NASA Astrophysics Data System (ADS)
Raghu Gowda, Belagumba Venkatachalaiah
This dissertation examines how simple structural compliance impacts a specific transient vortex phenomenon that occurs on high angle of attack lifting surfaces termed dynamic stall. In many Fluid structure interaction (FSI) research efforts, a purely physical or purely computational approach is taken. In this work a low cost cyber-physical (CPFD) system is designed and developed for representing the FSI in the leading edge vortex (LEV) development problem. The leading edge compliance appears to be favorable in a specific spring constant range for a given wing. When the leading edge compliance prescribed via CPFD system is too low compared with the moment due to dynamic pressure or fluid unsteady effect, the LEV behavior is similar to that of a rigid wing system. When the leading edge compliance is too high, excessive compliance is introduced into the wing system and the leading edge vortex evolution is affected by the large change in wing angle. At moderate leading edge compliance, a balance appears to be achieved in which the leading edge vorticity shedding rate supports the long term evolution of the leading edge vortex. Further investigation is required to determine specific parameters governing these leading edge compliance ranges.
NASA Astrophysics Data System (ADS)
Modlin, James Michael
An investigation was conducted to study the feasibility of cooling hypersonic vehicle leading edge structures exposed to severe aerodynamic surface heat fluxes using a combination of liquid metal heat pipes and surface mass transfer cooling techniques. A generalized, transient, finite difference based hypersonic leading edge cooling model was developed that incorporated these effects and was demonstrated on an assumed aerospace plane-type wing leading edge section and a SCRAMJET engine inlet leading edge section. The hypersonic leading edge cooling model was developed using an existing, experimentally verified heat pipe model. Two applications of the hypersonic leading edge cooling model were examined. An assumed aerospace plane-type wing leading edge section exposed to a severe laminar, hypersonic aerodynamic surface heat flux was studied. A second application of the hypersonic leading edge cooling model was conducted on an assumed one-quarter inch nose diameter SCRAMJET engine inlet leading edge section exposed to both a transient laminar, hypersonic aerodynamic surface heat flux and a type 4 shock interference surface heat flux. The investigation led to the conclusion that cooling leading edge structures exposed to severe hypersonic flight environments using a combination of liquid metal heat pipe, surface transpiration, and film cooling methods appeared feasible.
Sharp Refractory Composite Leading Edges on Hypersonic Vehicles
NASA Technical Reports Server (NTRS)
Walker, Sandra P.; Sullivan, Brian J.
2003-01-01
On-going research of advanced sharp refractory composite leading edges for use on hypersonic air-breathing vehicles is presented in this paper. Intense magnitudes of heating and of heating gradients on the leading edge lead to thermal stresses that challenge the survivability of current material systems. A fundamental understanding of the problem is needed to further design development. Methodology for furthering the technology along with the use of advanced fiber architectures to improve the thermal-structural response is explored in the current work. Thermal and structural finite element analyses are conducted for several advanced fiber architectures of interest. A tailored thermal shock parameter for sharp orthotropic leading edges is identified for evaluating composite material systems. The use of the tailored thermal shock parameter has the potential to eliminate the need for detailed thermal-structural finite element analyses for initial screening of material systems being considered for a leading edge component.
NASA Technical Reports Server (NTRS)
Riccitiello, S. R.; Figueroa, H.; Coe, C. F.; Kuo, C. P.
1984-01-01
An advanced leading-edge concept was analyzed using the space shuttle leading edge system as a reference model. The comparison indicates that a direct-bond system utilizing a high temperature (2700 F) fibrous refractory composite insulation tile bonded to a high temperature (PI/graphite) composite structure can result in a weight savings of up to 800 lb. The concern that tile damage or loss during ascent would result in adverse entry aerodynamics if a leading edge tile system were used is addressed. It was found from experiment that missing tiles (as many as 22) on the leading edge would not significantly affect the basic force-and-moment aerodynamic coefficients. Additionally, this concept affords a degree of redundancy to a thermal protection system in that the base structure (being a composite material) ablates and neither melts nor burns through when subjected to entry heating in the event tiles are actually lost or damaged during ascent.
Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge
NASA Technical Reports Server (NTRS)
Yap, Keng C.
2010-01-01
This viewgraph presentation reviews Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge. The Wing Leading Edge Impact Detection System (WLE IDS) and the Impact Analysis Process are also described to monitor WLE debris threats. The contents include: 1) Risk Management via SHM; 2) Hardware Overview; 3) Instrumentation; 4) Sensor Configuration; 5) Debris Hazard Monitoring; 6) Ascent Response Summary; 7) Response Signal; 8) Distribution of Flight Indications; 9) Probabilistic Risk Analysis (PRA); 10) Model Correlation; 11) Impact Tests; 12) Wing Leading Edge Modeling; 13) Ascent Debris PRA Results; and 14) MM/OD PRA Results.
Space shuttle orbiter leading-edge flight performance compared to design goals
NASA Technical Reports Server (NTRS)
Curry, D. M.; Johnson, D. W.; Kelly, R. E.
1983-01-01
Thermo-structural performance of the Space Shuttle orbiter Columbia's leading-edge structural subsystem for the first five (5) flights is compared with the design goals. Lessons learned from thse initial flights of the first reusable manned spacecraft are discussed in order to assess design maturity, deficiencies, and modifications required to rectify the design deficiencies. Flight data and post-flight inspections support the conclusion that the leading-edge structural subsystem hardware performance was outstanding for the initial five (5) flights.
A feasibility study of heat-pipe-cooled leading edges for hypersonic cruise aircraft
NASA Technical Reports Server (NTRS)
Silverstein, C. C.
1971-01-01
A theoretical study of the use of heat pipe structures for cooling the leading edges of hypersonic cruise aircraft was carried out over a Mach number range of 6 to 12. Preliminary design studies showed that a heat pipe cooling structure with a 33-in. chordwise length could maintain the maximum temperature of a 65 deg sweepback wing with a 0.5-in. leading edge radius below 1600 F during cruise at Mach 8. A few relatively minor changes in the steady-state design of the structure were found necessary to insure satisfactory cooling during the climb to cruise speed and altitude. It was concluded that heat pipe cooling is an attractive, feasible technique for limiting leading edge temperatures of hypersonic cruise aircraft.
NASA Astrophysics Data System (ADS)
Booysen, A. J.; Pistorius, C. W. I.; Malherbe, J. A. G.
1991-06-01
The radar cross section of the leading edge of a conducting wing-shaped structure is reduced by replacing part of the structure with a lossless dielectric material. The structure retains its original external shape, thereby ensuring that the aerodynamic properties are not altered by the structural changes needed to reduce the radar cross section.
Closed Form Equations for the Preliminary Design of a Heat-Pipe-Cooled Leading Edge
NASA Technical Reports Server (NTRS)
Glass, David E.
1998-01-01
A set of closed form equations for the preliminary evaluation and design of a heat-pipe-cooled leading edge is presented. The set of equations can provide a leading-edge designer with a quick evaluation of the feasibility of using heat-pipe cooling. The heat pipes can be embedded in a metallic or composite structure. The maximum heat flux, total integrated heat load, and thermal properties of the structure and heat-pipe container are required input. The heat-pipe operating temperature, maximum surface temperature, heat-pipe length, and heat pipe-spacing can be estimated. Results using the design equations compared well with those from a 3-D finite element analysis for both a large and small radius leading edge.
Spanwise visualization of the flow around a three-dimensional foil with leading edge protuberances
NASA Astrophysics Data System (ADS)
Stanway, M. J.; Techet, A. H.
2006-11-01
Studies of model humpback whale fins have shown that leading edge protuberances, or tubercles, can lead to delayed stall and increased lift at higher angles of attack, compared to foils with geometrically smooth leading edges. Such enhanced performance characteristics could prove highly useful in underwater vehicles such as gliders or long range AUVs (autonomous underwater vehicles). In this work, Particle Imaging Velocimetry (PIV) is performed on two static wings in a water tunnel over a range of angles of attack. These three- dimensional, finite-aspect ratio wings are modeled after a humpback whale flipper and are identical in shape, tapered from root to tip, except for the leading edge. In one of the foils the leading edge is smooth, whereas in the other, regularly spaced leading edge bumps are machined to simulate the whale’s fin tubercles. Results from these PIV tests reveal distinct cells where coherent flow structures are destroyed as a result of the leading edge perturbations. Tests are performed at Reynolds numbers Re ˜ O(10^5), based on chordlength, in a recirculating water tunnel. An inline six-axis load cell is mounted to measure the forces on the foil over a range of static pitch angles. It is hypothesized that this spanwise breakup of coherent vortical structures is responsible for the delayed angle of stall. These quantitative experiments complement exiting qualitative studies with two dimensional foils.
Hypersonic Engine Leading Edge Experiments in a High Heat Flux, Supersonic Flow Environment
NASA Technical Reports Server (NTRS)
Gladden, Herbert J.; Melis, Matthew E.
1994-01-01
A major concern in advancing the state-of-the-art technologies for hypersonic vehicles is the development of an aeropropulsion system capable of withstanding the sustained high thermal loads expected during hypersonic flight. Three aerothermal load related concerns are the boundary layer transition from laminar to turbulent flow, articulating panel seals in high temperature environments, and strut (or cowl) leading edges with shock-on-shock interactions. A multidisciplinary approach is required to address these technical concerns. A hydrogen/oxygen rocket engine heat source has been developed at the NASA Lewis Research Center as one element in a series of facilities at national laboratories designed to experimentally evaluate the heat transfer and structural response of the strut (or cowl) leading edge. A recent experimental program conducted in this facility is discussed and related to cooling technology capability. The specific objective of the experiment discussed is to evaluate the erosion and oxidation characteristics of a coating on a cowl leading edge (or strut leading edge) in a supersonic, high heat flux environment. Heat transfer analyses of a similar leading edge concept cooled with gaseous hydrogen is included to demonstrate the complexity of the problem resulting from plastic deformation of the structures. Macro-photographic data from a coated leading edge model show progressive degradation over several thermal cycles at aerothermal conditions representative of high Mach number flight.
Probabilistic Structural Health Monitoring of the Orbiter Wing Leading Edge
NASA Technical Reports Server (NTRS)
Yap, Keng C.; Macias, Jesus; Kaouk, Mohamed; Gafka, Tammy L.; Kerr, Justin H.
2011-01-01
A structural health monitoring (SHM) system can contribute to the risk management of a structure operating under hazardous conditions. An example is the Wing Leading Edge Impact Detection System (WLEIDS) that monitors the debris hazards to the Space Shuttle Orbiter s Reinforced Carbon-Carbon (RCC) panels. Since Return-to-Flight (RTF) after the Columbia accident, WLEIDS was developed and subsequently deployed on board the Orbiter to detect ascent and on-orbit debris impacts, so as to support the assessment of wing leading edge structural integrity prior to Orbiter re-entry. As SHM is inherently an inverse problem, the analyses involved, including those performed for WLEIDS, tend to be associated with significant uncertainty. The use of probabilistic approaches to handle the uncertainty has resulted in the successful implementation of many development and application milestones.
A Thermostructural Analysis of a Diboride Composite Leading Edge
NASA Technical Reports Server (NTRS)
Kowalski, Tom; Buesking, Kent; Kolodziej, Paul; Bull, Jeff
1996-01-01
In an effort to support the design of zirconium diboride composite leading edges for hypersonic vehicles, a finite element model (FEM) of a prototype leading edge was created and finite element analysis (FEA) was employed to assess its thermal and structural response to aerothermal boundary conditions. Unidirectional material properties for the structural components of the leading edge, a continuous fiber reinforced diboride composite, were computed with COSTAR. These properties agree well with those experimentally measured. To verify the analytical approach taken with COSMOS/M, an independent FEA of one of the leading edge assembly components was also done with COSTAR. Good agreement was obtained between the two codes. Both showed that a unidirectional lay-up had the best margin of safety for a simple loading case. Both located the maximum stress in the same region and ply. The magnitudes agreed within 4 percent. Trajectory based aerothermal heating was then applied to the leading edge assembly FEM created with COSMOS/M to determine steady state temperature response, displacement, stresses, and contact forces due to thermal expansion and thermal strains. Results show that the leading edge stagnation line temperature reached 4700 F. The maximum computed failure index for the laminated composite components peaks at 4.2, and is located at the bolt flange in layer 2 of the side bracket. The temperature gradient in the tip causes a compressive stress of 279 ksi along its width and substantial tensile stresses within its depth.
Three-dimensional flow visualization and vorticity dynamics in revolving wings
NASA Astrophysics Data System (ADS)
Cheng, Bo; Sane, Sanjay P.; Barbera, Giovanni; Troolin, Daniel R.; Strand, Tyson; Deng, Xinyan
2013-01-01
We investigated the three-dimensional vorticity dynamics of the flows generated by revolving wings using a volumetric 3-component velocimetry system. The three-dimensional velocity and vorticity fields were represented with respect to the base axes of rotating Cartesian reference frames, and the second invariant of the velocity gradient was evaluated and used as a criterion to identify two core vortex structures. The first structure was a composite of leading, trailing, and tip-edge vortices attached to the wing edges, whereas the second structure was a strong tip vortex tilted from leading-edge vortices and shed into the wake together with the vorticity generated at the tip edge. Using the fundamental vorticity equation, we evaluated the convection, stretching, and tilting of vorticity in the rotating wing frame to understand the generation and evolution of vorticity. Based on these data, we propose that the vorticity generated at the leading edge is carried away by strong tangential flow into the wake and travels downwards with the induced downwash. The convection by spanwise flow is comparatively negligible. The three-dimensional flow in the wake also exhibits considerable vortex tilting and stretching. Together these data underscore the complex and interconnected vortical structures and dynamics generated by revolving wings.
NASA Technical Reports Server (NTRS)
Rigby, D. L.; Vanfossen, G. J.
1991-01-01
The present study numerically demonstrates how small spanwise variations in velocity upstream of a body can cause relatively large increases in the spanwise-averaged heat transfer to the leading edge. Vorticity introduced by spanwise variations, first decays as it drifts downstream, then amplifies in the stagnation region as a result of vortex stretching. This amplification can cause a periodic array of 3 D structures, similar to horseshoe vortices, to form. The numerical results indicate that, for the given wavelength, there is an amplitude threshold below which a structure does not form. A one-dimensional analysis, to predict the decay of vorticity in the absence of the body, in conjunction with the full numerical results indicated that the threshold is more accurately stated as minimum level of vorticity required in the leading edge region for a structure to form. It is possible, using the one-dimensional analysis, to compute an optimum wavelength in terms of the maximum vorticity reaching the leading edge region for given amplitude. A discussion is presented which relates experimentally observed trends to the trends of the present phenomena.
NASA Astrophysics Data System (ADS)
Diabil, Hayder Azeez; Li, Xin Kai; Abdalla, Ibrahim Elrayah
2017-09-01
Large-scale organized motions (commonly referred to coherent structures) and flow topology of a transitional separated-reattached flow have been visualised and investigated using flow visualisation techniques. Two geometrical shapes including two-dimensional flat plate with rectangular leading edge and three-dimensional square cylinder are chosen to shed a light on the flow topology and present coherent structures of the flow over these shapes. For both geometries and in the early stage of the transition, two-dimensional Kelvin-Helmholtz rolls are formed downstream of the leading edge. They are observed to be twisting around the square cylinder while they stay flat in the case of the two-dimensional flat plate. For both geometrical shapes, the two-dimensional Kelvin-Helmholtz rolls move downstream of the leading edge and they are subjected to distortion to form three-dimensional hairpin structures. The flow topology in the flat plate is different from that in the square cylinder. For the flat plate, there is a merging process by a pairing of the Kelvin-Helmholtz rolls to form a large structure that breaks down directly into many hairpin structures. For the squire cylinder case, the Kelvin-Helmholtz roll evolves topologically to form a hairpin structure. In the squire cylinder case, the reattachment length is much shorter and a forming of the three-dimensional structures is closer to the leading edge than that in the flat plate case.
Xiang, Jinwu; Liu, Kai; Li, Daochun; Du, Jianxun
2017-11-01
The effects of micro-structure on aerodynamics of Coccinella septempunctata (Coleoptera: Coccinellidae) elytra in forward flight were investigated. The micro-structure was examined by a scanning electron microscope and a digital microscope. Based on the experimental results, five elytron models were constructed to separately investigate the effects of the camber and the local corrugation in both leading edge and trailing edge on aerodynamics. Computational fluid dynamic simulations of five elytron models were conducted by solving the Reynolds-Averaged Navier-Stokes equations with the Reynolds number of 245. The results show that camber and the local corrugation in the leading edge play significant roles in improving the aerodynamic performance, while the local corrugation in the trailing edge has little effect on aerodynamics. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Wood, Richard M.; Byrd, James E.; Wesselmann, Gary F.
1992-01-01
An assessment of the influence of airfoil geometry on delta wing leading edge vortex flow and vortex induced aerodynamics at supersonic speeds is discussed. A series of delta wing wind tunnel models were tested over a Mach number range from 1.7 to 2.0. The model geometric variables included leading edge sweep and airfoil shape. Surface pressure data, vapor screen, and oil flow photograph data were taken to evaluate the complex structure of the vortices and shocks on the family of wings tested. The data show that airfoil shape has a significant impact on the wing upper surface flow structure and pressure distribution, but has a minimal impact on the integrated upper surface pressure increments.
NASA Astrophysics Data System (ADS)
Tao, Y.; Liu, W. D.; Fan, X. Q.; Zhao, Y. L.
2017-07-01
For a better understanding of the local unstart of supersonic/hypersonic inlet, a series of experiments has been conducted to investigate the shock-induced boundary layer separation extended to the leading edge. Using the nanoparticle-based planar laser scattering, we recorded the fine structures of these interactions under different conditions and paid more attention to their structural characteristics. According to their features, these interactions could be divided into four types. Specifically, Type A wave pattern is similar to the classic shock wave/turbulent boundary layer interaction, and Type B wave configuration consists of an overall Mach reflection above the large scale separation bubble. Due to the gradual decrease in the size of the separation bubble, the separation bubble was replaced by several vortices (Type C wave pattern). Besides, for Type D wave configuration which exists in the local unstart inlet, there appears to be some flow spillage around the leading edge.
Experimental And Numerical Study Of CMC Leading Edges In Hypersonic Flows
NASA Astrophysics Data System (ADS)
Kuhn, Markus; Esser, Burkard; Gulhan, Ali; Dalenbring, Mats; Cavagna, Luca
2011-05-01
Future transportation concepts aim at high supersonic or hypersonic speeds, where the formerly sharp boundaries between aeronautic and aerospace applications become blurred. One of the major issues involved to high speed flight are extremely high aerothermal loads, which especially appear at the leading edges of the plane’s wings and at sharp edged air intake components of the propulsion system. As classical materials like metals or simple ceramics would thermally and structurally fail here, new materials have to be applied. In this context, lightweight ceramic matrix composites (CMC) seem to be prospective candidates as they are high-temperature resistant and offer low thermal expansion along with high specific strength at elevated temperature levels. A generic leading edge model with a ceramic wing assembly with a sweep back angle of 53° was designed, which allowed for easy leading edge sample integration of different CMC materials. The samples consisted of the materials C/C-SiC (non-oxide), OXIPOL and WHIPOX (both oxide) with a nose radius of 2 mm. In addition, a sharp edged C/C-SiC sample was prepared to investigate the nose radius influence. Overall, 13 thermocouples were installed inside the entire model to measure the temperature evolution at specific locations, whereby 5 thermocouples were placed inside the leading edge sample itself. In addition, non-intrusive techniques were applied for surface temperature measurements: An infrared camera was used to measure the surface temperature distribution and at specific spots, the surface temperature was also measured by pyrometers. Following, the model was investigated in DLR’s arc-heated facility L3K at a total enthalpy of 8.5 MJ/kg, Mach number of 7.8, different angles of attack and varying wing inclination angles. These experiments provide a sound basis for the simulation of aerothermally loaded CMC leading edge structures. Such fluid-structure coupled approaches have been performed by FOI, basing on a modal approach for the conduction model. Results show, that the temperature profiles are correctly depicted dependent on the model’s angle of attack.
Wing Leading Edge Concepts for Noise Reduction
NASA Technical Reports Server (NTRS)
Shmilovich, Arvin; Yadlin, Yoram; Pitera, David M.
2010-01-01
This study focuses on the development of wing leading edge concepts for noise reduction during high-lift operations, without compromising landing stall speeds, stall characteristics or cruise performance. High-lift geometries, which can be obtained by conventional mechanical systems or morphing structures have been considered. A systematic aerodynamic analysis procedure was used to arrive at several promising configurations. The aerodynamic design of new wing leading edge shapes is obtained from a robust Computational Fluid Dynamics procedure. Acoustic benefits are qualitatively established through the evaluation of the computed flow fields.
Little, David A.
2013-04-16
A seal assembly that limits gas leakage from a hot gas path to one or more disc cavities in a turbine engine. The seal assembly includes a seal apparatus that limits gas leakage from the hot gas path to a respective one of the disc cavities. The seal apparatus comprises a plurality of blade members rotatable with a blade structure. The blade members are associated with the blade structure and extend toward adjacent stationary components. Each blade member includes a leading edge and a trailing edge, the leading edge of each blade member being located circumferentially in front of the blade member's corresponding trailing edge in a direction of rotation of the turbine rotor. The blade members are arranged such that a space having a component in a circumferential direction is defined between adjacent circumferentially spaced blade members.
NASA Technical Reports Server (NTRS)
1975-01-01
A heating array is described for testing full-scale sections of the leading edge and lower fuselage surfaces of the shuttle. The heating array was designed to provide a tool for development and acceptance testing of leading edge segments and large flat sections of the main body thermal protection system. The array was designed using a variable length module concept to meet test requirements using interchangeable components from one test configuration in another configuration. Heat generating modules and heat absorbing modules were employed to achieve the thermal gradient around the leading edge. A support was developed to hold the modules to form an envelope around a variety of leading edges; to supply coolant to each module; the support structure and to hold the modules in the flat surface heater configuration. An optical pyrometer system mounted within the array was designed to monitor specimen surface temperatures without altering the test article's surface.
NASA Astrophysics Data System (ADS)
Liu, Yingzheng; Zhang, Qingshan
2015-07-01
Dynamic mode decomposition (DMD) analysis was performed on a large number of realizations of the separated flow around a finite blunt plate, which were determined by using planar time-resolved particle image velocimetry (TR-PIV). Three plates with different chord-to-thickness ratios corresponding to globally different flow patterns were particularly selected for comparison: L/D = 3.0, 6.0 and 9.0. The main attention was placed on dynamic variations in the dominant events and their interactive influences on the global fluid flow in terms of the DMD analysis. Toward this end, a real-time data transfer from the high-speed camera to the arrayed disks was built to enable continuous sampling of the spatiotemporally varying flows at the frequency of 250 Hz for a long run. The spectra of the wall-normal velocity fluctuation, the energy spectra of the DMD modes, and their spatial patterns convincingly determined the energetic unsteady events, i.e., St = 0.051 (Karman vortex street), 0.109 (harmonic event of Karman vortex street) and 0.197 (leading-edge vortex) in the shortest system L/D = 3.0, St = 0.159 (Karman vortex street) and 0.242 (leading-edge vortex) in the system L/D = 6.0, and St = 0.156 (Karman vortex street) and 0.241 (leading-edge vortex) in the longest system L/D = 9.0. In the shortest system L/D = 3.0, the first DMD mode pattern demonstrated intensified entrainment of the massive fluid above and below the whole plate by the Karman vortex street. The phase-dependent variation in the low-order flow field elucidated that this motion was sustained by the consecutive mechanisms of the convective leading-edge vortices near the upper and lower trailing edges, and the large-scale vortical structures occurring immediately behind the trailing edge, whereas the leading-edge vortices were entrained and decayed into the near wake. For the system L/D = 6.0, the closely approximated energy spectra at St = 0.159 and 0.242 indicated the balanced dominance of dual unsteady events in the measurement region. The Karman vortex street was found to induce considerable localized movement of the fluid near the trailing edges of the plate. However, the leading-edge vortices near the trailing edge were found to detach away from the plate and fully decay around 0.5 D behind the trailing edge, where a well-ordered origination of the downstream large-scale vortical structures (the Karman vortex street) was established and might be locally energized by the decayed leading-edge vortex. In the longest system L/D = 9.0, the phase-dependent variations in the low-order flow disclosed a rapid decay of the leading-edge vortices beyond the reattachment zone, reaching the fully diffused state near the trailing edges. Accordingly, no clear signature of the interaction between the Karman vortex street and the leading-edge vortex could be found in the dynamic process of the leading-edge vortex.
NASA Astrophysics Data System (ADS)
Cai, C.; Zuo, Z. G.; Liu, S. H.; Wu, Y. L.; Wang, F. B.
2013-12-01
Wavy leading edge modifications of airfoils through imitating humpback whale flippers has been considered as a viable passive way to control flow separation. In this paper, flows around a baseline 634-021 airfoil and one with leading-edge sinusoidal protuberances were simulated using S-A turbulence model. When studying the static stall characteristics, it is found that the modified airfoil does not stall in the traditional manner, with increasing poststall lift coefficients. At high angles of attack, the flows past the wavy leading edge stayed attached for a distance, while the baseline foil is in a totally separated flow condition. On this basis, the simulations of pitch characteristic were carried out for both foils. At high angles of attack mild variations in lift and drag coefficients of the modified foil can be found, leading to a smaller area of hysteresis loop. The special structure of wavy leading edge can help maintain high consistency of the flow field in dynamic pitching station within a particular range of angles of attack.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vjunov, Aleksei; Wang, Meng; Govind, Niranjan
We report the structural changes induced by Brønsted acidic site deprotonation in a zeolite with MFI structure as a function of temperature up to 430°C using in situ Al K-edge X-ray absorption fine structure spectroscopy (XAFS). At ambient conditions, the protons are present as hydrated hydronium ions (H3O+(H2O)n) that are ion-paired to the anionic, Al tetrahedral (T) site. At elevated temperatures, loss of water molecules hydrating the hydronium ions leads to an unstable free hydronium ion that disso-ciates to form the hydroxylated T-site. The formation of this (-O3)-Al-(OH-) species leads to the elongation of one of the four Al-O bondsmore » and causes significant distortion of the tetrahedral symmetry about the Al atom. This distortion leads to the appearance of new pre-edge features in the Al K-edge X-ray absorption near edge structure (XANES) spectra. The pre-edge peak assignment is confirmed by time-dependent density functional theory calculation of the XANES spectrum. The XANES spectra are also sensitive to solutes or solvent that are in proximity to the T-site. A second structural transition occurs at about the same temperature, namely the conversion of a minor fraction of extra-framework octahedral Al present in the sample at ambient conditions to a tetrahedral species through the de-coordination of H2O-ligands. Both IR spectroscopy and thermogravimetric analysis (TGA) are further used to confirm the overall chemical transformation of the T-site.« less
NASA Astrophysics Data System (ADS)
Hosokawa, K.; Taguchi, S.; Ogawa, Y.
2016-04-01
On the night of 4 December 2013, a sequence of polar cap patches was captured by an all-sky airglow imager (ASI) in Longyearbyen, Norway (78.1°N, 15.5°E). The 630.0 nm airglow images from the ASI of 4 second exposure time, oversampled the emission of natural lifetime (with quenching) of at least ˜30 sec, introduce no observational blurring effects. By using such high-quality ASI images, we succeeded in visualizing an asymmetry in the gradients between the leading/trailing edges of the patches in a 2-D fashion. The gradient in the leading edge was found to be 2-3 times steeper than that in the trailing edge. We also identified fingerlike structures, appearing only along the trailing edge of the patches, whose horizontal scale size ranged from 55 to 210 km. These fingers are considered to be manifestations of plasma structuring through the gradient-drift instability (GDI), which is known to occur only along the trailing edge of patches. That is, the current 2-D observations visualized, for the first time, how GDI stirs the patch plasma and such a mixing process makes the trailing edge more gradual. This result strongly implies a close connection between the GDI-driven plasma stirring and the asymmetry in the large-scale shape of patches and then suggests that the fingerlike structures can be used as markers to estimate the fine-scale structure in the plasma flow within patches.
Development of a SMA-Based, Slat-Gap Filler for Airframe Noise Reduction
NASA Technical Reports Server (NTRS)
Turner, Travis L.; Long, David L.
2015-01-01
Noise produced by unsteady flow around aircraft structures, termed airframe noise, is an important source of aircraft noise during the approach and landing phases of flight. Conventional leading-edge-slat devices for high lift on typical transport aircraft are a prominent source of airframe noise. Many concepts for slat noise reduction have been investigated. Slat-cove fillers have emerged as an attractive solution, but they maintain the gap flow, leaving some noise production mechanisms unabated, and thus represent a nonoptimal solution. Drooped-leading-edge (DLE) concepts have been proposed as "optimal" because the gap flow is eliminated. The deployed leading edge device is not distinct and separate from the main wing in DLE concepts and the high-lift performance suffers at high angles of attack (alpha) as a consequence. Elusive high-alpha performance and excessive weight penalty have stymied DLE development. The fact that high-lift performance of DLE systems is only affected at high alpha suggests another concept that simultaneously achieves the high-lift of the baseline airfoil and the noise reduction of DLE concepts. The concept involves utilizing a conventional leading-edge slat device and a deformable structure that is deployed from the leading edge of the main wing and closes the gap between the slat and main wing, termed a slat-gap filler (SGF). The deployable structure consists of a portion of the skin of the main wing and it is driven in conjunction with the slat during deployment and retraction. Benchtop models have been developed to assess the feasibility and to study important parameters. Computational models have assisted in the bench-top model design and provided valuable insight in the parameter space as well as the feasibility.
NASA Technical Reports Server (NTRS)
Camarda, Charles J.; Glass, David E.
1992-01-01
Heat pipes have been considered for use on wing leading edge for over 20 years. Early concepts envisioned metal heat pipes cooling a metallic leading edge. Several superalloy/sodium heat pipes were fabricated and successfully tested for wing leading edge cooling. Results of radiant heat and aerothermal testing indicate the feasibility of using heat pipes to cool the stagnation region of shuttle-type space transportation systems. The test model withstood a total seven radiant heating tests, eight aerothermal tests, and twenty-seven supplemental radiant heating tests. Cold-wall heating rates ranged from 21 to 57 Btu/sq ft-s and maximum operating temperatures ranged from 1090 to 1520 F. Follow-on studies investigated the application of heat pipes to cool the stagnation regions of single-stage-to-orbit and advanced shuttle vehicles. Results of those studies indicate that a 'D-shaped' structural design can reduce the mass of the heat-pipe concept by over 44 percent compared to a circular heat-pipe geometry. Simple analytical models for heat-pipe startup from the frozen state (working fluid initially frozen) were adequate to approximate transient, startup, and steady-state heat-pipe performance. Improvement in analysis methods has resulted in the development of a finite-element analysis technique to predict heat-pipe startup from the frozen state. However, current requirements of light-weight design and reliability suggest that metallic heat pipes embedded in a refractory composite material should be used. This concept is the concept presently being evaluated for NASP. A refractory-composite/heat-pipe-cooled wing leading edge is currently being considered for the National Aero-Space Plane (NASP). This concept uses high-temperature refractory-metal/lithium heat pipes embedded within a refractory-composite structure and is significantly lighter than an actively cooled wing leading edge because it eliminates the need for active cooling during ascent and descent. Since the NASP vehicle uses cryogenic hydrogen to cool structural components and then burns this fuel in the combustor, hydrogen necessary for descent cooling only, when the vehicle is unpowered, is considered to be a weight penalty. Details of the design of the refractory-composite/heat-pipe-cooled wing leading edge are currently being investigated. Issues such as thermal contact resistance and thermal stress are also being investigated.
NASA Astrophysics Data System (ADS)
Camarda, Charles J.; Glass, David E.
1992-10-01
Heat pipes have been considered for use on wing leading edge for over 20 years. Early concepts envisioned metal heat pipes cooling a metallic leading edge. Several superalloy/sodium heat pipes were fabricated and successfully tested for wing leading edge cooling. Results of radiant heat and aerothermal testing indicate the feasibility of using heat pipes to cool the stagnation region of shuttle-type space transportation systems. The test model withstood a total seven radiant heating tests, eight aerothermal tests, and twenty-seven supplemental radiant heating tests. Cold-wall heating rates ranged from 21 to 57 Btu/sq ft-s and maximum operating temperatures ranged from 1090 to 1520 F. Follow-on studies investigated the application of heat pipes to cool the stagnation regions of single-stage-to-orbit and advanced shuttle vehicles. Results of those studies indicate that a 'D-shaped' structural design can reduce the mass of the heat-pipe concept by over 44 percent compared to a circular heat-pipe geometry. Simple analytical models for heat-pipe startup from the frozen state (working fluid initially frozen) were adequate to approximate transient, startup, and steady-state heat-pipe performance. Improvement in analysis methods has resulted in the development of a finite-element analysis technique to predict heat-pipe startup from the frozen state. However, current requirements of light-weight design and reliability suggest that metallic heat pipes embedded in a refractory composite material should be used. This concept is the concept presently being evaluated for NASP. A refractory-composite/heat-pipe-cooled wing leading edge is currently being considered for the National Aero-Space Plane (NASP). This concept uses high-temperature refractory-metal/lithium heat pipes embedded within a refractory-composite structure and is significantly lighter than an actively cooled wing leading edge because it eliminates the need for active cooling during ascent and descent. Since the NASP vehicle uses cryogenic hydrogen to cool structural components and then burns this fuel in the combustor, hydrogen necessary for descent cooling only, when the vehicle is unpowered, is considered to be a weight penalty. Details of the design of the refractory-composite/heat-pipe-cooled wing leading edge are currently being investigated. Issues such as thermal contact resistance and thermal stress are also being investigated.
NASA Technical Reports Server (NTRS)
Handschuh, Katherine M.; Miller, Sandi G.; Sinnott, Matthew J.; Kohlman, Lee W.; Roberts, Gary D.; Pereira, J. Michael; Ruggeri, Charles R.
2014-01-01
Application of polymer matrix composite materials for jet engine fan blades is becoming attractive as an alternative to metallic blades; particularly for large engines where significant weight savings are recognized on moving to a composite structure. However, the weight benefit of the composite of is offset by a reduction of aerodynamic efficiency resulting from a necessary increase in blade thickness; relative to the titanium blades. Blade dimensions are largely driven by resistance to damage on bird strike. Further development of the composite material is necessary to allow composite blade designs to approximate the dimensions of a metallic fan blade. The reduction in thickness over the state of the art composite blades is expected to translate into structural weight reduction, improved aerodynamic efficiency, and therefore reduced fuel consumption. This paper presents test article design, subcomponent blade leading edge fabrication, test method development, and initial results from ballistic impact of a gelatin projectile on the leading edge of composite fan blades. The simplified test article geometry was developed to realistically simulate a blade leading edge while decreasing fabrication complexity. Impact data is presented on baseline composite blades and toughened blades; where a considerable improvement to impact resistance was recorded.
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Handschuh, Katherine; Sinnott, Matthew J.; Kohlman, Lee W.; Roberts, Gary D.; Martin, Richard E.; Ruggeri, Charles R.; Pereira, J. Michael
2015-01-01
Application of polymer matrix composite materials for jet engine fan blades is becoming attractive as an alternative to metallic blades; particularly for large engines where significant weight savings are recognized on moving to a composite structure. However, the weight benefit of the composite is offset by a reduction of aerodynamic efficiency resulting from a necessary increase in blade thickness; relative to the titanium blades. Blade dimensions are largely driven by resistance to damage on bird strike. Further development of the composite material is necessary to allow composite blade designs to approximate the dimensions of a metallic fan blade. The reduction in thickness over the state of the art composite blades is expected to translate into structural weight reduction, improved aerodynamic efficiency, and therefore reduced fuel consumption. This paper presents test article design, subcomponent blade leading edge fabrication, test method development, and initial results from ballistic impact of a gelatin projectile on the leading edge of composite fan blades. The simplified test article geometry was developed to realistically simulate a blade leading edge while decreasing fabrication complexity. Impact data is presented on baseline composite blades and toughened blades; where a considerable improvement to impact resistance was recorded.
Thermal Analysis of a Metallic Wing Glove for a Mach-8 Boundary-Layer Experiment
NASA Technical Reports Server (NTRS)
Gong, Leslie; Richards, W. Lance
1998-01-01
A metallic 'glove' structure has been built and attached to the wing of the Pegasus(trademark) space booster. An experiment on the upper surface of the glove has been designed to help validate boundary-layer stability codes in a free-flight environment. Three-dimensional thermal analyses have been performed to ensure that the glove structure design would be within allowable temperature limits in the experiment test section of the upper skin of the glove. Temperature results obtained from the design-case analysis show a peak temperature at the leading edge of 490 F. For the upper surface of the glove, approximately 3 in. back from the leading edge, temperature calculations indicate transition occurs at approximately 45 sec into the flight profile. A worst-case heating analysis has also been performed to ensure that the glove structure would not have any detrimental effects on the primary objective of the Pegasus a launch. A peak temperature of 805 F has been calculated on the leading edge of the glove structure. The temperatures predicted from the design case are well within the temperature limits of the glove structure, and the worst-case heating analysis temperature results are acceptable for the mission objectives.
Local Thermometry of Neutral Modes on the Quantum Hall Edge
NASA Astrophysics Data System (ADS)
Hart, Sean; Venkatachalam, Vivek; Pfeiffer, Loren; West, Ken; Yacoby, Amir
2012-02-01
A system of electrons in two dimensions and strong magnetic fields can be tuned to create a gapped 2D system with one dimensional channels along the edge. Interactions among these edge modes can lead to independent transport of charge and heat, even in opposite directions. Measuring the chirality and transport properties of these charge and heat modes can reveal otherwise hidden structure in the edge. Here, we heat the outer edge of such a quantum Hall system using a quantum point contact. By placing quantum dots upstream and downstream along the edge of the heater, we can measure both the chemical potential and temperature of that edge to study charge and heat transport, respectively. We find that charge is transported exclusively downstream, but heat can be transported upstream when the edge has additional structure related to fractional quantum Hall physics.
Heat pipe cooling for scramjet engines
NASA Technical Reports Server (NTRS)
Silverstein, Calvin C.
1986-01-01
Liquid metal heat pipe cooling systems have been investigated for the combustor liner and engine inlet leading edges of scramjet engines for a missile application. The combustor liner is cooled by a lithium-TZM molybdenum annular heat pipe, which incorporates a separate lithium reservoir. Heat is initially absorbed by the sensible thermal capacity of the heat pipe and liner, and subsequently by the vaporization and discharge of lithium to the atmosphere. The combustor liner temperature is maintained at 3400 F or less during steady-state cruise. The engine inlet leading edge is fabricated as a sodium-superalloy heat pipe. Cooling is accomplished by radiation of heat from the aft surface of the leading edge to the atmosphere. The leading edge temperature is limited to 1700 F or less. It is concluded that heat pipe cooling is a viable method for limiting scramjet combustor liner and engine inlet temperatures to levels at which structural integrity is greatly enhanced.
Thermostructural applications of heat pipes
NASA Technical Reports Server (NTRS)
Peeples, M. E.; Reeder, J. C.; Sontag, K. E.
1979-01-01
The feasibility of integrating heat pipes in high temperature structure to reduce local hot spot temperature was evaluated for a variety of hypersonic aerospace vehicles. From an initial list of twenty-two potential applications, the single stage to orbit wing leading edge showed the greatest promise and was selected for preliminary design of an integrated heat pipe thermostructural system. The design consisted of a Hastelloy X assembly with sodium heat pipe passages aligned normal to the wing leading edge. A d-shaped heat pipe cross section was determined to be optimum from the standpoint of structural weight.
Geometries for roughness shapes in laminar flow
NASA Technical Reports Server (NTRS)
Holmes, Bruce J. (Inventor); Martin, Glenn L. (Inventor); Domack, Christopher S. (Inventor); Obara, Clifford J. (Inventor); Hassan, Ahmed A. (Inventor)
1986-01-01
A passive interface mechanism between upper and lower skin structures, and a leading edge structure of a laminar flow airfoil is described. The interface mechanism takes many shapes. All are designed to be different than the sharp orthogonal arrangement prevalent in the prior art. The shapes of the interface structures are generally of two types: steps away from the centerline of the airfoil with a sloping surface directed toward the trailing edge and, the other design has a gap before the sloping surface. By properly shaping the step, the critical step height is increased by more than 50% over the orthogonal edged step.
Advances in Hot-Structure Development
NASA Technical Reports Server (NTRS)
Rivers, H. Kevin; Glass, David E.
2006-01-01
The National Aeronautics and Space Administration has actively participated in the development of hot structures technology for application to hypersonic flight systems. Hot structures have been developed for vehicles including the X-43A, X-37, and the Space Shuttle. These trans-atmospheric and atmospheric entry flight systems that incorporate hot-structures technology are lighter weight and require less maintenance than those that incorporate parasitic, thermal-protection materials that attach to warm or cool substructure. The development of hot structures requires a thorough understanding of material performance in an extreme environment, boundary conditions and load interactions, structural joint performance, and thermal and mechanical performance of integrated structural systems that operate at temperatures ranging from 1500 C to 3000 C, depending on the application. This paper will present recent advances in the development of hot structures, including development of environmentally durable, high temperature leading edges and control surfaces, integrated thermal protection systems, and repair technologies. The X-43A Mach-10 vehicle utilized carbon/carbon (C/C) leading edges on the nose, horizontal control surface, and vertical tail. The nose and vertical and horizontal tail leading edges were fabricated out of a 3:1 biased, high thermal conductivity C/C. The leading edges were coated with a three-layer coating comprised of a SiC conversion of the C/C, followed by a CVD layer of SiC, followed by a thin CVD layer of HfC. Work has also been performed on the development of an integrated structure and was focused on both hot and warm (insulated) structures and integrated fuselage/tank/TPS systems. The objective was to develop integrated multifunctional airframe structures that eliminate fragile external thermal-protection systems and incorporate the insulating function within the structure. The approach taken to achieve this goal was to develop candidate hypersonic airframe concepts, including structural arrangement, load paths, thermal-structural wall design, thermal accommodation features, and integration of major components, optimize thermalstructural configurations, and validate concepts through a building block test program and generate data to improve and validate analytical and design tools.
NASA Astrophysics Data System (ADS)
Olalde-Velasco, P.; Jiménez-Mier, J.; Denlinger, J.; Yang, W.-L.
2013-06-01
Experimental X-ray absorption spectra at the fluorine K and transition metal L2,3 absorption edges of the MF2 (M=Cr-Ni) family are presented. Ligand field calculations in D4h symmetry show very good agreement with the transition metal L2,3 XAS spectra. To successfully explain nominal Cr2+ L2,3 XAS spectrum in CrF2, the inclusion of Cr+ and Cr3+ was needed implying the presence of a disproportionation reaction. The multiplet calculations were then modified to remove the structure of the 2p hole in the calculated M 2p→3d absorption spectra. These results for the 3dn+1 states are in one to one correspondence with the leading edge structures found at the fluorine K edge. A direct comparison with the metal L2,3 edges also indicates that there is evidence of the metal multiplet at the fluorine K pre-edge structures.
Reynolds number influence on the formation of vortical structures on a pitching flat plate.
Widmann, Alexander; Tropea, Cameron
2017-02-06
The impact of chord-based Reynolds number on the formation of leading-edge vortices (LEVs) on unsteady pitching flat plates is investigated. The influence of secondary flow structures on the shear layer feeding the LEV and the subsequent topological change at the leading edge as the result of viscous processes are demonstrated. Time-resolved velocity fields are measured using particle image velocimetry simultaneously in two fields of view to correlate local and global flow phenomena in order to identify unsteady boundary-layer separation and the subsequent flow structures. Finally, the Reynolds number is identified as a parameter that is responsible for the transition in mechanisms leading to LEV detachment from an aerofoil, as it determines the viscous response of the boundary layer in the vortex-wall interaction.
Reynolds number influence on the formation of vortical structures on a pitching flat plate
Tropea, Cameron
2017-01-01
The impact of chord-based Reynolds number on the formation of leading-edge vortices (LEVs) on unsteady pitching flat plates is investigated. The influence of secondary flow structures on the shear layer feeding the LEV and the subsequent topological change at the leading edge as the result of viscous processes are demonstrated. Time-resolved velocity fields are measured using particle image velocimetry simultaneously in two fields of view to correlate local and global flow phenomena in order to identify unsteady boundary-layer separation and the subsequent flow structures. Finally, the Reynolds number is identified as a parameter that is responsible for the transition in mechanisms leading to LEV detachment from an aerofoil, as it determines the viscous response of the boundary layer in the vortex–wall interaction. PMID:28163871
Influence of wing tip morphology on vortex dynamics of flapping flight
NASA Astrophysics Data System (ADS)
Krishna, Swathi; Mulleners, Karen
2013-11-01
The mechanism of flapping wing flight provides insects with extraordinary flight capabilities. The uniquely shaped wing tips give insects an edge in flight performance and the interaction between the leading edge vortices and wing tip vortices enhance their propelling efficiencies and manoeuvrability. These are qualities that are sought after in current-day Micro Air Vehicles. A detailed understanding of the vortex dynamics of flapping flight and the influence of the wing tip planform is imperative for technical application. An experimental study is conducted to investigate the effects of different wing tip planforms on the formation, evolution and interaction of vortical structures. We thereby focus on the interaction between the coherent structures evolving from the leading edge and the wing tip during pitching and flapping motions.The spatial and temporal evolution of the three-dimensional flow structures are determined using Scanning (Stereo) Particle Image Velocimetry and an in-depth coherent structure analysis. By comparing the vortex dynamics, the aerodynamic performance of various wing tip planforms are evaluated.
A dynamic spar numerical model for passive shape change
NASA Astrophysics Data System (ADS)
Calogero, J. P.; Frecker, M. I.; Hasnain, Z.; Hubbard, J. E., Jr.
2016-10-01
A three-dimensional constraint-driven dynamic rigid-link numerical model of a flapping wing structure with compliant joints (CJs) called the dynamic spar numerical model is introduced and implemented. CJs are modeled as spherical joints with distributed mass and spring-dampers with coupled nonlinear spring and damping coefficients, which models compliant mechanisms spatially distributed in the structure while greatly reducing computation time compared to a finite element model. The constraints are established, followed by the formulation of a state model used in conjunction with a forward time integrator, an experiment to verify a rigid-link assumption and determine a flapping angle function, and finally several example runs. Modeling the CJs as coupled bi-linear springs shows the wing is able to flex more during upstroke than downstroke. Coupling the spring stiffnesses allows an angular deformation about one axis to induce an angular deformation about another axis, where the magnitude is proportional to the coupling term. Modeling both the leading edge and diagonal spars shows that the diagonal spar changes the kinematics of the leading edge spar verses only considering the leading edge spar, causing much larger axial rotations in the leading edge spar. The kinematics are very sensitive to CJ location, where moving the CJ toward the wing root causes a stronger response, and adding multiple CJs on the leading edge spar with a CJ on the diagonal spar allows the wing to deform with larger magnitude in all directions. This model lays a framework for a tool which can be used to understand flapping wing flight.
Unsteady Separated Flows: Vorticity and Turbulence.
1982-10-01
investigation. The vortex train used in the mathe- matical model is adapted to simulate the flow generated in the wake of an oscillating spoiler moving...weak wake structure. C H - At K = 1.5, the trailing edge vortex clearly leads the vorte : generated from the leading edge in the normal geonetry tests...flows is summarized. Specific projects reviewed include: (a) oscillating airfoil dynamic stall; (b) vortex entrapment and stability analysis -and (c
NASA Technical Reports Server (NTRS)
Dicarlo, Daniel J.; Brown, Philip W.; Hallissy, James B.
1992-01-01
Flight tests of an F-106B aircraft equipped with a leading-edge vortex flap, which represented the culmination of a research effort to examine the effectiveness of the flap, were conducted at the NASA Langley Research Center. The purpose of the flight tests was to establish a data base on the use of a wing leading-edge vortex flap as a means to validate the design and analysis methods associated with the development of such a vortical flow-control concept. The overall experiment included: refinements of the design codes for vortex flaps; numerous wind tunnel entries to aid in verifying design codes and determining basic aerodynamic characteristics; design and fabrication of the flaps, structural modifications to the wing tip and leading edges of the test aircraft; development and installation of an aircraft research instrumentation system, including wing and flap surface pressure measurements and selected structural loads measurements; ground-based simulation to assess flying qualities; and finally, flight testing. This paper reviews the operational aspects associated with the flight experiment, which includes a description of modifications to the research airplane, the overall flight test procedures, and problems encountered. Selected research results are also presented to illustrate the accomplishments of the research effort.
Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil
Wang, Yan; Zheng, Xiaojing; Hu, Ruifeng; Wang, Ping
2016-01-01
Background Unexpected performance degradation occurs in wind turbine blades due to leading edge defect when suffering from continuous impacts with rain drops, hails, insects, or solid particles during its operation life. To assess this issue, this paper numerically investigates the steady and dynamic stall characteristics of an S809 airfoil with various leading edge defects. More leading edge defect sizes and much closer to practical parameters are investigated in the paper. Methodology Numerical computation is conducted using the SST k-ω turbulence model, and the method has been validated by comparison with existed published data. In order to ensure the calculation convergence, the residuals for the continuity equation are set to be less than 10−7 and 10−6 in steady state and dynamic stall cases. The simulations are conducted with the software ANSYS Fluent 13.0. Results It is found that the characteristics of aerodynamic coefficients and flow fields are sensitive to leading edge defect both in steady and dynamic conditions. For airfoils with the defect thickness of 6%tc, leading edge defect has a relative small influence on the aerodynamics of S809 airfoil. For other investigated defect thicknesses, leading edge defect has much greater influence on the flow field structures, pressure coefficients and aerodynamic characteristics of airfoil at relative small defect lengths. For example, the lift coefficients decrease and drag coefficients increase sharply after the appearance of leading edge defect. However, the aerodynamic characteristics could reach a constant value when the defect length is large enough. The flow field, pressure coefficient distribution and aerodynamic coefficients do not change a lot when the defect lengths reach to 0.5%c,1%c, 2%c and 3%c with defect thicknesses of 6%tc, 12%tc,18%tc and 25%tc, respectively. In addition, the results also show that the critical defect length/thickness ratio is 0.5, beyond which the aerodynamic characteristics nearly remain unchanged. In dynamic stall, leading edge defect imposes a greater influence on the aerodynamic characteristics of airfoil than steady conditions. By increasing in defect length, it is found that the separated area becomes more intense and moves forward along the suction surface. Conclusions Leading edge defect has significant influence on the aerodynamic and flow characteristics of the airfoil, which will reach a stable status with enough large defect size. The leading edge separation bubble, circulation in the defect cavity and intense tailing edge vortex are the main features of flow around defective airfoils. PMID:27658310
Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil.
Wang, Yan; Zheng, Xiaojing; Hu, Ruifeng; Wang, Ping
Unexpected performance degradation occurs in wind turbine blades due to leading edge defect when suffering from continuous impacts with rain drops, hails, insects, or solid particles during its operation life. To assess this issue, this paper numerically investigates the steady and dynamic stall characteristics of an S809 airfoil with various leading edge defects. More leading edge defect sizes and much closer to practical parameters are investigated in the paper. Numerical computation is conducted using the SST k-ω turbulence model, and the method has been validated by comparison with existed published data. In order to ensure the calculation convergence, the residuals for the continuity equation are set to be less than 10-7 and 10-6 in steady state and dynamic stall cases. The simulations are conducted with the software ANSYS Fluent 13.0. It is found that the characteristics of aerodynamic coefficients and flow fields are sensitive to leading edge defect both in steady and dynamic conditions. For airfoils with the defect thickness of 6%tc, leading edge defect has a relative small influence on the aerodynamics of S809 airfoil. For other investigated defect thicknesses, leading edge defect has much greater influence on the flow field structures, pressure coefficients and aerodynamic characteristics of airfoil at relative small defect lengths. For example, the lift coefficients decrease and drag coefficients increase sharply after the appearance of leading edge defect. However, the aerodynamic characteristics could reach a constant value when the defect length is large enough. The flow field, pressure coefficient distribution and aerodynamic coefficients do not change a lot when the defect lengths reach to 0.5%c,1%c, 2%c and 3%c with defect thicknesses of 6%tc, 12%tc,18%tc and 25%tc, respectively. In addition, the results also show that the critical defect length/thickness ratio is 0.5, beyond which the aerodynamic characteristics nearly remain unchanged. In dynamic stall, leading edge defect imposes a greater influence on the aerodynamic characteristics of airfoil than steady conditions. By increasing in defect length, it is found that the separated area becomes more intense and moves forward along the suction surface. Leading edge defect has significant influence on the aerodynamic and flow characteristics of the airfoil, which will reach a stable status with enough large defect size. The leading edge separation bubble, circulation in the defect cavity and intense tailing edge vortex are the main features of flow around defective airfoils.
Flow Structure on a Flapping Wing: Quasi-Steady Limit
NASA Astrophysics Data System (ADS)
Ozen, Cem; Rockwell, Donald
2011-11-01
The flapping motion of an insect wing typically involves quasi-steady motion between extremes of unsteady motion. This investigation characterizes the flow structure for the quasi-steady limit via a rotating wing in the form of a thin rectangular plate having a low aspect ratio (AR =1). Particle Image Velocimetry (PIV) is employed, in order to gain insight into the effects of centripetal and Coriolis forces. Vorticity, velocity and streamline patterns are used to describe the overall flow structure with an emphasis on the leading-edge vortex. A stable leading-edge vortex is maintained over effective angles of attack from 30° to 75° and it is observed that at each angle of attack the flow structure remains relatively same over the Reynolds number range from 3,600 to 14,500. The dimensionless circulation of the leading edge vortex is found to be proportional to the effective angle of attack. Quasi-three-dimensional construction of the flow structure is used to identify the different regimes along the span of the wing which is then complemented by patterns on cross flow planes to demonstrate the influence of root and tip swirls on the spanwise flow. The rotating wing results are also compared with the equivalent of translating wing to further illustrate the effects of the rotation.
A comparison of experimental and calculated thin-shell leading-edge buckling due to thermal stresses
NASA Technical Reports Server (NTRS)
Jenkins, Jerald M.
1988-01-01
High-temperature thin-shell leading-edge buckling test data are analyzed using NASA structural analysis (NASTRAN) as a finite element tool for predicting thermal buckling characteristics. Buckling points are predicted for several combinations of edge boundary conditions. The problem of relating the appropriate plate area to the edge stress distribution and the stress gradient is addressed in terms of analysis assumptions. Local plasticity was found to occur on the specimen analyzed, and this tended to simplify the basic problem since it effectively equalized the stress gradient from loaded edge to loaded edge. The initial loading was found to be difficult to select for the buckling analysis because of the transient nature of thermal stress. Multiple initial model loadings are likely required for complicated thermal stress time histories before a pertinent finite element buckling analysis can be achieved. The basic mode shapes determined from experimentation were correctly identified from computation.
Electrochemistry at Edge of Single Graphene Layer in a Nanopore
Banerjee, Shouvik; Shim, Jiwook; Rivera, Jose; Jin, Xiaozhong; Estrada, David; Solovyeva, Vita; You, Xiuque; Pak, James; Pop, Eric; Aluru, Narayana; Bashir, Rashid
2013-01-01
We study the electrochemistry of single layer graphene edges using a nanopore-based structure consisting of stacked graphene and Al2O3 dielectric layers. Nanopores, with diameters ranging from 5 to 20 nm, are formed by an electron beam sculpting process on the stacked layers. This leads to unique edge structure which, along with the atomically thin nature of the embedded graphene electrode, demonstrates electrochemical current densities as high as 1.2 × 104 A/cm2. The graphene edge embedded structure offers a unique capability to study the electrochemical exchange at an individual graphene edge, isolated from the basal plane electrochemical activity. We also report ionic current modulation in the nanopore by biasing the embedded graphene terminal with respect to the electrodes in the fluid. The high electrochemical specific current density for a graphene nanopore-based device can have many applications in sensitive chemical and biological sensing, and energy storage devices. PMID:23249127
Magnetic-Field-Tunable Superconducting Rectifier
NASA Technical Reports Server (NTRS)
Sadleir, John E.
2009-01-01
Superconducting electronic components have been developed that provide current rectification that is tunable by design and with an externally applied magnetic field to the circuit component. The superconducting material used in the device is relatively free of pinning sites with its critical current determined by a geometric energy barrier to vortex entry. The ability of the vortices to move freely inside the device means this innovation does not suffer from magnetic hysteresis effects changing the state of the superconductor. The invention requires a superconductor geometry with opposite edges along the direction of current flow. In order for the critical current asymmetry effect to occur, the device must have different vortex nucleation conditions at opposite edges. Alternative embodiments producing the necessary conditions include edges being held at different temperatures, at different local magnetic fields, with different current-injection geometries, and structural differences between opposite edges causing changes in the size of the geometric energy barrier. An edge fabricated with indentations of the order of the coherence length will significantly lower the geometric energy barrier to vortex entry, meaning vortex passage across the device at lower currents causing resistive dissipation. The existing prototype is a two-terminal device consisting of a thin-film su - perconducting strip operating at a temperature below its superconducting transition temperature (Tc). Opposite ends of the strip are connected to electrical leads made of a higher Tc superconductor. The thin-film lithographic process provides an easy means to alter edge-structures, current-injection geo - metries, and magnetic-field conditions at the edges. The edge-field conditions can be altered by using local field(s) generated from dedicated higher Tc leads or even using the device s own higher Tc superconducting leads.
Visualization of the separation and subsequent transition near the leading edge of airfoils
NASA Technical Reports Server (NTRS)
Arena, A. V.; Mueller, T. J.
1978-01-01
A visual study was performed using the low speed smoke wind tunnels with the objective of obtaining a better understanding of the structure of leading edge separation bubbles on airfoils. The location of separation, transition and reattachment for a cylindrical nose constant-thickness airfoil model were obtained from smoke photographs and surface oil flow techniques. These data, together with static pressure distributions along the leading edge and upper surface of the model, produced the influence of Reynolds number, angle of attack, and trailing edge flap angle on the size and characteristics of the bubble. Additional visual insight into the unsteady nature of the separation bubble was provided by high speed 16 mm movies. The 8 mm color movies taken of the surface oil flow supported the findings of the high speed movies and clearly showed the formation of a scalloped spanwise separation line at the higher Reynolds number.
Lightweight Thermal Protection System for Atmospheric Entry
NASA Technical Reports Server (NTRS)
Stewart, David; Leiser, Daniel
2007-01-01
TUFROC (Toughened Uni-piece Fibrous Reinforced Oxidation-resistant Composite) has been developed as a new thermal protection system (TPS) material for wing leading edge and nose cap applications. The composite withstands temperatures up to 1,970 K, and consists of a toughened, high-temperature surface cap and a low-thermal-conductivity base, and is applicable to both sharp and blunt leading edge vehicles. This extends the possible application of fibrous insulation to the wing leading edge and/or nose cap on a hypersonic vehicle. The lightweight system comprises a treated carbonaceous cap composed of ROCCI (Refractory Oxidation-resistant Ceramic Carbon Insulation), which provides dimensional stability to the outer mold line, while the fibrous base material provides maximum thermal insulation for the vehicle structure.
NASA Technical Reports Server (NTRS)
Tinoco, E. N.; Lu, P.; Johnson, F. T.
1980-01-01
A computer program developed for solving the subsonic, three dimensional flow over wing-body configurations with leading edge vortex separation is presented. Instructions are given for the proper set up and input of a problem into the computer code. Program input formats and output are described, as well as the overlay structure of the program. The program is written in FORTRAN.
SiC/SiC Leading Edge Turbine Airfoil Tested Under Simulated Gas Turbine Conditions
NASA Technical Reports Server (NTRS)
Robinson, R. Craig; Hatton, Kenneth S.
1999-01-01
Silicon-based ceramics have been proposed as component materials for use in gas turbine engine hot-sections. A high pressure burner rig was used to expose both a baseline metal airfoil and ceramic matrix composite leading edge airfoil to typical gas turbine conditions to comparatively evaluate the material response at high temperatures. To eliminate many of the concerns related to an entirely ceramic, rotating airfoil, this study has focused on equipping a stationary metal airfoil with a ceramic leading edge insert to demonstrate the feasibility and benefits of such a configuration. Here, the idea was to allow the SiC/SiC composite to be integrated as the airfoil's leading edge, operating in a "free-floating" or unrestrained manner. and provide temperature relief to the metal blade underneath. The test included cycling the airfoils between simulated idle, lift, and cruise flight conditions. In addition, the airfoils were air-cooled, uniquely instrumented, and exposed to the same internal and external conditions, which included gas temperatures in excess of 1370 C (2500 F). Results show the leading edge insert remained structurally intact after 200 simulated flight cycles with only a slightly oxidized surface. The instrumentation clearly suggested a significant reduction (approximately 600 F) in internal metal temperatures as a result of the ceramic leading edge. The object of this testing was to validate the design and analysis done by Materials Research and Design of Rosemont, PA and to determine the feasibility of this design for the intended application.
The leading-edge vortex of swift-wing shaped delta wings
NASA Astrophysics Data System (ADS)
Muir, Rowan; Arredondo-Galeana, Abel; Viola, Ignazio Maria
2017-11-01
Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the Leading-Edge Vortex (LEV) for lift generation in a variety of flight conditions. In this investigation, a model non-slender delta shaped wing with a sharp leading-edge is tested at low Reynolds Number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the un-modified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift-wing shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds Number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta shaped wing. This work received funding from the Engineering and Physical Sciences Research Council [EP/M506515/1] and the Consejo Nacional de Ciencia y Tecnología (CONACYT).
Aerodynamics of dynamic wing flexion in translating wings
NASA Astrophysics Data System (ADS)
Liu, Yun; Cheng, Bo; Sane, Sanjay P.; Deng, Xinyan
2015-06-01
We conducted a systematic experimental study to investigate the aerodynamic effects of active trailing-edge flexion on a high-aspect-ratio wing translating from rest at a high angle of attack. We varied the timing and speed of the trailing-edge flexion and measured the resulting aerodynamic effects using a combination of direct force measurements and two-dimensional PIV flow measurements. The results indicated that the force and flow characteristics depend strongly on the timing of flexion, but relatively weakly on its speed. This is because the force and vortical flow structure are more sensitive to the timing of flexion relative to the shedding of starting vortex and leading-edge vortex. When the trailing-edge flexion occurred slightly before the starting vortex was shed, the lift production was greatly improved with the instantaneous peak lift increased by 54 % and averaged lift increased by 21 % compared with the pre-flexed case where the trailing-edge flexed before wing translation. However, when the trailing-edge flexed during or slightly after the leading-edge vortex shedding, the lift was significantly reduced by the disturbed development of leading-edge vortex. The force measurement results also imply that the trailing-edge flexion prior to wing translation does not augment lift but increases drag, thus resulting in a lower lift-drag ratio as compared to the case of flat wing.
Airfoil for a gas turbine engine
Liang, George [Palm City, FL
2011-05-24
An airfoil is provided for a turbine of a gas turbine engine. The airfoil comprises: an outer structure comprising a first wall including a leading edge, a trailing edge, a pressure side, and a suction side; an inner structure comprising a second wall spaced from the first wall and at least one intermediate wall; and structure extending between the first and second walls so as to define first and second gaps between the first and second walls. The second wall and the at least one intermediate wall define at least one pressure side supply cavity and at least one suction side supply cavity. The second wall may include at least one first opening near the leading edge of the first wall. The first opening may extend from the at least one pressure side supply cavity to the first gap. The second wall may further comprise at least one second opening near the trailing edge of the outer structure. The second opening may extend from the at least one suction side supply cavity to the second gap. The first wall may comprise at least one first exit opening extending from the first gap through the pressure side of the first wall and at least one second exit opening extending from the second gap through the suction side of the second wall.
