Sample records for leaf area dynamics

  1. Leaf area dynamics of conifer forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margolis, H.; Oren, R.; Whitehead, D.

    1995-07-01

    Estimating the surface area of foliage supported by a coniferous forest canopy is critical for modeling its biological properties. Leaf area represents the surface area available for the interception of energy, the absorption of carbon dioxide, and the diffusion of water from the leaf to the atmosphere. The concept of leaf area is pertinent to the physiological and ecological dynamics of conifers at a wide range of spatial scales, from individual leaves to entire biomes. In fact, the leaf area of vegetation at a global level can be thought of as a carbon-absorbing, water-emitting membrane of variable thickness, which canmore » have an important influence on the dynamics and chemistry of the Earth`s atmosphere over both the short and the long term. Unless otherwise specified, references to leaf area herein refer to projected leaf area, i.e., the vertical projection of needles placed on a flat plane. Total leaf surface area is generally from 2.0 to 3.14 times that of projected leaf area for conifers. It has recently been suggested that hemisurface leaf area, i.e., one-half of the total surface area of a leaf, a more useful basis for expressing leaf area than is projected area. This chapter is concerned with the dynamics of coniferous forest leaf area at different spatial and temporal scales. In the first part, we consider various hypotheses related to the control of leaf area development, ranging from simple allometric relations with tree size to more complex mechanistic models that consider the movement of water and nutrients to tree canopies. In the second part, we consider various aspects of leaf area dynamics at varying spatial and temporal scales, including responses to perturbation, seasonal dynamics, genetic variation in crown architecture, the responses to silvicultural treatments, the causes and consequences of senescence, and the direct measurement of coniferous leaf area at large spatial scales using remote sensing.« less

  2. Morphological and phenological shoot plasticity in a Mediterranean evergreen oak facing long-term increased drought.

    PubMed

    Limousin, Jean-Marc; Rambal, Serge; Ourcival, Jean-Marc; Rodríguez-Calcerrada, Jesus; Pérez-Ramos, Ignacio M; Rodríguez-Cortina, Raquel; Misson, Laurent; Joffre, Richard

    2012-06-01

    Mediterranean trees must adjust their canopy leaf area to the unpredictable timing and severity of summer drought. The impact of increased drought on the canopy dynamics of the evergreen Quercus ilex was studied by measuring shoot growth, leaf production, litterfall, leafing phenology and leaf demography in a mature forest stand submitted to partial throughfall exclusion for 7 years. The leaf area index rapidly declined in the throughfall-exclusion plot and was 19% lower than in the control plot after 7 years of treatment. Consequently, leaf litterfall was significantly lower in the dry treatment. Such a decline in leaf area occurred through a change in branch allometry with a decreased number of ramifications produced and a reduction of the leaf area supported per unit sapwood area of the shoot (LA/SA). The leafing phenology was slightly delayed and the median leaf life span was slightly longer in the dry treatment. The canopy dynamics in both treatments were driven by water availability with a 1-year lag: leaf shedding and production were reduced following dry years; in contrast, leaf turnover was increased following wet years. The drought-induced decrease in leaf area, resulting from both plasticity in shoot development and slower leaf turnover, appeared to be a hydraulic adjustment to limit canopy transpiration and maintain leaf-specific hydraulic conductivity under drier conditions.

  3. Elevated atmospheric CO2 concentration leads to increased whole-plant isoprene emission in hybrid aspen (Populus tremula × Populus tremuloides).

    PubMed

    Sun, Zhihong; Niinemets, Ülo; Hüve, Katja; Rasulov, Bahtijor; Noe, Steffen M

    2013-05-01

    Effects of elevated atmospheric [CO2] on plant isoprene emissions are controversial. Relying on leaf-scale measurements, most models simulating isoprene emissions in future higher [CO2] atmospheres suggest reduced emission fluxes. However, combined effects of elevated [CO2] on leaf area growth, net assimilation and isoprene emission rates have rarely been studied on the canopy scale, but stimulation of leaf area growth may largely compensate for possible [CO2] inhibition reported at the leaf scale. This study tests the hypothesis that stimulated leaf area growth leads to increased canopy isoprene emission rates. We studied the dynamics of canopy growth, and net assimilation and isoprene emission rates in hybrid aspen (Populus tremula × Populus tremuloides) grown under 380 and 780 μmol mol(-1) [CO2]. A theoretical framework based on the Chapman-Richards function to model canopy growth and numerically compare the growth dynamics among ambient and elevated atmospheric [CO2]-grown plants was developed. Plants grown under elevated [CO2] had higher C : N ratio, and greater total leaf area, and canopy net assimilation and isoprene emission rates. During ontogeny, these key canopy characteristics developed faster and stabilized earlier under elevated [CO2]. However, on a leaf area basis, foliage physiological traits remained in a transient state over the whole experiment. These results demonstrate that canopy-scale dynamics importantly complements the leaf-scale processes, and that isoprene emissions may actually increase under higher [CO2] as a result of enhanced leaf area production. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  4. Leaf area and tree increment dynamics of even-aged and multiaged lodgepole pine stands in Montana

    Treesearch

    Cassandra L. Kollenberg; Kevin L. O' Hara

    1999-01-01

    Age structure and distribution of leaf area index (LAI) of even and multiaged lodgepole pine (Pinus contorta var. latifolia Engelm.) stands were examined on three study areas in western and central Montana. Projected leaf area was determined based on a relationship with sapwood cross-sectional area at breast height. Stand structure and LAI varied considerably between...

  5. Seasonal Dynamics in Leaf Area Index in Intensively Managed Loblolly Pine

    Treesearch

    Timothy B. Harrington; Jason A. Gatch; Bruce E. Borders

    2002-01-01

    Leaf area index (LAI; leaf area per ground area) was measured monthly or bimonthly for two years (March 1999 to February 2001) with the LAI-2000 in intensively managed plantations of loblolly pine (Pinus taeda L.) at Eatonton and Waycross GA. Since establishment of the three age classes at each site, the stands have received combinations of complete...

  6. Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment

    Treesearch

    S. C. Stark; V. Leitold; J. L. Wu; M. O. Hunter; C. V. de Castilho; F. R. C. Costa; S. M. McMahon; G. G. Parker; M. Takako Shimabukuro; M. A. Lefsky; M. Keller; L. F. Alves; J. Schietti; Y. E. Shimabukuro; D. O. Brandao; T. K. Woodcock; N. Higuchi; P. B de Camargo; R. C. de Oliveira; S. R. Saleska

    2012-01-01

    Tropical forest structural variation across heterogeneous landscapes may control above-ground carbon dynamics. We tested the hypothesis that canopy structure (leaf area and light availability) – remotely estimated from LiDAR – control variation in above-ground coarse wood production (biomass growth). Using a statistical model, these factors predicted biomass growth...

  7. Controls on mass loss and nitrogen dynamics of oak leaf litter along an urban-rural land-use gradient

    Treesearch

    Richard V. Pouyat; Margaret M. Carreiro

    2003-01-01

    Using reciprocal leaf litter transplants, we investigated the effects of contrasting environments (urban vs. rural) and intraspecific variations in oak leaf litter quality on mass loss rates and nitrogen (N) dynamics along an urban-rural gradient in the New York City metropolitan area. Differences in earthworm abundances and temperature had previously been documented...

  8. The influence of leaf size and shape on leaf thermal dynamics: does theory hold up under natural conditions?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leigh, A.; Sevanto, Sanna Annika; Close, J. D.

    Laboratory studies on artificial leaves suggest that leaf thermal dynamics are strongly influenced by the two-dimensional size and shape of leaves and associated boundary layer thickness. Hot environments are therefore said to favour selection for small, narrow or dissected leaves. Empirical evidence from real leaves under field conditions is scant and traditionally based on point measurements that do not capture spatial variation in heat load. Here in this study, we used thermal imagery under field conditions to measure the leaf thermal time constant (τ) in summer and the leaf-to-air temperature difference (ΔT) and temperature range across laminae (T range) duringmore » winter, autumn and summer for 68 Proteaceae species. We investigated the influence of leaf area and margin complexity relative to effective leaf width (w e), the latter being a more direct indicator of boundary layer thickness. Normalized difference of margin complexity had no or weak effects on thermal dynamics, but w e strongly predicted τ and ΔT, whereas leaf area influenced T range. Unlike artificial leaves, however, spatial temperature distribution in large leaves appeared to be governed largely by structural variation. Therefore, we agree that small size, specifically we, has adaptive value in hot environments but not with the idea that thermal regulation is the primary evolutionary driver of leaf dissection.« less

  9. The influence of leaf size and shape on leaf thermal dynamics: does theory hold up under natural conditions?

    DOE PAGES

    Leigh, A.; Sevanto, Sanna Annika; Close, J. D.; ...

    2016-11-05

    Laboratory studies on artificial leaves suggest that leaf thermal dynamics are strongly influenced by the two-dimensional size and shape of leaves and associated boundary layer thickness. Hot environments are therefore said to favour selection for small, narrow or dissected leaves. Empirical evidence from real leaves under field conditions is scant and traditionally based on point measurements that do not capture spatial variation in heat load. Here in this study, we used thermal imagery under field conditions to measure the leaf thermal time constant (τ) in summer and the leaf-to-air temperature difference (ΔT) and temperature range across laminae (T range) duringmore » winter, autumn and summer for 68 Proteaceae species. We investigated the influence of leaf area and margin complexity relative to effective leaf width (w e), the latter being a more direct indicator of boundary layer thickness. Normalized difference of margin complexity had no or weak effects on thermal dynamics, but w e strongly predicted τ and ΔT, whereas leaf area influenced T range. Unlike artificial leaves, however, spatial temperature distribution in large leaves appeared to be governed largely by structural variation. Therefore, we agree that small size, specifically we, has adaptive value in hot environments but not with the idea that thermal regulation is the primary evolutionary driver of leaf dissection.« less

  10. Temporal dynamics and spatial variability in the enhancement of canopy leaf area under elevated atmospheric CO2

    Treesearch

    Heather R. McCarthy; Ram Oren; Adrien C. Finzi; David S. Ellsworth; Hyun-Seok Kim; Kurt H. Johnsen; Bonnie Millar

    2007-01-01

    Increased canopy leaf area (L) may lead to higher forest productivity and alter processes such as species dynamics and ecosystem mass and energy fluxes. Few CO2enrichment studies have been conducted in closed canopy forests and none have shown a sustained enhancement of L. We reconstructed 8 years (1996–2003) of L at Duke’s Free Air CO...

  11. FOREST-BGC, A general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets.

    PubMed

    Running, Steven W.; Gower, Stith T.

    1991-01-01

    A new version of the ecosystem process model FOREST-BGC is presented that uses stand water and nitrogen limitations to alter the leaf/root/stem carbon allocation fraction dynamically at each annual iteration. Water deficit is defined by integrating a daily soil water deficit fraction annually. Current nitrogen limitation is defined relative to a hypothetical optimum foliar N pool, computed as maximum leaf area index multiplied by maximum leaf nitrogen concentration. Decreasing availability of water or nitrogen, or both, reduces the leaf/root carbon partitioning ratio. Leaf and root N concentrations, and maximum leaf photosynthetic capacity are also redefined annually as functions of nitrogen availability. Test simulations for hypothetical coniferous forests were performed for Madison, WI and Missoula, MT, and showed simulated leaf area index ranging from 4.5 for a control stand at Missoula, to 11 for a fertilized stand at Madison, with Year 50 stem carbon biomasses of 31 and 128 Mg ha(-1), respectively. Total nitrogen incorporated into new tissue ranged from 34 kg ha(-1) year(-1) for the unfertilized Missoula stand, to 109 kg ha(-1) year(-1) for the fertilized Madison stand. The model successfully showed dynamic annual carbon partitioning controlled by water and nitrogen limitations.

  12. Scaling Hydrologic Processes in Boreal Forest Stands: New Eco-hydrological Perspectives or Deja vu?

    NASA Astrophysics Data System (ADS)

    Silins, U.; Lieffers, V. J.; Landhausser, S. M.; Mendoza, C. A.; Devito, K. J.; Petrone, R. M.; Gan, T. Y.

    2006-12-01

    The leaf area of forest canopies is both main attribute of stands controlling water balance through transpiration and interception, and "engine" driving stand growth, stand dynamics, and forest succession. While transpiration and interception dynamics are classic themes in forest hydrology, we present results from our eco-hydrological research on boreal trees to highlight how more recent eco-physiological insights into species specific controls over water use and leaf area such as hydraulic architecture, cavitation, sapwood-leaf area relationships, and root system controls over water uptake are providing new insights into integrated atmospheric-autecological controls over these hydrologic processes. These results are discussed in the context of newer eco-hydrological frameworks which may serve to aid in exploring how forest disturbance and subsequent trajectories of hydrologic recovery are likely to affect both forest growth dynamics and hydrology of forested landscapes in response to forest management, severe forest pest epidemics such as the Mountain Pine Beetle epidemic in Western Canada, and climate change.

  13. Phenological Versus Meteorological Controls on Land-atmosphere Water and Carbon Fluxes

    NASA Technical Reports Server (NTRS)

    Puma, Michael J.; Koster, Randal D.; Cook, Benjamin I.

    2013-01-01

    Phenological dynamics and their related processes strongly constrain land-atmosphere interactions, but their relative importance vis-à-vis meteorological forcing within general circulation models (GCMs) is still uncertain. Using an off-line land surface model, we evaluate leaf area and meteorological controls on gross primary productivity, evapotranspiration, transpiration, and runoff at four North American sites, representing different vegetation types and background climates. Our results demonstrate that compared to meteorological controls, variation in leaf area has a dominant control on gross primary productivity, a comparable but smaller influence on transpiration, a weak influence on total evapotranspiration, and a negligible impact on runoff. Climate regime and characteristic variations in leaf area have important modulating effects on these relative controls, which vary depending on the fluxes and timescales of interest. We find that leaf area in energylimited evaporative regimes tends to exhibit greater control on annual gross primary productivity than in moisture-limited regimes, except when vegetation exhibits little interannual variation in leaf area. For transpiration, leaf area control is somewhat less in energylimited regimes and greater in moisture-limited regimes for maximum pentad and annual fluxes. These modulating effects of climate and leaf area were less clear for other fluxes and at other timescales. Our findings are relevant to land-atmosphere coupling in GCMs, especially considering that leaf area variations are a fundamental element of land use and land cover change simulations.

  14. Leaf dynamics in growth and reproduction of Xanthium canadense as influenced by stand density

    PubMed Central

    Ogawa, Takahiro; Oikawa, Shimpei; Hirose, Tadaki

    2015-01-01

    Background and Aims Leaf longevity is controlled by the light gradient in the canopy and also by the nitrogen (N) sink strength in the plant. Stand density may influence leaf dynamics through its effects on light gradient and on plant growth and reproduction. This study tests the hypothesis that the control by the light gradient is manifested more in the vegetative period, whereas the opposite is true when the plant becomes reproductive and develops a strong N sink. Methods Stands of Xanthium canadense were established at two densities. Emergence, growth and death of every leaf on the main stem and branches, and plant growth and N uptake were determined from germination to full senescence. Mean residence time and dry mass productivity were calculated per leaf number, leaf area, leaf mass and leaf N (collectively termed ‘leaf variables’) in order to analyse leaf dynamics and its effect on plant growth. Key Results Branching and reproductive activities were higher at low than at high density. Overall there was no significant difference in mean residence time of leaf variables between the two stands. However, early leaf cohorts on the main stem had a longer retention time at low density, whereas later cohorts had a longer retention time at high density. Branch leaves emerged earlier and tended to live longer at low than at high density. Leaf efficiencies, defined as carbon export per unit investment of leaf variables, were higher at low density in all leaf variables except for leaf number. Conclusions In the vegetative phase of plant growth, the light gradient strongly controls leaf longevity, whereas later the effects of branching and reproductive activities become stronger and over-rule the effect of light environment. As leaf N supports photosynthesis and also works as an N source for plant development, N use is pivotal in linking leaf dynamics with plant growth and reproduction. PMID:26248476

  15. Changes in water content and distribution in Quercus ilex leaves during progressive drought assessed by in vivo 1H magnetic resonance imaging

    PubMed Central

    2010-01-01

    Background Drought is a common stressor in many regions of the world and current climatic global circulation models predict further increases in warming and drought in the coming decades in several of these regions, such as the Mediterranean basin. The changes in leaf water content, distribution and dynamics in plant tissues under different soil water availabilities are not well known. In order to fill this gap, in the present report we describe our study withholding the irrigation of the seedlings of Quercus ilex, the dominant tree species in the evergreen forests of many areas of the Mediterranean Basin. We have monitored the gradual changes in water content in the different leaf areas, in vivo and non-invasively, by 1H magnetic resonance imaging (MRI) using proton density weighted (ρw) images and spin-spin relaxation time (T2) maps. Results ρw images showed that the distal leaf area lost water faster than the basal area and that after four weeks of similar losses, the water reduction was greater in leaf veins than in leaf parenchyma areas and also in distal than in basal leaf area. There was a similar tendency in all different areas and tissues, of increasing T2 values during the drought period. This indicates an increase in the dynamics of free water, suggesting a decrease of cell membranes permeability. Conclusions The results indicate a non homogeneous leaf response to stress with a differentiated capacity to mobilize water between its different parts and tissues. This study shows that the MRI technique can be a useful tool to follow non-intrusively the in vivo water content changes in the different parts of the leaves during drought stress. It opens up new possibilities to better characterize the associated physiological changes and provides important information about the different responses of the different leaf areas what should be taken into account when conducting physiological and metabolic drought stress studies in different parts of the leaves during drought stress. PMID:20735815

  16. Changes in water content and distribution in Quercus ilex leaves during progressive drought assessed by in vivo 1H magnetic resonance imaging.

    PubMed

    Sardans, Jordi; Peñuelas, Josep; Lope-Piedrafita, Silvia

    2010-08-24

    Drought is a common stressor in many regions of the world and current climatic global circulation models predict further increases in warming and drought in the coming decades in several of these regions, such as the Mediterranean basin. The changes in leaf water content, distribution and dynamics in plant tissues under different soil water availabilities are not well known. In order to fill this gap, in the present report we describe our study withholding the irrigation of the seedlings of Quercus ilex, the dominant tree species in the evergreen forests of many areas of the Mediterranean Basin. We have monitored the gradual changes in water content in the different leaf areas, in vivo and non-invasively, by 1H magnetic resonance imaging (MRI) using proton density weighted (rhow) images and spin-spin relaxation time (T2) maps. Rhow images showed that the distal leaf area lost water faster than the basal area and that after four weeks of similar losses, the water reduction was greater in leaf veins than in leaf parenchyma areas and also in distal than in basal leaf area. There was a similar tendency in all different areas and tissues, of increasing T2 values during the drought period. This indicates an increase in the dynamics of free water, suggesting a decrease of cell membranes permeability. The results indicate a non homogeneous leaf response to stress with a differentiated capacity to mobilize water between its different parts and tissues. This study shows that the MRI technique can be a useful tool to follow non-intrusively the in vivo water content changes in the different parts of the leaves during drought stress. It opens up new possibilities to better characterize the associated physiological changes and provides important information about the different responses of the different leaf areas what should be taken into account when conducting physiological and metabolic drought stress studies in different parts of the leaves during drought stress.

  17. Functional traits of the understory plant community of a pyrogenic longleaf pine forest across environmental gradients.

    PubMed

    Ames, Gregory M; Anderson, Steven M; Ungberg, Eric A; Wright, Justin P

    2017-08-01

    Understanding and predicting the response of plant communities to environmental changes and disturbances such as fire requires an understanding of the functional traits present in the system, including within and across species variability, and their dynamics over time. These data are difficult to obtain as few studies provide comprehensive information for more than a few traits or species, rarely cover more than a single growing season, and usually present only summary statistics of trait values. As part of a larger study seeking to understand the dynamics of plant communities in response to different prescribed fire regimes, we measured the functional traits of the understory plant communities located in over 140 permanent plots spanning strong gradients in soil moisture in a pyrogenic longleaf pine forest in North Carolina, USA, over a four-year period from 2011 and 2014. We present over 120,000 individual trait measurements from over 130 plant species representing 91 genera from 47 families. We include data on the following 18 traits: specific leaf area, leaf dry matter content, leaf area, leaf length, leaf width, leaf perimeter, plant height, leaf nitrogen, leaf carbon, leaf carbon to nitrogen ratio, water use efficiency, time to ignition, maximum flame height, maximum burn temperature, mass-specific burn time, mass-specific smolder time, branching architecture, and the ratio of leaf matter consumed by fire. We also include information on locations, soil moisture, relative elevation, soil bulk density, and fire histories for each site. © 2017 by the Ecological Society of America.

  18. Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model.

    PubMed

    Sakschewski, Boris; von Bloh, Werner; Boit, Alice; Rammig, Anja; Kattge, Jens; Poorter, Lourens; Peñuelas, Josep; Thonicke, Kirsten

    2015-01-22

    Functional diversity is critical for ecosystem dynamics, stability and productivity. However, dynamic global vegetation models (DGVMs) which are increasingly used to simulate ecosystem functions under global change, condense functional diversity to plant functional types (PFTs) with constant parameters. Here, we develop an individual- and trait-based version of the DGVM LPJmL (Lund-Potsdam-Jena managed Land) called LPJmL- flexible individual traits (LPJmL-FIT) with flexible individual traits) which we apply to generate plant trait maps for the Amazon basin. LPJmL-FIT incorporates empirical ranges of five traits of tropical trees extracted from the TRY global plant trait database, namely specific leaf area (SLA), leaf longevity (LL), leaf nitrogen content (N area ), the maximum carboxylation rate of Rubisco per leaf area (vcmaxarea), and wood density (WD). To scale the individual growth performance of trees, the leaf traits are linked by trade-offs based on the leaf economics spectrum, whereas wood density is linked to tree mortality. No preselection of growth strategies is taking place, because individuals with unique trait combinations are uniformly distributed at tree establishment. We validate the modeled trait distributions by empirical trait data and the modeled biomass by a remote sensing product along a climatic gradient. Including trait variability and trade-offs successfully predicts natural trait distributions and achieves a more realistic representation of functional diversity at the local to regional scale. As sites of high climatic variability, the fringes of the Amazon promote trait divergence and the coexistence of multiple tree growth strategies, while lower plant trait diversity is found in the species-rich center of the region with relatively low climatic variability. LPJmL-FIT enables to test hypotheses on the effects of functional biodiversity on ecosystem functioning and to apply the DGVM to current challenges in ecosystem management from local to global scales, that is, deforestation and climate change effects. © 2015 John Wiley & Sons Ltd.

  19. On the Relationship Between Hyperspectral Data and Foliar Nitrogen Content in Closed Canopy Forests

    NASA Astrophysics Data System (ADS)

    Knyazikhin, Y.; Schull, M.; Lepine, L. C.; Stenberg, P.; Mõttus, M.; Rautiainen, M.; Latorre, P.; Myneni, R.; Kaufmann, R.

    2011-12-01

    The importance of nitrogen for terrestrial ecosystem carbon dynamics and its climate feedback has been well recognized by the ecological community. Interaction between carbon and nitrogen at leaf level is among the fundamental mechanisms that directly control the dynamics of terrestrial vegetation carbon. This process influences absorption and scattering of solar radiation by foliage, which in turn impacts radiation reflected by the vegetation and measured by satellite sensors. NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and ground based data on canopy structure and foliage nitrogen concentration acquired over six sites in Maine, New England, Florida, North Carolina and Washington were analyzed to assess the role of canopy structure, leaf optics and its biochemical constituents in the spectral variation of radiation reflected by the forest. The study sites represent closed canopy forests (LAI~5). Our results suggest: 1. Impact of canopy structure is so strong that it can significantly suppress the sensitivity of hyperspectral data to leaf optics. 2. Forest reflectance spectra in the interval [710, 790 nm] are required to obtain the fraction of the total leaf area that a "sensor sees" in a given direction. For closed canopy forests its retrieval does not require canopy reflectance models, suggesting that canopy reflectance spectra in this interval provide a direct estimate of the leaf area fraction. 3. The leaf area fraction fully explains variation in measured reflectance spectra due to variation in canopy structure. This variable is used to estimate the mean leaf scattering over foliage that the "sensor sees." For example the nadir-viewing AVIRIS sensor accumulates foliage optical properties over 25% of the total foliage area in needle leaf forest and about 50% in broadleaf forest. 4. Leaf surface properties have an impact on forest reflectivity, lowering its sensitivity to leaf absorbing pigments. 5. Variation in foliar nitrogen concentration can explain up to 55% of variation in AVIRIS spectra in the interval between 400 and 900 nm. The remaining factors could be due to (a) impact of leaf surface properties and/or (b) under-sampling of leaf optical properties due to the single view of the AVIRIS sensor. The theory of canopy spectral invariants underlies the separation of leaf scattering from the total canopy reflectance spectrum.

  20. Can biomass responses to warming at plant to ecosystem levels be predicted by leaf-level responses?

    NASA Astrophysics Data System (ADS)

    Xia, J.; Shao, J.; Zhou, X.; Yan, W.; Lu, M.

    2015-12-01

    Global warming has the profound impacts on terrestrial C processes from leaf to ecosystem scales, potentially feeding back to climate dynamics. Although numerous studies had investigated the effects of warming on C processes from leaf to plant and ecosystem levels, how leaf-level responses to warming scale up to biomass responses at plant, population, and community levels are largely unknown. In this study, we compiled a dataset from 468 papers at 300 experimental sites and synthesized the warming effects on leaf-level parameters, and plant, population and ecosystem biomass. Our results showed that responses of plant biomass to warming mainly resulted from the changed leaf area rather than the altered photosynthetic capacity. The response of ecosystem biomass to warming was weaker than those of leaf area and plant biomass. However, the scaling functions from responses of leaf area to plant biomass to warming were different in diverse forest types, but functions were similar in non-forested biomes. In addition, it is challenging to scale the biomass responses from plant up to ecosystem. These results indicated that leaf area might be the appropriate index for plant biomass response to warming, and the interspecific competition might hamper the scaling of the warming effects on plant and ecosystem levels, suggesting that the acclimation capacity of plant community should be incorporated into land surface models to improve the prediction of climate-C cycle feedback.

  1. Pectin Methylesterification Impacts the Relationship between Photosynthesis and Plant Growth1[OPEN

    PubMed Central

    Kim, Sang-Jin; Renna, Luciana; Brandizzi, Federica

    2016-01-01

    Photosynthesis occurs in mesophyll cells of specialized organs such as leaves. The rigid cell wall encapsulating photosynthetic cells controls the expansion and distribution of cells within photosynthetic tissues. The relationship between photosynthesis and plant growth is affected by leaf area. However, the underlying genetic mechanisms affecting carbon partitioning to different aspects of leaf growth are not known. To fill this gap, we analyzed Arabidopsis plants with altered levels of pectin methylesterification, which is known to modulate cell wall plasticity and plant growth. Pectin methylesterification levels were varied through manipulation of cotton Golgi-related (CGR) 2 or 3 genes encoding two functionally redundant pectin methyltransferases. Increased levels of methylesterification in a line over-expressing CGR2 (CGR2OX) resulted in highly expanded leaves with enhanced intercellular air spaces; reduced methylesterification in a mutant lacking both CGR-genes 2 and 3 (cgr2/3) resulted in thin but dense leaf mesophyll that limited CO2 diffusion to chloroplasts. Leaf, root, and plant dry weight were enhanced in CGR2OX but decreased in cgr2/3. Differences in growth between wild type and the CGR-mutants can be explained by carbon partitioning but not by variations in area-based photosynthesis. Therefore, photosynthesis drives growth through alterations in carbon partitioning to new leaf area growth and leaf mass per unit leaf area; however, CGR-mediated pectin methylesterification acts as a primary factor in this relationship through modulation of the expansion and positioning of the cells in leaves, which in turn drive carbon partitioning by generating dynamic carbon demands in leaf area growth and leaf mass per unit leaf area. PMID:27208234

  2. Pectin Methylesterification Impacts the Relationship between Photosynthesis and Plant Growth.

    PubMed

    M Weraduwage, Sarathi; Kim, Sang-Jin; Renna, Luciana; C Anozie, Fransisca; D Sharkey, Thomas; Brandizzi, Federica

    2016-06-01

    Photosynthesis occurs in mesophyll cells of specialized organs such as leaves. The rigid cell wall encapsulating photosynthetic cells controls the expansion and distribution of cells within photosynthetic tissues. The relationship between photosynthesis and plant growth is affected by leaf area. However, the underlying genetic mechanisms affecting carbon partitioning to different aspects of leaf growth are not known. To fill this gap, we analyzed Arabidopsis plants with altered levels of pectin methylesterification, which is known to modulate cell wall plasticity and plant growth. Pectin methylesterification levels were varied through manipulation of cotton Golgi-related (CGR) 2 or 3 genes encoding two functionally redundant pectin methyltransferases. Increased levels of methylesterification in a line over-expressing CGR2 (CGR2OX) resulted in highly expanded leaves with enhanced intercellular air spaces; reduced methylesterification in a mutant lacking both CGR-genes 2 and 3 (cgr2/3) resulted in thin but dense leaf mesophyll that limited CO2 diffusion to chloroplasts. Leaf, root, and plant dry weight were enhanced in CGR2OX but decreased in cgr2/3. Differences in growth between wild type and the CGR-mutants can be explained by carbon partitioning but not by variations in area-based photosynthesis. Therefore, photosynthesis drives growth through alterations in carbon partitioning to new leaf area growth and leaf mass per unit leaf area; however, CGR-mediated pectin methylesterification acts as a primary factor in this relationship through modulation of the expansion and positioning of the cells in leaves, which in turn drive carbon partitioning by generating dynamic carbon demands in leaf area growth and leaf mass per unit leaf area. © 2016 American Society of Plant Biologists. All Rights Reserved.

  3. SU-F-T-527: A Novel Dynamic Multileaf Collimator Leaf-Sequencing Algorithm in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, J; Lin, H; Chow, J

    Purpose: A novel leaf-sequencing algorithm is developed for generating arbitrary beam intensity profiles in discrete levels using dynamic multileaf collimator (MLC). The efficiency of this dynamic MLC leaf-sequencing method was evaluated using external beam treatment plans delivered by intensity modulated radiation therapy technique. Methods: To qualify and validate this algorithm, integral test for the beam segment of MLC generated by the CORVUS treatment planning system was performed with clinical intensity map experiments. The treatment plans were optimized and the fluence maps for all photon beams were determined. This algorithm started with the algebraic expression for the area under the beammore » profile. The coefficients in the expression can be transformed into the specifications for the leaf-setting sequence. The leaf optimization procedure was then applied and analyzed for clinical relevant intensity profiles in cancer treatment. Results: The macrophysical effect of this method can be described by volumetric plan evaluation tools such as dose-volume histograms (DVHs). The DVH results are in good agreement compared to those from the CORVUS treatment planning system. Conclusion: We developed a dynamic MLC method to examine the stability of leaf speed including effects of acceleration and deceleration of leaf motion in order to make sure the stability of leaf speed did not affect the intensity profile generated. It was found that the mechanical requirements were better satisfied using this method. The Project is sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.« less

  4. Seasonal leaf dynamics across a tree density gradient in a Brazilian savanna.

    Treesearch

    William A. Hoffmann; Edson Rangel da Silva; Gustavo C. Machado; Sandra Bucci; Fabian G. Scholz; Guillermo Goldstein; Frederick C. Meinzer

    2005-01-01

    Interactions between trees and grasses that influence leaf area index (LAI) have important consequences for savanna ecosystem processes through their controls on water, carbon, and energy fluxes as well as fire regimes. We measured LAI, of the groundlayer (herbaceous and woody plants 1-m tall), in the Brazilian...

  5. Leaf and fine root carbon stocks and turnover are coupled across Arctic ecosystems.

    PubMed

    Sloan, Victoria L; Fletcher, Benjamin J; Press, Malcolm C; Williams, Mathew; Phoenix, Gareth K

    2013-12-01

    Estimates of vegetation carbon pools and their turnover rates are central to understanding and modelling ecosystem responses to climate change and their feedbacks to climate. In the Arctic, a region containing globally important stores of soil carbon, and where the most rapid climate change is expected over the coming century, plant communities have on average sixfold more biomass below ground than above ground, but knowledge of the root carbon pool sizes and turnover rates is limited. Here, we show that across eight plant communities, there is a significant positive relationship between leaf and fine root turnover rates (r(2) = 0.68, P < 0.05), and that the turnover rates of both leaf (r(2) = 0.63, P < 0.05) and fine root (r(2) = 0.55, P < 0.05) pools are strongly correlated with leaf area index (LAI, leaf area per unit ground area). This coupling of root and leaf dynamics supports the theory of a whole-plant economics spectrum. We also show that the size of the fine root carbon pool initially increases linearly with increasing LAI, and then levels off at LAI = 1 m(2) m(-2), suggesting a functional balance between investment in leaves and fine roots at the whole community scale. These ecological relationships not only demonstrate close links between above and below-ground plant carbon dynamics but also allow plant carbon pool sizes and their turnover rates to be predicted from the single readily quantifiable (and remotely sensed) parameter of LAI, including the possibility of estimating root data from satellites. © 2013 John Wiley & Sons Ltd.

  6. Predicting vegetation type through physiological and environmental interactions with leaf traits: evergreen and deciduous forests in an earth system modeling framework.

    PubMed

    Weng, Ensheng; Farrior, Caroline E; Dybzinski, Ray; Pacala, Stephen W

    2017-06-01

    Earth system models are incorporating plant trait diversity into their land components to better predict vegetation dynamics in a changing climate. However, extant plant trait distributions will not allow extrapolations to novel community assemblages in future climates, which will require a mechanistic understanding of the trade-offs that determine trait diversity. In this study, we show how physiological trade-offs involving leaf mass per unit area (LMA), leaf lifespan, leaf nitrogen, and leaf respiration may explain the distribution patterns of evergreen and deciduous trees in the temperate and boreal zones based on (1) an evolutionary analysis of a simple mathematical model and (2) simulation experiments of an individual-based dynamic vegetation model (i.e., LM3-PPA). The evolutionary analysis shows that these leaf traits set up a trade-off between carbon- and nitrogen-use efficiency at the scale of individual trees and therefore determine competitively dominant leaf strategies. As soil nitrogen availability increases, the dominant leaf strategy switches from one that is high in nitrogen-use efficiency to one that is high in carbon-use efficiency or, equivalently, from high-LMA/long-lived leaves (i.e., evergreen) to low-LMA/short-lived leaves (i.e., deciduous). In a region of intermediate soil nitrogen availability, the dominant leaf strategy may be either deciduous or evergreen depending on the initial conditions of plant trait abundance (i.e., founder controlled) due to feedbacks of leaf traits on soil nitrogen mineralization through litter quality. Simulated successional patterns by LM3-PPA from the leaf physiological trade-offs are consistent with observed successional dynamics of evergreen and deciduous forests at three sites spanning the temperate to boreal zones. © 2016 John Wiley & Sons Ltd.

  7. Growth and photosynthesis of Japanese flowering cherry under simulated microgravity conditions

    NASA Technical Reports Server (NTRS)

    Sugano, Mami; Ino, Yoshio; Nakamura, Teruko

    2002-01-01

    The photosynthetic rate, the leaf characteristics related to photosynthesis, such as the chlorophyll content, chlorophyll a/b ratio and density of the stomata, the leaf area and the dry weight in seedlings of Japanese flowering cherry grown under normal gravity and simulated microgravity conditions were examined. No significant differences were found in the photosynthetic rates between the two conditions. Moreover, leaf characteristics such as the chlorophyll content, chlorophyll a/b ratio and density of the stomata in the seedlings grown under the simulated microgravity condition were not affected. However, the photosynthetic product of the whole seedling under the simulated microgravity condition increased compared with the control due to its leaf area increase. The results suggest that dynamic gravitational stimulus controls the partitioning of the products of photosynthesis.

  8. Interannual Variation in Stand Transpiration is Dependent Upon Tree Species

    NASA Astrophysics Data System (ADS)

    Ewers, B. E.; Mackay, D. S.; Burrows, S. N.; Ahl, D. E.; Samanta, S.

    2003-12-01

    In order to successfully predict transpirational water fluxes from forested watersheds, interannual variability in transpiration must be quantified and understood. In a heterogeneous forested landscape in northern Wisconsin, we quantified stand transpiration across four forest cover types representing more than 80 percent of the land area in order to 1) quantify differences in stand transpiration and leaf area over two years and 2) determine the mechanisms governing the changes in transpiration over two years. We measured sap flux in eight trees of each tree species in the four cover types. We found that in northern hardwoods, the leaf area of sugar maple increased between the two measurement years with transpiration per unit ground area increasing even more than could be explained by leaf area. In an aspen stand, tent caterpillars completely defoliated the stand for approximately a month until a new set of leaves flushed out. The new set of leaves resulted in a lower leaf area but the same transpiration per unit leaf area indicating there was no physiological compensation for the lower leaf area. At the same time, balsam fir growing underneath the aspen increased their transpiration rate in response to greater light penetration through the dominant aspen canopy Red pine had a thirty percent change in leaf area within a growing season due to multiple cohorts of leaves and transpiration followed this leaf area dynamic. In a forested wetland, white cedar transpiration was proportional to surface water depth between the two years. Despite the specific tree species' effects on stand transpiration, all species displayed a minimum water potential regulation resulting in a saturating response of transpiration to vapor pressure deficit that did not vary across the two years. This physiological set point will allow future water flux models to explain mechanistically interannual variability in transpiration of this and similar forests.

  9. Leaf Area Adjustment As an Optimal Drought-Adaptation Strategy

    NASA Astrophysics Data System (ADS)

    Manzoni, S.; Beyer, F.; Thompson, S. E.; Vico, G.; Weih, M.

    2014-12-01

    Leaf phenology plays a major role in land-atmosphere mass and energy exchanges. Much work has focused on phenological responses to light and temperature, but less to leaf area changes during dry periods. Because the duration of droughts is expected to increase under future climates in seasonally-dry as well as mesic environments, it is crucial to (i) predict drought-related phenological changes and (ii) to develop physiologically-sound models of leaf area dynamics during dry periods. Several optimization criteria have been proposed to model leaf area adjustment as soil moisture decreases. Some theories are based on the plant carbon (C) balance, hypothesizing that leaf area will decline when instantaneous net photosynthetic rates become negative (equivalent to maximization of cumulative C gain). Other theories draw on hydraulic principles, suggesting that leaf area should adjust to either maintain a constant leaf water potential (isohydric behavior) or to avoid leaf water potentials with negative impacts on photosynthesis (i.e., minimization of water stress). Evergreen leaf phenology is considered as a control case. Merging these theories into a unified framework, we quantify the effect of phenological strategy and climate forcing on the net C gain over the entire growing season. By accounting for the C costs of leaf flushing and the gains stemming from leaf photosynthesis, this metric assesses the effectiveness of different phenological strategies, under different climatic scenarios. Evergreen species are favored only when the dry period is relatively short, as they can exploit most of the growing season, and only incur leaf maintenance costs during the short dry period. In contrast, deciduous species that lower maintenance costs by losing leaves are advantaged under drier climates. Moreover, among drought-deciduous species, isohydric behavior leads to lowest C gains. Losing leaves gradually so as to maintain a net C uptake equal to zero during the driest period in the growing season provides the highest gain. Since these strategies are all defined based on often-modeled quantities, they can be implemented in ecosystem models depending on plant functional type and climate.

  10. Detection of Chlorophyll and Leaf Area Index Dynamics from Sub-weekly Hyperspectral Imagery

    NASA Technical Reports Server (NTRS)

    Houborg, Rasmus; McCabe, Matthew F.; Angel, Yoseline; Middleton, Elizabeth M.

    2016-01-01

    Temporally rich hyperspectral time-series can provide unique time critical information on within-field variations in vegetation health and distribution needed by farmers to effectively optimize crop production. In this study, a dense time series of images were acquired from the Earth Observing-1 (EO-1) Hyperion sensor over an intensive farming area in the center of Saudi Arabia. After correction for atmospheric effects, optimal links between carefully selected explanatory hyperspectral vegetation indices and target vegetation characteristics were established using a machine learning approach. A dataset of in-situ measured leaf chlorophyll (Chll) and leaf area index (LAI), collected during five intensive field campaigns over a variety of crop types, were used to train the rule-based predictive models. The ability of the narrow-band hyperspectral reflectance information to robustly assess and discriminate dynamics in foliar biochemistry and biomass through empirical relationships were investigated. This also involved evaluations of the generalization and reproducibility of the predictions beyond the conditions of the training dataset. The very high temporal resolution of the satellite retrievals constituted a specifically intriguing feature that facilitated detection of total canopy Chl and LAI dynamics down to sub-weekly intervals. The study advocates the benefits associated with the availability of optimum spectral and temporal resolution spaceborne observations for agricultural management purposes.

  11. Detection of chlorophyll and leaf area index dynamics from sub-weekly hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Houborg, Rasmus; McCabe, Matthew F.; Angel, Yoseline; Middleton, Elizabeth M.

    2016-10-01

    Temporally rich hyperspectral time-series can provide unique time critical information on within-field variations in vegetation health and distribution needed by farmers to effectively optimize crop production. In this study, a dense timeseries of images were acquired from the Earth Observing-1 (EO-1) Hyperion sensor over an intensive farming area in the center of Saudi Arabia. After correction for atmospheric effects, optimal links between carefully selected explanatory hyperspectral vegetation indices and target vegetation characteristics were established using a machine learning approach. A dataset of in-situ measured leaf chlorophyll (Chll) and leaf area index (LAI), collected during five intensive field campaigns over a variety of crop types, were used to train the rule-based predictive models. The ability of the narrow-band hyperspectral reflectance information to robustly assess and discriminate dynamics in foliar biochemistry and biomass through empirical relationships were investigated. This also involved evaluations of the generalization and reproducibility of the predictions beyond the conditions of the training dataset. The very high temporal resolution of the satellite retrievals constituted a specifically intriguing feature that facilitated detection of total canopy Chl and LAI dynamics down to sub-weekly intervals. The study advocates the benefits associated with the availability of optimum spectral and temporal resolution spaceborne observations for agricultural management purposes.

  12. Leaf dynamics and profitability in wild strawberries.

    PubMed

    Jurik, Thomas W; Chabot, Brian F

    1986-05-01

    Leaf dynamics and carbon gain were evaluated for two species of wild strawberry, Fragaria virginiana and F. vesca. Five populations on sites representing a gradient of successional regrowth near Ithaca, N.Y., U.S.A., were studied for two or three years each. A computer-based model of plant growth and CO 2 exchange combined field studies of leaf biomass dynamics with previously-determined gas exchange rates to estimate carbon balances of leaves and whole plants in different environments.Leaves were produced throughout the growing season, although there was usually a decline in rate of leaf-production in mid-summer. Leaves produced in late spring had the largest area and longest lifespan (except for overwintering leaves produced in the fall). Specific Leaf Weight (SLW) varied little with time of leaf production, but differed greatly among populations; SLW increased with amount of light received in each habitat. The population in the most open habitat had the least seasonal variation in all leaf characters. F. vesca produced lighter, longer-lived leaves than F. virginiana.Simulations showed that age had the largest effect on leaf carbon gain in high-light environments; water stress and temperature had lesser effects. Leaf carbon gain in lowlight environments was relatively unaffected by age and environmental factors other than light. Leaves in high-light environments had the greatest lifetime profit and the greatest ratio of profit to cost. Increasing lifespan by 1/3 increased profit by 80% in low-light leaves and 50% in high-light leaves. Increasing the number of days during which the leaf had the potential to exhibit high photosynthetic rate in response to high light led to little change in profit of low-light leaves while increasing profit of high-light leaves by 49%.

  13. A Method for Calculating the Area of Zostera marina Leaves from Digital Images with Noise Induced by Humidity Content

    PubMed Central

    Leal-Ramirez, Cecilia

    2014-01-01

    Despite the ecological importance of eelgrass, nowadays anthropogenic influences have produced deleterious effects in many meadows worldwide. Transplantation plots are commonly used as a feasible remediation scheme. The characterization of eelgrass biomass and its dynamics is an important input for the assessment of the overall status of both natural and transplanted populations. Particularly, in restoration plots it is desirable to obtain nondestructive assessments of these variables. Allometric models allow the expression of above ground biomass and productivity of eelgrass in terms of leaf area, which provides cost effective and nondestructive assessments. Leaf area in eelgrass can be conveniently obtained by the product of associated length and width. Although these variables can be directly measured on most sampled leaves, digital image methods could be adapted in order to simplify measurements. Nonetheless, since width to length ratios in eelgrass leaves could be even negligible, noise induced by leaf humidity content could produce misidentification of pixels along the peripheral contour of leaves images. In this paper, we present a procedure aimed to produce consistent estimations of eelgrass leaf area in the presence of the aforementioned noise effects. Our results show that digital image procedures can provide reliable, nondestructive estimations of eelgrass leaf area. PMID:24892089

  14. Interacting Effects of Leaf Water Potential and Biomass on Vegetation Optical Depth

    NASA Astrophysics Data System (ADS)

    Momen, Mostafa; Wood, Jeffrey D.; Novick, Kimberly A.; Pangle, Robert; Pockman, William T.; McDowell, Nate G.; Konings, Alexandra G.

    2017-11-01

    Remotely sensed microwave observations of vegetation optical depth (VOD) have been widely used for examining vegetation responses to climate. Nevertheless, the relative impacts of phenological changes in leaf biomass and water stress on VOD have not been explicitly disentangled. In particular, determining whether leaf water potential (ψL) affects VOD may allow these data sets as a constraint for plant hydraulic models. Here we test the sensitivity of VOD to variations in ψL and present a conceptual framework that relates VOD to ψL and total biomass including leaves, whose dynamics are measured through leaf area index, and woody components. We used measurements of ψL from three sites across the US—a mixed deciduous forests in Indiana and Missouri and a piñon-juniper woodland in New Mexico—to validate the conceptual model. The temporal dynamics of X-band VOD were similar to those of the VOD signal estimated from the new conceptual model with observed ψL (R2 = 0.6-0.8). At the global scale, accounting for a combination of biomass and estimated ψL (based on satellite surface soil moisture data) increased correlations with VOD by 15% and 30% compared to biomass and water potential, respectively. In wetter regions with denser and taller canopy heights, VOD has a higher correlation with leaf area index than with water stress and vice versa in drier regions. Our results demonstrate that variations in both phenology and ψL must be considered to accurately interpret the dynamics of VOD observations for ecological applications.

  15. Modeling Allometric Relationships in Leaves of Young Rapeseed (Brassica napus L.) Grown at Different Temperature Treatments

    PubMed Central

    Tian, Tian; Wu, Lingtong; Henke, Michael; Ali, Basharat; Zhou, Weijun; Buck-Sorlin, Gerhard

    2017-01-01

    Functional–structural plant modeling (FSPM) is a fast and dynamic method to predict plant growth under varying environmental conditions. Temperature is a primary factor affecting the rate of plant development. In the present study, we used three different temperature treatments (10/14°C, 18/22°C, and 26/30°C) to test the effect of temperature on growth and development of rapeseed (Brassica napus L.) seedlings. Plants were sampled at regular intervals (every 3 days) to obtain growth data during the length of the experiment (1 month in total). Total leaf dry mass, leaf area, leaf mass per area (LMA), width-length ratio, and the ratio of petiole length to leaf blade length (PBR), were determined and statistically analyzed, and contributed to a morphometric database. LMA under high temperature was significantly smaller than LMA under medium and low temperature, while leaves at high temperature were significantly broader. An FSPM of rapeseed seedlings featuring a growth function used for leaf extension and biomass accumulation was implemented by combining measurement with literature data. The model delivered new insights into growth and development dynamics of winter oilseed rape seedlings. The present version of the model mainly focuses on the growth of plant leaves. However, future extensions of the model could be used in practice to better predict plant growth in spring and potential cold damage of the crop. PMID:28377775

  16. Leaf aging of Amazonian canopy trees as revealed by spectral and physiochemical measurements.

    PubMed

    Chavana-Bryant, Cecilia; Malhi, Yadvinder; Wu, Jin; Asner, Gregory P; Anastasiou, Athanasios; Enquist, Brian J; Cosio Caravasi, Eric G; Doughty, Christopher E; Saleska, Scott R; Martin, Roberta E; Gerard, France F

    2017-05-01

    Leaf aging is a fundamental driver of changes in leaf traits, thereby regulating ecosystem processes and remotely sensed canopy dynamics. We explore leaf reflectance as a tool to monitor leaf age and develop a spectra-based partial least squares regression (PLSR) model to predict age using data from a phenological study of 1099 leaves from 12 lowland Amazonian canopy trees in southern Peru. Results demonstrated monotonic decreases in leaf water (LWC) and phosphorus (P mass ) contents and an increase in leaf mass per unit area (LMA) with age across trees; leaf nitrogen (N mass ) and carbon (C mass ) contents showed monotonic but tree-specific age responses. We observed large age-related variation in leaf spectra across trees. A spectra-based model was more accurate in predicting leaf age (R 2  = 0.86; percent root mean square error (%RMSE) = 33) compared with trait-based models using single (R 2  = 0.07-0.73; %RMSE = 7-38) and multiple (R 2  = 0.76; %RMSE = 28) predictors. Spectra- and trait-based models established a physiochemical basis for the spectral age model. Vegetation indices (VIs) including the normalized difference vegetation index (NDVI), enhanced vegetation index 2 (EVI2), normalized difference water index (NDWI) and photosynthetic reflectance index (PRI) were all age-dependent. This study highlights the importance of leaf age as a mediator of leaf traits, provides evidence of age-related leaf reflectance changes that have important impacts on VIs used to monitor canopy dynamics and productivity and proposes a new approach to predicting and monitoring leaf age with important implications for remote sensing. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  17. Combined effects of climate and land management on watershed vegetation dynamics in an arid environment

    Treesearch

    Peilong Liu; Lu Hao; Cen Pan; Decheng Zhou; Yongqiang Liu; Ge Sun

    2017-01-01

    Leaf area index (LAI) is a key parameter to characterize vegetation dynamics and ecosystemstructure that determines the ecosystem functions and services such as cleanwater supply and carbon sequestration in awatershed. However, linking LAI dynamics and environmental controls (i.e., coupling biosphere, atmosphere, and anthroposphere) remains challenging and such type of...

  18. Interacting Effects of Leaf Water Potential and Biomass on Vegetation Optical Depth: Effects of LWP and Biomass on VOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momen, Mostafa; Wood, Jeffrey D.; Novick, Kimberly A.

    Remotely sensed microwave observations of vegetation optical depth (VOD) have been widely used for examining vegetation responses to climate. Nevertheless, the relative impacts of phenological changes in leaf biomass and water stress on VOD have not been explicitly disentangled. In particular, determining whether leaf water potential (ψL) affects VOD may allow these data sets as a constraint for plant hydraulic models. Here we test the sensitivity of VOD to variations in ψL and present a conceptual framework that relates VOD to ψL and total biomass including leaves, whose dynamics are measured through leaf area index, and woody components. We usedmore » measurements of ψL from three sites across the US—a mixed deciduous forests in Indiana and Missouri and a piñon-juniper woodland in New Mexico—to validate the conceptual model. The temporal dynamics of X-band VOD were similar to those of the VOD signal estimated from the new conceptual model with observed ψL (R2 = 0.6–0.8). At the global scale, accounting for a combination of biomass and estimated ψL (based on satellite surface soil moisture data) increased correlations with VOD by ~ 15% and 30% compared to biomass and water potential, respectively. In wetter regions with denser and taller canopy heights, VOD has a higher correlation with leaf area index than with water stress and vice versa in drier regions. Our results demonstrate that variations in both phenology and ψL must be considered to accurately interpret the dynamics of VOD observations for ecological applications.« less

  19. Spatial distribution of tree species governs the spatio-temporal interaction of leaf area index and soil moisture across a forested landscape.

    PubMed

    Naithani, Kusum J; Baldwin, Doug C; Gaines, Katie P; Lin, Henry; Eissenstat, David M

    2013-01-01

    Quantifying coupled spatio-temporal dynamics of phenology and hydrology and understanding underlying processes is a fundamental challenge in ecohydrology. While variation in phenology and factors influencing it have attracted the attention of ecologists for a long time, the influence of biodiversity on coupled dynamics of phenology and hydrology across a landscape is largely untested. We measured leaf area index (L) and volumetric soil water content (θ) on a co-located spatial grid to characterize forest phenology and hydrology across a forested catchment in central Pennsylvania during 2010. We used hierarchical Bayesian modeling to quantify spatio-temporal patterns of L and θ. Our results suggest that the spatial distribution of tree species across the landscape created unique spatio-temporal patterns of L, which created patterns of water demand reflected in variable soil moisture across space and time. We found a lag of about 11 days between increase in L and decline in θ. Vegetation and soil moisture become increasingly homogenized and coupled from leaf-onset to maturity but heterogeneous and uncoupled from leaf maturity to senescence. Our results provide insight into spatio-temporal coupling between biodiversity and soil hydrology that is useful to enhance ecohydrological modeling in humid temperate forests.

  20. Phytoluminographic Detection of Dynamic Variations in Leaf Gaseous Conductivity 1

    PubMed Central

    Ellenson, James L.

    1985-01-01

    Gas exchange and plant luminescence (delayed light emission) of a single red kidney bean leaf undergoing synchronous oscillations in gas exchange were recorded and analyzed. Introduction of 1.1 microliter per liter SO2 during these oscillations produced increases in plant luminescence that, when averaged over a portion of the leaf, oscillated in phase with the gas exchange oscillations. However, examination of a video record of the plant luminescence showed not only that luminescence intensities tended to be localized within discrete areas of the leaf, but that the time-dependence of luminescence intensities within these regions varied considerably from the period, amplitude, and often phase of the overall gas exchange oscillations. The video recording also showed that changes in luminescence intensities appeared to migrate across the leaf in wave-like patterns. These data are interpreted in terms of localized fluctuations in gaseous conductances of the leaf. Images Fig. 3 PMID:16664350

  1. Storage nitrogen co-ordinates leaf expansion and photosynthetic capacity in winter oilseed rape

    PubMed Central

    Liu, Tao; Ren, Tao; White, Philip J; Cong, Rihuan

    2018-01-01

    Abstract Storage nitrogen (N) is a buffer pool for maintaining leaf growth and synthesizing photosynthetic proteins, but the dynamics of its forms within the life cycle of a single leaf and how it is influenced by N supply remain poorly understood. A field experiment was conducted to estimate the influence of N supply on leaf growth, photosynthetic characteristics, and N partitioning inthe sixth leaf of winter oilseed rape (Brassica napus L.) from emergence through senescence. Storage N content (Nstore) decreased gradually along with leaf expansion. The relative growth rate based on leaf area (RGRa) was positively correlated with Nstore during leaf expansion. The water-soluble protein form of storage N was the main N source for leaf expansion. After the leaves fully expanded, the net photosynthetic rate (An) followed a linear–plateau response to Nstore, with An stabilizing at the highest value above a threshold and declining below the threshold. Non-protein and SDS (detergent)-soluble protein forms of storage N were the main N sources for maintaining photosynthesis. For the leaf N economy, storage N is used for co-ordinating leaf expansion and photosynthetic capacity. N supply can improve Nstore, thereby promoting leaf growth and biomass. PMID:29669007

  2. Temporal variation of intertidal seagrass in southern China (2008-2014)

    NASA Astrophysics Data System (ADS)

    Qiu, Guanglong; Short, Frederick T.; Fan, Hangqing; Liu, Guohua

    2017-09-01

    Understanding the temporal dynamics of seagrasses and the major influences on seagrass growth is critical for seagrass habitat conservation and administration. However, little work has been done regarding these issues in southern China. To examine inter-annual and seasonal variations of the intertidal Halophila ovalis community in southern China, we conducted quarterly sampling using the SeagrassNet methodology and assessed environmental conditions as well as direct anthropogenic impacts on the seagrass meadow from July 2008 to October 2014. Our study demonstrated strong inter-annual and seasonal dynamics of the intertidal seagrass meadow in the study area. Generally, the community performed best (highest seagrass cover, leaf area, shoot density, total biomass) in summer and worst in spring among the 4 seasons. The temporal variations in the seagrass community attributes (e.g. above-ground biomass) were significantly affected by precipitation, atmospheric visibility, and salinity, while leaf width was significantly negatively correlated with temperature, atmospheric visibility and salinity. Temperature was a major factor influencing the seagrass community (both macroalgae and seagrass), with temperature data showing an inverse relationship between seagrass and macroalgae. The above-ground: below-ground biomass ratio and leaf width of H. ovalis were the most sensitive plant parameters monitored when assessing environmental interactions. Human physical disturbances did not have a significant effect on seagrass dynamics in the study area. We concluded that long-term monitoring (like SeagrassNet) is valuable in understanding the relationship between environmental variables and seagrasses.

  3. Non-indigenous bamboo along headwater streams of the Luquillo Mountains, Puerto Rico: leaf fall, aquatic leaf decay and patterns of invasion

    Treesearch

    PAUL J. O' CONNOR; ALAN P. COVICH; F. N. SCATENA; LLOYD L. LOOPE

    2000-01-01

    The introduction of bamboo to montane rain forests of the Luquillo Mountains, Puerto Rico in the 1930s and 1940s has led to present-day bamboo monocultures in numerous riparian areas. When a non-native species invades a riparian ecosystem, in-stream detritivores can be affected. Bamboo dynamics expected to in¯uence stream communities in the Luquillo Experimental Forest...

  4. Elevated CO2 alters distribution of nodal leaf area and enhances nitrogen uptake contributing to yield increase of soybean cultivars grown in Mollisols.

    PubMed

    Jin, Jian; Li, Yansheng; Liu, Xiaobing; Wang, Guanghua; Tang, Caixian; Yu, Zhenhua; Wang, Xiaojuan; Herbert, Stephen J

    2017-01-01

    Understanding how elevated CO2 affects dynamics of nodal leaf growth and N assimilation is crucial for the construction of high-yielding canopy via breeding and N management to cope with the future climate change. Two soybean cultivars were grown in two Mollisols differing in soil organic carbon (SOC), and exposed to ambient CO2 (380 ppm) or elevated CO2 (580 ppm) throughout the growth stages. Elevated CO2 induced 4-5 more nodes, and nearly doubled the number of branches. Leaf area duration at the upper nodes from R5 to R6 was 4.3-fold greater and that on branches 2.4-fold higher under elevated CO2 than ambient CO2, irrespective of cultivar and soil type. As a result, elevated CO2 markedly increased the number of pods and seeds at these corresponding positions. The yield response to elevated CO2 varied between the cultivars but not soils. The cultivar-specific response was likely attributed to N content per unit leaf area, the capacity of C sink in seeds and N assimilation. Elevated CO2 did not change protein concentration in seeds of either cultivar. These results indicate that elevated CO2 increases leaf area towards the upper nodes and branches which in turn contributes yield increase.

  5. [Indoor simulation on dew formation on plant leaves].

    PubMed

    Gao, Zhi-Yong; Wang, You-Ke; Wei, Xin-Guang; Liu, Shou-Yang; He, Zi-Li; Zhou, Yu-Hong

    2014-03-01

    Dew forming on plant leaves through water condensation plays a significant ecological role in arid and semi-arid areas as an ignorable fraction of water resources. In this study, an artificial intelligent climate chamber and an automatic temperature-control system for leaves were implemented to regulate the ambient temperature, the leaf surface temperature and the leaf inclination for dew formation. The impact of leaf inclination, ambient temperature and dew point-leaf temperature depression on the rate and quantity of dew accumulation on leaf surface were analyzed. The results indicated that the accumulation rate and the maximum volume of dew on leaves decreased with increasing the leaf inclination while increased with the increment of dew point-leaf temperature depression, ambient temperature and relative humidity. Under the horizontal configuration, dew accumulated linearly on leaf surface over time until the maximum volume (0.80 mm) was reached. However, dew would fall down after reaching the maximum volume when the leaf inclination existed (45 degrees or 90 degrees), significantly slowing down the accumulative rate, and the zigzag pattern for the dynamic of dew accumulation appeared.

  6. Leaf Phenology of Amazonian Canopy Trees as Revealed by Spectral and Physiochemical Measurements

    NASA Astrophysics Data System (ADS)

    Chavana-Bryant, C.; Gerard, F. F.; Malhi, Y.; Enquist, B. J.; Asner, G. P.

    2013-12-01

    The phenological dynamics of terrestrial ecosystems reflect the response of the Earth's biosphere to inter- and intra-annual dynamics of climatic and hydrological regimes. Some Dynamic Global Vegetation Models (GDVMs) have predicted that by 2050 the Amazon rainforest will begin to dieback (Cox et al. 2000, Nature) or that the ecosystem will become unsustainable (Salazar et al. 2007, GRL). One major component in DGVMs is the simulation of vegetation phenology, however, modelers are challenged with the estimation of tropical phenology which is highly complex. Current modeled phenology is based on observations of temperate vegetation and accurate representation of tropical phenology is long overdue. Remote sensing (RS) data are a key tool in monitoring vegetation dynamics at regional and global scales. Of the many RS techniques available, time-series analysis of vegetation indices (VIs) has become the most common approach in monitoring vegetation phenology (Samanta et al. 2010, GRL; Bradley et al. 2011, GCB). Our research focuses on investigating the influence that age related variation in the spectral reflectance and physiochemical properties of leaves may have on VIs of tropical canopies. In order to do this, we collected a unique leaf and canopy phenological dataset at two different Amazonian sites: Inselberg, French Guyana (FG) and Tambopata, Peru (PE). Hyperspectral reflectance measurements were collected from 4,102 individual leaves sampled to represent different leaf ages and vertical canopy positions (top, mid and low canopy) from 20 different canopy tree species (8 in FG and 12 in PE). These leaf spectra were complemented with 1) leaf physical measurements: fresh and dry weight, area and thickness, LMA and LWC and 2) leaf chemical measurements: %N, %C, %P, C:N and d13C. Canopy level observations included top-of-canopy reflectance measurements obtained using a multispectral 16-band radiometer, leaf demography (tot. number and age distribution) and branch structural measurements (space between leaves, min. and max. season's growth and diameter) of two 1m branches harvested from each canopy level. Both leaf and canopy-level observations where collected monthly when trees where not in flush and weekly during the period of leaf flushing. Here, we present our leaf spectral and physiochemical results. Results show 1) changes in leaf spectral and physiochemical properties related to leaf age, 2) the most significant changes in the leaves' spectrum during different stages in their life cycle, and 3) how leaf spectral changes are related to changes in the chemical and physical properties of the leaves as they progress through their life cycle. Future work will involve the incorporation of leaf and canopy observations into a light canopy interaction model to investigate the possibility that seasonal variation in VIs may be driven by leaf aging as well as by the shedding or appearance of new leaves.

  7. Quantification of the effects of architectural traits on dry mass production and light interception of tomato canopy under different temperature regimes using a dynamic functional–structural plant model

    PubMed Central

    Chen, Tsu-Wei; Nguyen, Thi My Nguyet; Kahlen, Katrin; Stützel, Hartmut

    2014-01-01

    There is increasing interest in evaluating the environmental effects on crop architectural traits and yield improvement. However, crop models describing the dynamic changes in canopy structure with environmental conditions and the complex interactions between canopy structure, light interception, and dry mass production are only gradually emerging. Using tomato (Solanum lycopersicum L.) as a model crop, a dynamic functional–structural plant model (FSPM) was constructed, parameterized, and evaluated to analyse the effects of temperature on architectural traits, which strongly influence canopy light interception and shoot dry mass. The FSPM predicted the organ growth, organ size, and shoot dry mass over time with high accuracy (>85%). Analyses of this FSPM showed that, in comparison with the reference canopy, shoot dry mass may be affected by leaf angle by as much as 20%, leaf curvature by up to 7%, the leaf length:width ratio by up to 5%, internode length by up to 9%, and curvature ratios and leaf arrangement by up to 6%. Tomato canopies at low temperature had higher canopy density and were more clumped due to higher leaf area and shorter internodes. Interestingly, dry mass production and light interception of the clumped canopy were more sensitive to changes in architectural traits. The complex interactions between architectural traits, canopy light interception, dry mass production, and environmental conditions can be studied by the dynamic FSPM, which may serve as a tool for designing a canopy structure which is ‘ideal’ in a given environment. PMID:25183746

  8. How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis.

    PubMed

    Sack, Lawren; Scoffoni, Christine; John, Grace P; Poorter, Hendrik; Mason, Chase M; Mendez-Alonzo, Rodrigo; Donovan, Lisa A

    2013-10-01

    Leaf vein traits are implicated in the determination of gas exchange rates and plant performance. These traits are increasingly considered as causal factors affecting the 'leaf economic spectrum' (LES), which includes the light-saturated rate of photosynthesis, dark respiration, foliar nitrogen concentration, leaf dry mass per area (LMA) and leaf longevity. This article reviews the support for two contrasting hypotheses regarding a key vein trait, vein length per unit leaf area (VLA). Recently, Blonder et al. (2011, 2013) proposed that vein traits, including VLA, can be described as the 'origin' of the LES by structurally determining LMA and leaf thickness, and thereby vein traits would predict LES traits according to specific equations. Careful re-examination of leaf anatomy, published datasets, and a newly compiled global database for diverse species did not support the 'vein origin' hypothesis, and moreover showed that the apparent power of those equations to predict LES traits arose from circularity. This review provides a 'flux trait network' hypothesis for the effects of vein traits on the LES and on plant performance, based on a synthesis of the previous literature. According to this hypothesis, VLA, while virtually independent of LMA, strongly influences hydraulic conductance, and thus stomatal conductance and photosynthetic rate. We also review (i) the specific physiological roles of VLA; (ii) the role of leaf major veins in influencing LES traits; and (iii) the role of VLA in determining photosynthetic rate per leaf dry mass and plant relative growth rate. A clear understanding of leaf vein traits provides a new perspective on plant function independently of the LES and can enhance the ability to explain and predict whole plant performance under dynamic conditions, with applications towards breeding improved crop varieties.

  9. Earth Observation and Science: Monitoring Vegetation Dynamics from Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Knyazikhin, Y.; Park, T.; Hu, B.

    2018-02-01

    Retrieving diurnal courses of sunlit (SLAI) and shaded (ShLAI) leaf area indices, fraction of photosynthetically active radiation (PAR) absorbed by vegetation (FPAR), and Normalized Difference Vegetation Index (NDVI) from Deep Space Gateway data.

  10. Variability of Phenology and Fluxes of Water and Carbon with Observed and Simulated Soil Moisture in the Ent Terrestrial Biosphere Model (Ent TBM Version 1.0.1.0.0)

    NASA Technical Reports Server (NTRS)

    Kim, Y.; Moorcroft, P. R.; Aleinov, Igor; Puma, M. J.; Kiang, N. Y.

    2015-01-01

    The Ent Terrestrial Biosphere Model (Ent TBM) is a mixed-canopy dynamic global vegetation model developed specifically for coupling with land surface hydrology and general circulation models (GCMs). This study describes the leaf phenology submodel implemented in the Ent TBM version 1.0.1.0.0 coupled to the carbon allocation scheme of the Ecosystem Demography (ED) model. The phenology submodel adopts a combination of responses to temperature (growing degree days and frost hardening), soil moisture (linearity of stress with relative saturation) and radiation (light length). Growth of leaves, sapwood, fine roots, stem wood and coarse roots is updated on a daily basis. We evaluate the performance in reproducing observed leaf seasonal growth as well as water and carbon fluxes for four plant functional types at five Fluxnet sites, with both observed and prognostic hydrology, and observed and prognostic seasonal leaf area index. The phenology submodel is able to capture the timing and magnitude of leaf-out and senescence for temperate broadleaf deciduous forest (Harvard Forest and Morgan- Monroe State Forest, US), C3 annual grassland (Vaira Ranch, US) and California oak savanna (Tonzi Ranch, US). For evergreen needleleaf forest (Hyytiäla, Finland), the phenology submodel captures the effect of frost hardening of photosynthetic capacity on seasonal fluxes and leaf area. We address the importance of customizing parameter sets of vegetation soil moisture stress response to the particular land surface hydrology scheme. We identify model deficiencies that reveal important dynamics and parameter needs.

  11. Variability of phenology and fluxes of water and carbon with observed and simulated soil moisture in the Ent Terrestrial Biosphere Model (Ent TBM version 1.0.1.0.0)

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Moorcroft, P. R.; Aleinov, I.; Puma, M. J.; Kiang, N. Y.

    2015-12-01

    The Ent Terrestrial Biosphere Model (Ent TBM) is a mixed-canopy dynamic global vegetation model developed specifically for coupling with land surface hydrology and general circulation models (GCMs). This study describes the leaf phenology submodel implemented in the Ent TBM version 1.0.1.0.0 coupled to the carbon allocation scheme of the Ecosystem Demography (ED) model. The phenology submodel adopts a combination of responses to temperature (growing degree days and frost hardening), soil moisture (linearity of stress with relative saturation) and radiation (light length). Growth of leaves, sapwood, fine roots, stem wood and coarse roots is updated on a daily basis. We evaluate the performance in reproducing observed leaf seasonal growth as well as water and carbon fluxes for four plant functional types at five Fluxnet sites, with both observed and prognostic hydrology, and observed and prognostic seasonal leaf area index. The phenology submodel is able to capture the timing and magnitude of leaf-out and senescence for temperate broadleaf deciduous forest (Harvard Forest and Morgan-Monroe State Forest, US), C3 annual grassland (Vaira Ranch, US) and California oak savanna (Tonzi Ranch, US). For evergreen needleleaf forest (Hyytiäla, Finland), the phenology submodel captures the effect of frost hardening of photosynthetic capacity on seasonal fluxes and leaf area. We address the importance of customizing parameter sets of vegetation soil moisture stress response to the particular land surface hydrology scheme. We identify model deficiencies that reveal important dynamics and parameter needs.

  12. Towards an understanding of coupled physical and biological processes in the cultivated Sahel - 2. Vegetation and carbon dynamics

    NASA Astrophysics Data System (ADS)

    Boulain, N.; Cappelaere, B.; Ramier, D.; Issoufou, H. B. A.; Halilou, O.; Seghieri, J.; Guillemin, F.; Oï, M.; Gignoux, J.; Timouk, F.

    2009-08-01

    SummaryThis paper analyses the dynamics of vegetation and carbon during the West African monsoon season, for millet crop and fallow vegetation covers in the cultivated area of the Sahel. Comparing these two dominant land cover types informs on the impact of cultivation on productivity and carbon fluxes. Biomass, leaf area index (LAI) and carbon fluxes were monitored over a 2-year period for these two vegetation systems in the Wankama catchment of the AMMA (African monsoon multidisciplinary analyses) experimental super-site in West Niger. Carbon fluxes and water use efficiency observed at the field scale are confronted with ecophysiological measurements (photosynthetic response to light, and relation of water use efficiency to air humidity) made at the leaf scale for the dominant plant species in the two vegetation systems. The two rainy seasons monitored were dissimilar with respect to rain patterns, reflecting some of the interannual variability. Distinct responses in vegetation development and in carbon dynamics were observed between the two vegetation systems. Vegetation development in the fallow was found to depend more on rainfall distribution along the season than on its starting date. A quite opposite behaviour was observed for the crop vegetation: the date of first rain appears as a principal factor of millet growth. Carbon flux exchanges were well correlated to vegetation development. High responses of photosynthesis to light were observed for the dominant herbaceous and shrub species of the fallow at the leaf and field scales. Millet showed high response at the leaf scale, but a much lesser response at the field scale. This pattern, also observed for water use efficiency, is to be related to the low density of the millet cover. A simple LAI-based model for scaling up the photosynthetic response from leaf to field scale was found quite successful for the fallow, but was less conclusive for the crop, due to spatial variability of LAI. Time/space variations in leaf distribution for the dominant species are key to scale transition of carbon dynamics. Results obtained for the two vegetation covers are important in light of the major land use/cover change experienced in the Sahel region due to extensive savanna clearing for food production.

  13. Growth synchrony between leaves and stems during twig development differs among plant functional types of subtropical rainforest woody species.

    PubMed

    Meng, Fengqun; Zhang, Guangfu; Li, Xincheng; Niklas, Karl J; Sun, Shucun

    2015-06-01

    During the development of woody twigs, the growth in leaf may or may not be proportional to the growth in stem. The presence or absence of a synchronicity between these two phenologies may reflect differences in life history adaptive strategies concerning carbon gain. We hypothesized that sun-adapted species are more likely to be less synchronous between growths in total leaf area (TLA) and stem length compared with shade-adapted species, with a bias in growth in stem length, and that shade-adapted species are more likely to be more synchronous between increases in individual leaf area (ILA) (leaf size) and leaf number (LN) during twig development compared with sun-adapted species, giving priority to growth of leaf size. We tested these two hypotheses by recording the phenologies of leaf emergence, leaf expansion and stem elongation during twig development for 19 evergreen woody species (including five shade-adapted understory species, six sun-adapted understory species and eight sun-adapted canopy species) in a subtropical evergreen broad-leaved forest in eastern China. We constructed indices to characterize the synchronicity between TLA and stem length (αLS) and between leaf size and leaf number (αSN) and we derived the α values from logistic functions taking the general form of A = A(max)/[1 + exp(β - αB)] (where A is the TLA or average ILA, B is the corresponding stem length or LN at a specific time, and A(max) is the maximum TLA or the maximum ILA of a twig; the higher the numerical value of α, the less synchronous the corresponding phenologies). Consistent with our hypotheses, sun-adapted species were higher both in α(LS) and α(SN), showing less synchronous patterns in the growths of TLA vs stem length and leaf size vs LN during twig development. Moreover, α(LS) and α(SN) were significantly positively correlated with relative growth rates of LN and leaf size across species, as indicated by both analyses of ordinary regression and phylogenetic generalized least squares. The across-species synchronies during twig development show that the temporal dynamics of the leaf size-twig size spectrum is of adaptive significance in plants. We suggest that temporal dynamics of plant functional traits should be extensively studied to characterize plant life history. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Climatic and biotic drivers of tropical evergreen forest photosynthesis: integrating field, eddy flux, remote sensing and modelling

    NASA Astrophysics Data System (ADS)

    Wu, J.; Serbin, S.; Xu, X.; Guan, K.; Albert, L.; Hayek, M.; Restrepo-Coupe, N.; Lopes, A. P.; Wiedemann, K. T.; Christoffersen, B. O.; Meng, R.; De Araujo, A. C.; Oliveira Junior, R. C.; Camargo, P. B. D.; Silva, R. D.; Nelson, B. W.; Huete, A. R.; Rogers, A.; Saleska, S. R.

    2016-12-01

    Tropical evergreen forest photosynthetic metabolism is an important driver of large-scale carbon, water, and energy cycles, generating various climate feedbacks. However, considerable uncertainties remain regarding how best to represent evergreen forest photosynthesis in current terrestrial biosphere models (TBMs), especially its sensitivity to climatic vs. biotic variation. Here, we develop a new approach to partition climatic and biotic controls on tropical forest photosynthesis from hourly to inter-annual timescales. Our results show that climatic factors dominate photosynthesis dynamics at shorter-time scale (i.e. hourly), while biotic factors dominate longer-timescale (i.e. monthly and longer) photosynthetic dynamics. Focusing on seasonal timescales, we combine camera and ecosystem carbon flux observations of forests across a rainfall gradient in Amazonia to show that high dry season leaf turnover shifts canopy composition towards younger more efficient leaves. This seasonal variation in leaf quality (per-area leaf photosynthetic capacity) thus can explain the high photosynthetic seasonality observed in the tropics. Finally, we evaluated the performance of models with different phenological schemes (i.e. leaf quantity versus leaf quality; with and without leaf phenological variation alone the vertical canopy profile). We found that models which represented the phenology of leaf quality and its within-canopy variation performed best in simulating photosynthetic seasonality in tropical evergreen forests. This work highlights the importance of incorporating improved understanding of climatic and biotic controls in next generation TBMs to project future carbon and water cycles in the tropics.

  15. Interacting Effects of Leaf Water Potential and Biomass on Vegetation Optical Depth

    NASA Astrophysics Data System (ADS)

    Momen, M.; Wood, J. D.; Novick, K. A.; Pockman, W.; Konings, A. G.

    2017-12-01

    Remotely-sensed microwave observations of vegetation optical depth (VOD) have been widely used to examine vegetation responses to climate. Such studies have alternately found that VOD is sensitive to both biomass and canopy water content. However, the relative impacts of changes in phenology or water stress on VOD have not been disentangled. In particular, understanding whether leaf water potential (LWP) affects VOD may permit the assimilation of satellite observations into new large-scale plant hydraulic models. Despite extensive validation of the relationship between satellite-derived VOD estimates and vegetation density, relatively few studies have explicitly sought to validate the sensitivity of VOD to canopy water status, and none have studied the effect of variations in LWP on VOD. In this work, we test the sensitivity of VOD to variations in LWP, and present a conceptual framework which relates VOD to a combination of leaf water potential and total biomass including leaves, whose dynamics can be measured through leaf area index, and woody biomass. We used in-situ measurements of LWP data to validate the conceptual model in mixed deciduous forests in Indiana and Missouri, as well as a pinion-juniper woodland in New Mexico. Observed X-band VOD from the AMSR-E and AMSR2 satellites showed dynamics similar to those reconstructed VOD signals based on the new conceptual model which employs in-situ LWP data (R2=0.60-0.80). Because LWP data are not available at global scales, we further estimated ecosystem LWP based on remotely sensed surface soil moisture to better understand the sensitivity of VOD across ecosystems. At the global scale, incorporating a combination of biomass and water potential in the reconstructed VOD signal increased correlations with VOD about 15% compared to biomass alone and about 30% compared to water potential alone. In wetter regions with denser and taller canopy heights, VOD has a higher correlation with leaf area index than with water stress and vice versa in drier regions (see figure 1). Therefore, variations in both phenology and leaf water potential must be accounted for to accurately interpret the dynamics of VOD observations for ecological applications.

  16. The light response of mesophyll conductance is controlled by structure across leaf profiles.

    PubMed

    Théroux-Rancourt, Guillaume; Gilbert, Matthew E

    2017-05-01

    Mesophyll conductance to CO 2 (g m ) may respond to light either through regulated dynamic mechanisms or due to anatomical and structural factors. At low light, some layers of cells in the leaf cross-section approach photocompensation and contribute minimally to bulk leaf photosynthesis and little to whole leaf g m (g m,leaf ). Thus, the bulk g m,leaf will appear to respond to light despite being based upon cells having an anatomically fixed mesophyll conductance. Such behaviour was observed in species with contrasting leaf structure using the variable J or stable isotope method of measuring g m,leaf . A species with bifacial structure, Arbutus × 'Marina', and an isobilateral species, Triticum durum L., had contrasting responses of g m,leaf upon varying adaxial or abaxial illumination. Anatomical observations, when coupled with the proposed model of g m,leaf to photosynthetic photon flux density (PPFD) response, successfully represented the observed gas exchange data. The theoretical and observed evidence that g m,leaf apparently responds to light has large implications for how g m,leaf values are interpreted, particularly limitation analyses, and indicates the importance of measuring g m under full light saturation. Responses of g m,leaf to the environment should be treated as an emergent property of a distributed 3D structure, and not solely a leaf area-based phenomenon. © 2016 John Wiley & Sons Ltd.

  17. Assessing soybean leaf area and leaf biomass by spectral measurements

    NASA Technical Reports Server (NTRS)

    Holben, B. N.; Tucker, C. J.; Fan, C. J.

    1979-01-01

    Red and photographic infrared spectral radiances were correlated with soybean total leaf area index, green leaf area index, chlorotic leaf area index, green leaf biomass, chlorotic leaf biomass, and total biomass. The most significant correlations were found to exist between the IR/red radiance ratio data and green leaf area index and/or green leaf biomass (r squared equals 0.85 and 0.86, respectively). These findings demonstrate that remote sensing data can supply information basic to soybean canopy growth, development, and status by nondestructive determination of the green leaf area or green leaf biomass.

  18. A model using marginal efficiency of investment to analyse carbon and nitrogen interactions in forested ecosystems

    NASA Astrophysics Data System (ADS)

    Thomas, R. Q.; Williams, M.

    2014-12-01

    Carbon (C) and nitrogen (N) cycles are coupled in terrestrial ecosystems through multiple processes including photosynthesis, tissue allocation, respiration, N fixation, N uptake, and decomposition of litter and soil organic matter. Capturing the constraint of N on terrestrial C uptake and storage has been a focus of the Earth System modelling community. Here we explore the trade-offs and sensitivities of allocating C and N to different tissues in order to optimize the productivity of plants using a new, simple model of ecosystem C-N cycling and interactions (ACONITE). ACONITE builds on theory related to plant economics in order to predict key ecosystem properties (leaf area index, leaf C:N, N fixation, and plant C use efficiency) based on the optimization of the marginal change in net C or N uptake associated with a change in allocation of C or N to plant tissues. We simulated and evaluated steady-state and transient ecosystem stocks and fluxes in three different forest ecosystems types (tropical evergreen, temperate deciduous, and temperate evergreen). Leaf C:N differed among the three ecosystem types (temperate deciduous < tropical evergreen < temperature evergreen), a result that compared well to observations from a global database describing plant traits. Gross primary productivity (GPP) and net primary productivity (NPP) estimates compared well to observed fluxes at the simulation sites. A sensitivity analysis revealed that parameterization of the relationship between leaf N and leaf respiration had the largest influence on leaf area index and leaf C:N. Also, a widely used linear leaf N-respiration relationship did not yield a realistic leaf C:N, while a more recently reported non-linear relationship simulated leaf C:N that compared better to the global trait database than the linear relationship. Overall, our ability to constrain leaf area index and allow spatially and temporally variable leaf C:N can help address challenges simulating these properties in ecosystem and Earth System models. Furthermore, the simple approach with emergent properties based on coupled C-N dynamics has potential for use in research that uses data-assimilation methods to integrate data on both the C and N cycles to improve C flux forecasts.

  19. Impacts of a spring heat wave on canopy processes in a northern hardwood forest.

    PubMed

    Filewod, Ben; Thomas, Sean C

    2014-02-01

    Heat wave frequency, duration, and intensity are predicted to increase with global warming, but the potential impacts of short-term high temperature events on forest functioning remain virtually unstudied. We examined canopy processes in a forest in Central Ontario following 3 days of record-setting high temperatures (31–33 °C) that coincided with the peak in leaf expansion of dominant trees in late May 2010. Leaf area dynamics, leaf morphology, and leaf-level gas-exchange were compared to data from prior years of sampling (2002–2008) at the same site, focusing on Acer saccharum Marsh., the dominant tree in the region. Extensive shedding of partially expanded leaves was observed immediately following high temperature days, with A. saccharum losing ca. 25% of total leaf production but subsequently producing an unusual second flush of neoformed leaves. Both leaf losses and subsequent reflushing were highest in the upper canopy; however, retained preformed leaves and neoformed leaves showed reduced size, resulting in an overall decline in end-of-season leaf area index of 64% in A. saccharum, and 16% in the entire forest. Saplings showed lower leaf losses, but also a lower capacity to reflush relative to mature trees. Both surviving preformed and neoformed leaves had severely depressed photosynthetic capacity early in the summer of 2010, but largely regained photosynthetic competence by the end of the growing season. These results indicate that even short-term heat waves can have severe impacts in northern forests, and suggest a particular vulnerability to high temperatures during the spring period of leaf expansion in temperate deciduous forests.

  20. Short-term responses of leaf growth rate to water deficit scale up to whole-plant and crop levels: an integrated modelling approach in maize.

    PubMed

    Chenu, Karine; Chapman, Scott C; Hammer, Graeme L; McLean, Greg; Salah, Halim Ben Haj; Tardieu, François

    2008-03-01

    Physiological and genetic studies of leaf growth often focus on short-term responses, leaving a gap to whole-plant models that predict biomass accumulation, transpiration and yield at crop scale. To bridge this gap, we developed a model that combines an existing model of leaf 6 expansion in response to short-term environmental variations with a model coordinating the development of all leaves of a plant. The latter was based on: (1) rates of leaf initiation, appearance and end of elongation measured in field experiments; and (2) the hypothesis of an independence of the growth between leaves. The resulting whole-plant leaf model was integrated into the generic crop model APSIM which provided dynamic feedback of environmental conditions to the leaf model and allowed simulation of crop growth at canopy level. The model was tested in 12 field situations with contrasting temperature, evaporative demand and soil water status. In observed and simulated data, high evaporative demand reduced leaf area at the whole-plant level, and short water deficits affected only leaves developing during the stress, either visible or still hidden in the whorl. The model adequately simulated whole-plant profiles of leaf area with a single set of parameters that applied to the same hybrid in all experiments. It was also suitable to predict biomass accumulation and yield of a similar hybrid grown in different conditions. This model extends to field conditions existing knowledge of the environmental controls of leaf elongation, and can be used to simulate how their genetic controls flow through to yield.

  1. Basal area increment and growth efficiency as functions of canopy dynamics and stem mechanics

    Treesearch

    Thomas J. Dean

    2004-01-01

    Crown and canopy structurecorrelate with growth efficiency and also determine stem size and taper as described by the uniform stress principle of stem formation. A regression model was derived from this principle that expresses basal area increment in terms of the amount and vertical distribution of leaf area and change in these variables during a growth period. This...

  2. Detection of the Coupling between Vegetation Leaf Area and Climate in a Multifunctional Watershed, Northwestern China

    Treesearch

    Lu Hao; Cen Pan; Peilong Liu; Decheng Zhou; Liangxia Zhang; Zhe Xiong; Yongqiang Liu; Ge Sun

    2016-01-01

    Accurate detection and quantification of vegetation dynamics and drivers of observed climatic and anthropogenic change in space and time is fundamental for our understanding of the atmosphere–biosphere interactions at local and global scales. This case study examined the coupled spatial patterns of vegetation dynamics and climatic variabilities during the past...

  3. Leaf litter dynamics and nitrous oxide emission in a Mediterranean riparian forest: implications for soil nitrogen dynamics.

    PubMed

    Bernal, S; Butturini, A; Nin, E; Sabater, F; Sabater, S

    2003-01-01

    Mediterranean riparian zones can experience severe drought periods that lead to low soil moisture content, which dramatically affects their performance as nitrate removal systems. In the Mediterranean riparian zone of this study, we determined that N2O emission was practically nil. To understand the role of forest floor processes in nitrogen retention of a Mediterranean riparian area, we studied leaf litter dynamics of two tree species, London planetree [Platanus x acerifolia (Aiton) Willd.] and alder [Alnus glutinosa (L.) Gaertn.], for two years, along with soil nitrogen mineralization rates. Annual leaf litter fall equaled 562.6 +/- 10.1 (standard error) g dry wt. m(-2), 68% of which was planetree and 32% of which was alder. The temporal distribution of litterfall showed a two-peak annual cycle, one occurring in midsummer, the other in autumn. Planetree provided the major input of organic nitrogen to the forest floor, and the amount of planetree leaves remaining on the forest floor was equivalent to approximately four years of stock. Leaf litter decomposition was three times higher for alder (decay coefficient [k] = 1.13 yr(-1)) than for planetree (k = 0.365 yr(-1)). Mineralization rates showed a seasonal pattern, with the maximum rate in summer (1.92 mg N kg(-1) d(-1)). Although the forest floor was an important sink for nitrogen due to planetree leaf accumulation, 7.5% of this leaf litter was scoured to the streambed by wind. This loss was irrelevant for alder leaves. Due to the litter quality, the forest floor of this Mediterranean riparian forest acts as a nitrogen sink.

