wing surface, particularly at the mid-span and inboard locations early in the wing stroke cycle. In each case, the LEV was initially arch-like in form with its outboard end terminating in a focus-sink on the wing surface, before transitioning to become continuous with the tip vortex thereafter. In the second half of the wing stroke, more petiolate wings exhibit a more detached LEV, with detachment initiating at approximately 70% and 50% span for P = 1 and 3, respectively. As a consequence, lift coefficients based on the LEV are higher in the first half of the wing stroke for petiolate wings, but more comparable in the second half. Time-averaged LEV lift coefficients show a general rise with petiolation over the range tested.

  3. Characterization of multifunctional skin-material for morphing leading-edge applications

    NASA Astrophysics Data System (ADS)

    Geier, Sebastian; Kintscher, Markus; Mahrholz, Thorsten; Wierach, Peter; Monner, Hans-Peter; Wiedemann, Martin

    2013-04-01

    Former research on morphing droop-nose applications revealed great economical and social ecological advantages in terms of providing gapless surfaces for long areas of laminar flow. Furthermore a droop-nose for laminar flow applications provides a low noise exposing high-lift system at the leading-edge. Various kinematic concepts for the active deployment of such devices are already published but the major challenge is still an open issue: a skin material which meets the compromise of needed stiffness and flexibility. Moreover additional functions have to be added to keep up with standard systems. As a result of several national and European projects the DLR developed a gapless 3D smart droop-nose concept, which was successfully analyzed in a low speed wind tunnel test under relevant loads to prove the functionality and efficiency. The main structure of this concept is made of commercial available glass fiber reinforced plastics (GRFP). This paper presents elementary tests to characterize material lay-ups and their integrity by applying different loads under extreme thermal conditions using aged specimens. On the one hand the presented work is focused on the integrity of material-interfaces and on the other hand the efficiency and feasibility of embedded functions. It can be concluded that different preparations, different adhesives and used materials have their significant influence to the interface stability and mechanical property of the whole lay-up. Especially the laminate design can be optimized due to the e. g. mechanical exploitation of the added systems beyond their main function in order to reduce structural mass.

  4. LOW SUBSONIC PRESSURE DISTRIBUTIONS ON THREE RIGID WINGS SIMULATING PARAGLIDERS WITH VARIED CANOPY CURVATURE AND LEADING-EDGE SWEEP

    DTIC Science & Technology

    An investigation was made in the Langley 7- by 10-foot transonic tunnel to determine the subsonic pressure distribution of three paraglider models...through an angle-of-attack range from 0 to 74 degrees. Three rigid meta models simulated a 45 degrees basic flat planform paraglider with leading-edge

  5. Heat transfer characteristics of hypersonic waveriders with an emphasis on the leading edge effects. M.S. Thesis, 1991

    NASA Technical Reports Server (NTRS)

    Vanmol, Denis O.; Anderson, John D., Jr.

    1992-01-01

    The heat transfer characteristics in surface radiative equilibrium and the aerodynamic performance of blunted hypersonic waveriders are studied along two constant dynamic pressure trajectories for four different Mach numbers. The inviscid leading edge drag was found to be a small (4 to 8 percent) but not negligible fraction of the inviscid drag of the vehicle. Although the viscous drag at the leading edge can be neglected, the presence of the leading edge will influence the transition pattern of the upper and the lower surfaces and therefore affect the viscous drag of the entire vehicle. For an application similar to the National Aerospace Plane (NASP), the present study demonstrates that the waverider remains a valuable concept at high Mach numbers if a state-of-the-art active cooling device is used along the leading edge. At low Mach number (less than 5), the study shows the surface radiative cooling might be sufficient. In all cases, radiative cooling is sufficient for the upper and lower surfaces of the vehicle if ceramic composites are used as thermal protection.

  6. The Effect of Leading-Edge Sweep and Surface Inclination on the Hypersonic Flow Field Over a Blunt Flat Plate

    NASA Technical Reports Server (NTRS)

    Creager, Marcus O.

    1959-01-01

    An investigation of the effects of variation of leading-edge sweep and surface inclination on the flow over blunt flat plates was conducted at Mach numbers of 4 and 5.7 at free-stream Reynolds numbers per inch of 6,600 and 20,000, respectively. Surface pressures were measured on a flat plate blunted by a semicylindrical leading edge over a range of sweep angles from 0 deg to 60 deg and a range of surface inclinations from -10 deg to +10 deg. The surface pressures were predicted within an average error of +/- 8 percent by a combination of blast-wave and boundary-layer theory extended herein to include effects of sweep and surface inclination. This combination applied equally well to similar data of other investigations. The local Reynolds number per inch was found to be lower than the free-stream Reynolds number per inch. The reduction in local Reynolds number was mitigated by increasing the sweep of the leading edge. Boundary-layer thickness and shock-wave shape were changed little by the sweep of the leading edge.

  7. Heat transfer and material temperature conditions in the leading edge area of impingement-cooled turbine vanes

    NASA Astrophysics Data System (ADS)

    Berg, H. P.; Pfaff, K.; Hennecke, D. K.

    The resultant effects on the cooling effectiveness at the leading edge area of an impingement-cooled turbine vane by varying certain geometrical parameters is described with reference to local internal heat transfer coefficients determined from experiment and temperature calculations. The local heat transfer on the cooling-air side is determined experimentally with the aid of the analogy between heat- and mass transfer. The impingement cooling is provided from an inserted sheet-metal containing a single row of holes. The Reynolds Number and several of the cooling geometry parameters were varied. The results demonstrate the high local resolution of the method of measurement, which allows improved analytical treatment of the leading-edge cooling configuration. These experiments also point to the necessity of not always performing model tests under idealized conditions. This becomes very clear in the case of the tests performed on an application-oriented impingement-cooling configuration like that often encountered in engine manufacture. In conclusion, as an example, temperature calculations are employed to demonstrate the effect on the cooling effectiveness of varying the distances between insert and inner surface of the leading edge. It shows how the effectiveness of the leading edge cooling can be increased by simple geometrical measures, which results in a considerable improvement in service life.

  8. Turbulent Vortex-Flow Simulation Over a 65 deg Sharp and Blunt Leading-Edge Delta Wing at Subsonic Speeds

    NASA Technical Reports Server (NTRS)

    Ghaffari, Farhad

    2005-01-01

    Turbulent thin-layer, Reynolds-Averaged Navier-Stokes solutions, based on a multi-block structured grid, are presented for a 65 deg delta wing having either a sharp leading edge (SLE) or blunt leading edge (BLE) geometry. The primary objective of the study is to assess the prediction capability of the method for simulating the leading-edge flow separation and the ensuing vortex flow characteristics. Computational results are obtained for two angles of attack of approximately 13 and 20 deg, at free-stream Mach number of 0.40 and Reynolds number of 6 million based on the wing mean aerodynamic chord. The effects of two turbulence models of Baldwin-Lomax with Degani-Schiff (BL/DS) and the Spalart-Allmaras (SA) on the numerical results are also discussed. The computations also explore the effects of two numerical flux-splitting schemes, i.e., flux difference splitting (fds) and flux vector splitting (fvs), on the solution development and convergence characteristics. The resulting trends in solution sensitivity to grid resolution for the selected leading-edge geometries, angles of attack, turbulence models and flux splitting schemes are also presented. The validity of the numerical results is evaluated against a unique set of experimental wind-tunnel data that was obtained in the National Transonic Facility at the NASA Langley Research Center.

  9. "Partners in Science": A Model Cooperative Program Introducing High School Teachers and Students to Leading-Edge Pharmaceutical Science

    ERIC Educational Resources Information Center

    Woska, Joseph R., Jr.; Collins, Danielle M.; Canney, Brian J.; Arcario, Erin L.; Reilly, Patricia L.

    2005-01-01

    "Partners in Science" is a cooperative program between Boehringer Ingelheim Pharmaceuticals, Inc. and area high schools in the community surrounding our Connecticut campus. It is a two-phase program that introduces high school students and teachers to the world of drug discovery and leading-edge pharmaceutical research. Phase 1 involves…

  10. Effects of leading-edge devices on the low-speed aerodynamic characteristics of a highly-swept arrow-wing

    NASA Technical Reports Server (NTRS)

    Scott, S. J.; Nicks, O. W.; Imbrie, P. K.

    1985-01-01

    An investigation was conducted in the Texas A&M University 7 by 10 foot Low Speed Wind Tunnel to provide a direct comparison of the effect of several leading edge devices on the aerodynamic performance of a highly swept wing configuration. Analysis of the data indicates that for the configuration with undeflected leading edges, vortex separation first occurs on the outboard wing panel for angles of attack of approximately 2, and wing apex vorticies become apparent for alpha or = 4 deg. However, the occurrence of the leading edge vortex flow may be postponed with leading edge devices. Of the devices considered, the most promising were a simple leading edge deflection of 30 deg and a leading edge slat system. The trailing edge flap effectiveness was found to be essentially the same for the configuration employing either of these more promising leading edge devices. Analysis of the lateral directional data showed that for all of the concepts considered, deflecting leading edge downward in an attempt to postpone leading edge vortex flows, has the favorable effect of reducing the effective dihedral.

  11. The Influence of Mesh Density on the Impact Response of a Shuttle Leading-Edge Panel Finite Element Simulation

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Lyle, Karen H.; Spellman, Regina L.

    2004-01-01

    A study was performed to examine the influence of varying mesh density on an LS-DYNA simulation of a rectangular-shaped foam projectile impacting the space shuttle leading edge Panel 6. The shuttle leading-edge panels are fabricated of reinforced carbon-carbon (RCC) material. During the study, nine cases were executed with all possible combinations of coarse, baseline, and fine meshes of the foam and panel. For each simulation, the same material properties and impact conditions were specified and only the mesh density was varied. In the baseline model, the shell elements representing the RCC panel are approximately 0.2-in. on edge, whereas the foam elements are about 0.5-in. on edge. The element nominal edge-length for the baseline panel was halved to create a fine panel (0.1-in. edge length) mesh and doubled to create a coarse panel (0.4-in. edge length) mesh. In addition, the element nominal edge-length of the baseline foam projectile was halved (0.25-in. edge length) to create a fine foam mesh and doubled (1.0- in. edge length) to create a coarse foam mesh. The initial impact velocity of the foam was 775 ft/s. The simulations were executed in LS-DYNA version 960 for 6 ms of simulation time. Contour plots of resultant panel displacement and effective stress in the foam were compared at five discrete time intervals. Also, time-history responses of internal and kinetic energy of the panel, kinetic and hourglass energy of the foam, and resultant contact force were plotted to determine the influence of mesh density. As a final comparison, the model with a fine panel and fine foam mesh was executed with slightly different material properties for the RCC. For this model, the average degraded properties of the RCC were replaced with the maximum degraded properties. Similar comparisons of panel and foam responses were made for the average and maximum degraded models.

  12. Subsonic longitudinal aerodynamic characteristics of a vectored-engine-over-wing configuration having spanwise leading-edge vortex enhancement

    NASA Technical Reports Server (NTRS)

    Huffman, J. K.; Fox, C. H., Jr.

    1977-01-01

    A configuration which integrates a close coupled canard wing combination, spanwise blowing for enhancement of the wing leading edge vortex, an engine-over-wing concept, and a wing trailing edge coanda-effect flap is studied. The data on the configuration are presented in tabular from without discussion. The investigation was conducted in the Langley 7- by 10-foot high speed tunnel at a Mach number of 0.166 through an angle-of-attack range from -2 to 22 deg. Rectangular main engine nozzles of aspect ratio 4, 6, and 8 were tested over a momentum coefficient range from 1.0 to 1.8.

  13. Low Subsonic Pressure Distributions on Three Rigid Wings Simulating Paragliders with Varied Canopy Curvature and Leading-Edge Sweep

    NASA Technical Reports Server (NTRS)

    Fournier, Paul G.; Bell, B. Ann

    1961-01-01

    An investigation has been made in the Langley 7- by 10-foot transonic tunnel to determine the subsonic pressure distribution of three paraglider models through an angle-of-attack range from 0 deg to 74 deg. Three rigid metal models simulated a 45 deg basic flat planform paraglider with leading-edge sweep angles of 61.6 deg, 52.5 deg, and 48.6 deg. These configurations resulted in one-half-circle, one-third-circle, and one-quarter-circle semispan trailing-edge curvature when viewed from downstream. The results of the investigation are presented as curves of chordwise pressure distributions at four spanwise locations.

  14. The aerodynamics of Manduca sexta: digital particle image velocimetry analysis of the leading-edge vortex.

    PubMed

    Bomphrey, Richard J; Lawson, Nicholas J; Harding, Nicholas J; Taylor, Graham K; Thomas, Adrian L R

    2005-03-01

    Here we present the first digital particle image velocimetry (DPIV) analysis of the flow field around the wings of an insect (the tobacco hawkmoth Manduca sexta, tethered to a 6-component force-moment balance in a wind tunnel). A leading-edge vortex (LEV) is present above the wings towards the end of the downstroke, as the net upward force peaks. Our DPIV analyses and smoke visualisations match the results of previous flow visualisation experiments at midwing, and we extend the experiments to provide the first analysis of the flow field above the thorax. Detailed DPIV measurements show that towards the end of the downstroke, the LEV structure is consistent with that recently reported in free-flying butterflies and dragonflies: the LEV is continuous across the thorax and runs along each wing to the wingtip, where it inflects to form the wingtip trailing vortices. The LEV core is 2-3 mm in diameter (approximately 10% of local wing chord) both at the midwing position and over the centreline at 1.2 m s(-1) and at 3.5 m s(-1) flight speeds. At 1.2 m s(-1) the measured LEV circulation is 0.012+/-0.001 m(2) s(-1) (mean +/-S.D.) at the centreline and 0.011+/-0.001 m(2) s(-1) halfway along the wing. At 3.5 m s(-1) LEV circulation is 0.011+/-0.001 m(2) s(-1) at the centreline and 0.020+/-0.004 m(2) s(-1) at midwing. The DPIV measurements suggest that if there is any spanwise flow in the LEV towards the end of the downstroke its velocity is less than 1 m s(-1). Estimates of force production show that the LEV contributes significantly to supporting body weight during bouts of flight at both speeds (more than 10% of body weight at 1.2 m s(-1) and 35-65% of body weight at 3.5 m s(-1)).

  15. Exploratory study of the effects of wing-leading-edge modifications on the stall/spin behavior of a light general aviation airplane

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Configurations with full-span and segmented leading-edge flaps and full-span and segmented leading-edge droop were tested. Studies were conducted with wind-tunnel models, with an outdoor radio-controlled model, and with a full-scale airplane. Results show that wing-leading-edge modifications can produce large effects on stall/spin characteristics, particularly on spin resistance. One outboard wing-leading-edge modification tested significantly improved lateral stability at stall, spin resistance, and developed spin characteristics.

  16. Subscale, hydrogen-burning, airframe-integrated-scramjet: Experimental and theoretical evaluation of a water cooled strut airframe-integrated-scramjet: Experimental leading edge

    NASA Technical Reports Server (NTRS)

    Pinckney, S. Z.; Guy, R. W.; Beach, H. L., Jr.; Rogers, R. C.

    1975-01-01

    A water-cooled leading-edge design for an engine/airframe integrated scramjet model strut leading edge was evaluated. The cooling design employs a copper cooling tube brazed just downstream of the leading edge of a wedge-shaped strut which is constructed of oxygen-free copper. The survival of the strut leading edge during a series of tests at stagnation point heating rates confirms the practicality of the cooling design. A finite difference thermal model of the strut was also proven valid by the reasonable agreement of calculated and measured values of surface temperature and cooling-water heat transfer.

  17. Effect of leading edge sweep on the performance of cavitating inducer of LOX booster turbopump used in semicryogenic engine

    NASA Astrophysics Data System (ADS)

    Mishra, Arpit; Ghosh, Parthasarathi

    2017-02-01

    As a part of the developmental effort towards the realization of a staged combustion cycle based liquid rocket engine, a program on simulation of the LOX booster pump for performance characterization has been taken up. Earlier reported work shows that the pump inducer works satisfactorily under cavitating conditions for the throttling range varying from 90% to 113%. However stall occurs below 90% of the designed flow rate which is to be strongly associated with the inlet backflow vortices due to flow separation [1]. It is envisaged that leading edge sweep may help in to controls the incipience and growth of the backflow vortices at the inlet leading edge tip of axial flow inducer leading to a wider operating range. In this paper, steady state 3D CFD analysis of rotating inducer is performed to examine the effect of leading edge sweep on the performance of axial flow LOX pump inducer using ANSYS® CFX and has been compared with the performance of the inducer reported by Mishra and Ghosh [1].

  18. The Influence of Clocking Angle of the Projectile on the Simulated Impact Response of a Shuttle Leading Edge Wing Panel

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Lyle, Karen H.; Spellman, Regina L.

    2005-01-01

    An analytical study was conducted to determine the influence of clocking angle of a foam projectile impacting a space shuttle leading edge wing panel. Four simulations were performed using LS-DYNA. The leading edge panels are fabricated of multiple layers of reinforced carbon-carbon (RCC) material. The RCC material was represented using Mat 58, which is a material property that can be used for laminated composite fabrics. Simulations were performed of a rectangular-shaped foam block, weighing 0.23-lb., impacting RCC Panel 9 on the top surface. The material properties of the foam were input using Mat 83. The impact velocity was 1,000 ft/s along the Orbiter X-axis. In two models, the foam impacted on a corner, in one model the foam impacted the panel initially on the 2-in.-long edge, and in the last model the foam impacted the panel on the 7-in.- long edge. The simulation results are presented as contour plots of first principal infinitesimal strain and time history plots of contact force and internal and kinetic energy of the foam and RCC panel.

  19. Thelma and Louise Do Religious Education: A Dialogue from the Edge for Leading with Hope

    ERIC Educational Resources Information Center

    Meyers, Patty; Willhauck, Susan

    2003-01-01

    The 1991 movie Thelma and Louise and its protagonists continue to be cultural icons for many women of all ages. With quotations, song lyrics, the metaphor of the edge from the film, and collected wisdom from pedagogy, two religious educators reflect on their vocations and leadership drawing implications for the teaching ministry. The themes…

  20. Influence of airfoil geometry on delta wing leading-edge vortices and vortex-induced aerodynamics at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Byrd, James E.; Wesselmann, Gary F.

    1992-01-01

    An assessment of the influence of airfoil geometry on delta wing leading edge vortex flow and vortex induced aerodynamics at supersonic speeds is discussed. A series of delta wing wind tunnel models were tested over a Mach number range from 1.7 to 2.0. The model geometric variables included leading edge sweep and airfoil shape. Surface pressure data, vapor screen, and oil flow photograph data were taken to evaluate the complex structure of the vortices and shocks on the family of wings tested. The data show that airfoil shape has a significant impact on the wing upper surface flow structure and pressure distribution, but has a minimal impact on the integrated upper surface pressure increments.

  1. Two and three-dimensional shock-shock interactions on the blunt leading edges of the hypersonic inlets

    NASA Technical Reports Server (NTRS)

    Singh, D. J.; Kumar, Ajay; Tiwari, S. N.

    1991-01-01

    The effect of shock impingement on the blunt leading edges of the top and sidewall compression type inlet of a scramjet engine is studied numerically. The impinging shock is caused by the vehicle forebody. The interaction of this forebody shock with the inlet leading edge shock results in a very complex flowfield containing local regions of high pressure and intense heating. This complex flowfield in calculated by solving the Navier-Stokes equations using a finite volume flux splitting technique due to van Leer. To resolve the finer details of the flow structure as well as to predict the surface heat transfer accurately, adaptive grid technique is used in the analysis. Results of the present numerical study are compared with available experimental results.

  2. Calculation of the 3-D viscous flow at the endwall leading edge region of an axial annular turbine cascade

    NASA Technical Reports Server (NTRS)

    Walitt, L.

    1984-01-01

    A three-dimensional viscous computer code (VANS/MD) was employed to calculate the turbulent flow field at the end wall leading edge region of a 20 inch axial annular turbine cascade. The initial boundary layer roll-up and formation of the end wall vortices were computed at the vane leading edge. The calculated flow field was found to be periodic with a frequency of approximately 1600 Hz. The calculated size of the separation region for the hub endwall vortex compared favorably with measured endwall oil traces. In an effort to determine the effects of the turbulence model on the calculated unsteadiness, a laminar calculation was made. The periodic nature of the calculated flow field persisted with the frequency essentially unchanged.

  3. Alignment of leading-edge and peak-picking time of arrival methods to obtain accurate source locations

    SciTech Connect

    Roussel-Dupre, R.; Symbalisty, E.; Fox, C.; and Vanderlinde, O.

    2009-08-01

    The location of a radiating source can be determined by time-tagging the arrival of the radiated signal at a network of spatially distributed sensors. The accuracy of this approach depends strongly on the particular time-tagging algorithm employed at each of the sensors. If different techniques are used across the network, then the time tags must be referenced to a common fiducial for maximum location accuracy. In this report we derive the time corrections needed to temporally align leading-edge, time-tagging techniques with peak-picking algorithms. We focus on broadband radio frequency (RF) sources, an ionospheric propagation channel, and narrowband receivers, but the final results can be generalized to apply to any source, propagation environment, and sensor. Our analytic results are checked against numerical simulations for a number of representative cases and agree with the specific leading-edge algorithm studied independently by Kim and Eng (1995) and Pongratz (2005 and 2007).

  4. An Overview of the Space Shuttle Aerothermodynamic Design

    NASA Technical Reports Server (NTRS)

    Martin, Fred

    2011-01-01

    The Space Shuttle Thermal Protection System was one of the three areas that required the development of new technology. The talk discusses the pre-flight development of the aerothermodynamic environment which was based on Mach 8 wind tunnel data. A high level overview of the pre-flight heating rate predictions and comparison to the Orbiter Flight Test (OFT) data is presented, along with a discussion of the dramatic improvement in the state-of-the-art in aerothermodynamic capability that has been used to support the Shuttle Program. A high level review of the Orbiter aerothermodynamic design is discussed, along with improvements in Computational Fluid Dynamics and wind tunnel testing that was required for flight support during the last 30 years. The units have been removed from the plots, and the discussion is kept at a high level.

  5. Uncertainty Assessment of Hypersonic Aerothermodynamics Prediction Capability

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; Brown, James L.; Prabhu, Dinesh K.; Gnoffo, Peter; Johnston, Christopher O.; Hollis, Brian

    2011-01-01

    The present paper provides the background of a focused effort to assess uncertainties in predictions of heat flux and pressure in hypersonic flight (airbreathing or atmospheric entry) using state-of-the-art aerothermodynamics codes. The assessment is performed for four mission relevant problems: (1) shock turbulent boundary layer interaction on a compression corner, (2) shock turbulent boundary layer interaction due a impinging shock, (3) high-mass Mars entry and aerocapture, and (4) high speed return to Earth. A validation based uncertainty assessment approach with reliance on subject matter expertise is used. A code verification exercise with code-to-code comparisons and comparisons against well established correlations is also included in this effort. A thorough review of the literature in search of validation experiments is performed, which identified a scarcity of ground based validation experiments at hypersonic conditions. In particular, a shortage of useable experimental data at flight like enthalpies and Reynolds numbers is found. The uncertainty was quantified using metrics that measured discrepancy between model predictions and experimental data. The discrepancy data is statistically analyzed and investigated for physics based trends in order to define a meaningful quantified uncertainty. The detailed uncertainty assessment of each mission relevant problem is found in the four companion papers.

  6. Aero-Thermo-Dynamic Mass Analysis

    PubMed Central

    Shiba, Kota; Yoshikawa, Genki

    2016-01-01

    Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis. PMID:27412335

  7. Aero-Thermo-Dynamic Mass Analysis.

    PubMed

    Shiba, Kota; Yoshikawa, Genki

    2016-07-14

    Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis.

  8. Aero-Thermo-Dynamic Mass Analysis

    NASA Astrophysics Data System (ADS)

    Shiba, Kota; Yoshikawa, Genki

    2016-07-01

    Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis.

  9. Influence of the radius of the leading edge of worm vanes on the critical cavitation allowance of a pump

    SciTech Connect

    Shcherbatenko, I.V.; Khankin, V.P.