Stainless-Steel-Foam Structures Evaluated for Fan and Rotor Blades
NASA Technical Reports Server (NTRS)
Lerch, Bradley A.; Raj, Sai V.; Ghosn, Louis J.; Hebsur, Mohan G.; Cosgriff, Laura M.; Min, James B.; Holland, Frederic A., Jr.
2005-01-01
The goal of this project is to use a sandwich structure design, consisting of two stainlesssteel face sheets and a stainless-steel-foam core, to fabricate engine fan and propeller blades. Current fan blades are constructed either of polymer matrix composites (PMCs) or hollow titanium alloys. The PMC blades are expensive and have poor impact resistance on their leading edges, thereby requiring a metallic leading edge to satisfy the Federal Aviation Administration s impact requirements relating to bird strikes. Hollow titanium blades cost more to fabricate because of the intrinsically difficult fabrication issues associated with titanium alloys. However, both these current concepts produce acceptable lightweight fan blades.
A water tunnel flow visualization study of the vortex flow structures on the F/A-18 aircraft
NASA Technical Reports Server (NTRS)
Sandlin, Doral R.; Ramirez, Edgar J.
1991-01-01
The vortex flow structures occurring on the F/A-18 aircraft at high angles of attack were studied. A water tunnel was used to gather flow visualization data on the forebody vortex and the wing leading edge extension vortex. The longitudinal location of breakdown of the leading edge vortex was found to be consistently dependent on the angle of attack. Other parameters such as Reynolds number, model scale, and model fidelity had little influence on the overall behavior of the flow structures studied. The lateral location of the forebody vortex system was greatly influenced by changes in the angle of sideslip. Strong interactions can occur between the leading edge extension vortex and the forebody vortex. Close attention was paid to vortex induced flows on various airframe components of the F/A-18. Reynolds number and angle of attack greatly affected the swirling intensity, and therefore the strength of the studied vortices. Water tunnel results on the F/A-18 correlated well with those obtained in similar studies at both full and sub scale levels. The water tunnel can provide, under certain conditions, good simulations of realistic flows in full scale configurations.
Characterization of Unsteady Flow Structures Near Leading-Edge Slat. Part 1; PIV Measurements
NASA Technical Reports Server (NTRS)
Jenkins, Luther N.; Khorrami, Mehdi R.; Choudhari, Meelan
2004-01-01
A comprehensive computational and experimental study has been performed at the NASA Langley Research Center as part of the Quiet Aircraft Technology (QAT) Program to investigate the unsteady flow near a leading-edge slat of a two-dimensional, high-lift system. This paper focuses on the experimental effort conducted in the NASA Langley Basic Aerodynamics Research Tunnel (BART) where Particle Image Velocimetry (PIV) data was acquired in the slat cove and at the slat trailing edge of a three-element, high-lift model at 4, 6, and 8 degrees angle of attack and a freestream Mach Number of 0.17. Instantaneous velocities obtained from PIV images are used to obtain mean and fluctuating components of velocity and vorticity. The data show the recirculation in the cove, reattachment of the shear layer on the slat lower surface, and discrete vortical structures within the shear layer emanating from the slat cusp and slat trailing edge. Detailed measurements are used to examine the shear layer formation at the slat cusp, vortex shedding at the slat trailing edge, and convection of vortical structures through the slat gap. Selected results are discussed and compared with unsteady, Reynolds-Averaged Navier-Stokes (URANS) computations for the same configuration in a companion paper by Khorrami, Choudhari, and Jenkins (2004). The experimental dataset provides essential flow-field information for the validation of near-field inputs to noise prediction tools.
Formation and Development of the Dynamic Stall Vortex on a Wing with Leading Edge Tubercles
NASA Astrophysics Data System (ADS)
Hrynuk, John; Bohl, Douglas
2015-11-01
Humpback whales are unique in that their flippers have leading edge ``bumps'' or tubercles. Past work on airfoils inspired by whale flippers has centered on the static aerodynamic characteristics of these airfoils. The current study uses Molecular Tagging Velocimetry (MTV) to investigate the effects of tubercles on dynamically pitching NACA 0012 airfoils. A baseline (i.e. straight leading edge) wing and one modified with leading edge tubercles are investigated. Tracking of the Dynamic Stall Vortex (DSV) is performed to quantitatively compare the DSV formation location, path, and convective velocity for tubercled and baseline wings. The results show that there is a spanwise variation in the initial formation location and motion of the DSV on the modified wing. Once formed, the DSV aligns into a more uniform spanwise structure. As the pitching motion progresses, the DSV on the modified wing convects away from the airfoil surface later and slower than is observed for the baseline airfoil. The results indicate that the tubercles may delay stall when compared to the baseline airfoil. This work was supported by NSF Grant # 0845882.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kononov, A.; Egorov, S. V.; Kvon, Z. D.
We experimentally investigate spin-polarized electron transport between a permalloy ferromagnet and the edge of a two-dimensional electron system with band inversion, realized in a narrow, 8 nm wide, HgTe quantum well. In zero magnetic field, we observe strong asymmetry of the edge potential distribution with respect to the ferromagnetic ground lead. This result indicates that the helical edge channel, specific for the structures with band inversion even at the conductive bulk, is strongly coupled to the ferromagnetic side contact, possibly due to the effects of proximity magnetization. This allows selective and spin-sensitive contacting of helical edge states.
NASA Technical Reports Server (NTRS)
Treiber, David A.; Muilenburg, Dennis A.
1995-01-01
The viability of applying a state-of-the-art Euler code to calculate the aerodynamic forces and moments through maximum lift coefficient for a generic sharp-edge configuration is assessed. The OVERFLOW code, a method employing overset (Chimera) grids, was used to conduct mesh refinement studies, a wind-tunnel wall sensitivity study, and a 22-run computational matrix of flow conditions, including sideslip runs and geometry variations. The subject configuration was a generic wing-body-tail geometry with chined forebody, swept wing leading-edge, and deflected part-span leading-edge flap. The analysis showed that the Euler method is adequate for capturing some of the non-linear aerodynamic effects resulting from leading-edge and forebody vortices produced at high angle-of-attack through C(sub Lmax). Computed forces and moments, as well as surface pressures, match well enough useful preliminary design information to be extracted. Vortex burst effects and vortex interactions with the configuration are also investigated.
Nonlinear aeroservoelastic analysis of a controlled multiple-actuated-wing model with free-play
NASA Astrophysics Data System (ADS)
Huang, Rui; Hu, Haiyan; Zhao, Yonghui
2013-10-01
In this paper, the effects of structural nonlinearity due to free-play in both leading-edge and trailing-edge outboard control surfaces on the linear flutter control system are analyzed for an aeroelastic model of three-dimensional multiple-actuated-wing. The free-play nonlinearities in the control surfaces are modeled theoretically by using the fictitious mass approach. The nonlinear aeroelastic equations of the presented model can be divided into nine sub-linear modal-based aeroelastic equations according to the different combinations of deflections of the leading-edge and trailing-edge outboard control surfaces. The nonlinear aeroelastic responses can be computed based on these sub-linear aeroelastic systems. To demonstrate the effects of nonlinearity on the linear flutter control system, a single-input and single-output controller and a multi-input and multi-output controller are designed based on the unconstrained optimization techniques. The numerical results indicate that the free-play nonlinearity can lead to either limit cycle oscillations or divergent motions when the linear control system is implemented.
Effects of Edge on-Site Potential in a Honeycomb Topological Magnon Insulator
NASA Astrophysics Data System (ADS)
Pantaleón, Pierre A.; Xian, Yang
2018-06-01
While the deviation of the edge on-site potential from the bulk values in a magnonic topological honeycomb lattice leads to the formation of edge states in a bearded boundary, this is not the case for a zigzag termination, where no edge state is found. In a semi-infinite lattice, the intrinsic on-site interactions along the boundary sites generate an effective defect and this gives rise to Tamm-like edge states. If a nontrivial gap is induced, both Tamm-like and topologically protected edge states appear in the band structure. The effective defect can be strengthened by an external on-site potential, and the dispersion relation, velocity and magnon density of the edge states all become tunable.
Fermi-edge singularity and the functional renormalization group
NASA Astrophysics Data System (ADS)
Kugler, Fabian B.; von Delft, Jan
2018-05-01
We study the Fermi-edge singularity, describing the response of a degenerate electron system to optical excitation, in the framework of the functional renormalization group (fRG). Results for the (interband) particle-hole susceptibility from various implementations of fRG (one- and two-particle-irreducible, multi-channel Hubbard–Stratonovich, flowing susceptibility) are compared to the summation of all leading logarithmic (log) diagrams, achieved by a (first-order) solution of the parquet equations. For the (zero-dimensional) special case of the x-ray-edge singularity, we show that the leading log formula can be analytically reproduced in a consistent way from a truncated, one-loop fRG flow. However, reviewing the underlying diagrammatic structure, we show that this derivation relies on fortuitous partial cancellations special to the form of and accuracy applied to the x-ray-edge singularity and does not generalize.
Structures in Ionospheric Number Density and Velocity Associated with Polar Cap Ionization Patches
NASA Technical Reports Server (NTRS)
Kivanc, O.; Heelis, R. A.
1997-01-01
Spectral characteristics of polar cap F region irregularities on large density gradients associated with polar ionization patches are studied using in situ measurements made by the Dynamics Explorer 2 (DE 2) spacecraft. The 18 patches studied in this paper were identified by the algorithm introduced by Coley and Heelis, and they were encountered during midnight-noon passes of the spacecraft. Density and velocity spectra associated with these antisunward convecting patches are analyzed in detail. Observations indicate the presence of structure on most patches regardless of the distance between the patch and the cusp where they are believed to develop. Existence of structure on both leading and trailing edges is established when such edges exist. Results, which show no large dependence of Delta N/N power on the sign of the edge gradient del N, do not allow the identification of leading and trailing edges of the patch. The Delta N/N is an increasing function of gradient del N regardless of the sign of the gradient. The correlation between Delta N/N and Delta V is generally poor, but for a given intensity in Delta V, Delta N/N maximizes in regions of large gradients in N. There is evidence for the presence of unstructured patches that seem to co-exist with unstructured horizontal velocities. Slightly smaller spectral indices for trailing edges support the presence of the E X B drift instability. Although this instability is found to be operating in some cases, results suggest that stirring may be a significant contributor to kilometer-size structures in the polar cap.
NASA Astrophysics Data System (ADS)
Gao, Yanlin; Okada, Susumu
2017-05-01
Using the density functional theory, we studied the electronic structures of zigzag graphene nanoribbons with hydroxyl, H, ketone, aldehyde, or carboxyl terminations under a lateral electric field. The critical electric field for electron emission is proportional to the work function of the functionalized edges except the hydroxylated edge, which leads to the anomalous electric field outside the edge, owing to the electrons in the nearly free electron (NFE) state in the vacuum region. The strong electric field also causes a potential barrier for the electron emission from the H-terminated edge owing to the downward shift of the NFE state.
NASA Astrophysics Data System (ADS)
Marini, C.; Bendele, M.; Joseph, B.; Kantor, I.; Mitrano, M.; Mathon, O.; Baldini, M.; Malavasi, L.; Pascarelli, S.; Postorino, P.
2014-11-01
Local and electronic structures of vanadium in \\text{VO}2 are studied across the high-pressure insulator-to-metal (IMT) transition using V K-edge x-ray absorption spectroscopy. Unlike the temperature-induced IMT, pressure-induced metallization leads to only subtle changes in the V K-edge prepeak structure, indicating a different mechanism involving smaller electronic spectral weight transfer close to the chemical potential. Intriguingly, upon application of the hydrostatic pressure, the electronic structure begins to show substantial changes well before the occurrence of the IMT and the associated structural transition to an anisotropic compression of the monoclinic metallic phase.
Reynolds number effect on airfoil wake structures under pitching and heaving motion
NASA Astrophysics Data System (ADS)
Kim, Kyung Chun; Karbasian, Hamidreza; ExpTENsys Team
2017-11-01
Detached Eddy Simulation (DES) and particle image velocimetry (PIV) measurements were performed to investigate the wake flow characteristics of an airfoil under pitching and heaving motion. A NACA0012 airfoil was selected for the numerical simulation and experiments were carried out in a wind tunnel and a water tunnel at Reynolds number of 15,000 and 90,000, respectively. The airfoil oscillated around an axis located 1/4 distance from the leading edge chord. Two different angles of attack, 20° and 30°, were selected with +/-10° maximum amplitude of oscillation. In order to extract the coherent flow structures from time-resolved PIV data, proper orthogonal decomposition (POD) analysis was performed on 1,000 instantaneous realisations for each condition using the method of snapshots. Vorticity contour and velocity profiles for both PIV and DES results are in good agreement for pitching and heaving motion. At high Reynolds number, 3D stream-wise vortices appeared after generating span-wise vortices. The higher maximum angle of attack allows the leading edge vortex to grow stronger and that the angle of attack appears to be more important in influencing the growth of the leading edge vortex structure than the reduced frequency. National Research Foundation of Korea (No. 2011-0030013).
Wrinkling reduction of membrane structure by trimming edges
NASA Astrophysics Data System (ADS)
Liu, Mingjun; Huang, Jin; Liu, Mingyue
2017-05-01
Thin membranes have negligible bending stiffness, compressive stresses inevitably lead to wrinkling. Therefore, it is important to keep the surface of membrane structures flat in order to guarantee high precision. Edge-trimming is an effective method to passively diminish wrinkles, however a key difficulty in this process is the determination of the optimal trimming level. In this paper, regular polygonal membrane structures subjected to equal radial forces were analyzed, and a new stress field distribution model for arc-edge square membrane structure was proposed to predict the optimal trimming level. This model is simple and applicable to any polygonal membrane structures. Comparison among the results of the finite element analysis, and the experimental and analytical results showed that the proposed model accurately described the stress field distribution and guaranteed that there are no wrinkles appear inside the effective inscribed circle region for the optimal trimming level.
NASA Technical Reports Server (NTRS)
Scott, S. J.; Nicks, O. W.; Imbrie, P. K.
1985-01-01
An investigation was conducted in the Texas A&M University 7 by 10 foot Low Speed Wind Tunnel to provide a direct comparison of the effect of several leading edge devices on the aerodynamic performance of a highly swept wing configuration. Analysis of the data indicates that for the configuration with undeflected leading edges, vortex separation first occurs on the outboard wing panel for angles of attack of approximately 2, and wing apex vorticies become apparent for alpha or = 4 deg. However, the occurrence of the leading edge vortex flow may be postponed with leading edge devices. Of the devices considered, the most promising were a simple leading edge deflection of 30 deg and a leading edge slat system. The trailing edge flap effectiveness was found to be essentially the same for the configuration employing either of these more promising leading edge devices. Analysis of the lateral directional data showed that for all of the concepts considered, deflecting leading edge downward in an attempt to postpone leading edge vortex flows, has the favorable effect of reducing the effective dihedral.
The leading-edge vortex of swift wing-shaped delta wings
NASA Astrophysics Data System (ADS)
Muir, Rowan Eveline; Arredondo-Galeana, Abel; Viola, Ignazio Maria
2017-08-01
Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing.
The leading-edge vortex of swift wing-shaped delta wings
Muir, Rowan Eveline; Arredondo-Galeana, Abel
2017-01-01
Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing. PMID:28878968
The leading-edge vortex of swift wing-shaped delta wings.
Muir, Rowan Eveline; Arredondo-Galeana, Abel; Viola, Ignazio Maria
2017-08-01
Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus . The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing.
The Structure of A Pacific Narrow Cold Frontal Rainband
NASA Technical Reports Server (NTRS)
Jorgensen, David P.; Pu, Zhaoxia; Persson, Ola; Tao, Wei-Kuo; Starr, David OC. (Technical Monitor)
2002-01-01
A NOAA P-3 instrumented aircraft observed an intense, fast-moving narrow cold frontal Farmhand as it approached the Pacific Northwest coast on 19 February 2001 during the Pacific Coastal Jets Experiment. Pseudo-dual-Doppler analyses performed on the airborne Doppler radar data while the frontal system was well offshore indicated that a narrow ribbon of very high radar reflectively convective cores characterized the Farmhand at low levels with echo tops to approximately 4-5 km. The NCFR exhibited gaps in its narrow ribbon of high reflectively, probably as a result of hydrodynamic instability all no its advancing cold pool leading edge. In contrast to some earlier studies of cold frontal rainbands, density current theory described well the motion of the overall front. The character of the updraft structure associated with the heavy rainfall at its leading edge varied across the gap region. The vertical shear of the cross-frontal low-level ambient flow exerted a strong influence on the updraft character, consistent with theoretical arguments developed for squall lines describing the balance of vorticity at the leading edge. In short regions south of the gaps the vertical wind shear was strongest with the updrafts and rain shafts more intense, narrower, and more erect or even downshear tilted. North of the gaps the wind shear weakened with less intense Dihedrals which tilted upshear with a broader band of rainfall. Simulations using a nonhydrostatic mesoscale nested grid model are used to investigate the gap regions, particularly the balance of cold pool induced to pre-frontal ambient shears at the leading edge. Observations confirm the model results that the updraft character depends on the balance of vorticity at the leading edge. Downshear-tilted updrafts imply that convection south of the gap regions would weaken with time relative to the frontal segments north of the gaps since inflow air would be affected by passage through the heavy rain region before ascent, suggesting a mechanism for gap filling.
NASA Astrophysics Data System (ADS)
Chen, Shaowen; Xu, Hao; Sun, Shijun; Zhang, Longxin; Wang, Songtao
2015-05-01
Experimental research has been carried out at low speed to investigate the effect of additional leading-edge surface roughness on a highly-loaded axial compressor cascade. A 5-hole aerodynamic probe has been traversed across one pitch to obtain the distribution of total pressure loss coefficient, secondary flow vector, flow angles and other aerodynamic parameters at the exit section. Meanwhile, ink-trace flow visualization has been used to measure the flow fields on the walls of cascades and a detailed topology structure of the flow on the walls has been obtained. Aerodynamic parameters and flow characteristics are compared by arranging different levels of roughness on various parts of the leading edge. The results show that adding surface roughness at the leading edge and on the suction side obviously influences cascade performance. Aggravated 3-D flow separation significantly increases the loss in cascades, and the loss increases till 60% when the level of emery paper is 80 mm. Even there is the potential to improve cascade performance in local area of cascade passage. The influence of the length of surface roughness on cascade performance is not always adverse, and which depends on the position of surface roughness.
Leading edge vortex control on a delta wing with dielectric barrier discharge plasma actuators
NASA Astrophysics Data System (ADS)
Shen, Lu; Wen, Chih-yung
2017-06-01
This paper presents an experimental investigation of the application of dielectric barrier discharge (DBD) plasma actuators on a slender delta wing to control the leading edge vortices (LEVs). The experiments are conducted in a wind tunnel with a Reynolds number of 50 000 based on the chord length. The smoke flow visualization reveals that the DBD plasma actuators at the leading edges significantly modify the vortical flow structure over the delta wing. It is noted that symmetric control at both semi-spans and asymmetric control at a single semi-span leads to opposite effects on the local LEVs. Particle image velocimetry (PIV) indicates that the shear layer is deformed by the actuators. Therefore, both the strength and the shape of the LEV cores are deeply affected. The six-component force measurement shows that the DBD plasma actuators have a limited effect on lift and drag while inducing relatively large moments. This suggests that the DBD plasma actuator is a promising technique for delta wing maneuvering.
NASA Technical Reports Server (NTRS)
Brown, John C.; Fox, Geoffrey K.
1989-01-01
The depolarizing and occultation effects of a finite spherical light source on the polarization of light Thomson-scattered from a flat circumstellar envelope seen edge-on are analyzed. The analysis shows that neglect of the finite size of the light source leads to a gross overestimate of the polarization for a given disk geometry. By including occultation and depolarization, it is found that B-star envelopes are necessarily highly flattened disk-type structures. For a disk viewed edge-on, the effect of occultation reduces the polarization more than the inclusion of the depolarization factor alone. Analysis of a one-dimensional plume leads to a powerful technique that permits the electron density distribution to be explicitly obtained from the polarimetric data.
Experimental study of the velocity field on a delta wing
NASA Technical Reports Server (NTRS)
Payne, F. M.; Ng, T. T.; Nelson, R. C.
1987-01-01
An experimental study of the leading edge vortices on delta wings at large angles of incidence is presented. A combination of flow visualization, seven-hole pressure probe surveys and laser velocimeter measurements were used to study the leading edge vortex formation and breakdown for a set of delta wings. The delta wing models were thin flat plates with sharp leading edges having sweep angles of 70, 75, 80, and 85 degrees. The flow structure was examined for angles of incidence from 10 to 40 degrees and chord Reynolds numbers from 85,000 to 640,000. Vortex breakdown was observed on all the wings tested. Both bubble and spiral modes of breakdown were observed. The visualization and wake survey data shows that when vortex breakdown occurs the core flow transforms abruptly from a jet-like flow to a wake-like flow. The result also revealed that probe induced vortex breakdown was more steady than the natural breakdown.
Reducing flow-induced resonance in a cavity
NASA Technical Reports Server (NTRS)
Cattafesta, III, Louis N. (Inventor); Wlezien, Richard W. (Inventor); Won, Chin C. (Inventor); Garg, Sanjay (Inventor)
1998-01-01
A method and system are provided for reducing flow-induced resonance in a structure's cavity. A time-varying disturbance is introduced into the flow along a leading edge of the cavity. The time-varying disturbance can be periodic and can have the same or different frequency of the natural resonant frequency of the cavity. In one embodiment of the system, flaps are mounted flush with the surface of the structure along the cavity's leading edge. A piezoelectric actuator is coupled to each flap and causes a portion of each flap to oscillate into and out of the flow in accordance with the time-varying function. Resonance reduction can be achieved with both open-loop and closed-loop configurations of the system.
NASA Astrophysics Data System (ADS)
Sorkin, Anastassia; Su, Haibin
2018-06-01
The fusion processes of structures consisting of various combinations between sumanene and corannulene, leading to the formation of graphene nanoribbons (GNRs) under heating are simulated by density-functional-based tight-binding molecular dynamics. Distinct stages are unraveled in the course of GNR formation. Firstly, the carbon fragments coalescence into highly strained framework. Secondly, structural reconstruction invokes breaking most strained bonds to form a GNR structure containing numerous defects. Lastly, defects are remedied by the delicate ‘edge-facilitated self-healing’ process through two synergized edge-related effects: elevated mobility of defects and promoted structure reconstructions owing to the remarkable dynamics associated with edges. Importantly, detailed dynamics in the course of forming GNRs with defects and grain boundaries simulated in this work is valuable to provide better understanding at the atomistic scale of defect formation as well as self-healing in the context of the sp2 carbon network. In particular, edges play important roles in not only generating Stone–Wales (SW), 5-8-5 types of defects, 8-5-5-8 and pentagon–heptagon grain boundaries. In addition, our simulations predict the existence of one novel defect, coined as the Inverse SW defect, which is to be confirmed in future experimental studies. This study of dynamic structural evolution reveals that edges are prone to intrinsic and extrinsic modifications such as atomic-scale defects, structural distortions and inhomogeneity.
Flow control of a centrifugal fan in a commercial air conditioner
NASA Astrophysics Data System (ADS)
Kim, Jiyu; Bang, Kyeongtae; Choi, Haecheon; Seo, Eung Ryeol; Kang, Yonghun
2015-11-01
Air-conditioning fans require a low noise level to provide user comfort and quietness. The aerodynamic noise sources are generated by highly unsteady, turbulent structures near the fan blade. In this study, we investigate the flow characteristics of a centrifugal fan in an air-conditioner indoor unit and suggest control ideas to develop a low noise fan. The experiment is conducted at the operation condition where the Reynolds number is 163000 based on the blade tip velocity and chord length. Intermittent separation occurs at the blade leading edge and thus flow significantly fluctuates there, whereas vortex shedding occurs at the blade trailing edge. Furthermore, the discharge flow observed in the axial plane near the shroud shows low-frequency intermittent behaviors, resulting in high Reynolds stresses. To control these flow structures, we modify the shapes of the blade leading edge and shroud of the centrifugal fan and obtain noise reduction. The flow characteristics of the base and modified fans will be discussed. Supported by 0420-20130051.
On the study of wavy leading-edge vanes to achieve low fan interaction noise
NASA Astrophysics Data System (ADS)
Tong, Fan; Qiao, Weiyang; Xu, Kunbo; Wang, Liangfeng; Chen, Weijie; Wang, Xunnian
2018-04-01
The application of wavy leading-edge vanes to reduce a single-stage axial fan noise is numerically studied. The aerodynamic and acoustic performance of the fan is numerically investigated using a hybrid unsteady Reynolds averaged Navier-Stokes (URANS)/acoustic analogy method (Goldstein equations). First, the hybrid URANS/Goldstein method is developed and successfully validated against experiment results. Next, numerical simulations are performed to investigate the noise reduction effects of the wavy leading-edge vanes. The aerodynamic and acoustic performance is assessed for a fan with vanes equipped with two different wavy leading-edge profiles and compared with the performance of conventional straight leading-edge vanes. Results indicate that a fan with wavy leading-edge vanes produces lower interaction noise than the baseline fan without a significant loss in aerodynamic performance. In fact, it is demonstrated that wavy leading-edge vanes have the potential to lead to both aerodynamic and acoustic improvements. The two different wavy leading-edge profiles are shown to successfully reduce the fan tone sound power level by 1.2 dB and 4.3 dB, respectively. Fan efficiency is also improved by about 1% with one of the tested wavy leading-edge profiles. Large eddy simulation (LES) is also performed for a simplified fan stage model to assess the effects of wavy leading-edge vanes on the broadband fan noise. Results indicate that the overall sound power level of a fan can be reduced by about 4 dB with the larger wavy leading-edge profile. Finally, the noise reduction mechanisms are investigated and analysed. It is found that the wavy leading-edge profiles can induce significant streamwise vorticity around the leading-edge protuberances and reduce pressure fluctuations (especially at locations of wavy leading-edge hills) and unsteady forces on the stator vanes. The underlying mechanism of the reduced pressure fluctuations is also discussed by examining the magnitude-squared coherence between the velocity and pressure fluctuations in the vicinity of the noise sources. Moreover, a reduction in the correlation level of the wall pressure fluctuations along the vane leading-edge is observed, as well as destructive phase interference along the vane leading-edge.
Contact formation during fibroblast locomotion: involvement of membrane ruffles and microtubules
1988-01-01
We have correlated the motility of the leading edge of fibroblasts, monitored by phase-contrast cinematography, with the relative distributions of several cytoskeletal elements (vinculin, tubulin, and actin) as well as with the contact patterns determined by interference reflection microscopy. This analysis has revealed the involvement of both ruffles and microspikes, as well as microtubules in the initiation of focal contact formation. Nascent vinculin sites within the leading edge or at its base, taken as primordial cell-substrate contacts, were invariably colocalized with sites that showed a history of transient, prolonged, or cyclic ruffling activity. Extended microspike structures, often preceded the formation of ruffles. Immunofluorescent labeling indicated that some of these primordial contacts were in close apposition to the ends of microtubules that penetrated into the leading edge. By fluorescence and electron microscopy short bundles of actin filaments found at the base of the leading edge were identified as presumptive, primordial contacts. It is concluded that ruffles and microspikes, either independently or in combination, initiate and mark the sites for future contact. Plaque proteins then accumulate (within 10-30 s) at the contract site and, beneath ruffles, induce localized bundling of actin filaments. We propose that all primordial contacts support traction for leading edge protrusion but that only some persist long enough to nucleate stress fiber assembly. Microtubules are postulated as the elements that select, stabilize, and potentiate the formation of these latter, long-lived contacts. PMID:3126193
Numerical simulation of incidence and sweep effects on delta wing vortex breakdown
NASA Technical Reports Server (NTRS)
Ekaterinaris, J. A.; Schiff, Lewis B.
1994-01-01
The structure of the vortical flowfield over delta wings at high angles of attack was investigated. Three-dimensional Navier-Stokes numerical simulations were carried out to predict the complex leeward-side flowfield characteristics, including leading-edge separation, secondary separation, and vortex breakdown. Flows over a 75- and a 63-deg sweep delta wing with sharp leading edges were investigated and compared with available experimental data. The effect of variation of circumferential grid resolution grid resolution in the vicinity of the wing leading edge on the accuracy of the solutions was addressed. Furthermore, the effect of turbulence modeling on the solutions was investigated. The effects of variation of angle of attack on the computed vortical flow structure for the 75-deg sweep delta wing were examined. At moderate angles of attack no vortex breakdown was observed. When a critical angle of attack was reached, bubble-type vortex breakdown was found. With further increase in angle of attack, a change from bubble-type breakdown to spiral-type vortex breakdown was predicted by the numerical solution. The effects of variation of sweep angle and freestream Mach number were addressed with the solutions on a 63-deg sweep delta wing.
The tubercles on humpback whales' flippers: application of bio-inspired technology.
Fish, Frank E; Weber, Paul W; Murray, Mark M; Howle, Laurens E
2011-07-01
The humpback whale (Megaptera novaeangliae) is exceptional among the large baleen whales in its ability to undertake aquabatic maneuvers to catch prey. Humpback whales utilize extremely mobile, wing-like flippers for banking and turning. Large rounded tubercles along the leading edge of the flipper are morphological structures that are unique in nature. The tubercles on the leading edge act as passive-flow control devices that improve performance and maneuverability of the flipper. Experimental analysis of finite wing models has demonstrated that the presence of tubercles produces a delay in the angle of attack until stall, thereby increasing maximum lift and decreasing drag. Possible fluid-dynamic mechanisms for improved performance include delay of stall through generation of a vortex and modification of the boundary layer, and increase in effective span by reduction of both spanwise flow and strength of the tip vortex. The tubercles provide a bio-inspired design that has commercial viability for wing-like structures. Control of passive flow has the advantages of eliminating complex, costly, high-maintenance, and heavy control mechanisms, while improving performance for lifting bodies in air and water. The tubercles on the leading edge can be applied to the design of watercraft, aircraft, ventilation fans, and windmills.
NASA Technical Reports Server (NTRS)
Maki, Ralph L.
1959-01-01
Blowing boundary-layer control was applied to the leading- and trailing-edge flaps of a 45 deg sweptback-wing complete model in a full-scale low-speed wind-tunnel study. The principal purpose of the study was to determine the effects of leading-edge flap deflection and boundary-layer control on maximum lift and longitudinal stability. Leading-edge flap deflection alone was sufficient to maintain static longitudinal stability without trailing-edge flaps. However, leading-edge flap blowing was required to maintain longitudinal stability by delaying leading-edge flow separation when trailing-edge flaps were deflected either with or without blowing. Partial-span leading-edge flaps deflected 60 deg with moderate blowing gave the major increase in maximum lift, although higher deflection and additional blowing gave some further increase. Inboard of 0.4 semispan leading-edge flap deflection could be reduced to 40 deg and/or blowing could be omitted with only small loss in maximum lift. Trailing-edge flap lift increments were increased by boundary-layer control for deflections greater than 45 deg. Maximum lift was not increased with deflected trailing-edge flaps with blowing.
Method for a Leading Edge Slat on a Wing of an Aircraft
NASA Technical Reports Server (NTRS)
Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)
2016-01-01
A method for managing a flight control surface system. A leading edge device is moved on a leading edge from an undeployed position to a deployed position. The leading edge device has an outer surface, an inner surface, and a deformable fairing attached to the leading edge device such that the deformable fairing covers at least a portion of the inner surface. The deformable fairing changes from a deformed shape to an original shape when the leading edge device is moved to the deployed position. The leading edge device is then moved from the deployed position to the undeployed position, wherein the deformable fairing changes from the original shape to the deformed shape.
Development of Advanced High Lift Leading Edge Technology for Laminar Flow Wings
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Korntheuer, Andrea; Komadina, Steve; Lin, John C.
2013-01-01
This paper describes the Advanced High Lift Leading Edge (AHLLE) task performed by Northrop Grumman Systems Corporation, Aerospace Systems (NGAS) for the NASA Subsonic Fixed Wing project in an effort to develop enabling high-lift technology for laminar flow wings. Based on a known laminar cruise airfoil that incorporated an NGAS-developed integrated slot design, this effort involved using Computational Fluid Dynamics (CFD) analysis and quality function deployment (QFD) analysis on several leading edge concepts, and subsequently down-selected to two blown leading-edge concepts for testing. A 7-foot-span AHLLE airfoil model was designed and fabricated at NGAS and then tested at the NGAS 7 x 10 Low Speed Wind Tunnel in Hawthorne, CA. The model configurations tested included: baseline, deflected trailing edge, blown deflected trailing edge, blown leading edge, morphed leading edge, and blown/morphed leading edge. A successful demonstration of high lift leading edge technology was achieved, and the target goals for improved lift were exceeded by 30% with a maximum section lift coefficient (Cl) of 5.2. Maximum incremental section lift coefficients ( Cl) of 3.5 and 3.1 were achieved for a blown drooped (morphed) leading edge concept and a non-drooped leading edge blowing concept, respectively. The most effective AHLLE design yielded an estimated 94% lift improvement over the conventional high lift Krueger flap configurations while providing laminar flow capability on the cruise configuration.
The Reconstruction and Failure Analysis of the Space Shuttle Columbia
NASA Technical Reports Server (NTRS)
Russell, Richard; Mayeaux, Brian; McDanels, Steven; Piascik, Robert; Sjaj. Samdee[; Jerman, Greg; Collins, Thomas; Woodworth, Warren
2009-01-01
Several days following the Columbia accident a team formed and began planning for the reconstruction of Columbia. A hangar at the Kennedy Space Center was selected for this effort due to it's size, available technical workforce and materials science laboratories and access to the vehicle ground processing infrastructure. The Reconstruction team established processes for receiving, handling, decontamination, tracking, identifying, cleaning and assessment of the debris. Initially, a 2-dimensional reconstruction of the Orbiter outer mold line was developed. As the investigation progressed fixtures which allowed a 3-dimensional reconstruction of the forward portions of the left wing's leading edge was developed. To support the reconstructions and forensic analyses a Materials and Processes (M&P) 'team was formed. This M&P team established processes for recording factual observations, debris cleaning, and engineering analysis. Fracture surfaces and thermal effects of selected airframe debris were assessed, and process flows for both nondestructive and destructive sampling and evaluation of debris were developed. The Team also assessed left hand airframe components that were believed to be associated with a structural breach of Columbia. A major portion of this analysis was evaluation of metallic deposits were prevalent on left wing leading edge components. Extensive evaluation of the visual, metallurgical and chemical nature of the deposits provided conclusions that were consistent with the visual assessments and interpretations of the NASA lead teams and the findings of the Columbia Accident Investigation Board. Analytical data collected by the M&P Team showed that a significant thermal event occurred at the left wing leading edge in the proximity of LH RCC Panels 8-9, and a correlation was formed between the deposits and overheating in these areas to the wing leading edge components. The analysis of deposits also showed exposure to temperatures in excess of 1649 C (3200 F), which would severely degrade support structure, tiles, and RCC panel materials. The integrated failure analysis of wing leading edge debris and deposits strongly supported the hypothesis that a breach occurred at LH RCC Panel 8.
NASA Astrophysics Data System (ADS)
Guida, M.; Marulo, F.; Russo, S.
2018-04-01
This paper investigates experimentally and numerically the response of a smart hybrid thermoplastic aircraft slat system subjected to a short-duration and high-frequency event like a birdstrike. The focus of the paper is to exploit the ability that superelastic shape memory alloys have to absorb and dissipate energy compared to conventional composite structures. The final objective of the work is to develop an innovative thermoplastic wing leading edge slat able to resist to an impact of 4-lb (1.8 kg) bird at speed of 350 kts (132 m/s), as requested by the aeronautical requirements. Aircraft leading edges must be certified for a proven level of bird impact resistance. In particular, the main structural requirement is to protect the torsion box and control devices from any significant damage caused by birdstrike in order to allow the aircraft to land safely. A clear increase of the composites toughness and higher absorbed energy levels before failure were also observed. This is due to the fact that SMA wires can absorb kinetic energy during the impact due to their remarkably large failure and recoverable strain and to their superelastic and hysteretic behaviour. The activities have been performed within the European Project COALESCE "Cost Efficient Advanced Leading Edge Structure", funded by the Seventh Framework Program Theme 7 Transport (incl. Aeronautics).
Bachmann, Thomas; Wagner, Hermann
2011-01-01
Barn owl feathers at the leading edge of the wing are equipped with comb-like structures termed serrations on their outer vanes. Each serration is formed by one barb ending that separates and bends upwards. This structure is considered to play a role in air-flow control and noise reduction during flight. Hence, it has considerable potential for engineering applications, particularly in the aviation industry. Several publications have reported possible functions of serrations at artificial airfoils. However, only crude approximations of natural serrations have so far been investigated. We refer to these attempts as zero-order approximations of serrations. It was the goal of this study to present a quantitative three-dimensional characterization of natural serrations as first-order approximations (mean values) and second-order approximations (listed differences depending on the position of the serration along the leading edge). Confocal laser scanning microscopy was used for a three-dimensional reconstruction and investigation with high spatial resolution. Each serration was defined by its length, profile geometry and curvature. Furthermore, the orientation of the serrations at the leading edge was characterized by the inclination angle, the tilt angle and the separation distance of neighboring serrations. These data are discussed with respect to possible applications of serration-like structures for noise suppression and air-flow control. PMID:21507001
Influence of matrix type on tree community assemblages along tropical dry forest edges.
Benítez-Malvido, Julieta; Gallardo-Vásquez, Julio César; Alvarez-Añorve, Mariana Y; Avila-Cabadilla, Luis Daniel
2014-05-01
• Anthropogenic habitat edges have strong negative consequences for the functioning of tropical ecosystems. However, edge effects on tropical dry forest tree communities have been barely documented.• In Chamela, Mexico, we investigated the phylogenetic composition and structure of tree assemblages (≥5 cm dbh) along edges abutting different matrices: (1) disturbed vegetation with cattle, (2) pastures with cattle and, (3) pastures without cattle. Additionally, we sampled preserved forest interiors.• All edge types exhibited similar tree density, basal area and diversity to interior forests, but differed in species composition. A nonmetric multidimensional scaling ordination showed that the presence of cattle influenced species composition more strongly than the vegetation structure of the matrix; tree assemblages abutting matrices with cattle had lower scores in the ordination. The phylogenetic composition of tree assemblages followed the same pattern. The principal plant families and genera were associated according to disturbance regimes as follows: pastures and disturbed vegetation (1) with cattle and (2) without cattle, and (3) pastures without cattle and interior forests. All habitats showed random phylogenetic structures, suggesting that tree communities are assembled mainly by stochastic processes. Long-lived species persisting after edge creation could have important implications in the phylogenetic structure of tree assemblages.• Edge creation exerts a stronger influence on TDF vegetation pathways than previously documented, leading to new ecological communities. Phylogenetic analysis may, however, be needed to detect such changes. © 2014 Botanical Society of America, Inc.
NASA Technical Reports Server (NTRS)
Wilkinson, W. H.; Kirkhart, F. P.; Kistler, C. W.; Duckworth, W. H.; Ungar, E. W.; Foster, E. L.
1970-01-01
Technical problems of design and flight qualification of the proposed classes of surface insulation materials and leading edge materials were reviewed. A screening test plan, a preliminary design data test plan and a design data test plan were outlined. This program defined the apparent critical differences between the surface insulators and the leading edge materials, structuring specialized screening test plans for each of these two classes of materials. Unique testing techniques were shown to be important in evaluating the structural interaction aspects of the surface insulators and a separate task was defined to validate the test plan. In addition, a compilation was made of available information on proposed material (including metallic TPS), previous shuttle programs, pertinent test procedures, and other national programs of merit. This material was collected and summarized in an informally structured workbook.
Ristau, Neil; Siden, Gunnar Leif
2015-07-21
An airfoil includes a leading edge, a trailing edge downstream from the leading edge, a pressure surface between the leading and trailing edges, and a suction surface between the leading and trailing edges and opposite the pressure surface. A first convex section on the suction surface decreases in curvature downstream from the leading edge, and a throat on the suction surface is downstream from the first convex section. A second convex section is on the suction surface downstream from the throat, and a first convex segment of the second convex section increases in curvature.
Geometrical and structural properties of an Aeroelastic Research Wing (ARW-2)
NASA Technical Reports Server (NTRS)
Sandford, Maynard C.; Seidel, David A.; Eckstrom, Clinton V.; Spain, Charles V.
1989-01-01
Transonic steady and unsteady pressure tests were conducted on a large elastic wing known as the DAST ARW-2 wing. The wing has a supercritical airfoil, an aspect ratio of 10.3, a leading edge sweepback angle of 28.8 deg and is equipped with two inboard and one outboard trailing edge control surfaces. The geometrical and structural characteristics are presented of this elastic wing, using a combination of measured and calculated data, to permit future analyst to compare the experimental surface pressure data with theoretical predictions.
2009-06-24
CAPE CANAVERAL, Fla. – A closeup of the wing leading edge on space shuttle Atlantis where a reinforced-carbon carbon, or RCC, panel has been removed. The structural edge of the wing (area of red and green behind the panels) will undergo spar corrosion inspection to verify the structural integrity of the wing. The RCC panels will be placed in protective coverings until the inspection is complete. Atlantis will make the 31st flight to the International Space Station for the STS-129 mission, targeted for launch on Nov. 12. Photo credit: NASA/Tim Jacobs
Edge geometry superconducting tunnel junctions utilizing an NbN/MgO/NbN thin film structure
NASA Technical Reports Server (NTRS)
Hunt, Brian D. (Inventor); Leduc, Henry G. (Inventor)
1992-01-01
An edge defined geometry is used to produce very small area tunnel junctions in a structure with niobium nitride superconducting electrodes and a magnesium oxide tunnel barrier. The incorporation of an MgO tunnel barrier with two NbN electrodes results in improved current-voltage characteristics, and may lead to better junction noise characteristics. The NbN electrodes are preferably sputter-deposited, with the first NbN electrode deposited on an insulating substrate maintained at about 250 C to 500 C for improved quality of the electrode.
Method and Apparatus for a Leading Edge Slat on a Wing of an Aircraft
NASA Technical Reports Server (NTRS)
Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)
2013-01-01
A method and apparatus for managing a flight control surface system. A leading edge device is moved on a leading edge from an undeployed position to a deployed position. The leading edge device has an outer surface, an inner surface, and a deformable fairing attached to the leading edge device such that the deformable fairing covers at least a portion of the inner surface. The deformable fairing changes from a deformed shape to an original shape when the leading edge device is moved to the deployed position. The leading edge device is then moved from the deployed position to the undeployed position, wherein the deformable fairing changes from the original shape to the deformed shape.
Gas turbine bucket wall thickness control
Stathopoulos, Dimitrios; Xu, Liming; Lewis, Doyle C.
2002-01-01
A core for use in casting a turbine bucket including serpentine cooling passages is divided into two pieces including a leading edge core section and a trailing edge core section. Wall thicknesses at the leading edge and the trailing edge of the turbine bucket can be controlled independent of each other by separately positioning the leading edge core section and the trailing edge core section in the casting die. The controlled leading and trailing edge thicknesses can thus be optimized for efficient cooling, resulting in more efficient turbine operation.
Vortical flow management techniques
NASA Technical Reports Server (NTRS)
Rao, Dhanvada M.; Campbell, James F.
1987-01-01
The aerodynamic performance and controllability of advanced, highly maneuverable supersonic aircraft can be enhanced by means of 'vortex management', which refers to the purposeful manipulation and reordering of stable and concentrated vortical structures due to flow separations from highly swept leading edges and slender forebodies at moderate-to-high angles-of-attack. Attention is presently given to a variety of results obtained in the course of experiments on generic research models at NASA Langley, clarifying their underlying aerodynamics and evaluating their performance-improvement potential. The vortex-management concepts discussed encompass aerodynamic compartmentation of highly swept leading edges, vortex lift augmentation and modulation, and forebody vortex manipulation.
NASA Technical Reports Server (NTRS)
Zender, George W
1956-01-01
The experimental deflections and stresses of six plastic multicell-wing models of unswept, delta, and swept plan form are presented and compared with previously published theoretical results obtained by the electrical analog method. The comparisons indicate that the theory is reliable except for the evaluation of stresses in the vicinity of the leading edge of delta wings and the leading and trailing edges of swept wings. The stresses in these regions are questionable, apparently because of simplifications employed in idealizing the actual structure for theoretical purposes and because of local effects of concentrated loads.
Ablative thermal management structural material on the hypersonic vehicles
NASA Astrophysics Data System (ADS)
Shortland, H.; Tsai, C.
A hypersonic vehicle is designed to fly at high Mach number in the earth's atmosphere that will result in higher aerodynamic heating loads on specific areas of the vehicle. A thermal protection system is required for these areas that may exceed the operating temperature limit of structural materials. This paper delineates the application of ablative material as the passive type of thermal protection system for the nose or wing leading edges. A simplified quasi-steady-state one-dimensional computer model was developed to evaluate the performance and thermal design of a leading edge. The detailed description of the governing mathematical equations and results are presented. This model provides a quantitative information to support the design estimate, performance optimization, and assess preliminary feasibility of using ablation as a design approach.
Experimental investigation of leading-edge thrust at supersonic speeds
NASA Technical Reports Server (NTRS)
Wood, R. M.; Miller, D. S.
1983-01-01
Wings, designed for leading edge thrust at supersonic speeds, were investigated in the Unitary Plan Wind Tunnel at Mach numbers of 1.60, 1.80, 2.00, 2.16, and 2.36. Experimental data were obtained on a uncambered wing which had three interchangeable leading edges that varied from sharp to blunt. The leading edge thrust concept was evaluated. Results from the investigation showed that leading edge flow separation characteristics of all wings tested agree well with theoretical predictions. The experimental data showed that significant changes in wing leading edge bluntness did not affect the zero lift drag of the uncambered wings.
Development of X-43A Mach 10 Leading Edges
NASA Technical Reports Server (NTRS)
Ohlhorst, Craig W.; Glass, David E.; Bruce, Walter E., III; Lindell, Michael C.; Vaughn, Wallace L.; Dirling, R. B., Jr.; Hogenson, P. A.; Nichols, J. M.; Risner, N. W.; Thompson, D. R.
2005-01-01
The nose leading edge of the Hyper-X Mach 10 vehicle was orginally anticipated to reach temperatures near 4000 F at the leading-edge stagnation line. A SiC coated carbon/carbon (C/C) leading-edge material will not survive that extreme temperature for even a short duration single flight. To identify a suitable leading edge for the Mach 10 vehicle, arc-jet testing was performed on thirteen leading-edge segments fabricated from different material systems to evaluate their performance in a simulated flight environment. Hf, Zr, Si, and Ir based materials, in most cases as a coating on C/C, were included in the evaluation. Afterwards, MER, Tucson, AZ was selected as the supplier of the flight vehicle leading edges. The nose and the vertical and horizontal tail leading edges were fabricated out of a 3:1 biased high thermal conductivity C/C. The leading edges were coated with a three layer coating comprised of a SiC conversion of the top surface of the C/C, followed by a chemical vapor deposited layer of SiC, followed by a thin chemical vapor deposited layer of HfC. This paper will describe the fabrication of the Mach 10 C/C leading edges and the testing performed to validate performance.
Tanaka, Yoshinori; Kawamoto, Yosuke; Fujita, Masayuki; Noda, Susumu
2013-08-26
We numerically investigate broadband optical absorption enhancement in thin, 400-nm thick microcrystalline silicon (µc-Si) photovoltaic devices by photonic crystals (PCs). We realize absorption enhancement by coupling the light from the free space to the large area resonant modes at the photonic band-edge induced by the photonic crystals. We show that multiple photonic band-edge modes can be produced by higher order modes in the vertical direction of the Si photovoltaic layer, which can enhance the absorption on multiple wavelengths. Moreover, we reveal that the photonic superlattice structure can produce more photonic band-edge modes that lead to further optical absorption. The absorption average in wavelengths of 500-1000 nm weighted to the solar spectrum (AM 1.5) increases almost twice: from 33% without photonic crystal to 58% with a 4 × 4 period superlattice photonic crystal; our result outperforms the Lambertian textured structure.
Effect of disorder on longitudinal resistance of a graphene p-n junction in the quantum Hall regime
NASA Astrophysics Data System (ADS)
Chen, Jiang-Chai; Yeung, T. C. Au; Sun, Qing-Feng
2010-06-01
The longitudinal resistances of a six-terminal graphene p-n junction under a perpendicular magnetic field are investigated. Because of the chirality of the Hall edge states, the longitudinal resistances on top and bottom edges of the graphene ribbon are not equal. In the presence of suitable disorder, the top-edge and bottom-edge resistances well show the plateau structures in the both unipolar and bipolar regimes, and the plateau values are determined by the Landau filling factors only. These plateau structures are in excellent agreement with the recent experiment. For the unipolar junction, the resistance plateaus emerge in the absence of impurity and they are destroyed by strong disorder. But for the bipolar junction, the resistances are very large without the plateau structures in the clean junction. The disorder can strongly reduce the resistances and leads the formation of the resistance plateaus due to the mixture of the Hall edge states in virtue of the disorder. In addition, the size effect of the junction on the resistances is studied and some extra resistance plateaus are found in the long graphene junction case. This is explained by the fact that only part of the edge states participate in the full mixing.
Study of distorted octahedral structure in 3d transition metal complexes using XAFS
NASA Astrophysics Data System (ADS)
Gaur, A.; Nitin Nair, N.; Shrivastava, B. D.; Das, B. K.; Chakrabortty, Monideepa; Jha, S. N.; Bhattacharyya, D.
2018-01-01
Distortion in octahedral structure of 3d transition metal complexes (Mn, Fe, Co, Ni, Cu, Zn) has been studied using XAFS showing divergent nature of Cu complex. EXAFS analysis showed elongated metal-oxygen bonds for Cu complex leading to more distorted structure. Derivative XANES spectrum at Cu K-edge exhibits splitting of main edge which is correlated to elongated Cu-O bond length. Using these coordination geometry around metal centers, theoretical XANES spectra have been generated and features observed have been correlated to the corresponding metals p-DOS. It has been shown that distorted octahedral field in Cu complex is responsible for splitting of p-DOS.
NASA Technical Reports Server (NTRS)
Etchberger, F. R.
1983-01-01
Reduction of skin friction drag by suction of boundary layer air to maintain laminar flow has been known since Prandtl's published work in 1904. The dramatic increases in fuel costs and the potential for periods of limited fuel availability provided the impetus to explore technologies to reduce transport aircraft fuel consumption. NASA sponsored the Aircraft Energy Efficiency (ACEE) program in 1976 to develop technologies to improve fuel efficiency. This report documents the Lockheed-Georgia Company accomplishments in designing and fabricating a leading-edge flight test article incorporating boundary layer suction slots to be flown by NASA on their modified JetStar aircraft. Lockheed-Georgia Company performed as the integration contractor to design the JetStar aircraft modification to accept both a Lockheed and a McDonnell Douglas flight test article. McDonnell Douglas uses a porous skin concept. The report describes aerodynamic analyses, fabrication techniques, JetStar modifications, instrumentation requirements, and structural analyses and testing for the Lockheed test article. NASA will flight test the two LFC leading-edge test articles in a simulated commercial environment over a 6 to 8 month period in 1984. The objective of the flight test program is to evaluate the effectiveness of LFC leading-edge systems in reducing skin friction drag and consequently improving fuel efficiency.
Numerical investigation of rarefaction effects in the vicinity of a sharp leading edge
NASA Astrophysics Data System (ADS)
Pan, Shaowu; Gao, Zhenxun; Lee, Chunhian
2014-12-01
This paper presents a study of rarefaction effect on hypersonic flow over a sharp leading edge. Both continuum approach and kinetic method: a widely spread commercial Computational Fluid Dynamics-Navior-Stokes-Fourier (CFD-NSF) software - Fluent together with a direct simulation Monte Carlo (DSMC) code developed by the authors are employed for simulation of transition regime with Knudsen number ranging from 0.005 to 0.2. It is found that Fluent can predict the wall fluxes in the case of hypersonic argon flow over the sharp leading edge for the lowest Kn case (Kn = 0.005) in current paper while for other cases it also has a good agreement with DSMC except at the location near the sharp leading edge. Among all of the wall fluxes, it is found that coefficient of pressure is the most sensitive to rarefaction while heat transfer is the least one. A parameter based on translational nonequilibrium and a cut-off value of 0.34 is proposed for continuum breakdown in this paper. The structure of entropy and velocity profile in boundary layer is analyzed. Also, it is found that the ratio of heat transfer coefficient to skin friction coefficient remains uniform along the surface for the four cases in this paper.
NASA Technical Reports Server (NTRS)
Holland, Scott D.
1993-01-01
Three-dimensional sidewall-compression scramjet inlets with leading-edge sweeps of 30 deg and 70 deg were tested in the Langley Hypersonic CF4 Tunnel at Mach 6 and with a ratio of specific heats of 1.2. The parametric effects of leading-edge sweep, cowl position, contraction ratio, and Reynolds number were investigated. The models were instrumented with 42 static pressure orifices that were distributed on the sidewalls, base plate, and cowl. Schlieren movies were made of each test for flow visualization of the effects of the internal flow spillage on the external flow field. To obtain an approximate characterization of the flow field, a modification to two-dimensional, inviscid, oblique shock theory was derived to accommodate the three-dimensional effects of leading-edge sweep. This theory qualitatively predicted the reflected shock structure (i.e., sidewall impingement locations) and the observed increase in spillage with increasing leading-edge sweep. The primary effect of moving the cowl forward was capturing the flow that would have otherwise spilled out ahead of the cowl. Increasing the contraction ratio increases the number of internal shock reflections and hence incrementally increases the sidewall pressure distribution. Significant Reynolds number effects were noted over a small range of Reynolds number.
The Role of Connectivity on Electronic Properties of Lead Iodide Perovskite-Derived Compounds
2017-01-01
We use a layered solution crystal growth method to synthesize high-quality single crystals of two different benzylammonium lead iodide perovskite-like organic/inorganic hybrids. The well-known (C6H5CH2NH3)2PbI4 phase is obtained in the form of bright orange platelets, with a structure comprised of single ⟨100⟩-terminated sheets of corner-sharing PbI6 octahedra separated by bilayers of the organic cations. The presence of water during synthesis leads to formation of a novel minority phase that crystallizes in the form of nearly transparent, light yellow bar-shaped crystals. This phase adopts the monoclinic space group P21/n and incorporates water molecules, with structural formula (C6H5CH2NH3)4Pb5I14·2H2O. The crystal structure consists of ribbons of edge-sharing PbI6 octahedra separated by the organic cations. Density functional theory calculations including spin–orbit coupling show that these edge-sharing PbI6 octahedra cause the band gap to increase with respect to corner-sharing PbI6 octahedra in (C6H5CH2NH3)2PbI4. To gain systematic insight, we model the effect of the connectivity of PbI6 octahedra on the band gap in idealized lead iodide perovskite-derived compounds. We find that increasing the connectivity from corner-, via edge-, to face-sharing causes a significant increase in the band gap. This provides a new mechanism to tailor the optical properties in organic/inorganic hybrid compounds. PMID:28677956
Material characterization for morphing purposes in order to match flight requirements
NASA Astrophysics Data System (ADS)
Geier, Sebastian; Kintscher, Markus; Heintze, Olaf; Wierach, Peter; Monner, Hans-Peter; Wiedemann, Martin
2012-04-01
Natural laminar flow is one of the challenging aims of the current aerospace research. Main reasons for the aerodynamic transition from laminar into turbulent flow focusing on the airfoil-structure is the aerodynamic shape and the surface roughness. The Institute of Composite Structures and Adaptive Systems at the German Aerospace Center in Braunschweig works on the optimization of the aerodynamic-loaded structure of future aircrafts in order to increase their efficiency. Providing wing structures suited for natural laminar flow is a step towards this goal. Regarding natural laminar flow, the structural design of the leading edge of a wing is of special interest. An approach for a gap-less leading edge was developed to provide a gap- and step-less high quality surface suited for natural laminar flow and to reduce slat noise. In a national project the first generation of the 3D full scale demonstrator was successfully tested in 2010. The prototype consists of several new technologies, opening up the issue of matching the long and challenging list of airworthiness requirements simultaneously. Therefore the developed composite structure was intensively tested for further modifications according to meet requirements for abrasion, impact and deicing basically. The former presented structure consists completely of glass-fiber-prepreg (GFRP-prepreg). New functions required the addition of a new material-mix, which has to fit into the manufacturing-chain of the composite structure. In addition the hybrid composites have to withstand high loadings, high bending-induced strains (1%) and environmentally influenced aging. Moreover hot-wet cycling tests are carried out for the basic GFRP-structure in order to simulate the long term behavior of the material under extrem conditions. The presented paper shows results of four-points-bending-tests of the most critical section of the morphing leading edge device. Different composite-hybrids are built up and processed. An experimental based trend towards an optimized material design will be shown.
Turbine blades and systems with forward blowing slots
Zuteck, Michael D.; Zalusky, Leigh; Lees, Paul
2015-09-15
A blade for use in a wind turbine comprises a pressure side and suction side meeting at a trailing edge and leading edge. The pressure side and suction side provide lift to the turbine blade upon the flow of air from the leading edge to the trailing edge and over the pressure side and suction side. The blade includes one or more openings at the suction side, in some cases between the leading edge and the trailing edge. The one or more openings are configured to provide a pressurized fluid towards the leading edge of the blade, in some cases at an angle between about 0.degree. and 70.degree. with respect to an axis oriented from a centerline of the blade toward the leading edge.
NASA Technical Reports Server (NTRS)
Gladden, Herbert J.; Melis, Matthew E.; Mockler, Theodore T.; Tong, Mike
1990-01-01
The aerodynamic heating at high flight Mach numbers, when shock interference heating is included, can be extremely high and can exceed the capability of most conventional metallic and potential ceramic materials available. Numerical analyses of the heat transfer and thermal stresses are performed on three actively cooled leading-edge geometries (models) made of three different materials to address the issue of survivability in a hostile environment. These analyses show a mixture of results from one configuration to the next. Results for each configuration are presented and discussed. Combinations of enhanced internal film coefficients and high material thermal conductivity of copper and tungsten are predicted to maintain the maximum wall temperature for each concept within acceptable operating limits. The exception is the TD nickel material which is predicted to melt for most cases. The wide range of internal impingement film coefficients (based on correlations) for these conditions can lead to a significant uncertainty in expected leading-edge wall temperatures. The equivalent plastic strain, inherent in each configuration which results from the high thermal gradients, indicates a need for further cyclic analysis to determine component life.
Numerical study of delta wing leading edge blowing
NASA Technical Reports Server (NTRS)
Yeh, David; Tavella, Domingo; Roberts, Leonard
1988-01-01
Spanwise and tangential leading edge blowing as a means of controlling the position and strength of the leading edge vortices are studied by numerical solution of the three-dimensional Navier-Stokes equations. The leading edge jet is simulated by defining a permeable boundary, corresponding to the jet slot, where suitable boundary conditions are implemented. Numerical results are shown to compare favorably with experimental measurements. It is found that the use of spanwise leading edge blowing at moderate angle of attack magnifies the size and strength of the leading edge vortices, and moves the vortex cores outboard and upward. The increase in lift primarily comes from the greater nonlinear vortex lift. However, spanwise blowing causes earlier vortex breakdown, thus decreasing the stall angle. The effects of tangential blowing at low to moderate angles of attack tend to reduce the pressure peaks associated with leading edge vortices and to increase the suction peak around the leading edge, so that the integrated value of the surface pressure remains about the same. Tangential leading edge blowing in post-stall conditions is shown to re-establish vortical flow and delay vortex bursting, thus increasing C sub L sub max and stall angle.
Predicted Static Aeroelastic Effects on Wings with Supersonic Leading Edges and Streamwise Tips
NASA Technical Reports Server (NTRS)
Brown, Stuart C.
1959-01-01
A method is presented for calculation of static aeroelastic effects on wings with supersonic leading edges and streamwise tips. Both chord-wise and spanwise deflections are taken into account. Aerodynamic and structural forces are introduced in influence coefficient form; the former are developed from linearized supersonic wing theory and the latter are assumed to be known from load-deflection tests or theory. The predicted effects of flexibility on lateral-control effectiveness, damping in roll, and lift-curve slope are shown for a low-aspect-ratio wing at Mach numbers of 1.25 and 2.60. The control effectiveness is shown for a trailing-edge aileron, a tip aileron, and a slot-deflector spoiler located along the 0.70 chord line. The calculations indicate that the tip aileron is particularly attractive from an aeroelastic standpoint, because the changes in effectiveness with dynamic pressure are small compared to the changes in effectiveness of the trailing-edge aileron and slot-deflector spoiler. The effects of making several simplifying assumptions in the example calculations are shown. The use of a modified strip theory to determine the aerodynamic influence coefficients gave adequate results only for the high Mach number case. Elimination of chordwise bending in the structural influence coefficients exaggerated the aeroelastic effects on rolling-moment and lift coefficients for both Mach numbers.
Matsunaga, Yuki; Fujisawa, Kiyoshi; Ibi, Naoko; Fujita, Mitsuharu; Ohashi, Tetuya; Amir, Nagina; Miyashita, Yoshitaro; Aika, Ken-Ichi; Izumi, Yasuo; Okamoto, Ken-Ichi
2006-02-01
The sulfur K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy is applied to homoleptic thiolato complexes with Zn(II) and Cd(II), (Et(4)N)[Zn(SAd)(3)] (1), (Et(4)N)(2)[{Zn(ScHex)(2)}(2)(mu-ScHex)(2)] (2), (Et(4)N)(2)[{Cd(ScHex)(2)}(2)(mu-ScHex)(2)] (3), (Et(4)N)(2)[{Cd(ScHex)}(4)(mu-ScHex)(6)] (4), [Zn(mu-SAd)(2)](n) (5), and [Cd(mu-SAd)(2)](n) (6) (HSAd=1-adamantanethiol, HScHex=cyclohexanethiol). The EXAFS results are consistent with the X-ray crystal data of 1-4. The structures of 5 and 6, which have not been determined by X-ray crystallography, are proposed to be polynuclear structures on the basis of the sulfur K-edge EXAFS, far-IR spectra, and elemental analysis. Clear evidences of the S...S interactions (between bridging atoms or neighboring sulfur atoms) and the S...C(far) interactions (in which C(far) atom is next to carbon atom directly bonded to sulfur atom) were observed in the EXAFS data for all complexes and thus lead to the reliable determination of the structures of 5 and 6 in combination with conventional zinc K-edge EXAFS analysis for 5. This new methodology, sulfur K-edge EXAFS, could be applied for the structural determination of in vivo metalloproteins as well as inorganic compounds.