  4. The phenology of leaf quality and its within-canopy variation is essential for accurate modeling of photosynthesis in tropical evergreen forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jin; Serbin, Shawn P.; Xu, Xiangtao

    Leaf quantity (i.e., canopy leaf area index, LAI), quality (i.e., per-area photosynthetic capacity), and longevity all influence the photosynthetic seasonality of tropical evergreen forests. However, these components of tropical leaf phenology are poorly represented in most terrestrial biosphere models (TBMs). Here in this paper, we explored alternative options for the representation of leaf phenology effects in TBMs that employ the Farquahar, von Caemmerer & Berry (FvCB) representation of CO 2 assimilation. We developed a two-fraction leaf (sun and shade), two-layer canopy (upper and lower) photosynthesis model to evaluate different modeling approaches and assessed three components of phenological variations (i.e., leafmore » quantity, quality, and within-canopy variation in leaf longevity). Our model was driven by the prescribed seasonality of leaf quantity and quality derived from ground-based measurements within an Amazonian evergreen forest. Modeled photosynthetic seasonality was not sensitive to leaf quantity, but was highly sensitive to leaf quality and its vertical distribution within the canopy, with markedly more sensitivity to upper canopy leaf quality. This is because light absorption in tropical canopies is near maximal for the entire year, implying that seasonal changes in LAI have little impact on total canopy light absorption; and because leaf quality has a greater effect on photosynthesis of sunlit leaves than light limited, shade leaves and sunlit foliage are more abundant in the upper canopy. Our two-fraction leaf, two-layer canopy model, which accounted for all three phenological components, was able to simulate photosynthetic seasonality, explaining ~90% of the average seasonal variation in eddy covariance-derived CO 2 assimilation. This work identifies a parsimonious approach for representing tropical evergreen forest photosynthetic seasonality in TBMs that utilize the FvCB model of CO 2 assimilation and highlights the importance of incorporating more realistic phenological mechanisms in models that seek to improve the projection of future carbon dynamics in tropical evergreen forests.« less

  5. The phenology of leaf quality and its within-canopy variation is essential for accurate modeling of photosynthesis in tropical evergreen forests

    DOE PAGES

    Wu, Jin; Serbin, Shawn P.; Xu, Xiangtao; ...

    2017-04-18

    Leaf quantity (i.e., canopy leaf area index, LAI), quality (i.e., per-area photosynthetic capacity), and longevity all influence the photosynthetic seasonality of tropical evergreen forests. However, these components of tropical leaf phenology are poorly represented in most terrestrial biosphere models (TBMs). Here in this paper, we explored alternative options for the representation of leaf phenology effects in TBMs that employ the Farquahar, von Caemmerer & Berry (FvCB) representation of CO 2 assimilation. We developed a two-fraction leaf (sun and shade), two-layer canopy (upper and lower) photosynthesis model to evaluate different modeling approaches and assessed three components of phenological variations (i.e., leafmore » quantity, quality, and within-canopy variation in leaf longevity). Our model was driven by the prescribed seasonality of leaf quantity and quality derived from ground-based measurements within an Amazonian evergreen forest. Modeled photosynthetic seasonality was not sensitive to leaf quantity, but was highly sensitive to leaf quality and its vertical distribution within the canopy, with markedly more sensitivity to upper canopy leaf quality. This is because light absorption in tropical canopies is near maximal for the entire year, implying that seasonal changes in LAI have little impact on total canopy light absorption; and because leaf quality has a greater effect on photosynthesis of sunlit leaves than light limited, shade leaves and sunlit foliage are more abundant in the upper canopy. Our two-fraction leaf, two-layer canopy model, which accounted for all three phenological components, was able to simulate photosynthetic seasonality, explaining ~90% of the average seasonal variation in eddy covariance-derived CO 2 assimilation. This work identifies a parsimonious approach for representing tropical evergreen forest photosynthetic seasonality in TBMs that utilize the FvCB model of CO 2 assimilation and highlights the importance of incorporating more realistic phenological mechanisms in models that seek to improve the projection of future carbon dynamics in tropical evergreen forests.« less

  6. Density-dependent dynamics of a dominant rain forest tree change with juvenile stage and time of masting.

    PubMed

    Norghauer, Julian M; Newbery, David M

    2016-05-01

    Although negative density dependence (NDD) can facilitate tree species coexistence in forests, the underlying mechanisms can differ, and rarely are the dynamics of seedlings and saplings studied together. Herein we present and discuss a novel mechanism based on our investigation of NDD predictions for the large, grove-forming ectomycorrhizal mast fruiting tree, Microberlinia bisulcata (Caesalpiniaceae), in an 82.5-ha plot at Korup, Cameroon. We tested whether juvenile density, size, growth and survival decreases with increasing conspecific adult basal area for 3245 'new' seedlings and 540 'old' seedlings (< 75-cm tall) during an approximately 4-year study period (2008-2012) and for 234 'saplings' (≥ 75-cm tall) during an approximately 6-year study period (2008-2014). We found that the respective densities of new seedlings, old seedlings and saplings were positively, not and negatively related to increasing BA. Maximum leaf numbers and heights of old seedlings were negatively correlated with increasing basal areas, as were sapling heights and stem diameters. Whereas survivorship of new seedlings decreased by more than one-half with increasing basal area over its range in 2010-2012, that of old seedlings decreased by almost two-thirds, but only in 2008-2010, and was generally unrelated to conspecific seedling density. In 2010-2012 relative growth rates in new seedlings' heights decreased with increasing basal area, as well as with increasing seedling density, together with increasing leaf numbers, whereas old seedlings' growth was unrelated to either conspecific density or basal area. Saplings of below-average height had reduced survivorship with increasing basal area (probability decreasing from approx. 0.4 to 0.05 over the basal area range tested), but only sapling growth in terms of leaf numbers decreased with increasing basal area. These static and dynamic results indicate that NDD is operating within this system, possibly stabilizing the M. bisulcata population. However, these NDD patterns are unlikely to be caused by symmetric competition or by consumers. Instead, an alternative mechanism for conspecific adult-juvenile negative feedback is proposed, one which involves the interaction between tree phenology and ectomycorrhizal linkages.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurer, K. D.; Bohrer, G.; Kenny, W. T.

    Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction.more » We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.« less

  8. Relationships between Community Level Functional Traits of Trees and Seedlings during Secondary Succession in a Tropical Lowland Rainforest.

    PubMed

    Lu, XingHui; Zang, RunGuo; Huang, JiHong

    2015-01-01

    Most of the previous studies on functional traits focus exclusively on either seedlings or trees. Little knowledge exists on the relationships between community level functional traits of trees and seedlings during succession. Here, we examine variations of the community-level functional traits for trees and seedlings and their correlations along a secondary successional and environmental gradient in a tropical lowland rainforest after shifting cultivation. The results showed that the dynamic patterns in community level functional traits of seedlings were generally consistent with those of the trees during secondary succession. Compared with seedlings, community level traits for trees were less affected by abiotic factors during secondary succession. Correlations between community level functional traits of trees and seedlings were significant for: leaf dry matter content and leaf nitrogen concentration in the 18-year-old fallow; leaf chlorophyll content in the 30-year-old fallow; specific leaf area, leaf dry matter content and leaf nitrogen concentration in the 60-year-old fallow; and leaf nitrogen concentration in old growth. However, these traits except specific leaf area for the tree and seedling communities were all significantly correlated if all the successional stages were combined. Our results suggest that the correlations between community level functional traits of trees and those of seedlings depend on the actual traits and the successional stages examined. However, if all the four successional stages are combined, then four out of five of the community level functional traits for trees could be well predicted by those of the seedlings in the tropical lowland rain forest.

  9. Relationships between Community Level Functional Traits of Trees and Seedlings during Secondary Succession in a Tropical Lowland Rainforest

    PubMed Central

    Lu, XingHui; Zang, RunGuo; Huang, JiHong

    2015-01-01

    Most of the previous studies on functional traits focus exclusively on either seedlings or trees. Little knowledge exists on the relationships between community level functional traits of trees and seedlings during succession. Here, we examine variations of the community-level functional traits for trees and seedlings and their correlations along a secondary successional and environmental gradient in a tropical lowland rainforest after shifting cultivation. The results showed that the dynamic patterns in community level functional traits of seedlings were generally consistent with those of the trees during secondary succession. Compared with seedlings, community level traits for trees were less affected by abiotic factors during secondary succession. Correlations between community level functional traits of trees and seedlings were significant for: leaf dry matter content and leaf nitrogen concentration in the 18-year-old fallow; leaf chlorophyll content in the 30-year-old fallow; specific leaf area, leaf dry matter content and leaf nitrogen concentration in the 60-year-old fallow; and leaf nitrogen concentration in old growth. However, these traits except specific leaf area for the tree and seedling communities were all significantly correlated if all the successional stages were combined. Our results suggest that the correlations between community level functional traits of trees and those of seedlings depend on the actual traits and the successional stages examined. However, if all the four successional stages are combined, then four out of five of the community level functional traits for trees could be well predicted by those of the seedlings in the tropical lowland rain forest. PMID:26172543

  10. Niche and Neutral Processes Together Determine Diversity Loss in Response to Fertilization in an Alpine Meadow Community

    PubMed Central

    Li, Wei; Cheng, Ji-Min; Yu, Kai-Liang; Epstein, Howard E.; Du, Guo-Zhen

    2015-01-01

    Fertilization via nutrient deposition and agricultural inputs is one of the most important factors driving decreases in plant diversity. However, we still do not fully understand which processes (niche process or neutral process) are more important in leading to decreases in plant diversity caused by fertilization. A hypothesis-based approach was used to test the relative importance of niche versus neutral processes along a fertilization gradient in an alpine meadow community on the eastern Tibetan plateau, China. Niche overlap values were calculated for species biomass, and the null model was used to generate the values of niche overlap expected at random. A linear regression modeling was used to evaluate the relationship between functional traits (specific leaf area, leaf dry matter content, and leaf total nitrogen concentration) and species relative abundance. Our results demonstrated that observed niche overlap for species biomass was significantly higher than expected at lower fertilization gradients. Moreover, we also found a significantly negative correlation between species relative abundance and specific leaf area and leaf dry matter content, but a significantly positive correlation between relative abundance and leaf nitrogen concentration at lower fertilization gradients. However, these relationships were not significant at higher fertilization gradients. We concluded that community assembly is dynamic progression along the environmental gradients, and niche and neutral processes may together determine species diversity loss in response to fertilization. PMID:26280919

  11. Effects of height on treetop transpiration and stomatal conductance in coast redwood (Sequoia sempervirens).

    PubMed

    Ambrose, Anthony R; Sillett, Stephen C; Koch, George W; Van Pelt, Robert; Antoine, Marie E; Dawson, Todd E

    2010-10-01

    Treetops become increasingly constrained by gravity-induced water stress as they approach maximum height. Here we examine the effects of height on seasonal and diurnal sap flow dynamics at the tops of 12 unsuppressed Sequoia sempervirens (D. Don) Endl. (coast redwood) trees 68-113 m tall during one growing season. Average treetop sap velocity (V(S)), transpiration per unit leaf area (E(L)) and stomatal conductance per unit leaf area (G(S)) significantly decreased with increasing height. These differences in sap flow were associated with an unexpected decrease in treetop sapwood area-to-leaf area ratios (A(S):A(L)) in the tallest trees. Both E(L) and G(S) declined as soil moisture decreased and vapor pressure deficit (D) increased throughout the growing season with a greater decline in shorter trees. Under high soil moisture and light conditions, reference G(S) (G(Sref); G(S) at D = 1 kPa) and sensitivity of G(S) to D (-δ; dG(S)/dlnD) significantly decreased with increasing height. The close relationship we observed between G(Sref) and -δ is consistent with the role of stomata in regulating E(L) and leaf water potential (Ψ(L)). Our results confirm that increasing tree height reduces gas exchange of treetop foliage and thereby contributes to lower carbon assimilation and height growth rates as S. sempervirens approaches maximum height.

  12. Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area.

    PubMed

    Easlon, Hsien Ming; Bloom, Arnold J

    2014-07-01

    Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. • Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. • Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images.

  13. The Evolutionary Basis of Naturally Diverse Rice Leaves Anatomy

    PubMed Central

    Chatterjee, Jolly; Dionora, Jacqueline; Elmido-Mabilangan, Abigail; Wanchana, Samart; Thakur, Vivek; Bandyopadhyay, Anindya; Brar, Darshan S.; Quick, William Paul

    2016-01-01

    Rice contains genetically and ecologically diverse wild and cultivated species that show a wide variation in plant and leaf architecture. A systematic characterization of leaf anatomy is essential in understanding the dynamics behind such diversity. Therefore, leaf anatomies of 24 Oryza species spanning 11 genetically diverse rice genomes were studied in both lateral and longitudinal directions and possible evolutionary trends were examined. A significant inter-species variation in mesophyll cells, bundle sheath cells, and vein structure was observed, suggesting precise genetic control over these major rice leaf anatomical traits. Cellular dimensions, measured along three growth axes, were further combined proportionately to construct three-dimensional (3D) leaf anatomy models to compare the relative size and orientation of the major cell types present in a fully expanded leaf. A reconstruction of the ancestral leaf state revealed that the following are the major characteristics of recently evolved rice species: fewer veins, larger and laterally elongated mesophyll cells, with an increase in total mesophyll area and in bundle sheath cell number. A huge diversity in leaf anatomy within wild and domesticated rice species has been portrayed in this study, on an evolutionary context, predicting a two-pronged evolutionary pathway leading to the ‘sativa leaf type’ that we see today in domesticated species. PMID:27792743

  14. The Evolutionary Basis of Naturally Diverse Rice Leaves Anatomy.

    PubMed

    Chatterjee, Jolly; Dionora, Jacqueline; Elmido-Mabilangan, Abigail; Wanchana, Samart; Thakur, Vivek; Bandyopadhyay, Anindya; Brar, Darshan S; Quick, William Paul

    2016-01-01

    Rice contains genetically and ecologically diverse wild and cultivated species that show a wide variation in plant and leaf architecture. A systematic characterization of leaf anatomy is essential in understanding the dynamics behind such diversity. Therefore, leaf anatomies of 24 Oryza species spanning 11 genetically diverse rice genomes were studied in both lateral and longitudinal directions and possible evolutionary trends were examined. A significant inter-species variation in mesophyll cells, bundle sheath cells, and vein structure was observed, suggesting precise genetic control over these major rice leaf anatomical traits. Cellular dimensions, measured along three growth axes, were further combined proportionately to construct three-dimensional (3D) leaf anatomy models to compare the relative size and orientation of the major cell types present in a fully expanded leaf. A reconstruction of the ancestral leaf state revealed that the following are the major characteristics of recently evolved rice species: fewer veins, larger and laterally elongated mesophyll cells, with an increase in total mesophyll area and in bundle sheath cell number. A huge diversity in leaf anatomy within wild and domesticated rice species has been portrayed in this study, on an evolutionary context, predicting a two-pronged evolutionary pathway leading to the 'sativa leaf type' that we see today in domesticated species.

  15. Leaf-IT: An Android application for measuring leaf area.

    PubMed

    Schrader, Julian; Pillar, Giso; Kreft, Holger

    2017-11-01

    The use of plant functional traits has become increasingly popular in ecological studies because plant functional traits help to understand key ecological processes in plant species and communities. This also includes changes in diversity, inter- and intraspecific interactions, and relationships of species at different spatiotemporal scales. Leaf traits are among the most important traits as they describe key dimensions of a plant's life history strategy. Further, leaf area is a key parameter with relevance for other traits such as specific leaf area, which in turn correlates with leaf chemical composition, photosynthetic rate, leaf longevity, and carbon investment. Measuring leaf area usually involves the use of scanners and commercial software and can be difficult under field conditions. We present Leaf-IT, a new smartphone application for measuring leaf area and other trait-related areas. Leaf-IT is free, designed for scientific purposes, and runs on Android 4 or higher. We tested the precision and accuracy using objects with standardized area and compared the area measurements of real leaves with the well-established, commercial software WinFOLIA using the Altman-Bland method. Area measurements of standardized objects show that Leaf-IT measures area with high accuracy and precision. Area measurements with Leaf-IT of real leaves are comparable to those of WinFOLIA. Leaf-IT is an easy-to-use application running on a wide range of smartphones. That increases the portability and use of Leaf-IT and makes it possible to measure leaf area under field conditions typical for remote locations. Its high accuracy and precision are similar to WinFOLIA. Currently, its main limitation is margin detection of damaged leaves or complex leaf morphologies.

  16. Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure.

    PubMed

    Tang, Hao; Dubayah, Ralph

    2017-03-07

    Light-regime variability is an important limiting factor constraining tree growth in tropical forests. However, there is considerable debate about whether radiation-induced green-up during the dry season is real, or an apparent artifact of the remote-sensing techniques used to infer seasonal changes in canopy leaf area. Direct and widespread observations of vertical canopy structures that drive radiation regimes have been largely absent. Here we analyze seasonal dynamic patterns between the canopy and understory layers in Amazon evergreen forests using observations of vertical canopy structure from a spaceborne lidar. We discovered that net leaf flushing of the canopy layer mainly occurs in early dry season, and is followed by net abscission in late dry season that coincides with increasing leaf area of the understory layer. Our observations of understory development from lidar either weakly respond to or are not correlated to seasonal variations in precipitation or insolation, but are strongly related to the seasonal structural dynamics of the canopy layer. We hypothesize that understory growth is driven by increased light gaps caused by seasonal variations of the canopy. This light-regime variability that exists in both spatial and temporal domains can better reveal the drought-induced green-up phenomenon, which appears less obvious when treating the Amazon forests as a whole.

  17. Speed versus endurance tradeoff in plants: Leaves with higher photosynthetic rates show stronger seasonal declines

    PubMed Central

    Zhang, Yong-Jiang; Sack, Lawren; Cao, Kun-Fang; Wei, Xue-Mei; Li, Nan

    2017-01-01

    We tested for a tradeoff across species between plant maximum photosynthetic rate and the ability to maintain photosynthesis under adverse conditions in the unfavorable season. Such a trade-off would be consistent with the observed trade-off between maximum speed and endurance in athletes and some animals that has been explained by cost-benefit theory. This trend would have importance for the general understanding of leaf design, and would simplify models of annual leaf carbon relations. We tested for such a trade-off using a database analysis across vascular plants and using an experimental approach for 29 cycad species, representing an ancient plant lineage with diversified evergreen leaves. In both tests, a higher photosynthetic rate per mass or per area in the favorable season was associated with a stronger absolute or percent decline in the unfavorable season. We resolved a possible mechanism based on biomechanics and nitrogen allocation; cycads with high leaf toughness (leaf mass per area) and higher investment in leaf construction than in physiological function (C/N ratio) tended to have lower warm season photosynthesis but less depression in the cool season. We propose that this trade-off, consistent with cost-benefit theory, represents a significant physio-phenological constraint on the diversity and seasonal dynamics of photosynthetic rate. PMID:28186201

  18. Stomata size and spatial pattern effects on leaf gas exchange - a quantitative assessment of plant evolutionary choices

    NASA Astrophysics Data System (ADS)

    Or, Dani; Assouline, Shmuel; Aminzadeh, Milad; Haghighi, Erfan; Schymanski, Stan; Lehmann, Peter

    2014-05-01

    Land plants developed a dynamically gas-permeable layer at their leaf surfaces to allow CO2 uptake for photosynthesis while controlling water vapor loss through numerous adjustable openings (stomata) in the impervious leaf epidermis. Details of stomata structure, density and function may vary greatly among different plant families and respond to local environmental conditions, yet they share basic traits in dynamically controlling gaseous exchange rates by varying stomata apertures. We implement a pore scale gas diffusion model to quantitatively interpret the functionality of different combinations of stomata size and pattern on leaf gas exchange and thermal management based on data from fossil records and contemporary data sets. Considering all available data we draw several general conclusions concerning stomata design considerations: (1) the sizes and densities of stomata in the available fossil record leaves were designed to evaporate at rates in the range 0.75≤e/e0 ≤0.99 (relative to free water evaporation); (2) examination of evaporation curves show that for a given stomata size, the density (jointly defining the leaf evaporating area when fully open) was chosen to enable a high sensitivity in reducing evaporation rate with incremental stomatal closure, nevertheless, results show the design includes safety margins to account for different wind conditions (boundary layer thickness); (3) scaled for mean vapor flux, the size of stomata plays a minor role in the uniformity of leaf thermal field for a given stomata density. These principles enable rationale assessment of plant response to raising CO2, and provide a physical framework for considering the consequences of different stomata patterns (patchy) on leaf gas exchange (and thermal regime). In contrast with present quantitative description of traits and functionality of these dynamic covers in terms of gaseous diffusion resistance (or conductance), where stomata size, density and spatial pattern are lumped into a single effective resistance parameter, the present approach enables derivation of nuanced insights and offers predictive capabilities that link changes in stomata structure and geometrical attributes to quantifying environmental influences and feedbacks on leaf structure and function.

  19. Insect herbivory in a mature Eucalyptus woodland canopy depends on leaf phenology but not CO2 enrichment.

    PubMed

    Gherlenda, Andrew N; Moore, Ben D; Haigh, Anthony M; Johnson, Scott N; Riegler, Markus

    2016-10-19

    Climate change factors such as elevated atmospheric carbon dioxide concentrations (e[CO 2 ]) and altered rainfall patterns can alter leaf composition and phenology. This may subsequently impact insect herbivory. In sclerophyllous forests insects have developed strategies, such as preferentially feeding on new leaf growth, to overcome physical or foliar nitrogen constraints, and this may shift under climate change. Few studies of insect herbivory at elevated [CO 2 ] have occurred under field conditions and none on mature evergreen trees in a naturally established forest, yet estimates for leaf area loss due to herbivory are required in order to allow accurate predictions of plant productivity in future climates. Here, we assessed herbivory in the upper canopy of mature Eucalyptus tereticornis trees at the nutrient-limited Eucalyptus free-air CO 2 enrichment (EucFACE) experiment during the first 19 months of CO 2 enrichment. The assessment of herbivory extended over two consecutive spring-summer periods, with a first survey during four months of the [CO 2 ] ramp-up phase after which full [CO 2 ] operation was maintained, followed by a second survey period from months 13 to 19. Throughout the first 2 years of EucFACE, young, expanding leaves sustained significantly greater damage from insect herbivory (between 25 and 32 % leaf area loss) compared to old or fully expanded leaves (less than 2 % leaf area loss). This preference of insect herbivores for young expanding leaves combined with discontinuous production of new foliage, which occurred in response to rainfall, resulted in monthly variations in leaf herbivory. In contrast to the significant effects of rainfall-driven leaf phenology, elevated [CO 2 ] had no effect on leaf consumption or preference of insect herbivores for different leaf age classes. In the studied nutrient-limited natural Eucalyptus woodland, herbivory contributes to a significant loss of young foliage. Leaf phenology is a significant factor that determines the level of herbivory experienced in this evergreen sclerophyllous woodland system, and may therefore also influence the population dynamics of insect herbivores. Furthermore, leaf phenology appears more strongly impacted by rainfall patterns than by e[CO 2 ]. e[CO 2 ] responses of herbivores on mature trees may only become apparent after extensive CO 2 fumigation periods.

  20. Long-Term Effects of Season of Prescribed Burn on the Fine-Root Growth, Root Carbohydrates, and Foliar Dynamics of Mature Longleaf Pine

    Treesearch

    Eric A. Kuehler; Mary Anne Sword Sayer; James D. Haywood; C. Dan Andries

    2004-01-01

    Depending on the season and intensity of fire, as well as the phenology of foliage and new root growth, fire may damage foliage, and subsequently decrease whole-crown carbon fixation and allocation to the root system. In central Louisiana the authors investigated how season of prescribed burning affects fine-root dynamics, root carbohydrate relations, and leaf area...

  1. Leaf-FISH: Microscale Imaging of Bacterial Taxa on Phyllosphere

    PubMed Central

    Peredo, Elena L.; Simmons, Sheri L.

    2018-01-01

    Molecular methods for microbial community characterization have uncovered environmental and plant-associated factors shaping phyllosphere communities. Variables undetectable using bulk methods can play an important role in shaping plant-microbe interactions. Microscale analysis of bacterial dynamics in the phyllosphere requires imaging techniques specially adapted to the high autoflouresence and 3-D structure of the leaf surface. We present an easily-transferable method (Leaf-FISH) to generate high-resolution tridimensional images of leaf surfaces that allows simultaneous visualization of multiple bacterial taxa in a structurally informed context, using taxon-specific fluorescently labeled oligonucleotide probes. Using a combination of leaf pretreatments coupled with spectral imaging confocal microscopy, we demonstrate the successful imaging bacterial taxa at the genus level on cuticular and subcuticular leaf areas. Our results confirm that different bacterial species, including closely related isolates, colonize distinct microhabitats in the leaf. We demonstrate that highly related Methylobacterium species have distinct colonization patterns that could not be predicted by shared physiological traits, such as carbon source requirements or phytohormone production. High-resolution characterization of microbial colonization patterns is critical for an accurate understanding of microbe-microbe and microbe-plant interactions, and for the development of foliar bacteria as plant-protective agents. PMID:29375531

  2. Post Wildfire Changes in Plant Functioning and Vegetation Dynamics: Implications for Water Fluxes in Re-sprouting Forests

    NASA Astrophysics Data System (ADS)

    Nolan, R. H.; Lane, P. N.; Mitchell, P. J.; Bradstock, R. A.

    2011-12-01

    Fire induced changes to the vegetation dynamics in temperate forests have been demonstrated to affect evapotranspiration (Et) rates through increases in plant size and density and stand-level transpiration and interception. In many cases these transient changes in forest structure result in substantial declines in stream flow for protracted periods after the disturbance. However to date research has focused on the wetter 'ash' forests of south-eastern Australia which solely regenerate via seedlings, it is unknown what changes in Et may occur in those forests which re-sprout post-fire. We hypothesize that Et fluxes track post-fire changes in sapwood area and leaf area index (L) in re-sprouting temperate forests, increasing as the forest regenerates. Following the 2009 Black Saturday wildfires in Victoria, we monitored Et rates for over a year in both damp and dry re-sprouting forest, incorporating a range of fire severity classes. Components of Et including overstorey transpiration, rainfall interception loss and forest floor Et were measured in conjunction with changes in L, sapwood area and leaf physiology. The monitoring period began one year post-fire with a typical hot, dry summer, at which stage Et rates in burnt forest were similar or less than those in unburnt forest. During the following summer, which was one of the wettest on record, Et increased across all monitoring plots but particularly so in the burnt forest where seedling regeneration resulted in an understorey L nearly twice that of unburnt forest. Forest floor Et was up to 46% higher in burnt forest, and rainfall interception values accounted for approximately 25% of rainfall compared to 15% in unburnt forest. The greatest increase in canopy transpiration rates over this period occurred in those trees subject to a low intensity fire where most of the canopy remained intact but there was also fire-triggered sprouting of new leaves along the trunk and main branches. In these trees rates of sapflow, standardized by sapwood area, were up to 50% greater than in unburnt trees. Measurements of leaf physiology in mature leaves, regenerating canopy leaves and in seedlings indicate higher rates of stomatal conductance in seedlings, and in the early regeneration phase of canopy leaves, which may be driving higher rates of water use per unit leaf area in the early stages of post-fire regeneration. This research indicates that disturbance-induced changes in vegetation dynamics are dependent on fire severity and can alter forest energy and water balances through changes in stand structure (i.e. L) and adjustments in plant functioning via leaf level increases in water use.

  3. Vertical leaf area distribution, light transmittance, and application of the Beer-Lambert Law in four mature hardwood stands in the southern Appalachians

    Treesearch

    James M. Vose; Neal H. Sullivan; Barton D. Clinton; Paul V. Bolstad

    1995-01-01

    We quantified stand leaf area index and vertical leaf area distribution, and developed canopy extinction coefficients (k), in four mature hardwood stands. Leaf area index, calculated from litter fall and specific leaf area (cm²·g-1), ranged from 4.3 to 5.4 m²·m-2. In three of the four stands, leaf area was distributed in...

  4. Some dynamics of spread and infection by aeciospores of Puccinia punctiformis, a biological control pathogen of Cirsium arvense

    USDA-ARS?s Scientific Manuscript database

    In this study, effective spread of aeciospores from an area source in a field was fit to an exponential decline model with a predicted maximum distance of spread of 30 m from the area source to observed uredinia on one leaf of one C. arvense shoot. However, the greatest number of shoots bearing leav...

  5. Spatially Distributed Assimilation of Remotely Sensed Leaf Area Index and Potential Evapotranspiration for Hydrologic Modeling in Wetland Landscapes

    EPA Science Inventory

    Evapotranspiration (ET), a highly dynamic flux in wetland landscapes, regulates the accuracy of surface/sub-surface runoff simulation in a hydrologic model. However, considerable uncertainty in simulating ET-related processes remains, including our limited ability to incorporate ...

  6. Applicability of non-destructive substitutes for leaf area in different stands of Norway spruce (Picea abies L. Karst.) focusing on traditional forest crown measures.

    PubMed

    Laubhann, Daniel; Eckmüllner, Otto; Sterba, Hubert

    2010-09-30

    Since individual tree leaf area is an important measure for productivity as well as for site occupancy, it is of high interest in many studies about forest growth. The exact determination of leaf area is nearly impossible. Thus, a common way to get information about leaf area is to use substitutes. These substitutes are often variables which are collected in a destructive way which is not feasible for long term studies. Therefore, this study aimed at testing the applicability of using substitutes for leaf area which could be collected in a non-destructive way, namely crown surface area and crown projection area. In 8 stands of Norway spruce (Picea abies L. Karst.), divided into three age classes and two thinning treatments, a total of 156 trees were felled in order to test the relationship between leaf area and crown surface area and crown projection area, respectively. Individual tree leaf area of the felled sample trees was estimated by 3P-branch sampling with an accuracy of ±10%. Crown projection area and crown surface area were compared with other, more commonly used, but destructive predictors of leaf area, namely sapwood area at different heights on the bole. Our investigations confirmed findings of several studies that sapwood area is the most precise measure for leaf area because of the high correlation between sapwood area and the leaf area. But behind sapwood area at crown base and sapwood area at three tenth of the tree height the predictive ability of crown surface area was ranked third and even better than that of sapwood area at breast height (R(2) = 0.656 compared with 0.600). Within the stands leaf area is proportional to crown surface area. Using the pooled data of all stands a mixed model approach showed that additionally to crown surface area dominant height and diameter at breast height (dbh) improved the leaf area estimates. Thus, taking dominant height and dbh into account, crown surface area can be recommended for estimating the leaf area of individual trees. The resulting model was in line with many other findings on the leaf area and leaf mass relationships with crown size. From the additional influence of dominant height and dbh in the leaf area model we conclude that the used crown model could be improved by estimating the position of the maximum crown width and the crown width at the base of the crown depending on these two variables.

  7. Applicability of non-destructive substitutes for leaf area in different stands of Norway spruce (Picea abies L. Karst.) focusing on traditional forest crown measures

    PubMed Central

    Laubhann, Daniel; Eckmüllner, Otto; Sterba, Hubert

    2010-01-01

    Since individual tree leaf area is an important measure for productivity as well as for site occupancy, it is of high interest in many studies about forest growth. The exact determination of leaf area is nearly impossible. Thus, a common way to get information about leaf area is to use substitutes. These substitutes are often variables which are collected in a destructive way which is not feasible for long term studies. Therefore, this study aimed at testing the applicability of using substitutes for leaf area which could be collected in a non-destructive way, namely crown surface area and crown projection area. In 8 stands of Norway spruce (Picea abies L. Karst.), divided into three age classes and two thinning treatments, a total of 156 trees were felled in order to test the relationship between leaf area and crown surface area and crown projection area, respectively. Individual tree leaf area of the felled sample trees was estimated by 3P-branch sampling with an accuracy of ±10%. Crown projection area and crown surface area were compared with other, more commonly used, but destructive predictors of leaf area, namely sapwood area at different heights on the bole. Our investigations confirmed findings of several studies that sapwood area is the most precise measure for leaf area because of the high correlation between sapwood area and the leaf area. But behind sapwood area at crown base and sapwood area at three tenth of the tree height the predictive ability of crown surface area was ranked third and even better than that of sapwood area at breast height (R2 = 0.656 compared with 0.600). Within the stands leaf area is proportional to crown surface area. Using the pooled data of all stands a mixed model approach showed that additionally to crown surface area dominant height and diameter at breast height (dbh) improved the leaf area estimates. Thus, taking dominant height and dbh into account, crown surface area can be recommended for estimating the leaf area of individual trees. The resulting model was in line with many other findings on the leaf area and leaf mass relationships with crown size. From the additional influence of dominant height and dbh in the leaf area model we conclude that the used crown model could be improved by estimating the position of the maximum crown width and the crown width at the base of the crown depending on these two variables. PMID:21072126

  8. Reimplementation of the Biome-BGC model to simulate successional change.

    PubMed

    Bond-Lamberty, Ben; Gower, Stith T; Ahl, Douglas E; Thornton, Peter E

    2005-04-01

    Biogeochemical process models are increasingly employed to simulate current and future forest dynamics, but most simulate only a single canopy type. This limitation means that mixed stands, canopy succession and understory dynamics cannot be modeled, severe handicaps in many forests. The goals of this study were to develop a version of Biome-BGC that supported multiple, interacting vegetation types, and to assess its performance and limitations by comparing modeled results to published data from a 150-year boreal black spruce (Picea mariana (Mill.) BSP) chronosequence in northern Manitoba, Canada. Model data structures and logic were modified to support an arbitrary number of interacting vegetation types; an explicit height calculation was necessary to prioritize radiation and precipitation interception. Two vegetation types, evergreen needle-leaf and deciduous broadleaf, were modeled based on site-specific meteorological and physiological data. The new version of Biome-BGC reliably simulated observed changes in leaf area, net primary production and carbon stocks, and should be useful for modeling the dynamics of mixed-species stands and ecological succession. We discuss the strengths and limitations of Biome-BGC for this application, and note areas in which further work is necessary for reliable simulation of boreal biogeochemical cycling at a landscape scale.

  9. Taxonomy, Traits, and Environment Determine Isoprenoid Emission from an Evergreen Tropical forest.

    NASA Astrophysics Data System (ADS)

    Taylor, T.; Alves, E. G.; Tota, J.; Oliveira Junior, R. C.; Camargo, P. B. D.; Saleska, S. R.

    2016-12-01

    Volatile isoprenoid emissions from the leaves of tropical forest trees significantly affects atmospheric chemistry, aerosols, and cloud dynamics, as well as the physiology of the emitting leaves. Emission is associated with plant tolerance to heat and drought stress. Despite a potentially central role of isoprenoid emissions in tropical forest-climate interactions, we have a poor understanding of the relationship between emissions and ecological axes of forest function. We used a custom instrument to quantify leaf isoprenoid emission rates from over 200 leaves and 80 trees at a site in the eastern Brazilian Amazon. We related standardized leaf emission capacity (EC: leaf emission rate at 1000 PAR) to tree taxonomy, height, light environment, wood traits, and leaf traits. Taxonomy was the strongest predictor of EC, and non-emitters could be found throughout the canopy. But we found that environment and leaf carbon economics constrained the upper bound of EC. For example, the relationship between EC and specific leaf area (SLA; fresh leaf area / dry mass) is described by an envelope with a decreasing upper bound on EC as SLA increases (quantile regression: 85th quantile, p<0.01). That result suggests a limitation on emissions related to leaf carbon investment strategies. EC was highest in the mid-canopy, and in leaves growing under less direct light. While inferences of ecosystem emissions focus on environmental conditions in the canopy, our results suggest that sub-canopy leaves are more responsive. This work is allowing us to develop an ecological understanding of isoprenoid emissions from forests, the basis for a predictive model of emissions that depends on both environmental factors and biological emission capacity that is grounded in plant traits and phylogeny.

  10. Continental land cover classification using meteorological satellite data

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Townshend, J. R. G.; Goff, T. E.

    1983-01-01

    The use of the National Oceanic and Atmospheric Administration's advanced very high resolution radiometer satellite data for classifying land cover and monitoring of vegetation dynamics over an extremely large area is demonstrated for the continent of Africa. Data from 17 imaging periods of 21 consecutive days each were composited by a technique sensitive to the in situ green-leaf biomass to provide cloud-free imagery for the whole continent. Virtually cloud-free images were obtainable even for equatorial areas. Seasonal variation in the density and extent of green leaf vegetation corresponded to the patterns of rainfall associated with the inter-tropical convergence zone. Regional variations, such as the 1982 drought in east Africa, were also observed. Integration of the weekly satellite data with respect to time produced a remotely sensed assessment of biological activity based upon density and duration of green-leaf biomass. Two of the 21-day composited data sets were used to produce a general land cover classification. The resultant land cover distributions correspond well to those of existing maps.

  11. [Latitude variation mechanism of leaf traits of Metasequoia glyptostroboides in eastern coastal China].

    PubMed

    Guo, Wei Hong; Wang, Hua; Yu, Mu Kui; Wu, Tong Gui; Han, You Zhi

    2017-03-18

    We analyzed the rules of Metasequoia glyptostroboides along with latitude, including leaf length, leaf width, leaf perimeter, leaf area, ratio of leaf length to width, specific leaf area (SLA), and leaf dry mass based on eight stands growing at different latitudes in the coastal area of eastern China, as well as their relationships with climatic and soil factors. The results showed that the leaf length, leaf width and leaf perimeter increased with increasing latitude, while the leaf area and SLA firstly increased and then decreased. The mean annual temperature and annual precipitation were the major environmental factors affecting the leaf traits along latitude gradient. With the increase of soil N content, the SLA decreased firstly and then increased, while the leaf mass decreased significantly. With the increase of soil P content, the SLA increased, and the leaf mass decreased significantly.

  12. A simple ecohydrological model captures essentials of seasonal leaf dynamics in semi-arid tropical grasslands

    NASA Astrophysics Data System (ADS)

    Choler, P.; Sea, W.; Briggs, P.; Raupach, M.; Leuning, R.

    2009-09-01

    Modelling leaf phenology in water-controlled ecosystems remains a difficult task because of high spatial and temporal variability in the interaction of plant growth and soil moisture. Here, we move beyond widely used linear models to examine the performance of low-dimensional, nonlinear ecohydrological models that couple the dynamics of plant cover and soil moisture. The study area encompasses 400 000 km2 of semi-arid perennial tropical grasslands, dominated by C4 grasses, in the Northern Territory and Queensland (Australia). We prepared 8 yr time series (2001-2008) of climatic variables and estimates of fractional vegetation cover derived from MODIS Normalized Difference Vegetation Index (NDVI) for 400 randomly chosen sites, of which 25% were used for model calibration and 75% for model validation. We found that the mean absolute error of linear and nonlinear models did not markedly differ. However, nonlinear models presented key advantages: (1) they exhibited far less systematic error than their linear counterparts; (2) their error magnitude was consistent throughout a precipitation gradient while the performance of linear models deteriorated at the driest sites, and (3) they better captured the sharp transitions in leaf cover that are observed under high seasonality of precipitation. Our results showed that low-dimensional models including feedbacks between soil water balance and plant growth adequately predict leaf dynamics in semi-arid perennial grasslands. Because these models attempt to capture fundamental ecohydrological processes, they should be the favoured approach for prognostic models of phenology.

  13. A simple ecohydrological model captures essentials of seasonal leaf dynamics in semi-arid tropical grasslands

    NASA Astrophysics Data System (ADS)

    Choler, P.; Sea, W.; Briggs, P.; Raupach, M.; Leuning, R.

    2010-03-01

    Modelling leaf phenology in water-controlled ecosystems remains a difficult task because of high spatial and temporal variability in the interaction of plant growth and soil moisture. Here, we move beyond widely used linear models to examine the performance of low-dimensional, nonlinear ecohydrological models that couple the dynamics of plant cover and soil moisture. The study area encompasses 400 000 km2 of semi-arid perennial tropical grasslands, dominated by C4 grasses, in the Northern Territory and Queensland (Australia). We prepared 8-year time series (2001-2008) of climatic variables and estimates of fractional vegetation cover derived from MODIS Normalized Difference Vegetation Index (NDVI) for 400 randomly chosen sites, of which 25% were used for model calibration and 75% for model validation. We found that the mean absolute error of linear and nonlinear models did not markedly differ. However, nonlinear models presented key advantages: (1) they exhibited far less systematic error than their linear counterparts; (2) their error magnitude was consistent throughout a precipitation gradient while the performance of linear models deteriorated at the driest sites, and (3) they better captured the sharp transitions in leaf cover that are observed under high seasonality of precipitation. Our results showed that low-dimensional models including feedbacks between soil water balance and plant growth adequately predict leaf dynamics in semi-arid perennial grasslands. Because these models attempt to capture fundamental ecohydrological processes, they should be the favoured approach for prognostic models of phenology.

  14. Comparison of the New LEAF Area INDEX (LAI 3G) with the Kazahstan-Wide LEAF Area INDEX DATA SET (GGRS-LAI) over Central ASIA

    NASA Astrophysics Data System (ADS)

    Kappas, M.; Propastin, P.; Degener, J.; Renchin, T.

    2014-12-01

    Long-term global data sets of Leaf Area Index (LAI) are important for monitoring global vegetation dynamics. LAI indicating phenological development of vegetation is an important state variable for modeling land surface processes. The comparison of long-term data sets is based on two recently available data sets both derived from AVHRR time series. The LAI 3g data set introduced by Zaichun Zhu et al. (2013) is developed from the new improved third generation Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) and best-quality MODIS LAI data. The second long-term data set is based on the 8 km spatial resolution GIMMS-AVHRR data (GGRS-data set by Propastin et al. 2012). The GGRS-LAI product uses a three-dimensional physical radiative transfer model which establishes relationship between LAI, vegetation fractional cover and given patterns of surface reflectance, view-illumination conditions and optical properties of vegetation. The model incorporates a number of site/region specific parameters, including the vegetation architecture variables such as leaf angle distribution, clumping index, and light extinction coefficient. For the application of the model to Kazakhstan, the vegetation architecture variables were computed at the local (pixel) level based on extensive field surveys of the biophysical properties of vegetation in representative grassland areas of Kazakhstan. The comparison of both long-term data sets will be used to interpret their quality for scientific research in other disciplines. References:Propastin, P., Kappas, M. (2012). Retrieval of coarse-resolution leaf area index over the Republic of Kazakhstan using NOAA AVHRR satellite data and ground measurements," Remote Sensing, vol. 4, no. 1, pp. 220-246. Zaichun Zhu, Jian Bi, Yaozhong Pan, Sangram Ganguly, Alessandro Anav, Liang Xu, Arindam Samanta, Shilong Piao, Ramakrishna R. Nemani and Ranga B. Myneni (2013). Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011. Remote Sens. 2013, 5, 927-948; doi:10.3390/rs5020927

  15. Leaf Dynamics of Panicum maximum under Future Climatic Changes

    PubMed Central

    Britto de Assis Prado, Carlos Henrique; Haik Guedes de Camargo-Bortolin, Lívia; Castro, Érique; Martinez, Carlos Alberto

    2016-01-01

    Panicum maximum Jacq. ‘Mombaça’ (C4) was grown in field conditions with sufficient water and nutrients to examine the effects of warming and elevated CO2 concentrations during the winter. Plants were exposed to either the ambient temperature and regular atmospheric CO2 (Control); elevated CO2 (600 ppm, eC); canopy warming (+2°C above regular canopy temperature, eT); or elevated CO2 and canopy warming (eC+eT). The temperatures and CO2 in the field were controlled by temperature free-air controlled enhancement (T-FACE) and mini free-air CO2 enrichment (miniFACE) facilities. The most green, expanding, and expanded leaves and the highest leaf appearance rate (LAR, leaves day-1) and leaf elongation rate (LER, cm day-1) were observed under eT. Leaf area and leaf biomass were higher in the eT and eC+eT treatments. The higher LER and LAR without significant differences in the number of senescent leaves could explain why tillers had higher foliage area and leaf biomass in the eT treatment. The eC treatment had the lowest LER and the fewest expanded and green leaves, similar to Control. The inhibitory effect of eC on foliage development in winter was indicated by the fewer green, expanded, and expanding leaves under eC+eT than eT. The stimulatory and inhibitory effects of the eT and eC treatments, respectively, on foliage raised and lowered, respectively, the foliar nitrogen concentration. The inhibition of foliage by eC was confirmed by the eC treatment having the lowest leaf/stem biomass ratio and by the change in leaf biomass-area relationships from linear or exponential growth to rectangular hyperbolic growth under eC. Besides, eC+eT had a synergist effect, speeding up leaf maturation. Therefore, with sufficient water and nutrients in winter, the inhibitory effect of elevated CO2 on foliage could be partially offset by elevated temperatures and relatively high P. maximum foliage production could be achieved under future climatic change. PMID:26894932

  16. Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests.

    PubMed

    Xu, Xiangtao; Medvigy, David; Powers, Jennifer S; Becknell, Justin M; Guan, Kaiyu

    2016-10-01

    We assessed whether diversity in plant hydraulic traits can explain the observed diversity in plant responses to water stress in seasonally dry tropical forests (SDTFs). The Ecosystem Demography model 2 (ED2) was updated with a trait-driven mechanistic plant hydraulic module, as well as novel drought-phenology and plant water stress schemes. Four plant functional types were parameterized on the basis of meta-analysis of plant hydraulic traits. Simulations from both the original and the updated ED2 were evaluated against 5 yr of field data from a Costa Rican SDTF site and remote-sensing data over Central America. The updated model generated realistic plant hydraulic dynamics, such as leaf water potential and stem sap flow. Compared with the original ED2, predictions from our novel trait-driven model matched better with observed growth, phenology and their variations among functional groups. Most notably, the original ED2 produced unrealistically small leaf area index (LAI) and underestimated cumulative leaf litter. Both of these biases were corrected by the updated model. The updated model was also better able to simulate spatial patterns of LAI dynamics in Central America. Plant hydraulic traits are intercorrelated in SDTFs. Mechanistic incorporation of plant hydraulic traits is necessary for the simulation of spatiotemporal patterns of vegetation dynamics in SDTFs in vegetation models. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  17. Comparative drought-resistance of seedlings of 28 species of co-occurring tropical woody plants.

    PubMed

    Engelbrecht, Bettina M J; Kursar, Thomas A

    2003-08-01

    Quantifying plant drought resistance is important for understanding plant species' association to microhabitats with different soil moisture availability and their distribution along rainfall gradients, as well as for understanding the role of underlying morphological and physiological mechanisms. The effect of dry season drought on survival and leaf-area change of first year seedlings of 28 species of co-occurring woody tropical plants was experimentally quantified in the understory of a tropical moist forest. The seedlings were subjected to a drought or an irrigation treatment in the forest for 22 weeks during the dry season. Drought decreased survival and growth (assessed as leaf-area change) in almost all of the species. Both survival and leaf-area change in the dry treatment ranged fairly evenly from 0% to about 100% of that in the irrigated treatment. In 43% of the species the difference between treatments in survival was not significant even after 22 weeks. In contrast, only three species showed no significant effect of drought on leaf-area change. The effects of drought on species' survival and growth were not correlated with each other, reflecting different strategies in response to drought. Seedling size at the onset of the dry season had no significant effect on species' drought response. Our study is the first to comparatively assess seedling drought resistance in the habitat for a large number of tropical species, and underlines the importance of drought for plant population dynamics in tropical forests.

  18. Effects of Crown Scorch on Longleaf Pine Fine Roots

    Treesearch

    Mary Anne Sword; James D. Haywood

    1999-01-01

    Photosynthate production is reduced by foliage loss. Thus, scorch-induced decreases in the leaf area of longleaf pine (Pinus palustris Mill.) may reduce photosynthate allocation to roots. In this investigation the root carbohydrate concentrations and dynamics of longleaf pine after two intensities of prescribed burning were monitored. In...

  19. LINKING IN SITU TIME SERIES FOREST CANOPY LAI AND PHENOLOGY METRICS WITH MODIS AND LANDSAT NDVI AND LAI PRODUCTS

    EPA Science Inventory

    The subject of this presentation is forest vegetation dynamics as observed by the TERRA spacecraft's Moderate-Resolution Imaging Spectroradiometer (MODIS) and Landsat Thematic Mapper, and complimentary in situ time series measurements of forest canopy metrics related to Leaf Area...

  20. Comparison of dwarf bamboos (Indocalamus sp.) leaf parameters to determine relationship between spatial density of plants and total leaf area per plant.

    PubMed

    Shi, Pei-Jian; Xu, Qiang; Sandhu, Hardev S; Gielis, Johan; Ding, Yu-Long; Li, Hua-Rong; Dong, Xiao-Bo

    2015-10-01

    The relationship between spatial density and size of plants is an important topic in plant ecology. The self-thinning rule suggests a -3/2 power between average biomass and density or a -1/2 power between stand yield and density. However, the self-thinning rule based on total leaf area per plant and density of plants has been neglected presumably because of the lack of a method that can accurately estimate the total leaf area per plant. We aimed to find the relationship between spatial density of plants and total leaf area per plant. We also attempted to provide a novel model for accurately describing the leaf shape of bamboos. We proposed a simplified Gielis equation with only two parameters to describe the leaf shape of bamboos one model parameter represented the overall ratio of leaf width to leaf length. Using this method, we compared some leaf parameters (leaf shape, number of leaves per plant, ratio of total leaf weight to aboveground weight per plant, and total leaf area per plant) of four bamboo species of genus Indocalamus Nakai (I. pedalis (Keng) P.C. Keng, I. pumilus Q.H. Dai and C.F. Keng, I. barbatus McClure, and I. victorialis P.C. Keng). We also explored the possible correlation between spatial density and total leaf area per plant using log-linear regression. We found that the simplified Gielis equation fit the leaf shape of four bamboo species very well. Although all these four species belonged to the same genus, there were still significant differences in leaf shape. Significant differences also existed in leaf area per plant, ratio of leaf weight to aboveground weight per plant, and leaf length. In addition, we found that the total leaf area per plant decreased with increased spatial density. Therefore, we directly demonstrated the self-thinning rule to improve light interception.

  1. Biological processes dominate seasonality of remotely sensed canopy greenness in an Amazon evergreen forest.

    PubMed

    Wu, Jin; Kobayashi, Hideki; Stark, Scott C; Meng, Ran; Guan, Kaiyu; Tran, Ngoc Nguyen; Gao, Sicong; Yang, Wei; Restrepo-Coupe, Natalia; Miura, Tomoaki; Oliviera, Raimundo Cosme; Rogers, Alistair; Dye, Dennis G; Nelson, Bruce W; Serbin, Shawn P; Huete, Alfredo R; Saleska, Scott R

    2018-03-01

    Satellite observations of Amazon forests show seasonal and interannual variations, but the underlying biological processes remain debated. Here we combined radiative transfer models (RTMs) with field observations of Amazon forest leaf and canopy characteristics to test three hypotheses for satellite-observed canopy reflectance seasonality: seasonal changes in leaf area index, in canopy-surface leafless crown fraction and/or in leaf demography. Canopy RTMs (PROSAIL and FLiES), driven by these three factors combined, simulated satellite-observed seasonal patterns well, explaining c. 70% of the variability in a key reflectance-based vegetation index (MAIAC EVI, which removes artifacts that would otherwise arise from clouds/aerosols and sun-sensor geometry). Leaf area index, leafless crown fraction and leaf demography independently accounted for 1, 33 and 66% of FLiES-simulated EVI seasonality, respectively. These factors also strongly influenced modeled near-infrared (NIR) reflectance, explaining why both modeled and observed EVI, which is especially sensitive to NIR, captures canopy seasonal dynamics well. Our improved analysis of canopy-scale biophysics rules out satellite artifacts as significant causes of satellite-observed seasonal patterns at this site, implying that aggregated phenology explains the larger scale remotely observed patterns. This work significantly reconciles current controversies about satellite-detected Amazon phenology, and improves our use of satellite observations to study climate-phenology relationships in the tropics. No claim to original US Government works New Phytologist © 2017 New Phytologist Trust.

  2. Large-eddy simulations of surface roughness parameter sensitivity to canopy-structure characteristics

    DOE PAGES

    Maurer, K. D.; Bohrer, G.; Kenny, W. T.; ...

    2015-04-30

    Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction.more » We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.« less

  3. Large-eddy simulations of surface roughness parameter sensitivity to canopy-structure characteristics

    NASA Astrophysics Data System (ADS)

    Maurer, K. D.; Bohrer, G.; Kenny, W. T.; Ivanov, V. Y.

    2015-04-01

    Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction. We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.

  4. Effect of elevated atmospheric CO2 concentration on growth and leaf litter decomposition of Quercus acutissima and Fraxinus rhynchophylla

    PubMed Central

    Cha, Sangsub; Chae, Hee-Myung; Lee, Sang-Hoon; Shim, Jae-Kuk

    2017-01-01

    The atmospheric carbon dioxide (CO2) level is expected to increase substantially, which may change the global climate and carbon dynamics in ecosystems. We examined the effects of an elevated atmospheric CO2 level on the growth of Quercus acutissima and Fraxinus rhynchophylla seedlings. We investigated changes in the chemical composition of leaf litter, as well as litter decomposition. Q. acutissima and F. rhynchophylla did not show differences in dry weight between ambient CO2 and enriched CO2 treatments, but they exhibited different patterns of carbon allocation, namely, lower shoot/root ratio (S/R) and decreased specific leaf area (SLA) under CO2-enriched conditions. The elevated CO2 concentration significantly reduced the nitrogen concentration in leaf litter while increasing lignin concentrations and carbon/nitrogen (C/N) and lignin/N ratios. The microbial biomass associated with decomposing Q. acutissima leaf litter was suppressed in CO2 enrichment chambers, while that of F. rhynchophylla was not. The leaf litter of Q. acutissima from the CO2-enriched chambers, in contrast with F. rhynchophylla, contained much lower nutrient concentrations than that of the litter in the ambient air chambers. Consequently, poorer litter quality suppressed decomposition. PMID:28182638

  5. Effect of elevated atmospheric CO2 concentration on growth and leaf litter decomposition of Quercus acutissima and Fraxinus rhynchophylla.

    PubMed

    Cha, Sangsub; Chae, Hee-Myung; Lee, Sang-Hoon; Shim, Jae-Kuk

    2017-01-01

    The atmospheric carbon dioxide (CO2) level is expected to increase substantially, which may change the global climate and carbon dynamics in ecosystems. We examined the effects of an elevated atmospheric CO2 level on the growth of Quercus acutissima and Fraxinus rhynchophylla seedlings. We investigated changes in the chemical composition of leaf litter, as well as litter decomposition. Q. acutissima and F. rhynchophylla did not show differences in dry weight between ambient CO2 and enriched CO2 treatments, but they exhibited different patterns of carbon allocation, namely, lower shoot/root ratio (S/R) and decreased specific leaf area (SLA) under CO2-enriched conditions. The elevated CO2 concentration significantly reduced the nitrogen concentration in leaf litter while increasing lignin concentrations and carbon/nitrogen (C/N) and lignin/N ratios. The microbial biomass associated with decomposing Q. acutissima leaf litter was suppressed in CO2 enrichment chambers, while that of F. rhynchophylla was not. The leaf litter of Q. acutissima from the CO2-enriched chambers, in contrast with F. rhynchophylla, contained much lower nutrient concentrations than that of the litter in the ambient air chambers. Consequently, poorer litter quality suppressed decomposition.

  6. Linking nonstructural carbohydrate dynamics to gas exchange and leaf hydraulic behavior in Pinus edulis and Juniperus monosperma

    Treesearch

    David R. Woodruff; Frederick C. Meinzer; Danielle E. Marias; Sanna Sevanto; Michael W. Jenkins; Nate G. McDowell

    2014-01-01

    Leaf hydraulics, gas exchange and carbon storage in Pinus edulis and Juniperus monosperma, two tree species on opposite ends of the isohydry–anisohydry spectrum, were analyzed to examine relationships between hydraulic function and carbohydrate dynamics.Leaf hydraulic vulnerability,...

  7. Flood regime and leaf fall determine soil inorganic nitrogen dynamics in semiarid riparian forests.

    PubMed

    Shah, J J Follstad; Dahm, C N

    2008-04-01

    Flow regulation has reduced the exchange of water, energy, and materials between rivers and floodplains, caused declines in native plant populations, and advanced the spread of nonnative plants. Naturalized flow regimes are regarded as a means to restore degraded riparian areas. We examined the effects of flood regime (short [SIFI] vs. long [LIFI] inter-flood interval) on plant community and soil inorganic nitrogen (N) dynamics in riparian forests dominated by native Populus deltoides var. wislizenii Eckenwalder (Rio Grande cottonwood) and nonnative Tamarix chinensis Lour. (salt cedar) along the regulated middle Rio Grande of New Mexico. The frequency of inundation (every 2-3 years) at SIFI sites better reflected inundation patterns prior to the closure of an upstream dam relative to the frequency of inundation at LIFI sites (> or =10 years). Riparian inundation at SIFI sites varied from 7 to 45 days during the study period (April 2001-July 2004). SIFI vs. LIFI sites had higher soil moisture but greater groundwater table elevation fluctuation in response to flooding and drought. Rates of net N mineralization were consistently higher at LIFI vs. SIFI sites, and soil inorganic N concentrations were greatest at sites with elevated leaf-litter production. Sites with stable depth to ground water (approximately 1.5 m) supported the greatest leaf-litter production. Reduced leaf production at P. deltoides SIFI sites was attributed to drought-induced recession of ground water and prolonged inundation. We recommend that natural resource managers and restoration practitioners (1) utilize naturalized flows that help maintain riparian groundwater elevations between 1 and 3 m in reaches with mature P. deltoides or where P. deltoides revegetation is desired, (2) identify areas that naturally undergo long periods of inundation and consider restoring these areas to seasonal wetlands, and (3) use native xeric-adapted riparian plants to revegetate LIFI and SIFI sites where groundwater elevations commonly drop below 3 m.

  8. Novel Digital Features Discriminate Between Drought Resistant and Drought Sensitive Rice Under Controlled and Field Conditions.

    PubMed

    Duan, Lingfeng; Han, Jiwan; Guo, Zilong; Tu, Haifu; Yang, Peng; Zhang, Dong; Fan, Yuan; Chen, Guoxing; Xiong, Lizhong; Dai, Mingqiu; Williams, Kevin; Corke, Fiona; Doonan, John H; Yang, Wanneng

    2018-01-01

    Dynamic quantification of drought response is a key issue both for variety selection and for functional genetic study of rice drought resistance. Traditional assessment of drought resistance traits, such as stay-green and leaf-rolling, has utilized manual measurements, that are often subjective, error-prone, poorly quantified and time consuming. To relieve this phenotyping bottleneck, we demonstrate a feasible, robust and non-destructive method that dynamically quantifies response to drought, under both controlled and field conditions. Firstly, RGB images of individual rice plants at different growth points were analyzed to derive 4 features that were influenced by imposition of drought. These include a feature related to the ability to stay green, which we termed greenness plant area ratio (GPAR) and 3 shape descriptors [total plant area/bounding rectangle area ratio (TBR), perimeter area ratio (PAR) and total plant area/convex hull area ratio (TCR)]. Experiments showed that these 4 features were capable of discriminating reliably between drought resistant and drought sensitive accessions, and dynamically quantifying the drought response under controlled conditions across time (at either daily or half hourly time intervals). We compared the 3 shape descriptors and concluded that PAR was more robust and sensitive to leaf-rolling than the other shape descriptors. In addition, PAR and GPAR proved to be effective in quantification of drought response in the field. Moreover, the values obtained in field experiments using the collection of rice varieties were correlated with those derived from pot-based experiments. The general applicability of the algorithms is demonstrated by their ability to probe archival Miscanthus data previously collected on an independent platform. In conclusion, this image-based technology is robust providing a platform-independent tool for quantifying drought response that should be of general utility for breeding and functional genomics in future.

  9. Canopy architectural and physiological characterization of near-isogenic wheat lines differing in the tiller inhibition gene tin.

    PubMed

    Moeller, Carina; Evers, Jochem B; Rebetzke, Greg

    2014-01-01

    Tillering is a core constituent of plant architecture, and influences light interception to affect plant and crop performance. Near-isogenic lines (NILs) varying for a tiller inhibition (tin) gene and representing two genetic backgrounds were investigated for tillering dynamics, organ size distribution, leaf area, light interception, red: far-red ratio, and chlorophyll content. Tillering ceased earlier in the tin lines to reduce the frequencies of later primary and secondary tillers compared to the free-tillering NILs, and demonstrated the genetically lower tillering plasticity of tin-containing lines. The distribution of organ sizes along shoots varied between NILs contrasting for tin. Internode elongation commenced at a lower phytomer, and the peduncle was shorter in the tin lines. The flag leaves of tin lines were larger, and the longest leaf blades were observed at higher phytomers in the tin than in free-tillering lines. Total leaf area was reduced in tin lines, and non-tin lines invested more leaf area at mid-canopy height. The tiller economy (ratio of seed-bearing shoots to numbers of shoots produced) was 10% greater in the tin lines (0.73-0.76) compared to the free-tillering sisters (0.62-0.63). At maximum tiller number, the red: far-red ratio (light quality stimulus that is thought to induce the cessation of tillering) at the plant-base was 0.18-0.22 in tin lines and 0.09-0.11 in free-tillering lines at levels of photosynthetic active radiation of 49-53% and 30-33%, respectively. The tin lines intercepted less radiation compared to their free-tillering sisters once genotypic differences in tiller numbers had established, and maintained green leaf area in the lower canopy later into the season. Greater light extinction coefficients (k) in tin lines prior to, but reduced k after, spike emergence indicated that differences in light interception between NILs contrasting in tin cannot be explained by leaf area alone but that geometric and optical canopy properties contributed. The careful characterization of specifically-developed NILs is refining the development of a physiology-based model for tillering to improve understanding of the value of architectural traits for use in cereal improvement.

  10. Wheat productivity estimates using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F.; Colwell, J. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. The electro-optical leaf area meter was the most accurate of the approaches tested on harvested wheat samples, but it is very time consuming. It was decided to infer leaf area from dry weight biomass after establishing a relationship between dry weight biomass and area as measured by the leaf area meter. There is a good correlation between leaf area as measured by the meter and dry leaf biomass. There is a less consistent relationship between stem area and stem biomass.

  11. Seasonal variations of gas exchange and water relations in deciduous and evergreen trees in monsoonal dry forests of Thailand.

    PubMed

    Ishida, Atsushi; Harayama, Hisanori; Yazaki, Kenichi; Ladpala, Phanumard; Sasrisang, Amornrat; Kaewpakasit, Kanokwan; Panuthai, Samreong; Staporn, Duriya; Maeda, Takahisa; Gamo, Minoru; Diloksumpun, Sapit; Puangchit, Ladawan; Ishizuka, Moriyoshi

    2010-08-01

    This study compared leaf gas exchange, leaf hydraulic conductance, twig hydraulic conductivity and leaf osmotic potential at full turgor between two drought-deciduous trees, Vitex peduncularis Wall. and Xylia xylocarpa (Roxb.) W. Theob., and two evergreen trees, Hopea ferrea Lanessan and Syzygium cumini (L.) Skeels, at the uppermost canopies in tropical dry forests in Thailand. The aims were to examine (i) whether leaf and twig hydraulic properties differ in relation to leaf phenology and (ii) whether xylem cavitation is a determinant of leaf shedding during the dry season. The variations in almost all hydraulic traits were more dependent on species than on leaf phenology. Evergreen Hopea exhibited the lowest leaf-area-specific twig hydraulic conductivity (leaf-area-specific K(twig)), lamina hydraulic conductance (K(lamina)) and leaf osmotic potential at full turgor (Ψ(o)) among species, whereas evergreen Syzygium exhibited the highest leaf-area-specific K(twig), K(lamina) and Ψ(o). Deciduous Xylia had the highest sapwood-area-specific K(twig), along with the lowest Huber value (sapwood area/leaf area). More negative osmotic Ψ(o) and leaf osmotic adjustment during the dry season were found in deciduous Vitex and evergreen Hopea, accompanied by low sapwood-area-specific K(twig). Regarding seasonal changes in hydraulics, no remarkable decrease in K(lamina) and K(twig) was found during the dry season in any species. Results suggest that leaf shedding during the dry season is not always associated with extensive xylem cavitation.

  12. Photosynthetic thermotolerance of woody savanna species in China is correlated with leaf life span

    PubMed Central

    Zhang, Jiao-Lin; Poorter, L.; Hao, Guang-You; Cao, Kun-Fang

    2012-01-01

    Background and Aims Photosynthetic thermotolerance (PT) is important for plant survival in tropical and sub-tropical savannas. However, little is known about thermotolerance of tropical and sub-tropical wild plants and its association with leaf phenology and persistence. Longer-lived leaves of savanna plants may experience a higher risk of heat stress. Foliar Ca is related to cell integrity of leaves under stresses. In this study it is hypothesized that (1) species with leaf flushing in the hot-dry season have greater PT than those with leaf flushing in the rainy season; and (2) PT correlates positively with leaf life span, leaf mass per unit area (LMA) and foliar Ca concentration ([Ca]) across woody savanna species. Methods The temperature-dependent increase in minimum fluorescence was measured to assess PT, together with leaf dynamics, LMA and [Ca] for a total of 24 woody species differing in leaf flushing time in a valley-type savanna in south-west China. Key Results The PT of the woody savanna species with leaf flushing in the hot-dry season was greater than that of those with leaf flushing in the rainy season. Thermotolerance was positively associated with leaf life span and [Ca] for all species irrespective of the time of flushing. The associations of PT with leaf life span and [Ca] were evolutionarily correlated. Thermotolerance was, however, independent of LMA. Conclusions Chinese savanna woody species are adapted to hot-dry habitats. However, the current maximum leaf temperature during extreme heat stress (44·3 °C) is close to the critical temperature of photosystem II (45·2 °C); future global warming may increase the risk of heat damage to the photosynthetic apparatus of Chinese savanna species. PMID:22875810

  13. Relationship Between Canopy Dynamics and Stem Volume Production of Four Species Receiving Irrigation and Fertilization

    Treesearch

    Chrisopher B Allen; Rodney E. Will; Terry Sarigumba; Marshall A. Jacobson; Richard F. Daniels; Stephen A. Kennerly

    2004-01-01

    We measured the effects of irrigation and varying levels of fertilization on intercepted photosynthetically active radiation (IPAR), projected leaf area index (LAI), and foliar nitrogen concentration ([N]) in order to determine the relationship between resource availability, canopy size, and stem-volume growth. Stands of sycamore (Platanus occidentalis...

  14. Future vegetation ecosystem response to warming climate over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Bao, Y.; Gao, Y.; Wang, Y.

    2017-12-01

    The amplified vegetation response to climate variability has been found over the Tibetan Plateau (TP) in recent decades. In this study, the potential impacts of 21st century climate change on the vegetation ecosystem over the TP are assessed based on the dynamic vegetation outputs of models from Coupled Model Intercomparison Project Phase 5 (CMIP5), and the sensitivity of the TP vegetation in response to warming climate was investigated. Models project a continuous and accelerating greening in future, especially in the eastern TP, which closely associates with the plant type upgrade due to the pronouncing warming in growing season.Vegetation leaf area index (LAI) increase well follows the global warming, suggesting the warming climate instead of co2 fertilization controlls the future TP plant growth. The warming spring may advance the start of green-up day and extend the growing season length. More carbon accumulation in vegetation and soil will intensify the TP carbon cycle and will keep it as a carbon sink in future. Keywords: Leaf Area Index (LAI), Climate Change, Global Dynamic Vegetation Models (DGVMs), CMIP5, Tibetan Plateau (TP)

  15. Effect of solution and leaf surface polarity on droplet spread area and contact angle.

    PubMed

    Nairn, Justin J; Forster, W Alison; van Leeuwen, Rebecca M

    2016-03-01

    How much an agrochemical spray droplet spreads on a leaf surface can significantly influence efficacy. This study investigates the effect solution polarity has on droplet spreading on leaf surfaces and whether the relative leaf surface polarity, as quantified using the wetting tension dielectric (WTD) technique, influences the final spread area. Contact angles and spread areas were measured using four probe solutions on 17 species. Probe solution polarity was found to affect the measured spread area and the contact angle of the droplets on non-hairy leaves. Leaf hairs skewed the spread area measurement, preventing investigation of the influence of surface polarity on hairy leaves. WTD-measured leaf surface polarity of non-hairy leaves was found to correlate strongly with the effect of solution polarity on spread area. For non-polar leaf surfaces the spread area decreases with increasing solution polarity, for neutral surfaces polarity has no effect on spread area and for polar leaf surfaces the spread area increases with increasing solution polarity. These results attest to the use of the WTD technique as a means to quantify leaf surface polarity. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  16. Worldwide variation in within-canopy photosynthetic acclimation: differences in temporal and environmental controls among plant functional types

    NASA Astrophysics Data System (ADS)

    Niinemets, Ülo; Keenan, Trevor

    2017-04-01

    Major light gradients, characteristically 10- to 50-fold, constitute the most prominent feature of plant canopies. These gradients drive within-canopy variation in foliage structural, chemical and physiological traits. As a key acclimation response to variation in light availability, foliage photosynthetic capacity per area (Aarea) increases with increasing light availability within the canopy, maximizing whole canopy photosynthesis. Recently, a worldwide database including 831 within-canopy gradients with standardized light estimates for 304 species belonging to major vascular plant functional types was constructed and within-canopy variation in photosynthetic acclimation was characterized (Niinemets Ü, Keenan TF, Hallik L (2015) Tansley review. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. The New Phytologist 205: 973-993). However, the understanding of how within-canopy photosynthetic gradients vary during the growing season and in response to site and stand characteristics is still limited. Here we analyzed temporal, environmental and site (nutrient availability, stand density, ambient CO2 concentration, water availability) sources of variation in within-canopy photosynthetic acclimation in different plant functional types. Variation in key structural (leaf dry mass per unit area, MA), chemical (nitrogen content per dry mass, NM, and area, NA) and physiological (photosynthetic nitrogen use efficiency, EN) photosynthetic capacity per dry mass, Amass and area, Aarea) was examined. The analysis demonstrates major, typically 1.5-2-fold, time-, environment and site-dependent modifications in within-canopy variation in foliage photosynthetic capacity. However, the magnitude and direction of temporal and environmental variations in plasticity significantly varied among functional types. Species with longer leaf life span and low rates of canopy expansion or flush-type canopy formation had lower within canopy plasticity during the growing season and in response to environmental and site modifications than species with high rates of canopy expansion and leaf turnover. The fast canopy-expanding species that grow in highly dynamic light environments, actively modified Aarea by nitrogen reallocation among and partitioning within leaves. In contrast, species with low rate of leaf turnover generally exhibited a passive acclimation response with variation in Aarea primarily determined by light-dependent modifications in leaf structure during leaf growth. Due to limited reacclimation capacity in species with low leaf turnover, within-canopy variation in Aarea decreased with increasing leaf age in these species. Furthermore, the plasticity responded less to modifications in environmental and site characteristics than in species with faster leaf turnover. This analysis concludes that the rate of leaf turnover is the key trait determining the temporal variation and environmental responses of canopy photosynthetic acclimation.

  17. Autumn leaf subsidies influence spring dynamics of freshwater plankton communities.

    PubMed

    Fey, Samuel B; Mertens, Andrew N; Cottingham, Kathryn L

    2015-07-01

    While ecologists primarily focus on the immediate impact of ecological subsidies, understanding the importance of ecological subsidies requires quantifying the long-term temporal dynamics of subsidies on recipient ecosystems. Deciduous leaf litter transferred from terrestrial to aquatic ecosystems exerts both immediate and lasting effects on stream food webs. Recently, deciduous leaf additions have also been shown to be important subsidies for planktonic food webs in ponds during autumn; however, the inter-seasonal effects of autumn leaf subsidies on planktonic food webs have not been studied. We hypothesized that autumn leaf drop will affect the spring dynamics of freshwater pond food webs by altering the availability of resources, water transparency, and the metabolic state of ponds. We created leaf-added and no-leaf-added field mesocosms in autumn 2012, allowed mesocosms to ice-over for the winter, and began sampling the physical, chemical, and biological properties of mesocosms immediately following ice-off in spring 2013. At ice-off, leaf additions reduced dissolved oxygen, elevated total phosphorus concentrations and dissolved materials, and did not alter temperature or total nitrogen. These initial abiotic effects contributed to higher bacterial densities and lower chlorophyll concentrations, but by the end of spring, the abiotic environment, chlorophyll and bacterial densities converged. By contrast, zooplankton densities diverged between treatments during the spring, with leaf additions stimulating copepods but inhibiting cladocerans. We hypothesized that these differences between zooplankton orders resulted from resource shifts following leaf additions. These results suggest that leaf subsidies can alter both the short- and long-term dynamics of planktonic food webs, and highlight the importance of fully understanding how ecological subsidies are integrated into recipient food webs.

  18. Leaf area prediction models for Tsuga canadensis in Maine

    Treesearch

    Laura S. Kenefic; R.S. Seymour

    1999-01-01

    Tsuga canadensis (L.) Carr. (eastern hemlock) is a common species throughout the Acadian forest. Studies of leaf area and growth efficiency in this forest type have been limited by the lack of equations to predict leaf area of this species. We found that sapwood area was an effective leaf area surrogate in T. canadensis, though...

  19. Seasonal variability of multiple leaf traits captured by leaf spectroscopy at two temperate deciduous forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xi; Tang, Jianwu; Mustard, John F.

    Understanding the temporal patterns of leaf traits is critical in determining the seasonality and magnitude of terrestrial carbon, water, and energy fluxes. However, we lack robust and efficient ways to monitor the temporal dynamics of leaf traits. Here we assessed the potential of leaf spectroscopy to predict and monitor leaf traits across their entire life cycle at different forest sites and light environments (sunlit vs. shaded) using a weekly sampled dataset across the entire growing season at two temperate deciduous forests. In addition, the dataset includes field measured leaf-level directional-hemispherical reflectance/transmittance together with seven important leaf traits [total chlorophyll (chlorophyllmore » a and b), carotenoids, mass-based nitrogen concentration (N mass), mass-based carbon concentration (C mass), and leaf mass per area (LMA)]. All leaf traits varied significantly throughout the growing season, and displayed trait-specific temporal patterns. We used a Partial Least Square Regression (PLSR) modeling approach to estimate leaf traits from spectra, and found that PLSR was able to capture the variability across time, sites, and light environments of all leaf traits investigated (R 2 = 0.6–0.8 for temporal variability; R 2 = 0.3–0.7 for cross-site variability; R 2 = 0.4–0.8 for variability from light environments). We also tested alternative field sampling designs and found that for most leaf traits, biweekly leaf sampling throughout the growing season enabled accurate characterization of the seasonal patterns. Compared with the estimation of foliar pigments, the performance of N mass, C mass and LMA PLSR models improved more significantly with sampling frequency. Our results demonstrate that leaf spectra-trait relationships vary with time, and thus tracking the seasonality of leaf traits requires statistical models calibrated with data sampled throughout the growing season. In conclusion, our results have broad implications for future research that use vegetation spectra to infer leaf traits at different growing stages.« less

  20. Seasonal variability of multiple leaf traits captured by leaf spectroscopy at two temperate deciduous forests

    DOE PAGES

    Yang, Xi; Tang, Jianwu; Mustard, John F.; ...

    2016-04-02

    Understanding the temporal patterns of leaf traits is critical in determining the seasonality and magnitude of terrestrial carbon, water, and energy fluxes. However, we lack robust and efficient ways to monitor the temporal dynamics of leaf traits. Here we assessed the potential of leaf spectroscopy to predict and monitor leaf traits across their entire life cycle at different forest sites and light environments (sunlit vs. shaded) using a weekly sampled dataset across the entire growing season at two temperate deciduous forests. In addition, the dataset includes field measured leaf-level directional-hemispherical reflectance/transmittance together with seven important leaf traits [total chlorophyll (chlorophyllmore » a and b), carotenoids, mass-based nitrogen concentration (N mass), mass-based carbon concentration (C mass), and leaf mass per area (LMA)]. All leaf traits varied significantly throughout the growing season, and displayed trait-specific temporal patterns. We used a Partial Least Square Regression (PLSR) modeling approach to estimate leaf traits from spectra, and found that PLSR was able to capture the variability across time, sites, and light environments of all leaf traits investigated (R 2 = 0.6–0.8 for temporal variability; R 2 = 0.3–0.7 for cross-site variability; R 2 = 0.4–0.8 for variability from light environments). We also tested alternative field sampling designs and found that for most leaf traits, biweekly leaf sampling throughout the growing season enabled accurate characterization of the seasonal patterns. Compared with the estimation of foliar pigments, the performance of N mass, C mass and LMA PLSR models improved more significantly with sampling frequency. Our results demonstrate that leaf spectra-trait relationships vary with time, and thus tracking the seasonality of leaf traits requires statistical models calibrated with data sampled throughout the growing season. In conclusion, our results have broad implications for future research that use vegetation spectra to infer leaf traits at different growing stages.« less

  1. Diminished Stream Nitrate Concentrations Linked to Dissolved Organic Carbon Dynamics After Leaf Fall

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Doctor, D. H.; Kendall, C.

    2004-05-01

    Thermodynamic coupling of the nitrogen and carbon cycles has broad implications for controls on catchment nutrient fluxes. In the northeast US, leaf fall occurs in early October and the availability of organic carbon increases as the leaves decompose. At the Sleepers River Research Watershed in northeastern Vermont (USA), we sampled stream chemistry from seven nested catchments to determine how stream dissolved organic carbon (DOC) and nitrate vary as a function of flow conditions, land-use, and basin size in response to leaf fall. Following leaf fall, nitrate concentration patterns were quantitatively different from other times of the year. Under baseflow conditions, stream and soil water DOC concentrations were higher than normal, whereas nitrate concentrations declined sharply at the five smallest catchments and more modestly at the two largest catchments. Under high flow conditions, flushing of nitrate was observed, as is typical for stormflow response at Sleepers River. Our field data suggest that in-stream processing of nitrate is likely thermodynamically and kinetically favorable under baseflow but not at higher flow conditions when expanding variable source areas make hydrological connections between nitrate source areas and streams. We are working to evaluate this hypothesis with isotopic and other monitoring data, and to model the coupled interactions of water, DOC, and nitrate fluxes in these nested catchments.

  2. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types

    PubMed Central

    Niinemets, Ülo; Keenan, Trevor F.; Hallik, Lea

    2018-01-01

    Summary Extensive within-canopy light gradients importantly affect photosynthetic productivity of leaves in different canopy positions and lead to light-dependent increases in foliage photosynthetic capacity per area (AA). However, the controls on AA variations by changes in underlying traits are poorly known. We constructed an unprecedented worldwide database including 831 within-canopy gradients with standardized light estimates for 304 species belonging to major vascular plant functional types, and analyzed within-canopy variations in 12 key foliage structural, chemical and physiological traits by quantitatively separating the contributions of different traits to photosynthetic acclimation. Although the light-dependent increase in AA is surprisingly similar in different plant functional types, they fundamentally differ in the share of the controls on AA by constituent traits. Species with high rates of canopy development and leaf turnover exhibiting highly dynamic light environments, actively change AA by nitrogen reallocation among and partitioning within leaves. In contrast, species with slow leaf turnover exhibit a passive AA acclimation response primarily determined by acclimation of leaf structure to growth light. This review emphasizes that different combinations of traits are responsible for within-canopy photosynthetic acclimation in different plant functional types and solves an old enigma of the role of mass- vs. area-based traits in vegetation acclimation. PMID:25318596

  3. A model using marginal efficiency of investment to analyse carbon and nitrogen interactions in terrestrial ecosystems (ACONITE Version 1)

    NASA Astrophysics Data System (ADS)

    Thomas, R. Q.; Williams, M.

    2014-04-01

    Carbon (C) and nitrogen (N) cycles are coupled in terrestrial ecosystems through multiple processes including photosynthesis, tissue allocation, respiration, N fixation, N uptake, and decomposition of litter and soil organic matter. Capturing the constraint of N on terrestrial C uptake and storage has been a focus of the Earth System modelling community. However there is little understanding of the trade-offs and sensitivities of allocating C and N to different tissues in order to optimize the productivity of plants. Here we describe a new, simple model of ecosystem C-N cycling and interactions (ACONITE), that builds on theory related to plant economics in order to predict key ecosystem properties (leaf area index, leaf C : N, N fixation, and plant C use efficiency) using emergent constraints provided by marginal returns on investment for C and/or N allocation. We simulated and evaluated steady-state ecosystem stocks and fluxes in three different forest ecosystems types (tropical evergreen, temperate deciduous, and temperate evergreen). Leaf C : N differed among the three ecosystem types (temperate deciduous < tropical evergreen < temperature evergreen), a result that compared well to observations from a global database describing plant traits. Gross primary productivity (GPP) and net primary productivity (NPP) estimates compared well to observed fluxes at the simulation sites. Simulated N fixation at steady-state, calculated based on relative demand for N and the marginal return on C investment to acquire N, was an order of magnitude higher in the tropical forest than in the temperate forest, consistent with observations. A sensitivity analysis revealed that parameterization of the relationship between leaf N and leaf respiration had the largest influence on leaf area index and leaf C : N. Also, a widely used linear leaf N-respiration relationship did not yield a realistic leaf C : N, while a more recently reported non-linear relationship performed better. A parameter governing how photosynthesis scales with day length had the largest influence on total vegetation C, GPP, and NPP. Multiple parameters associated with photosynthesis, respiration, and N uptake influenced the rate of N fixation. Overall, our ability to constrain leaf area index and have spatially and temporally variable leaf C : N helps address challenges for ecosystem and Earth System models. Furthermore, the simple approach with emergent properties based on coupled C-N dynamics has potential for use in research that uses data-assimilation methods to integrate data on both the C and N cycles to improve C flux forecasts.

  4. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups

    Treesearch

    Peter B. Reich; Michael B. Walters; David S. Ellsworth; [and others; [Editor’s note: James M.. Vose is the SRS co-author for this publication.

    1998-01-01

    Based on prior evidence of coordinated multiple leaf trait scaling, the authors hypothesized that variation among species in leaf dark respiration rate (Rd) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (Amax). However, it is not known whether such scaling, if it exists, is...

  5. Study of traffic-related pollutant removal from street canyon with trees: dispersion and deposition perspective.

    PubMed

    Morakinyo, Tobi Eniolu; Lam, Yun Fat

    2016-11-01

    Numerical experiments involving street canyons of varying aspect ratio with traffic-induced pollutants (PM 2.5 ) and implanted trees of varying aspect ratio, leaf area index, leaf area density distribution, trunk height, tree-covered area, and tree planting pattern under different wind conditions were conducted using a computational fluid dynamics (CFD) model, ENVI-met. Various aspects of dispersion and deposition were investigated, which include the influence of various tree configurations and wind condition on dispersion within the street canyon, pollutant mass at the free stream layer and street canyon, and comparison between mass removal by surface (leaf) deposition and mass enhancement due to the presence of trees. Results revealed that concentration level was enhanced especially within pedestrian level in street canyons with trees relative to their tree-free counterparts. Additionally, we found a dependence of the magnitude of concentration increase (within pedestrian level) and decrease (above pedestrian level) due to tree configuration and wind condition. Furthermore, we realized that only ∼0.1-3 % of PM 2.5 was dispersed to the free stream layer while a larger percentage (∼97 %) remained in the canyon, regardless of its aspect ratio, prevailing wind condition, and either tree-free or with tree (of various configuration). Lastly, results indicate that pollutant removal due to deposition on leaf surfaces is potentially sufficient to counterbalance the enhancement of PM 2.5 by such trees under some tree planting scenarios and wind conditions.

  6. Seasonal and local differences in leaf litter flammability of six Mediterranean tree species.

    PubMed

    Kauf, Zorica; Fangmeier, Andreas; Rosavec, Roman; Španjol, Željko

    2015-03-01

    One of the suggested management options for reducing fire danger is the selection of less flammable plant species. Nevertheless, vegetation flammability is both complex and dynamic, making identification of such species challenging. While large efforts have been made to connect plant traits to fire behavior, seasonal changes and within species variability of traits are often neglected. Currently, even the most sophisticated fire danger systems presume that intrinsic characteristics of leaf litter stay unchanged, and plant species flammability lists are often transferred from one area to another. In order to assess if these practices can be improved, we performed a study examining the relationship between morphological characteristics and flammability parameters of leaf litter, thereby taking into account seasonal and local variability. Litter from six Mediterranean tree species was sampled throughout the fire season from three different locations along a climate gradient. Samples were subjected to flammability testing involving an epiradiator operated at 400 °C surface temperature with 3 g sample weight. Specific leaf area, fuel moisture content, average area, and average mass of a single particle had significant influences on flammability parameters. Effects of sampling time and location were significant as well. Due to the standardized testing conditions, these effects could be attributed to changes in intrinsic characteristics of the material. As the aforementioned effects were inconsistent and species specific, these results may potentially limit the generalization of species flammability rankings. Further research is necessary in order to evaluate the importance of our findings for fire danger modeling.

  7. Are trait-scaling relationships invariant across contrasting elevations in the widely distributed treeline species Nothofagus pumilio?

    PubMed

    Fajardo, Alex

    2016-05-01

    The study of scaling examines the relative dimensions of diverse organismal traits. Understanding whether global scaling patterns are paralleled within species is key to identify causal factors of universal scaling. I examined whether the foliage-stem (Corner's rules), the leaf size-number, and the leaf mass-leaf area scaling relationships remained invariant and isometric with elevation in a wide-distributed treeline species in the southern Chilean Andes. Mean leaf area, leaf mass, leafing intensity, and twig cross-sectional area were determined for 1-2 twigs of 8-15 Nothofagus pumilio individuals across four elevations (including treeline elevation) and four locations (from central Chile at 36°S to Tierra del Fuego at 54°S). Mixed effects models were fitted to test whether the interaction term between traits and elevation was nonsignificant (invariant). The leaf-twig cross-sectional area and the leaf mass-leaf area scaling relationships were isometric (slope = 1) and remained invariant with elevation, whereas the leaf size-number (i.e., leafing intensity) scaling was allometric (slope ≠ -1) and showed no variation with elevation. Leaf area and leaf number were consistently negatively correlated across elevation. The scaling relationships examined in the current study parallel those seen across species. It is plausible that the explanation of intraspecific scaling relationships, as trait combinations favored by natural selection, is the same as those invoked to explain across species patterns. Thus, it is very likely that the global interspecific Corner's rules and other leaf-leaf scaling relationships emerge as the aggregate of largely parallel intraspecific patterns. © 2016 Botanical Society of America.

  8. Modeling the leaf angle dynamics in rice plant.

    PubMed

    Zhang, Yonghui; Tang, Liang; Liu, Xiaojun; Liu, Leilei; Cao, Weixing; Zhu, Yan

    2017-01-01

    The leaf angle between stem and sheath (SSA) is an important rice morphological trait. The objective of this study was to develop and validate a dynamic SSA model under different nitrogen (N) rates for selected rice cultivars. The time-course data of SSA were collected in three years, and a dynamic SSA model was developed for different main stem leaf ranks under different N rates for two selected rice cultivars. SSA increased with tiller age. The SSA of the same leaf rank increased with increase in N rate. The maximum SSA increased with leaf rank from the first to the third leaf, then decreased from the third to the final leaf. The relationship between the maximum SSA and leaf rank on main stem could be described with a linear piecewise function. The change of SSA with thermal time (TT) was described by a logistic equation. A variety parameter (the maximum SSA of the 3rd leaf on main stem) and a nitrogen factor were introduced to quantify the effect of cultivar and N rate on SSA. The model was validated against data collected from both pot and field experiments. The relative root mean square error (RRMSE) was 11.56% and 14.05%, respectively. The resulting models could be used for virtual rice plant modeling and plant-type design.

  9. Using the conservative nature of fresh leaf surface density to measure foliar area

    NASA Astrophysics Data System (ADS)

    Castillo, Omar S.; Zaragoza, Esther M.; Alvarado, Carlos J.; Barrera, Maria G.; Dasgupta-Schubert, Nabanita

    2014-10-01

    For a herbaceous species, the inverse of the fresh leaf surface density, the Hughes constant, is nearly conserved. We apply the Hughes constant to develop an absolute method of leafarea measurement that requires no regression fits, prior calibrations or oven-drying. The Hughes constant was determined in situ using a known geometry and weights of a sub-set obtained from the fresh leaves whose areas are desired. Subsequently, the leaf-areas (at any desired stratification level), were derived by utilizing the Hughes constant and the masses of the fresh leaves. The proof of concept was established for leaf-discs of the plants Mandevilla splendens and Spathiphyllum wallisii. The conservativeness of the Hughes constant over individual leaf-zones and different leaftypes from the leaves of each species was quantitatively validated. Using the globally averaged Hughes constant for each species, the leaf-area of these and additional co-species plants, were obtained. The leaf-area-measurement-by-mass was cross-checked with standard digital image analysis. There were no statistically significant differences between the leaf-area-measurement-by-mass and the digital image analysis measured leaf-areas and the linear correlation between the two methods was very good. Leaf-areameasurement- by-mass was found to be rapid and simple with accuracies comparable to the digital image analysis method. The greatly reduced cost of leaf-area-measurement-by-mass could be beneficial for small agri-businesses in developing countries.

