Sample records for leaf area total

  1. Comparison of dwarf bamboos (Indocalamus sp.) leaf parameters to determine relationship between spatial density of plants and total leaf area per plant.

    PubMed

    Shi, Pei-Jian; Xu, Qiang; Sandhu, Hardev S; Gielis, Johan; Ding, Yu-Long; Li, Hua-Rong; Dong, Xiao-Bo

    2015-10-01

    The relationship between spatial density and size of plants is an important topic in plant ecology. The self-thinning rule suggests a -3/2 power between average biomass and density or a -1/2 power between stand yield and density. However, the self-thinning rule based on total leaf area per plant and density of plants has been neglected presumably because of the lack of a method that can accurately estimate the total leaf area per plant. We aimed to find the relationship between spatial density of plants and total leaf area per plant. We also attempted to provide a novel model for accurately describing the leaf shape of bamboos. We proposed a simplified Gielis equation with only two parameters to describe the leaf shape of bamboos one model parameter represented the overall ratio of leaf width to leaf length. Using this method, we compared some leaf parameters (leaf shape, number of leaves per plant, ratio of total leaf weight to aboveground weight per plant, and total leaf area per plant) of four bamboo species of genus Indocalamus Nakai (I. pedalis (Keng) P.C. Keng, I. pumilus Q.H. Dai and C.F. Keng, I. barbatus McClure, and I. victorialis P.C. Keng). We also explored the possible correlation between spatial density and total leaf area per plant using log-linear regression. We found that the simplified Gielis equation fit the leaf shape of four bamboo species very well. Although all these four species belonged to the same genus, there were still significant differences in leaf shape. Significant differences also existed in leaf area per plant, ratio of leaf weight to aboveground weight per plant, and leaf length. In addition, we found that the total leaf area per plant decreased with increased spatial density. Therefore, we directly demonstrated the self-thinning rule to improve light interception.

  2. Assessing soybean leaf area and leaf biomass by spectral measurements

    NASA Technical Reports Server (NTRS)

    Holben, B. N.; Tucker, C. J.; Fan, C. J.

    1979-01-01

    Red and photographic infrared spectral radiances were correlated with soybean total leaf area index, green leaf area index, chlorotic leaf area index, green leaf biomass, chlorotic leaf biomass, and total biomass. The most significant correlations were found to exist between the IR/red radiance ratio data and green leaf area index and/or green leaf biomass (r squared equals 0.85 and 0.86, respectively). These findings demonstrate that remote sensing data can supply information basic to soybean canopy growth, development, and status by nondestructive determination of the green leaf area or green leaf biomass.

  3. Effect of weed control treatments on total leaf area of plantation black walnut (Juglans nigra)

    Treesearch

    Jason Cook; Michael R. Saunders

    2013-01-01

    Determining total tree leaf area is necessary for describing tree carbon balance, growth efficiency, and other measures used in tree-level and stand-level physiological growth models. We examined the effects of vegetation control methods on the total leaf area of sapling-size plantation black walnut trees using allometric approaches. We found significant differences in...

  4. Penetration of sunlight into a canopy - Explicit models based on vertical and horizontal leaf projections

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Brakke, T.

    1986-01-01

    The projections of leaf areas onto a horizontal plane and onto a vertical plane are examined for their utility in characterizing canopies for sunlight penetration (direct beam only) models. These projections exactly specify the penetration if the projections on the principal plane of the normals to the top surfaces of the leaves are in the same quadrant as the sun. Inferring the total leaf area from these projections (and therefore the penetration as a function of the total leaf area) is possible only with a large uncertainty (up to + or - 32 percent) because the projections are a specific measure of the total leaf area only if the leaf angle distribution is known. It is expected that this uncertainty could be reduced to more acceptable levels by making an approximate assessment of whether the zenith angle distribution is that of an extremophile canopy.

  5. Leaf area dynamics of conifer forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margolis, H.; Oren, R.; Whitehead, D.

    1995-07-01

    Estimating the surface area of foliage supported by a coniferous forest canopy is critical for modeling its biological properties. Leaf area represents the surface area available for the interception of energy, the absorption of carbon dioxide, and the diffusion of water from the leaf to the atmosphere. The concept of leaf area is pertinent to the physiological and ecological dynamics of conifers at a wide range of spatial scales, from individual leaves to entire biomes. In fact, the leaf area of vegetation at a global level can be thought of as a carbon-absorbing, water-emitting membrane of variable thickness, which canmore » have an important influence on the dynamics and chemistry of the Earth`s atmosphere over both the short and the long term. Unless otherwise specified, references to leaf area herein refer to projected leaf area, i.e., the vertical projection of needles placed on a flat plane. Total leaf surface area is generally from 2.0 to 3.14 times that of projected leaf area for conifers. It has recently been suggested that hemisurface leaf area, i.e., one-half of the total surface area of a leaf, a more useful basis for expressing leaf area than is projected area. This chapter is concerned with the dynamics of coniferous forest leaf area at different spatial and temporal scales. In the first part, we consider various hypotheses related to the control of leaf area development, ranging from simple allometric relations with tree size to more complex mechanistic models that consider the movement of water and nutrients to tree canopies. In the second part, we consider various aspects of leaf area dynamics at varying spatial and temporal scales, including responses to perturbation, seasonal dynamics, genetic variation in crown architecture, the responses to silvicultural treatments, the causes and consequences of senescence, and the direct measurement of coniferous leaf area at large spatial scales using remote sensing.« less

  6. Sapwood area as an estimator of leaf area and foliar weight in cherrybark oak and green ash

    Treesearch

    James S. Meadows; John D. Hodges

    2002-01-01

    The relationships between foliar weight/leaf area and four stem dimensions (d.b.h., total stem cross-sectional area, total sapwood area, and current sapwood area at breast height) were investigated in two important bottomland tree species of the Southern United States, cherrybark oak (Quercus falcata var. pagodifolia ...

  7. Bleaching of leaf litter and associated microfungi in subboreal and subalpine forests.

    PubMed

    Hagiwara, Yusuke; Matsuoka, Shunsuke; Hobara, Satoru; Mori, Akira S; Hirose, Dai; Osono, Takashi

    2015-10-01

    Fungal decomposition of lignin leads to the whitening, or bleaching, of leaf litter, especially in temperate and tropical forests, but less is known about such bleaching in forests of cooler regions, such as boreal and subalpine forests. The purposes of the present study were to examine the extent of bleached area on the surface of leaf litter and its variation with environmental conditions in subboreal and subalpine forests in Japan and to examine the microfungi associated with the bleaching of leaf litter by isolating fungi from the bleached portions of the litter. Bleached area accounted for 21.7%-32.7% and 2.0%-10.0% of total leaf area of Quercus crispula and Betula ermanii, respectively, in subboreal forests, and for 6.3% and 18.6% of total leaf area of B. ermanii and Picea jezoensis var. hondoensis, respectively, in a subalpine forest. In subboreal forests, elevation, C/N ratio and pH of the FH layer, and slope aspect were selected as predictor variables for the bleached leaf area. Leaf mass per area and lignin content were consistently lower in the bleached area than in the nonbleached area of the same leaves, indicating that the selective decomposition of acid unhydrolyzable residue (recalcitrant compounds such as lignin, tannins, and cutins) enhanced the mass loss of leaf tissues in the bleached portions. Isolates of a total of 11 fungal species (6 species of Ascomycota and 5 of Basidiomycota) exhibited leaf-litter-bleaching activity under pure culture conditions. Two fungal species (Coccomyces sp. and Mycena sp.) occurred in both subboreal and subalpine forests, which were separated from each other by approximately 1100 km.

  8. Leaf mass per area, not total leaf area, drives differences in above-ground biomass distribution among woody plant functional types.

    PubMed

    Duursma, Remko A; Falster, Daniel S

    2016-10-01

    Here, we aim to understand differences in biomass distribution between major woody plant functional types (PFTs) (deciduous vs evergreen and gymnosperm vs angiosperm) in terms of underlying traits, in particular the leaf mass per area (LMA) and leaf area per unit stem basal area. We used a large compilation of plant biomass and size observations, including observations of 21 084 individuals on 656 species. We used a combination of semiparametric methods and variance partitioning to test the influence of PFT, plant height, LMA, total leaf area, stem basal area and climate on above-ground biomass distribution. The ratio of leaf mass to above-ground woody mass (MF /MS ) varied strongly among PFTs. We found that MF /MS at a given plant height was proportional to LMA across PFTs. As a result, the PFTs did not differ in the amount of leaf area supported per unit above-ground biomass or per unit stem basal area. Climate consistently explained very little additional variation in biomass distribution at a given plant size. Combined, these results demonstrate consistent patterns in above-ground biomass distribution and leaf area relationships among major woody PFTs, which can be used to further constrain global vegetation models. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  9. Herbivory alters plant carbon assimilation, patterns of biomass allocation and nitrogen use efficiency

    NASA Astrophysics Data System (ADS)

    Peschiutta, María Laura; Scholz, Fabián Gustavo; Goldstein, Guillermo; Bucci, Sandra Janet

    2018-01-01

    Herbivory can trigger physiological processes resulting in leaf and whole plant functional changes. The effects of chronic infestation by an insect on leaf traits related to carbon and nitrogen economy in three Prunus avium cultivars were assessed. Leaves from non-infested trees (control) and damaged leaves from infested trees were selected. The insect larvae produce skeletonization of the leaves leaving relatively intact the vein network of the eaten leaves and the abaxial epidermal tissue. At the leaf level, nitrogen content per mass (Nmass) and per area (Narea), net photosynthesis per mass (Amass) and per area (Aarea), photosynthetic nitrogen-use efficiency (PNUE), leaf mass per area (LMA) and total leaf phenols content were measured in the three cultivars. All cultivars responded to herbivory in a similar fashion. The Nmass, Amass, and PNUE decreased, while LMA and total content of phenols increased in partially damaged leaves. Increases in herbivore pressure resulted in lower leaf size and total leaf area per plant across cultivars. Despite this, stem cumulative growth tended to increase in infected plants suggesting a change in the patterns of biomass allocation and in resources sequestration elicited by herbivory. A larger N investment in defenses instead of photosynthetic structures may explain the lower PNUE and Amass observed in damaged leaves. Some physiological changes due to herbivory partially compensate for the cost of leaf removal buffering the carbon economy at the whole plant level.

  10. Coordination between leaf and stem traits related to leaf carbon gain and hydraulics across 32 drought-tolerant angiosperms.

    PubMed

    Ishida, Atsushi; Nakano, Takashi; Yazaki, Kenichi; Matsuki, Sawako; Koike, Nobuya; Lauenstein, Diego L; Shimizu, Michiru; Yamashita, Naoko

    2008-05-01

    We examined 15 traits in leaves and stems related to leaf C economy and water use for 32 co-existing angiosperms at ridge sites with shallow soil in the Bonin Islands. Across species, stem density was positively correlated to leaf mass per area (LMA), leaf lifespan (LLS), and total phenolics and condensed tannins per unit leaf N (N-based), and negatively correlated to leaf osmotic potential and saturated water content in leaves. LMA and LLS were negatively correlated to photosynthetic parameters, such as area-, mass-, and N-based assimilation rates. Although stem density and leaf osmotic potential were not associated with photosynthetic parameters, they were associated with some parameters of the leaf C economy, such as LMA and LLS. In the principal component (PCA) analysis, the first three axes accounted for 74.4% of total variation. Axis 1, which explained 41.8% of the total variation, was well associated with parameters for leaf C and N economy. Similarly, axis 2, which explained 22.3% of the total variation, was associated with parameters for water use. Axis 3, which explained 10.3% of the total variation, was associated with chemical defense within leaves. Axes 1 and 2 separated functional types relatively well, i.e., creeping trees, ruderal trees, other woody plants, C(3) shrubs and forbs, palms, and CAM plants, indicating that plant functional types were characterized by similar attributes of traits related to leaf C and N economy and water use. In addition, when the plot was extended by two unrelated traits, leaf mass-based assimilation rates and stem density, it also separated these functional types. These data indicate that differences in the functional types with contrasting plant strategies can be attributed to functional integration among leaf C economy, hydraulics, and leaf longevity, and that both leaf mass-based assimilation rates and stem density are key factors reflecting the different functions of plant species.

  11. Importance of the method of leaf area measurement to the interpretation of gas exchange of complex shoots

    Treesearch

    W. K. Smith; A. W. Schoettle; M. Cui

    1991-01-01

    Net CO(2) uptake in full sunlight, total leaf area (TLA), projected leaf area of detached leaves (PLA), and the silhouette area of attached leaves in their natural orientation to the sun at midday on June 1 (SLA) were measured for sun shoots of six conifer species. Among species, TLA/SLA ranged between 5.2 and 10.0 (x bar = 7.3), TLA/PLA ranged between 2.5 and 2.9 (x...

  12. The Ratio of Leaf to Total Photosynthetic Area Influences Shade Survival and Plastic Response to Light of Green‐stemmed Leguminous Shrub Seedlings

    PubMed Central

    VALLADARES, FERNANDO; HERNÁNDEZ, LIBERTAD G.; DOBARRO, IKER; GARCÍA‐PÉREZ, CRISTINA; SANZ, RUBÉN; PUGNAIRE, FRANCISCO I.

    2003-01-01

    Different plant species and organs within a plant differ in their plastic response to light. These responses influence their performance and survival in relation to the light environment, which may range from full sunlight to deep shade. Plasticity, especially with regard to physiological features, is linked to a greater capacity to exploit high light and is usually low in shade‐tolerant species. Among photosynthetic organs, green stems, which represent a large fraction of the total photosynthetic area of certain species, are hypothesized to be less capable of adjustment to light than leaves, because of biomechanical and hydraulic constraints. The response to light by leaves and stems of six species of leguminous, green‐stemmed shrubs from dry and high‐light environments was studied by growing seedlings in three light environments: deep shade, moderate shade and sun (3, 30 and 100 % of full sunlight, respectively). Survival in deep shade ranged from 2 % in Retama sphaerocarpa to 74 % in Ulex europaeus. Survival was maximal at moderate shade in all species, ranging from 80 to 98 %. The six species differed significantly in their ratio of leaf to total photosynthetic area, which influenced their light response. Survival in deep shade increased significantly with increasing ratio of leaf to total photosynthetic area, and decreased with increasing plasticity in net photosynthesis and dark respiration. Responses to light differed between stems and leaves within each species. Mean phenotypic plasticity for the variables leaf or stem specific mass, chlorophyll content, chlorophyll a/b ratio, and carotenoid to chlorophyll ratio of leaves, was inversely related to that of stems. Although mean plasticity of stems increased with the ratio of leaf to total photosynthetic area, the mean plasticity of leaves decreased. Shrubs with green stems and a low ratio of leaf to total photosynthetic area are expected to be restricted to well‐lit habitats, at least during the seedling stage, owing to their inefficient light capture and the low plasticity of their stems. PMID:12646502

  13. Impact of Meloidogyne incognita on Physiological Efficiency of Vitis vinifera.

    PubMed

    Melakeberhan, H; Ferris, H

    1989-01-01

    Four-week-old French Colombard plants rooted from green cuttings were inoculated with 0, 1,000, 2,000, 4,000, or 8,000 Meloidogyne incognita second-stage juveniles and maintained at 25 C night and 30 C day. Leaf area and dry weight and the rates of photosynthesis, stomatal conductance, and internal leaf CO concentration were measured at intervals up to 59 days after inoculation. Nematode stress dosage, measured as the product of cumulative number of juveniles and females and their total energy (calories) demand, was up to 3.4 kcal and accounted for up to 15% of the energy assimilated by the plants. There was a decline in the rate of leaf area expansion and leaf, stem, shoot, root (excluding nematode weight), and total plant dry weight with increasing nematode stress. Root weight including nematodes was not affected. Total respiration, plant photosynthesis, energy assimilated into plant tissue and respiration, and gross production efficiency decreased significantly with nematode stress. Photosynthetic rate, transpiration rate, stomatal conductance, and internal CO concentration were not affected. This study demonstrates that the energy demand for growth and reproduction of M. incognita accounts for a significant portion of the total energy entering the plant system. As a result, less energy is partitioned into leaf area expansion which, in turn, affects the energy entering the system and results in decreased productivity of nematode-infected grape vines.

  14. Applicability of non-destructive substitutes for leaf area in different stands of Norway spruce (Picea abies L. Karst.) focusing on traditional forest crown measures.

    PubMed

    Laubhann, Daniel; Eckmüllner, Otto; Sterba, Hubert

    2010-09-30

    Since individual tree leaf area is an important measure for productivity as well as for site occupancy, it is of high interest in many studies about forest growth. The exact determination of leaf area is nearly impossible. Thus, a common way to get information about leaf area is to use substitutes. These substitutes are often variables which are collected in a destructive way which is not feasible for long term studies. Therefore, this study aimed at testing the applicability of using substitutes for leaf area which could be collected in a non-destructive way, namely crown surface area and crown projection area. In 8 stands of Norway spruce (Picea abies L. Karst.), divided into three age classes and two thinning treatments, a total of 156 trees were felled in order to test the relationship between leaf area and crown surface area and crown projection area, respectively. Individual tree leaf area of the felled sample trees was estimated by 3P-branch sampling with an accuracy of ±10%. Crown projection area and crown surface area were compared with other, more commonly used, but destructive predictors of leaf area, namely sapwood area at different heights on the bole. Our investigations confirmed findings of several studies that sapwood area is the most precise measure for leaf area because of the high correlation between sapwood area and the leaf area. But behind sapwood area at crown base and sapwood area at three tenth of the tree height the predictive ability of crown surface area was ranked third and even better than that of sapwood area at breast height (R(2) = 0.656 compared with 0.600). Within the stands leaf area is proportional to crown surface area. Using the pooled data of all stands a mixed model approach showed that additionally to crown surface area dominant height and diameter at breast height (dbh) improved the leaf area estimates. Thus, taking dominant height and dbh into account, crown surface area can be recommended for estimating the leaf area of individual trees. The resulting model was in line with many other findings on the leaf area and leaf mass relationships with crown size. From the additional influence of dominant height and dbh in the leaf area model we conclude that the used crown model could be improved by estimating the position of the maximum crown width and the crown width at the base of the crown depending on these two variables.

  15. Applicability of non-destructive substitutes for leaf area in different stands of Norway spruce (Picea abies L. Karst.) focusing on traditional forest crown measures

    PubMed Central

    Laubhann, Daniel; Eckmüllner, Otto; Sterba, Hubert

    2010-01-01

    Since individual tree leaf area is an important measure for productivity as well as for site occupancy, it is of high interest in many studies about forest growth. The exact determination of leaf area is nearly impossible. Thus, a common way to get information about leaf area is to use substitutes. These substitutes are often variables which are collected in a destructive way which is not feasible for long term studies. Therefore, this study aimed at testing the applicability of using substitutes for leaf area which could be collected in a non-destructive way, namely crown surface area and crown projection area. In 8 stands of Norway spruce (Picea abies L. Karst.), divided into three age classes and two thinning treatments, a total of 156 trees were felled in order to test the relationship between leaf area and crown surface area and crown projection area, respectively. Individual tree leaf area of the felled sample trees was estimated by 3P-branch sampling with an accuracy of ±10%. Crown projection area and crown surface area were compared with other, more commonly used, but destructive predictors of leaf area, namely sapwood area at different heights on the bole. Our investigations confirmed findings of several studies that sapwood area is the most precise measure for leaf area because of the high correlation between sapwood area and the leaf area. But behind sapwood area at crown base and sapwood area at three tenth of the tree height the predictive ability of crown surface area was ranked third and even better than that of sapwood area at breast height (R2 = 0.656 compared with 0.600). Within the stands leaf area is proportional to crown surface area. Using the pooled data of all stands a mixed model approach showed that additionally to crown surface area dominant height and diameter at breast height (dbh) improved the leaf area estimates. Thus, taking dominant height and dbh into account, crown surface area can be recommended for estimating the leaf area of individual trees. The resulting model was in line with many other findings on the leaf area and leaf mass relationships with crown size. From the additional influence of dominant height and dbh in the leaf area model we conclude that the used crown model could be improved by estimating the position of the maximum crown width and the crown width at the base of the crown depending on these two variables. PMID:21072126

  16. A high proportion of blue light increases the photosynthesis capacity and leaf formation rate of Rosa × hybrida but does not affect time to flower opening.

    PubMed

    Terfa, Meseret Tesema; Solhaug, Knut Asbjørn; Gislerød, Hans Ragnar; Olsen, Jorunn Elisabeth; Torre, Sissel

    2013-05-01

    Alterations in light quality affect plant morphogenesis and photosynthetic responses but the effects vary significantly between species. Roses exhibit an irradiance-dependent flowering control but knowledge on light quality responses is scarce. In this study we analyzed, the responses in morphology, photosynthesis and flowering of Rosa × hybrida to different blue (B) light proportions provided by light-emitting diodes (LED, high B 20%) and high pressure sodium (HPS, low B 5%) lamps. There was a strong morphological and growth effect of the light sources but no significant difference in total dry matter production and flowering. HPS-grown plants had significantly higher leaf area and plant height, yet a higher dry weight proportion was allocated to leaves than stems under LED. LED plants showed 20% higher photosynthetic capacity (Amax ) and higher levels of soluble carbohydrates. The increase in Amax correlated with an increase in leaf mass per unit leaf area, higher stomata conductance and CO2 exchange, total chlorophyll (Chl) content per area and Chl a/b ratio. LED-grown leaves also displayed a more sun-type leaf anatomy with more and longer palisade cells and a higher stomata frequency. Although floral initiation occurred at a higher leaf number in LED, the time to open flowers was the same under both light conditions. Thereby the study shows that a higher portion of B light is efficient in increasing photosynthesis performance per unit leaf area, enhancing growth and morphological changes in roses but does not affect the total Dry Matter (DM) production or time to open flower. Copyright © Physiologia Plantarum 2012.