    1982-11-01

    This paper theoretically and experimentally investigates the influence of the cylindrical (curved) leading edge of the worm vanes on the cavitation characteristics of the pump. Considers the disruptive flow around the worm wheel with a constant screw spacing (pitch) of an ideal liquid flow. The proposed equations, verified on pumps with worms of different types and sizes with a wide range of attack angles, can be used for the calculation of the sucking capacity of high-speed worm centrifugal pumps.

  10. A Unit-Problem Investigation of Blunt Leading-Edge Separation Motivated by AVT-161 SACCON Research

    NASA Technical Reports Server (NTRS)

    Luckring, James M.; Boelens, Okko J.

    2011-01-01

    A research effort has been initiated to examine in more detail some of the challenging flow fields discovered from analysis of the SACCON configuration aerodynamics. This particular effort is oriented toward a diamond wing investigation specifically designed to isolate blunt leading-edge separation phenomena relevant to the SACCON investigations of the present workshop. The approach taken to design this new effort is reviewed along with the current status of the program.

  11. Investigation of Porous Gas-Heated Leading-Edge Section for Icing Protection of a Delta Wing

    NASA Technical Reports Server (NTRS)

    Bowden, Dean T.

    1955-01-01

    A tip section of a delta wing having an NACA 0004-65 airfoil section and a 600 leading-edge sweepback was equipped with a porous leading-edge section through which hot gas was 'bled for anti-icing. Heating rates for anti-icing were determined for a wide range of icing conditions. The effects of gas flow through the porous leading-edge section on airfoil pressure distribution and drag in dry air were investigated. The drag increase caused by an ice formation on the unheated airfoil was measured for several icing conditions. Experimental porous surface- to free-stream convective heat-transfer coefficients were obtained in dry air and compared with theory. Adequate icing protection was obtained at all icing conditions investigated. Savings in total gas-flow rate up to 42 percent may be obtained with no loss in anti-icing effectiveness by sealing half the upper-surface porous area. Gas flow through the leading-edge section had no appreciable effect on airfoil pressure distribution. The airfoil section drag increased slightly (5-percent average) with gas flow through the porous surface. A heavy glaze-ice formation produced after 10 minutes of icing caused an increase in section drag coefficient of 240 percent. Experimental convective heat-transfer coefficients obtained with hot-gas flow through the porous area in dry air and turbulent flow were 20 to 30 percent lower than the theoretical values for a solid surface under similar conditions. The transition region from laminar to turbulent flow moved forward as the ratio of gas velocity through the porous surface to air-stream velocity was increased.

  12. Active control of wing rock of a delta wing at post-stall using tangential leading edge blowing

    NASA Technical Reports Server (NTRS)

    Wong, G. S.; Rock, S. M.; Wood, N. J.; Roberts, L.

    1993-01-01

    Post-stall roll control utilizing tangential leading edge blowing is demonstrated in a wind tunnel on a delta wing model that exhibited wing rock. The dampening effect of symmetric blowing alone on wing rock is found to be effective up to a certain maximum amount of blowing. A moderate amount of symmetric blowing was shown to be effective in linearizing the asymmetric blowing static rolling moment responses.

  13. Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers.

    PubMed

    Birch, James M; Dickson, William B; Dickinson, Michael H

    2004-03-01

    The elevated aerodynamic performance of insects has been attributed in part to the generation and maintenance of a stable region of vorticity known as the leading edge vortex (LEV). One explanation for the stability of the LEV is that spiraling axial flow within the vortex core drains energy into the tip vortex, forming a leading-edge spiral vortex analogous to the flow structure generated by delta wing aircraft. However, whereas spiral flow is a conspicuous feature of flapping wings at Reynolds numbers (Re) of 5000, similar experiments at Re=100 failed to identify a comparable structure. We used a dynamically scaled robot to investigate both the forces and the flows created by a wing undergoing identical motion at Re of approximately 120 and approximately 1400. In both cases, motion at constant angular velocity and fixed angle of attack generated a stable LEV with no evidence of shedding. At Re=1400, flow visualization indicated an intense narrow region of spanwise flow within the core of the LEV, a feature conspicuously absent at Re=120. The results suggest that the transport of vorticity from the leading edge to the wake that permits prolonged vortex attachment takes different forms at different Re.

  14. Materials, Manufacturing, and Test Development of a Composite Fan Blade Leading Edge Subcomponent for Improved Impact Resistance

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Handschuh, Katherine; Sinnott, Matthew J.; Kohlman, Lee W.; Roberts, Gary D.; Martin, Richard E.; Ruggeri, Charles R.; Pereira, J. Michael

    2015-01-01

    Application of polymer matrix composite materials for jet engine fan blades is becoming attractive as an alternative to metallic blades; particularly for large engines where significant weight savings are recognized on moving to a composite structure. However, the weight benefit of the composite is offset by a reduction of aerodynamic efficiency resulting from a necessary increase in blade thickness; relative to the titanium blades. Blade dimensions are largely driven by resistance to damage on bird strike. Further development of the composite material is necessary to allow composite blade designs to approximate the dimensions of a metallic fan blade. The reduction in thickness over the state of the art composite blades is expected to translate into structural weight reduction, improved aerodynamic efficiency, and therefore reduced fuel consumption. This paper presents test article design, subcomponent blade leading edge fabrication, test method development, and initial results from ballistic impact of a gelatin projectile on the leading edge of composite fan blades. The simplified test article geometry was developed to realistically simulate a blade leading edge while decreasing fabrication complexity. Impact data is presented on baseline composite blades and toughened blades; where a considerable improvement to impact resistance was recorded.

  15. Materials, Manufacturing and Test Development of a Composite Fan Blade Leading Edge Subcomponent for Improved Impact Resistance

    NASA Technical Reports Server (NTRS)

    Handschuh, Katherine M.; Miller, Sandi G.; Sinnott, Matthew J.; Kohlman, Lee W.; Roberts, Gary D.; Pereira, J. Michael; Ruggeri, Charles R.

    2014-01-01

    Application of polymer matrix composite materials for jet engine fan blades is becoming attractive as an alternative to metallic blades; particularly for large engines where significant weight savings are recognized on moving to a composite structure. However, the weight benefit of the composite of is offset by a reduction of aerodynamic efficiency resulting from a necessary increase in blade thickness; relative to the titanium blades. Blade dimensions are largely driven by resistance to damage on bird strike. Further development of the composite material is necessary to allow composite blade designs to approximate the dimensions of a metallic fan blade. The reduction in thickness over the state of the art composite blades is expected to translate into structural weight reduction, improved aerodynamic efficiency, and therefore reduced fuel consumption. This paper presents test article design, subcomponent blade leading edge fabrication, test method development, and initial results from ballistic impact of a gelatin projectile on the leading edge of composite fan blades. The simplified test article geometry was developed to realistically simulate a blade leading edge while decreasing fabrication complexity. Impact data is presented on baseline composite blades and toughened blades; where a considerable improvement to impact resistance was recorded.

  16. NASA's hypersonic fluid and thermal physics program (Aerothermodynamics)

    NASA Technical Reports Server (NTRS)

    Graves, R. A.; Hunt, J. L.

    1985-01-01

    This survey paper gives an overview of NASA's hypersonic fluid and thermal physics program (recently renamed aerothermodynamics). The purpose is to present the elements of, example results from, and rationale and projection for this program. The program is based on improving the fundamental understanding of aerodynamic and aerothermodynamic flow phenomena over hypersonic vehicles in the continuum, transitional, and rarefied flow regimes. Vehicle design capabilities, computational fluid dynamics, computational chemistry, turbulence modeling, aerothermal loads, orbiter flight data analysis, orbiter experiments, laser photodiagnostics, and facilities are discussed.

  17. Low-Speed Aerodynamic Data for an 0.18-Scale Model of an F-16XL with Various Leading-Edge Modifications

    NASA Technical Reports Server (NTRS)

    Hahne, Daniel E.

    1999-01-01

    Using the F-16XL as a test-bed, two strategies for improving the low-speed flying characteristics that had minimal impact on high-speed performance were evaluated. In addition to the basic F-16XL configuration several modifications to the baseline configuration were tested in the Langley 30- X 60-Foot Tunnel: 1) the notched area at the wing leading edge and fuselage juncture was removed resulting in a continuous 70 deg leading-edge sweep on the inboard portion of the wing; 2) an integral attached-flow leading-edge flap concept was added to the continuous leading edge; and 3) a deployable vortex flap concept was added to the continuous leading edge. The purpose of this report is simply to document the test configurations, test conditions, and data obtained in this investigation for future reference and analysis. No analysis is presented herein and the data only appear in tabulated format.

  18. The effects of leading-edge serrations on reducing flow unsteadiness about airfoils, an experimental and analytical investigation

    NASA Technical Reports Server (NTRS)

    Schwind, R. G.; Allen, H. J.

    1973-01-01

    High frequency surface pressure measurements were obtained from wind-tunnel tests over the Reynolds number range 1.2 times one million to 6.2 times one million on a rectangular wing of NACA 63-009 airfoil section. Measurements were also obtained with a wide selection of leading-edge serrations added to the basic airfoil. Under a two-dimensional laminar bubble very close to the leading edge of the basic airfoil there is a large apatial peak in rms pressure. Frequency analysis of the pressure signals in this region show a large, high-frequency energy peak which is interpreted as an oscillation in size and position of the bubble. The serrations divide the bubble into segments and reduce the peak rms pressures. A low Reynolds number flow visualization test on a hydrofoil in water was also conducted. A von Karman vortex street was found trailing from the rear of the foil. Its frequency is at a much lower Strouhal number than in the high Reynolds number experiment, and is related to the trailing-edge and boundary-layer thicknesses.

  19. Thermal/structural analyses of several hydrogen-cooled leading-edge concepts for hypersonic flight vehicles

    NASA Technical Reports Server (NTRS)

    Gladden, Herbert J.; Melis, Matthew E.; Mockler, Theodore T.; Tong, Mike

    1990-01-01

    The aerodynamic heating at high flight Mach numbers, when shock interference heating is included, can be extremely high and can exceed the capability of most conventional metallic and potential ceramic materials available. Numerical analyses of the heat transfer and thermal stresses are performed on three actively cooled leading-edge geometries (models) made of three different materials to address the issue of survivability in a hostile environment. These analyses show a mixture of results from one configuration to the next. Results for each configuration are presented and discussed. Combinations of enhanced internal film coefficients and high material thermal conductivity of copper and tungsten are predicted to maintain the maximum wall temperature for each concept within acceptable operating limits. The exception is the TD nickel material which is predicted to melt for most cases. The wide range of internal impingement film coefficients (based on correlations) for these conditions can lead to a significant uncertainty in expected leading-edge wall temperatures. The equivalent plastic strain, inherent in each configuration which results from the high thermal gradients, indicates a need for further cyclic analysis to determine component life.

  20. Material Modeling of Space Shuttle Leading Edge and External Tank Materials For Use in the Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    Carney, Kelly; Melis, Matthew; Fasanella, Edwin L.; Lyle, Karen H.; Gabrys, Jonathan

    2004-01-01

    Upon the commencement of the analytical effort to characterize the impact dynamics and damage of the Space Shuttle Columbia leading edge due to External Tank insulating foam, the necessity of creating analytical descriptions of these materials became evident. To that end, material models were developed of the leading edge thermal protection system, Reinforced Carbon Carbon (RCC), and a low density polyurethane foam, BX-250. Challenges in modeling the RCC include its extreme brittleness, the differing behavior in compression and tension, and the anisotropic fabric layup. These effects were successfully included in LS-DYNA Material Model 58, *MAT_LAMINATED_ COMPOSITE_ FABRIC. The differing compression and tension behavior was modeled using the available damage parameters. Each fabric layer was given an integration point in the shell element, and was allowed to fail independently. Comparisons were made to static test data and coupon ballistic impact tests before being utilized in the full scale analysis. The foam's properties were typical of elastic automotive foams; and LS-DYNA Material Model 83, *MAT_FU_CHANG_FOAM, was successfully used to model its behavior. Material parameters defined included strain rate dependent stress-strain curves for both loading and un-loading, and for both compression and tension. This model was formulated with static test data and strain rate dependent test data, and was compared to ballistic impact tests on load-cell instrumented aluminum plates. These models were subsequently utilized in analysis of the Shuttle leading edge full scale ballistic impact tests, and are currently being used in the Return to Flight Space Shuttle re-certification effort.

  1. Effects of Mach Number, Leading-Edge Bluntness, and Sweep on Boundary-Layer Transition on a Flat Plate

    NASA Technical Reports Server (NTRS)

    Jillie, Don W.; Hopkins, Edward J.

    1961-01-01

    The effects of leading-edge bluntness and sweep on boundary-layer transition on flat plate models were investigated at Mach numbers of 2.00, 2.50, 3.00, and 4.00. The effect of sweep on transition was also determined on a flat plate model equipped with an elliptical nose at a Mach number of 0.27. Models used for the supersonic investigation had leading-edge radii varying from 0.0005 to 0.040 inch. The free-stream unit Reynolds number was held constant at 15 million per foot for the supersonic tests and the angle of attack was 0 deg. Surface flow conditions were determined by visual observation and recorded photographically. The sublimation technique was used to indicate transition, and the fluorescent-oil technique was used to indicate flow separation. Measured Mach number and sweep effects on transition are compared with those predicted from shock-loss considerations as described in NACA Rep. 1312. For the models with the blunter leading edges, the transition Reynolds number (based on free-stream flow conditions) was approximately doubled by an increase in Mach number from 2.50 to 4.00; and nearly the same result was predicted from shock-loss considerations. At all super- sonic Mach numbers, increases in sweep reduced the transition Reynolds number and the amount of reduction increased with increases in bluntness. The shock-loss method considerably underestimated- the sweep effects, possibly because of the existence of crossflow instability associated with swept wings. At a Mach number of 0.27, no reduction in the transition Reynolds number with sweep was measured (as would be expected with no shock loss) until the sweep angle was attained where crossflow instability appeared.

  2. Effects of Wing Leading Edge Penetration with Venting and Exhaust Flow from Wheel Well at Mach 24 in Flight

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2003-01-01

    A baseline solution for CFD Point 1 (Mach 24) in the STS-107 accident investigation was modified to include effects of: (1) holes through the leading edge into a vented cavity; and (2) a scarfed, conical nozzle directed toward the centerline of the vehicle from the forward, inboard corner of the landing gear door. The simulations were generated relatively quickly and early in the investigation because simplifications were made to the leading edge cavity geometry and an existing utility to merge scarfed nozzle grid domains with structured baseline external domains was implemented. These simplifications in the breach simulations enabled: (1) a very quick grid generation procedure; and (2) high fidelity corroboration of jet physics with internal surface impingements ensuing from a breach through the leading edge, fully coupled to the external shock layer flow at flight conditions. These simulations provided early evidence that the flow through a two-inch diameter (or larger) breach enters the cavity with significant retention of external flow directionality. A normal jet directed into the cavity was not an appropriate model for these conditions at CFD Point 1 (Mach 24). The breach diameters were of the same order or larger than the local, external boundary-layer thickness. High impingement heating and pressures on the downstream lip of the breach were computed. It is likely that hole shape would evolve as a slot cut in the direction of the external streamlines. In the case of the six-inch diameter breach the boundary layer is fully ingested. The intent of externally directed jet simulations in the second scenario was to approximately model aerodynamic effects of a relatively large internal wing pressure, fueled by combusting aluminum, which deforms the corner of the landing gear door and directs a jet across the windside surface. These jet interactions, in and of themselves, were not sufficiently large to explain observed aerodynamic behavior.

  3. A Survey of Factors Affecting Blunt Leading-Edge Separation for Swept and Semi-Slender Wings

    NASA Technical Reports Server (NTRS)

    Luckring, James M.

    2010-01-01

    A survey is presented of factors affecting blunt leading-edge separation for swept and semi-slender wings. This class of separation often results in the onset and progression of separation-induced vortical flow over a slender or semi-slender wing. The term semi-slender is used to distinguish wings with moderate sweeps and aspect ratios from the more traditional highly-swept, low-aspect-ratio slender wing. Emphasis is divided between a selection of results obtained through literature survey a section of results from some recent research projects primarily being coordinated through NATO s Research and Technology Organization (RTO). An aircraft context to these studies is included.

  4. AMELIA CESTOL Test: Acoustic Characteristics of Circulation Control Wing with Leading- and Trailing-Edge Slot Blowing

    NASA Technical Reports Server (NTRS)

    Horne, William C.; Burnside, Nathan J.

    2013-01-01

    The AMELIA Cruise-Efficient Short Take-off and Landing (CESTOL) configuration concept was developed to meet future requirements of reduced field length, noise, and fuel burn by researchers at Cal Poly, San Luis Obispo and Georgia Tech Research Institute under sponsorship by the NASA Fundamental Aeronautics Program (FAP), Subsonic Fixed Wing Project. The novel configuration includes leading- and trailing-edge circulation control wing (CCW), over-wing podded turbine propulsion simulation (TPS). Extensive aerodynamic measurements of forces, surfaces pressures, and wing surface skin friction measurements were recently measured over a wide range of test conditions in the Arnold Engineering Development Center(AEDC) National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Ft Wind Tunnel. Acoustic measurements of the model were also acquired for each configuration with 7 fixed microphones on a line under the left wing, and with a 48-element, 40-inch diameter phased microphone array under the right wing. This presentation will discuss acoustic characteristics of the CCW system for a variety of tunnel speeds (0 to 120 kts), model configurations (leading edge(LE) and/or trailing-edge(TE) slot blowing, and orientations (incidence and yaw) based on acoustic measurements acquired concurrently with the aerodynamic measurements. The flow coefficient, Cmu= mVSLOT/qSW varied from 0 to 0.88 at 40 kts, and from 0 to 0.15 at 120 kts. Here m is the slot mass flow rate, VSLOT is the slot exit velocity, q is dynamic pressure, and SW is wing surface area. Directivities at selected 1/3 octave bands will be compared with comparable measurements of a 2-D wing at GTRI, as will as microphone array near-field measurements of the right wing at maximum flow rate. The presentation will include discussion of acoustic sensor calibrations as well as characterization of the wind tunnel background noise environment.

  5. Numerical 3D analysis of cloud cavitation shedding frequency on a circular leading edge hydrofoil with a barotropic cavitation model

    NASA Astrophysics Data System (ADS)

    Blume, M.; Skoda, R.

    2015-12-01

    A compressible density-based time-explicit low Mach number consistent viscous flow solver is utilised in combination with a barotropic cavitation model for the analysis of cloud cavitation on a circular leading edge (CLE) hydrofoil. For 5° angle of attack, cloud structure and shedding frequency for different cavitation numbers are compared to experimental data. A strong grid sensitivity is found in particular for high cavitation numbers. On a fine grid, a very good agreement with validation data is achieved even without explicit turbulence model. The neglect of viscous effects as well as a two-dimensional set-up lead to a less realistic prediction of cloud structures and frequencies. Comparative simulations with the Sauer-Schnerr cavitation model and modified pre-factors of the mass transfer terms underestimate the measured shedding frequency.

  6. cAMP-induced Epac-Rap activation inhibits epithelial cell migration by modulating focal adhesion and leading edge dynamics.

    PubMed

    Lyle, Karen S; Raaijmakers, Judith H; Bruinsma, Wytse; Bos, Johannes L; de Rooij, Johan

    2008-06-01

    Epithelial cell migration is a complex process crucial for embryonic development, wound healing and tumor metastasis. It depends on alterations in cell-cell adhesion and integrin-extracellular matrix interactions and on actomyosin-driven, polarized leading edge protrusion. The small GTPase Rap is a known regulator of integrins and cadherins that has also been implicated in the regulation of actin and myosin, but a direct role in cell migration has not been investigated. Here, we report that activation of endogenous Rap by cAMP results in an inhibition of HGF- and TGFbeta-induced epithelial cell migration in several model systems, irrespective of the presence of E-cadherin adhesion. We show that Rap activation slows the dynamics of focal adhesions and inhibits polarized membrane protrusion. Importantly, forced integrin activation by antibodies does not mimic these effects of Rap on cell motility, even though it does mimic Rap effects in short-term cell adhesion assays. From these results, we conclude that Rap inhibits epithelial cell migration, by modulating focal adhesion dynamics and leading edge activity. This extends beyond the effect of integrin affinity modulation and argues for an additional function of Rap in controlling the migration machinery of epithelial cells.

  7. The Influence of Projectile Trajectory Angle on the Simulated Impact Response of a Shuttle Leading Edge Wing Panel

    NASA Technical Reports Server (NTRS)

    Spellman, Regina L.; Jones, Lisa E.; Lyle, Karen H.; Jackson, Karen E.; Fasanella, Edwin L.

    2005-01-01

    In support of recommendations by the Columbia Accident Investigation Board, a team has been studying the effect of debris impacting the reinforced carbon-carbon panels of the shuttle leading edge. The objective of this study was to examine the effect of varying parameters of the debris trajectory on the damage tolerance. Impacts at the upper and lower surface and the apex of the leading edge were examined. For each location, trajectory variances included both the alpha and beta directions. The results of the analysis indicated in all cases the beta sweep decreased the amount of damage to the panel. The increases in alpha resulted in a significant increase in damage to the RCC panel. In particular, for the lower surface, where the alpha can increase by 10 degrees, there was a nearly 40% increase in the impulse. As a result, it is recommended that for future analyses, a 10 degree offset in alpha from the nominal trajectory is included for impacts on the lower surface. It is also recommended to assume a straight aft, or zero beta, trajectory for a more conservative analysis.

  8. Explanation of the effects of leading-edge tubercles on the aerodynamics of airfoils and finite wings

    NASA Astrophysics Data System (ADS)

    Saadat, Mehdi; Haj-Hariri, Hossein; Fish, Frank

    2010-11-01

    A computational study was conducted to explain the aerodynamic effect of leading edge tubercles on maximum lift coefficient, stall angle of attack (AoA), drag, and post stall characteristics for airfoils as well as finite wings. Past experiments demonstrated airfoils with leading edge tubercles do not improve Clmax, drag, or stall AoA but smoothen post stall characteristics to a great degree. In contrast to airfoils, finite wings with L.E. tubercles improved all aerodynamic characteristics. We explain the stall mechanism of the tubercled wing by considering each L.E. tubercle as a combination of a swept forward and a swept backward wing.There are 3 mechanisms (streamline curvature, accelerated stall, and upwash) that cause Clmax of airfoils with L.E. tubercles always be lower than that of smooth airfoils. We also identify two additional mechanisms which are responsible for improved post-stall characteristics of airfoils with L.E. tubercles. Finally, we discuss why finite wings with L.E. tubercles have higher Clmax and lower drag than their smooth L.E. counterparts by studying effects of wing tip, sweep, and taper ratio.

  9. A numerical investigation into the effects of Reynolds number on the flow mechanism induced by a tubercled leading edge

    NASA Astrophysics Data System (ADS)

    Rostamzadeh, Nikan; Kelso, Richard M.; Dally, Bassam

    2017-02-01

    Leading-edge modifications based on designs inspired by the protrusions on the pectoral flippers of the humpback whale (tubercles) have been the subject of research for the past decade primarily due to their flow control potential in ameliorating stall characteristics. Previous studies have demonstrated that, in the transitional flow regime, full-span wings with tubercled leading edges outperform unmodified wings at high attack angles. The flow mechanism associated with such enhanced loading traits is, however, still being investigated. Also, the performance of full-span tubercled wings in the turbulent regime is largely unexplored. The present study aims to investigate Reynolds number effects on the flow mechanism induced by a full-span tubercled wing with the NACA-0021 cross-sectional profile in the transitional and near-turbulent regimes using computational fluid dynamics. The analysis of the flow field suggests that, with the exception of a few different flow features, the same underlying flow mechanism, involving the presence of transverse and streamwise vorticity, is at play in both cases. With regard to lift-generation characteristics, the numerical simulation results indicate that in contrast to the transitional flow regime, where the unmodified NACA-0021 undergoes a sudden loss of lift, in the turbulent regime, the baseline foil experiences gradual stall and produces more lift than the tubercled foil. This observation highlights the importance of considerations regarding the Reynolds number effects and the stall characteristics of the baseline foil, in the industrial applications of tubercled lifting bodies.