  10. Dynamically downscaling predictions for deciduous tree leaf emergence in California under current and future climate.

    PubMed

    Medvigy, David; Kim, Seung Hee; Kim, Jinwon; Kafatos, Menas C

    2016-07-01

    Models that predict the timing of deciduous tree leaf emergence are typically very sensitive to temperature. However, many temperature data products, including those from climate models, have been developed at a very coarse spatial resolution. Such coarse-resolution temperature products can lead to highly biased predictions of leaf emergence. This study investigates how dynamical downscaling of climate models impacts simulations of deciduous tree leaf emergence in California. Models for leaf emergence are forced with temperatures simulated by a general circulation model (GCM) at ~200-km resolution for 1981-2000 and 2031-2050 conditions. GCM simulations are then dynamically downscaled to 32- and 8-km resolution, and leaf emergence is again simulated. For 1981-2000, the regional average leaf emergence date is 30.8 days earlier in 32-km simulations than in ~200-km simulations. Differences between the 32 and 8 km simulations are small and mostly local. The impact of downscaling from 200 to 8 km is ~15 % smaller in 2031-2050 than in 1981-2000, indicating that the impacts of downscaling are unlikely to be stationary.

  11. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana

    PubMed Central

    Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; Morales, Alejandro; Weise, Sean E.; Sharkey, Thomas D.

    2015-01-01

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growth analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness. PMID:25914696

  12. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana

    DOE PAGES

    Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; ...

    2015-04-09

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growthmore » analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness.« less

  13. Ratio of Cut Surface Area to Leaf Sample Volume for Water Potential Measurements by Thermocouple Psychrometers

    PubMed Central

    Walker, Sue; Oosterhuis, Derrick M.; Wiebe, Herman H.

    1984-01-01

    Evaporative losses from the cut edge of leaf samples are of considerable importance in measurements of leaf water potential using thermocouple psychrometers. The ratio of cut surface area to leaf sample volume (area to volume ratio) has been used to give an estimate of possible effects of evaporative loss in relation to sample size. A wide range of sample sizes with different area to volume ratios has been used. Our results using Glycine max L. Merr. cv Bragg indicate that leaf samples with area to volume values less than 0.2 square millimeter per cubic millimeter give psychrometric leaf water potential measurements that compare favorably with pressure chamber measurements. PMID:16663578

  14. Leaf mass per area, not total leaf area, drives differences in above-ground biomass distribution among woody plant functional types.

    PubMed

    Duursma, Remko A; Falster, Daniel S

    2016-10-01

    Here, we aim to understand differences in biomass distribution between major woody plant functional types (PFTs) (deciduous vs evergreen and gymnosperm vs angiosperm) in terms of underlying traits, in particular the leaf mass per area (LMA) and leaf area per unit stem basal area. We used a large compilation of plant biomass and size observations, including observations of 21 084 individuals on 656 species. We used a combination of semiparametric methods and variance partitioning to test the influence of PFT, plant height, LMA, total leaf area, stem basal area and climate on above-ground biomass distribution. The ratio of leaf mass to above-ground woody mass (MF /MS ) varied strongly among PFTs. We found that MF /MS at a given plant height was proportional to LMA across PFTs. As a result, the PFTs did not differ in the amount of leaf area supported per unit above-ground biomass or per unit stem basal area. Climate consistently explained very little additional variation in biomass distribution at a given plant size. Combined, these results demonstrate consistent patterns in above-ground biomass distribution and leaf area relationships among major woody PFTs, which can be used to further constrain global vegetation models. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  15. Development of dynamic wheat crop model in ISAM and estimation of impacts of environmental factors on wheat production in India

    NASA Astrophysics Data System (ADS)

    Gahlot, S.; Lin, T. S.; Jain, A. K.; Baidya Roy, S.; Sehgal, V. K.; Dhakar, R.

    2017-12-01

    With changing environmental conditions, such as climate and elevated atmospheric CO2 concentrations, questions about food security can be answered by modeling crops based on our understanding of the dynamic crop growth processes and interactions between the crops and their environment in the form of carbon, water and energy fluxes. These interactions and their effect on cropland ecosystems are non-linear because of the feedback mechanisms. Hence, process-based modelling approach can be used to conduct numerical experiments to derive insights into these processes and interactive feedbacks. In this study we have implemented dynamic crop growth processes for wheat into a data-modeling framework, Integrated Science Assessment Model (ISAM), to estimate the impacts of different factors like CO2 fertilization, irrigation, nitrogen limitation and climate change on wheat in India. In specific, we have implemented wheat-specific phenology, C3 photosynthesis mechanism and phenology-specific carbon allocation schemes for assimilated carbon to leaf, stem, root and grain pools. Crop growth limiting stress factors like nutrients, temperature and light have been included. The impact of high temperatures on leaf senescence, anthesis and grain filling has been modeled and found to be causing significant reduction in yield in the recent years. Field data from an experimental wheat site located at the Indian Agricultural Research Institute (IARI), New Delhi, India has been collected for aboveground biomass and leaf area index (LAI) for two growing seasons 2014-15 and 2015-16. This data has been used to study the phenology, growing season length, thermal requirements and growth stages of wheat. Using the field data, the dynamic model for wheat has been evaluated for the site level seasonal variability in leaf area index (LAI) and aboveground biomass. The variations in carbon, water and energy fluxes, plant height and rooting depth have been analyzed on the site level. Model experiments have been performed to calculate the yield for wheat for India for the historical years. In order to identify wheat production regions in India that are prone to one or multiple stresses in years to come, model experiments have been performed based on future climate scenarios RCP 4.5 and 8.5.

  16. Seasonal Changes in Leaf Area of Amazon Forests from Leaf Flushing and Abscission

    NASA Astrophysics Data System (ADS)

    Samanta, A.; Knyazikhin, Y.; Xu, L.; Dickinson, R.; Fu, R.; Costa, M. H.; Ganguly, S.; Saatchi, S. S.; Nemani, R. R.; Myneni, R.

    2011-12-01

    A large increase in near-infrared (NIR) reflectance of Amazon forests during the light-rich dry season and a corresponding decrease during the light-poor wet season has been observed in satellite measurements. This has been variously interpreted as seasonal changes in leaf area resulting from net leaf flushing in the dry season and net leaf abscission in the wet season, enhanced photosynthetic activity during the dry season from flushing new leaves and as change in leaf scattering and absorption properties between younger and older leaves covered with epiphylls. Reconciling these divergent views using theory and observations is the goal of this article. The observed changes in NIR reflectance of Amazon forests could be due to similar, but small, changes in NIR leaf albedo (reflectance plus transmittance) only, from exchanging older leaves with newer ones, with total leaf area unchanged. However, this argument ignores accumulating evidence from ground-based studies of higher leaf area in the dry season relative to the wet season, seasonal changes in litterfall and does not satisfactorily explain why NIR reflectance of these forests decreases in the wet season. A more convincing explanation for the observed increase in NIR reflectance during the dry season and decrease during the wet season is one that invokes changes in both leaf area and leaf optical properties. Such an argument is consistent with known phonological behavior of tropical forests, ground-based reports of seasonal changes in leaf area, litterfall, leaf optical properties and fluxes of evapotranspiration, and thus, reconciles the various seemingly divergent views.

  17. Seasonal changes in leaf area of Amazon forests from leaf flushing and abscission

    NASA Astrophysics Data System (ADS)

    Samanta, Arindam; Knyazikhin, Yuri; Xu, Liang; Dickinson, Robert E.; Fu, Rong; Costa, Marcos H.; Saatchi, Sassan S.; Nemani, Ramakrishna R.; Myneni, Ranga B.

    2012-03-01

    A large increase in near-infrared (NIR) reflectance of Amazon forests during the light-rich dry season and a corresponding decrease during the light-poor wet season has been observed in satellite measurements. This increase has been variously interpreted as seasonal change in leaf area resulting from net leaf flushing in the dry season or net leaf abscission in the wet season, enhanced photosynthetic activity during the dry season from flushing new leaves and as change in leaf scattering and absorption properties between younger and older leaves covered with epiphylls. Reconciling these divergent views using theory and observations is the goal of this article. The observed changes in NIR reflectance of Amazon forests could be due to similar, but small, changes in NIR leaf albedo (reflectance plus transmittance) resulting from the exchange of older leaves for newer ones, but with the total leaf area unchanged. However, this argument ignores accumulating evidence from ground-based reports of higher leaf area in the dry season than the wet season, seasonal changes in litterfall and does not satisfactorily explain why NIR reflectance of these forests decreases in the wet season. More plausibly, the increase in NIR reflectance during the dry season and the decrease during the wet season would result from changes in both leaf area and leaf optical properties. Such change would be consistent with known phenological behavior of tropical forests, ground-based reports of seasonal changes in leaf area, litterfall, leaf optical properties and fluxes of evapotranspiration, and thus, would reconcile the various seemingly divergent views.

  18. Comparison of direct and indirect methods for assessing leaf area index across a tropical rain forest landscape

    Treesearch

    Paulo C. Olivas; Steven F. Oberbauer; David B. Clark; Deborah A. Clark; Michael G. Ryan; Joseph J. O' Brien; Harlyn Ordonez

    2013-01-01

    Many functional properties of forests depend on the leaf area; however, measuring leaf area is not trivial in tall evergreen vegetation. As a result, leaf area is generally estimated indirectly by light absorption methods. These indirect methods are widely used, but have never been calibrated against direct measurements in tropical rain forests, either at point or...

  19. Leaf area compounds height-related hydraulic costs of water transport in Oregon White Oak trees.

    Treesearch

    N. Phillips; B. J. Bond; N. G. McDowell; Michael G. Ryan; A. Schauer

    2003-01-01

    The ratio of leaf to sapwood area generally decreases with tree size, presumably to moderate hydraulic costs of tree height. This study assessed consequences of tree size and leaf area on water flux in Quercus garryana Dougl. ex. Hook (Oregon White Oak), a species in which leaf to sapwood area ratio increases with tree size. We tested hypotheses that...

  20. Joint Leaf chlorophyll and leaf area index retrieval from Landsat data using a regularized model inversion system

    USDA-ARS?s Scientific Manuscript database

    Leaf area index (LAI) and leaf chlorophyll (Chl) content represent key biophysical and biochemical controls on water, energy and carbon exchange processes in the terrestrial biosphere. In combination, LAI and leaf Chl content provide critical information on vegetation density, vitality and photosynt...

  1. Processing arctic eddy-flux data using a simple carbon-exchange model embedded in the ensemble Kalman filter.

    PubMed

    Rastetter, Edward B; Williams, Mathew; Griffin, Kevin L; Kwiatkowski, Bonnie L; Tomasky, Gabrielle; Potosnak, Mark J; Stoy, Paul C; Shaver, Gaius R; Stieglitz, Marc; Hobbie, John E; Kling, George W

    2010-07-01

    Continuous time-series estimates of net ecosystem carbon exchange (NEE) are routinely made using eddy covariance techniques. Identifying and compensating for errors in the NEE time series can be automated using a signal processing filter like the ensemble Kalman filter (EnKF). The EnKF compares each measurement in the time series to a model prediction and updates the NEE estimate by weighting the measurement and model prediction relative to a specified measurement error estimate and an estimate of the model-prediction error that is continuously updated based on model predictions of earlier measurements in the time series. Because of the covariance among model variables, the EnKF can also update estimates of variables for which there is no direct measurement. The resulting estimates evolve through time, enabling the EnKF to be used to estimate dynamic variables like changes in leaf phenology. The evolving estimates can also serve as a means to test the embedded model and reconcile persistent deviations between observations and model predictions. We embedded a simple arctic NEE model into the EnKF and filtered data from an eddy covariance tower located in tussock tundra on the northern foothills of the Brooks Range in northern Alaska, USA. The model predicts NEE based only on leaf area, irradiance, and temperature and has been well corroborated for all the major vegetation types in the Low Arctic using chamber-based data. This is the first application of the model to eddy covariance data. We modified the EnKF by adding an adaptive noise estimator that provides a feedback between persistent model data deviations and the noise added to the ensemble of Monte Carlo simulations in the EnKF. We also ran the EnKF with both a specified leaf-area trajectory and with the EnKF sequentially recalibrating leaf-area estimates to compensate for persistent model-data deviations. When used together, adaptive noise estimation and sequential recalibration substantially improved filter performance, but it did not improve performance when used individually. The EnKF estimates of leaf area followed the expected springtime canopy phenology. However, there were also diel fluctuations in the leaf-area estimates; these are a clear indication of a model deficiency possibly related to vapor pressure effects on canopy conductance.

  2. Modeling forest dynamics along climate gradients in Bolivia

    NASA Astrophysics Data System (ADS)

    Seiler, C.; Hutjes, R. W. A.; Kruijt, B.; Quispe, J.; Añez, S.; Arora, V. K.; Melton, J. R.; Hickler, T.; Kabat, P.

    2014-05-01

    Dynamic vegetation models have been used to assess the resilience of tropical forests to climate change, but the global application of these modeling experiments often misrepresents carbon dynamics at a regional level, limiting the validity of future projections. Here a dynamic vegetation model (Lund Potsdam Jena General Ecosystem Simulator) was adapted to simulate present-day potential vegetation as a baseline for climate change impact assessments in the evergreen and deciduous forests of Bolivia. Results were compared to biomass measurements (819 plots) and remote sensing data. Using regional parameter values for allometric relations, specific leaf area, wood density, and disturbance interval, a realistic transition from the evergreen Amazon to the deciduous dry forest was simulated. This transition coincided with threshold values for precipitation (1400 mm yr-1) and water deficit (i.e., potential evapotranspiration minus precipitation) (-830 mm yr-1), beyond which leaf abscission became a competitive advantage. Significant correlations were found between modeled and observed values of seasonal leaf abscission (R2 = 0.6, p <0.001) and vegetation carbon (R2 = 0.31, p <0.01). Modeled Gross Primary Productivity (GPP) and remotely sensed normalized difference vegetation index showed that dry forests were more sensitive to rainfall anomalies than wet forests. GPP was positively correlated to the El Niño-Southern Oscillation index in the Amazon and negatively correlated to consecutive dry days. Decreasing rainfall trends were simulated to reduce GPP in the Amazon. The current model setup provides a baseline for assessing the potential impacts of climate change in the transition zone from wet to dry tropical forests in Bolivia.

  3. Leaf area and photosynthesis of newly emerged trifoliolate leaves are regulated by mature leaves in soybean.

    PubMed

    Wu, Yushan; Gong, Wanzhuo; Wang, Yangmei; Yong, Taiwen; Yang, Feng; Liu, Weigui; Wu, Xiaoling; Du, Junbo; Shu, Kai; Liu, Jiang; Liu, Chunyan; Yang, Wenyu

    2018-03-29

    Leaf anatomy and the stomatal development of developing leaves of plants have been shown to be regulated by the same light environment as that of mature leaves, but no report has yet been written on whether such a long-distance signal from mature leaves regulates the total leaf area of newly emerged leaves. To explore this question, we created an investigation in which we collected data on the leaf area, leaf mass per area (LMA), leaf anatomy, cell size, cell number, gas exchange and soluble sugar content of leaves from three soybean varieties grown under full sunlight (NS), shaded mature leaves (MS) or whole plants grown in shade (WS). Our results show that MS or WS cause a marked decline both in leaf area and LMA in newly developing leaves. Leaf anatomy also showed characteristics of shade leaves with decreased leaf thickness, palisade tissue thickness, sponge tissue thickness, cell size and cell numbers. In addition, in the MS and WS treatments, newly developed leaves exhibited lower net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (E), but higher carbon dioxide (CO 2 ) concentration in the intercellular space (Ci) than plants grown in full sunlight. Moreover, soluble sugar content was significantly decreased in newly developed leaves in MS and WS treatments. These results clearly indicate that (1) leaf area, leaf anatomical structure, and photosynthetic function of newly developing leaves are regulated by a systemic irradiance signal from mature leaves; (2) decreased cell size and cell number are the major cause of smaller and thinner leaves in shade; and (3) sugars could possibly act as candidate signal substances to regulate leaf area systemically.

  4. Dynamic tumor tracking using the Elekta Agility MLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, Martin F., E-mail: martin.fast@icr.ac.uk; Nill, Simeon, E-mail: simeon.nill@icr.ac.uk; Bedford, James L.

    2014-11-01

    Purpose: To evaluate the performance of the Elekta Agility multileaf collimator (MLC) for dynamic real-time tumor tracking. Methods: The authors have developed a new control software which interfaces to the Agility MLC to dynamically program the movement of individual leaves, the dynamic leaf guides (DLGs), and the Y collimators (“jaws”) based on the actual target trajectory. A motion platform was used to perform dynamic tracking experiments with sinusoidal trajectories. The actual target positions reported by the motion platform at 20, 30, or 40 Hz were used as shift vectors for the MLC in beams-eye-view. The system latency of the MLCmore » (i.e., the average latency comprising target device reporting latencies and MLC adjustment latency) and the geometric tracking accuracy were extracted from a sequence of MV portal images acquired during irradiation for the following treatment scenarios: leaf-only motion, jaw + leaf motion, and DLG + leaf motion. Results: The portal imager measurements indicated a clear dependence of the system latency on the target position reporting frequency. Deducting the effect of the target frequency, the leaf adjustment latency was measured to be 38 ± 3 ms for a maximum target speed v of 13 mm/s. The jaw + leaf adjustment latency was 53 ± 3 at a similar speed. The system latency at a target position frequency of 30 Hz was in the range of 56–61 ms for the leaves (v ≤ 31 mm/s), 71–78 ms for the jaw + leaf motion (v ≤ 25 mm/s), and 58–72 ms for the DLG + leaf motion (v ≤ 59 mm/s). The tracking accuracy showed a similar dependency on the target position frequency and the maximum target speed. For the leaves, the root-mean-squared error (RMSE) was between 0.6–1.5 mm depending on the maximum target speed. For the jaw + leaf (DLG + leaf) motion, the RMSE was between 0.7–1.5 mm (1.9–3.4 mm). Conclusions: The authors have measured the latency and geometric accuracy of the Agility MLC, facilitating its future use for clinical tracking applications.« less

  5. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types.

    PubMed

    Niinemets, Ülo; Keenan, Trevor F; Hallik, Lea

    2015-02-01

    Extensive within-canopy light gradients importantly affect the photosynthetic productivity of leaves in different canopy positions and lead to light-dependent increases in foliage photosynthetic capacity per area (AA). However, the controls on AA variations by changes in underlying traits are poorly known. We constructed an unprecedented worldwide database including 831 within-canopy gradients with standardized light estimates for 304 species belonging to major vascular plant functional types, and analyzed within-canopy variations in 12 key foliage structural, chemical and physiological traits by quantitative separation of the contributions of different traits to photosynthetic acclimation. Although the light-dependent increase in AA is surprisingly similar in different plant functional types, they differ fundamentally in the share of the controls on AA by constituent traits. Species with high rates of canopy development and leaf turnover, exhibiting highly dynamic light environments, actively change AA by nitrogen reallocation among and partitioning within leaves. By contrast, species with slow leaf turnover exhibit a passive AA acclimation response, primarily determined by the acclimation of leaf structure to growth light. This review emphasizes that different combinations of traits are responsible for within-canopy photosynthetic acclimation in different plant functional types, and solves an old enigma of the role of mass- vs area-based traits in vegetation acclimation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  6. Phloem transport velocity varies over time and among vascular bundles during early cucumber seedling development.

    PubMed

    Savage, Jessica A; Zwieniecki, Maciej A; Holbrook, N Michele

    2013-11-01

    We use a novel dye-tracing technique to measure in vivo phloem transport velocity in cucumber (Cucumis sativus) plants during early seedling development. We focus on seedlings because of their importance in plant establishment and because they provide a simple source and sink model of phloem transport. The dye-tracing method uses a photodiode to track the movement of a bleach front of fluorescent dye traveling in the phloem from the cotyledons (source) to the roots (sink). During early seedling development, phloem transport velocity in this direction can change 2-fold depending on vascular connectivity and the number of actively growing sinks. Prior to leaf expansion, vascular bundles attached to the first developing leaf demonstrate a decline in basipetal phloem transport that can be alleviated by the leaf's removal. At this stage, seedlings appear carbon limited and phloem transport velocity is correlated with cotyledon area, a pattern that is apparent both during cotyledon expansion and after source area manipulation. When the first leaf transitions to a carbon source, seedling growth rate increases and basipetal phloem transport velocity becomes more stable. Because bundles appear to operate autonomously, transport velocity can differ among vascular bundles. Together, these results demonstrate the dynamic and heterogeneous nature of phloem transport and underline the need for a better understanding of how changes in phloem physiology impact growth and allocation at this critical stage of development.

  7. Prediction of leaf area in individual leaves of cherrybark oak seedlings (Quercus pagoda Raf.)

    Treesearch

    Yanfei Guo; Brian Lockhart; John Hodges

    1995-01-01

    The prediction of leaf area for cherrybark oak (Quercus pagoda Raf.) seedlings is important for studying the physiology of the species. Linear and polynomial models involving leaf length, width, fresh weight, dry weight, and internodal length were tested independently and collectively to predict leaf area. Twenty-nine cherrybark oak seedlings were...

  8. Estimating leaf area and leaf biomass of open-grown deciduous urban trees

    Treesearch

    David J. Nowak

    1996-01-01

    Logarithmic regression equations were developed to predict leaf area and leaf biomass for open-grown deciduous urban trees based on stem diameter and crown parameters. Equations based on crown parameters produced more reliable estimates. The equations can be used to help quantify forest structure and functions, particularly in urbanizing and urban/suburban areas.

  9. Adaptive shoot and root responses collectively enhance growth at optimum temperature and limited phosphorus supply of three herbaceous legume species.

    PubMed

    Suriyagoda, Lalith D B; Ryan, Megan H; Renton, Michael; Lambers, Hans

    2012-10-01

    Studies on the effects of sub- and/or supraoptimal temperatures on growth and phosphorus (P) nutrition of perennial herbaceous species at growth-limiting P availability are few, and the impacts of temperature on rhizosphere carboxylate dynamics are not known for any species. The effect of three day/night temperature regimes (low, 20/13 °C; medium, 27/20 °C; and high, 32/25 °C) on growth and P nutrition of Cullen cinereum, Kennedia nigricans and Lotus australis was determined. The highest temperature was optimal for growth of C. cinereum, while the lowest temperature was optimal for K. nigricans and L. australis. At optimum temperatures, the relative growth rate (RGR), root length, root length per leaf area, total P content, P productivity and water-use efficiency were higher for all species, and rhizosphere carboxylate content was higher for K. nigricans and L. australis. Cullen cinereum, with a slower RGR, had long (higher root length per leaf area) and thin roots to enhance P uptake by exploring a greater volume of soil at its optimum temperature, while K. nigricans and L. australis, with faster RGRs, had only long roots (higher root length per leaf area) as a morphological adaptation, but had a higher content of carboxylates in their rhizospheres at the optimum temperature. Irrespective of the species, the amount of P taken up by a plant was mainly determined by root length, rather than by P uptake rate per unit root surface area. Phosphorus productivity was correlated with RGR and plant biomass. All three species exhibited adaptive shoot and root traits to enhance growth at their optimum temperatures at growth-limiting P supply. The species with a slower RGR (i.e. C. cinereum) showed only morphological root adaptations, while K. nigricans and L. australis, with faster RGRs, had both morphological and physiological (i.e. root carboxylate dynamics) root adaptations.

  10. The sensitivity of stand-scale photosynthesis and transpiration to changes in atmospheric CO2 concentration and climate

    NASA Astrophysics Data System (ADS)

    Kruijt, B.; Barton, C.; Rey, A.; Jarvis, P. G.

    The 3-dimensional forest model MAESTRO was used to simulate daily and annual photosynthesis and transpiration fluxes of forest stands and the sensitivity of these fluxes to potential changes in atmospheric CO2 concentration ([CO2]), temperature, water stress and phenology. The effects of possible feed-backs from increased leaf area and limitations to leaf nutrition were simulated by imposing changes in leaf area and nitrogen content. Two different tree species were considered: Picea sitchensis (Bong.) Carr., a conifer with long needle longevity and large leaf area, and Betula pendula Roth., a broad-leaved deciduous species with an open canopy and small leaf area. Canopy photosynthetic production in trees was predicted to increase with atmospheric [CO2] and length of the growing season and to decrease with increased water stress. Associated increases in leaf area increased production further only in the B. pendula canopy, where the original leaf area was relatively small. Assumed limitations in N uptake affected B. pendula more than P. sitchensis. The effect of increased temperature was shown to depend on leaf area and nitrogen content. The different sensitivities of the two species were related to their very different canopy structure. Increased [CO2] reduced transpiration, but larger leaf area, early leaf growth, and higher temperature all led to increased water use. These effects were limited by feedbacks from soil water stress. The simulations suggest that, with the projected climate change, there is some increase in stand annual `water use efficiency', but the actual water losses to the atmosphere may not always decrease.

  11. Interrelations of green oak leaf roller population and common oak: results of 30-year monitoring and mathematical modeling

    Treesearch

    V. V. Rubtsov; I. A. Utkina

    2003-01-01

    Long-term monitoring followed by mathematical modeling was used to describe the population dynamics of the green oak leaf roller Tortrix viridana L. over a period of 30 years and to study reactions of oak stands to different levels of defoliation. The mathematical model allows us to forecast the population dynamics of the green oak leaf roller and...

  12. Evolutionarily stable strategy of carbon and nitrogen investments in forest leaves and its application in vegetation dynamic modeling

    NASA Astrophysics Data System (ADS)

    Weng, E.; Farrior, C.; Dybzinski, R.; Pacala, S. W.

    2015-12-01

    Leaf mass per area (LMA) and leaf lifespan (LL) are two highly correlated plant traits that are key to plant physiological and ecological properties. Usually, low LMA means short LL, high nitrogen (N) content per unit mass, and fast turnover rates of nutrients; high LMA leads to long LL, low N content, and slow turnover rates. Deciduous trees with low LMA and short lifespan leaves have low carbon cost but high nitrogen demand; and evergreen trees, with high LMA and long lifespan leaves, have high carbon cost but low nitrogen demand. These relationships lead to: 1) evergreen trees have higher leaf area index than deciduous trees; 2) evergreen trees' carbon use efficiency is lower than the deciduous trees' because of their thick leaves and therefore high maintenance respiration; 3) the advantage of evergreens trees brought by their extra leaves over deciduous trees diminishes with increase N in ecosystem. These facts determine who will win when trees compete with each other in a N-limited ecosystem. In this study, we formulate a mathematical model according to the relationships between LMA, LL, leaf nitrogen, and leaf building and maintenance cost, where LMA is the fundamental variable determining the other three. We analyze the evolutionarily stable strategies (ESSs) of LMA with this mathematical model by examining the benefits of carbon and nitrogen investments to leaves in ecosystems with different N. The model shows the ESS converges to low LMA at high N and high LMA at low N. At intermediate N, there are two ESSs at low and high ends of LMA, respectively. The ESS also leads to low forest productivity by outcompeting the possible high productive strategies. We design a simulation scheme in an individual-based competition model (LM3-PPA) to simulate forest dynamics as results of the competition between deciduous and evergreen trees in three different biomes, which are temperate deciduous forest, deciduous-evergreen mixed forest, and boreal evergreen forest. The simulated results are consistent with the actual forests. Our model and simulated results indicate the distribution of evergreen and deciduous forests can be explained by one single leaf trait (i.e., LMA) and associated physiological and biogeochemical processes.

  13. The Integrated Role of Water Availability, Nutrient Dynamics, and Xylem Hydraulic Dysfunction on Plant Rooting Strategies in Managed and Natural Ecosystems

    NASA Astrophysics Data System (ADS)

    Mackay, D. S.; Savoy, P.; Pleban, J. R.; Tai, X.; Ewers, B. E.

    2015-12-01

    Plants adapt or acclimate to changing environments in part by allocating biomass to roots and leaves to strike a balance between water and nutrient uptake requirements on the one hand and growth and hydraulic safety on the other hand. In a recent study examining experimental drought with the TREES model, which couples plant ecophysiology with rhizosphere-and-xylem hydraulics, we hypothesized that the asynchronous nature of soil water availability and xylem repair supported root-to-leaf area (RLA) proportionality that favored long-term survival over short-term carbon gain or water use. To investigate this as a possible general principal of plant adjustment to changing environmental conditions, TREES was modified to allocate carbon to fine and coarse roots organized in ten orders differing in biomass allocated per unit absorbing root area, root lifespan, and total absorbing root area in each of several soil-root zones with depth. The expanded model allowed for adjustment of absorbing root area and rhizosphere volume based on available carbohydrate production and nitrogen (N) availability, resulting in dynamic expansion and contraction of the supply-side of the rhizosphere-plant hydraulics and N uptake capacity in response to changing environmental conditions and plant-environment asynchrony. The study was conducted partly in a controlled experimental setting with six genotypes of a widely grown crop species, Brassica rapa. The implications for forests were investigated in controlled experiments and at Fluxnet sites representing temperate mixed forests, semi-arid evergreen needle-leaf, and Mediterranean biomes. The results showed that the effects of N deficiency on total plant growth was modulated by a relative increase in fine root biomass representing a larger absorbing root volume per unit biomass invested. We found that the total absorbing root area per unit leaf area was consistently lower than that needed to maximize short-term water uptake and carbohydrate gain. Moreover, the acclimated RLA fell within a small range for both crops and trees despite changing environmental conditions, demonstrating an adaptation that was consistent with empiricism on fine roots and thus pointing to a fundamental connection between ecological and hydrological processes.

  14. Light acclimation optimizes leaf functional traits despite height-related constraints in a canopy shading experiment.

    PubMed

    Coble, Adam P; Cavaleri, Molly A

    2015-04-01

    Within-canopy gradients of leaf functional traits have been linked to both light availability and vertical gradients in leaf water potential. While observational studies can reveal patterns in leaf traits, within-canopy experimental manipulations can provide mechanistic insight to tease apart multiple interacting drivers. Our objectives were to disentangle effects of height and light environment on leaf functional traits by experimentally shading branches along vertical gradients within a sugar maple (Acer saccharum) forest. Shading reduced leaf mass per area (LMA), leaf density, area-based leaf nitrogen (N(area)), and carbon:nitrogen (C:N) ratio, and increased mass-based leaf nitrogen (N(mass)), highlighting the importance of light availability on leaf morphology and chemistry. Early in the growing season, midday leaf water potential (Ψ(mid)), LMA, and N(area) were driven primarily by height; later in the growing season, light became the most important driver for LMA and Narea. Carbon isotope composition (δ(13)C) displayed strong, linear correlations with height throughout the growing season, but did not change with shading, implying that height is more influential than light on water use efficiency and stomatal behavior. LMA, leaf density, N(mass), C:N ratio, and δ(13)C all changed seasonally, suggesting that leaf ageing effects on leaf functional traits are equally as important as microclimatic conditions. Overall, our results indicate that: (1) stomatal sensitivity to vapor pressure deficit or Ψ(mid) constrains the supply of CO2 to leaves at higher heights, independent of light environment, and (2) LMA and N(area) distributions become functionally optimized through morphological acclimation to light with increasing leaf age despite height-related constraints.

  15. Leaf Aging of Amazonian Canopy Trees: Insights to Tropical Ecological Processes and Satellited Detected Canopy Dynamics

    NASA Astrophysics Data System (ADS)

    Chavana-Bryant, C.; Malhi, Y.; Gerard, F.

    2015-12-01

    Leaf aging is a fundamental driver of changes in leaf traits, thereby, regulating ecosystem processes and remotely-sensed canopy dynamics. Leaf age is particularly important for carbon-rich tropical evergreen forests, as leaf demography (leaf age distribution) has been proposed as a major driver of seasonal productivity in these forests. We explore leaf reflectance as a tool to monitor leaf age and develop a novel spectra-based (PLSR) model to predict age using data from a phenological study of 1,072 leaves from 12 lowland Amazonian canopy tree species in southern Peru. Our results demonstrate monotonic decreases in LWC and Pmass and increase in LMA with age across species; Nmass and Cmassshowed monotonic but species-specific age responses. Spectrally, we observed large age-related variation across species, with the most age-sensitive spectral domains found to be: green peak (550nm), red edge (680-750 nm), NIR (700-850 nm), and around the main water absorption features (~1450 and ~1940 nm). A spectra-based model was more accurate in predicting leaf age (R2= 0.86; %RMSE= 33) compared to trait-based models using single (R2=0.07 to 0.73; %RMSE=7 to 38) and multiple predictors (step-wise analysis; R2=0.76; %RMSE=28). Spectral and trait-based models established a physiochemical basis for the spectral age model. The relative importance of the traits modifying the leaf spectra of aging leaves was: LWC>LMA>Nmass>Pmass,&Cmass. Vegetation indices (VIs), including NDVI, EVI2, NDWI and PRI were all age-dependent. This study highlights the importance of leaf age as a mediator of leaf traits, provides evidence of age-related leaf reflectance changes that have important impacts on VIs used to monitor canopy dynamics and productivity, and proposes a new approach to predicting and monitoring leaf age with important implications for remote sensing.

  16. Spatial distribution of SPAD value and determination of the suitable leaf for N diagnosis in cucumber

    NASA Astrophysics Data System (ADS)

    Hu, Jing; Li, Chenxiao; Wen, Yifang; Gao, Xinhao; Shi, Feifei; Han, Luhua

    2018-01-01

    To determine the best leaf position for nitrogen diagnosis in cucumber with SPAD meter, greenhouse experiments were carried out to study spatial distribution of SPAD value of different position of the 3rd fully expanded cucumber leaf in the effect of different nitrogen levels, and the correlations between SPAD values and nitrogen concentration of chlorophyll. The results show that there is remarkable different SPAD value in different positions of the 3rd fully expanded leaf in the flowering and fruiting stage. Comparing the coefficients of SPAD value variation, we find that the coefficient of variation of leaf edge was significantly higher than the edge of the main vein, and the coefficient of variation of triangular area of leaf tip is significantly higher than any other leaf area. There is a significant correlation between SPAD values and leaf nitrogen content. Preliminary study shows that triangular area of leaf tip from the 20% leaf tip to leaf edge is the best position for nitrogen diagnosis.

  17. A model using marginal efficiency of investment to analyze carbon and nitrogen interactions in terrestrial ecosystems (ACONITE Version 1)

    NASA Astrophysics Data System (ADS)

    Thomas, R. Q.; Williams, M.

    2014-09-01

    Carbon (C) and nitrogen (N) cycles are coupled in terrestrial ecosystems through multiple processes including photosynthesis, tissue allocation, respiration, N fixation, N uptake, and decomposition of litter and soil organic matter. Capturing the constraint of N on terrestrial C uptake and storage has been a focus of the Earth System Modeling community. However, there is little understanding of the trade-offs and sensitivities of allocating C and N to different tissues in order to optimize the productivity of plants. Here we describe a new, simple model of ecosystem C-N cycling and interactions (ACONITE), that builds on theory related to plant economics in order to predict key ecosystem properties (leaf area index, leaf C : N, N fixation, and plant C use efficiency) based on the outcome of assessments of the marginal change in net C or N uptake associated with a change in allocation of C or N to plant tissues. We simulated and evaluated steady-state ecosystem stocks and fluxes in three different forest ecosystems types (tropical evergreen, temperate deciduous, and temperate evergreen). Leaf C : N differed among the three ecosystem types (temperate deciduous < tropical evergreen < temperature evergreen), a result that compared well to observations from a global database describing plant traits. Gross primary productivity (GPP) and net primary productivity (NPP) estimates compared well to observed fluxes at the simulation sites. Simulated N fixation at steady-state, calculated based on relative demand for N and the marginal return on C investment to acquire N, was an order of magnitude higher in the tropical forest than in the temperate forest, consistent with observations. A sensitivity analysis revealed that parameterization of the relationship between leaf N and leaf respiration had the largest influence on leaf area index and leaf C : N. A parameter governing how photosynthesis scales with day length had the largest influence on total vegetation C, GPP, and NPP. Multiple parameters associated with photosynthesis, respiration, and N uptake influenced the rate of N fixation. Overall, our ability to constrain leaf area index and allow spatially and temporally variable leaf C : N can help address challenges simulating these properties in ecosystem and Earth System models. Furthermore, the simple approach with emergent properties based on coupled C-N dynamics has potential for use in research that uses data-assimilation methods to integrate data on both the C and N cycles to improve C flux forecasts.

  18. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents.

    PubMed

    Poorter, Hendrik; Jagodzinski, Andrzej M; Ruiz-Peinado, Ricardo; Kuyah, Shem; Luo, Yunjian; Oleksyn, Jacek; Usoltsev, Vladimir A; Buckley, Thomas N; Reich, Peter B; Sack, Lawren

    2015-11-01

    We compiled a global database for leaf, stem and root biomass representing c. 11 000 records for c. 1200 herbaceous and woody species grown under either controlled or field conditions. We used this data set to analyse allometric relationships and fractional biomass distribution to leaves, stems and roots. We tested whether allometric scaling exponents are generally constant across plant sizes as predicted by metabolic scaling theory, or whether instead they change dynamically with plant size. We also quantified interspecific variation in biomass distribution among plant families and functional groups. Across all species combined, leaf vs stem and leaf vs root scaling exponents decreased from c. 1.00 for small plants to c. 0.60 for the largest trees considered. Evergreens had substantially higher leaf mass fractions (LMFs) than deciduous species, whereas graminoids maintained higher root mass fractions (RMFs) than eudicotyledonous herbs. These patterns do not support the hypothesis of fixed allometric exponents. Rather, continuous shifts in allometric exponents with plant size during ontogeny and evolution are the norm. Across seed plants, variation in biomass distribution among species is related more to function than phylogeny. We propose that the higher LMF of evergreens at least partly compensates for their relatively low leaf area : leaf mass ratio. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  19. Correlations of leaf area with length and width measurements of leaves of black oak, white oak, and sugar maple

    Treesearch

    Philip M. Wargo

    1978-01-01

    Correlations of leaf area with length, width, and length times width of leaves of black oak, white oak, and sugar maple were determined to see if length and/or width could be used as accurate estimators of leaf area. The correlation of length times width with leaf area was high (r > + .95) for all three species. The linear equation Y = a + bX, where X = length times...

  20. ALAMEDA, a Structural–Functional Model for Faba Bean Crops: Morphological Parameterization and Verification

    PubMed Central

    RUIZ-RAMOS, MARGARITA; MÍNGUEZ, M. INÉS

    2006-01-01

    • Background Plant structural (i.e. architectural) models explicitly describe plant morphology by providing detailed descriptions of the display of leaf and stem surfaces within heterogeneous canopies and thus provide the opportunity for modelling the functioning of plant organs in their microenvironments. The outcome is a class of structural–functional crop models that combines advantages of current structural and process approaches to crop modelling. ALAMEDA is such a model. • Methods The formalism of Lindenmayer systems (L-systems) was chosen for the development of a structural model of the faba bean canopy, providing both numerical and dynamic graphical outputs. It was parameterized according to the results obtained through detailed morphological and phenological descriptions that capture the detailed geometry and topology of the crop. The analysis distinguishes between relationships of general application for all sowing dates and stem ranks and others valid only for all stems of a single crop cycle. • Results and Conclusions The results reveal that in faba bean, structural parameterization valid for the entire plant may be drawn from a single stem. ALAMEDA was formed by linking the structural model to the growth model ‘Simulation d'Allongement des Feuilles’ (SAF) with the ability to simulate approx. 3500 crop organs and components of a group of nine plants. Model performance was verified for organ length, plant height and leaf area. The L-system formalism was able to capture the complex architecture of canopy leaf area of this indeterminate crop and, with the growth relationships, generate a 3D dynamic crop simulation. Future development and improvement of the model are discussed. PMID:16390842

  1. Bleaching of leaf litter and associated microfungi in subboreal and subalpine forests.

    PubMed

    Hagiwara, Yusuke; Matsuoka, Shunsuke; Hobara, Satoru; Mori, Akira S; Hirose, Dai; Osono, Takashi

    2015-10-01

    Fungal decomposition of lignin leads to the whitening, or bleaching, of leaf litter, especially in temperate and tropical forests, but less is known about such bleaching in forests of cooler regions, such as boreal and subalpine forests. The purposes of the present study were to examine the extent of bleached area on the surface of leaf litter and its variation with environmental conditions in subboreal and subalpine forests in Japan and to examine the microfungi associated with the bleaching of leaf litter by isolating fungi from the bleached portions of the litter. Bleached area accounted for 21.7%-32.7% and 2.0%-10.0% of total leaf area of Quercus crispula and Betula ermanii, respectively, in subboreal forests, and for 6.3% and 18.6% of total leaf area of B. ermanii and Picea jezoensis var. hondoensis, respectively, in a subalpine forest. In subboreal forests, elevation, C/N ratio and pH of the FH layer, and slope aspect were selected as predictor variables for the bleached leaf area. Leaf mass per area and lignin content were consistently lower in the bleached area than in the nonbleached area of the same leaves, indicating that the selective decomposition of acid unhydrolyzable residue (recalcitrant compounds such as lignin, tannins, and cutins) enhanced the mass loss of leaf tissues in the bleached portions. Isolates of a total of 11 fungal species (6 species of Ascomycota and 5 of Basidiomycota) exhibited leaf-litter-bleaching activity under pure culture conditions. Two fungal species (Coccomyces sp. and Mycena sp.) occurred in both subboreal and subalpine forests, which were separated from each other by approximately 1100 km.

  2. Using Small Drone (UAS) Imagery to Bridge the Gap Between Field- and Satellite-Based Measurements of Vegetation Structure and Change

    NASA Astrophysics Data System (ADS)

    Mayes, M. T.; Estes, L. D.; Gago, X.; Debats, S. R.; Caylor, K. K.; Manfreda, S.; Oudemans, P.; Ciraolo, G.; Maltese, A.; Nadal, M.; Estrany, J.

    2016-12-01

    Leaf area is an important ecosystem variable that relates to vegetation biomass, productivity, water and nutrient use in natural and agricultural systems globally. Since the 1980s, optical satellite image-based estimates of leaf area based on indices such as Normalized Difference Vegetation Index (NDVI) have greatly improved understanding of vegetation structure, function, and responses to disturbance at landscape (10^3 km2) to continental (10^6 km2) spatial scales. However, at landscape scales, satellites have failed to capture many leaf area patterns indicative of vegetation succession, crop types, stress and other conditions important for ecological processes. Small drones (UAS - unmanned aerial systems) offer new means for assessing leaf area and vegetation structure at higher spatial resolutions (<1 m) and land cover features such as substrate exposure that may affect estimates of vegetation structure in satellite data. Yet it is unclear how differences in spatial and spectral resolution between UAS and satellite data affect their relationships to each other, and to common field measurements of leaf area (e.g. LiCOR photosensors) and land cover. Constraining these relationships is important for leveraging UAS data to improve scaling of field data on leaf area and biomass to satellite data from Landsat, Sentinel-2, and increasing numbers of commercial sensors. Here, we quantify relationships among field, UAS and satellite estimates of vegetation leaf area and biomass in three case study landscapes spanning semi-arid Mediterranean (Matera, Southern Italy and Mallorca, Spain) and North American temperate ecosystems (New Jersey, USA). We assess how land cover and sensor spectral characteristics affect UAS and satellite-derived NDVI, leaf-area and biomass estimates. Then, we assess the fidelity of UAS, WorldView-2, and Landsat leaf-area and biomass estimates to field-measured landscape changes and variability, including vegetation recovery from fire (Mallorca), and leaf-area and biomass variability due to orchard type and agro-ecosystem management (Matera, New Jersey). Finally, we highlight promising ways forward for improving field data collection and the use of UAS observations to monitor vegetation leaf-area and biomass change at landscape scales in natural and agricultural systems.

  3. Effects of branch height on leaf gas exchange, branch hydraulic conductance and branch sap flux in open-grown ponderosa pine.

    PubMed

    Hubbard, Robert M; Bond, Barbara J; Senock, Randy S; Ryan, Michael G

    2002-06-01

    Recent studies have shown that stomata respond to changes in hydraulic conductance of the flow path from soil to leaf. In open-grown tall trees, branches of different heights may have different hydraulic conductances because of differences in path length and growth. We determined if leaf gas exchange, branch sap flux, leaf specific hydraulic conductance, foliar carbon isotope composition (delta13C) and ratios of leaf area to sapwood area within branches were dependent on branch height (10 and 25 m) within the crowns of four open-grown ponderosa pine (Pinus ponderosa Laws.) trees. We found no difference in leaf gas exchange or leaf specific hydraulic conductance from soil to leaf between the upper and lower canopy of our study trees. Branch sap flux per unit leaf area and per unit sapwood area did not differ between the 10- and 25-m canopy positions; however, branch sap flux per unit sapwood area at the 25-m position had consistently lower values. Branches at the 25-m canopy position had lower leaf to sapwood area ratios (0.17 m2 cm-2) compared with branches at the 10-m position (0.27 m2 cm-2) (P = 0.03). Leaf specific conductance of branches in the upper crown did not differ from that in the lower crown. Other studies at our site indicate lower hydraulic conductance, sap flux, whole-tree canopy conductance and photosynthesis in old trees compared with young trees. This study suggests that height alone may not explain these differences.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tien, C; Brewer, M; Studenski, M

    Purpose: Dynamic-jaw tracking maximizes the area blocked by both jaw and MLC in RapidArc. We developed a method to quantify jaw tracking. Methods: An Eclipse Scripting API (ESAPI) was used to export beam parameters for each arc’s control points. The specific beam parameters extracted were: gantry angle, control point number, meterset, x-jaw positions, y-jaw positions, MLC bank-number, MLC leaf-number, and MLC leaf-position. Each arc contained 178 control points with 120 MLC positions. MATLAB routines were written to process these parameters in order to calculate both the beam aperture (unblocked) size for each control point. An average aperture size was weightedmore » by meterset. Jaw factor was defined as the ratio between dynamic-jaw to static-jaw aperture size. Jaw factor was determined for forty retrospectively replanned patients treated with static-jaw delivery sites including lung, brain, prostate, H&N, rectum, and bladder. Results: Most patients had multiple arcs and reduced-field boosts, resulting in 151 fields. Of these, the lowest (0.4722) and highest (0.9622) jaw factor was observed in prostate and rectal cases, respectively. The median jaw factor was 0.7917 meaning there is the potential unincreased blocking by 20%. Clinically, the dynamic-jaw tracking represents an area surrounding the target which would receive MLC-only leakage transmission of 1.68% versus 0.1% with jaws. Jaw-tracking was more pronounced at areas farther from the target. In prostate patients, the rectum and bladder had 5.5% and 6.3% lower mean dose, respectively; the structures closer to the prostate such as the rectum and bladder both had 1.4% lower mean dose. Conclusion: A custom ESAPI script was coupled with a MATLAB routine in order to extract beam parameters from static-jaw plans and their replanned dynamic-jaw deliveries. The effects were quantified using jaw factor which is the ratio between the meterset weighted aperture size for dynamic-jaw fields versus static-jaw fields.« less

  5. Leaf traits and associated ecosystem characteristics across subtropical and timberline forests in the Gongga Mountains, Eastern Tibetan Plateau

    Treesearch

    Tianxiang Luo; Ji Luo; Yude Pan

    2005-01-01

    Knowledge of how leaf characteristics might be used to deduce information on ecosystem functioning and how this scaling task could be done is limited. In this study, we present field data for leaf lifespan, specific leaf area (SLA) and mass and area-based leaf nitrogen concentrations (Nmass, Narea) of dominant tree species...

  6. Leaf mass area, Feb2016-May2016, PA-SLZ, PA-PNM, PA-BCI: Panama

    DOE Data Explorer

    Ely, Kim [Brookhaven National Lab; Rogers, Alistair [Brookhaven National Lab; Serbin, Shawn [Brookhaven National Lab; Wu, Jin [BNL; Wolfe, Brett [Smithsonian; Dickman, Turin [Los Alamos National Lab; Collins, Adam [Los Alamos National Lab; Detto, Matteo [Princeton; Grossiord, Charlotte [Los Alamos National Lab; McDowell, Nate [Los Alamos National Lab; Michaletz, Sean

    2017-01-01

    Leaf mass per unit area measured on a monthly basis from Feb to April 2016 at SLZ and PNM. Data from BCI only available for March. This data was collected as part of the 2016 ENSO campaign. See related datasets (existing and future) for further sample details, leaf water potential, leaf spectra, gas exchange and leaf chemistry.

  7. Modeling and measuring the nocturnal drainage flow in a high-elevation, subalpine forest with complex terrain

    USGS Publications Warehouse

    Yi, C.; Monson, Russell K.; Zhai, Z.; Anderson, D.E.; Lamb, B.; Allwine, G.; Turnipseed, A.A.; Burns, Sean P.

    2005-01-01

    The nocturnal drainage flow of air causes significant uncertainty in ecosystem CO2, H2O, and energy budgets determined with the eddy covariance measurement approach. In this study, we examined the magnitude, nature, and dynamics of the nocturnal drainage flow in a subalpine forest ecosystem with complex terrain. We used an experimental approach involving four towers, each with vertical profiling of wind speed to measure the magnitude of drainage flows and dynamics in their occurrence. We developed an analytical drainage flow model, constrained with measurements of canopy structure and SF6 diffusion, to help us interpret the tower profile results. Model predictions were in good agreement with observed profiles of wind speed, leaf area density, and wind drag coefficient. Using theory, we showed that this one-dimensional model is reduced to the widely used exponential wind profile model under conditions where vertical leaf area density and drag coefficient are uniformly distributed. We used the model for stability analysis, which predicted the presence of a very stable layer near the height of maximum leaf area density. This stable layer acts as a flow impediment, minimizing vertical dispersion between the subcanopy air space and the atmosphere above the canopy. The prediction is consistent with the results of SF6 diffusion observations that showed minimal vertical dispersion of nighttime, subcanopy drainage flows. The stable within-canopy air layer coincided with the height of maximum wake-to-shear production ratio. We concluded that nighttime drainage flows are restricted to a relatively shallow layer of air beneath the canopy, with little vertical mixing across a relatively long horizontal fetch. Insight into the horizontal and vertical structure of the drainage flow is crucial for understanding the magnitude and dynamics of the mean advective CO2 flux that becomes significant during stable nighttime conditions and are typically missed during measurement of the turbulent CO2 flux. The model and interpretation provided in this study should lead to research strategies for the measurement of these advective fluxes and their inclusion in the overall mass balance for CO2 at this site with complex terrain. Copyright 2005 by the American Geophysical Union.

  8. Modeling and measuring the nocturnal drainage flow in a high-elevation, subalpine forest with complex terrain

    NASA Astrophysics Data System (ADS)

    Yi, Chuixiang; Monson, Russell K.; Zhai, Zhiqiang; Anderson, Dean E.; Lamb, Brian; Allwine, Gene; Turnipseed, Andrew A.; Burns, Sean P.

    2005-11-01

    The nocturnal drainage flow of air causes significant uncertainty in ecosystem CO2, H2O, and energy budgets determined with the eddy covariance measurement approach. In this study, we examined the magnitude, nature, and dynamics of the nocturnal drainage flow in a subalpine forest ecosystem with complex terrain. We used an experimental approach involving four towers, each with vertical profiling of wind speed to measure the magnitude of drainage flows and dynamics in their occurrence. We developed an analytical drainage flow model, constrained with measurements of canopy structure and SF6 diffusion, to help us interpret the tower profile results. Model predictions were in good agreement with observed profiles of wind speed, leaf area density, and wind drag coefficient. Using theory, we showed that this one-dimensional model is reduced to the widely used exponential wind profile model under conditions where vertical leaf area density and drag coefficient are uniformly distributed. We used the model for stability analysis, which predicted the presence of a very stable layer near the height of maximum leaf area density. This stable layer acts as a flow impediment, minimizing vertical dispersion between the subcanopy air space and the atmosphere above the canopy. The prediction is consistent with the results of SF6 diffusion observations that showed minimal vertical dispersion of nighttime, subcanopy drainage flows. The stable within-canopy air layer coincided with the height of maximum wake-to-shear production ratio. We concluded that nighttime drainage flows are restricted to a relatively shallow layer of air beneath the canopy, with little vertical mixing across a relatively long horizontal fetch. Insight into the horizontal and vertical structure of the drainage flow is crucial for understanding the magnitude and dynamics of the mean advective CO2 flux that becomes significant during stable nighttime conditions and are typically missed during measurement of the turbulent CO2 flux. The model and interpretation provided in this study should lead to research strategies for the measurement of these advective fluxes and their inclusion in the overall mass balance for CO2 at this site with complex terrain.

  9. Informing Carbon Dynamics in the Community Land Model with Observations from Across Timescales

    NASA Astrophysics Data System (ADS)

    Fox, A. M.; Hoar, T. J.

    2014-12-01

    Correct simulation of carbon dynamics in Earth System Models is required to accurately predict both short and long-term land carbon-cycle climate and concentration feedbacks. As new model structures and parameterizations of increasing complexity are introduced there is an ever present need for data to inform these developments, either indirectly through benchmarking activities, or directly through model-data fusion techniques. Here we briefly describe a very rich source of data that will come from the National Ecological Observatory Network (NEON), a continental-scale facility that will collect freely available biogeochemical and biophysical data from 60 sites representative of a full range of ecosystems across the USA over 30 years. Relevant data at each site include a full suite of micrometeorology measurements, profiles of CO2 and H2O vapor isotopes, soil temperature, moisture and CO2 flux, fine root images, and plot-based NPP, leaf area and litterfall estimates. This is accompanied by Lidar and hyperspectral derived biomass, leaf area and canopy chemistry at < 1m resolution of 100s km2. Critically, these observations are well calibrated and highly standardized across sites allowing comparisons, whilst plot and site selection has been designed to optimize representativeness and spatial scaling opportunities. To illustrate the potential utility of these data in constraining models, we show the range of Community Land Model (CLM) output at NEON site locations, and in model-space look at a number of different functional responses that characterize the model in space and time and could be tested with data. These observations can be used most directly through a data assimilation (DA) system and we demonstrate how we have developed support for CLM within the Data Assimilation Research Testbed (DART) that uses ensemble techniques for state estimation. Using an observing system experiment, we investigate how infrequent observations of carbon stocks constrain model dynamics and how these observations types can be used with more frequently available flux and leaf area index observations. We demonstrate the use of the latter with real Ameriflux and MODIS data.

  10. Convergence of tree water use within an arid-zone woodland.

    PubMed

    O'Grady, A P; Cook, P G; Eamus, D; Duguid, A; Wischusen, J D H; Fass, T; Worldege, D

    2009-07-01

    We examined spatial and temporal patterns of tree water use and aspects of hydraulic architecture in four common tree species of central Australia--Corymbia opaca, Eucalyptus victrix, E. camaldulensis and Acacia aneura--to better understand processes that constrain water use in these environments. These four widely distributed species occupy contrasting niches within arid environments including woodlands, floodplains and riparian environments. Measurements of tree water use and leaf water potential were made at two sites with contrasting water table depths during a period of high soil water availability following summer rainfall and during a period of low soil water availability following 7 months of very little rainfall during 2007. There were significant differences in specific leaf area (SLA), sapwood area to leaf area ratios and sapwood density between species. Sapwood to leaf area ratio increased in all species from April to November indicating a decline in leaf area per unit sapwood area. Despite very little rainfall in the intervening period three species, C. opaca, E. victrix and E. camaldulensis maintained high leaf water potentials and tree water use during both periods. In contrast, leaf water potential and water use in the A. aneura were significantly reduced in November compared to April. Despite contrasting morphology and water use strategies, we observed considerable convergence in water use among the four species. Wood density in particular was strongly related to SLA, sapwood area to leaf area ratios and soil to leaf conductance, with all four species converging on a common relationship. Identifying convergence in hydraulic traits can potentially provide powerful tools for scaling physiological processes in natural ecosystems.

  11. Linear relations between leaf mass per area (LMA) and seasonal climate discovered through Linear Manifold Clustering (LMC)

    NASA Astrophysics Data System (ADS)

    Kiang, N. Y.; Haralick, R. M.; Diky, A.; Kattge, J.; Su, X.

    2016-12-01

    Leaf mass per area (LMA) is a critical variable in plant carbon allocation, correlates with leaf activity traits (photosynthetic activity, respiration), and is a controller of litterfall mass and hence carbon substrate for soil biogeochemistry. Recent advances in understanding the leaf economics spectrum (LES) show that LMA has a strong correlation with leaf life span, a trait that reflects ecological strategy, whereas physiological traits that control leaf activity scale with each other when mass-normalized (Osnas et al., 2013). These functional relations help reduce the number of independent variables in quantifying leaf traits. However, LMA is an independent variable that remains a challenge to specify in dynamic global vegetation models (DGVMs), when vegetation types are classified into a limited number of plant functional types (PFTs) without clear mechanistic drivers for LMA. LMA can range orders of magnitude across plant species, as well as vary within a single plant, both vertically and seasonally. As climate relations in combination with alternative ecological strategies have yet to be well identified for LMA, we have assembled 22,000 records of LMA spanning 0.004 - 33 mg/m2 from the numerous contributors to the TRY database (Kattge et al., 2011), with observations distributed over several climate zones and plant functional categories (growth form, leaf type, phenology). We present linear relations between LMA and climate variables, including seasonal temperature, precipitation, and radiation, as derived through Linear Manifold Clustering (LMC). LMC is a stochastic search technique for identifying linear dependencies between variables in high dimensional space. We identify a set of parsimonious classes of LMA-climate groups based on a metric of minimum description to identify structure in the data set, akin to data compression. The relations in each group are compared to Köppen-Geiger climate classes, with some groups revealing continuous linear relations between what might appear to be distinct classes. We discuss these results with regard to parameterization and evaluation of DGVMs with regard to plant diversity and representing the carbon cycle.

  12. Investigating the European beech (Fagus sylvatica L.) leaf characteristics along the vertical canopy profile: leaf structure, photosynthetic capacity, light energy dissipation and photoprotection mechanisms.

    PubMed

    Scartazza, Andrea; Di Baccio, Daniela; Bertolotto, Pierangelo; Gavrichkova, Olga; Matteucci, Giorgio

    2016-09-01

    Forest functionality and productivity are directly related to canopy light interception and can be affected by potential damage from high irradiance. However, the mechanisms by which leaves adapt to the variable light environments along the multilayer canopy profile are still poorly known. We explored the leaf morphophysiological and metabolic responses to the natural light gradient in a pure European beech (Fagus sylvatica L.) forest at three different canopy heights (top, middle and bottom). Structural adjustment through light-dependent modifications in leaf mass per area was the reason for most of the variations in photosynthetic capacity. The different leaf morphology along the canopy influenced nitrogen (N) partitioning, water- and photosynthetic N-use efficiency, chlorophyll (Chl) fluorescence and quali-quantitative contents of photosynthetic pigments. The Chl a to Chl b ratio and the pool of xanthophyll-cycle pigments (VAZ) increased at the highest irradiance, as well as lutein and β-carotene. The total pool of ascorbate and phenols was higher in leaves of the top and middle canopy layers when compared with the bottom layer, where the ascorbate peroxidase was relatively more activated. The non-photochemical quenching was strongly and positively related to the VAZ/(Chl a + b) ratio, while Chl a/Chl b was related to the photochemical efficiency of photosystem II. Along the multilayer canopy profile, the high energy dissipation capacity of leaves was correlated to an elevated redox potential of antioxidants. The middle layer gave the most relevant contribution to leaf area index and carboxylation capacity of the canopy. In conclusion, a complex interplay among structural, physiological and biochemical traits drives the dynamic leaf acclimation to the natural gradients of variable light environments along the tree canopy profile. The relevant differences observed in leaf traits within the canopy positions of the beech forest should be considered for improving estimation of carbon fluxes in multilayer canopy models of temperate forests. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Functional traits drive the contribution of solar radiation to leaf litter decomposition among multiple arid-zone species.

    PubMed

    Pan, Xu; Song, Yao-Bin; Liu, Guo-Fang; Hu, Yu-Kun; Ye, Xue-Hua; Cornwell, William K; Prinzing, Andreas; Dong, Ming; Cornelissen, Johannes H C

    2015-08-18

    In arid zones, strong solar radiation has important consequences for ecosystem processes. To better understand carbon and nutrient dynamics, it is important to know the contribution of solar radiation to leaf litter decomposition of different arid-zone species. Here we investigated: (1) whether such contribution varies among plant species at given irradiance regime, (2) whether interspecific variation in such contribution correlates with interspecific variation in the decomposition rate under shade; and (3) whether this correlation can be explained by leaf traits. We conducted a factorial experiment to determine the effects of solar radiation and environmental moisture for the mass loss and the decomposition constant k-values of 13 species litters collected in Northern China. The contribution of solar radiation to leaf litter decomposition varied significantly among species. Solar radiation accelerated decomposition in particular in the species that already decompose quickly under shade. Functional traits, notably specific leaf area, might predict the interspecific variation in that contribution. Our results provide the first empirical evidence for how the effect of solar radiation on decomposition varies among multiple species. Thus, the effect of solar radiation on the carbon flux between biosphere and atmosphere may depend on the species composition of the vegetation.

  14. Functional traits drive the contribution of solar radiation to leaf litter decomposition among multiple arid-zone species

    PubMed Central

    Pan, Xu; Song, Yao-Bin; Liu, Guo-Fang; Hu, Yu-Kun; Ye, Xue-Hua; Cornwell, William K.; Prinzing, Andreas; Dong, Ming; Cornelissen, Johannes H.C.

    2015-01-01

    In arid zones, strong solar radiation has important consequences for ecosystem processes. To better understand carbon and nutrient dynamics, it is important to know the contribution of solar radiation to leaf litter decomposition of different arid-zone species. Here we investigated: (1) whether such contribution varies among plant species at given irradiance regime, (2) whether interspecific variation in such contribution correlates with interspecific variation in the decomposition rate under shade; and (3) whether this correlation can be explained by leaf traits. We conducted a factorial experiment to determine the effects of solar radiation and environmental moisture for the mass loss and the decomposition constant k-values of 13 species litters collected in Northern China. The contribution of solar radiation to leaf litter decomposition varied significantly among species. Solar radiation accelerated decomposition in particular in the species that already decompose quickly under shade. Functional traits, notably specific leaf area, might predict the interspecific variation in that contribution. Our results provide the first empirical evidence for how the effect of solar radiation on decomposition varies among multiple species. Thus, the effect of solar radiation on the carbon flux between biosphere and atmosphere may depend on the species composition of the vegetation. PMID:26282711

  15. Computer Reconstruction of Plant Growth and Chlorophyll Fluorescence Emission in Three Spatial Dimensions

    PubMed Central

    Bellasio, Chandra; Olejníčková, Julie; Tesař, Radek; Šebela, David; Nedbal, Ladislav

    2012-01-01

    Plant leaves grow and change their orientation as well their emission of chlorophyll fluorescence in time. All these dynamic plant properties can be semi-automatically monitored by a 3D imaging system that generates plant models by the method of coded light illumination, fluorescence imaging and computer 3D reconstruction. Here, we describe the essentials of the method, as well as the system hardware. We show that the technique can reconstruct, with a high fidelity, the leaf size, the leaf angle and the plant height. The method fails with wilted plants when leaves overlap obscuring their true area. This effect, naturally, also interferes when the method is applied to measure plant growth under water stress. The method is, however, very potent in capturing the plant dynamics under mild stress and without stress. The 3D reconstruction is also highly effective in correcting geometrical factors that distort measurements of chlorophyll fluorescence emission of naturally positioned plant leaves. PMID:22368511

  16. Computer reconstruction of plant growth and chlorophyll fluorescence emission in three spatial dimensions.

    PubMed

    Bellasio, Chandra; Olejníčková, Julie; Tesař, Radek; Sebela, David; Nedbal, Ladislav

    2012-01-01

    Plant leaves grow and change their orientation as well their emission of chlorophyll fluorescence in time. All these dynamic plant properties can be semi-automatically monitored by a 3D imaging system that generates plant models by the method of coded light illumination, fluorescence imaging and computer 3D reconstruction. Here, we describe the essentials of the method, as well as the system hardware. We show that the technique can reconstruct, with a high fidelity, the leaf size, the leaf angle and the plant height. The method fails with wilted plants when leaves overlap obscuring their true area. This effect, naturally, also interferes when the method is applied to measure plant growth under water stress. The method is, however, very potent in capturing the plant dynamics under mild stress and without stress. The 3D reconstruction is also highly effective in correcting geometrical factors that distort measurements of chlorophyll fluorescence emission of naturally positioned plant leaves.

  17. Simplification of a light-based model for estimating final internode length in greenhouse cucumber canopies.

    PubMed

    Kahlen, Katrin; Stützel, Hartmut

    2011-10-01

    Light quantity and quality affect internode lengths in cucumber (Cucumis sativus), whereby leaf area and the optical properties of the leaves mainly control light quality within a cucumber plant community. This modelling study aimed at providing a simple, non-destructive method to predict final internode lengths (FILs) using light quantity and leaf area data. Several simplifications of a light quantity and quality sensitive model for estimating FILs in cucumber have been tested. The direct simplifications substitute the term for the red : far-red (R : FR) ratios, by a term for (a) the leaf area index (LAI, m(2) m(-2)) or (b) partial LAI, the cumulative leaf area per m(2) ground, where leaf area per m(2) ground is accumulated from the top of each plant until a number, n, of leaves per plant is reached. The indirect simplifications estimate the input R : FR ratio based on partial leaf area and plant density. In all models, simulated FILs were in line with the measured FILs over various canopy architectures and light conditions, but the prediction quality varied. The indirect simplification based on leaf area of ten leaves revealed the best fit with measured data. Its prediction quality was even higher than of the original model. This study showed that for vertically trained cucumber plants, leaf area data can substitute local light quality data for estimating FIL data. In unstressed canopies, leaf area over the upper ten ranks seems to represent the feedback of the growing architecture on internode elongation with respect to light quality. This highlights the role of this domain of leaves as the primary source for the specific R : FR signal controlling the final length of an internode and could therefore guide future research on up-scaling local processes to the crop level.

  18. Characterization of dynamic droplet impaction and deposit formation on leaf surfaces

    USDA-ARS?s Scientific Manuscript database

    Elucidation of droplet dynamic impaction and deposition formation on leaf surfaces would assist to optimize application strategies, improve biological control efficiency, and minimize pesticide waste. A custom-designed system consisting of two high-speed digital cameras and a uniform-size droplet ge...

  19. Nutrient dynamics and decomposition of riparian Arundinaria gigantea (Walt.)Muhl. leaves in southern Illinois

    USDA-ARS?s Scientific Manuscript database

    Leaf litter quality and quantity can influence soil nutrient dynamics and stream productivity through decomposition and serving as allochthonous stream inputs. Leaf deposition, nitrogen (N)-resorption efficiency and proficiency, and decomposition rates were analyzed in riparian stands of Arundinaria...

  20. Simulating Energy, Water and Carbon Fluxes at the Shortgrass Steppe Long Term Ecological Research (LTER) Site

    NASA Astrophysics Data System (ADS)

    Beltran-Przekurat, A. B.; Pielke, R. A.; Morgan, J. A.; Burke, I. C.

    2005-12-01

    Coupled atmospheric-biospheric models are a particularly valuable tool for studying the potential effects of land-use and land-cover changes on the near-surface atmosphere since the atmosphere and biosphere are allowed to dynamically interact through the surface and canopy energy balance. GEMRAMS is a coupled atmospheric-biospheric model comprised of an atmospheric model, RAMS, and an ecophysiological process-based model, GEMTM. In the first part of this study, the soil-vegetation-atmosphere-transfer (SVAT) scheme, LEAF2, from RAMS, coupled with GEMTM, are used to simulate energy, water and carbon fluxes over different cropping systems (winter wheat and irrigated corn) and over a mixed C3/C4 shortgrass prairie located at the USDA-ARS Central Plains Experimental Range near Nunn, Colorado, the LTER Shortgrass Steppe site. The new SVAT scheme, GEMLEAF, is forced with air temperature and humidity, wind speed and photosynthetic active radiation (PAR). Calculated canopy temperature and relative humidity, soil moisture and temperature and PAR are used to compute sunlit/shaded leaf photosynthesis (for C3 and C4 plant types) and respiration. Photosynthate is allocated to leaves, shoots, roots and reproductive organs with variable partition coefficients, which are functions of soil water conditions. As water stress increases, the fraction of photosynthate allocated to root growth increases. Leaf area index (LAI) is estimated from daily leaf biomass growth, using the vegetation-prescribed specific leaf area. Canopy conductance, computed and based on photosynthesis and relative humidity, is used to calculate latent heat flux. Simulated energy and CO2 fluxes are compared to observations collected using Bowen ratio flux towers during two growing seasons. Seasonality of the fluxes reflecting different plant phenologies agrees well with the observed patterns. In the second part of this study, simulations for two clear days are performed with GEMRAMS over a model domain centered at the SGS site. Simulated spatial differences in the energy fluxes can be associated with the highly heterogeneous landscape in this area.

  1. Nitrogen nutrition of tomato plant alters leafminer dietary intake dynamics.

    PubMed

    Coqueret, Victoire; Le Bot, Jacques; Larbat, Romain; Desneux, Nicolas; Robin, Christophe; Adamowicz, Stéphane

    2017-05-01

    The leafminer Tuta absoluta (Meyrick) is a major pest of the tomato crop and its development rate is known to decline when nitrogen availability for crop growth is limited. Because N limitation reduces plant primary metabolism but enhances secondary metabolism, one can infer that the slow larval development arises from lower leaf nutritive value and/or higher plant defence. As an attempt to study the first alternative, we examined the tomato-T. absoluta interaction in terms of resource supply by leaves and intake by larvae. Tomato plants were raised under controlled conditions on N-sufficient vs. N-limited complete nutrient solutions. Plants were kept healthy or artificially inoculated with larvae for seven days. Serial harvests were taken and the N, C, dry mass and water contents were determined in roots, stems and leaves. Leaf and mine areas were also measured and the N, C, dry mass and water surface densities were calculated in order to characterize the diet of the larvae. The infestation of a specific leaf lessened its local biomass by 8-26%, but this effect was undetectable at the whole plant scale. Infestation markedly increased resource density per unit leaf area (water, dry mass, C and N) suggesting that the insect induced changes in leaf composition. Nitrogen limitation lessened whole plant growth (by 50%) and infested leaflet growth (by 32-44%). It produced opposite effects on specific resource density per unit area, increasing that of dry mass and C while decreasing water and N. These changes were ineffective on insect mining activity, but slowed down larval development. Under N limitation, T. absoluta consumed less water and N but more dry mass and C. The resulting consequences were a 50-70% increase of C:N stoichiometry in their diet and the doubling of faeces excretion. The observed limitation of larval development is therefore consistent with a trophic explanation caused by low N and/or water intakes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Climate influences the leaf area/sapwood area ratio in Scots pine.

    PubMed

    Mencuccini, M; Grace, J

    1995-01-01

    We tested the hypothesis that the leaf area/sapwood area ratio in Scots pine (Pinus sylvestris L.) is influenced by site differences in water vapor pressure deficit of the air (D). Two stands of the same provenance were selected, one in western Scotland and one in eastern England, so that effects resulting from age, genetic variability, density and fertility were minimized. Compared with the Scots pine trees at the cooler and wetter site in Scotland, the trees at the warmer and drier site in England produced less leaf area per unit of conducting sapwood area both at a stem height of 1.3 m and at the base of the live crown, whereas stem permeability was similar at both sites. Also, trees at the drier site had less leaf area per unit branch cross-sectional area at the branch base than trees at the wetter site. For each site, the average values for leaf area, sapwood area and permeability were used, together with values of transpiration rates at different D, to calculate average stem water potential gradients. Changes in the leaf area/sapwood area ratio acted to maintain a similar water potential gradient in the stems of trees at both sites despite climatic differences between the sites.

  3. Dwarf mistletoe affects whole-tree water relations of Douglas fir and western larch primarily through changes in leaf to sapwood ratios.

    PubMed

    Sala, Anna; Carey, Eileen V; Callaway, Ragan M

    2001-01-01

    Dwarf mistletoes induce abnormal growth patterns and extreme changes in the biomass allocation of their hosts as well as directly parasitizing them for resources. Because biomass allocation can affect the resource use and efficiency of conifers, we studied the influences of dwarf mistletoe infection on above-ground biomass allocation of Douglas fir and western larch, and the consequences of such changes on whole-tree water use and water relations. Sap flow, tree water potentials, leaf:sapwood area ratios (A L :A S ), leaf carbon isotope ratios, and nitrogen content were measured on Douglas fir and western larch trees with various degrees of mistletoe infection during the summer of 1996 in western Montana. Heavy dwarf mistletoe infection on Douglas fir and western larch was related to significant increases in A L :A S . Correspondingly, water transport dynamics were altered in infected trees, but responses were different for the two species. Higher A L :A S ratios in heavily infected Douglas firs were offset by increases in sapwood area-based sap flux densities (Q SW ) such that leaf area-based sap flux densities (Q L ) and predawn leaf water potentials at the end of the summer did not change significantly with mistletoe infection. Small (but statistically insignificant) decreases of Q L for heavily infected Douglas firs were enough to offset increases in leaf area such that whole-tree water use was similar for uninfected and heavily infected trees. Increased A L :A S ratios of heavily infected western larch were not offset by increases of Q SW . Consequently, Q L was reduced, which corresponded with significant decreases of water potential at the end of the summer. Furthermore, mistletoe-infection-related changes in A L :A S as a function of tree size resulted in greater whole-tree water use for large infected larches than for large uninfected trees. Such changes may result in further depletion of limited soil water resources in mature infected stands late in the growing season. Foliage from infected trees of both species had lower water use efficiencies than non-infected trees. Our results demonstrate substantial changes of whole-tree processes related to mistletoe infection, and stress the importance of integrating whole-tree physiological and structural processes to fully understand the mechanisms by which pathogens suppress forest productivity.

  4. The effects of phenoseason and storm characteristics on throughfall solute washoff and leaching dynamics from a temperate deciduous forest canopy.

    PubMed

    Van Stan, John T; Levia, Delphis F; Inamdar, Shreeram P; Lepori-Bui, Michelle; Mitchell, Myron J

    2012-07-15

    Seasonal variations in the washoff and leaching dynamics of throughfall ionic fluxes represent a significant process affecting the biogeochemical cycling of forested ecosystems-particularly for temperate deciduous forests with distinct phenological seasons (or "phenoseasons"). Most studies on temperate deciduous forests aggregate seasonal throughfall fluxes to the leafed (growing) and leafless (dormant) periods, yet the phenological conditions controlling seasonality demand finer-scale demarcations that include the transitional phenoseasons (leaf senescence and emergence). To fill these gaps our study examines the washoff and leaching dynamics of Na(+), Mg(2+), K(+), Ca(2+), Cl(-), SO(4)(2-), and NO(3)(-) throughfall derived from bulk and sequentially sampled rain events across leafed, leafless and both transitional phenoseasons over a 3-year period (2008-2010). As throughfall washoff and leached solute fluxes are also closely-coupled to rainfall conditions, we further examine the effects of storm characteristics on phenoseasonal washoff-dominated (Na(+) and Cl(-)) and leaching-dominated (K(+), Ca(2+), Mg(2+)) fluxes through intrastorm event comparison plots and factorial MANOVA. Highly significant differences in leached and washoff solute fluxes were found across meteorological conditions (p<0.001) nested within phenoseasonal divisions (p<0.00001). Phenoseasonal washoff Na(+) and Cl(-) fluxes seemed to be more closely related to leaf area; whereas, leaching flux and canopy exchange of all solutes to correspond more with major phenological changes (when the canopies tend to be most metabolically active). The greatest differences in leached Mg(2+), K(+), Ca(2+), and SO(4)(2-) fluxes were not between the full leafed and leafless phenoseasons (33-80% difference), but between the transitional periods (80 to 200 fold greater during leaf senescence than leaf emergence). Intrastorm average canopy NO(3)(-) leaching, however, ranged from low losses (1 μmol(c)m(-2)h(-1)) to canopy uptake (-2 μmol(c)m(-2)h(-1)) during both transitional phenoseasons. K(+), Ca(2+), Mg(2+) were all markedly more exchangeable during senescence, with Ca(2+) and Mg(2+) being more tightly held by the canopy. Leaching rates and fluxes for all measured solutes were negligible to negative during emergence, except for K(+) and SO(4)(2-). Our results indicate that much of the variance in timing and magnitude of throughfall solute fluxes to forest soils within temperate deciduous ecosystems may be ascribed to phenologically-delineated seasons and storm conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. The Relationship between Anatomy and Photosynthetic Performance of Heterobaric Leaves1

    PubMed Central

    Nikolopoulos, Dimosthenis; Liakopoulos, Georgios; Drossopoulos, Ioannis; Karabourniotis, George

    2002-01-01

    Heterobaric leaves show heterogeneous pigmentation due to the occurrence of a network of transparent areas that are created from the bundle sheaths extensions (BSEs). Image analysis showed that the percentage of photosynthetically active leaf area (Ap) of the heterobaric leaves of 31 plant species was species dependent, ranging from 91% in Malva sylvestris to only 48% in Gynerium sp. Although a significant portion of the leaf surface does not correspond to photosynthetic tissue, the photosynthetic capacity of these leaves, expressed per unit of projected area (Pmax), was not considerably affected by the size of their transparent leaf area (At). This means that the photosynthetic capacity expressed per Ap (P*max) should increase with At. Moreover, the expression of P*max could be allowing the interpretation of the photosynthetic performance in relation to some critical anatomical traits. The P*max, irrespective of plant species, correlated with the specific leaf transparent volume (λt), as well as with the transparent leaf area complexity factor (CFAt), parameters indicating the volume per unit leaf area and length/density of the transparent tissues, respectively. Moreover, both parameters increased exponentially with leaf thickness, suggesting an essential functional role of BSEs mainly in thick leaves. The results of the present study suggest that although the Ap of an heterobaric leaf is reduced, the photosynthetic performance of each areole is increased, possibly due to the light transferring capacity of BSEs. This mechanism may allow a significant increase in leaf thickness and a consequent increase of the photosynthetic capacity per unit (projected) area, offering adaptive advantages in xerothermic environments. PMID:12011354

  6. Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison

    DOE PAGES

    Restrepo-Coupe, Natalia; Levine, Naomi M.; Christoffersen, Bradley O.; ...

    2016-08-29

    To predict forest response to long-term climate change with high confidence requires that dynamic global vegetation models (DGVMs) be successfully tested against ecosystem response to short-term variations in environmental drivers, including regular seasonal patterns. Here, we used an integrated dataset from four forests in the Brasil flux network, spanning a range of dry-season intensities and lengths, to determine how well four state-of-the-art models (IBIS, ED2, JULES, and CLM3.5) simulated the seasonality of carbon exchanges in Amazonian tropical forests. We found that most DGVMs poorly represented the annual cycle of gross primary productivity (GPP), of photosynthetic capacity (Pc), and of othermore » fluxes and pools. Models simulated consistent dry-season declines in GPP in the equatorial Amazon (Manaus K34, Santarem K67, and Caxiuanã CAX); a contrast to observed GPP increases. Model simulated dry-season GPP reductions were driven by an external environmental factor, ‘soil water stress’ and consequently by a constant or decreasing photosynthetic infrastructure (Pc), while observed dry-season GPP resulted from a combination of internal biological (leaf-flush and abscission and increased Pc) and environmental (incoming radiation) causes. Moreover, we found models generally overestimated observed seasonal net ecosystem exchange (NEE) and respiration (Re) at equatorial locations. In contrast, a southern Amazon forest (Jarú RJA) exhibited dry-season declines in GPP and Re consistent with most DGVMs simulations. While water limitation was represented in models and the primary driver of seasonal photosynthesis in southern Amazonia, changes in internal biophysical processes, light-harvesting adaptations (e.g., variations in leaf area index (LAI) and increasing leaf-level assimilation rate related to leaf demography), and allocation lags between leaf and wood, dominated equatorial Amazon carbon flux dynamics and were deficient or absent from current model formulations. In conclusion, correctly simulating flux seasonality at tropical forests requires a greater understanding and the incorporation of internal biophysical mechanisms in future model developments.« less

  7. Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Restrepo-Coupe, Natalia; Levine, Naomi M.; Christoffersen, Bradley O.

    To predict forest response to long-term climate change with high confidence requires that dynamic global vegetation models (DGVMs) be successfully tested against ecosystem response to short-term variations in environmental drivers, including regular seasonal patterns. Here, we used an integrated dataset from four forests in the Brasil flux network, spanning a range of dry-season intensities and lengths, to determine how well four state-of-the-art models (IBIS, ED2, JULES, and CLM3.5) simulated the seasonality of carbon exchanges in Amazonian tropical forests. We found that most DGVMs poorly represented the annual cycle of gross primary productivity (GPP), of photosynthetic capacity (Pc), and of othermore » fluxes and pools. Models simulated consistent dry-season declines in GPP in the equatorial Amazon (Manaus K34, Santarem K67, and Caxiuanã CAX); a contrast to observed GPP increases. Model simulated dry-season GPP reductions were driven by an external environmental factor, ‘soil water stress’ and consequently by a constant or decreasing photosynthetic infrastructure (Pc), while observed dry-season GPP resulted from a combination of internal biological (leaf-flush and abscission and increased Pc) and environmental (incoming radiation) causes. Moreover, we found models generally overestimated observed seasonal net ecosystem exchange (NEE) and respiration (Re) at equatorial locations. In contrast, a southern Amazon forest (Jarú RJA) exhibited dry-season declines in GPP and Re consistent with most DGVMs simulations. While water limitation was represented in models and the primary driver of seasonal photosynthesis in southern Amazonia, changes in internal biophysical processes, light-harvesting adaptations (e.g., variations in leaf area index (LAI) and increasing leaf-level assimilation rate related to leaf demography), and allocation lags between leaf and wood, dominated equatorial Amazon carbon flux dynamics and were deficient or absent from current model formulations. In conclusion, correctly simulating flux seasonality at tropical forests requires a greater understanding and the incorporation of internal biophysical mechanisms in future model developments.« less

  8. Persisting soil drought reduces leaf specific conductivity in Scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescens).

    PubMed

    Sterck, Frank J; Zweifel, Roman; Sass-Klaassen, Ute; Chowdhury, Qumruzzaman

    2008-04-01

    Leaf specific conductivity (LSC; the ratio of stem conductivity (K(P)) to leaf area (A(L))), a measure of the hydraulic capacity of the stem to supply leaves with water, varies with soil water content. Empirical evidence for LSC responses to drought is ambiguous, because previously published results were subject to many confounding factors. We tested how LSC of similar-sized trees of the same population, under similar climatic conditions, responds to persistently wet or dry soil. Scots pine (Pinus sylvestris L.) and pubescent oak (Quercus pubescens Willd.) trees were compared between a dry site and a wet site in the Valais, an inner alpine valley in Switzerland. Soil water strongly influenced A(L) and K(P) and the plant components affecting K(P), such as conduit radius, conduit density and functional sapwood area. Trees at the dry site had lower LSC than trees with the same stem diameter at the wet site. Low LSC in trees at the dry site was associated with a smaller functional sapwood area and narrower conduits, resulting in a stronger reduction in K(P) than in A(L). These observations support the hypothesis that trees maintain a homeostatic water pressure gradient. An alternative hypothesis is that relatively high investments in leaves compared with sapwood contribute to carbon gain over an entire season by enabling rapid whole-plant photosynthesis during periods of high water availability (e.g., in spring, after rain events and during morning hours when leaf-to-air vapor pressure deficit is small). Dynamic data and a hydraulic plant growth model are needed to test how investments in leaves versus sapwood and roots contribute to transpiration and to maximizing carbon gain throughout entire growth seasons.

  9. VitiCanopy: A Free Computer App to Estimate Canopy Vigor and Porosity for Grapevine

    PubMed Central

    De Bei, Roberta; Fuentes, Sigfredo; Gilliham, Matthew; Tyerman, Steve; Edwards, Everard; Bianchini, Nicolò; Smith, Jason; Collins, Cassandra

    2016-01-01

    Leaf area index (LAI) and plant area index (PAI) are common and important biophysical parameters used to estimate agronomical variables such as canopy growth, light interception and water requirements of plants and trees. LAI can be either measured directly using destructive methods or indirectly using dedicated and expensive instrumentation, both of which require a high level of know-how to operate equipment, handle data and interpret results. Recently, a novel smartphone and tablet PC application, VitiCanopy, has been developed by a group of researchers from the University of Adelaide and the University of Melbourne, to estimate grapevine canopy size (LAI and PAI), canopy porosity, canopy cover and clumping index. VitiCanopy uses the front in-built camera and GPS capabilities of smartphones and tablet PCs to automatically implement image analysis algorithms on upward-looking digital images of canopies and calculates relevant canopy architecture parameters. Results from the use of VitiCanopy on grapevines correlated well with traditional methods to measure/estimate LAI and PAI. Like other indirect methods, VitiCanopy does not distinguish between leaf and non-leaf material but it was demonstrated that the non-leaf material could be extracted from the results, if needed, to increase accuracy. VitiCanopy is an accurate, user-friendly and free alternative to current techniques used by scientists and viticultural practitioners to assess the dynamics of LAI, PAI and canopy architecture in vineyards, and has the potential to be adapted for use on other plants. PMID:27120600

  10. VitiCanopy: A Free Computer App to Estimate Canopy Vigor and Porosity for Grapevine.

    PubMed

    De Bei, Roberta; Fuentes, Sigfredo; Gilliham, Matthew; Tyerman, Steve; Edwards, Everard; Bianchini, Nicolò; Smith, Jason; Collins, Cassandra

    2016-04-23

    Leaf area index (LAI) and plant area index (PAI) are common and important biophysical parameters used to estimate agronomical variables such as canopy growth, light interception and water requirements of plants and trees. LAI can be either measured directly using destructive methods or indirectly using dedicated and expensive instrumentation, both of which require a high level of know-how to operate equipment, handle data and interpret results. Recently, a novel smartphone and tablet PC application, VitiCanopy, has been developed by a group of researchers from the University of Adelaide and the University of Melbourne, to estimate grapevine canopy size (LAI and PAI), canopy porosity, canopy cover and clumping index. VitiCanopy uses the front in-built camera and GPS capabilities of smartphones and tablet PCs to automatically implement image analysis algorithms on upward-looking digital images of canopies and calculates relevant canopy architecture parameters. Results from the use of VitiCanopy on grapevines correlated well with traditional methods to measure/estimate LAI and PAI. Like other indirect methods, VitiCanopy does not distinguish between leaf and non-leaf material but it was demonstrated that the non-leaf material could be extracted from the results, if needed, to increase accuracy. VitiCanopy is an accurate, user-friendly and free alternative to current techniques used by scientists and viticultural practitioners to assess the dynamics of LAI, PAI and canopy architecture in vineyards, and has the potential to be adapted for use on other plants.

  11. [Effects of eutrophic nitrogen nutrition on carbon balance capacity of Liquidambar formosana seedlings under low light].

    PubMed

    Wang, Chuan-Hua; Li, Jun-Qing; Yang, Ying

    2011-12-01

    To investigate the effects of atmospheric nitrogen deposition on the seedlings regeneration of Liquidambar formosana, a greenhouse experiment was conducted, in which, the low light- and nitrogen supplies were controlled similar to those in typical L. formosana secondary forests, with the effects of different light- and nitrogen supply on the L. formosana seedlings survival, leaf functional traits, biomass allocation, and gas exchange studied. The whole plant light compensation point (LCP(whoIe-plant)) of the seedlings was estimated with a whole plant carbon balance model, and then compared with the understory photosynthetic active radiance (PAR) of the typical secondary forests. Under 3.0% and 6.0% of full sunlight, eutrophic nitrogen supply led to a decrease of seedlings survival (shade tolerance) and specific leaf area (SLA), but had no obvious effects on the seedlings biomass allocation. At eutrophic nitrogen supply, light intensity had significant effects on the leaf area based maximum assimilation rate, whereas increasing nitrogen supply under low light induced the increase of leaf mass based dark respiration rate. Both light intensity and nitrogen supply had significant effects on the mass based leaf respiration rate, and the interaction of light and nitrogen had significant effects on the mass based stem respiration rate. Increasing nitrogen supply increased the LCP(wholeplant), under 3.0%, 6.0%, and 12.0% of full sunlight, but decreased the LCP(whoIe-plant) under 25.0% of full sunlight. The decrease of the seedlings shade tolerance induced by the increasing nitrogen supply under low light was correlated with the variations of the seedlings carbon balance capacity. Under the background of elevated atmospheric nitrogen deposition, the maintenance of L. formosana populations in China would more depend on disturbances and gap regeneration, and the population dynamics would be deeply affected.