  17. Leaf Morphology and Ultrastructure Responses to Elevated O3 in Transgenic Bt (cry1Ab/cry1Ac) Rice and Conventional Rice under Fully Open-Air Field Conditions

    PubMed Central

    Li, Chunyan; Liu, Biao; Li, Chunhua; Zeng, Qing; Hao, Mingzhuo; Han, Zhengmin; Zhu, Jianguo; Li, Xiaogang; Shen, Wenjing

    2013-01-01

    Background Elevated tropospheric ozone severely affects not only yield but also the morphology, structure and physiological functions of plants. Because of concerns regarding the potential environmental risk of transgenic crops, it is important to monitor changes in transgenic insect-resistant rice under the projected high tropospheric ozone before its commercial release. Methodology/Principal Findings Using a free-air concentration enrichment (FACE) system, we investigated the changes in leaf morphology and leaf ultrastructure of two rice varieties grown in plastic pots, transgenic Bt Shanyou 63 (Bt-SY63, carrying a fusion gene of cry1Ab and cry1Ac) and its non-transgenic counterpart (SY63), in elevated O3 (E-O3) versus ambient O3 (A-O3) after 64-DAS (Days after seeding), 85-DAS and 102-DAS. Our results indicated that E-O3 had no significant effects on leaf length, leaf width, leaf area, stomatal length and stomatal density for both Bt-SY63 and SY63. E-O3 increased the leaf thickness of Bt-SY63, but decreased that of SY63. O3 stress caused early swelling of the thylakoids of chloroplasts, a significant increase in the proportion of total plastoglobule area in the entire cell area (PCAP) and a significant decrease in the proportion of total starch grain area in the entire cell area (SCAP), suggesting that E-O3 accelerated the leaf senescence of the two rice genotypes. Compared with SY63, E-O3 caused early swelling of the thylakoids of chloroplasts and more substantial breakdown of chloroplasts in Bt-SY63. Conclusions/Significance Our results suggest that the incorporation of cry1Ab/Ac into SY63 could induce unintentional changes in some parts of plant morphology and that O3 stress results in greater leaf damage to Bt-SY63 than to SY63, with the former coupled with higher O3 sensitivity in CCAP (the proportions of total chloroplast area in the entire cell area), PCAP and SCAP. This study provides valuable baseline information for the prospective commercial release of transgenic crops under the projected future climate. PMID:24324764

  18. Potential of Ranunculus acris L. for biomonitoring trace element contamination of riverbank soils: photosystem II activity and phenotypic responses for two soil series.

    PubMed

    Marchand, Lilian; Lamy, Pierre; Bert, Valerie; Quintela-Sabaris, Celestino; Mench, Michel

    2016-02-01

    Foliar ionome, photosystem II activity, and leaf growth parameters of Ranunculus acris L., a potential biomonitor of trace element (TE) contamination and phytoavailability, were assessed using two riverbank soil series. R. acris was cultivated on two potted soil series obtained by mixing a TE (Cd, Cu, Pb, and Zn)-contaminated technosol with either an uncontaminated sandy riverbank soil (A) or a silty clay one slightly contaminated by TE (B). Trace elements concentrations in the soil-pore water and the leaves, leaf dry weight (DW) yield, total leaf area (TLA), specific leaf area (SLA), and photosystem II activity were measured for both soil series after a 50-day growth period. As soil contamination increased, changes in soluble TE concentrations depended on soil texture. Increase in total soil TE did not affect the leaf DW yield, the TLA, the SLA, and the photosystem II activity of R. acris over the 50-day exposure. The foliar ionome did not reflect the total and soluble TE concentrations in both soil series. Foliar ionome of R. acris was only effective to biomonitor total and soluble soil Na concentrations in both soil series and total and soluble soil Mo concentrations in the soil series B.

  19. Stomatal regulation, structural acclimation and metabolic shift towards defensive compounds reduce O3 load in birch under chronic O3 stress

    NASA Astrophysics Data System (ADS)

    Oksanen, E.; Riikonen, J.; Kontunen-Soppela, S.; Maenpaa, M.; Rousi, M.

    2009-12-01

    Northern forests are encountering new threats due to continuously increasing load of oxidative stress, e.g. due to rising tropospheric O3 levels, and simultaneous climate warming, which is more intense in northern latitudes as compared to global means. The proportion of silver birch (Betula pendula) in Finnish forests is expected to increase with climate warming. Unfortunately, we have growing evidence that the vitality and the carbon sink strength of birch trees are weakened under chronic O3 stress. In this study we investigated the effects of slightly elevated O3 concentration (1.3 x the ambient), temperature (T) and their combination on the antioxidant defense, gas exchange and leaf growth of Betula pendula saplings (clone 12) growing in open-field conditions over two growing seasons. The plants were measured for SLA (specific leaf area), total leaf area, net photosynthesis (Pn), stomatal conductance (gs), maximum rate of carboxylation (Vc,max), maximum rate of electron transport (Jmax), relative stomatal limitation to photosynthesis (ls), dark respiration (Rd), apoplastic concentrations of AA (ascorbic acid), DHA (dehydroascobate) and total ascorbate, the redox state of apoplastic ascorbate, and total antioxidant capacity. Elevated O3 enhanced the total antioxidant capacity in the apoplast in the first year of the experiment at the ambient T. However, during the second year of the experiment, the saplings responded to elevated O3 level by closing the stomata and by developing leaves with a lower leaf area per mass, rather than by accumulating ascorbate in the apoplast. O3 did not affect the total leaf area, whereas Pn was slightly and gs significantly reduced in the second year. Elevated T enhanced the total leaf area, Pn and Vc,max, redox state of ascorbate and total antioxidant capacity in the apoplast. The effects of T and O3 on total leaf area and net photosynthesis were counteractive. We were not able to detect significant differences in Rd between the treatments. Our results with birch suggest that (1) apoplastic AA plays only a minor and transient role in O3 defence whereas (2) stomatal regulation and structural plasticity of leaves are more important long-term mechanisms leading to O3 avoidance in chronic O3 stress with relatively low O3 concentrations. The role of antioxidant capacity was, however, modified by temperature in a complex manner. We should also remember that the clonal differences are wide in birch responses to O3 and therefore the role of AA in scavencing ROS in the apoplast maybe more important in other birch genotypes. Our previous studies with O3-stressed birches have indicated a considerable shift in leaf metabolome towards quercetin-phenolic compounds and chlorogenic acid, which have good radical-scavencing properties, and compounds related to leaf cuticular wax layer. Therefore we can conclude that the long-term protection of birch against chronic O3 stress in mainly composed of stomatal closure, secondary compounds and structural acclimation.

  20. On the Relationship Between Hyperspectral Data and Foliar Nitrogen Content in Closed Canopy Forests

    NASA Astrophysics Data System (ADS)

    Knyazikhin, Y.; Schull, M.; Lepine, L. C.; Stenberg, P.; Mõttus, M.; Rautiainen, M.; Latorre, P.; Myneni, R.; Kaufmann, R.

    2011-12-01

    The importance of nitrogen for terrestrial ecosystem carbon dynamics and its climate feedback has been well recognized by the ecological community. Interaction between carbon and nitrogen at leaf level is among the fundamental mechanisms that directly control the dynamics of terrestrial vegetation carbon. This process influences absorption and scattering of solar radiation by foliage, which in turn impacts radiation reflected by the vegetation and measured by satellite sensors. NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and ground based data on canopy structure and foliage nitrogen concentration acquired over six sites in Maine, New England, Florida, North Carolina and Washington were analyzed to assess the role of canopy structure, leaf optics and its biochemical constituents in the spectral variation of radiation reflected by the forest. The study sites represent closed canopy forests (LAI~5). Our results suggest: 1. Impact of canopy structure is so strong that it can significantly suppress the sensitivity of hyperspectral data to leaf optics. 2. Forest reflectance spectra in the interval [710, 790 nm] are required to obtain the fraction of the total leaf area that a "sensor sees" in a given direction. For closed canopy forests its retrieval does not require canopy reflectance models, suggesting that canopy reflectance spectra in this interval provide a direct estimate of the leaf area fraction. 3. The leaf area fraction fully explains variation in measured reflectance spectra due to variation in canopy structure. This variable is used to estimate the mean leaf scattering over foliage that the "sensor sees." For example the nadir-viewing AVIRIS sensor accumulates foliage optical properties over 25% of the total foliage area in needle leaf forest and about 50% in broadleaf forest. 4. Leaf surface properties have an impact on forest reflectivity, lowering its sensitivity to leaf absorbing pigments. 5. Variation in foliar nitrogen concentration can explain up to 55% of variation in AVIRIS spectra in the interval between 400 and 900 nm. The remaining factors could be due to (a) impact of leaf surface properties and/or (b) under-sampling of leaf optical properties due to the single view of the AVIRIS sensor. The theory of canopy spectral invariants underlies the separation of leaf scattering from the total canopy reflectance spectrum.

  1. Seasonal Changes in Leaf Area of Amazon Forests from Leaf Flushing and Abscission

    NASA Astrophysics Data System (ADS)

    Samanta, A.; Knyazikhin, Y.; Xu, L.; Dickinson, R.; Fu, R.; Costa, M. H.; Ganguly, S.; Saatchi, S. S.; Nemani, R. R.; Myneni, R.

    2011-12-01

    A large increase in near-infrared (NIR) reflectance of Amazon forests during the light-rich dry season and a corresponding decrease during the light-poor wet season has been observed in satellite measurements. This has been variously interpreted as seasonal changes in leaf area resulting from net leaf flushing in the dry season and net leaf abscission in the wet season, enhanced photosynthetic activity during the dry season from flushing new leaves and as change in leaf scattering and absorption properties between younger and older leaves covered with epiphylls. Reconciling these divergent views using theory and observations is the goal of this article. The observed changes in NIR reflectance of Amazon forests could be due to similar, but small, changes in NIR leaf albedo (reflectance plus transmittance) only, from exchanging older leaves with newer ones, with total leaf area unchanged. However, this argument ignores accumulating evidence from ground-based studies of higher leaf area in the dry season relative to the wet season, seasonal changes in litterfall and does not satisfactorily explain why NIR reflectance of these forests decreases in the wet season. A more convincing explanation for the observed increase in NIR reflectance during the dry season and decrease during the wet season is one that invokes changes in both leaf area and leaf optical properties. Such an argument is consistent with known phonological behavior of tropical forests, ground-based reports of seasonal changes in leaf area, litterfall, leaf optical properties and fluxes of evapotranspiration, and thus, reconciles the various seemingly divergent views.

  2. Seasonal changes in leaf area of Amazon forests from leaf flushing and abscission

    NASA Astrophysics Data System (ADS)

    Samanta, Arindam; Knyazikhin, Yuri; Xu, Liang; Dickinson, Robert E.; Fu, Rong; Costa, Marcos H.; Saatchi, Sassan S.; Nemani, Ramakrishna R.; Myneni, Ranga B.

    2012-03-01

    A large increase in near-infrared (NIR) reflectance of Amazon forests during the light-rich dry season and a corresponding decrease during the light-poor wet season has been observed in satellite measurements. This increase has been variously interpreted as seasonal change in leaf area resulting from net leaf flushing in the dry season or net leaf abscission in the wet season, enhanced photosynthetic activity during the dry season from flushing new leaves and as change in leaf scattering and absorption properties between younger and older leaves covered with epiphylls. Reconciling these divergent views using theory and observations is the goal of this article. The observed changes in NIR reflectance of Amazon forests could be due to similar, but small, changes in NIR leaf albedo (reflectance plus transmittance) resulting from the exchange of older leaves for newer ones, but with the total leaf area unchanged. However, this argument ignores accumulating evidence from ground-based reports of higher leaf area in the dry season than the wet season, seasonal changes in litterfall and does not satisfactorily explain why NIR reflectance of these forests decreases in the wet season. More plausibly, the increase in NIR reflectance during the dry season and the decrease during the wet season would result from changes in both leaf area and leaf optical properties. Such change would be consistent with known phenological behavior of tropical forests, ground-based reports of seasonal changes in leaf area, litterfall, leaf optical properties and fluxes of evapotranspiration, and thus, would reconcile the various seemingly divergent views.

  3. Phenological Versus Meteorological Controls on Land-atmosphere Water and Carbon Fluxes

    NASA Technical Reports Server (NTRS)

    Puma, Michael J.; Koster, Randal D.; Cook, Benjamin I.

    2013-01-01

    Phenological dynamics and their related processes strongly constrain land-atmosphere interactions, but their relative importance vis-à-vis meteorological forcing within general circulation models (GCMs) is still uncertain. Using an off-line land surface model, we evaluate leaf area and meteorological controls on gross primary productivity, evapotranspiration, transpiration, and runoff at four North American sites, representing different vegetation types and background climates. Our results demonstrate that compared to meteorological controls, variation in leaf area has a dominant control on gross primary productivity, a comparable but smaller influence on transpiration, a weak influence on total evapotranspiration, and a negligible impact on runoff. Climate regime and characteristic variations in leaf area have important modulating effects on these relative controls, which vary depending on the fluxes and timescales of interest. We find that leaf area in energylimited evaporative regimes tends to exhibit greater control on annual gross primary productivity than in moisture-limited regimes, except when vegetation exhibits little interannual variation in leaf area. For transpiration, leaf area control is somewhat less in energylimited regimes and greater in moisture-limited regimes for maximum pentad and annual fluxes. These modulating effects of climate and leaf area were less clear for other fluxes and at other timescales. Our findings are relevant to land-atmosphere coupling in GCMs, especially considering that leaf area variations are a fundamental element of land use and land cover change simulations.

  4. Leaf area and photosynthesis of newly emerged trifoliolate leaves are regulated by mature leaves in soybean.

    PubMed

    Wu, Yushan; Gong, Wanzhuo; Wang, Yangmei; Yong, Taiwen; Yang, Feng; Liu, Weigui; Wu, Xiaoling; Du, Junbo; Shu, Kai; Liu, Jiang; Liu, Chunyan; Yang, Wenyu

    2018-03-29

    Leaf anatomy and the stomatal development of developing leaves of plants have been shown to be regulated by the same light environment as that of mature leaves, but no report has yet been written on whether such a long-distance signal from mature leaves regulates the total leaf area of newly emerged leaves. To explore this question, we created an investigation in which we collected data on the leaf area, leaf mass per area (LMA), leaf anatomy, cell size, cell number, gas exchange and soluble sugar content of leaves from three soybean varieties grown under full sunlight (NS), shaded mature leaves (MS) or whole plants grown in shade (WS). Our results show that MS or WS cause a marked decline both in leaf area and LMA in newly developing leaves. Leaf anatomy also showed characteristics of shade leaves with decreased leaf thickness, palisade tissue thickness, sponge tissue thickness, cell size and cell numbers. In addition, in the MS and WS treatments, newly developed leaves exhibited lower net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (E), but higher carbon dioxide (CO 2 ) concentration in the intercellular space (Ci) than plants grown in full sunlight. Moreover, soluble sugar content was significantly decreased in newly developed leaves in MS and WS treatments. These results clearly indicate that (1) leaf area, leaf anatomical structure, and photosynthetic function of newly developing leaves are regulated by a systemic irradiance signal from mature leaves; (2) decreased cell size and cell number are the major cause of smaller and thinner leaves in shade; and (3) sugars could possibly act as candidate signal substances to regulate leaf area systemically.

  5. Peach leaf responses to soil and cement dust pollution.

    PubMed

    Maletsika, Persefoni A; Nanos, George D; Stavroulakis, George G

    2015-10-01

    Dust pollution can negatively affect plant productivity in hot, dry and with high irradiance areas during summer. Soil or cement dust were applied on peach trees growing in a Mediterranean area with the above climatic characteristics. Soil and cement dust accumulation onto the leaves decreased the photosynthetically active radiation (PAR) available to the leaves without causing any shade effect. Soil and mainly cement dust deposition onto the leaves decreased stomatal conductance, photosynthetic and transpiration rates, and water use efficiency due possibly to stomatal blockage and other leaf cellular effects. In early autumn, rain events removed soil dust and leaf functions partly recovered, while cement dust created a crust partially remaining onto the leaves and causing more permanent stress. Leaf characteristics were differentially affected by the two dusts studied due to their different hydraulic properties. Leaf total chlorophyll decreased and total phenol content increased with dust accumulation late in the summer compared to control leaves due to intense oxidative stress. The two dusts did not cause serious metal imbalances to the leaves, except of lower leaf K content.

  6. Effects of incandescent radiation on photosynthesis, growth rate and yield of 'Waldmann's Green' leaf lettuce

    NASA Technical Reports Server (NTRS)

    Knight, S. L.; Mitchell, C. A.

    1989-01-01

    Effects of different ratios incandescent (ln) to fluorescent (Fl) radiation were tested on growth of 'Waldmann's Green' leaf lettuce (Lactuca sativa L.) in a controlled environment. After 4 days of treatment, dry weight, leaf area, relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR) and photosynthetic rate (Pn) were greater for plants grown at 84 rather than 16% of total irradiance (82 W m-2) from ln lamps. Although leaf dry weight and area were 12-17% greater at 84% ln after the first 8 days of treatment, there were no differences in RGR or Pn between treatments during the last 4 days. If 84% ln was compared with 50% ln, all cumulative growth parameters, RGR, NAR and Pn were greater for 84% ln during the first 4 days of treatment. However, during the second 4 days, RGR was greater for the 50% ln treatment, resulting in no net difference in leaf dry weight or area between treatments. Shifting from 84 to 50% ln radiation between the first and second 4 days of treatment increased plant dry weight, leaf area, RGR and NAR relative to those under 84% ln for 8 days continuously.

  7. Variation in light-intercepting area and photosynthetic rate of sun and shade shoots of two Picea species in relation to the angle of incoming light.

    PubMed

    Ishii, Hiroaki; Hamada, Yoko; Utsugi, Hajime

    2012-10-01

    We investigated the effects of sun- and shade-shoot architecture on the photosynthetic rates of two Picea species by applying light from various angles in the laboratory. Compared with sun shoots, shade shoots were characterized by lower mass allocation per light-intercepting area, less leaf mass per shoot mass, less mutual shading among leaves and more efficient allocation of chlorophyll to photosynthesis. The shoot silhouette to total leaf area ratio (STAR(ϕ)) decreased with increasing shoot inclination angle (ϕ, the shoot axis angle relative to the projection plane) and was consistently higher for the shade shoots. Morphological and physiological characteristics of the shade shoots resulted in maximum rates of net photosynthesis at ϕ = 0° (P(max,0)) similar to that of the sun shoots when expressed on a leaf mass, total leaf area and chlorophyll basis. When the angle of incoming light was varied, P(max,ϕ) per total leaf area (P(max,ϕ )/A(T)) of the shade shoots increased linearly with increasing STAR(ϕ), while P(max,ϕ) per shoot silhouette area did not change. In contrast, the response of the sun shoots was non-linear, and an optimum angle of incoming light was determined. Our results suggest that shade-shoot morphology is adaptive for utilizing diffuse light incoming from various angles, while sun-shoot morphology is adaptive for avoiding the negative effects of strong direct radiation and for enhancing light diffusion into the canopy. We propose that the angle of incoming light should be taken into account when estimating photosynthetic rates of sun shoots of conifer trees in the field.

  8. Photosynthesis and canopy characteristics in genetically defined families of silver birch (Betula pendula).

    PubMed

    Wang, T; Tigerstedt, P M; Viherä-Aarnio, A

    1995-10-01

    Net photosynthetic rates (A) of leaves in upper and lower crown layers (A(upper) and A(lower)), leaf area index (LAI), mean tilt angle (MTA), several leaf characteristics, and volume growth were observed in fast- and slow-growing families of a 14-year-old full-sib and half-sib family progeny test of Betula pendula Roth. Each measure of net photosynthetic rate was calculated after correcting measured net photosynthesis for the effects of environmental variables. The differences in A(upper) and LAI among families were significant. The proportions of the total variance assigned to family for A(upper), A(lower) and LAI were 33.64, 28.93 and 54.99%, respectively. The mean A(upper) and LAI of the fast-growing families were significantly higher than those of the slow-growing families, whereas the mean A(lower) of the fast-growing families was significantly lower than that of the slow-growing families. There were also significant differences among families in leaf size, leaf shape, and the ratios leaf fresh weight/area and leaf dry weight/area. Between 27.55 and 54.55% of the total variance in these characteristics could be assigned to the family effect. Volume growth was positively correlated with A(upper) and LAI, but it was most strongly correlated with A(upper) x LAI.

  9. Costs of measuring leaf area index of corn

    NASA Technical Reports Server (NTRS)

    Daughtry, C. S. T.; Hollinger, S. E.

    1984-01-01

    The magnitude of plant-to-plant variability of leaf area of corn plants selected from uniform plots was examined and four representative methods for measuring leaf area index (LAI) were evaluated. The number of plants required and the relative costs for each sampling method were calculated to detect 10, 20, and 50% differences in LAI using 0.05 and 0.01 tests of significance and a 90% probability of success (beta = 0.1). The natural variability of leaf area per corn plant was nearly 10%. Additional variability or experimental error may be introduced by the measurement technique employed and by nonuniformity within the plot. Direct measurement of leaf area with an electronic area meter had the lowest CV, required that the fewest plants be sampled, but required approximately the same amount of time as the leaf area/weight ratio method to detect comparable differences. Indirect methods based on measurements of length and width of leaves required more plants but less total time than the direct method. Unless the coefficients for converting length and width to area are verified frequently, the indirect methods may be biased. When true differences in LAI among treatments exceed 50% of mean, all four methods are equal. The method of choice depends on the resources available, the differences to be detected, and what additional information, such as leaf weight or stalk weight, is also desired.

  10. Intraspecific variation in the response of Taxodium distichum seedlings to salinity

    USGS Publications Warehouse

    Allen, J.A.; Chambers, J.L.; McKinney, D.

    1994-01-01

    Seedlings of 15 open-pollinated families of baldcypress (Taxodium distichum) were tested for their tolerance to combined salinty and flooding stress. Ten of the families were from coastal locations in Louisiana or Alabama, USA, that were slightly brackish. The other families were from locations not affected by saltwater intrusion. Five salinity levels were investigated--0,2,4,6, and 8 g -1 artificial seawater -- all with flooding to approximately 5 cm above the soil surface. Survival, height growth, leaf area and total biomass all declined with increasing salinity. Significant variation was found among salinity levels, families, and salinity x family interactions for leaf area and total biomass. Two tolerance indices were also developed to compare family response with salinity. In general, families from brackish sources had greater total biomass, leaf area, and tolerance index values than families from freshwater sources at the higher slainity levels. A selection and breeding program designed to develop moderately salt-tolerant baldcypress seedlings for use in wetland restoration projects and other applications appears to be well-justified.

  11. Ontogenetic stage, plant vigor and sex mediate herbivory loads in a dioecious understory herb

    NASA Astrophysics Data System (ADS)

    Selaković, Sara; Vujić, Vukica; Stanisavljević, Nemanja; Jovanović, Živko; Radović, Svetlana; Cvetković, Dragana

    2017-11-01

    Plant-herbivore interactions can be mediated by plant apparency, defensive and nutritional quality traits that change through plant ontogeny, resulting in age-specific herbivory. In dioecious species, opposing allocation patterns in defense may lead to sex-biased herbivory. Here, we examine how onto stage and plant sex determine levels of herbivore damage in understory herb Mercurialis perennis under field conditions. We analyzed variation in plant size (height, total leaf area), physical (specific leaf area) and chemical (total phenolic and condensed tannins contents) defense, and nutritional quality (total water, soluble protein and nonstructural carbohydrate contents) during the shift from reproductive to post-reproductive stage. Furthermore, we explored correlations between the analyzed traits and levels of foliar damage. Post-reproductive plants had lower levels of chemical defense, and larger leaf area removed, in spite of having lower nutritive quality. Opposing patterns of intersexual differences were detected in protein and phenolic contents during reproductive stage, while in post-reproductive stage total leaf area was sexually dimorphic. Female-biased herbivory was apparent only after reproduction. Plant size parameters combined with condensed tannins content determined levels of foliar damage during post-reproductive stage, while the only trait covarying with herbivory in reproductive stage was total nonstructural carbohydrate content. Our results support claims of optimal defense theory - sensitive stage of reproduction was better defended. We conclude that different combinations of plant traits mediated interactions with herbivores in mature stages. Differences in reproductive allocation between the sexes may not immediately translate into different levels of damage, stressing the need for considering different ontogenetic stages when exploring sex bias in herbivory.