76 FR 13546 - Airworthiness Directives; The Boeing Company Model MD-90-30 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
...We propose to adopt a new airworthiness directive (AD) for the products listed above. This proposed AD would require a detailed inspection to detect distress and existing repairs to the leading edge structure of the vertical stabilizer at the splice at Station Zfs=52.267; repetitive inspections for cracking in the front spar cap forward flanges of the vertical stabilizer, and either the aft flanges or side skins; repetitive inspections for loose and missing fasteners; and related investigative and corrective actions if necessary. This proposed AD was prompted by reports of cracked vertical stabilizer skin, a severed front spar cap, elongated fastener holes at the leading edge of the vertical stabilizer, and a cracked front spar web and front spar cap bolt holes in the vertical stabilizer. We are proposing this AD to detect and correct such cracking damage, which could result in the structure being unable to support limit load, and could lead to the loss of the vertical stabilizer.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-15
...We are adopting a new airworthiness directive (AD) for the products listed above. This AD requires a detailed inspection to detect distress and existing repairs to the leading edge structure of the vertical stabilizer at the splice at Station Zfs = 52.267; repetitive inspections for cracking in the front spar cap forward flanges of the vertical stabilizer, and either the aft flanges or side skins; repetitive inspections for loose and missing fasteners; and related investigative and corrective actions if necessary. This AD was prompted by reports of cracked vertical stabilizer skin, a severed front spar cap, elongated fastener holes at the leading edge of the vertical stabilizer, and a cracked front spar web and front spar cap bolt holes in the vertical stabilizer. We are issuing this AD to detect and correct such cracking damage, which could result in the structure being unable to support limit load, and could lead to the loss of the vertical stabilizer.
76 FR 35342 - Airworthiness Directives; The Boeing Company Model MD-90-30 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-17
...We are adopting a new airworthiness directive (AD) for the products listed above. This AD requires a detailed inspection to detect distress and existing repairs to the leading edge structure of the vertical stabilizer at the splice at Station Zfs=52.267; repetitive inspections for cracking in the front spar cap forward flanges of the vertical stabilizer, and either the aft flanges or side skins; repetitive inspections for loose and missing fasteners; and related investigative and corrective actions if necessary. This AD was prompted by reports of cracked vertical stabilizer skin, a severed front spar cap, elongated fastener holes at the leading edge of the vertical stabilizer, and cracked front spar web and front spar cap bolt holes in the vertical stabilizer. We are issuing this AD to detect and correct such cracking damage, which could result in the structure being unable to support limit load, and could lead to the loss of the vertical stabilizer.
3D morphology of Au and Au@Ag nanobipyramids
NASA Astrophysics Data System (ADS)
Burgin, Julien; Florea, Ileana; Majimel, Jérôme; Dobri, Adam; Ersen, Ovidiu; Tréguer-Delapierre, Mona
2012-02-01
The morphologies of Au and Au@Ag nanobipyramids were investigated using electron tomography. The 3D reconstruction reveals that the Au bipyramids have an irregular six-fold twinning structure with highly stepped dominant {151} facets. These short steps/edges stabilized via surface adsorbed CTAB favor the growth of silver on the lateral facets leading to strong blue shifts in longitudinal plasmon surface resonance.The morphologies of Au and Au@Ag nanobipyramids were investigated using electron tomography. The 3D reconstruction reveals that the Au bipyramids have an irregular six-fold twinning structure with highly stepped dominant {151} facets. These short steps/edges stabilized via surface adsorbed CTAB favor the growth of silver on the lateral facets leading to strong blue shifts in longitudinal plasmon surface resonance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11454b
NASA Astrophysics Data System (ADS)
Siala, Firas; Totpal, Alexander; Liburdy, James
2015-11-01
The flow physics of flying animals has recently received significant attention, mostly in the context of developing bio-inspired micro air vehicles and oscillating flow energy harvesters. Of particular interest is the understanding of the impact of airfoil flexibility on the flow physics. Research efforts showed that some degree of surface flexibility enhanced the strength and size of the leading edge vortex. In this study, the influence of flexibility on the near-wake dynamics and flow structures is investigated using 2D PIV measurements. The experiments are conducted in a wind tunnel at a Reynolds number of 30,000 and a range of reduced frequencies from 0.09 to 0.2. The flexibility is attained using a torsion rod forming a hinge between the flap and the main wing. Vortex flow structures are visualized using large eddy scale decomposition technique and quantified using swirling strength analysis. It is found that trailing edge flexibility increases the vortex swirling strength compared to a rigid airfoil, whereas leading edge flexibility decreases the swirling strength. Furthermore, the integral length scale determined from the autocorrelation of the velocity fluctuations is found to be approximately equal to the actual vortex size. The vortex convective velocity is shown to be independent of flexibility and oscillation frequency, and it is represented by a trimodal distribution, with peak values at 0.8, 0.95 and 1 times the free stream velocity. Oregon State University.
77 FR 33125 - Airworthiness Directives; Bombardier, Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-05
... along the wing leading edge and the inboard end rib of the wing leading edge due to insufficient clearance. This proposed AD would require inspecting the wire harness along the leading edge for chafing... to detect and correct chafing damage to the wire harness along the wing leading edge which, if not...
Dimer formation and surface alloying: a STM study of lead on Cu(211)
NASA Astrophysics Data System (ADS)
Bartels, L.; Zöphel, S.; Meyer, G.; Henze, E.; Rieder, K.-H.
1997-02-01
We present a STM investigation of Pb adsorption on the Cu(211) surface in the temperature range between 30 K and room temperature. We observe three different kinds of ordered 1D Pb and PbCu chains (nanowires) located at the intrinsic step edges of the Cu(211) surface. On room temperature prepared samples, Pb is found to be incorporated into the step edges of the (211) surface. The first ordered structure consists of CuPb chains at the step edges (p(2 × disorder)) and is followed with increasing coverage by a close packed row of Pb-atoms (p(4 × disorder)). Preparation at low temperature yields Pb-dimers, and the first ordered structure is a row of Pb-dimers at the step edge (p(3 × disorder)) followed with increased coverage by a structure as described above. By systematic manipulation with the tunneling tip, we could get additional insight into the structural elements of the PbCu layer on the atomic scale. Furthermore, by measuring the threshold resistance to detach atoms from different ad-sites, we can approximately determine the binding energy and gain some insight into the thermodynamical parameters involved.
Structural motifs of pre-nucleation clusters.
Zhang, Y; Türkmen, I R; Wassermann, B; Erko, A; Rühl, E
2013-10-07
Structural motifs of pre-nucleation clusters prepared in single, optically levitated supersaturated aqueous aerosol microparticles containing CaBr2 as a model system are reported. Cluster formation is identified by means of X-ray absorption in the Br K-edge regime. The salt concentration beyond the saturation point is varied by controlling the humidity in the ambient atmosphere surrounding the 15-30 μm microdroplets. This leads to the formation of metastable supersaturated liquid particles. Distinct spectral shifts in near-edge spectra as a function of salt concentration are observed, in which the energy position of the Br K-edge is red-shifted by up to 7.1 ± 0.4 eV if the dilute solution is compared to the solid. The K-edge positions of supersaturated solutions are found between these limits. The changes in electronic structure are rationalized in terms of the formation of pre-nucleation clusters. This assumption is verified by spectral simulations using first-principle density functional theory and molecular dynamics calculations, in which structural motifs are considered, explaining the experimental results. These consist of solvated CaBr2 moieties, rather than building blocks forming calcium bromide hexahydrates, the crystal system that is formed by drying aqueous CaBr2 solutions.
Vortex leading edge flap assembly for supersonic airplanes
NASA Technical Reports Server (NTRS)
Rudolph, Peter K. C. (Inventor)
1997-01-01
A leading edge flap (16) for supersonic transport airplanes is disclosed. In its stowed position, the leading edge flap forms the lower surface of the wing leading edge up to the horizontal center of the leading edge radius. For low speed operation, the vortex leading edge flap moves forward and rotates down. The upward curve of the flap leading edge triggers flow separation on the flap and rotational flow on the upper surface of the flap (vortex). The rounded shape of the upper fixed leading edge provides the conditions for a controlled reattachment of the flow on the upper wing surface and therefore a stable vortex. The vortex generates lift and a nose-up pitching moment. This improves maximum lift at low speed, reduces attitude for a given lift coefficient and improves lift to drag ratio. The mechanism (27) to move the vortex flap consists of two spanwise supports (24) with two diverging straight tracks (64 and 68) each and a screw drive mechanism (62) in the center of the flap panel (29). The flap motion is essentially normal to the airloads and therefore requires only low actuation forces.
2009-06-24
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, a worker removes a reinforced-carbon carbon, or RCC, panel from the wing leading edge on space shuttle Atlantis. The structural edge of the wing (area of red and green behind the panels) will undergo spar corrosion inspection to verify the structural integrity of the wing. The RCC panels will be placed in protective coverings until the inspection is complete. Atlantis will make the 31st flight to the International Space Station for the STS-129 mission, targeted for launch on Nov. 12. Photo credit: NASA/Tim Jacobs
2009-06-24
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, workers remove the reinforced-carbon carbon, or RCC, panels from the wing leading edge on space shuttle Atlantis. The structural edge of the wing (area of red and green behind the panels) will undergo spar corrosion inspection to verify the structural integrity of the wing. The RCC panels will be placed in protective coverings until the inspection is complete. Atlantis will make the 31st flight to the International Space Station for the STS-129 mission, targeted for launch on Nov. 12. Photo credit: NASA/Tim Jacobs
2009-06-24
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, workers remove the reinforced-carbon carbon, or RCC, panels from the wing leading edge on space shuttle Atlantis. The structural edge of the wing (area of red and green behind the panels) will undergo spar corrosion inspection to verify the structural integrity of the wing. The RCC panels will be placed in protective coverings until the inspection is complete. Atlantis will make the 31st flight to the International Space Station for the STS-129 mission, targeted for launch on Nov. 12. Photo credit: NASA/Tim Jacobs
2009-06-24
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, workers remove the reinforced-carbon carbon, or RCC, panels from the wing leading edge on space shuttle Atlantis. The structural edge of the wing (area of red and green behind the panels) will undergo spar corrosion inspection to verify the structural integrity of the wing. The RCC panels will be placed in protective coverings until the inspection is complete. Atlantis will make the 31st flight to the International Space Station for the STS-129 mission, targeted for launch on Nov. 12. Photo credit: NASA/Tim Jacobs
A Reynolds Number Study of Wing Leading-Edge Effects on a Supersonic Transport Model at Mach 0.3
NASA Technical Reports Server (NTRS)
Williams, M. Susan; Owens, Lewis R., Jr.; Chu, Julio
1999-01-01
A representative supersonic transport design was tested in the National Transonic Facility (NTF) in its original configuration with small-radius leading-edge flaps and also with modified large-radius inboard leading-edge flaps. Aerodynamic data were obtained over a range of Reynolds numbers at a Mach number of 0.3 and angles of attack up to 16 deg. Increasing the radius of the inboard leading-edge flap delayed nose-up pitching moment to a higher lift coefficient. Deflecting the large-radius leading-edge flap produced an overall decrease in lift coefficient and delayed nose-up pitching moment to even higher angles of attack as compared with the undeflected large- radius leading-edge flap. At angles of attack corresponding to the maximum untrimmed lift-to-drag ratio, lift and drag coefficients decreased while lift-to-drag ratio increased with increasing Reynolds number. At an angle of attack of 13.5 deg., the pitching-moment coefficient was nearly constant with increasing Reynolds number for both the small-radius leading-edge flap and the deflected large-radius leading-edge flap. However, the pitching moment coefficient increased with increasing Reynolds number for the undeflected large-radius leading-edge flap above a chord Reynolds number of about 35 x 10 (exp 6).
NASA Technical Reports Server (NTRS)
Aoki, R.; Wurzel, D.
1979-01-01
Investigations were carried out on a horizontal tail assembly made of carbon fiber reinforced plastic for the Alpha Jet. The possibility of obtaining a leading edge nose design lighter but not more expensive than a metal version was studied. An important consideration was sufficient resistance of the leading edge against impact of stones and hailstones combined with high degree of stiffness. The improvement of energy reception characteristics of the materials through suitable laminate design was considered. Since certain defects occur in structural components, the effects of such defects on the characteristics of the parts were also studied.
NASA Technical Reports Server (NTRS)
Mehrotra, S. C.; Lan, C. E.
1978-01-01
A numerical method is developed to predict distributed and total aerodynamic characteristics for low aspect-ratio wings with partial leading-edge separation. The flow is assumed to be steady and inviscid. The wing boundary condition is formulated by the quasi-vortex-lattice method. The leading-edge separated vortices are represented by discrete free vortex elements which are aligned with the local velocity vector at mid-points to satisfy the force free condition. The wake behind the trailing-edge is also force free. The flow tangency boundary condition is satisfied on the wing, including the leading- and trailing-edges. Comparison of the predicted results with complete leading-edge separation has shown reasonably good agreement. For cases with partial leading-edge separation, the lift is found to be highly nonlinear with angle of attack.
Thermal properties of composite materials : effective conductivity tensor and edge effects
NASA Astrophysics Data System (ADS)
Matine, A.; Boyard, N.; Cartraud, P.; Legrain, G.; Jarny, Y.
2012-11-01
The homogenization theory is a powerful approach to determine the effective thermal conductivity tensor of heterogeneous materials such as composites, including thermoset matrix and fibres. Once the effective properties are calculated, they can be used to solve a heat conduction problem on the composite structure at the macroscopic scale. This approach leads to good approximations of both the heat flux and temperature in the interior zone of the structure, however edge effects occur in the vicinity of the domain boundaries. In this paper, following the approach proposed in [10] for elasticity, it is shown how these edge effects can be corrected. Thus an additional asymptotic expansion is introduced, which plays the role of a edge effect term. This expansion tends to zero far from the boundary, and is assumed to decrease exponentially. Moreover, the length of the edge effect region can be determined from the solution of an eigenvalue problem. Numerical examples are considered for a standard multilayered material. The homogenized solutions computed with a finite element software, and corrected with the edge effect terms, are compared to a heterogeneous finite element solution at the microscopic scale. The influences of the thermal contrast and scale factor are illustrated for different kind of boundary conditions.
NASA Technical Reports Server (NTRS)
1979-01-01
Configurations with full-span and segmented leading-edge flaps and full-span and segmented leading-edge droop were tested. Studies were conducted with wind-tunnel models, with an outdoor radio-controlled model, and with a full-scale airplane. Results show that wing-leading-edge modifications can produce large effects on stall/spin characteristics, particularly on spin resistance. One outboard wing-leading-edge modification tested significantly improved lateral stability at stall, spin resistance, and developed spin characteristics.
Moveable Leading Edge Device for a Wing
NASA Technical Reports Server (NTRS)
Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)
2013-01-01
A method and apparatus for managing a flight control surface system. A leading edge section on a wing of an aircraft is extended into a deployed position. A deformable section connects the leading edge section to a trailing section. The deformable section changes from a deformed shape to an original shape when the leading edge section is moved into the deployed position. The leading edge section on the wing is moved from the deployed position to an undeployed position. The deformable section changes to the deformed shape inside of the wing.
Numerical model of self-propulsion in a fluid
Farnell, D.J.J; David, T; Barton, D.C
2005-01-01
We provide initial evidence that a structure formed from an articulated series of linked elements, where each element has a given stiffness, damping and driving term with respect to its neighbours, may ‘swim’ through a fluid under certain conditions. We derive a Lagrangian for this system and, in particular, we note that we allow the leading edge to move along the x-axis. We assume that no lateral displacement of the leading edge of the structure is possible, although head ‘yaw’ is allowed. The fluid is simulated using a computational fluid dynamics technique, and we are able to determine and solve Euler–Lagrange equations for the structure. These two calculations are solved simultaneously by using a weakly coupled solver. We illustrate our method by showing that we are able to induce both forward and backward swimming. A discussion of the relevance of these simulations to a slowly swimming body, such as a mechanical device or a fish, is given. PMID:16849167
NASA Technical Reports Server (NTRS)
Hah, Chunill; Hathaway, Michael; Katz, Joseph
2014-01-01
The primary focus of this paper is to investigate the effect of rotor tip gap size on how the rotor unsteady tip clearance flow structure changes in a low speed one and half stage axial compressor at near stall operation (for example, where maximum pressure rise is obtained). A Large Eddy Simulation (LES) is applied to calculate the unsteady flow field at this flow condition with both a small and a large tip gaps. The numerically obtained flow fields at the small clearance matches fairly well with the available initial measurements obtained at the Johns Hopkins University with 3-D unsteady PIV in an index-matched test facility which renders the compressor blades and casing optically transparent. With this setup, the unsteady velocity field in the entire flow domain, including the flow inside the tip gap, can be measured. The numerical results are also compared with previously published measurements in a low speed single stage compressor (Maerz et al. [2002]). The current study shows that, with the smaller rotor tip gap, the tip clearance vortex moves to the leading edge plane at near stall operating condition, creating a nearly circumferentially aligned vortex that persists around the entire rotor. On the other hand, with a large tip gap, the clearance vortex stays inside the blade passage at near stall operation. With the large tip gap, flow instability and related large pressure fluctuation at the leading edge are observed in this one and a half stage compressor. Detailed examination of the unsteady flow structure in this compressor stage reveals that the flow instability is due to shed vortices near the leading edge, and not due to a three-dimensional separation vortex originating from the suction side of the blade, which is commonly referred to during a spike-type stall inception. The entire tip clearance flow is highly unsteady. Many vortex structures in the tip clearance flow, including the sheet vortex system near the casing, interact with each other. The core tip clearance vortex, which is formed with the rotor tip gap flows near the leading edge, is also highly unsteady or intermittent due to pressure oscillations near the leading edge and varies from passage to passage. For the current compressor stage, the evidence does not seem to support that a classical vortex breakup occurs in any organized way, even with the large tip gap. Although wakes from the IGV influence the tip clearance flow in the rotor, the major characteristics of rotor tip clearance flows in isolated or single stage rotors are observed in this one and a half stage axial compressor.
Approach for Structurally Clearing an Adaptive Compliant Trailing Edge Flap for Flight
NASA Technical Reports Server (NTRS)
Miller, Eric J.; Lokos, William A.; Cruz, Josue; Crampton, Glen; Stephens, Craig A.; Kota, Sridhar; Ervin, Gregory; Flick, Pete
2015-01-01
The Adaptive Compliant Trailing Edge (ACTE) flap was flown on the National Aeronautics and Space Administration (NASA) Gulfstream GIII testbed at the NASA Armstrong Flight Research Center. This smoothly curving flap replaced the existing Fowler flaps creating a seamless control surface. This compliant structure, developed by FlexSys Inc. in partnership with the Air Force Research Laboratory, supported NASA objectives for airframe structural noise reduction, aerodynamic efficiency, and wing weight reduction through gust load alleviation. A thorough structures airworthiness approach was developed to move this project safely to flight. A combination of industry and NASA standard practice require various structural analyses, ground testing, and health monitoring techniques for showing an airworthy structure. This paper provides an overview of compliant structures design, the structural ground testing leading up to flight, and the flight envelope expansion and monitoring strategy. Flight data will be presented, and lessons learned along the way will be highlighted.
NASA Astrophysics Data System (ADS)
Mathews, J. R.; Peake, N.
2018-05-01
This paper considers the interaction of turbulence with a serrated leading edge. We investigate the noise produced by an aerofoil moving through a turbulent perturbation to uniform flow by considering the scattered pressure from the leading edge. We model the aerofoil as an infinite half plane with a leading edge serration, and develop an analytical model using a Green's function based upon the work of Howe. This allows us to consider both deterministic eddies and synthetic turbulence interacting with the leading edge. We show that it is possible to reduce the noise by using a serrated leading edge compared with a straight edge, but the optimal noise-reducing choice of serration is hard to predict due to the complex interaction. We also consider the effect of angle of attack, and find that in general the serrations are less effective at higher angles of attack.
Performance of hydrofoils with humpback whale-like leading edge protuberances.
NASA Astrophysics Data System (ADS)
Levshin, Alexandra; Henoch, Charles; Johari, Hamid
2005-11-01
The humpback whale (Megaptera novaeangliae) is extremely maneuverable, compared to other whale species, despite its large size and rigid body. Turning maneuvers are especially evident during pursuit of prey. The agility of humpback whale has been attributed to their use of pectoral flippers. The thick flippers have large aspect ratios, and large scale protuberances are present on the leading edge. The flippers do not flap during turning maneuvers. The cross-section of the flipper has a profile similar to a NACA 634-021 airfoil. The amplitude of leading edge protuberances ranges from 2.5 to 12% of the chord, with a spanwise extent of 10 to 50% the chord depending on the location along the span. It has been hypothesized that the `bumpy' leading edge is used for flow control. To examine the effects of protuberances on the leading edge of hydrofoils, a series of rectangular foils with bumpy leading edges were manufactured. The leading edge is sinusoidal in the spanwise direction with amplitudes and wavelengths comparable to that of humpback whale's flippers. The forces and moments on these bumpy foils were measured in a water tunnel and compared with a smooth leading edge foil.
Interfacial Effects on the Band Edges of Functionalized Si Surfaces in Liquid Water
Pham, Tuan Anh; Lee, Donghwa; Schwegler, Eric; ...
2014-11-17
By combining ab initio molecular dynamics simulations and many-body perturbation theory calculations of electronic energy levels, we determined the band edge positions of functionalized Si(111) surfaces in the presence of liquid water, with respect to vacuum and to water redox potentials. We considered surface terminations commonly used for Si photoelectrodes in water splitting experiments. We found that, when exposed to water, the semiconductor band edges were shifted by approximately 0.5 eV in the case of hydrophobic surfaces, irrespective of the termination. The effect of the liquid on band edge positions of hydrophilic surfaces was much more significant and determined bymore » a complex combination of structural and electronic effects. These include structural rearrangements of the semiconductor surfaces in the presence of water, changes in the orientation of interfacial water molecules with respect to the bulk liquid, and charge transfer at the interfaces, between the solid and the liquid. Our results showed that the use of many-body perturbation theory is key to obtain results in agreement with experiments; they also showed that the use of simple computational schemes that neglect the detailed microscopic structure of the solid–liquid interface may lead to substantial errors in predicting the alignment between the solid band edges and water redox potentials.« less
Edge-core interaction of ITG turbulence in Tokamaks: Is the Tail Wagging the Dog?
NASA Astrophysics Data System (ADS)
Ku, S.; Chang, C. S.; Dif-Pradalier, G.; Diamond, P. H.
2010-11-01
A full-f XGC1 gyrokinetic simulation of ITG turbulence, together with the neoclassical dynamics without scale separation, has been performed for the whole-volume plasma in realistic diverted DIII-D geometry. The simulation revealed that the global structure of the turbulence and transport in tokamak plasmas results from a synergy between edge-driven inward propagation of turbulence intensity and the core-driven outward heat transport. The global ion confinement and the ion temperature gradient then self-organize quickly at turbulence propagation time scale. This synergy results in inward-outward pulse scattering leading to spontaneous production of strong internal shear layers in which the turbulent transport is almost suppressed over several radial correlation lengths. Co-existence of the edge turbulence source and the strong internal shear layer leads to radially increasing turbulence intensity and ion thermal transport profiles.
Endocytosis-dependent coordination of multiple actin regulators is required for wound healing
Matsubayashi, Yutaka; Coulson-Gilmer, Camilla
2015-01-01
The ability to heal wounds efficiently is essential for life. After wounding of an epithelium, the cells bordering the wound form dynamic actin protrusions and/or a contractile actomyosin cable, and these actin structures drive wound closure. Despite their importance in wound healing, the molecular mechanisms that regulate the assembly of these actin structures at wound edges are not well understood. In this paper, using Drosophila melanogaster embryos, we demonstrate that Diaphanous, SCAR, and WASp play distinct but overlapping roles in regulating actin assembly during wound healing. Moreover, we show that endocytosis is essential for wound edge actin assembly and wound closure. We identify adherens junctions (AJs) as a key target of endocytosis during wound healing and propose that endocytic remodeling of AJs is required to form “signaling centers” along the wound edge that control actin assembly. We conclude that coordination of actin assembly, AJ remodeling, and membrane traffic is required for the construction of a motile leading edge during wound healing. PMID:26216900
Biomimetics and Tubercles on Flippers for Hydrodynamic Flow Control
NASA Astrophysics Data System (ADS)
Fish, Frank E.
2011-11-01
The biomimetic approach seeks to incorporate designs based on biological organisms into engineered technologies. Biomimetics can be used to engineer machines that emulate the performance of organisms, particularly in instances where the organism's performance exceeds current mechanical technology or provides new directions to solve existing problems. The ability to control the flow of water around the body dictates the performance of marine mammals in the aquatic environment. Morphological specializations of marine mammals afford mechanisms for passive flow control. Aside from the design of the body, which minimizes drag, the morphology of the appendages provide hydrodynamic advantages with respect to drag, lift, thrust, and stall. Of particular interest are the pectoral flippers of the humpback whale (Megaptera novaeangliae). These flippers act as wing-like structures to provide hydrodynamic lift for maneuvering. The use of any such wing-like structure in making small radius turns to enhance both agility and maneuverability is constrained by performance associated with stall. Delay of stall can be accomplished passively by modification of the flipper leading edge. The design of the flippers includes prominent leading edge bumps or tubercles. Such a design is exhibited by the leading edge tubercles on the flippers of humpback whales. These novel morphological structures induce a spanwise flow field of separated vortices alternating with regions of accelerated flow. The coupled flow regions maintain areas of attached flow and delay stall to high angles of attack. The morphological features of humpback whales for flow control can be utilized in the biomimetic design of engineered structures and commercial products for increased hydrodynamic performance. Nature retains a store of untouched knowledge, which would be beneficial in advancing technology.
Quantized edge modes in atomic-scale point contacts in graphene
NASA Astrophysics Data System (ADS)
Kinikar, Amogh; Phanindra Sai, T.; Bhattacharyya, Semonti; Agarwala, Adhip; Biswas, Tathagata; Sarker, Sanjoy K.; Krishnamurthy, H. R.; Jain, Manish; Shenoy, Vijay B.; Ghosh, Arindam
2017-07-01
The zigzag edges of single- or few-layer graphene are perfect one-dimensional conductors owing to a set of gapless states that are topologically protected against backscattering. Direct experimental evidence of these states has been limited so far to their local thermodynamic and magnetic properties, determined by the competing effects of edge topology and electron-electron interaction. However, experimental signatures of edge-bound electrical conduction have remained elusive, primarily due to the lack of graphitic nanostructures with low structural and/or chemical edge disorder. Here, we report the experimental detection of edge-mode electrical transport in suspended atomic-scale constrictions of single and multilayer graphene created during nanomechanical exfoliation of highly oriented pyrolytic graphite. The edge-mode transport leads to the observed quantization of conductance close to multiples of G0 = 2e2/h. At the same time, conductance plateaux at G0/2 and a split zero-bias anomaly in non-equilibrium transport suggest conduction via spin-polarized states in the presence of an electron-electron interaction.
Quantized edge modes in atomic-scale point contacts in graphene.
Kinikar, Amogh; Phanindra Sai, T; Bhattacharyya, Semonti; Agarwala, Adhip; Biswas, Tathagata; Sarker, Sanjoy K; Krishnamurthy, H R; Jain, Manish; Shenoy, Vijay B; Ghosh, Arindam
2017-07-01
The zigzag edges of single- or few-layer graphene are perfect one-dimensional conductors owing to a set of gapless states that are topologically protected against backscattering. Direct experimental evidence of these states has been limited so far to their local thermodynamic and magnetic properties, determined by the competing effects of edge topology and electron-electron interaction. However, experimental signatures of edge-bound electrical conduction have remained elusive, primarily due to the lack of graphitic nanostructures with low structural and/or chemical edge disorder. Here, we report the experimental detection of edge-mode electrical transport in suspended atomic-scale constrictions of single and multilayer graphene created during nanomechanical exfoliation of highly oriented pyrolytic graphite. The edge-mode transport leads to the observed quantization of conductance close to multiples of G 0 = 2e 2 /h. At the same time, conductance plateaux at G 0 /2 and a split zero-bias anomaly in non-equilibrium transport suggest conduction via spin-polarized states in the presence of an electron-electron interaction.
H2O on Pt(111): structure and stability of the first wetting layer
NASA Astrophysics Data System (ADS)
Standop, Sebastian; Morgenstern, Markus; Michely, Thomas; Busse, Carsten
2012-03-01
We study the structure and stability of the first water layer on Pt(111) by variable-temperature scanning tunneling microscopy. We find that a high Pt step edge density considerably increases the long-range order of the equilibrium \\sqrt{37}\\times \\sqrt{37}{R25.3}°- and \\sqrt{39}\\times \\sqrt{39}{R16.1}°-superstructures, presumably due to the capability of step edges to trap residual adsorbates from the surface. Passivating the step edges with CO or preparing a flat metal surface leads to the formation of disordered structures, which still show the same structural elements as the ordered ones. Coadsorption of Xe and CO proves that the water layer covers the metal surface completely. Moreover, we determine the two-dimensional crystal structure of Xe on top of the chemisorbed water layer which exhibits an Xe-Xe distance close to the one in bulk Xe and a rotation angle of 90° between the close-packed directions of Xe and the close-packed directions of the underlying water layer. CO is shown to replace H2O on the Pt(111) surface as has been deduced previously. In addition, we demonstrate that tunneling of electrons into the antibonding state or from the bonding state of H2O leads to dissociation of the molecules and a corresponding reordering of the adlayer into a \\sqrt{3}\\times \\sqrt{3}{R30}°-structure. Finally, a so far not understood restructuring of the adlayer by an increased tunneling current has been observed.
NASA Astrophysics Data System (ADS)
Pandian, S.; Desikan, S. L. N.; Niranjan, Sahoo
2018-01-01
Experiments were carried out on a shallow open cavity (L/D = 5) at a supersonic Mach number (M = 1.8) to understand its transient starting characteristics, wave propagation (inside and outside the cavity) during one vortex shedding cycle, and acoustic emission. Starting characteristics and wave propagation were visualized through time resolved schlieren images, while acoustic emissions were captured through unsteady pressure measurements. Results showed a complex shock system during the starting process which includes characteristics of the bifurcated shock system, shock train, flow separation, and shock wave boundary layer interaction. In one vortex shedding cycle, vortex convection from cavity leading edge to cavity trailing edge was observed. Flow features outside the cavity demonstrated the formation and downstream movement of a λ-shock due to the interaction of shock from the cavity leading edge and shock due to vortex and generation of waves on account of shear layer impingement at the cavity trailing edge. On the other hand, interesting wave structures and its propagation were monitored inside the cavity. In one vortex shedding cycle, two waves such as a reflected compression wave from a cavity leading edge in the previous vortex shedding cycle and a compression wave due to the reflection of Mach wave at the cavity trailing edge corner in the current vortex shedding cycle were visualized. The acoustic emission from the cavity indicated that the 2nd to 4th modes/tones are dominant, whereas the 1st mode contains broadband spectrum. In the present studies, the cavity feedback mechanism was demonstrated through a derived parameter coherence coefficient.
NASA Technical Reports Server (NTRS)
Koven, William; Graham, Robert R
1948-01-01
Results are presented of an investigation in the Langley 19-foot pressure tunnel of the longitudinal characteristics of a semispan model wing having 37 degrees sweepback of the leading edge, an aspect ratio of 6, and NACA 641-212 airfoil section perpendicular to the 27-percent-chord line. Several types of stall-control devices including extensible round-nose leading-edge flaps, a leading-edge slat, and a drooped leading edge were investigated; partial- and full-span trailing-edge split and double slotted flaps were also tested. In addition, various combinations of the aforementioned leading- and trailing-edge flaps were investigated. The tests covered a range of Reynolds numbers between 2.00 x 10(6) and 9.35 x 10(6). The wing with or without trailing-edge splity of double slotted flap was longitudinally unstable near maximum lift due to tip stalling. The addition of an outboard half-span leading-edge flap or a leading-edge slat to the plain wing or wing with inboard half-span split flaps eliminated tip stalling and resulted in stable moment variations at the stall. The drooped leading edge, on the other hand, was only effective when used in conjunction with an upper-surface fence. The combination of an outboard leading-edge device and inboard half-span double slotted flap resulted in an undesirable loop in the pitching-moment curve near maximum lift in spite of an inboard stall. The loop is attributed to the section characteristics of the double slotted flap. Air-flow surveys behind the wing indicated that a suitably placed horizontal tail would eliminate the loop in the moment curve.
NASA Technical Reports Server (NTRS)
Hernandez, Jose M.; Berry, Robert F.; Osborn, Robin; Bueno, Clifford; Osterlitz, Mark; Mills, Richard; Morris, Philip; Phalen, Robert; McNab, Jim; Thibodeaux, Tahanie;
2004-01-01
The post return-to-flight (RTF) inspection methodology for the Orbiter Leading Edge Structural Subsystem (LESS) is currently being defined. Numerous NDT modalities and techniques are being explored to perform the flight-to-flight inspections of the reinforced carbon/carbon (RCC) composite material for impact damage, general loss of mass in the bulk layers, or other anomalous conditions that would pose risk to safe return upon re-entry. It is possible to have an impact upon ascent that is not visually observable on the surface, yet causes internal damage. Radiographic testing may be a useful NDT technique for such occurrences. The authors have performed radiographic tests on full-sized mock samples of LESS hardware with embedded image quality phantoms. Digitized radiographic film, computed radiography and flat panel digital real-time radiography was acquired using a GE Eresco 200 x-ray tube, and Se-75 and Yb-169 radioisotopes.
Multiple leading edge vortices of unexpected strength in freely flying hawkmoth
Johansson, L. Christoffer; Engel, Sophia; Kelber, Almut; Heerenbrink, Marco Klein; Hedenström, Anders
2013-01-01
The Leading Edge Vortex (LEV) is a universal mechanism enhancing lift in flying organisms. LEVs, generally illustrated as a single vortex attached to the wing throughout the downstroke, have not been studied quantitatively in freely flying insects. Previous findings are either qualitative or from flappers and tethered insects. We measure the flow above the wing of freely flying hawkmoths and find multiple simultaneous LEVs of varying strength and structure along the wingspan. At the inner wing there is a single, attached LEV, while at mid wing there are multiple LEVs, and towards the wingtip flow separates. At mid wing the LEV circulation is ~40% higher than in the wake, implying that the circulation unrelated to the LEV may reduce lift. The strong and complex LEV suggests relatively high flight power in hawmoths. The variable LEV structure may result in variable force production, influencing flight control in the animals. PMID:24253180
Determination of the crystal structure and composition of Li6Be4OH12 by the stochastic method.
Pauling, L
1990-01-01
Because of the failure to find a structure for LiBeH3 with a face-centered unit cube with edge 5.09 A, the x-ray powder pattern has been reindexed for a body-centered unit cube with edge 7.24 A. Application of the principles of structural chemistry leads to the formula Li6Be4OH12 and to a structure involving Be4OH12 clusters formed by 4 BeOH3 tetrahedra with their O corner shared, Be--(H,O) bond length 1.59 A, and with the clusters joined to one another by Li with octahedral or rectangular-planar coordination of 6 H or 4 H, Li-H bond lengths about 1.92 A. PMID:11607052
Determination of the crystal structure and composition of Li6Be4OH12 by the stochastic method.
Pauling, L
1990-01-01
Because of the failure to find a structure for LiBeH3 with a face-centered unit cube with edge 5.09 A, the x-ray powder pattern has been reindexed for a body-centered unit cube with edge 7.24 A. Application of the principles of structural chemistry leads to the formula Li6Be4OH12 and to a structure involving Be4OH12 clusters formed by 4 BeOH3 tetrahedra with their O corner shared, Be--(H,O) bond length 1.59 A, and with the clusters joined to one another by Li with octahedral or rectangular-planar coordination of 6 H or 4 H, Li-H bond lengths about 1.92 A.
Effect of radius of gyration on a wing rotating at low Reynolds number: A computational study
NASA Astrophysics Data System (ADS)
Tudball Smith, Daniel; Rockwell, Donald; Sheridan, John; Thompson, Mark
2017-06-01
This computational study analyzes the effect of variation of the radius of gyration (rg), expressed as the Rossby number Ro=rg/C , with C the chord, on the aerodynamics of a rotating wing at a Reynolds number of 1400. The wing is represented as an aspect-ratio-unity rectangular flat plate aligned at 45 ∘ . This plate is accelerated near impulsively to a constant rotational velocity and the flow is allowed to develop. Flow structures are analyzed and force coefficients evaluated. Trends in velocity field degradation with increasing Ro are consistent with previous experimental studies. At low Ro the flow structure generated initially is mostly retained with a strong laminar leading-edge vortex (LEV) and tip vortex (TV). As both Ro and travel distance increase, the flow structure degrades such that at high Ro it begins to resemble that of a translating wing. Additionally, the present study has shown the following. (i) At low Ro the LEV and TV structure is laminar and steady; as Ro increases this structure breaks down, and the location at which it breaks down shifts closer to the wing root. (ii) For moderate Ro of 1.4 and higher, the LEV is no longer steady but enters a shedding regime fed by the leading-edge shear layer. (iii) At the lowest Ro of 0.7 the lift force rises during start-up and then stabilizes, consistent with the flow structure being retained, while for higher Ro a force peak occurs after the initial acceleration is complete, followed by a reduction in lift which appears to correspond to shedding of excess leading-edge vorticity generated during start-up. (iv) All rotating wings produced greater lift than a translating wing, this increase varied from ˜65 % at the lowest Ro=0.7 down to ˜5 % for the highest Ro examined of 9.1.
NASA Technical Reports Server (NTRS)
Rigby, D. L.; Vanfossen, G. J.
1992-01-01
A study of the effect of spanwise variation in momentum on leading edge heat transfer is discussed. Numerical and experimental results are presented for both a circular leading edge and a 3:1 elliptical leading edge. Reynolds numbers in the range of 10,000 to 240,000 based on leading edge diameter are investigated. The surface of the body is held at a constant uniform temperature. Numerical and experimental results with and without spanwise variations are presented. Direct comparison of the two-dimensional results, that is, with no spanwise variations, to the analytical results of Frossling is very good. The numerical calculation, which uses the PARC3D code, solves the three-dimensional Navier-Stokes equations, assuming steady laminar flow on the leading edge region. Experimentally, increases in the spanwise-averaged heat transfer coefficient as high as 50 percent above the two-dimensional value were observed. Numerically, the heat transfer coefficient was seen to increase by as much as 25 percent. In general, under the same flow conditions, the circular leading edge produced a higher heat transfer rate than the elliptical leading edge. As a percentage of the respective two-dimensional values, the circular and elliptical leading edges showed similar sensitivity to span wise variations in momentum. By equating the root mean square of the amplitude of the spanwise variation in momentum to the turbulence intensity, a qualitative comparison between the present work and turbulent results was possible. It is shown that increases in leading edge heat transfer due to spanwise variations in freestream momentum are comparable to those due to freestream turbulence.
Fracture Mechanics Analyses of the Slip-Side Joggle Regions of Wing-Leading Edge Panels
NASA Technical Reports Server (NTRS)
Raju, Ivatury S.; Knight, Norman F., Jr.; Song, Kyongchan; Phillips, Dawn R.
2010-01-01
The Space Shuttle Orbiter wing comprises of 22 leading edge panels on each side of the wing. These panels are part of the thermal protection system that protects the Orbiter wings from extreme heating that take place on the reentry in to the earth atmosphere. On some panels that experience extreme heating, liberation of silicon carbon (SiC) coating was observed on the slip side regions of the panels. Global structural and local fracture mechanics analyses were performed on these panels as a part of the root cause investigation of this coating liberation anomaly. The wing-leading-edge reinforced carbon-carbon (RCC) panels, Panel 9, T-seal 10, and Panel 10, are shown in Figure 1 and the progression of the stress analysis models is presented in Figure 2. The global structural analyses showed minimal interaction between adjacent panels and the T-seal that bridges the gap between the panels. A bounding uniform temperature is applied to a representative panel and the resulting stress distribution is examined. For this loading condition, the interlaminar normal stresses showed negligible variation in the chord direction and increased values in the vicinity of the slip-side joggle shoulder. As such, a representative span wise slice on the panel can be taken and the cross section can be analyzed using plane strain analysis.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the leading edge of the check to 1.5 inches from the trailing edge of the check. 31 31 The leading edge is definded as the right side of the check looking at it from the front. The trailing edge is... on the back of the check between 1.88 and 2.74 inches from the leading edge of the check. The...
Transient induced tungsten melting at the Joint European Torus (JET)
NASA Astrophysics Data System (ADS)
Coenen, J. W.; Matthews, G. F.; Krieger, K.; Iglesias, D.; Bunting, P.; Corre, Y.; Silburn, S.; Balboa, I.; Bazylev, B.; Conway, N.; Coffey, I.; Dejarnac, R.; Gauthier, E.; Gaspar, J.; Jachmich, S.; Jepu, I.; Makepeace, C.; Scannell, R.; Stamp, M.; Petersson, P.; Pitts, R. A.; Wiesen, S.; Widdowson, A.; Heinola, K.; Baron-Wiechec, A.; Contributors, JET
2017-12-01
Melting is one of the major risks associated with tungsten (W) plasma-facing components (PFCs) in tokamaks like JET or ITER. These components are designed such that leading edges and hence excessive plasma heat loads deposited at near normal incidence are avoided. Due to the high stored energies in ITER discharges, shallow surface melting can occur under insufficiently mitigated plasma disruption and so-called edge localised modes—power load transients. A dedicated program was carried out at the JET to study the physics and consequences of W transient melting. Following initial exposures in 2013 (ILW-1) of a W-lamella with leading edge, new experiments have been performed on a sloped surface (15{}\\circ slope) during the 2015/2016 (ILW-3) campaign. This new experiment allows significantly improved infrared thermography measurements and thus resolved important issue of power loading in the context of the previous leading edge exposures. The new lamella was monitored by local diagnostics: spectroscopy, thermography and high-resolution photography in between discharges. No impact on the main plasma was observed despite a strong increase of the local W source consistent with evaporation. In contrast to the earlier exposure, no droplet emission was observed from the sloped surface. Topological modifications resulting from the melting are clearly visible between discharges on the photographic images. Melt damage can be clearly linked to the infrared measurements: the emissivity drops in zones where melting occurs. In comparison with the previous leading edge experiment, no runaway melt motion is observed, consistent with the hypothesis that the escape of thermionic electrons emitted from the melt zone is largely suppressed in this geometry, where the magnetic field intersects the surface at lower angles than in the case of perpendicular impact on a leading edge. Utilising both exposures allows us to further test the model of the forces driving melt motion that successfully reproduced the findings from the original leading edge exposure. Since the ILW-1 experiments, the exposed misaligned lamella has now been retrieved from the JET machine and post mortem analysis has been performed. No obvious mass loss is observed. Profilometry of the ILW-1 lamella shows the structure of the melt damage which is in line with the modell predictions thus allowing further model validation. Nuclear reaction analysis shows a tenfold reduction in surface deuterium concentration in the molten surface in comparison to the non-molten part of the lamella.
NASA Technical Reports Server (NTRS)
ONeal, Robert L.
1960-01-01
A flight investigation has been conducted to study the heat transfer to swept-wing leading edges. A rocket-powered model was used for the investigation and provided data for Mach number ranges of 1.78 to 2.99 and 2.50 to 4.05 with corresponding free-stream Reynolds number per foot ranges of 13.32 x 10(exp 6) to 19.90 x 10(exp 6) and 2.85 x 10(exp 6) to 4.55 x 10(exp 6). The leading edges employed were cylindrically blunted wedges ', three of which were swept 450 with leading-edge diameters of 1/4, 1/2, and 3/4 inch and one swept 36-750 with a leading-edge diameter of 1/2 inch. In the high Reynolds number range, measured values of heat transfer were found to be much higher than those predicted by laminar theory and at the larger values of leading-edge diameter were approaching the values predicted by turbulent theory. For the low Reynolds number range a comparison between measured and theoretical heat transfer showed that increasing the leading-edge diameter resulted in turbulent flow on the cylindrical portion of the leading edge.
2010-01-07
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, United Space Alliance technicians cover a reinforced carbon carbon panel, or RCC panel, removed from a wing leading edge of space shuttle Atlantis. Inspection and maintenance of the RCC panels and the wing leading edge are standard procedure between shuttle missions. The RCC panels, components of the shuttle's thermal protection system, are placed in protective coverings while the structural edge of the wing -- the orange and green area behind the panels -- undergoes spar corrosion inspection to verify the structural integrity of the wing. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Glenn Benson
2010-01-07
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, United Space Alliance technicians prepare to cover a reinforced carbon carbon panel, or RCC panel, removed from a wing leading edge of space shuttle Atlantis. Inspection and maintenance of the RCC panels and the wing leading edge are standard procedure between shuttle missions. The RCC panels, components of the shuttle's thermal protection system, are placed in protective coverings while the structural edge of the wing -- the orange and green area behind the panels -- undergoes spar corrosion inspection to verify the structural integrity of the wing. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Glenn Benson
2010-01-07
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, a United Space Alliance technician inspects a wing leading edge of space shuttle Atlantis following removal of the reinforced carbon carbon panels, or RCC panels. Inspection and maintenance of the RCC panels and the wing leading edge are standard procedure between shuttle missions. The RCC panels, components of the shuttle's thermal protection system, are placed in protective coverings while the structural edge of the wing -- the orange and green area behind the panels -- undergoes spar corrosion inspection to verify the structural integrity of the wing. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Glenn Benson
2010-01-07
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, a United Space Alliance technician inspects a reinforced carbon carbon panel, or RCC panel, removed from a wing leading edge of space shuttle Atlantis. Inspection and maintenance of the RCC panels and the wing leading edge are standard procedure between shuttle missions. The RCC panels, components of the shuttle's thermal protection system, are placed in protective coverings while the structural edge of the wing -- the orange and green area behind the panels -- undergoes spar corrosion inspection to verify the structural integrity of the wing. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Glenn Benson
2010-01-07
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, United Space Alliance technicians remove a reinforced carbon carbon panel, or RCC panel, from a wing leading edge of space shuttle Atlantis. Inspection and maintenance of the RCC panels and the wing leading edge are standard procedure between shuttle missions. The RCC panels, components of the shuttle's thermal protection system, are placed in protective coverings while the structural edge of the wing -- the orange and green area behind the panels -- undergoes spar corrosion inspection to verify the structural integrity of the wing. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Glenn Benson
NASA Technical Reports Server (NTRS)
Scantling, W. L.; Gloss, B. B.
1974-01-01
An investigation was conducted in the Langley 1/8-scale V/STOL model tunnel on a semispan delta wing with a leading-edge sweep of 74 deg, to determine the effectiveness of various locations of upper surface and reflection plane blowing on leading-edge vortex bursting. Constant area nozzles were located on the wing upper surface along a ray swept 79 deg, which was beneath the leading-edge vortex core. The bursting and reformation of the leading-edge vortex was viewed by injecting helium into the vortex core, and employing a schlieren system.
KRISTINA: Kinematic rib-based structural system for innovative adaptive trailing edge
NASA Astrophysics Data System (ADS)
Pecora, R.; Amoroso, F.; Magnifico, M.; Dimino, I.; Concilio, A.
2016-04-01
Nature teaches that the flight of the birds succeeds perfectly since they are able to change the shape of their wings in a continuous manner. The careful observation of this phenomenon has re-introduced in the recent research topics the study of "metamorphic" wing structures; these innovative architectures allow for the controlled wing shape adaptation to different flight conditions with the ultimate goal of getting desirable improvements such as the increase of aerodynamic efficiency or load control effectiveness. In this framework, the European research project SARISTU aimed at combining morphing and smart ideas to the leading edge, the trailing edge and the winglet of a large commercial airplane (EASA CS25 category) while assessing integrated technologies validation through high-speed wind tunnel test on a true scale outer wing segment. The design process of the adaptive trailing edge (ATED) addressed by SARISTU is here outlined, from the conceptual definition of the camber-morphing architecture up to the assessment of the device executive layout. Rational design criteria were implemented in order to preliminarily define ATED structural layout and the general configuration of the embedded mechanisms enabling morphing under the action of aerodynamic loads. Advanced FE analyses were then carried out and the robustness of adopted structural arrangements was proven in compliance with applicable airworthiness requirements.
NASA Astrophysics Data System (ADS)
Wang, Ning; Su, Xinbing; Ma, Binlin; Zhang, Xiaofei
2017-10-01
In order to study the influence of elastic forward-swept wing (FSW) with single control surface, the computational fluid dynamics/computational structural dynamics (CFD/CSD) loose coupling static aero elastic numerical calculation method was adopted for numerical simulation. The effects of the elastic FSW with leading- or trailing-edge control surface on aero elastic characteristics were calculated and analysed under the condition of high subsonic speed. The result shows that, the deflection of every single control surface could change the aero elastic characteristics of elastic FSW greatly. Compared with the baseline model, when leading-edge control surface deflected up, under the condition of small angles of attack, the aerodynamic characteristics was poor, but the bending and torsional deformation decreased. Under the condition of moderate angles of attack, the aerodynamic characteristics was improved, but bending and torsional deformation increased; When leading-edge control surface deflected down, the aerodynamic characteristics was improved, the bending and torsional deformation decreased/increased under the condition of small/moderate angles of attack. Compared with the baseline model, when trailing-edge control surface deflected down, the aerodynamic characteristics was improved. The bending and torsional deformation increased under the condition of small angles of attack. The bending deformation increased under the condition of small angles of attack, but torsional deformation decreases under the condition of moderate angles of attack. So, for the elastic FSW, the deflection of trailing-edge control surface play a more important role on the improvement of aerodynamic and elastic deformation characteristics.
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.
2011-01-01
For enhanced aerodynamic performance. Materials for sharp leading edges can be reusable but need different properties because of geometry and very high temperatures. Require materials with significantly higher temperature capabilities, but for short duration. Current shuttle RCC leading edge materials: T approx. 1650 C. Materials for vehicles with sharp leading edges: T>2000 C. >% Figure depicts: High Temperature at Tip and Steep Temperature Gradient. Passive cooling is simplest option to manage the intense heating on sharp leading edges.
Flight investigation of insect contamination and its alleviation
NASA Technical Reports Server (NTRS)
Peterson, J. B., Jr.; Fisher, D. F.
1978-01-01
An investigation of leading edge contamination by insects was conducted with a JetStar airplane instrumented to detect transition on the outboard leading edge flap and equipped with a system to spray the leading edge in flight. The results of airline type flights with the JetStar indicated that insects can contaminate the leading edge during takeoff and climbout. The results also showed that the insects collected on the leading edges at 180 knots did not erode at cruise conditions for a laminar flow control airplane and caused premature transition of the laminar boundary layer. None of the superslick and hydrophobic surfaces tested showed any significant advantages in alleviating the insect contamination problem. While there may be other solutions to the insect contamination problem, the results of these tests with a spray system showed that a continouous water spray while encountering the insects is effective in preventing insect contamination of the leading edges.
Takashiro, Jun-ichi; Kudo, Yasuhiko; Kaneko, Satoshi; Takai, Kazuyuki; Ishii, Takafumi; Kyotani, Takashi; Enoki, Toshiaki; Kiguchi, Manabu
2014-04-28
The heat treatment effect on the electronic and magnetic structures of a disordered network of nanographene sheets has been investigated by in situ measurements of X-ray photoemission spectroscopy, near-edge X-ray absorption fine structure (NEXAFS), and electrical conductance, together with temperature-programmed desorption measurements. Oxygen-containing functional groups bonded to nanographene edges in the pristine sample are almost completely decomposed under heat treatment up to 1300-1500 K, resulting in the formation of edges primarily terminated by hydrogen. The removal of the oxygen-containing groups enhances the conductance owing to the decrease in the electron transport barriers between nanographene sheets. Heat treatment above 1500 K removes also the hydrogen atoms from the edges, promoting the successive fusion of nanographene sheets at the expense of edges. The decrease in the π* peak width in NEXAFS indicates the progress of the fusion reaction, that is, the extension of the π-conjugation, which agrees with the increase in the orbital susceptibility previously reported. The fusion leads to the formation of local π/sp(2) bridges between nanographene sheets and brings about an insulator-to-metal transition at 1500-1600 K, at which the bridge network becomes infinite. As for the magnetism, the intensity of the edge state peak in NEXAFS, which corresponds to the number of the spin-polarized edge states, decreases above 1500 K, though the effective edge-state spin density per edge state starts decreasing at approximately 200 K lower than the temperature of the edge state peak change. This disagreement indicates the development of antiferromagnetic short range ordering as a precursor of a spin glass state near the insulator-metal transition, at which the random network of inter-nanographene-sheet exchange interactions strengthened with the formation of the π/sp(2) bridges becomes infinite.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
...We propose to adopt a new airworthiness directive (AD) for the products listed above. This proposed AD would require a detailed inspection to detect distress and existing repairs to the leading edge structure of the vertical stabilizer at the splice at Station Zfs = 52.267; repetitive inspections for cracking in the front spar cap forward flanges of the vertical stabilizer, and either the aft flanges or side skins; repetitive inspections for loose and missing fasteners; and related investigative and corrective actions if necessary. This proposed AD was prompted by reports of cracked vertical stabilizer skin, a severed front spar cap, elongated fastener holes at the leading edge of the vertical stabilizer, and a cracked front spar web and front spar cap bolt holes in the vertical stabilizer. We are proposing this AD to detect and correct such cracking damage, which could result in the structure being unable to support limit load, and could lead to the loss of the vertical stabilizer.
Structural and optical properties of lead-boro-tellurrite glasses induced by gamma-ray.
Mustafa, Iskandar Shahrim; Kamari, Halimah Mohamed; Yusoff, Wan Mohd Daud Wan; Aziz, Sidek Abdul; Rahman, Azhar Abdul
2013-02-04
Spectrophotometric studies of lead borotellurite glasses were carried out before and after gamma irradiation exposure. The increasing peak on the TeO(4) bi-pyramidal arrangement and TeO(3+1) (or distorted TeO(4)) is due to augmentation of irradiation dose which is attributed to an increase in degree of disorder of the amorphous phase. The structures of lead tellurate contain Pb(3)TeO(6) consisting of TeO(3) trigonal pyramid connected by PbO(4) tetragonal forming a three-dimensional network. The decrease of glass rigidity is due to irradiation process which is supported by the XRD diffractograms results. The decreasing values of absorption edge indicate that red shift effect occur after irradiation processes. A shift in the optical absorption edge attributed to an increase of the conjugation length. The values of optical band gap, E(opt) were calculated and found to be dependent on the glass composition and radiation exposure. Generally, an increase and decrease in Urbach's energy can be considered as being due to an increase in defects within glass network.
Structural and Optical Properties of Lead-Boro-Tellurrite Glasses Induced by Gamma-Ray
Mustafa, Iskandar Shahrim; Kamari, Halimah Mohamed; Yusoff, Wan Mohd Daud Wan; Aziz, Sidek Abdul; Rahman, Azhar Abdul
2013-01-01
Spectrophotometric studies of lead borotellurite glasses were carried out before and after gamma irradiation exposure. The increasing peak on the TeO4 bi-pyramidal arrangement and TeO3+1 (or distorted TeO4) is due to augmentation of irradiation dose which is attributed to an increase in degree of disorder of the amorphous phase. The structures of lead tellurate contain Pb3TeO6 consisting of TeO3 trigonal pyramid connected by PbO4 tetragonal forming a three-dimensional network. The decrease of glass rigidity is due to irradiation process which is supported by the XRD diffractograms results. The decreasing values of absorption edge indicate that red shift effect occur after irradiation processes. A shift in the optical absorption edge attributed to an increase of the conjugation length. The values of optical band gap, Eopt were calculated and found to be dependent on the glass composition and radiation exposure. Generally, an increase and decrease in Urbach’s energy can be considered as being due to an increase in defects within glass network. PMID:23380963
Impact resistance of fiber composite blades used in aircraft turbine engines
NASA Technical Reports Server (NTRS)
Friedrich, L. A.; Preston, J. L., Jr.
1973-01-01
Resistance of advanced fiber reinforced epoxy matrix composite materials to ballistic impact was investigated as a function of impacting projectile characteristics, and composite material properties. Ballistic impact damage due to normal impacts, was classified as transverse (stress wave delamination and splitting), penetrative, or structural (gross failure). Steel projectiles were found to be gelatin ice projectiles in causing penetrative damage leading to reduced tensile strength. Gelatin and ice projectiles caused either transverse or structural damage, depending upon projectile mass and velocity. Improved composite transverse tensile strength, use of dispersed ply lay-ups, and inclusion of PRD-49-1 or S-glass fibers correlated with improved resistance of composite materials to transverse damage. In non-normal impacts against simulated blade shapes, the normal velocity component of the impact was used to correlate damage results with normal impact results. Stiffening the leading edge of simulated blade specimens led to reduced ballistic damage, while addition of a metallic leading edge provided nearly complete protection against 0.64 cm diameter steel, and 1.27 cm diameter ice and gelatin projectiles, and partial protection against 2.54 cm diameter projectiles of ice and gelatin.
Short-term Morphodynamics of an Eroding Salt Marsh Shoreline in the Delaware Estuary, USA
NASA Astrophysics Data System (ADS)
Fanta, D.; Quirk, T. E.
2017-12-01
Marsh edge morphology can change rapidly through erosional and depositional processes. Along seemingly similar stretches of marsh shoreline, erosion processes and rates can vary dramatically. In the Delaware Estuary, annual rates of edge erosion vary from a few centimeters to several meters across relatively short stretches of shoreline. Differences in erosion processes observed here include areas with and without vegetation growth seaward of the eroding marsh scarp. To better understand the factors that influence changes in marsh edge morphology, we examined wave energy, marsh scarp profile, and vegetation structure in relation to lateral erosion and accretion along two stretches of the Delaware Estuary for two years. Rates of erosion ranged from 0.01 to over 7 m/yr depending on shoreline exposure to waves and location on marsh scarp depth profile. Sediment deposition and accretion were up to an order of magnitude higher 15 cm from the marsh edge than 5 cm from the marsh edge, and were driven by storm events. In some areas, vegetation persisted seaward of eroding marshes where wave activity was dampened by a shallower bathymetric profile. Wave energy, distance from the edge and marsh elevation all contributed to vegetation structure, and therefore sedimentation and accretion dynamics. These results highlight the interactive nature of biophysical processes leading to lateral retreat or potential resilience of marsh edges.
Investigation of wave phenomena on a blunt airfoil with straight and serrated trailing edges
NASA Astrophysics Data System (ADS)
Nies, Juliane M.; Gageik, Manuel A.; Klioutchnikov, Igor; Olivier, Herbert
2015-07-01
An investigation of pressure waves in compressible subsonic and transonic flow around a generic airfoil is performed in a modified shock tube. New comprehensive results are presented on pressure waves in compressible flow. For the first time, the influence of trailing edge serration will be examined in terms of the reduction in pressure wave amplitude. A generic airfoil is tested in two main configurations, one with blunt trailing edges and the other one with serrated trailing edges in a Mach number range from 0.6 to 0.8 and at chord Reynolds numbers of 1 × 106 < Re c < 5 ×106. The flow of the blunt trailing edge is characterized by a regular vortex street in the wake creating a regular pattern of upstream-moving pressure waves along the airfoil. The observed pressure waves lead to strong pressure fluctuations within the local flow field. A reduction in the trailing edge thickness leads to a proportional increase in the frequency of the vortex street in the wake as well as the frequency of the waves deduced from constant Strouhal number. By serrating the trailing edge, the formation of vortices in the wake is disturbed. Therefore, also the upstream-moving waves are influenced and reduced in their strength resulting in a steadier flow. An increasing length of the saw tooth enhances the three dimensionality of the structures in the wake and causes a strong decrease in the wave amplitude.
Dynamic Stall Characteristics of Drooped Leading Edge Airfoils
NASA Technical Reports Server (NTRS)
Sankar, Lakshmi N.; Sahin, Mehmet; Gopal, Naveen
2000-01-01
Helicopters in high-speed forward flight usually experience large regions of dynamic stall over the retreating side of the rotor disk. The rapid variations in the lift and pitching moments associated with the stall process can result in vibratory loads, and can cause fatigue and failure of pitch links. In some instances, the large time lag between the aerodynamic forces and the blade motion can trigger stall flutter. A number of techniques for the alleviation of dynamic stall have been proposed and studied by researchers. Passive and active control techniques have both been explored. Passive techniques include the use of high solidity rotors that reduce the lift coefficients of individual blades, leading edge slots and leading edge slats. Active control techniques include steady and unsteady blowing, and dynamically deformable leading edge (DDLE) airfoils. Considerable amount of experimental and numerical data has been collected on the effectiveness of these concepts. One concept that has not received as much attention is the drooped-leading edge airfoil idea. It has been observed in wind tunnel studies and flight tests that drooped leading edge airfoils can have a milder dynamic stall, with a significantly milder load hysteresis. Drooped leading edge airfoils may not, however, be suitable at other conditions, e.g. in hover, or in transonic flow. Work needs to be done on the analysis and design of drooped leading edge airfoils for efficient operation in a variety of flight regimes (hover, dynamic stall, and transonic flow). One concept that is worthy of investigation is the dynamically drooping airfoil, where the leading edge shape is changed roughly once-per-rev to mitigate the dynamic stall.
Tunneling Spectroscopy of Quantum Hall States in Bilayer Graphene
NASA Astrophysics Data System (ADS)
Wang, Ke; Harzheim, Achim; Watanabe, Kenji; Taniguchi, Takashi; Kim, Philip
In the quantum Hall (QH) regime, ballistic conducting paths along the physical edges of a sample appear, leading to quantized Hall conductance and vanishing longitudinal magnetoconductance. These QH edge states are often described as ballistic compressible strips separated by insulating incompressible strips, the spatial profiles of which can be crucial in understanding the stability and emergence of interaction driven QH states. In this work, we present tunneling transport between two QH edge states in bilayer graphene. Employing locally gated device structure, we guide and control the separation between the QH edge states in bilayer graphene. Using resonant Landau level tunneling as a spectroscopy tool, we measure the energy gap in bilayer graphene as a function of displacement field and probe the emergence and evolution of incompressible strips.
Flutter suppression and gust alleviation using active controls
NASA Technical Reports Server (NTRS)
Nissim, E.
1975-01-01
Application of the aerodynamic energy approach to some problems of flutter suppression and gust alleviation were considered. A simple modification of the control-law is suggested for achieving the required pitch control in the use of a leading edge - trailing edge activated strip. The possible replacement of the leading edge - trailing edge activated strip by a trailing edge - tab strip is also considered as an alternate solution. Parameters affecting the performance of the activated leading edge - trailing edge strip were tested on the Arava STOL Transport and the Westwind Executive Jet Transport and include strip location, control-law gains and a variation in the control-law itself.
Laminar Flow Control Leading Edge Systems in Simulated Airline Service
NASA Technical Reports Server (NTRS)
Wagner, R. D.; Maddalon, D. V.; Fisher, D. F.
1988-01-01
Achieving laminar flow on the wings of a commercial transport involves difficult problems associated with the wing leading edge. The NASA Leading Edge Flight Test Program has made major progress toward the solution of these problems. The effectiveness and practicality of candidate laminar flow leading edge systems were proven under representative airline service conditions. This was accomplished in a series of simulated airline service flights by modifying a JetStar aircraft with laminar flow leading edge systems and operating it out of three commercial airports in the United States. The aircraft was operated as an airliner would under actual air traffic conditions, in bad weather, and in insect infested environments.
Study of supersonic wings employing the attainable leading-edge thrust concept
NASA Technical Reports Server (NTRS)
Middleton, W. D.
1982-01-01
A theoretical study was made of supersonic wing geometries at Mach 1.8, using the attainable leading-edge thrust concept. The attainable thrust method offers a powerful means to improve overall aerodynamic efficiency by identifying wing leading-edge geometries that promote attached flow and by defining a local angle-of-attack range over which attached flow may be obtained. The concept applies to flat and to cambered wings, which leads to the consideration of drooped-wing leading edges for attached flow at high lift coefficients.
NASA Technical Reports Server (NTRS)
Hahne, David E.; Glaab, Louis J.