  12. Peach water relations, gas exchange, growth and shoot mortality under water deficit in semi-arid weather conditions.

    PubMed

    Rahmati, Mitra; Davarynejad, Gholam Hossein; Génard, Michel; Bannayan, Mohammad; Azizi, Majid; Vercambre, Gilles

    2015-01-01

    In this study the sensitivity of peach tree (Prunus persica L.) to three water stress levels from mid-pit hardening until harvest was assessed. Seasonal patterns of shoot and fruit growth, gas exchange (leaf photosynthesis, stomatal conductance and transpiration) as well as carbon (C) storage/mobilization were evaluated in relation to plant water status. A simple C balance model was also developed to investigate sink-source relationship in relation to plant water status at the tree level. The C source was estimated through the leaf area dynamics and leaf photosynthesis rate along the season. The C sink was estimated for maintenance respiration and growth of shoots and fruits. Water stress significantly reduced gas exchange, and fruit, and shoot growth, but increased fruit dry matter concentration. Growth was more affected by water deficit than photosynthesis, and shoot growth was more sensitive to water deficit than fruit growth. Reduction of shoot growth was associated with a decrease of shoot elongation, emergence, and high shoot mortality. Water scarcity affected tree C assimilation due to two interacting factors: (i) reduction in leaf photosynthesis (-23% and -50% under moderate (MS) and severe (SS) water stress compared to low (LS) stress during growth season) and (ii) reduction in total leaf area (-57% and -79% under MS and SS compared to LS at harvest). Our field data analysis suggested a Ψstem threshold of -1.5 MPa below which daily net C gain became negative, i.e. C assimilation became lower than C needed for respiration and growth. Negative C balance under MS and SS associated with decline of trunk carbohydrate reserves--may have led to drought-induced vegetative mortality.

  13. Peach Water Relations, Gas Exchange, Growth and Shoot Mortality under Water Deficit in Semi-Arid Weather Conditions

    PubMed Central

    Rahmati, Mitra; Davarynejad, Gholam Hossein; Génard, Michel; Bannayan, Mohammad; Azizi, Majid; Vercambre, Gilles

    2015-01-01

    In this study the sensitivity of peach tree (Prunus persica L.) to three water stress levels from mid-pit hardening until harvest was assessed. Seasonal patterns of shoot and fruit growth, gas exchange (leaf photosynthesis, stomatal conductance and transpiration) as well as carbon (C) storage/mobilization were evaluated in relation to plant water status. A simple C balance model was also developed to investigate sink-source relationship in relation to plant water status at the tree level. The C source was estimated through the leaf area dynamics and leaf photosynthesis rate along the season. The C sink was estimated for maintenance respiration and growth of shoots and fruits. Water stress significantly reduced gas exchange, and fruit, and shoot growth, but increased fruit dry matter concentration. Growth was more affected by water deficit than photosynthesis, and shoot growth was more sensitive to water deficit than fruit growth. Reduction of shoot growth was associated with a decrease of shoot elongation, emergence, and high shoot mortality. Water scarcity affected tree C assimilation due to two interacting factors: (i) reduction in leaf photosynthesis (-23% and -50% under moderate (MS) and severe (SS) water stress compared to low (LS) stress during growth season) and (ii) reduction in total leaf area (-57% and -79% under MS and SS compared to LS at harvest). Our field data analysis suggested a Ψstem threshold of -1.5 MPa below which daily net C gain became negative, i.e. C assimilation became lower than C needed for respiration and growth. Negative C balance under MS and SS associated with decline of trunk carbohydrate reserves – may have led to drought-induced vegetative mortality. PMID:25830350

  14. Constraints on physiological function associated with branch architecture and wood density in tropical forest trees.

    PubMed

    Meinzer, Frederick C; Campanello, Paula I; Domec, Jean-Christophe; Genoveva Gatti, M; Goldstein, Guillermo; Villalobos-Vega, Randol; Woodruff, David R

    2008-11-01

    This study examined how leaf and stem functional traits related to gas exchange and water balance scale with two potential proxies for tree hydraulic architecture: the leaf area:sapwood area ratio (A(L):A(S)) and wood density (rho(w)). We studied the upper crowns of individuals of 15 tropical forest tree species at two sites in Panama with contrasting moisture regimes and forest types. Transpiration and maximum photosynthetic electron transport rate (ETR(max)) per unit leaf area declined sharply with increasing A(L):A(S), as did the ratio of ETR(max) to leaf N content, an index of photosynthetic nitrogen-use efficiency. Midday leaf water potential, bulk leaf osmotic potential at zero turgor, branch xylem specific conductivity, leaf-specific conductivity and stem and leaf capacitance all declined with increasing rho(w). At the branch scale, A(L):A(S) and total leaf N content per unit sapwood area increased with rho(w), resulting in a 30% increase in ETR(max) per unit sapwood area with a doubling of rho(w). These compensatory adjustments in A(L):A(S), N allocation and potential photosynthetic capacity at the branch level were insufficient to completely offset the increased carbon costs of producing denser wood, and exacerbated the negative impact of increasing rho(w) on branch hydraulics and leaf water status. The suite of tree functional and architectural traits studied appeared to be constrained by the hydraulic and mechanical consequences of variation in rho(w).

  15. Incorporating dynamic root growth enhances the performance of Noah-MP at two contrasting winter wheat field sites

    NASA Astrophysics Data System (ADS)

    Gayler, Sebastian; Wöhling, Thomas; Ingwersen, Joachim; Wizemann, Hans-Dieter; Warrach-Sagi, Kirsten; Attinger, Sabine; Streck, Thilo; Wulmeyer, Volker

    2014-05-01

    Interactions between the soil, the vegetation, and the atmospheric boundary layer require close attention when predicting water fluxes in the hydrogeosystem, agricultural systems, weather and climate. However, land-surface schemes used in large scale models continue to show deficits in consistently simulating fluxes of water and energy from the subsurface through vegetation layers to the atmosphere. In this study, the multi-physics version of the Noah land-surface model (Noah-MP) was used to identify the processes, which are most crucial for a simultaneous simulation of water and heat fluxes between land-surface and the lower atmosphere. Comprehensive field data sets of latent and sensible heat fluxes, ground heat flux, soil moisture, and leaf area index from two contrasting field sites in South-West Germany are used to assess the accuracy of simulations. It is shown that an adequate representation of vegetation-related processes is the most important control for a consistent simulation of energy and water fluxes in the soil-plant-atmosphere system. In particular, using a newly implemented sub-module to simulate root growth dynamics has enhanced the performance of Noah-MP at both field sites. We conclude that further advances in the representation of leaf area dynamics and root/soil moisture interactions are the most promising starting points for improving the simulation of feedbacks between the sub-soil, land-surface and atmosphere in fully-coupled hydrological and atmospheric models.

  16. Structural adjustments in resprouting trees drive differences in post-fire transpiration.

    PubMed

    Nolan, Rachael H; Mitchell, Patrick J; Bradstock, Ross A; Lane, Patrick N J

    2014-02-01

    Following disturbance many woody species are capable of resprouting new foliage, resulting in a reduced leaf-to-sapwood area ratio and altered canopy structure. We hypothesized that such changes would promote adjustments in leaf physiology, resulting in higher rates of transpiration per unit leaf area, consistent with the mechanistic framework proposed by Whitehead et al. (Whitehead D, Jarvis PG, Waring RH (1984) Stomatal conductance, transpiration and resistance to water uptake in a Pinus sylvestris spacing experiment. Can J For Res 14:692-700). We tested this in Eucalyptus obliqua L'Hér following a wildfire by comparing trees with unburnt canopies with trees that had been subject to 100% canopy scorch and were recovering their leaf area via resprouting. In resprouting trees, foliage was distributed along the trunk and on lateral branches, resulting in shorter hydraulic path lengths. We evaluated measurements of whole-tree transpiration and structural and physiological traits expected to drive any changes in transpiration. We used these structural and physiological measurements to parameterize the Whitehead et al. equation, and found that the expected ratio of transpiration per unit leaf area between resprouting and unburnt trees was 3.41. This is similar to the observed ratio of transpiration per unit leaf area, measured from sapflow observations, which was 2.89 (i.e., resprouting trees had 188% higher transpiration per unit leaf area). Foliage at low heights (<2 m) was found to be significantly different to foliage in the tree crown (14-18 m) in a number of traits, including higher specific leaf area, midday leaf water potential and higher rates of stomatal conductance and photosynthesis. We conclude that these post-fire adjustments in resprouting trees help to drive increased stomatal conductance and hydraulic efficiency, promoting the rapid return of tree-scale transpiration towards pre-disturbance levels. These transient patterns in canopy transpiration have important implications for modelling stand-level water fluxes in forests capable of resprouting, which is frequently done on the basis of the leaf area index.

  17. Importance of Fluctuations in Light on Plant Photosynthetic Acclimation1[CC-BY

    PubMed Central

    2017-01-01

    The acclimation of plants to light has been studied extensively, yet little is known about the effect of dynamic fluctuations in light on plant phenotype and acclimatory responses. We mimicked natural fluctuations in light over a diurnal period to examine the effect on the photosynthetic processes and growth of Arabidopsis (Arabidopsis thaliana). High and low light intensities, delivered via a realistic dynamic fluctuating or square wave pattern, were used to grow and assess plants. Plants subjected to square wave light had thicker leaves and greater photosynthetic capacity compared with fluctuating light-grown plants. This, together with elevated levels of proteins associated with electron transport, indicates greater investment in leaf structural components and photosynthetic processes. In contrast, plants grown under fluctuating light had thinner leaves, lower leaf light absorption, but maintained similar photosynthetic rates per unit leaf area to square wave-grown plants. Despite high light use efficiency, plants grown under fluctuating light had a slow growth rate early in development, likely due to the fact that plants grown under fluctuating conditions were not able to fully utilize the light energy absorbed for carbon fixation. Diurnal leaf-level measurements revealed a negative feedback control of photosynthesis, resulting in a decrease in total diurnal carbon assimilated of at least 20%. These findings highlight that growing plants under square wave growth conditions ultimately fails to predict plant performance under realistic light regimes and stress the importance of considering fluctuations in incident light in future experiments that aim to infer plant productivity under natural conditions in the field. PMID:28184008

  18. Dynamics of leaf litter humidity, depth and quantity: two restoration strategies failed to mimic ground microhabitat conditions of a low montane and premontane forest in Costa Rica.

    PubMed

    Barrientos, Zaidett

    2012-09-01

    Little is known about how restoration strategies affect aspects like leaf litter's quantity, depth and humidity. I analyzed leaf litter's quantity, depth and humidity yearly patterns in a primary tropical lower montane wet forest and two restored areas: a 15 year old secondary forest (unassisted restoration) and a 40 year old Cupressus lusitanica plantation (natural understory). The three habitats are located in the Rio Macho Forest Reserve, Costa Rica. Twenty litter samples were taken every three months (April 2009-April 2010) in each habitat; humidity was measured in 439g samples (average), depth and quantity were measured in five points inside 50x50cm plots. None of the restoration strategies reproduced the primary forest leaf litter humidity, depth and quantity yearly patterns. Primary forest leaf litter humidity was higher and more stable (mean=73.2), followed by secondary forest (mean=63.3) and cypress plantation (mean=52.9) (Kruskall-Wallis=77.93, n=232, p=0.00). In the primary (Kruskal-Wallis=31.63, n=78, p<0.001) and secondary (Kruskal-Wallis=11.79, n=75, p=0.008) forest litter accumulation was higher during April due to strong winds. In the primary forest (Kruskal-wallis=21.83, n=78, p<0.001) and the cypress plantation (Kruskal-wallis=39.99, n=80, p<0.001) leaf litter depth was shallow in October because heavy rains compacted it. Depth patterns were different from quantity patterns and described the leaf litter's structure in different ecosystems though the year. September 01.

  19. Seasonal carbohydrate dynamics and growth in Douglas-fir trees experiencing chronic, fungal-mediated reduction in functional leaf area

    Treesearch

    B. J. Saffell; F. C. Meinzer; D. R. Woodruff; D. C. Shaw; S. L. Voelker; B. Lachenbruch; K. Falk

    2014-01-01

    Stored non-structural carbohydrates (NSCs) could play an important role in tree survival in the face of a changing climate and associated stress-related mortality. We explored the effects of the stomata-blocking and defoliating fungal disease called Swiss needle cast on Douglas-fir carbohydrate reserves and growth to evaluate the extent to which NSCs can be mobilized...

  20. Costs of measuring leaf area index of corn

    NASA Technical Reports Server (NTRS)

    Daughtry, C. S. T.; Hollinger, S. E.

    1984-01-01

    The magnitude of plant-to-plant variability of leaf area of corn plants selected from uniform plots was examined and four representative methods for measuring leaf area index (LAI) were evaluated. The number of plants required and the relative costs for each sampling method were calculated to detect 10, 20, and 50% differences in LAI using 0.05 and 0.01 tests of significance and a 90% probability of success (beta = 0.1). The natural variability of leaf area per corn plant was nearly 10%. Additional variability or experimental error may be introduced by the measurement technique employed and by nonuniformity within the plot. Direct measurement of leaf area with an electronic area meter had the lowest CV, required that the fewest plants be sampled, but required approximately the same amount of time as the leaf area/weight ratio method to detect comparable differences. Indirect methods based on measurements of length and width of leaves required more plants but less total time than the direct method. Unless the coefficients for converting length and width to area are verified frequently, the indirect methods may be biased. When true differences in LAI among treatments exceed 50% of mean, all four methods are equal. The method of choice depends on the resources available, the differences to be detected, and what additional information, such as leaf weight or stalk weight, is also desired.

  1. Metal release from contaminated leaf litter and leachate toxicity for the freshwater crustacean Gammarus fossarum.

    PubMed

    Maunoury-Danger, Florence; Felten, Vincent; Bojic, Clément; Fraysse, Fabrice; Cosin Ponce, Mar; Dedourge-Geffard, Odile; Geffard, Alain; Guérold, François; Danger, Michael

    2018-04-01

    Industrialization has left large surfaces of contaminated soils, which may act as a source of pollution for contiguous ecosystems, either terrestrial or aquatic. When polluted sites are recolonized by plants, dispersion of leaf litter might represent a non-negligible source of contaminants, especially metals. To evaluate the risks associated to contaminated leaf litter dispersion in aquatic ecosystems, we first measured the dynamics of metal loss from leaf litter during a 48-h experimental leaching. We used aspen (Populus tremula L.), a common tree species on these polluted sites, and collected leaf litter on three polluted sites (settling pond of a former steel mill) and three control sites situated in the same geographic area. Then, toxicity tests were carried out on individuals of a key detritivore species widely used in ecotoxicology tests, Gammarus fossarum (Crustacea, Amphipoda), with uncontaminated and contaminated leaf litter leachates, using a battery of biomarkers selected for their sensitivity to metallic stress. Leaf litters collected on polluted sites exhibited not only significantly higher cadmium and zinc concentrations but also lower lignin contents. All leaf litters released high amounts of chemical elements during the leaching process, especially potassium and magnesium, and, in a lesser extent, phosphorus, calcium, and trace metals (copper, cadmium, and zinc but not lead). Toxicity tests revealed that the most important toxic effects measured on G. fossarum were due to leaf litter leachates by themselves, whatever the origin of litter (from polluted or control sites), confirming the toxicity of such substances, probably due to their high content in phenolic compounds. Small additional toxic effects of leachates from contaminated leaf litters were only evidenced on gammarid lipid peroxidation, indicating that contaminated leaf litter leachates might be slightly more toxic than uncontaminated ones, but in a very reduced manner. Further studies will be required to verify if these patterns are generalizable to other species and to investigate the effects of contaminated leaf litter ingestion by consumers on aquatic food webs. Nevertheless, our results do not permit to exclude potential chronic effects of an exposure to contaminated leaf litter leachates in aquatic ecosystems.

  2. Spring leaf flush in aspen (Populus tremuloides) clones is altered by long-term growth at elevated carbon dioxide and elevated ozone concentration.

    PubMed

    McGrath, Justin M; Karnosky, David F; Ainsworth, Elizabeth A

    2010-04-01

    Early spring leaf out is important to the success of deciduous trees competing for light and space in dense forest plantation canopies. In this study, we investigated spring leaf flush and how long-term growth at elevated carbon dioxide concentration ([CO(2)]) and elevated ozone concentration ([O(3)]) altered leaf area index development in a closed Populus tremuloides (aspen) canopy. This work was done at the Aspen FACE experiment where aspen clones have been grown since 1997 in conditions simulating the [CO(2)] and [O(3)] predicted for approximately 2050. The responses of two clones were compared during the first month of spring leaf out when CO(2) fumigation had begun, but O(3) fumigation had not. Trees in elevated [CO(2)] plots showed a stimulation of leaf area index (36%), while trees in elevated [O(3)] plots had lower leaf area index (-20%). While individual leaf area was not significantly affected by elevated [CO(2)], the photosynthetic operating efficiency of aspen leaves was significantly improved (51%). There were no significant differences in the way that the two aspen clones responded to elevated [CO(2)]; however, the two clones responded differently to long-term growth at elevated [O(3)]. The O(3)-sensitive clone, 42E, had reduced individual leaf area when grown at elevated [O(3)] (-32%), while the tolerant clone, 216, had larger mature leaf area at elevated [O(3)] (46%). These results indicate a clear difference between the two clones in their long-term response to elevated [O(3)], which could affect competition between the clones, and result in altered genotypic composition in future atmospheric conditions. Published by Elsevier Ltd.

  3. Does initial spacing influence crown and hydraulic architecture of Eucalyptus marginata?

    PubMed

    Grigg, A H; Macfarlane, C; Evangelista, C; Eamus, D; Adams, M A

    2008-05-01

    Long-term declines in rainfall in south-western Australia have resulted in increased interest in the hydraulic characteristics of jarrah (Eucalyptus marginata Donn ex Smith) forest established in the region's drinking water catchments on rehabilitated bauxite mining sites. We hypothesized that in jarrah forest established on rehabilitated mine sites: (1) leaf area index (L) is independent of initial tree spacing; and (2) more densely planted trees have less leaf area for the same leaf mass, or the same sapwood area, and have denser sapwood. Initial stand densities ranged from about 600 to 9000 stems ha(-1), and trees were 18 years old at the time of sampling. Leaf area index was unaffected by initial stand density, except in the most sparsely stocked stands where L was 1.2 compared with 2.0-2.5 in stands at other spacings. The ratio of leaf area to sapwood area (A(l):A(s)) was unaffected by tree spacing or tree size and was 0.2 at 1.3 m height and 0.25 at the crown base. There were small increases in sapwood density and decreases in leaf specific area with increased spacing. Tree diameter or basal area was a better predictor of leaf area than sapwood area. At the stand scale, basal area was a good predictor of L (r(2) = 0.98, n = 15) except in the densest stands. We conclude that the hydraulic attributes of this forest type are largely independent of initial tree spacing, thus simplifying parameterization of stand and catchment water balance models.

  4. Penetration of sunlight into a canopy - Explicit models based on vertical and horizontal leaf projections

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Brakke, T.

    1986-01-01

    The projections of leaf areas onto a horizontal plane and onto a vertical plane are examined for their utility in characterizing canopies for sunlight penetration (direct beam only) models. These projections exactly specify the penetration if the projections on the principal plane of the normals to the top surfaces of the leaves are in the same quadrant as the sun. Inferring the total leaf area from these projections (and therefore the penetration as a function of the total leaf area) is possible only with a large uncertainty (up to + or - 32 percent) because the projections are a specific measure of the total leaf area only if the leaf angle distribution is known. It is expected that this uncertainty could be reduced to more acceptable levels by making an approximate assessment of whether the zenith angle distribution is that of an extremophile canopy.

  5. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups.

    PubMed

    Reich, Peter B; Walters, Michael B; Ellsworth, David S; Vose, James M; Volin, John C; Gresham, Charles; Bowman, William D

    1998-05-01

    Based on prior evidence of coordinated multiple leaf trait scaling, we hypothesized that variation among species in leaf dark respiration rate (R d ) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (A max ). However, it is not known whether such scaling, if it exists, is similar among disparate biomes and plant functional types. We tested this idea by examining the interspecific relationships between R d measured at a standard temperature and leaf life-span, N, SLA and A max for 69 species from four functional groups (forbs, broad-leafed trees and shrubs, and needle-leafed conifers) in six biomes traversing the Americas: alpine tundra/subalpine forest, Colorado; cold temperate forest/grassland, Wisconsin; cool temperate forest, North Carolina; desert/shrubland, New Mexico; subtropical forest, South Carolina; and tropical rain forest, Amazonas, Venezuela. Area-based R d was positively related to area-based leaf N within functional groups and for all species pooled, but not when comparing among species within any site. At all sites, mass-based R d (R d-mass ) decreased sharply with increasing leaf life-span and was positively related to SLA and mass-based A max and leaf N (leaf N mass ). These intra-biome relationships were similar in shape and slope among sites, where in each case we compared species belonging to different plant functional groups. Significant R d-mass -N mass relationships were observed in all functional groups (pooled across sites), but the relationships differed, with higher R d at any given leaf N in functional groups (such as forbs) with higher SLA and shorter leaf life-span. Regardless of biome or functional group, R d-mass was well predicted by all combinations of leaf life-span, N mass and/or SLA (r 2 ≥ 0.79, P < 0.0001). At any given SLA, R d-mass rises with increasing N mass and/or decreasing leaf life-span; and at any level of N mass , R d-mass rises with increasing SLA and/or decreasing leaf life-span. The relationships between R d and leaf traits observed in this study support the idea of a global set of predictable interrelationships between key leaf morphological, chemical and metabolic traits.

  6. Leaf density explains variation in leaf mass per area in rice between cultivars and nitrogen treatments.

    PubMed

    Xiong, Dongliang; Wang, Dan; Liu, Xi; Peng, Shaobing; Huang, Jianliang; Li, Yong

    2016-05-01

    Leaf mass per area (LMA) is an important leaf trait; however, correlations between LMA and leaf anatomical features and photosynthesis have not been fully investigated, especially in cereal crops. The objectives of this study were (a) to investigate the correlations between LMA and leaf anatomical traits; and (b) to clarify the response of LMA to nitrogen supply and its effect on photosynthetic nitrogen use efficiency (PNUE). In the present study, 11 rice varieties were pot grown under sufficient nitrogen (SN) conditions, and four selected rice cultivars were grown under low nitrogen (LN) conditions. Leaf anatomical traits, gas exchange and leaf N content were measured. There was large variation in LMA across selected rice varieties. Regression analysis showed that the variation in LMA was more closely related to leaf density (LD) than to leaf thickness (LT). LMA was positively related to the percentage of mesophyll tissue area (%mesophyll), negatively related to the percentage of epidermis tissue area (%epidermis) and unrelated to the percentage of vascular tissue area (%vascular). The response of LMA to N supplementation was dependent on the variety and was also mainly determined by the response of LD to N. Compared with SN, photosynthesis was significantly decreased under LN, while PNUE was increased. The increase in PNUE was more critical in rice cultivars with a higher LMA under SN supply. Leaf density is the major cause of the variation in LMA across rice varieties and N treatments, and an increase in LMA under high N conditions would aggravate the decrease in PNUE. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. A better way of representing stem area index in two-big-leaf models: the application and impact on canopy integration of leaf nitrogen content

    NASA Astrophysics Data System (ADS)

    Chen, M.; Butler, E. E.; Wythers, K. R.; Kattge, J.; Ricciuto, D. M.; Thornton, P. E.; Atkin, O. K.; Flores-Moreno, H.; Reich, P. B.

    2017-12-01

    In order to better estimate the carbon budget of the globe, accurately simulating gross primary productivity (GPP) in earth system models is critical. When upscaling leaf level photosynthesis to the canopy, climate models uses different big-leaf schemes. About half of the state-of-the-art earth system models use a "two-big-leaf" scheme that partitions canopies into direct and diffusively illuminated fractions to reduce high bias of GPP simulated by one-big-leaf models. Some two-big-leaf models, such as ACME (identical in this respect to CLM 4.5) add leaf area index (LAI) and stem area index (SAI) together when calculating canopy radiation transfer. This treatment, however, will result in higher fraction of sunlit leaves. It will also lead to an artificial overestimation of canopy nitrogen content. Here we introduce a new algorithm of simulating SAI in a two-big-leaf model. The new algorithm reduced the sunlit leave fraction of the canopy and conserved the nitrogen content from leaf to canopy level. The lower fraction of sunlit leaves reduced global GPP especially in tropical area. Compared to the default model, for the past 100 years (1909-2009), the averaged global annual GPP is lowered by 4.11 PgC year-1 using this new algorithm.

  8. Strategies of leaf expansion in Ficus carica under semiarid conditions.

    PubMed

    González-Rodríguez, A M; Peters, J

    2010-05-01

    Leaf area expansion, thickness and inclination, gas exchange parameters and relative chlorophyll content were analysed in field-grown fig (Ficus carica L.) leaves over time, from emergence until after full leaf expansion (FLE). Ficus carica leaves showed a subtle change in shape during the early stages of development, and FLE was reached within ca. 30 days after emergence. Changes in leaf thickness and inclination after FLE demonstrated good adaptation to environmental conditions during summer in areas with a Mediterranean climate. Changes in gas exchange parameters and relative chlorophyll content showed that F. carica is a delayed-greening species, reaching maximum values 20 days after FLE. Correlation analysis of datasets collected during leaf expansion, confirmed dependence among structural and functional traits in F. carica. Pn was directly correlated with stomatal conductance (Gs), transpiration (E), leaf area (LA) and relative chlorophyll content up to FLE. The effect of pruning on leaf expansion, a cultural technique commonly applied in this fruit tree, was also evaluated. Although leaf development in pruned branches gave a significantly higher relative leaf area growth rate (RGR(l)) and higher LA than non-pruned branches, no significant differences were found in other morphological and physiological traits, indicating no pruning effect on leaf development. All studied morphological and physiological characteristics indicate that F. carica is well adapted to semiarid conditions. The delayed greening strategy of this species is discussed.

  9. The relationship between leaf rolling and ascorbate-glutathione cycle enzymes in apoplastic and symplastic areas of Ctenanthe setosa subjected to drought stress.

    PubMed

    Saruhan, Neslihan; Terzi, Rabiye; Saglam, Aykut; Kadioglu, Asim

    2009-01-01

    The ascorbate-glutathione (ASC-GSH) cycle has an important role in defensive processes against oxidative damage generated by drought stress. In this study, the changes that take place in apoplastic and symplastic ASC-GSH cycle enzymes of the leaf and petiole were investigated under drought stress causing leaf rolling in Ctenanthe setosa (Rose.) Eichler (Marantaceae). Apoplastic and symplastic extractions of leaf and petiole were performed at different visual leaf rolling scores from 1 to 4 (1 is unrolled, 4 is tightly rolled and the others are intermediate forms). Glutathione reductase (GR), a key enzyme in the GSH regeneration cycle, and ascorbate (ASC) were present in apoplastic spaces of the leaf and petiole, whereas dehydroascorbate reductase (DHAR), which uses glutathione as reductant, monodehydroascorbate reductase (MDHAR), which uses NAD(P)H as reductant, and glutathione were absent. GR, DHAR and MDHAR activities increased in the symplastic and apoplastic areas of the leaf. Apoplastic and symplastic ASC and dehydroascorbate (DHA), the oxidized form of ascorbate, rose at all scores except score 4 of symplastic ASC in the leaf. On the other hand, while reduced glutathione (GSH) content was enhanced, oxidized glutathione (GSSG) content decreased in the leaf during rolling. As for the petiole, GR activity increased in the apoplastic area but decreased in the symplastic area. DHAR and MDHAR activities increased throughout all scores, but decreased to the score 1 level at score 4. The ASC content of the apoplast increased during leaf rolling. Conversely, symplastic ASC content increased at score 2, however decreased at the later scores. While the apoplastic DHA content declined, symplastic DHA rose at score 2, but later was down to the level of score 1. While GSH content enhanced during leaf rolling, GSSG content did not change except at score 2. As well, there were good correlations between leaf rolling and ASC-GSH cycle enzyme activities in the leaf (GR and DHAR) and leaf rolling and GSSG. These results showed that in apoplastic and symplastic areas, ASC-GSH cycle enzymes leading ROS detoxification may have a role in controlling leaf rolling.

  10. Mechanical regulation of plant growth and development

    NASA Technical Reports Server (NTRS)

    Mitchell, C. A.

    1984-01-01

    Soybean and eggplant grown and shaken in a greenhouse exhibited decreased internode length, internode diameter, leaf area, and fresh and dry weight of roots and shoots in much the same way as outdoor-exposed plants. Perhaps more important than decreased dimensions of plant parts resulting from periodic seismic treatment is the inhibition of photosynthetic productivity that accompanies this stress. Soybeam plants briefly shaken or rubbed twice daily experienced a decrease in relative as well as absolute growth rate compared to that of undisturbed controls. Growth dynamics analysis revealed that virtually all of the decline in relative growth rate (RGR) was due to a decline in net assimilation rate (NAR), but not in leaf area ratio (LAR). Lower NAR suggests that the stress-induced decrease in dry weight gain is due to a decline in photosynthetic efficiency. Possible effects on stomatal aperture was investigated by measuring rates of whole plant transpiration as a function of seismo-stress, and a transitory decrease followed by a gradual, partial recovery was detected.

  11. Leaf traits in parental and hybrid species of Sorbus (Rosaceae).

    PubMed

    Durkovic, Jaroslav; Kardosová, Monika; Canová, Ingrid; Lagana, Rastislav; Priwitzer, Tibor; Chorvát, Dusan; Cicák, Alojz; Pichler, Viliam

    2012-09-01

    Knowledge of functional leaf traits can provide important insights into the processes structuring plant communities. In the genus Sorbus, the generation of taxonomic novelty through reticulate evolution that gives rise to new microspecies is believed to be driven primarily by a series of interspecific hybridizations among closely related taxa. We tested hypotheses for dispersion of intermediacy across the leaf traits in Sorbus hybrids and for trait linkages with leaf area and specific leaf area. Here, we measured and compared the whole complex of growth, vascular, and ecophysiological leaf traits among parental (Sorbus aria, Sorbus aucuparia, Sorbus chamaemespilus) and natural hybrid (Sorbus montisalpae, Sorbus zuzanae) species growing under field conditions. A recently developed atomic force microscopy technique, PeakForce quantitative nanomechanical mapping, was used to characterize the topography of cell wall surfaces of tracheary elements and to map the reduced Young's modulus of elasticity. Intermediacy was associated predominantly with leaf growth traits, whereas vascular and ecophysiological traits were mainly parental-like and transgressive phenotypes. Larger-leaf species tended to have lower modulus of elasticity values for midrib tracheary element cell walls. Leaves with a biomass investment related to a higher specific leaf area had a lower density. Leaf area- and length-normalized theoretical hydraulic conductivity was related to leaf thickness. For the whole complex of examined leaf traits, hybrid microspecies were mosaics of parental-like, intermediate, and transgressive phenotypes. The high proportion of transgressive character expressions found in Sorbus hybrids implies that generation of extreme traits through transgressive segregation played a key role in the speciation process.

  12. Effects of incandescent radiation on photosynthesis, growth rate and yield of 'Waldmann's Green' leaf lettuce

    NASA Technical Reports Server (NTRS)

    Knight, S. L.; Mitchell, C. A.

    1989-01-01

    Effects of different ratios incandescent (ln) to fluorescent (Fl) radiation were tested on growth of 'Waldmann's Green' leaf lettuce (Lactuca sativa L.) in a controlled environment. After 4 days of treatment, dry weight, leaf area, relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR) and photosynthetic rate (Pn) were greater for plants grown at 84 rather than 16% of total irradiance (82 W m-2) from ln lamps. Although leaf dry weight and area were 12-17% greater at 84% ln after the first 8 days of treatment, there were no differences in RGR or Pn between treatments during the last 4 days. If 84% ln was compared with 50% ln, all cumulative growth parameters, RGR, NAR and Pn were greater for 84% ln during the first 4 days of treatment. However, during the second 4 days, RGR was greater for the 50% ln treatment, resulting in no net difference in leaf dry weight or area between treatments. Shifting from 84 to 50% ln radiation between the first and second 4 days of treatment increased plant dry weight, leaf area, RGR and NAR relative to those under 84% ln for 8 days continuously.

  13. Explaining biomass growth of tropical canopy trees: the importance of sapwood.

    PubMed

    van der Sande, Masha T; Zuidema, Pieter A; Sterck, Frank

    2015-04-01

    Tropical forests are important in worldwide carbon (C) storage and sequestration. C sequestration of these forests may especially be determined by the growth of canopy trees. However, the factors driving variation in growth among such large individuals remain largely unclear. We evaluate how crown traits [total leaf area, specific leaf area and leaf nitrogen (N) concentration] and stem traits [sapwood area (SA) and sapwood N concentration] measured for individual trees affect absolute biomass growth for 43 tropical canopy trees belonging to four species, in a moist forest in Bolivia. Biomass growth varied strongly among trees, between 17.3 and 367.3 kg year(-1), with an average of 105.4 kg year(-1). We found that variation in biomass growth was chiefly explained by a positive effect of SA, and not by tree size or other traits examined. SA itself was positively associated with sapwood growth, sapwood lifespan and basal area. We speculate that SA positively affects the growth of individual trees mainly by increasing water storage, thus securing water supply to the crown. These positive roles of sapwood on growth apparently offset the increased respiration costs incurred by more sapwood. This is one of the first individual-based studies to show that variation in sapwood traits-and not crown traits-explains variation in growth among tropical canopy trees. Accurate predictions of C dynamics in tropical forests require similar studies on biomass growth of individual trees as well as studies evaluating the dual effect of sapwood (water provision vs. respiratory costs) on tropical tree growth.

  14. Changes in the structure and function of northern Alaskan ecosystems when considering variable leaf-out times across groupings of species in a dynamic vegetation model

    USGS Publications Warehouse

    Euskirchen, E.S.; Carman, T.B.; McGuire, Anthony David

    2013-01-01

    The phenology of arctic ecosystems is driven primarily by abiotic forces, with temperature acting as the main determinant of growing season onset and leaf budburst in the spring. However, while the plant species in arctic ecosystems require differing amounts of accumulated heat for leaf-out, dynamic vegetation models simulated over regional to global scales typically assume some average leaf-out for all of the species within an ecosystem. Here, we make use of air temperature records and observations of spring leaf phenology collected across dominant groupings of species (dwarf birch shrubs, willow shrubs, other deciduous shrubs, grasses, sedges, and forbs) in arctic and boreal ecosystems in Alaska. We then parameterize a dynamic vegetation model based on these data for four types of tundra ecosystems (heath tundra, shrub tundra, wet sedge tundra, and tussock tundra), as well as ecotonal boreal white spruce forest, and perform model simulations for the years 1970 -2100. Over the course of the model simulations, we found changes in ecosystem composition under this new phenology algorithm compared to simulations with the previous phenology algorithm. These changes were the result of the differential timing of leaf-out, as well as the ability for the groupings of species to compete for nitrogen and light availability. Regionally, there were differences in the trends of the carbon pools and fluxes between the new phenology algorithm and the previous phenology algorithm, although these differences depended on the future climate scenario. These findings indicate the importance of leaf phenology data collection by species and across the various ecosystem types within the highly heterogeneous Arctic landscape, and that dynamic vegetation models should consider variation in leaf-out by groupings of species within these ecosystems to make more accurate projections of future plant distributions and carbon cycling in Arctic regions.

  15. Changes in the structure and function of northern Alaskan ecosystems when considering variable leaf-out times across groupings of species in a dynamic vegetation model.

    PubMed

    Euskirchen, Eugénie S; Carman, Tobey B; McGuire, A David

    2014-03-01

    The phenology of arctic ecosystems is driven primarily by abiotic forces, with temperature acting as the main determinant of growing season onset and leaf budburst in the spring. However, while the plant species in arctic ecosystems require differing amounts of accumulated heat for leaf-out, dynamic vegetation models simulated over regional to global scales typically assume some average leaf-out for all of the species within an ecosystem. Here, we make use of air temperature records and observations of spring leaf phenology collected across dominant groupings of species (dwarf birch shrubs, willow shrubs, other deciduous shrubs, grasses, sedges, and forbs) in arctic and boreal ecosystems in Alaska. We then parameterize a dynamic vegetation model based on these data for four types of tundra ecosystems (heath tundra, shrub tundra, wet sedge tundra, and tussock tundra), as well as ecotonal boreal white spruce forest, and perform model simulations for the years 1970-2100. Over the course of the model simulations, we found changes in ecosystem composition under this new phenology algorithm compared with simulations with the previous phenology algorithm. These changes were the result of the differential timing of leaf-out, as well as the ability for the groupings of species to compete for nitrogen and light availability. Regionally, there were differences in the trends of the carbon pools and fluxes between the new phenology algorithm and the previous phenology algorithm, although these differences depended on the future climate scenario. These findings indicate the importance of leaf phenology data collection by species and across the various ecosystem types within the highly heterogeneous Arctic landscape, and that dynamic vegetation models should consider variation in leaf-out by groupings of species within these ecosystems to make more accurate projections of future plant distributions and carbon cycling in Arctic regions. © 2013 John Wiley & Sons Ltd.

  16. Differences in Leaf Flammability, Leaf Traits and Flammability-Trait Relationships between Native and Exotic Plant Species of Dry Sclerophyll Forest

    PubMed Central

    Murray, Brad R.; Hardstaff, Lyndle K.; Phillips, Megan L.

    2013-01-01

    The flammability of plant leaves influences the spread of fire through vegetation. Exotic plants invading native vegetation may increase the spread of bushfires if their leaves are more flammable than native leaves. We compared fresh-leaf and dry-leaf flammability (time to ignition) between 52 native and 27 exotic plant species inhabiting dry sclerophyll forest. We found that mean time to ignition was significantly faster in dry exotic leaves than in dry native leaves. There was no significant native-exotic difference in mean time to ignition for fresh leaves. The significantly higher fresh-leaf water content that was found in exotics, lost in the conversion from a fresh to dry state, suggests that leaf water provides an important buffering effect that leads to equivalent mean time to ignition in fresh exotic and native leaves. Exotic leaves were also significantly wider, longer and broader in area with significantly higher specific leaf area–but not thicker–than native leaves. We examined scaling relationships between leaf flammability and leaf size (leaf width, length, area, specific leaf area and thickness). While exotics occupied the comparatively larger and more flammable end of the leaf size-flammability spectrum in general, leaf flammability was significantly correlated with all measures of leaf size except leaf thickness in both native and exotic species such that larger leaves were faster to ignite. Our findings for increased flammability linked with larger leaf size in exotics demonstrate that exotic plant species have the potential to increase the spread of bushfires in dry sclerophyll forest. PMID:24260169

  17. Evaluation of four methods for estimating leaf area of isolated trees

    Treesearch

    P.J. Peper; E.G. McPherson

    2003-01-01

    The accurate modeling of the physiological and functional processes of urban forests requires information on the leaf area of urban tree species. Several non-destructive, indirect leaf area sampling methods have shown good performance for homogenous canopies. These methods have not been evaluated for use in urban settings where trees are typically isolated and...

  18. ESTIMATION OF LEAF AREA INDEX IN OPEN-CANOPY PONDEROSA PINE FORESTS AT DIFFERENT SUCCESSIONAL STAGES AND MANAGEMENT REGIMES IN OREGON. (R828309)

    EPA Science Inventory

    Abstract

    Leaf area and its spatial distribution are key parameters in describing canopy characteristics. They determine radiation regimes and influence mass and energy exchange with the atmosphere. The evaluation of leaf area in conifer stands is particularly challengi...

  19. A Comparison of Simulated and Field-Derived Leaf Area Index (LAI) and Canopy Height Values from Four Forest Complexes in the Southeastern USA

    EPA Science Inventory

    Vegetative leaf area is a critical input to models that simulate human and ecosystem exposure to atmospheric pollutants. Leaf area index (LAI) can be measured in the field or numerically simulated, but all contain some inherent uncertainty that is passed to the exposure assessmen...

  20. Rapid determination of leaf area and plant height by using light curtain arrays in four species with contrasting shoot architecture.

    PubMed

    Fanourakis, Dimitrios; Briese, Christoph; Max, Johannes Fj; Kleinen, Silke; Putz, Alexander; Fiorani, Fabio; Ulbrich, Andreas; Schurr, Ulrich

    2014-04-11

    Light curtain arrays (LC), a recently introduced phenotyping method, yield a binary data matrix from which a shoot silhouette is reconstructed. We addressed the accuracy and applicability of LC in assessing leaf area and maximum height (base to the highest leaf tip) in a phenotyping platform. LC were integrated to an automated routine for positioning, allowing in situ measurements. Two dicotyledonous (rapeseed, tomato) and two monocotyledonous (maize, barley) species with contrasting shoot architecture were investigated. To evaluate if averaging multiple view angles helps in resolving self-overlaps, we acquired a data set by rotating plants every 10° for 170°. To test how rapid these measurements can be without loss of information, we evaluated nine scanning speeds. Leaf area of overlapping plants was also estimated to assess the possibility to scale this method for plant stands. The relation between measured and calculated maximum height was linear and nearly the same for all species. Linear relations were also found between plant leaf area and calculated pixel area. However, the regression slope was different between monocotyledonous and dicotyledonous species. Increasing the scanning speed stepwise from 0.9 to 23.4 m s-1 did not affect the estimation of maximum height. Instead, the calculated pixel area was inversely proportional to scanning speed. The estimation of plant leaf area by means of calculated pixel area became more accurate by averaging consecutive silhouettes and/or increasing the angle between them. Simulations showed that decreasing plant distance gradually from 20 to 0 cm, led to underestimation of plant leaf area owing to overlaps. This underestimation was more important for large plants of dicotyledonous species and for small plants of monocotyledonous ones. LC offer an accurate estimation of plant leaf area and maximum height, while the number of consecutive silhouettes that needs to be averaged is species-dependent. A constant scanning speed is important for leaf area estimations by using LC. Simulations of the effect of varying plant spacing gave promising results for method application in sets of partly overlapping plants, which applies also to field conditions during and after canopy closure for crops sown in rows.

  1. A Model-Data Intercomparison of Carbon Fluxes, Pools, and LAI in the Community Land Model (CLM) and Alternative Carbon Allocation Schemes

    NASA Astrophysics Data System (ADS)

    Montane, F.; Fox, A. M.; Arellano, A. F.; Alexander, M. R.; Moore, D. J.

    2016-12-01

    Carbon (C) allocation to different plant tissues (leaves, stem and roots) remains a central challenge for understanding the global C cycle, as it determines C residence time. We used a diverse set of observations (AmeriFlux eddy covariance towers, biomass estimates from tree-ring data, and Leaf Area Index measurements) to compare C fluxes, pools, and Leaf Area Index (LAI) data with the Community Land Model (CLM). We ran CLM for seven temperate forests in North America (including evergreen and deciduous sites) between 1980 and 2013 using different C allocation schemes: i) standard C allocation scheme in CLM, which allocates C to the stem and leaves as a dynamic function of annual net primary productivity (NPP); ii) two fixed C allocation schemes, one representative of evergreen and the other one of deciduous forests, based on Luyssaert et al. 2007; iii) an alternative C allocation scheme, which allocated C to stem and leaves, and to stem and coarse roots, as a dynamic function of annual NPP, based on Litton et al. 2007. At our sites CLM usually overestimated gross primary production and ecosystem respiration, and underestimated net ecosystem exchange. Initial aboveground biomass in 1980 was largely overestimated for deciduous forests, whereas aboveground biomass accumulation between 1980 and 2011 was highly underestimated for both evergreen and deciduous sites due to the lower turnover rate in the sites than the one used in the model. CLM overestimated LAI in both evergreen and deciduous sites because the Leaf C-LAI relationship in the model did not match the observed Leaf C-LAI relationship in our sites. Although the different C allocation schemes gave similar results for aggregated C fluxes, they translated to important differences in long-term aboveground biomass accumulation and aboveground NPP. For deciduous forests, one of the alternative C allocation schemes used (iii) gave more realistic stem C/leaf C ratios, and highly reduced the overestimation of initial aboveground biomass, and accumulated aboveground NPP for deciduous forests by CLM. Our results would suggest using different C allocation schemes for evergreen and deciduous forests. It is crucial to improve CLM in the near future to minimize data-model mismatches, and to address some of the current model structural errors and parameter uncertainties.

  2. Assessing the Effect of Litter Species on the Dynamic of Bacterial and Fungal Communities during Leaf Decomposition in Microcosm by Molecular Techniques

    PubMed Central

    Xu, Wenjing; Shi, Lingling; Chan, Onchim; Li, Jiao; Casper, Peter; Zou, Xiaoming

    2013-01-01

    Although bacteria and fungi are well-known to be decomposers of leaf litter, few studies have examined their compositions and diversities during the decomposition process in tropical stream water. Xishuangbanna is a tropical region preserving one of the highest floristic diversity areas in China. In this study, leaf litter of four dominant plant species in Xishuangbanna was incubated in stream water for 42 days during which samples were taken regularly. Following DNA extraction, PCR-DGGE (denaturing gradient gel electrophoresis) and clone-sequencing analyses were performed using bacterial and fungal specific primers. Leaf species have slightly influences on bacterial community rather than fungal community. The richness and diversity of bacteria was higher than that of fungi, which increased towards the end of the 42-day-incubation. The bacterial community was initially more specific upon the type of leaves and gradually became similar at the later stage of decomposition with alpha-proteobacteria as major component. Sequences affiliated to methanotrophs were obtained that indicates potentially occurrence of methane oxidation and methanogenesis. For the fungal community, sequences affiliated to Aspergillus were predominant at the beginning and then shifted to Pleosporales. Our results suggest that the microorganisms colonizing leaf biofilm in tropical stream water were mostly generalists that could exploit the resources of leaves of various species equally well. PMID:24367682

  3. Development of an Unmanned Aerial Vehicle-Borne Crop-Growth Monitoring System.

    PubMed

    Ni, Jun; Yao, Lili; Zhang, Jingchao; Cao, Weixing; Zhu, Yan; Tai, Xiuxiang

    2017-03-03

    In view of the demand for a low-cost, high-throughput method for the continuous acquisition of crop growth information, this study describes a crop-growth monitoring system which uses an unmanned aerial vehicle (UAV) as an operating platform. The system is capable of real-time online acquisition of various major indexes, e.g., the normalized difference vegetation index (NDVI) of the crop canopy, ratio vegetation index (RVI), leaf nitrogen accumulation (LNA), leaf area index (LAI), and leaf dry weight (LDW). By carrying out three-dimensional numerical simulations based on computational fluid dynamics, spatial distributions were obtained for the UAV down-wash flow fields on the surface of the crop canopy. Based on the flow-field characteristics and geometrical dimensions, a UAV-borne crop-growth sensor was designed. Our field experiments show that the monitoring system has good dynamic stability and measurement accuracy over the range of operating altitudes of the sensor. The linear fitting determination coefficients (R²) for the output RVI value with respect to LNA, LAI, and LDW are 0.63, 0.69, and 0.66, respectively, and the Root-mean-square errors (RMSEs) are 1.42, 1.02 and 3.09, respectively. The equivalent figures for the output NDVI value are 0.60, 0.65, and 0.62 (LNA, LAI, and LDW, respectively) and the RMSEs are 1.44, 1.01 and 3.01, respectively.

  4. Development of an Unmanned Aerial Vehicle-Borne Crop-Growth Monitoring System

    PubMed Central

    Ni, Jun; Yao, Lili; Zhang, Jingchao; Cao, Weixing; Zhu, Yan; Tai, Xiuxiang

    2017-01-01

    In view of the demand for a low-cost, high-throughput method for the continuous acquisition of crop growth information, this study describes a crop-growth monitoring system which uses an unmanned aerial vehicle (UAV) as an operating platform. The system is capable of real-time online acquisition of various major indexes, e.g., the normalized difference vegetation index (NDVI) of the crop canopy, ratio vegetation index (RVI), leaf nitrogen accumulation (LNA), leaf area index (LAI), and leaf dry weight (LDW). By carrying out three-dimensional numerical simulations based on computational fluid dynamics, spatial distributions were obtained for the UAV down-wash flow fields on the surface of the crop canopy. Based on the flow-field characteristics and geometrical dimensions, a UAV-borne crop-growth sensor was designed. Our field experiments show that the monitoring system has good dynamic stability and measurement accuracy over the range of operating altitudes of the sensor. The linear fitting determination coefficients (R2) for the output RVI value with respect to LNA, LAI, and LDW are 0.63, 0.69, and 0.66, respectively, and the Root-mean-square errors (RMSEs) are 1.42, 1.02 and 3.09, respectively. The equivalent figures for the output NDVI value are 0.60, 0.65, and 0.62 (LNA, LAI, and LDW, respectively) and the RMSEs are 1.44, 1.01 and 3.01, respectively. PMID:28273815

  5. Role of soil-to-leaf tritium transfer in controlling leaf tritium dynamics: Comparison of experimental garden and tritium-transfer model results.

    PubMed

    Ota, Masakazu; Kwamena, Nana-Owusua A; Mihok, Steve; Korolevych, Volodymyr

    2017-11-01

    Environmental transfer models assume that organically-bound tritium (OBT) is formed directly from tissue-free water tritium (TFWT) in environmental compartments. Nevertheless, studies in the literature have shown that measured OBT/HTO ratios in environmental samples are variable and generally higher than expected. The importance of soil-to-leaf HTO transfer pathway in controlling the leaf tritium dynamics is not well understood. A model inter-comparison of two tritium transfer models (CTEM-CLASS-TT and SOLVEG-II) was carried out with measured environmental samples from an experimental garden plot set up next to a tritium-processing facility. The garden plot received one of three different irrigation treatments - no external irrigation, irrigation with low tritium water and irrigation with high tritium water. The contrast between the results obtained with the different irrigation treatments provided insights into the impact of soil-to-leaf HTO transfer on the leaf tritium dynamics. Concentrations of TFWT and OBT in the garden plots that were not irrigated or irrigated with low tritium water were variable, responding to the arrival of the HTO-plume from the tritium-processing facility. In contrast, for the plants irrigated with high tritium water, the TFWT concentration remained elevated during the entire experimental period due to a continuous source of high HTO in the soil. Calculated concentrations of OBT in the leaves showed an initial increase followed by quasi-equilibration with the TFWT concentration. In this quasi-equilibrium state, concentrations of OBT remained elevated and unchanged despite the arrivals of the plume. These results from the model inter-comparison demonstrate that soil-to-leaf HTO transfer significantly affects tritium dynamics in leaves and thereby OBT/HTO ratio in the leaf regardless of the atmospheric HTO concentration, only if there is elevated HTO concentrations in the soil. The results of this work indicate that assessment models should be refined to consider the importance of soil-to-leaf HTO transfer to ensure that dose estimates are accurate and conservative. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effect of weed control treatments on total leaf area of plantation black walnut (Juglans nigra)

    Treesearch

    Jason Cook; Michael R. Saunders

    2013-01-01

    Determining total tree leaf area is necessary for describing tree carbon balance, growth efficiency, and other measures used in tree-level and stand-level physiological growth models. We examined the effects of vegetation control methods on the total leaf area of sapling-size plantation black walnut trees using allometric approaches. We found significant differences in...

  7. The bias of a 2D view: Comparing 2D and 3D mesophyll surface area estimates using non-invasive imaging

    USDA-ARS?s Scientific Manuscript database

    The surface area of the leaf mesophyll exposed to intercellular airspace per leaf area (Sm) is closely associated with CO2 diffusion and photosynthetic rates. Sm is typically estimated from two-dimensional (2D) leaf sections and corrected for the three-dimensional (3D) geometry of mesophyll cells, l...

  8. Effects of grazing on leaf traits and ecosystem functioning in Inner Mongolia grasslands: scaling from species to community

    NASA Astrophysics Data System (ADS)

    Zheng, S. X.; Ren, H. Y.; Lan, Z. C.; Li, W. H.; Wang, K. B.; Bai, Y. F.

    2010-03-01

    Understanding the mechanistic links between environmental drivers, human disturbance, plant functional traits, and ecosystem properties is a fundamental aspect of biodiversity-ecosystem functioning research. Recent studies have focused mostly on leaf-level traits or community-level weighted traits to predict species responses to grazing and the consequent change in ecosystem functioning. However, studies of leaf-level traits or community-level weighted traits seldom identify the mechanisms linking grazing impact on leaf traits to ecosystem functioning. Here, using a multi-organization-level approach, we examined the effects of grazing on leaf traits (i.e., leaf area, leaf dry mass and specific leaf area) and ecosystem functioning across six communities of three vegetation types along a soil moisture gradient in the Xilin River Basin of Inner Mongolia grassland, China. Our results showed that the effects of grazing on leaf traits differed substantially when scaling up from leaf-level to species, functional group (i.e., life forms and water ecotype types), and community levels; and they also varied with vegetation type or site conditions. The effects of grazing on leaf traits diminished progressively along the hierarchy of organizational levels in the meadow, whereas the impacts were predominantly negative and the magnitude of the effects increased considerably at higher organizational levels in the typical steppe. Soil water and nutrient availability, functional trade-offs between leaf size and number of leaves per individual, and differentiation in avoidance and tolerance strategies among coexisting species are likely to be responsible for the observed responses of leaf traits to grazing at different levels of organization and among vegetation types. Our findings also demonstrate that, at both the functional group and community levels, standing aboveground biomass increased with leaf area and specific leaf area. Compared with the large changes in leaf traits and standing aboveground biomass, the soil properties were relatively unaffected by grazing. Our study indicates that a multi-organization-level approach provides more robust and comprehensive predictions of the effects of grazing on leaf traits and ecosystem functioning.

  9. Leaf Area Influence on Surface Layer in a Deciduous Forest. Part 2; Detecting Leaf Area and Surface Resistance During Transition Seasons

    NASA Technical Reports Server (NTRS)

    Sakai, Ricardo K.; Fitzjarrald, David R.; Moore, Kathleen E.; Sicker, John W.; Munger, Willian J.; Goulden, Michael L.; Wofsy, Steven C.

    1996-01-01

    Temperate deciduous forest exhibit dramatic seasonal changes in surface exchange properties following on the seasonal changes in leaf area index. The canopy resistance to water vapor transport r(sub c) decreased abruptly at leaf emergence in each year but then also continued to decrease slowly during the remaining growing season due to slowly increasing LAI. Canopy resistance and PAR-albedo (albedo from photosynthetically active radiation) began to increase about one month before leaf fall with the diminishment of CO2 gradient above the canopy as well. At this time evaporation begun to be controlled as if the canopy were leafless.

  10. Leaf-litter inputs from an invasive nitrogen-fixing tree influence organic-matter dynamics and nitrogen inputs in a Hawaiian river

    Treesearch

    Richard A. MacKenzie; Tracy N. Wiegner; Frances Kinslow; Nicole Cormier; Ayron M. Strauch

    2013-01-01

    Abstract. We examined how invasion of tropical riparian forests by an exotic N-fixing tree (Falcataria moluccana) affects organic-matter dynamics in a Hawaiian river by comparing early stages of leaf-litter breakdown between the exotic F. moluccana and native Metrosideros polymorpha trees. We examined early...

  11. Chemical and mechanical changes during leaf expansion of four woody species of dry Restinga woodland.

    PubMed

    Schlindwein, C C D; Fett-Neto, A G; Dillenburg, L R

    2006-07-01

    Young leaves are preferential targets for herbivores, and plants have developed different strategies to protect them. This study aimed to evaluate different leaf attributes of presumed relevance in protection against herbivory in four woody species (Erythroxylum argentinum, Lithrea brasiliensis, Myrciaria cuspidata, and Myrsine umbellata), growing in a dry restinga woodland in southern Brazil. Evaluation of leaf parameters was made through single-point sampling of leaves (leaf mass per area and leaf contents of nitrogen, carbon, and pigments) at three developmental stages and through time-course sampling of expanding leaves (area and strength). Leaves of M. umbellata showed the highest leaf mass per area (LMA), the largest area, and the longest expansion period. On the other extreme, Myrc. cuspidata had the smallest LMA and leaf size, and the shortest expansion period. Similarly to L. brasiliensis, it displayed red young leaves. None of the species showed delayed-greening, which might be related to the high-irradiance growth conditions. Nitrogen contents reduced with leaf maturity and reached the highest values in the young leaves of E. argentinum and Myrc. cuspidata and the lowest in M. umbellata. Each species seems to present a different set of protective attributes during leaf expansion. Myrciaria cuspidata appears to rely mostly on chemical defences to protect its soft leaves, and anthocyanins might play this role at leaf youth, while M. umbellata seems to invest more on mechanical defences, even at early stages of leaf growth, as well as on a low allocation of nitrogen to the leaves. The other species display intermediate characteristics.

  12. Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees.

    PubMed

    Kenzo, Tanaka; Inoue, Yuta; Yoshimura, Mitsunori; Yamashita, Megumi; Tanaka-Oda, Ayumi; Ichie, Tomoaki

    2015-01-01

    Knowledge of variations in morphophysiological leaf traits with forest height is essential for quantifying carbon and water fluxes from forest ecosystems. Here, we examined changes in leaf traits with forest height in diverse tree species and their role in environmental acclimation in a tropical rain forest in Borneo that does not experience dry spells. Height-related changes in leaf physiological and morphological traits [e.g., maximum photosynthetic rate (Amax), stomatal conductance (gs), dark respiration rate (Rd), carbon isotope ratio (δ(13)C), nitrogen (N) content, and leaf mass per area (LMA)] from understory to emergent trees were investigated in 104 species in 29 families. We found that many leaf area-based physiological traits (e.g., A(max-area), Rd, gs), N, δ(13)C, and LMA increased linearly with tree height, while leaf mass-based physiological traits (e.g., A(max-mass)) only increased slightly. These patterns differed from other biomes such as temperate and tropical dry forests, where trees usually show decreased photosynthetic capacity (e.g., A(max-area), A(max-mass)) with height. Increases in photosynthetic capacity, LMA, and δ(13)C are favored under bright and dry upper canopy conditions with higher photosynthetic productivity and drought tolerance, whereas lower R d and LMA may improve shade tolerance in lower canopy trees. Rapid recovery of leaf midday water potential to theoretical gravity potential during the night supports the idea that the majority of trees do not suffer from strong drought stress. Overall, leaf area-based photosynthetic traits were associated with tree height and the degree of leaf drought stress, even in diverse tropical rain forest trees.

  13. Large seasonal swings in leaf area of Amazon rainforests

    PubMed Central

    Myneni, Ranga B.; Yang, Wenze; Nemani, Ramakrishna R.; Huete, Alfredo R.; Dickinson, Robert E.; Knyazikhin, Yuri; Didan, Kamel; Fu, Rong; Negrón Juárez, Robinson I.; Saatchi, Sasan S.; Hashimoto, Hirofumi; Ichii, Kazuhito; Shabanov, Nikolay V.; Tan, Bin; Ratana, Piyachat; Privette, Jeffrey L.; Morisette, Jeffrey T.; Vermote, Eric F.; Roy, David P.; Wolfe, Robert E.; Friedl, Mark A.; Running, Steven W.; Votava, Petr; El-Saleous, Nazmi; Devadiga, Sadashiva; Su, Yin; Salomonson, Vincent V.

    2007-01-01

    Despite early speculation to the contrary, all tropical forests studied to date display seasonal variations in the presence of new leaves, flowers, and fruits. Past studies were focused on the timing of phenological events and their cues but not on the accompanying changes in leaf area that regulate vegetation–atmosphere exchanges of energy, momentum, and mass. Here we report, from analysis of 5 years of recent satellite data, seasonal swings in green leaf area of ≈25% in a majority of the Amazon rainforests. This seasonal cycle is timed to the seasonality of solar radiation in a manner that is suggestive of anticipatory and opportunistic patterns of net leaf flushing during the early to mid part of the light-rich dry season and net leaf abscission during the cloudy wet season. These seasonal swings in leaf area may be critical to initiation of the transition from dry to wet season, seasonal carbon balance between photosynthetic gains and respiratory losses, and litterfall nutrient cycling in moist tropical forests. PMID:17360360

  14. Algorithm for retrieving vegetative canopy and leaf parameters from multi- and hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Borel, Christoph

    2009-05-01

    In recent years hyper-spectral data has been used to retrieve information about vegetative canopies such as leaf area index and canopy water content. For the environmental scientist these two parameters are valuable, but there is potentially more information to be gained as high spatial resolution data becomes available. We developed an Amoeba (Nelder-Mead or Simplex) based program to invert a vegetative canopy radiosity model coupled with a leaf (PROSPECT5) reflectance model and modeled for the background reflectance (e.g. soil, water, leaf litter) to a measured reflectance spectrum. The PROSPECT5 leaf model has five parameters: leaf structure parameter Nstru, chlorophyll a+b concentration Cab, carotenoids content Car, equivalent water thickness Cw and dry matter content Cm. The canopy model has two parameters: total leaf area index (LAI) and number of layers. The background reflectance model is either a single reflectance spectrum from a spectral library() derived from a bare area pixel on an image or a linear mixture of soil spectra. We summarize the radiosity model of a layered canopy and give references to the leaf/needle models. The method is then tested on simulated and measured data. We investigate the uniqueness, limitations and accuracy of the retrieved parameters on canopy parameters (low, medium and high leaf area index) spectral resolution (32 to 211 band hyperspectral), sensor noise and initial conditions.

  15. SU-E-T-01: 2-D Characterization of DLG Among All MLC Leaf Pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumaraswamy, L; Xu, Z; Podgorsak, M

    Purpose: The aim of this study is to evaluate the variation of dosimetric leaf-gap (DLG) along the travel path of each MLC leaf pair. This study evaluates whether the spatial variations in DLG could cause dose differences between TPS-calculated and measured dose. Methods: The 6MV DLG values were measured for all leaf pairs in the direction of leaf motion using a 2-D diode array and 0.6cc ion chamber. These measurements were performed on two Varian Linacs, employing the Millennium 120-leaf MLC and a 2-D-DLG variation map was created via in-house software. Several test plans were created with sweeping MLC fieldsmore » using constant gaps from 2mm to 10mm and corrected for 2-D variation utilizing in-house software. Measurements were performed utilizing the MapCHECK at 5.0cm depth for plans with and without the 2-D DLG correction and compared to the TPS calculated dose via gamma analysis (3%/3mm). Results: The measured DLGs for the middle 40 MLC leaf pairs (0.5cm width) were very similar along the central superior-inferior axis, with maximum variation of 0.2mm. The outer 20 MLC leaf pairs (1.0cm width) have DLG values from 0.32mm (mean) to 0.65mm (maximum) lower than the central leaf-pair, depending on off-axis distance. Gamma pass rates for the 2mm, 4mm, and 6mm sweep plans increased by 23.2%, 28.7%, and 26.0% respectively using the 2-D-DLG correction. The most improved dose points occur in areas modulated by the 1.0cm leaf-pairs. The gamma pass rate for the 10mm sweep plan increased by only 7.7%, indicating that the 2D variation becomes less significant for dynamic plans with larger MLC gaps. Conclusion: Fluences residing significantly off-axis with narrow sweeping gaps may exhibit significant variations from planned dose due to large differences between the true DLG exhibited by the 1.0cm leaf-pairs versus the constant DLG value utilized by the TPS for dose calculation.« less

  16. Effects of incandescent radiation on photosynthesis, growth rate and yield of 'Waldmann's Green' leaf lettuce

    NASA Technical Reports Server (NTRS)

    Knight, Sharon L.; Mitchell, Cary A.

    1988-01-01

    Effects of different ratios of incandescent (ln) to fluorescent (Fl) radiation were tested on growth of 'Waldmann's Green' leaf lettuce in a controlled environment. After 4 days of treatment, dry weight, leaf area, relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR) and photosynthetic rate (Pn) were greater for plants grown at 84 rather than 16 percent of total irradiance (82 W/sq m) from ln lamps. Although leaf dry weight and area were 12-17 percent greater at 84 percent ln after the first 8 days of treatment, there were no differences in RGR or Pn between treatments during the last 4 days. If 84 percent ln was compared with 50 percent ln, all cumulative growth parameters, RGR, NAR and Pn were greater for 84 percent ln during the first 4 days of treatment. However, during the second 4 days, RGR was greater for the 50 percent ln treatment, resulting in no net difference in leaf dry weight or area between treatments. Shifting from 84 to 50 percent ln radiation between the first and second 4 days of treatment increased plant dry weight, leaf area, RGR and NAR relative to those under 84 percent ln for 8 days continuously.

  17. Photosynthetic leaf area modulates tiller bud outgrowth in sorghum: Bud outgrowth is sensitive to leaf area

    DOE PAGES

    Kebrom, Tesfamichael H.; Mullet, John E.

    2014-12-12

    Shoot branches or tillers develop from axillary buds. The dormancy versus outgrowth fates of buds depends on genetic, environmental and hormonal signals. Defoliation inhibits bud outgrowth indicating the role of leaf-derived metabolic factors such as sucrose in bud outgrowth. In this study, the sensitivity of bud outgrowth to selective defoliation was investigated. At 6 d after planting (6 DAP), the first two leaves of sorghum were fully expanded and the third was partially emerged. Therefore, the leaves were selectively defoliated at 6 DAP and the length of the bud in the first leaf axil was measured at 8 DAP. Budmore » outgrowth was inhibited by defoliation of only 2 cm from the tip of the second leaf blade. The expression of dormancy and sucrose-starvation marker genes was up-regulated and cell cycle and sucrose-inducible genes was down-regulated during the first 24 h postdefoliation of the second leaf.At 48 h, the expression of these genes was similar to controls as the defoliated plant recovers. Our results demonstrate that small changes in photosynthetic leaf area affect the propensity of tiller buds for outgrowth. Therefore, variation in leaf area and photosynthetic activity should be included when integrating sucrose into models of shoot branching.« less

  18. Synchronized moving aperture radiation therapy (SMART): superimposing tumor motion on IMRT MLC leaf sequences under realistic delivery conditions

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Papanikolaou, Nikos; Shi, Chengyu; Jiang, Steve B.

    2009-08-01

    Synchronized moving aperture radiation therapy (SMART) has been proposed to account for tumor motions during radiotherapy in prior work. The basic idea of SMART is to synchronize the moving radiation beam aperture formed by a dynamic multileaf collimator (DMLC) with the tumor motion induced by respiration. In this paper, a two-dimensional (2D) superimposing leaf sequencing method is presented for SMART. A leaf sequence optimization strategy was generated to assure the SMART delivery under realistic delivery conditions. The study of delivery performance using the Varian LINAC and the Millennium DMLC showed that clinical factors such as collimator angle, dose rate, initial phase and machine tolerance affect the delivery accuracy and efficiency. An in-house leaf sequencing software was developed to implement the 2D superimposing leaf sequencing method and optimize the motion-corrected leaf sequence under realistic clinical conditions. The analysis of dynamic log (Dynalog) files showed that optimization of the leaf sequence for various clinical factors can avoid beam hold-offs which break the synchronization of SMART and fail the SMART dose delivery. Through comparison between the simulated delivered fluence map and the planed fluence map, it was shown that the motion-corrected leaf sequence can greatly reduce the dose error.

  19. Synchronized moving aperture radiation therapy (SMART): superimposing tumor motion on IMRT MLC leaf sequences under realistic delivery conditions.

    PubMed

    Xu, Jun; Papanikolaou, Nikos; Shi, Chengyu; Jiang, Steve B

    2009-08-21

    Synchronized moving aperture radiation therapy (SMART) has been proposed to account for tumor motions during radiotherapy in prior work. The basic idea of SMART is to synchronize the moving radiation beam aperture formed by a dynamic multileaf collimator (DMLC) with the tumor motion induced by respiration. In this paper, a two-dimensional (2D) superimposing leaf sequencing method is presented for SMART. A leaf sequence optimization strategy was generated to assure the SMART delivery under realistic delivery conditions. The study of delivery performance using the Varian LINAC and the Millennium DMLC showed that clinical factors such as collimator angle, dose rate, initial phase and machine tolerance affect the delivery accuracy and efficiency. An in-house leaf sequencing software was developed to implement the 2D superimposing leaf sequencing method and optimize the motion-corrected leaf sequence under realistic clinical conditions. The analysis of dynamic log (Dynalog) files showed that optimization of the leaf sequence for various clinical factors can avoid beam hold-offs which break the synchronization of SMART and fail the SMART dose delivery. Through comparison between the simulated delivered fluence map and the planed fluence map, it was shown that the motion-corrected leaf sequence can greatly reduce the dose error.

  20. Seedlings of temperate rainforest conifer and angiosperm trees differ in leaf area display.

    PubMed

    Lusk, Christopher H; Pérez-Millaqueo, Manuel M; Saldaña, Alfredo; Burns, Bruce R; Laughlin, Daniel C; Falster, Daniel S

    2012-07-01

    The contemporary relegation of conifers mainly to cold or infertile sites has been ascribed to low competitive ability, as a result of the hydraulic inefficiency of tracheids and their seedlings' initial dependence on small foliage areas. Here it is hypothesized that, in temperate rainforests, the larger leaves of angiosperms also reduce self-shading and thus enable display of larger effective foliage areas than the numerous small leaves of conifers. This hypothesis was tested using 3-D modelling of plant architecture and structural equation modelling to compare self-shading and light interception potential of seedlings of six conifers and 12 angiosperm trees from temperate rainforests. The ratio of displayed leaf area to plant mass (LAR(d)) was used to indicate plant light interception potential: LAR(d) is the product of specific leaf area, leaf mass fraction, self-shading and leaf angle. Angiosperm seedlings self-shaded less than conifers, mainly because of differences in leaf number (more than leaf size), and on average their LAR(d) was about twice that of conifers. Although specific leaf area was the most pervasive influence on LAR(d), differences in self-shading also significantly influenced LAR(d) of large seedlings. The ability to deploy foliage in relatively few, large leaves is advantageous in minimizing self-shading and enhancing seedling light interception potential per unit of plant biomass. This study adds significantly to evidence that vegetative traits may be at least as important as reproductive innovations in explaining the success of angiosperms in productive environments where vegetation is structured by light competition.

  1. Seedlings of temperate rainforest conifer and angiosperm trees differ in leaf area display

    PubMed Central

    Lusk, Christopher H.; Pérez-Millaqueo, Manuel M.; Saldaña, Alfredo; Burns, Bruce R.; Laughlin, Daniel C.; Falster, Daniel S.

    2012-01-01

    Background and Aims The contemporary relegation of conifers mainly to cold or infertile sites has been ascribed to low competitive ability, as a result of the hydraulic inefficiency of tracheids and their seedlings' initial dependence on small foliage areas. Here it is hypothesized that, in temperate rainforests, the larger leaves of angiosperms also reduce self-shading and thus enable display of larger effective foliage areas than the numerous small leaves of conifers. Methods This hypothesis was tested using 3-D modelling of plant architecture and structural equation modelling to compare self-shading and light interception potential of seedlings of six conifers and 12 angiosperm trees from temperate rainforests. The ratio of displayed leaf area to plant mass (LARd) was used to indicate plant light interception potential: LARd is the product of specific leaf area, leaf mass fraction, self-shading and leaf angle. Results Angiosperm seedlings self-shaded less than conifers, mainly because of differences in leaf number (more than leaf size), and on average their LARd was about twice that of conifers. Although specific leaf area was the most pervasive influence on LARd, differences in self-shading also significantly influenced LARd of large seedlings. Conclusions The ability to deploy foliage in relatively few, large leaves is advantageous in minimizing self-shading and enhancing seedling light interception potential per unit of plant biomass. This study adds significantly to evidence that vegetative traits may be at least as important as reproductive innovations in explaining the success of angiosperms in productive environments where vegetation is structured by light competition. PMID:22585929

  2. First direct landscape-scale measurement of tropical rain forest Leaf Area Index, a key driver of global primary productivity

    Treesearch

    David B. Clark; Paulo C. Olivas; Steven F. Oberbauer; Deborah A. Clark; Michael G. Ryan

    2008-01-01

    Leaf Area Index (leaf area per unit ground area, LAI) is a key driver of forest productivity but has never previously been measured directly at the landscape scale in tropical rain forest (TRF). We used a modular tower and stratified random sampling to harvest all foliage from forest floor to canopy top in 55 vertical transects (4.6 m2) across 500 ha of old growth in...

  3. Effect of litter, leaf cover and cover of basal internodes of the dominant species Molinia caerulea on seedling recruitment and established vegetation

    NASA Astrophysics Data System (ADS)

    Janeček, Štěpán; Lepš, Jan

    2005-09-01

    The effects of litter removal, leaf cover of established plants and cover of basal internodes of a dominant species Molinia caerulea on seedling germination and the dynamics of established plants were studied in a field experiment in an oligotrophic wet meadow. Although the negative influence of litter on total seedling number and seedling species composition was non-significant, litter significantly affected the dynamics of the established vegetation and caused inhibition of total leaf cover development. The effects of total leaf cover of established plants on seedling establishment changed during the vegetation season. Whereas the effect of total leaf cover was positive at the start and in the middle of the vegetation season, at the end the total leaf cover negatively affected seedling establishment. Both total leaf cover and cover of basal internodes affected seedling composition. Effects of these two variables were statistically separable suggesting that they are based on different mechanisms. The response of seedling establishment to these factors was species specific and, consequently, our data support the hypothesis that that biotically generated spatial heterogeneity can promote species co-existence through the differentiation of species regeneration niches.

  4. Differences in photosynthesis and isoprene emission in post oak (Quercus stellata) and sweetgum (Liquidambar styraciflua) trees along an urban-to-rural gradient in Texas

    NASA Astrophysics Data System (ADS)

    Crossett, C.; Lahr, E.; Haas, G.; Schade, G. W.

    2014-12-01

    Many plants produce isoprene, a volatile organic compound that can mitigate damage to photosynthetic systems during short- or long-term increases in leaf temperature. After its production within leaves, isoprene is emitted to the atmosphere and influences regional atmospheric chemistry. Here, we use an urban-to-rural gradient to explore future effects of climate change on tree eco-physiology and feedbacks to atmospheric chemistry. Urban areas mimic many of the conditions expected to occur in the future; in particular, cities have warmer temperatures due to the urban heat island (UHI) effect, and less water availability relative to rural areas. Along a 90 km urban-to-rural gradient, we measured photosynthesis and isoprene emission from trees at three sites in eastern Texas: Houston (urban), The Woodlands (suburban) and Sam Houston National Forest (rural). Isoprene emission from post oak (Quercus stellata) was higher in Houston than the other sites, and when leaf temperatures were increased above ambient conditions, trees produced more isoprene. Leaves produced more isoprene at high leaf temperatures in early summer than in late summer, suggesting gradual acclimation of photosynthetic processes over the course of the summer. We also found that sweetgum (Liquidambar styraciflua) emitted more isoprene than post oak, but when leaf temperatures were increased, isoprene emission was exhausted more quickly in sweetgum relative to post oak. At the same time, post oak maintained higher levels of photosynthesis seasonally and during short-term temperature increases. Both post oak and sweetgum are significant isoprene emitters and represent approximately two and four percent crown cover in the United States, respectively. Our results suggest that in a warming climate, we can expect trees to produce more isoprene seasonally and in response to short-term temperature extremes, and that species-specific differences in photosynthesis and isoprene emission may play an important role in forest dynamics, particularly in long-term forest growth and carbon storage. Further exploration of the interactive effect of increased CO2, temperature, and drought on tree physiology will improve our understanding of forest dynamics and forest-climate feedbacks.

  5. The effect of leaf size on the microwave backscattering by corn

    NASA Technical Reports Server (NTRS)

    Paris, J. F.

    1986-01-01

    Attema and Ulaby (1978) proposed the cloud model to predict the microwave backscattering properties of vegetation. This paper describes a modification in which the biophysical properties and microwave properties of vegetation are related at the level of the individual scatterer (e.g., the leaf or the stalk) rather than at the level of the aggregated canopy (e.g., the green leaf area index). Assuming that the extinction cross section of an average leaf was proportional to its water content, that a power law relationship existed between the backscattering cross section of an average green corn leaf and its area, and that the backscattering coefficient of the surface was a linear function of its volumetric soil moisture content, it is found that the explicit inclusion of the effects of corn leaf size in the model led to an excellent fit between the observed and predicted backscattering coefficients. Also, an excellent power law relationship existed between the backscattering cross section of a corn leaf and its area.

  6. Determination of coefficient defining leaf area development in different genotypes, plant types and planting densities in peanut (Arachis hypogeae L.).

    PubMed

    Halilou, Oumarou; Hissene, Halime Mahamat; Clavijo Michelangeli, José A; Hamidou, Falalou; Sinclair, Thomas R; Soltani, Afshin; Mahamane, Saadou; Vadez, Vincent

    2016-12-01

    Rapid leaf area development may be attractive under a number of cropping conditions to enhance the vigor of crop establishment and allow rapid canopy closure for maximizing light interception and shading of weed competitors. This study was undertaken to determine (1) if parameters describing leaf area development varied among ten peanut ( Arachis hypogeae L.) genotypes grown in field and pot experiments, (2) if these parameters were affected by the planting density, and (3) if these parameters varied between Spanish and Virginia genotypes. Leaf area development was described by two steps: prediction of main stem number of nodes based on phyllochron development and plant leaf area dependent based on main stem node number. There was no genetic variation in the phyllochron measured in the field. However, the phyllochron was much longer for plants grown in pots as compared to the field-grown plants. These results indicated a negative aspect of growing peanut plants in the pots used in this experiment. In contrast to phyllochron, there was no difference in the relationship between plant leaf area and main stem node number between the pot and field experiments. However, there was genetic variation in both the pot and field experiments in the exponential coefficient (PLAPOW) of the power function used to describe leaf area development from node number. This genetic variation was confirmed in another experiment with a larger number of genotypes, although possible G × E interaction for the PLAPOW was found. Sowing density did not affect the power function relating leaf area to main stem node number. There was also no difference in the power function coefficient between Spanish and Virginia genotypes. SSM (Simple Simulation model) reliably predicted leaf canopy development in groundnut. Indeed the leaf area showed a close agreement between predicted and observed values up to 60000 cm 2  m -2 . The slightly higher prediction in India and slightly lower prediction in Niger reflected GxE interactions. Until more understanding is obtained on the possible GxE interaction effects on the canopy development, a generic PLAPOW value of 2.71, no correction for sowing density, and a phyllochron on 53 °C could be used to model canopy development in peanut.

  7. Noah-MP-Crop: Introducing dynamic crop growth in the Noah-MP land surface model

    NASA Astrophysics Data System (ADS)

    Liu, Xing; Chen, Fei; Barlage, Michael; Zhou, Guangsheng; Niyogi, Dev

    2016-12-01

    Croplands are important in land-atmosphere interactions and in the modification of local and regional weather and climate; however, they are poorly represented in the current version of the coupled Weather Research and Forecasting/Noah with multiparameterization (Noah-MP) land surface modeling system. This study introduced dynamic corn (Zea mays) and soybean (Glycine max) growth simulations and field management (e.g., planting date) into Noah-MP and evaluated the enhanced model (Noah-MP-Crop) at field scales using crop biomass data sets, surface heat fluxes, and soil moisture observations. Compared to the generic dynamic vegetation and prescribed-leaf area index (LAI)-driven methods in Noah-MP, the Noah-MP-Crop showed improved performance in simulating leaf area index (LAI) and crop biomass. This model is able to capture the seasonal and annual variability of LAI and to differentiate corn and soybean in peak values of LAI as well as the length of growing seasons. Improved simulations of crop phenology in Noah-MP-Crop led to better surface heat flux simulations, especially in the early period of growing season where current Noah-MP significantly overestimated LAI. The addition of crop yields as model outputs expand the application of Noah-MP-Crop to regional agriculture studies. There are limitations in the use of current growing degree days (GDD) criteria to predict growth stages, and it is necessary to develop a new method that combines GDD with other environmental factors, to more accurately define crop growth stages. The capability introduced in Noah-MP allows further crop-related studies and development.

  8. 78 FR 72579 - Revisions to the Arizona State Implementation Plan, Maricopa County Area

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ....01 Leaf Blower Use Restrictions 07/02/07 05/25/12 and Training; Leaf Blowers Equipment Sellers... recommend stronger control of emissions from leaf blowers, expanding leaf blowers requirements beyond county employees, control of leaf blowers in vacuum mode, control of leaf blowers on permitted sites, and greater...

  9. SU-E-T-444: Gravity Effect On Maximum Leaf Speed in Dynamic IMRT Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olasolo, J; Pellejero, S; Gracia, M

    Purpose: A leaf sequencing algorithm has been recently developed in our department. Our purpose is to utilize this algorithm to reduce treatment time by studying the feasibility of using several maximum leaf speeds depending on gantry angle and leaf thickness (0.5 or 1 cm at isocenter). To do so, the gravity effect on MLC performance has been examined by means of analysing the dynalog files. Methods: Leaf position errors has been ascertained according to gantry angle and leaf speed in MLC Millenium120 (Varian). In order to do this, the following test has been designed: all leaves move in synchrony, withmore » same speed and 1 cm gap between opposite leaves. This test is implemented for 18 different speeds: 0.25-0.5-0.75-1-1.25-1.5-1.75-2-2.1-2.2-2.3-2.4-2.5-2.6-2.7-2.8-2.9-3.0 cm/s and 8 gantry angles: 0-45-90-135-180-225-270-315. Collimator angle is 2 degrees in all cases since it is the most usual one in IMRT treatments in our department. Dynamic tolerance is 2 mm. Dynalogs files of 10 repetitions of the test are analysed with a Mathlab in-house developed software and RMS error and 95th percentiles are calculated. Varian recommends 2.5 cm/s as the maximum leaf speed for its segmentation algorithm. In our case, we accept this speed in the most restrictive situation: gantry angle 270 and 1 cm leaf thickness. Maximum speeds for the rest of the cases are calculated by keeping the difference between 95th percentile and dynamic tolerance. In this way, beam hold-off probability does not increase. Results: Maximum speeds every 45 degrees of gantry rotation have been calculated for both leaf thickness. These results are 2.9-2.9-2.9-2.9-2.7-2.6-2.6-2.7 cm/s for 0.5 cm leaf thickness and 2.7-2.7-2.7-2.7-2.6-2.5-2.5-2.6 cm/s for 1 cm leaf thickness. Conclusion: Gravity effect on MLC positioning has been studied. Maximum leaf speed according to leaf thickness and gantry angle have been calculated which reduces treatment time.« less

  10. Growth response by big-leaf mahogany (Swietenia macrophylla) advance seedling regeneration to overhead canopy release in southeast Pará, Brazil

    Treesearch

    James Grogana; R. Matthew Landisc; Mark S. Ashtona; Jurandir Galva˜od

    2005-01-01

    Big-leaf mahogany (Swietenia macrophylla) is a valuable neotropical timber species whose seedling survival and growth dynamics in natural forests are poorly understood. To document regeneration dynamics of mahogany in seasonal transitional evergreen forests of southeast Pará, Brazil, we followed naturally established seedlings in the forest understory...

  11. Leaf Mass Area, Leaf Carbon and Nitrogen Content, Barrow, Alaska, 2012-2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Alistair; Ely, Kim; Serbin, Shawn

    Carbon, Nitrogen and Leaf Mass Area of leaves sampled from the Barrow Environmental Observatory, Barrow, Alaska. Species measured; Arctophila fulva, Arctagrostis latifolia, Carex aquatilis, Dupontia fisheri, Eriophorum angustifolium, Petasites frigidus, Salix pulchra, Vaccinium vitis-idaea, Salix rotundifolia, Luzula arctica, Saxifraga punctata and Potentilla hyparctica.

  12. Convergent production and tolerance among 107 woody species and divergent production between shrubs and trees.

    PubMed

    He, Wei-Ming; Sun, Zhen-Kai

    2016-02-08

    Green leaves face two fundamental challenges (i.e., carbon fixation and stress tolerance) during their lifespan. However, the relationships between leaf production potential and leaf tolerance potential have not been explicitly tested with a broad range of plant species in the same environment. To do so, we conducted a field investigation based on 107 woody plants grown in a common garden and complementary laboratory measurements. The values, as measured by a chlorophyll meter, were significantly related to the direct measurements of chlorophyll content on a leaf area basis. Area-based chlorophyll content was positively correlated with root surface area, whole-plant biomass, leaf mass per area (LMA), and force to punch. Additionally, LMA had a positive correlation with force to punch. Shrubs had a higher leaf chlorophyll content than trees; however, shrubs and trees exhibited a similar leaf lifespan, force to punch, and LMA. These findings suggest that the production potential of leaves and their tolerance to stresses may be convergent in woody species and that the leaf production potential may differ between shrubs and trees. This study highlights the possibility that functional convergence and divergence might be linked to long-term selection pressures and genetic constraints.

  13. Convergent production and tolerance among 107 woody species and divergent production between shrubs and trees

    PubMed Central

    He, Wei-Ming; Sun, Zhen-Kai

    2016-01-01

    Green leaves face two fundamental challenges (i.e., carbon fixation and stress tolerance) during their lifespan. However, the relationships between leaf production potential and leaf tolerance potential have not been explicitly tested with a broad range of plant species in the same environment. To do so, we conducted a field investigation based on 107 woody plants grown in a common garden and complementary laboratory measurements. The values, as measured by a chlorophyll meter, were significantly related to the direct measurements of chlorophyll content on a leaf area basis. Area-based chlorophyll content was positively correlated with root surface area, whole-plant biomass, leaf mass per area (LMA), and force to punch. Additionally, LMA had a positive correlation with force to punch. Shrubs had a higher leaf chlorophyll content than trees; however, shrubs and trees exhibited a similar leaf lifespan, force to punch, and LMA. These findings suggest that the production potential of leaves and their tolerance to stresses may be convergent in woody species and that the leaf production potential may differ between shrubs and trees. This study highlights the possibility that functional convergence and divergence might be linked to long-term selection pressures and genetic constraints. PMID:26854019

  14. The relationship of leaf photosynthetic traits V cmax and Jmax - to leaf nitrogen, leaf phosphorus, and specific leaf area: A meta-analysis and modeling study

    DOE PAGES

    Walker, Anthony P.; Beckerman, Andrew P.; Gu, Lianhong; ...