  12. Constraints on physiological function associated with branch architecture and wood density in tropical forest trees.

    PubMed

    Meinzer, Frederick C; Campanello, Paula I; Domec, Jean-Christophe; Genoveva Gatti, M; Goldstein, Guillermo; Villalobos-Vega, Randol; Woodruff, David R

    2008-11-01

    This study examined how leaf and stem functional traits related to gas exchange and water balance scale with two potential proxies for tree hydraulic architecture: the leaf area:sapwood area ratio (A(L):A(S)) and wood density (rho(w)). We studied the upper crowns of individuals of 15 tropical forest tree species at two sites in Panama with contrasting moisture regimes and forest types. Transpiration and maximum photosynthetic electron transport rate (ETR(max)) per unit leaf area declined sharply with increasing A(L):A(S), as did the ratio of ETR(max) to leaf N content, an index of photosynthetic nitrogen-use efficiency. Midday leaf water potential, bulk leaf osmotic potential at zero turgor, branch xylem specific conductivity, leaf-specific conductivity and stem and leaf capacitance all declined with increasing rho(w). At the branch scale, A(L):A(S) and total leaf N content per unit sapwood area increased with rho(w), resulting in a 30% increase in ETR(max) per unit sapwood area with a doubling of rho(w). These compensatory adjustments in A(L):A(S), N allocation and potential photosynthetic capacity at the branch level were insufficient to completely offset the increased carbon costs of producing denser wood, and exacerbated the negative impact of increasing rho(w) on branch hydraulics and leaf water status. The suite of tree functional and architectural traits studied appeared to be constrained by the hydraulic and mechanical consequences of variation in rho(w).

  13. Preliminary application of tapered glass capillary microbeam in MeV-PIXE mapping of longan leaf for elemental concentration distribution analysis

    NASA Astrophysics Data System (ADS)

    Natyanun, S.; Unai, S.; Yu, L. D.; Tippawan, U.; Pussadee, N.

    2017-09-01

    This study was aimed at understanding elemental concentration distribution in local longan leaf for how the plant was affected by the environment or agricultural operation. The analysis applied the MeV-microbeam particle induced X-ray emission (PIXE) mapping technique using a home-developed tapered glass capillary microbeam system at Chiang Mai University. The microbeam was 2-MeV proton beam in 130 µm in diameter. The studying interest was in the difference in the elemental concentrations distributed between the leaf midrib and lamina areas. The micro proton beam analyzed the leaf sample across the leaf midrib edge to the leaf lamina area for total 9 data requisition spots. The resulting data were colored to form a 1D-map of the elemental concentration distribution. Seven dominant elements, Al, S, Cl, K, Ca, Sc and Fe, were identified, the first six of which were found having higher concentrations in the midrib area than in the lamina area, while the Fe concentration was in an opposite trend to that of the others.

  14. Warming increases the sensitivity of seedling growth capacity to rainfall in six temperate deciduous tree species

    PubMed Central

    Smith, Nicholas G; Hoeppner, Susanne S; Dukes, Jeffrey S

    2018-01-01

    Abstract Predicting the effects of climate change on tree species and communities is critical for understanding the future state of our forested ecosystems. We used a fully factorial precipitation (three levels; ambient, −50 % ambient, +50 % ambient) by warming (four levels; up to +4 °C) experiment in an old-field ecosystem in the northeastern USA to study the climatic sensitivity of seedlings of six native tree species. We measured whole plant-level responses: survival, total leaf area (TLA), seedling insect herbivory damage, as well as leaf-level responses: specific leaf area (SLA), leaf-level water content (LWC), foliar nitrogen (N) concentration, foliar carbon (C) concentration and C:N ratio of each of these deciduous species in each treatment across a single growing season. We found that canopy warming dramatically increased the sensitivity of plant growth (measured as TLA) to rainfall across all species. Warm, dry conditions consistently reduced TLA and also reduced leaf C:N in four species (Acer rubrum, Betula lenta, Prunus serotina, Ulmus americana), primarily as a result of reduced foliar C, not increased foliar N. Interestingly, these conditions also harmed the other two species in different ways, increasing either mortality (Populus grandidentata) or herbivory (Quercus rubra). Specific leaf area and LWC varied across species, but did not show strong treatment responses. Our results indicate that, in the northeastern USA, dry years in a future warmer environment could have damaging effects on the growth capacity of these early secondary successional forests, through species-specific effects on leaf production (total leaves and leaf C), herbivory and mortality. PMID:29484151

  15. The narrow-leaf syndrome: a functional and evolutionary approach to the form of fog-harvesting rosette plants.

    PubMed

    Martorell, Carlos; Ezcurra, Exequiel

    2007-04-01

    Plants that use fog as an important water-source frequently have a rosette growth habit. The performance of this morphology in relation to fog interception has not been studied. Some first-principles from physics predict that narrow leaves, together with other ancillary traits (large number and high flexibility of leaves, caudices, and/or epiphytism) which constitute the "narrow-leaf syndrome" should increase fog-interception efficiency. This was tested using aluminum models of rosettes that differed in leaf length, width and number and were exposed to artificial fog. The results were validated using seven species of Tillandsia and four species of xerophytic rosettes. The total amount of fog intercepted in rosette plants increased with total leaf area, while narrow leaves maximized interception efficiency (measured as interception per unit area). The number of leaves in the rosettes is physically constrained because wide-leafed plants can only have a few blades. At the limits of this constraint, net fog interception was independent of leaf form, but interception efficiency was maximized by large numbers of narrow leaves. Atmospheric Tillandsia species show the narrow-leaf syndrome. Their fog interception efficiencies were correlated to the ones predicted from aluminum-model data. In the larger xerophytic rosette species, the interception efficiency was greatest in plants showing the narrow-leaf syndrome. The adaptation to fog-harvesting in several narrow-leaved rosettes was tested for evolutionary convergence in 30 xerophytic rosette species using a comparative method. There was a significant evolutionary tendency towards the development of the narrow-leaf syndrome the closer the species grew to areas where fog is frequently available. This study establishes convergence in a very wide group of plants encompassing genera as contrasting as Tillandsia and Agave as a result of their dependence on fog.

  16. Ecophysiological responses of a young blue gum (Eucalyptus globulus) plantation to weed control.

    PubMed

    Eyles, Alieta; Worledge, Dale; Sands, Peter; Ottenschlaeger, Maria L; Paterson, Steve C; Mendham, Daniel; O'Grady, Anthony P

    2012-08-01

    Early weed control may improve the growth of forest plantations by influencing soil water and nutrient availability. To understand eucalypt growth responses to weed control, we examined the temporal responses of leaf gas-exchange, leaf nitrogen concentration (N) and water status of 7-month-old Eucalyptus globulus L. trees in a paired-plot field trial. In addition, we monitored the growth, leaf N and water status of the competing vegetation in the weed treatment. By the end of the 11-month experiment, complete weed control (WF treatment) of largely woody competitors increased the basal diameter of E. globulus by 14%. As indicated by pre-dawn water potentials of > - 0.05 MPa, interspecies competition for water resources was minimal at this site. In contrast, competition for N appeared to be the major factor limiting growth. Estimations of total plot leaf N (g m(-2) ground) showed that competing vegetation accounted for up to 70% of the total leaf N at the start of the trial. This value fell to 15% by the end of the trial. Despite increased leaf N(area) in WF trees 5 months after imposition of weed control, the photosynthetic capacity (A(1500)) of E. globulus was unaffected by treatment suggesting that the growth gains from weed control were largely unrelated to changes in leaf-level photosynthesis. Increased nutrient availability brought about by weed control enabled trees to increase investment into leaf-area production. Estimates of whole-tree carbon budget based on direct measurements of dark respiration and A(1500) allowed us to clearly demonstrate the importance of leaf area driving greater productivity following early weed control in a nutrient-limited site.

  17. Effects of incandescent radiation on photosynthesis, growth rate and yield of 'Waldmann's Green' leaf lettuce

    NASA Technical Reports Server (NTRS)

    Knight, Sharon L.; Mitchell, Cary A.

    1988-01-01

    Effects of different ratios of incandescent (ln) to fluorescent (Fl) radiation were tested on growth of 'Waldmann's Green' leaf lettuce in a controlled environment. After 4 days of treatment, dry weight, leaf area, relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR) and photosynthetic rate (Pn) were greater for plants grown at 84 rather than 16 percent of total irradiance (82 W/sq m) from ln lamps. Although leaf dry weight and area were 12-17 percent greater at 84 percent ln after the first 8 days of treatment, there were no differences in RGR or Pn between treatments during the last 4 days. If 84 percent ln was compared with 50 percent ln, all cumulative growth parameters, RGR, NAR and Pn were greater for 84 percent ln during the first 4 days of treatment. However, during the second 4 days, RGR was greater for the 50 percent ln treatment, resulting in no net difference in leaf dry weight or area between treatments. Shifting from 84 to 50 percent ln radiation between the first and second 4 days of treatment increased plant dry weight, leaf area, RGR and NAR relative to those under 84 percent ln for 8 days continuously.

  18. Crown characteristics of juvenile loblolly pine 6 years after application of thinning and fertilization

    Treesearch

    Shufang Yu; Jim L. Chambers; Zhenmin Tang; James P. Barnett

    2003-01-01

    Total foliage dry mass and leaf area at the canopy hierarchical level of needle, shoot, branch and crown were measured in 48 trees harvested from a 14-year-old loblolly pine (Pinus taeda L.) plantation, six growing seasons after thinning and fertilization treatments. In the unthinned treatment, upper crown needles were heavier and had more leaf area...

  19. How universal is the relationship between remotely sensed vegetation indices and crop leaf area index? A global assessment

    USDA-ARS?s Scientific Manuscript database

    This study aims to assess the relationship between Leaf Area Index (LAI) and remotely sensed Vegetation Indices (VIs) for major crops, based on a globally explicit dataset of in situ LAI measurements over a significant set of locations. We used a total of 1394 LAI measurements from 29 sites spannin...

  20. [Effects of forest gap size on the architecture of Quercus variablis seedlings on the south slope of Qinling Mountains, west China].

    PubMed

    Yu, Bi-yun; Zhang, Wen-hui; He, Ting; You, Jian-jian; Li, Gang

    2014-12-01

    Typical sampling method was conducted to survey the effects of forest gap size on branch architecture, leaf characteristics and their vertical distribution of Quercus variablis seedlings from different size gaps in natural secondary Q. variablis thinning forest, on the south slope of Qinling Mountains. The results showed that gap size significantly affected the diameter, crown area of Q. variablis seedlings. The gap size positively correlated with diameter and negatively correlated with crown area, while it had no significant impact on seedling height, crown length and crown rates. The overall bifurcation ratio, stepwise bifurcation ratio, and ratio of branch diameter followed as large gap > middle gap > small gap > understory. The vertical distribution of first-order branches under different size gaps mainly concentrated at the middle and upper part of trunk, larger diameter first-order branches were mainly distributed at the lower part of trunk, and the angle of first-order branch increased at first and then declined with the increasing seedling height. With the increasing forest gap size, the leaf length, leaf width and average leaf area of seedlings all gradually declined, while the average leaf number per plant and relative total leaf number increased, the leaf length-width ratio kept stable, the relative leaf number was mainly distributed at the middle and upper parts of trunk, the changes of leaf area index was consistent with the change of the relative total number of leaves. There was no significant difference between the diameters of middle gap and large gap seedlings, but the diameter of middle gap seedlings was higher than that of large gap, suggesting the middle gap would benefit the seedlings regeneration and high-quality timber cultivation. To promote the regeneration of Q. variabilis seedlings, and to cultivate high-quality timber, appropriate thinning should be taken to increase the number of middle gaps in the management of Q. variabilis forest.

  1. BOREAS TE-9 NSA Leaf Chlorophyll Density

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Margolis, Hank; Sy, Mikailou

    2000-01-01

    The BOREAS TE-9 team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. These data were collected to help provide an explanation of potential seasonal and spatial changes of leaf pigment properties in boreal forest species at the NSA. At different dates (FFC-Winter, FFC-Thaw, IFC-1, IFC-2, and IMC-3), foliage samples were collected from the upper third of the canopy for five NSA sites (YJP, OJP, OBS, UBS, and OA) near Thompson, Manitoba. Subsamples of 100 needles for black spruce, 20 needles for jack pine, and single leaf for trembling aspen were cut into pieces and immersed in a 20-mL DMF aliquot in a Nalgene test tube. The extracted foliage materials were then oven-dried at 68 C for 48 hours and weighed. Extracted leaf dry weight was converted to a total leaf area basis to express the chlorophyll content in mg/sq cm of total leaf area. The data are provided in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  2. Elevated atmospheric CO2 concentration leads to increased whole-plant isoprene emission in hybrid aspen (Populus tremula × Populus tremuloides).

    PubMed

    Sun, Zhihong; Niinemets, Ülo; Hüve, Katja; Rasulov, Bahtijor; Noe, Steffen M

    2013-05-01

    Effects of elevated atmospheric [CO2] on plant isoprene emissions are controversial. Relying on leaf-scale measurements, most models simulating isoprene emissions in future higher [CO2] atmospheres suggest reduced emission fluxes. However, combined effects of elevated [CO2] on leaf area growth, net assimilation and isoprene emission rates have rarely been studied on the canopy scale, but stimulation of leaf area growth may largely compensate for possible [CO2] inhibition reported at the leaf scale. This study tests the hypothesis that stimulated leaf area growth leads to increased canopy isoprene emission rates. We studied the dynamics of canopy growth, and net assimilation and isoprene emission rates in hybrid aspen (Populus tremula × Populus tremuloides) grown under 380 and 780 μmol mol(-1) [CO2]. A theoretical framework based on the Chapman-Richards function to model canopy growth and numerically compare the growth dynamics among ambient and elevated atmospheric [CO2]-grown plants was developed. Plants grown under elevated [CO2] had higher C : N ratio, and greater total leaf area, and canopy net assimilation and isoprene emission rates. During ontogeny, these key canopy characteristics developed faster and stabilized earlier under elevated [CO2]. However, on a leaf area basis, foliage physiological traits remained in a transient state over the whole experiment. These results demonstrate that canopy-scale dynamics importantly complements the leaf-scale processes, and that isoprene emissions may actually increase under higher [CO2] as a result of enhanced leaf area production. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  3. Algorithm for retrieving vegetative canopy and leaf parameters from multi- and hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Borel, Christoph

    2009-05-01

    In recent years hyper-spectral data has been used to retrieve information about vegetative canopies such as leaf area index and canopy water content. For the environmental scientist these two parameters are valuable, but there is potentially more information to be gained as high spatial resolution data becomes available. We developed an Amoeba (Nelder-Mead or Simplex) based program to invert a vegetative canopy radiosity model coupled with a leaf (PROSPECT5) reflectance model and modeled for the background reflectance (e.g. soil, water, leaf litter) to a measured reflectance spectrum. The PROSPECT5 leaf model has five parameters: leaf structure parameter Nstru, chlorophyll a+b concentration Cab, carotenoids content Car, equivalent water thickness Cw and dry matter content Cm. The canopy model has two parameters: total leaf area index (LAI) and number of layers. The background reflectance model is either a single reflectance spectrum from a spectral library() derived from a bare area pixel on an image or a linear mixture of soil spectra. We summarize the radiosity model of a layered canopy and give references to the leaf/needle models. The method is then tested on simulated and measured data. We investigate the uniqueness, limitations and accuracy of the retrieved parameters on canopy parameters (low, medium and high leaf area index) spectral resolution (32 to 211 band hyperspectral), sensor noise and initial conditions.

  4. Does citrus leaf miner impair hydraulics and fitness of citrus host plants?

    PubMed

    Raimondo, Fabio; Trifilò, Patrizia; Gullo, Maria A Lo

    2013-12-01

    Gas exchange and hydraulic features were measured in leaves of three different Citrus species (Citrus aurantium L., Citrus limon L., Citrus  ×  paradisii Macfad) infested by Phyllocnistis citrella Staiton, with the aim to quantify the impact of this pest on leaf hydraulics and, ultimately, on plant fitness. Infested leaves were characterized by the presence on the leaf blade of typical snake-shaped mines and, in some cases, of a crumpled leaf blade. Light microscopy showed that leaf crumpling was induced by damage to the cuticular layer. In all three Citrus species examined: (a) the degree of infestation did not exceed 10% of the total surface area of infested plants; (b) control and infested leaves showed similar values of minimum diurnal leaf water potential, leaf hydraulic conductance and functional vein density; and (c) maximum diurnal values of stomatal conductance to water vapour, transpiration rate and photosynthetic rate (An) were similar in both control leaves and the green areas of infested leaves. A strong reduction of An was recorded only in mined leaf areas. Our data suggest that infestation with P. citrella does not cause conspicuous plant productivity reductions in young Citrus plants, at least not in the three Citrus species studied here.

  5. MODIS Measures Total U.S. Leaf Area

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This composite image over the continental United States was produced with data acquired by the Moderate-resolution Imaging Spectroradiometer (MODIS) during the period March 24 - April 8, 2000. The image is a map of the density of the plant canopy covering the ground. It is the first in a series of images over the continental U.S. produced by the MODIS Land Discipline Group (refer to this site June 2 and 5 for the next two images in the series). The image is a MODIS data product called 'Leaf Area Index,' which is produced by radiometrically measuring the visible and near infrared energy reflected by vegetation. The Leaf Area Index provides information on the structure of plant canopy, showing how much surface area is covered by green foliage relative to total land surface area. In this image, dark green pixels indicate areas where more than 80 percent of the land surface is covered by green vegetation, light green pixels show where leaves cover about 10 to 50 percent of the land surface, and brown pixels show virtually no leaf coverage. The more leaf area a plant has, the more sunlight it can absorb for photosynthesis. Leaf Area Index is one of a new suite of measurements that scientists use to understand how the Earth's land surfaces are changing over time. Their goal is to use these measurements to refine computer models well enough to simulate how the land biosphere influences the natural cycles of water, carbon, and energy throughout the Earth system. This image is the first of its kind from the MODIS instrument, which launched in December 1999 aboard the Terra spacecraft. MODIS began acquiring scientific data on February 24, 2000, when it first opened its aperture door. The MODIS instrument and Terra spacecraft are both managed by NASA's Goddard Space Flight Center, Greenbelt, MD. Image courtesy Steven Running, MODIS Land Group Member, University of Montana

  6. A Constrained Maximization Model for inspecting the impact of leaf shape on optimal leaf size and stoma resistance

    NASA Astrophysics Data System (ADS)

    Ding, J.; Johnson, E. A.; Martin, Y. E.

    2017-12-01

    Leaf is the basic production unit of plants. Water is the most critical resource of plants. Its availability controls primary productivity of plants by affecting leaf carbon budget. To avoid the damage of cavitation from lowering vein water potential t caused by evapotranspiration, the leaf must increase the stomatal resistance to reduce evapotranspiration rate. This comes at the cost of reduced carbon fixing rate as increasing stoma resistance meanwhile slows carbon intake rate. Studies suggest that stoma will operate at an optimal resistance to maximize the carbon gain with respect to water. Different plant species have different leaf shapes, a genetically determined trait. Further, on the same plant leaf size can vary many times in size that is related to soil moisture, an indicator of water availability. According to metabolic scaling theory, increasing leaf size will increase total xylem resistance of vein, which may also constrain leaf carbon budget. We present a Constrained Maximization Model of leaf (leaf CMM) that incorporates metabolic theory into the coupling of evapotranspiration and carbon fixation to examine how leaf size, stoma resistance and maximum net leaf primary productivity change with petiole xylem water potential. The model connects vein network structure to leaf shape and use the difference between petiole xylem water potential and the critical minor vein cavitation forming water potential as the budget. The CMM shows that both maximum net leaf primary production and optimal leaf size increase with petiole xylem water potential while optimal stoma resistance decreases. Narrow leaf has overall lower optimal leaf size and maximum net leaf carbon gain and higher optimal stoma resistance than those of broad leaf. This is because with small width to length ratio, total xylem resistance increases faster with leaf size. Total xylem resistance of narrow leaf increases faster with leaf size causing higher average and marginal cost of xylem water potential with respect to net leaf carbon gain. With same leaf area, total xylem resistance of narrow leaf is higher than broad leaf. Given same stoma resistance and petiole water potential, narrow leaf will lose more xylem water potential than broad leaf. Consequently, narrow leaf has smaller size and higher stoma resistance at optimum.

  7. Error analysis of leaf area estimates made from allometric regression models

    NASA Technical Reports Server (NTRS)

    Feiveson, A. H.; Chhikara, R. S.

    1986-01-01

    Biological net productivity, measured in terms of the change in biomass with time, affects global productivity and the quality of life through biochemical and hydrological cycles and by its effect on the overall energy balance. Estimating leaf area for large ecosystems is one of the more important means of monitoring this productivity. For a particular forest plot, the leaf area is often estimated by a two-stage process. In the first stage, known as dimension analysis, a small number of trees are felled so that their areas can be measured as accurately as possible. These leaf areas are then related to non-destructive, easily-measured features such as bole diameter and tree height, by using a regression model. In the second stage, the non-destructive features are measured for all or for a sample of trees in the plots and then used as input into the regression model to estimate the total leaf area. Because both stages of the estimation process are subject to error, it is difficult to evaluate the accuracy of the final plot leaf area estimates. This paper illustrates how a complete error analysis can be made, using an example from a study made on aspen trees in northern Minnesota. The study was a joint effort by NASA and the University of California at Santa Barbara known as COVER (Characterization of Vegetation with Remote Sensing).

  8. Sapling leaf trait responses to light, tree height and soil nutrients for three conifer species of contrasting shade tolerance.

    PubMed

    Lilles, Erica B; Astrup, Rasmus; Lefrançois, Marie-Lou; David Coates, K

    2014-12-01

    We developed models to describe the responses of four commonly examined leaf traits (mass per area, weight, area and nitrogen (N) concentration) to gradients of light, soil nutrients and tree height in three conifer species of contrasting shade tolerance. Our observational dataset from the sub-boreal spruce forests of British Columbia included subalpine fir (Abies lasioscarpa [Hook.] Nutt; high shade tolerance), interior spruce (Picea glauca × Picea engelmannii [Moench] Voss; intermediate shade tolerance) and lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia; low shade tolerance) saplings from 0.18 to 4.87 m tall, in 8-98% of total incident light, from field sites with <17.6 kg ha(-1) to >46.8 kg ha(-1) total dissolved N. Leaf weights and areas showed strong positive responses to light and height, but little or no response to soil nutrients. Parameter estimates indicated that the shape of leaf weight and area responses to light corresponded with shade tolerance ranking for the three species; pine had the most linear response whereas spruce and fir had asymptotic responses. Leaf N concentration responded positively to soil nutrients, negatively to light and idiosyncratically to height. The negative effect of light was only apparent on sites of high soil nutrient availability, and parameter estimates for the shape of the negative response also corresponded to shade tolerance ranking (apine = -0.79, aspruce = -0.15, afir = -0.07). Of the traits we measured, leaf mass per area showed the least response to light, soil nutrient and height gradients. Although it is a common practice in comparisons across many species, characterizing these conifers by mean values of their leaf traits would miss important intraspecific variation across environmental and size gradients. In these forests, parameter estimates representing the intraspecific variability of leaf trait responses can be used to understand relative shade tolerances. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Photosynthesis and carbon allocation are both important predictors of genotype productivity responses to elevated CO2 in Eucalyptus camaldulensis.