  10. A leading edge heating array and a flat surface heating array: Final design. [for testing the thermal protection system of the space shuttle

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A heating array is described for testing full-scale sections of the leading edge and lower fuselage surfaces of the shuttle. The heating array was designed to provide a tool for development and acceptance testing of leading edge segments and large flat sections of the main body thermal protection system. The array was designed using a variable length module concept to meet test requirements using interchangeable components from one test configuration in another configuration. Heat generating modules and heat absorbing modules were employed to achieve the thermal gradient around the leading edge. A support was developed to hold the modules to form an envelope around a variety of leading edges; to supply coolant to each module; the support structure and to hold the modules in the flat surface heater configuration. An optical pyrometer system mounted within the array was designed to monitor specimen surface temperatures without altering the test article's surface.

  11. Equations and charts for the rapid estimation of hinge-moment and effectiveness parameters for trailing-edge controls having leading and trailing edges swept ahead of the Mach lines

    NASA Technical Reports Server (NTRS)

    Goin, Kennith L

    1951-01-01

    Existing conical-flow solutions have been used to calculate the hinge-moments and effectiveness parameters of trailing-edge controls having leading and trailing edges swept ahead of the Mach lines and having streamwise root and tip chords. Equations and detailed charts are presented for the rapid estimation of these parameters. Also included is an approximate method by which these parameters may be corrected for airfoil-section thickness.

  12. Predictive process simulation of cryogenic implants for leading edge transistor design

    SciTech Connect

    Gossmann, Hans-Joachim; Zographos, Nikolas; Park, Hugh; Colombeau, Benjamin; Parrill, Thomas; Khasgiwale, Niranjan; Borges, Ricardo; Gull, Ronald; Erokhin, Yuri

    2012-11-06

    Two cryogenic implant TCAD-modules have been developed: (i) A continuum-based compact model targeted towards a TCAD production environment calibrated against an extensive data-set for all common dopants. Ion-specific calibration parameters related to damage generation and dynamic annealing were used and resulted in excellent fits to the calibration data-set. (ii) A Kinetic Monte Carlo (kMC) model including the full time dependence of ion-exposure that a particular spot on the wafer experiences, as well as the resulting temperature vs. time profile of this spot. It was calibrated by adjusting damage generation and dynamic annealing parameters. The kMC simulations clearly demonstrate the importance of the time-structure of the beam for the amorphization process: Assuming an average dose-rate does not capture all of the physics and may lead to incorrect conclusions. The model enables optimization of the amorphization process through tool parameters such as scan speed or beam height.

  13. ALES, the multi­mission Adaptive Leading Edge Sub­Waveform Retracker, design and validation

    NASA Astrophysics Data System (ADS)

    Passaro, Marcello; Benveniste, Jérôme; Vignudelli, Stefano; Cipollini, Paolo; Quartly, Graham; Snaith, Helen

    Satellite altimetry has revolutionized our understanding of ocean dynamics thanks to high repetition rate and global coverage. Nevertheless, coastal data has been flagged as unreliable due to land and calm water interference in the altimeter and radiometer footprint and high frequency tidal and atmospheric forcing. Our study addresses the first issue, i.e. retracking, presenting ALES, the Adaptive Leading Edge Subwaveform Retracker. ALES is potentially applicable to all the pulse­limited altimetry altimetry missions and its aim is to retrack with the same precision both open ocean and coastal data with the same algorithm. ALES selects part of each returned echo and models it with a classic ‘open ocean’ Brown functional form, by means of least square estimation whose convergence is found through the Nelder­Mead nonlinear optimization technique. By avoiding echoes from bright targets along the trailing edge, it is capable of retrieving the majority of coastal waveform up to 2 to 3 Km from the coasts. By adapting the estimation window to the significant wave height, it aims at preserving the precision of the standard data both in open ocean and in the coastal strip. ALES is validated against tide gauges in the Adriatic Sea and in the Greater Agulhas System for three different missions: Envisat, Jason­1 and Jason­2. Considerations on noise and biases provide a further verification of the strategy.

  14. An improved panel method for the solution of three-dimensional leading-edge vortex flows. Volume 1: Theory document

    NASA Technical Reports Server (NTRS)

    Johnson, F. T.; Lu, P.; Tinoco, E. N.

    1980-01-01

    An improved panel method for the solution of three dimensional flow and wing and wing-body combinations with leading edge vortex separation is presented. The method employs a three dimensional inviscid flow model in which the configuration, the rolled-up vortex sheets, and the wake are represented by quadratic doublet distributions. The strength of the singularity distribution as well as shape and position of the vortex spirals are computed in an iterative fashion starting with an assumed initial sheet geometry. The method calculates forces and moments as well as detail surface pressure distributions. Improvements include the implementation of improved panel numerics for the purpose of elimination the highly nonlinear effects of ring vortices around double panel edges, and the development of a least squares procedure for damping vortex sheet geometry update instabilities. A complete description of the method is included. A variety of cases generated by the computer program implementing the method are presented which verify the mathematical assumptions of the method and which compare computed results with experimental data to verify the underlying physical assumptions made by the method.

  15. AMELIA CESTOL Test: Acoustic Characteristics of Circulation Control Wing with Leading-and Trailing-Edge Slot Blowing

    NASA Technical Reports Server (NTRS)

    Horne, Clifton; Burnside, Nathan J.

    2013-01-01

    Aeroacoustic measurements of the 11 % scale full-span AMELIA CESTOL model with leading- and trailing-edge slot blowing circulation control (CCW) wing were obtained during a recent test in the Arnold Engineering Development Center 40- by 80-Ft. Wind Tunnel at NASA Ames Research Center, Sound levels and spectra were acquired with seven in-flow microphones and a 48-element phased microphone array for a variety of vehicle configurations, CCW slot flow rates, and forward speeds, Corrections to the measurements and processing are in progress, however the data from selected configurations presented in this report confirm good measurement quality and dynamic range over the test conditions, Array beamform maps at 40 kts tunnel speed show that the trailing edge flap source is dominant for most frequencies at flap angles of 0deg and 60deg, The overall sound level for the 60deg flap was similar to the 0deg flap for most slot blowing rates forward of 90deg incidence, but was louder by up to 6 dB for downstream angles, At 100 kts, the in-flow microphone levels were louder than the sensor self-noise for the higher blowing rates, while passive and active background noise suppression methods for the microphone array revealed source levels as much as 20 dB lower than observed with the in-flow microphones,

  16. The formation mechanism and impact of streamwise vortices on NACA 0021 airfoil's performance with undulating leading edge modification

    NASA Astrophysics Data System (ADS)

    Rostamzadeh, N.; Hansen, K. L.; Kelso, R. M.; Dally, B. B.

    2014-10-01

    Wings with tubercles have been shown to display advantageous loading behavior at high attack angles compared to their unmodified counterparts. In an earlier study by the authors, it was shown that an undulating leading-edge configuration, including but not limited to a tubercled model, induces a cyclic variation in circulation along the span that gives rise to the formation of counter-rotating streamwise vortices. While the aerodynamic benefits of full-span tubercled wings have been associated with the presence of such vortices, their formation mechanism and influence on wing performance are still in question. In the present work, experimental and numerical tests were conducted to further investigate the effect of tubercles on the flow structure over full-span modified wings based on the NACA 0021 profile, in the transitional flow regime. It is found that a skew-induced mechanism accounts for the formation of streamwise vortices whose development is accompanied by flow separation in delta-shaped regions near the trailing edge. The presence of vortices is detrimental to the performance of full-span wings pre-stall, however renders benefits post-stall as demonstrated by wind tunnel pressure measurement tests. Finally, primary and secondary vortices are identified post-stall that produce an enhanced momentum transfer effect that reduces flow separation, thus increasing the generated amount of lift.

  17. Wind-tunnel tests on model wing with Fowler flap and specially developed leading-edge slot

    NASA Technical Reports Server (NTRS)

    Weick, Fred E; Platt, Robert C

    1933-01-01

    An investigation was made in the NACA 7 by 10 foot wind tunnel to find the increase in maximum lift coefficient which could be obtained by providing a model wing with both a Fowler trailing-edge extension flap and a Handley Page type leading-edge slot. A conventional Handley page slot proportioned to operate on the plain wing without a flap gave but a slight increase with the flap; so a special form of slot was developed to work more effectively with the flap. With the best combined arrangement the maximum lift coefficient based on the original area was increased from 3.17, for the Fowler wing, to 3.62. The minimum drag coefficient with both devices retracted was increased in approximately the same proportion. Tests were also made with the special-type slot on the plain wing without the flap. The special slot, used either with or without the Fowler flap, gave definitely higher values of the maximum lift coefficient than the slots of conventional form, with an increase of the same order in the minimum drag coefficient.

  18. Recent advances in the solution of three-dimensional flow over wings with leading edge vortex separation

    NASA Technical Reports Server (NTRS)

    Johnson, F. T.; Tinoco, E. N.; Lu, P.; Epton, M. A.

    1979-01-01

    Recent advances in a panel method for the solution of three-dimensional flow about wing and wing-body combinations with leading-edge vortex separation are presented. These advances were achieved as part of an ultimately successful assault on two shortcomings of the method, namely convergence failures in seemingly random cases, and overprediction of lift coefficient for high aspect-ratio wings. Advances include the implementation of improved panel numerics for the purpose of eliminating the highly non-linear effects of ring vortices around doublet panel edges, and the development of a least squares procedure for damping vortex sheet geometry update instabilities. A variety of cases generated by the computer program implementing the method are presented. These cases are of two types. The first type consists of numerical studies, which verify the underlying mathematical assumptions of the method and moreover show that the results are strongly invariant with respect to such user dependent input as wing panel layout, initial sheet shape, sheet rollup, etc. The second type consists of cases run for the purpose of comparing computed results with experimental data, and these comparisons verify the underlying physical assumptions made by the method.

  19. Effects of wing leading-edge radius and Reynolds number on longitudinal aerodynamic characteristics of highly swept wing-body configurations at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Henderson, W. P.

    1976-01-01

    An investigation was conducted in the Langley low turbulence pressure tunnel to determine the effects of wing leading edge radius and Reynolds number on the longitudinal aerodynamic characteristics of a series of highly swept wing-body configurations. The tests were conducted at Mach numbers below 0.30, angles of attack up to 16 deg, and Reynolds numbers per meter from 6.57 million to 43.27 million. The wings under study in this investigation had leading edge sweep angles of 61.7 deg, 64.61 deg, and 67.01 deg in combination with trailing edge sweep angles of 0 deg and 40.6 deg. The leading edge radii of each wing planform could be varied from sharp to nearly round.

  20. Downward-deployed tethered platforms for high enthalpy aerothermodynamic research

    NASA Technical Reports Server (NTRS)

    Wood, George M.; Siemers, Paul M.; Squires, R. Kenneth; Wolf, Henry; Carlomagno, Giovanni M.

    1988-01-01

    The data on aerothermodynamic and aerodynamic interactions at altitudes above 50 km is extremely limited because of the relative inaccessibility of the region to research vehicles of any sort. This paper addresses the practicability of using downward deployed satellites tethered to an orbiting host vehicle in order to obtain steady-state data in the upper reaches of the region above 80 or 90 km.

  1. Phase C aerothermodynamic data base. [for space shuttle program

    NASA Technical Reports Server (NTRS)

    Moser, M., Jr.

    1974-01-01

    Summary listings of published documentation of SADSAC processed data arranged chronologically and by shuttle configuration are presented to provide an up-to-date record of all applicable aerothermodynamic data collected, processed, or summarized in the course of the space shuttle program. The various tables or listings are designed to provide survey information to the various space shuttle managerial and technical levels. The various listings of the shuttle test data information, the list contents, and the purpose are described.

  2. An Experimental Investigation of NACA Submerged Inlets at High Subsonic Speeds I: Inlets Forward of the Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Hall, Charles F; Barclay, F Dorn

    1948-01-01

    This report covers the first part of an experimental investigation of NACA submerged inlets at four locations on the fuselage of a fighter airplane model for Mach numbers from 0.30 to 0.875. Data are presented showing the characteristics of the model without inlets and with inlets 16.7 percent of the root chord forward of the wing-root leading edge and equipped with small boundary-layer deflectors. The data show that variations in the mass of air entering the inlet had a large effect on the ram-recovery ratio. Representative values of ram-recovery ratio were 0.50 with zero flow, 0.90 with 0.6 mass-flow coefficient, and 0.95 with 1.00 mass-flow coefficient. Variations in Mach number and angle of attack, in general, caused less than a 0.03 variation in the ram-recovery ratio.

  3. Mesenchymal chemotaxis requires selective inactivation of myosin II at the leading edge via a noncanonical PLCγ/PKCα pathway.

    PubMed

    Asokan, Sreeja B; Johnson, Heath E; Rahman, Anisur; King, Samantha J; Rotty, Jeremy D; Lebedeva, Irina P; Haugh, Jason M; Bear, James E

    2014-12-22

    Chemotaxis, migration toward soluble chemical cues, is critical for processes such as wound healing and immune surveillance and is exhibited by various cell types, from rapidly migrating leukocytes to slow-moving mesenchymal cells. To study mesenchymal chemotaxis, we observed cell migration in microfluidic chambers that generate stable gradients of platelet-derived growth factor (PDGF). Surprisingly, we found that pathways implicated in amoeboid chemotaxis, such as PI3K and mammalian target of rapamycin signaling, are dispensable for PDGF chemotaxis. Instead, we find that local inactivation of Myosin IIA, through a noncanonical Ser1/2 phosphorylation of the regulatory light chain, is essential. This site is phosphorylated by PKCα, which is activated by an intracellular gradient of diacylglycerol generated by PLCγ. Using a combination of live imaging and gradients of activators/inhibitors in the microfluidic chambers, we demonstrate that this signaling pathway and subsequent inhibition of Myosin II activity at the leading edge are required for mesenchymal chemotaxis.

  4. CFD Analysis of the Aerodynamics of a Business-Jet Airfoil with Leading-Edge Ice Accretion

    NASA Technical Reports Server (NTRS)

    Chi, X.; Zhu, B.; Shih, T. I.-P.; Addy, H. E.; Choo, Y. K.

    2004-01-01

    For rime ice - where the ice buildup has only rough and jagged surfaces but no protruding horns - this study shows two dimensional CFD analysis based on the one-equation Spalart-Almaras (S-A) turbulence model to predict accurately the lift, drag, and pressure coefficients up to near the stall angle. For glaze ice - where the ice buildup has two or more protruding horns near the airfoil's leading edge - CFD predictions were much less satisfactory because of the large separated region produced by the horns even at zero angle of attack. This CFD study, based on the WIND and the Fluent codes, assesses the following turbulence models by comparing predictions with available experimental data: S-A, standard k-epsilon, shear-stress transport, v(exp 2)-f, and differential Reynolds stress.

  5. Sensitivity of F-106B Leading-Edge-Vortex Images to Flight and Vapor-Screen Parameters

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Johnson, Thomas D., Jr.

    1988-01-01

    A flight test was undertaken at NASA Langley Research Center with vapor-screen and image-enhancement techniques to obtain qualitative and quantitative information about near-field vortex flows above the wings of fighter aircraft. In particular, the effects of Reynolds and Mach numbers on the vortex system over an angle-of-attack range were sought. The relevance of these flows stems from their present and future use at many points in the flight envelope, especially during transonic maneuvers. The aircraft used in this flight program was the F-106B because it was available and had sufficient wing sweep (60 deg) to generate a significant leading-edge vortex system. The sensitivity of the visual results to vapor screen hardware and to onset flow changes is discussed.

  6. Turbine vane gas film cooling with injection in the leading edge region from a single row of spanwise angled holes

    NASA Technical Reports Server (NTRS)

    Lecuyer, M. R.; Hanus, G. J.

    1976-01-01

    An experimental study of gas film cooling was conducted on a 3X size model turbine vane. Injection in the leading edge region was from a single row of holes angled in a spanwise direction. Measurements of the local heat flux downstream from the row of coolant holes, both with and without film coolant flow, were used to determine the film cooling performance presented in terms of the Stanton number ratio. Results for a range of coolant blowing ratio, M = 0 to 2.0, indicate a reduction in heat flux of up to 15 to 30 percent at a point 10 to 11 hole diameters downstream from injection. An optimum coolant blowing ratio corresponds to a coolant-to-freestream velocity ratio in the range of 0.5. The shallow injection angle resulted in superior cooling performance for injection closest to stagnation, while the effect of injection angle was insignificant for injection further from stagnation.

  7. Test-Analysis Correlation for Space Shuttle External Tank Foam Impacting RCC Wing Leading Edge Component Panels

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.

    2008-01-01

    The Space Shuttle Columbia Accident Investigation Board recommended that NASA develop, validate, and maintain a modeling tool capable of predicting the damage threshold for debris impacts on the Space Shuttle Reinforced Carbon-Carbon (RCC) wing leading edge and nosecap assembly. The results presented in this paper are one part of a multi-level approach that supported the development of the predictive tool used to recertify the shuttle for flight following the Columbia Accident. The assessment of predictive capability was largely based on test analysis comparisons for simpler component structures. This paper provides comparisons of finite element simulations with test data for external tank foam debris impacts onto 6-in. square RCC flat panels. Both quantitative displacement and qualitative damage assessment correlations are provided. The comparisons show good agreement and provided the Space Shuttle Program with confidence in the predictive tool.

  8. Icing tunnel tests of a glycol-exuding porous leading edge ice protection system on a general aviation airfoil

    NASA Technical Reports Server (NTRS)

    Kohlman, D. L.; Schweikhard, W. G.; Albright, A. E.; Evanich, P.

    1981-01-01

    A glycol-exuding porous leading edge ice protection system was tested. Results show that the system is very effective in preventing ice accretion (anti-ice mode) or removing ice from an airfoil. Minimum glycol flow rates required for anti-icing are a function of velocity, liquid water content in the air, ambient temperature, and droplet size. Large ice caps were removed in only a few minutes using anti-ice flow rates. It was found that the shed time is a function of the type of ice, size of the ice cap, angle of attack, and glycol flow rate. Wake survey measurements show that there is no significant drag penalty for the installation or operation of the system tested.

  9. Advanced X-Ray Inspection of Reinforced Carbon Composite Materials on the Orbiter Leading Edge Structural Subsystem (LESS)

    NASA Technical Reports Server (NTRS)

    Hernandez, Jose M.; Berry, Robert F.; Osborn, Robin; Bueno, Clifford; Osterlitz, Mark; Mills, Richard; Morris, Philip; Phalen, Robert; McNab, Jim; Thibodeaux, Tahanie; Thompson, Kyle

    2004-01-01

    The post return-to-flight (RTF) inspection methodology for the Orbiter Leading Edge Structural Subsystem (LESS) is currently being defined. Numerous NDT modalities and techniques are being explored to perform the flight-to-flight inspections of the reinforced carbon/carbon (RCC) composite material for impact damage, general loss of mass in the bulk layers, or other anomalous conditions that would pose risk to safe return upon re-entry. It is possible to have an impact upon ascent that is not visually observable on the surface, yet causes internal damage. Radiographic testing may be a useful NDT technique for such occurrences. The authors have performed radiographic tests on full-sized mock samples of LESS hardware with embedded image quality phantoms. Digitized radiographic film, computed radiography and flat panel digital real-time radiography was acquired using a GE Eresco 200 x-ray tube, and Se-75 and Yb-169 radioisotopes.

  10. Comparison of Theoretical and Experimental Unsteady Aerodynamics of Linear Oscillating Cascade With Supersonic Leading-Edge Locus

    NASA Technical Reports Server (NTRS)

    Ramsey, John K.; Erwin, Dan

    2004-01-01

    An experimental influence coefficient technique was used to obtain unsteady aerodynamic influence coefficients and, consequently, unsteady pressures for a cascade of symmetric airfoils oscillating in pitch about mid-chord. Stagger angles of 0 deg and 10 deg were investigated for a cascade with a gap-to-chord ratio of 0.417 operating at an axial Mach number of 1.9, resulting in a supersonic leading-edge locus. Reduced frequencies ranged from 0.056 to 0.2. The influence coefficients obtained determine the unsteady pressures for any interblade phase angle. The unsteady pressures were compared with those predicted by several algorithms for interblade phase angles of 0 deg and 180 deg.

  11. Effects of wing-leading-edge modifications on a full-scale, low-wing general aviation airplane: Wind-tunnel investigation of high-angle-of-attack aerodynamic characteristics. [conducted in Langley 30- by 60-foot tunnel

    NASA Technical Reports Server (NTRS)

    Newsom, W. A., Jr.; Satran, D. R.; Johnson, J. L., Jr.

    1982-01-01

    Wing-leading-edge modifications included leading-edge droop and slat configurations having full-span, partial-span, or segmented arrangements. Other devices included wing-chord extensions, fences, and leading-edge stall strips. Good correlation was apparent between the results of wind-tunnel data and the results of flight tests, on the basis of autorotational stability criterion, for a wide range of wing-leading-edge modifications.

  12. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect.

    PubMed

    Van Truong, Tien; Byun, Doyoung; Kim, Min Jun; Yoon, Kwang Joon; Park, Hoon Cheol

    2013-09-01

    The aim of this work is to provide an insight into the aerodynamic performance of the beetle during takeoff, which has been estimated in previous investigations. We employed a scaled-up electromechanical model flapping wing to measure the aerodynamic forces and the three-dimensional flow structures on the flapping wing. The ground effect on the unsteady forces and flow structures were also characterized. The dynamically scaled wing model could replicate the general stroke pattern of the beetle's hind wing kinematics during takeoff flight. Two wing kinematic models have been studied to examine the influences of wing kinematics on unsteady aerodynamic forces. In the first model, the angle of attack is asymmetric and varies during the translational motion, which is the flapping motion of the beetle's hind wing. In the second model, the angle of attack is constant during the translational motion. The instantaneous aerodynamic forces were measured for four strokes during the beetle's takeoff by the force sensor attached at the wing base. Flow visualization provided a general picture of the evolution of the three-dimensional leading edge vortex (LEV) on the beetle hind wing model. The LEV is stable during each stroke, and increases radically from the root to the tip, forming a leading-edge spiral vortex. The force measurement results show that the vertical force generated by the hind wing is large enough to lift the beetle. For the beetle hind wing kinematics, the total vertical force production increases 18.4% and 8.6% for the first and second strokes, respectively, due to the ground effect. However, for the model with a constant angle of attack during translation, the vertical force is reduced during the first stroke. During the third and fourth strokes, the ground effect is negligible for both wing kinematic patterns. This finding suggests that the beetle's flapping mechanism induces a ground effect that can efficiently lift its body from the ground during takeoff.

  13. An experimental analysis of critical factors involved in the breakdown process of leading edge vortex flows. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Visser, Kenneth D.

    1991-01-01

    Experimental crosswire measurements of the flowfield above a 70 and 75 degree flat plate delta wing were performed at a Reynolds number of 250,000. Survey grids were taken normal to the platform at a series of chordwise locations for angles of attack of 20 and 30 degrees. Axial and azimuthal vorticity distributions were derived from the velocity fields. The dependence of circulation on distance from the vortex core as well as on chordwise location was examined. The effects of nondimensionalization in comparison with other experimental data was made. The circulation distribution scales with the local semispan and grows approximately linearly in the chordwise direction. For regions of the flow outside of the vortex subcore, the circulation at any chordwise station was observed to vary logarithmically with distance from the vortex axis. The circulation was also found to increase linearly with angle of incidence at a given chordwise station. A reduction in the local circulation about the vortex axis occurred at breakdown. The spanwise distribution of axial vorticity was severely altered through the breakdown region and the spanwise distribution of axial vorticity present appeared to reach a maximum immediately preceding breakdown. The local concentration of axial vorticity about the vortex axis was reduced while the magnitude of the azimuthal vorticity decreased throughout the breakdown zone. The axial vorticity components with a negative sense, found in the secondary vortex, remained unaffected by changes in wing sweep or angle of attack, in direct contrast to the positive components. The inclusion of the local wing geometry into a previously derived correlation parameter indicated that the circulation of growing leading edge vortex flows were similar at corresponding radii from the vortex axis. It was concluded that the flow over a delta wing, upstream of the breakdown regions and away from the apex and trailing edge regions, is conical. In addition, the dominating

  14. Icing tunnel tests of a composite porous leading edge for use with a liquid anti-ice system. [Lewis icing research tunnel

    NASA Technical Reports Server (NTRS)

    Kohlman, D. L.