1999-01-01
An investigation was performed to evaluate leading-and trailing-edge flap deflections for optimal aerodynamic performance of a High-Speed Civil Transport concept during takeoff and approach-to-landing conditions. The configuration used for this study was designed by the Douglas Aircraft Company during the 1970's. A 0.1-scale model of this configuration was tested in the Langley 30- by 60-Foot Tunnel with both the original leading-edge flap system and a new leading-edge flap system, which was designed with modem computational flow analysis and optimization tools. Leading-and trailing-edge flap deflections were generated for the original and modified leading-edge flap systems with the computational flow analysis and optimization tools. Although wind tunnel data indicated improvements in aerodynamic performance for the analytically derived flap deflections for both leading-edge flap systems, perturbations of the analytically derived leading-edge flap deflections yielded significant additional improvements in aerodynamic performance. In addition to the aerodynamic performance optimization testing, stability and control data were also obtained. An evaluation of the crosswind landing capability of the aircraft configuration revealed that insufficient lateral control existed as a result of high levels of lateral stability. Deflection of the leading-and trailing-edge flaps improved the crosswind landing capability of the vehicle considerably; however, additional improvements are required.
Air-Cooled Turbine Blades with Tip Cap For Improved Leading-Edge Cooling
NASA Technical Reports Server (NTRS)
Calvert, Howard F.; Meyer, Andre J., Jr.; Morgan, William C.
1959-01-01
An investigation was conducted in a modified turbojet engine to determine the cooling characteristics of the semistrut corrugated air- cooled turbine blade and to compare and evaluate a leading-edge tip cap as a means for improving the leading-edge cooling characteristics of cooled turbine blades. Temperature data were obtained from uncapped air-cooled blades (blade A), cooled blades with the leading-edge tip area capped (blade B), and blades with slanted corrugations in addition to leading-edge tip caps (blade C). All data are for rated engine speed and turbine-inlet temperature (1660 F). A comparison of temperature data from blades A and B showed a leading-edge temperature reduction of about 130 F that could be attributed to the use of tip caps. Even better leading-edge cooling was obtained with blade C. Blade C also operated with the smallest chordwise temperature gradients of the blades tested, but tip-capped blade B operated with the lowest average chordwise temperature. According to a correlation of the experimental data, all three blade types 0 could operate satisfactorily with a turbine-inlet temperature of 2000 F and a coolant flow of 3 percent of engine mass flow or less, with an average chordwise temperature limit of 1400 F. Within the range of coolant flows investigated, however, only blade C could maintain a leading-edge temperature of 1400 F for a turbine-inlet temperature of 2000 F.
Phosphorus K-edge XANES spectroscopy of mineral standards
Ingall, Ellery D.; Brandes, Jay A.; Diaz, Julia M.; de Jonge, Martin D.; Paterson, David; McNulty, Ian; Elliott, W. Crawford; Northrup, Paul
2011-01-01
Phosphorus K-edge X-ray absorption near-edge structure (XANES) spectroscopy was performed on phosphate mineral specimens including (a) twelve specimens from the apatite group covering a range of compositional variation and crystallinity; (b) six non-apatite calcium-rich phosphate minerals; (c) 15 aluminium-rich phosphate minerals; (d) ten phosphate minerals rich in either reduced iron or manganese; (e) four phosphate minerals rich in either oxidized iron or manganese; (f) eight phosphate minerals rich in either magnesium, copper, lead, zinc or rare-earth elements; and (g) four uranium phosphate minerals. The identity of all minerals examined in this study was independently confirmed using X-ray powder diffraction. Minerals were distinguished using XANES spectra with a combination of pre-edge features, edge position, peak shapes and post-edge features. Shared spectral features were observed in minerals with compositions dominated by the same specific cation. Analyses of apatite-group minerals indicate that XANES spectral patterns are not strongly affected by variations in composition and crystallinity typical of natural mineral specimens. PMID:21335905
In-Operando Spatial Imaging of Edge Termination Electric Fields in GaN Vertical p-n Junction Diodes
Leonard, Francois; Dickerson, J. R.; King, M. P.; ...
2016-05-03
Control of electric fields with edge terminations is critical to maximize the performance of high-power electronic devices. We proposed a variety of edge termination designs which makes the optimization of such designs challenging due to many parameters that impact their effectiveness. And while modeling has recently allowed new insight into the detailed workings of edge terminations, the experimental verification of the design effectiveness is usually done through indirect means, such as the impact on breakdown voltages. In this letter, we use scanning photocurrent microscopy to spatially map the electric fields in vertical GaN p-n junction diodes in operando. We alsomore » reveal the complex behavior of seemingly simple edge termination designs, and show how the device breakdown voltage correlates with the electric field behavior. Modeling suggests that an incomplete compensation of the p-type layer in the edge termination creates a bilayer structure that leads to these effects, with variations that significantly impact the breakdown voltage.« less
Design modification of airfoil by integrating sinusoidal leading edge and dimpled surface
NASA Astrophysics Data System (ADS)
Masud, M. H.; Naim-Ul-Hasan, Arefin, Amit Md. Estiaque; Joardder, Mohammad U. H.
2017-06-01
Airfoil is widely used for aircraft wings and blades of helicopters, turbines, propellers, fans and compressors. Many researches have been conducted on focusing the leading edge, surface and trailing edge of airfoil in order to maximize airfoil lift and to reduce drag. Literature shows that using protuberances along the leading edge of NACA 2412, it is possible to attain better performance from the baseline. Besides, the inward dimpled surface of NACA 0018 produces lesser drag at a positive angle of attacks. However, there is no literature that integrates sinusoidal leading edge and dimpled to attain the benefits of the both. In this study, simulation has been done for design improvement of airfoil by integrating sinusoidal leading edge and dimpled surface. Simulations have been run using finite element method environment. Significant improvement has been observed from the simulation results.
Symmetric airfoil geometry effects on leading edge noise.
Gill, James; Zhang, X; Joseph, P
2013-10-01
Computational aeroacoustic methods are applied to the modeling of noise due to interactions between gusts and the leading edge of real symmetric airfoils. Single frequency harmonic gusts are interacted with various airfoil geometries at zero angle of attack. The effects of airfoil thickness and leading edge radius on noise are investigated systematically and independently for the first time, at higher frequencies than previously used in computational methods. Increases in both leading edge radius and thickness are found to reduce the predicted noise. This noise reduction effect becomes greater with increasing frequency and Mach number. The dominant noise reduction mechanism for airfoils with real geometry is found to be related to the leading edge stagnation region. It is shown that accurate leading edge noise predictions can be made when assuming an inviscid meanflow, but that it is not valid to assume a uniform meanflow. Analytic flat plate predictions are found to over-predict the noise due to a NACA 0002 airfoil by up to 3 dB at high frequencies. The accuracy of analytic flat plate solutions can be expected to decrease with increasing airfoil thickness, leading edge radius, gust frequency, and Mach number.
NASA Technical Reports Server (NTRS)
Kogan, M. N.; Shumilkin, V. G.; Ustinov, M. V.; Zhigulev, S. V.
1999-01-01
Experimental and theoretical studies of low speed leading edge boundary layer receptivity to free-stream vorticity produced by upstream wires normal to the leading edge are discussed. Data include parametric variations in leading edge configuration and details of the incident disturbance field including single and multiple wakes. The induced disturbance amplitude increases with increases in the leading edge diameter and wake interactions. Measurements agree with the theory of M. E. Goldstein.
NASA Astrophysics Data System (ADS)
Komuro, Atsushi; Takashima, Keisuke; Konno, Kaiki; Tanaka, Naoki; Nonomura, Taku; Kaneko, Toshiro; Ando, Akira; Asai, Keisuke
2017-06-01
Gas-density perturbations near an airfoil surface generated by a nanosecond dielectric-barrier-discharge plasma actuator (ns-DBDPA) are visualized using a high-speed Schlieren imaging method. Wind-tunnel experiments are conducted for a wind speed of 20 m s-1 with an NACA0015 airfoil whose chord length is 100 mm. The results show that the ns-DBDPA first generates a pressure wave and then stochastic perturbations of the gas density near the leading edge of the airfoil. Two structures with different characteristics are observed in the stochastic perturbations. One structure propagates along the boundary between the shear layer and the main flow at a speed close to that of the main flow. The other propagates more slowly on the surface of the airfoil and causes mixing between the main and shear flows. It is observed that these two heated structures interact with each other, resulting in a recovery in the negative pressure coefficient at the leading edge of the airfoil.
On the Use pf Active Flow Control to Trim and Control a Tailles Aircraft Model
NASA Astrophysics Data System (ADS)
Jentzsch, Marvin
The Stability And Control CONfiguration (SACCON) model represents an emerging trend in airplane design where the classical tube, wing and empennage are replaced by a single tailless configuration. The challenge is to assure that these designs are stable and controllable. Nonlinear aerodynamic behavior is observed on the SACCON at higher incidence angles due to leading edge vortex structures. Active Flow Control (AFC) used in preliminary design represents a promising solution to the longitudinal stability problems and this was demonstrated experimentally on a semi span model. AFC can be used to trim the SACCON in pitch and it alters forces and moments comparable to common control surface deflections. A combination of AFC and control surface deflection may increase the overall efficiency and opens up a variety of maneuvering possibilities. This implies that AFC should be treated concomitantly with other design parameters and should be considered in the preliminary design process already and not as an add-on tool. Integral force and moment data was supplemented by observations using Pressure Sensitive Paint (PSP) and flow visualization. Two arrays of individually controlled sweeping jets, one located along the leading edge and the other along the flap hinge provided the AFC input needed to alter the flow. The array positioned over the flap-hinge of the model was most effective in stabilizing the wing by decreasing the pitching moment at lower and intermediate angles of incidence. This effect was achieved by reducing the spanwise flow on the swept back portion of the wing through jet-entrainment that also affected the leading edge vortex. Leading edge actuation showed some beneficial effects by inhibiting the formation of the leading edge vortex near the wing tip. A preliminary study using suction was carried out. The tests were carried out at Mach numbers smaller than 0.2 and Reynolds numbers based on the root chord of the model that approached 106.
Leading-edge singularities in thin-airfoil theory
NASA Technical Reports Server (NTRS)
Jones, R. T.
1976-01-01
If the thin airfoil theory is applied to an airfoil having a rounded leading edge, a certain error will arise in the determination of the pressure distribution around the nose. It is shown that the evaluation of the drag of such a blunt nosed airfoil by the thin airfoil theory requires the addition of a leading edge force, analogous to the leading edge thrust of the lifting airfoil. The method of calculation is illustrated by application to: (1) The Joukowski airfoil in subsonic flow; and (2) the thin elliptic cone in supersonic flow. A general formula for the edge force is provided which is applicable to a variety of wing forms.
Exciton-Dominated Core-Level Absorption Spectra of Hybrid Organic-Inorganic Lead Halide Perovskites.
Vorwerk, Christian; Hartmann, Claudia; Cocchi, Caterina; Sadoughi, Golnaz; Habisreutinger, Severin N; Félix, Roberto; Wilks, Regan G; Snaith, Henry J; Bär, Marcus; Draxl, Claudia
2018-04-19
In a combined theoretical and experimental work, we investigate X-ray absorption near-edge structure spectroscopy of the I L 3 and the Pb M 5 edges of the methylammonium lead iodide (MAPbI 3 ) hybrid inorganic-organic perovskite and its binary phase PbI 2 . The absorption onsets are dominated by bound excitons with sizable binding energies of a few hundred millielectronvolts and pronounced anisotropy. The spectra of both materials exhibit remarkable similarities, suggesting that the fingerprints of core excitations in MAPbI 3 are essentially given by its inorganic component, with negligible influence from the organic groups. The theoretical analysis complementing experimental observations provides the conceptual insights required for a full characterization of this complex material.
77 FR 60651 - Airworthiness Directives; BAE Systems (Operations) Limited Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-04
... of the wing leading edge. This proposed AD would require a detailed inspection of the end caps on the... tube, and ice accretion on the wing leading edge or run-back ice, which could lead to a reduction in... leading edge anti- icing piccolo tube end caps on two aircraft. This was discovered during routine zonal...
78 FR 7259 - Airworthiness Directives; BAE SYSTEMS (OPERATIONS) LIMITED Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-01
... wing leading edge. This AD requires a detailed inspection of the end caps on the anti-icing piccolo... on the wing leading edge or run-back ice, which could lead to a reduction in the stall margin on... the loss of the wing leading edge anti- icing piccolo tube end caps on two aircraft. This was...
NASA Astrophysics Data System (ADS)
Nehmetallah, Georges; Banerjee, Partha; Khoury, Jed
2015-03-01
The nonlinearity inherent in four-wave mixing in photorefractive (PR) materials is used for adaptive filtering. Examples include script enhancement on a periodic pattern, scratch and defect cluster enhancement, periodic pattern dislocation enhancement, etc. through intensity filtering image manipulation. Organic PR materials have large space-bandwidth product, which makes them useful in adaptive filtering techniques in quality control systems. For instance, in the case of edge enhancement, phase conjugation via four-wave mixing suppresses the low spatial frequencies of the Fourier spectrum of an aperiodic image and consequently leads to image edge enhancement. In this work, we model, numerically verify, and simulate the performance of a four wave mixing setup used for edge, defect and pattern detection in periodic amplitude and phase structures. The results show that this technique successfully detects the slightest defects clearly even with no enhancement. This technique should facilitate improvements in applications such as image display sharpness utilizing edge enhancement, production line defect inspection of fabrics, textiles, e-beam lithography masks, surface inspection, and materials characterization.
NASA Technical Reports Server (NTRS)
Hahne, Daniel E.
1999-01-01
Using the F-16XL as a test-bed, two strategies for improving the low-speed flying characteristics that had minimal impact on high-speed performance were evaluated. In addition to the basic F-16XL configuration several modifications to the baseline configuration were tested in the Langley 30- X 60-Foot Tunnel: 1) the notched area at the wing leading edge and fuselage juncture was removed resulting in a continuous 70 deg leading-edge sweep on the inboard portion of the wing; 2) an integral attached-flow leading-edge flap concept was added to the continuous leading edge; and 3) a deployable vortex flap concept was added to the continuous leading edge. The purpose of this report is simply to document the test configurations, test conditions, and data obtained in this investigation for future reference and analysis. No analysis is presented herein and the data only appear in tabulated format.
Vortex Flows at Supersonic Speeds
NASA Technical Reports Server (NTRS)
Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.
2003-01-01
A review of research conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data are for flat plates, cavities, bodies, missiles, wings, and aircraft with Mach numbers of 1.5 to 4.6. Data are presented to show the types of vortex structures that occur at supersonic speeds and the impact of these flow structures on vehicle performance and control. The data show the presence of both small- and large-scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices. Data are shown that highlight the effect of leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber on the aerodynamics of and flow over delta wings. Finally, a discussion of a design approach for wings that use vortex flows for improved aerodynamic performance at supersonic speeds is presented.
75 FR 16689 - Airworthiness Directives; Airbus Model A318, A319, A320, and A321 Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-02
... other areas (splice/lower rib/upper edge/leading edge/other specified locations), and elasticity laminate checks for de-bonding of the rudders in the trailing edge area and other areas (splice/lower rib/upper edge/leading edge/other specified locations). Corrective actions include contacting Airbus for...
Long Duration Exposure Facility experiment M0003 deintegration observation data base
NASA Technical Reports Server (NTRS)
Gyetvay, S. R.; Coggi, J. M.; Meshishnek, M. J.
1993-01-01
The four trays (2 leading edge and 2 trailing edge) of the M0003 materials experiment on the Long Duration Exposure Facility (LDEF) contained 1274 samples from 20 subexperiments. The complete sample complement represented a broad range of materials, including thin film optical coatings, paints, polymer sheets and tapes, adhesives, and composites, for use in various spacecraft applications, including thermal control, structures, optics, and solar power. Most subexperiments contained sets of samples exposed on both the leading and trailing edge trays of LDEF. Each individual sample was examined by high resolution optical microscope during the deintegration of the subexperiments from the M0003 trays. Observations of the post-flight condition of the samples made during this examination were recorded in a computer data base. The deintegration observation data base is available to requesters on floppy disk in 4th Dimension for the Macintosh format. Over 3,000 color macrographs and photomicrographs were shot to complement the observation records and to document the condition of the individual samples and of the M0003 trays. The photographs provide a visual comparison of the response of materials in leading and trailing edge LDEF environments. The Aerospace Corporate Archives is distributing photographs of the samples and hard copies of the database records to the general public upon request. Information on obtaining copies of the data base disks and for ordering photographs and records of specific samples or materials are given.
Effectiveness of Flow Control for Alleviation of Twin-Tail Buffet
NASA Technical Reports Server (NTRS)
Sheta, Essam F.; Kandil, Osama A.; Yang, Zhi
1998-01-01
Effectiveness of active flow control for twin- tail buffet alleviation is investigated. Tangen- tial leading-edge blowing (TLEB) and flow suction along the vortex cores (FSVC) of the lead- ing edges of the delta wing are used to delay the vortex breakdown flow upstream of the twin tail. The combined effect of the TLEB and FSVC is also investigated. A parametric study of the effects of the spanwise position of the suction tubes and volumetric suction flow rate on the twin-tail buffet response are also investigated. The TLEB moves the path of leading-edge vortices laterally towards the twin tail, which increases the aero- dynamic damping on the tails. The FSVC effectively delays the breakdown location at high angles of attack. The computational model consists of a sharp-edged delta wing of aspect ratio one and swept-back flexible twin tail with taper ratio of 0.23. This complex multidisciplinary problem is solved sequentially using three sets of equations for the fluid flow, aeroelastic response and grid deformation, on a dynamic multi-block grid structure. The computational model is pitched at 30 deg. angle of attack. The freestream Mach number and Reynolds number are 0.3 and 1.25 million, respectively. The model is investigated for the inboard position of the twin tails, which corresponds to a separation distance between the twin tails of 33% of the wing span.
NASA Technical Reports Server (NTRS)
McMillin, S. Naomi; Bryd, James E.; Parmar, Devendra S.; Bezos-OConnor, Gaudy M.; Forrest, Dana K.; Bowen, Susan
1996-01-01
An experimental investigation of the effect of leading-edge radius, camber, Reynolds number, and boundary-layer state on the incipient separation of a delta wing at supersonic speeds was conducted at the Langley Unitary Plan Wind Tunnel at Mach number of 1.60 over a free-stream Reynolds number range of 1 x 106 to 5 x 106 ft-1. The three delta wing models examined had a 65 deg swept leading edge and varied in cross-sectional shape: a sharp wedge, a 20:1 ellipse, and a 20:1 ellipse with a -9.750 circular camber imposed across the span. The wings were tested with and without transition grit applied. Surface-pressure coefficient data and flow-visualization data indicated that by rounding the wing leading edge or cambering the wing in the spanwise direction, the onset of leading-edge separation on a delta wing can be raised to a higher angle of attack than that observed on a sharp-edged delta wing. The data also showed that the onset of leading-edge separation can be raised to a higher angle of attack by forcing boundary-layer transition to occur closer to the wing leading edge by the application of grit or the increase in free-stream Reynolds number.
Effect of free-stream turbulence on boundary layer transition.
Goldstein, M E
2014-07-28
This paper is concerned with the transition to turbulence in flat plate boundary layers due to moderately high levels of free-stream turbulence. The turbulence is assumed to be generated by an (idealized) grid and matched asymptotic expansions are used to analyse the resulting flow over a finite thickness flat plate located in the downstream region. The characteristic Reynolds number Rλ based on the mesh size λ and free-stream velocity is assumed to be large, and the turbulence intensity ε is assumed to be small. The asymptotic flow structure is discussed for the generic case where the turbulence Reynolds number εRλ and the plate thickness and are held fixed (at O(1) and O(λ), respectively) in the limit as [Formula: see text] and ε→0. But various limiting cases are considered in order to explain the relevant transition mechanisms. It is argued that there are two types of streak-like structures that can play a role in the transition process: (i) those that appear in the downstream region and are generated by streamwise vorticity in upstream flow and (ii) those that are concentrated near the leading edge and are generated by plate normal vorticity in upstream flow. The former are relatively unaffected by leading edge geometry and are usually referred to as Klebanoff modes while the latter are strongly affected by leading edge geometry and are more streamwise vortex-like in appearance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Wisps in the outer edge of the Keeler Gap
NASA Astrophysics Data System (ADS)
Tiscareno, M. S.; Arnault, E. G.
2014-12-01
The outer part of Saturn's A ring contains five sharp edges: the inner and outer edges of the Encke Gap and of the Keeler Gap (which contain the moons Pan and Daphnis, respectively), and the outer edge of the A ring itself. Four of these five edges are characterized by structure at moderate to high spatial frequencies, with amplitudes ranging from 2 to 30 km (Tiscareno et al. 2005, DPS). Only the outer edge of the Keeler Gap is reasonably smooth in appearance (Tiscareno et al. 2005, DPS), with occultations indicating residuals less than 1 km upon a possibly non-zero eccentricity (R.G. French, personal communication, 2014). Superposed upon the relatively smooth outer edge of the Keeler Gap are a system of "wisps," which appear to be ring material protruding inward into the gap, usually with a sharp trailing edge and a smooth gradation back to the background edge location on the leading side (Porco et al. 2005, Science). The radial amplitude of wisps is usually 0.5 to 1 km, and their azimuthal extent is approximately a degree of longitude (~2400 km). Wisps are likely caused by an interplay between Daphnis (and perhaps other moons) and embedded moonlets within the ring, though the details remain unclear. We will present a catalogue of wisp detections in Cassini images. We carry out repeated gaussian fits of the radial edge location in order to characterize edge structure (see Figure, which compares our fitted edge to the figure presented by Porco et al. 2005) and visually scan those fitted edges in order to detect wisps. With extensive coverage in longitude and in time, we will report on how wisps evolve and move, both within an orbit period and on longer timescales. We will also report on the frequency and interpretation of wisps that deviate from the standard morphology. We will discuss the implications of our results for the origin and nature of wisps, and for the larger picture of how masses interact within Saturn's rings.
Test particle simulation study of whistler wave packets observed near Comet Giacobini-Zinner
NASA Astrophysics Data System (ADS)
Kaya, N.; Matsumoto, H.; Tsurutani, B. T.
1989-01-01
Nonlinear interactions of water group ions with large-amplitude whistler wave packets detected at the leading edge of steepened magnetosonic waves observed near Comet Giacobini-Zinner (GZ) are studied using test particle simulations of water-ion interactions with a model wave based on GZ data. Some of the water ions are found to be decelerated in the steepened portion of the magnetosonic wave to the resonance velocity with the whistler wave packets. Through resonance and related nonlinear interaction with the large-amplitude whistler waves, the water ions become trapped by the packet. An energy balance calculation demonstrates that the trapped ions lose their kinetic energy during the trapped motion in the packet. Thus, the nonlinear trapping motion in the wave structure leads to effective energy transfer from the water group ions to the whistler wave packets in the leading edge of the steepened MHD waves.
Wavy flow cooling concept for turbine airfoils
Liang, George
2010-08-31
An airfoil including an outer wall and a cooling cavity formed therein. The cooling cavity includes a leading edge flow channel located adjacent a leading edge of the airfoil and a trailing edge flow channel located adjacent a trailing edge of the airfoil. Each of the leading edge and trailing edge flow channels define respective first and second flow axes located between pressure and suction sides of the airfoil. A plurality of rib members are located within each of the flow channels, spaced along the flow axes, and alternately extending from opposing sides of the flow channels to define undulating flow paths through the flow channels.
Owen, Julia P.; Chang, Yi-Shin; Mukherjee, Pratik
2015-01-01
The structural connectome has emerged as a powerful tool to characterize the network architecture of the human brain and shows great potential for generating important new biomarkers for neurologic and psychiatric disorders. The edges of the cerebral graph traverse white matter to interconnect cortical and subcortical nodes, although the anatomic embedding of these edges is generally overlooked in the literature. Mapping the paths of the connectome edges could elucidate the relative importance of individual white matter tracts to the overall network topology of the brain and also lead to a better understanding of the effect of regionally-specific white matter pathology on cognition and behavior. In this work, we introduce edge density imaging (EDI), which maps the number of network edges that pass through every white matter voxel. Test-retest analysis shows good to excellent reliability for edge density (ED) measurements, with consistent results using different cortical and subcortical parcellation schemes and different diffusion MR imaging acquisition parameters. We also demonstrate that ED yields complementary information to both traditional and emerging voxel-wise metrics of white matter microstructure and connectivity, including fractional anisotropy, track density, fiber orientation dispersion and neurite density. Our results demonstrate spatially ordered variations of ED throughout the white matter, notably including greater ED in posterior than anterior cerebral white matter. The EDI framework is employed to map the white matter regions that are enriched with pathways connecting rich club nodes and also those with high densities of intra-modular and inter-modular edges. We show that periventricular white matter has particularly high ED and high densities of rich club edges, which is significant for diseases in which these areas are selectively affected, ranging from white matter injury of prematurity in infants to leukoaraiosis in the elderly. Using edge betweenness centrality, we identify specific white matter regions involved in a large number of shortest paths, some containing highly connected rich club edges while others are relatively isolated within individual modules. Overall, these findings reveal an intricate relationship between white matter anatomy and the structural connectome, motivating further exploration of EDI for biomarkers of cognition and behavior. PMID:25592996
NASA Astrophysics Data System (ADS)
Wang, Yufeng; Cai, Le; Wang, Songtao; Zhou, Xun
2018-04-01
Unsteady numerical simulations of a high-load transonic turbine stage have been carried out to study the influences of vane trailing edge outer-extending shockwave on rotor blade leading edge film cooling performance. The turbine stage used in this paper is composed of a vane section and a rotor one which are both near the root section of a transonic high-load turbine stage. The Mach number is 0.94 at vane outlet, and the relative Mach number is above 1.10 at rotor outlet. Various positions and oblique angles of film cooling holes were investigated in this research. Results show that the cooling efficiency on the blade surface of rotor near leading edge is significantly affected by vane trailing edge outer-extending shockwave in some cases. In the cases that film holes are close to leading edge, cooling performance suffers more from the sweeping vane trailing edge outer-extending shockwave. In addition, coolant flow ejected from oblique film holes is harder to separate from the blade surface of rotor, and can cover more blade area even under the effects of sweeping vane trailing edge shockwave. As a result, oblique film holes can provide better film cooling performance than vertical film holes do near the leading edge on turbine blade which is swept by shockwaves.
Effect of canard position and wing leading-edge flap deflection on wing buffet at transonic speeds
NASA Technical Reports Server (NTRS)
Gloss, B. B.; Henderson, W. P.; Huffman, J. K.
1974-01-01
A generalized wind-tunnel model, with canard and wing planform typical of highly maneuverable aircraft, was tested. The addition of a canard above the wing chord plane, for the configuration with leading-edge flaps undeflected, produced substantially higher total configuration lift coefficients before buffet onset than the configuration with the canard off and leading-edge flaps undeflected. The wing buffet intensity was substantially lower for the canard-wing configuration than the wing-alone configuration. The low-canard configuration generally displayed the poorest buffet characteristics. Deflecting the wing leading-edge flaps substantially improved the wing buffet characteristics for canard-off configurations. The addition of the high canard did not appear to substantially improve the wing buffet characteristics of the wing with leading-edge flaps deflected.
NASA Technical Reports Server (NTRS)
Rivers, S. M. B.; Wahls, R. A.; Owens, L. R.
2001-01-01
A computational study focused on leading-edge radius effects and associated Reynolds number sensitivity for a High Speed Civil Transport configuration at transonic conditions was conducted as part of NASA's High Speed Research Program. The primary purposes were to assess the capabilities of computational fluid dynamics to predict Reynolds number effects for a range of leading-edge radius distributions on a second-generation supersonic transport configuration, and to evaluate the potential performance benefits of each at the transonic cruise condition. Five leading-edge radius distributions are described, and the potential performance benefit including the Reynolds number sensitivity for each is presented. Computational results for two leading-edge radius distributions are compared with experimental results acquired in the National Transonic Facility over a broad Reynolds number range.
Investigation of leading-edge flap performance on delta and double-delta wings at supersonic speeds
NASA Technical Reports Server (NTRS)
Covell, Peter F.; Wood, Richard M.; Miller, David S.
1987-01-01
An investigation of the aerodynamic performance of leading-edge flaps on three clipped delta and three clipped double-delta wing planforms with aspect ratios of 1.75, 2.11, and 2.50 was conducted in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.60, 1.90, and 2.16. A primary set of fullspan leading-edge flaps with similar root and tip chords were investigated on each wing, and several alternate flap planforms were investigated on the aspect-ratio-1.75 wings. All leading-edge flap geometries were effective in reducing the drag at lifting conditions over the range of wing aspect ratios and Mach numbers tested. Application of a primary flap resulted in better flap performance with the double-delta planform than with the delta planform. The primary flap geometry generally yielded better performance than the alternate flap geometries tested. Trim drag due to flap-induced pitching moments was found to reduce the leading-edge flap performance more for the delta planform than for the double-delta planform. Flow-visualization techniques showed that leading-edge flap deflection reduces crossflow shock-induced separation effects. Finally, it was found that modified linear theory consistently predicts only the effects of leading-edge flap deflection as related to pitching moment and lift trends.
3-D model of ICME in the interplanetary medium
NASA Astrophysics Data System (ADS)
Borgazzi, A.; Lara, A.; Niembro, T.
2011-12-01
We developed a method that describes with simply geometry the coordinates of intersection between the leading edge of an ICME and the position of an arbitrary satellite. When a fast CME is ejected from the Sun to the interplanetary space in most of the cases drives a shock. As the CME moves in the corona and later in the interplanetary space more material is stacking in the front and edges of the ejecta. In a first approximation, it is possible to assume the shape of these structures, the CME and the stacked material as a cone of revolution, (the ice-cream model [Schwenn et al., (2005)]). The interface may change due to the interaction of the structure and the non-shocked material in front of the ICME but the original shape of a cone of revolution is preserved. We assume, in a three dimensional geometry, an ice-cream cone shape for the ICME and apply an analytical model for its transport in the interplanetary medium. The goal of the present method is to give the time and the intersection coordinates between the leading edge of the ICME and any satellite that may be in the path of the ICME. With this information we can modelate the travel of the ICME in the interplanetary space using STEREO data.
NASA Astrophysics Data System (ADS)
Klysubun, Wantana; Ravel, Bruce; Klysubun, Prapong; Sombunchoo, Panidtha; Deenan, Weeraya
2013-06-01
Yellow and colorless ancient glasses, which were once used to decorate the Temple of the Emerald Buddha, Bangkok, Thailand, around 150 years ago, are studied to unravel the long-lost glass-making recipes and manufacturing techniques. Analyses of chemical compositions, using synchrotron x-ray fluorescence (SRXRF), indicate that the Thai ancient glasses are soda lime silica glasses (60 % SiO2; 10 % Na2O; 10 % CaO) bearing lead oxide between 2-16 %. Iron (1.5-9.4 % Fe2O3) and manganese (1.7 % MnO) are present in larger abundance than the other 3 d transition metals detected (0.04-0.2 %). K-edge x-ray absorption near edge spectroscopy (XANES) and extended x-ray absorption fine structure spectroscopy (EXAFS) provide conclusive evidence on the oxidation states of Fe being 3+ and Mn being 2+ and on short-length tetrahedral structures around the cations. This suggests that iron is used as a yellow colorant with manganese as a decolorant. L 3-edge XANES results reveal the oxidation states of lead as 2+. The results from this work provide information crucial for replicating these decorative glasses for the future restoration of the Temple of the Emerald Buddha.
Investigation of span-chordwise bending anisotropy of honeybee forewings
Ning, JianGuo; Ma, Yun; Zhang, PengFei
2017-01-01
ABSTRACT In this study, the spanwise and chordwise bending stiffness EI of honeybee forewings were measured by a cantilevered bending test. The test results indicate that the spanwise EI of the forewing is two orders of magnitude larger than the chordwise EI. Three structural aspects result in this span-chordwise bending anisotropy: the distribution of resilin patches, the corrugation along the span and the leading edge vein of the venation. It was found that flexion lines formed by resilin patches revealed through fluorescence microscopy promoted the chordwise bending of the forewing during flapping flight. Furthermore, the corrugation of the wing and leading edge veins of the venation, revealed by micro-computed tomography, determines the relatively greater spanwise EI of the forewing. The span-chordwise anisotropy exerts positive structural and aerodynamic influences on the wing. In summary, this study potentially assists researchers in understanding the bending characteristics of insect wings and might be an important reference for the design and manufacture of bio-inspired wings for flapping micro aerial vehicles. PMID:28396486
NASA Astrophysics Data System (ADS)
Yao, Hui; Zhang, Chao; Li, Zhi-Jian; Nie, Yi-Hang; Niu, Peng-bin
2018-05-01
We theoretically investigate the thermoelectric properties in a tunneling-coupled parallel DQD-AB ring attached to one normal and one superconducting lead. The role of the intrinsic and extrinsic parameters in improving thermoelectric properties is discussed. The peak value of figure of merit near gap edges increases with the asymmetry parameter decreasing, particularly, when asymmetry parameter is less than 0.5, the figure of merit near gap edges rapidly rises. When the interdot coupling strengh is less than the superconducting gap the thermopower spectrum presents a single-platform structure. While when the interdot coupling strengh is larger than the gap, a double-platform structure appears in thermopower spectrum. Outside the gap the peak values of figure of merit might reach the order of 102. On the basis of optimizing internal parameters the thermoelectric conversion efficiency of the device can be further improved by appropriately matching the total magnetic flux and the flux difference between two subrings.
Distributed ice accretion sensor for smart aircraft structures
NASA Technical Reports Server (NTRS)
Gerardi, J. J.; Hickman, G. A.
1989-01-01
A distributed ice accretion sensor is presented, based on the concept of smart structures. Ice accretion is determined using spectral techniques to process signals from piezoelectric sensors integral to the airfoil skin. Frequency shifts in the leading edge structural skin modes are correlated to ice thickness. It is suggested that this method may be used to detect ice over large areas with minimal hardware. Results are presented from preliminary tests to measure simulated ice growth.
Jueterbock, Alexander; Coyer, James A; Olsen, Jeanine L; Hoarau, Galice
2018-06-15
The spatial distribution of genetic diversity and structure has important implications for conservation as it reveals a species' strong and weak points with regard to stability and evolutionary capacity. Temporal genetic stability is rarely tested in marine species other than commercially important fishes, but is crucial for the utility of temporal snapshots in conservation management. High and stable diversity can help to mitigate the predicted northward range shift of seaweeds under the impact of climate change. Given the key ecological role of fucoid seaweeds along rocky shores, the positive effect of genetic diversity may reach beyond the species level to stabilize the entire intertidal ecosystem along the temperate North Atlantic. In this study, we estimated the effective population size, as well as temporal changes in genetic structure and diversity of the seaweed F. serratus using 22 microsatellite markers. Samples were taken across latitudes and a range of temperature regimes at seven locations with decadal sampling (2000 and 2010). Across latitudes, genetic structure and diversity remained stable over 5-10 generations. Stable small-scale structure enhanced regional diversity throughout the species' range. In accordance with its biogeographic history, effective population size and diversity peaked in the species' mid-range in Brittany (France), and declined towards its leading and trailing edge to the north and south. At the species' southern edge, multi-locus-heterozygosity displayed a strong decline from 1999 to 2010. Temporally stable genetic structure over small spatial scales is a potential driver for local adaptation and species radiation in the genus Fucus. Survival and adaptation of the low-diversity leading edge of F. serratus may be enhanced by regional gene flow and 'surfing' of favorable mutations or impaired by the accumulation of deleterious mutations. Our results have clear implications for the conservation of F. serratus at its genetically unique southern edge in Northwest Iberia, where increasing temperatures are likely the major cause for the decline not only of F. serratus, but also other intertidal and subtidal macroalgae. We expect that F. serratus will disappear from Northwest Iberia by 2100 if genetic rescue is not induced by the influx of genetic variation from Brittany.
Cooling circuit for steam and air-cooled turbine nozzle stage
Itzel, Gary Michael; Yu, Yufeng
2002-01-01
The turbine vane segment includes inner and outer walls with a vane extending therebetween. The vane includes leading and trailing edge cavities and intermediate cavities. An impingement plate is spaced from the outer wall to impingement-cool the outer wall. Post-impingement cooling air flows through holes in the outer wall to form a thin air-cooling film along the outer wall. Cooling air is supplied an insert sleeve with openings in the leading edge cavity for impingement-cooling the leading edge. Holes through the leading edge afford thin-film cooling about the leading edge. Cooling air is provided the trailing edge cavity and passes through holes in the side walls of the vane for thin-film cooling of the trailing edge. Steam flows through a pair of intermediate cavities for impingement-cooling of the side walls. Post-impingement steam flows to the inner wall for impingement-cooling of the inner wall and returns the post-impingement cooling steam through inserts in other intermediate cavities for impingement-cooling the side walls of the vane.
Integral Textile Structure for 3-D CMC Turbine Airfoils
NASA Technical Reports Server (NTRS)
Marshall, David B. (Inventor); Cox, Brian N. (Inventor); Sudre, Olivier H. (Inventor)
2017-01-01
An integral textile structure for 3-D CMC turbine airfoils includes top and bottom walls made from an angle-interlock weave, each of the walls comprising warp and weft fiber tows. The top and bottom walls are merged on a first side parallel to the warp fiber tows into a single wall along a portion of their widths, with the weft fiber tows making up the single wall interlocked through the wall's thickness such that delamination of the wall is inhibited. The single wall suitably forms the trailing edge of an airfoil; the top and bottom walls are preferably joined along a second side opposite the first side and parallel to the radial fiber tows by a continuously curved section in which the weave structure remains continuous with the weave structure in the top and bottom walls, the continuously curved section being the leading edge of the airfoil.
NASA Astrophysics Data System (ADS)
Yang, Bo; Scheidtmann, Jens; Mayer, Joachim; Wuttig, Matthias; Michely, Thomas
2002-01-01
Deposition of Ag on a silicon oil surface leads to the formation of nm-sized Ag crystals floating on the oil surface. These nanocrystals mutually attract each other, forming strongly branched nanocrystal aggregates and continuous aggregate networks. Transformation processes of such nanocrystal aggregate networks are imaged in situ by optical microscopy. The observations are explained on the basis of a simple model involving diffusion of nanocrystals along aggregate edges and the rupture of branches resulting from branch width fluctuations due to edge diffusion.
Wisps in the outer edge of the Keeler Gap
NASA Astrophysics Data System (ADS)
Tiscareno, Matthew S.; Arnault, Ethan G.
2015-11-01
Superposed upon the relatively smooth outer edge of the Keeler Gap are a system of "wisps," which appear to be ring material protruding inward into the gap, usually with a sharp trailing edge and a smooth gradation back to the background edge location on the leading side (Porco et al. 2005, Science). The radial amplitude of wisps is usually 0.5 to 1 km, and their azimuthal extent is approximately a degree of longitude (~2400 km). Wisps are likely caused by an interplay between Daphnis (and perhaps other moons) and embedded moonlets within the ring, though the details remain unclear.Aside from the wisps, the Keeler Gap outer edge is the only one of the five sharp edges in the outer part of Saturn's A ring that is reasonably smooth in appearance (Tiscareno et al. 2005, DPS), with occultations indicating residuals less than 1 km upon a possibly non-zero eccentricity (R.G. French, personal communication, 2014). The other four (the inner and outer edges of the Encke Gap, the inner edge of the Keeler Gap, and the outer edge of the A ring itself) are characterized by wavy structure at moderate to high spatial frequencies, with amplitudes ranging from 2 to 30 km (Tiscareno et al. 2005, DPS).We will present a catalogue of wisp detections in Cassini images. We carry out repeated gaussian fits of the radial edge location in order to characterize edge structure and visually scan those fitted edges in order to detect wisps. With extensive coverage in longitude and in time, we will report on how wisps evolve and move, both within an orbit period and on longer timescales. We will also report on the frequency and interpretation of wisps that deviate from the standard morphology. We will discuss the implications of our results for the origin and nature of wisps, and for the larger picture of how masses interact within Saturn's rings.
Near wall cooling for a highly tapered turbine blade
Liang, George [Palm City, FL
2011-03-08
A turbine blade having a pressure sidewall and a suction sidewall connected at chordally spaced leading and trailing edges to define a cooling cavity. Pressure and suction side inner walls extend radially within the cooling cavity and define pressure and suction side near wall chambers. A plurality of mid-chord channels extend radially from a radially intermediate location on the blade to a tip passage at the blade tip for connecting the pressure side and suction side near wall chambers in fluid communication with the tip passage. In addition, radially extending leading edge and trailing edge flow channels are located adjacent to the leading and trailing edges, respectively, and cooling fluid flows in a triple-pass serpentine path as it flows through the leading edge flow channel, the near wall chambers and the trailing edge flow channel.
Hybrid Ultra-Low VOC and Non-HAP Rain Erosion Coatings
2018-01-12
cavitation test stand for running the modified ASTM G32 method...Objective Numerous military aircraft and shipboard surfaces, such as radomes, antennas, gun shields, wing leading edges, and helicopter blade leading edges... blades , and helicopter blade leading edges. The application market is extremely widespread. Luna will leverage existing internal contacts for
Leading edge gypsy moth population dynamics
M. R. Carter; F. W. Ravlin; M. L. McManus
1991-01-01
Leading edge gypsy moth populations have been the focus of several intervention programs (MDIPM, AIPM). Knowledge of gypsy moth population dynamics in leading edge area is crucial for effective management. Populations in these areas tend to reach outbreak levels (noticeable defoliation) within three to four years after egg masses are first detected. Pheromone traps...
Heat-Pipe-Cooled Leading Edges for Hypersonic Vehicles
NASA Technical Reports Server (NTRS)
Glass, David E.
2006-01-01
Heat pipes can be used to effectively cool wing leading edges of hypersonic vehicles. . Heat-pipe leading edge development. Design validation heat pipe testing confirmed design. Three heat pipes embedded and tested in C/C. Single J-tube heat pipe fabricated and testing initiated. HPCLE work is currently underway at several locations.
NASA Technical Reports Server (NTRS)
Coe, P. L., Jr.; Huffman, J. K.
1979-01-01
An investigation conducted in the Langley 7 by 10 foot tunnel to determine the influence of an optimized leading-edge deflection on the low speed aerodynamic performance of a configuration with a low aspect ratio, highly swept wing. The sensitivity of the lateral stability derivative to geometric anhedral was also studied. The optimized leading edge deflection was developed by aligning the leading edge with the incoming flow along the entire span. Owing to spanwise variation of unwash, the resulting optimized leading edge was a smooth, continuously warped surface for which the deflection varied from 16 deg at the side of body to 50 deg at the wing tip. For the particular configuration studied, levels of leading-edge suction on the order of 90 percent were achieved. The results of tests conducted to determine the sensitivity of the lateral stability derivative to geometric anhedral indicate values which are in reasonable agreement with estimates provided by simple vortex-lattice theories.
NASA Astrophysics Data System (ADS)
Yavuz, Mehmet Metin; Celik, Alper; Cetin, Cenk
2016-11-01
In the present study, different flow control approaches including bio-inspired edge modifications, passive bleeding, and pulsed blowing are introduced and applied for the flow over non-slender delta wing. Experiments are conducted in a low speed wind tunnel for a 45 degree swept delta wing using qualitative and quantitative measurement techniques including laser illuminated smoke visualization, particle image velocimety (PIV), and surface pressure measurements. For the bio-inspired edge modifications, the edges of the wing are modified to dolphin fluke geometry. In addition, the concept of flexion ratio, a ratio depending on the flexible length of animal propulsors such as wings, is introduced. For passive bleeding, directing the free stream air from the pressure side of the planform to the suction side of the wing is applied. For pulsed blowing, periodic air injection through the leading edge of the wing is performed in a square waveform with 25% duty cycle at different excitation frequencies and compared with the steady and no blowing cases. The results indicate that each control approach is quite effective in terms of altering the overall flow structure on the planform. However, the success level, considering the elimination of stall or delaying the vortex breakdown, depends on the parameters in each method.
Ortega, Jason M.; Sabari, Kambiz
2006-03-07
An apparatus for reducing the aerodynamic base drag of a bluff body having a leading end, a trailing end, a top surface, opposing left and right side surfaces, and a base surface at the trailing end substantially normal to a longitudinal centerline of the bluff body, with the base surface joined (1) to the left side surface at a left trailing edge, (2) to the right side surface at a right trailing edge, and (3) to the top surface at a top trailing edge. The apparatus includes left and right vertical boattail plates which are orthogonally attached to the base surface of the bluff body and inwardly offset from the left and right trailing edges, respectively. This produces left and right vertical channels which generate, in a flowstream substantially parallel to the longitudinal centerline, respective left and right vertically-aligned vortical structures, with the left and right vertical boattail plates each having a plate width defined by a rear edge of the plate spaced from the base surface. Each plate also has a peak plate width at a location between top and bottom ends of the plate corresponding to a peak vortex of the respective vertically-aligned vortical structures.
Theory of step on leading edge of negative corona current pulse
NASA Astrophysics Data System (ADS)
Gupta, Deepak K.; Mahajan, Sangeeta; John, P. I.
2000-03-01
Theoretical models taking into account different feedback source terms (e.g., ion-impact electron emission, photo-electron emission, field emission, etc) have been proposed for the existence and explanation of the shape of negative corona current pulse, including the step on the leading edge. In the present work, a negative corona current pulse with the step on the leading edge is obtained in the presence of ion-impact electron emission feedback source only. The step on the leading edge is explained in terms of the plasma formation process and enhancement of the feedback source. Ionization wave-like movement toward the cathode is observed after the step. The conditions for the existence of current pulse, with and without the step on the leading edge, are also described. A qualitative comparison with earlier theoretical and experimental work is also included.
NASA Technical Reports Server (NTRS)
1999-01-01
This document describes the design, fabrication, and installation of the suction panel and the required support structure, ducting, valving, and high-lift system (Krueger flaps) for flight demonstration of hybrid laminar flow control on the Boeing 757 airplane.
HST/WFC3 Imaging and Multi-Wavelength Characterization of Edge-On Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Gould, Carolina; Williams, Hayley; Duchene, Gaspard
2017-10-01
In recent years, the imaging detail in resolved protoplanetary disks has vastly improved and created a critical mass of objects to survey and compare properties, leading us to better understandings of system formation. In particular, disks with an edge-on inclination offer an important perspective, not only for the imaging convenience since the disk blocks stellar light, but scientifically an edge-on disk provides an otherwise impossible opportunity to observe vertical dust structure of a protoplanetary system. In this contribution, we compare seven HST-imaged edge-on protoplanetary disks in the Taurus, Chamaeleon and Ophiuchus star-forming regions, making note the variation in morphology (settled vs flared), dust properties revealed by multiwavelength color mapping, brightness variability over years timescales, and the presence in some systems of a blue-colored atmosphere far above the disk midplane. By using a uniform approach for their analysis, together these seven edge-on protoplanetary disk systems can give insights on evolutionary processes and inform future projects that explore this critical stage of planet formation.
Matsuno, Taisuke; Kamata, Sho; Sato, Sota; Yokoyama, Atsutoshi; Sarkar, Parantap; Isobe, Hiroyuki
2017-11-20
A carbonaceous dumbbell was able to spontaneously glue two tubular receptors to form a unique two-wheeled composite through van der Waals interactions, thus forcing the wheel components into contact with each other at the edges. In the present study, two tubular receptors with enantiomeric carbon networks were assembled on the dumbbell joint, and the handedness of the receptors was discriminated, thus leading to the self-sorting of homomeric receptors from a mixture of enantiomeric tubes. The crystal structures of the composites revealed the structural origins of the molecular recognition driven by van der Waals forces as well as the presence of a columnar array of C 120 molecules in a 1:1 composite. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Natural laminar flow and airplane stability and control
NASA Technical Reports Server (NTRS)
Vandam, Cornelis P.
1986-01-01
Location and mode of transition from laminar to turbulent boundary layer flow have a dominant effect on the aerodynamic characteristics of an airfoil section. The influences of these parameters on the sectional lift and drag characteristics of three airfoils are examined. Both analytical and experimental results demonstrate that when the boundary layer transitions near the leading edge as a result of surface roughness, extensive trailing-edge separation of the turbulent boundary layer may occur. If the airfoil has a relatively sharp leading-edge, leading-edge stall due to laminar separation can occur after the leading-edge suction peak is formed. These two-dimensional results are used to examine the effects of boundary layer transition behavior on airplane longitudinal and lateral-directional stability and control.
Simulated airline service experience with laminar-flow control leading-edge systems
NASA Technical Reports Server (NTRS)
Maddalon, Dal V.; Fisher, David F.; Jennett, Lisa A.; Fischer, Michael C.
1987-01-01
The first JetStar leading edge flight test was made November 30, 1983. The JetStar was flown for more than 3 years. The titanium leading edge test articles today remain in virtually the same condition as they were in on that first flight. No degradation of laminar flow performance has occurred as a result of service. The JetStar simulated airline service flights have demonstrated that effective, practical leading edge systems are available for future commercial transports. Specific conclusions based on the results of the simulated airline service test program are summarized.
Ziemba, Brian P; Falke, Joseph J
2018-01-01
The leukocyte chemosensory pathway detects attractant gradients and directs cell migration to sites of inflammation, infection, tissue damage, and carcinogenesis. Previous studies have revealed that local Ca2+ and PIP3 signals at the leading edge of polarized leukocytes play central roles in positive feedback loop essential to cell polarization and chemotaxis. These prior studies showed that stimulation of the leading edge Ca2+ signal can strongly activate PI3K, thereby triggering a larger PIP3 signal, but did not elucidate the mechanistic link between Ca2+ and PIP3 signaling. A hypothesis explaining this link emerged, postulating that Ca2+-activated PKC displaces the MARCKS protein from plasma membrane PIP2, thereby releasing sequestered PIP2 to serve as the target and substrate lipid of PI3K in PIP3 production. In vitro single molecule studies of the reconstituted pathway on lipid bilayers demonstrated the feasibility of this PKC-MARCKS-PI3K regulatory module linking Ca2+ and PIP3 signals in the reconstituted system. The present study tests the model predictions in live macrophages by quantifying the effects of: (a) two pathway activators-PDGF and ATP that stimulate chemoreceptors and Ca2+ influx, respectively; and (b) three pathway inhibitors-wortmannin, EGTA, and Go6976 that inhibit PI3K, Ca2+ influx, and PKC, respectively; on (c) four leading edge activity sensors-AKT-PH-mRFP, CKAR, MARCKSp-mRFP, and leading edge area that report on PIP3 density, PKC activity, MARCKS membrane binding, and leading edge expansion/contraction, respectively. The results provide additional evidence that PKC and PI3K are both essential elements of the leading edge positive feedback loop, and strongly support the existence of a PKC-MARCKS-PI3K regulatory module linking the leading edge Ca2+ and PIP3 signals. As predicted, activators stimulate leading edge PKC activity, displacement of MARCKS from the leading edge membrane and increased leading edge PIP3 levels, while inhibitors trigger the opposite effects. Comparison of the findings for the ameboid chemotaxis of leukocytes with recently published findings for the mesenchymal chemotaxis of fibroblasts suggests that some features of the emerging leukocyte leading edge core pathway (PLC-DAG-Ca2+-PKC-MARCKS-PIP2-PI3K-PIP3) may well be shared by all chemotaxing eukaryotic cells, while other elements of the leukocyte pathway may be specialized features of these highly optimized, professional gradient-seeking cells. More broadly, the findings suggest a molecular mechanism for the strong links between phospho-MARCKS and many human cancers.
Ziemba, Brian P.
2018-01-01
The leukocyte chemosensory pathway detects attractant gradients and directs cell migration to sites of inflammation, infection, tissue damage, and carcinogenesis. Previous studies have revealed that local Ca2+ and PIP3 signals at the leading edge of polarized leukocytes play central roles in positive feedback loop essential to cell polarization and chemotaxis. These prior studies showed that stimulation of the leading edge Ca2+ signal can strongly activate PI3K, thereby triggering a larger PIP3 signal, but did not elucidate the mechanistic link between Ca2+ and PIP3 signaling. A hypothesis explaining this link emerged, postulating that Ca2+-activated PKC displaces the MARCKS protein from plasma membrane PIP2, thereby releasing sequestered PIP2 to serve as the target and substrate lipid of PI3K in PIP3 production. In vitro single molecule studies of the reconstituted pathway on lipid bilayers demonstrated the feasibility of this PKC-MARCKS-PI3K regulatory module linking Ca2+ and PIP3 signals in the reconstituted system. The present study tests the model predictions in live macrophages by quantifying the effects of: (a) two pathway activators—PDGF and ATP that stimulate chemoreceptors and Ca2+ influx, respectively; and (b) three pathway inhibitors—wortmannin, EGTA, and Go6976 that inhibit PI3K, Ca2+ influx, and PKC, respectively; on (c) four leading edge activity sensors—AKT-PH-mRFP, CKAR, MARCKSp-mRFP, and leading edge area that report on PIP3 density, PKC activity, MARCKS membrane binding, and leading edge expansion/contraction, respectively. The results provide additional evidence that PKC and PI3K are both essential elements of the leading edge positive feedback loop, and strongly support the existence of a PKC-MARCKS-PI3K regulatory module linking the leading edge Ca2+ and PIP3 signals. As predicted, activators stimulate leading edge PKC activity, displacement of MARCKS from the leading edge membrane and increased leading edge PIP3 levels, while inhibitors trigger the opposite effects. Comparison of the findings for the ameboid chemotaxis of leukocytes with recently published findings for the mesenchymal chemotaxis of fibroblasts suggests that some features of the emerging leukocyte leading edge core pathway (PLC-DAG-Ca2+-PKC-MARCKS-PIP2-PI3K-PIP3) may well be shared by all chemotaxing eukaryotic cells, while other elements of the leukocyte pathway may be specialized features of these highly optimized, professional gradient-seeking cells. More broadly, the findings suggest a molecular mechanism for the strong links between phospho-MARCKS and many human cancers. PMID:29715315
Exciton-Dominated Core-Level Absorption Spectra of Hybrid Organic–Inorganic Lead Halide Perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorwerk, Christian; Hartmann, Claudia; Cocchi, Caterina
In a combined theoretical and experimental work, we investigate X-ray absorption near-edge structure spectroscopy of the I L 3 and the Pb M 5 edges of the methylammonium lead iodide (MAPbI 3) hybrid inorganic-organic perovskite and its binary phase PbI 2. The absorption onsets are dominated by bound excitons with sizable binding energies of a few hundred millielectronvolts and pronounced anisotropy. The spectra of both materials exhibit remarkable similarities, suggesting that the fingerprints of core excitations in MAPbI 3 are essentially given by its inorganic component, with negligible influence from the organic groups. Furthermore, the theoretical analysis complementing experimental observationsmore » provides the conceptual insights required for a full characterization of this complex material.« less
Exciton-Dominated Core-Level Absorption Spectra of Hybrid Organic–Inorganic Lead Halide Perovskites
Vorwerk, Christian; Hartmann, Claudia; Cocchi, Caterina; ...
2018-03-23
In a combined theoretical and experimental work, we investigate X-ray absorption near-edge structure spectroscopy of the I L 3 and the Pb M 5 edges of the methylammonium lead iodide (MAPbI 3) hybrid inorganic-organic perovskite and its binary phase PbI 2. The absorption onsets are dominated by bound excitons with sizable binding energies of a few hundred millielectronvolts and pronounced anisotropy. The spectra of both materials exhibit remarkable similarities, suggesting that the fingerprints of core excitations in MAPbI 3 are essentially given by its inorganic component, with negligible influence from the organic groups. Furthermore, the theoretical analysis complementing experimental observationsmore » provides the conceptual insights required for a full characterization of this complex material.« less
The Positive Environmental Contribution of Jarosite by Retaining Lead in Acid Mine Drainage Areas
Figueiredo, Maria-Ondina; da Silva, Teresa Pereira
2011-01-01
Jarosite, KFe3(SO4)2(OH)6, is a secondary iron sulphate often found in acid mine drainage (AMD) environments, particularly in mining wastes from polymetallic sulphide ore deposits. Despite the negative environmental connotation usually ascribed to secondary sulphate minerals due to the release of hazardous elements to aquifers and soils, jarosite acts as an efficient remover and immobilizer of such metals, particularly lead. The mineral chemistry of jarosite is reviewed and the results of a Fe K-edge XANES (X-Ray Absorption Near-Edge Structure) study of K-, Na- and Pb-jarosite are described and discussed within the context of the abandoned old mines of São Domingos and Aljustrel located in southern Portugal, in the Iberian Pyrite Belt (IPB). PMID:21655138
NASA Technical Reports Server (NTRS)
Burke, Eric R.
2009-01-01
Comparison metrics can be established to reliably and repeatedly establish the health of the joggle region of the Orbiter Wing Leading Edge reinforced carbon carbon (RCC) panels. Using these metrics can greatly reduced the man hours needed to perform, wing leading edge scanning for service induced damage. These time savings have allowed for more thorough inspections to be preformed in the necessary areas with out affecting orbiter flow schedule. Using specialized local inspections allows for a larger margin of safety by allowing for more complete characterizations of panel defects. The presence of the t-seal during thermographic inspection can have adverse masking affects on ability properly characterize defects that exist in the joggle region of the RCC panels. This masking affect dictates the final specialized inspection should be preformed with the t-seal removed. Removal of the t-seal and use of the higher magnification optics has lead to the most effective and repeatable inspection method for characterizing and tracking defects in the wing leading edge. Through this study some inadequacies in the main health monitoring system for the orbiter wing leading edge have been identified and corrected. The use of metrics and local specialized inspection have lead to a greatly increased reliability and repeatable inspection of the shuttle wing leading edge.
He, Yuan; Kapoor, Ashish; Cook, Sara; Liu, Shubai; Xiang, Yang; Rao, Christopher V.; Kenis, Paul J. A.; Wang, Fei
2011-01-01
Establishing new adhesions at the extended leading edges of motile cells is essential for stable polarity and persistent motility. Despite recent identification of signaling pathways that mediate polarity and chemotaxis in neutrophils, little is known about molecular mechanisms governing cell–extracellular-matrix (ECM) adhesion in these highly polarized and rapidly migrating cells. Here, we describe a signaling pathway in neutrophils that is essential for localized integrin activation, leading edge attachment and persistent migration during chemotaxis. This pathway depends upon Gi-protein-mediated activation and leading edge recruitment of Lyn, a non-receptor tyrosine kinase belonging to the Src kinase family. We identified the small GTPase Rap1 as a major downstream effector of Lyn to regulate neutrophil adhesion during chemotaxis. Depletion of Lyn in neutrophil-like HL-60 cells prevented chemoattractant-induced Rap1 activation at the leading edge of the cell, whereas ectopic expression of Rap1 largely rescued the defects induced by Lyn depletion. Furthermore, Lyn controls spatial activation of Rap1 by recruiting the CrkL–C3G protein complex to the leading edge. Together, these results provide novel mechanistic insights into the poorly understood signaling network that controls leading edge adhesion during chemotaxis of neutrophils, and possibly other amoeboid cells. PMID:21628423
NASA Technical Reports Server (NTRS)
Hickey, David H.; Aoyagi, Kiyoshi
1960-01-01
A wind-tunnel investigation was conducted to determine the effect of trailing-edge flaps with blowing-type boundary-layer control and leading-edge slats on the low-speed performance of a large-scale jet transport model with four engines and a 35 deg. sweptback wing of aspect ratio 7. Two spanwise extents and several deflections of the trailing-edge flap were tested. Results were obtained with a normal leading-edge and with full-span leading-edge slats. Three-component longitudinal force and moment data and boundary-layer-control flow requirements are presented. The test results are analyzed in terms of possible improvements in low-speed performance. The effect on performance of the source of boundary-layer-control air flow is considered in the analysis.
Control of Flow Structure on Low Swept Delta Wing with Steady Leading Edge Blowing
NASA Astrophysics Data System (ADS)
Ozturk, Ilhan; Zharfa, Mohammadreza; Yavuz, Mehmet Metin
2014-11-01
Interest in unmanned combat air vehicles (UCAVs) and micro air vehicles (MAVs) has stimulated investigation of the flow structure, as well as its control, on delta wings having low and moderate values of sweep angle. In the present study, the flow structure is characterized on a delta wing of low sweep 35-degree angle, which is subjected to steady leading edge blowing. The techniques of laser illuminated smoke visualization, laser Doppler anemometry (LDA), and surface pressure measurements are employed to investigate the steady and unsteady nature of the flow structure on delta wing, in relation to the dimensionless magnitude of the blowing coefficient. Using statistics and spectral analysis, unsteadiness of the flow structure is studied in detail. Different injection locations are utilized to apply different blowing patterns in order to identify the most efficient control, which provides the upmost change in the flow structure with the minimum energy input. The study aims to find the optimum flow control strategy to delay or to prevent the stall and possibly to reduce the buffeting on the wing surface. Since the blowing set-up is computer controlled, the unsteady blowing patterns compared to the present steady blowing patterns will be studied next. This project was supported by the Scientific and Technological Research Council of Turkey (Project Number: 3501 111M732).
ERIC Educational Resources Information Center
Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley
2008-01-01
This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…
ERIC Educational Resources Information Center
Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley
2008-01-01
This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…
ERIC Educational Resources Information Center
Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley
2008-01-01
This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…
Supersonic Leading Edge Receptivity
NASA Technical Reports Server (NTRS)
Maslov, Anatoly A.
1998-01-01
This paper describes experimental studies of leading edge boundary layer receptivity for imposed stream disturbances. Studies were conducted in the supersonic T-325 facility at ITAM and include data for both sharp and blunt leading edges. The data are in agreement with existing theory and should provide guidance for the development of more complete theories and numerical computations of this phenomena.
NASA Astrophysics Data System (ADS)
Pazoki, Meysam; Jacobsson, T. Jesper; Hagfeldt, Anders; Boschloo, Gerrit; Edvinsson, Tomas
2016-04-01
Organic and inorganic lead halogen perovskites, and in particular, C H3N H3Pb I3 , have during the last years emerged as a class of highly efficient solar cell materials. Herein we introduce metalorganic halogen perovskite materials for energy-relevant applications based on alkaline-earth metals. Based on the classical notion of Goldschmidt's rules and quantum mechanical considerations, the three alkaline-earth metals, Ca, Sr, and Ba, are shown to be able to exchange lead in the perovskite structure. The three alkaline-earth perovskites, C H3N H3Ca I3,C H3N H3Sr I3 , and C H3N H3Ba I3 , as well as the reference compound, C H3N H3Pb I3 , are in this paper investigated with density functional theory (DFT) calculations, which predict these compounds to exist as stable perovskite materials, and their electronic properties are explored. A detailed analysis of the projected molecular orbital density of states and electronic band structure from DFT calculations were used for interpretation of the band-gap variations in these materials and for estimation of the effective masses of the electrons and holes. Neglecting spin-orbit effects, the band gap of MACa I3,MASr I3 , and MABa I3 were estimated to be 2.95, 3.6, and 3.3 eV, respectively, showing the relative change expected for metal cation exchange. The shifts in the conduction band (CB) edges for the alkaline-earth perovskites were quantified using scalar relativistic DFT calculations and tight-binding analysis, and were compared to the situation in the more extensively studied lead halide perovskite, C H3N H3Pb I3 , where the change in the work function of the metal is the single most important factor in tuning the CB edge and band gap. The results show that alkaline-earth-based organometallic perovskites will not work as an efficient light absorber in photovoltaic applications but instead could be applicable as charge-selective contact materials. The rather high CB edge and the wide band gap together with the large difference of the electron and hole effective masses make them good candidates for n -type selective layers in hot carrier injection solar cell devices together with some light absorber candidates. The fact that they have similar lattice constants as the lead perovskite and suitable positions of the valence band edges open up the possibility to use them also as thin epitaxial p -type hole selective contacts in combination with the lead halogen perovskite materials. This can lead to both charge selectivity as well as to superior crystal growth of lead perovskite with less contact stress, which is interesting for further investigations.