    PubMed

    Aspinwall, Michael J; Blackman, Chris J; de Dios, Víctor Resco; Busch, Florian A; Rymer, Paul D; Loik, Michael E; Drake, John E; Pfautsch, Sebastian; Smith, Renee A; Tjoelker, Mark G; Tissue, David T

    2018-05-08

    Intraspecific variation in biomass production responses to elevated atmospheric carbon dioxide (eCO2) could influence tree species' ecological and evolutionary responses to climate change. However, the physiological mechanisms underlying genotypic variation in responsiveness to eCO2 remain poorly understood. In this study, we grew 17 Eucalyptus camaldulensis Dehnh. subsp. camaldulensis genotypes (representing provenances from four different climates) under ambient atmospheric CO2 and eCO2. We tested whether genotype leaf-scale photosynthetic and whole-tree carbon (C) allocation responses to eCO2 were predictive of genotype biomass production responses to eCO2. Averaged across genotypes, growth at eCO2 increased in situ leaf net photosynthesis (Anet) (29%) and leaf starch concentrations (37%). Growth at eCO2 reduced the maximum carboxylation capacity of Rubisco (-4%) and leaf nitrogen per unit area (Narea, -6%), but Narea calculated on a total non-structural carbohydrate-free basis was similar between treatments. Growth at eCO2 also increased biomass production and altered C allocation by reducing leaf area ratio (-11%) and stem mass fraction (SMF, -9%), and increasing leaf mass area (18%) and leaf mass fraction (5%). Overall, we found few significant CO2 × provenance or CO2 × genotype (within provenance) interactions. However, genotypes that showed the largest increases in total dry mass at eCO2 had larger increases in root mass fraction (with larger decreases in SMF) and photosynthetic nitrogen-use efficiency (PNUE) with CO2 enrichment. These results indicate that genetic differences in PNUE and carbon sink utilization (in roots) are both important predictors of tree productivity responsiveness to eCO2.

  10. Allometric relationships predicting foliar biomass and leaf area:sapwood area ratio from tree height in five Costa Rican rain forest species.

    PubMed

    Calvo-Alvarado, J C; McDowell, N G; Waring, R H

    2008-11-01

    We developed allometric equations to predict whole-tree leaf area (A(l)), leaf biomass (M(l)) and leaf area to sapwood area ratio (A(l):A(s)) in five rain forest tree species of Costa Rica: Pentaclethra macroloba (Willd.) Kuntze (Fabaceae/Mim), Carapa guianensis Aubl. (Meliaceae), Vochysia ferru-gi-nea Mart. (Vochysiaceae), Virola koshnii Warb. (Myristicaceae) and Tetragastris panamensis (Engl.) Kuntze (Burseraceae). By destructive analyses (n = 11-14 trees per species), we observed strong nonlinear allometric relationships (r(2) > or = 0.9) for predicting A(l) or M(l) from stem diameters or A(s) measured at breast height. Linear relationships were less accurate. In general, A(l):A(s) at breast height increased linearly with tree height except for Penta-clethra, which showed a negative trend. All species, however, showed increased total A(l) with height. The observation that four of the five species increased in A(l):A(s) with height is consistent with hypotheses about trade--offs between morphological and anatomical adaptations that favor efficient water flow through variation in the amount of leaf area supported by sapwood and those imposed by the need to respond quickly to light gaps in the canopy.

  11. How vertical patterns in leaf traits shift seasonally and the implications for modeling canopy photosynthesis in a temperate deciduous forest.

    PubMed

    Coble, Adam P; VanderWall, Brittany; Mau, Alida; Cavaleri, Molly A

    2016-09-01

    Leaf functional traits are used in modeling forest canopy photosynthesis (Ac) due to strong correlations between photosynthetic capacity, leaf mass per area (LMA) and leaf nitrogen per area (Narea). Vertical distributions of these traits may change over time in temperate deciduous forests as a result of acclimation to light, which may result in seasonal changes in Ac To assess both spatial and temporal variations in key traits, we measured vertical profiles of Narea and LMA from leaf expansion through leaf senescence in a sugar maple (Acer saccharum Marshall) forest. To investigate mechanisms behind coordinated changes in leaf morphology and function, we also measured vertical variation in leaf carbon isotope composition (δ(13)C), predawn turgor pressure, leaf water potential and osmotic potential. Finally, we assessed potential biases in Ac estimations by parameterizing models with and without vertical and seasonal Narea variations following leaf expansion. Our data are consistent with the hypothesis that hydrostatic constraints on leaf morphology drive the vertical increase in LMA with height early in the growing season; however, LMA in the upper canopy continued to increase over time during light acclimation, indicating that light is primarily driving gradients in LMA later in the growing season. Models with no seasonal variation in Narea overestimated Ac by up to 11% early in the growing season, while models with no vertical variation in Narea overestimated Ac by up to 60% throughout the season. According to the multilayer model, the upper 25% of leaf area contributed to over 50% of Ac, but when gradients of intercellular CO2, as estimated from δ(13)C, were accounted for, the upper 25% of leaf area contributed to 26% of total Ac Our results suggest that ignoring vertical variation of key traits can lead to considerable overestimation of Ac. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Removal of nutrient limitations in forest gaps enhances growth rate and resistance to cavitation in subtropical canopy tree species differing in shade tolerance.

    PubMed

    Villagra, Mariana; Campanello, Paula I; Montti, Lia; Goldstein, Guillermo

    2013-03-01

    A 4-year fertilization experiment with nitrogen (N) and phosphorus (P) was carried out in natural gaps of a subtropical forest in northeastern Argentina. Saplings of six dominant canopy species differing in shade tolerance were grown in five control and five N + P fertilized gaps. Hydraulic architectural traits such as wood density, the leaf area to sapwood area ratio (LA : SA), vulnerability to cavitation (P50) and specific and leaf-specific hydraulic conductivity were measured, as well as the relative growth rate, specific leaf area (SLA) and percentage of leaf damage by insect herbivores. Plant growth rates and resistance to drought-induced embolisms increased when nutrient limitations were removed. On average, the P50 of control plants was -1.1 MPa, while the P50 of fertilized plants was -1.6 MPa. Wood density and LA : SA decreased with N + P additions. A trade-off between vulnerability to cavitation and efficiency of water transport was not observed. The relative growth rate was positively related to the total leaf surface area per plant and negatively related to LA : SA, while P50 was positively related to SLA across species and treatments. Plants with higher growth rates and higher total leaf area in fertilized plots were able to avoid hydraulic dysfunction by becoming less vulnerable to cavitation (more negative P50). Two high-light-requiring species exhibited relatively low growth rates due to heavy herbivore damage. Contrary to expectations, shade-tolerant plants with relatively high resistance to hydraulic dysfunction and reduced herbivory damage were able to grow faster. These results suggest that during the initial phase of sapling establishment in gaps, species that were less vulnerable to cavitation and exhibited reduced herbivory damage had faster realized growth rates than less shade-tolerant species with higher potential growth rates. Finally, functional relationships between hydraulic traits and growth rate across species and treatments were maintained regardless of soil nutrient status.

  13. Relation of Lake-Floor Characteristics to the Distribution of Variable Leaf Water-Milfoil in Moultonborough Bay, Lake Winnipesaukee, New Hampshire, 2005

    USGS Publications Warehouse

    Argue, Denise M.; Kiah, Richard G.; Denny, Jane F.; Deacon, Jeffrey R.; Danforth, William W.; Johnston, Craig M.; Smagula, Amy P.

    2007-01-01

    Geophysical, water, and sediment surveys were done to characterize the effects of surficial geology, water and sediment chemistry, and surficial-sediment composition on the distribution of variable leaf water-milfoil in Moultonborough Bay, Lake Winnipesaukee, New Hampshire. Geophysical surveys were conducted in a 180-square-kilometer area, and water-quality and sediment samples were collected from 24 sites in the survey area during July 2005. Swath-bathymetric data revealed that Moultonborough Bay ranged in depth from less than 1 meter (m) to about 15 m and contained three embayments. Seismic-reflection profiles revealed erosion of the underlying bedrock and subsequent deposition of glaciolacustrine and Holocene lacustrine sediments within the survey area. Sediment thickness ranged from 5 m along the shoreward margins to more than 15 m in the embayments. Data from sidescan sonar, surficial-sediment samples, bottom photographs, and video revealed three distinct lake-floor environments: rocky nearshore, mixed nearshore, and muddy basin. Rocky nearshore environments were found in shallow water (less than 5 m deep) and contained sediments ranging from coarse silt to very coarse sand. Mixed nearshore environments also were found in shallow water and contained sediments ranging from silt to coarse sand with different densities of aquatic vegetation. Muddy basin environments contained the finest-grained sediments, ranging from fine to medium silt, and were in the deepest waters of the bay. Acoustic Ground Discrimination Systems (AGDS) survey data revealed that 86 percent of the littoral zone (the area along the margins of the bay and islands that extends from 0 to 4.3 m in water depth) contained submerged aquatic vegetation (SAV) in varying densities: approximately 36 percent contained SAV bottom cover of 25 percent or less, 43 percent contained SAV bottom cover of more than 25 and less than 75 percent, and approximately 7 percent contained SAV bottom cover of more than 75 percent. SAV included variable leaf water-milfoil, native milfoil, bassweed, pipewort, and other species, which were predominantly found near shoreward margins and at depths ranging from less than 1 to 4 m. AGDS data were used in a Geographic Information System to generate an interpolated map that distinguished variable leaf water-milfoil from other SAV. Furthermore, these data were used to isolate areas susceptible to variable leaf water-milfoil growth. Approximately 21 percent of the littoral zone contained dense beds (more than 59 percent bottom cover) of variable leaf water-milfoil, and an additional 44 percent was determined to be susceptible to variable leaf water-milfoil infestation. Depths differed significantly between sites with variable leaf water-milfoil and sites with other SAV (p = 0.04). Variable leaf water-milfoil was found at depths that ranged from 1 to 4 m, and other SAV had a depth range of 1 to 2 m. Although variable leaf water-milfoil was observed at greater depths than other SAV, it was not observed below the photic zone. Analysis of constituent concentrations from the water column, interstitial pore water, and sediment showed little correlation with the presence of variable leaf water-milfoil, with two exceptions. Iron concentrations were significantly lower at variable leaf water-milfoil sites than at other sampling sites (p = 0.04). Similarly, the percentage of total organic carbon also was significantly lower at the variable leaf water-milfoil sites than at other sampling sites (p = 0.04). Surficial-sediment-grain size had the greatest correlation to the presence of variable leaf water-milfoil. Variable leaf water-milfoil was predominantly growing in areas of coarse sand (median grain-size 0.62 millimeters). Surficial-sediment-grain size was also correlated with total ammonia plus organic nitrogen (Rho = 0.47; p = 0.02) and with total phosphorus (Rho = 0.44; p = 0.05) concentrations in interstitial pore-water samples.

  14. Epigenetic Variance, Performing Cooperative Structure with Genetics, Is Associated with Leaf Shape Traits in Widely Distributed Populations of Ornamental Tree Prunus mume

    PubMed Central

    Ma, Kaifeng; Sun, Lidan; Cheng, Tangren; Pan, Huitang; Wang, Jia; Zhang, Qixiang

    2018-01-01

    Increasing evidence shows that epigenetics plays an important role in phenotypic variance. However, little is known about epigenetic variation in the important ornamental tree Prunus mume. We used amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP) techniques, and association analysis and sequencing to investigate epigenetic variation and its relationships with genetic variance, environment factors, and traits. By performing leaf sampling, the relative total methylation level (29.80%) was detected in 96 accessions of P. mume. And the relative hemi-methylation level (15.77%) was higher than the relative full methylation level (14.03%). The epigenetic diversity (I∗ = 0.575, h∗ = 0.393) was higher than the genetic diversity (I = 0.484, h = 0.319). The cultivated population displayed greater epigenetic diversity than the wild populations in both southwest and southeast China. We found that epigenetic variance and genetic variance, and environmental factors performed cooperative structures, respectively. In particular, leaf length, width and area were positively correlated with relative full methylation level and total methylation level, indicating that the DNA methylation level played a role in trait variation. In total, 203 AFLP and 423 MSAP associated markers were detected and 68 of them were sequenced. Homologous analysis and functional prediction suggested that the candidate marker-linked genes were essential for leaf morphology development and metabolism, implying that these markers play critical roles in the establishment of leaf length, width, area, and ratio of length to width. PMID:29441078

  15. Epigenetic Variance, Performing Cooperative Structure with Genetics, Is Associated with Leaf Shape Traits in Widely Distributed Populations of Ornamental Tree Prunus mume.

    PubMed

    Ma, Kaifeng; Sun, Lidan; Cheng, Tangren; Pan, Huitang; Wang, Jia; Zhang, Qixiang

    2018-01-01

    Increasing evidence shows that epigenetics plays an important role in phenotypic variance. However, little is known about epigenetic variation in the important ornamental tree Prunus mume . We used amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP) techniques, and association analysis and sequencing to investigate epigenetic variation and its relationships with genetic variance, environment factors, and traits. By performing leaf sampling, the relative total methylation level (29.80%) was detected in 96 accessions of P . mume . And the relative hemi-methylation level (15.77%) was higher than the relative full methylation level (14.03%). The epigenetic diversity ( I ∗ = 0.575, h ∗ = 0.393) was higher than the genetic diversity ( I = 0.484, h = 0.319). The cultivated population displayed greater epigenetic diversity than the wild populations in both southwest and southeast China. We found that epigenetic variance and genetic variance, and environmental factors performed cooperative structures, respectively. In particular, leaf length, width and area were positively correlated with relative full methylation level and total methylation level, indicating that the DNA methylation level played a role in trait variation. In total, 203 AFLP and 423 MSAP associated markers were detected and 68 of them were sequenced. Homologous analysis and functional prediction suggested that the candidate marker-linked genes were essential for leaf morphology development and metabolism, implying that these markers play critical roles in the establishment of leaf length, width, area, and ratio of length to width.

  16. Response of nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and antioxidant activity in selected vegetable amaranth under four soil water content.

    PubMed

    Sarker, Umakanta; Oba, Shinya

    2018-06-30

    Four selected vegetable amaranths were grown under four soil water content to evaluate their response in nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and total antioxidant activity (TAC). Vegetable amaranth was significantly affected by variety, soil water content and variety × soil water content interactions for all the traits studied. Increase in water stress, resulted in significant changes in proximate compositions, minerals (macro and micro), leaf pigments, vitamin, total polyphenol content (TPC), and total flavonoid content (TFC) of vegetable amaranth. Accessions VA14 and VA16 performed better for all the traits studied. Correlation study revealed a strong antioxidant scavenging activity of leaf pigments, ascorbic acid, TPC and TFC. Vegetable amaranth can tolerate soil water stress without compromising the high quality of the final product in terms of nutrients and antioxidant profiles. Therefore, it could be a promising alternative crop in semi-arid and dry areas and also during dry seasons. Copyright © 2018. Published by Elsevier Ltd.

  17. Argentinean cultivars of Vitis vinifera grow better than European ones when cultured in vitro under salinity.

    PubMed

    Cavagnaro, Juan B; Ponce, María T; Guzmán, Javier; Cirrincione, Miguel A

    2006-04-01

    Argentinean Vitis vinifera cultivars although originated from Europe, have clear ampelographic and genotypic differences as compared with the European cultivars currently used in wine making. In vitro evaluation of salt tolerance has been used in many species. Our hypothesis was that Argentinean cultivars are more tolerant to salinity than European ones. Three European cultivars, Malbec, Cabernet Sauvignon and Chardonnay and four Argentincan cultivars, Cereza, Criolla Chica, Pedro Gimcnez and Torrontes Riojano were tested by in vitro culture. Treatments included: 1) Control, 2) 60 mEq/L of a mixture of three parts of NaCl and one part of CaCl2 and 3) 90 mEq/L of the salt mixture. Results from two experiments (I and II) are reported. No differences were found in plant survival, expressed as % of the respective control, among cultivars. Leaf area, leaf, stem and total dry matter (DM) in Experiment I and leaf area, leaf number and leaf, stem, root and total DM in Experiment II, were higher in Argentinean cultivars than in European ones. We conclude that Argentinean cultivars show better performance in growing under salinity, especially in the highest salt concentration. Differences among cultivars, inside each group, were found for most of the measured variables.

  18. Metabolic Profiling and Physiological Analysis of a Novel Rice Introgression Line with Broad Leaf Size

    PubMed Central

    Zhao, Xiuqin; Zhang, Guilian; Wang, Yun; Zhang, Fan; Wang, Wensheng; Zhang, Wenhao; Fu, Binying; Xu, Jianlong; Li, Zhikang

    2015-01-01

    A rice introgression line, NIL-SS1, and its recurrent parent, Teqing, were used to investigate the influence of the introgression segment on plant growth. The current research showed NIL-SS1 had an increased flag leaf width, total leaf area, spikelet number per panicle and grain yield, but a decreased photosynthetic rate. The metabolite differences in NIL-SS1 and Teqing at different developmental stages were assessed using gas chromatography—mass spectrometry technology. Significant metabolite differences were observed across the different stages. NIL-SS1 increased the plant leaf nitrogen content, and the greatest differences between NIL-SS1 and Teqing occurred at the booting stage. Compared to Teqing, the metabolic phenotype of NIL-SS1 at the booting stage has closer association with those at the flowering stage. The introgression segment induced more active competition for sugars and organic acids (OAs) from leaves to the growing young spikes, which resulted in more spikelet number per plant (SNP). The results indicated the introgression segment could improve rice grain yield by increasing the SNP and total leaf area per plant, which resulted from the higher plant nitrogen content across growth stages and stronger competition for sugars and OAs of young spikes at the booting stage. PMID:26713754

  19. Seasonal patterns of leaf gas exchange and water relations in dry rain forest trees of contrasting leaf phenology.

    PubMed

    Choat, Brendan; Ball, Marilyn C; Luly, Jon G; Donnelly, Christine F; Holtum, Joseph A M

    2006-05-01

    Diurnal and seasonal patterns of leaf gas exchange and water relations were examined in tree species of contrasting leaf phenology growing in a seasonally dry tropical rain forest in north-eastern Australia. Two drought-deciduous species, Brachychiton australis (Schott and Endl.) A. Terracc. and Cochlospermum gillivraei Benth., and two evergreen species, Alphitonia excelsa (Fenzal) Benth. and Austromyrtus bidwillii (Benth.) Burret. were studied. The deciduous species had higher specific leaf areas and maximum photosynthetic rates per leaf dry mass in the wet season than the evergreens. During the transition from wet season to dry season, total canopy area was reduced by 70-90% in the deciduous species and stomatal conductance (g(s)) and assimilation rate (A) were markedly lower in the remaining leaves. Deciduous species maintained daytime leaf water potentials (Psi(L)) at close to or above wet season values by a combination of stomatal regulation and reduction in leaf area. Thus, the timing of leaf drop in deciduous species was not associated with large negative values of daytime Psi(L) (greater than -1.6 MPa) or predawn Psi(L) (greater than -1.0 MPa). The deciduous species appeared sensitive to small perturbations in soil and leaf water status that signalled the onset of drought. The evergreen species were less sensitive to the onset of drought and g(s) values were not significantly lower during the transitional period. In the dry season, the evergreen species maintained their canopies despite increasing water-stress; however, unlike Eucalyptus species from northern Australian savannas, A and g(s) were significantly lower than wet season values.

  20. Correlated variation of floral and leaf traits along a moisture availability gradient.

    PubMed

    Lambrecht, Susan C; Dawson, Todd E

    2007-04-01

    Variation in flower size is an important aspect of a plant's life history, yet few studies have shown how flower size varies with environmental conditions and to what extent foliar responses to the environment are correlated with flower size. The objectives of this study were to (1) develop a theoretical framework for linking flower size and leaf size to their costs and benefits, as assessed using foliar stable carbon isotope ratio (delta(13)C) under varying degrees of water limitation, and then (2) examine how variation in flower size within and among species growing along a naturally occurring moisture availability gradient correlates with variation in delta(13)C and leaf size. Five plant species were examined at three sites in Oregon. Intra- and inter-specific patterns of flower size in relation to moisture availability were the same: the ratios of the area of flower display to total leaf area and of individual flower area to leaf area were greater at sites with more soil moisture compared to those sites with less soil moisture. The increase in flower area per unit increase in leaf area was greater at sites with more soil moisture than at sites where water deficit can occur. Values of delta(13)C, an index of water-use efficiency, were greater for plants with larger floral size. The patterns we observed generalize across species, irrespective of overall plant morphology or pollination system. These correlations between flower size, moisture availability, and delta(13)C suggest that water loss from flowers can influence leaf responses to the environment, which in turn may indirectly mediate an effect on flower size.

  1. Testing the adaptive plasticity of Iris pumila leaf traits to natural light conditions using phenotypic selection analysis

    NASA Astrophysics Data System (ADS)

    Tucić, Branka; Tomić, Vladimir; Avramov, Stevan; Pemac, Danijela

    1998-12-01

    A multivariate selection analysis has been used to test the adaptiveness of several Iris pumila leaf traits that display plasticity to natural light conditions. Siblings of a synthetic population comprising 31 families of two populations from contrasting light habitats were grown at an open dune site and in the understory of a Pinus nigra stand in order to score variation in phenotypic expression of six leaf traits: number of senescent leaves, number of live leaves, leaf length, leaf width, leaf angle, and specific leaf area. The ambient light conditions affected the values of all traits studied except for specific leaf area. In accordance to ecophysiological expectations for an adaptive response to light, both leaf length and width were significantly greater while the angle between sequential leaves was significantly smaller in the woodland understory than at the exposed dune site. The relationship between leaf traits and vegetative fitness (total leaf area) differed across light habitats as predicted by functional hypotheses. The standardized linear selection gradient ( β') for leaf length and width were positive in sign in both environments, but their magnitude for leaf length was higher in the shade than under full sunlight. Since plasticity of leaf length in the woodland shade has been recognized as adaptive, fitness cost of producing plastic change in leaf length was assessed. In both of the available methods used, the two-step and the multivariate regression procedures, a rather high negative association between the fitness value and the plasticity of leaf length was obtained, indicating a cost of plasticity. The selection gradient for leaf angle was weak and significant only in the woodland understory. Genetic correlations between trait expressions in contrasting light environments were negative in sign and low in magnitude, implying a significant genetic variation for plasticity in these leaf traits. Furthermore, leaf length and leaf width were found to be genetically positively coupled, which indicates that there is a potential for these two traits to evolve toward their optimal phenotypic values even faster than would be expected if they were genetically independent.