    1981-01-01

    The efficacy of liquid ice protection systems which distribute a glycol-water solution onto leading edge surfaces through a porous skin was demonstrated in tests conducted in the NASA Lewis icing research tunnel using a composite porous leading edge panels. The data obtained were compared with the performance of previously tested stainless steel leading edge with the same geometry. Results show: (1) anti-ice protection of a composite leading edge is possible for all the simulated conditions tested; (2) the glycol flow rates required to achieve anti-ice protection were generally much higher than those required for a stainless steel panel; (3) the low reservoir pressures of the glycol during test runs indicates that more uniform distribution of glycol, and therefore lower glycol flow rates, can probably be achieved by decreasing the porosity of the panel; and (4) significant weight savings can be achieved in fluid ice protection systems with composite porous leading edges. The resistance of composite panels to abrasion and erosion must yet be determined before they can be incorporated in production systems.

  15. Planform curvature effects on flutter characteristics of a wing with 56 deg leading-edge sweep and panel aspect ratio of 1.14

    NASA Technical Reports Server (NTRS)

    Keller, Donald F.; Sandford, Maynard C.; Pinkerton, Theresa L.

    1991-01-01

    An experimental and analytical investigation was initiated to determine the effects of planform curvature (curving the leading and trailing edges of a wing in the X-Y plane) on the transonic flutter characteristics of a series of three moderately swept wing models. Experimental flutter results were obtained in the Langley Transonic Dynamics Tunnel for Mach numbers from 0.60-1.00, with air as the test medium. The models were semispan cantilevered wings with a 3 percent biconvex airfoil and a panel aspect ratio of 1.14. The baseline model had straight leading and trailing edges (i.e., no planform curvature). The radii of curvature of the leading edges for these two models were 200 and 80 inches. The radii of curvature of the leading edges of the other two models were determined so that the root and tip chords were identical for all three models. Experimental results showed that flutter-speed index and flutter frequency ratio increased as planform curvature increase (radius of curvature of the leading edge was decreased) over the test range of Mach numbers. Analytical flutter results were calculated with a subsonic flutter-prediction program, and they agreed well with the experimental results.

  16. Southeast Directed Thrusting Associated With the Leading Edge of the Wrangellia Composite Terrane: The Chulitna Block South Central Alaska.

    NASA Astrophysics Data System (ADS)

    Gilman, T. L.; Fisher, D.

    2005-12-01

    Structural mapping of the Chulitna block in south central Alaska reveals a regional scale southeast-vergent, anticline-syncline pair and a series of related southeast-directed thrusts that record the imbrication of the leading edge of the Wrangellia Composite Terrane (WCT). The Chulitna block has been recognized as an unusual Paleozoic through Mesozoic collage of oceanic and clastic rocks that are not found anywhere else in Alaska or the North American Cordilleran. The distribution of these rocks varies across strike from southeast to northwest. In the southeast portion of the field area the oceanic rocks are a Late Devonian (Famennian) ophiolitic sequence including highly sheared serpentinite that is typically altered to magnesite and quartz, basalt (occasionally pillowed), gabbro (with possible cumulate texture), and red radiolarian chert. In the northwest of the map area, the marine rocks are composed of pillow basalts, basalts, and weakly metamorphosed limestones with Norian age fossils. Trace element chemistry of the basalts has been likened to the Late Triassic Nikolai greenstone of the WCT (Clautice et al., 2001). Conformably overlying the oceanic rocks in the northwest of the map area are Triassic red colored conglomerates, sandstones, and siltstones. In the southeast of the field area, these Triassic red rocks unconformably overlie the ophiolitic sequence. The clasts of the Triassic red beds are primarily composed of the underlying red radiolarian chert, basalt, and serpentinite. The main structure in the map area is an anticline-syncline pair that folds all the strata within the Chulitna block. The structure has a steep overturned limb, with a wavelength of ~2 km and an amplitude of ~1 km. To the southeast, there are a pair of out-of-syncline thrusts that juxtapose the serpentinites with overlying units. Large asymmetric folds in the area show a reversal in vergence across the hinge of the larger scale anticline and syncline pair, suggesting they are

  17. The Aerothermodynamics of Aircraft Gas Turbine Engines

    DTIC Science & Technology

    1978-07-01

    line and staggered tube ~ anks . Another way to get the coolant out of the trailing edge is to use drilled holes. These are normally calculated using...Pittsburgh, PA, 1976. 20.35 Butze, H. F., and Ehlers , R. C., "Effect of FUel Properties on Performance of a Single Aircraft Turbojet Combustor," NASA-Tl~-X...20.75 Butze, H. F .. and Ehlers , R. C., "Effect of Fuel Properties on Performance of A Single Aircraft Turboj et Combustor," NASA-TM-X-71789

  18. Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Vol. 3: Medium-radius leading edge

    NASA Technical Reports Server (NTRS)

    Chu, Julio; Luckring, James M.

    1996-01-01

    An experimental wind tunnel test of a 65 deg delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 120 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at Reynolds numbers of 6 x 10(exp 6), 60 x 10(exp 6), and 120 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.

  19. Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Volume 2; Small-Radius Leading Edge

    NASA Technical Reports Server (NTRS)

    Chu, Julio; Luckring, James M.

    1996-01-01

    An experimental wind tunnel test of a 65 deg. delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 84 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at Reynolds numbers of 6 x 10(exp 6) and 60 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.

  20. Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Vol. 4: Large-radius leading edge

    NASA Technical Reports Server (NTRS)

    Chu, Julio; Luckring, James M.

    1996-01-01

    An experimental wind tunnel test of a 65 deg delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 120 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at Reynolds numbers of 6 x 10(exp 6) and 60 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.

  1. Subsonic Investigation of Leading-Edge Flaps Designed for Vortex- and Attached-Flow on a High-Speed Civil Transport Configuration

    NASA Technical Reports Server (NTRS)

    Campbell, Bryan A.; Kemmerly, Guy T.; Kjerstad, Kevin J.; Lessard, Victor R.

    1999-01-01

    A wind tunnel investigation of two separate leading-edge flaps, designed for vortex and attached-flow, respectively, were conducted on a High Speed Civil Transport (HSCT) configuration in the Langley 14- by 22-Foot Subsonic Tunnel. Data were obtained over a Mach number range of 0.12 to 0.27, with corresponding chord Reynolds numbers of 2.50 x 10 (sup 6) to 5.50 x 10 (sup 6). Variations of the leading-edge flap deflection angle were tested with outboard leading-edge flaps deflected 0 deg. and 26.4 deg. Trailing-edge flaps were deflected 0 deg., 10 deg., 12.9 deg., and 20 deg. The longitudinal and lateral aerodynamic data are presented without analysis. A complete tabulated data listing is also presented herein. The data associated with each deflected leading-edge flap indicate L/D improvements over the undeflected configuration. These improvements may be instrumental in providing the necessary lift augmentation required by an actual HSCT during the climb-out and landing phases of the flight envelope. However, further tests will have to be done to assess their full potential.

  2. Measurements of heat transfer coefficients and friction factors in rib-roughened channels simulating leading-edge cavities of a modern turbine blade

    SciTech Connect

    Taslim, M.E.; Li, T.; Spring, S.D.

    1997-07-01

    Leading edge cooling cavities in modern gas turbine blades play an important role in maintaining the leading edge temperature at levels consistent with air foil design life. These cavities often have a complex cross-sectional shape to be compatible with the external contour of the blade at the leading edge. A survey of many existing geometries shows that, for analytical as well as experimental analyses, such cavities can be simplified in shape by a four-sided polygon with one curved side similar to the leading edge curvature, a rectangle with one semicircular side (often the smaller side) or a trapezoid, the smaller base of which is replaced by a semicircle. Furthermore, to enhance the heat transfer coefficient in these cavities, they are mostly roughened on three sides with ribs of different geometries. Experimental data on friction factors and heat transfer coefficients in such cavities are rare if not nonexistent. A liquid crystal technique was used in this experimental investigation to measure heat transfer coefficients in six test sections representing the leading-edge cooling cavities. Both straight and tapered ribs were configured on the two opposite sidewalls in a staggered arrangement with angles of attack to the mainstream flow, {alpha}, of 60 and 90 deg. The ribs on the curved surface were of constant cross section with an angle of attack 90 deg to the flow. Heat transfer measurements were performed on the straight sidewalls, as well as on the round surface adjacent to the blade leading edge. Effects such as rib angle of attack to the mainstream flow and constant versus tapered rib cross-sectional areas were also investigated. Nusselt numbers, friction factors, and thermal performances are reported for nine rib geometries in six test sections.

  3. Three-dimensional flow structures and evolution of the leading-edge vortices on a flapping wing.

    PubMed

    Lu, Yuan; Shen, Gong Xin

    2008-04-01

    Following the identification and confirmation of the substructures of the leading-edge vortex (LEV) system on flapping wings, it is apparent that the actual LEV structures could be more complex than had been estimated in previous investigations. In this experimental study, we reveal for the first time the detailed three-dimensional (3-D) flow structures and evolution of the LEVs on a flapping wing in the hovering condition at high Reynolds number (Re=1624). This was accomplished by utilizing an electromechanical model dragonfly wing flapping in a water tank (mid-stroke angle of attack=60 degrees) and applying phase-lock based multi-slice digital stereoscopic particle image velocimetry (DSPIV) to measure the target flow fields at three typical stroke phases: at 0.125 T (T=stroke period), when the wing was accelerating; at 0.25 T, when the wing had maximum speed; and at 0.375 T, when the wing was decelerating. The result shows that the LEV system is a collection of four vortical elements: one primary vortex and three minor vortices, instead of a single conical or tube-like vortex as reported or hypothesized in previous studies. These vortical elements are highly time-dependent in structure and show distinct ;stay properties' at different spanwise sections. The spanwise flows are also time-dependent, not only in the velocity magnitude but also in direction.

  4. Modeling the Nonlinear, Strain Rate Dependent Deformation of Shuttle Leading Edge Materials with Hydrostatic Stress Effects Included

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Carney, Kelly S.

    2004-01-01

    An analysis method based on a deformation (as opposed to damage) approach has been developed to model the strain rate dependent, nonlinear deformation of woven ceramic matrix composites, such as the Reinforced Carbon Carbon (RCC) material used on the leading edges of the Space Shuttle. In the developed model, the differences in the tension and compression deformation behaviors have also been accounted for. State variable viscoplastic equations originally developed for metals have been modified to analyze the ceramic matrix composites. To account for the tension/compression asymmetry in the material, the effective stress and effective inelastic strain definitions have been modified. The equations have also been modified to account for the fact that in an orthotropic composite the in-plane shear response is independent of the stiffness in the normal directions. The developed equations have been implemented into LS-DYNA through the use of user defined subroutines (UMATs). Several sample qualitative calculations have been conducted, which demonstrate the ability of the model to qualitatively capture the features of the deformation response present in woven ceramic matrix composites.

  5. Experimental Observations on the Deformation and Breakup of Water Droplets Near the Leading Edge of an Airfoil

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Feo, Alex

    2011-01-01

    This work presents the results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de Tecnica Aeroespacial (INTA) in Madrid, Spain. An airfoil model placed at the end of the rotating arm was moved at speeds of 50 to 90 m/sec. A monosize droplet generator was employed to produce droplets that were allowed to fall from above, perpendicular to the path of the airfoil at a given location. High speed imaging was employed to observe the interaction between the droplets and the airfoil. The high speed imaging allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. A tracking software program was used to measure from the high speed movies the horizontal and vertical displacement of the droplet against time. The velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of a given droplet from beginning of deformation to breakup and/or hitting the airfoil. Results are presented for droplets with a diameter of 490 micrometers at airfoil speeds of 50, 60, 70, 80 and 90 m/sec

  6. Goertler vortices in growing boundary layers: The leading edge receptivity problem, linear growth and the nonlinear breakdown stage

    NASA Technical Reports Server (NTRS)

    Hall, Philip

    1989-01-01

    Goertler vortices are thought to be the cause of transition in many fluid flows of practical importance. A review of the different stages of vortex growth is given. In the linear regime, nonparallel effects completely govern this growth, and parallel flow theories do not capture the essential features of the development of the vortices. A detailed comparison between the parallel and nonparallel theories is given and it is shown that at small vortex wavelengths, the parallel flow theories have some validity; otherwise nonparallel effects are dominant. New results for the receptivity problem for Goertler vortices are given; in particular vortices induced by free stream perturbations impinging on the leading edge of the walls are considered. It is found that the most dangerous mode of this type can be isolated and it's neutral curve is determined. This curve agrees very closely with the available experimental data. A discussion of the different regimes of growth of nonlinear vortices is also given. Again it is shown that, unless the vortex wavelength is small, nonparallel effects are dominant. Some new results for nonlinear vortices of 0(1) wavelengths are given and compared to experimental observations.

  7. Do rapid 'superbug' tests pay off? Balance the costs and benefits of leading-edge technology. Interview by Alan Joch.

    PubMed

    Morgan, Margie Ann

    2009-02-01

    As hospitals become increasingly sensitive to the health and financial consequences of health care-associated infections (HAIs), a new generation of molecular-based testing technologies promises to significantly shorten the time required to identify "superbugs" and other bacterial infections. The leading-edge techniques promise to reduce costs by helping hospitals quickly determine which patients to isolate because they carry active methicillin-resistant Staphylococcus aureus (MRSA) infections, for example, or which ones to release from prophylactic isolation because they ultimately tested negative for a dangerous infection. But diagnostic speed comes at a price--the costs to perform molecular tests are significantly higher than conventional methods. This challenges hospitals to balance health care expenses with medical efficacy, says molecular testing veteran Margie Morgan, Ph.D., scientific director at Cedars-Sinai Medical Center, Los Angeles. "The rapid methods can be extreme time savers and possibly help a great deal with the isolation of patients. But some of the tests may cost five times what manual methods might be, so there is a price for seeing so much of a reduction in time," she says.

  8. Leading edge vortices in lesser long-nosed bats occurring at slow but not fast flight speeds.

    PubMed

    Muijres, Florian T; Christoffer Johansson, L; Winter, York; Hedenström, Anders

    2014-06-01

    Slow and hovering animal flight creates high demands on the lift production of animal wings. Steady state aerodynamics is unable to explain the forces required and the most commonly used mechanism to enhance the lift production is a leading edge vortex (LEV). Although LEVs increase the lift, they come at the cost of high drag. Here we determine the flow above the wing of lesser long-nosed bats at slow and cruising speed using particle image velocimetry (PIV). We find that a prominent LEV is present during the downstroke at slow speed, but not at cruising speed. Comparison with previously published LEV data from a robotic flapper inspired by lesser long-nosed bats suggests that bats should be able to generate LEVs at cruising speeds, but that they avoid doing so, probably to increase flight efficiency. In addition, at slow flight speeds we find LEVs of opposite spin at the inner and outer wing during the upstroke, potentially providing a control challenge to the animal. We also note that the LEV stays attached to the wing throughout the downstoke and does not show the complex structures found in insects. This suggests that bats are able to control the development of the LEV and potential control mechanisms are discussed.

  9. Endocytic membrane turnover at the leading edge is driven by a transient interaction between Cdc42 and GRAF1

    PubMed Central

    Francis, Monika K.; Holst, Mikkel R.; Vidal-Quadras, Maite; Henriksson, Sara; Santarella-Mellwig, Rachel; Sandblad, Linda; Lundmark, Richard

    2015-01-01

    ABSTRACT Changes in cell morphology require coordination of plasma membrane turnover and cytoskeleton dynamics, processes that are regulated by Rho GTPases. Here, we describe how a direct interaction between the Rho GTPase Cdc42 and the GTPase-activating protein (GAP) GRAF1 (also known as ARHGAP26), facilitates rapid cell surface turnover at the leading edge. Both Cdc42 and GRAF1 were required for fluid-phase uptake and regulated the generation of transient GRAF1-coated endocytic carriers, which were distinct from clathrin-coated vesicles. GRAF1 was found to transiently assemble at discrete Cdc42-enriched punctae at the plasma membrane, resulting in a corresponding decrease in the microdomain association of Cdc42. However, Cdc42 captured in its active state was, through a GAP-domain-mediated interaction, localised together with GRAF1 on accumulated internal structures derived from the cell surface. Correlative fluorescence and electron tomography microscopy revealed that these structures were clusters of small membrane carriers with defective endosomal processing. We conclude that a transient interaction between Cdc42 and GRAF1 drives endocytic turnover and controls the transition essential for endosomal maturation of plasma membrane internalised by this mechanism. PMID:26446261

  10. Effects of wing leading-edge deflection on the low-speed aerodynamic characteristics of a low-aspect-ratio highly swept arrow-wing configuration

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.; Weston, R. P.

    1978-01-01

    Wing leading-edge deflection effects on the low-speed aerodynamic characteristics of a low-aspect-ratio highly swept arrow-wing configuration were determined. Static force tests were conducted in a V/STOL tunnel at a Reynolds number of about 2.5 x 1 million for an angle-of-attack range from -10 deg to 17 deg and an angle-of-sideslip range from -5 deg to 5 deg. Limited flow visualization studies were also conducted in order to provide a qualitative assessment of leading-edge upwash characteristics.

  11. Aeroelastic loads prediction for an arrow wing. Task 3: Evaluation of the Boeing three-dimensional leading-edge vortex code

    NASA Technical Reports Server (NTRS)

    Manro, M. E.

    1983-01-01

    Two separated flow computer programs and a semiempirical method for incorporating the experimentally measured separated flow effects into a linear aeroelastic analysis were evaluated. The three dimensional leading edge vortex (LEV) code is evaluated. This code is an improved panel method for three dimensional inviscid flow over a wing with leading edge vortex separation. The governing equations are the linear flow differential equation with nonlinear boundary conditions. The solution is iterative; the position as well as the strength of the vortex is determined. Cases for both full and partial span vortices were executed. The predicted pressures are good and adequately reflect changes in configuration.

  12. Simulator study of the stall departure characteristics of a light general aviation airplane with and without a wing-leading-edge modification

    NASA Technical Reports Server (NTRS)

    Riley, D. R.

    1985-01-01

    A six-degree-of-freedom nonlinear simulation was developed for a two-place, single-engine, low-wing general aviation airplane for the stall and initial departure regions of flight. Two configurations, one with and one without an outboard wing-leading-edge modification, were modeled. The math models developed are presented simulation predictions and flight-test data for validation purposes and simulation results for the two configurations for various maneuvers and power settings are compared to show the beneficial influence of adding the wing-leading-edge modification.

  13. Turbine Vane External Heat Transfer. Volume 1: Analytical and Experimental Evaluation of Surface Heat Transfer Distributions with Leading Edge Showerhead Film Cooling

    NASA Technical Reports Server (NTRS)

    Turner, E. R.; Wilson, M. D.; Hylton, L. D.; Kaufman, R. M.

    1985-01-01

    Progress in predictive design capabilities for external heat transfer to turbine vanes was summarized. A two dimensional linear cascade (previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils) was used to examine the effect of leading edge shower head film cooling on downstream heat transfer. The data were used to develop and evaluate analytical models. Modifications to the two dimensional boundary layer model are described. The results were used to formulate and test an effective viscosity model capable of predicting heat transfer phenomena downstream of the leading edge film cooling array on both the suction and pressure surfaces, with and without mass injection.

  14. Salinization of Freshwater-Dependent Coastal Ecosystems: Understanding Landscapes in Transition Along the Leading Edge of Climate Change

    NASA Astrophysics Data System (ADS)

    Emanuel, R. E.; Bernhardt, E. S.; Ardón, M.; Wright, J. P.; BenDor, T.; Bhattachan, A.

    2015-12-01

    Climate change is transforming the outer edge of the Southern US coastal plain. Lower-lying parts of this region, characterized by extensive freshwater-dependent ecosystems, will be largely inundated by gradual sea level rise by the end of this century. In the interim, however, ocean waters are already penetrating and influencing freshwater-dependent coastal landscapes due to a combination of human and natural factors. This landward movement of salinity from the coast onto the coastal plain or "saltwater intrusion" is a critical water resource issue representing the leading edge of climate change for many coastal areas. The salinization of surface waters and adjacent lands has implications for crop and timber yields in managed ecosystems, ecosystem carbon sequestration in unmanaged ecosystems, and degradation of coastal water quality due to extraction of soil nutrients by seasalts. With this in mind, we seek to understand more broadly how vulnerability of coastal landscapes to saltwater intrusion shapes and is shaped by both natural and anthropogenic processes. We present a novel framework that couples intensive, in situ monitoring of hydrological and ecological conditions with a geospatial saltwater intrusion vulnerability index (SIVI). We discuss application of this framework to the Albemarle-Pamlico region of coastal North Carolina, where we are learning how climate, natural landscape structure, and human activities interact to mediate or exacerbate the vulnerability of freshwater-dependent lands to saltwater intrusion. We discuss the involvement of stakeholders and local knowledge in the research process as well. This work advances understanding of vulnerability to climate change in coastal regions by moving beyond simple inundation models to gain a more sophisticated understanding of the human and natural processes influencing salinization of surface waters and adjacent lands. As the Albemarle-Pamlico and similar regions worldwide transform in response to and

  15. User's Manual for the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA)

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Cheatwood, F. McNeil

    1996-01-01

    This user's manual provides detailed instructions for the installation and the application of version 4.1 of the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA). Also provides simulation of flow field in thermochemical nonequilibrium around vehicles traveling at hypersonic velocities through the atmosphere. Earlier versions of LAURA were predominantly research codes, and they had minimal (or no) documentation. This manual describes UNIX-based utilities for customizing the code for special applications that also minimize system resource requirements. The algorithm is reviewed, and the various program options are related to specific equations and variables in the theoretical development.

  16. Aerothermodynamics of Blunt Body Entry Vehicles. Chapter 3

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Borrelli, Salvatore

    2011-01-01

    In this chapter, the aerothermodynamic phenomena of blunt body entry vehicles are discussed. Four topics will be considered that present challenges to current computational modeling techniques for blunt body environments: turbulent flow, non-equilibrium flow, rarefied flow, and radiation transport. Examples of comparisons between computational tools to ground and flight-test data will be presented in order to illustrate the challenges existing in the numerical modeling of each of these phenomena and to provide test cases for evaluation of Computational Fluid Dynamics (CFD) code predictions.

  17. Aerothermodynamics Of The ExoMars Entry Demonstrator Module

    NASA Astrophysics Data System (ADS)

    Beck, James; Tran, Philippe; Walpot, Louis

    2011-05-01

    The aerothermodynamics database of the ExoMars entry demonstrator module (EDM) which will be used for the design of the heatshield has been constructed. In order to produce this database, the convective fluxes have been calculated by CFD tools validated against dedicated wind tunnel tests and conservative assumptions have been employed for the catalysis of recombination reactions at the surface and the promotion of transition and augmentation of heat flux by surface roughness. The database also includes the effects of infra-red radiation from the CO2 molecule which contributes significantly to the heat fluxes on the afterbody of the vehicle.

  18. AERO2S - SUBSONIC AERODYNAMIC ANALYSIS OF WINGS WITH LEADING- AND TRAILING-EDGE FLAPS IN COMBINATION WITH CANARD OR HORIZONTAL TAIL SURFACES (IBM PC VERSION)

    NASA Technical Reports Server (NTRS)

    Carlson, H. W.

    1994-01-01

    This code was developed to aid design engineers in the selection and evaluation of aerodynamically efficient wing-canard and wing-horizontal-tail configurations that may employ simple hinged-flap systems. Rapid estimates of the longitudinal aerodynamic characteristics of conceptual airplane lifting surface arrangements are provided. The method is particularly well suited to configurations which, because of high speed flight requirements, must employ thin wings with highly swept leading edges. The code is applicable to wings with either sharp or rounded leading edges. The code provides theoretical pressure distributions over the wing, the canard or horizontal tail, and the deflected flap surfaces as well as estimates of the wing lift, drag, and pitching moments which account for attainable leading edge thrust and leading edge separation vortex forces. The wing planform information is specified by a series of leading edge and trailing edge breakpoints for a right hand wing panel. Up to 21 pairs of coordinates may be used to describe both the leading edge and the trailing edge. The code has been written to accommodate 2000 right hand panel elements, but can easily be modified to accommodate a larger or smaller number of elements depending on the capacity of the target computer platform. The code provides solutions for wing surfaces composed of all possible combinations of leading edge and trailing edge flap settings provided by the original deflection multipliers and by the flap deflection multipliers. Up to 25 pairs of leading edge and trailing edge flap deflection schedules may thus be treated simultaneously. The code also provides for an improved accounting of hinge-line singularities in determination of wing forces and moments. To determine lifting surface perturbation velocity distributions, the code provides for a maximum of 70 iterations. The program is constructed so that successive runs may be made with a given code entry. To make additional runs, it is

  19. AERO2S - SUBSONIC AERODYNAMIC ANALYSIS OF WINGS WITH LEADING- AND TRAILING-EDGE FLAPS IN COMBINATION WITH CANARD OR HORIZONTAL TAIL SURFACES (CDC VERSION)

    NASA Technical Reports Server (NTRS)

    Darden, C. M.