NASA Technical Reports Server (NTRS)
Lovell, J Calvin; Wilson, Herbert A JR
1947-01-01
An investigation of the DM-1 Glider, which had approximately triangular plan form, an aspect ratio of 1.8 and a 60 degree sweptback leading edge, has been conducted in the Langley full-scale tunnel. The investigation consisted of the determination of the separate effects of the following modifications made to the glider on its maximum lift and stability characteristics: (a) installation of sharp leading edges over the inboard semispan of the wing, (b) removal of the vertical fin, (c) sealing of the elevon control-balance slots, (d) installation of redesigned thin vertical surfaces, (e) installation of faired sharp leading edges, and (f) installation of canopy. The maximum lift coefficient of the DM-1 glider was increased from 0.61 to 1.01 by the installation of semispan sharp leading edges, and from 1.01 to 1.24 by the removal of the vertical fin and sealing of the elevon control-balance slots. The highest maximum lift coefficient (1.32) was obtained when the faired sharp leading edges and the thin vertical surfaces were attached to the glider. The original DM-1 glider was longitudinally stable. The semispan sharp leading edges shifted the neutral point forward approximately 3 percent of the root chord at moderate lift coefficients, and the glider configuration with these sharp leading edges attached was longitudinally unstable, for the assumed center-of-gravity location, at lift coefficients above 0.73. Sealing the elevon control-balance slots and installing the faired sharp leading edges, the thin vertical surfaces, and the canopy shifted the neutral point forward approximately 8 percent of the root chord.
Criticality of forcing directions on the fragmentation and resilience of grid networks.
Abundo, Cheryl; Monterola, Christopher; Legara, Erika Fille
2014-08-27
A general framework for probing the dynamic evolution of spatial networks comprised of nodes applying force amongst each other is presented. Aside from the already reported magnitude of forces and elongation thresholds, we show that preservation of links in a network is also crucially dependent on how nodes are connected and how edges are directed. We demonstrate that the time it takes for the networks to reach its equilibrium network structure follows a robust power law relationship consistent with Basquin's law with an exponent that can be tuned by changing only the force directions. Further, we illustrate that networks with different connection structures, node positions and edge directions have different Basquin's exponent which can be used to distinguish spatial directed networks from each other. Using an extensive waiting time simulation that spans up to over 16 orders of magnitude, we establish that the presence of memory combined with the scale-free bursty dynamics of edge breaking at the micro level leads to the evident macroscopic power law distribution of network lifetime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jalilian, Jaafar, E-mail: JaafarJalilian@gmail.com; Kanjouri, Faramarz, E-mail: kanjouri@khu.ac.ir
2016-11-15
Using spin-polarized density functional theory calculations, we demonstrated that carbon doped boron nitride nanowire (C-doped BNNW) has diverse electronic and magnetic properties depending on position of carbon atoms and their percentages. Our results show that only when one carbon atom is situated on the edge of the nanowire, C-doped BNNW is transformed into half-metal. The calculated electronic structure of the C-doped BNNW suggests that doping carbon can induce localized edge states around the Fermi level, and the interaction among localized edge states leads to semiconductor to half-metal transition. Overall, the bond reconstruction causes of appearance of different electronic behavior suchmore » as semiconducting, half-metallicity, nonmagnetic metallic, and ferromagnetic metallic characters. The formation energy of the system shows that when a C atom is doped on surface boron site, system is more stable than the other positions of carbon impurity. Our calculations show that C-doped BNNW may offer unique opportunities for developing nanoscale spintronic materials.« less
Plasmonic eigenmodes in individual and bow-tie graphene nanotriangles
NASA Astrophysics Data System (ADS)
Wang, Weihua; Christensen, Thomas; Jauho, Antti-Pekka; Thygesen, Kristian S.; Wubs, Martijn; Mortensen, N. Asger
2015-04-01
In classical electrodynamics, nanostructured graphene is commonly modeled by the computationally demanding problem of a three-dimensional conducting film of atomic-scale thickness. Here, we propose an efficient alternative two-dimensional electrostatic approach where all calculation procedures are restricted to the graphene sheet. Furthermore, to explore possible quantum effects, we perform tight-binding calculations, adopting a random-phase approximation. We investigate multiple plasmon modes in 20 nm equilateral triangles of graphene, treating the optical response classically as well as quantum mechanically. Compared to the classical plasmonic spectrum which is ``blind'' to the edge termination, we find that the quantum plasmon frequencies exhibit blueshifts in the case of armchair edge termination of the underlying atomic lattice, while redshifts are found for zigzag edges. Furthermore, we find spectral features in the zigzag case which are associated with electronic edge states not present for armchair termination. Merging pairs of triangles into dimers, plasmon hybridization leads to energy splitting that appears strongest in classical calculations while splitting is lower for armchair edges and even more reduced for zigzag edges. Our various results illustrate a surprising phenomenon: Even 20 nm large graphene structures clearly exhibit quantum plasmonic features due to atomic-scale details in the edge termination.
Hypervelocity impact tests on Space Shuttle Orbiter thermal protection material
NASA Technical Reports Server (NTRS)
Humes, D. H.
1977-01-01
Hypervelocity impact tests were conducted to simulate the damage that meteoroids will produce in the Shuttle Orbiter leading edge structural subsystem material. The nature and extent of the damage is reported and the probability of encountering meteoroids with sufficient energy to produce such damage is discussed.
Rao, Chen; Ikeda, Teruaki; Nakata, Toshiyuki; Liu, Hao
2017-07-04
Owls are widely known for silent flight, achieving remarkably low noise gliding and flapping flights owing to their unique wing morphologies, which are normally characterized by leading-edge serrations, trailing-edge fringes and velvet-like surfaces. How these morphological features affect aerodynamic force production and sound suppression or noise reduction, however, is still not well known. Here we address an integrated study of owl-inspired single feather wing models with and without leading-edge serrations by combining large-eddy simulations (LES) with particle-image velocimetry (PIV) and force measurements in a low-speed wind tunnel. With velocity and pressure spectra analysis, we demonstrate that leading-edge serrations can passively control the laminar-turbulent transition over the upper wing surface, i.e. the suction surface at all angles of attack (0° < AoA < 20°), and hence play a crucial role in aerodynamic force and sound production. We find that there exists a tradeoff between force production and sound suppression: serrated leading-edges reduce aerodynamic performance at lower AoAs < 15° compared to clean leading-edges but are capable of achieving both noise reduction and aerodynamic performance at higher AoAs > 15° where owl wings often reach in flight. Our results indicate that the owl-inspired leading-edge serrations may be a useful device for aero-acoustic control in biomimetic rotor designs for wind turbines, aircrafts, multi-rotor drones as well as other fluid machinery.
The effects of leading edge modifications on the post-stall characteristics of wings
NASA Technical Reports Server (NTRS)
Winkelmann, A. E.; Barlow, J. B.; Saini, J. K.; Anderson, J. D., Jr.; Jones, E.
1980-01-01
An investigation of the effects of leading edge modifications on the post-stall characteristics of two rectangular planform wings in a series of low speed wind tunnel tests is presented. Abrupt discontinuities in the leading edge shape of the wings were produced by placing a nose glove over a portion of the span or by deflecting sections of a segmented leading edge flap. Six component balance data, oil flow visualization photographs, and pressure distribution measurements were obtained, and tests made to study the development of flow separation at stall on small scale planform wing models. Results of oil flow visualization tests at and beyond stall showed the formation of counter-rotating swirl patterns on the upper surface of the '2-D' and '3-D' wings, and results of a numerical lifting line technique applied to wings with leading edge modifications are included.
Shock Interaction Control for Scramjet Cowl Leading Edges
NASA Technical Reports Server (NTRS)
Albertson, Cindy W.; Venkat, Venki, S.
2005-01-01
An experimental study was conducted to qualitatively determine the effectiveness of stagnation-region gas injection in protecting a scramjet cowl leading edge from the intense heating produced by Type III and Type IV shock interactions. The model consisted of a two-dimensional leading edge, representative of that of a scramjet cowl. Tests were conducted at a nominal freestream Mach number of 6. Gaseous nitrogen was supersonically injected through the leading-edge nozzles at various mass flux ratios and with the model pitched at angles of 0deg and -20deg relative to the freestream flow. Qualitative data, in the form of focusing and conventional schlieren images, were obtained of the shock interaction patterns. Results indicate that large shock displacements can be achieved and both the Type III and IV interactions can be altered such that the interaction does not impinge on the leading edge surface.
NASA Astrophysics Data System (ADS)
Tewes, Philipp; Genschow, Konstantin; Little, Jesse; Wygnanski, Israel
2017-11-01
A detailed flow survey using PIV was conducted over a highly-deflected flap (55°) of a low-aspect ratio trapezoidal wing. The wing section is a NACA 0012 with 45° sweep at both the leading and trailing edges, an aspect ratio of 1.5 and a taper ratio of 0.27. The main element is equipped with 7 equally spaced fluidic oscillators, covering the inner 60 % of the span, located near the flap hinge. Experiments were carried out at 0° and 8° incidence at a Reynolds number of 1.7 .106 for both baseline and active flow control (AFC) cases. Velocity ISO-surfaces, x-vorticity and streamlines are analyzed / discussed. A flap leading edge vortex governs the baseline flow field for 0°. This vortical structure interacts with the jets emitted by the actuators (Cμ = 1 %). Its development is hampered and the vortex is redirected toward the trailing edge resulting in a CL increase. At 8°, the dominant flap leading edge vortex could not be detected and is believed to have already merged with the tip vortex. AFC attached the flow over the flap and enhanced the lift by up to 20 % while maintaining longitudinal stability. The dominant flow features in the AFC cases are actuator-generated streamwise vortices which appear stronger at 8°. This work was supported by the Office of Naval Research under ONR Grant No. N00014-14-1-0387.
Silva, F W N; Costa, A L M T; Liu, Lei; Barros, E B
2016-11-04
The effects of edge vacancies on the electron transport properties of zigzag MoS2/WSe2 nanoribbons are studied using a density functional theory (DFT)-based tight-binding model with a sp(3)d(5) basis set for the electronic structure calculation and applying the Landauer-Büttiker approach for the electronic transport. Our results show that the presence of a single edge vacancy, with a missing MoS2/WSe2 triplet, is enough to suppress the conductance of the system by almost one half for most energies around the Fermi level. Furthermore, the presence of other single defects along the same edge has little effect on the overall conductance, indicating that the conductance of that particular edge has been strongly suppressed by the first defect. The presence of another defect on the opposite edge further suppresses the quantum conductance, independently of the relative position between the two defects in opposite edges. The introduction of other defects cause the suppression to be energy dependent, leading to conductance peaks which depend on the geometry of the edges. The strong conductance dependence on the presence of edge defects is corroborated by DFT calculations using SIESTA, which show that the electronic bands near the Fermi energy are strongly localized at the edge.
Simulations of iron K pre-edge X-ray absorption spectra using the restricted active space method.
Guo, Meiyuan; Sørensen, Lasse Kragh; Delcey, Mickaël G; Pinjari, Rahul V; Lundberg, Marcus
2016-01-28
The intensities and relative energies of metal K pre-edge features are sensitive to both geometric and electronic structures. With the possibility to collect high-resolution spectral data it is important to find theoretical methods that include all important spectral effects: ligand-field splitting, multiplet structures, 3d-4p orbital hybridization, and charge-transfer excitations. Here the restricted active space (RAS) method is used for the first time to calculate metal K pre-edge spectra of open-shell systems, and its performance is tested against on six iron complexes: [FeCl6](n-), [FeCl4](n-), and [Fe(CN)6](n-) in ferrous and ferric oxidation states. The method gives good descriptions of the spectral shapes for all six systems. The mean absolute deviation for the relative energies of different peaks is only 0.1 eV. For the two systems that lack centrosymmetry [FeCl4](2-/1-), the ratios between dipole and quadrupole intensity contributions are reproduced with an error of 10%, which leads to good descriptions of the integrated pre-edge intensities. To gain further chemical insight, the origins of the pre-edge features have been analyzed with a chemically intuitive molecular orbital picture that serves as a bridge between the spectra and the electronic structures. The pre-edges contain information about both ligand-field strengths and orbital covalencies, which can be understood by analyzing the RAS wavefunction. The RAS method can thus be used to predict and rationalize the effects of changes in both the oxidation state and ligand environment in a number of hard X-ray studies of small and medium-sized molecular systems.
NASA Technical Reports Server (NTRS)
Henderson, W. P.
1976-01-01
An investigation was conducted in the Langley low turbulence pressure tunnel to determine the effects of wing leading edge radius and Reynolds number on the longitudinal aerodynamic characteristics of a series of highly swept wing-body configurations. The tests were conducted at Mach numbers below 0.30, angles of attack up to 16 deg, and Reynolds numbers per meter from 6.57 million to 43.27 million. The wings under study in this investigation had leading edge sweep angles of 61.7 deg, 64.61 deg, and 67.01 deg in combination with trailing edge sweep angles of 0 deg and 40.6 deg. The leading edge radii of each wing planform could be varied from sharp to nearly round.
Granular self-organization by autotuning of friction.
Kumar, Deepak; Nitsure, Nitin; Bhattacharya, S; Ghosh, Shankar
2015-09-15
A monolayer of granular spheres in a cylindrical vial, driven continuously by an orbital shaker and subjected to a symmetric confining centrifugal potential, self-organizes to form a distinctively asymmetric structure which occupies only the rear half-space. It is marked by a sharp leading edge at the potential minimum and a curved rear. The area of the structure obeys a power-law scaling with the number of spheres. Imaging shows that the regulation of motion of individual spheres occurs via toggling between two types of motion, namely, rolling and sliding. A low density of weakly frictional rollers congregates near the sharp leading edge whereas a denser rear comprises highly frictional sliders. Experiments further suggest that because the rolling and sliding friction coefficients differ substantially, the spheres acquire a local time-averaged coefficient of friction within a large range of intermediate values in the system. The various sets of spatial and temporal configurations of the rollers and sliders constitute the internal states of the system. Experiments demonstrate and simulations confirm that the global features of the structure are maintained robustly by autotuning of friction through these internal states, providing a previously unidentified route to self-organization of a many-body system.
ERIC Educational Resources Information Center
Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley
2008-01-01
This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…
ERIC Educational Resources Information Center
Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley
2008-01-01
This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…
ERIC Educational Resources Information Center
Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley
2008-01-01
This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…
ERIC Educational Resources Information Center
Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley
2008-01-01
This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…
ERIC Educational Resources Information Center
Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley
2008-01-01
This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…
ERIC Educational Resources Information Center
Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley
2008-01-01
This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…
75 FR 74663 - Airworthiness Directives; The Boeing Company Model 747-400 and -400D Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-01
... number three engine pylons near the leading edge, and related investigative and corrective actions, if... routing of the wire bundles in the number two and number three engine pylons near the leading edge, and... routing of the wire bundles in the number two and number three engine pylons near the leading edge; and do...
Effect of leading-edge load constraints on the design and performance of supersonic wings
NASA Technical Reports Server (NTRS)
Darden, C. M.
1985-01-01
A theoretical and experimental investigation was conducted to assess the effect of leading-edge load constraints on supersonic wing design and performance. In the effort to delay flow separation and the formation of leading-edge vortices, two constrained, linear-theory optimization approaches were used to limit the loadings on the leading edge of a variable-sweep planform design. Experimental force and moment tests were made on two constrained camber wings, a flat uncambered wing, and an optimum design with no constraints. Results indicate that vortex strength and separation regions were mildest on the severely and moderately constrained wings.
Experimental evaluation of joint designs for a space-shuttle orbiter ablative leading edge
NASA Technical Reports Server (NTRS)
Tompkins, S. S.; Kabana, W. P.
1975-01-01
The thermal performance of two types of ablative leading-edge joints for a space-shuttle orbiter were tested and evaluated. Chordwise joints between ablative leading-edge segments, and spanwise joints between ablative leading-edge segments and reusable surface insulation tiles were exposed to simulated shuttle heating environments. The data show that the thermal performance of models with chordwise joints to be as good as jointless models in simulated ascent-heating and orbital cold-soak environments. The suggestion is made for additional work on the joint seals, and, in particular, on the effects of heat-induced seal-material surface irregularities on the local flow.
NASA Technical Reports Server (NTRS)
Rao, D. M.; Tingas, S. A.
1981-01-01
The drag reduction potential of leading edge devices on a 60 degree delta wing at high lift was examined. Geometric variations of fences, chordwise slots, pylon type vortex generators, leading edge vortex flaps, and sharp leading edge extensions were tested individually and in specific combinations to improve high-alpha drag performance with a minimum of low-alpha drag penalty. The force, moment, and surface static pressure data for angles of attack up to 23 degrees, at Mach and Reynolds numbers of 0.16 and 3.85 x 10 to the 6th power per meter are documented.
Study of lee-side flows over conically cambered Delta wings at supersonic speeds, part 2
NASA Technical Reports Server (NTRS)
Wood, Richard M.; Watson, Carolyn B.
1987-01-01
An experimental investigation was performed in which surface pressure data, flow visualization data, and force and moment data were obtained on four conical delta wing models which differed in leading edge camber only. Wing leading edge camber was achieved through a deflection of the outboard 30% of the local wing semispan of a reference 75 deg swept flat delta wing. The four wing models have leading edge deflection angles delta sub F of 0, 5, 10, and 15 deg measured streamwise. Data for the wings with delta sub F = 10 and 15 deg showed that hinge line separation dominated the lee-side wing loading and prohibited the development of leading edge separation on the deflected portion of wing leading edge. However, data for the wing with delta sub F = 5 deg showed that at an angle of attack of 5 deg, a vortex was positioned on the deflected leading edge with reattachment at the hinge line. Flow visualization results were presented which detail the influence of Mach number, angle of attack, and camber on the lee-side flow characteristics of conically cambered delta wings. Analysis of photographic data identified the existence of 12 distinctive lee-side flow types.
A computational study of incipient leading-edge separation on a 65-deg delta wing at M = 1.60
NASA Technical Reports Server (NTRS)
Mcmillin, S. Naomi; Pittman, James L.; Thomas, James L.
1990-01-01
A computational study on a 65-deg delta wing at a freestream Mach number of 1.60 has been conducted by obtaining conical Reynolds-averaged Navier-Stokes solutions on a parametric series of geometries which varied in leading-edge radius and/or circular-arc camber. The computational results showed that increasing leading-edge radius or camber can delay the onset of leading-edge separation on the leeside of a delta wing at a specific angle of attack. Reynolds number was varied from 1 x 10 to the 6th to 5 x 10 to the 6th for a turbulent boundary-layer and was shown to have a minor effect on the effectiveness of leading-edge radius and/or camber in delaying the onset of leading-edge separation. Both laminar and turbulent boundary-layer models were investigated at a Reynolds number of 1 x 10 to the 6th, and the predicted flow pattern was found to change from attached flow for the turbulent boundary-layer model to separated flow for the laminar boundary-layer model. Based upon these results, three wind-tunnel models have been designed to be tested in the Langley Unitary Plan Wind Tunnel.
Fluorescent visualization of a spreading surfactant
NASA Astrophysics Data System (ADS)
Fallest, David W.; Lichtenberger, Adele M.; Fox, Christopher J.; Daniels, Karen E.
2010-07-01
The spreading of surfactants on thin films is an industrially and medically important phenomenon, but the dynamics are highly nonlinear and visualization of the surfactant dynamics has been a long-standing experimental challenge. We perform the first quantitative, spatiotemporally resolved measurements of the spreading of an insoluble surfactant on a thin fluid layer. During the spreading process, we directly observe both the radial height profile of the spreading droplet and the spatial distribution of the fluorescently tagged surfactant. We find that the leading edge of a spreading circular layer of surfactant forms a Marangoni ridge in the underlying fluid, with a trough trailing the ridge as expected. However, several novel features are observed using the fluorescence technique, including a peak in the surfactant concentration that trails the leading edge, and a flat, monolayer-scale spreading film that differs from concentration profiles predicted by current models. Both the Marangoni ridge and the surfactant leading edge can be described to spread as R~tδ. We find spreading exponents δH≈0.30 and δΓ≈0.22 for the ridge peak and surfactant leading edge, respectively, which are in good agreement with theoretical predictions of δ=1/4. In addition, we observe that the surfactant leading edge initially leads the peak of the Marangoni ridge, with the peak later catching up to the leading edge.
Vortex-flow aerodynamics - An emerging design capability
NASA Technical Reports Server (NTRS)
Campbell, J. F.
1981-01-01
Promising current theoretical and simulational developments in the field of leading edge vortex-generating delta, arrow ogival wings are reported, along with the history of theory and experiment leading to them. The effects of wing slenderness, leading edge nose radius, Mach number and incidence variations, and planform on the onset of vortex generation and redistribution of aerodynamic loads are considered. The range of design possibilities in this field are consequential for the future development of strategic aircraft, supersonic transports and commercial cargo aircraft which will possess low-speed, high-lift capability by virtue of leading edge vortex generation and control without recourse to heavy and expensive leading edge high-lift devices and compound airfoils. Attention is given to interactive graphics simulation devices recently developed.
Streamlines behind curved shock waves in axisymmetric flow fields
NASA Astrophysics Data System (ADS)
Filippi, A. A.; Skews, B. W.
2018-07-01
Streamlines behind axisymmetric curved shock waves were used to predict the internal surfaces that produced them. Axisymmetric ring wedge models with varying internal radii of curvature and leading-edge angles were used to produce numerical results. Said numerical simulations were validated using experimental shadowgraph results for a series of ring wedge test pieces. The streamlines behind curved shock waves for lower leading-edge angles are examined at Mach 3.4, whereas the highest leading-edge angle cases are explored at Mach 2.8 and 3.4. Numerical and theoretical streamlines are compared for the highest leading-edge angle cases at Mach 3.6. It was found that wall-bounding theoretical streamlines did not match the internal curved surface. This was due to extreme streamline curvature curving the streamlines when the shock angle approached the Mach angle at lower leading-edge angles. Increased Mach number and internal radius of curvature produced more reasonable results. Very good agreement was found between the theoretical and numerical streamlines at lower curvatures before the influence of the trailing edge expansion fan.
NASA Technical Reports Server (NTRS)
Ghaffari, F.; Chaturvedi, S. K.
1984-01-01
An analytical design procedure for leading edge extensions (LEE) was developed for thick delta wings. This LEE device is designed to be mounted to a wing along the pseudo-stagnation stream surface associated with the attached flow design lift coefficient of greater than zero. The intended purpose of this device is to improve the aerodynamic performance of high subsonic and low supersonic aircraft at incidences above that of attached flow design lift coefficient, by using a vortex system emanating along the leading edges of the device. The low pressure associated with these vortices would act on the LEE upper surface and the forward facing area at the wing leading edges, providing an additional lift and effective leading edge thrust recovery. The first application of this technique was to a thick, round edged, twisted and cambered wing of approximately triangular planform having a sweep of 58 deg and aspect ratio of 2.30. The panel aerodynamics and vortex lattice method with suction analogy computer codes were employed to determine the pseudo-stagnation stream surface and an optimized LEE planform shape.
3D P-Wave Velocity Structure of the Crust and Relocation of Earthquakes in 21 the Lushan Source Area
NASA Astrophysics Data System (ADS)
Yu, X.; Wang, X.; Zhang, W.
2014-12-01
The double difference seismic tomography method is applied to the absolute first arrival P wave arrival times and high quality relative P arrival times of the Lushan seismic sequence to determine the detailed crustal 3D P wave velocity structure and the hypocenter parameters in the Lushan seismic area. The results show that the Lushan mainshock locates at 30.28 N, 103.98 E, with the depth of 16.38 km. The leading edge of aftershock in the northeast of mainshock present a spade with a steep dip angle, the aftershocks' extended length is about 12 km. In the southwest of the Lushan mainshock, the leading edge of aftershock in low velocity zone slope gently, the aftershocks' extended length is about 23 km. The P wave velocity structure of the Lushan seismic area shows obviously lateral heterogeneity. The P wave velocity anomalies represent close relationship with topographic relief and geological structure. In Baoxing area the complex rocks correspond obvious high-velocity anomalies extending down to 15 km depth,while the Cenozoic rocks are correlated with low-velocity anomalies. Our high-resolution tomographic model not only displays the general features contained in the previous models, but also reveals some new features. An obvious high-velocity anomaly is visible in Daxing area. The high-velocity anomalies beneath Baoxing and Daxing connect each other in 10 km depth, which makes the contrast between high and low velocity anomalies more sharp. Above 20 km depth the velocity structure in southwest and northeast segment of the mainshock shows a big difference: low-velocity anomalies are dominated the southwest segment, while high-velocity anomalies rule the northeast segment. The Lushan mainshock locates at the leading edge of a low-velocity anomaly surrounded by the Baoxing and Daxing high-velocity anomalies. The Lushan aftershocks in southwest are distributed in low-velocity anomalies or the transition belt: the footwall represents low-velocity anomalies, while the hanging wall shows high-velocity anomalies. The northeastern aftershocks are distributed at the boundary between high-velocity anomalies in Baoxing and Daxing area. The main seismogenic layer dips to northwest.
How differential deflection of the inboard and outboard leading-edge flaps affected the handling qua
NASA Technical Reports Server (NTRS)
2002-01-01
How differential deflection of the inboard and outboard leading-edge flaps affected the handling qualities of this modified F/A-18A was evaluated during the first check flight in the Active Aeroelastic Wing program at NASA's Dryden Flight Research Center. The Active Aeroelastic Wing program at NASA's Dryden Flight Research Center seeks to determine the advantages of twisting flexible wings for primary maneuvering roll control at transonic and supersonic speeds, with traditional control surfaces such as ailerons and leading-edge flaps used to aerodynamically induce the twist. From flight test and simulation data, the program intends to develop structural modeling techniques and tools to help design lighter, more flexible high aspect-ratio wings for future high-performance aircraft, which could translate to more economical operation or greater payload capability. AAW flight tests began in November, 2002 with checkout and parameter-identification flights. Based on data obtained during the first flight series, new flight control software will be developed and a second series of research flights will then evaluate the AAW concept in a real-world environment. The program uses wings that were modified to the flexibility of the original pre-production F-18 wing. Other modifications include a new actuator to operate the outboard leading edge flap over a greater range and rate, and a research flight control system to host the aeroelastic wing control laws. The Active Aeroelastic Wing Program is jointly funded and managed by the Air Force Research Laboratory and NASA Dryden Flight Research Center, with Boeing's Phantom Works as prime contractor for wing modifications and flight control software development. The F/A-18A aircraft was provided by the Naval Aviation Systems Test Team and modified for its research role by NASA Dryden technicians.
1981-01-01
The ordered structure of the leading edge (lamellipodium) of cultured fibroblasts is readily revealed in cells extracted briefly in Triton X- 100-glutaraldehyde mixtures, fixed further in glutaraldehyde, and then negatively stained for electron microscopy. By this procedure, the leading edge regions show a highly organised, three-dimensional network of actin filaments together with variable numbers of radiating actin filament bundles or microspikes. The use of Phalloidin after glutaraldehyde fixation resulted in a marginal improvement in filament order. Processing of the cytoskeletons though the additional steps generally employed for conventional electron microscopy resulted in a marked deterioration or complete disruption of the order of the actin filament networks. In contrast, the actin filaments of the stress fiber bundles were essentially unaffected. Thus, postfixation in osmium tetroxide (1% for 7 min at room temperature) transformed the networks to a reticulum of kinked fibers, resembling those produced by the exposure of muscle F-actin to OsO4 in vitro (P. Maupin-Szamier and T. D. Pollard. 1978. J. Cell Biol. 77:837--852). While limited exposure to OsO4 (0.2+ for 20 min at 0 degrees C) obviated this destruction, dehydration in acetone or ethanol, with or without post-osmication, caused a further and unavoidable disordering and aggregation of the meshwork filaments. The meshwork regions of the leading edge then showed a striking resemblance to the networks hitherto described in critical point-dried preparations of cultured cells. I conclude that much of the "microtrabecular lattice" described by Wolosewick and Porter (1979. J. Cell Biol. 82:114--139) in the latter preparations constitutes actin meshworks and actin filament arrays, with their associated components, that have been distorted and aggregated by the preparative procedures employed. PMID:6799521
Achiral symmetry breaking and positive Gaussian modulus lead to scalloped colloidal membranes
Gibaud, Thomas; Kaplan, C. Nadir; Sharma, Prerna; Zakhary, Mark J.; Ward, Andrew; Oldenbourg, Rudolf; Meyer, Robert B.; Kamien, Randall D.; Powers, Thomas R.; Dogic, Zvonimir
2017-01-01
In the presence of a nonadsorbing polymer, monodisperse rod-like particles assemble into colloidal membranes, which are one-rod-length–thick liquid-like monolayers of aligned rods. Unlike 3D edgeless bilayer vesicles, colloidal monolayer membranes form open structures with an exposed edge, thus presenting an opportunity to study elasticity of fluid sheets. Membranes assembled from single-component chiral rods form flat disks with uniform edge twist. In comparison, membranes composed of a mixture of rods with opposite chiralities can have the edge twist of either handedness. In this limit, disk-shaped membranes become unstable, instead forming structures with scalloped edges, where two adjacent lobes with opposite handedness are separated by a cusp-shaped point defect. Such membranes adopt a 3D configuration, with cusp defects alternatively located above and below the membrane plane. In the achiral regime, the cusp defects have repulsive interactions, but away from this limit we measure effective long-ranged attractive binding. A phenomenological model shows that the increase in the edge energy of scalloped membranes is compensated by concomitant decrease in the deformation energy due to Gaussian curvature associated with scalloped edges, demonstrating that colloidal membranes have positive Gaussian modulus. A simple excluded volume argument predicts the sign and magnitude of the Gaussian curvature modulus that is in agreement with experimental measurements. Our results provide insight into how the interplay between membrane elasticity, geometrical frustration, and achiral symmetry breaking can be used to fold colloidal membranes into 3D shapes. PMID:28411214
Schlaepfer, Daniel R.; Taylor, Kyle A.; Pennington, Victoria E.; Nelson, Kellen N.; Martin, Trace E.; Rottler, Caitlin M.; Lauenroth, William K.; Bradford, John B.
2015-01-01
Many semi-arid plant communities in western North America are dominated by big sagebrush. These ecosystems are being reduced in extent and quality due to economic development, invasive species, and climate change. These pervasive modifications have generated concern about the long-term viability of sagebrush habitat and sagebrush-obligate wildlife species (notably greater sage-grouse), highlighting the need for better understanding of the future big sagebrush distribution, particularly at the species' range margins. These leading and trailing edges of potential climate-driven sagebrush distribution shifts are likely to be areas most sensitive to climate change. We used a process-based regeneration model for big sagebrush, which simulates potential germination and seedling survival in response to climatic and edaphic conditions and tested expectations about current and future regeneration responses at trailing and leading edges that were previously identified using traditional species distribution models. Our results confirmed expectations of increased probability of regeneration at the leading edge and decreased probability of regeneration at the trailing edge below current levels. Our simulations indicated that soil water dynamics at the leading edge became more similar to the typical seasonal ecohydrological conditions observed within the current range of big sagebrush ecosystems. At the trailing edge, an increased winter and spring dryness represented a departure from conditions typically supportive of big sagebrush. Our results highlighted that minimum and maximum daily temperatures as well as soil water recharge and summer dry periods are important constraints for big sagebrush regeneration. Overall, our results confirmed previous predictions, i.e., we see consistent changes in areas identified as trailing and leading edges; however, we also identified potential local refugia within the trailing edge, mostly at sites at higher elevation. Decreasing regeneration probability at the trailing edge underscores the Schlaepfer et al. Future regeneration potential of big sagebrush potential futility of efforts to preserve and/or restore big sagebrush in these areas. Conversely, increasing regeneration probability at the leading edge suggest a growing potential for conflicts in management goals between maintaining existing grasslands by preventing sagebrush expansion versus accepting a shift in plant community composition to sagebrush dominance.
Szafrański, Marek; Katrusiak, Andrzej
2016-09-01
Our single-crystal X-ray diffraction study of methylammonium lead triiodide, MAPbI3, provides the first comprehensive structural information on the tetragonal phase II in the pressure range to 0.35 GPa, on the cubic phase IV stable between 0.35 and 2.5 GPa, and on the isostructural cubic phase V observed above 2.5 GPa, which undergoes a gradual amorphization. The optical absorption study confirms that up to 0.35 GPa, the absorption edge of MAPbI3 is red-shifted, allowing an extension of spectral absorption. The transitions to phases IV and V are associated with the abrupt blue shifts of the absorption edge. The strong increase of the energy gap in phase V result in a spectacular color change of the crystal from black to red around 3.5 GPa. The optical changes have been correlated with the pressure-induced strain of the MAPbI3 inorganic framework and its frustration, triggered by methylammonium cations trapped at random orientations in the squeezed voids.
NASA Astrophysics Data System (ADS)
Cherny, Alexander Yu; Caux, Jean-Sébastien; Brand, Joachim
2018-01-01
We study the frictional force exerted on the trapped, interacting 1D Bose gas under the influence of a moving random potential. Specifically we consider weak potentials generated by optical speckle patterns with finite correlation length. We show that repulsive interactions between bosons lead to a superfluid response and suppression of frictional force, which can inhibit the onset of Anderson localisation. We perform a quantitative analysis of the Landau instability based on the dynamic structure factor of the integrable Lieb-Liniger model and demonstrate the existence of effective mobility edges.
The Effect of Aerodynamic Evaluators on the Multi-Objective Optimization of Flatback Airfoils
NASA Astrophysics Data System (ADS)
Miller, M.; Slew, K. Lee; Matida, E.
2016-09-01
With the long lengths of today's wind turbine rotor blades, there is a need to reduce the mass, thereby requiring stiffer airfoils, while maintaining the aerodynamic efficiency of the airfoils, particularly in the inboard region of the blade where structural demands are highest. Using a genetic algorithm, the multi-objective aero-structural optimization of 30% thick flatback airfoils was systematically performed for a variety of aerodynamic evaluators such as lift-to-drag ratio (Cl/Cd), torque (Ct), and torque-to-thrust ratio (Ct/Cn) to determine their influence on airfoil shape and performance. The airfoil optimized for Ct possessed a 4.8% thick trailing-edge, and a rather blunt leading-edge region which creates high levels of lift and correspondingly, drag. It's ability to maintain similar levels of lift and drag under forced transition conditions proved it's insensitivity to roughness. The airfoil optimized for Cl/Cd displayed relatively poor insensitivity to roughness due to the rather aft-located free transition points. The Ct/Cn optimized airfoil was found to have a very similar shape to that of the Cl/Cd airfoil, with a slightly more blunt leading-edge which aided in providing higher levels of lift and moderate insensitivity to roughness. The influence of the chosen aerodynamic evaluator under the specified conditions and constraints in the optimization of wind turbine airfoils is shown to have a direct impact on the airfoil shape and performance.
Hypersonic separated flows about "tick" configurations with sensitivity to model design
NASA Astrophysics Data System (ADS)
Moss, J. N.; O'Byrne, S.; Gai, S. L.
2014-12-01
This paper presents computational results obtained by applying the direct simulation Monte Carlo (DSMC) method for hypersonic nonequilibrium flow about "tick-shaped" model configurations. These test models produces a complex flow where the nonequilibrium and rarefied aspects of the flow are initially enhanced as the flow passes over an expansion surface, and then the flow encounters a compression surface that can induce flow separation. The resulting flow is such that meaningful numerical simulations must have the capability to account for a significant range of rarefaction effects; hence the application of the DSMC method in the current study as the flow spans several flow regimes, including transitional, slip, and continuum. The current focus is to examine the sensitivity of both the model surface response (heating, friction and pressure) and flowfield structure to assumptions regarding surface boundary conditions and more extensively the impact of model design as influenced by leading edge configuration as well as the geometrical features of the expansion and compression surfaces. Numerical results indicate a strong sensitivity to both the extent of the leading edge sharpness and the magnitude of the leading edge bevel angle. Also, the length of the expansion surface for a fixed compression surface has a significant impact on the extent of separated flow.
Hypersonic Separated Flows About "Tick" Configurations With Sensitivity to Model Design
NASA Technical Reports Server (NTRS)
Moss, J. N.; O'Byrne, S.; Gai, S. L.
2014-01-01
This paper presents computational results obtained by applying the direct simulation Monte Carlo (DSMC) method for hypersonic nonequilibrium flow about "tick-shaped" model configurations. These test models produces a complex flow where the nonequilibrium and rarefied aspects of the flow are initially enhanced as the flow passes over an expansion surface, and then the flow encounters a compression surface that can induce flow separation. The resulting flow is such that meaningful numerical simulations must have the capability to account for a significant range of rarefaction effects; hence the application of the DSMC method in the current study as the flow spans several flow regimes, including transitional, slip, and continuum. The current focus is to examine the sensitivity of both the model surface response (heating, friction and pressure) and flowfield structure to assumptions regarding surface boundary conditions and more extensively the impact of model design as influenced by leading edge configuration as well as the geometrical features of the expansion and compression surfaces. Numerical results indicate a strong sensitivity to both the extent of the leading edge sharpness and the magnitude of the leading edge bevel angle. Also, the length of the expansion surface for a fixed compression surface has a significant impact on the extent of separated flow.
NASA Astrophysics Data System (ADS)
Wang, Yongfu; Gao, Kaixiong; Zhang, Junyan
2018-05-01
In this study, we carried out the transition experiments of graphite-like (GL) to fullerene-like (FL) structures by placing high temperature steel substrates in the depositing environment which can form FL hydrogenated carbon films. We investigated the changes of bond mixtures, H content, aromatic clusters and internal stress at the transition process, and proposed the transformation mechanism inferred from Raman, TEM cross-section, FTIR and XPS results. It was found that the size of aromatic clusters and accordingly graphene planes and the formation of edge dangling bonds were the key steps. H+ bombardment leaded to the splitting of large graphene planes (at GL stage) into more and smaller planes (at FL stage) and the formation of edge dangling bonds; Some of these dangling bonds were reduced by the formation of pentagons and subsequent curving of the smaller planes, which were an indicator of FL structures.
Computational analysis of blunt, thin airfoil sections at supersonic and subsonic speeds
NASA Astrophysics Data System (ADS)
Goodsell, Aga Myung
The past decade has brought renewed interest in commercial supersonic aircraft design. Recent wing designs have included regions of low sweep resulting in supersonic leading edges at cruise. Thin biconvex sections are used in those regions to minimize wave drag and skin-friction drag. However, airfoil sections with sharp leading edges exhibit poor aerodynamic behavior at subsonic flight conditions. Blunt leading edges may improve performance by delaying the onset of separation at subsonic and transonic speeds. Their disadvantage is that they increase both wave drag, due to the formation of a detached bow wave, and skin-friction drag, from a loss of laminar flow. The effect of adding bluntness to a 4%-thick biconvex section was investigated using computational analysis tools. The aerodynamic performance of biconvex sections with circular leading edges was computed at supersonic, transonic, and takeoff conditions. At supersonic cruise, the increase in wave drag due to bluntness is a function of Mach number and leading-edge diameter. Some of the drag penalty is offset by the suction created downstream of the circular leading edge. The possibility of further drag reduction was explored with the development of a semi-analytical method to design blunt airfoil shapes which minimize wave drag. The effect on the transition location was evaluated using linear stability analyses of laminar boundary-layer profiles and the eN method. The analysis showed that laminar boundary layers on blunt airfoil sections are considerably less stable to Tollmien-Schlichting waves than that on a sharp biconvex. At transonic speeds, the results suggest a possible improvement in the lift-to-drag ratio over a limited range of angles of attack. At the takeoff condition, slight blunting of the leading edge does improve the lift-to-drag ratio at low angles of attack, but has little effect on maximum lift. It is concluded that the benefit of a blunt leading edge at off-design conditions is not sufficient to warrant the resulting drag penalty at supersonic cruise. Furthermore, if maintaining laminar flow is critical to the design and some bluntness is necessary for manufacturing purposes, then the leading-edge diameter should be minimized to prevent transition and to reduce wave drag.
NASA Technical Reports Server (NTRS)
Mehrotra, S. C.; Lan, C. E.
1978-01-01
The necessary information for using a computer program to predict distributed and total aerodynamic characteristics for low aspect ratio wings with partial leading-edge separation is presented. The flow is assumed to be steady and inviscid. The wing boundary condition is formulated by the Quasi-Vortex-Lattice method. The leading edge separated vortices are represented by discrete free vortex elements which are aligned with the local velocity vector at midpoints to satisfy the force free condition. The wake behind the trailing edge is also force free. The flow tangency boundary condition is satisfied on the wing, including the leading and trailing edges. The program is restricted to delta wings with zero thickness and no camber. It is written in FORTRAN language and runs on CDC 6600 computer.
Calculating corner singularities by boundary integral equations.
Shi, Hualiang; Lu, Ya Yan; Du, Qiang
2017-06-01
Accurate numerical solutions for electromagnetic fields near sharp corners and edges are important for nanophotonics applications that rely on strong near fields to enhance light-matter interactions. For cylindrical structures, the singularity exponents of electromagnetic fields near sharp edges can be solved analytically, but in general the actual fields can only be calculated numerically. In this paper, we use a boundary integral equation method to compute electromagnetic fields near sharp edges, and construct the leading terms in asymptotic expansions based on numerical solutions. Our integral equations are formulated for rescaled unknown functions to avoid unbounded field components, and are discretized with a graded mesh and properly chosen quadrature schemes. The numerically found singularity exponents agree well with the exact values in all the test cases presented here, indicating that the numerical solutions are accurate.
Fundamental edge broadening effects during focused electron beam induced nanosynthesis
Schmied, Roland; Fowlkes, Jason Davidson; Winkler, Robert; ...
2015-02-16
In this study, we explore lateral broadening effects of 3D structures fabricated through focused electron beam induced deposition using MeCpPt(IV)Me 3 precursor. In particular, the scaling behavior of proximity effects as a function of the primary electron energy and the deposit height is investigated through experiments and validated through simulations. Correlated Kelvin force microscopy and conductive atomic force microscopy measurements identified conductive and non-conductive proximity regions. It was determined that the highest primary electron energies enable the highest edge sharpness while lower energies contain a complex convolution of broadening effects. In addition, it is demonstrated that intermediate energies lead tomore » even more complex proximity effects that significantly reduce lateral edge sharpness and thus should be avoided if desiring high lateral resolution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Jiseung; Lee, Heesoo, E-mail: heesoo@pusan.ac.kr
2014-09-15
Changes to the local structure of Sr and Mn atoms in Sr{sub 1−x}Ce{sub x}MnO{sub 3} (SCM) according to increasing Ce content and the effect of the structural change on the polarization resistance of SCM were investigated. The reduction of manganese was confirmed by the absorption edge shift of the Mn K-edge toward lower energies. The noise of oscillation in extended X-ray absorption fine structure k{sup 3}χ data at Mn K-edge reveals the distortion of the local structure of Mn atoms, and the peak that indicates the bonding length of Mn-O, Sr/Ce, and -Mn decreased with the addition of Ce contentmore » in Fourier transformations of the Mn K-edge. The distortion of the local structure at Mn atoms was affected by the reduced manganese ions having larger ionic radii than Mn{sup 4+}. Meanwhile, few distortions of local atomic structures of Sr atoms occurred, and the average nearest neighboring distances of Sr-O and Sr-Mn are ∼2.13 Å and ∼2.95 Å, respectively. The average bonding lengths of the Ce-O and Ce-Mn increased because the ionic radius of substituted Ce ion with 12 coordination number is smaller than that of Sr ion, which leads the reduction of Mn ions and the distortion of local structure at the substituted A-site. Therefore, we reasoned that the distortion of the local atomic structure at Mn atoms in MnO{sub 6} and Ce atoms in A-site is one of the causes for interrupting oxygen ion transfers as a geometric factor, which results in an increase in the polarization resistance of SCM within the Ce composition range from 10 mol. % to 30 mol. %.« less
NASA Technical Reports Server (NTRS)
Amari, S.; Foote, J.; Simon, Charles G.; Swan, P.; Walker, R. M.; Zinner, E.; Jessberger, E. K.; Lange, G.; Stadermann, F.
1992-01-01
The Long Duration Exposure Facility (LDEF) Experiment AO187-2 consisted of 237 capture cells, 120 on the leading edge and 117 on the trailing edge. Each cell was made of polished Ge plates covered with 2.5 micron thick mylar foil at 200 microns from the Ge. Although all leading edge cells and 105 trailing edge cells had lost their plastic covers during flight, optical and electron microscope examination revealed extended impacts in bare cells from either edge that apparently were produced by high velocity projectiles while the plastic foils were still in place. Detailed optical scanning yielded 53 extended impacts on 100 bare cells from the trailing edge that were selected for SIMS chemical analysis. Lateral multi-element ion probe profiles were obtained on 40 of these impacts. Material that can be attributed to the incoming projectiles was found in all analyzed extended compact features and most seem to be associated with cosmic dust particles. However, LDEF deposits are systematically enriched in the refractory elements Al, Ca, and Ti relative to Mg and Fe when compared to IDP's collected in the stratosphere and to chondritic compositions. These differences are most likely due to elemental fractionation effects during the high velocity impact but real differences between interplanetary particles captured on LDEF and stratospheric IDP's cannot be excluded. Recently we extended our studies to cells from the leading edge and the covered cells from the trailing edge. The 12 covered cells contain 20 extended impact candidates. Ion probe analysis of 3 yielded results similar to those obtained for impacts on the bare cells from the trailing edge. Optical scanning of the bare leading edge cell also reveals many extended impacts (42 on 22 cells scanned to date), demonstrating that the cover foils remained intact at least for some time. However, SIMS analysis showed elements that can reasonably be attributed to micrometeoroids in only 2 out of 11 impacts. Eight impacts have residues dominated by Al and one dominated by Ti, indicating a preponderance of orbital debris in leading edge impacts.
Structural Dynamics Modeling of HIRENASD in Support of the Aeroelastic Prediction Workshop
NASA Technical Reports Server (NTRS)
Wieseman, Carol; Chwalowski, Pawel; Heeg, Jennifer; Boucke, Alexander; Castro, Jack
2013-01-01
An Aeroelastic Prediction Workshop (AePW) was held in April 2012 using three aeroelasticity case study wind tunnel tests for assessing the capabilities of various codes in making aeroelasticity predictions. One of these case studies was known as the HIRENASD model that was tested in the European Transonic Wind Tunnel (ETW). This paper summarizes the development of a standardized enhanced analytical HIRENASD structural model for use in the AePW effort. The modifications to the HIRENASD finite element model were validated by comparing modal frequencies, evaluating modal assurance criteria, comparing leading edge, trailing edge and twist of the wing with experiment and by performing steady and unsteady CFD analyses for one of the test conditions on the same grid, and identical processing of results.
Schlieren photography on freely flying hawkmoth.
Liu, Yun; Roll, Jesse; Van Kooten, Stephen; Deng, Xinyan
2018-05-01
The aerodynamic force on flying insects results from the vortical flow structures that vary both spatially and temporally throughout flight. Due to these complexities and the inherent difficulties in studying flying insects in a natural setting, a complete picture of the vortical flow has been difficult to obtain experimentally. In this paper, Schlieren , a widely used technique for highspeed flow visualization, was adapted to capture the vortex structures around freely flying hawkmoth ( Manduca ). Flow features such as leading-edge vortex, trailing-edge vortex, as well as the full vortex system in the wake were visualized directly. Quantification of the flow from the Schlieren images was then obtained by applying a physics-based optical flow method, extending the potential applications of the method to further studies of flying insects. © 2018 The Author(s).
Two-peak structure in the K-edge RIXS spectra of a spatially frustrated Heisenberg antiferromagnet
NASA Astrophysics Data System (ADS)
Datta, Trinanjan; Luo, Cheng; Yao, Dao-Xin
2014-03-01
Quantum fluctuations due to spatial anisotropy and strong magnetic frustration lead to the formation of a two-peak structure in the K-edge bimagnon RIXS intensity spectra of a Jx-Jy-J2 Heisenberg model on a square lattice. We compute the RIXS intensity, including up to first order 1/S spin wave expansion correction, using the Bethe-Salpeter equation within the ladder approximation scheme. The two-peak feature occurs in both the antiferromagnetic phase and the collinear antiferromagnetic phase. A knowledge of the peak splitting energy from both magnetically ordered regime can provide experimentalists with an alternative means to measure and study the effects of local microscopic exchange constants. Cottrell Research Corporation, NSFC-11074310, NSFC-11275279, Specialized Research Fund for the Doctoral Program of Higher Education.
Application of local indentations for film cooling of gas turbine blade leading edge
NASA Astrophysics Data System (ADS)
Petelchyts, V. Yu.; Khalatov, A. A.; Pysmennyi, D. N.; Dashevskyy, Yu. Ya.
2016-09-01
The paper presents results of computer simulation of the film cooling on the turbine blade leading edge model where the air coolant is supplied through radial holes and row of cylindrical inclined holes placed inside hemispherical dimples or trench. The blowing factor was varied from 0.5 to 2.0. The model size and key initial parameters for simulation were taken as for a real blade of a high-pressure high-performance gas turbine. Simulation was performed using commercial software code ANSYS CFX. The simulation results were compared with reference variant (no dimples or trench) both for the leading edge area and for the flat plate downstream of the leading edge.
Helical vortices generated by flapping wings of bumblebees
NASA Astrophysics Data System (ADS)
Farge, Marie; Engels, Thomas; Kolomenskiy, Dmitry; Schneider, Kai; Lehmann, Fritz; Sesterhenn, Jörn
2016-11-01
We analyze high resolution numerical simulation data of a bumblebee with fixed body and prescribed wing motion, flying in a numerical wind tunnel, presented in. The inflow condition of the tunnel varies from unperturbed laminar to strongly turbulent. The flow generated by the flapping wings indicates the important role of the leading edge vortex (LEV), responsible for elevated lift production and which is not significantly altered by the inflow turbulence. The LEV has a conical structure due to the three-dimensional motion of the wings. This flow configuration produces strong vorticity on the sharp leading edge and the outwards velocity (from the root to the tip of the wing) in the spanwise direction. Flow visualizations show that the generated vortical structures are characterized by a strong helicity. We study the evolution of the mean helicity for each wing and analyze the impact of turbulent inflow. We thankfully acknowledge financial support from the French-German AIFIT project funded by DFG and ANR (Grant 15-CE40-0019). DK gratefully acknowledges financial support from the JSPS postdoctoral fellowship.
A qualitative study of vortex trapping capability for lift enhancement on unconventional wing
NASA Astrophysics Data System (ADS)
Salleh, M. B.; Kamaruddin, N. M.; Mohamed-Kassim, Z.
2018-05-01
Lift enhancement by using passive vortex trapping technique offers great advantage in small aircraft design as it can improve aerodynamics performance and reduce weight of the wing. To achieve this aim, a qualitative study on the flow structures across wing models with cavities has been performed using smoke wire visualisation technique. An experiment has been conducted at low Reynolds number of 26,000 with angle of attack (α) = 0°, 5°, 10° and 15° to investigate the vortex trapping capability of semi-circular leading edge (SCLE) flat-plate wing model and elliptical leading edge (ELE) flat-plate wing model with cavities, respectively. Results from the qualitative study indicated unique characteristics in the flow structures between the tested wing models. The SCLE wing models were able to trap stable rotating vortices for α ≤ 10° whereas the ability of ELE wing models to suppress flow separation allowed stable clockwise vortices to be trapped inside the cavities even at α > 10°. The trapped vortices found to have the potential to increase lift on the unconventional wing models.
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Simpson, John
2005-01-01
The development and application of advanced nondestructive evaluation techniques for the Reinforced Carbon-Carbon (RCC) components of the Space Shuttle Orbiter Leading Edge Structural Subsystem (LESS) was identified as a crucial step toward returning the shuttle fleet to service. In order to help meet this requirement, eddy current techniques have been developed for application to RCC components. Eddy current technology has been found to be particularly useful for measuring the protective coating thickness over the reinforced carbon-carbon and for the identification of near surface cracking and voids in the RCC matrix. Testing has been performed on as manufactured and flown RCC components with both actual and fabricated defects representing impact and oxidation damage. Encouraging initial results have led to the development of two separate eddy current systems for in-situ RCC inspections in the orbiter processing facility. Each of these systems has undergone blind validation testing on a full scale leading edge panel, and recently transitioned to Kennedy Space Center to be applied as a part of a comprehensive RCC inspection strategy to be performed in the orbiter processing facility after each shuttle flight.
A Multilevel Gamma-Clustering Layout Algorithm for Visualization of Biological Networks
Hruz, Tomas; Lucas, Christoph; Laule, Oliver; Zimmermann, Philip
2013-01-01
Visualization of large complex networks has become an indispensable part of systems biology, where organisms need to be considered as one complex system. The visualization of the corresponding network is challenging due to the size and density of edges. In many cases, the use of standard visualization algorithms can lead to high running times and poorly readable visualizations due to many edge crossings. We suggest an approach that analyzes the structure of the graph first and then generates a new graph which contains specific semantic symbols for regular substructures like dense clusters. We propose a multilevel gamma-clustering layout visualization algorithm (MLGA) which proceeds in three subsequent steps: (i) a multilevel γ-clustering is used to identify the structure of the underlying network, (ii) the network is transformed to a tree, and (iii) finally, the resulting tree which shows the network structure is drawn using a variation of a force-directed algorithm. The algorithm has a potential to visualize very large networks because it uses modern clustering heuristics which are optimized for large graphs. Moreover, most of the edges are removed from the visual representation which allows keeping the overview over complex graphs with dense subgraphs. PMID:23864855
Optimal perturbations of a finite-width mixing layer near the trailing edge
NASA Astrophysics Data System (ADS)
Gumbart, James C.; Rabchuk, James
2002-03-01
The trailing edge of a surface separating two fluid flows can act as an efficient receptor for acoustic or other disturbances. The incident wave energy is converted by a linear mechanism into incipient flow instabilities which lead further downstream to the transition to turbulence. Understanding this process is essential for analyzing feedback loops and other resonances which can cause unwanted structural vibrations in the surface material or directed acoustic emissions from the mixing region. Previously, the modes of instability in a finite-width mixing layer near the trailing edge were studied as a function of frequency by assuming that vorticity was continually being introduced into the flow at the trailing edge by the forcing field. It was found that the initial amplitude of the growing instability mode was a sharply decreasing function of forcing frequency, and that the initial amplitude was a minimum for the frequency at which the rate of instability growth was a maximum^1. This result has led to a study of the adjoint equation for the perturbation stream function, whose eigensolutions are known to be associated with the optimal perturbation field for the frequency of forcing leading to the greatest instability growth downstream. We have obtained these solutions for a piecewise linear velocity profile near the trailing edge using group-theoretic techniques and have shown that they are indeed optimal. We have also analyzed the nature of the physical forcing field that might produce these optimal perturbations. ^1 Rabchuk, J.A., July 2000, Physics of Fluids.
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
2017-01-01
A wind tunnel experiment was conducted in the NASA Langley Research Center 7- by 10-Foot High Speed Tunnel to determine the effects of passive surface porosity on the subsonic vortex flow interactions about a general research fighter configuration. Flow-through porosity was applied to the leading-edge extension, or LEX, and leading-edge flaps mounted to a 65deg cropped delta wing model as a potential vortex flow control technique at high angles of attack. All combinations of porous and nonporous LEX and flaps were investigated. Wing upper surface static pressure distributions and six-component forces and moments were obtained at a free-stream Mach number of 0.20 corresponding to a Reynolds number of 1.35(106) per foot, angles of attack up to 45deg, angles of sideslip of 0deg and +/-5deg, and leading-edge flap deflections of 0deg and 30deg.
NASA Technical Reports Server (NTRS)
Squires, Becky
1993-01-01
The leading edge vortex of a counter rotating propeller (CRP) model was altered by using shrouds and by turning the upstream rotors to a forward sweep configuration. Performance, flow, and acoustic data were used to determine the effect of vortex impingement on the noise signature of the CRP system. Forward sweep was found to eliminate the leading edge vortex of the upstream blades. Removal of the vortex had little effect on the tone noise at the forward and rear blade passing frequencies (BPF's) but significantly altered both the sound pressure level and directivity of the interaction tone which occurs at the sum of the two BPF's. A separate manipulation of the leading edge vortex performed by installing shrouds of various inlet length on the CRP verified that diverting the vortex path increases the noise level of the interaction tone. An unexpected link has been established between the interaction tone and the leading edge vortex-blade interaction phenomenon.
Laplante, Caroline
2011-01-01
During Drosophila melanogaster dorsal closure, lateral sheets of embryonic epidermis assemble an actomyosin cable at their leading edge and migrate dorsally over the amnioserosa, converging at the dorsal midline. We show that disappearance of the homophilic cell adhesion molecule Echinoid (Ed) from the amnioserosa just before dorsal closure eliminates homophilic interactions with the adjacent dorsal-most epidermal (DME) cells, which comprise the leading edge. The resulting planar polarized distribution of Ed in the DME cells is essential for the localized accumulation of actin regulators and for actomyosin cable formation at the leading edge and for the polarized localization of the scaffolding protein Bazooka/PAR-3. DME cells with uniform Ed fail to assemble a cable and protrude dorsally, suggesting that the cable restricts dorsal migration. The planar polarized distribution of Ed in the DME cells thus provides a spatial cue that polarizes the DME cell actin cytoskeleton, defining the epidermal leading edge and establishing its contractile properties. PMID:21263031
Simulation of the Thermographic Response of Near Surface Flaws in Reinforced Carbon-Carbon Panels
NASA Technical Reports Server (NTRS)
Winfree, William P.; Howell, Patricia A.; Burke, Eric R.
2009-01-01
Thermographic inspection is a viable technique for detecting in-service damage in reinforced carbon-carbon (RCC) composites that are used for thermal protection in the leading edge of the shuttle orbiter. A thermographic technique for detection of near surface flaws in RCC composite structures is presented. A finite element model of the heat diffusion in structures with expected flaw configurations is in good agreement with the experimental measurements.
Edge-functionalization of armchair graphene nanoribbons with pentagonal-hexagonal edge structures.
Ryou, Junga; Park, Jinwoo; Kim, Gunn; Hong, Suklyun
2017-06-21
Using density functional theory calculations, we have studied the edge-functionalization of armchair graphene nanoribbons (AGNRs) with pentagonal-hexagonal edge structures. While the AGNRs with pentagonal-hexagonal edge structures (labeled (5,6)-AGNRs) are metallic, the edge-functionalized (5,6)-AGNRs with substitutional atoms opens a band gap. We find that the band structures of edge-functionalized (5,6)-N-AGNRs by substitution resemble those of defect-free (N-1)-AGNR at the Γ point, whereas those at the X point show the original ones of the defect-free N-AGNR. The overall electronic structures of edge-functionalized (5,6)-AGNRs depend on the number of electrons, supplied by substitutional atoms, at the edges of functionalized (5,6)-AGNRs.
Span efficiency of wings with leading edge protuberances
NASA Astrophysics Data System (ADS)
Custodio, Derrick; Henoch, Charles; Johari, Hamid
2013-11-01
Past work has shown that sinusoidal leading edge protuberances resembling those found on humpback whale flippers alter the lift and drag coefficients of full- and finite-span foils and wings depending on the angle of attack and leading edge geometry. Although the load characteristics of protuberance modified finite-span wings have been reported for flipper-like geometries at higher Reynolds numbers and for rectangular planforms at lower Reynolds numbers, the effects of leading edge geometry on the span efficiency, which is indicative of the deviation of the spanwise lift distribution from elliptical and the viscous effects, for a range of planforms and Reynolds numbers have not been addressed. The lift and drag coefficients of 7 rectangular, 2 swept, and 2 flipper-like planform models with aspect ratios of 4.3, 4.0, and 8.86, respectively, were used to compute the span efficiency at Reynolds numbers ranging from 0.9 to 4.5 × 105. The span efficiency, based on the data at lower angles of attack, of modified wings was compared with the unmodified models. For the cases considered, the span efficiencies of the leading edge modified models were less than those of the equivalent unmodified models. The dependence of span efficiency on the leading edge geometry, planform, and Reynolds number will be presented. Supported by the ONR-ULI program.
Subsonic balance and pressure investigation of a 60 deg delta wing with leading edge devices
NASA Technical Reports Server (NTRS)
Tingas, S. A.; Rao, D. M.
1982-01-01
Low supersonic wave drag makes the thin highly swept delta wing the logical choice for use on aircraft designed for supersonic cruise. However, the high-lift maneuver capability of the aircraft is limited by severe induced-drag penalties attributed to loss of potential flow leading-edge suction. This drag increase may be alleviated through leading-edge flow control to recover lost aerodynamic thrust through either retention of attached leading-edge flow to higher angles of attack or exploitation of the increased suction potential of separation-induced vortex flow. A low-speed wind-tunnel investigation was undertaken to examine the high-lift devices such as fences, chordwise slots, pylon vortex generators, leading-edge vortex flaps, and sharp leading-edge extensions. The devices were tested individually and in combinations in an attempt to improve high-alpha drag performance with a minimum of low-alpha drag penalty. This report presents an analysis of the force, moment, and static pressure data obtained in angles of attack up to 23 deg, at Mach and Reynolds numbers of 0.16 and 3.85 x 10 to the 6th power per meter, respectively. The results indicate that all the devices produced drag and longitudinal/lateral stability improvements at high lift with, in most cases, minor drag penalties at low angles of attack.
NASA Technical Reports Server (NTRS)
Keller, Donald F.; Sandford, Maynard C.; Pinkerton, Theresa L.
1991-01-01
An experimental and analytical investigation was initiated to determine the effects of planform curvature (curving the leading and trailing edges of a wing in the X-Y plane) on the transonic flutter characteristics of a series of three moderately swept wing models. Experimental flutter results were obtained in the Langley Transonic Dynamics Tunnel for Mach numbers from 0.60-1.00, with air as the test medium. The models were semispan cantilevered wings with a 3 percent biconvex airfoil and a panel aspect ratio of 1.14. The baseline model had straight leading and trailing edges (i.e., no planform curvature). The radii of curvature of the leading edges for these two models were 200 and 80 inches. The radii of curvature of the leading edges of the other two models were determined so that the root and tip chords were identical for all three models. Experimental results showed that flutter-speed index and flutter frequency ratio increased as planform curvature increase (radius of curvature of the leading edge was decreased) over the test range of Mach numbers. Analytical flutter results were calculated with a subsonic flutter-prediction program, and they agreed well with the experimental results.
NASA Astrophysics Data System (ADS)
Ramesh, Kiran; Granlund, Kenneth; Ol, Michael V.; Gopalarathnam, Ashok; Edwards, Jack R.