    2014-07-25

    Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation (Vcmax) and the maximum rate of electron transport (Jmax). Understanding and making accurate prediction of C fluxes thus requires accurate characterization of these rates and their relationship with plant nutrient status over large geographic scales. Plant nutrient status is indicated by the traits: leaf nitrogen (N), leaf phosphorus (P), and specific leaf area (SLA). Correlations between Vcmax and Jmax and leaf nitrogen (N) are typically derivedmore » from local to global scales, while correlations with leaf phosphorus (P) and specific leaf area (SLA) have typically been derived at a local scale. Thus, there is no global-scale relationship between Vcmax and Jmax and P or SLA limiting the ability of global-scale carbon flux models do not account for P or SLA. We gathered published data from 24 studies to reveal global relationships of Vcmax and Jmax with leaf N, P, and SLA. Vcmax was strongly related to leaf N, and increasing leaf P substantially increased the sensitivity of Vcmax to leaf N. Jmax was strongly related to Vcmax, and neither leaf N, P, or SLA had a substantial impact on the relationship. Although more data are needed to expand the applicability of the relationship, we show leaf P is a globally important determinant of photosynthetic rates. In a model of photosynthesis, we showed that at high leaf N (3 gm 2), increasing leaf P from 0.05 to 0.22 gm 2 nearly doubled assimilation rates. Lastly, we show that plants may employ a conservative strategy of Jmax to Vcmax coordination that restricts photoinhibition when carboxylation is limiting at the expense of maximizing photosynthetic rates when light is limiting.« less

  15. The relationship of leaf photosynthetic traits V cmax and Jmax - to leaf nitrogen, leaf phosphorus, and specific leaf area: A meta-analysis and modeling study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Anthony P.; Beckerman, Andrew P.; Gu, Lianhong

    Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation (Vcmax) and the maximum rate of electron transport (Jmax). Understanding and making accurate prediction of C fluxes thus requires accurate characterization of these rates and their relationship with plant nutrient status over large geographic scales. Plant nutrient status is indicated by the traits: leaf nitrogen (N), leaf phosphorus (P), and specific leaf area (SLA). Correlations between Vcmax and Jmax and leaf nitrogen (N) are typically derivedmore » from local to global scales, while correlations with leaf phosphorus (P) and specific leaf area (SLA) have typically been derived at a local scale. Thus, there is no global-scale relationship between Vcmax and Jmax and P or SLA limiting the ability of global-scale carbon flux models do not account for P or SLA. We gathered published data from 24 studies to reveal global relationships of Vcmax and Jmax with leaf N, P, and SLA. Vcmax was strongly related to leaf N, and increasing leaf P substantially increased the sensitivity of Vcmax to leaf N. Jmax was strongly related to Vcmax, and neither leaf N, P, or SLA had a substantial impact on the relationship. Although more data are needed to expand the applicability of the relationship, we show leaf P is a globally important determinant of photosynthetic rates. In a model of photosynthesis, we showed that at high leaf N (3 gm 2), increasing leaf P from 0.05 to 0.22 gm 2 nearly doubled assimilation rates. Lastly, we show that plants may employ a conservative strategy of Jmax to Vcmax coordination that restricts photoinhibition when carboxylation is limiting at the expense of maximizing photosynthetic rates when light is limiting.« less

  16. Rapid determination of leaf area and plant height by using light curtain arrays in four species with contrasting shoot architecture

    PubMed Central

    2014-01-01

    Background Light curtain arrays (LC), a recently introduced phenotyping method, yield a binary data matrix from which a shoot silhouette is reconstructed. We addressed the accuracy and applicability of LC in assessing leaf area and maximum height (base to the highest leaf tip) in a phenotyping platform. LC were integrated to an automated routine for positioning, allowing in situ measurements. Two dicotyledonous (rapeseed, tomato) and two monocotyledonous (maize, barley) species with contrasting shoot architecture were investigated. To evaluate if averaging multiple view angles helps in resolving self-overlaps, we acquired a data set by rotating plants every 10° for 170°. To test how rapid these measurements can be without loss of information, we evaluated nine scanning speeds. Leaf area of overlapping plants was also estimated to assess the possibility to scale this method for plant stands. Results The relation between measured and calculated maximum height was linear and nearly the same for all species. Linear relations were also found between plant leaf area and calculated pixel area. However, the regression slope was different between monocotyledonous and dicotyledonous species. Increasing the scanning speed stepwise from 0.9 to 23.4 m s−1 did not affect the estimation of maximum height. Instead, the calculated pixel area was inversely proportional to scanning speed. The estimation of plant leaf area by means of calculated pixel area became more accurate by averaging consecutive silhouettes and/or increasing the angle between them. Simulations showed that decreasing plant distance gradually from 20 to 0 cm, led to underestimation of plant leaf area owing to overlaps. This underestimation was more important for large plants of dicotyledonous species and for small plants of monocotyledonous ones. Conclusions LC offer an accurate estimation of plant leaf area and maximum height, while the number of consecutive silhouettes that needs to be averaged is species-dependent. A constant scanning speed is important for leaf area estimations by using LC. Simulations of the effect of varying plant spacing gave promising results for method application in sets of partly overlapping plants, which applies also to field conditions during and after canopy closure for crops sown in rows. PMID:24721154

  17. How vertical patterns in leaf traits shift seasonally and the implications for modeling canopy photosynthesis in a temperate deciduous forest.

    PubMed

    Coble, Adam P; VanderWall, Brittany; Mau, Alida; Cavaleri, Molly A

    2016-09-01

    Leaf functional traits are used in modeling forest canopy photosynthesis (Ac) due to strong correlations between photosynthetic capacity, leaf mass per area (LMA) and leaf nitrogen per area (Narea). Vertical distributions of these traits may change over time in temperate deciduous forests as a result of acclimation to light, which may result in seasonal changes in Ac To assess both spatial and temporal variations in key traits, we measured vertical profiles of Narea and LMA from leaf expansion through leaf senescence in a sugar maple (Acer saccharum Marshall) forest. To investigate mechanisms behind coordinated changes in leaf morphology and function, we also measured vertical variation in leaf carbon isotope composition (δ(13)C), predawn turgor pressure, leaf water potential and osmotic potential. Finally, we assessed potential biases in Ac estimations by parameterizing models with and without vertical and seasonal Narea variations following leaf expansion. Our data are consistent with the hypothesis that hydrostatic constraints on leaf morphology drive the vertical increase in LMA with height early in the growing season; however, LMA in the upper canopy continued to increase over time during light acclimation, indicating that light is primarily driving gradients in LMA later in the growing season. Models with no seasonal variation in Narea overestimated Ac by up to 11% early in the growing season, while models with no vertical variation in Narea overestimated Ac by up to 60% throughout the season. According to the multilayer model, the upper 25% of leaf area contributed to over 50% of Ac, but when gradients of intercellular CO2, as estimated from δ(13)C, were accounted for, the upper 25% of leaf area contributed to 26% of total Ac Our results suggest that ignoring vertical variation of key traits can lead to considerable overestimation of Ac. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Short-term effect of nutrient availability and rainfall distribution on biomass production and leaf nutrient content of savanna tree species.

    PubMed

    Barbosa, Eduardo R M; Tomlinson, Kyle W; Carvalheiro, Luísa G; Kirkman, Kevin; de Bie, Steven; Prins, Herbert H T; van Langevelde, Frank

    2014-01-01

    Changes in land use may lead to increased soil nutrient levels in many ecosystems (e.g. due to intensification of agricultural fertilizer use). Plant species differ widely in their response to differences in soil nutrients, and for savannas it is uncertain how this nutrient enrichment will affect plant community dynamics. We set up a large controlled short-term experiment in a semi-arid savanna to test how water supply (even water supply vs. natural rainfall) and nutrient availability (no fertilisation vs. fertilisation) affects seedlings' above-ground biomass production and leaf-nutrient concentrations (N, P and K) of broad-leafed and fine-leafed tree species. Contrary to expectations, neither changes in water supply nor changes in soil nutrient level affected biomass production of the studied species. By contrast, leaf-nutrient concentration did change significantly. Under regular water supply, soil nutrient addition increased the leaf phosphorus concentration of both fine-leafed and broad-leafed species. However, under uneven water supply, leaf nitrogen and phosphorus concentration declined with soil nutrient supply, this effect being more accentuated in broad-leafed species. Leaf potassium concentration of broad-leafed species was lower when growing under constant water supply, especially when no NPK fertilizer was applied. We found that changes in environmental factors can affect leaf quality, indicating a potential interactive effect between land-use changes and environmental changes on savanna vegetation: under more uneven rainfall patterns within the growing season, leaf quality of tree seedlings for a number of species can change as a response to changes in nutrient levels, even if overall plant biomass does not change. Such changes might affect herbivore pressure on trees and thus savanna plant community dynamics. Although longer term experiments would be essential to test such potential effects of eutrophication via changes in leaf nutrient concentration, our findings provide important insights that can help guide management plans that aim to preserve savanna biodiversity.

  19. A 115-year δ15N record of cumulative nitrogen pollution in California serpentine grasslands

    NASA Astrophysics Data System (ADS)

    Vallano, D.; Zavaleta, E. S.

    2010-12-01

    Until the 1980s, California’s biodiverse serpentine grasslands were threatened primarily by development and protected by reserve creation. However, nitrogen (N) fertilization due to increasing fossil fuel emissions in the expanding Bay Area is thought to be contributing to rapid, recent invasion of these ecosystems by exotic annual grasses that are displacing rare and endemic serpentine species. Documenting the cumulative effects of N deposition in this ecosystem can direct policy and management actions to mitigate the role of N deposition in its transformation. Natural abundance stable isotopes of N in vegetation have been increasingly used as bio-indicators of N deposition patterns and subsequent changes to plant N cycling and assimilation. However, the long-term record of atmospheric reactive N enrichment and the resulting changes in ecosystem N dynamics have yet to be adequately reconstructed in many ecosystems. Museum archives of vascular plant tissue are valuable sources of materials to reconstruct temporal and spatial isotopic patterns of N inputs to ecosystems. Here, we present N stable isotope data from archived and current specimens of an endemic California serpentine grassland species, leather oak (Quercus durata), since 1895 across the greater San Francisco Bay region. We measured spatial and temporal trends in stable isotope composition (δ15N and δ13C) and concentration (%N and %C) of historical and current samples of leather oak leaves from sites within the Bay Area, impacted by increasing development, and sites northeast of the Bay Area, with significantly lower rates of urbanization and industrialization. Specifically, we sampled dry museum and fresh leaf specimens from serpentine sites within Lake (n=27) and Santa Clara (n=30) counties dating from 1895 to 2010. Leaf δ15N values were stable from 1895 to the 1950s and then decreased strongly throughout the last 50 years as fossil fuel emissions rapidly increased in the Bay Area, indicating that N pollution is being retained in serpentine grassland ecosystems. Leaf δ15N values in the high-deposition region declined at a rate of -0.041‰ yr-1, while leaf δ15N values in the low-deposition region did not show a strong pattern. In both regions, leaf δ13C values declined through time as atmospheric CO2 concentrations increased in response to fossil fuel combustion (the Suess effect). Leaf %N and %C values did not present any clear patterns at sites within or outside of the Bay Area. We conclude that using natural abundance stable isotope values in leaves can indicate variation in N pollution inputs across wide spatial and temporal scales and that archived plant samples can provide valuable baselines against which to assess changes in regional N cycling and subsequent ecological impacts on vegetation.

  20. Drought stress and carbon uptake in an Amazon forest measured with spaceborne imaging spectroscopy

    PubMed Central

    Asner, Gregory P.; Nepstad, Daniel; Cardinot, Gina; Ray, David

    2004-01-01

    Amazônia contains vast stores of carbon in high-diversity ecosystems, yet this region undergoes major changes in precipitation affecting land use, carbon dynamics, and climate. The extent and structural complexity of Amazon forests impedes ground studies of ecosystem functions such as net primary production (NPP), water cycling, and carbon sequestration. Traditional modeling and remote-sensing approaches are not well suited to tropical forest studies, because (i) biophysical mechanisms determining drought effects on canopy water and carbon dynamics are poorly known, and (ii) remote-sensing metrics of canopy greenness may be insensitive to small changes in leaf area accompanying drought. New spaceborne imaging spectroscopy may detect drought stress in tropical forests, helping to monitor forest physiology and constrain carbon models. We combined a forest drought experiment in Amazônia with spaceborne imaging spectrometer measurements of this area. With field data on rainfall, soil water, and leaf and canopy responses, we tested whether spaceborne hyperspectral observations quantify differences in canopy water and NPP resulting from drought stress. We found that hyperspectral metrics of canopy water content and light-use efficiency are highly sensitive to drought. Using these observations, forest NPP was estimated with greater sensitivity to drought conditions than with traditional combinations of modeling, remote-sensing, and field measurements. Spaceborne imaging spectroscopy will increase the accuracy of ecological studies in humid tropical forests. PMID:15071182

  1. Importance of the method of leaf area measurement to the interpretation of gas exchange of complex shoots

    Treesearch

    W. K. Smith; A. W. Schoettle; M. Cui

    1991-01-01

    Net CO(2) uptake in full sunlight, total leaf area (TLA), projected leaf area of detached leaves (PLA), and the silhouette area of attached leaves in their natural orientation to the sun at midday on June 1 (SLA) were measured for sun shoots of six conifer species. Among species, TLA/SLA ranged between 5.2 and 10.0 (x bar = 7.3), TLA/PLA ranged between 2.5 and 2.9 (x...

  2. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2 : evidence from carbon isotope discrimination in paleo and CO2 enrichment studies

    Treesearch

    Steven L. Voelker; J. Renee Brooks; Frederick C. Meinzer; Rebecca Anderson; Martin K.-F. Bader; Giovanna Battipaglia; Katie M. Becklin; David Beerling; Didier Bert; Julio L. Betancourt; Todd E. Dawson; Jean-Christophe Domec; Richard P. Guyette; Christian K??rner; Steven W. Leavitt; Sune Linder; John D. Marshall; Manuel Mildner; Jerome Ogee; Irina Panyushkina; Heather J. Plumpton; Kurt S. Pregitzer; Matthias Saurer; Andrew R. Smith; Rolf T. W. Siegwolf; Michael C. Stambaugh; Alan F. Talhelm; Jacques C. Tardif; Peter K. Van de Water; Joy K. Ward; Lisa Wingate

    2016-01-01

    Rising atmospheric [CO2], ca, is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO...

  3. Leaf area index, biomass carbon and growth rate of radiata pine genetic types and relationships with LiDAR

    Treesearch

    Peter N. Beets; Stephen Reutebuch; Mark O. Kimberley; Graeme R. Oliver; Stephen H. Pearce; Robert J. McGaughey

    2011-01-01

    Relationships between discrete-return light detection and ranging (LiDAR) data and radiata pine leaf area index (LAI), stem volume, above ground carbon, and carbon sequestration were developed using 10 plots with directly measured biomass and leaf area data, and 36 plots with modelled carbon data. The plots included a range of genetic types established on north- and...

  4. Estimating individual tree leaf area in loblolly pine plantations using LiDAR-derived measurments of height and crown dimensions

    Treesearch

    Scott D. Roberts; Thomas J. Dean; David L. Evans; John W. McCombs; Richard L. Harrington; Partick A. Glass

    2005-01-01

    Accurate estimates of leaf area index (LAI) could provide useful information to forest managers, but due to difficulties in measurement, leaf area is rarely used in decision-making. A reliable approach to remotely estimating LA1 would greatly facilitate its use in forest management. This study investigated the potential for using small-footprint iDAR, a laser-based...

  5. Viewing forests from below: fine root mass declines relative to leaf area in aging lodgepole pine stands.

    PubMed

    Schoonmaker, A S; Lieffers, V J; Landhäusser, S M

    2016-07-01

    In the continued quest to explain the decline in productivity and vigor with aging forest stands, the most poorly studied area relates to root system change in time. This paper measures the wood production, root and leaf area (and mass) in a chronosequence of fire-origin lodgepole pine (Pinus contorta Loudon) stands consisting of four age classes (12, 21, 53, and ≥100 years), each replicated ~ five times. Wood productivity was greatest in the 53-year-old stands and then declined in the ≥100-year-old stands. Growth efficiency, the quantity of wood produced per unit leaf mass, steadily declined with age. Leaf mass and fine root mass plateaued between the 53- and ≥100-year-old stands, but leaf area index actually increased in the older stands. An increase in the leaf area index:fine root area ratio supports the idea that older stand are potentially limited by soil resources. Other factors contributing to slower growth in older stands might be lower soil temperatures and increased self-shading due to the clumped nature of crowns. Collectively, the proportionally greater reduction in fine roots in older stands might be the variable that predisposes these forests to be at a potentially greater risk of stress-induced mortality.

  6. The future of isoprene emission from leaves, canopies and landscapes.

    PubMed

    Sharkey, Thomas D; Monson, Russell K

    2014-08-01

    Isoprene emission from plants plays a dominant role in atmospheric chemistry. Predicting how isoprene emission may change in the future will help predict changes in atmospheric oxidant, greenhouse gas and secondary organic aerosol concentrations in the future atmosphere. At the leaf-scale, an increase in isoprene emission with increasing temperature is offset by a reduction in isoprene emission rate caused by increased CO₂. At the canopy scale, increased leaf area index in elevated CO₂ can offset the reduction in leaf-scale isoprene emission caused by elevated CO₂. At the landscape scale, a reduction in forest coverage may decrease, while forest fertilization and community composition dynamics are likely to cause an increase in the global isoprene emission rate. Here we review the potential for changes in the isoprene emission rate at all of these scales. When considered together, it is likely that these interacting effects will result in an increase in the emission of the most abundant plant volatile, isoprene, from the biosphere to the atmosphere in the future. © 2014 John Wiley & Sons Ltd.

  7. Allocation to leaf area and sapwood area affects water relations of co-occurring savanna and forest trees.

    PubMed

    Gotsch, Sybil G; Geiger, Erika L; Franco, Augusto C; Goldstein, Guillermo; Meinzer, Frederick C; Hoffmann, William A

    2010-06-01

    Water availability is a principal factor limiting the distribution of closed-canopy forest in the seasonal tropics, suggesting that forest tree species may not be well adapted to cope with seasonal drought. We studied 11 congeneric species pairs, each containing one forest and one savanna species, to test the hypothesis that forest trees have a lower capacity to maintain seasonal homeostasis in water relations relative to savanna species. To quantify this, we measured sap flow, leaf water potential (Psi(L)), stomatal conductance (g (s)), wood density, and Huber value (sapwood area:leaf area) of the 22 study species. We found significant differences in the water relations of these two species types. Leaf area specific hydraulic conductance of the soil/root/leaf pathway (G (t)) was greater for savanna species than forest species. The lower G (t) of forest trees resulted in significantly lower Psi(L) and g (s) in the late dry season relative to savanna trees. The differences in G (t) can be explained by differences in biomass allocation of savanna and forest trees. Savanna species had higher Huber values relative to forest species, conferring greater transport capacity on a leaf area basis. Forest trees have a lower capacity to maintain homeostasis in Psi(L) due to greater allocation to leaf area relative to savanna species. Despite significant differences in water relations, relationships between traits such as wood density and minimum Psi(L) were indistinguishable for the two species groups, indicating that forest and savanna share a common axis of water-use strategies involving multiple traits.

  8. Error analysis of leaf area estimates made from allometric regression models

    NASA Technical Reports Server (NTRS)

    Feiveson, A. H.; Chhikara, R. S.

    1986-01-01

    Biological net productivity, measured in terms of the change in biomass with time, affects global productivity and the quality of life through biochemical and hydrological cycles and by its effect on the overall energy balance. Estimating leaf area for large ecosystems is one of the more important means of monitoring this productivity. For a particular forest plot, the leaf area is often estimated by a two-stage process. In the first stage, known as dimension analysis, a small number of trees are felled so that their areas can be measured as accurately as possible. These leaf areas are then related to non-destructive, easily-measured features such as bole diameter and tree height, by using a regression model. In the second stage, the non-destructive features are measured for all or for a sample of trees in the plots and then used as input into the regression model to estimate the total leaf area. Because both stages of the estimation process are subject to error, it is difficult to evaluate the accuracy of the final plot leaf area estimates. This paper illustrates how a complete error analysis can be made, using an example from a study made on aspen trees in northern Minnesota. The study was a joint effort by NASA and the University of California at Santa Barbara known as COVER (Characterization of Vegetation with Remote Sensing).

  9. Plasticity in the Huber value contributes to homeostasis in leaf water relations of a mallee Eucalypt with variation to groundwater depth.

    PubMed

    Carter, Jennifer L; White, Donald A

    2009-11-01

    Information on how vegetation adapts to differences in water supply is critical for predicting vegetation survival, growth and water use, which, in turn, has important impacts on site hydrology. Many field studies assess adaptation to water stress by comparing between disparate sites, which makes it difficult to distinguish between physiological or morphological changes and long-term genetic adaptation. When planting trees into new environments, the phenotypic adaptations of a species to water stress will be of primary interest. This study examined the response to water availability of Eucalyptus kochii ssp. borealis (C. Gardner) D. Nicolle, commonly integrated with agriculture in south-western Australia for environmental and economic benefits. By choosing a site where the groundwater depth varied but where climate and soil type were the same, we were able to isolate tree response to water supply. Tree growth, leaf area and stand water use were much larger for trees over shallow groundwater than for trees over a deep water table below a silcrete hardpan. However, water use on a leaf area basis was similar in trees over deep and shallow groundwater, as were the minimum leaf water potential observed over different seasons and the turgor loss point. We conclude that homeostasis in leaf water use and water relations was maintained through a combination of stomatal control and adjustment of sapwood-to-leaf area ratios (Huber value). Differences in the Huber value with groundwater depth were associated with different sapwood-specific conductivity and water use on a sapwood area basis. Knowledge of the coordination between water supply, leaf area, sapwood area and leaf transpiration rate for different species will be important when predicting stand water use.

  10. Tree ecophysiology research at Taylor Woods

    Treesearch

    Thomas E. Kolb; Nate G. McDowell

    2008-01-01

    We summarize the key findings of tree ecophysiology studies performed at Taylor Woods, Fort Valley Experimental Forest, Arizona between 1994 and 2003 that provide unique insight on impacts of long-term stand density management in ponderosa pine forests on tree water relations, leaf gas exchange, radial growth, leaf area-to-sapwood-area ratio, growth efficiency, leaf...

  11. Preliminary application of tapered glass capillary microbeam in MeV-PIXE mapping of longan leaf for elemental concentration distribution analysis

    NASA Astrophysics Data System (ADS)

    Natyanun, S.; Unai, S.; Yu, L. D.; Tippawan, U.; Pussadee, N.

    2017-09-01

    This study was aimed at understanding elemental concentration distribution in local longan leaf for how the plant was affected by the environment or agricultural operation. The analysis applied the MeV-microbeam particle induced X-ray emission (PIXE) mapping technique using a home-developed tapered glass capillary microbeam system at Chiang Mai University. The microbeam was 2-MeV proton beam in 130 µm in diameter. The studying interest was in the difference in the elemental concentrations distributed between the leaf midrib and lamina areas. The micro proton beam analyzed the leaf sample across the leaf midrib edge to the leaf lamina area for total 9 data requisition spots. The resulting data were colored to form a 1D-map of the elemental concentration distribution. Seven dominant elements, Al, S, Cl, K, Ca, Sc and Fe, were identified, the first six of which were found having higher concentrations in the midrib area than in the lamina area, while the Fe concentration was in an opposite trend to that of the others.

  12. Testing the adaptive plasticity of Iris pumila leaf traits to natural light conditions using phenotypic selection analysis

    NASA Astrophysics Data System (ADS)

    Tucić, Branka; Tomić, Vladimir; Avramov, Stevan; Pemac, Danijela

    1998-12-01

    A multivariate selection analysis has been used to test the adaptiveness of several Iris pumila leaf traits that display plasticity to natural light conditions. Siblings of a synthetic population comprising 31 families of two populations from contrasting light habitats were grown at an open dune site and in the understory of a Pinus nigra stand in order to score variation in phenotypic expression of six leaf traits: number of senescent leaves, number of live leaves, leaf length, leaf width, leaf angle, and specific leaf area. The ambient light conditions affected the values of all traits studied except for specific leaf area. In accordance to ecophysiological expectations for an adaptive response to light, both leaf length and width were significantly greater while the angle between sequential leaves was significantly smaller in the woodland understory than at the exposed dune site. The relationship between leaf traits and vegetative fitness (total leaf area) differed across light habitats as predicted by functional hypotheses. The standardized linear selection gradient ( β') for leaf length and width were positive in sign in both environments, but their magnitude for leaf length was higher in the shade than under full sunlight. Since plasticity of leaf length in the woodland shade has been recognized as adaptive, fitness cost of producing plastic change in leaf length was assessed. In both of the available methods used, the two-step and the multivariate regression procedures, a rather high negative association between the fitness value and the plasticity of leaf length was obtained, indicating a cost of plasticity. The selection gradient for leaf angle was weak and significant only in the woodland understory. Genetic correlations between trait expressions in contrasting light environments were negative in sign and low in magnitude, implying a significant genetic variation for plasticity in these leaf traits. Furthermore, leaf length and leaf width were found to be genetically positively coupled, which indicates that there is a potential for these two traits to evolve toward their optimal phenotypic values even faster than would be expected if they were genetically independent.

  13. Herbivory alters plant carbon assimilation, patterns of biomass allocation and nitrogen use efficiency

    NASA Astrophysics Data System (ADS)

    Peschiutta, María Laura; Scholz, Fabián Gustavo; Goldstein, Guillermo; Bucci, Sandra Janet

    2018-01-01

    Herbivory can trigger physiological processes resulting in leaf and whole plant functional changes. The effects of chronic infestation by an insect on leaf traits related to carbon and nitrogen economy in three Prunus avium cultivars were assessed. Leaves from non-infested trees (control) and damaged leaves from infested trees were selected. The insect larvae produce skeletonization of the leaves leaving relatively intact the vein network of the eaten leaves and the abaxial epidermal tissue. At the leaf level, nitrogen content per mass (Nmass) and per area (Narea), net photosynthesis per mass (Amass) and per area (Aarea), photosynthetic nitrogen-use efficiency (PNUE), leaf mass per area (LMA) and total leaf phenols content were measured in the three cultivars. All cultivars responded to herbivory in a similar fashion. The Nmass, Amass, and PNUE decreased, while LMA and total content of phenols increased in partially damaged leaves. Increases in herbivore pressure resulted in lower leaf size and total leaf area per plant across cultivars. Despite this, stem cumulative growth tended to increase in infected plants suggesting a change in the patterns of biomass allocation and in resources sequestration elicited by herbivory. A larger N investment in defenses instead of photosynthetic structures may explain the lower PNUE and Amass observed in damaged leaves. Some physiological changes due to herbivory partially compensate for the cost of leaf removal buffering the carbon economy at the whole plant level.

  14. Modeling forest stand dynamics from optimal balances of carbon and nitrogen

    Treesearch

    Harry T. Valentine; Annikki Makela

    2012-01-01

    We formulate a dynamic evolutionary optimization problem to predict the optimal pattern by which carbon (C) and nitrogen (N) are co-allocated to fine-root, leaf, and wood production, with the objective of maximizing height growth rate, year by year, in an even-aged stand. Height growth is maximized with respect to two adaptive traits, leaf N concentration and the ratio...

  15. Experimental manipulation of leaf litter colonization by aquatic invertebrates in a third order tropical stream.

    PubMed

    Uieda, V S; Carvalho, E M

    2015-05-01

    Through a manipulative experiment, the colonization of leaf litter by invertebrates was investigated in two sections of a tropical stream (spatial scale) that differed in function of the canopy cover, one with the presence (closed area) and another without riparian vegetation (open area), during one month of the dry and one of the wet season (temporal scale). The work aimed to verify differences related to four variables: season, canopy cover, leaf type and leaf condition. Litter bags containing arboreal and herbaceous leaves (leaf type variable), non-conditioned and preconditioned (leaf condition variable) were placed at the bottom of the stream in each area (canopy cover variable) and season (dry and wet), and removed after 13-day colonization. The analysis of the remaining litter dry mass per leaf bag emphasizes differences related mainly to seasonality, canopy cover and leaf type, although leaf condition was also important when combined with those three factors. Comparing the abundance of invertebrates per treatment, there was a tendency of high predominance of Chironomidae during the dry season and greater taxa diversity and evenness during the wet season, when the water flow increase could alter the availability of microhabitats for local fauna. Even though canopy cover alone was not a significant source of variation in the abundance of invertebrates, the results showed a tendency of a combined effect of canopy cover with seasonality and leaf condition.

  16. Does citrus leaf miner impair hydraulics and fitness of citrus host plants?

    PubMed

    Raimondo, Fabio; Trifilò, Patrizia; Gullo, Maria A Lo

    2013-12-01

    Gas exchange and hydraulic features were measured in leaves of three different Citrus species (Citrus aurantium L., Citrus limon L., Citrus  ×  paradisii Macfad) infested by Phyllocnistis citrella Staiton, with the aim to quantify the impact of this pest on leaf hydraulics and, ultimately, on plant fitness. Infested leaves were characterized by the presence on the leaf blade of typical snake-shaped mines and, in some cases, of a crumpled leaf blade. Light microscopy showed that leaf crumpling was induced by damage to the cuticular layer. In all three Citrus species examined: (a) the degree of infestation did not exceed 10% of the total surface area of infested plants; (b) control and infested leaves showed similar values of minimum diurnal leaf water potential, leaf hydraulic conductance and functional vein density; and (c) maximum diurnal values of stomatal conductance to water vapour, transpiration rate and photosynthetic rate (An) were similar in both control leaves and the green areas of infested leaves. A strong reduction of An was recorded only in mined leaf areas. Our data suggest that infestation with P. citrella does not cause conspicuous plant productivity reductions in young Citrus plants, at least not in the three Citrus species studied here.

  17. Extracting forest canopy structure from spatial information of high resolution optical imagery: tree crown size versus leaf area index

    Treesearch

    C. Song; M.B. Dickinson

    2008-01-01

    Leaves are the primary interface where energy, water and carbon exchanges occur between the forest ecosystems and the atmosphere. Leaf area index (LAI) is a measure of the amount of leaf area in a stand, and the tree crown size characterizes how leaves are clumped in the canopy. Both LAI and tree crown size are of essential ecological and management value. There is a...

  18. Extracting scene feature vectors through modeling, volume 3

    NASA Technical Reports Server (NTRS)

    Berry, J. K.; Smith, J. A.

    1976-01-01

    The remote estimation of the leaf area index of winter wheat at Finney County, Kansas was studied. The procedure developed consists of three activities: (1) field measurements; (2) model simulations; and (3) response classifications. The first activity is designed to identify model input parameters and develop a model evaluation data set. A stochastic plant canopy reflectance model is employed to simulate reflectance in the LANDSAT bands as a function of leaf area index for two phenological stages. An atmospheric model is used to translate these surface reflectances into simulated satellite radiance. A divergence classifier determines the relative similarity between model derived spectral responses and those of areas with unknown leaf area index. The unknown areas are assigned the index associated with the closest model response. This research demonstrated that the SRVC canopy reflectance model is appropriate for wheat scenes and that broad categories of leaf area index can be inferred from the procedure developed.

  19. Leaf morphological effects predict effective path length and enrichment of 18O in leaf water of different Eucalyptus species

    NASA Astrophysics Data System (ADS)

    Kahmen, A.; Merchant, A.; Callister, A.; Dawson, T. E.; Arndt, S. K.

    2006-12-01

    Stable isotopes have been a valuable tool to study water or carbon fluxes of plants and ecosystems. In particular oxygen isotopes (δ18O) in leaf water or plant organic material are now beginning to be established as a simple and integrative measure for plant - water relations. Current δ18O models, however, are still limited in their application to a broad range of different species and ecosystems. It remains for example unclear, if species-specific effects such as different leaf morphologies need to be included in the models for a precise understanding and prediction of δ18O signals. In a common garden experiment (Currency Creek Arboretum, South Australia), where over 900 different Eucalyptus species are cultivated in four replicates, we tested effects of leaf morphology and anatomy on δ18O signals in leaf water of 25 different species. In particular, we determined for all species enrichment in 18O of mean lamina leaf water above source water (Δ18O) as related to leaf physiology as well as leaf thickness, leaf area, specific leaf area and weight and selected anatomical properties. Our data revealed that diurnal Δ18O in leaf water at steady state was significantly different among the investigated species and with differences up to 10% at midday. Fitting factors (effective path length) of leaf water Δ18O models were also significantly different among the investigated species and were highly affected by species-specific morphological parameters. For example, leaf area explained a high percentage of the differences in effective path length observed among the investigated species. Our data suggest that leaf water δ18O can act as powerful tool to estimate plant - water relations in comparative studies but that additional leaf morphological parameters need to be considered in existing δ18O models for a better interpretation of the observed δ18O signals.

  20. Comparing salt tolerance of beet cultivars and their halophytic ancestor: consequences of domestication and breeding programmes

    PubMed Central

    Rozema, Jelte; Cornelisse, Danny; Zhang, Yuancheng; Li, Hongxiu; Bruning, Bas; Katschnig, Diana; Broekman, Rob; Ji, Bin; van Bodegom, Peter

    2015-01-01

    Salt tolerance of higher plants is determined by a complex set of traits, the timing and rate of evolution of which are largely unknown. We compared the salt tolerance of cultivars of sugar beet and their ancestor, sea beet, in hydroponic studies and evaluated whether traditional domestication and more recent breeding have changed salt tolerance of the cultivars relative to their ancestor. Our comparison of salt tolerance of crop cultivars is based on values of the relative growth rate (RGR) of the entire plant at various salinity levels. We found considerable salt tolerance of the sea beet and slightly, but significantly, reduced salt tolerance of the sugar beet cultivars. This indicates that traditional domestication by selection for morphological traits such as leaf size, beet shape and size, enhanced productivity, sugar content and palatability slightly affected salt tolerance of sugar beet cultivars. Salt tolerance among four sugar beet cultivars, three of which have been claimed to be salt tolerant, did not differ. We analysed the components of RGR to understand the mechanism of salt tolerance at the whole-plant level. The growth rate reduction at higher salinity was linked with reduced leaf area at the whole-plant level (leaf area ratio) and at the individual leaf level (specific leaf area). The leaf weight fraction was not affected by increased salinity. On the other hand, succulence and leaf thickness and the net assimilation per unit of leaf area (unit leaf rate) increased in response to salt treatment, thus partially counteracting reduced capture of light by lower leaf area. This compensatory mechanism may form part of the salt tolerance mechanism of sea beet and the four studied sugar beet cultivars. Together, our results indicate that domestication of the halophytic ancestor sea beet slightly reduced salt tolerance and that breeding for improved salt tolerance of sugar beet cultivars has not been effective. PMID:25492122

  1. SU-E-T-430: Modeling MLC Leaf End in 2D for Sliding Window IMRT and Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, X; Zhu, T

    2014-06-01

    Purpose: To develop a 2D geometric model for MLC accounting for leaf end dose leakage for dynamic IMRT and Rapidarc therapy. Methods: Leaf-end dose leakage is one of the problems for MLC dose calculation and modeling. Dosimetric leaf gap used to model the MLC and to count for leakage in dose calculation, but may not be accurate for smaller leaf gaps. We propose another geometric modeling method to compensate for the MLC round-shape leaf ends dose leakage, and improve the accuracy of dose calculation and dose verification. A triangular function is used to geometrically model the MLC leaf end leakagemore » in the leaf motion direction, and a step function is used in the perpendicular direction. Dose measurements with different leaf gap, different window width, and different window height were conducted, and the results were used to fit the analytical model to get the model parameters. Results: Analytical models have been obtained for stop-and-shoot and dynamic modes for MLC motion. Parameters a=0.4, lw'=5.0 mm for 6X and a=0.54, lw'=4.1 mm for 15x were obtained from the fitting process. The proposed MLC leaf end model improves the dose profile at the two ends of the sliding window opening. This improvement is especially significant for smaller sliding window openings, which are commonly used for highly modulated IMRT plans and arc therapy plans. Conclusion: This work models the MLC round leaf end shape and movement pattern for IMRT dose calculation. The theory, as well as the results in this work provides a useful tool for photon beam IMRT dose calculation and verification.« less

  2. Responses of Woody Plant Functional Traits to Nitrogen Addition: A Meta-Analysis of Leaf Economics, Gas Exchange, and Hydraulic Traits.

    PubMed

    Zhang, Hongxia; Li, Weibin; Adams, Henry D; Wang, Anzhi; Wu, Jiabing; Jin, Changjie; Guan, Dexin; Yuan, Fenghui

    2018-01-01

    Atmospheric nitrogen (N) deposition has been found to significantly affect plant growth and physiological performance in terrestrial ecosystems. Many individual studies have investigated how N addition influences plant functional traits, however these investigations have usually been limited to a single species, and thereby do not allow derivation of general patterns or underlying mechanisms. We synthesized data from 56 papers and conducted a meta-analysis to assess the general responses of 15 variables related to leaf economics, gas exchange, and hydraulic traits to N addition among 61 woody plant species, primarily from temperate and subtropical regions. Results showed that under N addition, leaf area index (+10.3%), foliar N content (+7.3%), intrinsic water-use efficiency (+3.1%) and net photosynthetic rate (+16.1%) significantly increased, while specific leaf area, stomatal conductance, and transpiration rate did not change. For plant hydraulics, N addition significantly increased vessel diameter (+7.0%), hydraulic conductance in stems/shoots (+6.7%), and water potential corresponding to 50% loss of hydraulic conductivity ( P 50 , +21.5%; i.e., P 50 became less negative), while water potential in leaves (-6.7%) decreased (became more negative). N addition had little effect on vessel density, hydraulic conductance in leaves and roots, or water potential in stems/shoots. N addition had greater effects on gymnosperms than angiosperms and ammonium nitrate fertilization had larger effects than fertilization with urea, and high levels of N addition affected more traits than low levels. Our results demonstrate that N addition has coupled effects on both carbon and water dynamics of woody plants. Increased leaf N, likely fixed in photosynthetic enzymes and pigments leads to higher photosynthesis and water use efficiency, which may increase leaf growth, as reflected in LAI results. These changes appear to have downstream effects on hydraulic function through increases in vessel diameter, which leads to higher hydraulic conductance, but lower water potential and increased vulnerability to embolism. Overall, our results suggest that N addition will shift plant function along a tradeoff between C and hydraulic economies by enhancing C uptake while simultaneously increasing the risk of hydraulic dysfunction.

  3. Modeling leaf phenology variation by groupings of species within and across ecosystems in northern Alaska

    NASA Astrophysics Data System (ADS)

    Euskirchen, E. S.; Carman, T. B.; McGuire, A. D.

    2012-12-01

    The phenology of arctic ecosystems is driven primarily by abiotic forces, with temperature acting as the main determinant of growing season onset and leaf budburst and in the spring. However, while the plant species in arctic ecosystems require differing amounts of accumulated heat for leaf-out, dynamic vegetation models simulated over a regional to global scale typically assume some average leaf-out for all of the species within an ecosystem. Here, we make use of air temperature records and observational data of spring leaf phenology collected across dominant groupings of species (dwarf birch shrubs, willow shrubs, other deciduous shrubs, grasses, sedges, and forbs) in arctic and ecotonal boreal ecosystems in Alaska. We then parameterize a dynamic vegetation model based on these data for four types of tundra ecosystems (heath tundra, shrub tundra, wet sedge tundra, and tussock tundra), as well as ecotonal boreal white spruce forest. This implementation improves the timing of the onset of carbon uptake in the spring, permitting a more accurate assessment of the contribution of each grouping of species to ecosystem performance. Furthermore, this implementation provides a more nuanced perspective on light competition among species and across ecosystems. For example, in the shrub tundra, the sedges and grasses leaf-out before the shade-inducing willow and dwarf birch, thereby providing the sedges and grasses time to accumulate biomass before shading effects arise. Also in the shrub tundra, the forbs leaf-out last, and are therefore, more prone to shading impacts by the taller willow and dwarf birch shrubs. However, in the wet sedge and heath tundra ecosystems, the forbs leaf-out before the shrubs, and are therefore less prone to shading impacts early in the growing season. These findings indicate the importance of leaf phenology data collection by species and across the various ecosystem types within the highly heterogeneous Arctic landscape. These findings also demonstrate that high-latitude dynamic vegetation models should consider variation in leaf-out by groupings of species within and across ecosystems in order to provide more accurate projections of future plant distributions in Arctic regions.

  4. Leaf-on canopy closure in broadleaf deciduous forests predicted during winter

    USGS Publications Warehouse

    Twedt, Daniel J.; Ayala, Andrea J.; Shickel, Madeline R.

    2015-01-01

    Forest canopy influences light transmittance, which in turn affects tree regeneration and survival, thereby having an impact on forest composition and habitat conditions for wildlife. Because leaf area is the primary impediment to light penetration, quantitative estimates of canopy closure are normally made during summer. Studies of forest structure and wildlife habitat that occur during winter, when deciduous trees have shed their leaves, may inaccurately estimate canopy closure. We estimated percent canopy closure during both summer (leaf-on) and winter (leaf-off) in broadleaf deciduous forests in Mississippi and Louisiana using gap light analysis of hemispherical photographs that were obtained during repeat visits to the same locations within bottomland and mesic upland hardwood forests and hardwood plantation forests. We used mixed-model linear regression to predict leaf-on canopy closure from measurements of leaf-off canopy closure, basal area, stem density, and tree height. Competing predictive models all included leaf-off canopy closure (relative importance = 0.93), whereas basal area and stem density, more traditional predictors of canopy closure, had relative model importance of ≤ 0.51.

  5. Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance.

    PubMed

    Scoffoni, Christine; Vuong, Christine; Diep, Steven; Cochard, Hervé; Sack, Lawren

    2014-04-01

    Leaf shrinkage with dehydration has attracted attention for over 100 years, especially as it becomes visibly extreme during drought. However, little has been known of its correlation with physiology. Computer simulations of the leaf hydraulic system showed that a reduction of hydraulic conductance of the mesophyll pathways outside the xylem would cause a strong decline of leaf hydraulic conductance (K(leaf)). For 14 diverse species, we tested the hypothesis that shrinkage during dehydration (i.e. in whole leaf, cell and airspace thickness, and leaf area) is associated with reduction in K(leaf) at declining leaf water potential (Ψ(leaf)). We tested hypotheses for the linkage of leaf shrinkage with structural and physiological water relations parameters, including modulus of elasticity, osmotic pressure at full turgor, turgor loss point (TLP), and cuticular conductance. Species originating from moist habitats showed substantial shrinkage during dehydration before reaching TLP, in contrast with species originating from dry habitats. Across species, the decline of K(leaf) with mild dehydration (i.e. the initial slope of the K(leaf) versus Ψ(leaf) curve) correlated with the decline of leaf thickness (the slope of the leaf thickness versus Ψ(leaf) curve), as expected based on predictions from computer simulations. Leaf thickness shrinkage before TLP correlated across species with lower modulus of elasticity and with less negative osmotic pressure at full turgor, as did leaf area shrinkage between full turgor and oven desiccation. These findings point to a role for leaf shrinkage in hydraulic decline during mild dehydration, with potential impacts on drought adaptation for cells and leaves, influencing plant ecological distributions.

  6. Drought effect on growth, gas exchange and yield, in two strains of local barley Ardhaoui, under water deficit conditions in southern Tunisia.

    PubMed

    Thameur, Afwa; Lachiheb, Belgacem; Ferchichi, Ali

    2012-12-30

    Two local barley strains cv. Ardhaoui originated from Tlalit and Switir, sourthern Tunisia were grown in pots in a glasshouse assay, under well-watered conditions for a month. Plants were then either subjected to water deficit (treatment) or continually well-watered (control). Control pots were irrigated several times each week to maintain soil moisture near field capacity (FC), while stress pots experienced soil drying by withholding irrigation until they reached 50% of FC. Variation in relative water content, leaf area, leaf appearance rate and leaf gas exchange (i.e. net CO(2) assimilation rate (A), transpiration (E), and stomatal conductance (gs)) in response to water deficit was investigated. High leaf relative water content (RWC) was maintained in Tlalit by stomatal closure and a reduction of leaf area. Reduction in leaf area was due to decline in leaf gas exchange during water deficit. Tlalit was found to be drought tolerant and able to maintain higher leaf RWC under drought conditions. Water deficit treatment reduced stomatal conductance by 43% at anthesis. High net CO(2) assimilation rate under water deficit was associated with high RWC (r = 0.998; P < 0.01). Decline in net CO(2) assimilation rate was due mainly to stomatal closure. Significant differences between studied strains in leaf gas exchange parameters were found, which can give some indications on the degree of drought tolerance. Thus, the ability of the low leaf area plants to maintain higher RWC could explain the differences in drought tolerance in studied barley strains. Results showed that Tlalit showed to be more efficient and more productive than Switir. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Using the value of Lin's concordance correlation coefficient as a criterion for efficient estimation of areas of leaves of eelgrass from noisy digital images.

    PubMed

    Echavarría-Heras, Héctor; Leal-Ramírez, Cecilia; Villa-Diharce, Enrique; Castillo, Oscar

    2014-01-01

    Eelgrass is a cosmopolitan seagrass species that provides important ecological services in coastal and near-shore environments. Despite its relevance, loss of eelgrass habitats is noted worldwide. Restoration by replanting plays an important role, and accurate measurements of the standing crop and productivity of transplants are important for evaluating restoration of the ecological functions of natural populations. Traditional assessments are destructive, and although they do not harm natural populations, in transplants the destruction of shoots might cause undesirable alterations. Non-destructive assessments of the aforementioned variables are obtained through allometric proxies expressed in terms of measurements of the lengths or areas of leaves. Digital imagery could produce measurements of leaf attributes without the removal of shoots, but sediment attachments, damage infringed by drag forces or humidity contents induce noise-effects, reducing precision. Available techniques for dealing with noise caused by humidity contents on leaves use the concepts of adjacency, vicinity, connectivity and tolerance of similarity between pixels. Selection of an interval of tolerance of similarity for efficient measurements requires extended computational routines with tied statistical inferences making concomitant tasks complicated and time consuming. The present approach proposes a simplified and cost-effective alternative, and also a general tool aimed to deal with any sort of noise modifying eelgrass leaves images. Moreover, this selection criterion relies only on a single statistics; the calculation of the maximum value of the Concordance Correlation Coefficient for reproducibility of observed areas of leaves through proxies obtained from digital images. Available data reveals that the present method delivers simplified, consistent estimations of areas of eelgrass leaves taken from noisy digital images. Moreover, the proposed procedure is robust because both the optimal interval of tolerance of similarity and the reproducibility of observed leaf areas through digital image surrogates were independent of sample size. The present method provides simplified, unbiased and non-destructive measurements of eelgrass leaf area. These measurements, in conjunction with allometric methods, can predict the dynamics of eelgrass biomass and leaf growth through indirect techniques, reducing the destructive effect of sampling, fundamental to the evaluation of eelgrass restoration projects thereby contributing to the conservation of this important seagrass species.

  8. Effect of acid mist and air pollutants on yellow-poplar seedling height and leaf growth

    Treesearch

    Leon S. Dochinger; Keith F. Jensen; Keith F. Jensen

    1985-01-01

    One-year-old yellow-poplar seedlings were treated with acid mist at pH 2.5, 3.5, 4.5, and 5.5 either alone or in combination with 0.1 ppm 03, S02, and NO2 or NO2 plus S02. After 4 and 8 weeks of treatment, height, leaf area, and leaf and new shoot weight were determined and growth analysis variables calculated. Height, leaf area, and dry weight decreased with...

  9. Automated In-Situ Laser Scanner for Monitoring Forest Leaf Area Index

    PubMed Central

    Culvenor, Darius S.; Newnham, Glenn J.; Mellor, Andrew; Sims, Neil C.; Haywood, Andrew

    2014-01-01

    An automated laser rangefinding instrument was developed to characterize overstorey and understorey vegetation dynamics over time. Design criteria were based on information needs within the statewide forest monitoring program in Victoria, Australia. The ground-based monitoring instrument captures the key vegetation structural information needed to overcome ambiguity in the estimation of forest Leaf Area Index (LAI) from satellite sensors. The scanning lidar instrument was developed primarily from low cost, commercially accessible components. While the 635 nm wavelength lidar is not ideally suited to vegetation studies, there was an acceptable trade-off between cost and performance. Tests demonstrated reliable range estimates to live foliage up to a distance of 60 m during night-time operation. Given the instrument's scan angle of 57.5 degrees zenith, the instrument is an effective tool for monitoring LAI in forest canopies up to a height of 30 m. An 18 month field trial of three co-located instruments showed consistent seasonal trends and mean LAI of between 1.32 to 1.56 and a temporal LAI variation of 8 to 17% relative to the mean. PMID:25196006

  10. Worldwide Historical Estimates of Leaf Area Index, 1932-2000

    NASA Technical Reports Server (NTRS)

    Scurlock, J. M. O.; Asner, G. P.; Gower, S. T.

    2001-01-01

    Approximately 1000 published estimates of leaf area index (LAI) from nearly 400 unique field sites, covering the period 1932-2000, have been compiled into a single data set. LA1 is a key parameter for global and regional models of biosphere/atmosphere exchange of carbon dioxide, water vapor, and other materials. It also plays an integral role in determining the energy balance of the land surface. This data set provides a benchmark of typical values and ranges of LA1 for a variety of biomes and land cover types, in support of model development and validation of satellite-derived remote sensing estimates of LA1 and other vegetation parameters. The LA1 data are linked to a bibliography of over 300 originalsource references.This report documents the development of this data set, its contents, and its availability on the Internet from the Oak Ridge National Laboratory Distributed Active Archive Center for Biogeochemical Dynamics. Caution is advised in using these data, which were collected using a wide range of methodologies and assumptions that may not allow comparisons among sites.

  11. Tree ecophysiology research at Taylor Woods (P-53)

    Treesearch

    Thomas E. Kolb; Nate G. McDowell

    2008-01-01

    We summarize the key findings of tree ecophysiology studies performed at Taylor Woods, Fort Valley Experimental Forest, Arizona between 1994 and 2003 that provide unique insight on impacts of long-term stand density management in ponderosa pine forests on tree water relations, leaf gas exchange, radial growth, leaf area-to-sapwood-area ratio, growth efficiency, leaf...

  12. Leaf area and net photosynthesis during development of Prunus serotina seedlings

    Treesearch

    Stephen B. Horsley; Kurt W. Gottschalk

    1993-01-01

    We used the plastochron index to study the relationship between plant age, leaf age and development, and net photosynthesis of black cherry (Prtmus serotina Ehrh.) seedlings. Leaf area and net photosynthesis were measured on all leaves >=75 mm of plants ranging in age from 7 to 20 plastochrons. Effects of plant developmental stage...

  13. Sapwood area as an estimator of leaf area and foliar weight in cherrybark oak and green ash

    Treesearch

    James S. Meadows; John D. Hodges

    2002-01-01

    The relationships between foliar weight/leaf area and four stem dimensions (d.b.h., total stem cross-sectional area, total sapwood area, and current sapwood area at breast height) were investigated in two important bottomland tree species of the Southern United States, cherrybark oak (Quercus falcata var. pagodifolia ...

  14. Temporal relationships between spectral response and agronomic variables of a corn canopy

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Markham, B. L.; Tucker, C. J.; Mcmurtrey, J. E., III

    1981-01-01

    Attention is given to an experiment in which spectral radiance data collected in three spectral regions are related to corn canopy variables. The study extends the work of Tucker et al. (1979) in that more detailed measurements of corn canopy variables were made using quantitative techniques. Wet and dry green leaf biomass is considered along with the green leaf area index, chlorotic leaf biomass, chlorotic leaf area, and leaf water content. In addition, spectral data were collected with a hand-held radiometer having Landsat-D Thematic Mapper (TM) bands TM3 (0.63-0.69 micrometers), TM4 (0.76-0.90 micrometers), and TM5 (1.55-1.75 micrometers). TM3, TM4, and TM5 seem to be well situated spectrally for making remotely sensed measurements related to chlorophyll concentration, leaf density, and leaf water content.

  15. Leaf area and light use efficiency patterns of Norway spruce under different thinning regimes and age classes

    PubMed Central

    Gspaltl, Martin; Bauerle, William; Binkley, Dan; Sterba, Hubert

    2013-01-01

    Silviculture focuses on establishing forest stand conditions that improve the stand increment. Knowledge about the efficiency of an individual tree is essential to be able to establish stand structures that increase tree resource use efficiency and stand level production. Efficiency is often expressed as stem growth per unit leaf area (leaf area efficiency), or per unit of light absorbed (light use efficiency). We tested the hypotheses that: (1) volume increment relates more closely with crown light absorption than leaf area, since one unit of leaf area can receive different amounts of light due to competition with neighboring trees and self-shading, (2) dominant trees use light more efficiently than suppressed trees and (3) thinning increases the efficiency of light use by residual trees, partially accounting for commonly observed increases in post-thinning growth. We investigated eight even-aged Norway spruce (Picea abies (L.) Karst.) stands at Bärnkopf, Austria, spanning three age classes (mature, immature and pole-stage) and two thinning regimes (thinned and unthinned). Individual leaf area was calculated with allometric equations and absorbed photosynthetically active radiation was estimated for each tree using the three-dimensional crown model Maestra. Absorbed photosynthetically active radiation was only a slightly better predictor of volume increment than leaf area. Light use efficiency increased with increasing tree size in all stands, supporting the second hypothesis. At a given tree size, trees from the unthinned plots were more efficient, however, due to generally larger tree sizes in the thinned stands, an average tree from the thinned treatment was superior (not congruent in all plots, thus only partly supporting the third hypothesis). PMID:25540477

  16. Sensitive Indicators of Zonal Stipa Species to Changing Temperature and Precipitation in Inner Mongolia Grassland, China

    PubMed Central

    Lv, Xiaomin; Zhou, Guangsheng; Wang, Yuhui; Song, Xiliang

    2016-01-01

    Climate change often induces shifts in plant functional traits. However, knowledge related to sensitivity of different functional traits and sensitive indicator representing plant growth under hydrothermal change remains unclear. Inner Mongolia grassland is predicted to be one of the terrestrial ecosystems which are most vulnerable to climate change. In this study, we analyzed the response of four zonal Stipa species (S. baicalensis, S. grandis, S. breviflora, and S. bungeana) from Inner Mongolia grassland to changing temperature (control, increased 1.5, 2, 4, and 6°C), precipitation (decreased 30 and 15%, control, increased 15 and 30%) and their combined effects via climate control chambers. The relative change of functional traits in the unit of temperature and precipitation change was regarded as sensitivity coefficient and sensitive indicators were examined by pathway analysis. We found that sensitivity of the four Stipa species to changing temperature and precipitation could be ranked as follows: S. bungeana > S. grandis > S. breviflora > S. baicalensis. In particular, changes in leaf area, specific leaf area and root/shoot ratio could account for 86% of the changes in plant biomass in the four Stipa species. Also these three measurements were more sensitive to hydrothermal changes than the other functional traits. These three functional indicators reflected the combination of plant production capacity (leaf area), adaptive strategy (root/shoot ratio), instantaneous environmental effects (specific leaf area), and cumulative environmental effects (leaf area and root/shoot ratio). Thus, leaf area, specific leaf area and root/shoot ratio were chosen as sensitive indicators in response to changing temperature and precipitation for Stipa species. These results could provide the basis for predicting the influence of climate change on Inner Mongolia grassland based on the magnitude of changes in sensitive indicators. PMID:26904048

  17. Size-dependent enhancement of water relations during post-fire resprouting.

    PubMed

    Schafer, Jennifer L; Breslow, Bradley P; Hollingsworth, Stephanie N; Hohmann, Matthew G; Hoffmann, William A

    2014-04-01

    In resprouting species, fire-induced topkill causes a reduction in height and leaf area without a comparable reduction in the size of the root system, which should lead to an increase in the efficiency of water transport after fire. However, large plants undergo a greater relative reduction in size, compared with small plants, so we hypothesized that this enhancement in hydraulic efficiency would be greatest among large growth forms. In the ecotone between long-leaf pine (Pinus palustris Mill.) savannas and wetlands, we measured stomatal conductance (gs), mid-day leaf water potential (Ψleaf), leaf-specific whole-plant hydraulic conductance (KL.p), leaf area and height of 10 species covering a range of growth forms in burned and unburned sites. As predicted, KL.p was higher in post-fire resprouts than in unburned plants, and the post-fire increase in KL.p was positively related to plant size. Specifically, large-statured species tended to undergo the greatest relative reductions in leaf area and height, and correspondingly experienced the greatest increases in KL.p. The post-fire increase in KL.p was smaller than expected, however, due to a decrease in absolute root hydraulic conductance (i.e., not scaled to leaf area). The higher KL.p in burned sites was manifested as an increase in gs rather than an increase in Ψleaf. Post-fire increases in gs should promote high rates of photosynthesis for recovery of carbohydrate reserves and aboveground biomass, which is particularly important for large-statured species that require more time to recover their pre-fire size.

  18. The decadal state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and residence times

    PubMed Central

    Bloom, A. Anthony; Exbrayat, Jean-François; van der Velde, Ivar R.; Feng, Liang; Williams, Mathew

    2016-01-01

    The terrestrial carbon cycle is currently the least constrained component of the global carbon budget. Large uncertainties stem from a poor understanding of plant carbon allocation, stocks, residence times, and carbon use efficiency. Imposing observational constraints on the terrestrial carbon cycle and its processes is, therefore, necessary to better understand its current state and predict its future state. We combine a diagnostic ecosystem carbon model with satellite observations of leaf area and biomass (where and when available) and soil carbon data to retrieve the first global estimates, to our knowledge, of carbon cycle state and process variables at a 1° × 1° resolution; retrieved variables are independent from the plant functional type and steady-state paradigms. Our results reveal global emergent relationships in the spatial distribution of key carbon cycle states and processes. Live biomass and dead organic carbon residence times exhibit contrasting spatial features (r = 0.3). Allocation to structural carbon is highest in the wet tropics (85–88%) in contrast to higher latitudes (73–82%), where allocation shifts toward photosynthetic carbon. Carbon use efficiency is lowest (0.42–0.44) in the wet tropics. We find an emergent global correlation between retrievals of leaf mass per leaf area and leaf lifespan (r = 0.64–0.80) that matches independent trait studies. We show that conventional land cover types cannot adequately describe the spatial variability of key carbon states and processes (multiple correlation median = 0.41). This mismatch has strong implications for the prediction of terrestrial carbon dynamics, which are currently based on globally applied parameters linked to land cover or plant functional types. PMID:26787856

  19. Plant traits demonstrate that temperate and tropical giant eucalypt forests are ecologically convergent with rainforest not savanna.

    PubMed

    Tng, David Y P; Jordan, Greg J; Bowman, David M J S

    2013-01-01

    Ecological theory differentiates rainforest and open vegetation in many regions as functionally divergent alternative stable states with transitional (ecotonal) vegetation between the two forming transient unstable states. This transitional vegetation is of considerable significance, not only as a test case for theories of vegetation dynamics, but also because this type of vegetation is of major economic importance, and is home to a suite of species of conservation significance, including the world's tallest flowering plants. We therefore created predictions of patterns in plant functional traits that would test the alternative stable states model of these systems. We measured functional traits of 128 trees and shrubs across tropical and temperate rainforest - open vegetation transitions in Australia, with giant eucalypt forests situated between these vegetation types. We analysed a set of functional traits: leaf carbon isotopes, leaf area, leaf mass per area, leaf slenderness, wood density, maximum height and bark thickness, using univariate and multivariate methods. For most traits, giant eucalypt forest was similar to rainforest, while rainforest, particularly tropical rainforest, was significantly different from the open vegetation. In multivariate analyses, tropical and temperate rainforest diverged functionally, and both segregated from open vegetation. Furthermore, the giant eucalypt forests overlapped in function with their respective rainforests. The two types of giant eucalypt forests also exhibited greater overall functional similarity to each other than to any of the open vegetation types. We conclude that tropical and temperate giant eucalypt forests are ecologically and functionally convergent. The lack of clear functional differentiation from rainforest suggests that giant eucalypt forests are unstable states within the basin of attraction of rainforest. Our results have important implications for giant eucalypt forest management.

  20. Plant Traits Demonstrate That Temperate and Tropical Giant Eucalypt Forests Are Ecologically Convergent with Rainforest Not Savanna

    PubMed Central

    Tng, David Y. P.; Jordan, Greg J.; Bowman, David M. J. S.

    2013-01-01

    Ecological theory differentiates rainforest and open vegetation in many regions as functionally divergent alternative stable states with transitional (ecotonal) vegetation between the two forming transient unstable states. This transitional vegetation is of considerable significance, not only as a test case for theories of vegetation dynamics, but also because this type of vegetation is of major economic importance, and is home to a suite of species of conservation significance, including the world’s tallest flowering plants. We therefore created predictions of patterns in plant functional traits that would test the alternative stable states model of these systems. We measured functional traits of 128 trees and shrubs across tropical and temperate rainforest – open vegetation transitions in Australia, with giant eucalypt forests situated between these vegetation types. We analysed a set of functional traits: leaf carbon isotopes, leaf area, leaf mass per area, leaf slenderness, wood density, maximum height and bark thickness, using univariate and multivariate methods. For most traits, giant eucalypt forest was similar to rainforest, while rainforest, particularly tropical rainforest, was significantly different from the open vegetation. In multivariate analyses, tropical and temperate rainforest diverged functionally, and both segregated from open vegetation. Furthermore, the giant eucalypt forests overlapped in function with their respective rainforests. The two types of giant eucalypt forests also exhibited greater overall functional similarity to each other than to any of the open vegetation types. We conclude that tropical and temperate giant eucalypt forests are ecologically and functionally convergent. The lack of clear functional differentiation from rainforest suggests that giant eucalypt forests are unstable states within the basin of attraction of rainforest. Our results have important implications for giant eucalypt forest management. PMID:24358359

  1. Tolerance and resistance of invasive and native Eupatorium species to generalist herbivore insects

    NASA Astrophysics Data System (ADS)

    Wang, Rui-Fang; Feng, Yu-Long

    2016-11-01

    Invasive plants are exotic species that escape control by native specialist enemies. However, exotic plants may still be attacked by locally occurring generalist enemies, which can influence the dynamics of biological invasions. If invasive plants have greater defensive (resistance and tolerance) capabilities than indigenous plants, they may experience less damage from native herbivores. In the present study, we tested this prediction using the invasive plant Eupatorium adenophorum and two native congeners under simulated defoliation and generalist herbivore insect (Helicoverpa armigera and Spodoptera litura) treatments. E. adenophorum was less susceptible and compensated more quickly to damages in biomass production from both treatments compared to its two congeners, exhibiting greater herbivore tolerance. This strong tolerance to damage was associated with greater resource allocation to aboveground structures, leading to a higher leaf area ratio and a lower root: crown mass ratio than those of its native congeners. E. adenophorum also displayed a higher resistance index (which integrates acid detergent fiber, nitrogen content, carbon/nitrogen ratio, leaf mass per area, toughness, and trichome density) than its two congeners. Thus, H. armigera and S. litura performed poorly on E. adenophorum, with less leaf damage, a lengthened insect developmental duration, and decreased pupating: molting ratios compared to those of the native congeners. Strong tolerance and resistance traits may facilitate the successful invasion of E. adenophorum in China and may decrease the efficacy of leaf-feeding biocontrol agents. Our results highlight both the need for further research on defensive traits and their role in the invasiveness and biological control of exotic plants, and suggest that biocontrol of E. adenophorum in China would require damage to the plant far in excess of current levels.

  2. Soil moisture control of sap-flow response to biophysical factors in a desert-shrub species, Artemisia ordosica

    NASA Astrophysics Data System (ADS)

    Zha, Tianshan; Qian, Duo; Jia, Xin; Bai, Yujie; Tian, Yun; Bourque, Charles P.-A.; Ma, Jingyong; Feng, Wei; Wu, Bin; Peltola, Heli

    2017-10-01

    The current understanding of acclimation processes in desert-shrub species to drought stress in dryland ecosystems is still incomplete. In this study, we measured sap flow in Artemisia ordosica and associated environmental variables throughout the growing seasons of 2013 and 2014 (May-September period of each year) to better understand the environmental controls on the temporal dynamics of sap flow. We found that the occurrence of drought in the dry year of 2013 during the leaf-expansion and leaf-expanded periods caused sap flow per leaf area (Js) to decline significantly, resulting in transpiration being 34 % lower in 2013 than in 2014. Sap flow per leaf area correlated positively with radiation (Rs), air temperature (T), and water vapor pressure deficit (VPD) when volumetric soil water content (VWC) was greater than 0.10 m3 m-3. Diurnal Js was generally ahead of Rs by as much as 6 hours. This time lag, however, decreased with increasing VWC. The relative response of Js to the environmental variables (i.e., Rs, T, and VPD) varied with VWC, Js being more strongly controlled by plant-physiological processes during periods of dryness indicated by a low decoupling coefficient and low sensitivity to the environmental variables. According to this study, soil moisture is shown to control sap-flow (and, therefore, plant-transpiration) response in Artemisia ordosica to diurnal variations in biophysical factors. This species escaped (acclimated to) water limitations by invoking a water-conservation strategy with the regulation of stomatal conductance and advancement of Js peaking time, manifesting in a hysteresis effect. The findings of this study add to the knowledge of acclimation processes in desert-shrub species under drought-associated stress. This knowledge is essential in modeling desert-shrub-ecosystem functioning under changing climatic conditions.

  3. Linking Tropical Forest Function to Hydraulic Traits in a Size-Structured and Trait-Based Model

    NASA Astrophysics Data System (ADS)

    Christoffersen, B. O.; Gloor, M.; Fauset, S.; Fyllas, N.; Galbraith, D.; Baker, T. R.; Rowland, L.; Fisher, R.; Binks, O.; Sevanto, S.; Xu, C.; Jansen, S.; Choat, B.; Mencuccini, M.; McDowell, N. G.; Meir, P.

    2015-12-01

    A major weakness of forest ecosystem models is their inability to capture the diversity of responses to changes in water availability, severely hampering efforts to predict the fate of tropical forests under climate change. Such models often prescribe moisture sensitivity using heuristic response functions that are uniform across all individuals and lack important knowledge about trade-offs in hydraulic traits. We address this weakness by implementing a process representation of plant hydraulics into an individual- and trait-based model (Trait Forest Simulator; TFS) intended for application at discrete sites where community-level distributions of stem and leaf trait spectra (wood density, leaf mass per area, leaf nitrogen and phosphorus content) are known. The model represents a trade-off in the safety and efficiency of water conduction in xylem tissue through hydraulic traits, while accounting for the counteracting effects of increasing hydraulic path length and xylem conduit taper on whole-plant hydraulic resistance with increasing tree size. Using existing trait databases and additional meta-analyses from the rich literature on tropical tree ecophysiology, we obtained all necessary hydraulic parameters associated with xylem conductivity, vulnerability curves, pressure-volume curves, and hydraulic architecture (e.g., leaf-to-sapwood area ratios) as a function of the aforementioned traits and tree size. Incorporating these relationships in the model greatly improved the diversity of tree response to seasonal changes in water availability as well as in response to drought, as determined by comparison with field observations and experiments. Importantly, this individual- and trait-based framework provides a testbed for identifying both critical processes and functional traits needed for inclusion in coarse-scale Dynamic Global Vegetation Models, which will lead to reduced uncertainty in the future state of tropical forests.

  4. Photosynthetic capacity peaks at intermediate size in temperate deciduous trees.

    PubMed

    Thomas, Sean C

    2010-05-01

    Studies of age-related changes in leaf functional biology have generally been based on dichotomous comparisons of young and mature individuals (e.g., saplings and mature canopy trees), with little data available to describe changes through the entire ontogeny of trees, particularly of broadleaf angiosperms. Leaf-level gas-exchange and morphological parameters were quantified in situ in the upper canopy of trees acclimated to high light conditions, spanning a wide range of ontogenetic stages from saplings (approximately 1 cm in stem diameter) to trees >60 cm d.b.h. and nearing their maximum lifespan, in three temperate deciduous tree species in central Ontario, Canada. Traits associated with growth performance, including leaf photosynthetic capacity (expressed on either an area, mass or leaf N basis), stomatal conductance, leaf size and leaf N content, generally showed a unimodal ('hump-shaped') pattern, with peak values at an intermediate ontogenetic stage. In contrast, leaf mass per area (LMA) and related morphological parameters (leaf thickness, leaf tissue density, leaf C content) increased monotonically with tree size, as did water-use efficiency; these monotonic relationships were well described by simple allometric functions of the form Y = aX(b). For traits showing unimodal patterns, tree size corresponding to the trait maximum differed markedly among traits: all three species showed a similar pattern in which the peak for leaf size occurred in trees approximately 2-6 cm d.b.h., followed by leaf chemical traits and photosynthetic capacity on a mass or leaf N basis and finally by photosynthetic capacity on a leaf area basis, which peaked approximately at the size of reproductive onset. It is argued that ontogenetic increases in photosynthetic capacity and related traits early in tree ontogeny are general among relatively shade-tolerant tree species that have a low capacity for leaf-level acclimation, as are declines in this set of traits late in tree ontogeny.

  5. Turning over a new 'leaf': multiple functional significances of leaves versus phyllodes in Hawaiian Acacia koa.

    PubMed

    Pasquet-Kok, Jessica; Creese, Christine; Sack, Lawren

    2010-12-01

    Hawaiian endemic tree Acacia koa is a model for heteroblasty with bipinnately compound leaves and phyllodes. Previous studies suggested three hypotheses for their functional differentiation: an advantage of leaves for early growth or shade tolerance, and an advantage of phyllodes for drought tolerance. We tested the ability of these hypotheses to explain differences between leaf types for potted plants in 104 physiological and morphological traits, including gas exchange, structure and composition, hydraulic conductance, and responses to varying light, intercellular CO(2) , vapour pressure deficit (VPD) and drought. Leaf types were similar in numerous traits including stomatal pore area per leaf area, leaf area-based gas exchange rates and cuticular conductance. Each hypothesis was directly supported by key differences in function. Leaves had higher mass-based gas exchange rates, while the water storage tissue in phyllodes contributed to greater capacitance per area; phyllodes also showed stronger stomatal closure at high VPD, and higher maximum hydraulic conductance per area, with stronger decline during desiccation and recovery with rehydration. While no single hypothesis completely explained the differences between leaf types, together the three hypotheses explained 91% of differences. These findings indicate that the heteroblasty confers multiple benefits, realized across different developmental stages and environmental contexts. © 2010 Blackwell Publishing Ltd.

  6. Monocot Leaves are Eaten Less than Dicot Leaves in Tropical Lowland Rain Forests: Correlations with Toughness and Leaf Presentation

    PubMed Central

    Grubb, Peter J.; Jackson, Robyn V.; Barberis, Ignacio M.; Bee, Jennie N.; Coomes, David A.; Dominy, Nathaniel J.; De La Fuente, Marie Ann S.; Lucas, Peter W.; Metcalfe, Daniel J.; Svenning, Jens-Christian; Turner, Ian M.; Vargas, Orlando

    2008-01-01

    Background and Aims In tropical lowland rain forest (TLRF) the leaves of most monocots differ from those of most dicots in two ways that may reduce attack by herbivores. Firstly, they are tougher. Secondly, the immature leaves are tightly folded or rolled until 50–100 % of their final length. It was hypothesized that (a) losses of leaf area to herbivorous invertebrates are generally greatest during leaf expansion and smaller for monocots than for dicots, and (b) where losses after expansion are appreciable any difference between monocots and dicots then is smaller than that found during expansion. Methods At six sites on four continents, estimates were made of lamina area loss from the four most recently mature leaves of focal monocots and of the nearest dicot shoot. Measurements of leaf mass per unit area, and the concentrations of water and nitrogen were made for many of the species. In Panama, the losses from monocots (palms) and dicots were also measured after placing fully expanded palm leaflets and whole dicot leaves on trails of leaf-cutter ants. Key Results At five of six sites monocots experienced significantly smaller leaf area loss than dicots. The results were not explicable in terms of leaf mass per unit area, or concentrations of water or nitrogen. At only one site was the increase in loss from first to fourth mature leaf significant (also large and the same in monocots and dicots), but the losses sustained during expansion were much smaller in the monocots. In the leaf-cutter ant experiment, losses were much smaller for palms than for dicots. Conclusions The relationship between toughness and herbivory is complex; despite the negative findings of some recent authors for dicots we hypothesize that either greater toughness or late folding can protect monocot leaves against herbivorous insects in tropical lowland rain forest, and that the relative importance varies widely with species. The difficulties of establishing unequivocally the roles of leaf toughness and leaf folding or rolling in a given case are discussed. PMID:18387972

  7. Growth history and crown vine coverage are principal factors influencing growth and mortality rates of big-leaf mahogany Swietenia macrophylla in Brazil

    Treesearch

    James Grogan; R. Matthew Landis

    2009-01-01

    1. Current efforts to model population dynamics of high-value tropical timber species largely assume that individual growth history is unimportant to population dynamics, yet growth autocorrelation is known to adversely affect model predictions. In this study, we analyse a decade of annual census data from a natural population of big-leaf mahogany Swietenia macrophylla...

  8. Effects of elevated atmospheric Co2 and tropospheric O3 on nutrient dynamics: decomposition of leaf litter in trembling aspen and paper birch communities. Plant Soil. 299:65–82.

    Treesearch

    Lingli Liu; John S. King; Christian P. Giardina

    2007-01-01

    Atmospheric changes could strongly influence how terrestrial ecosystems function by altering nutrient cycling. We examined how the dynamics of nutrient release from leaf litter responded to two important atmospheric changes: rising atmospheric Co2 and tropospheric O3. We evaluated the independent and combined effects of...

  9. Phenology, Canopy Aging and Seasonal Carbon Balance as Related to Delayed Winter Pruning of Vitis vinifera L. cv. Sangiovese Grapevines

    PubMed Central

    Gatti, Matteo; Pirez, Facundo J.; Chiari, Giorgio; Tombesi, Sergio; Palliotti, Alberto; Merli, Maria C.; Poni, Stefano

    2016-01-01

    Manipulating or shifting annual grapevine growing cycle to offset limitations imposed by global warming is a must today, and delayed winter pruning is a tool to achieve it. However, no information is available about its physiological background, especially in relation to modifications in canopy phenology, demography and seasonal carbon budget. Mechanistic hypothesis underlying this work was that very late winter pruning (LWP) can achieve significant postponement of phenological stages so that ripening might occur in a cooler period and, concurrently, ripening potential can be improved due to higher efficiency and prolonged longevity of the canopy. Variability in the dynamics of the annual cycle was created in mature potted cv. Sangiovese grapevines subjected to either standard winter pruning (SWP) or late and very late winter pruning (LWP, VLWP) performed when apical shoots on the unpruned canes were at the stage of 2 and 7 unfolded leaves. Vegetative growth, phenology and canopy net CO2 exchange (NCER) were followed throughout the season. Despite LWP and VLWP induced a bud-burst delay of 17 and 31 days vs. SWP, the delay was fully offset at harvest for LWP and was reduced to 6 days in VLWP. LWP showed notably higher canopy efficiency as shorter time needed to reach maximum NCER/leaf area (22 days vs. 34 in SWP), highest maximum NCER/leaf area (+37% as compared to SWP) and higher NCER/leaf area rates from veraison to end of season. As a result, seasonal cumulated carbon in LWP was 17% higher than SWP. A negative functional relationship was also established between amount of leaf area removed at winter pruning and yield per vine and berry number per cluster. Although retarded winter pruning was not able to postpone late-season phenological stages under the warm conditions of this study, it showed a remarkable potential to limit yield while improving grape quality, thereby fostering the hypothesis that it could be used to replace time-consuming and costly cluster thinning. This preliminary study indicates that proper winter pruning date should be timed so as not to exceed the stage of two unfolded leaves. PMID:27242860

  10. Leaf litter decomposition and elemental change in three Appalachian mountain streams of different pH

    Treesearch

    Steven W. Solada; Sue A. Perry; William B. Perry

    1996-01-01

    The decomposition of leaf litter provides the primary nutrient source for many of the headwater mountain streams in forested catchments. An investigation of factors affected by global change that influence organic matter decomposition, such as temperature and pH, is important in understanding the dynamics of these systems. We conducted a study of leaf litter elemental...

  11. High resolution imaging of subcellular glutathione concentrations by quantitative immunoelectron microscopy in different leaf areas of Arabidopsis

    PubMed Central

    Koffler, Barbara E.; Bloem, Elke; Zellnig, Günther; Zechmann, Bernd

    2013-01-01

    Glutathione is an important antioxidant and redox buffer in plants. It fulfills many important roles during plant development, defense and is essential for plant metabolism. Even though the compartment specific roles of glutathione during abiotic and biotic stress situations have been studied in detail there is still great lack of knowledge about subcellular glutathione concentrations within the different leaf areas at different stages of development. In this study a method is described that allows the calculation of compartment specific glutathione concentrations in all cell compartments simultaneously in one experiment by using quantitative immunogold electron microscopy combined with biochemical methods in different leaf areas of Arabidopsis thaliana Col-0 (center of the leaf, leaf apex, leaf base and leaf edge). The volume of subcellular compartments in the mesophyll of Arabidopsis was found to be similar to other plants. Vacuoles covered the largest volume within a mesophyll cell and increased with leaf age (up to 80% in the leaf apex of older leaves). Behind vacuoles, chloroplasts covered the second largest volume (up to 20% in the leaf edge of the younger leaves) followed by nuclei (up to 2.3% in the leaf edge of the younger leaves), mitochondria (up to 1.6% in the leaf apex of the younger leaves), and peroxisomes (up to 0.3% in the leaf apex of the younger leaves). These values together with volumes of the mesophyll determined by stereological methods from light and electron micrographs and global glutathione contents measured with biochemical methods enabled the determination of subcellular glutathione contents in mM. Even though biochemical investigations did not reveal differences in global glutathione contents, compartment specific differences could be observed in some cell compartments within the different leaf areas. Highest concentrations of glutathione were always found in mitochondria, where values in a range between 8.7 mM (in the apex of younger leaves) and 15.1 mM (in the apex of older leaves) were found. The second highest amount of glutathione was found in nuclei (between 5.5 mM and 9.7 mM in the base and the center of younger leaves, respectively) followed by peroxisomes (between 2.6 mM in the edge of younger leaves and 4.8 mM in the base of older leaves, respectively) and the cytosol (2.8 mM in the edge of younger and 4.5 mM in the center of older leaves, respectively). Chloroplasts contained rather low amounts of glutathione (between 1 mM and 1.4 mM). Vacuoles had the lowest concentrations of glutathione (0.01 mM and 0.14 mM) but showed large differences between the different leaf areas. Clear differences in glutathione contents between the different leaf areas could only be found in vacuoles and mitochondria revealing that glutathione in the later cell organelle accumulated with leaf age to concentrations of up to 15 mM and that concentrations of glutathione in vacuoles are quite low in comparison to the other cell compartments. PMID:23265941

  12. Stomatal dynamics are limited by leaf hydraulics in ferns and conifers: results from simultaneous measurements of liquid and vapour fluxes in leaves.

    PubMed

    Martins, Samuel C V; McAdam, Scott A M; Deans, Ross M; DaMatta, Fábio M; Brodribb, Tim J

    2016-03-01

    Stomatal responsiveness to vapour pressure deficit (VPD) results in continuous regulation of daytime gas-exchange directly influencing leaf water status and carbon gain. Current models can reasonably predict steady-state stomatal conductance (gs ) to changes in VPD but the gs dynamics between steady-states are poorly known. Here, we used a diverse sample of conifers and ferns to show that leaf hydraulic architecture, in particular leaf capacitance, has a major role in determining the gs response time to perturbations in VPD. By using simultaneous measurements of liquid and vapour fluxes into and out of leaves, the in situ fluctuations in leaf water balance were calculated and appeared to be closely tracked by changes in gs thus supporting a passive model of stomatal control. Indeed, good agreement was found between observed and predicted gs when using a hydropassive model based on hydraulic traits. We contend that a simple passive hydraulic control of stomata in response to changes in leaf water status provides for efficient stomatal responses to VPD in ferns and conifers, leading to closure rates as fast or faster than those seen in most angiosperms. © 2015 John Wiley & Sons Ltd.

  13. Leaf trait dissimilarities between Dutch elm hybrids with a contrasting tolerance to Dutch elm disease.

    PubMed

    Durkovic, Jaroslav; Canová, Ingrid; Lagana, Rastislav; Kucerová, Veronika; Moravcík, Michal; Priwitzer, Tibor; Urban, Josef; Dvorák, Milon; Krajnáková, Jana

    2013-02-01

    Previous studies have shown that Ophiostoma novo-ulmi, the causative agent of Dutch elm disease (DED), is able to colonize remote areas in infected plants of Ulmus such as the leaf midrib and secondary veins. The objective of this study was to compare the performances in leaf traits between two Dutch elm hybrids 'Groeneveld' and 'Dodoens' which possess a contrasting tolerance to DED. Trait linkages were also tested with leaf mass per area (LMA) and with the reduced Young's modulus of elasticity (MOE) as a result of structural, developmental or functional linkages. Measurements and comparisons were made of leaf growth traits, primary xylem density components, gas exchange variables and chlorophyll a fluorescence yields between mature plants of 'Groeneveld' and 'Dodoens' grown under field conditions. A recently developed atomic force microscopy technique, PeakForce quantitative nanomechanical mapping, was used to reveal nanomechanical properties of the cell walls of tracheary elements such as MOE, adhesion and dissipation. 'Dodoens' had significantly higher values for LMA, leaf tissue thickness variables, tracheary element lumen area (A), relative hydraulic conductivity (RC), gas exchange variables and chlorophyll a fluorescence yields. 'Groeneveld' had stiffer cell walls of tracheary elements, and higher values for water-use efficiency and leaf water potential. Leaves with a large carbon and nutrient investment in LMA tended to have a greater leaf thickness and a higher net photosynthetic rate, but LMA was independent of RC. Significant linkages were also found between the MOE and some vascular traits such as RC, A and the number of tracheary elements per unit area. Strong dissimilarities in leaf trait performances were observed between the examined Dutch elm hybrids. Both hybrids were clearly separated from each other in the multivariate leaf trait space. Leaf growth, vascular and gas exchange traits in the infected plants of 'Dodoens' were unaffected by the DED fungus. 'Dodoens' proved to be a valuable elm germplasm for further breeding strategies.

  14. Seasonal variation of temperature response of respiration in invasive Berberis thunbergii (Japanese barberry) and two co-occurring native understory shrubs in a northeastern US deciduous forest.

    PubMed

    Xu, Cheng-Yuan; Schuster, W S F; Griffin, Kevin L

    2007-10-01

    In the understory of a closed forest, plant growth is limited by light availability, and early leafing is proposed to be an important mechanism of plant invasion by providing a spring C "subsidy" when high light is available. However, studies on respiration, another important process determining plant net C gain, are rare in understory invasive plants. In this study, leaf properties and the temperature response of leaf respiration were compared between invasive Berberis thunbergii, an early leafing understory shrub, and two native shrubs, Kalmia latifolia, a broadleaf evergreen and Vaccinium corymbosum, a late-leafing deciduous species, in an oak-dominated deciduous forest. The seasonal trend of the basal respiration rates (R(0)) and the temperature response coefficient (E(0)), were different among the three shrubs and species-specific negative correlations were observed between R(0) and E(0). All three shrubs showed significant correlation between respiration rate on an area basis (20 degrees C) and leaf N on an area basis. The relationship was attributed to the variation of both leaf N on a mass basis and leaf mass per area (LMA) in B. thunbergii, but to LMA only in K. latifolia and V. corymbosum. After modeling leaf respiration throughout 2004, B. thunbergii displayed much higher annual leaf respiration (mass based) than the two native shrubs, indicating a higher cost per unit of biomass investment. Thus, respiratory properties alone were not likely to lead to C balance advantage of B. thunbergii. Future studies on whole plant C budgets and leaf construction cost are needed to address the C balance advantage in early leafing understory shrubs like B. thunbergii.

  15. Plasticity in seedling morphology, biomass allocation and physiology among ten temperate tree species in response to shade is related to shade tolerance and not leaf habit.

    PubMed

    Chmura, D J; Modrzyński, J; Chmielarz, P; Tjoelker, M G

    2017-03-01

    Mechanisms of shade tolerance in tree seedlings, and thus growth in shade, may differ by leaf habit and vary with ontogeny following seed germination. To examine early responses of seedlings to shade in relation to morphological, physiological and biomass allocation traits, we compared seedlings of 10 temperate species, varying in their leaf habit (broadleaved versus needle-leaved) and observed tolerance to shade, when growing in two contrasting light treatments - open (about 20% of full sunlight) and shade (about 5% of full sunlight). We analyzed biomass allocation and its response to shade using allometric relationships. We also measured leaf gas exchange rates and leaf N in the two light treatments. Compared to the open treatment, shading significantly increased traits typically associated with high relative growth rate (RGR) - leaf area ratio (LAR), specific leaf area (SLA), and allocation of biomass into leaves, and reduced seedling mass and allocation to roots, and net assimilation rate (NAR). Interestingly, RGR was not affected by light treatment, likely because of morphological and physiological adjustments in shaded plants that offset reductions of in situ net assimilation of carbon in shade. Leaf area-based rates of light-saturated leaf gas exchange differed among species groups, but not between light treatments, as leaf N concentration increased in concert with increased SLA in shade. We found little evidence to support the hypothesis of a increased plasticity of broadleaved species compared to needle-leaved conifers in response to shade. However, an expectation of higher plasticity in shade-intolerant species than in shade-tolerant ones, and in leaf and plant morphology than in biomass allocation was supported across species of contrasting leaf habit. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Real-time tracking of tumor motions and deformations along the leaf travel direction with the aid of a synchronized dynamic MLC leaf sequencer.

    PubMed

    Tacke, Martin; Nill, Simeon; Oelfke, Uwe

    2007-11-21

    Advanced radiotherapeutical techniques like intensity-modulated radiation therapy (IMRT) are based on an accurate knowledge of the location of the radiation target. An accurate dose delivery, therefore, requires a method to account for the inter- and intrafractional target motion and the target deformation occurring during the course of treatment. A method to compensate in real time for changes in the position and shape of the target is the use of a dynamic multileaf collimator (MLC) technique which can be devised to automatically arrange the treatment field according to real-time image information. So far, various approaches proposed for leaf sequencers have had to rely on a priori known target motion data and have aimed to optimize the overall treatment time. Since for a real-time dose delivery the target motion is not known a priori, the velocity range of the leading leaves is restricted by a safety margin to c x v(max) while the following leaves can travel with an additional maximum speed to compensate for the respective target movements. Another aspect to be considered is the tongue and groove effect. A uniform radiation field can only be achieved if the leaf movements are synchronized. The method presented in this note is the first to combine a synchronizing sequencer and real-time tracking with a dynamic MLC. The newly developed algorithm is capable of online optimizing the leaf velocities by minimizing the overall treatment time while at the same time it synchronizes the leaf trajectories in order to avoid the tongue and groove effect. The simultaneous synchronization is performed with the help of an online-calculated mid-time leaf trajectory which is common for all leaf pairs and which takes into account the real-time target motion and deformation information.

  17. Leaf Mass Area, Leaf Carbon and Nitrogen Content, Kougarok Road and Teller Road, Seward Peninsula, Alaska, 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shawn Serbin; Alistair Rogers; Kim Ely

    Carbon, Nitrogen and Leaf Mass Area of leaves sampled from locations on the Kougarok Rd (transect A) and Teller Rd NGEE Arctic study sites, Seward Peninsula, Alaska. Species include: Alnus viridis spp. fruticosa, Arctostaphylos rubra, Betula glandulosa, Chamerion latifolium, Petasites frigidus, Salix alaxensis, Salix glauca, Salix pulchra, Salix richardsonii and Vaccinium uliginosum.

  18. Population dynamics of the rubber plantation litter beetle Luprops tristis, in relation to annual cycle of foliage phenology of its host, the para rubber tree, Hevea brasiliensis.

    PubMed

    Sabu, Thomas K; Vinod, K V

    2009-01-01

    The population dynamics of the rubber plantation litter beetle, Luprops tristis Fabricius 1801 (Coleoptera: Tenebrionidae) was assessed in relation to the phenology of leaf shedding and defoliation pattern of para rubber trees, Hevea brasiliensis Müll. Arg (Malpighiales: Euphorbiaceae), during a two year study period. The abundance of adults, larvae and pupae per 1m(2) of litter sample was recorded. Post dormancy beetles appeared in leaf litter following annual leaf shedding, whereas larvae, pupae and teneral adults were present after leaf flush. No stages were recorded from plantations following the summer rains until the annual litter fall in the next season. Parental adults peaked at the time of leaf sprouting and tender leaf fall. Larvae and teneral adults peaked at the time of premature fall of green leaves and flowers. Teneral adults of six age classes were recorded and all entered dormancy irrespective of the feeding time available to each age class. Females outnumbered males in the parent generation, while the sex ratio of new generation adults was not biased towards either sex. The phenological stages of rubber trees included leaf fall in late December and early January, leaf sprouting and new leaf production in January and flowering in February. All feeding stages of L. tristis peaked in abundance when premature leaves are most abundant in the leaf litter. Prediction of the timing of appearance of various developmental stages of L. tristis in plantations, invasion into buildings and intensity of population build up in rubber belts is possible by tracking the phenology of leaf fall in rubber plantations, time of return of post dormancy adults and the onset of summer rainfall. Perfect synchrony was recorded between the field return of parental adults with annual leaf shedding, the oviposition phase of parental adults with tender leaf fall at the time of leaf sprouting, and larval and teneral adult stages with premature fall of leaves. Premature leaf availability is suggested as contributing to the reproductive efficiency of parental adults, the survival of early developmental stages and of new generation adults during dormancy.

  19. Population Dynamics of the Rubber Plantation Litter Beetle Luprops tristis, in Relation to Annual Cycle of Foliage Phenology of Its Host, the Para Rubber Tree, Hevea brasiliensis

    PubMed Central

    Sabu, Thomas K.; Vinod, K.V.