    1994-01-01

    This code was developed to aid design engineers in the selection and evaluation of aerodynamically efficient wing-canard and wing-horizontal-tail configurations that may employ simple hinged-flap systems. Rapid estimates of the longitudinal aerodynamic characteristics of conceptual airplane lifting surface arrangements are provided. The method is particularly well suited to configurations which, because of high speed flight requirements, must employ thin wings with highly swept leading edges. The code is applicable to wings with either sharp or rounded leading edges. The code provides theoretical pressure distributions over the wing, the canard or horizontal tail, and the deflected flap surfaces as well as estimates of the wing lift, drag, and pitching moments which account for attainable leading edge thrust and leading edge separation vortex forces. The wing planform information is specified by a series of leading edge and trailing edge breakpoints for a right hand wing panel. Up to 21 pairs of coordinates may be used to describe both the leading edge and the trailing edge. The code has been written to accommodate 2000 right hand panel elements, but can easily be modified to accommodate a larger or smaller number of elements depending on the capacity of the target computer platform. The code provides solutions for wing surfaces composed of all possible combinations of leading edge and trailing edge flap settings provided by the original deflection multipliers and by the flap deflection multipliers. Up to 25 pairs of leading edge and trailing edge flap deflection schedules may thus be treated simultaneously. The code also provides for an improved accounting of hinge-line singularities in determination of wing forces and moments. To determine lifting surface perturbation velocity distributions, the code provides for a maximum of 70 iterations. The program is constructed so that successive runs may be made with a given code entry. To make additional runs, it is

  20. Prediction of STS-107 Hypervelocity Flow Fields about the Shuttle Orbiter with Various Wing Leading Edge Damage

    NASA Technical Reports Server (NTRS)

    Pulsonetti, Maria V.; Thompson, Richard A.; Alter, Stephen J.

    2004-01-01

    Computations were performed for damaged configurations of the Shuttle Orbiter in support of the STS-107 Columbia accident investigation. Two configurations with missing wing leading-edge reinforced carbon-carbon (RCC) panels were evaluated at conditions just prior to the peak heating trajectory point. The initial configuration modeled the Orbiter with an approximate missing RCC panel 6 to determine whether this damage could result in anomalous temperatures measured during the STS-107 reentry. This missing RCC panel 6 computation was found to produce heating augmentation factors of 5 times the nominal heating rates on the side fuselage with lesser heat increases on the front of the OMS pod. This is consistent with the thermocouple and resistance temperature detector sensors from the STS-107 re-entry which observed off nominal high early in the re-entry trajectory. A second damaged configuration modeled the Orbiter with missing RCC panel 9 and included ingestion of the flow into the outboard RCC channel. This computation lowered the level (only 2 times nominal) and moved the location of the heating augmentation on the leeside fuselage relative to the missing RCC panel 6 configuration. The lesser heating augmentation for missing RCC panel 9 was confined near the wing fuselage juncture. Near nominal heating was predicted on the remainder of the side fuselage with some lower than nominal heating on the front surface of the OMS pod. These results for missing RCC panel 9 are consistent with data from the STS-107 re-entry where the heating augmentation was observed to move off the side fuselage and OMS pod sensors at later times in the trajectory. As this solution requires supersonic mass ingestion into the RCC channel, it is probably not an appropriate model prior to penetration of the flow through the spar into the wing structure. It may, however, be representative of the conditions at later times and could account for the movement of the heating signature on the side

  1. Development of X-33/X-34 Aerothermodynamic Data Bases: Lessons Learned and Future Enhancements

    NASA Technical Reports Server (NTRS)

    Miller, C. G.

    1999-01-01

    A synoptic of programmatic and technical lessons learned in the development of aerothermodynamic data bases for the X-33 and X-34 programs is presented in general terms and from the perspective of the NASA Langley Research Center Aerothermodynamics Branch. The format used is that of the aerothermodynamic chain, the links of which are personnel, facilities, models/test articles, instrumentation, test techniques, and computational fluid dynamics (CFD). Because the aerodynamic data bases upon which the X-33 and X-34 vehicles will fly are almost exclusively from wind tunnel testing, as opposed to CFD, the primary focus of the lessons learned is on ground-based testing.

  2. Theoretical effect of modifications to the upper surface of two NACA airfoils using smooth polynomial additional thickness distributions which emphasize leading edge profile and which vary quadratically at the trailing edge. [using flow equations and a CDC 7600 computer

    NASA Technical Reports Server (NTRS)

    Merz, A. W.; Hague, D. S.

    1975-01-01

    An investigation was conducted on a CDC 7600 digital computer to determine the effects of additional thickness distributions to the upper surface of the NACA 64-206 and 64 sub 1 - 212 airfoils. The additional thickness distribution had the form of a continuous mathematical function which disappears at both the leading edge and the trailing edge. The function behaves as a polynomial of order epsilon sub 1 at the leading edge, and a polynomial of order epsilon sub 2 at the trailing edge. Epsilon sub 2 is a constant and epsilon sub 1 is varied over a range of practical interest. The magnitude of the additional thickness, y, is a second input parameter, and the effect of varying epsilon sub 1 and y on the aerodynamic performance of the airfoil was investigated. Results were obtained at a Mach number of 0.2 with an angle-of-attack of 6 degrees on the basic airfoils, and all calculations employ the full potential flow equations for two dimensional flow. The relaxation method of Jameson was employed for solution of the potential flow equations.

  3. An improved panel method for the solution of three-dimensional leading edge vortex flows Volume 2: User's guide and programmer's document

    NASA Technical Reports Server (NTRS)

    Tinoco, E. N.; Lu, P.; Johnson, F. T.

    1980-01-01

    A computer program developed for solving the subsonic, three dimensional flow over wing-body configurations with leading edge vortex separation is presented. Instructions are given for the proper set up and input of a problem into the computer code. Program input formats and output are described, as well as the overlay structure of the program. The program is written in FORTRAN.

  4. Lift, Drag, and Pitching Moment of an Aspect-Ratio-2 Triangular Wing with Leading-Edge Flaps Designed to Simulate Conical Camber

    NASA Technical Reports Server (NTRS)

    Menees, Gene P.

    1958-01-01

    An investigation was conducted to determine the effectiveness of leading-edge flaps in reducing the drag at lifting conditions of a triangular wing of aspect ratio 2.0. The flaps, deflected to simulate conically cambered wings having a wide range of design lift coefficients, were tested over a Mach number range of 0.70 to 2.22 through an angle-of-attack variation from -6 deg to +18 deg at a constant Reynolds number of 3.68 million based on the wing mean aerodynamic chord. A symmetrical wing of the same plan form and aspect ratio was also tested to provide a basis for comparison. The experimental results showed that with the flaps in the undeflected position, a small amount of fixed leading-edge droop incorporated over the outboard 5 percent of the wing semispan was as effective at high subsonic speeds as conical camber in improving the maximum lift-drag ratio above that of the symmetrical wing. At supersonic speeds, the penalty in minimum drag above that of the symmetrical wing was less than that incurred by conical camber. Deflecting the leading-edge flaps about the hinge line through 80 percent of the wing semispan resulted in further improvements of the drag characteristics at lift coefficients above 0.20 throughout the Mach number range investigated. The lift and pitching-moment characteristics were not significantly affected by the leading-edge flaps.

  5. Experimental study of pressure and heating rate on a swept cylindrical leading edge resulting from swept shock wave interference. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Glass, Christopher E.

    1989-01-01

    The effects of cylindrical leading edge sweep on surface pressure and heat transfer rate for swept shock wave interference were investigated. Experimental tests were conducted in the Calspan 48-inch Hypersonic Shock Tunnel at a nominal Mach number of 8, nominal unit Reynolds number of 1.5 x 10 to the 6th power per foot, leading edge and incident shock generator sweep angles of 0, 15, and 30 deg, and incident shock generator angle-of-attack fixed at 12.5 deg. Detailed surface pressure and heat transfer rate on the cylindircal leading edge of a swept shock wave interference model were measured at the region of the maximum surface pressure and heat transfer rate. Results show that pressure and heat transfer rate on the cylindrical leading edge of the shock wave interference model were reduced as the sweep was increased over the range of tested parameters. Peak surface pressure and heat transfer rate on the cylinder were about 10 and 30 times the undisturbed flow stagnation point value, respectively, for the 0 deg sweep test. A comparison of the 15 and 30 deg swept results with the 0 deg swept results showed that peak pressure was reduced about 13 percent and 44 percent, respectively, and peak heat transfer rate was reduced about 7 percent and 27 percent, respectively.

  6. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.

    PubMed

    Phillips, Nathan; Knowles, Kevin; Bomphrey, Richard J

    2015-10-09

    Insect wing shapes are diverse and a renowned source of inspiration for the new generation of autonomous flapping vehicles, yet the aerodynamic consequences of varying geometry is not well understood. One of the most defining and aerodynamically significant measures of wing shape is the aspect ratio, defined as the ratio of wing length (R) to mean wing chord (c). We investigated the impact of aspect ratio, AR, on the induced flow field around a flapping wing using a robotic device. Rigid rectangular wings ranging from AR = 1.5 to 7.5 were flapped with insect-like kinematics in air with a constant Reynolds number (Re) of 1400, and a dimensionless stroke amplitude of 6.5c (number of chords traversed by the wingtip). Pseudo-volumetric, ensemble-averaged, flow fields around the wings were captured using particle image velocimetry at 11 instances throughout simulated downstrokes. Results confirmed the presence of a high-lift, separated flow field with a leading-edge vortex (LEV), and revealed that the conical, primary LEV grows in size and strength with increasing AR. In each case, the LEV had an arch-shaped axis with its outboard end originating from a focus-sink singularity on the wing surface near the tip. LEV detachment was observed for AR > 1.5 around mid-stroke at ~70% span, and initiated sooner over higher aspect ratio wings. At AR > 3 the larger, stronger vortex persisted under the wing surface well into the next half-stroke leading to a reduction in lift. Circulatory lift attributable to the LEV increased with AR up to AR = 6. Higher aspect ratios generated proportionally less lift distally because of LEV breakdown, and also less lift closer to the wing root due to the previous LEV's continuing presence under the wing. In nature, insect wings go no higher than AR ~ 5, likely in part due to architectural and physiological constraints but also because of the reducing aerodynamic benefits of high AR wings.

  7. Aerothermodynamic Environments Definition for the Mars Science Laboratory Entry Capsule

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Dyakonov, Artem A.; Wright, Michael J.; Tang, Chun Y.

    2007-01-01

    An overview of the aerothermodynamic environments definition status is presented for the Mars Science Laboratory entry vehicle. The environments are based on Navier-Stokes flowfield simulations on a candidate aeroshell geometry and worst-case entry heating trajectories. Uncertainties for the flowfield predictions are based primarily on available ground data since Mars flight data are scarce. The forebody aerothermodynamics analysis focuses on boundary layer transition and turbulent heating augmentation. Turbulent transition is expected prior to peak heating, a first for Mars entry, resulting in augmented heat flux and shear stress at the same heatshield location. Afterbody computations are also shown with and without interference effects of reaction control system thruster plumes. Including uncertainties, analysis predicts that the heatshield may experience peaks of 225 W/sq cm for turbulent heat flux, 0.32 atm for stagnation pressure, and 400 Pa for turbulent shear stress. The afterbody heat flux without thruster plume interference is predicted to be 7 W/sq cm on the backshell and 10 W/sq cm on the parachute cover. If the reaction control jets are fired near peak dynamic pressure, the heat flux at localized areas could reach as high as 76 W/sq cm on the backshell and 38 W/sq cm on the parachute cover, including uncertainties. The final flight environments used for hardware design will be updated for any changes in the aeroshell configuration, heating design trajectories, or uncertainties.

  8. Development and application of computational aerothermodynamics flowfield computer codes

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    1994-01-01

    Research was performed in the area of computational modeling and application of hypersonic, high-enthalpy, thermo-chemical nonequilibrium flow (Aerothermodynamics) problems. A number of computational fluid dynamic (CFD) codes were developed and applied to simulate high altitude rocket-plume, the Aeroassist Flight Experiment (AFE), hypersonic base flow for planetary probes, the single expansion ramp model (SERN) connected with the National Aerospace Plane, hypersonic drag devices, hypersonic ramp flows, ballistic range models, shock tunnel facility nozzles, transient and steady flows in the shock tunnel facility, arc-jet flows, thermochemical nonequilibrium flows around simple and complex bodies, axisymmetric ionized flows of interest to re-entry, unsteady shock induced combustion phenomena, high enthalpy pulsed facility simulations, and unsteady shock boundary layer interactions in shock tunnels. Computational modeling involved developing appropriate numerical schemes for the flows on interest and developing, applying, and validating appropriate thermochemical processes. As part of improving the accuracy of the numerical predictions, adaptive grid algorithms were explored, and a user-friendly, self-adaptive code (SAGE) was developed. Aerothermodynamic flows of interest included energy transfer due to strong radiation, and a significant level of effort was spent in developing computational codes for calculating radiation and radiation modeling. In addition, computational tools were developed and applied to predict the radiative heat flux and spectra that reach the model surface.

  9. Aerothermodynamic Design of the Mars Science Laboratory Heatshield

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Dyakonov, Artem A.; Wright, Michael J.; Tang, Chun Y.

    2009-01-01

    Aerothermodynamic design environments are presented for the Mars Science Laboratory entry capsule heatshield. The design conditions are based on Navier-Stokes flowfield simulations on shallow (maximum total heat load) and steep (maximum heat flux, shear stress, and pressure) entry trajectories from a 2009 launch. Boundary layer transition is expected prior to peak heat flux, a first for Mars entry, and the heatshield environments were defined for a fully-turbulent heat pulse. The effects of distributed surface roughness on turbulent heat flux and shear stress peaks are included using empirical correlations. Additional biases and uncertainties are based on computational model comparisons with experimental data and sensitivity studies. The peak design conditions are 197 W/sq cm for heat flux, 471 Pa for shear stress, 0.371 Earth atm for pressure, and 5477 J/sq cm for total heat load. Time-varying conditions at fixed heatshield locations were generated for thermal protection system analysis and flight instrumentation development. Finally, the aerothermodynamic effects of delaying launch until 2011 are previewed.

  10. ESA Intermediate Experimental Vehicle. Independent Aerothermodynamic Characterization And Aerodatabase Development

    NASA Astrophysics Data System (ADS)

    Rufolo, Giuseppe C.; Di Benedetto, Sara; Walpot, Louis; Roncioni, Pietro; Marini, Marco

    2011-05-01

    In the frame of the Intermediate eXperimental Vehicle (IXV) project, the European Space Agency (ESA) is coordinating a series of technical assistance activities aimed at verifying and supporting the IXV industrial design and development process. The technical assistance is operated with the support of the Italian Space Agency (ASI), by means of the Italian Aerospace Research Center (CIRA), and the European Space Research and Technology Centre (ESTEC) under the super visioning and coordination of ESA IXV team. One of the purposes of the activity is to develop an independent capability for the assessment and verification of the industrial results with respect to the aerothermodynamic characterization of the IXV vehicle. To this aim CIRA is developing and independent AeroThermodynamics DataBase (ATDB), intended as a tool generating in output the time histories of local quantities (heat flux, pressure, skin friction) for each point of the IXV vehicle and for each trajectory (in a pre-defined envelope), together with an uncertainties model. The reference Computational Fluid Dynamics (CFD) solutions needed for the development of the tool have been provided by ESA-ESTEC (with the CFD code LORE) and CIRA (with the CFD code H3NS).

  11. Experimental Stage Separation Tool Development in NASA Langley's Aerothermodynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Scallion, William I.

    2005-01-01

    As part of the research effort at NASA in support of the stage separation and ascent aerothermodynamics research program, proximity testing of a generic bimese wing-body configuration was conducted in NASA Langley's Aerothermodynamics Laboratory in the 20-Inch Mach 6 Air Tunnel. The objective of this work is the development of experimental tools and testing methodologies to apply to hypersonic stage separation problems for future multi-stage launch vehicle systems. Aerodynamic force and moment proximity data were generated at a nominal Mach number of 6 over a small range of angles of attack. The generic bimese configuration was tested in a belly-to-belly and back-to-belly orientation at 86 relative proximity locations. Over 800 aerodynamic proximity data points were taken to serve as a database for code validation. Longitudinal aerodynamic data generated in this test program show very good agreement with viscous computational predictions. Thus a framework has been established to study separation problems in the hypersonic regime using coordinated experimental and computational tools.

  12. Aerothermodynamic Analysis of Commercial Experiment Transporter (COMET) Reentry Capsule

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Gnoffo, Peter A.; Rault, Didier F. G.

    1996-01-01

    An aerothermodynamic analysis of the Commercial Experiment Transporter (COMET) reentry capsule has been performed using the laminar thin-layer Navier-Stokes solver Langley Aerothermodynamic Upwind Relaxation Algorithm. Flowfield solutions were obtained at Mach numbers 1.5, 2, 5, 10, 15, 20, 25, and 27.5. Axisymmetric and 5, 10, and 20 degree angles of attack were considered across the Mach-number range, with the Mach 25 conditions taken to 90 degrees angle of attack and the Mach 27.5 cases taken to 60 degrees angle of attack. Detailed surface heat-transfer rates were computed at Mach 20 and 25, revealing that heating rates on the heat-shield shoulder ,can exceed the stagnation-point heating by 230 percent. Finite-rate chemistry solutions were performed above Mach 10, otherwise perfect gas computations were made. Drag, lift, and pitching moment coefficients are computed and details of a wake flow are presented. The effect of including the wake in the solution domain was investigated and base pressure corrections to forebody drag coefficients were numerically determined for the lower Mach numbers. Pitching moment comparisons are made with direct simulation Monte Carlo results in the more rarefied flow at the highest Mach numbers, showing agreement within two-percent. Thin-layer Navier-Stokes computations of the axial force are found to be 15 percent higher across the speed range than the empirical/Newtonian based results used during the initial trajectory analyses.

  13. Blunt-Body Entry Vehicle Aerothermodynamics: Transition and Turbulence on the CEV and MSL Configurations

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    2010-01-01

    Recent, current, and planned NASA missions that employ blunt-body entry vehicles pose aerothermodynamic problems that challenge the state-of-the art of experimental and computational methods. The issues of boundary-layer transition and turbulent heating on the heat shield have become important in the designs of both the Mars Science Laboratory and Crew Exploration Vehicle. While considerable experience in these general areas exists, that experience is mainly derived from simple geometries; e.g. sharp-cones and flat-plates, or from lifting bodies such as the Space Shuttle Orbiter. For blunt-body vehicles, application of existing data, correlations, and comparisons is questionable because an all, or mostly, subsonic flow field is produced behind the bow shock, as compared to the supersonic (or even hypersonic) flow of other configurations. Because of the need for design and validation data for projects such as MSL and CEV, many new experimental studies have been conducted in the last decade to obtain detailed boundary-layer transition and turbulent heating data on this class of vehicle. In this paper, details of several of the test programs are reviewed. The laminar and turbulent data from these various test are shown to correlate in terms of edge-based Stanton and Reynolds number functions. Correlations are developed from the data for transition onset and turbulent heating augmentation as functions of momentum thickness Reynolds number. These correlation can be employed as engineering-level design and analysis tools.

  14. Impact of clocking on the aero-thermodynamics of a second stator tested in a one and a half stage HP turbine

    NASA Astrophysics Data System (ADS)

    Billiard, N.; Paniagua, Guillermo; Dénos, R.

    2008-06-01

    This paper focuses on the experimental investigation of the time-averaged and time-accurate aero-thermodynamics of a second stator tested in a 1.5 stage high-pressure turbine. The effect of clocking on aerodynamic and heat transfer are investigated. Tests are performed under engine representative conditions in the VKI compression tube CT3. The test program includes four different clocking positions, i.e. relative pitch-wise positions between the first and the second stator. Probes located upstream and downstream of the second stator provide the thermodynamic conditions of the flow field. On the second stator airfoil, measurements are taken around the blade profile at 15, 50 and 85% span with pressure sensors and thin-film gauges. Both time-averaged and time-resolved aspects of the flow field are addressed. Regarding the time-averaged results, clocking effects are mainly observed within the leading edge region of the second stator, the largest effects being observed at 15% span. The surface static pressure distribution is changed locally, hence affecting the overall airfoil performance. For one clocking position, the thermal load of the airfoil is noticeably reduced. Pressure fluctuations are attributed to the passage of the upstream transonic rotor and its associated pressure gradients. The pattern of these fluctuations changes noticeably as a function of clocking. The time-resolved variations of heat flux and static pressure are analyzed together showing that the major effect is due to a potential interaction. The time-resolved pressure distribution integrated along the second stator surface yields the unsteady forces on the vane. The magnitude of the unsteady force is very dependent on the clocking position.

  15. Aerodynamic Characteristics of a Large-Scale Unswept Wing-Body-Tail Configuration with Blowing Applied Over the Flap and Wind Leading Edge

    NASA Technical Reports Server (NTRS)

    McLemore, H. Clyde; Peterson, John B., Jr.

    1960-01-01

    An investigation has been conducted in the Langley full-scale tunnel to determine the effects of a blowing boundary-layer-control lift-augmentation system on the aerodynamic characteristics of a large-scale model of a fighter-type airplane. The wing was unswept at the 70-percent- chord station, had an aspect ratio of 2.86, a taper ratio of 0.40, and 4-percent-thick biconvex airfoil sections parallel to the plane of symmetry. The tests were conducted over a range of angles of attack from approximately -4 deg to 23 deg for a Reynolds number of approximately 5.2 x 10(exp 6) which corresponds to a Mach number of 0.08. Blowing rates were normally restricted to values just sufficient to control air-flow separation. The results of this investigation showed that wing leading-edge blowing in combination with large values of wing leading-edge-flap deflection was a very effective leading-edge flow-control device for wings having highly loaded trailing-edge flaps. With leading-edge blowing there was no hysteresis of the lift, drag, and pitching-moment characteristics upon recovery from stall. End plates were found to improve the lift and drag characteristics of the test configuration in the moderate angle-of-attack range, and blockage to one-quarter of the blowing-slot area was not detrimental to the aerodynamic characteristics. Blowing boundary-layer control resulted in a considerably reduced landing speed and reduced landing and take-off distances. The ailerons were very effective lateral-control devices when used with blowing flaps.

  16. Transfer of New Earth Science Understandings to Classroom Teaching: Lessons Learned From Teachers on the Leading Edge

    NASA Astrophysics Data System (ADS)

    Butler, R.; Ault, C.; Bishop, E.; Southworth-Neumeyer, T.; Magura, B.; Hedeen, C.; Groom, R.; Shay, K.; Wagner, R.