2018-04-01
A leading-edge suction parameter (LESP) that is derived from potential flow theory as a measure of suction at the airfoil leading edge is used to study initiation of leading-edge vortex (LEV) formation in this article. The LESP hypothesis is presented, which states that LEV formation in unsteady flows for specified airfoil shape and Reynolds number occurs at a critical constant value of LESP, regardless of motion kinematics. This hypothesis is tested and validated against a large set of data from CFD and experimental studies of flows with LEV formation. The hypothesis is seen to hold except in cases with slow-rate kinematics which evince significant trailing-edge separation (which refers here to separation leading to reversed flow on the aft portion of the upper surface), thereby establishing the envelope of validity. The implication is that the critical LESP value for an airfoil-Reynolds number combination may be calibrated using CFD or experiment for just one motion and then employed to predict LEV initiation for any other (fast-rate) motion. It is also shown that the LESP concept may be used in an inverse mode to generate motion kinematics that would either prevent LEV formation or trigger the same as per aerodynamic requirements.
SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY FINDINGS IN MACULA-INVOLVING CYTOMEGALOVIRUS RETINITIS.
Gupta, Mrinali P; Patel, Sarju; Orlin, Anton; Marlow, Elizabeth; Chee, Ru-Ik; Nadelmann, Jennifer; Chan, R V Paul; DʼAmico, Donald J; Kiss, Szilard
2018-05-01
To evaluate the microstructural features of cytomegalovirus (CMV) retinitis by spectral domain optical coherence tomography (OCT). Subjects were patients with macula-involving CMV retinitis with OCT imaging. The leading edge of retinitis in the macula was identified based on fundus imaging, and OCT findings were longitudinally evaluated in three areas: within the area of active retinitis, at the leading edge of retinitis, and just beyond the leading edge of retinitis. Optical coherence tomography imaging of macular CMV retinitis identified vitreous cells in 10 eyes (100%), posterior vitreous detachment in four eyes (40%), broad-based vitreomacular traction in one eye (10%), epiretinal membrane in eight eyes (80%), and lamellar hole-associated epiretinal proliferation associated with an atrophic hole in one eye (10%). Retinal architectural disruption, disruption of inner retinal layers, disruption of the external limiting membrane, and ellipsoid zone abnormalities were noted within the area of retinitis in all eyes and decreased in frequency and severity at and beyond the leading edge of retinitis, although all 10 eyes (100%) exhibited one of these abnormalities, especially outer retinal microabnormalities, beyond the leading edge of retinitis. Microstructural abnormalities were frequently noted on OCT of CMV retinitis, including within the retina beyond the leading edge of retinitis identified by corresponding fundus imaging. Outer retinal abnormalities were noted more frequently than inner retinal abnormalities beyond the leading edge of retinitis. These findings provide insight into the effects of CMV retinitis on retinal microstructure and potentially on vision and highlight the potential utility of OCT for monitoring microprogression of macula-involving CMV retinitis.
Aerodynamic robustness in owl-inspired leading-edge serrations: a computational wind-gust model.
Rao, Chen; Liu, Hao
2018-06-08
Owls are a master to achieve silent flight in gliding and flapping flights under natural turbulent environments owing to their unique wing morphologies. While the leading-edge serrations are recently revealed, as a passive flow control micro-device, to play a crucial role in aerodynamic force production and sound suppression [25], the characteristics of wind-gust rejection associated with leading-edge serrations remain unclear. Here we address a large-eddy simulation (LES)-based study of aerodynamic robustness in owl-inspired leading-edge serrations, which is conducted with clean and serrated wing models through mimicking wind-gusts under a longitudinal fluctuation in free-stream inflow and a lateral fluctuation in pitch angle over a broad range of angles of attack (AoAs) over 0° ≤ Φ ≤ 20°. Our results show that the leading-edge serration-based passive flow control mechanisms associated with laminar-turbulent transition work effectively under fluctuated inflow and wing pitch, indicating that the leading-edge serrations are of potential gust fluctuation rejection or robustness in aerodynamic performance. Moreover, it is revealed that the tradeoff between turbulent flow control (i.e., aero-acoustic suppression) and force production in the serrated model holds independently to the wind-gust environments: poor at lower AoAs but capable of achieving equivalent aerodynamic performance at higher AoAs > 15o compared to the clean model. Our results reveal that the owl-inspired leading-edge serrations can be a robust micro-device for aero-acoustic control coping with unsteady and complex wind environments in biomimetic rotor designs for various fluid machineries. © 2018 IOP Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alp, E.E.; Mini, S.M.; Ramanathan, M.
1990-04-01
The x-ray absorption spectroscopy (XAS) had been an essential tool to gather spectroscopic information about atomic energy level structure in the early decades of this century. It has also played an important role in the discovery and systematization of rare-earth elements. The discovery of synchrotron radiation in 1952, and later the availability of broadly tunable synchrotron based x-ray sources have revitalized this technique since the 1970's. The correct interpretation of the oscillatory structure in the x-ray absorption cross-section above the absorption edge by Sayers et. al. has transformed XAS from a spectroscopic tool to a structural technique. EXAFS (Extended X-raymore » Absorption Fine Structure) yields information about the interatomic distances, near neighbor coordination numbers, and lattice dynamics. An excellent description of the principles and data analysis techniques of EXAFS is given by Teo. XANES (X-ray Absorption Near Edge Structure), on the other hand, gives information about the valence state, energy bandwidth and bond angles. Today, there are about 50 experimental stations in various synchrotrons around the world dedicated to collecting x-ray absorption data from the bulk and surfaces of solids and liquids. In this chapter, we will give the basic principles of XAS, explain the information content of essentially two different aspects of the absorption process leading to EXAFS and XANES, and discuss the source and samples limitations.« less
SPF/DB primary structure for supersonic aircraft (T-38 horizontal stabilizer)
NASA Technical Reports Server (NTRS)
Delmundo, A. R.; Mcquilkin, F. T.; Rivas, R. R.
1981-01-01
The structural integrity and potential cost savings of superplastic forming/diffusion bonding (SPF/DB) titanium structure for future Supersonic Cruise Research (SCR) and military aircraft primary structure applications was demonstrated. Using the horizontal stabilizer of the T-38 aircraft as a baseline, the structure was redesigned to the existing criteria and loads, using SPF/DB titanium technology. The general concept of using a full-depth sandwich structure which is attached to a steel spindle, was retained. Trade studies demonstrated that the optimum design should employ double-truss, sinewave core in the deepest section of the surface, making a transition to single-truss core in the thinner areas at the leading and trailing edges and at the tip. At the extreme thin edges of the surface, the single-truss core was changed to dot core to provide for gas passages during the SPF/DB process. The selected SPF/DB horizontal stabilizer design consisted of a one-piece SPF/DB sinewave truss core panel, a trunnion fitting, and reinforcing straps. The fitting and the straps were mechanically fastened to the SPF/DB panel.
NASA Technical Reports Server (NTRS)
Campbell, Bryan A.; Kemmerly, Guy T.; Kjerstad, Kevin J.; Lessard, Victor R.
1999-01-01
A wind tunnel investigation of two separate leading-edge flaps, designed for vortex and attached-flow, respectively, were conducted on a High Speed Civil Transport (HSCT) configuration in the Langley 14- by 22-Foot Subsonic Tunnel. Data were obtained over a Mach number range of 0.12 to 0.27, with corresponding chord Reynolds numbers of 2.50 x 10 (sup 6) to 5.50 x 10 (sup 6). Variations of the leading-edge flap deflection angle were tested with outboard leading-edge flaps deflected 0 deg. and 26.4 deg. Trailing-edge flaps were deflected 0 deg., 10 deg., 12.9 deg., and 20 deg. The longitudinal and lateral aerodynamic data are presented without analysis. A complete tabulated data listing is also presented herein. The data associated with each deflected leading-edge flap indicate L/D improvements over the undeflected configuration. These improvements may be instrumental in providing the necessary lift augmentation required by an actual HSCT during the climb-out and landing phases of the flight envelope. However, further tests will have to be done to assess their full potential.
Pouvreau, Maxime; Greathouse, Jeffery A.; Cygan, Randall T.; ...
2017-06-28
Molecular scale understanding of the structure and properties of aqueous interfaces with clays, metal (oxy-) hydroxides, layered double hydroxides, and other inorganic phases is strongly affected by significant degrees of structural and compositional disorder of the interfaces. ClayFF was originally developed as a robust and flexible force field for classical molecular simulations of such systems. However, despite its success, multiple limitations have also become evident with its use. One of the most important limitations is the difficulty to accurately model the edges of finite size nanoparticles or pores rather than infinitely layered periodic structures. Here we propose a systematic approachmore » to solve this problem by developing specific metal–O–H (M–O–H) bending terms for ClayFF, E bend = k (θ – θ 0) 2 to better describe the structure and dynamics of singly protonated hydroxyl groups at mineral surfaces, particularly edge surfaces. On the basis of a series of DFT calculations, the optimal values of the Al–O–H and Mg–O–H parameters for Al and Mg in octahedral coordination are determined to be θ 0,AlOH = θ 0,MgOH = 110°, k AlOH = 15 kcal mol –1 rad –2 and k MgOH = 6 kcal mol –1 rad –2. Molecular dynamics simulations were performed for fully hydrated models of the basal and edge surfaces of gibbsite, Al(OH) 3, and brucite, Mg(OH) 2, at the DFT level of theory and at the classical level, using ClayFF with and without the M–O–H term. The addition of the new bending term leads to a much more accurate representation of the orientation of O–H groups at the basal and edge surfaces. Finally, the previously observed unrealistic desorption of OH 2 groups from the particle edges within the original ClayFF model is also strongly constrained by the new modification.« less
Van Truong, Tien; Byun, Doyoung; Kim, Min Jun; Yoon, Kwang Joon; Park, Hoon Cheol
2013-09-01
The aim of this work is to provide an insight into the aerodynamic performance of the beetle during takeoff, which has been estimated in previous investigations. We employed a scaled-up electromechanical model flapping wing to measure the aerodynamic forces and the three-dimensional flow structures on the flapping wing. The ground effect on the unsteady forces and flow structures were also characterized. The dynamically scaled wing model could replicate the general stroke pattern of the beetle's hind wing kinematics during takeoff flight. Two wing kinematic models have been studied to examine the influences of wing kinematics on unsteady aerodynamic forces. In the first model, the angle of attack is asymmetric and varies during the translational motion, which is the flapping motion of the beetle's hind wing. In the second model, the angle of attack is constant during the translational motion. The instantaneous aerodynamic forces were measured for four strokes during the beetle's takeoff by the force sensor attached at the wing base. Flow visualization provided a general picture of the evolution of the three-dimensional leading edge vortex (LEV) on the beetle hind wing model. The LEV is stable during each stroke, and increases radically from the root to the tip, forming a leading-edge spiral vortex. The force measurement results show that the vertical force generated by the hind wing is large enough to lift the beetle. For the beetle hind wing kinematics, the total vertical force production increases 18.4% and 8.6% for the first and second strokes, respectively, due to the ground effect. However, for the model with a constant angle of attack during translation, the vertical force is reduced during the first stroke. During the third and fourth strokes, the ground effect is negligible for both wing kinematic patterns. This finding suggests that the beetle's flapping mechanism induces a ground effect that can efficiently lift its body from the ground during takeoff.
Design and fabrication of a high temperature leading edge heating array, phase 1
NASA Technical Reports Server (NTRS)
1972-01-01
Progress during a Phase 1 program to design a high temperature heating array is reported for environmentally testing full-scale shuttle leading edges (30 inch span, 6 to 15 inch radius) at flight heating rates and pressures. Heat transfer analyses of the heating array, individual modules, and the shuttle leading edge were performed, which influenced the array design, and the design, fabrication, and testing of a prototype heater module.
NASA Technical Reports Server (NTRS)
Davis, Richard E.; Maddalon, Dal V.; Wagner, Richard D.; Fisher, David F.; Young, Ronald
1989-01-01
Summary evaluations of the performance of laminar-flow control (LFC) leading edge test articles on a NASA JetStar aircraft are presented. Statistics, presented for the test articles' performance in haze and cloud situations, as well as in clear air, show a significant effect of cloud particle concentrations on the extent of laminar flow. The cloud particle environment was monitored by two instruments, a cloud particle spectrometer (Knollenberg probe) and a charging patch. Both instruments are evaluated as diagnostic aids for avoiding laminar-flow detrimental particle concentrations in future LFC aircraft operations. The data base covers 19 flights in the simulated airline service phase of the NASA Leading-Edge Flight-Test (LEFT) Program.
Scattering of an electronic wave packet by a one-dimensional electron-phonon-coupled structure
NASA Astrophysics Data System (ADS)
Brockt, C.; Jeckelmann, E.
2017-02-01
We investigate the scattering of an electron by phonons in a small structure between two one-dimensional tight-binding leads. This model mimics the quantum electron transport through atomic wires or molecular junctions coupled to metallic leads. The electron-phonon-coupled structure is represented by the Holstein model. We observe permanent energy transfer from the electron to the phonon system (dissipation), transient self-trapping of the electron in the electron-phonon-coupled structure (due to polaron formation and multiple reflections at the structure edges), and transmission resonances that depend strongly on the strength of the electron-phonon coupling and the adiabaticity ratio. A recently developed TEBD algorithm, optimized for bosonic degrees of freedom, is used to simulate the quantum dynamics of a wave packet launched against the electron-phonon-coupled structure. Exact results are calculated for a single electron-phonon site using scattering theory and analytical approximations are obtained for limiting cases.
NASA Technical Reports Server (NTRS)
Amari, S.; Foote, J.; Swan, P.; Walker, R. M.; Zinner, E.; Lange, G.
1993-01-01
Numerous 'extended impacts' found in both leading and trailing edge capture cells were successfully analyzed for the chemical composition of projectile residues by secondary ion mass spectrometry (SIMS). Most data were obtained from the trailing edge cells where 45 of 58 impacts were classified as 'probably natural' and the remainder as 'possibly man-made debris.' This is in striking contrast to leading edge cells where 9 of 11 impacts so far measured are definitely classified as orbital debris. Although all the leading edge cells had lost their plastic entrance foils during flight, the rate of foil failure was similar to that of the trailing edge cells, 10 percent of which were recovered intact. Ultraviolet embrittlement is suspected as the major cause of failure on both leading and trailing edges. The major impediment to the accurate determination of projectile chemistry is the fractionation of volatile and refractory elements in the hypervelocity impact and redeposition processes. This effect had been noted in a simulation experiment but is more pronounced in the LDEF capture cells, probably due to the higher average velocities of the space impacts. Surface contamination of the pure Ge surfaces with a substance rich in Si, but also containing Mg and Al, provides an additional problem for the accurate determination of impactor chemistry. The effect is variable, being much larger on surfaces that were exposed to space than in those cells that remained intact. Future work will concentrate on the analyses of more leading edge impacts and the development of new SIMS techniques for the measurement of elemental abundances in extended impacts.
NASA Technical Reports Server (NTRS)
Hernandez, Gloria; Wood, Richard M.; Covell, Peter F.
1994-01-01
An experimental investigation of the aerodynamic characteristics of thin, moderately swept fighter wings has been conducted to evaluate the effect of camber and twist on the effectiveness of leading- and trailing-edge flaps at supersonic speeds in the Langley Unitary Plan Wind Tunnel. The study geometry consisted of a generic fuselage with camber typical of advanced fighter designs without inlets, canopy, or vertical tail. The model was tested with two wing configurations an uncambered (flat) wing and a cambered and twisted wing. Each wing had an identical clipped delta planform with an inboard leading edge swept back 65 deg and an outboard leading edge swept back 50 deg. The trailing edge was swept forward 25 deg. The leading-edge flaps were deflected 4 deg to 15 deg, and the trailing-edge flaps were deflected from -30 deg to 10 deg. Longitudinal force and moment data were obtained at Mach numbers of 1.60, 1.80, 2.00, and 2.16 for an angle-of-attack range 4 deg to 20 deg at a Reynolds number of 2.16 x 10(exp 6) per foot and for an angle-of-attack range 4 deg to 20 deg at a Reynolds number of 2.0 x 10(exp 6) per foot. Vapor screen, tuft, and oil flow visualization data are also included.
Low transient thermal stress turbine engine components
Shi, Jun [Glastonbury, CT; Schmidt, Wayde R [Pomfret Center, CT
2011-06-28
A turbine vane includes a platform; and at least one airfoil mounted to the platform and having a trailing edge and a leading edge, wherein the vane is composed of a functionally graded material having a first material and a second material, wherein the trailing edge includes a greater amount of the first material than the second material, and the leading edge includes a greater amount of the second material than the first material.
Rotor blades for turbine engines
Piersall, Matthew R; Potter, Brian D
2013-02-12
A tip shroud that includes a plurality of damping fins, each damping fin including a substantially non-radially-aligned surface that is configured to make contact with a tip shroud of a neighboring rotor blade. At least one damping fin may include a leading edge damping fin and at least one damping fin may include a trailing edge damping fin. The leading edge damping fin may be configured to correspond to the trailing edge damping fin.
A method to design blended rolled edges for compact range reflectors
NASA Technical Reports Server (NTRS)
Gupta, Inder J.; Burnside, Walter D.
1989-01-01
A method to design blended rolled edges for arbitrary rim shape compact range reflectors is presented. The reflectors may be center-fed or offset-fed. The method leads to rolled edges with minimal surface discontinuities. It is shown that the reflectors designed using the prescribed method can be defined analytically using simple expressions. A procedure to obtain optimum rolled edges parameter is also presented. The procedure leads to blended rolled edges that minimize the diffracted fields emanating from the junction between the paraboloid and the rolled edge surface while satisfying certain constraints regarding the reflector size and the minimum operating frequency of the system.
A method to design blended rolled edges for compact range reflectors
NASA Technical Reports Server (NTRS)
Gupta, Inder J.; Ericksen, Kurt P.; Burnside, Walter D.
1990-01-01
A method to design blended rolled edges for arbitrary rim shape compact range reflectors is presented. The reflectors may be center-fed or offset-fed. The method leads to rolled edges with minimal surface discontinuities. It is shown that the reflectors designed using the prescribed method can be defined analytically using simple expressions. A procedure to obtain optimum rolled edges parameters is also presented. The procedure leads to blended rolled edges that minimize the diffracted fields emanating from the junction between the paraboloid and the rolled edge surface while satisfying certain constraints regarding the reflector size and the minimum operating frequency of the system.
Smoothed Two-Dimensional Edges for Laminar Flow
NASA Technical Reports Server (NTRS)
Holmes, B. J.; Liu, C. H.; Martin, G. L.; Domack, C. S.; Obara, C. J.; Hassan, A.; Gunzburger, M. D.; Nicolaides, R. A.
1986-01-01
New concept allows passive method for installing flaps, slats, iceprotection equipment, and other leading-edge devices on natural-laminar-flow (NLF) wings without causing loss of laminar flow. Two-dimensional roughness elements in laminar boundary layers strategically shaped to increase critical (allowable) height of roughness. Facilitates installation of leading-edge devices by practical manufacturing methods.
Design, Test, and Evaluation of a Transonic Axial Compressor Rotor with Splitter Blades
2013-09-01
parameters .......................................................17 Figure 13. Third-order spline fit for blade camber line distribution...18 Figure 14. Third-order spline fit for blade thickness distribution .....................................19 Figure 15. Blade...leading edge: third-order spline fit for thickness distribution ...............20 Figure 16. Blade leading edge and trailing edge slope blending
Wing Leading Edge Debris Analysis
NASA Technical Reports Server (NTRS)
Shah, Sandeep; Jerman, Gregory
2004-01-01
This is a slide presentation showing the Left Wing Leading Edge (WLE) heat damage observations: Heavy "slag" deposits on select RCC panels. Eroded and knife-edged RCC rib sections. Excessive overheating and slumping of carrier panel tiles. Missing or molten attachment bolts but intact bushing. Deposit mainly on "inside" RCC panel. Deposit on some fractured RCC surface
Theoretical Study of α-V2O5 -Based Double-Wall Nanotubes.
Porsev, Vitaly V; Bandura, Andrei V; Evarestov, Robert A
2015-10-05
First-principles calculations of the atomic and electronic structure of double-wall nanotubes (DWNTs) of α-V2 O5 are performed. Relaxation of the DWNT structure leads to the formation of two types of local regions: 1) bulk-type regions and 2) puckering regions. Calculated total density of states (DOS) of DWNTs considerably differ from that of single-wall nanotubes and the single layer, as well as from the DOS of the bulk and double layer. Small shoulders that appear on edges of valence and conduction bands result in a considerable decrease in the band gaps of the DWNTs (up to 1 eV relative to the single-layer gaps). The main reason for this effect is the shift of the inner- and outer-wall DOS in opposite directions on the energetic scale. The electron density corresponding to shoulders at the conduction-band edges is localized on vanadium atoms of the bulk-type regions, whereas the electron density corresponding to shoulders at the valence-band edges belongs to oxygen atoms of both regions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermographic Phosphor Measurements of Shock-Shock Interactions on a Swept Cylinder
NASA Technical Reports Server (NTRS)
Jones, Michelle L.; Berry, Scott A.
2013-01-01
The effects of fin leading-edge radius and sweep angle on peak heating rates due to shock-shock interactions were investigated in the NASA Langley Research Center 20-inch Mach 6 Air Tunnel. The fin model leading edges, which represent cylindrical leading edges or struts on hypersonic vehicles, were varied from 0.25 inches to 0.75 inches in radius. A 9deg wedge generated a planar oblique shock at 16.7deg to the flow that intersected the fin bow shock, producing a shock-shock interaction that impinged on the fin leading edge. The fin angle of attack was varied from 0deg (normal to the free-stream) to 15deg and 25deg swept forward. Global temperature data was obtained from the surface of the fused silica fins using phosphor thermography. Metal oil flow models with the same geometries as the fused silica models were used to visualize the streamline patterns for each angle of attack. High-speed zoom-schlieren videos were recorded to show the features and temporal unsteadiness of the shock-shock interactions. The temperature data were analyzed using one-dimensional semi-infinite as well as one- and two-dimensional finite-volume methods to determine the proper heat transfer analysis approach to minimize errors from lateral heat conduction due to the presence of strong surface temperature gradients induced by the shock interactions. The general trends in the leading-edge heat transfer behavior were similar for the three shock-shock interactions, respectively, between the test articles with varying leading-edge radius. The dimensional peak heat transfer coefficient augmentation increased with decreasing leading-edge radius. The dimensional peak heat transfer output from the two-dimensional code was about 20% higher than the value from a standard, semi-infinite onedimensional method.
Experimental Investigation of Shock-Shock Interactions Over a 2-D Wedge at M=6
NASA Technical Reports Server (NTRS)
Jones, Michelle L.
2013-01-01
The effects of fin-leading-edge radius and sweep angle on peak heating rates due to shock-shock interactions were investigated in the NASA Langley Research Center 20-inch Mach 6 Air Tunnel. The fin model leading edges, which represent cylindrical leading edges or struts on hypersonic vehicles, were varied from 0.25 inches to 0.75 inches in radius. A 9deg wedge generated a planar oblique shock at 16.7deg to the flow that intersected the fin bow shock, producing a shock-shock interaction that impinged on the fin leading edge. The fin angle of attack was varied from 0deg (normal to the free-stream) to 15deg and 25deg swept forward. Global temperature data was obtained from the surface of the fused silica fins through phosphor thermography. Metal oil flow models with the same geometries as the fused silica models were used to visualize the streamline patterns for each angle of attack. High-speed zoom-schlieren videos were recorded to show the features and temporal unsteadiness of the shock-shock interactions. The temperature data were analyzed using one-dimensional semi-infinite as well as one- and two-dimensional finite-volume methods to determine the proper heat transfer analysis approach to minimize errors from lateral heat conduction due to the presence of strong surface temperature gradients induced by the shock interactions. The general trends in the leading-edge heat transfer behavior were similar for the three shock-shock interactions, respectively, between the test articles with varying leading-edge radius. The dimensional peak heat transfer coefficient augmentation increased with decreasing leading-edge radius. The dimensional peak heat transfer output from the two-dimensional code was about 20% higher than the value from a standard, semi-infinite one-dimensional method.
Three-dimensional flow structures and evolution of the leading-edge vortices on a flapping wing.
Lu, Yuan; Shen, Gong Xin
2008-04-01
Following the identification and confirmation of the substructures of the leading-edge vortex (LEV) system on flapping wings, it is apparent that the actual LEV structures could be more complex than had been estimated in previous investigations. In this experimental study, we reveal for the first time the detailed three-dimensional (3-D) flow structures and evolution of the LEVs on a flapping wing in the hovering condition at high Reynolds number (Re=1624). This was accomplished by utilizing an electromechanical model dragonfly wing flapping in a water tank (mid-stroke angle of attack=60 degrees) and applying phase-lock based multi-slice digital stereoscopic particle image velocimetry (DSPIV) to measure the target flow fields at three typical stroke phases: at 0.125 T (T=stroke period), when the wing was accelerating; at 0.25 T, when the wing had maximum speed; and at 0.375 T, when the wing was decelerating. The result shows that the LEV system is a collection of four vortical elements: one primary vortex and three minor vortices, instead of a single conical or tube-like vortex as reported or hypothesized in previous studies. These vortical elements are highly time-dependent in structure and show distinct ;stay properties' at different spanwise sections. The spanwise flows are also time-dependent, not only in the velocity magnitude but also in direction.
NASA Astrophysics Data System (ADS)
Alexandrov, S. V.; Vaganov, A. V.; Shalaev, V. I.
2016-10-01
Processes of vortex structures formation and they interactions with the boundary layer in the hypersonic flow over delta wing with blunted leading edges are analyzed on the base of experimental investigations and numerical solutions of Navier-Stokes equations. Physical mechanisms of longitudinal vortexes formation, appearance of abnormal zones with high heat fluxes and early laminar turbulent transition are studied. These phenomena were observed in many high-speed wind tunnel experiments; however they were understood only using the detailed analysis of numerical modeling results with the high resolution. Presented results allowed explaining experimental phenomena. ANSYS CFX code (the DAFE MIPT license) on the grid with 50 million nodes was used for the numerical modeling. The numerical method was verified by comparison calculated heat flux distributions on the wing surface with experimental data.
NASA Technical Reports Server (NTRS)
Lyle, Karen H.
2008-01-01
The Space Shuttle Columbia Accident Investigation Board recommended that NASA develop, validate, and maintain a modeling tool capable of predicting the damage threshold for debris impacts on the Space Shuttle Reinforced Carbon-Carbon (RCC) wing leading edge and nosecap assembly. The results presented in this paper are one part of a multi-level approach that supported the development of the predictive tool used to recertify the shuttle for flight following the Columbia Accident. The assessment of predictive capability was largely based on test analysis comparisons for simpler component structures. This paper provides comparisons of finite element simulations with test data for external tank foam debris impacts onto 6-in. square RCC flat panels. Both quantitative displacement and qualitative damage assessment correlations are provided. The comparisons show good agreement and provided the Space Shuttle Program with confidence in the predictive tool.
NASA Technical Reports Server (NTRS)
Goodyear, M. D.
1987-01-01
NASA sponsored the Aircraft Energy Efficiency (ACEE) program in 1976 to develop technologies to improve fuel efficiency. Laminar flow control was one such technology. Two approaches for achieving laminar flow were designed and manufactured under NASA sponsored programs: the perforated skin concept used at McDonnell Douglas and the slotted design used at Lockheed-Georgia. Both achieved laminar flow, with the slotted design to a lesser degree (JetStar flight test program). The latter design had several fabrication problems concerning springback and adhesive flow clogging the air flow passages. The Lockheed-Georgia Company accomplishments is documented in designing and fabricating a small section of a leading edge article addressing a simpler fabrication method to overcome the previous program's manufacturing problems, i.e., design and fabrication using advanced technologies such as diffusion bonding of aluminum, which has not been used on aerospace structures to date, and the superplastic forming of aluminum.
Turbine Airfoil With CMC Leading-Edge Concept Tested Under Simulated Gas Turbine Conditions
NASA Technical Reports Server (NTRS)
Robinson, R. Craig; Hatton, Kenneth S.
2000-01-01
Silicon-based ceramics have been proposed as component materials for gas turbine engine hot-sections. When the Navy s Harrier fighter experienced engine (Pegasus F402) failure because of leading-edge durability problems on the second-stage high-pressure turbine vane, the Office of Naval Research came to the NASA Glenn Research Center at Lewis Field for test support in evaluating a concept for eliminating the vane-edge degradation. The High Pressure Burner Rig (HPBR) was selected for testing since it could provide temperature, pressure, velocity, and combustion gas compositions that closely simulate the engine environment. The study focused on equipping the stationary metal airfoil (Pegasus F402) with a ceramic matrix composite (CMC) leading-edge insert and evaluating the feasibility and benefits of such a configuration. The test exposed the component, with and without the CMC insert, to the harsh engine environment in an unloaded condition, with cooling to provide temperature relief to the metal blade underneath. The insert was made using an AlliedSignal Composites, Inc., enhanced HiNicalon (Nippon Carbon Co. LTD., Yokohama, Japan) fiber-reinforced silicon carbide composite (SiC/SiC CMC) material fabricated via chemical vapor infiltration. This insert was 45-mils thick and occupied a recessed area in the leading edge and shroud of the vane. It was designed to be free floating with an end cap design. The HPBR tests provided a comparative evaluation of the temperature response and leading-edge durability and included cycling the airfoils between simulated idle, lift, and cruise flight conditions. In addition, the airfoils were aircooled, uniquely instrumented, and exposed to the exact set of internal and external conditions, which included gas temperatures in excess of 1370 C (2500 F). In addition to documenting the temperature response of the metal vane for comparison with the CMC, a demonstration of improved leading-edge durability was a primary goal. First, the metal vane was tested for a total of 150 cycles. Both the leading edge and trailing edge of the blade exhibited fatigue cracking and burn-through similar to the failures experienced in service by the F402 engine. Next, an airfoil, fitted with the ceramic leading edge insert, was exposed for 200 cycles. The temperature response of those HPBR cycles indicated a reduced internal metal temperature, by as much as 600 F at the midspan location for the same surface temperature (2100 F). After testing, the composite insert appeared intact, with no signs of failure on either the vane s leading or trailing edge. Only a slight oxide scale, as would be expected, was noted on the insert. Overall, the CMC insert performed similarly to a thick thermal barrier coating. With a small air gap between the metal and the SiC/SiC leading edge, heat transfer from the CMC to the metal alloy was low, effectively lowering the temperatures. The insert's performance has proven that an uncooled CMC can be engineered and designed to withstand the thermal up-shock experienced during the severe lift conditions in the Pegasus engine. The design of the leading-edge insert, which minimized thermal stresses in the SiC/SiC CMC, showed that the CMC/metal assembly can be engineered to be a functioning component.
Boundary layer relaminarization device
NASA Technical Reports Server (NTRS)
Creel, Theodore R. (Inventor)
1992-01-01
Relamination of a boundary layer formed in supersonic flow over the leading edge of a swept airfoil is accomplished by means of at least one band, especially a quadrangular band, and most preferably a square band. Each band conforms to the leading edge and the upper and lower surfaces of the airfoil as an integral part thereof and extends perpendicularly from the leading edge. Each band has a height of about two times the thickness of the maximum expected boundary layer.
Thermal management of tungsten leading edges in DIII-D
Nygren, Richard E.; Rudakov, Dmitry L.; Murphy, Christopher; ...
2017-04-29
The DiMES materials probe exposed tungsten blocks with 0.3 and 1 mm high leading edges to DIII-D He plasmas in 2015 and 2016 viewed with high resolution IRTV. The 1-mm edge may have reached >2400° C in a 3-s shot with a (parallel) heat load of ~50 MW/m 2 and ~10 MW/m 2 on the surface based on modeling. The experiments support ITER. Leading edges were also a concern in the DIII-D Metal Tile Experiment in 2016. Two toroidal rings of divertor tiles had W-coated molybdenum inserts 50 mm wide radially. This study presents data and thermal analyses.
Thermal management of tungsten leading edges in DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nygren, Richard E.; Rudakov, Dmitry L.; Murphy, Christopher
The DiMES materials probe exposed tungsten blocks with 0.3 and 1 mm high leading edges to DIII-D He plasmas in 2015 and 2016 viewed with high resolution IRTV. The 1-mm edge may have reached >2400° C in a 3-s shot with a (parallel) heat load of ~50 MW/m 2 and ~10 MW/m 2 on the surface based on modeling. The experiments support ITER. Leading edges were also a concern in the DIII-D Metal Tile Experiment in 2016. Two toroidal rings of divertor tiles had W-coated molybdenum inserts 50 mm wide radially. This study presents data and thermal analyses.
Acoustic Receptivity of Mach 4.5 Boundary Layer with Leading- Edge Bluntness
NASA Technical Reports Server (NTRS)
Malik, Mujeeb R.; Balakumar, Ponnampalam
2007-01-01
Boundary layer receptivity to two-dimensional slow and fast acoustic waves is investigated by solving Navier-Stokes equations for Mach 4.5 flow over a flat plate with a finite-thickness leading edge. Higher order spatial and temporal schemes are employed to obtain the solution whereby the flat-plate leading edge region is resolved by providing a sufficiently refined grid. The results show that the instability waves are generated in the leading edge region and that the boundary-layer is much more receptive to slow acoustic waves (by almost a factor of 20) as compared to the fast waves. Hence, this leading-edge receptivity mechanism is expected to be more relevant in the transition process for high Mach number flows where second mode instability is dominant. Computations are performed to investigate the effect of leading-edge thickness and it is found that bluntness tends to stabilize the boundary layer. Furthermore, the relative significance of fast acoustic waves is enhanced in the presence of bluntness. The effect of acoustic wave incidence angle is also studied and it is found that the receptivity of the boundary layer on the windward side (with respect to the acoustic forcing) decreases by more than a factor of 4 when the incidence angle is increased from 0 to 45 deg. However, the receptivity coefficient for the leeward side is found to vary relatively weakly with the incidence angle.
NASA Technical Reports Server (NTRS)
Brune, G. W.; Weber, J. A.; Johnson, F. T.; Lu, P.; Rubbert, P. E.
1975-01-01
A method of predicting forces, moments, and detailed surface pressures on thin, sharp-edged wings with leading-edge vortex separation in incompressible flow is presented. The method employs an inviscid flow model in which the wing and the rolled-up vortex sheets are represented by piecewise, continuous quadratic doublet sheet distributions. The Kutta condition is imposed on all wing edges. Computed results are compared with experimental data and with the predictions of the leading-edge suction analogy for a selected number of wing planforms over a wide range of angle of attack. These comparisons show the method to be very promising, capable of producing not only force predictions, but also accurate predictions of detailed surface pressure distributions, loads, and moments.
NASA Technical Reports Server (NTRS)
Applin, Zachary T.; Gentry, Garl L., Jr.
1988-01-01
An unswept, semispan wing model equipped with full-span leading- and trailing-edge flaps was tested in the Langley 14- by 22-Foot Subsonic Tunnel to determine the effect of high-lift components on the aerodynamics of an advanced laminar-flow-control (LFC) airfoil section. Chordwise pressure distributions near the midsemispan were measured for four configurations: cruise, trailing-edge flap only, and trailing-edge flap with a leading-edge Krueger flap of either 0.10 or 0.12 chord. Part 1 of this report (under separate cover) presents a representative sample of the plotted pressure distribution data for each configuration tested. Part 2 presents the entire set of plotted and tabulated pressure distribution data. The data are presented without analysis.
Effect of leading-edge geometry on boundary-layer receptivity to freestream sound
NASA Technical Reports Server (NTRS)
Lin, Nay; Reed, Helen L.; Saric, W. S.
1991-01-01
The receptivity to freestream sound of the laminar boundary layer over a semi-infinite flat plate with an elliptic leading edge is simulated numerically. The incompressible flow past the flat plate is computed by solving the full Navier-Stokes equations in general curvilinear coordinates. A finite-difference method which is second-order accurate in space and time is used. Spatial and temporal developments of the Tollmien-Schlichting wave in the boundary layer, due to small-amplitude time-harmonic oscillations of the freestream velocity that closely simulate a sound wave travelling parallel to the plate, are observed. The effect of leading-edge curvature is studied by varying the aspect ratio of the ellipse. The boundary layer over the flat plate with a sharper leading edge is found to be less receptive. The relative contribution of the discontinuity in curvature at the ellipse-flat-plate juncture to receptivity is investigated by smoothing the juncture with a polynomial. Continuous curvature leads to less receptivity. A new geometry of the leading edge, a modified super ellipse, which provides continuous curvature at the juncture with the flat plate, is used to study the effect of continuous curvature and inherent pressure gradient on receptivity.
The thrust belt in Southwest Montana and east-central Idaho
Ruppel, Edward T.; Lopez, David A.
1984-01-01
The leading edge of the Cordilleran fold and thrust in southwest Montana appears to be a continuation of the edge of the Wyoming thrust belt, projected northward beneath the Snake River Plain. Trces of the thrust faults that form the leading edge of the thrust belts are mostly concealed, but stratigraphic and structural evidence suggests that the belt enters Montana near the middle of the Centennial Mountains, continues west along the Red Rock River valley, and swings north into the Highland Mountains near Butte. The thrust belt in southwest Montana and east-central Idaho includes at least two major plates -- the Medicine Lodge and Grasshopper thrust plates -- each of which contains a distinctive sequence of rocks, different in facies and structural style from those of the cratonic region east of the thrust belt. The thrust plates are characterized by persuasive, open to tight and locally overturned folds, and imbricate thrust faults, structural styles unusual in Phanerozoic cratonic rocks. The basal decollement zones of the plates are composed of intensely sheared, crushed, brecciated, and mylonitized rocks, the decollement at the base of the Medicine Lodge plate is as much as 300 meters thick. The Medicine Lodge and Grasshopper thrust plates are fringed on the east by a 10- to 50-kilometer-wide zone of tightly folded rocks cut by imbricate thrust fauls, a zone that forms the eastern margin of the thrust belt in southwest Montana. The frontal fold and thrust zone includes rocks that are similar to those of the craton, even though they differ in details of thickness, composition, or stratigraphic sequence. The zone is interpreted to be one of terminal folding and thrusting in cratonic rocks overridden by the major thrust plates from farther west. The cratonic rocks were drape-folded over rising basement blocks that formed a foreland bulge in front of the thrust belt. The basement blocks are bounded by steep faults of Proterozoic ancestry, which also moved as tear faults during thrusting, and seem to have controlled the curving patterns of salients and reentrants at the leading edge of the thrust belt. Radiometric and stratiographic evidence shows that the thrust belt was in its present position by about 75 million year go.
Theory of extrinsic and intrinsic heterojunctions in thermal equilibrium
NASA Technical Reports Server (NTRS)
Von Ross, O.
1980-01-01
A careful analysis of an abrupt heterojunction consisting of two distinct semiconductors either intrinsic or extrinsic is presented. The calculations apply to a one-dimensional, nondegenerate structure. Taking into account all appropriate boundary conditions, it is shown that the intrinsic Fermi level shows a discontinuity at the interface between the two materials which leads to a discontinuity of the valence band edge equal to the difference in the band gap energies of the two materials. The conduction band edge stays continuous however. This result is independent of possible charged interface states and in sharp contrast to the Anderson model. The reasons for this discrepancy are discussed.
Design of Supersonic Transport Flap Systems for Thrust Recovery at Subsonic Speeds
NASA Technical Reports Server (NTRS)
Mann, Michael J.; Carlson, Harry W.; Domack, Christopher S.
1999-01-01
A study of the subsonic aerodynamics of hinged flap systems for supersonic cruise commercial aircraft has been conducted using linear attached-flow theory that has been modified to include an estimate of attainable leading edge thrust and an approximate representation of vortex forces. Comparisons of theoretical predictions with experimental results show that the theory gives a reasonably good and generally conservative estimate of the performance of an efficient flap system and provides a good estimate of the leading and trailing-edge deflection angles necessary for optimum performance. A substantial reduction in the area of the inboard region of the leading edge flap has only a minor effect on the performance and the optimum deflection angles. Changes in the size of the outboard leading-edge flap show that performance is greatest when this flap has a chord equal to approximately 30 percent of the wing chord. A study was also made of the performance of various combinations of individual leading and trailing-edge flaps, and the results show that aerodynamic efficiencies as high as 85 percent of full suction are predicted.
NASA Technical Reports Server (NTRS)
Vanmol, Denis O.; Anderson, John D., Jr.
1992-01-01
The heat transfer characteristics in surface radiative equilibrium and the aerodynamic performance of blunted hypersonic waveriders are studied along two constant dynamic pressure trajectories for four different Mach numbers. The inviscid leading edge drag was found to be a small (4 to 8 percent) but not negligible fraction of the inviscid drag of the vehicle. Although the viscous drag at the leading edge can be neglected, the presence of the leading edge will influence the transition pattern of the upper and the lower surfaces and therefore affect the viscous drag of the entire vehicle. For an application similar to the National Aerospace Plane (NASP), the present study demonstrates that the waverider remains a valuable concept at high Mach numbers if a state-of-the-art active cooling device is used along the leading edge. At low Mach number (less than 5), the study shows the surface radiative cooling might be sufficient. In all cases, radiative cooling is sufficient for the upper and lower surfaces of the vehicle if ceramic composites are used as thermal protection.
The Flow Field on Hydrofoils with Leading Edge Protuberances
NASA Astrophysics Data System (ADS)
Custodio, Derrick; Henoch, Charles; Johari, Hamid
2008-11-01
The agility of the humpback whale has been attributed to the use of its pectoral flippers, on which protuberances are present along the leading edge. The forces and moments on hydrofoils with leading edge protuberances were measured in a water tunnel and were compared to a baseline NACA 63(4)-021 hydrofoil revealing significant performance differences. Three protuberance amplitudes and two spanwise wavelengths, closely resembling the morphology found in nature, were examined. Qualitative flow visualization techniques were used to examine flow patterns surrounding the hydrofoils, and Particle Image Velocimetry (PIV) was used to quantify these patterns. Flow visualizations have revealed counter-rotating vortices stemming from the shoulders of the protuberances. These streamwise vortices are a result of the spanwise pressure gradient brought about by the varying leading edge curvature. PIV was used to quantify the strength of these vortices as a function of angle of attack and leading edge geometry. At low angles of attack, these vortices are symmetric with respect to the protuberances; however, the symmetry is lost at high angles of attack. The loss of symmetry can be correlated with the separation point location on the hydrofoil.
NASA Technical Reports Server (NTRS)
Vanfossen, G. James; Simoneau, Robert J.
1994-01-01
The effect of velocity gradient on stagnation region heat transfer augmentation by free stream turbulence was investigated. Heat transfer was measured in the stagnation region of four models with elliptical leading edges with ratios of major to minor axes of 1:1, 1.5:1, 2.25:1, and 3:1. Four geometrically similar, square bar, square mesh, biplane grids were used to generate free stream turbulence with different intensities and length. Heat transfer measurements were made for the following ranges of parameters: Reynolds number, based on leading edge diameter, 37,000 to 228,000; dimensionless leading edge velocity gradient, 1.20 to 1.80; turbulence intensity, 1.1 to 15.9%; and length scale to leading edge diameter ratio, 0.05 to 0.30. Stagnation point heat transfer augmentation by free stream turbulence can be predicted using a modified version of a previously developed correlation for a circular leading edge. Heat transfer augmentation was independent of body shape at the stagnation point. The heat transfer distribution down-stream from the stagnation point can be predicted using the normalized laminar heat transfer distribution.
NASA Technical Reports Server (NTRS)
Johnson, J. L., Jr.; Newsom, W. A.; Satran, D. R.
1980-01-01
The paper presents the results of a recent investigation to determine the effects of wing leading-edge modifications on the high angle-of-attack aerodynamic characteristics of a low-wing general aviation airplane in the Langley Full-Scale Wind Tunnel. The investigation was conducted to provide aerodynamic information for correlation and analysis of flight-test results obtained for the configuration. The wind-tunnel investigation consisted of force and moment measurements, wing pressure measurements, flow surveys, and flow visualization studies utilizing a tuft grid, smoke and nonintrusive mini-tufts which were illuminated by ultra-violet light. In addition to the tunnel scale system which measured overall forces and moments, the model was equipped with an auxiliary strain-gage balance within the left wing panel to measure lift and drag forces on the outer wing panel independent of the tunnel scale system. The leading-edge modifications studied included partial- and full-span leading-edge droop arrangements as well as leading-edge slats.
Experimental Investigation of Dynamic Stall on an Airfoil with Leading Edge Tubercles
NASA Astrophysics Data System (ADS)
Hrynuk, John; Bohl, Douglas
2013-11-01
Humpback whales are unique in that their flippers have leading edge ``bumps'' or tubercles. Past work on airfoils modeled after whale flippers has centered on the static aerodynamic characteristics of these airfoils. In the current work, NACA 0012 airfoils modified with leading edge tubercles are investigated to determine the effect of the tubercles on the dynamic characteristics, specifically on dynamic stall vortex formation, of the airfoils. Molecular Tagging Velocimetry (MTV) is used to measure the flow field around the modified airfoils at nondimensional pitch rates of Ω = 0.1, 0.2, and 0.4. The results show that the characteristics of the dynamics stall vortex are dependent on the location relative to the peak or valley of the leading edge bumps. These characteristics are also found to be different than those observed in dynamic stall on a smooth leading edge airfoil. In specific, the location of the dynamic stall vortex appears to form further aft on the airfoil for the tubercle case versus the smooth case. This work supported by NSF Grant # 0845882.
NASA Technical Reports Server (NTRS)
Creager, Marcus O.
1959-01-01
An investigation of the effects of variation of leading-edge sweep and surface inclination on the flow over blunt flat plates was conducted at Mach numbers of 4 and 5.7 at free-stream Reynolds numbers per inch of 6,600 and 20,000, respectively. Surface pressures were measured on a flat plate blunted by a semicylindrical leading edge over a range of sweep angles from 0 deg to 60 deg and a range of surface inclinations from -10 deg to +10 deg. The surface pressures were predicted within an average error of +/- 8 percent by a combination of blast-wave and boundary-layer theory extended herein to include effects of sweep and surface inclination. This combination applied equally well to similar data of other investigations. The local Reynolds number per inch was found to be lower than the free-stream Reynolds number per inch. The reduction in local Reynolds number was mitigated by increasing the sweep of the leading edge. Boundary-layer thickness and shock-wave shape were changed little by the sweep of the leading edge.
Effects of Edge Directions on the Structural Controllability of Complex Networks
Xiao, Yandong; Lao, Songyang; Hou, Lvlin; Small, Michael; Bai, Liang
2015-01-01
Recent advances indicate that assigning or reversing edge direction can significantly improve the structural controllability of complex networks. For directed networks, approaching the optimal structural controllability can be achieved by detecting and reversing certain “inappropriate” edge directions. However, the existence of multiple sets of “inappropriate” edge directions suggests that different edges have different effects on optimal controllability—that is, different combinations of edges can be reversed to achieve the same structural controllability. Therefore, we classify edges into three categories based on their direction: critical, redundant and intermittent. We then investigate the effects of changing these edge directions on network controllability, and demonstrate that the existence of more critical edge directions implies not only a lower cost of modifying inappropriate edges but also better controllability. Motivated by this finding, we present a simple edge orientation method aimed at producing more critical edge directions—utilizing only local information—which achieves near optimal controllability. Furthermore, we explore the effects of edge direction on the controllability of several real networks. PMID:26281042
Effects of Edge Directions on the Structural Controllability of Complex Networks.
Xiao, Yandong; Lao, Songyang; Hou, Lvlin; Small, Michael; Bai, Liang
2015-01-01
Recent advances indicate that assigning or reversing edge direction can significantly improve the structural controllability of complex networks. For directed networks, approaching the optimal structural controllability can be achieved by detecting and reversing certain "inappropriate" edge directions. However, the existence of multiple sets of "inappropriate" edge directions suggests that different edges have different effects on optimal controllability-that is, different combinations of edges can be reversed to achieve the same structural controllability. Therefore, we classify edges into three categories based on their direction: critical, redundant and intermittent. We then investigate the effects of changing these edge directions on network controllability, and demonstrate that the existence of more critical edge directions implies not only a lower cost of modifying inappropriate edges but also better controllability. Motivated by this finding, we present a simple edge orientation method aimed at producing more critical edge directions-utilizing only local information-which achieves near optimal controllability. Furthermore, we explore the effects of edge direction on the controllability of several real networks.
Visual motion modulates pattern sensitivity ahead, behind, and beside motion
Arnold, Derek H.; Marinovic, Welber; Whitney, David
2014-01-01
Retinal motion can modulate visual sensitivity. For instance, low contrast drifting waveforms (targets) can be easier to detect when abutting the leading edges of movement in adjacent high contrast waveforms (inducers), rather than the trailing edges. This target-inducer interaction is contingent on the adjacent waveforms being consistent with one another – in-phase as opposed to out-of-phase. It has been suggested that this happens because there is a perceptually explicit predictive signal at leading edges of motion that summates with low contrast physical input – a ‘predictive summation’. Another possible explanation is a phase sensitive ‘spatial summation’, a summation of physical inputs spread across the retina (not predictive signals). This should be non-selective in terms of position – it should be evident at leading, adjacent, and at trailing edges of motion. To tease these possibilities apart, we examined target sensitivity at leading, adjacent, and trailing edges of motion. We also examined target sensitivity adjacent to flicker, and for a stimulus that is less susceptible to spatial summation, as it sums to grey across a small retinal expanse. We found evidence for spatial summation in all but the last condition. Finally, we examined sensitivity to an absence of signal at leading and trailing edges of motion, finding greater sensitivity at leading edges. These results are inconsistent with the existence of a perceptually explicit predictive signal in advance of drifting waveforms. Instead, we suggest that phase-contingent target-inducer modulations of sensitivity are explicable in terms of a directionally modulated spatial summation. PMID:24699250
Reconfigurable topological photonic crystal
NASA Astrophysics Data System (ADS)
Shalaev, Mikhail I.; Desnavi, Sameerah; Walasik, Wiktor; Litchinitser, Natalia M.
2018-02-01
Topological insulators are materials that conduct on the surface and insulate in their interior due to non-trivial topology of the band structure. The edge states on the interface between topological (non-trivial) and conventional (trivial) insulators are topologically protected from scattering due to structural defects and disorders. Recently, it was shown that photonic crystals (PCs) can serve as a platform for realizing a scatter-free propagation of light waves. In conventional PCs, imperfections, structural disorders, and surface roughness lead to significant losses. The breakthrough in overcoming these problems is likely to come from the synergy of the topological PCs and silicon-based photonics technology that enables high integration density, lossless propagation, and immunity to fabrication imperfections. For many applications, reconfigurability and capability to control the propagation of these non-trivial photonic edge states is essential. One way to facilitate such dynamic control is to use liquid crystals (LCs), which allow to modify the refractive index with external electric field. Here, we demonstrate dynamic control of topological edge states by modifying the refractive index of a LC background medium. Background index is changed depending on the orientation of a LC, while preserving the topology of the system. This results in a change of the spectral position of the photonic bandgap and the topological edge states. The proposed concept might be implemented using conventional semiconductor technology, and can be used for robust energy transport in integrated photonic devices, all-optical circuity, and optical communication systems.
Membrane tension controls adhesion positioning at the leading edge of cells
Pontes, Bruno; Gole, Laurent; Kosmalska, Anita Joanna; Tam, Zhi Yang; Luo, Weiwei; Kan, Sophie; Viasnoff, Virgile; Roca-Cusachs, Pere; Tucker-Kellogg, Lisa
2017-01-01
Cell migration is dependent on adhesion dynamics and actin cytoskeleton remodeling at the leading edge. These events may be physically constrained by the plasma membrane. Here, we show that the mechanical signal produced by an increase in plasma membrane tension triggers the positioning of new rows of adhesions at the leading edge. During protrusion, as membrane tension increases, velocity slows, and the lamellipodium buckles upward in a myosin II–independent manner. The buckling occurs between the front of the lamellipodium, where nascent adhesions are positioned in rows, and the base of the lamellipodium, where a vinculin-dependent clutch couples actin to previously positioned adhesions. As membrane tension decreases, protrusion resumes and buckling disappears, until the next cycle. We propose that the mechanical signal of membrane tension exerts upstream control in mechanotransduction by periodically compressing and relaxing the lamellipodium, leading to the positioning of adhesions at the leading edge of cells. PMID:28687667
78 FR 25377 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-01
...We are adopting a new airworthiness directive (AD) for certain The Boeing Company Model 737-600, -700, -700C, -800, -900 and -900ER series airplanes. This AD was prompted by a report of leaking fuel from the wing leading edge area at the inboard end of the number 5 leading edge slat. This AD requires modifying the fluid drain path in the wing leading edge area, forward of the wing front spar, and doing all applicable related investigative and corrective actions; and installing new seal disks on the latches in the fuel shutoff valve access door. We are issuing this AD to prevent flammable fluids from accumulating in the wing leading edge, and draining inboard and onto the engine exhaust nozzle, which could result in a fire.
Leading-edge vortex lifts swifts.
Videler, J J; Stamhuis, E J; Povel, G D E
2004-12-10
The current understanding of how birds fly must be revised, because birds use their hand-wings in an unconventional way to generate lift and drag. Physical models of a common swift wing in gliding posture with a 60 degrees sweep of the sharp hand-wing leading edge were tested in a water tunnel. Interactions with the flow were measured quantitatively with digital particle image velocimetry at Reynolds numbers realistic for the gliding flight of a swift between 3750 and 37,500. The results show that gliding swifts can generate stable leading-edge vortices at small (5 degrees to 10 degrees) angles of attack. We suggest that the flow around the arm-wings of most birds can remain conventionally attached, whereas the swept-back hand-wings generate lift with leading-edge vortices.
Modifications of W and Mo leading edges under plasma loads in DIII-D divertor
NASA Astrophysics Data System (ADS)
Rudakov, D. L.; Bykov, I.; Moyer, R. A.; Abrams, T.; Chrobak, C. P.; Guo, H. Y.; Stahl, B.; Thomas, D. M.; Barton, J. L.; Nygren, R. E.; Watkins, J. G.; Lasnier, C. J.; Litnovsky, Andrey; Stangeby, P. C.; Unterberg, E. A.
2017-10-01
Cracking and melting of W and Mo leading edges were observed in the lower divertor of DIII-D during experiments with intentionally misaligned W monoblocks (MBs) and in the course of the Metal Rings Campaign involving W-coated Mo tile inserts (TIs). MBs were exposed near the attached outer strike point during deuterium and helium L- and H-mode discharges using DiMES. Two of the MBs were misaligned by 0.3 mm and 1 mm, forming leading edges. Particulate ejection from a 1 mm leading edge was observed during the exposure, and evidence of melting and cracking was found post mortem. Two toroidal rings of TIs were installed in the lower outer divertor, the inner one at the floor and the outer one at the shelf. The floor TIs bowed during plasma exposure forming leading edges up to 1.2 mm high; about 40% of these edges experienced melting. Re-solidified melt layers up to 1 mm thick were observed, their shape being consistent with motion in the jx B direction with j driven by electron emission. Work supported by US DOE under DE-FC02-04ER54698, DE-FG02-07ER54917, DE-AC04-94AL85000, DE-AC52-07NA27344, and DE-AC05-00OR22725.
Low Reynolds Number Wing Transients in Rotation and Translation
NASA Astrophysics Data System (ADS)
Jones, Anya; Schlueter, Kristy
2012-11-01
The unsteady aerodynamic forces and flow fields generated by a wing undergoing transient motions in both rotation and translation were investigated. An aspect ratio 2 flat plate wing at a 45 deg angle of attack was driven over 84 deg of rotation (3 chord-lengths of travel at 3/4 span) and 3 and 10 chord-lengths of translation in quiescent water at Reynolds numbers between 2,500 and 15,000. Flow visualization on the rotating wing revealed a leading edge vortex that lifted off of the wing surface, but remained in the vicinity of the wing for the duration of the wing stroke. A second spanwise vortex with strong axial flow was also observed. As the tip vortex grew, the leading edge vortex joined the tip vortex in a loop-like structure over the aft half of the wing. Near the leading edge, spanwise flow in the second vortex became entrained in the tip vortex near the corner of the wing. Unsteady force measurements revealed that lift coefficient increased through the constant-velocity portion of the wing stroke. Forces were compared for variations in wing acceleration and Reynolds number for both rotational and translational motions. The effect of tank blockage was investigated by repeating the experiments on multiple wings, varying the distance between the wing tip and tank wall. U.S. Air Force Research Laboratory, Summer Faculty Fellowship Program.
The effects of leading edge and downstream film cooling on turbine vane heat transfer
NASA Astrophysics Data System (ADS)
Hylton, L. D.; Nirmalan, V.; Sultanian, B. K.; Kaufman, R. M.
1988-11-01
The progress under contract NAS3-24619 toward the goal of establishing a relevant data base for use in improving the predictive design capabilities for external heat transfer to turbine vanes, including the effect of downstream film cooling with and without leading edge showerhead film cooling. Experimental measurements were made in a two-dimensional cascade previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils under contract NAS3-22761 and leading edge showerhead film cooled airfoils under contract NAS3-23695. The principal independent parameters (Mach number, Reynolds number, turbulence, wall-to-gas temperature ratio, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio) were maintained over ranges consistent with actual engine conditions and the test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. Data provide a data base for downstream film cooled turbine vanes and extends the data bases generated in the two previous studies. The vane external heat transfer obtained indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The data obtained and presented illustrate the interaction of the variables and should provide the airfoil designer and computational analyst the information required to improve heat transfer design capabilities for film cooled turbine airfoils.
The effects of leading edge and downstream film cooling on turbine vane heat transfer
NASA Technical Reports Server (NTRS)
Hylton, L. D.; Nirmalan, V.; Sultanian, B. K.; Kaufman, R. M.
1988-01-01
The progress under contract NAS3-24619 toward the goal of establishing a relevant data base for use in improving the predictive design capabilities for external heat transfer to turbine vanes, including the effect of downstream film cooling with and without leading edge showerhead film cooling. Experimental measurements were made in a two-dimensional cascade previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils under contract NAS3-22761 and leading edge showerhead film cooled airfoils under contract NAS3-23695. The principal independent parameters (Mach number, Reynolds number, turbulence, wall-to-gas temperature ratio, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio) were maintained over ranges consistent with actual engine conditions and the test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. Data provide a data base for downstream film cooled turbine vanes and extends the data bases generated in the two previous studies. The vane external heat transfer obtained indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The data obtained and presented illustrate the interaction of the variables and should provide the airfoil designer and computational analyst the information required to improve heat transfer design capabilities for film cooled turbine airfoils.
Rotor-generated unsteady aerodynamic interactions in a 1½ stage compressor
NASA Astrophysics Data System (ADS)
Papalia, John J.
Because High Cycle Fatigue (HCF) remains the predominant surprise failure mode in gas turbine engines, HCF avoidance design systems are utilized to identify possible failures early in the engine development process. A key requirement of these analyses is accurate determination of the aerodynamic forcing function and corresponding airfoil unsteady response. The current study expands the limited experimental database of blade row interactions necessary for calibration of predictive HCF analyses, with transonic axial-flow compressors of particular interest due to the presence of rotor leading edge shocks. The majority of HCF failures in aircraft engines occur at off-design operating conditions. Therefore, experiments focused on rotor-IGV interactions at off-design are conducted in the Purdue Transonic Research Compressor. The rotor-generated IGV unsteady aerodynamics are quantified when the IGV reset angle causes the vane trailing edge to be nearly aligned with the rotor leading edge shocks. A significant vane response to the impulsive static pressure perturbation associated with a shock is evident in the point measurements at 90% span, with details of this complex interaction revealed in the corresponding time-variant vane-to-vane flow field data. Industry wide implementation of Controlled Diffusion Airfoils (CDA) in modern compressors motivated an investigation of upstream propagating CDA rotor-generated forcing functions. Whole field velocity measurements in the reconfigured Purdue Transonic Research Compressor along the design speedline reveal steady loading had a considerable effect on the rotor shock structure. A detached rotor leading edge shock exists at low loading, with an attached leading edge and mid-chord suction surface normal shock present at nominal loading. These CDA forcing functions are 3--4 times smaller than those generated by the baseline NACA 65 rotor at their respective operating points. However, the IGV unsteady aerodynamic response to the CDA forcing functions remains significant. The intra-vane transport of NACA 65 and CDA rotor wakes is also observed within the time-variant passage velocity data. In general, the wake width and decay rate increase with rotor speed and compressor steady loading respectively.
Elastically Deformable Side-Edge Link for Trailing-Edge Flap Aeroacoustic Noise Reduction
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); Moore, James B. (Inventor); Su, Ji (Inventor); Turner, Travis L. (Inventor); Lin, John C. (Inventor); Taminger, Karen M. (Inventor); Kahng, Seun K. (Inventor); Verden, Scott A. (Inventor)
2014-01-01
A system is provided for reducing aeroacoustic noise generated by an aircraft having wings equipped with trailing-edge flaps. The system includes a plurality of elastically deformable structures. Each structure is coupled to and along one of the side edges of one of the trailing-edge flaps, and is coupled to a portion of one of the wings that is adjacent to the one of the side edges. The structures elastically deform when the trailing-edge flaps are deployed away from the wings.
NASA Technical Reports Server (NTRS)
Nissim, E.
1977-01-01
Control laws are derived, by using realizable transfer functions, which permit relaxation of the stability requirements of the aerodynamic energy concept. The resulting aerodynamic eigenvalues indicate that both the trailing edge and the leading edge-trailing edge control systems can be made more effective. These control laws permit the introduction of aerodynamic damping and stiffness terms in accordance with the requirements of any specific system. Flutter suppression and gust alleviation problems can now be treated by either a trailing edge control system or by a leading edge-trailing edge control system by using the aerodynamic energy concept. Results are applicable to a wide class of aircraft operating at subsonic Mach numbers.
NASA Technical Reports Server (NTRS)
Monaghan, R. C.; Friend, E. L.
1973-01-01
Wind-up-turn maneuvers were performed to establish the values of airplane normal force coefficient for buffet onset, wing-rock onset, and buffet loads with various combinations of leading- and trailing-edge flap deflections. Data were gathered at both subsonic and transonic speeds covering a range from Mach 0.64 to Mach 0.92. Buffet onset and buffet loads were obtained from wingtip acceleration and wing-root bending-moment data, and wing-rock onset was obtained from airplane roll rate data. Buffet onset, wing-rock onset, and buffet loads were similarly affected by the various combinations of leading- and training-edge flaps. Subsonically, the 12 deg leading-edge-flap and trailing-edge-flap combination was most effective in delaying buffet onset, wing-rock onset, and equivalent values of buffet loads to a higher value of airplane normal force coefficient. This was the maximum flap deflection investigated. Transonically, however, the optimum leading-edge flap position was generally less than 12 deg.
Supersonic wings with significant leading-edge thrust at cruise
NASA Technical Reports Server (NTRS)
Robins, A. W.; Carlson, H. W.; Mack, R. J.
1980-01-01
Experimental/theoretical correlations are presented which show that significant levels of leading-edge thrust are possible at supersonic speeds for certain planforms having the geometry to support the theoretical thrust-distribution potential. The new analytical process employed provides not only the level of leading-edge thrust attainable but also the spanwise distribution of both it and that component of full theoretical thrust which acts as vortex lift. Significantly improved aerodynamic performance in the moderate supersonic speed regime is indicated.
Experimental and numerical studies of beetle-inspired flapping wing in hovering flight.
Van Truong, Tien; Le, Tuyen Quang; Park, Hoon Cheol; Byun, Doyoung
2017-05-17
In this paper, we measure unsteady forces and visualize 3D vortices around a beetle-like flapping wing model in hovering flight by experiment and numerical simulation. The measurement of unsteady forces and flow patterns around the wing were conducted using a dynamically scaled wing model in the mineral-oil tank. The wing kinematics were directly derived from the experiment of a real beetle. The 3D flow structures of the flapping wing were captured by using air bubble visualization while forces were measured by a sensor attached at the wing base. In comparison, the size and topology of spiral leading edge vortex, trailing edge vortex and tip vortex are well matched from experimental and numerical studies. In addition, the time history of forces calculated from numerical simulation is also similar to that from theforce measurement. A difference of average force is in order of 10 percent. The results indicate that the leading edge vortex due to rotational acceleration at the end of the stroke during flapping wing causes significant reduction of lift. The present study provides useful information on hover flight to develop a beetle-like flapping wing Micro Air Vehicle.