  2. Influence of the erineum strain of Colomerus vitis (Acari: Eriophyidae) on grape (Vitis vinifera) defense mechanisms.

    PubMed

    Javadi Khederi, Saeid; Khanjani, Mohammad; Gholami, Mansur; Panzarino, Onofrio; de Lillo, Enrico

    2018-05-01

    Grape (Vitis vinifera) is commonly affected by the erineum strain of Colomerus vitis (GEM) in Iran and the susceptibility of grape cultivars to GEM is poorly understood. In order to evaluate the impact of GEM on grape and its defense mechanisms against the mite, an exploratory study was carried out on 19 cultivars (18 Iranian and the non-native Muscat Gordo). The differential susceptibility of cultivars to GEM was compared on the basis of the area of leaf damage induced by GEM. The cultivars White Thompson seedless of Bovanat, Atabaki Zarghan, Koladari Ghoochan and Sahebi Uroomie were less susceptible to GEM, whereas Ghalati Dodaj, Rishbaba, Muscat Gordo and Neyshaboori Birjand appeared to be the most affected by the mite. In a no-choice setup, plants of selected cultivars of these two groups were infested by GEM and assayed for 10 biomarkers usually related to plant stress mechanisms against plant feeders: the activity of defense enzymes-peroxidase (POX), polyphenol oxidase (PPO), superoxide dismutase (SOD), phenylalanine ammonia-lyase (PAL), catalase (CAT), the amount of total polyphenolics, total flavonoids, total soluble carbohydrates, hydrogen peroxide (H 2 O 2 ), and malondialdehyde (MDA) expressing lipid peroxidation. The biomarkers were assessed in grape leaves 7 days before releasing the mites, as well as 7, 14 and 28 days after infestation (DAI). The activity of the enzymes and the amount of the compounds usually increased in percentage after mite infestation. A significant negative correlation was found between the area of leaf damage and PPO, POX, SOD, MDA and H 2 O 2 for all sampling dates. The area of leaf damage showed a significant positive correlation with total soluble carbohydrates at 28 DAI, and significant negative correlations with CAT (at 14 and 28 DAI), PAL and total flavonoids (at 7 DAI). No correlation was observed between area of leaf damage and total polyphenolics. The biomarkers PPO, SOD, CAT activity and H 2 O 2 provided the best explanation for the response of grape cultivars to GEM infestation.

  3. The effect of air pollution and other environmental stressors on leaf fluctuating asymmetry and specific leaf area of Salix alba L.

    PubMed

    Wuytack, Tatiana; Wuyts, Karen; Van Dongen, Stefan; Baeten, Lander; Kardel, Fatemeh; Verheyen, Kris; Samson, Roeland

    2011-10-01

    We aimed at evaluating the effect of low-level air pollution on leaf area fluctuating asymmetry (FAA) and specific leaf area (SLA) of Salix alba L., taking into account other environmental factors. Cuttings were grown in standardized conditions in the near vicinity of air quality measuring stations in Belgium. Variability of SLA and FAA between measuring stations explained 83% and 7.26%, respectively, of the total variability. FAA was not influenced by air pollution or environmental factors such as shading, herbivory, air temperature and humidity. SLA was increased by an increase in shadow, while NO(x) and O(3) concentrations had only a marginal influence. The influence of SO(2) concentration was negligible. Although our data analysis suggests a relationship between SLA and NO(x)/O(3) concentration, the absence of a straightforward relationship between FAA and SLA and air pollution still questions the usefulness of these bio-indicators for monitoring air pollution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems.

    PubMed

    Hao, Guang-You; Hoffmann, William A; Scholz, Fabian G; Bucci, Sandra J; Meinzer, Frederick C; Franco, Augusto C; Cao, Kun-Fang; Goldstein, Guillermo

    2008-03-01

    Leaf and stem functional traits related to plant water relations were studied for six congeneric species pairs, each composed of one tree species typical of savanna habitats and another typical of adjacent forest habitats, to determine whether there were intrinsic differences in plant hydraulics between these two functional types. Only individuals growing in savanna habitats were studied. Most stem traits, including wood density, the xylem water potential at 50% loss of hydraulic conductivity, sapwood area specific conductivity, and leaf area specific conductivity did not differ significantly between savanna and forest species. However, maximum leaf hydraulic conductance (K (leaf)) and leaf capacitance tended to be higher in savanna species. Predawn leaf water potential and leaf mass per area were also higher in savanna species in all congeneric pairs. Hydraulic vulnerability curves of stems and leaves indicated that leaves were more vulnerable to drought-induced cavitation than terminal branches regardless of genus. The midday K (leaf) values estimated from leaf vulnerability curves were very low implying that daily embolism repair may occur in leaves. An electric circuit analog model predicted that, compared to forest species, savanna species took longer for their leaf water potentials to drop from predawn values to values corresponding to 50% loss of K (leaf) or to the turgor loss points, suggesting that savanna species were more buffered from changes in leaf water potential. The results of this study suggest that the relative success of savanna over forest species in savanna is related in part to their ability to cope with drought, which is determined more by leaf than by stem hydraulic traits. Variation among genera accounted for a large proportion of the total variance in most traits, which indicates that, despite different selective pressures in savanna and forest habitats, phylogeny has a stronger effect than habitat in determining most hydraulic traits.

  5. Leaf morphology shift linked to climate change.

    PubMed

    Guerin, Greg R; Wen, Haixia; Lowe, Andrew J

    2012-10-23

    Climate change is driving adaptive shifts within species, but research on plants has been focused on phenology. Leaf morphology has demonstrated links with climate and varies within species along climate gradients. We predicted that, given within-species variation along a climate gradient, a morphological shift should have occurred over time due to climate change. We tested this prediction, taking advantage of latitudinal and altitudinal variations within the Adelaide Geosyncline region, South Australia, historical herbarium specimens (n = 255) and field sampling (n = 274). Leaf width in the study taxon, Dodonaea viscosa subsp. angustissima, was negatively correlated with latitude regionally, and leaf area was negatively correlated with altitude locally. Analysis of herbarium specimens revealed a 2 mm decrease in leaf width (total range 1-9 mm) over 127 years across the region. The results are consistent with a morphological response to contemporary climate change. We conclude that leaf width is linked to maximum temperature regionally (latitude gradient) and leaf area to minimum temperature locally (altitude gradient). These data indicate a morphological shift consistent with a direct response to climate change and could inform provenance selection for restoration with further investigation of the genetic basis and adaptive significance of observed variation.

  6. Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply.

    PubMed

    Ordoñez, Jenny C; van Bodegom, Peter M; Witte, Jan-Philip M; Bartholomeus, Ruud P; van Dobben, Han F; Aerts, Rien

    2010-11-01

    The large variation in the relationships between environmental factors and plant traits observed in natural communities exemplifies the alternative solutions that plants have developed in response to the same environmental limitations. Qualitative attributes, such as growth form, woodiness, and leaf habit can be used to approximate these alternative solutions. Here, we quantified the extent to which these attributes affect leaf trait values at a given resource supply level, using measured plant traits from 105 different species (254 observations) distributed across 50 sites in mesic to wet plant communities in The Netherlands. For each site, soil total N, soil total P, and water supply estimates were obtained by field measurements and modeling. Effects of growth forms, woodiness, and leaf habit on relations between leaf traits (SLA, specific leaf area; LNC, leaf nitrogen concentration; and LPC, leaf phosphorus concentration) vs. nutrient and water supply were quantified using maximum-likelihood methods and Bonferroni post hoc tests. The qualitative attributes explained 8-23% of the variance within sites in leaf traits vs. soil fertility relationships, and therefore they can potentially be used to make better predictions of global patterns of leaf traits in relation to nutrient supply. However, at a given soil fertility, the strength of the effect of each qualitative attribute was not the same for all leaf traits. These differences may imply a differential regulation of the leaf economy traits at a given nutrient supply, in which SLA and LPC seem to be regulated in accordance to changes in plant size and architecture while LNC seems to be primarily regulated at the leaf level by factors related to leaf longevity.

  7. Effects of structural complexity on within-canopy light environments and leaf traits in a northern mixed deciduous forest.

    PubMed

    Fotis, Alexander T; Curtis, Peter S

    2017-10-01

    Canopy structure influences forest productivity through its effects on the distribution of radiation and the light-induced changes in leaf physiological traits. Due to the difficulty of accessing and measuring forest canopies, few field-based studies have quantitatively linked these divergent scales of canopy functioning. The objective of our study was to investigate how canopy structure affects light profiles within a forest canopy and whether leaves of mature trees adjust morphologically and biochemically to the light environments characteristic of canopies with different structural complexity. We used a combination of light detection and ranging (LiDAR) data and hemispherical photographs to quantify canopy structure and light environments, respectively, and a telescoping pole to sample leaves. Leaf mass per area (LMA), nitrogen on an area basis (Narea) and chlorophyll on a mass basis (Chlmass) were measured in red maple (Acer rubrum), american beech (Fagus grandifolia), white pine (Pinus strobus), and northern red oak (Quercus rubra) at different heights in plots with similar leaf area index but contrasting canopy complexity (rugosity). We found that more complex canopies had greater porosity and reduced light variability in the midcanopy while total light interception was unchanged relative to less complex canopies. Leaf phenotypes of F. grandifolia, Q. rubra and P. strobus were more sun-acclimated in the midstory of structurally complex canopies while leaf phenotypes of A. rubrum were more shade-acclimated (lower LMA) in the upper canopy of more complex stands, despite no differences in total light interception. Broadleaf species showed further differences in acclimation with increased Narea and reduced Chlmass in leaves with higher LMA, while P. strobus showed no change in Narea and Chlmass with higher LMA. Our results provide new insight on how light distribution and leaf acclimation in mature trees might be altered when natural and anthropogenic disturbances cause structural changes in the canopy. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. The responses of light interception, photosynthesis and fruit yield of cucumber to LED-lighting within the canopy.

    PubMed

    Trouwborst, Govert; Oosterkamp, Joke; Hogewoning, Sander W; Harbinson, Jeremy; van Ieperen, Wim

    2010-03-01

    Mathematical models of light attenuation and canopy photosynthesis suggest that crop photosynthesis increases by more uniform vertical irradiance within crops. This would result when a larger proportion of total irradiance is applied within canopies (interlighting) instead of from above (top lighting). These irradiance profiles can be generated by Light Emitting Diodes (LEDs). We investigated the effects of interlighting with LEDs on light interception, on vertical gradients of leaf photosynthetic characteristics and on crop production and development of a greenhouse-grown Cucumis sativus'Samona' crop and analysed the interaction between them. Plants were grown in a greenhouse under low natural irradiance (winter) with supplemental irradiance of 221 micromol photosynthetic photon flux m(-2) s(-1) (20 h per day). In the interlighting treatment, LEDs (80% Red, 20% Blue) supplied 38% of the supplemental irradiance within the canopy with 62% as top lighting by High-Pressure Sodium (HPS)-lamps. The control was 100% top lighting (HPS lamps). We measured horizontal and vertical light extinction as well as leaf photosynthetic characteristics at different leaf layers, and determined total plant production. Leaf mass per area and dry mass allocation to leaves were significantly greater but leaf appearance rate and plant length were smaller in the interlighting treatment. Although leaf photosynthetic characteristics were significantly increased in the lower leaf layers, interlighting did not increase total biomass or fruit production, partly because of a significantly reduced vertical and horizontal light interception caused by extreme leaf curling, likely because of the LED-light spectrum used, and partly because of the relatively low irradiances from above.

  9. Modeling Allometric Relationships in Leaves of Young Rapeseed (Brassica napus L.) Grown at Different Temperature Treatments

    PubMed Central

    Tian, Tian; Wu, Lingtong; Henke, Michael; Ali, Basharat; Zhou, Weijun; Buck-Sorlin, Gerhard

    2017-01-01

    Functional–structural plant modeling (FSPM) is a fast and dynamic method to predict plant growth under varying environmental conditions. Temperature is a primary factor affecting the rate of plant development. In the present study, we used three different temperature treatments (10/14°C, 18/22°C, and 26/30°C) to test the effect of temperature on growth and development of rapeseed (Brassica napus L.) seedlings. Plants were sampled at regular intervals (every 3 days) to obtain growth data during the length of the experiment (1 month in total). Total leaf dry mass, leaf area, leaf mass per area (LMA), width-length ratio, and the ratio of petiole length to leaf blade length (PBR), were determined and statistically analyzed, and contributed to a morphometric database. LMA under high temperature was significantly smaller than LMA under medium and low temperature, while leaves at high temperature were significantly broader. An FSPM of rapeseed seedlings featuring a growth function used for leaf extension and biomass accumulation was implemented by combining measurement with literature data. The model delivered new insights into growth and development dynamics of winter oilseed rape seedlings. The present version of the model mainly focuses on the growth of plant leaves. However, future extensions of the model could be used in practice to better predict plant growth in spring and potential cold damage of the crop. PMID:28377775

  10. Mercury bioaccumulation studies in the National Water-Quality Assessment Program--biological data from New York and South Carolina, 2005-2009

    USGS Publications Warehouse

    Beaulieu, Karen M.; Button, Daniel T.; Eikenberry, Barbara C. Scudder; Riva-Murray, Karen; Chasar, Lia C.; Bradley, Paul M.; Burns, Douglas A.

    2012-01-01

    The U.S. Geological Survey National Water-Quality Assessment Program conducted a multidisciplinary study from 2005–09 to investigate the bioaccumulation of mercury in streams from two contrasting environmental settings. Study areas were located in the central Adirondack Mountains region of New York and the Inner Coastal Plain of South Carolina. Fish, macroinvertebrates, periphyton (attached algae and associated material), detritus, and terrestrial leaf litter were collected. Fish were analyzed for total mercury; macroinvertebrates, periphyton, and terrestrial leaf litter were analyzed for total mercury and methylmercury; and select samples of fish, macroinvertebrates, periphyton, detritus, and terrestrial leaf litter were analyzed for stable isotopes of carbon (δ13C) and nitrogen (δ15N). This report presents methodology and data on total mercury, methylmercury, stable isotopes, and other ecologically relevant measurements in biological tissues.

  11. The phantom leaf effect: a replication, part 1.

    PubMed

    Hubacher, John

    2015-02-01

    To replicate the phantom leaf effect and demonstrate a possible means to directly observe properties of the biological field. Thirty percent to 60% of plant leaves were amputated, and the remaining leaf sections were photographed with corona discharge imaging. All leaves were cut before placement on film. A total of 137 leaves were used. Plant leaves of 14 different species. Ninety-six phantom leaf specimens were successfully obtained; 41 specimens did not yield the phantom leaf effect. A normally undetected phantom "structure," possibly evidence of the biological field, can persist in the area of an amputated leaf section, and corona discharge can occur from this invisible structure. This protocol may suggest a testable method to study properties of conductivity and other parameters through direct observation of the complete biological field in plant leaves, with broad implications for biology and physics.

  12. Influence of sewage sludge, as a substrate, in the plasticity of functional characteristics of plants.

    PubMed

    da Silva, Vicente Elício Porfiro Sales Gonçalves; Buarque, Patrícia Marques Carneiro; Ferreira, Wanessa Nepomuceno; Buarque, Hugo Leonardo de Brito; Silva, Maria Amanda Menezes

    2018-04-24

    This work aimed to evaluate the effect of sewage sludge application as fertilizer on the plasticity of functional characteristics of species commonly found in the Caatinga. The research was developed in the nursery of the Federal Institute of Education, Science and Technology of Ceará (IFCE), Quixadá campus, located in northeastern Brazil. Three treatments were applied: raw sludge, sanitized sludge, and no manipulation. In each treatment, five species were planted, each with five individuals, totaling 75 individuals, which were tagged, and 4 months after germination, they were destroyed to obtain dry matter content (TMSF) from leaf, stem (TMSC), fine root (TMSRF), and thick root (TMSRG); leaf area; height and diameter of the seedling; and length above and below the ground. The sanitized sludge was responsible for giving higher values for leaf area, height of the seedlings, and diameter and length of stem and root. However, the dry matter content of the fine roots was higher in the treatment without manipulation. At the community level, as TMSRG increased, TMSC also increased, the same occurred between TMSRG and TMSRF, TMSC and TMSRF, and stem length and leaf area. In the treatment without manipulation, there was a positive correlation between leaf area, height and plant diameter, and negative correlation between root length and plant diameter. Thus, it can be concluded that the use of sanitized sludge is a good tool to increase the availability of soil resources, conferring to individuals' greater dry matter content, greater leaf area, and higher height and diameter above the ground.

  13. Influence of Shoot Structure on Light Interception and Photosynthesis in Conifers

    PubMed Central

    Carter, Gregory A.; Smith, William K.

    1985-01-01

    The influence of shoot structure on net photosynthesis was evaluated under field conditions for the central Rocky Mountain (United States) conifers Picea engelmannii (Parry ex Engelm.), Abies lasiocarpa ([Hook] Nutt.), and Pinus contorta (Engelm.). In all species, the greater number of needles per unit stem length on sun shoots correlated with a smaller silhouette leaf area to total leaf area ratio (STAR). Decreased STAR was due primarily to greater needle inclination toward the vertical, plus some needle mutual shading. However, photosynthesis expressed on a total leaf area basis did not decrease in sun shoots (lower STAR) but remained nearly constant at approximately 3 micromoles per square meter per second over a wide range of STAR (0.1 to 0.3). Relatively low light saturation levels of 200 to 1400 microeinsteins per square meter per second and diffuse light to 350 microeinsteins per meter per second maintained photosynthetic flux densities in inclined and/or shaded needles at levels comparable to those in unshaded needles oriented perpendicular to the solar beam. As a result, net CO2 uptake per unit stem length increased as much as 2-fold in sun shoots (low STAR) in direct proportion to increasing needle density. PMID:16664525

  14. Plant trait-species abundance relationships vary with environmental properties in subtropical forests in eastern china.

    PubMed

    Yan, En-Rong; Yang, Xiao-Dong; Chang, Scott X; Wang, Xi-Hua

    2013-01-01

    Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes) environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N) and phosphorus (P) contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA), leaf N concentration (LN), and total leaf area per twig size (TLA) were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests.

  15. Tomato growth as affected by root-zone temperature and the addition of gibberellic acid and kinetin to nutrient solutions

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; White, J. W.; Salisbury, F. B. (Principal Investigator)

    1984-01-01

    The effect of root-zone temperature on young tomato plants (Lycopersicon esculentum Mill. cv. Heinz 1350) was evaluated in controlled environments using a recirculating solution culture system. Growth rates were measured at root-zone temperatures of 15 degrees, 20 degrees, 25 degrees, and 30 degrees C in a near optimum foliar environment. Optimum growth occurred at 25 degrees to 30 degrees during the first 4 weeks of growth and 20 degrees to 25 degrees during the 5th and 6th weeks. Growth was severely restricted at 15 degrees. Four concentrations of gibberellic acid (GA3) and kinetin were added to the nutrient solution in a separate trial; root-zone temperature was maintained at 15 degrees and 25 degrees. Addition of 15 micromoles GA3 to solutions increased specific leaf area, total leaf area, and dry weight production of plants in both temperature treatments. GA3-induced growth stimulation was greater at 15 degrees than at 25 degrees. GA3 may promote growth by increasing leaf area, enhancing photosynthesis per unit leaf area, or both. Kinetic was not useful in promoting growth at either temperature.

  16. FOREST-BGC, A general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets.

    PubMed

    Running, Steven W.; Gower, Stith T.

    1991-01-01

    A new version of the ecosystem process model FOREST-BGC is presented that uses stand water and nitrogen limitations to alter the leaf/root/stem carbon allocation fraction dynamically at each annual iteration. Water deficit is defined by integrating a daily soil water deficit fraction annually. Current nitrogen limitation is defined relative to a hypothetical optimum foliar N pool, computed as maximum leaf area index multiplied by maximum leaf nitrogen concentration. Decreasing availability of water or nitrogen, or both, reduces the leaf/root carbon partitioning ratio. Leaf and root N concentrations, and maximum leaf photosynthetic capacity are also redefined annually as functions of nitrogen availability. Test simulations for hypothetical coniferous forests were performed for Madison, WI and Missoula, MT, and showed simulated leaf area index ranging from 4.5 for a control stand at Missoula, to 11 for a fertilized stand at Madison, with Year 50 stem carbon biomasses of 31 and 128 Mg ha(-1), respectively. Total nitrogen incorporated into new tissue ranged from 34 kg ha(-1) year(-1) for the unfertilized Missoula stand, to 109 kg ha(-1) year(-1) for the fertilized Madison stand. The model successfully showed dynamic annual carbon partitioning controlled by water and nitrogen limitations.

  17. A preliminary study on activity budget, daily travel distance and feeding behaviour of long-tailed macaques and spectacled dusky leaf monkey in Bangi campus of Universiti Kebangsaan Malaysia, Selangor

    NASA Astrophysics Data System (ADS)

    Ruslin, Farhani; Yaakop, Salmah; Zain, Badrul Munir Md.

    2014-09-01

    The activity budget, ranging behaviour and feeding behaviour of a multimale-multifemale group of long-tailed macaques (Macaca fascicularis) and a multimale-multifemale group of spectacled dusky leaf monkey (Trachypithecus obscurus) were studied. A total of 145 hours and 143 hours have been spent to observe the group of long-tailed macaque and spectacled dusky leaf monkey that ranged the same habitat adjacent to the campus areas. The researchers examined the activity budgets, daily travel length and feeding activity of both species and distinguished how the sympatric species used the same forested habitat. Preliminary study found that the long-tailed macaques spent longer time feeding, moving than resting and other activities. On the other hand, the dusky leaf monkey spent much time in feeding and resting than moving. The differences of daily pattern between these two groups are significant. Macaques have higher daily mean of path length compared to the dusky leaf monkey and spent much time moving compare to the leaf monkey group. The spectacled dusky leaf monkey group also has fully utilized the forested areas where else the long-tailed macaques adopted foraging to the adjacent residential colleges.

  18. Biomonitoring of PAHs by using Quercus ilex leaves: Source diagnostic and toxicity assessment

    NASA Astrophysics Data System (ADS)

    De Nicola, Flavia; Claudia, Lancellotti; MariaVittoria, Prati; Giulia, Maisto; Anna, Alfani

    2011-03-01

    Quercus ilex L. leaves were sampled at nineteen urban sites and two remote sites in order to evaluate PAH contamination degree. One-, two- and three-year-old leaves were collected and leaf lipid content was measured to investigate the influence of leaf age and lipids in PAH accumulation. Some PAH diagnostic ratios, such as Ant/Ant + Phen, Flt/Flt + Pyr, B[a]A/B[a]A + Crys and IP/IP + B[g,h,i]P, were calculated. The results suggest that Q. ilex leaves are effective biomonitors of PAH air contamination: in fact, a great PAH accumulation in leaves from the urban areas, until 30-time higher compared to those from the remote sites, has been observed. At each site, the similar total PAH concentrations in leaves of different age, probably due to a canopy effect, indicate an ability of all leaf age classes to monitor local PAH concentrations in air, remarking practical implications for air biomonitoring. The findings suggest that PAH adsorption in Q. ilex leaves does not result limited by leaf lipid content. Moreover, this study demonstrates the source-diagnostic potential of Q. ilex leaves, because, in particular, the Flt/Flt + Pyr and IP/IP + B[g,h,i]P ratios indicate vehicular traffic as the main source of PAHs in the urban areas and wood combustion in the remote areas. Moreover, to distinguish biomass combustion source, a promising tracer PAH as DB[a,h]A could be used. The high contribution of DB[a,h]A to total PAH concentrations at the remote sites determines a high carcinogenic potential in this area, similar to that calculated for the urban area where the carcinogenic PAH concentrations in absolute values are often higher.