    2006-05-01

    Teachers on the Leading Edge (TOTLE) provided a field-based teacher professional development program that explored the active continental margin geology of the Pacific Northwest during a two-week field workshop that traversed Oregon from the Pacific Coast to the Snake River. The seventeen teachers on this journey of geological discovery experienced regional examples of subduction-margin geology and examined the critical role of geophysics in connecting geologic features with plate tectonic processes. Two examples of successful transfer of science content learning to classroom teaching are: (1) Great Earthquakes and Tsunamis. This topic was addressed through instruction on earthquake seismology; field observations of tsunami geology; examination of tsunami preparedness of a coastal community; and interactive learning activities for children at an Oregon Museum of Science and Industry (OMSI) Science Camp. Teachers at Sunnyside Environmental School in Portland developed a story line for middle school students called "The Tsunami Hotline" in which inquiries from citizens serve as launch points for studies of tsunamis, earthquakes, and active continental margin geology. OMSI Science Camps is currently developing a new summer science camp program entitled "Tsunami Field Study" for students ages 12-14, based largely on TOTLE's Great Earthquakes and Tsunamis Day. (2) The Grand Cross Section. Connecting regional geologic features with plate tectonic processes was addressed many times during the field workshop. This culminated with teachers drawing cross sections from the Juan de Fuca Ridge across the active continental margin to the accreted terranes of northeast Oregon. Several TOTLE teachers have successfully transferred this activity to their classrooms by having student teams relate earthquakes and volcanoes to plate tectonics through artistic renderings of The Grand Cross Section. Analysis of program learning transfer to classroom teaching (or lack thereof) clearly

  17. Influence of blade leading edge geometry and upstream blowing on the heat/mass transfer in a turbine cascade

    NASA Astrophysics Data System (ADS)

    Papa, Marco

    The effect of secondary flows on mass transfer from a simulated gas turbine blade and hubwall is investigated. Measurements performed using naphthalene sublimation provide non-dimensional mass transfer coefficients, in the form of Sherwood numbers, that can be converted to heat transfer coefficients through the use of an analogy. Tests are conducted in a linear cascade composed of five blades having the profile of a first stage rotor blade of a high-pressure turbine aircraft engine. Detailed mass transfer maps on the airfoil and endwall surfaces allow the identification of significant flow features that are in good agreement with existing secondary flow models. These results are well-suited for validation of numerical codes, as they are obtained with an accurate technique that does not suffer from conduction or radiation errors and allows the imposition of precise boundary conditions. The performance of a RANS (Reynolds Averaged Navier-Stokes) numerical code that simulates the flow and heat/mass transfer in the cascade using the SST (Shear Stress Transport) k-o model is evaluated through a comparison with the experimental results. Tests performed with a modified blade leading edge show that the introduction of a fillet at the junction with the endwall reduces the effects of the horseshoe vortex in the first part of the passage, while no measurable changes in mass transfer are observed further downstream. Air injected through a slot located upstream of the cascade simulates the engine wheelspace coolant injection between the stator and the rotor. Local mass transfer data obtained injecting naphthalene-free and naphthalene-saturated air are reduced to derive maps of cooling effectiveness on the blade and endwall. Oil dot tests show the surface flow on the endwall. The surface downstream of the gap is coplanar to the upstream surface in the baseline configuration and is shifted to form a forward and backward facing step to investigate the effects of component

  18. An instability at the edge of a tissue of collectively migrating cells can lead to finger formation during wound healing

    NASA Astrophysics Data System (ADS)

    Zimmermann, J.; Basan, M.; Levine, H.

    2014-06-01

    In wound healing assays, a monolayer of epithelial cells is allowed to migrate onto empty surface area. When the motile cells close the artificial wound, the edge of the tissue does usually not move uniformly but characteristic fingerlike protrusions are observed. We model the collectively moving cells as a system of self-propelled particles using the Toner-Tu equations for an active fluid. A linear stability analysis of perturbations at the tissue edge reveals an instability in the disordered nonmoving state. The instability is purely due to spontaneous motility and velocity alignment between cells. It can account for finger formation in wound healing experiments.

  19. Suppression of chemotaxis by SSeCKS via scaffolding of phosphoinositol phosphates and the recruitment of the Cdc42 GEF, Frabin, to the leading edge.

    PubMed

    Ko, Hyun-Kyung; Guo, Li-wu; Su, Bing; Gao, Lingqiu; Gelman, Irwin H

    2014-01-01

    Chemotaxis is controlled by interactions between receptors, Rho-family GTPases, phosphatidylinositol 3-kinases, and cytoskeleton remodeling proteins. We investigated how the metastasis suppressor, SSeCKS, attenuates chemotaxis. Chemotaxis activity inversely correlated with SSeCKS levels in mouse embryo fibroblasts (MEF), DU145 and MDA-MB-231 cancer cells. SSeCKS loss induced chemotactic velocity and linear directionality, correlating with replacement of leading edge lamellipodia with fascin-enriched filopodia-like extensions, the formation of thickened longitudinal F-actin stress fibers reaching to filopodial tips, relative enrichments at the leading edge of phosphatidylinositol (3,4,5)P3 (PIP3), Akt, PKC-ζ, Cdc42-GTP and active Src (SrcpoY416), and a loss of Rac1. Leading edge lamellipodia and chemotaxis inhibition in SSeCKS-null MEF could be restored by full-length SSeCKS or SSeCKS deleted of its Src-binding domain (ΔSrc), but not by SSeCKS deleted of its three MARCKS (myristylated alanine-rich C kinase substrate) polybasic domains (ΔPBD), which bind PIP2 and PIP3. The enrichment of activated Cdc42 in SSeCKS-null leading edge filopodia correlated with recruitment of the Cdc42-specific guanine nucleotide exchange factor, Frabin, likely recruited via multiple PIP2/3-binding domains. Frabin knockdown in SSeCKS-null MEF restores leading edge lamellipodia and chemotaxis inhibition. However, SSeCKS failed to co-immunoprecipitate with Rac1, Cdc42 or Frabin. Consistent with the notion that chemotaxis is controlled by SSeCKS-PIP (vs. -Src) scaffolding activity, constitutively-active phosphatidylinositol 3-kinase could override the ability of the Src inhibitor, SKI-606, to suppress chemotaxis and filopodial enrichment of Frabin in SSeCKS-null MEF. Our data suggest a role for SSeCKS in controlling Rac1 vs. Cdc42-induced cellular dynamics at the leading chemotactic edge through the scaffolding of phospholipids and signal mediators, and through the reorganization of the

  20. Suppression of Chemotaxis by SSeCKS via Scaffolding of Phosphoinositol Phosphates and the Recruitment of the Cdc42 GEF, Frabin, to the Leading Edge

    PubMed Central

    Ko, Hyun-Kyung; Guo, Li-wu; Su, Bing; Gao, Lingqiu; Gelman, Irwin H.

    2014-01-01

    Chemotaxis is controlled by interactions between receptors, Rho-family GTPases, phosphatidylinositol 3-kinases, and cytoskeleton remodeling proteins. We investigated how the metastasis suppressor, SSeCKS, attenuates chemotaxis. Chemotaxis activity inversely correlated with SSeCKS levels in mouse embryo fibroblasts (MEF), DU145 and MDA-MB-231 cancer cells. SSeCKS loss induced chemotactic velocity and linear directionality, correlating with replacement of leading edge lamellipodia with fascin-enriched filopodia-like extensions, the formation of thickened longitudinal F-actin stress fibers reaching to filopodial tips, relative enrichments at the leading edge of phosphatidylinositol (3,4,5)P3 (PIP3), Akt, PKC-ζ, Cdc42-GTP and active Src (SrcpoY416), and a loss of Rac1. Leading edge lamellipodia and chemotaxis inhibition in SSeCKS-null MEF could be restored by full-length SSeCKS or SSeCKS deleted of its Src-binding domain (ΔSrc), but not by SSeCKS deleted of its three MARCKS (myristylated alanine-rich C kinase substrate) polybasic domains (ΔPBD), which bind PIP2 and PIP3. The enrichment of activated Cdc42 in SSeCKS-null leading edge filopodia correlated with recruitment of the Cdc42-specific guanine nucleotide exchange factor, Frabin, likely recruited via multiple PIP2/3-binding domains. Frabin knockdown in SSeCKS-null MEF restores leading edge lamellipodia and chemotaxis inhibition. However, SSeCKS failed to co-immunoprecipitate with Rac1, Cdc42 or Frabin. Consistent with the notion that chemotaxis is controlled by SSeCKS-PIP (vs. -Src) scaffolding activity, constitutively-active phosphatidylinositol 3-kinase could override the ability of the Src inhibitor, SKI-606, to suppress chemotaxis and filopodial enrichment of Frabin in SSeCKS-null MEF. Our data suggest a role for SSeCKS in controlling Rac1 vs. Cdc42-induced cellular dynamics at the leading chemotactic edge through the scaffolding of phospholipids and signal mediators, and through the reorganization of the

  1. Formulas for the Supersonic Loading, Lift, and Drag of Flat Swept-Back Wings with Leading Edges Behind the Mach Line

    NASA Technical Reports Server (NTRS)

    Cohen, Doris

    1951-01-01

    The method of superposition of linearized conical flows has been applied to the calculation of the aerodynamic properties, in supersonic flight, of thin flat, swept-back wings at an angle of attack. The wings are assumed to have rectilinear plan forms, with tips parallel to the stream, and to taper in the conventional sense. The investigation covers the moderately supersonic speed range where the Mach lines from the leading-edge apex lie ahead of the wing. The trailing edge may lie ahead of or behind the Mach lines from its apex. The case in which the Mach cone from one tip intersects the other tip is not treated. Formulas are obtained for the load distribution, the total lift, and the drag due to lift. For the cases in which the trailing edge is outside the Mach cone from its apex the formulas are complete. For wings with both leading and trailing edges behind their respective Mach lines, a degree of approximation is necessary. Charts of some of the functions derived are included to facilitate computing, and several examples are worked out in outline.

  2. Applications of the ram accelerator to hypervelocity aerothermodynamic testing

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Knowlen, C.; Hertzberg, A.

    1992-01-01

    A ram accelerator used as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerodynamics research is presented. It is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled down a stationary tube filled with a tailored combustible gas mixture. Ram accelerator operation has been demonstrated at 39 mm and 90 mm bores, supporting the proposition that this launcher concept can be scaled up to very large bore diameters of the order of 30-60 cm. It is concluded that high quality data obtained from the tube wall and projectile during the aceleration process itself are very useful for understanding aerothermodynamics of hypersonic flow in general, and for providing important CFD validation benchmarks.

  3. High-Energy Atmospheric Reentry Test Aerothermodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza

    2013-01-01

    This paper presents an assessment of the aerothermodynamic environment around an 8.3 meter High Energy Atmospheric Reentry Test (HEART) vehicle. This study generated twelve nose shape configurations and compared their responses at the peak heating trajectory point against the baseline nose shape. The heat flux sensitivity to the angle of attack variations are also discussed. The possibility of a two-piece Thermal Protection System (TPS) design at the nose is also considered, as are the surface catalytic affects of the aeroheating environment of such configuration. Based on these analyses, an optimum nose shape is proposed to minimize the surface heating. A recommendation is also made for a two-piece TPS design, for which the surface catalytic uncertainty associated with the jump in heating at the nose-IAD juncture is reduced by a minimum of 93%. In this paper, the aeroshell is assumed to be rigid and the inflatable fluid interaction effect is left for future investigations

  4. Team Software Development for Aerothermodynamic and Aerodynamic Analysis and Design

    NASA Technical Reports Server (NTRS)

    Alexandrov, N.; Atkins, H. L.; Bibb, K. L.; Biedron, R. T.; Carpenter, M. H.; Gnoffo, P. A.; Hammond, D. P.; Jones, W. T.; Kleb, W. L.; Lee-Rausch, E. M.

    2003-01-01

    A collaborative approach to software development is described. The approach employs the agile development techniques: project retrospectives, Scrum status meetings, and elements of Extreme Programming to efficiently develop a cohesive and extensible software suite. The software product under development is a fluid dynamics simulator for performing aerodynamic and aerothermodynamic analysis and design. The functionality of the software product is achieved both through the merging, with substantial rewrite, of separate legacy codes and the authorship of new routines. Examples of rapid implementation of new functionality demonstrate the benefits obtained with this agile software development process. The appendix contains a discussion of coding issues encountered while porting legacy Fortran 77 code to Fortran 95, software design principles, and a Fortran 95 coding standard.

  5. Numerical methods for aerothermodynamic design of hypersonic space transport vehicles

    NASA Astrophysics Data System (ADS)

    Wanie, K. M.; Brenneis, A.; Eberle, A.; Heiss, S.

    1993-04-01

    The requirement of the design process of hypersonic vehicles to predict flow past entire configurations with wings, fins, flaps, and propulsion system represents one of the major challenges for aerothermodynamics. In this context computational fluid dynamics has come up as a powerful tool to support the experimental work. A couple of numerical methods developed at MBB designed to fulfill the needs of the design process are described. The governing equations and fundamental details of the solution methods are shortly reviewed. Results are given for both geometrically simple test cases and realistic hypersonic configurations. Since there is still a considerable lack of experience for hypersonic flow calculations an extensive testing and verification is essential. This verification is done by comparison of results with experimental data and other numerical methods. The results presented prove that the methods used are robust, flexible, and accurate enough to fulfill the strong needs of the design process.

  6. Aerothermodynamic design feasibility of a Mars aerocapture/aeromaneuver vehicle

    NASA Technical Reports Server (NTRS)

    Florence, D. E.

    1981-01-01

    Lifting aerodynamic configurations have been screened and selected for the Mars aerocapture mission that (1) meet the geometric packaging requirements of the various payloads and the Space Shuttle cargo bay and (2) provide the aerodynamic performance characteristics required to obtain the atmospheric exit steering accuracy and the parachute deployment conditions desired. Hypersonic heat transfer and aerodynamic loads to the vehicle in the CO2 atmosphere are evaluated. Contemporary low density ablative thermal protection materials were selected that meet all the atmospheric entry requirements and provide a minimum mass solution. Results are presented of the aerodynamic configuration and thermal protection materials screening and selection. It is concluded that the aerothermodynamic design of this concept is feasible using state-of-the-art technology.

  7. Aerothermodynamic Assessment of Corrugated Panel Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Brandon, H. J.; Britt, A. H.; Kipp, H. W.; Masek, R. V.

    1978-01-01

    The feasibility of using corrugated panels as a thermal protection system for an advanced space transportation vehicle was investigated. The study consisted of two major tasks: development of improved correlations for wind tunnel heat transfer and pressure data to yield design techniques, and application of the design techniques to determine if corrugated panels have application future aerospace vehicles. A single-stage-to-orbit vehicle was used to assess advantages and aerothermodynamic penalties associated with use of such panels. In the correlation task, experimental turbulent heat transfer and pressure data obtained on corrugation roughened surfaces during wind tunnel testing were analyzed and compared with flat plate data. The correlations and data comparisons included the effects of a large range of geometric, inviscid flow, internal boundary layer, and bulk boundary layer parameters in supersonic and hypersonic flow.

  8. Effects of discontinuous drooped wing leading-edge modifications on the spinning characteristics of a low-wing general aviation airplane

    NASA Technical Reports Server (NTRS)

    Dicarlo, D. J.; Stough, H. P., III; Patton, J. M., Jr.

    1980-01-01

    Wind tunnel and flight tests were conducted to determine the effects of several discontinuous drooped wing leading-edge configurations on the spinning characteristics of a light, single-engine, low-wing research airplane. Particular emphasis was placed on the identification of modifications which would improve the spinning characteristics. The spanwise length of a discontinuous outboard droop was varied and several additional inboard segments were added to determine the influence of such leading-edge configurations on the spin behavior. Results of the study indicated that the use of only the discontinuous outboard droop, over a specific spanwise area, was most effective towards improving spin and spin recovery characteristics, whereas the segmented configurations having both inboard and outboard droop exhibited a tendency to enter a flat spin.

  9. Direct In Vivo Manipulation and Imaging of Calcium Transients in Neutrophils Identify a Critical Role for Leading-Edge Calcium Flux.

    PubMed

    Beerman, Rebecca W; Matty, Molly A; Au, Gina G; Looger, Loren L; Choudhury, Kingshuk Roy; Keller, Philipp J; Tobin, David M

    2015-12-15

    Calcium signaling has long been associated with key events of immunity, including chemotaxis, phagocytosis, and activation. However, imaging and manipulation of calcium flux in motile immune cells in live animals remain challenging. Using light-sheet microscopy for in vivo calcium imaging in zebrafish, we observe characteristic patterns of calcium flux triggered by distinct events, including phagocytosis of pathogenic bacteria and migration of neutrophils toward inflammatory stimuli. In contrast to findings from ex vivo studies, we observe enriched calcium influx at the leading edge of migrating neutrophils. To directly manipulate calcium dynamics in vivo, we have developed transgenic lines with cell-specific expression of the mammalian TRPV1 channel, enabling ligand-gated, reversible, and spatiotemporal control of calcium influx. We find that controlled calcium influx can function to help define the neutrophil's leading edge. Cell-specific TRPV1 expression may have broad utility for precise control of calcium dynamics in other immune cell types and organisms.

  10. Applicability of linearized-theory attached-flow methods to design and analysis of flap systems at low speeds for thin swept wings with sharp leading edges

    NASA Technical Reports Server (NTRS)

    Carlson, Harry W.; Darden, Christine M.

    1987-01-01

    Low-speed experimental force and data on a series of thin swept wings with sharp leading edges and leading and trailing-edge flaps are compared with predictions made using a linearized-theory method which includes estimates of vortex forces. These comparisons were made to assess the effectiveness of linearized-theory methods for use in the design and analysis of flap systems in subsonic flow. Results demonstrate that linearized-theory, attached-flow methods (with approximate representation of vortex forces) can form the basis of a rational system for flap design and analysis. Even attached-flow methods that do not take vortex forces into account can be used for the selection of optimized flap-system geometry, but design-point performance levels tend to be underestimated unless vortex forces are included. Illustrative examples of the use of these methods in the design of efficient low-speed flap systems are included.

  11. Effects of wing leading-edge flap deflections on subsonic longitudinal aerodynamic characteristics of a wing-fuselage configuration with a 44 deg swept wing

    NASA Technical Reports Server (NTRS)

    Henderson, W. P.

    1978-01-01

    An investigation was conducted to determine the effects of wing leading-edge flap deflections on the subsonic longitudinal aerodynamic characteristics of a wing-fuselage configuration with a 44 deg swept wing. The tests were conducted at Mach numbers from 0.40 to 0.85, corresponding to Reynolds numbers (based on wing mean geometric chord) of 2.37 x 1,000,000 to 4.59 x 1,000,000 and at angles of attack from -3 deg to 22 deg. The configurations under study included a wing-fuselage configuration and a wing-fuselage-strake configuration. Each configuration had multisegmented, constant-chord leading-edge flaps which could be deflected independently or in various combinations.

  12. A flow visualization study of the leading edge separation bubble on a NACA 0012 airfoil with simulated glaze ice. Final Report M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Khodadoust, Abdollah

    1988-01-01

    As a part of the ongoing research in aircraft icing, the leading edge separation bubble on the NACA 0012 model with a 5-min simulated glaze ice was investigated. The flow visualization methods used oil, tuft, splitter plate, smoke, and liquid crystals to get reattachment line data for the leading edge separation bubble on both surfaces of the airfoil. On the upper surface, the bubble was found to grow larger with increasing negative angles of attack and reduce in size with increasing angles of attack. The separated flow fails to reattach beyond 6 deg for the upper surface and -5 deg for the lower surface. The results of this study compared well with those of other experiments and computational results.

  13. Static force tests of a sharp leading edge delta-wing model at ambient and cryogenic temperatures with a description of the apparatus employed

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.; Davenport, E. E.

    1976-01-01

    A sharp leading edge delta-wing model was tested through an angle-of-attack range at Mach numbers of 0.75, 0.80, and 0.85 at both ambient and cryogenic temperatures in the Langley 1/3-meter transonic cryogenic tunnel. Total pressure was varied with total temperature in order to hold test Reynolds number constant at a given Mach number. Agreement between the aerodynamic data obtained at ambient and cryogenic temperatures indicates that flows with leading-edge vortex effects are duplicated properly at cryogenic temperatures. The test results demonstrate that accurate aerodynamic data can be obtained by using conventional force-testing techniques if suitable measures are taken to minimize temperature gradients across the balance and to keep the balance at ambient (warm) temperatures during cryogenic operation of the tunnel.

  14. Experimental and Computational Aerothermodynamics of a Mars Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    1996-01-01

    An aerothermodynamic database has been generated through both experimental testing and computational fluid dynamics simulations for a 70 deg sphere-cone configuration based on the NASA Mars Pathfinder entry vehicle. The aerothermodynamics of several related parametric configurations were also investigated. Experimental heat-transfer data were obtained at hypersonic test conditions in both a perfect gas air wind tunnel and in a hypervelocity, high-enthalpy expansion tube in which both air and carbon dioxide were employed as test gases. In these facilities, measurements were made with thin-film temperature-resistance gages on both the entry vehicle models and on the support stings of the models. Computational results for freestream conditions equivalent to those of the test facilities were generated using an axisymmetric/2D laminar Navier-Stokes solver with both perfect-gas and nonequilibrium thermochemical models. Forebody computational and experimental heating distributions agreed to within the experimental uncertainty for both the perfect-gas and high-enthalpy test conditions. In the wake, quantitative differences between experimental and computational heating distributions for the perfect-gas conditions indicated transition of the free shear layer near the reattachment point on the sting. For the high enthalpy cases, agreement to within, or slightly greater than, the experimental uncertainty was achieved in the wake except within the recirculation region, where further grid resolution appeared to be required. Comparisons between the perfect-gas and high-enthalpy results indicated that the wake remained laminar at the high-enthalpy test conditions, for which the Reynolds number was significantly lower than that of the perfect-gas conditions.

  15. Aerothermodynamic Characteristics in the Hypersonic Continuum-Rarefied Transitional Regime

    NASA Technical Reports Server (NTRS)

    Glass, Christopher, E.; Moss, James N.

    2001-01-01

    Stagnation pressure and heating for cylinders and spheres representative of wing leading edges and nose sections for small-scale space transportation vehicles are presented for various Knudsen numbers at Earth entry conditions that bridge from the free molecular to continuum regimes. CFD, DSMC, and collisionless DSMC are used to span Knudsen numbers from 0.001 to 100 with the CFD/DSMC overlap at a Knudsen number of 0.01 and the DSMC/collisionless DSMC overlap at 10. The present results include density contours, density and temperature along the stagnation streamline for all cases, and stagnation pressure and heat transfer coefficient as a function of Knudsen number.

  16. Effect of RANS-Type Turbulence Models on Adiabatic Film Cooling Effectiveness over a Scaled Up Gas Turbine Blade Leading Edge Surface

    NASA Astrophysics Data System (ADS)

    Yepuri, Giridhara Babu; Talanki Puttarangasetty, Ashok Babu; Kolke, Deepak Kumar; Jesuraj, Felix

    2016-06-01

    Increasing the gas turbine inlet temperature is one of the key technologies in raising gas turbine engine power output. Film cooling is one of the efficient cooling techniques to cool the hot section components of a gas turbine engines in turn the turbine inlet temperature can be increased. This study aims at investigating the effect of RANS-type turbulence models on adiabatic film cooling effectiveness over a scaled up gas turbine blade leading edge surfaces. For the evaluation, five different two equation RANS-type turbulent models have been taken in consideration, which are available in the ANSYS-Fluent. For this analysis, the gas turbine blade leading edge configuration is generated using Solid Works. The meshing is done using ANSYS-Workbench Mesh and ANSYS-Fluent is used as a solver to solve the flow field. The considered gas turbine blade leading edge model is having five rows of film cooling circular holes, one at stagnation line and the two each on either side of stagnation line at 30° and 60° respectively. Each row has the five holes with the hole diameter of 4 mm, pitch of 21 mm arranged in staggered manner and has the hole injection angle of 30° in span wise direction. The experiments are carried in a subsonic cascade tunnel facility at heat transfer lab of CSIR-National Aerospace Laboratory with a Reynolds number of 1,00,000 based on leading edge diameter. From the Computational Fluid Dynamics (CFD) evaluation it is found that K-ɛ Realizable model gives more acceptable results with the experimental values, compared to the other considered turbulence models for this type of geometries. Further the CFD evaluated results, using K-ɛ Realizable model at different blowing ratios are compared with the experimental results.

  17. Ninety Degree Skew Leading Edge Film Cooling Effectiveness, Heat Transfer, and Discharge Coefficients for Cylindrical Film Holes at High Free Stream Turbulence

    DTIC Science & Technology

    2003-03-01

    J., 1994, “A System for Making Temperature Measurements Using Thermochromic Liquid Crystals ,” Thermo Sciences Division, Stanford University, Report...respectively. A transient liquid crystal technique was used to obtain the film cooling effectiveness and the heat transfer coefficients. The distributions...coefficient on a cylindrical leading edge model using a transient liquid crystal image method. Again, an injection angle of 30º and a pitch of four

  18. Effects of leading edge sweep angle and design lift coefficient on performance of a modified arrow wing at a design Mach number of 2.6

    NASA Technical Reports Server (NTRS)

    Mack, R. J.