Computational study of graphene-based vertical field effect transistor
NASA Astrophysics Data System (ADS)
Chen, Wenchao; Rinzler, Andrew; Guo, Jing
2013-03-01
Poisson and drift-diffusion equations are solved in a three-dimensional device structure to simulate graphene-based vertical field effect transistors (GVFETs). Operation mechanisms of the GVFET with and without punched holes in the graphene source contact are presented and compared. The graphene-channel Schottky barrier can be modulated by gate electric field due to graphene's low density of states. For the graphene contact with punched holes, the contact barrier thinning and lowering around punched hole edge allow orders of magnitude higher tunneling current compared to the region away from the punched hole edge, which is responsible for significant performance improvement as already verified by experiments. Small hole size is preferred due to less electrostatic screening from channel inversion layer, which gives large electric field around the punched hole edge, thus, leading to a thinner and lower barrier. Bilayer and trilayer graphenes as the source contact degrade the performance improvement because stronger electrostatic screening leads to smaller contact barrier lowering and thinning. High punched hole area percentage improves current performance by allowing more gate electric field to modulate the graphene-channel barrier. Low effective mass channel material gives better on-off current ratio.
NASA Technical Reports Server (NTRS)
Goin, Kennith L
1951-01-01
Existing conical-flow solutions have been used to calculate the hinge-moments and effectiveness parameters of trailing-edge controls having leading and trailing edges swept ahead of the Mach lines and having streamwise root and tip chords. Equations and detailed charts are presented for the rapid estimation of these parameters. Also included is an approximate method by which these parameters may be corrected for airfoil-section thickness.
Structure of the manganese complex in photosystem II: insights from X-ray spectroscopy.
Yachandra, Vittal K
2002-01-01
We have used Mn K-edge absorption and Kbeta emission spectroscopy to determine the oxidation states of the Mn complex in the various S states. We have started exploring the new technique of resonant inelastic X-ray scattering spectroscopy; this technique can be characterized as a Raman process that uses K-edge energies (1s to 4p, ca. 6550 eV) to obtain L-edge-like spectra (2p to 3d, ca. 650 eV). The relevance of these data to the oxidation states and structure of the Mn complex is presented. We have obtained extended X-ray absorption fine structure data from the S(0) and S(3) states and observed heterogeneity in the Mn-Mn distances leading us to conclude that there may be three rather than two di-mu-oxo-bridged units present per tetranuclear Mn cluster. In addition, we have obtained data using Ca and Sr X-ray spectroscopy that provide evidence for a heteronuclear Mn-Ca cluster. The possibility of three di-mu-oxo-bridged Mn-Mn moieties and the proximity of Ca is incorporated into developing structural models for the Mn cluster. The involvement of bridging and terminal O ligands of Mn in the mechanism of oxygen evolution is discussed in the context of our X-ray spectroscopy results. PMID:12437873
Calculation of vortex lift effect for cambered wings by the suction analogy
NASA Technical Reports Server (NTRS)
Lan, C. E.; Chang, J. F.
1981-01-01
An improved version of Woodward's chord plane aerodynamic panel method for subsonic and supersonic flow is developed for cambered wings exhibiting edge separated vortex flow, including those with leading edge vortex flaps. The exact relation between leading edge thrust and suction force in potential flow is derived. Instead of assuming the rotated suction force to be normal to wing surface at the leading edge, new orientation for the rotated suction force is determined through consideration of the momentum principle. The supersonic suction analogy method is improved by using an effective angle of attack defined through a semi-empirical method. Comparisons of predicted results with available data in subsonic and supersonic flow are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pouvreau, Maxime; Greathouse, Jeffery A.; Cygan, Randall T.
Molecular scale understanding of the structure and properties of aqueous interfaces with clays, metal (oxy-) hydroxides, layered double hydroxides, and other inorganic phases is strongly affected by significant degrees of structural and compositional disorder of the interfaces. ClayFF was originally developed as a robust and flexible force field for classical molecular simulations of such systems. However, despite its success, multiple limitations have also become evident with its use. One of the most important limitations is the difficulty to accurately model the edges of finite size nanoparticles or pores rather than infinitely layered periodic structures. Here we propose a systematic approachmore » to solve this problem by developing specific metal–O–H (M–O–H) bending terms for ClayFF, E bend = k (θ – θ 0) 2 to better describe the structure and dynamics of singly protonated hydroxyl groups at mineral surfaces, particularly edge surfaces. On the basis of a series of DFT calculations, the optimal values of the Al–O–H and Mg–O–H parameters for Al and Mg in octahedral coordination are determined to be θ 0,AlOH = θ 0,MgOH = 110°, k AlOH = 15 kcal mol –1 rad –2 and k MgOH = 6 kcal mol –1 rad –2. Molecular dynamics simulations were performed for fully hydrated models of the basal and edge surfaces of gibbsite, Al(OH) 3, and brucite, Mg(OH) 2, at the DFT level of theory and at the classical level, using ClayFF with and without the M–O–H term. The addition of the new bending term leads to a much more accurate representation of the orientation of O–H groups at the basal and edge surfaces. Finally, the previously observed unrealistic desorption of OH 2 groups from the particle edges within the original ClayFF model is also strongly constrained by the new modification.« less
Computation of two-dimensional flows past ram-air parachutes
NASA Astrophysics Data System (ADS)
Mittal, S.; Saxena, P.; Singh, A.
2001-03-01
Computational results for flow past a two-dimensional model of a ram-air parachute with leading edge cut are presented. Both laminar (Re=104) and turbulent (Re=106) flows are computed. A well-proven stabilized finite element method (FEM), which has been applied to various flow problems earlier, is utilized to solve the incompressible Navier-Stokes equations in the primitive variables formulation. The Baldwin-Lomax model is employed for turbulence closure. Turbulent flow computations past a Clarck-Y airfoil without a leading edge cut, for =7.5°, result in an attached flow. The leading edge cut causes the flow to become unsteady and leads to a significant loss in lift and an increase in drag. The flow inside the parafoil cell remains almost stagnant, resulting in a high value of pressure, which is responsible for giving the parafoil its shape. The value of the lift-to-drag ratio obtained with the present computations is in good agreement with those reported in the literature. The effect of the size and location of the leading edge cut is studied. It is found that the flow on the upper surface of the parafoil is fairly insensitive to the configuration of the cut. However, the flow quality on the lower surface improves as the leading edge cut becomes smaller. The lift-to-drag ratio for various configurations of the leading edge cut varies between 3.4 and 5.8. It is observed that even though the time histories of the aerodynamic coefficients from the laminar and turbulent flow computations are quite different, their time-averaged values are quite similar. Copyright
NASA Astrophysics Data System (ADS)
Oh, Min-Suk; Kim, Sang-Heon; Kim, Jong-Sang; Lee, Jae-Won; Shon, Je-Ha; Jin, Young-Sool
2016-01-01
The effects of Mg and Al content on the microstructure and corrosion resistance of hot-dip Zn-Mg-Al alloycoated steel sheets were investigated. Pure Zn and Zn-based alloy coatings containing Mg (0-5 wt%) and Al (0.2-55 wt%) were produced by a hot-dip galvanizing method. Mg and Al addition induced formation of intermetallic microstructures, like primary Zn, Zn/MgZn2 binary eutectic, dendric Zn/Al eutectoid, and Zn/Al/MgZn2/ternary eutectic structures in the coating layer. MgZn2-related structures (Zn/MgZn2, Zn/Al/MgZn2, MgZn2) played an important role in increasing the corrosion resistance of Zn-Mg-Al alloy-coated steel sheets. Zn-3%Mg-2.5%Al coating layer containing a large volume of lamellar-shaped Zn/MgZn2 binary eutectic structures showed the best cut-edge corrosion resistance. The analysis indicated that Mg dissolved from MgZn2 in the early stage of corrosion and migrated to the cathodic region of steel-exposed cut-edge area to form dense and ordered protective corrosion products, leading to prolonged cathodic protection of Zn-Mg-Al alloy-coated steel sheets.
NASA Astrophysics Data System (ADS)
Ospennikova, O. G.; Orlov, M. R.; Kolodochkina, V. G.; Nazarkin, R. M.
2015-04-01
The irreversible structural changes of the single-crystal ZhS32-VI nickel superalloy blades of a high-pressure turbine that occur during life tests of a gas turbine engine are studied. The main operation damages in the hottest section of the blade airfoil are found to be the fracture of the heat-resistant coating in the leading edge and the formation of thermomechanical fatigue cracks. The possibility of reconditioning repair of the blades is considered.
NASA Technical Reports Server (NTRS)
Wynne, Eleanor C.
1991-01-01
The research accomplishments of the Structural Dynamics Division for F.Y. 1991 are presented. The work is discussed in terms of highlights of accomplishments during the past year and plans for the current year as they relate to 5-year plans and the objectives of each technical area. Included is research on unsteady aerodynamics, helicopter rotors, computational fluid dynamics, oscillations of leading edge flaps of a delta wing, and aircraft wing loads.
Mechanisms of flame stabilisation at low lifted height in a turbulent lifted slot-jet flame
Karami, Shahram; Hawkes, Evatt R.; Talei, Mohsen; ...
2015-07-23
A turbulent lifted slot-jet flame is studied using direct numerical simulation (DNS). A one-step chemistry model is employed with a mixture-fraction-dependent activation energy which can reproduce qualitatively the dependence of the laminar burning rate on the equivalence ratio that is typical of hydrocarbon fuels. The basic structure of the flame base is first examined and discussed in the context of earlier experimental studies of lifted flames. Several features previously observed in experiments are noted and clarified. Some other unobserved features are also noted. Comparison with previous DNS modelling of hydrogen flames reveals significant structural differences. The statistics of flow andmore » relative edge-flame propagation velocity components conditioned on the leading edge locations are then examined. The results show that, on average, the streamwise flame propagation and streamwise flow balance, thus demonstrating that edge-flame propagation is the basic stabilisation mechanism. Fluctuations of the edge locations and net edge velocities are, however, significant. It is demonstrated that the edges tend to move in an essentially two-dimensional (2D) elliptical pattern (laterally outwards towards the oxidiser, then upstream, then inwards towards the fuel, then downstream again). It is proposed that this is due to the passage of large eddies, as outlined in Suet al.(Combust. Flame, vol. 144 (3), 2006, pp. 494–512). However, the mechanism is not entirely 2D, and out-of-plane motion is needed to explain how flames escape the high-velocity inner region of the jet. Finally, the time-averaged structure is examined. A budget of terms in the transport equation for the product mass fraction is used to understand the stabilisation from a time-averaged perspective. The result of this analysis is found to be consistent with the instantaneous perspective. The budget reveals a fundamentally 2D structure, involving transport in both the streamwise and transverse directions, as opposed to possible mechanisms involving a dominance of either one direction of transport. Furthermore, it features upstream transport balanced by entrainment into richer conditions, while on the rich side, upstream turbulent transport and entrainment from leaner conditions balance the streamwise convection.« less
Structural and Dynamical Properties of 2:1 Phyllosilicates Edges and Nanoparticles
NASA Astrophysics Data System (ADS)
Newton, A. G.; Sposito, G.
2012-12-01
Classical mechanics simulations of bulk 2:1 phyllosilicate minerals provide atomic scale perspectives of the macroscopic sorption and diffusion phenomena in interlayer nanopores. An equivalent perspective of these interfacial phenomena in macropores bounded by the edges of stacked phyllosilicate particles is not possible due to the absence of a forcefield for the edges of phyllosilicate minerals. A valid forcefield to describe the phyllosilicate edge is essential to link the quantum and continuum mechanical models. The inherently disordered edge of 2:1 phyllosilicate minerals and rarity of well-crystallized samples further complicates the task of validating a forcefield for the phyllosilicate edge. Periodic bond chain theory identifies three tetrahedral-octahedral-tetrahedral (TOT) structures that parallel the edge faces of pseudohexagonal phyllosilicate particles. These TOT structures are the basis of atomistic models of the dominant edge interface and nanoparticles. The CLAYFF forcefield describes all pairwise atomic interactions with only minimal partial charge adjustments to maintain model neutrality, where necessary. Atomistic simulations in the isobaric-isothermal ensemble at nanosecond timescales predict equilibrium edge structures and dynamical properties of the aqueous interface. The CLAYFF forcefield and the limited adjustments to parameters predict edge and particle structures that are consistent with the results of ab initio MD simulations, support macroscopic observations of phyllosilicate reactivity, and provide legitimacy for disordered models of 2:1 phyllosilicates. The heterogeneous edge structures can be explained by the chemistry of the octahedral cation and surface charge anisotropy. In the plane of the octahedral sheet, the cations of the octahedral layer can assume four-, five-, and six-coordinate polyhedral geometries at the edge interface. These disordered edge structures create alternate alignments in the tetrahedral sheet. The structural and dynamical properties of the phyllosilicate edge interface differ from those of the 2:1 phyllosilicate basal surface. The non-planar surface structure and abundant oxygen atoms and hydroxyl groups at the edge order the water layers such that a steep gradient in the water self-diffusion coefficient exists near the surface. Isolated phyllosilicate nanoparticles maintain the original crystal habit; disordered edge structures emerge upon stacking of the particles. These simulations validate CLAYFF as a general forcefield for 2:1 phyllosilicate edges and nanoparticles and demonstrate a powerful method for future investigations of geologic media at the mesoscale.
Study on measurement of leading and trailing edges of blades based on optical scanning system
NASA Astrophysics Data System (ADS)
Chao, Bi; Liu, Hongguang; Bao, Longxiang; Li, Di
2017-10-01
In the field of aeronautics, the geometry and dimensional accuracy of the blade edges has a large influence on the aerodynamic performance of aero engine. Therefore, a non-contact optical scanning system is established to realize the measurement of leading and trailing edges of blades in a rapid, precise and efficient manner in the paper. Based on the mechanical framework of a traditional CMM, the system is equipped with a specified sensing device as the scanning probe, which is made up by two new-style laser scanning sensors installed at a certain angle to each other by a holder. In the measuring procedure, the geometric dimensions of the measured blade edges on every contour plane are determined by the contour information on five transversals at the leading or trailing edges, which can be used to determine the machining allowance of the blades. In order to verify the effectiveness and practicality of the system set up, a precision forging blade after grinded is adopted as the measured object and its leading and trailing edges are measured by the system respectively. In the experiment, the thickness of blade edges on three contour planes is measured by the optical scanning system several times. As the experiment results show, the repeatability accuracy of the system can meet its design requirements and the inspecting demands of the blade edges. As a result, the optical scanning system could serve as a component of the intelligent manufacturing system of blades to improve the machining quality of the blade edges.
Active Control of Separation From the Flap of a Supercritical Airfoil
NASA Technical Reports Server (NTRS)
Melton, La Tunia Pack; Yao, Chung-Sheng; Seifert, Avi
2003-01-01
Active flow control in the form of periodic zero-mass-flux excitation was applied at several regions on the leading edge and trailing edge flaps of a simplified high-lift system t o delay flow separation. The NASA Energy Efficient Transport (EET) supercritical airfoil was equipped with a 15% chord simply hinged leading edge flap and a 25% chord simply hinged trailing edge flap. Detailed flow features were measured in an attempt to identify optimal actuator placement. The measurements included steady and unsteady model and tunnel wall pressures, wake surveys, arrays of surface hot-films, flow visualization, and particle image velocimetry (PIV). The current paper describes the application of active separation control at several locations on the deflected trailing edge flap. High frequency (F(+) approx.= 10) and low frequency amplitude modulation (F(+)AM approx.= 1) of the high frequency excitation were used for control. Preliminary efforts to combine leading and trailing edge flap excitations are also reported.
Vortex interaction with a leading-edge of finite thickness
NASA Technical Reports Server (NTRS)
Sohn, D.; Rockwell, Donald
1987-01-01
Vortex interaction with a thick elliptical leading-edge at zero relative offset produces a pronounced secondary vortes of opposite sense that travels with the same phase speed as the primaty vortex along the lower surface of the edge. The edge thickness (scale) relative to the incident vorticity field has a strong effect on the distortion of the incident primary vortex during the impingement processs. When the thickness is sufficiently small, there is a definite severing of the incident vortex and the portion of the incident vortex that travels along the upper part of the elliptical surface has a considerably larger phase speed than that along the lower surface; this suggests that the integrated loading along the upper surface is more strongly correlated. When the thickness becomes too large, then most, if not all, of the incident vortex passes below the leading-edge. On the other hand, the relative tranverse offset of the edge with respect to the center of the incident vortex has a significant effect on the secondary vortex formation.
Influence of leading edge bluntness on hypersonic flow in a generic internal-compression inlet
NASA Astrophysics Data System (ADS)
Borovoy, V.; Egorov, I.; Mosharov, V.; Radchenko, V.; Skuratov, A.; Struminskaya, I.
2015-06-01
Flow and heat transfer inside a generic inlet are investigated experimentally. The cross section of the inlet is rectangular. The inlet is installed on a flat plat at a significant distance from the leading edge. The experiments are performed in TsAGI wind tunnel UT-1M working in the Ludwieg tube mode at Mach number M∞ = 5 and Reynolds numbers (based on the plate length L = 320 mm) Re∞L = 23 · 106 and 13 · 106. Steady flow duration is 40 ms. Optical panoramic methods are used for investigation of flow outside and inside the inlet as well. For this purpose, the cowl and one of two compressing wedges are made of a transparent material. Heat flux distribution is measured by thin luminescent Temperature Sensitive Paint (TSP). Surface flow and shear stress visualization is performed by viscous oil containing luminophor particles. The investigation shows that at high contraction ratio of the inlet, an increase of plate or cowl bluntness to some critical value leads to sudden change of the flow structure.
Test and Analysis Correlation of Form Impact onto Space Shuttle Wing Leading Edge RCC Panel 8
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Lyle, Karen H.; Gabrys, Jonathan; Melis, Matthew; Carney, Kelly
2004-01-01
Soon after the Columbia Accident Investigation Board (CAIB) began their study of the space shuttle Columbia accident, "physics-based" analyses using LS-DYNA were applied to characterize the expected damage to the Reinforced Carbon-Carbon (RCC) leading edge from high-speed foam impacts. Forensic evidence quickly led CAIB investigators to concentrate on the left wing leading edge RCC panels. This paper will concentrate on the test of the left-wing RCC panel 8 conducted at Southwest Research Institute (SwRI) and the correlation with an LS-DYNA analysis. The successful correlation of the LS-DYNA model has resulted in the use of LS-DYNA as a predictive tool for characterizing the threshold of damage for impacts of various debris such as foam, ice, and ablators onto the RCC leading edge for shuttle return-to-flight.
Fundamental aerodynamic characteristics of delta wings with leading-edge vortex flows
NASA Technical Reports Server (NTRS)
Wood, R. M.; Miller, D. S.
1985-01-01
An investigation of the aerodynamics of sharp leading-edge delta wings at supersonic speeds has been conducted. The supporting experimental data for this investigation were taken from published force, pressure, and flow-visualization data in which the Mach number normal to the wing leading edge is always less than 1.0. The individual upper- and lower-surface nonlinear characteristics for uncambered delta wings are determined and presented in three charts. The upper-surface data show that both the normal-force coefficient and minimum pressure coefficient increase nonlinearly with a decreasing slope with increasing angle of attack. The lower-surface normal-force coefficient was shown to be independent of Mach number and to increase nonlinearly, with an increasing slope, with increasing angle of attack. These charts are then used to define a wing-design space for sharp leading-edge delta wings.
NASA Technical Reports Server (NTRS)
Gaugler, R. E.; Russell, L. M.
1980-01-01
Neutrally buoyant helium-filled bubbles were observed as they followed the streamlines in a horseshoe vortex system around the vane leading edge in a large-scale, two-dimensional, turbine stator cascade. Bubbles were introduced into the endwall boundary layer through a slot upstream of the vane leading edge. The paths of the bubbles were recorded photographically as streaklines on 16-mm movie film. Individual frames from the film have been selected, and overlayed to show the details of the horseshoe vortex around the leading edge. The transport of the vortex across the passage near the leading edge is clearly seen when compared to the streaks formed by bubbles carried in the main stream. Limiting streamlines on the endwall surface were traced by the flow of oil drops.
NASA Technical Reports Server (NTRS)
Studor, George
2007-01-01
A viewgraph presentation on lessons learned from NASA Johnson Space Center's micro-wireless instrumentation is shown. The topics include: 1) Background, Rationale and Vision; 2) NASA JSC/Structural Engineering Approach & History; 3) Orbiter Wing Leading Edge Impact Detection System; 4) WLEIDS Confidence and Micro-WIS Lessons Learned; and 5) Current Projects and Recommendations.
Integrating Innovation: Keeping the Leading Edge
2015-08-01
access inside Army com- mand posts. Commercial innovation also can be built directly into our con- tract structure. Just as today’s smartphones ...moving to publish detailed guidance this year on how gov- ernment and industry partners will comply with the Modular Open Systems Architecture...which outlines design principles and interface characteristics allowing for modular hardware While the Army cannot predict the future or design
Laminar Horse Shoe Vortex for a Triangular Cylinder Flat Plate Juncture
NASA Astrophysics Data System (ADS)
Younis, Muhammad Yamin; Zhang, H.; Hu, B.; Sohail, Muhammad Amjad; Muhammad, Zaka
2011-09-01
Juncture Flows are 3-D flows which occur when fluid, flowing on a flat surface encounters an obstacle on its way. The flow separates from the surface due to the adverse pressure gradient produced by the obstacle and rolls up to form a vortical structure known as "Horse Shoe Vortex". Studies and research is underway to completely identify and understand different hidden features of the horse shoe vortex. In the present study the structure of horse shoe vortex for a Triangular cylinder flat plate juncture is visualized using particle image velocimetry (PIV). The diameter Reynolds number experimented is within the range of 2 000 ≤ ReA ≤ 8 000. The flow characteristics are studied for the horse shoe vortex and the flow is categorized into different flow regimes. (1) Steady or static vortex system, (2) periodic amalgamating vortex system, and (3) periodic break away vortex system. The range for different vortex systems is also calculated with shedding frequency for the periodic unsteady vortex system. Most importantly the range of Reynolds number for which the above mentioned vortex systems exist is much higher for Sharp leading edge cylinder than for blunt (circular and Elliptical) and flat (Square) leading edge cylinders studied earlier.
Study of structural active cooling and heat sink systems for space shuttle
NASA Technical Reports Server (NTRS)
1972-01-01
This technology investigation was conducted to evaluate the feasibility of a number of thermal protection systems (TPS) concepts which are alternate candidates to the space shuttle baseline TPS. Four independent tasks were performed. Task 1 consisted of an in-depth evaluation of active structural cooling of the space shuttle orbiter. In Task 2, heat sink concepts for the booster were studied to identify and postulate solutions for design problems unique to heat sink TPS. Task 3 consisted of a feasibility demonstration test of a phase change material (PCM) incorporated into a reusable surface insulation (RSI) thermal protection system for the shuttle orbiter. In Task 4 the feasibility of heat pipes for stagnation region cooling was studied for the booster and the orbiter. Designs were developed for the orbiter leading edge and used in trade studies of leading edge concepts. At the time this program was initiated, a 2-stage fully reusable shuttle system was envisioned; therefore, the majority of the tasks were focused on the fully reusable system environments. Subsequently, a number of alternate shuttle system approaches, with potential for reduced shuttle system development funding requirements, were proposed. Where practicable, appropriate shifts in emphasis and task scoping were made to reflect these changes.
Ahn, Gyeongik; Kim, Hyeran; Kim, Dae Heon; Hanh, Hong; Yoon, Youngdae; Singaram, Indira; Wijesinghe, Kaveesha J.; Johnson, Kristen A.; Liang, Zizhen; Stahelin, Robert V.; Jiang, Liwen; Cho, Wonhwa; Kang, Byung-Ho
2017-01-01
During cytokinesis in plants, trans-Golgi network-derived vesicles accumulate at the center of dividing cells and undergo various structural changes to give rise to the planar cell plate. However, how this conversion occurs at the molecular level remains elusive. In this study, we report that SH3 Domain-Containing Protein 2 (SH3P2) in Arabidopsis thaliana plays a crucial role in converting vesicles to the planar cell plate. SH3P2 RNAi plants showed cytokinesis-defective phenotypes and produced aggregations of vesicles at the leading edge of the cell plate. SH3P2 localized to the leading edge of the cell plate, particularly the constricted or curved regions of the cell plate. The BAR domain of SH3P2 induced tubulation of vesicles. SH3P2 formed a complex with dynamin-related protein 1A (DRP1A) and affected DRP1A accumulation to the cell plate. Based on these results, we propose that SH3P2 functions together with DRP1A to convert the fused vesicles to tubular structures during cytokinesis. PMID:28584166
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2003-01-01
A baseline solution for CFD Point 1 (Mach 24) in the STS-107 accident investigation was modified to include effects of: (1) holes through the leading edge into a vented cavity; and (2) a scarfed, conical nozzle directed toward the centerline of the vehicle from the forward, inboard corner of the landing gear door. The simulations were generated relatively quickly and early in the investigation because simplifications were made to the leading edge cavity geometry and an existing utility to merge scarfed nozzle grid domains with structured baseline external domains was implemented. These simplifications in the breach simulations enabled: (1) a very quick grid generation procedure; and (2) high fidelity corroboration of jet physics with internal surface impingements ensuing from a breach through the leading edge, fully coupled to the external shock layer flow at flight conditions. These simulations provided early evidence that the flow through a two-inch diameter (or larger) breach enters the cavity with significant retention of external flow directionality. A normal jet directed into the cavity was not an appropriate model for these conditions at CFD Point 1 (Mach 24). The breach diameters were of the same order or larger than the local, external boundary-layer thickness. High impingement heating and pressures on the downstream lip of the breach were computed. It is likely that hole shape would evolve as a slot cut in the direction of the external streamlines. In the case of the six-inch diameter breach the boundary layer is fully ingested. The intent of externally directed jet simulations in the second scenario was to approximately model aerodynamic effects of a relatively large internal wing pressure, fueled by combusting aluminum, which deforms the corner of the landing gear door and directs a jet across the windside surface. These jet interactions, in and of themselves, were not sufficiently large to explain observed aerodynamic behavior.
Application of Numerical Simulation for the Analysis of the Processes of Rotary Ultrasonic Drilling
NASA Astrophysics Data System (ADS)
Naď, Milan; Čičmancová, Lenka; Hajdu, Štefan
2016-12-01
Rotary ultrasonic machining (RUM) is a hybrid process that combines diamond grinding with ultrasonic machining. It is most suitable to machine hard brittle materials such as ceramics and composites. Due to its excellent machining performance, RUM is very often applied for drilling of hard machinable materials. In the final phase of drilling, the edge deterioration of the drilled hole can occur, which results in a phenomenon called edge chipping. During hole drilling, a change in the thickness of the bottom of the drilled hole occurs. Consequently, the bottom of the hole as a plate structure is exposed to the transfer through the resonance state. This resonance state can be considered as one of the important aspects leading to edge chipping. Effects of changes in the bottom thickness and as well as the fillet radius between the wall and bottom of the borehole on the stress-strain states during RUM are analyzed.
Atomistic simulation of the influence of Cr on the mobility of the edge dislocation in Fe(Cr) alloys
NASA Astrophysics Data System (ADS)
Hafez Haghighat, S. M.; Terentyev, D.; Schäublin, R.
2011-10-01
In this work Fe-Cr compounds, as model alloys for the ferritic base steels that are considered as main candidates for the structural materials of the future fusion reactors, are studied using molecular dynamics simulations. The Cr or so-called α' precipitates, which are obstacles to dislocations, affect mechanical properties, leading to hardening and loss of ductility. The flow stress to move an edge dislocation in a Cr solid solution in pure Fe is studied as a function of Cr content. The strength of a nanometric Cr precipitate as obstacle to an edge dislocation in pure Fe is investigated as a function of its Cr content. Results show that with increasing Cr content the precipitate obstacle strength increases, with a strong sensitivity to the local atomic order. Temperature induces a monotonic decrease of the flow stress of the Cr solid solution and of the Cr precipitate obstacle strength.
Structure-adaptive CBCT reconstruction using weighted total variation and Hessian penalties
Shi, Qi; Sun, Nanbo; Sun, Tao; Wang, Jing; Tan, Shan
2016-01-01
The exposure of normal tissues to high radiation during cone-beam CT (CBCT) imaging increases the risk of cancer and genetic defects. Statistical iterative algorithms with the total variation (TV) penalty have been widely used for low dose CBCT reconstruction, with state-of-the-art performance in suppressing noise and preserving edges. However, TV is a first-order penalty and sometimes leads to the so-called staircase effect, particularly over regions with smooth intensity transition in the reconstruction images. A second-order penalty known as the Hessian penalty was recently used to replace TV to suppress the staircase effect in CBCT reconstruction at the cost of slightly blurring object edges. In this study, we proposed a new penalty, the TV-H, which combines TV and Hessian penalties for CBCT reconstruction in a structure-adaptive way. The TV-H penalty automatically differentiates the edges, gradual transition and uniform local regions within an image using the voxel gradient, and adaptively weights TV and Hessian according to the local image structures in the reconstruction process. Our proposed penalty retains the benefits of TV, including noise suppression and edge preservation. It also maintains the structures in regions with gradual intensity transition more successfully. A majorization-minimization (MM) approach was designed to optimize the objective energy function constructed with the TV-H penalty. The MM approach employed a quadratic upper bound of the original objective function, and the original optimization problem was changed to a series of quadratic optimization problems, which could be efficiently solved using the Gauss-Seidel update strategy. We tested the reconstruction algorithm on two simulated digital phantoms and two physical phantoms. Our experiments indicated that the TV-H penalty visually and quantitatively outperformed both TV and Hessian penalties. PMID:27699100
Structure-adaptive CBCT reconstruction using weighted total variation and Hessian penalties.
Shi, Qi; Sun, Nanbo; Sun, Tao; Wang, Jing; Tan, Shan
2016-09-01
The exposure of normal tissues to high radiation during cone-beam CT (CBCT) imaging increases the risk of cancer and genetic defects. Statistical iterative algorithms with the total variation (TV) penalty have been widely used for low dose CBCT reconstruction, with state-of-the-art performance in suppressing noise and preserving edges. However, TV is a first-order penalty and sometimes leads to the so-called staircase effect, particularly over regions with smooth intensity transition in the reconstruction images. A second-order penalty known as the Hessian penalty was recently used to replace TV to suppress the staircase effect in CBCT reconstruction at the cost of slightly blurring object edges. In this study, we proposed a new penalty, the TV-H, which combines TV and Hessian penalties for CBCT reconstruction in a structure-adaptive way. The TV-H penalty automatically differentiates the edges, gradual transition and uniform local regions within an image using the voxel gradient, and adaptively weights TV and Hessian according to the local image structures in the reconstruction process. Our proposed penalty retains the benefits of TV, including noise suppression and edge preservation. It also maintains the structures in regions with gradual intensity transition more successfully. A majorization-minimization (MM) approach was designed to optimize the objective energy function constructed with the TV-H penalty. The MM approach employed a quadratic upper bound of the original objective function, and the original optimization problem was changed to a series of quadratic optimization problems, which could be efficiently solved using the Gauss-Seidel update strategy. We tested the reconstruction algorithm on two simulated digital phantoms and two physical phantoms. Our experiments indicated that the TV-H penalty visually and quantitatively outperformed both TV and Hessian penalties.
Sasaki, Atsuo T.; Chun, Cheryl; Takeda, Kosuke; Firtel, Richard A.
2004-01-01
During chemotaxis, receptors and heterotrimeric G-protein subunits are distributed and activated almost uniformly along the cell membrane, whereas PI(3,4,5)P3, the product of phosphatidylinositol 3-kinase (PI3K), accumulates locally at the leading edge. The key intermediate event that creates this strong PI(3,4,5)P3 asymmetry remains unclear. Here, we show that Ras is rapidly and transiently activated in response to chemoattractant stimulation and regulates PI3K activity. Ras activation occurs at the leading edge of chemotaxing cells, and this local activation is independent of the F-actin cytoskeleton, whereas PI3K localization is dependent on F-actin polymerization. Inhibition of Ras results in severe defects in directional movement, indicating that Ras is an upstream component of the cell's compass. These results support a mechanism by which localized Ras activation mediates leading edge formation through activation of basal PI3K present on the plasma membrane and other Ras effectors required for chemotaxis. A feedback loop, mediated through localized F-actin polymerization, recruits cytosolic PI3K to the leading edge to amplify the signal. PMID:15534002
Laminar flow control leading edge glove flight test article development
NASA Technical Reports Server (NTRS)
Pearce, W. E.; Mcnay, D. E.; Thelander, J. A.
1984-01-01
A laminar flow control (LFC) flight test article was designed and fabricated to fit into the right leading edge of a JetStar aircraft. The article was designed to attach to the front spar and fill in approx. 70 inches of the leading edge that are normally occupied by the large slipper fuel tank. The outer contour of the test article was constrained to align with an external fairing aft of the front spar which provided a surface pressure distribution over the test region representative of an LFC airfoil. LFC is achieved by applying suction through a finely perforated surface, which removes a small fraction of the boundary layer. The LFC test article has a retractable high lift shield to protect the laminar surface from contamination by airborne debris during takeoff and low altitude operation. The shield is designed to intercept insects and other particles that could otherwise impact the leading edge. Because the shield will intercept freezing rain and ice, a oozing glycol ice protection system is installed on the shield leading edge. In addition to the shield, a liquid freezing point depressant can be sprayed on the back of the shield.
Lee-side flow over delta wings at supersonic speeds
NASA Technical Reports Server (NTRS)
Miller, D. S.; Wood, R. M.
1985-01-01
An experimental investigation of the lee-side flow on sharp leading-edge delta wings at supersonic speeds has been conducted. Pressure data were obtained at Mach numbers from 1.5 to 2.8, and three types of flow-visualization data (oil-flow, tuft, and vapor-screen) were obtained at Mach numbers from 1.7 to 2.8 for wing leading-edge sweep angles from 52.5 deg to 75 deg. From the flow-visualization data, the lee-side flows were classified into seven distinct types and a chart was developed that defines the flow mechanism as a function of the conditions normal to the wing leading edge, specifically, angle of attack and Mach number. Pressure data obtained experimentally and by a semiempirical prediction method were employed to investigate the effects of angle of attack, leading-edge sweep, and Mach number on vortex strength and vortex position. In general, the predicted and measured values of vortex-induced normal force and vortex position obtained from experimental data have the same trends with angle of attack, Mach number, and leading-edge sweep; however, the vortex-induced normal force is underpredicted by 15 to 30 percent, and the vortex spanwise location is overpredicted by approximately 15 percent.
NASA Astrophysics Data System (ADS)
Fefferman, C. L.; Lee-Thorp, J. P.; Weinstein, M. I.
2016-03-01
Edge states are time-harmonic solutions to energy-conserving wave equations, which are propagating parallel to a line-defect or ‘edge’ and are localized transverse to it. This paper summarizes and extends the authors’ work on the bifurcation of topologically protected edge states in continuous two-dimensional (2D) honeycomb structures. We consider a family of Schrödinger Hamiltonians consisting of a bulk honeycomb potential and a perturbing edge potential. The edge potential interpolates between two different periodic structures via a domain wall. We begin by reviewing our recent bifurcation theory of edge states for continuous 2D honeycomb structures (http://arxiv.org/abs/1506.06111). The topologically protected edge state bifurcation is seeded by the zero-energy eigenstate of a one-dimensional Dirac operator. We contrast these protected bifurcations with (more common) non-protected bifurcations from spectral band edges, which are induced by bound states of an effective Schrödinger operator. Numerical simulations for honeycomb structures of varying contrasts and ‘rational edges’ (zigzag, armchair and others), support the following scenario: (a) for low contrast, under a sign condition on a distinguished Fourier coefficient of the bulk honeycomb potential, there exist topologically protected edge states localized transverse to zigzag edges. Otherwise, and for general edges, we expect long lived edge quasi-modes which slowly leak energy into the bulk. (b) For an arbitrary rational edge, there is a threshold in the medium-contrast (depending on the choice of edge) above which there exist topologically protected edge states. In the special case of the armchair edge, there are two families of protected edge states; for each parallel quasimomentum (the quantum number associated with translation invariance) there are edge states which propagate in opposite directions along the armchair edge.
NASA Astrophysics Data System (ADS)
Voegelin, A.; Frommer, J.; Vantelon, D.; Kaegi, R.; Hug, S. J.
2009-04-01
The oxidation of Fe(II) in water leads to the formation of Fe(III)-precipitates that strongly affect the fate of nutrients and contaminants in natural and engineered systems. Examples include the cycling of As in rice fields irrigated with As-rich groundwater or the treatment of drinking water for As removal. Knowledge of the types of Fe(III)-precipitates forming in such systems is essential for the quantitative modeling of nutrient and contaminant dynamics and for the optimization of water purification techniques on the basis of a mechanistic understanding of the relevant biogeochemical processes. In this study, we investigated the local coordination of Fe, P, and Ca in Fe(III)-precipitates formed by aeration of synthetic Fe(II)-containing groundwater with variable composition (pH 7, 2-30 mg/L Fe(II), 2-20 mg/L phosphate-P, 2-20 mg/L silicate-Si, 8 mM Na-bicarbonate or 2.5 mM Ca-&1.5 mM Mg-bicarbonate). After 4 hours of oxidation, Fe(III)-precipitates were collected on 0.2 µm nylon filters and dried. The precipitates were analyzed by Fe K-edge EXAFS (XAS beamline, ANKA, Germany) and by P and Ca K-edge XANES spectroscopy (LUCIA beamline, SLS, Switzerland). The Fe K-edge EXAFS spectra indicated that local Fe coordination in the precipitates systematically shifted with water composition. As long as water contained P, mainly short-range-ordered Fe(III)-phosphate formed (with molar P/Fe ~0.5). In the absence of P, Fe(III) precipitated as hydrous ferric oxide at high Si/Fe>0.5, as ferrihydrite at intermediate Si/Fe, and mainly as lepidocrocite at Si/Fe<0.2. Analysis of the EXAFS by shell-fitting indicated that Fe(III)-phosphates mainly contained mono- or oligomeric (edge- or corner-sharing) Fe and that the linkage between neighboring Fe(III)-octahedra changed from predominantly edge-sharing in Si-rich hydrous ferric oxide to edge- and corner-sharing in ferrihydrite. Electron microscopic data showed that changes in local precipitate structure were systematically reflected in particle morphology and SAED patterns. The P K-edge XANES spectra revealed that phosphate was bound to both Fe as well as Ca (if present). The Ca K-edge XANES spectra showed that the mode of Ca uptake by the Fe(III)-precipitates shifted from mainly adsorption at high Fe/P to coprecipitation at low Fe/P ratio. Despite oversaturation, neither calcite nor hydroxyapatite formed to a significant extent. The results from this study indicated that, depending on water composition, Fe(II) oxidation in natural waters leads to different types of short-range-ordered Fe(III)-phases. Since these phases are expected to differ in their effect on contaminant and nutrient dynamics, their specific physical and chemical properties warrant further research. Methodologically, this work demonstrated the usefulness of investigating the local structure of short-range-ordered precipitates along compositional gradients and by combining the element-selective information from different X-ray absorption edges.
Materials Development for Hypersonic Flight Vehicles
NASA Technical Reports Server (NTRS)
Glass, David E.; Dirling, Ray; Croop, Harold; Fry, Timothy J.; Frank, Geoffrey J.
2006-01-01
The DARPA/Air Force Falcon program is planning to flight test several hypersonic technology vehicles (HTV) in the next several years. A Materials Integrated Product Team (MIPT) was formed to lead the development of key thermal protection system (TPS) and hot structures technologies. The technologies being addressed by the MIPT are in the following areas: 1) less than 3000 F leading edges, 2) greater than 3000 F refractory composite materials, 3) high temperature multi-layer insulation, 4) acreage TPS, and 5) high temperature seals. Technologies being developed in each of these areas are discussed in this paper.
Aeroelastic analysis of an adaptive trailing edge with a smart elastic skin
NASA Astrophysics Data System (ADS)
Arena, Maurizio; Pecora, Rosario; Amoroso, Francesco; Noviello, Maria Chiara; Rea, Francesco; Concilio, Antonio
2017-09-01
Nowadays, the design choices of the new generation aircraft are moving towards the research and development of innovative technologies, aimed at improving performance as well as to minimize the environmental impact. In the current "greening" context, the morphing structures represent a very attractive answer to such requirements: both aerodynamic and structural advantages are ensured in several flight conditions, safeguarding the fuel consumption at the same time. An aeronautical intelligent system is therefore the outcome of combining complex smart materials and structures, assuring the best functionality level in the flight envelope. The Adaptive Trailing Edge Device (ATED) is a sub-project inside SARISTU (Smart Intelligent Aircraft Structures), an L2 level project of the 7th EU Framework programme coordinated by Airbus, aimed at developing technologies for realizing a morphing wing extremity addressed to improve the general aircraft performance and to reduce the fuel burning up to 5%. This specific study, divided into design, manufacturing and testing phases, involved universities, research centers and leading industries of the European consortium. The paper deals with the aeroelastic impact assessment of a full-scale morphing wing trailing edge on a Large Aeroplanes category aircraft. The FE (Finite Element) model of the technology demonstrator, located in the aileron region and manufactured within the project, was referenced to for the extrapolation of the structural properties of the whole adaptive trailing edge device placed in its actual location in the outer wing. The input FE models were processed within MSC-Nastran® environment to estimate stiffness and inertial distributions suitable to construct the aeroelastic stick-beam mock-up of the reference structure. Afterwards, a flutter analysis in simulated operative condition, have been carried out by means of Sandy®, an in-house code, according to meet the safety requirements imposed by the applicable aviation regulations (paragraph 25.629, parts (a) and (b)-(1)).
Automatic segmentation of relevant structures in DCE MR mammograms
NASA Astrophysics Data System (ADS)
Koenig, Matthias; Laue, Hendrik; Boehler, Tobias; Peitgen, Heinz-Otto
2007-03-01
The automatic segmentation of relevant structures such as skin edge, chest wall, or nipple in dynamic contrast enhanced MR imaging (DCE MRI) of the breast provides additional information for computer aided diagnosis (CAD) systems. Automatic reporting using BI-RADS criteria benefits of information about location of those structures. Lesion positions can be automatically described relatively to such reference structures for reporting purposes. Furthermore, this information can assist data reduction for computation expensive preprocessing such as registration, or for visualization of only the segments of current interest. In this paper, a novel automatic method for determining the air-breast boundary resp. skin edge, for approximation of the chest wall, and locating of the nipples is presented. The method consists of several steps which are built on top of each other. Automatic threshold computation leads to the air-breast boundary which is then analyzed to determine the location of the nipple. Finally, results of both steps are starting point for approximation of the chest wall. The proposed process was evaluated on a large data set of DCE MRI recorded by T1 sequences and yielded reasonable results in all cases.
Leeward flow over delta wings at supersonic speeds
NASA Technical Reports Server (NTRS)
Szodruch, J. G.
1980-01-01
A survey was made of the parameters affecting the development of the leeward symmetric separated flow over slender delta wings immersed in a supersonic stream. The parameters included Mach number, Reynolds number, angle of attack, leading-edge sweep angle, and body cross-sectional shape, such that subsonic and supersonic leading-edge flows are encountered. It was seen that the boundaries between the various flow regimes existing about the leeward surface may conveniently be represented on a diagram with the components of angle of attack and Mach number normal to the leading edge as governing parameters.
Transonic Reynolds Number and Leading-Edge Bluntness Effects on a 65 deg Delta Wing
NASA Technical Reports Server (NTRS)
Luckring, J. M.
2003-01-01
A 65 degree delta wing has been tested in the National Transonic Facility (NTF) at mean aerodynamic chord Reynolds numbers from 6 million to 120 million at subsonic and transonic speeds. The configuration incorporated a systematic variation of the leading edge bluntness. The analysis for this paper is focused on the Reynolds number and bluntness effects at transonic speeds (M = 0.85) from this data set. The results show significant effects of both these parameters on the onset and progression of leading edge vortex separation.
Reynolds Number and Leading-Edge Bluntness Effects on a 65 Deg Delta Wing
NASA Technical Reports Server (NTRS)
Luckring, J. M.
2002-01-01
A 65 deg delta wing has been tested in the National Transonic Facility (NTF) at mean aerodynamic chord Reynolds numbers from 6 million to 120 million at subsonic and transonic speeds. The configuration incorporated systematic variation of the leading edge bluntness. The analysis for this paper is focused on the Reynolds number and bluntness effects at subsonic speeds (M = 0.4) from this data set. The results show significant effects of both these parameters on the onset and progression of leading-edge vortex separation.
Transonic Reynolds Number and Leading-Edge Bluntness Effects on a 65 deg Delta Wing
NASA Technical Reports Server (NTRS)
Luckring, J. M.
2003-01-01
A 65 deg delta wing has been tested in the National Transonic Facility (NTF) at mean aerodynamic chord Reynolds numbers from 6 million to 120 million at subsonic and transonic speeds. The configuration incorporated a systematic variation of the leading edge bluntness. The analysis for this paper is focused on the Reynolds number and bluntness effects at transonic speeds (M = 0.85) from this data set. The results show significant effects of both these parameters on the onset and progression of leading- edge vortex separation.
Reynolds Number and Leading-Edge Bluntness Effects on a 65 deg Delta Wing
NASA Technical Reports Server (NTRS)
Luckring, J. M.
2002-01-01
A 65 degree delta wing has been tested in the National Transonic Facility (NTF) at mean aerodynamic chord Reynolds numbers from 6 million to 120 million at subsonic and transonic speeds. The configuration incorporated systematic variation of the leading edge bluntness. The analysis for this paper is focused on the Reynolds number and bluntness effects at subsonic speeds (M = 0.4) from this data set. The results show significant effects of both these parameters on the onset and progression of leading-edge vortex separation.
Transonic Reynolds Number and Leading-Edge Bluntness Effects on a 65 deg Delta Wing
NASA Technical Reports Server (NTRS)
Luckring, J. M.
2003-01-01
A 65 deg delta wing has been tested in the National Transonic Facility (NTF) at mean aerodynamic chord Reynolds numbers from 6 million to 120 million at subsonic and transonic speeds. The configuration incorporated a systematic variation of the leading edge bluntness. The analysis for this paper is focused on the Reynolds number and bluntness effects at transonic speeds (M=0.85) from this data set. The results show significant effects of both these parameters on the onset and progression of leading-edge vortex separation.
Modelling bucket excavation by finite element
NASA Astrophysics Data System (ADS)
Pecingina, O. M.
2015-11-01
Changes in geological components of the layers from lignite pits have an impact on the sustainability of the cup path elements and under the action of excavation force appear efforts leading to deformation of the entire assembly. Application of finite element method in the optimization of components leads to economic growth, to increase the reliability and durability of the studied machine parts thus the machine. It is obvious usefulness of knowledge the state of mechanical tensions that the designed piece or the assembly not to break under the action of tensions that must cope during operation. In the course of excavation work on all bucket cutting force components, the first coming into contact with the material being excavated cutting edge. Therefore in the study with finite element analysis is retained only cutting edge. To study the field of stress and strain on the cutting edge will be created geometric patterns for each type of cup this will be subject to static analysis. The geometric design retains the cutting edge shape and on this on the tooth cassette location will apply an areal force on the abutment tooth. The cutting edge real pattern is subjected to finite element study for the worst case of rock cutting by symmetrical and asymmetrical cups whose profile is different. The purpose of this paper is to determine the displacement and tensions field for both profiles considering the maximum force applied on the cutting edge and the depth of the cutting is equal with the width of the cutting edge of the tooth. It will consider the worst case when on the structure will act both the tangential force and radial force on the bucket profile. For determination of stress and strain field on the form design of cutting edge profile will apply maximum force assuming uniform distribution and on the edge surface force will apply a radial force. After geometric patterns discretization on the cutting knives and determining stress field, can be seen that at the rectangular profile appears the "clogging" phenomenon of the cutting edge and at the polygonal profile the point of application remains constant without going inside. From the finite element method done in this paper it can be concluded that the polygonal profiles made of dihedral angles are much more durable and asymmetric cups tend to have uniform tension along the entire perimeter.
A study of high-lift airfoils at high Reynolds numbers in the Langley low-turbulence pressure tunnel
NASA Technical Reports Server (NTRS)
Morgan, Harry L., Jr.; Ferris, James C.; Mcghee, Robert J.
1987-01-01
An experimental study was conducted in the Langley Low Turbulence Pressure Tunnel to determine the effects of Reynolds number and Mach number on the two-dimensional aerodynamic performance of two supercritical type airfoils, one equipped with a conventional flap system and the other with an advanced high lift flap system. The conventional flap system consisted of a leading edge slat and a double slotted, trailing edge flap with a small chord vane and a large chord aft flap. The advanced flap system consisted of a leading edge slat and a double slotted, trailing edge flap with a large chord vane and a small chord aft flap. Both models were tested with all elements nested to form the cruise airfoil and with the leading edge slat and with a single or double slotted, trailing edge flap deflected to form the high lift airfoils. The experimental tests were conducted through a Reynolds number range from 2.8 to 20.9 x 1,000,000 and a Mach number range from 0.10 to 0.35. Lift and pitching moment data were obtained. Summaries of the test results obtained are presented and comparisons are made between the observed aerodynamic performance trends for both models. The results showing the effect of leading edge frost and glaze ice formation is given.
Effect of control surface mass unbalance on the stability of a closed-loop active control system
NASA Technical Reports Server (NTRS)
Nissim, E.
1989-01-01
The effects on stability of inertial forces arising from closed-loop activation of mass-unbalanced control surfaces are studied analytically using inertial energy approach, similar to the aerodynamic energy approach used for flutter suppression. The limitations of a single control surface like a leading-edge (LE) control or a trailing-edge (TE) control are demonstrated and compared to the superior combined LE-TE mass unbalanced system. It is shown that a spanwise section for sensor location can be determined which ensures minimum sensitivity to the mode shapes of the aircraft. It is shown that an LE control exhibits compatibility between inertial stabilization and aerodynamic stabilization, and that a TE control lacks such compatibility. The results of the present work should prove valuable, both for the purpose of flutter suppression using mass unbalanced control surfaces, or for the stabilization of structural modes of large space structures by means of inertial forces.
Priddy, Tommy G.
1988-01-01
An inflatable wing is formed from a pair of tapered, conical inflatable tubes in bonded tangential contact with each other. The tubes are further connected together by means of top and bottom reinforcement boards having corresponding longitudinal edges lying in the same central diametral plane passing through the associated tube. The reinforcement boards are made of a stiff reinforcement material, such as Kevlar, collapsible in a direction parallel to the spanwise wing axis upon deflation of the tubes. The stiff reinforcement material cooperates with the inflated tubes to impart structural I-beam characteristics to the composite structure for transferring inflation pressure-induced tensile stress from the tubes to the reinforcement boards. A plurality of rigid hoops shaped to provide airfoil definition are spaced from each other along the spanwise axis and are connected to the top and bottom reinforcement boards. Tension lines are employed for stabilizing the hoops along the trailing and leading edges thereof.
Buffet characteristics of the F-8 supercritical wing airplane
NASA Technical Reports Server (NTRS)
Deangelis, V. M.; Monaghan, R. C.
1977-01-01
The buffet characteristics of the F-8 supercritical wing airplane were investigated. Wing structural response was used to determine the buffet characteristics of the wing and these characteristics are compared with wind tunnel model data and the wing flow characteristics at transonic speeds. The wingtip accelerometer was used to determine the buffet onset boundary and to measure the buffet intensity characteristics of the airplane. The effects of moderate trailing edge flap deflections on the buffet onset boundary are presented. The supercritical wing flow characteristics were determined from wind tunnel and flight static pressure measurements and from a dynamic pressure sensor mounted on the flight test airplane in the vicinity of the shock wave that formed on the upper surface of the wing at transonic speeds. The comparison of the airplane's structural response data to the supercritical flow characteristics includes the effects of a leading edge vortex generator.
Application of smart materials for improved flight performance of military aircraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudva, J.; Appa, K.; Martin, C.
1995-12-31
This paper discusses on-going work under an ARPA/WL contract to Northrop Grumman entitled {open_quotes}Smart Structures and Materials Development - Smart Wing.{close_quotes} The contract addresses the application of smart materials and smart Structures concepts to enhance the aerodynamic and maneuver performance of military aircraft. Various concepts for adaptive wing and control surfaces are being studied. Specifically, (a) wing span-wise twist control using built-in shape- memory alloy torquing mechanism and (b) cambered leading edge and trailing edge control surfaces using hybrid piezoelectric and SMA actuation, are being evaluated for a 20% model of a modem day fighter aircraft. The potential benefits ofmore » the designs include increased lift for short take-offs, improved high-speed maneuverability, and enhanced control surface effectiveness. These benefits will be quantified by testing the sub-scale model in a transonic wind tunnel next year.« less
Recent Progress in Biomimetic Flow Control
2014-09-19
trailing-edge, and wing surface devices, respectively. 2 Leading-edge devices Among various marine animals, the humpback whale is one of the... whale : a humpback whale (left) and the detailed view of a pectoral flipper (right). Photographs: William Rossitier. Figure 2: Variation of the lift...Fish, F. E. (2004), Leading-edge tubercles delay stall on humpback whale (Megaptera novaeanglieae) flippers, Phys. Fluids, Vol. 16, L39-L42
Yu, Z L; Wang, D; Zhu, Z; Zhang, Z H
2015-10-07
The electronic and magnetic structures of graphene nanoribbons (GNRs) with various edge structures passivated by P atoms are investigated systematically, and compared with H passivation as well. GNRs with the entire reconstructed Klein edge or armchair edge are found to be nonmagnetic regardless of P or H passivation. However, if the edge of GNRs is a mixture of zigzag edge and reconstructed Klein edge, they are nonmagnetic for H passivation but significantly magnetic for P passivation, which could be attributed to the "charge transfer doping" effect. And the corresponding magnetic device shows a noticeable negative differential resistance phenomenon and an excellent spin filtering effect under AP configuration, which originate from the special energy band structure. The GNRs with zigzag edge, reconstructed Klein edge, or mixed edge shapes are all metals in the nonmagnetic state regardless of the H or P atoms involved. The relationship between the energy gap and the width in armchair-edged GNRs by P passivation with a dimer structure also satisfies the 3p periodicity, but different in detail from the case of H passivation. The calculated edge formation energy indicates that P-passivated GNRs are energetically more favorable, suggesting that they can stably exist in the experiment.
HSCT Ref-H Transonic Flap Data Base: Wind-Tunnel Test and Comparison with Theory
NASA Technical Reports Server (NTRS)
Vijgen, Paul M.
1999-01-01
In cooperation with personnel from the Boeing ANP Laboratory and NASA Langley, a performance test was conducted using the Reference-H 1.675% model ("NASA Modular Model") without nacelles at the NASA Langley 16-Ft Transonic Tunnel. The main objective of the test was to determine the drag reduction achievable with leading-edge and trailing-edge flaps deflected along the outboard wing span at transonic Mach numbers (M = 0.9 to 1.2) for purpose of preliminary design and for comparison with computational predictions. The obtained drag data with flap deflections for Mach numbers of 1.07 to 1.20 are unique for the Reference H wing. Four leading-edge and two trailing-edge flap deflection angles were tested at a mean-wing chord-Reynolds number of about 5.7 million. An outboard-wing leading-edge flap deflection of 81 provides a 4.5 percent drag reduction at M = 1.2 A = 0.2), and much larger values at lower Mach numbers with larger flap deflections. The present results for the baseline (no flaps deflected) compare reasonably well with previous Boeing and NASA Ref-H tunnel tests, including high-Reynolds number NTF results. Viscous CFD simulations using the OVERFLOW thin-layer N.S. method properly predict the observed trend in drag reduction at M = 1.2 as function of leading-edge flap deflection. Modified linear theory properly predicts the flap effects on drag at subsonic conditions (Aero2S code), and properly predicts the absolute drag for the 40 and 80 leading-edge deflection at M = 1.2 (A389 code).
The Effect of Break Edge Configuration on the Aerodynamics of Anti-Ice Jet Flow
NASA Astrophysics Data System (ADS)
Tatar, V.; Yildizay, H.; Aras, H.
2015-05-01
One of the components of a turboprop gas turbine engine is the Front Bearing Structure (FBS) which leads air into the compressor. FBS directly encounters with ambient air, as a consequence ice accretion may occur on its static vanes. There are several aerodynamic parameters which should be considered in the design of anti-icing system of FBS, such as diameter, position, exit angle of discharge holes, etc. This research focuses on the effects of break edge configuration over anti-ice jet flow. Break edge operation is a process which is applied to the hole in order to avoid sharp edges which cause high stress concentration. Numerical analyses and flow visualization test have been conducted. Four different break edge configurations were used for this investigation; without break edge, 0.35xD, 74xD, 0.87xD. Three mainstream flow conditions at the inlet of the channel are defined; 10m/s, 20 m/s and 40 m/s. Shear stresses are extracted from numerical analyses near the trailing edge of pressure surface where ice may occur under icing conditions. A specific flow visualization method was used for the experimental study. Vane surface near the trailing edge was dyed and thinner was injected into anti-ice jet flow in order to remove dye from the vane surface. Hence, film effect on the surface could be computed for each testing condition. Thickness of the dye removal area of each case was examined. The results show noticeable effects of break edge operation on jet flow, and the air film effectiveness decreases when mainstream inlet velocity decreases.
RNA-Puzzles: A CASP-like evaluation of RNA three-dimensional structure prediction
Cruz, José Almeida; Blanchet, Marc-Frédérick; Boniecki, Michal; Bujnicki, Janusz M.; Chen, Shi-Jie; Cao, Song; Das, Rhiju; Ding, Feng; Dokholyan, Nikolay V.; Flores, Samuel Coulbourn; Huang, Lili; Lavender, Christopher A.; Lisi, Véronique; Major, François; Mikolajczak, Katarzyna; Patel, Dinshaw J.; Philips, Anna; Puton, Tomasz; Santalucia, John; Sijenyi, Fredrick; Hermann, Thomas; Rother, Kristian; Rother, Magdalena; Serganov, Alexander; Skorupski, Marcin; Soltysinski, Tomasz; Sripakdeevong, Parin; Tuszynska, Irina; Weeks, Kevin M.; Waldsich, Christina; Wildauer, Michael; Leontis, Neocles B.; Westhof, Eric
2012-01-01
We report the results of a first, collective, blind experiment in RNA three-dimensional (3D) structure prediction, encompassing three prediction puzzles. The goals are to assess the leading edge of RNA structure prediction techniques; compare existing methods and tools; and evaluate their relative strengths, weaknesses, and limitations in terms of sequence length and structural complexity. The results should give potential users insight into the suitability of available methods for different applications and facilitate efforts in the RNA structure prediction community in ongoing efforts to improve prediction tools. We also report the creation of an automated evaluation pipeline to facilitate the analysis of future RNA structure prediction exercises. PMID:22361291
Flutter of High-Speed Civil Transport Flexible Semispan Model: Time-Frequency Analysis
NASA Technical Reports Server (NTRS)
Chabalko, Christopher C.; Hajj, Muhammad R.; Silva, Walter A.
2006-01-01
Time/frequency analysis of fluctuations measured by pressure taps and strain gauges in the experimental studies of the flexible semispan model of a high-speed civil transport wing configuration is performed. The interest is in determining the coupling between the aerodynamic loads and structural motions that led to the hard flutter conditions and loss of the model. The results show that, away from the hard flutter point, the aerodynamic loads at all pressure taps near the wing tip and the structural motions contained the same frequency components. On the other hand, in the flow conditions leading to the hard flutter, the frequency content of the pressure fluctuations near the leading and trailing edges varied significantly. This led to contribution to the structural motions over two frequency ranges. The ratio of these ranges was near 2:1, which suggests the possibility of nonlinear structural coupling.
Rotor with Flattened Exit Pressure Profile
NASA Technical Reports Server (NTRS)
Baltas, Constantine (Inventor); Prasad, Dilip (Inventor); Gallagher, Edward J. (Inventor)
2015-01-01
A rotor blade comprises an airfoil extending radially from a root section to a tip section and axially from a leading edge to a trailing edge, the leading and trailing edges defining a curvature therebetween. The curvature determines a relative exit angle at a relative span height between the root section and the tip section, based on an incident flow velocity at the leading edge of the airfoil and a rotational velocity at the relative span height. In operation of the rotor blade, the relative exit angle determines a substantially flat exit pressure ratio profile for relative span heights from 75% to 95%, wherein the exit pressure ratio profile is constant within a tolerance of 10% of a maximum value of the exit pressure ratio profile.
Potential environmental effects of the leading edge hydrokinetic energy technology.
DOT National Transportation Integrated Search
2017-05-01
The Volpe Center evaluated potential environmental challenges and benefits of the ARPA-E funded research project, Marine Hydrokinetic Energy Harvesting Using Cyber-Physical Systems, led by Brown University. The Leading Edge research team develo...
Fabrication and Testing of a Leading-Edge-Shaped Heat Pipe
NASA Technical Reports Server (NTRS)
Glass, David E.; Merrigan, Michael A.; Sena, J. Tom; Reid, Robert S.
1998-01-01
The development of a refractory-composite/heat-pipe-cooled leading edge has evolved from the design stage to the fabrication and testing of a full size, leading-edge-shaped heat pipe. The heat pipe had a 'D-shaped' cross section and was fabricated from arc cast Mo-4lRe. An artery was included in the wick. Several issues were resolved with the fabrication of the sharp leading edge radius heat pipe. The heat pipe was tested in a vacuum chamber at Los Alamos National Laboratory using induction heating and was started up from the frozen state several times. However, design temperatures and heat fluxes were not obtained due to premature failure of the heat pipe resulting from electrical discharge between the induction heating apparatus and the heat pipe. Though a testing anomaly caused premature failure of the heat pipe, successful startup and operation of the heat pipe was demonstrated.
NASA Technical Reports Server (NTRS)
Chu, Julio; Luckring, James M.
1996-01-01
An experimental wind tunnel test of a 65 deg. delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 84 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at Reynolds numbers of 6 x 10(exp 6) and 60 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.
NASA Technical Reports Server (NTRS)
Chu, Julio; Luckring, James M.
1996-01-01
An experimental wind tunnel test of a 65 deg delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 120 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at Reynolds numbers of 6 x 10(exp 6) and 60 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.
NASA Technical Reports Server (NTRS)
Chu, Julio; Luckring, James M.
1996-01-01
An experimental wind tunnel test of a 65 deg delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 120 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at Reynolds numbers of 6 x 10(exp 6), 60 x 10(exp 6), and 120 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.
NASA Technical Reports Server (NTRS)
Chu, Julio; Luckring, James M.
1996-01-01
An experimental wind tunnel test of a 65 deg delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 36 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at a Reynolds number of 6 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.
A flight test of laminar flow control leading-edge systems
NASA Technical Reports Server (NTRS)
Fischer, M. C.; Wright, A. S., Jr.; Wagner, R. D.