  19. Short term effects of Glomus claroideum and Azospirillum brasilense on growth and root acid phosphatase activity of Carica papaya L. under phosphorus stress.

    PubMed

    Alarcón, Alejandro; Davies, Frederick T; Egilla, Johnatan N; Fox, Theodore C; Estrada-Luna, Arturo A; Ferrera-Cerrato, Ronald

    2002-01-01

    Arbuscular mycorrhizal fungi (AMF) are able to increase root enzymatic activity of acid and alkaline phosphatases. However, the role of AMF on phosphatase activity has not been reported in papaya (Carica papaya L.), which is frequently established at places with soil phosphorus (P) deficiencies. The goals of this research were to determine the effect of Glomus claroideum (Gc), and plant growth promoting rhizobacterium Azospirillum brasilense strain VS7 [Ab]) on root phosphatase activity and seedling growth of Carica papaya L. cv. Red Maradol under low P conditions. There were four treatments-colonization with: 1) Gc, 2) Ab, 3) Gc+Ab, and 4) non-inoculated seedlings. Plants were established in a coarse sand:sandy loam substrate under P-limitation (11 microg P ml(-1)), supplied with a modified Long Ashton Nutrient Solution. Seedling growth was severely reduced by low P. Gc+Ab inoculated plants had greater total dry matter and leaf area than non-colonized plants. Gc-inoculated plants had greater leaf area than non-colonized plants. Treatments did not differ in leaf area ratio, specific leaf area and, total chlorophyll content. There was a non-significant effect on stem relative growth rate with Gc and Gc+Ab plants. Mycorrhizal colonization enhanced the bacterial population 3.4-fold in the Gc+Ab treatment compared with the population quantified in Ab treatment. Soluble and extractable root acid phosphatase activity (RAPA) was higher in Gc inoculated plants. We discussed on the possible relation among both inoculated microorganisms and also with the P-limitation which plants were established.

  20. Tree differences in primary and secondary growth drive convergent scaling in leaf area to sapwood area across Europe.

    PubMed

    Petit, Giai; von Arx, Georg; Kiorapostolou, Natasa; Lechthaler, Silvia; Prendin, Angela Luisa; Anfodillo, Tommaso; Caldeira, Maria C; Cochard, Hervé; Copini, Paul; Crivellaro, Alan; Delzon, Sylvain; Gebauer, Roman; Gričar, Jožica; Grönholm, Leila; Hölttä, Teemu; Jyske, Tuula; Lavrič, Martina; Lintunen, Anna; Lobo-do-Vale, Raquel; Peltoniemi, Mikko; Peters, Richard L; Robert, Elisabeth M R; Roig Juan, Sílvia; Senfeldr, Martin; Steppe, Kathy; Urban, Josef; Van Camp, Janne; Sterck, Frank

    2018-06-01

    Trees scale leaf (A L ) and xylem (A X ) areas to couple leaf transpiration and carbon gain with xylem water transport. Some species are known to acclimate in A L  : A X balance in response to climate conditions, but whether trees of different species acclimate in A L  : A X in similar ways over their entire (continental) distributions is unknown. We analyzed the species and climate effects on the scaling of A L vs A X in branches of conifers (Pinus sylvestris, Picea abies) and broadleaved (Betula pendula, Populus tremula) sampled across a continental wide transect in Europe. Along the branch axis, A L and A X change in equal proportion (isometric scaling: b ˜ 1) as for trees. Branches of similar length converged in the scaling of A L vs A X with an exponent of b = 0.58 across European climates irrespective of species. Branches of slow-growing trees from Northern and Southern regions preferentially allocated into new leaf rather than xylem area, with older xylem rings contributing to maintaining total xylem conductivity. In conclusion, trees in contrasting climates adjust their functional balance between water transport and leaf transpiration by maintaining biomass allocation to leaves, and adjusting their growth rate and xylem production to maintain xylem conductance. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  1. Leaf surface and histological perturbations of leaves of Phaseolus vulgaris and Helianthus annuus after exposure to simulated acid rain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, L.S.; Gmur, N.F.; Da Costa, F.

    1977-08-01

    Initial injury to adaxial leaf surfaces of Phaseolus vulgaris and Helianthus annuus occurred near trichomes and stomata after exposure to simulated sulfate acid rain. Lesion frequency was not correlated with density of either stomata or trichomes but was correlated with degree of leaf expansion. The number of lesions per unit area increased with total leaf area. Results suggest that characteristics of the leaf indumentum such as development of trichomes and guard cells and/or cuticle thickness near these structures may be involved in lesion development. Adaxial epidermal cell collapse was the first event in lesion development. Palisade cells and eventually spongymore » mesophyll cells collapsed after continued, daily exposure to simulated rain of low pH. Lesion development on Phaseolus vulgaris followed a specific course of events after exposure to simulated rain of known composition, application rate, drop size frequency, drop velocities, and frequency of exposures. These results allow development of further experiments to observe accurately other parameters, such as nutrient inputs and nutrient leaching from foliage, after exposure to simulated sulfate acid rain.« less

  2. Relative growth rate in phylogenetically related deciduous and evergreen woody species.

    PubMed

    Antúnez, Isabel; Retamosa, Emilio C; Villar, Rafael

    2001-07-01

    Relative growth rate (RGR) and other growth parameters were studied in eight pairs of closely related deciduous and evergreen species (within the same genus or family). The main objective of this study was to test the association between leaf turnover rate and RGR, specific leaf area (SLA, leaf area/leaf dry weight) and other growth variables. Plants were grown for 6 months in a greenhouse under favourable water and nutrient conditions. Variation in RGR among the 16 woody species was due mainly to differences in morphological parameters such as leaf area ratio (LAR, whole plant area/whole plant dry weight) and SLA). However, temporal variation in RGR within species was due mainly to variation in net assimilation rate. When phylogeny was not taken into account, analyses showed that deciduous species grew faster than evergreens. In contrast, when phylogeny was taken into account, the data analysis showed that a faster RGR is not consistently associated with the deciduous habit (in five pairs it was, but in the other three it was not). The faster growth of the deciduous trees (in the five positive contrasts) could be explained by their higher LAR and higher SLA relative to evergreens. The lack of differences in RGR between deciduous and evergreens (in three pairs) was due to the higher leaf mass ratio (LMR, leaf dry biomass/total dry biomass) for the evergreens, which offset the higher SLA of the deciduous species, resulting in a similar LAR in both functional groups (LAR=LMR×SLA). Deciduous species had consistently higher SLA than evergreens. We suggest that SLA, more than RGR, could be an important parameter in determining adaptive advantages of deciduous and evergreen species.

  3. Salt gland distribution in limonium bicolor at the individual level

    NASA Astrophysics Data System (ADS)

    Leng, B. Y.; Yuan, F.; Dong, X. X.; Wang, B. S.

    2018-02-01

    Limonium bicolor is a typical exo-recretohalophyte with multi-cellular salt glands. A differential interference contrast (DIC) microscope were applied to investigate the pattern of salt gland distribution in L. bicolor at the individual level. For a single mature leaf, more salt glands are distributed in the leaf central and apical regions than leaf base. For the leaves in different developmental stages, firstly, the density of salt glands linearly decreased at the beginning of leaf expansion and kept a relatively constant value in the later periods, which was mainly due to the rapid expansion of epidermal cells. Secondly, the total number of glands per leaf showed a reversed trend compared to the density of salt glands. These results suggested that the salt gland density was adapted to the leaf age and area as more and more salt accumulated in the saline soils.

  4. [Models for biomass estimation of four shrub species planted in urban area of Xi'an city, Northwest China].

    PubMed

    Yao, Zheng-Yang; Liu, Jian-Jun

    2014-01-01

    Four common greening shrub species (i. e. Ligustrum quihoui, Buxus bodinieri, Berberis xinganensis and Buxus megistophylla) in Xi'an City were selected to develop the highest correlation and best-fit estimation models for the organ (branch, leaf and root) and total biomass against different independent variables. The results indicated that the organ and total biomass optimal models of the four shrubs were power functional model (CAR model) except for the leaf biomass model of B. megistophylla which was logarithmic functional model (VAR model). The independent variables included basal diameter, crown diameter, crown diameter multiplied by height, canopy area and canopy volume. B. megistophylla significantly differed from the other three shrub species in the independent variable selection, which were basal diameter and crown-related factors, respectively.

  5. Effects of structural complexity on within-canopy light environments and leaf traits in a northern mixed deciduous forest

    NASA Astrophysics Data System (ADS)

    Fotis, A. T.; Curtis, P.

    2016-12-01

    Canopy structure influences forest productivity through its effects on the distribution of radiation and the light-induced changes in leaf physiological traits. Due to the difficulty of accessing and measuring forest canopies, few field-based studies have quantitatively linked these divergent scales of canopy functioning. The objective of our study was to investigate how canopy structure affects light profiles within a forest canopy and whether leaves of mature trees adjust morphologically and biochemically to the light environments characteristic of canopies with different structural complexity. We used a combination of light detection and ranging (LiDAR) data and hemispherical photographs to quantify canopy structure and light environments, respectively, and a telescoping pole to sample leaves. Leaf mass per area (LMA), nitrogen on an area basis (Narea) and chlorophyll on a mass basis (Chlmass) were measured in four co-dominant species (Acer rubrum, Fagus grandifolia, Pinus strobus and Quercus rubra) at different heights in plots with similar leaf area index (LAI) but contrasting canopy complexity (rugosity). We found that more complex canopies had greater porosity and reduced light variability in the midcanopy while total light interception was unchanged relative to less complex canopies. Leaves of F. grandifolia, Q. rubra, and P. strobus shifted towards sun-acclimation phenotypes with increasing canopy complexity while leaves of A. rubrum became more shade-acclimated (lower LMA) in the upper canopy of more complex stands, despite no differences in total light interception. Broadleaf species showed further acclimation by increasing Narea and reducing Chlmass as LMA increased, while P. strobus showed no change in Narea and Chlmass with increasing LMA. Our results provide new insight on how light distribution and leaf acclimation in mature trees might be altered when natural and anthropogenic disturbances cause structural changes in the canopy.

  6. Transpiration and whole-tree conductance in ponderosa pine trees of different heights.

    PubMed

    Ryan, M G; Bond, B J; Law, B E; Hubbard, R M; Woodruff, D; Cienciala, E; Kucera, J

    2000-09-01

    Changes in leaf physiology with tree age and size could alter forest growth, water yield, and carbon fluxes. We measured tree water flux (Q) for 14 ponderosa pine trees in two size classes (12 m tall and ∼40 years old, and 36 m tall and ∼ 290 years old) to determine if transpiration (E) and whole-tree conductance (g t ) differed between the two sizes of trees. For both size classes, E was approximately equal to Q measured 2 m above the ground: Q was most highly correlated with current, not lagged, water vapor pressure deficit, and night Q was <12% of total daily flux. E for days 165-195 and 240-260 averaged 0.97 mmol m -2 (leaf area, projected) s -1 for the 12-m trees and 0.57 mmol m -2 (leaf area) s -1 for the 36-m trees. When photosynthetically active radiation (I P ) exceeded the light saturation for photosynthesis in ponderosa pine (900 µmol m -2 (ground) s -1 ), differences in E were more pronounced: 2.4 mmol m -2 (leaf area) s -1 for the 12-m trees and 1.2 mmol m -2 s -1 for the 36-m trees, yielding g t of 140 mmol m -2 (leaf area) s -1 for the 12-m trees and 72 mmol m -2 s -1 for the 36-m trees. Extrapolated to forests with leaf area index =1, the 36-m trees would transpire 117 mm between 1 June and 31 August compared to 170 mm for the 12-m trees, a difference of 15% of average annual precipitation. Lower g t in the taller trees also likely lowers photosynthesis during the growing season.

  7. [Green space vegetation quantity in workshop area of Wuhan Iron and Steel Company].

    PubMed

    Chen, Fang; Zhou, Zhixiang; Wang, Pengcheng; Li, Haifang; Zhong, Yingfei

    2006-04-01

    Aimed at the complex community structure and higher fragmentation of urban green space, and based on the investigation of synusia structure and its coverage, this paper studied the vegetation quantity of ornamental green space in the workshop area of Wuhan Iron and Steel Company, with the help of GIS. The results showed that different life forms of ornamental plants in this area had a greater difference in their single leaf area and leaf area index (LAI), and the LAI was not only depended on single leaf area, but also governed by the shape of tree crown and the intensive degree of branches and leaves. The total vegetation quantity was 1 694.2 hm2, with the average LAI being 7.75, and the vegetation quantity of arbor-shrub-herb and arbor-shrub communities accounted for 79.7% and 92.3% of the total, respectively, reflecting that the green space structure was dominated by arbor species and by arbor-shrub-herb and arbor-shrub community types. Single layer-structured lawn had a less percentage, while the vegetation quantity of herb synusia accounted for 22.9% of the total, suggesting an afforestation characteristic of "making use of every bit of space" in the workshop area. The vegetation quantity of urban ornamental green space depended on the area of green space, its synusia structure, and the LAI and coverage of ornamental plants. In enlarging urban green space, ornamental plant species with high LAI should be selected, and community structure should be improved to have a higher vegetation quantity in urban area. To quantify the vegetation quantity of urban ornamental green space more accurately, synusia should be taken as the unit to measure the LAI of typical species, and the synusia structure and its coverage of different community types should be investigated with the help of remote sensing images and GIS.

  8. Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area.

    PubMed

    Easlon, Hsien Ming; Bloom, Arnold J

    2014-07-01

    Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. • Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. • Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images.

  9. Leaf-IT: An Android application for measuring leaf area.

    PubMed

    Schrader, Julian; Pillar, Giso; Kreft, Holger

    2017-11-01

    The use of plant functional traits has become increasingly popular in ecological studies because plant functional traits help to understand key ecological processes in plant species and communities. This also includes changes in diversity, inter- and intraspecific interactions, and relationships of species at different spatiotemporal scales. Leaf traits are among the most important traits as they describe key dimensions of a plant's life history strategy. Further, leaf area is a key parameter with relevance for other traits such as specific leaf area, which in turn correlates with leaf chemical composition, photosynthetic rate, leaf longevity, and carbon investment. Measuring leaf area usually involves the use of scanners and commercial software and can be difficult under field conditions. We present Leaf-IT, a new smartphone application for measuring leaf area and other trait-related areas. Leaf-IT is free, designed for scientific purposes, and runs on Android 4 or higher. We tested the precision and accuracy using objects with standardized area and compared the area measurements of real leaves with the well-established, commercial software WinFOLIA using the Altman-Bland method. Area measurements of standardized objects show that Leaf-IT measures area with high accuracy and precision. Area measurements with Leaf-IT of real leaves are comparable to those of WinFOLIA. Leaf-IT is an easy-to-use application running on a wide range of smartphones. That increases the portability and use of Leaf-IT and makes it possible to measure leaf area under field conditions typical for remote locations. Its high accuracy and precision are similar to WinFOLIA. Currently, its main limitation is margin detection of damaged leaves or complex leaf morphologies.

  10. Production and decomposition of forest litter fall on the Apalachicola River flood plain, Florida: Chapter B, Apalachicola River quality assessment

    USGS Publications Warehouse

    Elder, John F.; Cairns, Duncan J.

    1982-01-01

    Measurements of litter fall (leaves and other particulate organic material) and leaf decomposition were made on the bottom-land hardwood swamp of the Apalachicola River flood plain in 1979-80. Litter fall was collected monthly from nets located in 16 study plots. The plots represented five forest types in the swamp and levee areas of the Apalachicola River flood plain. Forty-three species of trees, vines, and other plants contributed to the total litter fall, but more than 90 percent of the leaf material originated from 12 species. Nonleaf material made up 42 percent of the total litter fall. Average litter fall was determined to be 800 grams per square meter per year, resulting in an annual deposition of 3.6 ? 105 metric tons of organic material in the 454-square-kilometer flood plain. The levee communities have less tree biomass but greater tree diversity than do swamp communities. The levee vegetation, containing less tree biomass, produces slightly more litter fall per unit of ground surface area than does the swamp vegetation. The swamps are dominated by three genera: tupelo (Nyssa), cypress (Taxodium) and ash (Fraxinus). These genera account for more than 50 percent of the total leaf fall in the flood plain, but they are the least productive, on a weight-perbiomass basis, of any of the 12 major leaf producers. Decomposition rates of leaves from five common floodplain tree species were measured using a standard leaf-bag technique. Leaf decomposition was highly species dependent. Tupelo (Nyssa spp.) and sweetgum (Liquidambar styraciflua) leaves decomposed completely in 6 months when flooded by river water. Leaves of baldcypress (Taxodium distichum) and diamond-leaf oak (Quercus laurifolia) were much more resistant. Water hickory (Carya aquatica) leaves showed intermediate decomposition rates. Decomposition of all species was greatly reduced in dry environments. Carbon and biomass loss rates from the leaves were nearly linear over a 6-month period, but nitrogen and phosphorus leaching was nearly complete within 1 month. Much of the organic substance may be recycled in the forest ecosystem, but annual flooding of the river provides an important mechanism for mobilization of the litter-fall products.

  11. Photomorphogenesis and photoassimilation in soybean and sorghum grown under broad spectrum or blue-deficient light sources

    NASA Technical Reports Server (NTRS)

    Britz, S. J.; Sager, J. C.; Knott, W. M. (Principal Investigator)

    1990-01-01

    The role of blue light in plant growth and development was investigated in soybean (Glycine max [L.] Merr. cv Williams) and sorghum (Sorghum bicolor [L.] Moench. cv Rio) grown under equal photosynthetic photon fluxes (approximately 500 micromoles per square meter per second) from broad spectrum daylight fluorescent or blue-deficient, narrow-band (589 nanometers) low pressure sodium (LPS) lamps. Between 14 and 18 days after sowing, it was possible to relate adaptations in photosynthesis and leaf growth to dry matter accumulation. Soybean development under LPS light was similar in several respects to that of shaded plants, consistent with an important role for blue light photoreceptors in regulation of growth response to irradiance. Thus, soybeans from LPS conditions partitioned relatively more growth to leaves and maintained higher average leaf area ratios (mean LAR) that compensated lower net assimilation rates (mean NAR). Relative growth rates were therefore comparable to plants from daylight fluorescent lamps. Reductions in mean NAR were matched by lower rates of net photosynthesis (A) on an area basis in the major photosynthetic source (first trifoliolate) leaf. Lower A in soybean resulted from reduced leaf dry matter per unit leaf area, but lower A under LPS conditions in sorghum correlated with leaf chlorosis and reduced total nitrogen (not observed in soybean). In spite of a lower A, mean NAR was larger in sorghum from LPS conditions, resulting in significantly greater relative growth rates (mean LAR was approximately equal for both light conditions). Leaf starch accumulation rate was higher for both species and starch content at the end of the dark period was elevated two- and three-fold for sorghum and soybean, respectively, under LPS conditions. Possible relations between starch accumulation, leaf export, and plant growth in response to spectral quality were considered.

  12. Growth and reflectance characteristics of winter wheat canopies

    NASA Technical Reports Server (NTRS)

    Hinzman, L. D.; Bauer, M. E.; Daughtry, C. S. T.

    1984-01-01

    A valuable input to crop growth and yield models would be estimates of current crop condition. If multispectral reflectance indicates crop condition, then remote sensing may provide an additional tool for crop assessment. The effects of nitrogen fertilization on the spectral reflectance and agronomic characteristics of winter wheat (Triticum aestivum L.) were determined through field experiments. Spectral reflectance was measured during the 1979 and 1980 growing seasons with a spectroradiometer. Agronomic data included total leaf N concentration, leaf chlorophyll concentration, stage of development, leaf area index (LAI), plant moisture, and fresh and dry phytomass. Nitrogen deficiency caused increased visible, reduced near infrared, and increased middle infrared reflectance. These changes were related to lower levels of chlorophyll and reduced leaf area in the N-deficient plots. Green LAI, an important descriptor of wheat canopies, could be reliably estimated with multispectral data. The potential of remote sensing in distinguishing stressed from healthy crops is demonstrated. Evidence suggests multispectral imagery may be useful for monitoring crop condition.

  13. Common allometric response of open-grown leader shoots to tree height in co-occurring deciduous broadleaved trees

    PubMed Central

    Miyata, Rie; Kubo, Takuya; Nabeshima, Eri; Kohyama, Takashi S.

    2011-01-01

    Background and Aims Morphology of crown shoots changes with tree height. The height of forest trees is usually correlated with the light environment and this makes it difficult to separate the effects of tree size and of light conditions on the morphological plasticity of crown shoots. This paper addresses the tree-height dependence of shoot traits under full-light conditions where a tree crown is not shaded by other crowns. Methods Focus is given to relationships between tree height and top-shoot traits, which include the shoot's leaf-blades and non-leafy mass, its total leaf-blade area and the length and basal diameter of the shoot's stem. We examine the allometric characteristics of open-grown current-year leader shoots at the tops of forest tree crowns up to 24 m high and quantify their responses to tree height in 13 co-occurring deciduous hardwood species in a cool-temperate forest in northern Japan. Key Results Dry mass allocated to leaf blades in a leader shoot increased with tree height in all 13 species. Specific leaf area decreased with tree height. Stem basal area was almost proportional to total leaf area in a leader shoot, where the proportionality constant did not depend on tree height, irrespective of species. Stem length for a given stem diameter decreased with tree height. Conclusions In the 13 species observed, height-dependent changes in allometry of leader shoots were convergent. This finding suggests that there is a common functional constraint in tree-height development. Under full-light conditions, leader shoots of tall trees naturally experience more severe water stress than those of short trees. We hypothesize that the height dependence of shoot allometry detected reflects an integrated response to height-associated water stress, which contributes to successful crown expansion and height gain. PMID:21914698

  14. Effects Total Solar Eclipse to Nasty Behaviour of the Several Legume Plants as a Result Student Research

    NASA Astrophysics Data System (ADS)

    Anggraeni, S.; Diana, S.; Supriatno, B.