    1974-01-01

    Wing models were tested in the high-speed section of the Langley Unitary Plan wind tunnel to study the effects of the leading-edge sweep angle and the design lift coefficient on aerodynamic performance and efficiency. The models had leading-edge sweep angles of 69.44 deg, 72.65 deg, and 75.96 deg which correspond to values of the design Mach-number-sweep-angle parameter (beta cotangent A) sub DES of 0.6, 0.75, and 0.9, respectively. For each sweep angle, camber surfaces having design lift coefficients of 0,0.08, and 0.12 at a design Mach number of 2.6 were generated. The wind-tunnel tests were conducted at Mach numbers of 2.3, 2.6, and 2.96 with a stagnation temperature of 338.7 K (150 F) and a Reynolds number per meter of 9.843 times 10 to the 6th power. The results of the tests showed that only a moderate sweeping of the wing leading edge aft of the Mach line along with a small-to-moderate amount of camber and twist was needed to significantly improve the zero-lift (flat camber surface) wing performance and efficiency.

  19. Electroanalytical determination of cadmium(II) and lead(II) using an in-situ bismuth film modified edge plane pyrolytic graphite electrode.

    PubMed

    Kachoosangi, Roohollah Torabi; Banks, Craig E; Ji, Xiaobo; Compton, Richard G

    2007-03-01

    A highly sensitive and simple electroanalytical methodology is presented using an in-situ bismuth film modified edge plane pyrolytic graphite electrode (BiF-EPPGE) which is exemplified with the simultaneous determination of cadmium(II) and lead(II). Square-wave anodic stripping voltammetry is utilised with the effects of several experimental variables studied. Simultaneous additions of cadmium(II) and lead(II) were investigated where two linear ranges between 0.1-100 and 0.1-300 microg/L and also detection limits of 0.062 and 0.084 microg/L were obtained, respectively. The method was then successfully applied to the simultaneous determination of cadmium(II) and lead(II) in spiked river water, where recoveries of 100.5 and 98% were obtained, respectively. This electroanalytical protocol using edge plane pyrolytic graphite electrodes is one of the simplest methodologies to date using non-mercury based electrodes and is simpler and cheaper than alternatives such as carbon nanotube electrode arrays, suggesting the use of edge plane pyrolytic graphite electrode for routine sensing.

  20. Heat-requirements for Ice Protection of a Cyclically Gas-heated, 36 Degree Swept Airfoil with Partial-span Leading-edge Slat

    NASA Technical Reports Server (NTRS)

    Gray, Vernon H; vonGlahn, Uwe H

    1956-01-01

    Heating requirements for satisfactory cyclic de-icing over a wide range of icing and operating conditions have been determined for a gas-heated, 36deg swept airfoil of 6.9-foot chord with a partial-span leading-edge slat. Comparisons of heating requirements and effectiveness were made between the slatted and unslatted portions of the airfoil. Studies were also made comparing cyclic de-icing with continuous anti-icing, and cycll.cde-icing systems with and without leading-edge ice-free parting strips. De-icing heat requirements were approximately the same with either heated or unheated parting strips because of the aerodynamic effects of the 36deg sweep angle and the spanwise saw-tooth profile of leading-edge glaze-ice deposits. Cyclic de-icing heat-source requirements were found to be one-fourth or less of the heat requirements for complete anti-icing. The primary factors that affected the performance of the cyclic de-icing heating system were ambient air temperature, heat distribution, and thermal lag.

  1. Effects of a modified leading edge on noise and boundary-layer transition in a rod-wall sound shield at Mach 5

    NASA Technical Reports Server (NTRS)

    Creel, T. R., Jr.; Holley, B. B.; Beckwith, I. E.

    1981-01-01

    A version of a rod wall sound shield was tested in the Mach 5 pilot quiet tunnel over a range of unit Reynolds numbers from 10 to 35 million per meter. The model was modified by inclining the leading edge plates to produce an initial 2 deg expansion to ascertain the sensitivity of boundary layer transition to leading edge disturbances. Rod surface pitot pressures, mean free stream pitot pressures, and static pressures on the rods and plenum walls were measured. Hot-wire measurements were also made in the model and nozzle free stream at a unit Reynolds number of 15 million per meter. The surface pitot pressures indicated that transition was much farther forward than for the previous tests due to the leading edge modification and minor fabrication flaws in the model. Early boundary layer transition on the rods was confirmed by hot-wire measurements which showed much higher noise levels in the free stream shield flow when compared with results from previous tests. Mean pitot pressure surveys within the shielded region inside the model indicated that there was an overexpansion and recompression that would limit the streamwise length of undisturbed flow to about 13 cm along the centerline.

  2. Phosphorylation of myosin II regulatory light chain is necessary for migration of HeLa cells but not for localization of myosin II at the leading edge.

    PubMed Central

    Fumoto, Katsumi; Uchimura, Takashi; Iwasaki, Takahiro; Ueda, Kozue; Hosoya, Hiroshi

    2003-01-01

    To investigate the role of phosphorylated myosin II regulatory light chain (MRLC) in living cell migration, these mutant MRLCs were engineered and introduced into HeLa cells. The mutant MRLCs include an unphosphorylatable form, in which both Thr-18 and Ser-19 were substituted with Ala (AA-MRLC), and pseudophosphorylated forms, in which Thr-18 and Ser-19 were replaced with Ala and Asp, respectively (AD-MRLC), and both Thr-18 and Ser-19 were replaced with Asp (DD-MRLC). Mutant MRLC-expressing cell monolayers were mechanically stimulated by scratching, and the cells were forced to migrate in a given direction. In this wound-healing assay, the AA-MRLC-expressing cells migrated much more slowly than the wild-type MRLC-expressing cells. In the case of DD-MRLC- and AD-MRLC-expressing cells, no significant differences compared with wild-type MRLC-expressing cells were observed in their migration speed. Indirect immunofluorescence staining showed that the accumulation of endogenous diphosphorylated MRLC at the leading edge was not observed in AA-MRLC-expressing cells, although AA-MRLC was incorporated into myosin heavy chain and localized at the leading edge. In conclusion, we propose that the phosphorylation of MRLC is required to generate the driving force in the migration of the cells but not necessary for localization of myosin II at the leading edge. PMID:12429016

  3. Lead

    MedlinePlus

    ... Worker, or other abatement discipline Lead in drinking water Lead air pollution Test your child Check and maintain your home Find a Lead-Safe Certified firm Before you renovate Before you buy or rent a home built before 1978 Test your home's drinking water Test for lead in paint, dust or soil ...

  4. Partial oxidation of step-bound water leads to anomalous pH effects on metal electrode step-edges.

    PubMed

    Schwarz, Kathleen; Xu, Bingjun; Yan, Yushan; Sundararaman, Ravishankar

    2016-06-28

    The design of better heterogeneous catalysts for applications such as fuel cells and electrolyzers requires a mechanistic understanding of electrocatalytic reactions and the dependence of their activity on operating conditions such as pH. A satisfactory explanation for the unexpected pH dependence of electrochemical properties of platinum surfaces has so far remained elusive, with previous explanations resorting to complex co-adsorption of multiple species and resulting in limited predictive power. This knowledge gap suggests that the fundamental properties of these catalysts are not yet understood, limiting systematic improvement. Here, we analyze the change in charge and free energies upon adsorption using density-functional theory (DFT) to establish that water adsorbs on platinum step edges across a wide voltage range, including the double-layer region, with a loss of approximately 0.2 electrons upon adsorption. We show how this as-yet unreported change in net surface charge due to this water explains the anomalous pH variations of the hydrogen underpotential deposition (Hupd) and the potentials of zero total charge (PZTC) observed in published experimental data. This partial oxidation of water is not limited to platinum metal step edges, and we report the charge of the water on metal step edges of commonly used catalytic metals, including copper, silver, iridium, and palladium, illustrating that this partial oxidation of water broadly influences the reactivity of metal electrodes.

  5. Movement responses of caribou to human-induced habitat edges lead to their aggregation near anthropogenic features.

    PubMed

    Fortin, Daniel; Buono, Pietro-Luciano; Fortin, André; Courbin, Nicolas; Tye Gingras, Christian; Moorcroft, Paul R; Courtois, Réhaume; Dussault, Claude

    2013-06-01

    The assessment of disturbance effects on wildlife and resulting mitigation efforts are founded on edge-effect theory. According to the classical view, the abundance of animals affected by human disturbance should increase monotonically with distance from disturbed areas to reach a maximum at remote locations. Here we show that distance-dependent movement taxis can skew abundance distributions toward disturbed areas. We develop an advection-diffusion model based on basic movement behavior commonly observed in animal populations and parameterize the model from observations on radio-collared caribou in a boreal ecosystem. The model predicts maximum abundance at 3.7 km from cutovers and roads. Consistently, aerial surveys conducted over 161,920 km(2) showed that the relative probability of caribou occurrence displays nonmonotonic changes with the distance to anthropogenic features, with a peak occurring at 4.5 km away from these features. This aggregation near disturbed areas thus provides the predators of this top-down-controlled, threatened herbivore species with specific locations to concentrate their search. The edge-effect theory developed here thus predicts that human activities should alter animal distribution and food web properties differently than anticipated from the current paradigm. Consideration of such nonmonotonic response to habitat edges may become essential to successful wildlife conservation.

  6. Board-Level Solder Joint Reliability of Edge- and Corner-Bonded Lead-Free Chip Scale Package Assemblies Subjected to Thermal Cycling

    NASA Astrophysics Data System (ADS)

    Shi, Hongbin; Tian, Cuihua; Ueda, Toshitsugu

    2012-04-01

    In this paper, we present the results of thermal cycling test for edge- and corner-bonded lead-free chip scale packages (CSPs), which was carried out on the basis of the IPC-9701 test standard. Six materials were used in this study: four edge-bond adhesives and two corner-bond adhesives. These adhesives were compared with CSPs with full capillary flow underfill (FCFU) and without adhesives. The thermal cycling test results show that corner-bond adhesive has comparable solder joint reliability performance with CSP without adhesive, and is better than edge-bond adhesive, followed by CSPs with FCFU. In addition, the adhesives with a low coefficient of thermal expansion, a high glass transition temperature and a intermediate storage modulus yielded good performance. Results of detailed failure analysis indicate that the dominant failure mode is solder bulk fatigue cracking near package and/or printed circuit board (PCB) pads, and that the location of critical solder joints change from die edges to package corners with the introduction of adhesives.

  7. Influence of optimized leading-edge deflection and geometric anhedral on the low-speed aerodynamic characteristics of a low-aspect-ratio highly swept arrow-wing configuration. [langley 7 by 10 foot tunnel

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.; Huffman, J. K.

    1979-01-01

    An investigation conducted in the Langley 7 by 10 foot tunnel to determine the influence of an optimized leading-edge deflection on the low speed aerodynamic performance of a configuration with a low aspect ratio, highly swept wing. The sensitivity of the lateral stability derivative to geometric anhedral was also studied. The optimized leading edge deflection was developed by aligning the leading edge with the incoming flow along the entire span. Owing to spanwise variation of unwash, the resulting optimized leading edge was a smooth, continuously warped surface for which the deflection varied from 16 deg at the side of body to 50 deg at the wing tip. For the particular configuration studied, levels of leading-edge suction on the order of 90 percent were achieved. The results of tests conducted to determine the sensitivity of the lateral stability derivative to geometric anhedral indicate values which are in reasonable agreement with estimates provided by simple vortex-lattice theories.

  8. A Method for Computing the Core Flow in Three-Dimensional Leading-Edge Vortices. Ph.D. Thesis - North Carolina State Univ.

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    1985-01-01

    A theory is presented for calculating the flow in the core of a separation-induced leading-edge vortex. The method is based on matching inner and outer representations of the vortex. The inner model of the vortex is based on the quasicylindrical Navier-Stokes equations; the flow is assumed to be steady, axially symmetric, and incompressible and in addition, gradients in the radial direction are assumed to be much larger then gradients in the axial direction. The outer model is based on the three-dimensional free-vortex-sheet theory, a higher-order panel method which solves the Prandtl-Glauert equation including nonlinear boundary conditions pertinent to the concentrated vorticity representation of the leading edge vortex. The resultant flow is evaluated a posteriori for evidence of incipient vortex breakdown and the critical helix angle concept, in conjunction with an adverse longitudinal pressure gradient, is found to correlate well with the occurrence of vortex breakdown at the trailing edge of delta, arrow, and diamond wings.

  9. An improved method for the prediction of completely three-dimensional aerodynamic load distributions of configurations with leading edge vortex separation

    NASA Technical Reports Server (NTRS)

    Rubbert, p. E.; Lu, P.; Brune, G. W.; Weber, J. A.

    1976-01-01

    The application of a higher-order subsonic potential flow panel method to the solution of three-dimensional flow about wing and wing-body combinations with leading-edge vortex separation is presented. The governing equations are the linear flow differential equation and nonlinear boundary conditions which require that the flow be parallel to the wing and body surfaces and that the free vortex sheet, springing from the leading and trailing edges, be aligned with the local flow and support no pressure jump. The vortex core is modeled as a simple line vortex which receives vorticity from the free sheet through a connecting sheet. The Kutta condition is imposed on all appropriate edges of the wing. This set of nonlinear equations is solved by an iterative procedure. The Goethert rule accounts for compressibility. The method has been programmed for the CDC 6600. Delta wings, gothic wings, arrow wings, cambered wings, and wing with body have been analyzed. Initial studies involving variations of panel density, vortex sheet sizing, Jacobian update, and initial geometry demonstrate that the present method generally exhibits good convergence characteristics.

  10. A low speed wind tunnel investigation of Reynolds number effects on a 60-deg swept wing configuration with leading and trailing edge flaps

    NASA Technical Reports Server (NTRS)

    Rao, Dhanvada M.; Hoffler, Keith D.

    1988-01-01

    A low-speed wind tunnel test was performed to investigate Reynolds number effects on the aerodynamic characteristics of a supersonic cruise wing concept model with a 60-deg swept wing incorporating leading-edge and trailing-edge flap deflections. The Reynolds number ranged from 0.3 to 1.6 x 10 to the 6th, and corresponding Mach numbers from .05 to 0.3. The objective was to define a threshold Reynolds number above which the flap aerodynamics basically remained unchanged, and also to generate a data base useful for validating theoretical predictions for the Reynolds number effects on flap performance. This report documents the test procedures used and the basic data acquired in the investigation.

  11. Survey of Aerothermodynamics Facilities Useful for the Design of Hypersonic Vehicles Using Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Deiwert, G. S.

    1997-01-01

    The dream of producing an air-breathing, hydrogen fueled, hypervelocity aircraft has been before the aerospace community for decades. However, such a craft has not yet been realized, even in an experimental form. Despite the simplicity and beauty of the concept, many formidable problems must be overcome to make this dream a reality. This paper summarizes the aero/aerothermodynamic issues that must be addressed to make the dream a reality and discusses how aerothermodynamics facilities and their modem companion, real-gas computational fluid dynamics (CFD), can help solve the problems blocking the way to realizing the dream. The approach of the paper is first to outline the concept of an air-breathing hypersonic vehicle and then discuss the nose-to-tail aerothermodynamics issues and special aerodynamic problems that arise with such a craft. Then the utility of aerothermodynamic facilities and companion CFD analysis is illustrated by reviewing results from recent United States publications wherein these problems have been addressed. Papers selected for the discussion have k e n chosen such that the review will serve to survey important U.S. aero/aerothermodynamic real gas and conventional wind tunnel facilities that are useful in the study of hypersonic, hydrogen propelled hypervelocity vehicles.

  12. Effects of Canard Planform and Wing-Leading-Edge Modification on Low-Speed Longitudinal Aerodynamic Characteristics of a Canard Airplane Configuration

    NASA Technical Reports Server (NTRS)

    Spencer, Bernard, Jr.

    1961-01-01

    An investigation has been conducted at low subsonic speeds to study the effects of canard planform and wing-leading-edge modification on the longitudinal aerodynamic characteristics of a general research canard airplane configuration. The basic wing of the model had a trapezoidal planform, an aspect ratio of 3.0, a taper ratio of 0.143, and an unswept 80-percent-chord line. Modifications to the wing included addition of full-span and partial-span leading-edge chord-extensions. Two canard planforms were employed in the study; one was a 60 deg sweptback delta planform and the other was a trapezoidal planform similar to that of the basic wing. Modifications to these canards included addition of a full-span leading-edge chord-extension to the trapezoidal planform and a fence to the delta planform. For the basic-wing-trapezoidal-canard configuration, rather abrupt increases in stability occurred at about 12 deg angle of attack. A slight pitch-up tendency occurred for the delta-canard configuration at approximately 8 deg angle of attack. A comparison of the longitudinal control effectiveness for the basic-wing-trapezoidal-canard combination and for the basic-wing-delta-canard combination indicates higher values of control effectiveness at law angles of attack for the trapezoidal canard. The control effectiveness for the delta-canard configuration, however, is seen to hold up for higher canard deflections and to higher angles of attack. Use of a full-span chord-extension deflected approximately 30 deg on the trapezoidal canard greatly improved the control characteristics of this configuration and enabled a sizeable increase in trim lift to be realized.

  13. Theoretical Calculations of the Pressures, Forces, and Moments Due to Various Lateral Motions Acting on Tapered Sweptback Vertical Tails with Supersonic Leading and Trailing Edges

    NASA Technical Reports Server (NTRS)

    Margolis, Kenneth; Elliott, Miriam H.

    1960-01-01

    Based on expressions for the linearized velocity potentials and pressure distributions given in NACA Technical Report 1268, formulas for the span load distribution, forces, and moments are derived for families of thin isolated vertical tails with arbitrary aspect ratio, taper ratio, and sweepback performing the motions constant sideslip, steady rolling, steady yawing, and constant lateral acceleration. The range of Mach number considered corresponds, in general, to the condition that the tail leading and trailing edges are supersonic. To supplement the analytical results, design-type charts are presented which enable rapid estimation of the forces and moments (expressed as stability derivatives) for given combinations of geometry parameters and Mach number.

  14. Lead

    MedlinePlus

    ... ATSDR Board of Scientific Counselors Lead in the environment: Agency for Toxic Substances and Disease Registry (ATSDR) Federal partner agencies: Department of Housing and Urban Development (HUD) and U.S. Environmental Protection Agency (EPA) Data, ...

  15. The use of the tethered satellite system to perform low density aerothermodynamics studies

    NASA Technical Reports Server (NTRS)

    Carlomagno, Giovanni M.; Deluca, Luigi; Siemers, Paul M.; Wood, George M., Jr.

    1988-01-01

    The Tethered Satellite System (TSS) is a cooperative space system development activity of the U.S.A. and Italy. It is comprised of the Tether Satellite (TS) and the deployer. Within TSS, the Shuttle Tethered Aerothermodynamic Research Facility (STARFAC) concept has the potential to provide access to vast portions of the upper atmosphere for atmospheric and aerothermodynamic research. The feasibility and capability of the TSS to operate as a continuous open wind tunnel and to perform low density aerothermodynamic studies are investigated. This is accomplished through a modified version of the TS simulation program (SKYHOOK). The results indicate that STARFAC concept is both feasible and practical. The TS can go below 100 km but, if thrust is used, large velocity variation (delta V) maneuvers and an attitude control are required; if a satellite lift is considered, large tether tension is produced and an attitude control is required.

  16. Survey of aerodynamics and aerothermodynamics efforts carried out in the frame of Mars exploration projects

    NASA Astrophysics Data System (ADS)

    Reynier, Philippe

    2014-10-01

    This contribution is a survey of aerodynamic and aerothermodynamics data related to Mars entry. The survey includes the studies carried out in the frame of projects aiming at preparing exploration missions involving entry probes into Mars atmosphere and the efforts have been concentrated on the aerothermodynamics developments. Russian (including former Soviet Union), European and NASA aerothermodynamics developments for preparing such missions have been accounted for. If a focus has been dedicated to the flight data gathered during Viking and Mars Pathfinder entries, the experimental and numerical activities carried out for the different projects have been also considered. The emphasis has been put on the post-flight analysis of flight experiments. The objective of the activity has been to develop a database of the developments performed for Mars entry that will be of interest for the preparation of future missions and for testing new models related to radiative transfer, and chemical kinetics schemes based on a state-to-state approach.

  17. Aerothermodynamic Environment Definition for the Genesis Sample Return Capsule

    NASA Technical Reports Server (NTRS)

    Cheatwood, F. McNeil; Merski, N. Ronald, Jr.; Riley, Christopher J.; Mitcheltree, Robert A.

    2001-01-01

    NASA's Genesis sample return mission will be the first to return material from beyond the Earth-Moon system. NASA Langley Research Center supported this mission with aerothermodynamic analyses of the sample return capsule. This paper provides an overview of that effort. The capsule is attached through its forebody to the spacecraft bus. When the attachment is severed prior to Earth entry, forebody cavities remain. The presence of these cavities could dramatically increase the heating environment in their vicinity and downstream. A combination of computational fluid dynamics calculations and wind tunnel phosphor thermography tests were employed to address this issue. These results quantify the heating environment in and around the cavities, and were a factor in the decision to switch forebody heat shield materials. A transition map is developed which predicts that the flow aft of the penetrations will still be laminar at the peak heating point of the trajectory. As the vehicle continues along the trajectory to the peak dynamic pressure point, fully turbulent flow aft of the penetrations could occur. The integrated heat load calculations show that a heat shield sized to the stagnation point levels will be adequate for the predicted environment aft of the penetrations.

  18. Nonequilibrium effects on the aerothermodynamics of transatmospheric and aerobraking vehicles

    NASA Technical Reports Server (NTRS)

    Hassan, Basil; Candler, Graham V.

    1993-01-01

    A 3D CFD algorithm is used to study the effect of thermal and chemical nonequilibrium on slender and blunt body aerothermodynamics. Both perfect gas and reacting gas air models are used to compute the flow over a generic transatmospheric vehicle and a proposed lunar transfer vehicle. The reacting air is characterized by a translational-rotational temperature and a vibrational-electron-electronic temperature and includes eight chemical species. The effects of chemical reaction, vibrational excitation, and ionization on lift-to-drag ratio and trim angle are investigated. Results for the NASA Ames All-body Configuration show a significant difference in center of gravity location for a reacting gas flight case when compared to a perfect gas wind tunnel case at the same Mach number, Reynolds number, and angle of attack. For the same center of gravity location, the wind tunnel model trims at lower angle of attack than the full-scale flight case. Nonionized and ionized results for a proposed lunar transfer vehicle compare well to computational results obtained from a previously validated reacting gas algorithm. Under the conditions investigated, effects of weak ionization on the heat transfer and aerodynamic coefficients were minimal.

  19. Aerothermodynamics Feasibility Assessment of a Mars Atmoshperic Sample Return Mission

    NASA Astrophysics Data System (ADS)

    Ferracina, L.; Larranaga, J.; Falkner, P.

    2011-02-01

    ESA's optional Mars Robotic Exploration Preparation (MREP) programme is based on a long term collaboration with NASA, by taking Mars exploration as global objective, and Mars Sample Return (MSR) mission as long term goal to be achieved by the mid 2020's. Considering today's uncertainties, different missions are envisaged and prepared by ESA as possible alternative missions to MSR in the timeframe of 2020- 2026, in case the required technology readiness is not reached by 2015 or landed mass capabilities are exceeded for any of the MSR mission elements. One of the ESA considered missions within this framework is the Mars Atmospheric Sample Return Mission. This mission has been recently assessed by ESA using its Concurrent Design Facility (CDF), aiming to enter with a probe at Mars low altitudes (≈50 km), collect a sample of airborne atmosphere (gas and dust) and return the sample back to Earth. This paper aim at reporting the preliminary aerothermodynamic assessment of the design of the Martian entry probe conducted within the CDF study. Special attention has been paid to the selection of aerodynamically efficient vehicle concepts compare to blunt bodies and to the effect of the hot-temperature shock to the cavity placed at stagnation point and used in the atmospheric sampling system.