1983-01-01
NASA's program for development of a laminar flow technology base for application to commercial transports has made significant progress since its inception in 1976. Current efforts are focused on development of practical reliable systems for the leading-edge region where the most difficult problems in applying laminar flow exist. Practical solutions to these problems will remove many concerns about the ultimate practicality of laminar flow. To address these issues, two contractors performed studies, conducted development tests, and designed and fabricated fully functional leading-edge test articles for installation on the NASA JetStar aircraft. Systems evaluation and performance testing will be conducted to thoroughly evaluate all system capabilities and characteristics. A simulated airline service flight test program will be performed to obtain the operational sensitivity, maintenance, and reliability data needed to establish that practical solutions exist for the difficult leading-edge area of a future commercial transport employing laminar flow control.
NASA Technical Reports Server (NTRS)
Gaugler, R. E.; Russell, L. M.
1979-01-01
Neutrally bouyant helium-filled bubbles were observed as they followed the streamlines in a horseshoe vortex system around the vane leading edge in a large scale, two dimensional, turbine stator cascade. Inlet Reynolds number, based on true chord, ranged between 100,000 to 300,000. Bubbles were introduced into the endwall boundary layer through a slot upstream of the vane leading edge. The paths of the bubbles were recorded photographically as streaklines on 16 mm movie film. Individual frames from the film were selected, and overlayed to show the details of the horseshoe vortex around the leading edge. The transport of the vortex across the passage near the leading edge is clearly seen when compared to the streaks formed by bubbles carried in the main stream. Limiting streamlines on the endwall surface were traced by the flow of oil drops.
Improved Method for Prediction of Attainable Wing Leading-Edge Thrust
NASA Technical Reports Server (NTRS)
Carlson, Harry W.; McElroy, Marcus O.; Lessard, Wendy B.; McCullers, L. Arnold
1996-01-01
Prediction of the loss of wing leading-edge thrust and the accompanying increase in drag due to lift, when flow is not completely attached, presents a difficult but commonly encountered problem. A method (called the previous method) for the prediction of attainable leading-edge thrust and the resultant effect on airplane aerodynamic performance has been in use for more than a decade. Recently, the method has been revised to enhance its applicability to current airplane design and evaluation problems. The improved method (called the present method) provides for a greater range of airfoil shapes from very sharp to very blunt leading edges. It is also based on a wider range of Reynolds numbers than was available for the previous method. The present method, when employed in computer codes for aerodynamic analysis, generally results in improved correlation with experimental wing-body axial-force data and provides reasonable estimates of the measured drag.
Ryan, Gillian L; Watanabe, Naoki; Vavylonis, Dimitrios
2012-04-01
A characteristic feature of motile cells as they undergo a change in motile behavior is the development of fluctuating exploratory motions of the leading edge, driven by actin polymerization. We review quantitative models of these protrusion and retraction phenomena. Theoretical studies have been motivated by advances in experimental and computational methods that allow controlled perturbations, single molecule imaging, and analysis of spatiotemporal correlations in microscopic images. To explain oscillations and waves of the leading edge, most theoretical models propose nonlinear interactions and feedback mechanisms among different components of the actin cytoskeleton system. These mechanisms include curvature-sensing membrane proteins, myosin contraction, and autocatalytic biochemical reaction kinetics. We discuss how the combination of experimental studies with modeling promises to quantify the relative importance of these biochemical and biophysical processes at the leading edge and to evaluate their generality across cell types and extracellular environments. Copyright © 2012 Wiley Periodicals, Inc.
Effects of nose bluntness and shock-shock interactions on blunt bodies in viscous hypersonic flows
NASA Technical Reports Server (NTRS)
Singh, D. J.; Tiwari, S. N.
1990-01-01
A numerical study was conducted to investigate the effects of blunt leading edges on the viscous flow field around a hypersonic vehicle such as the proposed National Aero-Space Plane. Attention is focused on two specific regions of the flow field. In the first region, effects of nose bluntness on the forebody flow field are investigated. The second region of the flow considered is around the leading edges of the scramjet inlet. In this region, the interaction of the forebody shock with the shock produced by the blunt leading edges of the inlet compression surfaces is analyzed. Analysis of these flow regions is required to accurately predict the overall flow field as well as to get necessary information on localized zones of high pressure and intense heating. The results for the forebody flow field are discussed first, followed by the results for the shock interaction in the inlet leading edge region.
Strain-Dependent Edge Structures in MoS2 Layers.
Tinoco, Miguel; Maduro, Luigi; Masaki, Mukai; Okunishi, Eiji; Conesa-Boj, Sonia
2017-11-08
Edge structures are low-dimensional defects unavoidable in layered materials of the transition metal dichalcogenides (TMD) family. Among the various types of such structures, the armchair (AC) and zigzag (ZZ) edge types are the most common. It has been predicted that the presence of intrinsic strain localized along these edges structures can have direct implications for the customization of their electronic properties. However, pinning down the relation between local structure and electronic properties at these edges is challenging. Here, we quantify the local strain field that arises at the edges of MoS 2 flakes by combining aberration-corrected transmission electron microscopy (TEM) with the geometrical-phase analysis (GPA) method. We also provide further insight on the possible effects of such edge strain on the resulting electronic behavior by means of electron energy loss spectroscopy (EELS) measurements. Our results reveal that the two-dominant edge structures, ZZ and AC, induce the formation of different amounts of localized strain fields. We also show that by varying the free edge curvature from concave to convex, compressive strain turns into tensile strain. These results pave the way toward the customization of edge structures in MoS 2 , which can be used to engineer the properties of layered materials and thus contribute to the optimization of the next generation of atomic-scale electronic devices built upon them.
Design & fabrication of two seated aircraft with an advanced rotating leading edge wing
NASA Astrophysics Data System (ADS)
Al Ahmari, Saeed Abdullah Saeed
The title of this thesis is "Design & Fabrication of two Seated Aircraft with an Advanced Rotating Leading Edge Wing", this gives almost a good description of the work has been done. In this research, the moving surface boundary-layer control (MSBC) concept was investigated and implemented. An experimental model was constructed and tested in wind tunnel to determine the aerodynamic characteristics using the leading edge moving surface of modified semi-symmetric airfoil NACA1214. The moving surface is provided by a high speed rotating cylinder, which replaces the leading edge of the airfoil. The angle of attack, the cylinder surfaces velocity ratio Uc/U, and the flap deflection angle effects on the lift and drag coefficients and the stall angle of attack were investigated. This new technology was applied to a 2-seat light-sport aircraft that is designed and built in the Aerospace Engineering Department at KFUPM. The project team is led by the aerospace department chairman Dr. Ahmed Z. AL-Garni and Dr. Wael G. Abdelrahman and includes graduate and under graduate student. The wing was modified to include a rotating cylinder along the leading edge of the flap portion. This produced very promising results such as the increase of the maximum lift coefficient at Uc/U=3 by 82% when flaps up and 111% when flaps down at 40° and stall was delayed by 8degrees in both cases. The laboratory results also showed that the effective range of the leading-edge rotating cylinder is at low angles of attack which reduce the need for higher angles of attack for STOL aircraft.
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Spellman, Regina L.
2006-01-01
A study was performed to examine the influence of varying mesh density on an LS-DYNA simulation of a rectangular-shaped foam projectile impacting the space shuttle leading edge Panel 6. The shuttle leading-edge panels are fabricated of reinforced carbon-carbon (RCC) material. During the study, nine cases were executed with all possible combinations of coarse, baseline, and fine meshes of the foam and panel. For each simulation, the same material properties and impact conditions were specified and only the mesh density was varied. In the baseline model, the shell elements representing the RCC panel are approximately 0.2-in. on edge, whereas the foam elements are about 0.5-in. on edge. The element nominal edge-length for the baseline panel was halved to create a fine panel (0.1-in. edge length) mesh and doubled to create a coarse panel (0.4-in. edge length) mesh. In addition, the element nominal edge-length of the baseline foam projectile was halved (0.25-in. edge length) to create a fine foam mesh and doubled (1.0-in. edge length) to create a coarse foam mesh. The initial impact velocity of the foam was 775 ft/s. The simulations were executed in LS-DYNA for 6 ms of simulation time. Contour plots of resultant panel displacement and effective stress in the foam were compared at four discrete time intervals. Also, time-history responses of internal and kinetic energy of the panel, kinetic and hourglass energy of the foam, and resultant contact force were plotted to determine the influence of mesh density.
NASA Technical Reports Server (NTRS)
Caldwell, Richard A. (Inventor)
1991-01-01
A lift producing device is disclosed which is adapted to be connected to a vehicle to provide lift to the vehicle when the vehicle is moved relative to a first fluid medium having a first density and viscosity and being in contact with a second fluid medium adjacent the vehicle. The second fluid medium has a second fluid density which is different from the first fluid density. The lift producing device comprises opposed first and second major surfaces joined at a longitudinally extending leading edge and at a longitudinally extending trailing edge, with at least a portion of the longitudinally extending leading edge being spaced from the longitudinally extending trailing edge by a predetermined mean chord length. When the vehicle is moved relative to the first fluid medium at a velocity within a range of predetermined velocities, with each of the velocities having a direction inclined from a plane extending through the leading edge and the trailing edge within a predetermined angular range, a region of high pressure is generated in the first fluid medium adjacent the first major surface and a region of low pressure is generated in the first fluid medium adjacent the second major surface. The lift producing device has a cross-sectional shape which will generate a pressure distribution around the device when the vehicle is moved relative to the first fluid medium at a velocity within the range of predetermined velocities such that the first fluid medium exhibits attached laminar flow along the device for a portion of the predetermined mean chord length from the leading edge to the trailing edge and will neither form a laminar separation bubble adjacent the second major surface of the device, nor exhibit turbulent separation adjacent the second major surface for substantially all of the predetermined mean chord length from the leading edge to the trailing edge. The portion along which attached laminar flow is maintained is the longest portion which will still fulfill the flow separation requirements. A method for producing the foil is also disclosed.
NASA Astrophysics Data System (ADS)
Jeyhani, Morteza; Shahriari, Shahrokh; Labrosse, Michel; Kadem, Lyes
2013-11-01
Approximately 500,000 people in North America suffer from mitral valve regurgitation (MR). MR is a disorder of the heart in which the mitral valve (MV) leaflets do not close securely during systole. Edge-to-edge repair (EtER) technique can be used to surgically treat MR. This technique produces a double-orifice configuration for the MV. Under these un-physiological conditions, flow downstream of the MV forms a double jet structure that may disturb the intraventricular hemodynamics. Abnormal flow patterns following EtER are mainly characterized by high-shear stress and stagnation zones in the left ventricle (LV), which increase the potential of blood component damage. In this study, a custom-made prosthetic bicuspid MV was used to analyze the LV flow patterns after EtER by means of digital particle image velocimetry (PIV). Although the repair of a MV using EtER technique is an effective approach, this study confirms that EtER leads to changes in the LV flow field, including the generation of a double mitral jet flow and high shear stress regions.
An Edge-Based Method for the Incompressible Navier-Stokes Equations on Polygonal Meshes
NASA Astrophysics Data System (ADS)
Wright, Jeffrey A.; Smith, Richard W.
2001-05-01
A pressure-based method is presented for discretizing the unsteady incompressible Navier-Stokes equations using hybrid unstructured meshes. The edge-based data structure and assembly procedure adopted lead naturally to a strictly conservative discretization, which is valid for meshes composed of n-sided polygons. Particular attention is given to the construction of a pressure-velocity coupling procedure which is supported by edge data, resulting in a relatively simple numerical method that is consistent with the boundary and initial conditions required by the incompressible Navier-Stokes equations. Edge formulas are presented for assembling the momentum equations, which are based on an upwind-biased linear reconstruction of the velocity field. Similar formulas are presented for assembling the pressure equation. The method is demonstrated to be second-order accurate in space and time for two Navier-Stokes problems admitting an exact solution. Results for several other well-known problems are also presented, including lid-driven cavity flow, impulsively started cylinder flow, and unsteady vortex shedding from a circular cylinder. Although the method is by construction minimalist, it is shown to be accurate and robust for the problems considered.
Nonlinear MHD simulations of Quiescent H-mode plasmas in DIII-D
Liu, Feng; Huijsmans, G. T. A.; Loarte, A.; ...
2015-09-04
In the Quiescent H-mode (QH-mode) regime, the edge harmonic oscillation (EHO), thought to be a saturated kink-peeling mode (KPM) driven unstable by current and rotation, is found in experiment to provide sufficient stationary edge particle transport to avoid the periodic expulsion of particles and energy by edge localized modes (ELMs). In this article, both linear and nonlinear MHD modelling of QH-mode plasmas from the DIII-D tokamak have been investigated to understand the mechanism leading to the appearance of the EHO in QH-mode plasmas. For the first time nonlinear MHD simulations with low-n modes both with ideal wall and resistive wallmore » boundary conditions have been carried out with 3-D non-linear MHD code JOREK. The results show, in agreement with the original conjectures, that in the nonlinear phase, kink peeling modes are the main unstable modes in QH-mode plasmas of DIIID and that the kink-peeling modes saturate non-linearly leading to a 3-D stationary state. The characteristics of the kink-peeling modes, in terms of mode structure and associated decrease of the edge plasma density associated with them, are in good agreement with experimental measurements of the EHO in DIII-D. Finally, the effect of plasma resistivity, the role of plasma parallel rotation as well as the effect of the conductivity of the vacuum vessel wall on the destabilization and saturation of kink-peeling modes have been evaluated for experimental QH-mode plasma conditions in DIII-D.« less
Strain characterization of embedded aerospace smart materials using shearography
NASA Astrophysics Data System (ADS)
Anisimov, Andrei G.; Müller, Bernhard; Sinke, Jos; Groves, Roger M.
2015-04-01
The development of smart materials for embedding in aerospace composites provides enhanced functionality for future aircraft structures. Critical flight conditions like icing of the leading edges can affect the aircraft functionality and controllability. Hence, anti-icing and de-icing capabilities are used. In case of leading edges made of fibre metal laminates heater elements can be embedded between composite layers. However this local heating causes strains and stresses in the structure due to the different thermal expansion coefficients of the different laminated materials. In order to characterize the structural behaviour during thermal loading full-field strain and shape measurement can be used. In this research, a shearography instrument with three spatially-distributed shearing cameras is used to measure surface displacement gradients which give a quantitative estimation of the in- and out-of-plane surface strain components. For the experimental part, two GLARE (Glass Laminate Aluminum Reinforced Epoxy) specimens with six different embedded copper heater elements were manufactured: two copper mesh shapes (straight and S-shape), three connection techniques (soldered, spot welded and overlapped) and one straight heater element with delaminations. The surface strain behaviour of the specimens due to thermal loading was measured and analysed. The comparison of the connection techniques of heater element parts showed that the overlapped connection has the smallest effect on the surface strain distribution. Furthermore, the possibility of defect detection and defect depth characterisation close to the heater elements was also investigated.
Optimum design of a composite structure with ply-interleaving constraints
NASA Technical Reports Server (NTRS)
Wang, Bo Ping; Costin, Daniel P.
1990-01-01
The application of composite materials to aircraft construction has provided the designer with increased flexibility. The orientation of plies can be tailored to provide additional aeroelastic performance unobtainable with an isotropic material. A tailored laminate is made up of plies of several orientations, usually 0 deg, 45 deg, -45 deg, and 90 deg. The direction of the 0 deg plies, does not need to be oriented with the leading edge, but can be varied to obtain a wide variety of structural properties. Also, the number of plies of each orientation varies from one zone to another on the planform. Thus, a thick laminate with mainly 0 deg plies may form the root zone, and a thinner laminate with mainly +45 deg plies may form the leading edge zone. Tailored laminates were designed using complicated optimization programs. Unfortunately, many tailored designs must be modified before they are manufactured. The modification adds weight and decreases performance. One type of modification is ply interleaving, an overlap of plies between zones on the laminate. These interleaves are added to ensure that zones with varying ply percentages can be connected without loss of strength. In this paper, the constraints needed to eliminate interleaves in the laminate optimization process will be described and implemented in a structural optimization problem. The method used has the potential to prevent changes to composite laminates late in the design cycle.
NASA Technical Reports Server (NTRS)
Mcmillin, S. Naomi; Thomas, James L.; Murman, Earll M.
1990-01-01
An Euler flow solver and a thin layer Navier-Stokes flow solver were used to numerically simulate the supersonic leeside flow fields over delta wings which were observed experimentally. Three delta wings with 75, 67.5, and 60 deg leading edge sweeps were computed over an angle-of-attack range of 4 to 20 deg at a Mach number 2.8. The Euler code and Navier-Stokes code predict equally well the primary flow structure where the flow is expected to be separated or attached at the leading edge based on the Stanbrook-Squire boundary. The Navier-Stokes code is capable of predicting both the primary and the secondary flow features for the parameter range investigated. For those flow conditions where the Euler code did not predict the correct type of primary flow structure, the Navier-Stokes code illustrated that the flow structure is sensitive to boundary layer model. In general, the laminar Navier-Stokes solutions agreed better with the experimental data, especially for the lower sweep delta wings. The computational results and a detailed re-examination of the experimental data resulted in a refinement of the flow classifications. This refinement in the flow classification results in the separation bubble with the shock flow type as the intermediate flow pattern between separated and attached flows.
NASA Technical Reports Server (NTRS)
Pao, J. L.; Mehrotra, S. C.; Lan, C. E.
1982-01-01
A computer code base on an improved vortex filament/vortex core method for predicting aerodynamic characteristics of slender wings with edge vortex separations is developed. The code is applicable to camber wings, straked wings or wings with leading edge vortex flaps at subsonic speeds. The prediction of lifting pressure distribution and the computer time are improved by using a pair of concentrated vortex cores above the wing surface. The main features of this computer program are: (1) arbitrary camber shape may be defined and an option for exactly defining leading edge flap geometry is also provided; (2) the side edge vortex system is incorporated.
One-dimensional organic lead halide perovskites with efficient bluish white-light emission
NASA Astrophysics Data System (ADS)
Yuan, Zhao; Zhou, Chenkun; Tian, Yu; Shu, Yu; Messier, Joshua; Wang, Jamie C.; van de Burgt, Lambertus J.; Kountouriotis, Konstantinos; Xin, Yan; Holt, Ethan; Schanze, Kirk; Clark, Ronald; Siegrist, Theo; Ma, Biwu
2017-01-01
Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C4N2H14PbBr4, in which the edge sharing octahedral lead bromide chains [PbBr4 2-]∞ are surrounded by the organic cations C4N2H14 2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials.
One-dimensional organic lead halide perovskites with efficient bluish white-light emission
Yuan, Zhao; Zhou, Chenkun; Tian, Yu; Shu, Yu; Messier, Joshua; Wang, Jamie C.; van de Burgt, Lambertus J.; Kountouriotis, Konstantinos; Xin, Yan; Holt, Ethan; Schanze, Kirk; Clark, Ronald; Siegrist, Theo; Ma, Biwu
2017-01-01
Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C4N2H14PbBr4, in which the edge sharing octahedral lead bromide chains [PbBr4 2−]∞ are surrounded by the organic cations C4N2H14 2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials. PMID:28051092
One-dimensional organic lead halide perovskites with efficient bluish white-light emission.
Yuan, Zhao; Zhou, Chenkun; Tian, Yu; Shu, Yu; Messier, Joshua; Wang, Jamie C; van de Burgt, Lambertus J; Kountouriotis, Konstantinos; Xin, Yan; Holt, Ethan; Schanze, Kirk; Clark, Ronald; Siegrist, Theo; Ma, Biwu
2017-01-04
Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C 4 N 2 H 14 PbBr 4 , in which the edge sharing octahedral lead bromide chains [PbBr 4 2- ] ∞ are surrounded by the organic cations C 4 N 2 H 14 2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials.
Portable tomographic PIV measurements of swimming shelled Antarctic pteropods
NASA Astrophysics Data System (ADS)
Adhikari, Deepak; Webster, Donald R.; Yen, Jeannette
2016-12-01
A portable tomographic particle image velocimetry (tomographic PIV) system is described. The system was successfully deployed in Antarctica to study shelled Antarctic pteropods ( Limacina helicina antarctica)—a delicate organism with an unusual propulsion mechanism. The experimental setup consists of a free-standing frame assembled with optical rails, thus avoiding the need for heavy and bulky equipment (e.g. an optical table). The cameras, lasers, optics, and tanks are all rigidly supported within the frame assembly. The results indicate that the pteropods flap their parapodia (or "wings") downward during both power and recovery strokes, which is facilitated by the pitching of their shell. Shell pitching significantly alters the flapping trajectory, allowing the pteropod to move vertically and/or horizontally. The pronation and supination of the parapodia, together with the figure-eight motion during flapping, suggest similarities with insect flight. The volumetric velocity field surrounding the freely swimming pteropod reveals the generation of an attached vortex ring connecting the leading-edge vortex to the trailing-edge vortex during power stroke and a presence of a leading-edge vortex during recovery stroke. These vortex structures play a major role in accelerating the organism vertically and indicate that forces generated on the parapodia during flapping constitute both lift and drag. After completing each stroke, two vortex rings are shed into the wake of the pteropod. The complex combination of body kinematics (parapodia flapping, shell pitch, sawtooth trajectory), flow structures, and resulting force balance may be significantly altered by thinning of the pteropod shell, thus making pteropods an indicator of the detrimental effects of ocean acidification.
Compressibility effects on dynamic stall of airfoils undergoing rapid transient pitching motion
NASA Technical Reports Server (NTRS)
Chandrasekhara, M. S.; Platzer, M. F.
1992-01-01
The research was carried out in the Compressible Dynamic Stall Facility, CDSF, at the Fluid Mechanics Laboratory (FML) of NASA Ames Research Center. The facility can produce realistic nondimensional pitch rates experienced by fighter aircraft, which on model scale could be as high as 3600/sec. Nonintrusive optical techniques were used for the measurements. The highlight of the effort was the development of a new real time interferometry method known as Point Diffraction Interferometry - PDI, for use in unsteady separated flows. This can yield instantaneous flow density information (and hence pressure distributions in isentropic flows) over the airfoil. A key finding is that the dynamic stall vortex forms just as the airfoil leading edge separation bubble opens-up. A major result is the observation and quantification of multiple shocks over the airfoil near the leading edge. A quantitative analysis of the PDI images shows that pitching airfoils produce larger suction peaks than steady airfoils at the same Mach number prior to stall. The peak suction level reached just before stall develops is the same at all unsteady rates and decreases with increase in Mach number. The suction is lost once the dynamic stall vortex or vortical structure begins to convect. Based on the knowledge gained from this preliminary analysis of the data, efforts to control dynamic stall were initiated. The focus of this work was to arrive at a dynamically changing leading edge shape that produces only 'acceptable' airfoil pressure distributions over a large angle of attack range.
Surface analyses of composites exposed to the space environment on LDEF
NASA Technical Reports Server (NTRS)
Mallon, Joseph J.; Uht, Joseph C.; Hemminger, Carol S.
1993-01-01
A series of surface analyses on carbon fiber/poly(arylacetylene) (PAA) matrix composites that were exposed to the space environment on the Long Duration Exposure Facility (LDEF) satellite were conducted. These composite panels were arranged in pairs on both the leading edge and trailing edge of LDEF. None of the composites were catastrophically damaged by nearly six years of exposure to the space environment. Composites on the leading edge exhibited from 25 to 125 microns of surface erosion, but trailing edge panels exhibited no physical appearance changes due to exposure. Scanning electron microscopy (SEM) was used to show that the erosion morphology on the leading edge samples was dominated by crevasses parallel to the fibers with triangular cross sections 10 to 100 microns in depth. The edges of the crevasses were well defined and penetrated through both matrix and fiber. The data suggest that the carbon fibers are playing an important role in crevasse initiation and/or enlargement, and in the overall erosion rate of the composite. X-ray photoelectron spectroscopy (XPS) and energy dispersive x-ray spectroscopy (EDS) results showed contamination from in-flight sources of silicone.
Vortex maneuver lift for super-cruise configurations
NASA Technical Reports Server (NTRS)
Campbell, J. F.; Gloss, B. B.; Lamar, J. E.
1976-01-01
Some of the theoretical and experimental research conducted at the NASA Langley Research Center is presented to investigate the subsonic vortex-lift producing capabilities for two classes of Super-Cruise designs: a close-coupled wing-canard arrangement and a slender wing configuration. In addition, several analytical methods are discussed for estimating critical structural design loads for thin, highly swept wings having separated leading-edge vortex flows.
Performance Characterization of Polyimide-Carbon Fiber Composites for Future Hypersonic Vehicles
2010-08-01
already being processed for leading edge primary structures and engine components for present and future stealth aircraft. In addition to describing our...The form of entry is the last name, first name, middle initial, and additional qualifiers separated by commas, e.g. Smith, Richard, Jr. 7...availability or distribution limitations of the report. If additional limitations/restrictions or special markings are indicated, follow agency
Stagnation Region Heat Transfer Augmentation at Very High Turbulence Levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ames, Forrest; Kingery, Joseph E.
A database for stagnation region heat transfer has been extended to include heat transfer measurements acquired downstream from a new high intensity turbulence generator. This work was motivated by gas turbine industry heat transfer designers who deal with heat transfer environments with increasing Reynolds numbers and very high turbulence levels. The new mock aero-combustor turbulence generator produces turbulence levels which average 17.4%, which is 37% higher than the older turbulence generator. The increased level of turbulence is caused by the reduced contraction ratio from the liner to the exit. Heat transfer measurements were acquired on two large cylindrical leading edgemore » test surfaces having a four to one range in leading edge diameter (40.64 cm and 10.16 cm). Gandvarapu and Ames [1] previously acquired heat transfer measurements for six turbulence conditions including three grid conditions, two lower turbulence aero-combustor conditions, and a low turbulence condition. The data are documented and tabulated for an eight to one range in Reynolds numbers for each test surface with Reynolds numbers ranging from 62,500 to 500,000 for the large leading edge and 15,625 to 125,000 for the smaller leading edge. The data show augmentation levels of up to 136% in the stagnation region for the large leading edge. This heat transfer rate is an increase over the previous aero-combustor turbulence generator which had augmentation levels up to 110%. Note, the rate of increase in heat transfer augmentation decreases for the large cylindrical leading edge inferring only a limited level of turbulence intensification in the stagnation region. The smaller cylindrical leading edge shows more consistency with earlier stagnation region heat transfer results correlated on the TRL (Turbulence, Reynolds number, Length scale) parameter. The downstream regions of both test surfaces continue to accelerate the flow but at a much lower rate than the leading edge. Bypass transition occurs in these regions providing a useful set of data to ground the prediction of transition onset and length over a wide range of Reynolds numbers and turbulence intensity and scales.« less
Small-Scale Activity Above the Penumbra of a Fast-Rotating Sunspot
NASA Astrophysics Data System (ADS)
Bharti, L.; Quintero Noda, C.; Rakesh, S.; Sobha, B.; Pandya, A.; Joshi, C.
2018-03-01
High-resolution observations of small-scale activity above the filamentary structure of a fast-rotating sunspot of NOAA Active Region 10930 are presented. The penumbral filament that intrudes into the umbra shows a central dark core and substructures. It almost approached another end of the umbra, like a light bridge. The chromospheric Ca ii H images show many jet-like structures with a bright leading edge above it. These bright jets move across the filament tips and show coordinated up and down motions. Transition region images also show brightening at the same location above the intrusion. Coronal 195 Å images suggest that one end of the bright coronal loop footpoints resides in this structure. The intrusion has opposite polarity with respect to the umbra. Strong downflows are observed at the edges along the length of the intrusion where the opposite-polarity field is enhanced. We also observe a counter-Evershed flow in the filamentary structure that also displays brightening and energy dissipation in the upper atmosphere. This scenario suggests that the jets and brightenings are caused by low-altitude reconnection driven by opposite-polarity fields and convective downflows above such structures.
Defects in High Speed Growth of EFG Silicon Ribbon
NASA Technical Reports Server (NTRS)
Rao, C. V. H. N.; Cretella, M. C.
1984-01-01
Silicon ribbons grown by the Edge-defined Film-fed Growth (EFG) technique exhibit a characteristic defect structure typified by twins, dislocations, grain boundaries and silicon carbide inclusions. As growth speed is increased from less than 2.5 cm per minute, the structural details change. The major difference between the ribbons grown at speeds below and above 2.5 cm per minute is in the generation of a cellular structure at the higher growth speeds, observable in the ribbon cross section. The presence of the cross sectional structure leads, in general, to a reduction in cell performance. Models to explain the formation of such a cross sectional structure are presented and discussed.
Teaching and Learning at the Leading Edge: Leading Edge Practitioners in Community Pharmacy.
ERIC Educational Resources Information Center
Tann, Jennifer; Blenkinsopp, Alison; Platts, Adrian
2001-01-01
Focuses on pharmacists in Great Britain who have been identified as demonstrating more effective practices than others. Provides empirical evidence for the levels of organized teaching identified by French and Bazalgette. (Contains 25 references.) (DDR)
Photographer; NACA North American F-100A NASA-200 Super Sabre airplane - wing leading edge deflected
NASA Technical Reports Server (NTRS)
1958-01-01
Photographer; NACA North American F-100A NASA-200 Super Sabre airplane - wing leading edge deflected 60 degrees for increased lift with boundary=layer control; takeoff preformance was improved 10% (mar 1960)
Influence of airfoil thickness on convected gust interaction noise
NASA Technical Reports Server (NTRS)
Kerschen, E. J.; Tsai, C. T.
1989-01-01
The case of a symmetric airfoil at zero angle of attack is considered in order to determine the influence of airfoil thickness on sound generated by interaction with convected gusts. The analysis is based on a linearization of the Euler equations about the subsonic mean flow past the airfoil. Primary sound generation is found to occur in a local region surrounding the leading edge, with the size of the local region scaling on the gust wavelength. For a parabolic leading edge, moderate leading edge thickness is shown to decrease the noise level in the low Mach number limit.
NASA Technical Reports Server (NTRS)
Riley, D. R.
1985-01-01
A six-degree-of-freedom nonlinear simulation was developed for a two-place, single-engine, low-wing general aviation airplane for the stall and initial departure regions of flight. Two configurations, one with and one without an outboard wing-leading-edge modification, were modeled. The math models developed are presented simulation predictions and flight-test data for validation purposes and simulation results for the two configurations for various maneuvers and power settings are compared to show the beneficial influence of adding the wing-leading-edge modification.
Mass loss of TEOS-coated RCC subjected to the environment at the shuttle wing leading edge
NASA Technical Reports Server (NTRS)
Stroud, C. W.; Rummler, D. R.
1981-01-01
Coated, reinforced carbon-carbon (RCC) is used for the leading edges of the Space Shuttle. The mass loss characteristics of RCC specimens coated with tetra-ethyl-ortho-silicate (TEOS) were determined for conditions which simulated the entry environment expected at the stagnation area of the wing leading edge. Maximum specimen temperature was 1632 K. Specimens were exposed for up to 100 missions. Stress levels up to 8.274 MPa caused an average increase in oxidation of 6 percent over unstressed specimens. Experimentally determined mass losses were compared with those predicted by an existing empirical analysis.
Experimental study of delta wing leading-edge devices for drag reduction at high lift
NASA Technical Reports Server (NTRS)
Johnson, T. D., Jr.; Rao, D. M.
1982-01-01
The drag reduction devices selected for evaluation were the fence, slot, pylon-type vortex generator, and sharp leading-edge extension. These devices were tested on a 60 degree flatplate delta (with blunt leading edges) in the Langley Research Center 7- by 10-foot high-speed tunnel at low speed and to angles of attack of 28 degrees. Balance and static pressure measurements were taken. The results indicate that all the devices had significant drag reduction capability and improved longitudinal stability while a slight loss of lift and increased cruise drag occurred.
NASA Technical Reports Server (NTRS)
Maddalon, Dal V.; Braslow, Albert L.
1990-01-01
The effectiveness and practicality of candidate leading edge systems for suction laminar flow control transport airplanes were investigated in a flight test program utilizing a modified JetStar airplane. The leading edge region imposes the most severe conditions on systems required for any type of laminar flow control. Tests of the leading edge systems, therefore, provided definitive results as to the feasibility of active laminar flow control on airplanes. The test airplane was operated under commercial transport operating procedures from various commercial airports and at various seasons of the year.
NASA Technical Reports Server (NTRS)
von Doenhoff, Albert E.; Horton, Elmer A.
1942-01-01
An investigation was carried out in the NACA low-turbulence tunnel to develop low-drag airfoil sections suitable for admitting air at the leading edge. A thickness distribution having the desired type of pressure distribution was found from tests of a flexible model. Other airfoil shapes were derived from this original shape by varying the thickness, the camper, the leading-edge radius, and the size of the leading-edge opening. Data are presented giving the characteristics of the airfoil shapes in the range of lift coefficients for high-speed and cruising flight. Shapes have been developed which show no substantial increases in drag over that of the same position along the chord. Many of these shapes appear to have higher critical compressibility speeds than plain airfoils of the same thickness. Low-drag airfoil sections have been developed with openings in the leading edge as large as 41.5 percent of the maximum thickness. The range of lift coefficients for low drag in several cases is nearly as large as that of the corresponding plain airfoil sections. Preliminary measurements of maximum lift characteristics indicate that nose-opening sections of the type herein considered may not produce any marked effects on the maximum lift coefficient.
On the Lateral Static Stability of Low-Aspect-Ratio Rectangular Wings
NASA Astrophysics Data System (ADS)
Linehan, Thomas; Mohseni, Kamran
2017-11-01
Low-aspect-ratio rectangular wings experience a reduction in lateral static stability at angles of attack distinct from that of lift stall. Stereoscopic digital particle image velocimetry is used to elucidate the flow physics behind this trend. Rectangular wings of AR = 0.75, 1, 1.5, 3 were tested at side-slip angles β = -10° and 0° with angle of attack varied in the range α =10° -40° . In side-slip, the leading-edge separation region emerges on the leeward wing where leading-edge flow reattachment is highly intermittent due to vortex shedding. The tip vortex downwash of the AR < 1.5 wings is sufficient to restrict the shedding of leading-edge vorticity, enabling sustained lift from the leading-edge separation region to high angles of attack. The windward tip vortex grows in size with increasing angle of attack, occupying an increasingly larger percentage of the windward wing. At high angles of attack pre-lift stall, the windward tip vortex lifts off the wing, resulting in separated flow underneath it. The downwash of the AR = 3 wing is insufficient to reattach the leading-edge flow at high incidence. The flow stalls on the leeward wing with stalled flow expanding upstream toward the windward wing with increasing angle of attack.
NASA Astrophysics Data System (ADS)
Berg, H. P.; Pfaff, K.; Hennecke, D. K.
The resultant effects on the cooling effectiveness at the leading edge area of an impingement-cooled turbine vane by varying certain geometrical parameters is described with reference to local internal heat transfer coefficients determined from experiment and temperature calculations. The local heat transfer on the cooling-air side is determined experimentally with the aid of the analogy between heat- and mass transfer. The impingement cooling is provided from an inserted sheet-metal containing a single row of holes. The Reynolds Number and several of the cooling geometry parameters were varied. The results demonstrate the high local resolution of the method of measurement, which allows improved analytical treatment of the leading-edge cooling configuration. These experiments also point to the necessity of not always performing model tests under idealized conditions. This becomes very clear in the case of the tests performed on an application-oriented impingement-cooling configuration like that often encountered in engine manufacture. In conclusion, as an example, temperature calculations are employed to demonstrate the effect on the cooling effectiveness of varying the distances between insert and inner surface of the leading edge. It shows how the effectiveness of the leading edge cooling can be increased by simple geometrical measures, which results in a considerable improvement in service life.
NASA Technical Reports Server (NTRS)
Kogan, M. N.; Ustinov, M. V.
1997-01-01
Work is devoted to study of free-stream vorticity normal to leading edge interaction with boundary layer over plate and resulting flow distortion influence on laminar-turbulent transition. In experiments made the wake behind the vertically stretched wire was used as a source of vortical disturbances and its effect on the boundary layer over the horizontally mounted plate with various leading edge shapes was investigated. The purpose of experiments was to check the predictions of theoretical works of M.E. Goldstein, et. al. This theory shows that small free-stream inhomogeneity interacting with leading edge produces considerable distortion of boundary layer flow. In general, results obtained confirms predictions of Goldstein's theory, i.e., the amplification of steady vortical disturbances in boundary layer caused by vortex lines stretching was observed. Experimental results fully coincide with predictions of theory for large Reynolds number, relatively sharp leading edge and small disturbances. For large enough disturbances the flow distortion caused by symmetric wake unexpectedly becomes antisymmetric in spanwise direction. If the leading edge is too blunt the maximal distortion takes place immediately at the nose and no further amplification was observed. All these conditions and results are beyond the scope of Goldstein's theory.
NASA Technical Reports Server (NTRS)
Campbell, Bryan A.; Applin, Zachary T.; Kemmerly, Guy T.; Coe, Paul L., Jr.; Owens, D. Bruce; Gile, Brenda E.; Parikh, Pradip G.; Smith, Don
1999-01-01
A wind tunnel investigation of a leading edge boundary layer control system was conducted on a High Speed Civil Transport (HSCT) configuration in the Langley 14- by 22-Foot Subsonic Tunnel. Data were obtained over a Mach number range of 0.08 to 0.27, with corresponding chord Reynolds numbers of 1.79 x 10(exp 6) to 5.76 x 10(exp 6). Variations in the amount of suction, as well as the size and location of the suction area, were tested with outboard leading edge flaps deflected 0 and 30 deg and trailing-edge flaps deflected 0 and 20 deg. The longitudinal and lateral aerodynamic data are presented without analysis. A complete tabulated data listing is also presented herein.
A Theory of Oscillating Edge Flames
NASA Technical Reports Server (NTRS)
Buckmaster, J.; Zhang, Yi
1999-01-01
It has been known for some years that when a near-limit flame spreads over a liquid pool of fuel, the edge of the flame can oscillate relative to a frame moving with the mean speed. Each period of oscillation is characterized by long intervals of modest motion during which the edge gases radiate like those of a diffusion flame, punctuated by bursts of rapid advance during which the edge gases radiate like those in a deflagration. Substantial resources have been brought to bear on this issue within the microgravity program, both experimental and numerical. It is also known that when a near-asphyxiated candle-flame burns at zero gravity, the edge of the (hemispherical) flame can oscillate violently prior to extinction. Thus a web-surfer, turning to the NASA web-site at http://microgravity.msfc.nasa.gov, and following the trail combustion science/experiments/experimental results/candle flame, will find photographs and a description of candle burning experiments carried out on board both the Space-shuttle and the Russian space station Mir. A brief report can also be found in the proceedings of the Fourth Workshop. And recently, in a third microgravity program, the leading edge of the flame supported by injection of ethane through the porous surface of a plate over which air is blown has been found to oscillate when conditions are close to blow-off. A number of important points can be made with respect to these observations: It is the edge itself which oscillates, advancing and retreating, not the diffusion flame that trails behind the edge; oscillations only occur under near limit conditions; in each case the Lewis number of the fuel is significantly larger than 1; and because of the edge curvature, the heat losses from the reacting edge structure are larger than those from the trailing diffusion flame. We propose a general theory for these oscillations, invoking Occam's 'Law of Parsimony' in an expanded form, to wit: The same mechanism is responsible for the oscillations in all three experiments; and no new mechanism is invoked (Occam's original 'Razor'). Such a strategy eliminates Marangoni effects as the source, for these are absent in the second and third experiments. And it eliminates arguments that point to numerically predicted gas eddies as the source, a new mechanism, unelucidated. Indeed, we hypothesize that the essential driving mechanism for the instability is a combination of large Lewis number and heat losses from the reacting structure near the flame edge. Instabilities driven by these mechanisms are commonplace in 1D configurations. Chemical reactor theory, for example, leads to system responses which mimic the response of the candle flame - steady flame, oscillations, extinction. In a combustion context, oscillating instabilities were first reported for diffusion flames in a theoretical study by Kirkby and Schmitz, and here also the instabilities are associated with near-extinction conditions, large Lewis numbers, and heat losses. And deflagrations will oscillate if the Lewis number is large enough, oscillations that are exacerbated when heat losses are present, whether global or to a surface.
NASA Technical Reports Server (NTRS)
1992-01-01
Numerous 'extended impacts' found in both leading and trailing edge capture cells have been successfully analyzed for the chemical composition of projectile residues by secondary ion mass spectrometry (SIMS). Most data have been obtained from the trailing edge cells where 45 of 58 impacts have been classified as 'probably natural' and the remainder as 'possibly man-made debris.' This is in striking contrast to leading edge cells where 9 of 11 impacts so far measured are definitely classified as orbital debris. Although all the leading edge cells had lost their plastic entrance foils during flight, the rate of foil failure was similar to that of the trailing edge cells, 10 percent of which were recovered intact. Ultra-violet embrittlement is suspected as the major cause of failure on both leading and trailing edges. The major impediment to the accurate determination of projectile chemistry is the fractionation of volatile and refractory elements in the hypervelocity impact and redeposition processes. This effect had been noticed in simulation experiment but is more pronounced in the Long Duration Exposure Facility (LDEF) capture cells, probably due to the higher average velocities of the space impacts. Surface contamination of the pure Ge surfaces with a substance rich in Si but also containing Mg and Al provides an additional problem for the accurate determination of impactor chemistry. The effect is variable, being much larger on surfaces that were exposed to space than in those cells that remained intact. Future work will concentrate on the analyses of more leading edge impacts and the development of new SIMS techniques for the measurement of elemental abundances in extended impacts.
NASA Technical Reports Server (NTRS)
Campbell, Bryan A.; Applin, Zachary T.; Kemmerly, Guy T.
1999-01-01
An experimental investigation of the effects of leading-edge vortex management devices on the subsonic performance of a high-speed civil transport (HSCT) configuration was conducted in the Langley 14- by 22-Foot Subsonic Tunnel. Data were obtained over a Mach number range of 0.14 to 0.27, with corresponding chord Reynolds numbers of 3.08 x 10 (sup 6) to 5.47 x 10 (sup 6). The test model was designed for a cruise Mach number of 2.7. During the subsonic high-lift phase of flight, vortical flow dominates the upper surface flow structure, and during vortex breakdown, this flow causes adverse pitch-up and a reduction of usable lift. The experimental results showed that the beneficial effects of small leading-edge vortex management devices located near the model reference center were insufficient to substantially affect the resulting aerodynamic forces and moments. However, devices located at or near the wiring apex region demonstrated potential for pitch control with little effect on overall lift.
NASA Technical Reports Server (NTRS)
Campbell, Charles H.
2004-01-01
A graphic presentation of the aerothermodynamics analysis conducted in support of the STS-107 accident investigation. Investigation efforts were conducted as part of an integrated AATS team (Aero, Aerothermal, Thermal, Stress) directed by OVEWG. Graphics presented are: STS-107 Entry trajectory and timeline (1st off-nominal event to Post-LOS); Indications from OI telemetry data; Aero/aerothermo/thermal analysis process; Selected STS-107 side fuselage/OMS pod off-nominal temperatures; Leading edge structural subsystem; Relevant forensics evidence; External aerothermal environments; STS-107 Pre-entry EOM3 heating profile; Surface heating and temperatures; Orbiter wing leading edge damage survey; Internal aerothermal environments; Orbiter wing CAD model; Aerodynamic flight reconstruction; Chronology of aerodynamic/aerothermoydynamic contributions; Acreage TPS tile damage; Larger OML perturbations; Missing RCC panel(s); Localized damage to RCC panel/missing T-seal; RCC breach with flow ingestion; and Aero-aerothermal closure. NAIT served as the interface between the CAIB and NASA investigation teams; and CAIB requests for study were addressed.
CFD study on NACA 4415 airfoil implementing spherical and sinusoidal Tubercle Leading Edge
2017-01-01
The Humpback whale tubercles have been studied for more than a decade. Tubercle Leading Edge (TLE) effectively reduces the separation bubble size and helps in delaying stall. They are very effective in case of low Reynolds number flows. The current Computational Fluid Dynamics (CFD) study is on NACA 4415 airfoil, at a Reynolds number 120,000. Two TLE shapes are tested on NACA 4415 airfoil. The tubercle designs implemented on the airfoil are sinusoidal and spherical. A parametric study is also carried out considering three amplitudes (0.025c, 0.05c and 0.075c), the wavelength (0.25c) is fixed. Structured mesh is utilized to generate grid and Transition SST turbulence model is used to capture the flow physics. Results clearly show spherical tubercles outperform sinusoidal tubercles. Furthermore experimental study considering spherical TLE is carried out at Reynolds number 200,000. The experimental results show that spherical TLE improve performance compared to clean airfoil. PMID:28850622
CFD study on NACA 4415 airfoil implementing spherical and sinusoidal Tubercle Leading Edge.
Aftab, S M A; Ahmad, K A
2017-01-01
The Humpback whale tubercles have been studied for more than a decade. Tubercle Leading Edge (TLE) effectively reduces the separation bubble size and helps in delaying stall. They are very effective in case of low Reynolds number flows. The current Computational Fluid Dynamics (CFD) study is on NACA 4415 airfoil, at a Reynolds number 120,000. Two TLE shapes are tested on NACA 4415 airfoil. The tubercle designs implemented on the airfoil are sinusoidal and spherical. A parametric study is also carried out considering three amplitudes (0.025c, 0.05c and 0.075c), the wavelength (0.25c) is fixed. Structured mesh is utilized to generate grid and Transition SST turbulence model is used to capture the flow physics. Results clearly show spherical tubercles outperform sinusoidal tubercles. Furthermore experimental study considering spherical TLE is carried out at Reynolds number 200,000. The experimental results show that spherical TLE improve performance compared to clean airfoil.
An experimental study of turbine vane heat transfer with leading edge and downstream film cooling
NASA Astrophysics Data System (ADS)
Nirmalan, V.; Hylton, L. D.
1989-06-01
This paper presents the effects of downstream film cooling, with and without leading edge showerhead film cooling, on turbine-vane external heat transfer. Steady-state experimental measurements were made in a three-vane linear two-dimensional cascade. The principal independent parameters were maintained over ranges consistent with actual engine conditions. The test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. The data obtained indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The downstream film cooling process was shown to be a complex interaction of two competing mechanisms. The thermal dilution effect, associated with the injection of relatively cold fluid, results in a decrease in the heat transfer to the airfoil. Conversely, the turbulence augmentation, produced by the injection process, results in increased heat transfer to the airfoil.
Biochar amendment immobilizes lead in rice paddy soils and reduces its phytoavailability
NASA Astrophysics Data System (ADS)
Li, Honghong; Liu, Yuting; Chen, Yanhui; Wang, Shanli; Wang, Mingkuang; Xie, Tuanhui; Wang, Guo
2016-08-01
This study aimed to determine effects of rice straw biochar on Pb sequestration in a soil-rice system. Pot experiments were conducted with rice plants in Pb-contaminated paddy soils that had been amended with 0, 2.5, and 5% (w/w) biochar. Compared to the control treatment, amendment with 5% biochar resulted in 54 and 94% decreases in the acid soluble and CaCl2-extractable Pb, respectively, in soils containing rice plants at the maturity stage. The amount of Fe-plaque on root surfaces and the Pb concentrations of the Fe-plaque were also reduced in biochar amended soils. Furthermore, lead species in rice roots were determined using Pb L3-edge X-ray absorption near edge structure (XANES), and although Pb-ferrihydrite complexes dominated Pb inventories, increasing amounts of organic complexes like Pb-pectins and Pb-cysteine were found in roots from the 5% biochar treatments. Such organic complexes might impede Pb translocation from root to shoot and subsequently reduce Pb accumulation in rice with biochar amendment.
Mechanisms of leading edge protrusion in interstitial migration
Wilson, Kerry; Lewalle, Alexandre; Fritzsche, Marco; Thorogate, Richard; Duke, Tom; Charras, Guillaume
2013-01-01
While the molecular and biophysical mechanisms underlying cell protrusion on two-dimensional substrates are well understood, our knowledge of the actin structures driving protrusion in three-dimensional environments is poor, despite relevance to inflammation, development and cancer. Here we report that, during chemotactic migration through microchannels with 5 μm × 5 μm cross-sections, HL60 neutrophil-like cells assemble an actin-rich slab filling the whole channel cross-section at their front. This leading edge comprises two distinct F-actin networks: an adherent network that polymerizes perpendicular to cell-wall interfaces and a ‘free’ network that grows from the free membrane at the cell front. Each network is polymerized by a distinct nucleator and, due to their geometrical arrangement, the networks interact mechanically. On the basis of our experimental data, we propose that, during interstitial migration, medial growth of the adherent network compresses the free network preventing its retrograde movement and enabling new polymerization to be converted into forward protrusion. PMID:24305616
An experimental study of turbine vane heat transfer with leading edge and downstream film cooling
NASA Technical Reports Server (NTRS)
Nirmalan, V.; Hylton, L. D.
1989-01-01
This paper presents the effects of downstream film cooling, with and without leading edge showerhead film cooling, on turbine-vane external heat transfer. Steady-state experimental measurements were made in a three-vane linear two-dimensional cascade. The principal independent parameters were maintained over ranges consistent with actual engine conditions. The test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. The data obtained indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The downstream film cooling process was shown to be a complex interaction of two competing mechanisms. The thermal dilution effect, associated with the injection of relatively cold fluid, results in a decrease in the heat transfer to the airfoil. Conversely, the turbulence augmentation, produced by the injection process, results in increased heat transfer to the airfoil.
Optimization of multi-element airfoils for maximum lift
NASA Technical Reports Server (NTRS)
Olsen, L. E.
1979-01-01
Two theoretical methods are presented for optimizing multi-element airfoils to obtain maximum lift. The analyses assume that the shapes of the various high lift elements are fixed. The objective of the design procedures is then to determine the optimum location and/or deflection of the leading and trailing edge devices. The first analysis determines the optimum horizontal and vertical location and the deflection of a leading edge slat. The structure of the flow field is calculated by iteratively coupling potential flow and boundary layer analysis. This design procedure does not require that flow separation effects be modeled. The second analysis determines the slat and flap deflection required to maximize the lift of a three element airfoil. This approach requires that the effects of flow separation from one or more of the airfoil elements be taken into account. The theoretical results are in good agreement with results of a wind tunnel test used to corroborate the predicted optimum slat and flap positions.
1981-01-01
vorticity model used on the wing as well as on the leading-edge vortex sheet. Since the trailing-edge wake vorti- city does not have the close...z SECTION B-B ( WAKE ) FIGURE 11. FLOW PAST A SLENDER WING WITH LEADING-EDGE VORTEX FLOW 49 * -- A water tunnel is useful in visualizing the reversed...on fighter aircraft which generate strong vortical flows. The differences in apparent mass between a model in air and a model in water require analysis
Najar, Adel M; Tidmarsh, Ian S; Adams, Harry; Ward, Michael D
2009-12-21
Reaction of two structurally related bridging ligands L(26Py) and L(13Ph), in which two bidentate chelating pyrazolyl-pyridine units are connected to either a 2,6-pyridine-diyl or 1,3-benzene-diyl central group via methylene spacers, with first-row transition metal dications, results in a surprising variety of structures. The commonest is that of an octanuclear coordination cage [M(8)L(12)]X(16) [M = Co(II) or Zn(II); X = perchlorate or tetrafluoroborate] in which a metal ion is located at each of the eight vertices of an approximate cube, and one bis-bidentate bridging ligand spans each edge. The arrangement of fac and mer tris-chelate metal centers around the inversion center results in approximate (non-crystallographic) S(6) symmetry. Another structural type observed in the solid state is a hexanuclear complex [Co(6)(L(13Ph))(9)](ClO(4))(12) in which the six metal ions are in a rectangular array (two rows of three), folded about the central Co-Co vector like a partially open book, with each metal-metal edge containing one bridging ligand apart from the two outermost metal-metal edges which are spanned by a pair of bridging ligands in a double helical array. The final structural type we observed is a tetranuclear square [Ni(4)(L(26Py))(6)](BF(4))(8), with the four Ni-Ni edges spanned alternately by one and two bridging ligand such that it effectively consists of two dinuclear double helicates cross-linked by additional bridging ligands. A balance between the "cube" and "book" forms, which varied from compound to compound, was observed in solution in many cases by (1)H NMR and ES mass spectrometry studies.
Photomask CD and LER characterization using Mueller matrix spectroscopic ellipsometry
NASA Astrophysics Data System (ADS)
Heinrich, A.; Dirnstorfer, I.; Bischoff, J.; Meiner, K.; Ketelsen, H.; Richter, U.; Mikolajick, T.
2014-10-01
Critical dimension and line edge roughness on photomask arrays are determined with Mueller matrix spectroscopic ellipsometry. Arrays with large sinusoidal perturbations are measured for different azimuth angels and compared with simulations based on rigorous coupled wave analysis. Experiment and simulation show that line edge roughness leads to characteristic changes in the different Mueller matrix elements. The influence of line edge roughness is interpreted as an increase of isotropic character of the sample. The changes in the Mueller matrix elements are very similar when the arrays are statistically perturbed with rms roughness values in the nanometer range suggesting that the results on the sinusoidal test structures are also relevant for "real" mask errors. Critical dimension errors and line edge roughness have similar impact on the SE MM measurement. To distinguish between both deviations, a strategy based on the calculation of sensitivities and correlation coefficients for all Mueller matrix elements is shown. The Mueller matrix elements M13/M31 and M34/M43 are the most suitable elements due to their high sensitivities to critical dimension errors and line edge roughness and, at the same time, to a low correlation coefficient between both influences. From the simulated sensitivities, it is estimated that the measurement accuracy has to be in the order of 0.01 and 0.001 for the detection of 1 nm critical dimension error and 1 nm line edge roughness, respectively.
Integrated circuit cooled turbine blade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ching-Pang; Jiang, Nan; Um, Jae Y.
A turbine rotor blade includes at least two integrated cooling circuits that are formed within the blade that include a leading edge circuit having a first cavity and a second cavity and a trailing edge circuit that includes at least a third cavity located aft of the second cavity. The trailing edge circuit flows aft with at least two substantially 180-degree turns at the tip end and the root end of the blade providing at least a penultimate cavity and a last cavity. The last cavity is located along a trailing edge of the blade. A tip axial cooling channelmore » connects to the first cavity of the leading edge circuit and the penultimate cavity of the trailing edge circuit. At least one crossover hole connects the penultimate cavity to the last cavity substantially near the tip end of the blade.« less
Oxidation of SiC/BN/SiC Composites in Reduced Oxygen Partial Pressures
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.; Boyd, Meredith
2010-01-01
SiC fiber-reinforced SiC composites with a BN interphase are proposed for use as leading edge structures of hypersonic vehicles. The durability of these materials under hypersonic flight conditions is therefore of interest. Thermogravimetric analysis was used to characterize the oxidation kinetics of both the constituent fibers and composite coupons at four temperatures: 816, 1149, 1343, and 1538 C (1500, 2100, 2450, and 2800 F) and in oxygen partial pressures between 5% and 0.1% (balance argon) at 1 atm total pressure. One edge of the coupons was ground off so the effects of oxygen ingress into the composite could be monitored by post-test SEM and EDS. Additional characterization of the oxidation products was conducted by XPS and TOF-SIMS. Under most conditions, the BN oxidized rapidly, leading to the formation of borosilicate glass. Rapid initial oxidation followed by volatilization of boria lead to protective oxide formation and further oxidation was slow. At 1538C in 5% oxygen, both the fibers and coupons exhibited borosilicate glass formation and bubbling. At 1538C in 0.1% oxygen, active oxidation of both the fibers and the composites was observed leading to rapid SiC degradation. BN oxidation at 1538C in 0.1% oxygen was not significant.
Materials and structures for hypersonic vehicles
NASA Technical Reports Server (NTRS)
Tenney, Darrel R.; Lisagor, W. Barry; Dixon, Sidney C.
1988-01-01
Hypersonic vehicles are envisioned to require, in addition to carbon-carbon and ceramic-matrix composities for leading edges heated to above 2000 F, such 600 to 1800 F operating temperature materials as advanced Ti alloys, nickel aluminides, and metal-matrix composited; These possess the necessary low density and high strength and stiffness. The primary design drivers are maximum vehicle heating rate, total heat load, flight envelope, propulsion system type, mission life requirements and liquid hydrogen containment systems. Attention is presently given to aspects of these materials and structures requiring more intensive development.
Stream Lined Emission Particles Handling For Civil Engineering Purposes
NASA Astrophysics Data System (ADS)
Hrabovský, Leopold
2017-10-01
Exploitation of conveyor belts for building purposes has large meaning and order scientific potential, that are competently solve the situation in terms of engineering structure. Pocket conveyer is one of the possible structural solutions of belt conveyer transport, where loose substance is conveyed in closed slot of the belt conveyer. The slot emerges (forms) by mutual bringing (approaching) of edges of the belt conveyer together, which have vulcanized lengthwise parts. The lengthwise parts serve for the leading of the belt conveyer and its hanging on a special construction with a number of supporting discs.
Slat Noise Predictions Using Higher-Order Finite-Difference Methods on Overset Grids
NASA Technical Reports Server (NTRS)
Housman, Jeffrey A.; Kiris, Cetin
2016-01-01
Computational aeroacoustic simulations using the structured overset grid approach and higher-order finite difference methods within the Launch Ascent and Vehicle Aerodynamics (LAVA) solver framework are presented for slat noise predictions. The simulations are part of a collaborative study comparing noise generation mechanisms between a conventional slat and a Krueger leading edge flap. Simulation results are compared with experimental data acquired during an aeroacoustic test in the NASA Langley Quiet Flow Facility. Details of the structured overset grid, numerical discretization, and turbulence model are provided.
NASA Astrophysics Data System (ADS)
Mishra, Arpit; Ghosh, Parthasarathi
2017-02-01
As a part of the developmental effort towards the realization of a staged combustion cycle based liquid rocket engine, a program on simulation of the LOX booster pump for performance characterization has been taken up. Earlier reported work shows that the pump inducer works satisfactorily under cavitating conditions for the throttling range varying from 90% to 113%. However stall occurs below 90% of the designed flow rate which is to be strongly associated with the inlet backflow vortices due to flow separation [1]. It is envisaged that leading edge sweep may help in to controls the incipience and growth of the backflow vortices at the inlet leading edge tip of axial flow inducer leading to a wider operating range. In this paper, steady state 3D CFD analysis of rotating inducer is performed to examine the effect of leading edge sweep on the performance of axial flow LOX pump inducer using ANSYS® CFX and has been compared with the performance of the inducer reported by Mishra and Ghosh [1].
West, Ana; Ma, Kevin; Chung, Jonathan L; Kindt, James T
2013-08-15
Molecular dynamics simulations of lipid bilayer ribbons have been performed to investigate the structures and line tensions associated with free bilayer edges. Simulations carried out for dioleoyl phosphatidylcholine with three different force-field parameter sets yielded edge line tensions of 45 ± 2 pN, over 50% greater than the most recently reported experimentally determined value for this lipid. Edge tensions obtained from simulations of a series of phosphatidylcholine lipid bilayer ribbons with saturated acyl tails of length 12-16 carbons and with monounsaturated acyl tails of length 14-18 carbons could be correlated with the excess area associated with forming the edge, through a two-parameter fit. Saturated-tail lipids underwent local thickening near the edge, producing denser packing that correlated with lower line tensions, while unsaturated-tail lipids showed little or no local thickening. In a dipalmitoyl phosphatidylcholine ribbon initiated in a tilted gel-phase structure, lipid headgroups tended to tilt toward the nearer edge producing a herringbone pattern, an accommodation that may account for the reported edge-induced stabilization of an ordered structure at temperatures near a lipid gel-fluid phase transition.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-11
... the flap control unit (FCU). This AD was prompted by a report of automatic retraction of the leading... takeoff. We are issuing this AD to prevent automatic retraction of the leading edge flaps during takeoff... automatic retraction of the leading edge flaps due to indications transmitted to the flap control unit (FCU...
Faita, Francesco; Gemignani, Vincenzo; Bianchini, Elisabetta; Giannarelli, Chiara; Demi, Marcello
2006-01-01
The evaluation of the intima media thickness (IMT) of the common carotid artery (CCA) with B-mode ultrasonography represents an important index of cardiovascular risk. The IMT is defined as the distance between the leading edge of the lumen-intima interface and the leading edge of the media-adventitia interface. In order to evaluate the IMT, it is necessary to locate such edges. In this paper we developed an automatic real-time system to evaluate the IMT based on the first order absolute moment (FOAM), which is used as an edge detector, and on a pattern recognition approach. The IMT measurements were compared with manual measurements. We used regression analysis and Bland-Altman analysis to compare the results.
On the instability of hypersonic flow past a flat plate
NASA Technical Reports Server (NTRS)
Blackaby, Nicholas; Cowley, Stephen; Hall, Philip
1990-01-01
The instability of hypersonic boundary-layer flows over flat plates is considered. The viscosity of the fluid is taken to be governed by Sutherland's law, which gives a much more accurate representation of the temperature dependence of fluid viscosity at hypersonic speeds than Chapman's approximate linear law; although at lower speeds the temperature variation of the mean state is less pronounced so that the Chapman law can be used with some confidence. Attention is focussed on the so-called (vorticity) mode of instability of the viscous hypersonic boundary layer. This is thought to be the fastest growing inviscid disturbance at hypersonic speeds; it is also believed to have an asymptotically larger growth rate than any viscous or centrifugal instability. As a starting point the instability of the hypersonic boundary layer which exists far downstream from the leading edge of the plate is investigated. In this regime the shock that is attached to the leading edge of the plate plays no role, so that the basic boundary layer is non-interactive. It is shown that the vorticity mode of instability of this flow operates on a significantly different lengthscale than that obtained if a Chapman viscosity law is assumed. In particular, it is found that the growth rate predicted by a linear viscosity law overestimates the size of the growth rate by O(M(exp 2). Next, the development of the vorticity mode as the wavenumber decreases is described, and it is shown that acoustic modes emerge when the wavenumber has decreased from it's O(1) initial value to O(M (exp -3/2). Finally, the inviscid instability of the boundary layer near the leading edge in the interaction zone is discussed and particular attention is focussed on the strong interaction region which occurs sufficiently close to the leading edge. It is found that the vorticity mode in this regime is again unstable, and that it is concentrated in the transition layer at the edge of the boundary layer where the temperature adjusts from its large, O(M(exp 2), value in the viscous boundary layer, to its O(1) free stream value. The existence of the shock indirectly, but significantly, influences the instability problem by modifying the basic flow structure in this layer.
NASA Technical Reports Server (NTRS)
Kjerstad, Kevin J.; Campbell, Bryan A.; Gile, Brenda E.; Kemmerly, Guy T.
1999-01-01
A parametric cranked delta planform study has been conducted in the Langley 14- by 22-Foot Subsonic Tunnel with the following objectives: (1) to evaluate the vortex flap design methodology for cranked delta wings, (2) to determine the influence of leading-edge sweep and the outboard wing on vortex flap effectiveness, (3) to evaluate novel flow control concepts, and (4) to validate unstructured grid Euler computer code predictions with modeled vortex and trailing-edge flaps. Two families of cranked delta planforms were investigated. One family had constant aspect ratio, while the other had a constant nondimensional semispan location of the leading-edge break. The inboard leading-edge sweep of the planforms was varied between 68 deg., 71 deg., and 74 deg., while outboard leading-edge sweep was varied between 48 deg. and 61 deg. Vortex flaps for the different planforms were designed by an analytical vortex flap design method. The results indicate that the effectiveness of the vortex flaps was only slightly influenced by the variations in the parametric planforms. The unstructured grid Euler computer code was successfully used to model the configurations with vortex flaps. The vortex trap concept was successfully demonstrated.