    2009-01-01

    The population dynamics of the rubber plantation litter beetle, Luprops tristis Fabricius 1801 (Coleoptera: Tenebrionidae) was assessed in relation to the phenology of leaf shedding and defoliation pattern of para rubber trees, Hevea brasiliensis Müll. Arg (Malpighiales: Euphorbiaceae), during a two year study period. The abundance of adults, larvae and pupae per 1m2 of litter sample was recorded. Post dormancy beetles appeared in leaf litter following annual leaf shedding, whereas larvae, pupae and teneral adults were present after leaf flush. No stages were recorded from plantations following the summer rains until the annual litter fall in the next season. Parental adults peaked at the time of leaf sprouting and tender leaf fall. Larvae and teneral adults peaked at the time of premature fall of green leaves and flowers. Teneral adults of six age classes were recorded and all entered dormancy irrespective of the feeding time available to each age class. Females outnumbered males in the parent generation, while the sex ratio of new generation adults was not biased towards either sex. The phenological stages of rubber trees included leaf fall in late December and early January, leaf sprouting and new leaf production in January and flowering in February. All feeding stages of L. tristis peaked in abundance when premature leaves are most abundant in the leaf litter. Prediction of the timing of appearance of various developmental stages of L. tristis in plantations, invasion into buildings and intensity of population build up in rubber belts is possible by tracking the phenology of leaf fall in rubber plantations, time of return of post dormancy adults and the onset of summer rainfall. Perfect synchrony was recorded between the field return of parental adults with annual leaf shedding, the oviposition phase of parental adults with tender leaf fall at the time of leaf sprouting, and larval and teneral adult stages with premature fall of leaves. Premature leaf availability is suggested as contributing to the reproductive efficiency of parental adults, the survival of early developmental stages and of new generation adults during dormancy. PMID:20050775

  20. Introduction to the Special Issue: Across the horizon: scale effects in global change research.

    PubMed

    Gornish, Elise S; Leuzinger, Sebastian

    2015-01-01

    As a result of the increasing speed and magnitude in which habitats worldwide are experiencing environmental change, making accurate predictions of the effects of global change on ecosystems and the organisms that inhabit them have become an important goal for ecologists. Experimental and modelling approaches aimed at understanding the linkages between factors of global change and biotic responses have become numerous and increasingly complex in order to adequately capture the multifarious dynamics associated with these relationships. However, constrained by resources, experiments are often conducted at small spatiotemporal scales (e.g. looking at a plot of a few square metres over a few years) and at low organizational levels (looking at organisms rather than ecosystems) in spite of both theoretical and experimental work that suggests ecological dynamics across scales can be dissimilar. This phenomenon has been hypothesized to occur because the mechanisms that drive dynamics across scales differ. A good example is the effect of elevated CO2 on transpiration. While at the leaf level, transpiration can be reduced, at the stand level, transpiration can increase because leaf area per unit ground area increases. The reported net effect is then highly dependent on the spatiotemporal scale. This special issue considers the biological relevancy inherent in the patterns associated with the magnitude and type of response to changing environmental conditions, across scales. This collection of papers attempts to provide a comprehensive treatment of this phenomenon in order to help develop an understanding of the extent of, and mechanisms involved with, ecological response to global change. Published by Oxford University Press on behalf of the Annals of Botany Company.

  1. Structural assessment of the impact of environmental constraints on Arabidopsis thaliana leaf growth: a 3D approach.

    PubMed

    Wuyts, Nathalie; Massonnet, Catherine; Dauzat, Myriam; Granier, Christine

    2012-09-01

    Light and soil water content affect leaf surface area expansion through modifications in epidermal cell numbers and area, while effects on leaf thickness and mesophyll cell volumes are far less documented. Here, three-dimensional imaging was applied in a study of Arabidopsis thaliana leaf growth to determine leaf thickness and the cellular organization of mesophyll tissues under moderate soil water deficit and two cumulative light conditions. In contrast to surface area, thickness was highly conserved in response to water deficit under both low and high cumulative light regimes. Unlike epidermal and palisade mesophyll tissues, no reductions in cell number were observed in the spongy mesophyll; cells had rather changed in volume and shape. Furthermore, leaf features of a selection of genotypes affected in leaf functioning were analysed. The low-starch mutant pgm had very thick leaves because of unusually large palisade mesophyll cells, together with high levels of photosynthesis and stomatal conductance. By means of an open stomata mutant and a 9-cis-epoxycarotenoid dioxygenase overexpressor, it was shown that stomatal conductance does not necessarily have a major impact on leaf dimensions and cellular organization, pointing to additional mechanisms for the control of CO(2) diffusion under high and low stomatal conductance, respectively. © 2012 Blackwell Publishing Ltd.

  2. [The analysis of the causes of variability of the relationship between leaf dry mass and area in plants].

    PubMed

    Vasfilov, S P

    2011-01-01

    The lamina dry mass: area ratio (LMA - Leaf Mass per Area) is a quite variable trait. Leaf dry mass consists of symplast mass (a set of all leaf protoplasts) and apoplast mass (a set of all cell walls in a leaf). The ratio between symplast and apoplast masses is positively related to any functional trait of leaf calculated per unit of dry mass. The value of this ratio is defined by cells size and their number per unit of leaf area, number of mesophyll cells layers and their differentiation between palisade and spongy ones, and also by density of cells packing. The LMA value is defined by leaf thickness and density. The extent and direction of variability in both leaf traits define the extent and direction of variability in LMA. Negative correlation between leaf thickness and density reduces the level of LMA variability. As a consequence of this correlation the following pattern emerges: the thinner a leaf, the denser it is. Changes in the traits that define the LMA value take place both within a species under the influence of environmental factors and between species that differ in leaf structure and functions. Light is the most powerful environmental factor that influences the LMA, increase in illumination leading to increase in LMA. This effect occurs during leaf growth at the expense of structural changes associated with the reduction of symplast/apoplast mass ratio. Under conditions of intense illumination, LMA may increase due to accumulation of starch. With regard to the majority of leaf functions, the mass of starch may be ascribed to apoplast. Starch accumulation in leaves is observed also under conditions of elevated CO2 concentration in the air. Under high illumination, however, LMA increases also due to increased apoplast contribution to leaf dry mass. Scarce mineral nutrition leads to LMA increase due to lowering of growth zones demands for phothosyntates and, therefore, to increase in starch content of leaves. High level of mineral nutrition during leaf growth period leads to LMA increase at the expense of mesophyll thickening where components of photosynthesis system are located. When additional environmental factors are involved, starch accumulation may be partly responsible for increase in LMA. LMA increase at the expense of starch accumulation, unlike that at the expense of mesophyll thickening, is accompanied by increased leaf density. Under conditions of water deficiency LMA increases, which in mature leaf may be caused by starch accumulation. LMA increase during leaf growth period under conditions of water deficiency is associated with decrease in the symplast/apoplast mass ratio.

  3. Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems.

    PubMed

    Hao, Guang-You; Hoffmann, William A; Scholz, Fabian G; Bucci, Sandra J; Meinzer, Frederick C; Franco, Augusto C; Cao, Kun-Fang; Goldstein, Guillermo

    2008-03-01

    Leaf and stem functional traits related to plant water relations were studied for six congeneric species pairs, each composed of one tree species typical of savanna habitats and another typical of adjacent forest habitats, to determine whether there were intrinsic differences in plant hydraulics between these two functional types. Only individuals growing in savanna habitats were studied. Most stem traits, including wood density, the xylem water potential at 50% loss of hydraulic conductivity, sapwood area specific conductivity, and leaf area specific conductivity did not differ significantly between savanna and forest species. However, maximum leaf hydraulic conductance (K (leaf)) and leaf capacitance tended to be higher in savanna species. Predawn leaf water potential and leaf mass per area were also higher in savanna species in all congeneric pairs. Hydraulic vulnerability curves of stems and leaves indicated that leaves were more vulnerable to drought-induced cavitation than terminal branches regardless of genus. The midday K (leaf) values estimated from leaf vulnerability curves were very low implying that daily embolism repair may occur in leaves. An electric circuit analog model predicted that, compared to forest species, savanna species took longer for their leaf water potentials to drop from predawn values to values corresponding to 50% loss of K (leaf) or to the turgor loss points, suggesting that savanna species were more buffered from changes in leaf water potential. The results of this study suggest that the relative success of savanna over forest species in savanna is related in part to their ability to cope with drought, which is determined more by leaf than by stem hydraulic traits. Variation among genera accounted for a large proportion of the total variance in most traits, which indicates that, despite different selective pressures in savanna and forest habitats, phylogeny has a stronger effect than habitat in determining most hydraulic traits.

  4. Incorporating Plant Phenology Dynamics in a Biophysical Canopy Model

    NASA Technical Reports Server (NTRS)

    Barata, Raquel A.; Drewry, Darren

    2012-01-01

    The Multi-Layer Canopy Model (MLCan) is a vegetation model created to capture plant responses to environmental change. Themodel vertically resolves carbon uptake, water vapor and energy exchange at each canopy level by coupling photosynthesis, stomatal conductance and leaf energy balance. The model is forced by incoming shortwave and longwave radiation, as well as near-surface meteorological conditions. The original formulation of MLCan utilized canopy structural traits derived from observations. This project aims to incorporate a plant phenology scheme within MLCan allowing these structural traits to vary dynamically. In the plant phenology scheme implemented here, plant growth is dependent on environmental conditions such as air temperature and soil moisture. The scheme includes functionality that models plant germination, growth, and senescence. These growth stages dictate the variation in six different vegetative carbon pools: storage, leaves, stem, coarse roots, fine roots, and reproductive. The magnitudes of these carbon pools determine land surface parameters such as leaf area index, canopy height, rooting depth and root water uptake capacity. Coupling this phenology scheme with MLCan allows for a more flexible representation of the structure and function of vegetation as it responds to changing environmental conditions.

  5. Effects of disturbances caused by coastal constructions on spatial structure, growth dynamics and photosynthesis of the seagrass Posidonia oceanica.

    PubMed

    Ruiz, J M; Romero, J

    2003-12-01

    The light-limitation hypothesis was tested to assess whether water turbidity had caused the decline of a Mediterranean Posidonia oceanica (L.) Delile meadow in an area affected by a harbor. The annual growth, photosynthesis and rhizome starch concentrations of seagrass were measured and related to changes in light availability and dissolved nutrient concentration along a gradient of meadow degradation from areas close to the harbor outwards. Environmental and plant variables were measured in three stations placed along this gradient and compared with a reference station at an undisturbed meadow. The light attenuation coefficient (k) increased toward the inner harbor area, mainly due to sediment resuspension. The shoot density and leaf productivity of P. oceanica shoots were much lower in disturbed stations of the inner harbor area than in the outer, less disturbed station and the reference meadow. However, daily leaf carbon gains, calculated from the photosynthetic rates at saturating irradiance (P(max)) and the daily period in which seagrass receives light higher than its saturating irradiance (H(sat)), suggested positive C-balance in all stations. This was partly explained by photo-acclimatization of seagrass to the reduced light availability at the disturbed harbor stations (inner and intermediate), as indicated by the lengthening of H(sat) and the decrease in saturating irradiance (I(sat)) and respiratory demands. Despite photo-acclimatization, disturbed harbor stations showed less positive C-balance, seen not only in their lower leaf growth and biomass but also in a decrease in rhizome carbohydrate reserves (starch). Our results suggest that light reduction account for the reduced seagrass productivity and abundance. However, meadow decline (in terms of shoot mortality) in the harbor area is well above that predicted from similar light environments of nearby meadows or simulated in shading experiments. Thus, there are other factors than light limitation involved in seagrass mortality, most probably through more complex interactions (e.g. nutrient-epiphytes-grazers, water quality--siltation).

  6. Relationships between stem diameter, sapwood area, leaf area and transpiration in a young mountain ash forest.

    PubMed

    Vertessy, R A; Benyon, R G; O'Sullivan, S K; Gribben, P R

    1995-09-01

    We examined relationships between stem diameter, sapwood area, leaf area and transpiration in a 15-year-old mountain ash (Eucalyptus regnans F. Muell.) forest containing silver wattle (Acacia dealbata Link.) as a suppressed overstory species and mountain hickory (Acacia frigescens J.H. Willis) as an understory species. Stem diameter explained 93% of the variation in leaf area, 96% of the variation in sapwood area and 88% of the variation in mean daily spring transpiration in 19 mountain ash trees. In seven silver wattle trees, stem diameter explained 87% of the variation in sapwood area but was a poor predictor of the other variables. When transpiration measurements from individual trees were scaled up to a plot basis, using stem diameter values for 164 mountain ash trees and 124 silver wattle trees, mean daily spring transpiration rates of the two species were 2.3 and 0.6 mm day(-1), respectively. The leaf area index of the plot was estimated directly by destructive sampling, and indirectly with an LAI-2000 plant canopy analyzer and by hemispherical canopy photography. All three methods gave similar results.

  7. Leaf physiological versus morphological acclimation to high-light exposure at different stages of foliar development in oak.

    PubMed

    Rodríguez-Calcerrada, J; Reich, P B; Rosenqvist, E; Pardos, J A; Cano, F J; Aranda, I

    2008-05-01

    We investigated light acclimation in seedlings of the temperate oak Quercus petraea (Matt.) Liebl. and the co-occurring sub-Mediterranean oak Quercus pyrenaica Willd. Seedlings were raised in a greenhouse for 1 year in either 70 (HL) or 5.3% (LL) of ambient irradiance of full sunlight, and, in the following year, subsets of the LL-grown seedlings were transferred to HL either before leaf flushing (LL-HLBF plants) or after full leaf expansion (LL-HLAF plants). Gas exchange, chlorophyll a fluorescence, nitrogen fractions in photosynthetic components and leaf anatomy were examined in leaves of all seedlings 5 months after plants were moved from LL to HL. Differences between species in the acclimation of LL-grown plants to HL were minor. For LL-grown plants in HL, area-based photosynthetic capacity, maximum rate of carboxylation, maximum rate of electron transport and the effective photochemical quantum yield of photosystem II were comparable to those for plants grown solely in HL. A rapid change in nitrogen distribution among photosynthetic components was observed in LL-HLAF plants, which had the highest photosynthetic nitrogen-use efficiency. Increases in mesophyll thickness and dry mass per unit area governed leaf acclimation in LL-HLBF plants, which tended to have less nitrogen in photosynthetic components and a lower assimilation potential per unit of leaf mass or nitrogen than LL-HLAF plants. The data indicate that the phenological state of seedlings modified the acclimatory response of leaf attributes to increased irradiance. Morphological adaptation of leaves of LL-HLBF plants enhanced photosynthetic capacity per unit leaf area, but not per unit leaf dry mass, whereas substantial redistribution of nitrogen among photosynthetic components in leaves of LL-HLAF plants enhanced both mass- and area-based photosynthetic capacity.

  8. Correlated variation of floral and leaf traits along a moisture availability gradient.

    PubMed

    Lambrecht, Susan C; Dawson, Todd E

    2007-04-01

    Variation in flower size is an important aspect of a plant's life history, yet few studies have shown how flower size varies with environmental conditions and to what extent foliar responses to the environment are correlated with flower size. The objectives of this study were to (1) develop a theoretical framework for linking flower size and leaf size to their costs and benefits, as assessed using foliar stable carbon isotope ratio (delta(13)C) under varying degrees of water limitation, and then (2) examine how variation in flower size within and among species growing along a naturally occurring moisture availability gradient correlates with variation in delta(13)C and leaf size. Five plant species were examined at three sites in Oregon. Intra- and inter-specific patterns of flower size in relation to moisture availability were the same: the ratios of the area of flower display to total leaf area and of individual flower area to leaf area were greater at sites with more soil moisture compared to those sites with less soil moisture. The increase in flower area per unit increase in leaf area was greater at sites with more soil moisture than at sites where water deficit can occur. Values of delta(13)C, an index of water-use efficiency, were greater for plants with larger floral size. The patterns we observed generalize across species, irrespective of overall plant morphology or pollination system. These correlations between flower size, moisture availability, and delta(13)C suggest that water loss from flowers can influence leaf responses to the environment, which in turn may indirectly mediate an effect on flower size.

  9. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies

    EPA Science Inventory

    Rising atmospheric [CO2], ca, is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water and nutrient cycling of forests. Researchers have reported that stomata regulate leaf gas-exchange around “set...

  10. Dynamic Cytology and Transcriptional Regulation of Rice Lamina Joint Development1[OPEN

    PubMed Central

    2017-01-01

    Rice (Oryza sativa) leaf angle is determined by lamina joint and is an important agricultural trait determining leaf erectness and, hence, the photosynthesis efficiency and grain yield. Genetic studies reveal a complex regulatory network of lamina joint development; however, the morphological changes, cytological transitions, and underlying transcriptional programming remain to be elucidated. A systemic morphological and cytological study reveals a dynamic developmental process and suggests a common but distinct regulation of the lamina joint. Successive and sequential cell division and expansion, cell wall thickening, and programmed cell death at the adaxial or abaxial sides form the cytological basis of the lamina joint, and the increased leaf angle results from the asymmetric cell proliferation and elongation. Analysis of the gene expression profiles at four distinct developmental stages ranging from initiation to senescence showed that genes related to cell division and growth, hormone synthesis and signaling, transcription (transcription factors), and protein phosphorylation (protein kinases) exhibit distinct spatiotemporal patterns during lamina joint development. Phytohormones play crucial roles by promoting cell differentiation and growth at early stages or regulating the maturation and senescence at later stages, which is consistent with the quantitative analysis of hormones at different stages. Further comparison with the gene expression profile of leaf inclination1, a mutant with decreased auxin and increased leaf angle, indicates the coordinated effects of hormones in regulating lamina joint. These results reveal a dynamic cytology of rice lamina joint that is fine-regulated by multiple factors, providing informative clues for illustrating the regulatory mechanisms of leaf angle and plant architecture. PMID:28500269

  11. Dynamic Cytology and Transcriptional Regulation of Rice Lamina Joint Development.

    PubMed

    Zhou, Li-Juan; Xiao, Lang-Tao; Xue, Hong-Wei

    2017-07-01

    Rice ( Oryza sativa ) leaf angle is determined by lamina joint and is an important agricultural trait determining leaf erectness and, hence, the photosynthesis efficiency and grain yield. Genetic studies reveal a complex regulatory network of lamina joint development; however, the morphological changes, cytological transitions, and underlying transcriptional programming remain to be elucidated. A systemic morphological and cytological study reveals a dynamic developmental process and suggests a common but distinct regulation of the lamina joint. Successive and sequential cell division and expansion, cell wall thickening, and programmed cell death at the adaxial or abaxial sides form the cytological basis of the lamina joint, and the increased leaf angle results from the asymmetric cell proliferation and elongation. Analysis of the gene expression profiles at four distinct developmental stages ranging from initiation to senescence showed that genes related to cell division and growth, hormone synthesis and signaling, transcription (transcription factors), and protein phosphorylation (protein kinases) exhibit distinct spatiotemporal patterns during lamina joint development. Phytohormones play crucial roles by promoting cell differentiation and growth at early stages or regulating the maturation and senescence at later stages, which is consistent with the quantitative analysis of hormones at different stages. Further comparison with the gene expression profile of leaf inclination1 , a mutant with decreased auxin and increased leaf angle, indicates the coordinated effects of hormones in regulating lamina joint. These results reveal a dynamic cytology of rice lamina joint that is fine-regulated by multiple factors, providing informative clues for illustrating the regulatory mechanisms of leaf angle and plant architecture. © 2017 American Society of Plant Biologists. All Rights Reserved.

  12. The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest.

    PubMed

    Cosme, Luiza H M; Schietti, Juliana; Costa, Flávia R C; Oliveira, Rafael S

    2017-07-01

    Species distributions and assemblage composition may be the result of trait selection through environmental filters. Here, we ask whether filtering of species at the local scale could be attributed to their hydraulic architectural traits, revealing the basis of hydrological microhabitat partitioning in a Central Amazonian forest. We analyzed the hydraulic characteristics at tissue (anatomical traits, wood specific gravity (WSG)), organ (leaf area, specific leaf area (SLA), leaf area : sapwood area ratio) and whole-plant (height) levels for 28 pairs of congeneric species from 14 genera restricted to either valleys or plateaus of a terra-firme forest in Central Amazonia. On plateaus, species had higher WSG, but lower mean vessel area, mean vessel hydraulic diameter, sapwood area and SLA than in valleys; traits commonly associated with hydraulic safety. Mean vessel hydraulic diameter and mean vessel area increased with height for both habitats, but leaf area and leaf area : sapwood area ratio investments with tree height declined in valley vs plateau species. [Correction added after online publication 29 March 2017: the preceding sentence has been reworded.] Two strategies for either efficiency or safety were detected, based on vessel size or allocation to sapwood. In conclusion, contrasting hydrological conditions act as environmental filters, generating differences in species composition at the local scale. This has important implications for the prediction of species distributions under future climate change scenarios. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  13. Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4.2) using plant trait information

    NASA Astrophysics Data System (ADS)

    Harper, Anna B.; Cox, Peter M.; Friedlingstein, Pierre; Wiltshire, Andy J.; Jones, Chris D.; Sitch, Stephen; Mercado, Lina M.; Groenendijk, Margriet; Robertson, Eddy; Kattge, Jens; Bönisch, Gerhard; Atkin, Owen K.; Bahn, Michael; Cornelissen, Johannes; Niinemets, Ülo; Onipchenko, Vladimir; Peñuelas, Josep; Poorter, Lourens; Reich, Peter B.; Soudzilovskaia, Nadjeda A.; van Bodegom, Peter

    2016-07-01

    Dynamic global vegetation models are used to predict the response of vegetation to climate change. They are essential for planning ecosystem management, understanding carbon cycle-climate feedbacks, and evaluating the potential impacts of climate change on global ecosystems. JULES (the Joint UK Land Environment Simulator) represents terrestrial processes in the UK Hadley Centre family of models and in the first generation UK Earth System Model. Previously, JULES represented five plant functional types (PFTs): broadleaf trees, needle-leaf trees, C3 and C4 grasses, and shrubs. This study addresses three developments in JULES. First, trees and shrubs were split into deciduous and evergreen PFTs to better represent the range of leaf life spans and metabolic capacities that exists in nature. Second, we distinguished between temperate and tropical broadleaf evergreen trees. These first two changes result in a new set of nine PFTs: tropical and temperate broadleaf evergreen trees, broadleaf deciduous trees, needle-leaf evergreen and deciduous trees, C3 and C4 grasses, and evergreen and deciduous shrubs. Third, using data from the TRY database, we updated the relationship between leaf nitrogen and the maximum rate of carboxylation of Rubisco (Vcmax), and updated the leaf turnover and growth rates to include a trade-off between leaf life span and leaf mass per unit area.Overall, the simulation of gross and net primary productivity (GPP and NPP, respectively) is improved with the nine PFTs when compared to FLUXNET sites, a global GPP data set based on FLUXNET, and MODIS NPP. Compared to the standard five PFTs, the new nine PFTs simulate a higher GPP and NPP, with the exception of C3 grasses in cold environments and C4 grasses that were previously over-productive. On a biome scale, GPP is improved for all eight biomes evaluated and NPP is improved for most biomes - the exceptions being the tropical forests, savannahs, and extratropical mixed forests where simulated NPP is too high. With the new PFTs, the global present-day GPP and NPP are 128 and 62 Pg C year-1, respectively. We conclude that the inclusion of trait-based data and the evergreen/deciduous distinction has substantially improved productivity fluxes in JULES, in particular the representation of GPP. These developments increase the realism of JULES, enabling higher confidence in simulations of vegetation dynamics and carbon storage.

  14. An evolutionary attractor model for sapwood cross section in relation to leaf area.

    PubMed

    Westoby, Mark; Cornwell, William K; Falster, Daniel S

    2012-06-21

    Sapwood cross-sectional area per unit leaf area (SA:LA) is an influential trait that plants coordinate with physical environment and with other traits. We develop theory for SA:LA and also for root surface area per leaf area (RA:LA) on the premise that plants maximizing the surplus of revenue over costs should have competitive advantage. SA:LA is predicted to increase in water-relations environments that reduce photosynthetic revenue, including low soil water potential, high water vapor pressure deficit (VPD), and low atmospheric CO(2). Because sapwood has costs, SA:LA adjustment does not completely offset difficult water relations. Where sapwood costs are large, as in tall plants, optimal SA:LA may actually decline with (say) high VPD. Large soil-to-root resistance caps the benefits that can be obtained from increasing SA:LA. Where a plant can adjust water-absorbing surface area of root per leaf area (RA:LA) as well as SA:LA, optimal RA:SA is not affected by VPD, CO(2) or plant height. If selection favours increased height more so than increased revenue-minus-cost, then height is predicted to rise substantially under improved water-relations environments such as high-CO(2) atmospheres. Evolutionary-attractor theory for SA:LA and RA:LA complements models that take whole-plant conductivity per leaf area as a parameter. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Utilizing In Situ Directional Hyperspectral Measurements to Validate Bio-Indicator Simulations for a Corn Crop Canopy

    NASA Technical Reports Server (NTRS)

    Cheng, Yen-Ben; Middleton, Elizabeth M.; Huemmrich, Karl F.; Zhang, Qingyuan; Campbell, Petya K. E.; Corp, Lawrence A.; Russ, Andrew L.; Kustas, William P.

    2010-01-01

    Two radiative transfer canopy models, SAIL and the two-layer Markov-Chain Canopy Reflectance Model (MCRM), were coupled with in situ leaf optical properties to simulate canopy-level spectral band ratio vegetation indices with the focus on the photochemical reflectance index in a cornfield. In situ hyperspectral measurements were made at both leaf and canopy levels. Leaf optical properties were obtained from both sunlit and shaded leaves. Canopy reflectance was acquired for eight different relative azimuth angles (psi) at three different view zenith angles (Theta (sub v)), and later used to validate model outputs. Field observations of photochemical reflectance index (PRI) for sunlit leaves exhibited lower values than shaded leaves, indicating higher light stress. Canopy PRI expressed obvious sensitivity to viewing geometry, as a function of both Theta (sub v) and psi . Overall, simulations from MCRM exhibited better agreements with in situ values than SAIL. When using only sunlit leaves as input, the MCRM-simulated PRI values showed satisfactory correlation and RMSE, as compared to in situ values. However, the performance of the MCRM model was significantly improved after defining a lower canopy layer comprised of shaded leaves beneath the upper sunlit leaf layer. Four other widely used band ratio vegetation indices were also studied and compared with the PRI results. MCRM simulations were able to generate satisfactory simulations for these other four indices when using only sunlit leaves as input; but unlike PRI, adding shaded leaves did not improve the performance of MCRM. These results support the hypothesis that the PRI is sensitive to physiological dynamics while the others detect static factors related to canopy structure. Sensitivity analysis was performed on MCRM in order to better understand the effects of structure related parameters on the PRI simulations. Leaf area index (LAI) showed the most significant impact on MCRM-simulated PRI among the parameters studied. This research shows the importance of hyperspectral and narrow band sensor studies, and especially the necessity of including the green wavelengths (e.g., 531 nm) on satellites proposing to monitor carbon dynamics of terrestrial ecosystems.

  16. Converging patterns of vertical variability in leaf morphology and nitrogen across seven Eucalyptus plantations in Brazil and Hawaii, USA

    Treesearch

    Adam P. Coble; Alisha Autio; Molly A. Cavaleri; Dan Binkley; Michael G. Ryan

    2014-01-01

    Across sites in Brazil and Hawaii, LMA and Nmass were strongly correlated with height and shade index, respectively, which may help simplify canopy function modeling of Eucalyptus plantations. Abstract Within tree canopies, leaf mass per area (LMA) and leaf nitrogen per unit area (Narea) commonly increase with height. Previous research has suggested that these patterns...

  17. Taxonomy and remote sensing of leaf mass per area (LMA) in humid tropical forests

    Treesearch

    Gregory P. Asner; Roberta E. Martin; Raul Tupayachi; Ruth Emerson; Paola Martinez; Felipe Sinca; George V.N. Powell; S. Joseph Wright; Ariel E. Lugo

    2011-01-01

    Leaf mass per area (LMA) is a trait of central importance to plant physiology and ecosystem function, but LMA patterns in the upper canopies of humid tropical forests have proved elusive due to tall species and high diversity. We collected top-of-canopy leaf samples from 2873 individuals in 57 sites spread across the Neotropics, Australasia, and Caribbean and Pacific...

  18. Branch age and light conditions determine leaf-area-specific conductivity in current shoots of Scots pine.

    PubMed

    Grönlund, Leila; Hölttä, Teemu; Mäkelä, Annikki

    2016-08-01

    Shoot size and other shoot properties more or less follow the availability of light, but there is also evidence that the topological position in a tree crown has an influence on shoot development. Whether the hydraulic properties of new shoots are more regulated by the light or the position affects the shoot acclimation to changing light conditions and thereby to changing evaporative demand. We investigated the leaf-area-specific conductivity (and its components sapwood-specific conductivity and Huber value) of the current-year shoots of Scots pine (Pinus sylvestris L.) in relation to light environment and topological position in three different tree classes. The light environment was quantified in terms of simulated transpiration and the topological position was quantified by parent branch age. Sample shoot measurements included length, basal and tip diameter, hydraulic conductivity of the shoot, tracheid area and density, and specific leaf area. In our results, the leaf-area-specific conductivity of new shoots declined with parent branch age and increased with simulated transpiration rate of the shoot. The relation to transpiration demand seemed more decisive, since it gave higher R(2) values than branch age and explained the differences between the tree classes. The trend of leaf-area-specific conductivity with simulated transpiration was closely related to Huber value, whereas the trend of leaf-area-specific conductivity with parent branch age was related to a similar trend in sapwood-specific conductivity. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Influence of irrigation and fertilization on transpiration and hydraulic properties of Populus deltoides.

    PubMed

    Samuelson, Lisa J; Stokes, Thomas A; Coleman, Mark D

    2007-05-01

    Long-term hydraulic acclimation to resource availability was explored in 3-year-old Populus deltoides Bartr. ex Marsh. clones by examining transpiration, leaf-specific hydraulic conductance (G(L)), canopy stomatal conductance (G(S)) and leaf to sapwood area ratio (A(L):A(S)) in response to irrigation (13 and 551 mm year(-1) in addition to ambient precipitation) and fertilization (0 and 120 kg N ha(-1) year(-1)). Sap flow was measured continuously over one growing season with thermal dissipation probes. Fertilization had a greater effect on growth and hydraulic properties than irrigation, and fertilization effects were independent of irrigation treatment. Transpiration on a ground area basis (E) ranged between 0.3 and 1.8 mm day(-1), and increased 66% and 90% in response to irrigation and fertilization, respectively. Increases in G(L), G(S) at a reference vapor pressure deficit of 1 kPa, and transpiration per unit leaf area in response to increases in resource availability were associated with reductions in A(L):A(S) and consequently a minimal change in the water potential gradient from soil to leaf. Irrigation and fertilization increased leaf area index similarly, from an average 1.16 in control stands to 1.45, but sapwood area was increased from 4.0 to 6.3 m(2) ha(-1) by irrigation and from 3.7 to 6.7 m(2) ha(-1) by fertilization. The balance between leaf area and sapwood area was important in understanding long-term hydraulic acclimation to resource availability and mechanisms controlling maximum productivity in Populus deltoides.

  20. Leaf Shrinkage with Dehydration: Coordination with Hydraulic Vulnerability and Drought Tolerance1[C][W][OPEN

    PubMed Central

    Scoffoni, Christine; Vuong, Christine; Diep, Steven; Cochard, Hervé; Sack, Lawren

    2014-01-01

    Leaf shrinkage with dehydration has attracted attention for over 100 years, especially as it becomes visibly extreme during drought. However, little has been known of its correlation with physiology. Computer simulations of the leaf hydraulic system showed that a reduction of hydraulic conductance of the mesophyll pathways outside the xylem would cause a strong decline of leaf hydraulic conductance (Kleaf). For 14 diverse species, we tested the hypothesis that shrinkage during dehydration (i.e. in whole leaf, cell and airspace thickness, and leaf area) is associated with reduction in Kleaf at declining leaf water potential (Ψleaf). We tested hypotheses for the linkage of leaf shrinkage with structural and physiological water relations parameters, including modulus of elasticity, osmotic pressure at full turgor, turgor loss point (TLP), and cuticular conductance. Species originating from moist habitats showed substantial shrinkage during dehydration before reaching TLP, in contrast with species originating from dry habitats. Across species, the decline of Kleaf with mild dehydration (i.e. the initial slope of the Kleaf versus Ψleaf curve) correlated with the decline of leaf thickness (the slope of the leaf thickness versus Ψleaf curve), as expected based on predictions from computer simulations. Leaf thickness shrinkage before TLP correlated across species with lower modulus of elasticity and with less negative osmotic pressure at full turgor, as did leaf area shrinkage between full turgor and oven desiccation. These findings point to a role for leaf shrinkage in hydraulic decline during mild dehydration, with potential impacts on drought adaptation for cells and leaves, influencing plant ecological distributions. PMID:24306532

  1. Three-dimensional patterns of cell division and expansion throughout the development of Arabidopsis thaliana leaves.

    PubMed

    Kalve, Shweta; Fotschki, Joanna; Beeckman, Tom; Vissenberg, Kris; Beemster, Gerrit T S

    2014-12-01

    Variations in size and shape of multicellular organs depend on spatio-temporal regulation of cell division and expansion. Here, cell division and expansion rates were quantified relative to the three spatial axes in the first leaf pair of Arabidopsis thaliana. The results show striking differences in expansion rates: the expansion rate in the petiole is higher than in the leaf blade; expansion rates in the lateral direction are higher than longitudinal rates between 5 and 10 days after stratification, but become equal at later stages of leaf blade development; and anticlinal expansion co-occurs with, but is an order of magnitude slower than periclinal expansion. Anticlinal expansion rates also differed greatly between tissues: the highest rates occurred in the spongy mesophyll and the lowest in the epidermis. Cell division rates were higher and continued for longer in the epidermis compared with the palisade mesophyll, causing a larger increase of palisade than epidermal cell area over the course of leaf development. The cellular dynamics underlying the effect of shading on petiole length and leaf thickness were then investigated. Low light reduced leaf expansion rates, which was partly compensated by increased duration of the growth phase. Inversely, shading enhanced expansion rates in the petiole, so that the blade to petiole ratio was reduced by 50%. Low light reduced leaf thickness by inhibiting anticlinal cell expansion rates. This effect on cell expansion was preceded by an effect on cell division, leading to one less layer of palisade cells. The two effects could be uncoupled by shifting plants to contrasting light conditions immediately after germination. This extended kinematic analysis maps the spatial and temporal heterogeneity of cell division and expansion, providing a framework for further research to understand the molecular regulatory mechanisms involved. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. New insights on plant phenological response to temperature revealed from long-term widespread observations in China.

    PubMed

    Zhang, Haicheng; Liu, Shuguang; Regnier, Pierre; Yuan, Wenping

    2018-05-01

    Constraints of temperature on spring plant phenology are closely related to plant growth, vegetation dynamics, and ecosystem carbon cycle. However, the effects of temperature on leaf onset, especially for winter chilling, are still not well understood. Using long-term, widespread in situ phenology observations collected over China for multiple plant species, this study analyzes the quantitative response of leaf onset to temperature, and compares empirical findings with existing theories and modeling approaches, as implemented in 18 phenology algorithms. Results show that the growing degree days (GDD) required for leaf onset vary distinctly among plant species and geographical locations as well as at organizational levels (species and community), pointing to diverse adaptation strategies. Chilling durations (CHD) needed for releasing bud dormancy decline monotonously from cold to warm areas with very limited interspecies variations. Results also reveal that winter chilling is a crucial component of phenology models, and its effect is better captured with an index that accounts for the inhomogeneous effectiveness of low temperature to chilling rate than with the conventional CHD index. The impact of spring warming on leaf onset is nonlinear, better represented by a logistical function of temperature than by the linear function currently implemented in biosphere models. The optimized base temperatures for thermal accumulation and the optimal chilling temperatures are species-dependent and average at 6.9 and 0.2°C, respectively. Overall, plants' chilling requirement is not a constant, and more chilling generally results in less requirement of thermal accumulation for leaf onset. Our results clearly demonstrate multiple deficiencies of the parameters (e.g., base temperature) and algorithms (e.g., method for calculating GDD) in conventional phenology models to represent leaf onset. Therefore, this study not only advances our mechanistic and quantitative understanding of temperature controls on leaf onset but also provides critical information for improving existing phenology models. © 2017 John Wiley & Sons Ltd.

  3. Plant size and leaf area influence phenological and reproductive responses to warming in semiarid Mediterranean species.

    PubMed

    Valencia, Enrique; Méndez, Marcos; Saavedra, Noelia; Maestre, Fernando T

    2016-08-01

    Changes in vegetative and reproductive phenology rank among the most obvious plant responses to climate change. These responses vary broadly among species, but it is largely unknown whether they are mediated by functional attributes, such as size or foliar traits. Using a manipulative experiment conducted over two growing seasons, we evaluated the responses in reproductive phenology and output of 14 Mediterranean semiarid species belonging to three functional groups (grasses, nitrogen-fixing legumes and forbs) to a ~3°C increase in temperature, and assessed how leaf and size traits influenced them. Overall, warming advanced flowering and fruiting phenology, extended the duration of flowering and reduced the production of flowers and fruits. The observed reduction in flower and fruit production with warming was likely related to the decrease in soil moisture promoted by this treatment. Phenological responses to warming did not vary among functional groups, albeit forbs had an earlier reproductive phenology than legumes and grasses. Larger species with high leaf area, as well as those with small specific leaf area, had an earlier flowering and a longer flowering duration. The effects of warming on plant size and leaf traits were related to those on reproductive phenology and reproductive output. Species that decreased their leaf area under warming advanced more the onset of flowering, while those that increased their vegetative height produced more flowers. Our results advance our understanding of the phenological responses to warming of Mediterranean semiarid species, and highlight the key role of traits such as plant size and leaf area as determinants of such responses.

  4. Coordination of Leaf Photosynthesis, Transpiration, and Structural Traits in Rice and Wild Relatives (Genus Oryza).

    PubMed

    Giuliani, Rita; Koteyeva, Nuria; Voznesenskaya, Elena; Evans, Marc A; Cousins, Asaph B; Edwards, Gerald E

    2013-07-01

    The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO(2) access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 accessions (representatives of 17 species and eight genomes). Hypotheses of associations within, and between, structure, photosynthesis, and transpiration were tested. Two main clusters of positively interrelated leaf traits were identified: in the first cluster were structural features, leaf thickness (Thick(leaf)), mesophyll (M) cell surface area exposed to intercellular air space per unit of leaf surface area (S(mes)), and M cell size; a second group included functional traits, net photosynthetic rate, transpiration rate, M conductance to CO(2) diffusion (g(m)), stomatal conductance to gas diffusion (g(s)), and the g(m)/g(s) ratio.While net photosynthetic rate was positively correlated with gm, neither was significantly linked with any individual structural traits. The results suggest that changes in gm depend on covariations of multiple leaf (S(mes)) and M cell (including cell wall thickness) structural traits. There was an inverse relationship between Thick(leaf) and transpiration rate and a significant positive association between Thick(leaf) and leaf transpiration efficiency. Interestingly, high g(m) together with high g(m)/g(s) and a low S(mes)/g(m) ratio (M resistance to CO(2) diffusion per unit of cell surface area exposed to intercellular air space) appear to be ideal for supporting leaf photosynthesis while preserving water; in addition, thick M cell walls may be beneficial for plant drought tolerance.

  5. Whole organ, venation and epidermal cell morphological variations are correlated in the leaves of Arabidopsis mutants.

    PubMed

    Pérez-Pérez, José Manuel; Rubio-Díaz, Silvia; Dhondt, Stijn; Hernández-Romero, Diana; Sánchez-Soriano, Joaquín; Beemster, Gerrit T S; Ponce, María Rosa; Micol, José Luis

    2011-12-01

    Despite the large number of genes known to affect leaf shape or size, we still have a relatively poor understanding of how leaf morphology is established. For example, little is known about how cell division and cell expansion are controlled and coordinated within a growing leaf to eventually develop into a laminar organ of a definite size. To obtain a global perspective of the cellular basis of variations in leaf morphology at the organ, tissue and cell levels, we studied a collection of 111 non-allelic mutants with abnormally shaped and/or sized leaves, which broadly represent the mutational variations in Arabidopsis thaliana leaf morphology not associated with lethality. We used image-processing techniques on these mutants to quantify morphological parameters running the gamut from the palisade mesophyll and epidermal cells to the venation, whole leaf and rosette levels. We found positive correlations between epidermal cell size and leaf area, which is consistent with long-standing Avery's hypothesis that the epidermis drives leaf growth. In addition, venation parameters were positively correlated with leaf area, suggesting that leaf growth and vein patterning share some genetic controls. Positional cloning of the genes affected by the studied mutations will eventually establish functional links between genotypes, molecular functions, cellular parameters and leaf phenotypes. © 2011 Blackwell Publishing Ltd.

  6. Increasing leaf hydraulic conductance with transpiration rate minimizes the water potential drawdown from stem to leaf

    PubMed Central

    Simonin, Kevin A.; Burns, Emily; Choat, Brendan; Barbour, Margaret M.; Dawson, Todd E.; Franks, Peter J.

    2015-01-01

    Leaf hydraulic conductance (k leaf) is a central element in the regulation of leaf water balance but the properties of k leaf remain uncertain. Here, the evidence for the following two models for k leaf in well-hydrated plants is evaluated: (i) k leaf is constant or (ii) k leaf increases as transpiration rate (E) increases. The difference between stem and leaf water potential (ΔΨstem–leaf), stomatal conductance (g s), k leaf, and E over a diurnal cycle for three angiosperm and gymnosperm tree species growing in a common garden, and for Helianthus annuus plants grown under sub-ambient, ambient, and elevated atmospheric CO2 concentration were evaluated. Results show that for well-watered plants k leaf is positively dependent on E. Here, this property is termed the dynamic conductance, k leaf(E), which incorporates the inherent k leaf at zero E, which is distinguished as the static conductance, k leaf(0). Growth under different CO2 concentrations maintained the same relationship between k leaf and E, resulting in similar k leaf(0), while operating along different regions of the curve owing to the influence of CO2 on g s. The positive relationship between k leaf and E minimized variation in ΔΨstem–leaf. This enables leaves to minimize variation in Ψleaf and maximize g s and CO2 assimilation rate over the diurnal course of evaporative demand. PMID:25547915

  7. Relative importance of habitat filtering and limiting similarity on species assemblages of alpine and subalpine plant communities.

    PubMed

    Takahashi, Koichi; Tanaka, Saeka

    2016-11-01

    This study examined how habitat filtering and limiting similarity affect species assemblages of alpine and subalpine plant communities along a slope gradient on Mt. Norikura in central Japan. Plant traits (plant height, individual leaf area, specific leaf area (SLA), leaf linearity, leaf nitrogen and chlorophyll concentrations) and abiotic environmental factors (elevation, slope inclination, ground surface texture, soil water, soil pH, soil nutrient concentrations of NH 4 -N and NO 3 -N) were examined. The metrics of variance, range, kurtosis and the standard deviation of neighbor distance divided by the range of traits present (SDNDr) were calculated for each plant trait to measure trait distribution patterns. Limiting similarity was detected only for chlorophyll concentration. By contrast, habitat filtering was detected for individual leaf area, SLA, leaf linearity, chlorophyll concentration. Abiotic environmental factors were summarized by the principal component analysis (PCA). The first PCA axis positively correlated with elevation and soil pH, and negatively correlated with sand cover, soil water, NH 4 -N and NO 3 -N concentrations. High values of the first PCA axis represent the wind-exposed upper slope with lower soil moisture and nutrient availabilities. Plant traits changed along the first PCA axis. Leaf area, SLA and chlorophyll concentration decreased, and leaf linearity increased with the first PCA axis. This study showed that the species assemblage of alpine and subalpine plants was determined mainly by habitat filtering, indicating that abiotic environmental factors are more important for species assemblage than interspecific competition. Therefore, only species adapting to abiotic environments can distribute to these environments.

  8. Seasonal patterns of leaf gas exchange and water relations in dry rain forest trees of contrasting leaf phenology.

    PubMed

    Choat, Brendan; Ball, Marilyn C; Luly, Jon G; Donnelly, Christine F; Holtum, Joseph A M

    2006-05-01

    Diurnal and seasonal patterns of leaf gas exchange and water relations were examined in tree species of contrasting leaf phenology growing in a seasonally dry tropical rain forest in north-eastern Australia. Two drought-deciduous species, Brachychiton australis (Schott and Endl.) A. Terracc. and Cochlospermum gillivraei Benth., and two evergreen species, Alphitonia excelsa (Fenzal) Benth. and Austromyrtus bidwillii (Benth.) Burret. were studied. The deciduous species had higher specific leaf areas and maximum photosynthetic rates per leaf dry mass in the wet season than the evergreens. During the transition from wet season to dry season, total canopy area was reduced by 70-90% in the deciduous species and stomatal conductance (g(s)) and assimilation rate (A) were markedly lower in the remaining leaves. Deciduous species maintained daytime leaf water potentials (Psi(L)) at close to or above wet season values by a combination of stomatal regulation and reduction in leaf area. Thus, the timing of leaf drop in deciduous species was not associated with large negative values of daytime Psi(L) (greater than -1.6 MPa) or predawn Psi(L) (greater than -1.0 MPa). The deciduous species appeared sensitive to small perturbations in soil and leaf water status that signalled the onset of drought. The evergreen species were less sensitive to the onset of drought and g(s) values were not significantly lower during the transitional period. In the dry season, the evergreen species maintained their canopies despite increasing water-stress; however, unlike Eucalyptus species from northern Australian savannas, A and g(s) were significantly lower than wet season values.

  9. Abandoned seasonal livestock migration reflected by plant functional traits: A case study in Kyrgyz rangelands

    NASA Astrophysics Data System (ADS)

    Hoppe, Franziska; Zhusui Kyzy, Taalaigul; Usupbaev, Adilet; Schickoff, Udo

    2017-04-01

    At least 30% of Kyrgyz pasture areas are considered to be subject to vegetation and soil degradation. Since animal husbandry is the economic basis to sustain people's livelihoods, rangeland degradation presents a threat for the majority of the population. Recently, the usage of plant functional traits as a powerful tool for the characterization of vegetation dynamics in response to anthropogenic and natural disturbances has been put forward. Grazing is one of the most severe disturbances on vegetation, which concerns equally the loss of area and biomass. Because grazing is both depending on and affecting plant functional traits, important insights can be generated, based on this codependency. We hypothesized that the contrasting grazing intensity of summer and winter pastures is reflected by the chosen traits. We used traits such as plant height, flowering start, growth form as well as SLA (Specific Leaf Area) and LMA (Leaf Mass per Area). Based on former phytosociological classification of the main pasture types (summer and winter pastures), community structure and the traits of dominant plant species were analyzed. Our results showed that on winter pastures grazing decreased plant height and SLA and favored plants with an earlier flowering start as well as rosette plants and ascending plants. We conclude that the study of trait composition in relation to anthropogenic disturbances can provide important insights into the mechanism of plant response to grazing in high-altitude rangelands.

  10. Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests.

    PubMed

    Ali, Arshad; Yan, En-Rong; Chang, Scott X; Cheng, Jun-Yang; Liu, Xiang-Yu

    2017-01-01

    Subtropical forests are globally important in providing ecological goods and services, but it is not clear whether functional diversity and composition can predict aboveground biomass in such forests. We hypothesized that high aboveground biomass is associated with high functional divergence (FDvar, i.e., niche complementarity) and community-weighted mean (CWM, i.e., mass ratio; communities dominated by a single plant strategy) of trait values. Structural equation modeling was employed to determine the direct and indirect effects of stand age and the residual effects of CWM and FDvar on aboveground biomass across 31 plots in secondary forests in subtropical China. The CWM model accounted for 78, 20, 6 and 2% of the variation in aboveground biomass, nitrogen concentration in young leaf, plant height and specific leaf area of young leaf, respectively. The FDvar model explained 74, 13, 7 and 0% of the variation in aboveground biomass, plant height, twig wood density and nitrogen concentration in young leaf, respectively. The variation in aboveground biomass, CWM of leaf nitrogen concentration and specific leaf area, and FDvar of plant height, twig wood density and nitrogen concentration in young leaf explained by the joint model was 86, 20, 13, 7, 2 and 0%, respectively. Stand age had a strong positive direct effect but low indirect positive effects on aboveground biomass. Aboveground biomass was negatively related to CWM of nitrogen concentration in young leaf, but positively related to CWM of specific leaf area of young leaf and plant height, and FDvar of plant height, twig wood density and nitrogen concentration in young leaf. Leaf and wood economics spectra are decoupled in regulating the functionality of forests, communities with diverse species but high nitrogen conservative and light acquisitive strategies result in high aboveground biomass, and hence, supporting both the mass ratio and niche complementarity hypotheses in secondary subtropical forests. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Phloem Transport Velocity Varies over Time and among Vascular Bundles during Early Cucumber Seedling Development1[C][W][OPEN

    PubMed Central

    Savage, Jessica A.; Zwieniecki, Maciej A.; Holbrook, N. Michele

    2013-01-01

    We use a novel dye-tracing technique to measure in vivo phloem transport velocity in cucumber (Cucumis sativus) plants during early seedling development. We focus on seedlings because of their importance in plant establishment and because they provide a simple source and sink model of phloem transport. The dye-tracing method uses a photodiode to track the movement of a bleach front of fluorescent dye traveling in the phloem from the cotyledons (source) to the roots (sink). During early seedling development, phloem transport velocity in this direction can change 2-fold depending on vascular connectivity and the number of actively growing sinks. Prior to leaf expansion, vascular bundles attached to the first developing leaf demonstrate a decline in basipetal phloem transport that can be alleviated by the leaf’s removal. At this stage, seedlings appear carbon limited and phloem transport velocity is correlated with cotyledon area, a pattern that is apparent both during cotyledon expansion and after source area manipulation. When the first leaf transitions to a carbon source, seedling growth rate increases and basipetal phloem transport velocity becomes more stable. Because bundles appear to operate autonomously, transport velocity can differ among vascular bundles. Together, these results demonstrate the dynamic and heterogeneous nature of phloem transport and underline the need for a better understanding of how changes in phloem physiology impact growth and allocation at this critical stage of development. PMID:24072581

  12. Allometric relationships predicting foliar biomass and leaf area:sapwood area ratio from tree height in five Costa Rican rain forest species.

    PubMed

    Calvo-Alvarado, J C; McDowell, N G; Waring, R H

    2008-11-01

    We developed allometric equations to predict whole-tree leaf area (A(l)), leaf biomass (M(l)) and leaf area to sapwood area ratio (A(l):A(s)) in five rain forest tree species of Costa Rica: Pentaclethra macroloba (Willd.) Kuntze (Fabaceae/Mim), Carapa guianensis Aubl. (Meliaceae), Vochysia ferru-gi-nea Mart. (Vochysiaceae), Virola koshnii Warb. (Myristicaceae) and Tetragastris panamensis (Engl.) Kuntze (Burseraceae). By destructive analyses (n = 11-14 trees per species), we observed strong nonlinear allometric relationships (r(2) > or = 0.9) for predicting A(l) or M(l) from stem diameters or A(s) measured at breast height. Linear relationships were less accurate. In general, A(l):A(s) at breast height increased linearly with tree height except for Penta-clethra, which showed a negative trend. All species, however, showed increased total A(l) with height. The observation that four of the five species increased in A(l):A(s) with height is consistent with hypotheses about trade--offs between morphological and anatomical adaptations that favor efficient water flow through variation in the amount of leaf area supported by sapwood and those imposed by the need to respond quickly to light gaps in the canopy.

  13. Functional Groups Based on Leaf Physiology: Are they Spatially and Temporally Robust?

    NASA Technical Reports Server (NTRS)

    Foster, Tammy E.; Brooks, J. Renee; Quincy, Charles (Technical Monitor)

    2002-01-01

    The functional grouping hypothesis, which suggests that complexity in function can be simplified by grouping species with similar responses, was tested in the Florida scrub habitat. Functional groups were identified based on how species in fire maintained FL scrub function in terms of carbon, water and nitrogen dynamics. The suite of physiologic parameters measured to determine function included both instantaneous gas exchange measurements obtained from photosynthetic light response curves and integrated measures of function. Using cluster analysis, five distinct physiologically-based functional groups were identified. Using non-parametric multivariate analyses, it was determined that these five groupings were not altered by plot differences or by the three different management regimes; prescribed burn, mechanically treated and burn, and fire-suppressed. The physiological groupings also remained robust between the two years 1999 and 2000. In order for these groupings to be of use for scaling ecosystem processes, there needs to be an easy-to-measure morphological indicator of function. Life form classifications were able to depict the physiological groupings more adequately than either specific leaf area or leaf thickness. THe ability of life forms to depict the groupings was improved by separating the parasitic Ximenia americana from the shrub category.

  14. Estimating national forest carbon stocks and dynamics: combining models and remotely sensed information

    NASA Astrophysics Data System (ADS)

    Smallman, Thomas Luke; Exbrayat, Jean-François; Bloom, Anthony; Williams, Mathew

    2017-04-01

    Forests are a critical component of the global carbon cycle, storing significant amounts of carbon, split between living biomass and dead organic matter. The carbon budget of forests is the most uncertain component of the global carbon cycle - it is currently impossible to quantify accurately the carbon source/sink strength of forest biomes due to their heterogeneity and complex dynamics. It has been a major challenge to generate robust carbon budgets across landscapes due to data scarcity. Models have been used for estimating carbon budgets, but outputs have lacked an assessment of uncertainty, making a robust assessment of their reliability and accuracy challenging. Here a Metropolis Hastings - Markov Chain Monte Carlo (MH-MCMC) data assimilation framework has been used to combine remotely sensed leaf area index (MODIS), biomass (where available) and deforestation estimates, in addition to forest planting information from the UK's national forest inventory, an estimate of soil carbon from the Harmonized World Database (HWSD) and plant trait information with a process model (DALEC) to produce a constrained analysis with a robust estimate of uncertainty of the UK forestry carbon budget between 2000 and 2010. Our analysis estimates the mean annual UK forest carbon sink at -3.9 MgC ha-1 yr-1 with a 95 % confidence interval between -4.0 and -3.1 MgC ha-1yr-1. The UK national forest inventory (NFI) estimates the mean UK forest carbon sink to be between -1.4 and -5.5 MgC ha-1 yr-1. The analysis estimate for total forest biomass stock in 2010 is estimated at 229 (177/232) TgC, while the NFI an estimated total forest biomass carbon stock of 216 TgC. Leaf carbon area (LCA) is a key plant trait which we are able to estimate using our analysis. Comparison of median estimates for (LCA) retrieved from the analysis and a UK land cover map show higher and lower values for LCA are estimated areas dominated by needle leaf and broad leaf forests forest respectively, consistent with ecological expectations. Moreover, LCA is positively and negatively correlated with leaf-life span and allocation of photosynthate to foliage respectively, supported by field observations. This emergence of key plant traits and correlations between traits increases our confidence in the robustness of this analysis. Furthermore, this framework also allows us to search for additional emergent properties from the analysis such as spatial variation of retrieved drought tolerance. Finally our analysis is able to identify components of the carbon cycle with the largest uncertainty e.g. allocation of photosynthate to wood and wood residence times, providing targets for future observations (e.g. ESA's BIOMASS mission). Our Bayesian analysis system is ideally suited for assimilation of multiple biomass estimates and their associated uncertainties to reduce both the overall analysis uncertainty and bias in estimates biomass stocks.

  15. Estimating national forest carbon stocks and dynamics: combining models and remotely sensed information

    NASA Astrophysics Data System (ADS)

    Smallman, Luke; Williams, Mathew

    2016-04-01

    Forests are a critical component of the global carbon cycle, storing significant amounts of carbon, split between living biomass and dead organic matter. The carbon budget of forests is the most uncertain component of the global carbon cycle - it is currently impossible to quantify accurately the carbon source/sink strength of forest biomes due to their heterogeneity and complex dynamics. It has been a major challenge to generate robust carbon budgets across landscapes due to data scarcity. Models have been used but outputs have lacked an assessment of uncertainty, making a robust assessment of their reliability and accuracy challenging. Here a Metropolis Hastings - Markov Chain Monte Carlo (MH-MCMC) data assimilation framework has been used to combine remotely sensed leaf area index (MODIS), biomass (where available) and deforestation estimates, in addition to forest planting and clear-felling information from the UK's national forest inventory, an estimate of soil carbon from the Harmonized World Database (HWSD) and plant trait information with a process model (DALEC) to produce a constrained analysis with a robust estimate of uncertainty of the UK forestry carbon budget between 2000 and 2010. Our analysis estimates the mean annual UK forest carbon sink at -3.9 MgC ha-1yr-1 with a 95 % confidence interval between -4.0 and -3.1 MgC ha-1 yr-1. The UK national forest inventory (NFI) estimates the mean UK forest carbon sink to be between -1.4 and -5.5 MgC ha-1 yr-1. The analysis estimate for total forest biomass stock in 2010 is estimated at 229 (177/232) TgC, while the NFI an estimated total forest biomass carbon stock of 216 TgC. Leaf carbon area (LCA) is a key plant trait which we are able to estimate using our analysis. Comparison of median estimates for LCA retrieved from the analysis and a UK land cover map show higher and lower values for LCA are estimated areas dominated by needle leaf and broad leaf forests forest respectively, consistent with ecological expectations. Moreover, the retrieved LCA is positively correlated with leaf-life span and negatively correlated with allocation of photosynthate to foliage, supported by field observations. This emergence of key plant traits and correlations between traits increases our confidence in the robustness of this analysis. Furthermore, this framework also allows us to search for additional emergent properties from the analysis such as spatial variation of retrieved drought tolerance. Finally our analysis is able to identify components of the carbon cycle with the largest uncertainty providing targets for future observations (e.g. remotely sensed biomass). Our Bayesian analysis system is ideally suited for assimilation of multiple biomass estimates and their associated uncertainties to reduce both uncertainty in the state of the system but also process parameters (e.g. wood residence time).

  16. Leaf Morphology and Ultrastructure Responses to Elevated O3 in Transgenic Bt (cry1Ab/cry1Ac) Rice and Conventional Rice under Fully Open-Air Field Conditions

    PubMed Central

    Li, Chunyan; Liu, Biao; Li, Chunhua; Zeng, Qing; Hao, Mingzhuo; Han, Zhengmin; Zhu, Jianguo; Li, Xiaogang; Shen, Wenjing

    2013-01-01

    Background Elevated tropospheric ozone severely affects not only yield but also the morphology, structure and physiological functions of plants. Because of concerns regarding the potential environmental risk of transgenic crops, it is important to monitor changes in transgenic insect-resistant rice under the projected high tropospheric ozone before its commercial release. Methodology/Principal Findings Using a free-air concentration enrichment (FACE) system, we investigated the changes in leaf morphology and leaf ultrastructure of two rice varieties grown in plastic pots, transgenic Bt Shanyou 63 (Bt-SY63, carrying a fusion gene of cry1Ab and cry1Ac) and its non-transgenic counterpart (SY63), in elevated O3 (E-O3) versus ambient O3 (A-O3) after 64-DAS (Days after seeding), 85-DAS and 102-DAS. Our results indicated that E-O3 had no significant effects on leaf length, leaf width, leaf area, stomatal length and stomatal density for both Bt-SY63 and SY63. E-O3 increased the leaf thickness of Bt-SY63, but decreased that of SY63. O3 stress caused early swelling of the thylakoids of chloroplasts, a significant increase in the proportion of total plastoglobule area in the entire cell area (PCAP) and a significant decrease in the proportion of total starch grain area in the entire cell area (SCAP), suggesting that E-O3 accelerated the leaf senescence of the two rice genotypes. Compared with SY63, E-O3 caused early swelling of the thylakoids of chloroplasts and more substantial breakdown of chloroplasts in Bt-SY63. Conclusions/Significance Our results suggest that the incorporation of cry1Ab/Ac into SY63 could induce unintentional changes in some parts of plant morphology and that O3 stress results in greater leaf damage to Bt-SY63 than to SY63, with the former coupled with higher O3 sensitivity in CCAP (the proportions of total chloroplast area in the entire cell area), PCAP and SCAP. This study provides valuable baseline information for the prospective commercial release of transgenic crops under the projected future climate. PMID:24324764

  17. High-Throughput Phenotyping of Maize Leaf Physiological and Biochemical Traits Using Hyperspectral Reflectance1[OPEN

    PubMed Central

    Yendrek, Craig R.; Tomaz, Tiago; Montes, Christopher M.; Cao, Youyuan; Morse, Alison M.; Brown, Patrick J.; McIntyre, Lauren M.; Leakey, Andrew D.B.

    2017-01-01

    High-throughput, noninvasive field phenotyping has revealed genetic variation in crop morphological, developmental, and agronomic traits, but rapid measurements of the underlying physiological and biochemical traits are needed to fully understand genetic variation in plant-environment interactions. This study tested the application of leaf hyperspectral reflectance (λ = 500–2,400 nm) as a high-throughput phenotyping approach for rapid and accurate assessment of leaf photosynthetic and biochemical traits in maize (Zea mays). Leaf traits were measured with standard wet-laboratory and gas-exchange approaches alongside measurements of leaf reflectance. Partial least-squares regression was used to develop a measure of leaf chlorophyll content, nitrogen content, sucrose content, specific leaf area, maximum rate of phosphoenolpyruvate carboxylation, [CO2]-saturated rate of photosynthesis, and leaf oxygen radical absorbance capacity from leaf reflectance spectra. Partial least-squares regression models accurately predicted five out of seven traits and were more accurate than previously used simple spectral indices for leaf chlorophyll, nitrogen content, and specific leaf area. Correlations among leaf traits and statistical inferences about differences among genotypes and treatments were similar for measured and modeled data. The hyperspectral reflectance approach to phenotyping was dramatically faster than traditional measurements, enabling over 1,000 rows to be phenotyped during midday hours over just 2 to 4 d, and offers a nondestructive method to accurately assess physiological and biochemical trait responses to environmental stress. PMID:28049858

  18. Hydraulic architecture and photosynthetic capacity as constraints on release from suppression in Douglas-fir and western hemlock.

    PubMed

    Renninger, Heidi J; Meinzer, Frederick C; Gartner, Barbara L

    2007-01-01

    We compared hydraulic architecture, photosynthesis and growth in Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), a shade-intolerant species, and western hemlock (Tsuga heterophylla (Raf.) Sarg.), a shade-tolerant species, to study the temporal pattern of release from suppressive shade. In particular, we sought to determine whether hydraulic architecture or photosynthetic capacity is most important in constraining release. The study was conducted at two sites with mixed stands of 10- to 20-year-old Douglas-fir and western hemlock. At one site, the stand had been thinned allowing release of the understory trees, whereas at the other site, the stand remained unthinned. Douglas-fir had lower height growth (from 1998-2003) and lower relative height growth (height growth from 1998 to 2003/height in 1998) than western hemlock. However, relative height growth of released versus suppressed trees was higher in Douglas-fir (130%) than in western hemlock (65%), indicating that, although absolute height growth was less, Douglas-fir did release from suppression. Release seemed to be constrained initially by a limited photosynthetic capacity in both species. Five years after release, Douglas-fir trees had 14 times the leaf area and 1.5 times the leaf nitrogen concentration (N (area)) of suppressed trees. Needles of released western hemlock trees had about twice the maximum assimilation rate (A (max)) at ambient [CO(2)] as needles of suppressed trees and exhibited no photoinhibition at the highest irradiances. After release, trees increased in leaf area, leaf N concentration and overall photosynthetic capacity. Subsequently, hydraulic architecture appeared to constrain release in Douglas-fir and, to a lesser extent, in western hemlock. Released trees had significantly less negative foliar delta(13)C values than suppressed trees and showed a positive relationship between leaf area:sapwood area ratio (A (L)/A (S)) and delta(13)C, suggesting that trees with more leaf area for a given sapwood area experienced a stomatal limitation on carbon gain. Nonetheless, these changes had no significant effects on leaf specific conductivities of suppressed versus released trees of either species, but leaf specific root conductance was significantly lower in released Douglas-fir.

  19. The influence of branch order on optimal leaf vein geometries: Murray's law and area preserving branching.

    PubMed

    Price, Charles A; Knox, Sarah-Jane C; Brodribb, Tim J

    2013-01-01

    Models that predict the form of hierarchical branching networks typically invoke optimization based on biomechanical similitude, the minimization of impedance to fluid flow, or construction costs. Unfortunately, due to the small size and high number of vein segments found in real biological networks, complete descriptions of networks needed to evaluate such models are rare. To help address this we report results from the analysis of the branching geometry of 349 leaf vein networks comprising over 1.5 million individual vein segments. In addition to measuring the diameters of individual veins before and after vein bifurcations, we also assign vein orders using the Horton-Strahler ordering algorithm adopted from the study of river networks. Our results demonstrate that across all leaves, both radius tapering and the ratio of daughter to parent branch areas for leaf veins are in strong agreement with the expectation from Murray's law. However, as veins become larger, area ratios shift systematically toward values expected under area-preserving branching. Our work supports the idea that leaf vein networks differentiate roles of leaf support and hydraulic supply between hierarchical orders.

  20. Light-Induced Indeterminacy Alters Shade-Avoiding Tomato Leaf Morphology1[OPEN

    PubMed Central

    Chitwood, Daniel H.; Kumar, Ravi; Ranjan, Aashish; Pelletier, Julie M.; Townsley, Brad T.; Ichihashi, Yasunori; Martinez, Ciera C.; Zumstein, Kristina; Harada, John J.; Maloof, Julin N.; Sinha, Neelima R.

    2015-01-01

    Plants sense the foliar shade of competitors and alter their developmental programs through the shade-avoidance response. Internode and petiole elongation, and changes in overall leaf area and leaf mass per area, are the stereotypical architectural responses to foliar shade in the shoot. However, changes in leaf shape and complexity in response to shade remain incompletely, and qualitatively, described. Using a meta-analysis of more than 18,000 previously published leaflet outlines, we demonstrate that shade avoidance alters leaf shape in domesticated tomato (Solanum lycopersicum) and wild relatives. The effects of shade avoidance on leaf shape are subtle with respect to individual traits but are combinatorially strong. We then seek to describe the developmental origins of shade-induced changes in leaf shape by swapping plants between light treatments. Leaf size is light responsive late into development, but patterning events, such as stomatal index, are irrevocably specified earlier. Observing that shade induces increases in shoot apical meristem size, we then describe gene expression changes in early leaf primordia and the meristem using laser microdissection. We find that in leaf primordia, shade avoidance is not mediated through canonical pathways described in mature organs but rather through the expression of KNOTTED1-LIKE HOMEOBOX and other indeterminacy genes, altering known developmental pathways responsible for patterning leaf shape. We also demonstrate that shade-induced changes in leaf primordium gene expression largely do not overlap with those found in successively initiated leaf primordia, providing evidence against classic hypotheses that shaded leaf morphology results from the prolonged production of juvenile leaf types. PMID:26381315

  1. Distribution and uptake dynamics of mercury in leaves of common deciduous tree species in Minnesota, U.S.A.

    Treesearch

    Aicam Laacouri; Edward A. Nater; Randall K. Kolka

    2013-01-01

    A sequential extraction technique for compartmentalizing mercury (Hg) in leaves was developed based on a water extraction of Hg from the leaf surface followed by a solvent extraction of the cuticle. The bulk of leaf Hg was found in the tissue compartment (90-96%) with lesser amounts in the surface and cuticle compartments. Total leaf concentrations of Hg varied among...

  2. Evidence for shifts to faster growth strategies in the new ranges of invasive alien plants

    PubMed Central

    Leishman, Michelle R; Cooke, Julia; Richardson, David M; Newman, Jonathan

    2014-01-01

    Summary Understanding the processes underlying the transition from introduction to naturalization and spread is an important goal of invasion ecology. Release from pests and pathogens in association with capacity for rapid growth is thought to confer an advantage for species in novel regions. We assessed leaf herbivory and leaf-level traits associated with growth strategy in the native and exotic ranges of 13 invasive plant species from 256 populations. Species were native to either the Western Cape region of South Africa, south-western Australia or south-eastern Australia and had been introduced to at least one of the other regions or to New Zealand. We tested for evidence of herbivore release and shifts in leaf traits between native and exotic ranges of the 13 species. Across all species, leaf herbivory, specific leaf area and leaf area were significantly different between native and exotic ranges while there were no significant differences across the 13 species found for leaf mass, assimilation rate, dark respiration or foliar nitrogen. Analysis at the species- and region-level showed that eight out of 13 species had reduced leaf herbivory in at least one exotic region compared to its native range. Six out of 13 species had significantly larger specific leaf area (SLA) in at least one exotic range region and five of those six species experienced reduced leaf herbivory. Increases in SLA were underpinned by increases in leaf area rather than reductions in leaf mass. No species showed differences in the direction of trait shifts from the native range between different exotic regions. This suggests that the driver of selection on these traits in the exotic range is consistent across regions and hence is most likely to be associated with factors linked with introduction to a novel environment, such as release from leaf herbivory, rather than with particular environmental conditions. Synthesis. These results provide evidence that introduction of a plant species into a novel environment commonly results in a reduction in the top-down constraint imposed by herbivores on growth, allowing plants to shift towards a faster growth strategy which may result in an increase in population size and spread and consequently to invasive success. PMID:25558090

  3. Impact of Multiple Environmental Stresses on Wetland Vegetation Dynamics

    NASA Astrophysics Data System (ADS)

    Muneepeerakul, C. P.; Tamea, S.; Muneepeerakul, R.; Miralles-Wilhelm, F. R.; Rinaldo, A.; Rodriguez-Iturbe, I.

    2009-12-01

    This research quantifies the impacts of climate change on the dynamics of wetland vegetation under the effect of multiple stresses, such as drought, water-logging, shade and nutrients. The effects of these stresses are investigated through a mechanistic model that captures the co-evolving nature between marsh emergent plant species and their resources (water, nitrogen, light, and oxygen). The model explicitly considers the feedback mechanisms between vegetation, light and nitrogen dynamics as well as the specific dynamics of plant leaves, rhizomes, and roots. Each plant species is characterized by three independent traits, namely leaf nitrogen (N) content, specific leaf area, and allometric carbon (C) allocation to rhizome storage, which govern the ability to gain and maintain resources as well as to survive in a particular multi-stressed environment. The modeling of plant growth incorporates C and N into the construction of leaves and roots, whose amount of new biomass is determined by the dynamic plant allocation scheme. Nitrogen is internally recycled between pools of plants, litter, humus, microbes, and mineral N. The N dynamics are modeled using a parallel scheme, with the major modifications being the calculation of the aerobic and anoxic periods and the incorporation of the anaerobic processes. A simple hydrologic model with stochastic rainfall is used to describe the water level dynamics and the soil moisture profile. Soil water balance is evaluated at the daily time scale and includes rainfall, evapotranspiration and lateral flow to/from an external water body, with evapotranspiration loss equal to the potential value, governed by the daily average condition of atmospheric water demand. The resulting feedback dynamics arising from the coupled system of plant-soil-microbe are studied in details and species’ fitnesses in the 3-D trait space are compared across various rainfall patterns with different mean and fluctuations. The model results are then compared with those from experiments and field studies reported in the literature, providing insights about the physiological features that enable plants to thrive in different wetland environments and climate regimes.

  4. HyperART: non-invasive quantification of leaf traits using hyperspectral absorption-reflectance-transmittance imaging.

    PubMed

    Bergsträsser, Sergej; Fanourakis, Dimitrios; Schmittgen, Simone; Cendrero-Mateo, Maria Pilar; Jansen, Marcus; Scharr, Hanno; Rascher, Uwe

    2015-01-01

    Combined assessment of leaf reflectance and transmittance is currently limited to spot (point) measurements. This study introduces a tailor-made hyperspectral absorption-reflectance-transmittance imaging (HyperART) system, yielding a non-invasive determination of both reflectance and transmittance of the whole leaf. We addressed its applicability for analysing plant traits, i.e. assessing Cercospora beticola disease severity or leaf chlorophyll content. To test the accuracy of the obtained data, these were compared with reflectance and transmittance measurements of selected leaves acquired by the point spectroradiometer ASD FieldSpec, equipped with the FluoWat device. The working principle of the HyperART system relies on the upward redirection of transmitted and reflected light (range of 400 to 2500 nm) of a plant sample towards two line scanners. By using both the reflectance and transmittance image, an image of leaf absorption can be calculated. The comparison with the dynamically high-resolution ASD FieldSpec data showed good correlation, underlying the accuracy of the HyperART system. Our experiments showed that variation in both leaf chlorophyll content of four different crop species, due to different fertilization regimes during growth, and fungal symptoms on sugar beet leaves could be accurately estimated and monitored. The use of leaf reflectance and transmittance, as well as their sum (by which the non-absorbed radiation is calculated) obtained by the HyperART system gave considerably improved results in classification of Cercospora leaf spot disease and determination of chlorophyll content. The HyperART system offers the possibility for non-invasive and accurate mapping of leaf transmittance and absorption, significantly expanding the applicability of reflectance, based on mapping spectroscopy, in plant sciences. Therefore, the HyperART system may be readily employed for non-invasive determination of the spatio-temporal dynamics of various plant properties.

  5. Analysis of leaf surfaces using scanning ion conductance microscopy.

    PubMed

    Walker, Shaun C; Allen, Stephanie; Bell, Gordon; Roberts, Clive J

    2015-05-01

    Leaf surfaces are highly complex functional systems with well defined chemistry and structure dictating the barrier and transport properties of the leaf cuticle. It is a significant imaging challenge to analyse the very thin and often complex wax-like leaf cuticle morphology in their natural state. Scanning electron microscopy (SEM) and to a lesser extent Atomic force microscopy are techniques that have been used to study the leaf surface but their remains information that is difficult to obtain via these approaches. SEM is able to produce highly detailed and high-resolution images needed to study leaf structures at the submicron level. It typically operates in a vacuum or low pressure environment and as a consequence is generally unable to deal with the in situ analysis of dynamic surface events at submicron scales. Atomic force microscopy also possess the high-resolution imaging required and can follow dynamic events in ambient and liquid environments, but can over exaggerate small features and cannot image most leaf surfaces due to their inherent roughness at the micron scale. Scanning ion conductance microscopy (SICM), which operates in a liquid environment, provides a potential complementary analytical approach able to address these issues and which is yet to be explored for studying leaf surfaces. Here we illustrate the potential of SICM on various leaf surfaces and compare the data to SEM and atomic force microscopy images on the same samples. In achieving successful imaging we also show that SICM can be used to study the wetting of hydrophobic surfaces in situ. This has potentially wider implications than the study of leaves alone as surface wetting phenomena are important in a range of fundamental and applied studies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  6. Leaf spring made of fiber-reinforced resin

    NASA Technical Reports Server (NTRS)

    Hori, J.

    1986-01-01

    A leaf spring made of a matrix reinforced by at least two types of reinforcing fibers with different Young's modulus is described in this Japanese patent. At least two layers of reinforcing fibers are formed by partially arranging the reinforcing fibers toward the direction of the thickness of the leaf spring. A mixture of different types of reinforced fibers is used at the area of boundary between the two layers of reinforced fibers. The ratio of blending of each type of reinforced fiber is frequently changed to eliminate the parts where discontinuous stress may be applied to the leaf spring. The objective of this invention is to prevent the rapid change in Young's modulus at the boundary area between each layer of reinforced fibers in the leaf spring.

  7. Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake

    DOE PAGES

    Wehr, Richard; Commane, Roisin; Munger, J. William; ...

    2017-01-26

    Stomatal conductance influences both photosynthesis and transpiration, thereby coupling the carbon and water cycles and affecting surface–atmosphere energy exchange. The environmental response of stomatal conductance has been measured mainly on the leaf scale, and theoretical canopy models are relied on to upscale stomatal conductance for application in terrestrial ecosystem models and climate prediction. Here we estimate stomatal conductance and associated transpiration in a temperate deciduous forest directly on the canopy scale via two independent approaches: (i) from heat and water vapor exchange and (ii) from carbonyl sulfide (OCS) uptake. We use the eddy covariance method to measure the net ecosystem–atmosphere exchange ofmore » OCS, and we use a flux-gradient approach to separate canopy OCS uptake from soil OCS uptake. We find that the seasonal and diurnal patterns of canopy stomatal conductance obtained by the two approaches agree (to within ±6 % diurnally), validating both methods. Canopy stomatal conductance increases linearly with above-canopy light intensity (in contrast to the leaf scale, where stomatal conductance shows declining marginal increases) and otherwise depends only on the diffuse light fraction, the canopy-average leaf-to-air water vapor gradient, and the total leaf area. Based on stomatal conductance, we partition evapotranspiration (ET) and find that evaporation increases from 0 to 40 % of ET as the growing season progresses, driven primarily by rising soil temperature and secondarily by rainfall. Counterintuitively, evaporation peaks at the time of year when the soil is dry and the air is moist. Our method of ET partitioning avoids concerns about mismatched scales or measurement types because both ET and transpiration are derived from eddy covariance data. Neither of the two ecosystem models tested predicts the observed dynamics of evaporation or transpiration, indicating that ET partitioning such as that provided here is needed to further model development and improve our understanding of carbon and water cycling.« less

  8. Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehr, Richard; Commane, Roisin; Munger, J. William

    Stomatal conductance influences both photosynthesis and transpiration, thereby coupling the carbon and water cycles and affecting surface–atmosphere energy exchange. The environmental response of stomatal conductance has been measured mainly on the leaf scale, and theoretical canopy models are relied on to upscale stomatal conductance for application in terrestrial ecosystem models and climate prediction. Here we estimate stomatal conductance and associated transpiration in a temperate deciduous forest directly on the canopy scale via two independent approaches: (i) from heat and water vapor exchange and (ii) from carbonyl sulfide (OCS) uptake. We use the eddy covariance method to measure the net ecosystem–atmosphere exchange ofmore » OCS, and we use a flux-gradient approach to separate canopy OCS uptake from soil OCS uptake. We find that the seasonal and diurnal patterns of canopy stomatal conductance obtained by the two approaches agree (to within ±6 % diurnally), validating both methods. Canopy stomatal conductance increases linearly with above-canopy light intensity (in contrast to the leaf scale, where stomatal conductance shows declining marginal increases) and otherwise depends only on the diffuse light fraction, the canopy-average leaf-to-air water vapor gradient, and the total leaf area. Based on stomatal conductance, we partition evapotranspiration (ET) and find that evaporation increases from 0 to 40 % of ET as the growing season progresses, driven primarily by rising soil temperature and secondarily by rainfall. Counterintuitively, evaporation peaks at the time of year when the soil is dry and the air is moist. Our method of ET partitioning avoids concerns about mismatched scales or measurement types because both ET and transpiration are derived from eddy covariance data. Neither of the two ecosystem models tested predicts the observed dynamics of evaporation or transpiration, indicating that ET partitioning such as that provided here is needed to further model development and improve our understanding of carbon and water cycling.« less

  9. Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees.

    Treesearch

    L.S. Santiago; G. Goldstein; F.C. Meinzer; J.B. Fisher; K. Maehado; D. Woodruff; T. Jones

    2004-01-01

    We investigated how water transport capacity, wood density and wood anatomy were related to leaf photosynthetic traits in two lowland forests in Panama. Leaf-specific hydraulic conductivity (kL) of upper branches was positively correlated with maximum rates of net CO2, assimilation per unit leaf area (Aarea...

  10. Measurement of Leaf Mass and Leaf Area of Oaks In A Mediterranean-climate Region For Biogenic Emission Estimation

    NASA Astrophysics Data System (ADS)

    Karlik, J.

    Given the key role played by biogenic volatile organic compounds (BVOC) in tro- pospheric chemistry and regional air quality, it is critical to generate accurate BVOC emission inventories. Because several oak species have high BVOC emission rates, and oak trees are often of large stature with corresponding large leaf masses, oaks may be the most important genus of woody plants for BVOC emissions modeling in the natural landscapes of Mediterranean-climate regions. In California, BVOC emis- sions from oaks may mix with anthropogenic emissions from urban areas, leading to elevated levels of ozone. Data for leaf mass and leaf area for a stand of native blue oaks (Quercus douglasii) were obtained through harvest and leaf removal from 14 trees lo- cated in the Sierra Nevada foothills of central California. Trees ranged in height from 4.2 to 9.9 m, with trunk diameters at breast height of 14 to 85 cm. Mean leaf mass density was 730 g m-2 for the trees and had an overall value of 310 g m-2 for the site. Consideration of the surrounding grassland devoid of trees resulted in a value of about 150 g m-2, less than half of reported values for eastern U.S. oak woodlands, but close to a reported value for oaks found in St. Quercio, Italy. The mean value for leaf area index (LAI) for the trees at this site was 4.4 m2 m-2. LAI for the site was 1.8 m2 m-2, but this value was appropriate for the oak grove only; including the surrounding open grassland resulted in an overall LAI value of 0.9 m2 m-2 or less. A volumetric method worked well for estimating the leaf mass of the oak trees. Among allometric relationships investigated, trunk circumference, mean crown radius, and crown projec- tion were well correlated with leaf mass. Estimated emission of isoprene (mg C m-2 h-1) for the site based these leaf mass data and experimentally determined emission rate was similar to that reported for a Mediterranean oak woodland in France.

  11. Leaf traits in relation to crown development, light interception and growth of elite families of loblolly and slash pine.

    PubMed

    Chmura, Daniel J; Tjoelker, Mark G

    2008-05-01

    Crown architecture and size influence leaf area distribution within tree crowns and have large effects on the light environment in forest canopies. The use of selected genotypes in combination with silvicultural treatments that optimize site conditions in forest plantations provide both a challenge and an opportunity to study the biological and environmental determinants of forest growth. We investigated tree growth, crown development and leaf traits of two elite families of loblolly pine (Pinus taeda L.) and one family of slash pine (P. elliottii Mill.) at canopy closure. Two contrasting silvicultural treatments -- repeated fertilization and control of competing vegetation (MI treatment), and a single fertilization and control of competing vegetation treatment (C treatment) -- were applied at two experimental sites in the West Gulf Coastal Plain in Texas and Louisiana. At a common tree size (diameter at breast height), loblolly pine trees had longer and wider crowns, and at the plot-level, intercepted a greater fraction of photosynthetic photon flux than slash pine trees. Leaf-level, light-saturated assimilation rates (A(max)) and both mass- and area-based leaf nitrogen (N) decreased, and specific leaf area (SLA) increased with increasing canopy depth. Leaf-trait gradients were steeper in crowns of loblolly pine trees than of slash pine trees for SLA and leaf N, but not for A(max). There were no species differences in A(max), except in mass-based photosynthesis in upper crowns, but the effect of silvicultural treatment on A(max) differed between sites. Across all crown positions, A(max) was correlated with leaf N, but the relationship differed between sites and treatments. Observed patterns of variation in leaf properties within crowns reflected acclimation to developing light gradients in stands with closing canopies. Tree growth was not directly related to A(max), but there was a strong correlation between tree growth and plot-level light interception in both species. Growth efficiency was unaffected by silvicultural treatment. Thus, when coupled with leaf area and light interception at the crown and canopy levels, A(max) provides insight into family and silvicultural effects on tree growth.

  12. Leaf trait dissimilarities between Dutch elm hybrids with a contrasting tolerance to Dutch elm disease

    PubMed Central

    Ďurkovič, Jaroslav; Čaňová, Ingrid; Lagaňa, Rastislav; Kučerová, Veronika; Moravčík, Michal; Priwitzer, Tibor; Urban, Josef; Dvořák, Miloň; Krajňáková, Jana

    2013-01-01

    Background and Aims Previous studies have shown that Ophiostoma novo-ulmi, the causative agent of Dutch elm disease (DED), is able to colonize remote areas in infected plants of Ulmus such as the leaf midrib and secondary veins. The objective of this study was to compare the performances in leaf traits between two Dutch elm hybrids ‘Groeneveld’ and ‘Dodoens’ which possess a contrasting tolerance to DED. Trait linkages were also tested with leaf mass per area (LMA) and with the reduced Young's modulus of elasticity (MOE) as a result of structural, developmental or functional linkages. Methods Measurements and comparisons were made of leaf growth traits, primary xylem density components, gas exchange variables and chlorophyll a fluorescence yields between mature plants of ‘Groeneveld’ and ‘Dodoens’ grown under field conditions. A recently developed atomic force microscopy technique, PeakForce quantitative nanomechanical mapping, was used to reveal nanomechanical properties of the cell walls of tracheary elements such as MOE, adhesion and dissipation. Key Results ‘Dodoens’ had significantly higher values for LMA, leaf tissue thickness variables, tracheary element lumen area (A), relative hydraulic conductivity (RC), gas exchange variables and chlorophyll a fluorescence yields. ‘Groeneveld’ had stiffer cell walls of tracheary elements, and higher values for water-use efficiency and leaf water potential. Leaves with a large carbon and nutrient investment in LMA tended to have a greater leaf thickness and a higher net photosynthetic rate, but LMA was independent of RC. Significant linkages were also found between the MOE and some vascular traits such as RC, A and the number of tracheary elements per unit area. Conclusions Strong dissimilarities in leaf trait performances were observed between the examined Dutch elm hybrids. Both hybrids were clearly separated from each other in the multivariate leaf trait space. Leaf growth, vascular and gas exchange traits in the infected plants of ‘Dodoens’ were unaffected by the DED fungus. ‘Dodoens’ proved to be a valuable elm germplasm for further breeding strategies. PMID:23264236

  13. Modeling spatial competition for light in plant populations with the porous medium equation.

    PubMed

    Beyer, Robert; Etard, Octave; Cournède, Paul-Henry; Laurent-Gengoux, Pascal

    2015-02-01

    We consider a plant's local leaf area index as a spatially continuous variable, subject to particular reaction-diffusion dynamics of allocation, senescence and spatial propagation. The latter notably incorporates the plant's tendency to form new leaves in bright rather than shaded locations. Applying a generalized Beer-Lambert law allows to link existing foliage to production dynamics. The approach allows for inter-individual variability and competition for light while maintaining robustness-a key weakness of comparable existing models. The analysis of the single plant case leads to a significant simplification of the system's key equation when transforming it into the well studied porous medium equation. Confronting the theoretical model to experimental data of sugar beet populations, differing in configuration density, demonstrates its accuracy.

  14. QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.).

    PubMed

    Liu, Kaiye; Xu, Hao; Liu, Gang; Guan, Panfeng; Zhou, Xueyao; Peng, Huiru; Yao, Yingyin; Ni, Zhongfu; Sun, Qixin; Du, Jinkun

    2018-04-01

    QTL controlling flag leaf length, flag leaf width, flag leaf area and flag leaf angle were mapped in wheat. This study aimed to advance our understanding of the genetic mechanisms underlying morphological traits of the flag leaves of wheat (Triticum aestivum L.). A recombinant inbred line (RIL) population derived from ND3331 and the Tibetan semi-wild wheat Zang1817 was used to identify quantitative trait loci (QTLs) controlling flag leaf length (FLL), flag leaf width (FLW), flag leaf area (FLA), and flag leaf angle (FLANG). Using an available simple sequence repeat genetic linkage map, 23 putative QTLs for FLL, FLW, FLA, and FLANG were detected on chromosomes 1B, 2B, 3A, 3D, 4B, 5A, 6B, 7B, and 7D. Individual QTL explained 4.3-68.52% of the phenotypic variance in different environments. Four QTLs for FLL, two for FLW, four for FLA, and five for FLANG were detected in at least two environments. Positive alleles of 17 QTLs for flag leaf-related traits originated from ND3331 and 6 originated from Zang1817. QTLs with pleiotropic effects or multiple linked QTL were also identified on chromosomes 1B, 4B, and 5A; these are potential target regions for fine-mapping and marker-assisted selection in wheat breeding programs.