  20. Multi-Component Diffusion with Application To Computational Aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Sutton, Kenneth; Gnoffo, Peter A.

    1998-01-01

    The accuracy and complexity of solving multicomponent gaseous diffusion using the detailed multicomponent equations, the Stefan-Maxwell equations, and two commonly used approximate equations have been examined in a two part study. Part I examined the equations in a basic study with specified inputs in which the results are applicable for many applications. Part II addressed the application of the equations in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) computational code for high-speed entries in Earth's atmosphere. The results showed that the presented iterative scheme for solving the Stefan-Maxwell equations is an accurate and effective method as compared with solutions of the detailed equations. In general, good accuracy with the approximate equations cannot be guaranteed for a species or all species in a multi-component mixture. 'Corrected' forms of the approximate equations that ensured the diffusion mass fluxes sum to zero, as required, were more accurate than the uncorrected forms. Good accuracy, as compared with the Stefan- Maxwell results, were obtained with the 'corrected' approximate equations in defining the heating rates for the three Earth entries considered in Part II.

  1. Mars Science Laboratory Entry Capsule Aerothermodynamics and Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Hollis, Brian R.; Dyakonov, Artem A.; Laub, Bernard; Wright, Michael J.; Rivellini, Tomasso P.; Slimko, Eric M.; Willcockson, William H.

    2007-01-01

    The Mars Science Laboratory (MSL) spacecraft is being designed to carry a large rover (greater than 800 kg) to the surface of Mars using a blunt-body entry capsule as the primary decelerator. The spacecraft is being designed for launch in 2009 and arrival at Mars in 2010. The combination of large mass and diameter with non-zero angle-of-attack for MSL will result in unprecedented convective heating environments caused by turbulence prior to peak heating. Navier-Stokes computations predict a large turbulent heating augmentation for which there are no supporting flight data1 and little ground data for validation. Consequently, an extensive experimental program has been established specifically for MSL to understand the level of turbulent augmentation expected in flight. The experimental data support the prediction of turbulent transition and have also uncovered phenomena that cannot be replicated with available computational methods. The result is that the flight aeroheating environments predictions must include larger uncertainties than are typically used for a Mars entry capsule. Finally, the thermal protection system (TPS) being used for MSL has not been flown at the heat flux, pressure, and shear stress combinations expected in flight, so a test program has been established to obtain conditions relevant to flight. This paper summarizes the aerothermodynamic definition analysis and TPS development, focusing on the challenges that are unique to MSL.

  2. Large-Scale Wind-Tunnel Tests and Evaluation of the Low-Speed Performance of a 35 deg Sweptback Wing Jet Transport Model Equipped with a Blowing Boundary-Layer-Control Flap and Leading-Edge Slat

    NASA Technical Reports Server (NTRS)

    Hickey, David H.; Aoyagi, Kiyoshi

    1960-01-01

    A wind-tunnel investigation was conducted to determine the effect of trailing-edge flaps with blowing-type boundary-layer control and leading-edge slats on the low-speed performance of a large-scale jet transport model with four engines and a 35 deg. sweptback wing of aspect ratio 7. Two spanwise extents and several deflections of the trailing-edge flap were tested. Results were obtained with a normal leading-edge and with full-span leading-edge slats. Three-component longitudinal force and moment data and boundary-layer-control flow requirements are presented. The test results are analyzed in terms of possible improvements in low-speed performance. The effect on performance of the source of boundary-layer-control air flow is considered in the analysis.

  3. Surface-Pressure and Flow-Visualization Data at Mach Number of 1.60 for Three 65 deg Delta Wings Varying in Leading-Edge Radius and Camber

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi; Bryd, James E.; Parmar, Devendra S.; Bezos-OConnor, Gaudy M.; Forrest, Dana K.; Bowen, Susan

    1996-01-01

    An experimental investigation of the effect of leading-edge radius, camber, Reynolds number, and boundary-layer state on the incipient separation of a delta wing at supersonic speeds was conducted at the Langley Unitary Plan Wind Tunnel at Mach number of 1.60 over a free-stream Reynolds number range of 1 x 106 to 5 x 106 ft-1. The three delta wing models examined had a 65 deg swept leading edge and varied in cross-sectional shape: a sharp wedge, a 20:1 ellipse, and a 20:1 ellipse with a -9.750 circular camber imposed across the span. The wings were tested with and without transition grit applied. Surface-pressure coefficient data and flow-visualization data indicated that by rounding the wing leading edge or cambering the wing in the spanwise direction, the onset of leading-edge separation on a delta wing can be raised to a higher angle of attack than that observed on a sharp-edged delta wing. The data also showed that the onset of leading-edge separation can be raised to a higher angle of attack by forcing boundary-layer transition to occur closer to the wing leading edge by the application of grit or the increase in free-stream Reynolds number.

  4. Surface-Pressure and Flow-Visualization Data at Mach Number of 1.60 for Three 65 deg Delta Wings Varying in Leading-Edge Radius and Camber

    NASA Technical Reports Server (NTRS)

    McMIllin, S. Naomi; Byrd, James E.; Parmar, Devendra S.; Bezos-O'Connor, Gaudy M.; Forrest, Dana K.; Bowen, Susan

    1996-01-01

    An experimental investigation of the effect of leading-edge radius, camber, Reynolds number, and boundary-layer state on the incipient separation of a delta wing at supersonic speeds was conducted at the Langley Unitary Plan Wind Tunnel at Mach number of 1.60 over a free-stream Reynolds number range of 1 x 106 to 5 x 106 ft-1. The three delta wing models examined had a 65 deg swept leading edge and varied in cross-sectional shape: a sharp wedge, a 20:1 ellipse, and a 20:1 ellipse with a -9.750 circular camber imposed across the span. The wings were tested with and without transition grit applied. Surface-pressure coefficient data and flow-visualization data are electronically stored on the CD-ROM. The data indicated that by rounding the wing leading edge or cambering the wing in the spanwise direction, the onset of leading-edge separation on a delta wing can be raised to a higher angle of attack than that observed on a sharp-edged delta wing. The data also showed that the onset of leading-edge separation can be raised to a higher angle of attack by forcing boundary-layer transition to occur closer to the wing leading edge by the application of grit or the increase in free-stream Reynolds number.

  5. Organic Cations Might Not Be Essential to the Remarkable Properties of Band Edge Carriers in Lead Halide Perovskites.

    PubMed

    Zhu, Haiming; Trinh, M Tuan; Wang, Jue; Fu, Yongping; Joshi, Prakriti P; Miyata, Kiyoshi; Jin, Song; Zhu, X-Y

    2017-01-01

    A charge carrier in a lead halide perovskite lattice is protected as a large polaron responsible for the remarkable photophysical properties, irrespective of the cation type. All-inorganic-based APbX3 perovskites may mitigate the stability problem for their applications in solar cells and other optoelectronics.

  6. X-38 NASA/DLR/ESA-Dassault Aviation Integrated Aerodynamic and Aerothermodynamic Activities

    NASA Technical Reports Server (NTRS)

    Labbe, Steve G.; Perez, Leo F.; Fitzgerald, Steve; Longo, Jose; Rapuc, Marc; Molina, Rafael; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    The characterization of the aeroshape selected for the X-38 [Crew Return Vehicle (CRV) demonstrator] is presently being performed as a cooperative endeavour between NASA, DLR (through its TETRA Program), and European Space Agency (ESA) with Dassault Aviation integrating the aerodynamic and aerothermodynamic activities. The methodologies selected for characterizing the aerodynamic and aerothermodynamic environment of the X-38 are presented. Also, the implications for related disciplines such as Guidance Navigation and Control (GN&C) with its corresponding Flight Control System (FCS), Structural, and Thermal Protection System (TPS) design are discussed. An attempt is made at defining the additional activities required to support the design of a derived operational CRV.

  7. Studies Conducted of Sodium Carbonate Contaminant Found on the Wing Leading Edge and the Nose Cap of the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Palou, Jaime J.

    2003-01-01

    In early 2001, three of the space shuttle orbiters were found to have a sodium carbonate contaminant on the wing leading edge and nose cap. These parts are made of a reinforced carbon/carbon material protected by silicon carbide (SiC) and a glass coating. The glass coating is known as Type A and is primarily sodium silicate with particles of SiC. NASA Glenn Research Center's Environmental Durability Branch was asked to determine the chemistry of this deposit formation and assess any possible detrimental effects. At low temperatures, the reverse reaction is favorable. Previous studies of the corrosion of glass show that carbon dioxide in the presence of water does form sodium carbonate on sodium silicate glass (ref. 1). It is quite likely that a similar scenario exists for the orbiter wing leading edge. All three orbiters that formed sodium carbonate were exposed to rain. This formation of sodium carbonate was duplicated in the laboratory. The Type A glass, which coats the wing leading edge and nose cap, was made in a freestanding form and exposed to water in two separate experiments. In one set of experiments, the coating was placed in a petri dish filled with water. As the water evaporated, sodium carbonate formed. In another case, water was slowly dripped on the coating and sodium carbonate formed. The sodium carbonate was detected by chemical analysis and, in some cases, xray diffraction showed a hydrated sodium carbonate. The next step was to examine possible detrimental effects of this sodium carbonate. There are three likely scenarios for the sodium carbonate deposit: (1) it may be removed with a simple rinse, (2) it may remain and flow back into the Type A glass after heating during reentry, or (3) it may remain and flow onto unprotected SiC and/or other parts after heating during reentry. The effect of case 1 is to remove the Na2O constituent from the Type A glass, thus decreasing its effectiveness as a sealant. Even so, overall, it is probably the best

  8. Investigation of the Effects of Leading-edge Chord-extensions and Fences in Combination with Leading-edge Flaps on the Aerodynamic Characteristics at Mach Numbers from 0.40 to 0.93 of a 45 Degree Sweptback Wing of Aspect Ratio 4

    NASA Technical Reports Server (NTRS)

    Spreeman, Kenneth P; Alford, William J , Jr

    1954-01-01

    This investigation was made to determine the effects of 6 degree full-spoan and 3 degree partial-span leading-edge flaps in combination with chord-extensions or fences on the aerodynamic characteristics of a wing-fuselage configuration with a 45 degree sweptback wing of aspect ratio 4, taper ratio 0.3, and NACA 65A006 airfoil sections. The investigation was made in the Langley high-speed 7- by 10-foot tunnel over a Mach number range of 0.40 to 0.93 and an angle-of-attack range of about -2 degrees to 24 degrees. Lift, drag, and pitching-moment data were obtained for all configurations. From overall considerations of stability and performance it appears that with the model of this investigation the 6 degree full-span leading-edge flaps in combination with the chord-extension over the outboard 35 percent of the span, with or without leading-edge camber, would be the most desirable configuration.

  9. Langley Aerothermodynamic Facilities Complex: Enhancements and Testing Capabilities

    NASA Technical Reports Server (NTRS)

    Micol, J. R.

    1998-01-01

    Description, capabilities, recent upgrades, and utilization of the NASA Langley Research Center (LaRC) Aerothermodynamic Facilities Complex (AFC) are presented. The AFC consists of five hypersonic, blow-down-to-vacuum wind tunnels that collectively provide a range of Mach number from 6 to 20, unit Reynolds number from 0.04 to 22 million per foot and, most importantly for blunt configurations, normal shock density ratio from 4 to 12. These wide ranges of hypersonic simulation parameters are due, in part, to the use of three different test gases (air, helium, and tetrafluoromethane), thereby making several of the facilities unique. The Complex represents nearly three-fourths of the conventional (as opposed to impulse)-type hypersonic wind tunnels operational in this country. AFC facilities are used to assess and optimize the hypersonic aerodynamic performance and aeroheating characteristics of aerospace vehicle concepts and to provide benchmark aerodynamic/aeroheating data fr generating the flight aerodynamic databook and final design of the thermal protection system (TPS) (e.g., establishment of flight limitations not to exceed TPS design limits). Modifications and enhancements of AFC hardware components and instrumentation have been pursued to increase capability, reliability, and productivity in support of programmatic goals. Examples illustrating facility utilization in recent years to generate essentially all of the experimental hypersonic aerodynamic and aeroheating information for high-priority, fast-paced Agency programs are presented. These programs include Phase I of the Reusable Launch Vehicle (RLV) Advanced Technology Demonstrator, X-33 program, PHase II of the X-33 program, X-34 program, the Hyper-X program ( a Mach 5,7, and 10 airbreathing propulsion flight experiment), and the X-38 program (Experimental Crew Return Vehicle, X-CRV). Current upgrades/enchancements and future plans for the AFC are discussed.

  10. Great Earthquakes and Tsunami Day for Teachers on the Leading Edge: Geologic Hazards and Links to EarthScope in a Field-Based Program

    NASA Astrophysics Data System (ADS)

    Butler, R.; Bishop, E. M.; Ault, C.; Magura, B.; Hedeen, C.; Connor, D.; Southworth-Neumeyer, T.; Conrey, R.

    2005-12-01

    Inviting K-12 science teachers into the field to observe the work of professional geologists and engage in learning that is scientifically important and socially relevant deepens their geologic understanding while instilling enthusiasm for inquiry-based instruction. "Teachers on the Leading Edge" (TOTLE) is a field-based and place-based teacher development program that features active continental margin geology of the Pacific Northwest. Program themes include: (1) Geophysics as fundamental to understanding plate tectonics and essential to deciphering Pacific Northwest geology that underlies a tree-covered landscape; and (2) Geologic Hazards as understandable and inevitable consequences of living on the leading edge of our continent. The two-week TOTLE 2005 field workshop traversed the active continental margin of Oregon from the Pacific Coast through the Cascade Range to accreted terranes along the Snake River. "Great Earthquakes and Tsunami Day" featured introductions to earthquake seismology and paleoseismology. Presentations on earthquake seismology with examples from the December 2004 Sumatra - Andaman earthquake and Indian Ocean tsunami provided context and background. During a morning low tide near Fort Clatsop south of Astoria, paleoseismologist Brian Atwater (USGS, Seattle) helped teachers observe and interpret drowned forests and tsunami deposits that mark four great Cascadia earthquakes of the past 2000 years. That afternoon, Darci Connor, former Tsunami Outreach Coordinator for the City of Seaside, helped teachers understand their critical role in educating K-12 students about natural hazard preparedness. In the evening, TOTLE teachers crafted their new understanding of great earthquakes and tsunami into interactive learning activities for Science Campers at Camp Kiwanilong operated by the Oregon Museum of Science and Industry. These experiences make frontier geophysical research, like GPS observations of slow earthquakes and seismic tomography of the

  11. Low-Speed Investigation of Upper-Surface Leading-Edge Blowing on a High-Speed Civil Transport Configuration

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Laflin, Brenda E. Gile; Kemmerly, Guy T.; Campbell, Bryan A.

    1999-01-01

    The paper identifies speed, agility, human interface, generation of sensitivity information, task decomposition, and data transmission (including storage) as important attributes for a computer environment to have in order to support engineering design effectively. It is argued that when examined in terms of these attributes the presently available environment can be shown to be inadequate. A radical improvement is needed, and it may be achieved by combining new methods that have recently emerged from multidisciplinary design optimisation (MDO) with massively parallel processing computer technology. The caveat is that, for successful use of that technology in engineering computing, new paradigms for computing will have to be developed - specifically, innovative algorithms that are intrinsically parallel so that their performance scales up linearly with the number of processors. It may be speculated that the idea of simulating a complex behaviour by interaction of a large number of very simple models may be an inspiration for the above algorithms; the cellular automata are an example. Because of the long lead time needed to develop and mature new paradigms, development should begin now, even though the widespread availability of massively parallel processing is still a few years away.

  12. Aerothermodynamic heating environment and thermal protection materials comparison for manned Mars-earth return vehicles

    NASA Technical Reports Server (NTRS)

    Henline, William D.

    1991-01-01

    The aerothermodynamic environment during the earth return portion of a specific manned Mars mission is studied. Particular attention is given to the earlier smaller crew return capsule and its thermal protection system requirements. Data are presented on the stagnation region of a generic Mars return capsule. Insulation material thicknesses required to maintain allowable structural temperatures throughout a prolonged heat soak period are estimated.

  13. Computational Aerothermodynamic Assessment of Space Shuttle Orbiter Tile Damage: Open Cavities

    NASA Technical Reports Server (NTRS)

    Pulsonetti, Maria; Wood, William

    2005-01-01

    Computational aerothermodynamic simulations of Orbiter windside tile damage in flight were performed in support of the Space Shuttle Return-to-Flight effort. The simulations were performed for both hypervelocity flight and low-enthalpy wind tunnel conditions and contributed to the Return-to-Flight program by providing information to support a variety of damage scenario analyses. Computations at flight conditions were performed at or very near the peak heating trajectory point for multiple damage scenarios involving damage windside acreage reaction cured glass (RCG) coated silica tile(s). The cavities formed by the missing tile examined in this study were relatively short leading to flow features which indicated open cavity behavior. Results of the computations indicated elevated heating bump factor levels predicted for flight over the predictions for wind tunnel conditions. The peak heating bump factors, defined as the local heating to a reference value upstream of the cavity, on the cavity floor for flight simulation were 67% larger than the peak wind tunnel simulation value. On the downstream face of the cavity the flight simulation values were 60% larger than the wind tunnel simulation values. On the outer mold line (OML) downstream of the cavity, the flight values are about 20% larger than the wind tunnel simulation values. The higher heating bump factors observed in the flight simulations were due to the larger driving potential in terms of energy entering the cavity for the flight simulations. This is evidenced by the larger rate of increase in the total enthalpy through the boundary layer prior to the cavity for the flight simulation.

  14. Physical mechanisms of longitudinal vortexes formation, appearance of zones with high heat fluxes and early transition in hypersonic flow over delta wing with blunted leading edges

    NASA Astrophysics Data System (ADS)

    Alexandrov, S. V.; Vaganov, A. V.; Shalaev, V. I.

    2016-10-01

    Processes of vortex structures formation and they interactions with the boundary layer in the hypersonic flow over delta wing with blunted leading edges are analyzed on the base of experimental investigations and numerical solutions of Navier-Stokes equations. Physical mechanisms of longitudinal vortexes formation, appearance of abnormal zones with high heat fluxes and early laminar turbulent transition are studied. These phenomena were observed in many high-speed wind tunnel experiments; however they were understood only using the detailed analysis of numerical modeling results with the high resolution. Presented results allowed explaining experimental phenomena. ANSYS CFX code (the DAFE MIPT license) on the grid with 50 million nodes was used for the numerical modeling. The numerical method was verified by comparison calculated heat flux distributions on the wing surface with experimental data.

  15. Quasi-Static 3-Point Reinforced Carbon-Carbon Bend Test and Analysis for Shuttle Orbiter Wing Leading Edge Impact Damage Thresholds

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Sotiris, Kellas

    2006-01-01

    Static 3-point bend tests of Reinforced Carbon-Carbon (RCC) were conducted to failure to provide data for additional validation of an LS-DYNA RCC model suitable for predicting the threshold of impact damage to shuttle orbiter wing leading edges. LS-DYNA predictions correlated well with the average RCC failure load, and were good in matching the load vs. deflection. However, correlating the detectable damage using NDE methods with the cumulative damage parameter in LS-DYNA material model 58 was not readily achievable. The difficulty of finding internal RCC damage with NDE and the high sensitivity of the mat58 damage parameter to the load near failure made the task very challenging. In addition, damage mechanisms for RCC due to dynamic impact of debris such as foam and ice and damage mechanisms due to a static loading were, as expected, not equivalent.

  16. Effects of Horizontal-Control Planform and Wing-Leading-Edge Modification on Low-Speed Longitudinal Aerodynamic Characteristics of a Canard Airplane Configuration

    NASA Technical Reports Server (NTRS)

    Spencer, Bernard, Jr.

    1981-01-01

    An investigation at low subsonic speeds has been conducted in the Langley 300-MPH 7- by 10-foot tunnel. The basic wing had a trapezoidal planform, an aspect ratio of 3.0., a taper ratio of 0.143, and an unswept 80-percent-chord line. Modifications to the basic wing included deflectable full-span and partial-span leading-edge chord-extensions. A trapezoidal horizontal control similar in planform to the basic wing and a 60 deg sweptback delta horizontal control were tested in conjunction with the wing. The total planform area of each horizontal control was 16 percent of the total basic-wing area. Modifications to these horizontal controls included addition of a full-span chord-extension to the trapezoidal planform and a fence to the delta planform.

  17. Lack of Association between Membrane-Type 1 Matrix Metalloproteinase Expression and Clinically Relevant Molecular or Morphologic Tumor Characteristics at the Leading Edge of Invasive Colorectal Carcinoma

    PubMed Central

    Arndt, Annette; Kraft, Klaus; Wardelmann, Eva; Steinestel, Konrad

    2015-01-01

    Colorectal cancer (CRC) is one of the leading causes of death from cancer in the western world, but tumor biology and clinical course show great interindividual variation. Molecular and morphologic tumor characteristics, such as KRAS/BRAF mutation status, mismatch repair (MMR) protein expression, tumor growth pattern, and tumor cell budding, have been shown to be of key therapeutic and/or prognostic relevance in CRC. Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a membrane-anchored zinc-binding endopeptidase that is expressed at the leading edge of various invasive carcinomas and promotes tumor cell invasion through degradation of the extracellular matrix. The aim of this study was to investigate possible associations between MT1-MMP expression and molecular tumor characteristics as well as morphologic features of tumor aggressiveness in a consecutive series of 79 CRC tissue samples. However, although MT1-MMP was expressed in 41/79 samples (52%), there was no significant association between MT1-MMP expression and KRAS/BRAF mutation status, MMR protein expression, presence of lymphovascular invasion, tumor growth pattern, tumor-infiltrating lymphocytes, or tumor cell budding in our sample cohort (P > 0.05). Thus, we conclude that although MT1-MMP may play a role in CRC invasion, it is not of key relevance to the current models of CRC invasion and aggressiveness. PMID:26106602

  18. The Leading Edge: Data Mining

    NASA Video Gallery

    When an airplane flies, hundreds of data streams fly from it every second—pilot reports, incident reports, control positions, instrument positions, warning modes. NASA is mining terabytes of avia...

  19. Development of X-33/X-34 Aerothermodynamic Data Bases: Lessons Learned and Future Enhancements

    NASA Technical Reports Server (NTRS)

    Miller, C. G.

    2000-01-01

    A synoptic of programmatic and technical lessons learned in the development of aerothermodynamic data bases for the X-33 and X-34 programs is presented in general terms and from the perspective of the NASA Langley Research Center Aerothermodynamics Branch. The format used is that of the "aerothermodynamic chain," the links of which are personnel, facilities, models/test articles, instrumentation, test techniques, and computational fluid dynamics (CFD). Because the aerodynamic data bases upon which the X-33 and X-34 vehicles will fly are almost exclusively from wind tunnel testing, as opposed to CFD, the primary focus of the lessons learned is on ground-based testing. The period corresponding to the development of X-33 and X-34 aerothermodynamic data bases was challenging, since a number of other such programs (e.g., X-38, X-43) competed for resources at a time of downsizing of personnel, facilities, etc., outsourcing, and role changes as NASA Centers served as subcontractors to industry. The impact of this changing environment is embedded in the lessons learned. From a technical perspective, the relatively long times to design and fabricate metallic force and moment models, delays in delivery of models, and a lack of quality assurance to determine the fidelity of model outer mold lines (OML) prior to wind tunnel testing had a major negative impact on the programs. On the positive side, the application of phosphor thermography to obtain global, quantitative heating distributions on rapidly fabricated ceramic models revolutionized the aerothermodynamic optimization of vehicle OMLs, control surfaces, etc. Vehicle designers were provided with aeroheating information prior to, or in conjunction with, aerodynamic information early in the program, thereby allowing trades to be made with both sets of input; in the past only aerodynamic data were available as input. Programmatically, failure to include transonic aerodynamic wind tunnel tests early in the assessment phase

  20. Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Volume 1; Sharp Leading Edge; [conducted in the Langley National Transonic Facility (NTF)

    NASA Technical Reports Server (NTRS)

    Chu, Julio; Luckring, James M.

    1996-01-01

    An experimental wind tunnel test of a 65 deg delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 36 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at a Reynolds number of 6 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.