    2017-09-01

    Some group students of plant Physiology course have given task to do free inquiry. They investigated of the nasty behaviour of several legume plants in response to changes in light during the partial solar eclipse that occurred at March 9, 2016. The investigation carried out in UPI Bandung, West Java, Indonesia, which is in the penumbra region of a total solar eclipse with the location coordinates of latitude: -6.86105, longitude: 07.59071, S 6057’ 37.53553 “and E 107035’ 24.29141”. They were measuring the movement of opening leaves every ten minutes at the beginning of the start until the end of the eclipse compared with the behaviour without eclipsing. Influence is expressed by comparing the leaf opening movement (measured in the form of leaf angular) at the time of the eclipse with a normal day. Each group was observed for one plant of the legume, there are: Mimosa pudica, Bauhinia purpurea, Caesalpinia pulcherrima, and Arachis pintoi. The results showed that the changes in leaf angular in plants Mimosa pudica, Caesalpinia pulcherrima, and Arachis pintoi differently significant, except for Bauhinia purpurea. In conclusion, the total solar eclipse in the penumbra area affects the movement of some nasty legume plants. It is recommended to conduct a study of the nasty behaviour of legume plants in the area umbra in the path of a total solar eclipse.

  15. Groundwater management through increased water use by lupin crops

    NASA Astrophysics Data System (ADS)

    Greenwood, E. A. N.; Turner, N. C.; Schulze, E.-D.; Watson, G. D.; Venn, N. R.

    1992-06-01

    Total evaporation ( E) was measured on lupin crops of differing leaf area per unit ground area in southwestern Australia. Leaf area was controlled by sowing at different times and rates. The objective was to explore the feasibility of increasing water use in order to reduce recharge to rising, shallow, saline water tables. Replicated plots of Lupinus angustifolius were sown at 100 and 200 kg ha -1 on 24 May and at 100 kg ha -1 on 7 June, 1988. E was measured by ventilated chambers from each of these treatments over eight 24 h periods grouped at the beginning, middle and end of a 28 day period. Mean rates of E were 2.16 mm day -1 for the later sown lupins at 100 kg ha -1, 2.49 mm day -1 for the earlier sown lupins at 100 kg ha -1 and 2.90 mm day -1 for the earlier sown lupins at 200 kg ha -1. The corresponding relative values for E were 1.00, 1.15 and 1.34. The transpiration component of E was estimated by measuring sap flow with a heat balance technique on individual plants within the chambers. Daily values of transpiration varied from 0.8 to 2 mm giving residual soil evaporation values of 1.0-1.6 mm day -1. E from soil was a significant cause of water loss particularly in the plots with low leaf area. At preflowering and early flowering E increased linearly with increasing leaf area per unit ground area up to values of 2.6. Soil evaporation decreased linearly with increasing leaf area. We conclude that increased seeding rates and earlier sowing of lupins have the potential to increase E and to reduce recharge and the rise of saline water tables.

  16. Plant Trait-Species Abundance Relationships Vary with Environmental Properties in Subtropical Forests in Eastern China

    PubMed Central

    Yan, En-Rong; Yang, Xiao-Dong; Chang, Scott X.; Wang, Xi-Hua

    2013-01-01

    Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes) environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N) and phosphorus (P) contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA), leaf N concentration (LN), and total leaf area per twig size (TLA) were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests. PMID:23560114

  17. Intraspecific Relationships among Wood Density, Leaf Structural Traits and Environment in Four Co-Occurring Species of Nothofagus in New Zealand

    PubMed Central

    Richardson, Sarah J.; Allen, Robert B.; Buxton, Rowan P.; Easdale, Tomás A.; Hurst, Jennifer M.; Morse, Christopher W.; Smissen, Rob D.; Peltzer, Duane A.

    2013-01-01

    Plant functional traits capture important variation in plant strategy and function. Recent literature has revealed that within-species variation in traits is greater than previously supposed. However, we still have a poor understanding of how intraspecific variation is coordinated among different traits, and how it is driven by environment. We quantified intraspecific variation in wood density and five leaf traits underpinning the leaf economics spectrum (leaf dry matter content, leaf mass per unit area, size, thickness and density) within and among four widespread Nothofagus tree species in southern New Zealand. We tested whether intraspecific relationships between wood density and leaf traits followed widely reported interspecific relationships, and whether variation in these traits was coordinated through shared responses to environmental factors. Sample sites varied widely in environmental variables, including soil fertility (25–900 mg kg–1 total P), precipitation (668–4875 mm yr–1), temperature (5.2–12.4 °C mean annual temperature) and latitude (41–46 °S). Leaf traits were strongly correlated with one another within species, but not with wood density. There was some evidence for a positive relationship between wood density and leaf tissue density and dry matter content, but no evidence that leaf mass or leaf size were correlated with wood density; this highlights that leaf mass per unit area cannot be used as a surrogate for component leaf traits such as tissue density. Trait variation was predicted by environmental factors, but not consistently among different traits; e.g., only leaf thickness and leaf density responded to the same environmental cues as wood density. We conclude that although intraspecific variation in wood density and leaf traits is strongly driven by environmental factors, these responses are not strongly coordinated among functional traits even across co-occurring, closely-related plant species. PMID:23527041

  18. Leaf age dependent changes in within-canopy variation in leaf functional traits: a meta-analysis

    PubMed Central

    Niinemets, Ülo

    2018-01-01

    Within-canopy variation in leaf structural and photosynthetic characteristics is a major means by which whole canopy photosynthesis is maximized at given total canopy nitrogen. As key acclimatory modifications, leaf nitrogen content (NA) and photosynthetic capacity (AA) per unit area increase with increasing light availability in the canopy and these increases are associated with increases in leaf dry mass per unit area (MA) and/or nitrogen content per dry mass and/or allocation. However, leaf functional characteristics change with increasing leaf age during leaf development and aging, but the importance of these alterations for within-canopy trait gradients is unknown. I conducted a meta-analysis based on 71 canopies that were sampled at different time periods or, in evergreens, included measurements for different-aged leaves to understand how within-canopy variations in leaf traits (trait plasticity) depend on leaf age. The analysis demonstrated that in evergreen woody species, MA and NA plasticity decreased with increasing leaf age, but the change in AA plasticity was less suggesting a certain re-acclimation of AA to altered light. In deciduous woody species, MA and NA gradients in flush-type species increased during leaf development and were almost invariable through the rest of the season, while in continuously leaf-forming species, trait gradients increased constantly with increasing leaf age. In forbs, NA plasticity increased, while in grasses, NA plasticity decreased with increasing leaf age, reflecting life form differences in age-dependent changes in light availability and in nitrogen resorption for growth of generative organs. Although more work is needed to improve the coverage of age-dependent plasticity changes in some plant life forms, I argue that the age-dependent variation in trait plasticity uncovered in this study is large enough to warrant incorporation in simulations of canopy photosynthesis through the growing period. PMID:27033356

  19. Are leaf chemistry signatures preserved at the canopy level?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borel, C.C.; Gerstl, S.A.W.

    1994-05-01

    Imaging spectrometers have the potential to be very useful in remote sensing of canopy chemistry constituents such as nitrogen and lignin. In this study under the HIRIS project the question of how leaf chemical composition which is reflected in leaf spectral features in the reflectance and transmittance is affected by canopy architecture was investigated. Several plants were modeled with high fidelity and a radiosity model was used to compute the canopy spectral signature over the visible and near infrared. We found that chemical constituent specific signatures such as absorptions are preserved and in the case of low absorption are actuallymore » enhanced. For moderately dense canopies the amount of a constituent depends also on the total leaf area.« less

  20. Leaf-trait responses to irrigation of the endemic fog-oasis tree Myrcianthes ferreyrae: can a fog specialist benefit from regular watering?

    PubMed

    Ramírez, David A; Balaguer, Luis; Mancilla, Rosa; González, Virginia; Coaguila, Daniel; Talavera, Carmelo; Villegas, Luis; Ortega, Aldo; Jiménez, Percy; Moreno, José M

    2012-01-01

    Myrcianthes ferreyrae is an endemic, endangered species, with a small number of individuals located only in hyperarid, fog-oases known as lomas along the Peruvian desert in southern Peru, where fog is the main source of water. Following centuries of severe deforestation, reforestation with this native species was conducted in the Atiquipa lomas, Arequipa-Perú. On five slopes, five 2-year-old seedlings were irrigated monthly with water trapped by raschel-mesh fog collectors, supplementing natural rainfall with 0, 20, 40, 60 and 80 mm month(-1) from February to August 2008. We measured plant growth, increment in basal diameter, height and five leaf traits: leaf mass area (LMA), leaf carbon isotope composition (δ(13)C), nitrogen per leaf area, total leaf carbon and stomatal density; which are indicative of the physiological changes resulting from increased water supply. Plant growth rates, estimated from the variation of either shoot basal diameter or maximum height, were highly correlated with total biomass. Only LMA and δ(13)C were higher in irrigated than in control plants, but we found no further differences among irrigation treatments. This threshold response suggests an on-off strategy fitted to exploit pulses of fog water, which are always limited in magnitude in comparison with natural rain. The absence of a differential response to increased water supply is in agreement with the low phenotypic plasticity expected in plants from very stressful environments. Our results have practical implications for reforestation projects, since irrigating with 20 mm per month is sufficient to achieve the full growth capacity of this species.

  1. Multiyear Multiseasonal Changes in Leaf and Canopy Traits Measured by AVIRIS over Ecosystems with Different Functional Type Characteristics Through the Progressive California Drought 2013-2015

    NASA Astrophysics Data System (ADS)

    Ustin, S.; Roth, K. L.; Huesca, M.; Casas, A.; Adeline, K.; Drewry, D.; Koltunov, A.; Ramirez, C.

    2015-12-01

    Given the known heterogeneity in ecological processes within plant communities in California, we questioned whether the concept of conventional plant functional types (cPFTs) was adequate to characterize the functionality of the dominant species in these communities. We examined seasonal (spring, summer, fall) airborne AVIRIS and MASTER imagery collected during three years of progressive drought in California, and airborne LiDAR acquired once, for ecosystems that represent a wide range of plant functional types, from annual agriculture and herbaceous perennial wetlands, to forests and shrublands, including broadleaf deciduous and evergreen species and conifer species. These data were used to determine the extent to which changes in canopy chemistry could be detected, quantified, and related to leaf and canopy traits that are indicators of physiological functioning (water content, Leaf Mass Area, total C, N, and pigments (chlorophyll a, b, and carotenoids). At the canopy scale we measured leaf area index, and for forests — species, height, canopy area, DBH, deciduous or evergreen, broadleaf or needleleaf, and gap size. Strong correlations between leaf and canopy traits were predictable and quantifiable from spectroscopy data. Key structural properties of canopy height, biomass and complexity, a measure of spatial and vertical heterogeneity, were predicted by AVIRIS and validated against LiDAR data. Our data supports the hypothesis that optical sensors provide more detailed information about the distribution and variability in leaf and canopy traits related to plant functionality than cPFTs.

  2. Vertical leaf area distribution, light transmittance, and application of the Beer-Lambert Law in four mature hardwood stands in the southern Appalachians

    Treesearch

    James M. Vose; Neal H. Sullivan; Barton D. Clinton; Paul V. Bolstad

    1995-01-01

    We quantified stand leaf area index and vertical leaf area distribution, and developed canopy extinction coefficients (k), in four mature hardwood stands. Leaf area index, calculated from litter fall and specific leaf area (cm²·g-1), ranged from 4.3 to 5.4 m²·m-2. In three of the four stands, leaf area was distributed in...

  3. Genome-wide association study of rice (Oryza sativa L.) leaf traits with a high-throughput leaf scorer.

    PubMed

    Yang, Wanneng; Guo, Zilong; Huang, Chenglong; Wang, Ke; Jiang, Ni; Feng, Hui; Chen, Guoxing; Liu, Qian; Xiong, Lizhong

    2015-09-01

    Leaves are the plant's solar panel and food factory, and leaf traits are always key issues to investigate in plant research. Traditional methods for leaf trait measurement are time-consuming. In this work, an engineering prototype has been established for high-throughput leaf scoring (HLS) of a large number of Oryza sativa accessions. The mean absolute per cent of errors in traditional measurements versus HLS were below 5% for leaf number, area, shape, and colour. Moreover, HLS can measure up to 30 leaves per minute. To demonstrate the usefulness of HLS in dissecting the genetic bases of leaf traits, a genome-wide association study (GWAS) was performed for 29 leaf traits related to leaf size, shape, and colour at three growth stages using HLS on a panel of 533 rice accessions. Nine associated loci contained known leaf-related genes, such as Nal1 for controlling the leaf width. In addition, a total of 73, 123, and 177 new loci were detected for traits associated with leaf size, colour, and shape, respectively. In summary, after evaluating the performance with a large number of rice accessions, the combination of GWAS and high-throughput leaf phenotyping (HLS) has proven a valuable strategy to identify the genetic loci controlling rice leaf traits. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. Variation in crown light utilization characteristics among tropical canopy trees.

    PubMed

    Kitajima, Kaoru; Mulkey, Stephen S; Wright, S Joseph

    2005-02-01

    Light extinction through crowns of canopy trees determines light availability at lower levels within forests. The goal of this paper is the exploration of foliage distribution and light extinction in crowns of five canopy tree species in relation to their shoot architecture, leaf traits (mean leaf angle, life span, photosynthetic characteristics) and successional status (from pioneers to persistent). Light extinction was examined at three hierarchical levels of foliage organization, the whole crown, the outermost canopy and the individual shoots, in a tropical moist forest with direct canopy access with a tower crane. Photon flux density and cumulative leaf area index (LAI) were measured at intervals of 0.25-1 m along multiple vertical transects through three to five mature tree crowns of each species to estimate light extinction coefficients (K). Cecropia longipes, a pioneer species with the shortest leaf life span, had crown LAI <0.5. Among the remaining four species, crown LAI ranged from 2 to 8, and species with orthotropic terminal shoots exhibited lower light extinction coefficients (0.35) than those with plagiotropic shoots (0.53-0.80). Within each type, later successional species exhibited greater maximum LAI and total light extinction. A dense layer of leaves at the outermost crown of a late successional species resulted in an average light extinction of 61% within 0.5 m from the surface. In late successional species, leaf position within individual shoots does not predict the light availability at the individual leaf surface, which may explain their slow decline of photosynthetic capacity with leaf age and weak differentiation of sun and shade leaves. Later-successional tree crowns, especially those with orthotropic branches, exhibit lower light extinction coefficients, but greater total LAI and total light extinction, which contribute to their efficient use of light and competitive dominance.

  5. Impacts of a spring heat wave on canopy processes in a northern hardwood forest.

    PubMed

    Filewod, Ben; Thomas, Sean C

    2014-02-01

    Heat wave frequency, duration, and intensity are predicted to increase with global warming, but the potential impacts of short-term high temperature events on forest functioning remain virtually unstudied. We examined canopy processes in a forest in Central Ontario following 3 days of record-setting high temperatures (31–33 °C) that coincided with the peak in leaf expansion of dominant trees in late May 2010. Leaf area dynamics, leaf morphology, and leaf-level gas-exchange were compared to data from prior years of sampling (2002–2008) at the same site, focusing on Acer saccharum Marsh., the dominant tree in the region. Extensive shedding of partially expanded leaves was observed immediately following high temperature days, with A. saccharum losing ca. 25% of total leaf production but subsequently producing an unusual second flush of neoformed leaves. Both leaf losses and subsequent reflushing were highest in the upper canopy; however, retained preformed leaves and neoformed leaves showed reduced size, resulting in an overall decline in end-of-season leaf area index of 64% in A. saccharum, and 16% in the entire forest. Saplings showed lower leaf losses, but also a lower capacity to reflush relative to mature trees. Both surviving preformed and neoformed leaves had severely depressed photosynthetic capacity early in the summer of 2010, but largely regained photosynthetic competence by the end of the growing season. These results indicate that even short-term heat waves can have severe impacts in northern forests, and suggest a particular vulnerability to high temperatures during the spring period of leaf expansion in temperate deciduous forests.

  6. Calcium oxalate druses affect leaf optical properties in selenium-treated Fagopyrum tataricum.

    PubMed

    Golob, Aleksandra; Stibilj, Vekoslava; Nečemer, Marijan; Kump, Peter; Kreft, Ivan; Hočevar, Anja; Gaberščik, Alenka; Germ, Mateja

    2018-03-01

    Plants of the genus Fagopyrum contain high levels of crystalline calcium oxalate (CaOx) deposits, or druses, that can affect the leaf optical properties. As selenium has been shown to modify the uptake and accumulation of metabolically important elements such as calcium, we hypothesised that the numbers of druses can be altered by selenium treatment, and this would affect the leaf optical properties. Tartary buckwheat (Fagopyrum tataricum Gaertn.) was grown outdoors in an experimental field. At the beginning of flowering, plants were foliarly sprayed with sodium selenate solution at 10 mg selenium L -1 or only with water. Plant morphological, biochemical, physiological and optical properties were examined, along with leaf elemental composition and content. Se spraying did not affect leaf biochemical and functional properties. However, it increased leaf thickness and the contents of Se in the leaves, and decreased the density of calcium oxalate druses in the leaves. Except Se content, Se spraying did not affect contents of other elements in leaves, including total calcium per dry mass of leaf tissue. Redundancy analysis showed that of all parameters tested, only the calcium oxalate druses parameters were significant in explaining the variability of the leaf reflectance and transmittance spectra. The density of CaOx druses positively correlated with the reflectance in the blue, green, yellow and UV-B regions of the spectrum, while the area of CaOx druses per mm 2 of leaf transection area positively correlated with the transmittance in the green and yellow regions of the spectrum. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. [Latitude variation mechanism of leaf traits of Metasequoia glyptostroboides in eastern coastal China].

    PubMed

    Guo, Wei Hong; Wang, Hua; Yu, Mu Kui; Wu, Tong Gui; Han, You Zhi

    2017-03-18

    We analyzed the rules of Metasequoia glyptostroboides along with latitude, including leaf length, leaf width, leaf perimeter, leaf area, ratio of leaf length to width, specific leaf area (SLA), and leaf dry mass based on eight stands growing at different latitudes in the coastal area of eastern China, as well as their relationships with climatic and soil factors. The results showed that the leaf length, leaf width and leaf perimeter increased with increasing latitude, while the leaf area and SLA firstly increased and then decreased. The mean annual temperature and annual precipitation were the major environmental factors affecting the leaf traits along latitude gradient. With the increase of soil N content, the SLA decreased firstly and then increased, while the leaf mass decreased significantly. With the increase of soil P content, the SLA increased, and the leaf mass decreased significantly.

  8. The effect of fire on habitat selection of mammalian herbivores: the role of body size and vegetation characteristics.

    PubMed

    Eby, Stephanie L; Anderson, T Michael; Mayemba, Emilian P; Ritchie, Mark E

    2014-09-01

    Given the role of fire in shaping ecosystems, especially grasslands and savannas, it is important to understand its broader impact on these systems. Post-fire stimulation of plant nutrients is thought to benefit grazing mammals and explain their preference for burned areas. However, fire also reduces vegetation height and increases visibility, thereby potentially reducing predation risk. Consequently, fire may be more beneficial to smaller herbivores, with higher nutritional needs and greater risks of predation. We tested the impacts of burning on different sized herbivores' habitat preference in Serengeti National Park, as mediated by burning's effects on vegetation height, live : dead biomass ratio and leaf nutrients. Burning caused a less than 4 month increase in leaf nitrogen (N), and leaf non-N nutrients [copper (Cu), potassium (K), and magnesium (Mg)] and a decrease in vegetation height and live : dead biomass. During this period, total herbivore counts were higher on burned areas. Generally, smaller herbivores preferred burned areas more strongly than larger herbivores. Unfortunately, it was not possible to determine the vegetation characteristics that explained burned area preference for each of the herbivore species observed. However, total herbivore abundance and impala (Aepyceros melampus) preference for burned areas was due to the increases in non-N nutrients caused by burning. These findings suggest that burned area attractiveness to herbivores is mainly driven by changes to forage quality and not potential decreases in predation risk caused by reductions in vegetation height. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  9. Physiological mechanisms of drought-induced tree die-off in relation to carbon, hydraulic and respiratory stress in a drought-tolerant woody plant.

    PubMed

    Saiki, Shin-Taro; Ishida, Atsushi; Yoshimura, Kenichi; Yazaki, Kenichi

    2017-06-07

    Drought-induced tree die-off related to climate change is occurring worldwide and affects the carbon stocks and biodiversity in forest ecosystems. Hydraulic failure and carbon starvation are two commonly proposed mechanisms for drought-induced tree die-off. Here, we show that inhibited branchlet respiration and soil-to-leaf hydraulic conductance, likely caused by cell damage, occur prior to hydraulic failure (xylem embolism) and carbon starvation (exhaustion of stored carbon in sapwood) in a drought-tolerant woody species, Rhaphiolepis wrightiana Maxim. The ratio of the total leaf area to the twig sap area was used as a health indicator after drought damage. Six adult trees with different levels of tree health and one dead adult tree were selected. Two individuals having the worst and second worst health among the six live trees died three months after our study was conducted. Soil-to-leaf hydraulic conductance and leaf gas exchange rates decreased linearly as tree health declined, whereas xylem cavitation and total non-structural carbon remained unchanged in the branchlets except in the dead and most unhealthy trees. Respiration rates and the number of living cells in the sapwood decreased linearly as tree health declined. This study is the first report on the importance of dehydration tolerance and respiration maintenance in living cells.

  10. Copper microlocalisation and changes in leaf morphology, chloroplast ultrastructure and antioxidative response in white lupin and soybean grown in copper excess.

    PubMed

    Sánchez-Pardo, Beatriz; Fernández-Pascual, Mercedes; Zornoza, Pilar

    2014-01-01

    The microlocalisation of Cu was examined in the leaves of white lupin and soybean grown hydroponically in the presence of 1.6 (control) or 192 μM (excess) Cu, along with its effect on leaf morphology, (ultra)structure and the antioxidative response. The 192 μM dose led to a reduction in the total leaf area and leaf thickness in both species, although more strongly so in white lupin. In the latter species it was also associated with smaller spongy parenchyma cells, and smaller spaces between them, while in the soybean it more strongly reduced the size of the palisade parenchyma and epidermal cells. Energy-dispersive X-ray microanalysis showed that under Cu excess the metal was mainly localised inside the spongy parenchyma cells of the white lupin leaves, and in the lower epidermis cell walls in those of the soybean. Cu excess also promoted ultrastructural chloroplast alterations, reducing the photosynthetic capacity index and the green area of the leaves, especially in the soybean. Despite this, soybean appeared to be more tolerant to Cu excess than white lupin, because soybean displayed (1) lower accumulation of Cu in the leaves, (2) enhanced microlocalisation of Cu in the cell walls and (3) greater levels of induced total -SH content and superoxide dismutase and catalase activities that are expected for better antioxidative responses.