  15. Bundle sheath lignification mediates the linkage of leaf hydraulics and venation.

    PubMed

    Ohtsuka, Akihiro; Sack, Lawren; Taneda, Haruhiko

    2018-02-01

    The lignification of the leaf vein bundle sheath (BS) has been observed in many species and would reduce conductance from xylem to mesophyll. We hypothesized that lignification of the BS in lower-order veins would provide benefits for water delivery through the vein hierarchy but that the lignification of higher-order veins would limit transport capacity from xylem to mesophyll and leaf hydraulic conductance (K leaf ). We further hypothesized that BS lignification would mediate the relationship of K leaf to vein length per area. We analysed the dependence of K leaf , and its light response, on the lignification of the BS across vein orders for 11 angiosperm tree species. Eight of 11 species had lignin deposits in the BS of the midrib, and two species additionally only in their secondary veins, and for six species up to their minor veins. Species with lignification of minor veins had a lower hydraulic conductance of xylem and outside-xylem pathways and lower K leaf . K leaf could be strongly predicted by vein length per area and highest lignified vein order (R 2  = .69). The light-response of K leaf was statistically independent of BS lignification. The lignification of the BS is an important determinant of species variation in leaf and thus whole plant water transport. © 2017 John Wiley & Sons Ltd.

  16. Distribution of leaf characteristics in relation to orientation within the canopy of woody species

    NASA Astrophysics Data System (ADS)

    Escudero, Alfonso; Fernández, José; Cordero, Angel; Mediavilla, Sonia

    2013-04-01

    Over the last few decades considerable effort has been devoted to research of leaf adaptations to environmental conditions. Many studies have reported strong differences in leaf mass per unit area (LMA) within a single tree depending on the photosynthetic photon flux density (PPFD) incident on different locations in the crown. There are fewer studies, however, of the effects of differences in the timing of light incidence during the day on different crown orientations. Leaves from isolated trees of Quercus suber and Quercus ilex in a cold Mediterranean climate were sampled to analyze differences in LMA and other leaf traits among different crown orientations. Gas-exchange rates, leaf water potentials, leaf temperatures and PPFD incident on leaf surfaces in different crown orientations were also measured throughout one entire summer day for each species. Mean daily PPFD values were similar for the leaves from the eastern and western sides of the canopy. On the western side, PPFD reached maximum values during the afternoon. Maximum leaf temperatures were approximately 10-20% higher on the west side, whereas minimum leaf water potentials were between 10 and 24% higher on the east side. Maximum transpiration rates were approximately 22% greater on the west, because of the greater leaf-to-air vapor pressure deficits (LAVPD). Mean individual leaf area was around 10% larger on the east than on the west side of the trees. In contrast, there were no significant differences in LMA between east and west sides of the crown. Contrary to our expectations, more severe water stress on the west side did not result in increases in LMA, although it was associated with lower individual leaf area. We conclude that increases in LMA measured by other authors along gradients of water stress would be due to differences in light intensity between dry and humid sites.

  17. Spatial variation of dosimetric leaf gap and its impact on dose delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumaraswamy, Lalith K., E-mail: Lalith.Kumaraswamy@roswellpark.org; Schmitt, Jonathan D.; Bailey, Daniel W.

    Purpose: During dose calculation, the Eclipse treatment planning system (TPS) retracts the multileaf collimator (MLC) leaf positions by half of the dosimetric leaf gap (DLG) value (measured at central axis) for all leaf positions in a dynamic MLC plan to accurately model the rounded leaf ends. The aim of this study is to map the variation of DLG along the travel path of each MLC leaf pair and quantify how this variation impacts delivered dose. Methods: 6 MV DLG values were measured for all MLC leaf pairs in increments of 1.0 cm (from the line intersecting the CAX and perpendicularmore » to MLC motion) to 13.0 cm off axis distance at dmax. The measurements were performed on two Varian linear accelerators, both employing the Millennium 120-leaf MLCs. The measurements were performed at several locations in the beam with both a Sun Nuclear MapCHECK device and a PTW pinpoint ion chamber. Results: The measured DLGs for the middle 40 MLC leaf pairs (each 0.5 cm width) at positions along a line through the CAX and perpendicular to MLC leaf travel direction were very similar, varying maximally by only 0.2 mm. The outer 20 MLC leaf pairs (each 1.0 cm width) have much lower DLG values, about 0.3–0.5 mm lower than the central MLC leaf pair, at their respective central line position. Overall, the mean and the maximum variation between the 0.5 cm width leaves and the 1.0 cm width leaf pairs are 0.32 and 0.65 mm, respectively. Conclusions: The spatial variation in DLG is caused by the variation of intraleaf transmission through MLC leaves. Fluences centered on the CAX would not be affected since DLG does not vary; but any fluences residing significantly off axis with narrow sweeping leaves may exhibit significant dose differences. This is due to the fact that there are differences in DLG between the true DLG exhibited by the 1.0 cm width outer leaves and the constant DLG value utilized by the TPS for dose calculation. Since there are large differences in DLG between the 0.5 cm width leaf pairs and 1.0 cm width leaf pairs, there is a need to correct the TPS plans, especially those with high modulation (narrow dynamic MLC gap), with 2D variation of DLG.« less

  18. Impacts of water and nitrogen supplies on the physiology, leaf demography and nitrogen dynamics of Betula pendula.

    PubMed

    Wendler, Renate; Millard, Peter

    1996-01-01

    We determined the response of Betula pendula Roth. trees to a restricted water supply, and quantified the interactions between tree N and water status on leaf demography and internal N cycling. In April 1993, 3-year-old trees were planted in sand culture and four treatments applied: high-N supply (56 mg tree(-1) week(-1)) with either 2 dm(3) water week(-1) (HN+) or 0.9 dm(3) water week(-1) (HN-), or low-N supply (14 mg tree(-1) week(-1)) with 2 dm(3) (LN+) or 0.9 dm(3) (LN-) water week(-1). Until 1994, the N supplied to trees was enriched with (15)N to 5.4 atom %. During 1993, there were few differences in the growth or leaf demography of trees in the LN+ and LN- treatments, but the high-N treatment increased tree growth. Leaf mass and area were initially similar in trees in the HN+ and HN- treatments, but the trees in the HN- treatment had a smaller root system. Net assimilation rate under saturating light was higher in trees in the HN+ treatment than in trees in the LN+ treatment. There was an N x water supply interaction as a result of trees in the HN- treatment closing their stomata by the beginning of August. However, there was no difference in gas exchange characteristics of leaves in the LN+ and LN- treatments. Although leaf senescence and abscission started in the HN- treatment by mid-August and continued for about 90 days, whereas leaf abscission in the other treatments did not start until the beginning of October and only lasted 25-30 days, the trees in the HN+ and HN- treatments remobilized similar amounts of (15)N for leaf growth in the spring of 1994. There were no differences in predawn water potential among treatments and no evidence of osmotic adjustment. We conclude that B. pendula trees avoid rather than tolerate drought. The interaction between the effects of nitrogen and water supplies on leaf demography and internal cycling of N are discussed.

  19. Chronicle of a pigmented superficial Basal cell carcinoma.

    PubMed

    Caucanas, Marie; Piérard-Franchimont, Claudine; Piérard, Gérald E

    2012-01-01

    Dermoscopic patterns of basal cell carcinoma (BCC) are well defined, but the dynamics of dermoscopic changes in time were apparently never described so far. In this paper, prominent changes were observed over a 8-week period, allowing to establish a close connection between spoke wheel areas and maple leaf-like aspects, through progressive thickening of the former ones. A chronobiological phenomenon ruling synchronous apoptosis in some of the most superficial BCC nests is suggested, leading to a wax and wane process of millimetric crusts, taking part in the spontaneous BCC regression/progression process.

  20. Measuring fraction of intercepted photosynthetically active radiation with a ceptometer: the importance of adopting a universal methodological approach

    USDA-ARS?s Scientific Manuscript database

    It is desirable to be able to predict above ground biomass production indirectly, without extensive sampling or destructive harvesting. Leaf area index (LAI) is the amount of leaf surface area per ground area and is an important parameter in ecophysiology. As LAI increases, the photosynthetically ...

  1. EPIC-Simulated and MODIS-Derived Leaf Area Index (LAI) Comparisons Across mMltiple Spatial Scales RSAD Oral Poster based session

    EPA Science Inventory

    Leaf Area Index (LAI) is an important parameter in assessing vegetation structure for characterizing forest canopies over large areas at broad spatial scales using satellite remote sensing data. However, satellite-derived LAI products can be limited by obstructed atmospheric cond...

  2. [A review of progress of real-time tumor tracking radiotherapy technology based on dynamic multi-leaf collimator].

    PubMed

    Liu, Fubo; Li, Guangjun; Shen, Jiuling; Li, Ligin; Bai, Sen

    2017-02-01

    While radiation treatment to patients with tumors in thorax and abdomen is being performed, further improvement of radiation accuracy is restricted by the tumor intra-fractional motion due to respiration. Real-time tumor tracking radiation is an optimal solution to tumor intra-fractional motion. A review of the progress of real-time dynamic multi-leaf collimator(DMLC) tracking is provided in the present review, including DMLC tracking method, time lag of DMLC tracking system, and dosimetric verification.

  3. Integrating Stand and Soil Properties to Understand Foliar Nutrient Dynamics during Forest Succession Following Slash-and-Burn Agriculture in the Bolivian Amazon

    PubMed Central

    Broadbent, Eben N.; Almeyda Zambrano, Angélica M.; Asner, Gregory P.; Soriano, Marlene; Field, Christopher B.; de Souza, Harrison Ramos; Peña-Claros, Marielos; Adams, Rachel I.; Dirzo, Rodolfo; Giles, Larry

    2014-01-01

    Secondary forests cover large areas of the tropics and play an important role in the global carbon cycle. During secondary forest succession, simultaneous changes occur among stand structural attributes, soil properties, and species composition. Most studies classify tree species into categories based on their regeneration requirements. We use a high-resolution secondary forest chronosequence to assign trees to a continuous gradient in species successional status assigned according to their distribution across the chronosequence. Species successional status, not stand age or differences in stand structure or soil properties, was found to be the best predictor of leaf trait variation. Foliar δ13C had a significant positive relationship with species successional status, indicating changes in foliar physiology related to growth and competitive strategy, but was not correlated with stand age, whereas soil δ13C dynamics were largely constrained by plant species composition. Foliar δ15N had a significant negative correlation with both stand age and species successional status, – most likely resulting from a large initial biomass-burning enrichment in soil 15N and 13C and not closure of the nitrogen cycle. Foliar %C was neither correlated with stand age nor species successional status but was found to display significant phylogenetic signal. Results from this study are relevant to understanding the dynamics of tree species growth and competition during forest succession and highlight possibilities of, and potentially confounding signals affecting, the utility of leaf traits to understand community and species dynamics during secondary forest succession. PMID:24516525

  4. Integrating stand and soil properties to understand foliar nutrient dynamics during forest succession following slash-and-burn agriculture in the Bolivian Amazon.

    PubMed

    Broadbent, Eben N; Almeyda Zambrano, Angélica M; Asner, Gregory P; Soriano, Marlene; Field, Christopher B; de Souza, Harrison Ramos; Peña-Claros, Marielos; Adams, Rachel I; Dirzo, Rodolfo; Giles, Larry

    2014-01-01

    Secondary forests cover large areas of the tropics and play an important role in the global carbon cycle. During secondary forest succession, simultaneous changes occur among stand structural attributes, soil properties, and species composition. Most studies classify tree species into categories based on their regeneration requirements. We use a high-resolution secondary forest chronosequence to assign trees to a continuous gradient in species successional status assigned according to their distribution across the chronosequence. Species successional status, not stand age or differences in stand structure or soil properties, was found to be the best predictor of leaf trait variation. Foliar δ(13)C had a significant positive relationship with species successional status, indicating changes in foliar physiology related to growth and competitive strategy, but was not correlated with stand age, whereas soil δ(13)C dynamics were largely constrained by plant species composition. Foliar δ(15)N had a significant negative correlation with both stand age and species successional status, - most likely resulting from a large initial biomass-burning enrichment in soil (15)N and (13)C and not closure of the nitrogen cycle. Foliar %C was neither correlated with stand age nor species successional status but was found to display significant phylogenetic signal. Results from this study are relevant to understanding the dynamics of tree species growth and competition during forest succession and highlight possibilities of, and potentially confounding signals affecting, the utility of leaf traits to understand community and species dynamics during secondary forest succession.

  5. Leaf growth dynamics in four plant species of the Patagonian Monte, Argentina.

    PubMed

    Campanella, M Victoria; Bertiller, Mónica B

    2013-07-01

    Studying plant responses to environmental variables is an elemental key to understand the functioning of arid ecosystems. We selected four dominant species of the two main life forms. The species selected were two evergreen shrubs: Larrea divaricata and Chuquiraga avellanedae and two perennial grasses: Nassella tenuis and Pappostipa speciosa. We registered leaf/shoot growth, leaf production and environmental variables (precipitation, air temperature, and volumetric soil water content at two depths) during summer-autumn and winter-spring periods. Multiple regressions were used to test the predictive power of the environmental variables. During the summer-autumn period, the strongest predictors of leaf/shoot growth and leaf production were the soil water content of the upper layer and air temperature while during the winter-spring period, the strongest predictor was air temperature. In conclusion, we found that the leaf/shoot growth and leaf production were associated with current environmental conditions, specially to soil water content and air temperature.

  6. How did the swiss cheese plant get its holes?

    PubMed

    Muir, Christopher D

    2013-02-01

    Adult leaf fenestration in "Swiss cheese" plants (Monstera Adans.) is an unusual leaf shape trait lacking a convincing evolutionary explanation. Monstera are secondary hemiepiphytes that inhabit the understory of tropical rainforests, where photosynthesis from sunflecks often makes up a large proportion of daily carbon assimilation. Here I present a simple model of leaf-level photosynthesis and whole-plant canopy dynamics in a stochastic light environment. The model demonstrates that leaf fenestration can reduce the variance in plant growth and thereby increase geometric mean fitness. This growth-variance hypothesis also suggests explanations for conspicuous ontogenetic changes in leaf morphology (heteroblasty) in Monstera, as well as the absence of leaf fenestration in co-occurring juvenile tree species. The model provides a testable hypothesis of the adaptive significance of a unique leaf shape and illustrates how variance in growth rate could be an important factor shaping plant morphology and physiology.

  7. Long-term impact of Ophiostoma novo-ulmi on leaf traits and transpiration of branches in the Dutch elm hybrid ‘Dodoens’

    PubMed Central

    Plichta, Roman; Urban, Josef; Gebauer, Roman; Dvořák, Miloň; Ďurkovič, Jaroslav

    2016-01-01

    To better understand the long-term impact of Ophiostoma novo-ulmi Brasier on leaf physiology in ‘Dodoens’, a Dutch elm disease-tolerant hybrid, measurements of leaf area, leaf dry mass, petiole anatomy, petiole hydraulic conductivity, leaf and branch water potential, and branch sap flow were performed 3 years following an initial artificial inoculation. Although fungal hyphae were detected in fully expanded leaves, neither anatomical nor morphological traits were affected, indicating that there was no impact from the fungal hyphae on the leaves during leaf expansion. In contrast, however, infected trees showed both a lower transpiration rate of branches and a lower sap flow density. The long-term persistence of fungal hyphae inside vessels decreased the xylem hydraulic conductivity, but stomatal regulation of transpiration appeared to be unaffected as the leaf water potential in both infected and non-infected trees was similarly driven by the transpirational demands. Regardless of the fungal infection, leaves with a higher leaf mass per area ratio tended to have a higher leaf area-specific conductivity. Smaller leaves had an increased number of conduits with smaller diameters and thicker cell walls. Such a pattern could increase tolerance towards hydraulic dysfunction. Measurements of water potential and theoretical xylem conductivity revealed that petiole anatomy could predict the maximal transpiration rate. Three years following fungal inoculation, phenotypic expressions for the majority of the examined traits revealed a constitutive nature for their possible role in Dutch elm disease tolerance of ‘Dodoens’ trees. PMID:26843210

  8. Neighbor detection at the leaf tip adaptively regulates upward leaf movement through spatial auxin dynamics

    PubMed Central

    Reinen, Emilie; Anten, Niels P. R.

    2017-01-01

    Vegetation stands have a heterogeneous distribution of light quality, including the red/far-red light ratio (R/FR) that informs plants about proximity of neighbors. Adequate responses to changes in R/FR are important for competitive success. How the detection and response to R/FR are spatially linked and how this spatial coordination between detection and response affects plant performance remains unresolved. We show in Arabidopsis thaliana and Brassica nigra that localized FR enrichment at the lamina tip induces upward leaf movement (hyponasty) from the petiole base. Using a combination of organ-level transcriptome analysis, molecular reporters, and physiology, we show that PIF-dependent spatial auxin dynamics are key to this remote response to localized FR enrichment. Using computational 3D modeling, we show that remote signaling of R/FR for hyponasty has an adaptive advantage over local signaling in the petiole, because it optimizes the timing of leaf movement in response to neighbors and prevents hyponasty caused by self-shading. PMID:28652357

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, J

    Purpose: The aim of this work is to study the dosimetric impact of leaf interdigitation in prostate cancer dynamic IMRT treatment planning. Methods: Fifteen previously treated prostate cancer patients were replanned for dynamic IMRT (dMLC) with and without leaf interdigitation using Monaco 3.3 TPS on the Elekta Synergy linear accelerator. The prescription dose of PTV was 70Gy/35 fractions. Various dosimetric variables, such as PTV coverage, OAR sparing, delivery efficiency and optimization time, were evaluated for each plan. Results: Interdigitation did not improve the coverage, HI and CI for PTV. Regarding OARs, sparing was equivalent with and without interdigitation. Interdigitation shownmore » an increase in MUs and segments. It was worth noting that leaf interdigitation saved the optimization time. Conclusion: This study shows that leaf interdigitation does not improve plan quality when performing dMLC treatment plan for prostate cancer. However, it influences delivery efficiency and optimization time. Interdigitation may gain efficiency for dosimetrist when designing the prostate cancer dMLC plans.« less

  10. Relationships of Leaf Area Index and NDVI for 12 Brassica Cultivars in Northeastern Montana

    NASA Astrophysics Data System (ADS)

    Jabro, Jay; Allen, Brett; Long, Dan; Isbell, Terry; Gesch, Russ; Brown, Jack; Hatfield, Jerry; Archer, David; Oblath, Emily; Vigil, Merle; Kiniry, Jim; Hunter, Kimberly; Shonnard, David

    2017-04-01

    To our knowledge, there is limited information on the relationship of the normalized difference vegetation index (NDVI) and leaf area index (LAI) in spring Brassica oilseed crops. The 2014 results of NDVI and LAI of 12 spring varieties of oilseed crops were measured in a field study conducted in Sidney, Montana, USA under dryland conditions. These 12 varieties were grouped under six species (B. napus, B. rapa, B. juncea, B. carinata, Sinapis alba, and Camelina sativa). The NDVI and LAI were measured weekly throughout the growing season. The NDVI was continually measured at one sample per second across the whole plot using a Crop Circle ACS-470 active crop canopy sensor. The LAI was measured at two locations at 12 samples per plot using an AccuPar model LP-80 Ceptometer. Treatments were replicated four times in a randomized complete block design in plots of 3 m×9 m. Temporal dynamics of NDVI and LAI in various growth stages of 12 varieties were evaluated throughout the growing season. Significant relationships and models between NDVI and LAI were obtained when 12 varieties were grouped under six species.

  11. Effects of nitrogen deposition on carbon and nitrogen dynamics: a model-data comparison at an alpine meadow on the Qinghai Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Li, P.; Fang, H.; Ren, X.; He, H.; Li, Y.; Yu, G.

    2015-12-01

    Significant increases in atmospheric nitrogen (N) deposition due to human activities are likely to alter the carbon (C) and nitrogen cycles of terrestrial ecosystems. N deposition has the potential to affect photosynthesis, plant and soil respiration, and thus vegetation and soil C storages. Accurate estimation of the change in plant uptake of carbon dioxide due to N deposition is essential to dealing with the climate change. Among the 11 earth system models which provide climate projection for the Fifth Assessment Report of the Intergovernmental Panel for Climate Change, only the community land model (CLM-CN) used in two of them includes a dynamic terrestrial nitrogen cycle. However, the responses of carbon and nitrogen dynamics to nitrogen deposition in CLM-CN have not been well evaluated. In this study, we examine the performance of CLM-CN (version 4.0) in simulating how leaf N content, leaf area index (LAI), aboveground biomass, soil respiration, and soil organic C and N respond to low-level N addition (40 kg N m-2 yr-1) using observations at an alpine meadow on the Qinghai Tibetan Plateau. CLM-CN well reproduced the positive responses of LAI and soil respiration (+13% and +8%) to the N addition, compared to observed increases (+14% and +12%). However, the CLM-CN leaf N content response to N addition (+13%) was larger than observed (+5%), and modeled response of aboveground biomass C (+5%) was smaller than observed (+12%). Moreover, modeled slight positive response (+0.2%) of soil organic C to N addition was inconsistent with observed decrease of 8.8%. Additional manipulation experimental data are required for evaluating and improving models in simulating responses of plant N uptake, C and N allocation, litter and soil organic matter decomposition to N deposition.

  12. Optimal balance of water use efficiency and leaf construction cost with a link to the drought threshold of the desert steppe ecotone in northern China.

    PubMed

    Wei, Haixia; Luo, Tianxiang; Wu, Bo

    2016-09-01

    In arid environments, a high nitrogen content per leaf area (Narea) induced by drought can enhance water use efficiency (WUE) of photosynthesis, but may also lead to high leaf construction cost (CC). Our aim was to investigate how maximizing Narea could balance WUE and CC in an arid-adapted, widespread species along a rainfall gradient, and how such a process may be related to the drought threshold of the desert-steppe ecotone in northern China. Along rainfall gradients with a moisture index (MI) of 0·17-0·41 in northern China and the northern Tibetan Plateau, we measured leaf traits and stand variables including specific leaf area (SLA), nitrogen content relative to leaf mass and area (Nmass, Narea) and construction cost (CCmass, CCarea), δ(13)C (indicator of WUE), leaf area index (LAI) and foliage N-pool across populations of Artemisia ordosica In samples from northern China, a continuous increase of Narea with decreasing MI was achieved by a higher Nmass and constant SLA (reduced LAI and constant N-pool) in high-rainfall areas (MI > 0·29), but by a lower SLA and Nmass (reduced LAI and N-pool) in low-rainfall areas (MI ≤ 0·29). While δ(13)C, CCmass and CCarea continuously increased with decreasing MI, the low-rainfall group had higher Narea and δ(13)C at a given CCarea, compared with the high-rainfall group. Similar patterns were also found in additional data for the same species in the northern Tibetan Plateau. The observed drought threshold where MI = 0·29 corresponded well to the zonal boundary between typical and desert steppes in northern China. Our data indicated that below a climatic drought threshold, drought-resistant plants tend to maximize their intrinsic WUE through increased Narea at a given CCarea, which suggests a linkage between leaf functional traits and arid vegetation zonation. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Optimal balance of water use efficiency and leaf construction cost with a link to the drought threshold of the desert steppe ecotone in northern China

    PubMed Central

    Wei, Haixia; Luo, Tianxiang; Wu, Bo

    2016-01-01

    Background and Aims In arid environments, a high nitrogen content per leaf area (Narea) induced by drought can enhance water use efficiency (WUE) of photosynthesis, but may also lead to high leaf construction cost (CC). Our aim was to investigate how maximizing Narea could balance WUE and CC in an arid-adapted, widespread species along a rainfall gradient, and how such a process may be related to the drought threshold of the desert–steppe ecotone in northern China. Methods Along rainfall gradients with a moisture index (MI) of 0·17–0·41 in northern China and the northern Tibetan Plateau, we measured leaf traits and stand variables including specific leaf area (SLA), nitrogen content relative to leaf mass and area (Nmass, Narea) and construction cost (CCmass, CCarea), δ13C (indicator of WUE), leaf area index (LAI) and foliage N-pool across populations of Artemisia ordosica. Key Results In samples from northern China, a continuous increase of Narea with decreasing MI was achieved by a higher Nmass and constant SLA (reduced LAI and constant N-pool) in high-rainfall areas (MI > 0·29), but by a lower SLA and Nmass (reduced LAI and N-pool) in low-rainfall areas (MI ≤ 0·29). While δ13C, CCmass and CCarea continuously increased with decreasing MI, the low-rainfall group had higher Narea and δ13C at a given CCarea, compared with the high-rainfall group. Similar patterns were also found in additional data for the same species in the northern Tibetan Plateau. The observed drought threshold where MI = 0·29 corresponded well to the zonal boundary between typical and desert steppes in northern China. Conclusions Our data indicated that below a climatic drought threshold, drought-resistant plants tend to maximize their intrinsic WUE through increased Narea at a given CCarea, which suggests a linkage between leaf functional traits and arid vegetation zonation. PMID:27443298

  14. [Effects of forest gap size on the architecture of Quercus variablis seedlings on the south slope of Qinling Mountains, west China].

    PubMed

    Yu, Bi-yun; Zhang, Wen-hui; He, Ting; You, Jian-jian; Li, Gang

    2014-12-01

    Typical sampling method was conducted to survey the effects of forest gap size on branch architecture, leaf characteristics and their vertical distribution of Quercus variablis seedlings from different size gaps in natural secondary Q. variablis thinning forest, on the south slope of Qinling Mountains. The results showed that gap size significantly affected the diameter, crown area of Q. variablis seedlings. The gap size positively correlated with diameter and negatively correlated with crown area, while it had no significant impact on seedling height, crown length and crown rates. The overall bifurcation ratio, stepwise bifurcation ratio, and ratio of branch diameter followed as large gap > middle gap > small gap > understory. The vertical distribution of first-order branches under different size gaps mainly concentrated at the middle and upper part of trunk, larger diameter first-order branches were mainly distributed at the lower part of trunk, and the angle of first-order branch increased at first and then declined with the increasing seedling height. With the increasing forest gap size, the leaf length, leaf width and average leaf area of seedlings all gradually declined, while the average leaf number per plant and relative total leaf number increased, the leaf length-width ratio kept stable, the relative leaf number was mainly distributed at the middle and upper parts of trunk, the changes of leaf area index was consistent with the change of the relative total number of leaves. There was no significant difference between the diameters of middle gap and large gap seedlings, but the diameter of middle gap seedlings was higher than that of large gap, suggesting the middle gap would benefit the seedlings regeneration and high-quality timber cultivation. To promote the regeneration of Q. variabilis seedlings, and to cultivate high-quality timber, appropriate thinning should be taken to increase the number of middle gaps in the management of Q. variabilis forest.

  15. Retrieval of canopy moisture content for dynamic fire risk assessment using simulated MODIS bands

    NASA Astrophysics Data System (ADS)

    Maffei, Carmine; Leone, Antonio P.; Meoli, Giuseppe; Calabrò, Gaetano; Menenti, Massimo

    2007-10-01

    Forest fires are one of the major environmental hazards in Mediterranean Europe. Biomass burning reduces carbon fixation in terrestrial vegetation, while soil erosion increases in burned areas. For these reasons, more sophisticated prevention tools are needed by local authorities to forecast fire danger, allowing a sound allocation of intervention resources. Various factors contribute to the quantification of fire hazard, and among them vegetation moisture is the one that dictates vegetation susceptibility to fire ignition and propagation. Many authors have demonstrated the role of remote sensing in the assessment of vegetation equivalent water thickness (EWT), which is defined as the weight of liquid water per unit of leaf surface. However, fire models rely on the fuel moisture content (FMC) as a measure of vegetation moisture. FMC is defined as the ratio of the weight of the liquid water in a leaf over the weight of dry matter, and its retrieval from remote sensing measurements might be problematic, since it is calculated from two biophysical properties that independently affect vegetation reflectance spectrum. The aim of this research is to evaluate the potential of the Moderate Resolution Imaging Spectrometer (MODIS) in retrieving both EWT and FMC from top of the canopy reflectance. The PROSPECT radiative transfer code was used to simulate leaf reflectance and transmittance as a function of leaf properties, and the SAILH model was adopted to simulate the top of the canopy reflectance. A number of moisture spectral indexes have been calculated, based on MODIS bands, and their performance in predicting EWT and FMC has been evaluated. Results showed that traditional moisture spectral indexes can accurately predict EWT but not FMC. However, it has been found that it is possible to take advantage of the multiple MODIS short-wave infrared (SWIR) channels to improve the retrieval accuracy of FMC (r2 = 0.73). The effects of canopy structural properties on MODIS estimates of FMC have been evaluated, and it has been found that the limiting factor is leaf area index (LAI). The best results are recorded for LAI>2 (r2 = 0.83), while acceptable results (r2 = 0.58) can still be achieved for lower vegetation cover density.

  16. Forest canopy growth dynamic modeling based on remote sensing prodcuts and meteorological data in Daxing'anling of Northeast China

    NASA Astrophysics Data System (ADS)

    Wu, Qiaoli; Song, Jinling; Wang, Jindi; Xiao, Zhiqiang

    2014-11-01

    Leaf Area Index (LAI) is an important biophysical variable for vegetation. Compared with vegetation indexes like NDVI and EVI, LAI is more capable of monitoring forest canopy growth quantitatively. GLASS LAI is a spatially complete and temporally continuous product derived from AVHRR and MODIS reflectance data. In this paper, we present the approach to build dynamic LAI growth models for young and mature Larix gmelinii forest in north Daxing'anling in Inner Mongolia of China using the Dynamic Harmonic Regression (DHR) model and Double Logistic (D-L) model respectively, based on the time series extracted from multi-temporal GLASS LAI data. Meanwhile we used the dynamic threshold method to attract the key phenological phases of Larix gmelinii forest from the simulated time series. Then, through the relationship analysis between phenological phases and the meteorological factors, we found that the annual peak LAI and the annual maximum temperature have a good correlation coefficient. The results indicate this forest canopy growth dynamic model to be very effective in predicting forest canopy LAI growth and extracting forest canopy LAI growth dynamic.

  17. Physiological, vascular and nanomechanical assessment of hybrid poplar leaf traits in micropropagated plants and plants propagated from root cuttings: A contribution to breeding programs.

    PubMed

    Ďurkovič, Jaroslav; Husárová, Hana; Javoříková, Lucia; Čaňová, Ingrid; Šuleková, Miriama; Kardošová, Monika; Lukáčik, Ivan; Mamoňová, Miroslava; Lagaňa, Rastislav

    2017-09-01

    Micropropagated plants experience significant stress from rapid water loss when they are transferred from an in vitro culture to either greenhouse or field conditions. This is caused both by inefficient stomatal control of transpiration and the change to a higher light intensity and lower humidity. Understanding the physiological, vascular and biomechanical processes that allow micropropagated plants to modify their phenotype in response to environmental conditions can help to improve both field performance and plant survival. To identify changes between the hybrid poplar [Populus tremula × (Populus × canescens)] plants propagated from in vitro tissue culture and those from root cuttings, we assessed leaf performance for any differences in leaf growth, photosynthetic and vascular traits, and also nanomechanical properties of the tracheary element cell walls. The micropropagated plants showed significantly higher values for leaf area, leaf length, leaf width and leaf dry mass. The greater leaf area and leaf size dimensions resulted from the higher transpiration rate recorded for this stock type. Also, the micropropagated plants reached higher values for chlorophyll a fluorescence parameters and for the nanomechanical dissipation energy of tracheary element cell walls which may indicate a higher damping capacity within the primary xylem tissue under abiotic stress conditions. The performance of the plants propagated from root cuttings was superior for instantaneous water-use efficiency which signifies a higher acclimation capacity to stressful conditions during a severe drought particularly for this stock type. Similarities were found among the majority of the examined leaf traits for both vegetative plant origins including leaf mass per area, stomatal conductance, net photosynthetic rate, hydraulic axial conductivity, indicators of leaf midrib vascular architecture, as well as for the majority of cell wall nanomechanical traits. This research revealed that there were no drawbacks in the leaf physiological performance which could be attributed to the micropropagated plants of fast growing hybrid poplar. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Family differences in equations for predicting biomass and leaf area in Douglas-fir (Pseudotsuga menziesii var. menziesii).

    Treesearch

    J.B. St. Clair

    1993-01-01

    Logarithmic regression equations were developed to predict component biomass and leaf area for an 18-yr-old genetic test of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco var. menziesii) based on stem diameter or cross-sectional sapwood area. Equations did not differ among open-pollinated families in slope, but intercepts...

  19. Allometric method to estimate leaf area index for row crops

    USDA-ARS?s Scientific Manuscript database

    Leaf area index (LAI) is critical for predicting plant metabolism, biomass production, evapotranspiration, and greenhouse gas sequestration, but direct LAI measurements are difficult and labor intensive. Several methods are available to measure LAI indirectly or calculate LAI using allometric method...

  20. Throughfall under a teak plantation in Thailand: a multifactorial analysis on the effects of canopy phenology and meteorological conditions

    NASA Astrophysics Data System (ADS)

    Tanaka, N.; Levia, D. F., Jr.; Igarashi, Y.; Nanko, K.; Yoshifuji, N.; Tanaka, K.; Chatchai, T.; Suzuki, M.; Kumagai, T.

    2014-12-01

    Teak (Tectona grandis Linn. f.) plantations cover vast areas throughout Southeast Asia and are of great economic importance. This study has sought to increase our understanding of throughfall inputs under teak by analyzing the abiotic and biotic factors governing throughfall amounts and throughfall ratios in relation to three canopy phenophases (leafless, leafing, and leafed). There is no rain during the brief leaf senescence phenophase. Daily data was available for both throughfall volumes and depths as well as leaf area index. Detailed meteorological data were available in situ every ten minutes. Leveraging this high-resolution field data, we employed boosted regression trees (BRT) analysis to identify the primary controls on throughfall amount and ratio during each of the three canopy phenophases. Whereas throughfall amounts were always dominated by the magnitude of rainfall (as expected), throughfall ratios were governed by a suite of predictor variables during each phenophase. The BRT analysis demonstrated that throughfall ratio in the leafless phase was most influenced (in descending order of importance) by air temperature, rainfall amount, maximum wind speed, and rainfall intensity. Throughfall ratio in the leafed phenophase was dominated by rainfall amount which exerted 54.0% of the relative influence. The leafing phenophase was an intermediate case where rainfall amount, air temperature, and vapor pressure deficit were most important. Our results highlight the fact that throughfall ratios are differentially influenced by a suite of meteorological variables during leafless, leafing, and leafed phenophases. Abiotic variables (rainfall amount, air temperature, vapor pressure deficit, and maximum wind speed) trumped leaf area index and stand density in their effect on throughfall ratio. The leafing phenophase, while transitional in nature and short in duration, has a detectable and unique impact on water inputs to teak plantations. Further work is clearly needed to better gauge the importance of the leaf emergence period to the stemflow hydrology and forest biogeochemistry of teak plantations.

  1. Contrasting dynamics of leaf potential and gas exchange during progressive drought cycles and recovery in Amorpha fruticosa and Robinia pseudoacacia.

    PubMed

    Yan, Weiming; Zheng, Shuxia; Zhong, Yangquanwei; Shangguan, Zhouping

    2017-06-30

    Leaf gas exchange is closely associated with water relations; however, less attention has been given to this relationship over successive drought events. Dynamic changes in gas exchange and water potential in the seedlings of two woody species, Amorpha fruticosa and Robinia pseudoacacia, were monitored during recurrent drought. The pre-dawn leaf water potential declined in parallel with gas exchange in both species, and sharp declines in gas exchange occurred with decreasing water potential. A significant correlation between pre-dawn water potential and gas exchange was observed in both species and showed a right shift in R. pseudoacacia in the second drought. The results suggested that stomatal closure in early drought was mediated mainly by elevated foliar abscisic acid (ABA) in R. pseudoacacia, while a shift from ABA-regulated to leaf-water-potential-driven stomatal closure was observed in A. fruticosa. After re-watering, the pre-dawn water potential recovered quickly, whereas stomatal conductance did not fully recover from drought in R. pseudoacacia, which affected the ability to tightly control transpiration post-drought. The dynamics of recovery from drought suggest that stomatal behavior post-drought may be restricted mainly by hydraulic factors, but non-hydraulic factors may also be involved in R. pseudoacacia.

  2. Environmental plasticity of Pinot noir grapevine leaves: A trans-European study of morphological and biochemical changes along a 1,500-km latitudinal climatic gradient.

    PubMed

    Castagna, Antonella; Csepregi, Kristóf; Neugart, Susanne; Zipoli, Gaetano; Večeřová, Kristýna; Jakab, Gábor; Jug, Tjaša; Llorens, Laura; Martínez-Abaigar, Javier; Martínez-Lüscher, Johann; Núñez-Olivera, Encarnación; Ranieri, Annamaria; Schoedl-Hummel, Katharina; Schreiner, Monika; Teszlák, Péter; Tittmann, Susanne; Urban, Otmar; Verdaguer, Dolors; Jansen, Marcel A K; Hideg, Éva

    2017-11-01

    A 2-year study explored metabolic and phenotypic plasticity of sun-acclimated Vitis vinifera cv. Pinot noir leaves collected from 12 locations across a 36.69-49.98°N latitudinal gradient. Leaf morphological and biochemical parameters were analysed in the context of meteorological parameters and the latitudinal gradient. We found that leaf fresh weight and area were negatively correlated with both global and ultraviolet (UV) radiation, cumulated global radiation being a stronger correlator. Cumulative UV radiation (sumUVR) was the strongest correlator with most leaf metabolites and pigments. Leaf UV-absorbing pigments, total antioxidant capacities, and phenolic compounds increased with increasing sumUVR, whereas total carotenoids and xanthophylls decreased. Despite of this reallocation of metabolic resources from carotenoids to phenolics, an increase in xanthophyll-cycle pigments (the sum of the amounts of three xanthophylls: violaxanthin, antheraxanthin, and zeaxanthin) with increasing sumUVR indicates active, dynamic protection for the photosynthetic apparatus. In addition, increased amounts of flavonoids (quercetin glycosides) and constitutive β-carotene and α-tocopherol pools provide antioxidant protection against reactive oxygen species. However, rather than a continuum of plant acclimation responses, principal component analysis indicates clusters of metabolic states across the explored 1,500-km-long latitudinal gradient. This study emphasizes the physiological component of plant responses to latitudinal gradients and reveals the physiological plasticity that may act to complement genetic adaptations. © 2017 John Wiley & Sons Ltd.

  3. Leaf non-structural carbohydrate allocation and C:N:P stoichiometry in response to light acclimation in seedlings of two subtropical shade-tolerant tree species.

    PubMed

    Xie, Hongtao; Yu, Mukui; Cheng, Xiangrong

    2018-03-01

    Light availability greatly affects plant growth and development. In shaded environments, plants must respond to reduced light intensity to ensure a regular rate of photosynthesis to maintain the dynamic balance of nutrients, such as leaf non-structural carbohydrates (NSCs), carbon (C), nitrogen (N) and phosphorus (P). To improve our understanding of the nutrient utilization strategies of understory shade-tolerant plants, we compared the variations in leaf NSCs, C, N and P in response to heterogeneous controlled light conditions between two subtropical evergreen broadleaf shade-tolerant species, Elaeocarpus sylvestris (E. sylvestris) and Illicium henryi (I. henryi). Light intensity treatments were applied at five levels (100%, 52%, 33%, 15% and 6% full sunlight) for 30 weeks to identify the effects of reduced light intensity on leaf NSC allocation patterns and leaf C:N:P stoichiometry characteristics. We found that leaf soluble sugar, starch and NSC concentrations in E. sylvestris showed decreasing trends with reduced light intensity, whereas I. henryi presented slightly increasing trends from 100% to 15% full sunlight and then significant decreases at extremely low light intensity (6% full sunlight). The soluble sugar/starch ratio of E. sylvestris decreased with decreasing light intensity, whereas that of I. henryi remained stable. Moreover, both species exhibited increasing trends in leaf N and P concentrations but limited leaf N:P and C:P ratio fluctuations with decreasing light intensity, revealing their adaptive strategies for poor light environments and their growth strategies under ideal light environments. There were highly significant correlations between leaf NSC variables and C:N:P stoichiometric variables in both species, revealing a trade-off in photosynthesis production between leaf NSC and carbon allocation. Thus, shade-tolerant plants readjusted their allocation of leaf NSCs, C, N and P in response to light acclimation. Redundancy analysis showed that leaf morphological features of both E. sylvestris and I. henryi affected their corresponding leaf nutrient traits. These results improve our understanding of the dynamic balance between leaf NSCs and leaf C, N and P components in the nutritional metabolism of shade-tolerant plants. Two species of understory shade-tolerant plants responded differently to varying light intensities in terms of leaf non-structural carbohydrate allocation and the utilization of carbon, nitrogen and phosphorus to balance nutritional metabolism and adapt to environmental stress. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Foliage motion under wind, from leaf flutter to branch buffeting.

    PubMed

    Tadrist, Loïc; Saudreau, Marc; Hémon, Pascal; Amandolese, Xavier; Marquier, André; Leclercq, Tristan; de Langre, Emmanuel

    2018-05-01

    The wind-induced motion of the foliage in a tree is an important phenomenon both for biological issues (photosynthesis, pathogens development or herbivory) and for more subtle effects such as on wi-fi transmission or animal communication. Such foliage motion results from a combination of the motion of the branches that support the leaves, and of the motion of the leaves relative to the branches. Individual leaf dynamics relative to the branch, and branch dynamics have usually been studied separately. Here, in an experimental study on a whole tree in a large-scale wind tunnel, we present the first empirical evidence that foliage motion is actually dominated by individual leaf flutter at low wind velocities, and by branch turbulence buffeting responses at higher velocities. The transition between the two regimes is related to a weak dependence of leaf flutter on wind velocity, while branch turbulent buffeting is strongly dependent on it. Quantitative comparisons with existing engineering-based models of leaf and branch motion confirm the prevalence of these two mechanisms. Simultaneous measurements of the wind-induced drag on the tree and of the light interception by the foliage show the role of an additional mechanism, reconfiguration, whereby leaves bend and overlap, limiting individual leaf flutter. We then discuss the consequences of these findings on the role of wind-mediated phenomena. © 2018 The Author(s).

  5. Palisade cell shape affects the light-induced chloroplast movements and leaf photosynthesis.

    PubMed

    Gotoh, Eiji; Suetsugu, Noriyuki; Higa, Takeshi; Matsushita, Tomonao; Tsukaya, Hirokazu; Wada, Masamitsu

    2018-01-24

    Leaf photosynthesis is regulated by multiple factors that help the plant to adapt to fluctuating light conditions. Leaves of sun-light-grown plants are thicker and contain more columnar palisade cells than those of shade-grown plants. Light-induced chloroplast movements are also essential for efficient leaf photosynthesis and facilitate efficient light utilization in leaf cells. Previous studies have demonstrated that leaves of most of the sun-grown plants exhibited no or very weak chloroplast movements and could accomplish efficient photosynthesis under strong light. To examine the relationship between palisade cell shape, chloroplast movement and distribution, and leaf photosynthesis, we used an Arabidopsis thaliana mutant, angustifolia (an), which has thick leaves that contain columnar palisade cells similar to those in the sun-grown plants. In the highly columnar cells of an mutant leaves, chloroplast movements were restricted. Nevertheless, under white light condition (at 120 µmol m -2 s -1 ), the an mutant plants showed higher chlorophyll content per unit leaf area and, thus, higher light absorption by the leaves than the wild type, which resulted in enhanced photosynthesis per unit leaf area. Our findings indicate that coordinated regulation of leaf cell shape and chloroplast movement according to the light conditions is pivotal for efficient leaf photosynthesis.

  6. Influences of the Tamarisk Leaf Beetle (Diorhabda carinulata) on the diet of insectivorous birds along the Dolores River in Southwestern Colorado

    USGS Publications Warehouse

    Puckett, Sarah L.; van Riper, Charles

    2014-01-01

    We examined the effects of a biologic control agent, the tamarisk leaf beetle (Diorhabda carinulata), on native avifauna in southwestern Colorado, specifically, addressing whether and to what degree birds eat tamarisk leaf beetles. In 2010, we documented avian foraging behavior, characterized the arthropod community, sampled bird diets, and undertook an experiment to determine whether tamarisk leaf beetles are palatable to birds. We observed that tamarisk leaf beetles compose 24.0 percent (95-percent-confidence interval, 19.9-27.4 percent) and 35.4 percent (95-percent-confidence interval, 32.4-45.1 percent) of arthropod abundance and biomass in the study area, respectively. Birds ate few tamarisk leaf beetles, despite a superabundance of D. carinulata in the environment. The frequency of occurrence of tamarisk leaf beetles in bird diets was 2.1 percent (95-percent-confidence interval, 1.3- 2.9 percent) by abundance and 3.4 percent (95-percent-confidence interval, 2.6-4.2 percent) by biomass. Thus, tamarisk leaf beetles probably do not contribute significantly to the diets of birds in areas where biologic control of tamarisk is being applied.

  7. Dominant Species in Subtropical Forests Could Decrease Photosynthetic N Allocation to Carboxylation and Bioenergetics and Enhance Leaf Construction Costs during Forest Succession

    PubMed Central

    Xiao, Yihua; Liu, Shirong; Tong, Fuchun; Chen, Bufeng; Kuang, Yuanwen

    2018-01-01

    It is important to understand how eco-physiological characteristics shift in forests when elucidating the mechanisms underlying species replacement and the process of succession and stabilization. In this study, the dominant species at three typical successional stages (early-, mid-, and late-succession) in the subtropical forests of China were selected. At each stage, we compared the leaf construction costs (CC), payback time (PBT), leaf area based N content (NA), maximum CO2 assimilation rate (Pmax), specific leaf area (SLA), photosynthetic nitrogen use efficiency (PNUE), and leaf N allocated to carboxylation (NC), and to bioenergetics (NB). The relationships between these leaf functional traits were also determined. The results showed that the early-succession forest is characterized with significantly lower leaf CC, PBT, NA, but higher Pmax, SLA, PNUE, NC, and NB, in relation to the late-succession forest. From the early- to the late-succession forests, the relationship between Pmax and leaf CC strengthened, whereas the relationships between NB, NC, PNUE, and leaf CC weakened. Thus, the dominant species are able to decrease the allocation of the photosynthetic N fraction to carboxylation and bioenergetics during forest succession. The shift in these leaf functional traits and their linkages might represent a fundamental physiological mechanism that occurs during forest succession and stabilization. PMID:29472939

  8. Dominant Species in Subtropical Forests Could Decrease Photosynthetic N Allocation to Carboxylation and Bioenergetics and Enhance Leaf Construction Costs during Forest Succession.

    PubMed

    Xiao, Yihua; Liu, Shirong; Tong, Fuchun; Chen, Bufeng; Kuang, Yuanwen

    2018-01-01

    It is important to understand how eco-physiological characteristics shift in forests when elucidating the mechanisms underlying species replacement and the process of succession and stabilization. In this study, the dominant species at three typical successional stages (early-, mid-, and late-succession) in the subtropical forests of China were selected. At each stage, we compared the leaf construction costs (CC), payback time (PBT), leaf area based N content ( N A ), maximum CO 2 assimilation rate ( P max ), specific leaf area (SLA), photosynthetic nitrogen use efficiency (PNUE), and leaf N allocated to carboxylation ( N C ), and to bioenergetics ( N B ). The relationships between these leaf functional traits were also determined. The results showed that the early-succession forest is characterized with significantly lower leaf CC, PBT, N A , but higher P max , SLA, PNUE, N C , and N B , in relation to the late-succession forest. From the early- to the late-succession forests, the relationship between P max and leaf CC strengthened, whereas the relationships between N B , N C , PNUE, and leaf CC weakened. Thus, the dominant species are able to decrease the allocation of the photosynthetic N fraction to carboxylation and bioenergetics during forest succession. The shift in these leaf functional traits and their linkages might represent a fundamental physiological mechanism that occurs during forest succession and stabilization.

  9. Leaf hydraulics and drought stress: response, recovery and survivorship in four woody temperate plant species.

    PubMed

    Blackman, Christopher J; Brodribb, Timothy J; Jordan, Gregory J

    2009-11-01

    Efficient conduction of water inside leaves is essential for leaf function, yet the hydraulic-mediated impact of drought on gas exchange remains poorly understood. Here we examine the decline and subsequent recovery of leaf water potential (Psi(leaf)), leaf hydraulic conductance (K(leaf)), and midday transpiration (E) in four temperate woody species exposed to controlled drought conditions ranging from mild to lethal. During drought the vulnerability of K(leaf) to declining Psi(leaf) varied greatly among the species sampled. Following drought, plants were rewatered and the rate of E and K(leaf) recovery was found to be strongly dependent on the severity of the drought imposed. Gas exchange recovery was strongly correlated with the relatively slow recovery of K(leaf) for three of the four species, indicating conformity to a hydraulic-stomatal limitation model of plant recovery. However, there was also a shift in the sensitivity of stomata to Psi(leaf) suggesting that the plant hormone abscisic acid may be involved in limiting the rate of stomatal reopening. The level of drought tolerance varied among the four species and was correlated with leaf hydraulic vulnerability. These results suggest that species-specific variation in hydraulic properties plays a fundamental role in steering the dynamic response of plants during recovery.

  10. Dynamics of vacuum-sealed, double-leaf partitions

    NASA Astrophysics Data System (ADS)

    Kavanaugh, Joshua Stephen

    The goal of this research is to investigate the feasibility and potential effectiveness of using vacuum-sealed, double-leaf partitions for applications in noise control. Substantial work has been done previously on double-leaf partitions where the acoustics of the inner chamber and mechanical vibrations of structural supports are passively and actively controlled. The work presented here is unique in that the proposed system aims to eliminate the need for active acoustic control of transmitted acoustic energy by removing all the air between the two panels of the double partition. Therefore, the only remaining energy paths would be along the boundary and at the points where there are intermediate structural supports connecting the two panels. The eventual goal of the research is to develop a high-loss double-leaf partition that simplifies active control by removing the need for control of the air cavity and channeling all the energy into discrete structural paths. The work presented here is a first step towards the goal of designing a high-loss, actively-controlled double-leaf partition with an air-evacuated inner chamber. One experiment is conducted to investigate the effects of various levels of vacuum on the response of a double-leaf partition whose panels are mechanically coupled only at the boundary. Another experiment is conducted which investigates the effect of changing the stiffness of an intermediate support coupling the two panels of a double-leaf partition in which a vacuum has been applied to the inner cavity. The available equipment was able to maintain a 99% vacuum between the panels. Both experiments are accompanied by analytical models used to investigate the importance of various dynamic parameters. Results show that the vacuum-sealed system shows some potential for increased transmission loss, primarily by the changing the natural frequencies of the double-leaf partition.

  11. MODIS Measures Total U.S. Leaf Area

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This composite image over the continental United States was produced with data acquired by the Moderate-resolution Imaging Spectroradiometer (MODIS) during the period March 24 - April 8, 2000. The image is a map of the density of the plant canopy covering the ground. It is the first in a series of images over the continental U.S. produced by the MODIS Land Discipline Group (refer to this site June 2 and 5 for the next two images in the series). The image is a MODIS data product called 'Leaf Area Index,' which is produced by radiometrically measuring the visible and near infrared energy reflected by vegetation. The Leaf Area Index provides information on the structure of plant canopy, showing how much surface area is covered by green foliage relative to total land surface area. In this image, dark green pixels indicate areas where more than 80 percent of the land surface is covered by green vegetation, light green pixels show where leaves cover about 10 to 50 percent of the land surface, and brown pixels show virtually no leaf coverage. The more leaf area a plant has, the more sunlight it can absorb for photosynthesis. Leaf Area Index is one of a new suite of measurements that scientists use to understand how the Earth's land surfaces are changing over time. Their goal is to use these measurements to refine computer models well enough to simulate how the land biosphere influences the natural cycles of water, carbon, and energy throughout the Earth system. This image is the first of its kind from the MODIS instrument, which launched in December 1999 aboard the Terra spacecraft. MODIS began acquiring scientific data on February 24, 2000, when it first opened its aperture door. The MODIS instrument and Terra spacecraft are both managed by NASA's Goddard Space Flight Center, Greenbelt, MD. Image courtesy Steven Running, MODIS Land Group Member, University of Montana

  12. Compliant Turbomachine Sealing

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Deng, D.; Hendricks, J. A.

    2011-01-01

    Sealing interface materials and coatings are sacrificial, giving up their integrity for the benefit of the component. Seals that are compliant while still controlling leakage, dynamics, and coolant flows are sought to enhance turbomachine performance. Herein we investigate the leaf-seal configuration. While the leaf seal is classified as contacting, a ready modification using the leaf-housing arrangement in conjunction with an interface film rider (a bore seal, for example) provides for a film-riding noncontact seal. The leaf housing and leaf elements can be made from a variety of materials from plastic to ceramic. Four simplistic models are used to identify the physics essential to controlling leakage. Corroborated by CFD, these results provide design parameters for applications to within reasonable engineering certainty. Some potential improvements are proposed.

  13. The Thermal Infrared Sensor on the Landsat Data Continutiy Mission

    USDA-ARS?s Scientific Manuscript database

    The REGularized canopy reFLECtance (REGFLEC) modeling tool integrates leaf optics, canopy reflectance, and atmospheric radiative transfer model components, facilitating accurate retrieval of leaf area index (LAI) and leaf chlorophyll content (Cab) directly from at-sensor radiances in green, red and ...

  14. Impact of anatomical traits of maize (Zea mays L.) leaf as affected by nitrogen supply and leaf age on bundle sheath conductance.

    PubMed

    Retta, Moges; Yin, Xinyou; van der Putten, Peter E L; Cantre, Denis; Berghuijs, Herman N C; Ho, Quang Tri; Verboven, Pieter; Struik, Paul C; Nicolaï, Bart M

    2016-11-01

    The mechanism of photosynthesis in C 4 crops depends on the archetypal Kranz-anatomy. To examine how the leaf anatomy, as altered by nitrogen supply and leaf age, affects the bundle sheath conductance (g bs ), maize (Zea mays L.) plants were grown under three contrasting nitrogen levels. Combined gas exchange and chlorophyll fluorescence measurements were done on fully grown leaves at two leaf ages. The measured data were analysed using a biochemical model of C 4 photosynthesis to estimate g bs . The leaf microstructure and ultrastructure were quantified using images obtained from micro-computed tomography and microscopy. There was a strong positive correlation between g bs and leaf nitrogen content (LNC) while old leaves had lower g bs than young leaves. Leaf thickness, bundle sheath cell wall thickness and surface area of bundle sheath cells per unit leaf area (S b ) correlated well with g bs although they were not significantly affected by LNC. As a result, the increase of g bs with LNC was little explained by the alteration of leaf anatomy. In contrast, the combined effect of LNC and leaf age on S b was responsible for differences in g bs between young leaves and old leaves. Future investigations should consider changes at the level of plasmodesmata and membranes along the CO 2 leakage pathway to unravel LNC and age effects further. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Trait-mediated assembly processes predict successional changes in community diversity of tropical forests.

    PubMed

    Lasky, Jesse R; Uriarte, María; Boukili, Vanessa K; Chazdon, Robin L

    2014-04-15

    Interspecific differences in relative fitness can cause local dominance by a single species. However, stabilizing interspecific niche differences can promote local diversity. Understanding these mechanisms requires that we simultaneously quantify their effects on demography and link these effects to community dynamics. Successional forests are ideal systems for testing assembly theory because they exhibit rapid community assembly. Here, we leverage functional trait and long-term demographic data to build spatially explicit models of successional community dynamics of lowland rainforests in Costa Rica. First, we ask what the effects and relative importance of four trait-mediated community assembly processes are on tree survival, a major component of fitness. We model trait correlations with relative fitness differences that are both density-independent and -dependent in addition to trait correlations with stabilizing niche differences. Second, we ask how the relative importance of these trait-mediated processes relates to successional changes in functional diversity. Tree dynamics were more strongly influenced by trait-related interspecific variation in average survival than trait-related responses to neighbors, with wood specific gravity (WSG) positively correlated with greater survival. Our findings also suggest that competition was mediated by stabilizing niche differences associated with specific leaf area (SLA) and leaf dry matter content (LDMC). These drivers of individual-level survival were reflected in successional shifts to higher SLA and LDMC diversity but lower WSG diversity. Our study makes significant advances to identifying the links between individual tree performance, species functional traits, and mechanisms of tropical forest succession.

  16. Response of South American Ecosystems to Precipitation Variability

    NASA Astrophysics Data System (ADS)

    Knox, R. G.; Kim, Y.; Longo, M.; Medvigy, D.; Wang, J.; Moorcroft, P. R.; Bras, R. L.

    2009-12-01

    The Ecosystem Demography Model 2 is a dynamic ecosystem model and land surface energy balance model. ED2 discretizes landscapes of particular terrain and meteorology into fractional areas of unique disturbance history. Each fraction, defined by a shared vertical soil column and canopy air space, contains a stratum of plant groups unique in functional type, size and number density. The result is a vertically distributed representation of energy transfer and plant dynamics (mortality, productivity, recruitment, disturbance, resource competition, etc) that successfully approximates the behaviour of individual-based vegetation models. In previous exercises simulating Amazonian land surface dynamics with ED 2, it was observed that when using grid averaged precipitation as an external forcing the resulting water balance typically over-estimated leaf interception and leaf evaporation while under estimating through-fall and transpiration. To investigate this result, two scenario were conducted in which land surface biophysics and ecosystem demography over the Northern portion of South America are simulated over ~200 years: (1) ED2 is forced with grid averaged values taken from the ERA40 reanalysis meteorological dataset; (2) ED2 is forced with ERA40 reanalysis, but with its precipitation re-sampled to reflect statistical qualities of point precipitation found at rain gauge stations in the region. The findings in this study suggest that the equilibrium moisture states and vegetation demography are co-dependent and show sensitivity to temporal variability in precipitation. These sensitivities will need to be accounted for in future projections of coupled climate-ecosystem changes in South America.

  17. Modeling canopy-level productivity: is the "big-leaf" simplification acceptable?

    NASA Astrophysics Data System (ADS)

    Sprintsin, M.; Chen, J. M.

    2009-05-01

    The "big-leaf" approach to calculating the carbon balance of plant canopies assumes that canopy carbon fluxes have the same relative responses to the environment as any single unshaded leaf in the upper canopy. Widely used light use efficiency models are essentially simplified versions of the big-leaf model. Despite its wide acceptance, subsequent developments in the modeling of leaf photosynthesis and measurements of canopy physiology have brought into question the assumptions behind this approach showing that big leaf approximation is inadequate for simulating canopy photosynthesis because of the additional leaf internal control on carbon assimilation and because of the non-linear response of photosynthesis on leaf nitrogen and absorbed light, and changes in leaf microenvironment with canopy depth. To avoid this problem a sunlit/shaded leaf separation approach, within which the vegetation is treated as two big leaves under different illumination conditions, is gradually replacing the "big-leaf" strategy, for applications at local and regional scales. Such separation is now widely accepted as a more accurate and physiologically based approach for modeling canopy photosynthesis. Here we compare both strategies for Gross Primary Production (GPP) modeling using the Boreal Ecosystem Productivity Simulator (BEPS) at local (tower footprint) scale for different land cover types spread over North America: two broadleaf forests (Harvard, Massachusetts and Missouri Ozark, Missouri); two coniferous forests (Howland, Maine and Old Black Spruce, Saskatchewan); Lost Creek shrubland site (Wisconsin) and Mer Bleue petland (Ontario). BEPS calculates carbon fixation by scaling Farquhar's leaf biochemical model up to canopy level with stomatal conductance estimated by a modified version of the Ball-Woodrow-Berry model. The "big-leaf" approach was parameterized using derived leaf level parameters scaled up to canopy level by means of Leaf Area Index. The influence of sunlit/shaded leaf separation on GPP prediction was evaluated accounting for the degree of the deviation of 3-dimensional leaf spatial distribution from the random case. More specifically, we compared and evaluated the behavior of both models showing the advantages of sunlit/shaded leaf separation strategy over a simplified big-leaf approach. Keywords: canopy photosynthesis, leaf area index, clumping index, remote sensing.

  18. New dimension analyses with error analysis for quaking aspen and black spruce

    NASA Technical Reports Server (NTRS)

    Woods, K. D.; Botkin, D. B.; Feiveson, A. H.

    1987-01-01

    Dimension analysis for black spruce in wetland stands and trembling aspen are reported, including new approaches in error analysis. Biomass estimates for sacrificed trees have standard errors of 1 to 3%; standard errors for leaf areas are 10 to 20%. Bole biomass estimation accounts for most of the error for biomass, while estimation of branch characteristics and area/weight ratios accounts for the leaf area error. Error analysis provides insight for cost effective design of future analyses. Predictive equations for biomass and leaf area, with empirically derived estimators of prediction error, are given. Systematic prediction errors for small aspen trees and for leaf area of spruce from different site-types suggest a need for different predictive models within species. Predictive equations are compared with published equations; significant differences may be due to species responses to regional or site differences. Proportional contributions of component biomass in aspen change in ways related to tree size and stand development. Spruce maintains comparatively constant proportions with size, but shows changes corresponding to site. This suggests greater morphological plasticity of aspen and significance for spruce of nutrient conditions.

  19. Demographic drivers of functional composition dynamics.

    PubMed

    Muscarella, Robert; Lohbeck, Madelon; Martínez-Ramos, Miguel; Poorter, Lourens; Rodríguez-Velázquez, Jorge Enrique; van Breugel, Michiel; Bongers, Frans

    2017-11-01

    Mechanisms of community assembly and ecosystem function are often analyzed using community-weighted mean trait values (CWMs). We present a novel conceptual framework to quantify the contribution of demographic processes (i.e., growth, recruitment, and mortality) to temporal changes in CWMs. We used this framework to analyze mechanisms of secondary succession in wet tropical forests in Mexico. Seed size increased over time, reflecting a trade-off between colonization by small seeds early in succession, to establishment by large seeds later in succession. Specific leaf area (SLA) and leaf phosphorus content decreased over time, reflecting a trade-off between fast growth early in succession vs. high survival late in succession. On average, CWM shifts were driven mainly (70%) by growth of surviving trees that comprise the bulk of standing biomass, then mortality (25%), and weakly by recruitment (5%). Trait shifts of growing and recruiting trees mirrored the CWM trait shifts, and traits of dying trees did not change during succession, indicating that these traits are important for recruitment and growth, but not for mortality, during the first 30 yr of succession. Identifying the demographic drivers of functional composition change links population dynamics to community change, and enhances insights into mechanisms of succession. © 2017 by the Ecological Society of America.

  20. Losses of leaf area owing to herbivory and early senescence in three tree species along a winter temperature gradient

    NASA Astrophysics Data System (ADS)

    González-Zurdo, P.; Escudero, A.; Nuñez, R.; Mediavilla, S.

    2016-11-01

    In temperate climates, evergreen leaves have to survive throughout low temperature winter periods. Freezing and chilling injuries can lead to accelerated senescence of part of the leaf surface, which contributes to a reduction of the lifespan of the photosynthetic machinery and of leaf lifetime carbon gain. Low temperatures are also associated with changes in foliar chemistry and morphology that affect consumption by herbivores. Therefore, the severity of foliar area losses caused by accelerated senescence and herbivory can change along winter temperature gradients. The aim of this study is to analyse such responses in the leaves of three evergreen species ( Quercus ilex, Q. suber and Pinus pinaster) along a climatic gradient. The leaves of all three species presented increased leaf mass per area (LMA) and higher concentrations of structural carbohydrates in cooler areas. Only the two oak species showed visible symptoms of damage caused by herbivory, this being less intense at the coldest sites. The leaves of all three species presented chlorotic and necrotic spots that increased in size with leaf age. The foliar surface affected by chlorosis and necrosis was larger at the sites with the coldest winters. Therefore, the effects of the winter cold on the lifespan of the photosynthetic machinery were contradictory: losses of leaf area due to accelerated senescence increased, but there was a decrease in losses caused by herbivory. The final consequences for carbon assimilation strongly depend on the exact timing of the appearance of the damage resulting from low temperature and grazing by herbivores.

  1. Influence of sewage sludge, as a substrate, in the plasticity of functional characteristics of plants.

    PubMed

    da Silva, Vicente Elício Porfiro Sales Gonçalves; Buarque, Patrícia Marques Carneiro; Ferreira, Wanessa Nepomuceno; Buarque, Hugo Leonardo de Brito; Silva, Maria Amanda Menezes

    2018-04-24

    This work aimed to evaluate the effect of sewage sludge application as fertilizer on the plasticity of functional characteristics of species commonly found in the Caatinga. The research was developed in the nursery of the Federal Institute of Education, Science and Technology of Ceará (IFCE), Quixadá campus, located in northeastern Brazil. Three treatments were applied: raw sludge, sanitized sludge, and no manipulation. In each treatment, five species were planted, each with five individuals, totaling 75 individuals, which were tagged, and 4 months after germination, they were destroyed to obtain dry matter content (TMSF) from leaf, stem (TMSC), fine root (TMSRF), and thick root (TMSRG); leaf area; height and diameter of the seedling; and length above and below the ground. The sanitized sludge was responsible for giving higher values for leaf area, height of the seedlings, and diameter and length of stem and root. However, the dry matter content of the fine roots was higher in the treatment without manipulation. At the community level, as TMSRG increased, TMSC also increased, the same occurred between TMSRG and TMSRF, TMSC and TMSRF, and stem length and leaf area. In the treatment without manipulation, there was a positive correlation between leaf area, height and plant diameter, and negative correlation between root length and plant diameter. Thus, it can be concluded that the use of sanitized sludge is a good tool to increase the availability of soil resources, conferring to individuals' greater dry matter content, greater leaf area, and higher height and diameter above the ground.

  2. Remote sensing of leaf, canopy and vegetation water contents for satellite climate data records

    USDA-ARS?s Scientific Manuscript database

    Foliar water content is a dynamic quantity depending on water losses from transpiration and water uptake from the soil. Absorption of shortwave radiation by water is determined by various frequency overtones of fundamental bending and stretching molecular transitions. Leaf water potential and rela...

  3. Effect of pest management system on 'Empire' apple leaf phyllosphere populations

    USDA-ARS?s Scientific Manuscript database

    The phyllosphere of plant tissues is varied and dynamic. Pest management, time of sampling, proximity to immigration sources, tissue and tissue status such as leaf/fruit age and location within the canopy, and other environmental and biological factors interact to influence the composition and abun...

  4. The narrow-leaf syndrome: a functional and evolutionary approach to the form of fog-harvesting rosette plants.

    PubMed

    Martorell, Carlos; Ezcurra, Exequiel

    2007-04-01

    Plants that use fog as an important water-source frequently have a rosette growth habit. The performance of this morphology in relation to fog interception has not been studied. Some first-principles from physics predict that narrow leaves, together with other ancillary traits (large number and high flexibility of leaves, caudices, and/or epiphytism) which constitute the "narrow-leaf syndrome" should increase fog-interception efficiency. This was tested using aluminum models of rosettes that differed in leaf length, width and number and were exposed to artificial fog. The results were validated using seven species of Tillandsia and four species of xerophytic rosettes. The total amount of fog intercepted in rosette plants increased with total leaf area, while narrow leaves maximized interception efficiency (measured as interception per unit area). The number of leaves in the rosettes is physically constrained because wide-leafed plants can only have a few blades. At the limits of this constraint, net fog interception was independent of leaf form, but interception efficiency was maximized by large numbers of narrow leaves. Atmospheric Tillandsia species show the narrow-leaf syndrome. Their fog interception efficiencies were correlated to the ones predicted from aluminum-model data. In the larger xerophytic rosette species, the interception efficiency was greatest in plants showing the narrow-leaf syndrome. The adaptation to fog-harvesting in several narrow-leaved rosettes was tested for evolutionary convergence in 30 xerophytic rosette species using a comparative method. There was a significant evolutionary tendency towards the development of the narrow-leaf syndrome the closer the species grew to areas where fog is frequently available. This study establishes convergence in a very wide group of plants encompassing genera as contrasting as Tillandsia and Agave as a result of their dependence on fog.

  5. Zinc deficiency in field-grown pecan trees: changes in leaf nutrient concentrations and structure.

    PubMed

    Ojeda-Barrios, Dámaris; Abadía, Javier; Lombardini, Leonardo; Abadía, Anunciación; Vázquez, Saúl

    2012-06-01

    Zinc (Zn) deficiency is a typical nutritional disorder in pecan trees [Carya illinoinensis (Wangenh.) C. Koch] grown under field conditions in calcareous soils in North America, including northern Mexico and south-western United States. The aim of this study was to assess the morphological and nutritional changes in pecan leaves affected by Zn deficiency as well as the Zn distribution within leaves. Zinc deficiency led to decreases in leaf chlorophyll concentrations, leaf area and trunk cross-sectional area. Zinc deficiency increased significantly the leaf concentrations of K and Ca, and decreased the leaf concentrations of Zn, Fe, Mn and Cu. All nutrient values found in Zn-deficient leaves were within the sufficiency ranges, with the only exception of Zn, which was approximately 44, 11 and 9 µg g(-1) dry weight in Zn-sufficient, moderately and markedly Zn-deficient leaves, respectively. Zinc deficiency led to decreases in leaf thickness, mainly due to a reduction in the thickness of the palisade parenchyma, as well as to increases in stomatal density and size. The localisation of Zn was determined using the fluorophore Zinpyr-1 and ratio-imaging technique. Zinc was mainly localised in the palisade mesophyll area in Zn-sufficient leaves, whereas no signal could be obtained in Zn-deficient leaves. The effects of Zn deficiency on the leaf characteristics of pecan trees include not only decreases in leaf chlorophyll and Zn concentrations, but also a reduction in the thickness of the palisade parenchyma, an increase in stomatal density and pore size and the practical disappearance of Zn leaf pools. These characteristics must be taken into account to design strategies to correct Zn deficiency in pecan tree in the field. Copyright © 2012 Society of Chemical Industry.

  6. Long-term impact of Ophiostoma novo-ulmi on leaf traits and transpiration of branches in the Dutch elm hybrid 'Dodoens'.

    PubMed

    Plichta, Roman; Urban, Josef; Gebauer, Roman; Dvořák, Miloň; Ďurkovič, Jaroslav

    2016-03-01

    To better understand the long-term impact of Ophiostoma novo-ulmi Brasier on leaf physiology in 'Dodoens', a Dutch elm disease-tolerant hybrid, measurements of leaf area, leaf dry mass, petiole anatomy, petiole hydraulic conductivity, leaf and branch water potential, and branch sap flow were performed 3 years following an initial artificial inoculation. Although fungal hyphae were detected in fully expanded leaves, neither anatomical nor morphological traits were affected, indicating that there was no impact from the fungal hyphae on the leaves during leaf expansion. In contrast, however, infected trees showed both a lower transpiration rate of branches and a lower sap flow density. The long-term persistence of fungal hyphae inside vessels decreased the xylem hydraulic conductivity, but stomatal regulation of transpiration appeared to be unaffected as the leaf water potential in both infected and non-infected trees was similarly driven by the transpirational demands. Regardless of the fungal infection, leaves with a higher leaf mass per area ratio tended to have a higher leaf area-specific conductivity. Smaller leaves had an increased number of conduits with smaller diameters and thicker cell walls. Such a pattern could increase tolerance towards hydraulic dysfunction. Measurements of water potential and theoretical xylem conductivity revealed that petiole anatomy could predict the maximal transpiration rate. Three years following fungal inoculation, phenotypic expressions for the majority of the examined traits revealed a constitutive nature for their possible role in Dutch elm disease tolerance of 'Dodoens' trees. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Ecophysiological responses of a young blue gum (Eucalyptus globulus) plantation to weed control.

    PubMed

    Eyles, Alieta; Worledge, Dale; Sands, Peter; Ottenschlaeger, Maria L; Paterson, Steve C; Mendham, Daniel; O'Grady, Anthony P

    2012-08-01

    Early weed control may improve the growth of forest plantations by influencing soil water and nutrient availability. To understand eucalypt growth responses to weed control, we examined the temporal responses of leaf gas-exchange, leaf nitrogen concentration (N) and water status of 7-month-old Eucalyptus globulus L. trees in a paired-plot field trial. In addition, we monitored the growth, leaf N and water status of the competing vegetation in the weed treatment. By the end of the 11-month experiment, complete weed control (WF treatment) of largely woody competitors increased the basal diameter of E. globulus by 14%. As indicated by pre-dawn water potentials of > - 0.05 MPa, interspecies competition for water resources was minimal at this site. In contrast, competition for N appeared to be the major factor limiting growth. Estimations of total plot leaf N (g m(-2) ground) showed that competing vegetation accounted for up to 70% of the total leaf N at the start of the trial. This value fell to 15% by the end of the trial. Despite increased leaf N(area) in WF trees 5 months after imposition of weed control, the photosynthetic capacity (A(1500)) of E. globulus was unaffected by treatment suggesting that the growth gains from weed control were largely unrelated to changes in leaf-level photosynthesis. Increased nutrient availability brought about by weed control enabled trees to increase investment into leaf-area production. Estimates of whole-tree carbon budget based on direct measurements of dark respiration and A(1500) allowed us to clearly demonstrate the importance of leaf area driving greater productivity following early weed control in a nutrient-limited site.

  8. Galling by Rhopalomyia solidaginis alters Solidago altissima architecture and litter nutrient dynamics in an old-field ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crutsinger, Greg; Habenicht, Melissa N; Classen, Aimee T

    2008-01-01

    Plant-insect interactions can alter ecosystem processes, especially if the insects modify plant architecture, quality, or the quantity of leaf litter inputs. In this study, we investigated the interactions between the gall midge Rhopalomyia solidaginis and tall goldenrod, Solidago altissima, to quantify the degree to which the midge alters plant architecture and how the galls affect rates of litter decomposition and nutrient release in an old-field ecosystem. R. solidaginis commonly leads to the formation of a distinct apical rosette gall on S. altissima and approximately 15% of the ramets in a S. altissima patch were galled (range: 3-34%). Aboveground biomass ofmore » galled ramets was 60% higher and the leaf area density was four times greater on galled leaf tissue relative to the portions of the plant that were not affected by the gall. Overall decomposition rate constants did not differ between galled and ungalled leaf litter. However, leaf-litter mass loss was lower in galled litter relative to ungalled litter, which was likely driven by modest differences in initial litter chemistry; this effect diminished after 12 weeks of decomposition in the field. The proportion of N remaining was always higher in galled litter than in ungalled litter at each collection date indicating differential release of nitrogen in galled leaf litter. Several studies have shown that plant-insect interactions on woody species can alter ecosystem processes by affecting the quality or quantity of litter inputs. Our results illustrate how plant-insect interactions in an herbaceous species can affect ecosystem processes by altering the quality and quantity of litter inputs. Given that S. altissima dominates fields and roadsides and that R. solidaginis galls are highly abundant throughout eastern North America, these interactions are likely to be important for both the structure and function of old-field ecosystems.« less

  9. Ecophysiological Remote Sensing of Leaf-Canopy Photosynthetic Characteristics in a Cool-Temperate Deciduous Forest in Japan

    NASA Astrophysics Data System (ADS)

    Noda, H. M.; Muraoka, H.

    2014-12-01

    Satellite remote sensing of structure and function of canopy is crucial to detect temporal and spatial distributions of forest ecosystems dynamics in changing environments. The spectral reflectance of the canopy is determined by optical properties (spectral reflectance and transmittance) of single leaves and their spatial arrangements in the canopy. The optical properties of leaves reflect their pigments contents and anatomical structures. Thus detailed information and understandings of the consequence between ecophysiological traits and optical properties from single leaf to canopy level are essential for remote sensing of canopy ecophysiology. To develop the ecophysiological remote sensing of forest canopy, we have been promoting multiple and cross-scale measurements in "Takayama site" belonging to AsiaFlux and JaLTER networks, located in a cool-temperate deciduous broadleaf forest on a mountainous landscape in Japan. In this forest, in situ measurement of canopy spectral reflectance has been conducted continuously by a spectroradiometer as part of the "Phenological Eyes Network (PEN)" since 2004. To analyze the canopy spectral reflectance from leaf ecophysiological viewpoints, leaf mass per area, nitrogen content, chlorophyll contents, photosynthetic capacities and the optical properties have been measured for dominant canopy tree species Quercus crispla and Betula ermanii throughout the seasons for multiple years.Photosynthetic capacity was largely correlated with chlorophyll contents throughout the growing season in both Q. crispla and B. ermanii. In these leaves, the reflectance at "red edge" (710 nm) changed by corresponding to the changes of chlorophyll contents throughout the seasons. Our canopy-level examination showed that vegetation indices obtained by red edge reflectance have linear relationship with leaf chlorophyll contents and photosynthetic capacity. Finally we apply this knowledge to the Rapid Eye satellite imagery around Takayama site to scale-up the leaf-level findings to canopy and landscape levels on a mountainous landscape.

  10. On the temporal variation of leaf magnetic parameters: seasonal accumulation of leaf-deposited and leaf-encapsulated particles of a roadside tree crown.

    PubMed

    Hofman, Jelle; Wuyts, Karen; Van Wittenberghe, Shari; Samson, Roeland

    2014-09-15

    Understanding the accumulation behaviour of atmospheric particles inside tree leaves is of great importance for the interpretation of biomagnetic monitoring results. In this study, we evaluated the temporal variation of the saturation isothermal remanent magnetisation (SIRM) of leaves of a roadside urban Platanus × acerifolia Willd. tree in Antwerp, Belgium. We hereby examined the seasonal development of the total leaf SIRM signal as well as the leaf-encapsulated fraction of the deposited dust, by washing the leaves before biomagnetic analysis. On average 38% of the leaf SIRM signal was exhibited by the leaf-encapsulated particles. Significant correlations were found between the SIRM and the cumulative daily average atmospheric PM10 and PM2.5 measurements. Moreover, a steady increase of the SIRM throughout the in-leaf season was observed endorsing the applicability of biomagnetic monitoring as a proxy for the time-integrated PM exposure of urban tree leaves. Strongest correlations were obtained for the SIRM of the leaf-encapsulated particles which confirms the dynamic nature of the leaf surface-accumulated particles. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Tibiofemoral Contact Mechanics with Horizontal Cleavage Tear and Resection of the Medial Meniscus in the Human Knee.

    PubMed

    Koh, Jason L; Yi, Seung Jin; Ren, Yupeng; Zimmerman, Todd A; Zhang, Li-Qun

    2016-11-02

    The meniscus is known to increase the contact area and decrease contact pressure in the tibiofemoral compartments of the knee. Radial tears of the meniscal root attachment along with partial resections of the torn meniscal tissue decrease the contact area and increase pressure; however, there is a lack of information on the effects of a horizontal cleavage tear (HCT) and partial leaf meniscectomy of such tears on tibiofemoral contact pressure and contact area. Twelve fresh-frozen human cadaveric knees were tested under 10 conditions: 5 serial conditions of posterior medial meniscectomy (intact meniscus, HCT, repaired HCT, inferior leaf resection, and resection of both inferior and superior leaves), each at 2 knee flexion angles (0° and 60°) under an 800-N axial load. Tekscan sensors (model 4000) were used to measure the contact pressure and contact area. HCT and HCT repair resulted in small changes in the contact area and an increase in contact pressure compared with the intact condition. Resection of the inferior leaf resulted in significantly decreased contact area (to a mean 82.3% of the intact condition at 0° of flexion and 81.8% at 60° of flexion; p < 0.05) and increased peak contact pressure (a mean 36.3% increase at 0° flexion and 43.2% increase at 60° flexion; p < 0.05) in the medial compartment. Further resection of the remaining superior leaf resulted in additional significant decreases in contact area (to a mean 60.1% of the intact condition at 0° of flexion and 49.7% at 60° of flexion; p < 0.05) and increases in peak contact pressure (a mean 79.2% increase at 0° of flexion and 74.9% increase at 60° of flexion; p < 0.05). Resection of meniscal tissue forming the inferior leaf of an HCT resulted in substantially decreased contact area and increased contact pressure. Additional resection of the superior leaf resulted in a further significant decrease in contact area and increase in contact pressure in the medial compartment. Repair or minimal resection of meniscal tissue of an HCT may be preferred to complete leaf resection to maintain knee tibiofemoral contact mechanics. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.

  12. Leaf Area Index Estimation Using Chinese GF-1 Wide Field View Data in an Agriculture Region.

    PubMed

    Wei, Xiangqin; Gu, Xingfa; Meng, Qingyan; Yu, Tao; Zhou, Xiang; Wei, Zheng; Jia, Kun; Wang, Chunmei

    2017-07-08

    Leaf area index (LAI) is an important vegetation parameter that characterizes leaf density and canopy structure, and plays an important role in global change study, land surface process simulation and agriculture monitoring. The wide field view (WFV) sensor on board the Chinese GF-1 satellite can acquire multi-spectral data with decametric spatial resolution, high temporal resolution and wide coverage, which are valuable data sources for dynamic monitoring of LAI. Therefore, an automatic LAI estimation algorithm for GF-1 WFV data was developed based on the radiative transfer model and LAI estimation accuracy of the developed algorithm was assessed in an agriculture region with maize as the dominated crop type. The radiative transfer model was firstly used to simulate the physical relationship between canopy reflectance and LAI under different soil and vegetation conditions, and then the training sample dataset was formed. Then, neural networks (NNs) were used to develop the LAI estimation algorithm using the training sample dataset. Green, red and near-infrared band reflectances of GF-1 WFV data were used as the input variables of the NNs, as well as the corresponding LAI was the output variable. The validation results using field LAI measurements in the agriculture region indicated that the LAI estimation algorithm could achieve satisfactory results (such as R² = 0.818, RMSE = 0.50). In addition, the developed LAI estimation algorithm had potential to operationally generate LAI datasets using GF-1 WFV land surface reflectance data, which could provide high spatial and temporal resolution LAI data for agriculture, ecosystem and environmental management researches.

  13. Intraspecific variability in functional traits matters: case study of Scots pine.

    PubMed

    Laforest-Lapointe, Isabelle; Martínez-Vilalta, Jordi; Retana, Javier

    2014-08-01

    Although intraspecific trait variability is an important component of species ecological plasticity and niche breadth, its implications for community and functional ecology have not been thoroughly explored. We characterized the intraspecific functional trait variability of Scots pine (Pinus sylvestris) in Catalonia (NE Spain) in order to (1) compare it to the interspecific trait variability of trees in the same region, (2) explore the relationships among functional traits and the relationships between them and stand and climatic variables, and (3) study the role of functional trait variability as a determinant of radial growth. We considered five traits: wood density (WD), maximum tree height (H max), leaf nitrogen content (Nmass), specific leaf area (SLA), and leaf biomass-to-sapwood area ratio (B L:A S). A unique dataset was obtained from the Ecological and Forest Inventory of Catalonia (IEFC), including data from 406 plots. Intraspecific trait variation was substantial for all traits, with coefficients of variation ranging between 8% for WD and 24% for B L:A S. In some cases, correlations among functional traits differed from those reported across species (e.g., H max and WD were positively related, whereas SLA and Nmass were uncorrelated). Overall, our model accounted for 47% of the spatial variability in Scots pine radial growth. Our study emphasizes the hierarchy of factors that determine intraspecific variations in functional traits in Scots pine and their strong association with spatial variability in radial growth. We claim that intraspecific trait variation is an important determinant of responses of plants to changes in climate and other environmental factors, and should be included in predictive models of vegetation dynamics.

  14. Leaf Pressure Volume Data in Caxiuana and Tapajos National Forest, Para, Brazil (2011)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Thomas; Moorcroft, Paul

    Pressure volume curve measurements on leaves of canopy trees from the from the Caxiuana and Tapajos National Forests, Para, Brazil. Tapajos samples were harvested from the km 67 forested area, which is adjacent to the decommissioned throughfall exclusion drought experimental plot. Caxiuana samples were harvested from trees growing in the throughfall exclusion plots. Data were collected in 2011. Dataset includes: date of measurement, site ID, plot ID, tree ID (species, tree tag #), leaf area, fresh weight, relative weight, leaf water potential, and leaf water loss. P-V curve parameters (turgor loss point, osmotic potential, and bulk modulus of elasticity) canmore » be found in Powell et al. (2017) Differences in xylem cavitation resistance and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees. Global Change Biology.« less

  15. [Seasonal differences in the leaf hydraulic conductance of mature Acacia mangium in response to its leaf water use and photosynthesis].

    PubMed

    Zhao, Ping; Sun, Gu-Chou; Ni, Guang-Yan; Zeng, Xiao-Ping

    2013-01-01

    In this study, measurements were made on the leaf water potential (psi1), stomatal conductance (g(s)), transpiration rate, leaf area index, and sapwood area of mature Acacia mangium, aimed to understand the relationships of the leaf hydraulic conductance (K1) with the leaf water use and photosynthetic characteristics of the A. mangium in wet season (May) and dry season (November). The ratio of sapwood area to leaf area (A(sp)/A(cl)) of the larger trees with an average height of 20 m and a diameter at breast height (DBH) of 0.26 m was 8.5% higher than that of the smaller trees with an average height of 14.5 m and a DBH of 0.19 m, suggesting that the larger trees had a higher water flux in their leaf xylem, which facilitated the water use of canopy leaf. The analysis on the vulnerability curve of the xylem showed that when the K1 decreased by 50%, the psi1 in wet season and dry season was -1.41 and -1.55 MPa, respectively, and the vulnerability of the xylem cavitation was higher in dry season than in wet season. The K1 peak value in wet season and dry season was 5.5 and 4.5 mmol x m(-2) x s(-1) x MPa(-1), and the maximum transpiration rate (T(r max)) was 3.6 and 1.8 mmol x m(-2) x s(-1), respectively. Both the K1 and T(r max), were obviously higher in wet season than in dry season. Within a day, the K1 and T(r), fluctuated many times, reflecting the reciprocated cycle of the xylem cavitation and refilling. The leaf stomatal closure occurred when the K1 declined over 50% or the psi1 reached -1.6 MPa. The g(s) would be maintained at a high level till the K1 declined over 50%. The correlation between the hydraulic conductance and photosynthetic rate was more significant in dry season than in wet season. The loss of leaf hydraulic conductance induced by seasonal change could be the causes of the decrease of T(r) and CO2 gas exchange.

  16. Environmental controls on seasonal ecosystem evapotranspiration/potential evapotranspiration ratio as determined by the global eddy flux measurements

    NASA Astrophysics Data System (ADS)

    Liu, Chunwei; Sun, Ge; McNulty, Steven G.; Noormets, Asko; Fang, Yuan

    2017-01-01

    The evapotranspiration / potential evapotranspiration (AET / PET) ratio is traditionally termed as the crop coefficient (Kc) and has been generally used as ecosystem evaporative stress index. In the current hydrology literature, Kc has been widely used as a parameter to estimate crop water demand by water managers but has not been well examined for other types of ecosystems such as forests and other perennial vegetation. Understanding the seasonal dynamics of this variable for all ecosystems is important for projecting the ecohydrological responses to climate change and accurately quantifying water use at watershed to global scales. This study aimed at deriving monthly Kc for multiple vegetation cover types and understanding its environmental controls by analyzing the accumulated global eddy flux (FLUXNET) data. We examined monthly Kc data for seven vegetation covers, including open shrubland (OS), cropland (CRO), grassland (GRA), deciduous broad leaf forest (DBF), evergreen needle leaf forest (ENF), evergreen broad leaf forest (EBF), and mixed forest (MF), across 81 sites. We found that, except for evergreen forests (EBF and ENF), Kc values had large seasonal variation across all land covers. The spatial variability of Kc was well explained by latitude, suggesting site factors are a major control on Kc. Seasonally, Kc increased significantly with precipitation in the summer months, except in EBF. Moreover, leaf area index (LAI) significantly influenced monthly Kc in all land covers, except in EBF. During the peak growing season, forests had the highest Kc values, while croplands (CRO) had the lowest. We developed a series of multivariate linear monthly regression models for Kc by land cover type and season using LAI, site latitude, and monthly precipitation as independent variables. The Kc models are useful for understanding water stress in different ecosystems under climate change and variability as well as for estimating seasonal ET for large areas with mixed land covers.

  17. Canopy structural complexity influences forest canopy reflectance: linking terrestrial lidar with Landsat observations

    NASA Astrophysics Data System (ADS)

    Hardiman, B. S.; Atkins, J.; Dahlin, K.; Fahey, R. T.; Gough, C. M.

    2016-12-01

    Canopy physical structure - leaf quantity and arrangement - strongly affects light interception and distribution. As such, canopy physical structure is a key driver of forest carbon (C) dynamics. Terrestrial lidar systems (TLS) provide spatially explicit, quantitative characterizations of canopy physical structure at scales commensurate with plot-scale C cycling processes. As an example, previous TLS-based studies established that light use efficiency is positively correlated with canopy physical structure, influencing the trajectory of net primary production throughout forest development. Linking TLS measurements of canopy structure to multispectral satellite observations of forest canopies may enable scaling of ecosystem C cycling processes from leaves to continents. We will report on our study relating a suite of canopy structural metrics to well-established remotely sensed measurements (NDVI, EVI, albedo, tasseled cap indices, etc.) which are indicative of important forest characteristics (leaf area, canopy nitrogen, light interception, etc.). We used Landsat data, which provides observations at 30m resolution, a scale comparable to that of TLS. TLS data were acquired during 2009-2016 from forest sites throughout Eastern North America, comprised primarily of NEON and Ameriflux sites. Canopy physical structure data were compared with contemporaneous growing-season Landsat data. Metrics of canopy physical structure are expected to covary with forest composition and dominant PFT, likely influencing interaction strength between TLS and Landsat canopy metrics. More structurally complex canopies (those with more heterogeneous distributions of leaf area) are expected to have lower albedo, suggesting greater canopy light absorption (higher fAPAR) than simpler canopies. We expect that vegetation indices (NDVI, EVI) will increase with TLS metrics of spatial heterogeneity, and not simply quantity, of leaves, supporting our hypothesis that canopy light absorption is dependent on both leaf quantity and arrangement. Relating satellite observations of canopy properties to TLS metrics of canopy physical structure represents an important advance for modelling canopy energy balance and forest C cycling processes at large spatial scales.

  18. Environmental controls on seasonal ecosystem evapotranspiration/potential evapotranspiration ratio as determined by the global eddy flux measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chunwei; Sun, Ge; McNulty, Steven G.

    The evapotranspiration / potential evapotranspiration (AET / PET) ratio is traditionally termed as the crop coefficient ( K c) and has been generally used as ecosystem evaporative stress index. In the current hydrology literature, K c has been widely used as a parameter to estimate crop water demand by water managers but has not been well examined for other types of ecosystems such as forests and other perennial vegetation. Understanding the seasonal dynamics of this variable for all ecosystems is important for projecting the ecohydrological responses to climate change and accurately quantifying water use at watershed to global scales. Thismore » study aimed at deriving monthly K c for multiple vegetation cover types and understanding its environmental controls by analyzing the accumulated global eddy flux (FLUXNET) data. We examined monthly K c data for seven vegetation covers, including open shrubland (OS), cropland (CRO), grassland (GRA), deciduous broad leaf forest (DBF), evergreen needle leaf forest (ENF), evergreen broad leaf forest (EBF), and mixed forest (MF), across 81 sites. We found that, except for evergreen forests (EBF and ENF), K c values had large seasonal variation across all land covers. The spatial variability of K c was well explained by latitude, suggesting site factors are a major control on K c. Seasonally, K c increased significantly with precipitation in the summer months, except in EBF. Moreover, leaf area index (LAI) significantly influenced monthly K c in all land covers, except in EBF. During the peak growing season, forests had the highest K c values, while croplands (CRO) had the lowest. We developed a series of multivariate linear monthly regression models for K c by land cover type and season using LAI, site latitude, and monthly precipitation as independent variables. Here, the K c models are useful for understanding water stress in different ecosystems under climate change and variability as well as for estimating seasonal ET for large areas with mixed land covers.« less

  19. Environmental controls on seasonal ecosystem evapotranspiration/potential evapotranspiration ratio as determined by the global eddy flux measurements

    DOE PAGES

    Liu, Chunwei; Sun, Ge; McNulty, Steven G.; ...

    2017-01-18

    The evapotranspiration / potential evapotranspiration (AET / PET) ratio is traditionally termed as the crop coefficient ( K c) and has been generally used as ecosystem evaporative stress index. In the current hydrology literature, K c has been widely used as a parameter to estimate crop water demand by water managers but has not been well examined for other types of ecosystems such as forests and other perennial vegetation. Understanding the seasonal dynamics of this variable for all ecosystems is important for projecting the ecohydrological responses to climate change and accurately quantifying water use at watershed to global scales. Thismore » study aimed at deriving monthly K c for multiple vegetation cover types and understanding its environmental controls by analyzing the accumulated global eddy flux (FLUXNET) data. We examined monthly K c data for seven vegetation covers, including open shrubland (OS), cropland (CRO), grassland (GRA), deciduous broad leaf forest (DBF), evergreen needle leaf forest (ENF), evergreen broad leaf forest (EBF), and mixed forest (MF), across 81 sites. We found that, except for evergreen forests (EBF and ENF), K c values had large seasonal variation across all land covers. The spatial variability of K c was well explained by latitude, suggesting site factors are a major control on K c. Seasonally, K c increased significantly with precipitation in the summer months, except in EBF. Moreover, leaf area index (LAI) significantly influenced monthly K c in all land covers, except in EBF. During the peak growing season, forests had the highest K c values, while croplands (CRO) had the lowest. We developed a series of multivariate linear monthly regression models for K c by land cover type and season using LAI, site latitude, and monthly precipitation as independent variables. Here, the K c models are useful for understanding water stress in different ecosystems under climate change and variability as well as for estimating seasonal ET for large areas with mixed land covers.« less

  20. A 3-D functional-structural grapevine model that couples the dynamics of water transport with leaf gas exchange.

    PubMed

    Zhu, Junqi; Dai, Zhanwu; Vivin, Philippe; Gambetta, Gregory A; Henke, Michael; Peccoux, Anthony; Ollat, Nathalie; Delrot, Serge

    2017-12-23

    Predicting both plant water status and leaf gas exchange under various environmental conditions is essential for anticipating the effects of climate change on plant growth and productivity. This study developed a functional-structural grapevine model which combines a mechanistic understanding of stomatal function and photosynthesis at the leaf level (i.e. extended Farqhuhar-von Caemmerer-Berry model) and the dynamics of water transport from soil to individual leaves (i.e. Tardieu-Davies model). The model included novel features that account for the effects of xylem embolism (fPLC) on leaf hydraulic conductance and residual stomatal conductance (g0), variable root and leaf hydraulic conductance, and the microclimate of individual organs. The model was calibrated with detailed datasets of leaf photosynthesis, leaf water potential, xylem sap abscisic acid (ABA) concentration and hourly whole-plant transpiration observed within a soil drying period, and validated with independent datasets of whole-plant transpiration under both well-watered and water-stressed conditions. The model well captured the effects of radiation, temperature, CO2 and vapour pressure deficit on leaf photosynthesis, transpiration, stomatal conductance and leaf water potential, and correctly reproduced the diurnal pattern and decline of water flux within the soil drying period. In silico analyses revealed that decreases in g0 with increasing fPLC were essential to avoid unrealistic drops in leaf water potential under severe water stress. Additionally, by varying the hydraulic conductance along the pathway (e.g. root and leaves) and changing the sensitivity of stomatal conductance to ABA and leaf water potential, the model can produce different water use behaviours (i.e. iso- and anisohydric). The robust performance of this model allows for modelling climate effects from individual plants to fields, and for modelling plants with complex, non-homogenous canopies. In addition, the model provides a basis for future modelling efforts aimed at describing the physiology and growth of individual organs in relation to water status. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Leaf turnover and growth responses of shade-grown saplings of four Shorea rain forest species to a sudden increase in light.

    PubMed

    Shimizu, Michiru; Ishida, Atsushi; Tange, Takeshi; Yagi, Hisayoshi

    2006-04-01

    We tested the hypothesis that sapling growth following a sudden increase in solar irradiance is related to recovery from photoinhibition and the balance between rate of production of new leaves and rate of abscision of old leaves. Leaf gas exchange, chlorophyll fluorescence and relative growth rate (RGR) of stem basal area were measured following the sudden exposure of shade-grown (7% of full sunlight) saplings of four Shorea species to full sunlight. Sudden exposure to full sunlight resulted in an immediate and substantial reduction in dark-adapted quantum yield of photosystem II (Fv/Fm), followed by a gradual recovery in all species. Near light-saturated net assimilation rate (A max) and area-based leaf chlorophyll concentration ([Chl area]) also declined immediately after exposure. Eleven days after exposure, A max had recovered to pre-exposure values in all species, whereas [Chl area] had not recovered. Across species, RGR of stem basal area increased with increasing RGR of the number of leaves following exposure to full sunlight. The interspecific variations in RGR of stem basal area suggest that new leaf production is crucial for determining the potential growth of saplings following gap formation.

  2. Dynamic behavioral strategies during sonar signal emission in roundleaf bats.

    PubMed

    Feng, Lin; Li, Yitan; Lu, Hongwang

    2013-10-02

    For echolocating bats which emit biosonar pulses nasally, their nostrils are surrounded by fleshy appendages that diffract the outgoing ultrasonic waves. The posterior leaf, as a prominent part of the noseleaf, was mentioned in previous preliminary observations to move during flight in some species of bats, yet the detailed motion patterns and thus the possible functional role of the posterior leaf movement in biosonar systems remain unclear. In the current work, the motion of the posterior leaf of living pratt's roundleaf bats has been investigated quantitatively. Temporal characterizations of the noseleaf movement and the ultrasonic pulse emission were performed by virtue of synchronized laser vibrometry and sound recording. The results showed that the posterior leaf tilted forwards and restored to original position within tens of milliseconds. Noseleaf motions were temporally correlated with the emitted ultrasonic pulses. The surfaces of the posterior leaf were moving in the anterior direction in most of the pulse duration. The bats were able to switch the motions on or off. From the comparison with the previously reported noseleaf dynamics in horseshoe bat, we find similar ratio sizes and displacements of the noseleaves compared to the used wavelengths, implying that similar behavioral strategies are utilized by species of bats and it may be applied to different components of the signal emitting apparatus. It suggests that the dynamic sensing principles may widely play a role in the biosonar systems and the investigation on time-variant mechanisms is of capital importance to understand the biosonar sensing strategies used by echolocating bats. © 2013.

  3. Carbon and nitrogen dynamics of the intertidal seagrass, Zostera japonica, on the southern coast of the Korean peninsula

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Hyeob; Kim, Seung Hyeon; Kim, Young Kyun; Lee, Kun-Seop

    2016-12-01

    Seagrasses require a large amount of nutrient assimilation to support high levels of production, and thus nutrient limitation for growth often occurs in seagrass habitats. Seagrasses can take up nutrients from both the water column and sediments. However, since seagrasses inhabiting in the intertidal zones are exposed to the air during low tide, the intertidal species may exhibit significantly different carbon (C) and nitrogen (N) dynamics compared to the subtidal species. To examine C and N dynamics of the intertidal seagrass, Zostera japonica, C and N content and stable isotope ratios of above- and below-ground tissues were measured monthly at the three intertidal zones in Koje Bay on the southern coast of Korea. The C and N content and stable isotope (δ13C and δ15N) ratios of seagrass tissues exhibited significant seasonal variations. Both leaf and rhizome C content were not significantly correlated with productivity. Leaf δ13C values usually exhibited negative correlations with leaf productivity. These results of tissue C content and δ13C values suggest that photosynthesis of Z. japonica in the study site was not limited by inorganic C supply, and sufficient inorganic C was provided from the atmosphere. The tissue N content usually exhibited negative correlations with leaf productivity except at the upper intertidal zone, suggesting that Z. japonica growth was probably limited by N availability during high growing season. In the upper intertidal zone, no correlations between leaf productivity and tissue elemental content and stable isotope ratios were observed due to the severely suppressed growth caused by strong desiccation stress.

  4. Computer simulation of the coffee leaf miner using sexual Penna aging model

    NASA Astrophysics Data System (ADS)

    de Oliveira, A. C. S.; Martins, S. G. F.; Zacarias, M. S.

    2008-01-01

    Forecast models based on climatic conditions are of great interest in Integrated Pest Management (IPM) programs. The success of these models depends, among other factors, on the knowledge of the temperature effect on the pests’ population dynamics. In this direction, a computer simulation was made for the population dynamics of the coffee leaf miner, L. coffeella, at different temperatures, considering experimental data relative to the pest. The age structure was inserted into the dynamics through sexual Penna Model. The results obtained, such as life expectancy, growth rate and annual generations’ number, in agreement to those in laboratory and field conditions, show that the simulation can be used as a forecast model for controlling L. coffeella.

  5. IN SITU AND MODIS MOD15A2 LEAF AREA INDEX MEASUREMENTS OF A MID-ATLANTIC DECIDOUS FOREST SITE: PERSPECTIVES FROM FOUR-YEARS OF FIELD STUDIES

    EPA Science Inventory

    The U.S. Environmental Protection Agency is interested in leaf area index as it pertains to biogenic emissions, atmospheric pollutant deposition, ecological indicators, vegetation phenology, and land cover mapping.

  6. A growth analysis of waterlogging damage in mung bean (Phaseolus aureus)

    NASA Technical Reports Server (NTRS)

    Musgrave, M. E.; Vanhoy, M. A.

    1989-01-01

    Mung beans (Phaseolus aureus Roxb.) were grown for 2 weeks in gravel-vermiculite soilless mix in a growth chamber and subjected to a 1-week waterlogging period followed by a 1-week recovery period. Sequential harvests were made to determine the time course of effects of waterlogging and subsequent recovery on growth parameters by techniques of growth analysis. Root dry matter was the first to be affected, along with an increase in leaf dry matter and specific leaf weight. After a 1-week waterlogging period, specific leaf weight had more than doubled in the stressed plants. Leaf area declined in relation to the control plants as did the ratio of root dry matter to shoot dry matter. During the recovery period there was an increase in the dry matter allocation to the roots relative to the shoot. Specific leaf weight fell to control levels although the rate of leaf area elaboration did not increase during this time, suggesting a redistribution of stored assimilates from the leaves. Net assimilation rate increased during the waterlogging period, probably due to a restriction in root metabolism and reduced translocation out of the leaf rather than to an increase in photosynthesis. Net assimilation rate of waterlogged plants was severely reduced compared with control plants during the recovery period. Both relative growth rate and leaf area duration declined during the waterlogging period and declined further subsequent to the waterlogging treatment. The results illustrate the interrelationships between root and shoot carbon budgets in mung bean during response to the stress of waterlogging.

  7. Warming increases the sensitivity of seedling growth capacity to rainfall in six temperate deciduous tree species

    PubMed Central

    Smith, Nicholas G; Hoeppner, Susanne S; Dukes, Jeffrey S

    2018-01-01

    Abstract Predicting the effects of climate change on tree species and communities is critical for understanding the future state of our forested ecosystems. We used a fully factorial precipitation (three levels; ambient, −50 % ambient, +50 % ambient) by warming (four levels; up to +4 °C) experiment in an old-field ecosystem in the northeastern USA to study the climatic sensitivity of seedlings of six native tree species. We measured whole plant-level responses: survival, total leaf area (TLA), seedling insect herbivory damage, as well as leaf-level responses: specific leaf area (SLA), leaf-level water content (LWC), foliar nitrogen (N) concentration, foliar carbon (C) concentration and C:N ratio of each of these deciduous species in each treatment across a single growing season. We found that canopy warming dramatically increased the sensitivity of plant growth (measured as TLA) to rainfall across all species. Warm, dry conditions consistently reduced TLA and also reduced leaf C:N in four species (Acer rubrum, Betula lenta, Prunus serotina, Ulmus americana), primarily as a result of reduced foliar C, not increased foliar N. Interestingly, these conditions also harmed the other two species in different ways, increasing either mortality (Populus grandidentata) or herbivory (Quercus rubra). Specific leaf area and LWC varied across species, but did not show strong treatment responses. Our results indicate that, in the northeastern USA, dry years in a future warmer environment could have damaging effects on the growth capacity of these early secondary successional forests, through species-specific effects on leaf production (total leaves and leaf C), herbivory and mortality. PMID:29484151

  8. Effects of river flow regime on cottonwood leaf litter dynamics in semi-arid northwestern Colorado

    USGS Publications Warehouse

    Andersen, D.C.; Nelson, S.M.

    2003-01-01

    We compared production and breakdown of Fremont cottonwood (Populus deltoides wislizenii) leaf litter at matched floodplain sites on the regulated Green River and unregulated Yampa River in semi-arid northwestern Colorado. Litter production under trees was similar at sites in 1999 (250 g/m2, oven-dry) but lower in 2000 (215 and 130 g/m2), a drought year that also featured an outbreak of defoliating beetles at the Yampa River site. Our production values were similar to the few others reported for riparian forests within semi-arid or arid areas. Leaf litter in portions of the floodplain not inundated during the spring flood lost organic matter at the same rate as leaves placed in upland sites in 1998 and 2000: 35 to 50% of organic matter during an approximately 160-day spring and summer period. Inundated litter lost 55 to 90% of its organic matter during the same period. Organic matter loss from inundated leaves increased with duration of inundation and with deposition of fine sediment. Pooled across locations, leafpack data suggested that nitrogen concentration (mg N/kg organic matter) increased until about 65% of the initial organic matter was lost. This increase likely reflected the buildup of microbial decomposer populations. The role of insects and other macroinvertebrates in litter breakdown apparently was minor at both sites. Large spatial and temporal variation in litter dynamics in aridland floodplain settings is ensured by microtopographic variation in the alluvial surface coupled with year-to-year variation associated with most natural flood regimes. Factors reducing flood flow frequency or magnitude will reduce overall breakdown rates on the floodplain towards those found in drier upland environments.

  9. Modeling tree crown dynamics with 3D partial differential equations.

    PubMed

    Beyer, Robert; Letort, Véronique; Cournède, Paul-Henry

    2014-01-01

    We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth toward light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications.

  10. The effect of nutrient enrichment on growth, photosynthesis and hydraulic conductance of dwarf mangroves in Panamá

    USGS Publications Warehouse

    Lovelock, C.E.; Feller, Ilka C.; McKee, K.L.; Engelbrecht, B.M.J.; Ball, M.C.

    2004-01-01

    1. Dwarf stands of the mangrove Rhizophora mangle L. are extensive in the Caribbean. We fertilized dwarf trees in Almirante Bay, Bocas del Toro Province, north-eastern Panama with nitrogen (N) and phosphorus (P) to determine (1) if growth limitations are due to nutrient deficiency; and (2) what morphological and/or physiological factors underlie nutrient limitations to growth. 2. Shoot growth was 10-fold when fertilized with P and twofold with N fertilization, indicating that stunted growth of these mangroves is partially due to nutrient deficiency. 3. Growth enhancements caused by N or P enrichment could not be attributed to increases in photosynthesis on a leaf area basis, although photosynthetic nutrient-use efficiency was improved. The most dramatic effect was on stem hydraulic conductance, which was increased sixfold by P and 2-5-fold with N enrichment. Fertilization with P enhanced leaf and stem P concentrations and reduced C:N ratio, but did not alter leaf damage by herbivores. 4. Our findings indicate that addition of N and P significantly alter tree growth and internal nutrient dynamics of mangroves at Bocas del Toro, but also that the magnitude, pattern and mechanisms of change will be differentially affected by each nutrient.

  11. Spin-Up and Tuning of the Global Carbon Cycle Model Inside the GISS ModelE2 GCM

    NASA Technical Reports Server (NTRS)

    Aleinov, Igor; Kiang, Nancy Y.; Romanou, Anastasia

    2015-01-01

    Planetary carbon cycle involves multiple phenomena, acting at variety of temporal and spacial scales. The typical times range from minutes for leaf stomata physiology to centuries for passive soil carbon pools and deep ocean layers. So, finding a satisfactory equilibrium state becomes a challenging and computationally expensive task. Here we present the spin-up processes for different configurations of the GISS Carbon Cycle model from the model forced with MODIS observed Leaf Area Index (LAI) and prescribed ocean to the prognostic LAI and to the model fully coupled to the dynamic ocean and ocean biology. We investigate the time it takes the model to reach the equilibrium and discuss the ways to speed up this process. NASA Goddard Institute for Space Studies General Circulation Model (GISS ModelE2) is currently equipped with all major algorithms necessary for the simulation of the Global Carbon Cycle. The terrestrial part is presented by Ent Terrestrial Biosphere Model (Ent TBM), which includes leaf biophysics, prognostic phenology and soil biogeochemistry module (based on Carnegie-Ames-Stanford model). The ocean part is based on the NASA Ocean Biogeochemistry Model (NOBM). The transport of atmospheric CO2 is performed by the atmospheric part of ModelE2, which employs quadratic upstream algorithm for this purpose.

  12. A New Method to Quantify the Isotopic Signature of Leaf Transpiration: Implications for Landscape-Scale Evapotranspiration Partitioning Studies

    NASA Astrophysics Data System (ADS)

    Wang, L.; Good, S. P.; Caylor, K. K.

    2010-12-01

    Characterizing the constituent components of evapotranspiration is crucial to better understand ecosystem-level water budgets and water use dynamics. Isotope based evapotranspiration partitioning methods are promising but their utility lies in the accurate estimation of the isotopic composition of underlying transpiration and evaporation. Here we report a new method to quantify the isotopic signature of leaf transpiration under field conditions. This method utilizes a commercially available laser-based isotope analyzer and a transparent leaf chamber, modified from Licor conifer leaf chamber. The method is based on the water mass balance in ambient air and leaf transpired air. We verified the method using “artificial leaves” and glassline extracted samples. The method provides a new and direct way to estimate leaf transpiration isotopic signatures and it has wide applications in ecology, hydrology and plant physiology.

  13. Detecting forest structure and biomass with C-band multipolarization radar - Physical model and field tests

    NASA Technical Reports Server (NTRS)

    Westman, Walter E.; Paris, Jack F.

    1987-01-01

    The ability of C-band radar (4.75 GHz) to discriminate features of forest structure, including biomass, is tested using a truck-mounted scatterometer for field tests on a 1.5-3.0 m pygmy forest of cypress (Cupressus pygmaea) and pine (Pinus contorta ssp, Bolanderi) near Mendocino, CA. In all, 31 structural variables of the forest are quantified at seven sites. Also measured was the backscatter from a life-sized physical model of the pygmy forest, composed of nine wooden trees with 'leafy branches' of sponge-wrapped dowels. This model enabled independent testing of the effects of stem, branch, and leafy branch biomass, branch angle, and moisture content on radar backscatter. Field results suggested that surface area of leaves played a greater role in leaf scattering properties than leaf biomass per se. Tree leaf area index was strongly correlated with vertically polarized power backscatter (r = 0.94; P less than 0.01). Field results suggested that the scattering role of leaf water is enhanced as leaf surface area per unit leaf mass increases; i.e., as the moist scattering surfaces become more dispersed. Fog condensate caused a measurable rise in forest backscatter, both from surface and internal rises in water content. Tree branch mass per unit area was highly correlated with cross-polarized backscatter in the field (r = 0.93; P less than 0.01), a result also seen in the physical model.

  14. NGEE Arctic Leaf Spectral Reflectance and Transmittance, Barrow, Alaska, 2014-2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shawn Serbin; Wil Lieberman-Cribbin; Kim Ely

    Measurements of full-spectrum (i.e. 350-2500nm) leaf spectral reflectance of Arctic plant species. Data were collected to characterize the leaf-level optical properties and albedo of dominant Arctic tundra species in the Barrow, AK area and to enable trait scaling.

  15. Is the WBE model appropriate for semi-arid shrubs subjected to clear cutting?

    PubMed

    Issoufou, Hassane Bil-Assanou; Rambal, Serge; Le Dantec, Valérie; Oï, Monique; Laurent, Jean-Paul; Saadou, Mahamane; Seghieri, Josiane

    2015-02-01

    It is crucial to understand the adaptive mechanisms of woody plants facing periodic drought to assess their vulnerability to the increasing climate variability predicted in the Sahel. Guiera senegalensis J.F.Gmel is a semi-evergreen Combretaceae commonly found in Sahelian rangelands, fallows and crop fields because of its value as an agroforestry species. We compared canopy leafing, and allometric measurements of leaf area, stem area and stem length and their relationships with leaf water potential, stomatal conductance (gs) and soil-to-leaf hydraulic conductance (KS-L), in mature and current-year resprouts of G. senegalensis in Sahelian Niger. In mature shrubs, seasonal drought reduced the ratio of leaf area to cross-sectional stem area (AL : AS), mainly due to leaf shedding. The canopy of the current-year resprouts remained permanently leafed as the shrubs produced leaves and stems continuously, and their AL : AS ratio increased throughout the dry season. Their KS-L increased, whereas gs decreased. West, Brown and Enquist's (WBE) model can thus describe allometric trends in the seasonal life cycle of undisturbed mature shrubs, but not that of resprouts. Annual clear cutting drives allometric scaling relationships away from theoretical WBE predictions in the current-year resprouts, with scaling exponents 2.5 times greater than those of mature shrubs. High KS-L (twice that of mature shrubs) supports this intensive regeneration process. The adaptive strategy described here is probably common to many woody species that have to cope with both severe seasonal drought and regular disturbance over the long term. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. A high proportion of blue light increases the photosynthesis capacity and leaf formation rate of Rosa × hybrida but does not affect time to flower opening.

    PubMed

    Terfa, Meseret Tesema; Solhaug, Knut Asbjørn; Gislerød, Hans Ragnar; Olsen, Jorunn Elisabeth; Torre, Sissel

    2013-05-01

    Alterations in light quality affect plant morphogenesis and photosynthetic responses but the effects vary significantly between species. Roses exhibit an irradiance-dependent flowering control but knowledge on light quality responses is scarce. In this study we analyzed, the responses in morphology, photosynthesis and flowering of Rosa × hybrida to different blue (B) light proportions provided by light-emitting diodes (LED, high B 20%) and high pressure sodium (HPS, low B 5%) lamps. There was a strong morphological and growth effect of the light sources but no significant difference in total dry matter production and flowering. HPS-grown plants had significantly higher leaf area and plant height, yet a higher dry weight proportion was allocated to leaves than stems under LED. LED plants showed 20% higher photosynthetic capacity (Amax ) and higher levels of soluble carbohydrates. The increase in Amax correlated with an increase in leaf mass per unit leaf area, higher stomata conductance and CO2 exchange, total chlorophyll (Chl) content per area and Chl a/b ratio. LED-grown leaves also displayed a more sun-type leaf anatomy with more and longer palisade cells and a higher stomata frequency. Although floral initiation occurred at a higher leaf number in LED, the time to open flowers was the same under both light conditions. Thereby the study shows that a higher portion of B light is efficient in increasing photosynthesis performance per unit leaf area, enhancing growth and morphological changes in roses but does not affect the total Dry Matter (DM) production or time to open flower. Copyright © Physiologia Plantarum 2012.

  17. Relative growth rate in phylogenetically related deciduous and evergreen woody species.

    PubMed

    Antúnez, Isabel; Retamosa, Emilio C; Villar, Rafael

    2001-07-01

    Relative growth rate (RGR) and other growth parameters were studied in eight pairs of closely related deciduous and evergreen species (within the same genus or family). The main objective of this study was to test the association between leaf turnover rate and RGR, specific leaf area (SLA, leaf area/leaf dry weight) and other growth variables. Plants were grown for 6 months in a greenhouse under favourable water and nutrient conditions. Variation in RGR among the 16 woody species was due mainly to differences in morphological parameters such as leaf area ratio (LAR, whole plant area/whole plant dry weight) and SLA). However, temporal variation in RGR within species was due mainly to variation in net assimilation rate. When phylogeny was not taken into account, analyses showed that deciduous species grew faster than evergreens. In contrast, when phylogeny was taken into account, the data analysis showed that a faster RGR is not consistently associated with the deciduous habit (in five pairs it was, but in the other three it was not). The faster growth of the deciduous trees (in the five positive contrasts) could be explained by their higher LAR and higher SLA relative to evergreens. The lack of differences in RGR between deciduous and evergreens (in three pairs) was due to the higher leaf mass ratio (LMR, leaf dry biomass/total dry biomass) for the evergreens, which offset the higher SLA of the deciduous species, resulting in a similar LAR in both functional groups (LAR=LMR×SLA). Deciduous species had consistently higher SLA than evergreens. We suggest that SLA, more than RGR, could be an important parameter in determining adaptive advantages of deciduous and evergreen species.

  18. Photosynthesis and canopy characteristics in genetically defined families of silver birch (Betula pendula).

    PubMed

    Wang, T; Tigerstedt, P M; Viherä-Aarnio, A

    1995-10-01

    Net photosynthetic rates (A) of leaves in upper and lower crown layers (A(upper) and A(lower)), leaf area index (LAI), mean tilt angle (MTA), several leaf characteristics, and volume growth were observed in fast- and slow-growing families of a 14-year-old full-sib and half-sib family progeny test of Betula pendula Roth. Each measure of net photosynthetic rate was calculated after correcting measured net photosynthesis for the effects of environmental variables. The differences in A(upper) and LAI among families were significant. The proportions of the total variance assigned to family for A(upper), A(lower) and LAI were 33.64, 28.93 and 54.99%, respectively. The mean A(upper) and LAI of the fast-growing families were significantly higher than those of the slow-growing families, whereas the mean A(lower) of the fast-growing families was significantly lower than that of the slow-growing families. There were also significant differences among families in leaf size, leaf shape, and the ratios leaf fresh weight/area and leaf dry weight/area. Between 27.55 and 54.55% of the total variance in these characteristics could be assigned to the family effect. Volume growth was positively correlated with A(upper) and LAI, but it was most strongly correlated with A(upper) x LAI.

  19. A Theoretical Model of Jigsaw-Puzzle Pattern Formation by Plant Leaf Epidermal Cells.

    PubMed

    Higaki, Takumi; Kutsuna, Natsumaro; Akita, Kae; Takigawa-Imamura, Hisako; Yoshimura, Kenji; Miura, Takashi

    2016-04-01

    Plant leaf epidermal cells exhibit a jigsaw puzzle-like pattern that is generated by interdigitation of the cell wall during leaf development. The contribution of two ROP GTPases, ROP2 and ROP6, to the cytoskeletal dynamics that regulate epidermal cell wall interdigitation has already been examined; however, how interactions between these molecules result in pattern formation remains to be elucidated. Here, we propose a simple interface equation model that incorporates both the cell wall remodeling activity of ROP GTPases and the diffusible signaling molecules by which they are regulated. This model successfully reproduces pattern formation observed in vivo, and explains the counterintuitive experimental results of decreased cellulose production and increased thickness. Our model also reproduces the dynamics of three-way cell wall junctions. Therefore, this model provides a possible mechanism for cell wall interdigitation formation in vivo.

  20. Regulation of leaf-gas exchange strategies of woody plants under elevated CO2

    NASA Astrophysics Data System (ADS)

    Belmecheri, S.; Guerrieri, R.; Voelker, S.

    2016-12-01

    Estimates of vegetation water use efficiency (WUE) have increasingly been assessed using both eddy covariance and plant stable isotope techniques but these data have often lead to differing conclusions. Eddy covariance can provide forest ecosystem-level responses of coupled carbon and water exchanges to recent global change phenomena. These direct observations, however, are generally less than one or two decades, thus documenting ecosystem-level responses at elevated [CO2] concentrations (350-400 ppm). Therefore, eddy covariance data cannot directly address plant physiological mechanisms and adaptation to climate variability and anthropogenic factors, e.g., increasing atmospheric [CO2]. By contrast, tree based carbon isotope approaches can retrospectively assess intrinsic WUE over long periods and have documented physiological responses to ambient atmospheric [CO2] (ca), which have often been contextualized within generalized strategies for stomatal regulation of leaf gas-exchange. These include maintenance of a constant leaf internal [CO2] (ci), a constant drawdown in [CO2] (ca - ci), and a constant ci/ca . Tree carbon isotope studies, however, cannot account for changes in leaf area of individual trees or canopies, which makes scaling up a difficult task. The limitations of these different approaches to understanding how forest water use efficiency has been impacted by rising [CO2] has contributed to the uncertainty in global terrestrial carbon cycling and the "missing" terrestrial carbon sink. We examined stable C isotope ratios (d13C) from woody plants over a wide range of [CO2] (200-400 ppm) to test for patterns of ci-regulation in response to rising ca. The analyses are not consistent with any of the leaf gas-exchange regulation strategies noted above. The data suggest that ca - ci is still recently increasing in most species but that the rate of increase is less than expected from paleo trees which grew at much lower [CO2]. This evidence demonstrates that a broadly conserved suite of functional traits allow woody plants to adapt their leaf gas exchange to elevated [CO2]. To improve projections of how rising [CO2] will affect terrestrial carbon uptake, dynamic global vegetation models should incorporate leaf gas exchange responses that mimic these adaptive responses to [CO2].

  1. Intraspecific Relationships among Wood Density, Leaf Structural Traits and Environment in Four Co-Occurring Species of Nothofagus in New Zealand

    PubMed Central

    Richardson, Sarah J.; Allen, Robert B.; Buxton, Rowan P.; Easdale, Tomás A.; Hurst, Jennifer M.; Morse, Christopher W.; Smissen, Rob D.; Peltzer, Duane A.

    2013-01-01

    Plant functional traits capture important variation in plant strategy and function. Recent literature has revealed that within-species variation in traits is greater than previously supposed. However, we still have a poor understanding of how intraspecific variation is coordinated among different traits, and how it is driven by environment. We quantified intraspecific variation in wood density and five leaf traits underpinning the leaf economics spectrum (leaf dry matter content, leaf mass per unit area, size, thickness and density) within and among four widespread Nothofagus tree species in southern New Zealand. We tested whether intraspecific relationships between wood density and leaf traits followed widely reported interspecific relationships, and whether variation in these traits was coordinated through shared responses to environmental factors. Sample sites varied widely in environmental variables, including soil fertility (25–900 mg kg–1 total P), precipitation (668–4875 mm yr–1), temperature (5.2–12.4 °C mean annual temperature) and latitude (41–46 °S). Leaf traits were strongly correlated with one another within species, but not with wood density. There was some evidence for a positive relationship between wood density and leaf tissue density and dry matter content, but no evidence that leaf mass or leaf size were correlated with wood density; this highlights that leaf mass per unit area cannot be used as a surrogate for component leaf traits such as tissue density. Trait variation was predicted by environmental factors, but not consistently among different traits; e.g., only leaf thickness and leaf density responded to the same environmental cues as wood density. We conclude that although intraspecific variation in wood density and leaf traits is strongly driven by environmental factors, these responses are not strongly coordinated among functional traits even across co-occurring, closely-related plant species. PMID:23527041

  2. Coordination between leaf and stem traits related to leaf carbon gain and hydraulics across 32 drought-tolerant angiosperms.

    PubMed

    Ishida, Atsushi; Nakano, Takashi; Yazaki, Kenichi; Matsuki, Sawako; Koike, Nobuya; Lauenstein, Diego L; Shimizu, Michiru; Yamashita, Naoko

    2008-05-01

    We examined 15 traits in leaves and stems related to leaf C economy and water use for 32 co-existing angiosperms at ridge sites with shallow soil in the Bonin Islands. Across species, stem density was positively correlated to leaf mass per area (LMA), leaf lifespan (LLS), and total phenolics and condensed tannins per unit leaf N (N-based), and negatively correlated to leaf osmotic potential and saturated water content in leaves. LMA and LLS were negatively correlated to photosynthetic parameters, such as area-, mass-, and N-based assimilation rates. Although stem density and leaf osmotic potential were not associated with photosynthetic parameters, they were associated with some parameters of the leaf C economy, such as LMA and LLS. In the principal component (PCA) analysis, the first three axes accounted for 74.4% of total variation. Axis 1, which explained 41.8% of the total variation, was well associated with parameters for leaf C and N economy. Similarly, axis 2, which explained 22.3% of the total variation, was associated with parameters for water use. Axis 3, which explained 10.3% of the total variation, was associated with chemical defense within leaves. Axes 1 and 2 separated functional types relatively well, i.e., creeping trees, ruderal trees, other woody plants, C(3) shrubs and forbs, palms, and CAM plants, indicating that plant functional types were characterized by similar attributes of traits related to leaf C and N economy and water use. In addition, when the plot was extended by two unrelated traits, leaf mass-based assimilation rates and stem density, it also separated these functional types. These data indicate that differences in the functional types with contrasting plant strategies can be attributed to functional integration among leaf C economy, hydraulics, and leaf longevity, and that both leaf mass-based assimilation rates and stem density are key factors reflecting the different functions of plant species.

  3. Leaf age dependent changes in within-canopy variation in leaf functional traits: a meta-analysis

    PubMed Central

    Niinemets, Ülo

    2018-01-01

    Within-canopy variation in leaf structural and photosynthetic characteristics is a major means by which whole canopy photosynthesis is maximized at given total canopy nitrogen. As key acclimatory modifications, leaf nitrogen content (NA) and photosynthetic capacity (AA) per unit area increase with increasing light availability in the canopy and these increases are associated with increases in leaf dry mass per unit area (MA) and/or nitrogen content per dry mass and/or allocation. However, leaf functional characteristics change with increasing leaf age during leaf development and aging, but the importance of these alterations for within-canopy trait gradients is unknown. I conducted a meta-analysis based on 71 canopies that were sampled at different time periods or, in evergreens, included measurements for different-aged leaves to understand how within-canopy variations in leaf traits (trait plasticity) depend on leaf age. The analysis demonstrated that in evergreen woody species, MA and NA plasticity decreased with increasing leaf age, but the change in AA plasticity was less suggesting a certain re-acclimation of AA to altered light. In deciduous woody species, MA and NA gradients in flush-type species increased during leaf development and were almost invariable through the rest of the season, while in continuously leaf-forming species, trait gradients increased constantly with increasing leaf age. In forbs, NA plasticity increased, while in grasses, NA plasticity decreased with increasing leaf age, reflecting life form differences in age-dependent changes in light availability and in nitrogen resorption for growth of generative organs. Although more work is needed to improve the coverage of age-dependent plasticity changes in some plant life forms, I argue that the age-dependent variation in trait plasticity uncovered in this study is large enough to warrant incorporation in simulations of canopy photosynthesis through the growing period. PMID:27033356

  4. A sub-canopy structure for simulating oil palm in the Community Land Model (CLM-Palm): phenology, allocation and yield

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Roupsard, O.; Bernoux, M.; Le Maire, G.; Panferov, O.; Kotowska, M. M.; Knohl, A.

    2015-11-01

    In order to quantify the effects of forests to oil palm conversion occurring in the tropics on land-atmosphere carbon, water and energy fluxes, we develop a new perennial crop sub-model CLM-Palm for simulating a palm plant functional type (PFT) within the framework of the Community Land Model (CLM4.5). CLM-Palm is tested here on oil palm only but is meant of generic interest for other palm crops (e.g., coconut). The oil palm has monopodial morphology and sequential phenology of around 40 stacked phytomers, each carrying a large leaf and a fruit bunch, forming a multilayer canopy. A sub-canopy phenological and physiological parameterization is thus introduced so that each phytomer has its own prognostic leaf growth and fruit yield capacity but with shared stem and root components. Phenology and carbon and nitrogen allocation operate on the different phytomers in parallel but at unsynchronized steps, separated by a thermal period. An important phenological phase is identified for the oil palm - the storage growth period of bud and "spear" leaves which are photosynthetically inactive before expansion. Agricultural practices such as transplanting, fertilization and leaf pruning are represented. Parameters introduced for the oil palm were calibrated and validated with field measurements of leaf area index (LAI), yield and net primary production (NPP) from Sumatra, Indonesia. In calibration with a mature oil palm plantation, the cumulative yields from 2005 to 2014 matched notably well between simulation and observation (mean percentage error = 3 %). Simulated inter-annual dynamics of PFT-level and phytomer-level LAI were both within the range of field measurements. Validation from eight independent oil palm sites shows the ability of the model to adequately predict the average leaf growth and fruit yield across sites and sufficiently represent the significant nitrogen- and age-related site-to-site variability in NPP and yield. Results also indicate that seasonal dynamics of yield and remaining small-scale site-to-site variability of NPP are driven by processes not yet implemented in the model or reflected in the input data. The new sub-canopy structure and phenology and allocation functions in CLM-Palm allow exploring the effects of tropical land-use change, from natural ecosystems to oil palm plantations, on carbon, water and energy cycles and regional climate.

  5. PYM: a new, affordable, image-based method using a Raspberry Pi to phenotype plant leaf area in a wide diversity of environments.

    PubMed

    Valle, Benoît; Simonneau, Thierry; Boulord, Romain; Sourd, Francis; Frisson, Thibault; Ryckewaert, Maxime; Hamard, Philippe; Brichet, Nicolas; Dauzat, Myriam; Christophe, Angélique

    2017-01-01

    Plant science uses increasing amounts of phenotypic data to unravel the complex interactions between biological systems and their variable environments. Originally, phenotyping approaches were limited by manual, often destructive operations, causing large errors. Plant imaging emerged as a viable alternative allowing non-invasive and automated data acquisition. Several procedures based on image analysis were developed to monitor leaf growth as a major phenotyping target. However, in most proposals, a time-consuming parameterization of the analysis pipeline is required to handle variable conditions between images, particularly in the field due to unstable light and interferences with soil surface or weeds. To cope with these difficulties, we developed a low-cost, 2D imaging method, hereafter called PYM. The method is based on plant leaf ability to absorb blue light while reflecting infrared wavelengths. PYM consists of a Raspberry Pi computer equipped with an infrared camera and a blue filter and is associated with scripts that compute projected leaf area. This new method was tested on diverse species placed in contrasting conditions. Application to field conditions was evaluated on lettuces grown under photovoltaic panels. The objective was to look for possible acclimation of leaf expansion under photovoltaic panels to optimise the use of solar radiation per unit soil area. The new PYM device proved to be efficient and accurate for screening leaf area of various species in wide ranges of environments. In the most challenging conditions that we tested, error on plant leaf area was reduced to 5% using PYM compared to 100% when using a recently published method. A high-throughput phenotyping cart, holding 6 chained PYM devices, was designed to capture up to 2000 pictures of field-grown lettuce plants in less than 2 h. Automated analysis of image stacks of individual plants over their growth cycles revealed unexpected differences in leaf expansion rate between lettuces rows depending on their position below or between the photovoltaic panels. The imaging device described here has several benefits, such as affordability, low cost, reliability and flexibility for online analysis and storage. It should be easily appropriated and customized to meet the needs of various users.

  6. Sapling leaf trait responses to light, tree height and soil nutrients for three conifer species of contrasting shade tolerance.

    PubMed

    Lilles, Erica B; Astrup, Rasmus; Lefrançois, Marie-Lou; David Coates, K

    2014-12-01

    We developed models to describe the responses of four commonly examined leaf traits (mass per area, weight, area and nitrogen (N) concentration) to gradients of light, soil nutrients and tree height in three conifer species of contrasting shade tolerance. Our observational dataset from the sub-boreal spruce forests of British Columbia included subalpine fir (Abies lasioscarpa [Hook.] Nutt; high shade tolerance), interior spruce (Picea glauca × Picea engelmannii [Moench] Voss; intermediate shade tolerance) and lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia; low shade tolerance) saplings from 0.18 to 4.87 m tall, in 8-98% of total incident light, from field sites with <17.6 kg ha(-1) to >46.8 kg ha(-1) total dissolved N. Leaf weights and areas showed strong positive responses to light and height, but little or no response to soil nutrients. Parameter estimates indicated that the shape of leaf weight and area responses to light corresponded with shade tolerance ranking for the three species; pine had the most linear response whereas spruce and fir had asymptotic responses. Leaf N concentration responded positively to soil nutrients, negatively to light and idiosyncratically to height. The negative effect of light was only apparent on sites of high soil nutrient availability, and parameter estimates for the shape of the negative response also corresponded to shade tolerance ranking (apine = -0.79, aspruce = -0.15, afir = -0.07). Of the traits we measured, leaf mass per area showed the least response to light, soil nutrient and height gradients. Although it is a common practice in comparisons across many species, characterizing these conifers by mean values of their leaf traits would miss important intraspecific variation across environmental and size gradients. In these forests, parameter estimates representing the intraspecific variability of leaf trait responses can be used to understand relative shade tolerances. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Coordination of physiological and structural traits in Amazon forest trees

    NASA Astrophysics Data System (ADS)

    Patiño, S.; Fyllas, N. M.; Baker, T. R.; Paiva, R.; Quesada, C. A.; Santos, A. J. B.; Schwarz, M.; Ter Steege, H.; Phillips, O. L.; Lloyd, J.

    2011-05-01

    Many plant traits covary in a non-random manner reflecting interdependencies associated with "ecological strategy" dimensions. To understand how plants modulate their structural investments to best maintain and utilise their physiological capabilities, data on leaf and leaflet size and the ratio of leaf area to sapwood area (ΦLS) obtained for 1040 tree species located in 53 tropical forest plots across the Amazon Basin were incorporated into an analysis utilising existing data on species maximum height (Hmax), seed size, leaf mass per unit area (MA), foliar nutrients and δ13C and branch xylem density (ρx). Utilising a common principal components approach allowing eigenvalues to vary between two soil fertility dependent species groups, five genetically controlled trait dimensions were identified. The first involves primarily cations, foliar carbon and MA and is associated with differences in foliar construction costs. The second relates to the classic "leaf economic spectrum", but with increased individual leaf areas and a higher ΦLS newly identified components. The third relates primarily to increasing Hmax and hence variations in light acquisition strategy involving greater MA, reductions in ΦLS and less negative δ13C. Although these first three dimensions were more important for species from high fertility sites the final two dimensions were more important for low fertility species and were associated with variations linked to reproductive and shade tolerance strategies. Environmental conditions also influenced structural traits with ρx decreasing with increased soil fertility and decreasing with increased temperatures. This soil fertility response appears to be synchronised with increases in foliar nutrient concentrations and reductions in foliar [C]. Leaf and leaflet area and ΦLS were less responsive to the environment than ρx. Thus although genetically determined foliar traits such as those associated with leaf construction costs coordinate independently of structural characteristics, others tend to covary with leaf size, ΦLS, S tolerance strategies. Several traits such as MA and [C] are important components of more than one dimension with their ambiguous nature reflecting different underlying causes of variation. Environmental effects on structural and physiological characteristics are also coordinated but in a different way to the gamut of linkages associated with genotypic differences.

  8. LEAF AREA INDEX (LAI) CHANGE DETECTION ON LOBLOLLY PINE FOREST STANDS WITH COMPLETE UNDERSTORY REMOVAL

    EPA Science Inventory

    The confounding effect of understory vegetation contributions to satellite derived
    estimates of leaf area index (LAI) was investigated on two loblolly pine (Pinus taeda) forest stands located in the southeastern United States. Previous studies have shown that understory can a...

  9. LEAF AREA INDEX (LAI) CHANGE DETECTION ANALYSIS ON LOBLOLLY PINE (PINUS TAEDA) FOLLOWING COMPLETE UNDERSTORY REMOVAL

    EPA Science Inventory

    The confounding effect of understory vegetation contributions to satellite-derived estimates of leaf area index (LAI) was investigated on two loblolly pine (Pinus taeda) forest stands located in Virginia and North Carolina. In order to separate NDVI contributions of the dominantc...

  10. LEAF AREA INDEX (LAI) CHANGE DETECTION ON LOBLOLLY PINE FOREST STANDS WITH COMPLETE UNDERSTORY REMOVAL

    EPA Science Inventory

    The confounding effect of understory vegetation contributions to satellite derived estimates of leaf area index (LAI) was investigated on two loblolly pine forest stands located in the southeastern United States. Previous studies have shown that understory can account from 0-40%...

  11. Indirect determination of leaf area index to calculate evapotranspiration

    USDA-ARS?s Scientific Manuscript database

    The plant integrates soil and environmental factors. The purpose of this study was to use nadir photos from 4.9 m height to determine ground cover, leaf area index (LAI), and plant water use (along with micrometeorology measurements). Measurements were completed on plots comparing a four-year organi...

  12. Evaluation of Multispectral Based Radiative Transfer Model Inversion to Estimate Leaf Area Index in Wheat

    USDA-ARS?s Scientific Manuscript database

    Leaf area index (LAI) is a critical variable for predicting the growth and productivity of crops. Remote sensing estimates of LAI have relied upon empirical relationships between spectral vegetation indices and ground measurements that are costly to obtain. Radiative transfer model inversion based o...

  13. Competitive interactions between native and invasive exotic plant species are altered under elevated carbon dioxide.

    PubMed

    Manea, Anthony; Leishman, Michelle R

    2011-03-01

    We hypothesized that the greater competitive ability of invasive exotic plants relative to native plants would increase under elevated CO(2) because they typically have traits that confer the ability for fast growth when resources are not limiting and thus are likely to be more responsive to elevated CO(2). A series of competition experiments under ambient and elevated CO(2) glasshouse conditions were conducted to determine an index of relative competition intensity for 14 native-invasive exotic species-pairs. Traits including specific leaf area, leaf mass ratio, leaf area ratio, relative growth rate, net assimilation rate and root weight ratio were measured. Competitive rankings within species-pairs were not affected by CO(2) concentration: invasive exotic species were more competitive in 9 of the 14 species-pairs and native species were more competitive in the remaining 5 species-pairs, regardless of CO(2) concentration. However, there was a significant interaction between plant type and CO(2) treatment due to reduced competitive response of native species under elevated compared with ambient CO(2) conditions. Native species had significantly lower specific leaf area and leaf area ratio under elevated compared with ambient CO(2). We also compared traits of more-competitive with less-competitive species, regardless of plant type, under both CO(2) treatments. More-competitive species had smaller leaf weight ratio and leaf area ratio, and larger relative growth rate and net assimilation rate under both ambient and elevated CO(2) conditions. These results suggest that growth and allocation traits can be useful predictors of the outcome of competitive interactions under both ambient and elevated CO(2) conditions. Under predicted future atmospheric CO(2) conditions, competitive rankings among species may not change substantially, but the relative success of invasive exotic species may be increased. Thus, under future atmospheric CO(2) conditions, the ecological and economic impact of some invasive exotic plants may be even greater than under current conditions.

  14. Structural and Physiological Changes in Sugar Beet Leaves during Sink to Source Conversion 1

    PubMed Central

    Fellows, Robert J.; Geiger, Donald R.

    1974-01-01

    The onset of export during leaf development was correlated with changes in metabolism and ultrastructure and with patterns of solute distribution in the developing seventh leaf of sugar beet (Beta vulgaris L.) in order to study the cause of initiation of translocation. Infrared gas analysis of carbon dioxide uptake showed a broad peak for net photosynthesis dm−2 at 35 to 40% final laminar length. Pulse labeling with 14CO2 demonstrated that maximum import of translocate occurred at 25% final laminar length; export was first observed at 35% final laminar length. Between 40 and 50% final laminar length a rapid increase in amount of export occurred, primarily as a result of the increase in the area of leaf which was exporting. Whole leaf autoradiography revealed that onset of phloem loading spread basipetally from the leaf tip; loading was initiated at about 22% final laminar length and was essentially complete by 50% final laminar length. Those areas which clearly exhibited loading no longer imported from other parts of the plant while the area in transition still appeared to import label from source regions. There was little difference between source and sink leaf tissue in the kinetic parameters Kj and Jmax (30) for uptake of exogenous sucrose supplied via free space. The concentration of solutes in sieve elements and companion cells of the sink leaf was highest in the mature tip area and gradually decreased in the direction of the immature base. There appeared to be no dramatic structural transformation within the phloem of the minor veins that was closely correlated with the time when phloem loading or export began. Rather, there appeared to be a gradual differentiation of phloem which resulted in a sizable proportion of the population of minor vein sieve elements and companion cells attaining maturity in the older sink regions prior to initiation of phloem loading. The area of the leaf undergoing development appeared to exhibit the beginnings of phloem loading 30 to 45 hours prior to onset of export. Import continued into the area in transition until the full level of vein loading was attained. Structural maturation of the phloem and onset of phloem loading are felt to be more preparatory in nature rather than immediately causal events which triggered export. The initiation of export out of a developing leaf, we believe, is the result of the increasing solute content within the sieve element and companion cells of the minor veins, in particular. The higher osmotic pressure in the sieve tubes causes a reversal of the previously inward directed gradient and produces a mass flow, through unobstructed sieve elements, out of the new source region of the leaf. Images PMID:16658993

  15. Potential of trees leaf/ bark to control atmospheric metals in a gas and petrochemical zone.

    PubMed

    Safari, Mojgan; Ramavandi, Bahman; Sanati, Ali Mohammad; Sorial, George A; Hashemi, Seyedenayat; Tahmasebi, Saeid

    2018-05-22

    Leaf and bark of trees are tools for assessing the effects of the heavy metals pollution and monitoring the environmental air quality. The aim of this study was to evaluate the presence of Ni, Pb, V, and Co metals in four tree/shrub species (Conocarpus erectus, Nerium oleander, Bougainvillea spectabilis willd, and Hibiscus rosa-sinensis) in the heavily industrial zone of Asaloyeh, Iran. Two industrial zones (sites 1 and 2), two urban areas (sites 3 and 4), and two rural areas (sites 5 and 6) in the Asaloyeh industrial zone and an uncontaminated area as a control were selected. Sampling from leaf and bark of trees was carried out in spring 2016. The metals content in the washed and unwashed leaf and bark was investigated. The results showed that four studied metals in N. oleander, C. erectus, and B. spectabilis willd in all case sites were significantly higher than that of in the control site (p < 0.05). The highest concentration of metals was found in sites 3, 4, and 6; this was due to dispersion of the pollutants from industrial environments by dominant winds. The highest comprehensive bio-concentration index (CBCI) was found in leaf (0.37) and bark (0.12) of N. oleander. The maximum metal accumulation index (MAI) in the samples was found in leaf of N. oleander (1.58) and in bark of H. rosa-sinensis (1.95). The maximum bio-concentration factor (BCF) was seen for cobalt metal in the N. oleander leaf (0.89). The nickel concentration in washed-leaf samples of C. erectus was measured to be 49.64% of unwashed one. In general, the N. oleander and C. erectus species were found to have the highest absorption rate from the atmosphere and soil than other studied species, and are very suitable tools for managing air pollution in highly industrialized areas. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. The effects of foliar fertilization with iron sulfate in chlorotic leaves are limited to the treated area. A study with peach trees (Prunus persica L. Batsch) grown in the field and sugar beet (Beta vulgaris L.) grown in hydroponics

    PubMed Central

    El-Jendoubi, Hamdi; Vázquez, Saúl; Calatayud, Ángeles; Vavpetič, Primož; Vogel-Mikuš, Katarina; Pelicon, Primož; Abadía, Javier; Abadía, Anunciación; Morales, Fermín

    2014-01-01

    Crop Fe deficiency is a worldwide problem. The aim of this study was to assess the effects of foliar Fe applications in two species grown in different environments: peach (Prunus persica L. Batsch) trees grown in the field and sugar beet (Beta vulgaris L. cv. “Orbis”) grown in hydroponics. The distal half of Fe-deficient, chlorotic leaves was treated with Fe sulfate by dipping and using a brush in peach trees and sugar beet plants, respectively. The re-greening of the distal (Fe-treated) and basal (untreated) leaf areas was monitored, and the nutrient and photosynthetic pigment composition of the two areas were also determined. Leaves were also studied using chlorophyll fluorescence imaging, low temperature-scanning electron microscopy microanalysis, scanning transmission ion microscopy-particle induced X-ray emission and Perls Fe staining. The distal, Fe-treated leaf parts of both species showed a significant increase in Fe concentrations (across the whole leaf volume) and marked re-greening, with significant increases in the concentrations of all photosynthetic pigments, as well as decreases in de-epoxidation of xanthophyll cycle carotenoids and increases in photochemical efficiency. In the basal, untreated leaf parts, Fe concentrations increased slightly, but little re-greening occurred. No changes in the concentrations of other nutrients were found. Foliar Fe fertilization was effective in re-greening treated leaf areas both in peach trees and sugar beet plants. Results indicate that the effects of foliar Fe-sulfate fertilization in Fe-deficient, chlorotic leaves were minor outside the leaf surface treated, indicating that Fe mobility within the leaf is a major constraint for full fertilizer effectiveness in crops where Fe-deficiency is established and leaf chlorosis occurs. PMID:24478782

  17. The effects of foliar fertilization with iron sulfate in chlorotic leaves are limited to the treated area. A study with peach trees (Prunus persica L. Batsch) grown in the field and sugar beet (Beta vulgaris L.) grown in hydroponics.

    PubMed

    El-Jendoubi, Hamdi; Vázquez, Saúl; Calatayud, Angeles; Vavpetič, Primož; Vogel-Mikuš, Katarina; Pelicon, Primož; Abadía, Javier; Abadía, Anunciación; Morales, Fermín

    2014-01-01

    Crop Fe deficiency is a worldwide problem. The aim of this study was to assess the effects of foliar Fe applications in two species grown in different environments: peach (Prunus persica L. Batsch) trees grown in the field and sugar beet (Beta vulgaris L. cv. "Orbis") grown in hydroponics. The distal half of Fe-deficient, chlorotic leaves was treated with Fe sulfate by dipping and using a brush in peach trees and sugar beet plants, respectively. The re-greening of the distal (Fe-treated) and basal (untreated) leaf areas was monitored, and the nutrient and photosynthetic pigment composition of the two areas were also determined. Leaves were also studied using chlorophyll fluorescence imaging, low temperature-scanning electron microscopy microanalysis, scanning transmission ion microscopy-particle induced X-ray emission and Perls Fe staining. The distal, Fe-treated leaf parts of both species showed a significant increase in Fe concentrations (across the whole leaf volume) and marked re-greening, with significant increases in the concentrations of all photosynthetic pigments, as well as decreases in de-epoxidation of xanthophyll cycle carotenoids and increases in photochemical efficiency. In the basal, untreated leaf parts, Fe concentrations increased slightly, but little re-greening occurred. No changes in the concentrations of other nutrients were found. Foliar Fe fertilization was effective in re-greening treated leaf areas both in peach trees and sugar beet plants. Results indicate that the effects of foliar Fe-sulfate fertilization in Fe-deficient, chlorotic leaves were minor outside the leaf surface treated, indicating that Fe mobility within the leaf is a major constraint for full fertilizer effectiveness in crops where Fe-deficiency is established and leaf chlorosis occurs.

  18. The hydrostatic gradient, not light availability, drives height-related variation in Sequoia sempervirens (Cupressaceae) leaf anatomy.

    PubMed

    Oldham, Alana R; Sillett, Stephen C; Tomescu, Alexandru M F; Koch, George W

    2010-07-01

    Leaves at the tops of most trees are smaller, thicker, and in many other ways different from leaves on the lowermost branches. This height-related variation in leaf structure has been explained as acclimation to differing light environments and, alternatively, as a consequence of hydrostatic, gravitational constraints on turgor pressure that reduce leaf expansion. • To separate hydrostatic effects from those of light availability, we used anatomical analysis of height-paired samples from the inner and outer tree crowns of tall redwoods (Sequoia sempervirens). • Height above the ground correlates much more strongly with leaf anatomy than does light availability. Leaf length, width, and mesophyll porosity all decrease linearly with height and help explain increases in leaf-mass-to-area ratio and decreases in both photosynthetic capacity and internal gas-phase conductance with increasing height. Two functional traits-leaf thickness and transfusion tissue-also increase with height and may improve water-stress tolerance. Transfusion tissue area increases enough that whole-leaf vascular volume does not change significantly with height in most trees. Transfusion tracheids become deformed with height, suggesting they may collapse under water stress and act as a hydraulic buffer that improves leaf water status and reduces the likelihood of xylem dysfunction. • That such variation in leaf structure may be caused more by gravity than by light calls into question use of the terms "sun" and "shade" to describe leaves at the tops and bottoms of tall tree crowns.

  19. Simulations of Seasonal and Latitudinal Variations in Leaf Inclination Angle Distribution: Implications for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Huemmrich, Karl F.

    2013-01-01

    The leaf inclination angle distribution (LAD) is an important characteristic of vegetation canopy structure affecting light interception within the canopy. However, LADs are difficult and time consuming to measure. To examine possible global patterns of LAD and their implications in remote sensing, a model was developed to predict leaf angles within canopies. Canopies were simulated using the SAIL radiative transfer model combined with a simple photosynthesis model. This model calculated leaf inclination angles for horizontal layers of leaves within the canopy by choosing the leaf inclination angle that maximized production over a day in each layer. LADs were calculated for five latitude bands for spring and summer solar declinations. Three distinct LAD types emerged: tropical, boreal, and an intermediate temperate distribution. In tropical LAD, the upper layers have a leaf angle around 35 with the lower layers having horizontal inclination angles. While the boreal LAD has vertical leaf inclination angles throughout the canopy. The latitude bands where each LAD type occurred changed with the seasons. The different LADs affected the fraction of absorbed photosynthetically active radiation (fAPAR) and Normalized Difference Vegetation Index (NDVI) with similar relationships between fAPAR and leaf area index (LAI), but different relationships between NDVI and LAI for the different LAD types. These differences resulted in significantly different relationships between NDVI and fAPAR for each LAD type. Since leaf inclination angles affect light interception, variations in LAD also affect the estimation of leaf area based on transmittance of light or lidar returns.

  20. Aerodynamic roughness: A simple and alternative metric to detect the seasonality of canopy structure using flux-tower data

    NASA Astrophysics Data System (ADS)

    Chu, H.; Baldocchi, D. D.

    2017-12-01

    FLUXNET - the global network of eddy covariance tower sites provides valuable datasets of the direct and in situ measurements of fluxes and ancillary variables that are used across different disciplines and applications. Aerodynamic roughness (i.e., roughness length, zero plane displacement height) are one of the potential parameters that can be derived from flux-tower data and are crucial for the applications of land surface models and flux footprint models. As aerodynamic roughness are tightly associated with canopy structures (e.g., canopy height, leaf area), such parameters could potentially serve as an alternative metric for detecting the change of canopy structure (e.g., change of leaf areas in deciduous ecosystems). This study proposes a simple approach for deriving aerodynamic roughness from flux-tower data, and tests their suitability and robustness in detecting the seasonality of canopy structure. We run tests across a broad range of deciduous forests, and compare the seasonality derived from aerodynamic roughness (i.e., starting and ending dates of leaf-on period and peak-foliage period) against those obtained from remote sensing or in situ leaf area measurements. Our findings show aerodynamic roughness generally captures the timing of changes of leaf areas in deciduous forests. Yet, caution needs to be exercised while interpreting the absolute values of the roughness estimates.

  1. Extremely thick cell walls and low mesophyll conductance: welcome to the world of ancient living!

    PubMed Central

    Tosens, Tiina; Laanisto, Lauri; Niinemets, Ülo

    2017-01-01

    Abstract Mesophyll conductance is thought to be an important photosynthetic limitation in gymnosperms, but they currently constitute the most understudied plant group in regard to the extent to which photosynthesis and intrinsic water use efficiency are limited by mesophyll conductance. A comprehensive analysis of leaf gas exchange, photosynthetic limitations, mesophyll conductance (calculated by three methods previously used for across-species comparisons), and the underlying ultra-anatomical, morphological and chemical traits in 11 gymnosperm species varying in evolutionary history was performed to gain insight into the evolution of structural and physiological controls on photosynthesis at the lower return end of the leaf economics spectrum. Two primitive herbaceous species were included in order to provide greater evolutionary context. Low mesophyll conductance was the main limiting factor of photosynthesis in the majority of species. The strongest sources of limitation were extremely thick mesophyll cell walls, high chloroplast thickness and variation in chloroplast shape and size, and the low exposed surface area of chloroplasts per unit leaf area. In gymnosperms, the negative relationship between net assimilation per mass and leaf mass per area reflected an increased mesophyll cell wall thickness, whereas the easy-to-measure integrative trait of leaf mass per area failed to predict the underlying ultrastructural traits limiting mesophyll conductance. PMID:28419340

  2. Canopy Defoliation has More Impact on Carbohydrate Availability than on Hydraulic Function in Declining Scots Pine Populations

    NASA Astrophysics Data System (ADS)

    Poyatos, R.; Aguadé, D.; Gómez, M.; Mencuccini, M.; Martínez-Vilalta, J.

    2013-12-01

    Drought-induced defoliation has recently been associated with depletion of carbohydrate reserves and increased mortality risk in Scots pine (Pinus sylvestris L.) at its dry limit. Are defoliated pines hydraulically impaired compared to non-defoliated pines? Moreover, how do defoliated pines cope with potentially lethal droughts, as compared to non-defoliated pines in the same population? In order to address these questions, we measured the seasonal dynamics of sap flow and needle water potentials (2010-2012), hydraulic function and non-structural carbohydrates (NSC) (2012) in healthy and defoliated pines in the Prades mountains (NE Spain). The summer drought was mild in 2010, intense in 2012 and extremely long in 2011. Defoliated Scots pines showed higher sap flow per unit leaf area during spring, but they were more sensitive to summer drought (Figure 1). This pattern was associated with a steeper decline in soil-to-leaf hydraulic conductance, which could not be explained by differences in branch vulnerability to embolism across defoliation classes. Accordingly, the native loss of xylem conductivity in branches, measured in 2012, remained similar across defoliation classes and reached >65% at the peak of the drought. However, a steeper vulnerability curve was observed for root xylem of defoliated pines. Xylem diameter variations (2011-2012) will be used to further investigate possible differences in the aboveground/belowground partitioning of hydraulic resistance across defoliation classes. NSC levels varied across tree organs (leaves>branches>roots>trunk) and strongly declined with drought. Defoliated pines displayed reduced NSC levels throughout the study period, despite enhanced water transport capacity and increased gas exchange rates during spring. Overall, the defoliated vs. healthy status seems to be more associated to differences in carbohydrate storage and dynamics than to hydraulic differences per se. However, starch conversion to soluble sugars during drought also suggests that NSC may be actively involved in the maintenance of xylem and phloem transport. These results highlight the close connection between carbon and water relations in declining Scots pines. Seasonal course (2010-2012) of VPD (upper panel), soil moisture (mid panel) and sap flow per unit leaf area of defoliated and non defoliated Scots pines (lower panel).

  3. Spatial and Temporal Dynamics of the Leaf Area Index of the Caatinga Biome

    NASA Astrophysics Data System (ADS)

    Alves Rodrigues Pinheiro, Everton; de Jong van Lier, Quirijn; Metselaar, Klaas

    2015-04-01

    Leaf Area Index (LAI) is an important characteristic of ecosystems with a prominent role in processes such as transpiration, photosynthesis and interception. The Caatinga biome is a unique semiarid ecosystem ocurring in a specific region of Brazil. An important main feature of this biome is the leaf shedding and regenerative capacity of its species. The aim of this study was to quantify both spatial and temporal dynamics of the LAI of the Caatinga biome in the Aiuaba Experimental Basin, an integrally-preserved Caatinga reserve, coordinates 6°42'S; 40°17'W. The research site (12 km2) was divided into three main Soil and Vegatation Associations (SVA). For each SVA the soil type and root depth are respectively, Acrisol -0.8 m, Luvisol - 0.6 m and Regosol - 0.4 m. The LAI was estimated by SEBAL algorithm applied to eleven satellite images from Landsat 5. The values of LAI estimated by SEBAL were correlated to the mean soil water content of the 15 days previous to the satellite image date. Eight images were used to generate a simple regression model, yielding a range of coefficient of determination from 0.89 to 0.92. Three other images were used to validate the equations. The Nash-Sutcliffe efficiency coefficient ranged from 0.76 to 0.94. Using the validated correlations, the LAI was calculated over the time for each of the three SVA, from 2004 to 2012. For SVA1, SVA2 and SVA3, the avarage values of LAI during the rainy season were 0.97, 1.12 and 1.07, respectively. During the dry season, the mean values were 0.15 for SVA1 and 0.11 for SVA2 and SVA3. The vegetation showed abrupt LAI changes, and the average previous 15 days soil water content was a good indicator for this. The study has shown that the maximum LAI was relatively stable over the years, occurring between March and April. The spatial behavior of LAI appeared to be similar, independently of the soil type and root depth.

  4. Fertilization intensifies drought stress: water use and stomatal conductance of Pinus taeda in a midrotation fertilization and throughfall reduction experiment

    Treesearch

    Eric J. Ward; Jean-Christophe Domec; Marshall A. Laviner; Thomas R. Fox; Ge Sun; Steve McNulty; John King; Asko Noormets

    2015-01-01

    While mid-rotation fertilization increases productivity in many southern pine forests, it remains unclear what impact such management may have on stand water use. We examined the impact of nutrient and water availability on stem volume, leaf area, transpiration per unit ground area (EC) and canopy conductance per unit leaf area (GS...

  5. Complete Genome of Enterobacteriaceae Bacterium Strain FGI 57, a Strain Associated with Leaf-Cutter Ant Fungus Gardens

    PubMed Central

    Aylward, Frank O.; Tremmel, Daniel M.; Bruce, David C.; Chain, Patrick; Chen, Amy; Walston Davenport, Karen; Detter, Chris; Han, Cliff S.; Han, James; Huntemann, Marcel; Ivanova, Natalia N.; Kyrpides, Nikos C.; Markowitz, Victor; Mavrommatis, Kostas; Nolan, Matt; Pagani, Ioanna; Pati, Amrita; Pitluck, Sam; Deshpande, Shweta; Goodwin, Lynne; Woyke, Tanja

    2013-01-01

    The Enterobacteriaceae bacterium strain FGI 57 was isolated from a fungus garden of the leaf-cutter ant Atta colombica. Analysis of its single 4.76-Mbp chromosome will shed light on community dynamics and plant biomass degradation in ant fungus gardens. PMID:23469353

  6. Rapid hydraulic recovery in Eucalyptus pauciflora after drought: linkages between stem hydraulics and leaf gas exchange.

    PubMed

    Martorell, Sebastià; Diaz-Espejo, Antonio; Medrano, Hipólito; Ball, Marilyn C; Choat, Brendan

    2014-03-01

    In woody plants, photosynthetic capacity is closely linked to rates at which the plant hydraulic system can supply water to the leaf surface. Drought-induced embolism can cause sharp declines in xylem hydraulic conductivity that coincide with stomatal closure and reduced photosynthesis. Recovery of photosynthetic capacity after drought is dependent on restored xylem function, although few data exist to elucidate this coordination. We examined the dynamics of leaf gas exchange and xylem function in Eucalyptus pauciflora seedlings exposed to a cycle of severe water stress and recovery after re-watering. Stomatal closure and leaf turgor loss occurred at water potentials that delayed the extensive spread of embolism through the stem xylem. Stem hydraulic conductance recovered to control levels within 6 h after re-watering despite a severe drought treatment, suggesting an active mechanism embolism repair. However, stomatal conductance did not recover after 10 d of re-watering, effecting tighter control of transpiration post drought. The dynamics of recovery suggest that a combination of hydraulic and non-hydraulic factors influenced stomatal behaviour post drought. © 2013 John Wiley & Sons Ltd.

  7. A comparison of height growth and leaf parameters of hybrid poplar cuttings grown in ozone-fumigated atmospheres

    Treesearch

    Keith F. Jensen

    1979-01-01

    Hybrid poplar cuttings were fumigated with an ozone dosage of 15 ppm-hours. One treatment was a steady fumigation at 0.2 ppm while the second fumigation fluctuated between 0.1 and 0.3 ppm. No significant differences were found in cutting height, leaf area, leaf width, and leaf dry weight, but significant differences were found in chlorophyll content and carbohydrate...

  8. An evolutionary perspective on leaf economics: phylogenetics of leaf mass per area in vascular plants

    PubMed Central

    Flores, Olivier; Garnier, Eric; Wright, Ian J; Reich, Peter B; Pierce, Simon; Dìaz, Sandra; Pakeman, Robin J; Rusch, Graciela M; Bernard-Verdier, Maud; Testi, Baptiste; Bakker, Jan P; Bekker, Renée M; Cerabolini, Bruno E L; Ceriani, Roberta M; Cornu, Guillaume; Cruz, Pablo; Delcamp, Matthieu; Dolezal, Jiri; Eriksson, Ove; Fayolle, Adeline; Freitas, Helena; Golodets, Carly; Gourlet-Fleury, Sylvie; Hodgson, John G; Brusa, Guido; Kleyer, Michael; Kunzmann, Dieter; Lavorel, Sandra; Papanastasis, Vasilios P; Pérez-Harguindeguy, Natalia; Vendramini, Fernanda; Weiher, Evan

    2014-01-01

    In plant leaves, resource use follows a trade-off between rapid resource capture and conservative storage. This “worldwide leaf economics spectrum” consists of a suite of intercorrelated leaf traits, among which leaf mass per area, LMA, is one of the most fundamental as it indicates the cost of leaf construction and light-interception borne by plants. We conducted a broad-scale analysis of the evolutionary history of LMA across a large dataset of 5401 vascular plant species. The phylogenetic signal in LMA displayed low but significant conservatism, that is, leaf economics tended to be more similar among close relatives than expected by chance alone. Models of trait evolution indicated that LMA evolved under weak stabilizing selection. Moreover, results suggest that different optimal phenotypes evolved among large clades within which extremes tended to be selected against. Conservatism in LMA was strongly related to growth form, as were selection intensity and phenotypic evolutionary rates: woody plants showed higher conservatism in relation to stronger stabilizing selection and lower evolutionary rates compared to herbaceous taxa. The evolutionary history of LMA thus paints different evolutionary trajectories of vascular plant species across clades, revealing the coordination of leaf trait evolution with growth forms in response to varying selection regimes. PMID:25165520

  9. [Effects of alien species Robinia pseudoacacia on plant community functional structure in hilly-gully region of Loess Plateau, China.

    PubMed

    Zhu, Duo Ju; Wen, Zhong Ming; Zhang, Jing; Tao, Yu; Zeng, Hong Wen; Tang, Yang

    2018-02-01

    To investigate the effects of the introduction of Robinia pseudoacacia on the functional structure of plant communities, we selected paired-plots of R. pseudoacacia communities and native plant communities across different vegetation zones, i.e., steppe zone, forest-steppe zone, forest zone in hilly-gully region of Loess Plateau, China. We measured several functional characteristics and then compared the functional structures of R. pseudoacacia and native plant communities in different vegetation zones. The results showed that the variation of the functional traits across different vegetation zones were consistent in R. pseudoacacia community and native plant community, including leaf carbon concentration, leaf nitrogen concentration, leaf phosphorus concentration, specific leaf area, and leaf tissue density. The leaf carbon concentration, leaf nitrogen concentration, and specific leaf area of the R. pseudoacacia community were significantly higher than those of the native plant community. The trend of change that the functional diversity indices, i.e., FR ic , FE ve , FD iv , FD is , Rao of the R. pseudoacacia community and the native plant community with vegetation zones were different. The introduction of R. pseudoacacia enhanced the plant community functional diversity in the forest zone but reduced community functional diversity in the steppe zone.

  10. Bioherbicidal potential of a strain of Xanthomonas spp. for control of common cockelbur, (Santium strumarium)

    USDA-ARS?s Scientific Manuscript database

    Several isolates of a previously unreported disease were discovered on common cocklebur seedlings in Chicot County, Arkansas and Washington County, Mississippi. Diseased plants in nature exhibited angular-shaped leaf spotting symptoms on leaf margins and central leaf areas. The isolates were cultu...

  11. Combining observations in the reflective solar and thermal domains for improved mapping of carbon, water and energy fluxes

    USDA-ARS?s Scientific Manuscript database

    The REGularized canopy reFLECtance (REGFLEC) modeling tool integrates leaf optics, canopy reflectance, and atmospheric radiative transfer model components, facilitating accurate retrieval of leaf area index (LAI) and leaf chlorophyll content (Cab) directly from at-sensor radiances in green, red and ...

  12. Light drives vertical gradients of leaf morphology in a sugar maple (Acer saccharum) forest.

    PubMed

    Coble, Adam P; Cavaleri, Molly A

    2014-02-01

    Leaf mass per area (LMA, g m(-2)) is an essential trait for modeling canopy function due to its strong association with photosynthesis, respiration and leaf nitrogen. Leaf mass per area, which is influenced by both leaf thickness and density (LMA = thickness × density), generally increases from the bottom to the top of tree canopies, yet the mechanisms behind this universal pattern are not yet resolved. For decades, the light environment was assumed to be the most influential driver of within-canopy variation in LMA, yet recent evidence has shown hydrostatic gradients to be more important in upper canopy positions, especially in tall evergreen trees in temperate and tropical forests. The aim of this study was to disentangle the importance of various environmental drivers on vertical LMA gradients in a mature sugar maple (Acer saccharum Marshall) forest. We compared LMA, leaf density and leaf thickness relationships with height, light and predawn leaf water potential (ΨPre) within a closed and an exposed canopy to assess leaf morphological traits at similar heights but different light conditions. Contrary to our expectations and recent findings in the literature, we found strong evidence that light was the primary driver of vertical gradients in leaf morphology. At similar heights (13-23 m), LMA was greater within the exposed canopy than the closed canopy, and light had a stronger influence over LMA compared with ΨPre. Light also had a stronger influence over both leaf thickness and density compared with ΨPre; however, the increase in LMA within both canopy types was primarily due to increasing leaf thickness with increasing light availability. This study provides strong evidence that canopy structure and crown exposure, in addition to height, should be considered as a parameter for determining vertical patterns in LMA and modeling canopy function.

  13. Plant Family-Specific Impacts of Petroleum Pollution on Biodiversity and Leaf Chlorophyll Content in the Amazon Rainforest of Ecuador

    PubMed Central

    Arellano, Paul; Tansey, Kevin; Balzter, Heiko; Tellkamp, Markus

    2017-01-01

    In recent decades petroleum pollution in the tropical rainforest has caused significant environmental damage in vast areas of the Amazon region. At present the extent of this damage is not entirely clear. Little is known about the specific impacts of petroleum pollution on tropical vegetation. In a field expedition to the Ecuadorian Amazon over 1100 leaf samples were collected from tropical trees in polluted and unpolluted sites. Plant families were identified for 739 of the leaf samples and compared between sites. Plant biodiversity indices show a reduction of the plant biodiversity when the site was affected by petroleum pollution. In addition, reflectance and transmittance were measured with a field spectroradiometer for every leaf sample and leaf chlorophyll content was estimated using reflectance model inversion with the radiative tranfer model PROSPECT. Four of the 15 plant families that are most representative of the ecoregion (Melastomataceae, Fabaceae, Rubiaceae and Euphorbiaceae) had significantly lower leaf chlorophyll content in the polluted areas compared to the unpolluted areas. This suggests that these families are more sensitive to petroleum pollution. The polluted site is dominated by Melastomataceae and Rubiaceae, suggesting that these plant families are particularly competitive in the presence of pollution. This study provides evidence of a decrease of plant diversity and richness caused by petroleum pollution and of a plant family-specific response of leaf chlorophyll content to petroleum pollution in the Ecuadorian Amazon using information from field spectroscopy and radiative transfer modelling. PMID:28103307

  14. Plant Family-Specific Impacts of Petroleum Pollution on Biodiversity and Leaf Chlorophyll Content in the Amazon Rainforest of Ecuador.

    PubMed

    Arellano, Paul; Tansey, Kevin; Balzter, Heiko; Tellkamp, Markus

    2017-01-01

    In recent decades petroleum pollution in the tropical rainforest has caused significant environmental damage in vast areas of the Amazon region. At present the extent of this damage is not entirely clear. Little is known about the specific impacts of petroleum pollution on tropical vegetation. In a field expedition to the Ecuadorian Amazon over 1100 leaf samples were collected from tropical trees in polluted and unpolluted sites. Plant families were identified for 739 of the leaf samples and compared between sites. Plant biodiversity indices show a reduction of the plant biodiversity when the site was affected by petroleum pollution. In addition, reflectance and transmittance were measured with a field spectroradiometer for every leaf sample and leaf chlorophyll content was estimated using reflectance model inversion with the radiative tranfer model PROSPECT. Four of the 15 plant families that are most representative of the ecoregion (Melastomataceae, Fabaceae, Rubiaceae and Euphorbiaceae) had significantly lower leaf chlorophyll content in the polluted areas compared to the unpolluted areas. This suggests that these families are more sensitive to petroleum pollution. The polluted site is dominated by Melastomataceae and Rubiaceae, suggesting that these plant families are particularly competitive in the presence of pollution. This study provides evidence of a decrease of plant diversity and richness caused by petroleum pollution and of a plant family-specific response of leaf chlorophyll content to petroleum pollution in the Ecuadorian Amazon using information from field spectroscopy and radiative transfer modelling.

  15. Plant trait-species abundance relationships vary with environmental properties in subtropical forests in eastern china.

    PubMed

    Yan, En-Rong; Yang, Xiao-Dong; Chang, Scott X; Wang, Xi-Hua

    2013-01-01

    Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes) environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N) and phosphorus (P) contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA), leaf N concentration (LN), and total leaf area per twig size (TLA) were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests.

  16. Transpiration and whole-tree conductance in ponderosa pine trees of different heights.

    PubMed

    Ryan, M G; Bond, B J; Law, B E; Hubbard, R M; Woodruff, D; Cienciala, E; Kucera, J

    2000-09-01

    Changes in leaf physiology with tree age and size could alter forest growth, water yield, and carbon fluxes. We measured tree water flux (Q) for 14 ponderosa pine trees in two size classes (12 m tall and ∼40 years old, and 36 m tall and ∼ 290 years old) to determine if transpiration (E) and whole-tree conductance (g t ) differed between the two sizes of trees. For both size classes, E was approximately equal to Q measured 2 m above the ground: Q was most highly correlated with current, not lagged, water vapor pressure deficit, and night Q was <12% of total daily flux. E for days 165-195 and 240-260 averaged 0.97 mmol m -2 (leaf area, projected) s -1 for the 12-m trees and 0.57 mmol m -2 (leaf area) s -1 for the 36-m trees. When photosynthetically active radiation (I P ) exceeded the light saturation for photosynthesis in ponderosa pine (900 µmol m -2 (ground) s -1 ), differences in E were more pronounced: 2.4 mmol m -2 (leaf area) s -1 for the 12-m trees and 1.2 mmol m -2 s -1 for the 36-m trees, yielding g t of 140 mmol m -2 (leaf area) s -1 for the 12-m trees and 72 mmol m -2 s -1 for the 36-m trees. Extrapolated to forests with leaf area index =1, the 36-m trees would transpire 117 mm between 1 June and 31 August compared to 170 mm for the 12-m trees, a difference of 15% of average annual precipitation. Lower g t in the taller trees also likely lowers photosynthesis during the growing season.

  17. Responses of leaf traits to climatic gradients: adaptive variation versus compositional shifts

    NASA Astrophysics Data System (ADS)

    Meng, T.-T.; Wang, H.; Harrison, S. P.; Prentice, I. C.; Ni, J.; Wang, G.

    2015-09-01

    Dynamic global vegetation models (DGVMs) typically rely on plant functional types (PFTs), which are assigned distinct environmental tolerances and replace one another progressively along environmental gradients. Fixed values of traits are assigned to each PFT; modelled trait variation along gradients is thus driven by PFT replacement. But empirical studies have revealed "universal" scaling relationships (quantitative trait variations with climate that are similar within and between species, PFTs and communities); and continuous, adaptive trait variation has been proposed to replace PFTs as the basis for next-generation DGVMs. Here we analyse quantitative leaf-trait variation on long temperature and moisture gradients in China with a view to understanding the relative importance of PFT replacement vs. continuous adaptive variation within PFTs. Leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC) and nitrogen content of dry matter were measured on all species at 80 sites ranging from temperate to tropical climates and from dense forests to deserts. Chlorophyll fluorescence traits and carbon, phosphorus and potassium contents were measured at 47 sites. Generalized linear models were used to relate log-transformed trait values to growing-season temperature and moisture indices, with or without PFT identity as a predictor, and to test for differences in trait responses among PFTs. Continuous trait variation was found to be ubiquitous. Responses to moisture availability were generally similar within and between PFTs, but biophysical traits (LA, SLA and LDMC) of forbs and grasses responded differently from woody plants. SLA and LDMC responses to temperature were dominated by the prevalence of evergreen PFTs with thick, dense leaves at the warm end of the gradient. Nutrient (N, P and K) responses to climate gradients were generally similar within all PFTs. Area-based nutrients generally declined with moisture; Narea and Karea declined with temperature, but Parea increased with temperature. Although the adaptive nature of many of these trait-climate relationships is understood qualitatively, a key challenge for modelling is to predict them quantitatively. Models must take into account that community-level responses to climatic gradients can be influenced by shifts in PFT composition, such as the replacement of deciduous by evergreen trees, which may run either parallel or counter to trait variation within PFTs. The importance of PFT shifts varies among traits, being important for biophysical traits but less so for physiological and chemical traits. Finally, models should take account of the diversity of trait values that is found in all sites and PFTs, representing the "pool" of variation that is locally available for the natural adaptation of ecosystem function to environmental change.

  18. An experimental comparison of conventional two-bank and novel four-bank dynamic MLC tracking.

    PubMed

    Davies, G A; Clowes, P; McQuaid, D; Evans, P M; Webb, S; Poludniowski, G

    2013-03-07

    The AccuLeaf mMLC featuring four multileaf-collimator (MLC) banks has been used for the first time for an experimental comparison of conventional two-bank with novel four-bank dynamic MLC tracking of a two-dimensional sinusoidal respiratory motion. This comparison was performed for a square aperture, and for three conformal treatment apertures from clinical radiotherapy lung cancer patients. The system latency of this prototype tracking system was evaluated and found to be 1.0 s and the frequency at which MLC positions could be updated, 1 Hz, and therefore accurate MLC tracking of irregular patient motion would be difficult with the system in its current form. The MLC leaf velocity required for two-bank-MLC and four-bank-MLC tracking was evaluated for the apertures studied and a substantial decrease was found in the maximum MLC velocity required when four-banks were used for tracking rather than two. A dosimetric comparison of the two techniques was also performed and minimal difference was found between two-bank-MLC and four-bank-MLC tracking. The use of four MLC banks for dynamic MLC tracking is shown to be potentially advantageous for increasing the delivery efficiency compared with two-bank-MLC tracking where difficulties are encountered if large leaf shifts are required to track motion perpendicular to the direction of leaf travel.

  19. Leaf morphology shift linked to climate change.

    PubMed

    Guerin, Greg R; Wen, Haixia; Lowe, Andrew J

    2012-10-23

    Climate change is driving adaptive shifts within species, but research on plants has been focused on phenology. Leaf morphology has demonstrated links with climate and varies within species along climate gradients. We predicted that, given within-species variation along a climate gradient, a morphological shift should have occurred over time due to climate change. We tested this prediction, taking advantage of latitudinal and altitudinal variations within the Adelaide Geosyncline region, South Australia, historical herbarium specimens (n = 255) and field sampling (n = 274). Leaf width in the study taxon, Dodonaea viscosa subsp. angustissima, was negatively correlated with latitude regionally, and leaf area was negatively correlated with altitude locally. Analysis of herbarium specimens revealed a 2 mm decrease in leaf width (total range 1-9 mm) over 127 years across the region. The results are consistent with a morphological response to contemporary climate change. We conclude that leaf width is linked to maximum temperature regionally (latitude gradient) and leaf area to minimum temperature locally (altitude gradient). These data indicate a morphological shift consistent with a direct response to climate change and could inform provenance selection for restoration with further investigation of the genetic basis and adaptive significance of observed variation.

  20. Leaf Hydraulic Vulnerability Triggers the Decline in Stomatal and Mesophyll Conductance during drought in Rice (Oryza sativa).

    PubMed

    Wang, Xiaoxiao; Du, Tingting; Huang, Jianliang; Peng, Shaobing; Xiong, Dongliang

    2018-05-18

    Understanding the physiological responses of crops to drought is important for ensuring sustained crop productivity under climate change, which is expected to exacerbate drought frequencies and intensities. Drought responses involve multiple traits, but the correlations between these traits are poorly understood. Using a variety of techniques, we estimated the changes in gas exchange, leaf hydraulic conductance (Kleaf), and leaf turgor in rice (Oryza sativa) in response to both short- and long-term soil drought and performed a photosynthetic limitation analysis to quantify the contributions of each limiting factor to the resultant overall decrease in photosynthesis during drought. Biomass, leaf area and leaf width significantly decreased during the two-week drought treatment, but leaf mass per area and leaf vein density increased. Light-saturated photosynthetic rate (A) declined dramatically during soil drought, mainly due to the decrease in stomatal conductance (gs) and mesophyll conductance (gm). Stomatal modeling suggested that the decline in Kleaf explained most of the decrease in stomatal closure during the drought treatment, and may also trigger the drought-related decrease of gs and gm. The results of this study provide insight into the regulation of carbon assimilation under drought conditions.

Top