  11. The phenology of leaf quality and its within-canopy variation is essential for accurate modeling of photosynthesis in tropical evergreen forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jin; Serbin, Shawn P.; Xu, Xiangtao

    Leaf quantity (i.e., canopy leaf area index, LAI), quality (i.e., per-area photosynthetic capacity), and longevity all influence the photosynthetic seasonality of tropical evergreen forests. However, these components of tropical leaf phenology are poorly represented in most terrestrial biosphere models (TBMs). Here in this paper, we explored alternative options for the representation of leaf phenology effects in TBMs that employ the Farquahar, von Caemmerer & Berry (FvCB) representation of CO 2 assimilation. We developed a two-fraction leaf (sun and shade), two-layer canopy (upper and lower) photosynthesis model to evaluate different modeling approaches and assessed three components of phenological variations (i.e., leafmore » quantity, quality, and within-canopy variation in leaf longevity). Our model was driven by the prescribed seasonality of leaf quantity and quality derived from ground-based measurements within an Amazonian evergreen forest. Modeled photosynthetic seasonality was not sensitive to leaf quantity, but was highly sensitive to leaf quality and its vertical distribution within the canopy, with markedly more sensitivity to upper canopy leaf quality. This is because light absorption in tropical canopies is near maximal for the entire year, implying that seasonal changes in LAI have little impact on total canopy light absorption; and because leaf quality has a greater effect on photosynthesis of sunlit leaves than light limited, shade leaves and sunlit foliage are more abundant in the upper canopy. Our two-fraction leaf, two-layer canopy model, which accounted for all three phenological components, was able to simulate photosynthetic seasonality, explaining ~90% of the average seasonal variation in eddy covariance-derived CO 2 assimilation. This work identifies a parsimonious approach for representing tropical evergreen forest photosynthetic seasonality in TBMs that utilize the FvCB model of CO 2 assimilation and highlights the importance of incorporating more realistic phenological mechanisms in models that seek to improve the projection of future carbon dynamics in tropical evergreen forests.« less

  12. The phenology of leaf quality and its within-canopy variation is essential for accurate modeling of photosynthesis in tropical evergreen forests

    DOE PAGES

    Wu, Jin; Serbin, Shawn P.; Xu, Xiangtao; ...

    2017-04-18

    Leaf quantity (i.e., canopy leaf area index, LAI), quality (i.e., per-area photosynthetic capacity), and longevity all influence the photosynthetic seasonality of tropical evergreen forests. However, these components of tropical leaf phenology are poorly represented in most terrestrial biosphere models (TBMs). Here in this paper, we explored alternative options for the representation of leaf phenology effects in TBMs that employ the Farquahar, von Caemmerer & Berry (FvCB) representation of CO 2 assimilation. We developed a two-fraction leaf (sun and shade), two-layer canopy (upper and lower) photosynthesis model to evaluate different modeling approaches and assessed three components of phenological variations (i.e., leafmore » quantity, quality, and within-canopy variation in leaf longevity). Our model was driven by the prescribed seasonality of leaf quantity and quality derived from ground-based measurements within an Amazonian evergreen forest. Modeled photosynthetic seasonality was not sensitive to leaf quantity, but was highly sensitive to leaf quality and its vertical distribution within the canopy, with markedly more sensitivity to upper canopy leaf quality. This is because light absorption in tropical canopies is near maximal for the entire year, implying that seasonal changes in LAI have little impact on total canopy light absorption; and because leaf quality has a greater effect on photosynthesis of sunlit leaves than light limited, shade leaves and sunlit foliage are more abundant in the upper canopy. Our two-fraction leaf, two-layer canopy model, which accounted for all three phenological components, was able to simulate photosynthetic seasonality, explaining ~90% of the average seasonal variation in eddy covariance-derived CO 2 assimilation. This work identifies a parsimonious approach for representing tropical evergreen forest photosynthetic seasonality in TBMs that utilize the FvCB model of CO 2 assimilation and highlights the importance of incorporating more realistic phenological mechanisms in models that seek to improve the projection of future carbon dynamics in tropical evergreen forests.« less

  13. Climate drivers of the Amazon forest greening.

    PubMed

    Wagner, Fabien Hubert; Hérault, Bruno; Rossi, Vivien; Hilker, Thomas; Maeda, Eduardo Eiji; Sanchez, Alber; Lyapustin, Alexei I; Galvão, Lênio Soares; Wang, Yujie; Aragão, Luiz E O C

    2017-01-01

    Our limited understanding of the climate controls on tropical forest seasonality is one of the biggest sources of uncertainty in modeling climate change impacts on terrestrial ecosystems. Combining leaf production, litterfall and climate observations from satellite and ground data in the Amazon forest, we show that seasonal variation in leaf production is largely triggered by climate signals, specifically, insolation increase (70.4% of the total area) and precipitation increase (29.6%). Increase of insolation drives leaf growth in the absence of water limitation. For these non-water-limited forests, the simultaneous leaf flush occurs in a sufficient proportion of the trees to be observed from space. While tropical cycles are generally defined in terms of dry or wet season, we show that for a large part of Amazonia the increase in insolation triggers the visible progress of leaf growth, just like during spring in temperate forests. The dependence of leaf growth initiation on climate seasonality may result in a higher sensitivity of these ecosystems to changes in climate than previously thought.

  14. Changes in leaf area, nitrogen content and canopy photosynthesis in soybean exposed to an ozone concentration gradient.

    PubMed

    Oikawa, Shimpei; Ainsworth, Elizabeth A

    2016-08-01

    Influences of ozone (O3) on light-saturated rates of photosynthesis in crop leaves have been well documented. To increase our understanding of O3 effects on individual- or stand level productivity, a mechanistic understanding of factors determining canopy photosynthesis is necessary. We used a canopy model to scale photosynthesis from leaf to canopy, and analyzed the importance of canopy structural and leaf ecophysiological characteristics in determining canopy photosynthesis in soybean stands exposed to 9 concentrations of [O3] (37-116 ppb; 9-h mean). Light intensity and N content peaked in upper canopy layers, and sharply decreased through the lower canopy. Plant leaf area decreased with increasing [O3] allowing for greater light intensity to reach lower canopy levels. At the leaf level, light-saturated photosynthesis decreased and dark respiration increased with increasing [O3]. These data were used to calculate daily net canopy photosynthesis (Pc). Pc decreased with increasing [O3] with an average decrease of 10% for an increase in [O3] of 10 ppb, and which was similar to changes in above-ground dry mass production of the stands. Absolute daily net photosynthesis of lower layers was very low and thus the decrease in photosynthesis in the lower canopy caused by elevated [O3] had only minor significance for total canopy photosynthesis. Sensitivity analyses revealed that the decrease in Pc was associated with changes in leaf ecophysiology but not with decrease in leaf area. The soybean stands were very crowded, the leaves were highly mutually shaded, and sufficient light for positive carbon balance did not penetrate to lower canopy leaves, even under elevated [O3]. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Fagaceae tree species allocate higher fraction of nitrogen to photosynthetic apparatus than Leguminosae in Jianfengling tropical montane rain forest, China

    PubMed Central

    Cheng, Ruimei; Shi, Zuomin; Xu, Gexi; Liu, Shirong; Centritto, Mauro

    2018-01-01

    Variation in photosynthetic-nitrogen use efficiency (PNUE) is generally affected by several factors such as leaf nitrogen allocation and leaf diffusional conductances to CO2, although it is still unclear which factors significantly affect PNUE in tropical montane rain forest trees. In this study, comparison of PNUE, photosynthetic capacity, leaf nitrogen allocation, and diffusional conductances to CO2 between five Fagaceae tree species and five Leguminosae tree species were analyzed in Jianfengling tropical montane rain forest, Hainan Island, China. The result showed that PNUE of Fagaceae was significantly higher than that of Leguminosae (+35.5%), attributed to lower leaf nitrogen content per area (Narea, –29.4%). The difference in nitrogen allocation was the main biochemical factor that influenced interspecific variation in PNUE of these tree species. Fagaceae species allocated a higher fraction of leaf nitrogen to the photosynthetic apparatus (PP, +43.8%), especially to Rubisco (PR, +50.0%) and bioenergetics (PB +33.3%) in comparison with Leguminosae species. Leaf mass per area (LMA) of Leguminosae species was lower than that of Fagaceae species (-15.4%). While there was no significant difference shown for mesophyll conductance (gm), Fagaceae tree species may have greater chloroplast to total leaf surface area ratios and that offset the action of thicker cell walls on gm. Furthermore, weak negative relationship between nitrogen allocation in cell walls and in Rubisco was found for Castanopsis hystrix, Cyclobalanopsis phanera and Cy. patelliformis, which might imply that nitrogen in the leaves was insufficient for both Rubisco and cell walls. In summary, our study concluded that higher PNUE might contribute to the dominance of most Fagaceae tree species in Jianfengling tropical montane rain forest. PMID:29390007

  16. Fagaceae tree species allocate higher fraction of nitrogen to photosynthetic apparatus than Leguminosae in Jianfengling tropical montane rain forest, China.

    PubMed

    Tang, Jingchao; Cheng, Ruimei; Shi, Zuomin; Xu, Gexi; Liu, Shirong; Centritto, Mauro

    2018-01-01

    Variation in photosynthetic-nitrogen use efficiency (PNUE) is generally affected by several factors such as leaf nitrogen allocation and leaf diffusional conductances to CO2, although it is still unclear which factors significantly affect PNUE in tropical montane rain forest trees. In this study, comparison of PNUE, photosynthetic capacity, leaf nitrogen allocation, and diffusional conductances to CO2 between five Fagaceae tree species and five Leguminosae tree species were analyzed in Jianfengling tropical montane rain forest, Hainan Island, China. The result showed that PNUE of Fagaceae was significantly higher than that of Leguminosae (+35.5%), attributed to lower leaf nitrogen content per area (Narea, -29.4%). The difference in nitrogen allocation was the main biochemical factor that influenced interspecific variation in PNUE of these tree species. Fagaceae species allocated a higher fraction of leaf nitrogen to the photosynthetic apparatus (PP, +43.8%), especially to Rubisco (PR, +50.0%) and bioenergetics (PB +33.3%) in comparison with Leguminosae species. Leaf mass per area (LMA) of Leguminosae species was lower than that of Fagaceae species (-15.4%). While there was no significant difference shown for mesophyll conductance (gm), Fagaceae tree species may have greater chloroplast to total leaf surface area ratios and that offset the action of thicker cell walls on gm. Furthermore, weak negative relationship between nitrogen allocation in cell walls and in Rubisco was found for Castanopsis hystrix, Cyclobalanopsis phanera and Cy. patelliformis, which might imply that nitrogen in the leaves was insufficient for both Rubisco and cell walls. In summary, our study concluded that higher PNUE might contribute to the dominance of most Fagaceae tree species in Jianfengling tropical montane rain forest.

  17. Beyond leaf color: Comparing camera-based phenological metrics with leaf biochemical, biophysical, and spectral properties throughout the growing season of a temperate deciduous forest

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Tang, Jianwu; Mustard, John F.

    2014-03-01

    Plant phenology, a sensitive indicator of climate change, influences vegetation-atmosphere interactions by changing the carbon and water cycles from local to global scales. Camera-based phenological observations of the color changes of the vegetation canopy throughout the growing season have become popular in recent years. However, the linkages between camera phenological metrics and leaf biochemical, biophysical, and spectral properties are elusive. We measured key leaf properties including chlorophyll concentration and leaf reflectance on a weekly basis from June to November 2011 in a white oak forest on the island of Martha's Vineyard, Massachusetts, USA. Concurrently, we used a digital camera to automatically acquire daily pictures of the tree canopies. We found that there was a mismatch between the camera-based phenological metric for the canopy greenness (green chromatic coordinate, gcc) and the total chlorophyll and carotenoids concentration and leaf mass per area during late spring/early summer. The seasonal peak of gcc is approximately 20 days earlier than the peak of the total chlorophyll concentration. During the fall, both canopy and leaf redness were significantly correlated with the vegetation index for anthocyanin concentration, opening a new window to quantify vegetation senescence remotely. Satellite- and camera-based vegetation indices agreed well, suggesting that camera-based observations can be used as the ground validation for satellites. Using the high-temporal resolution dataset of leaf biochemical, biophysical, and spectral properties, our results show the strengths and potential uncertainties to use canopy color as the proxy of ecosystem functioning.

  18. Estimation of Leaf Area Index and its Sunlit Portion from DSCOVR EPIC data

    NASA Astrophysics Data System (ADS)

    Knyazikhin, Y.; Yang, B.; Mottus, M.; Rautiainen, M.; Stenberg, P.; Yan, L.; Chen, C.; Yan, K.; Park, T.; Myneni, R. B.; Song, W.

    2016-12-01

    The NASA's Earth Polychromatic Imaging Camera (EPIC) onboard NOAA's Deep Space Climate Observatory (DSCOVR) mission was launched on February 11, 2015 to the Sun-Earth Lagrangian L1 point where it began to collect radiance data of the entire sunlit Earth at 16 km resolution (in equatorial zone) every 65 to 110 min in June 2015. It provides imageries in near backscattering directions with the scattering angle between 168o and 176o at ten UV to Near-IR narrow spectral bands centered at 317.5 (band width 1.0) nm, 325.0 (1.0) nm, 340.0 (3.0) nm, 388.0 (3.0) nm, 433.0 (3.0) nm, 551.0 (3.0) nm, 680.0 (1.7) nm, 687.8 (0.6) nm, 764.0 (1.7) nm and 779.5 (2.0) nm. This poster presents the theoretical basis of the algorithm designed for the generation of leaf area index (LAI) and diurnal course of sunlit leaf area index (SLAI) from EPIC Bidirectional Reflectance Factor of vegetated land. LAI and SLAI are defined as the total hemi-surface and sunlit leaf semi-surface per unit ground area. Whereas LAI is a standard product of many satellite the SLAI is a new satellite-derived parameter. Sunlit and shaded leaves exhibit different radiative response to incident Photosynthetically Active Radiation (400-700 nm), which in turn triggers various physiological and physical processes required for the functioning of plants. Leaf area and its sunlit portion are key state parameters in most ecosystem productivity and carbon/nitrogen cycle. Status of the EPIC LAI/SLAI product and its validation strategy are also discussed in this poster.

  19. Morphological and phenological shoot plasticity in a Mediterranean evergreen oak facing long-term increased drought.

    PubMed

    Limousin, Jean-Marc; Rambal, Serge; Ourcival, Jean-Marc; Rodríguez-Calcerrada, Jesus; Pérez-Ramos, Ignacio M; Rodríguez-Cortina, Raquel; Misson, Laurent; Joffre, Richard

    2012-06-01

    Mediterranean trees must adjust their canopy leaf area to the unpredictable timing and severity of summer drought. The impact of increased drought on the canopy dynamics of the evergreen Quercus ilex was studied by measuring shoot growth, leaf production, litterfall, leafing phenology and leaf demography in a mature forest stand submitted to partial throughfall exclusion for 7 years. The leaf area index rapidly declined in the throughfall-exclusion plot and was 19% lower than in the control plot after 7 years of treatment. Consequently, leaf litterfall was significantly lower in the dry treatment. Such a decline in leaf area occurred through a change in branch allometry with a decreased number of ramifications produced and a reduction of the leaf area supported per unit sapwood area of the shoot (LA/SA). The leafing phenology was slightly delayed and the median leaf life span was slightly longer in the dry treatment. The canopy dynamics in both treatments were driven by water availability with a 1-year lag: leaf shedding and production were reduced following dry years; in contrast, leaf turnover was increased following wet years. The drought-induced decrease in leaf area, resulting from both plasticity in shoot development and slower leaf turnover, appeared to be a hydraulic adjustment to limit canopy transpiration and maintain leaf-specific hydraulic conductivity under drier conditions.

  20. Niche and Neutral Processes Together Determine Diversity Loss in Response to Fertilization in an Alpine Meadow Community

    PubMed Central

    Li, Wei; Cheng, Ji-Min; Yu, Kai-Liang; Epstein, Howard E.; Du, Guo-Zhen

    2015-01-01

    Fertilization via nutrient deposition and agricultural inputs is one of the most important factors driving decreases in plant diversity. However, we still do not fully understand which processes (niche process or neutral process) are more important in leading to decreases in plant diversity caused by fertilization. A hypothesis-based approach was used to test the relative importance of niche versus neutral processes along a fertilization gradient in an alpine meadow community on the eastern Tibetan plateau, China. Niche overlap values were calculated for species biomass, and the null model was used to generate the values of niche overlap expected at random. A linear regression modeling was used to evaluate the relationship between functional traits (specific leaf area, leaf dry matter content, and leaf total nitrogen concentration) and species relative abundance. Our results demonstrated that observed niche overlap for species biomass was significantly higher than expected at lower fertilization gradients. Moreover, we also found a significantly negative correlation between species relative abundance and specific leaf area and leaf dry matter content, but a significantly positive correlation between relative abundance and leaf nitrogen concentration at lower fertilization gradients. However, these relationships were not significant at higher fertilization gradients. We concluded that community assembly is dynamic progression along the environmental gradients, and niche and neutral processes may together determine species diversity loss in response to fertilization. PMID:26280919

  1. [Comparative analysis of agronomic and qualitative characters in different lines of Dendrobium denneanum].

    PubMed

    He, Tao; Deng, Li; Lin, Yuan; Li, Bo; Yang, Xiaofan; Wang, Fang; Chun, Ze

    2010-08-01

    To provide theoretical basis for breeding good variety of Dendrobium denneanum, agronomic and qualitative characters of 4 different lines and relationships among them were studied. The stem length, stem diameter, leaf length, leaf width, length/ width ratio and leaf area were measured. The single fresh and dry stem was weighed and drying rate was calculated. The contents of polysaccharides and total alkaloids were determined by sulfuric acid-phenol colorimetry and acid-dye colorimetry, respectively. The correlations between characters were analyzed. The results showed that differences in major agronomic characters between four lines were significant. The plant types of dq-1 and dq-2 were higher, dq-3 was medium and dq-4 was lower. The fresh weigh of stem and content of polysaccharides were the highest in dq-2, 7.81 g and 14.33%. While the highest content of total alkaloids and was 0. 486% in dq-3. There were significant correlations between agronomic characters, but these characters had low or non correlations with qualitative characters such as polysaccharides and total alkaloids. It was shown that the content of polysaccharides and total alkaloids were significantly different among 4 lines of D. denneanum, which could be selected for different uses.

  2. Wheat productivity estimates using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F.; Colwell, J. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. The electro-optical leaf area meter was the most accurate of the approaches tested on harvested wheat samples, but it is very time consuming. It was decided to infer leaf area from dry weight biomass after establishing a relationship between dry weight biomass and area as measured by the leaf area meter. There is a good correlation between leaf area as measured by the meter and dry leaf biomass. There is a less consistent relationship between stem area and stem biomass.

  3. Seasonal variations of gas exchange and water relations in deciduous and evergreen trees in monsoonal dry forests of Thailand.

    PubMed

    Ishida, Atsushi; Harayama, Hisanori; Yazaki, Kenichi; Ladpala, Phanumard; Sasrisang, Amornrat; Kaewpakasit, Kanokwan; Panuthai, Samreong; Staporn, Duriya; Maeda, Takahisa; Gamo, Minoru; Diloksumpun, Sapit; Puangchit, Ladawan; Ishizuka, Moriyoshi

    2010-08-01

    This study compared leaf gas exchange, leaf hydraulic conductance, twig hydraulic conductivity and leaf osmotic potential at full turgor between two drought-deciduous trees, Vitex peduncularis Wall. and Xylia xylocarpa (Roxb.) W. Theob., and two evergreen trees, Hopea ferrea Lanessan and Syzygium cumini (L.) Skeels, at the uppermost canopies in tropical dry forests in Thailand. The aims were to examine (i) whether leaf and twig hydraulic properties differ in relation to leaf phenology and (ii) whether xylem cavitation is a determinant of leaf shedding during the dry season. The variations in almost all hydraulic traits were more dependent on species than on leaf phenology. Evergreen Hopea exhibited the lowest leaf-area-specific twig hydraulic conductivity (leaf-area-specific K(twig)), lamina hydraulic conductance (K(lamina)) and leaf osmotic potential at full turgor (Ψ(o)) among species, whereas evergreen Syzygium exhibited the highest leaf-area-specific K(twig), K(lamina) and Ψ(o). Deciduous Xylia had the highest sapwood-area-specific K(twig), along with the lowest Huber value (sapwood area/leaf area). More negative osmotic Ψ(o) and leaf osmotic adjustment during the dry season were found in deciduous Vitex and evergreen Hopea, accompanied by low sapwood-area-specific K(twig). Regarding seasonal changes in hydraulics, no remarkable decrease in K(lamina) and K(twig) was found during the dry season in any species. Results suggest that leaf shedding during the dry season is not always associated with extensive xylem cavitation.

  4. Satellite based remote sensing technique as a tool for real time monitoring of leaf retention in natural rubber plantations affected by abnormal leaf fall disease

    NASA Astrophysics Data System (ADS)

    Pradeep, B.; Meti, S.; James, J.

    2014-11-01

    Most parts of the traditional natural rubber growing regions of India, extending from Kanyakumari district of Tamil Nadu in the South to Kasaragod district of Kerala in the North received excess and prolonged rains during 2013. This led to severe incidence of Abnormal Leaf Fall (ALF) disease caused by the fungus, Phytophthora sp. The present study demonstrated the first time use of satellite remote sensing technique to monitor ALF disease by estimating Leaf Area Index (LAI) in natural rubber holdings in near real time. Leaf retention was monitored in between April and December 2012 and 2013 by estimating LAI using MODIS 15A2 product covering rubber holdings spread across all districts in the traditional rubber growing region of the country that was mapped using Resourcesat LISS III 2012 and 2013 data. It was found that as the monsoon advanced, LAI decreased substantially in both years, but the reduction was much more substantial and prolonged in many districts during 2013 than 2012 reflecting increased leaf fall due to ALF disease in 2013. The decline was more pronounced in central and northern Kerala than in the South. Kanyakumari district of Tamil Nadu is generally known to be free from ALF disease, but there was considerable leaf loss due to ALF in June 2012 and June and July 2013 even as the monsoon was unusually severe in 2013. Weighted mean LAI during for the entire period of April to December was estimated as a weighted average of LAI and per cent of total area under rubber in each district in the study area for the two years. This was markedly less in 2013 than 2012. The implications of poor leaf retention for biomass production (net primary productivity), carbon sequestration and rubber yield are discussed.

  5. Crown traits of coniferous trees and their relation to shade tolerance can differ with leaf type: a biophysical demonstration using computed tomography scanning data.

    PubMed

    Dutilleul, Pierre; Han, Liwen; Valladares, Fernando; Messier, Christian

    2015-01-01

    Plant light interception and shade tolerance are intrinsically related in that they involve structural, morphological and physiological adaptations to manage light capture for photosynthetic utilization, in order to sustain survival, development and reproduction. At the scale of small-size trees, crown traits related to structural geometry of branching pattern and space occupancy through phyllotaxis can be accurately evaluated in 3D, using computed tomography (CT) scanning data. We demonstrate this by scrutinizing the crowns of 15 potted miniature conifers of different species or varieties, classified in two groups based on leaf type (10 needlelike, 5 scalelike); we also test whether mean values of crown traits measured from CT scanning data and correlations with a shade tolerance index (STI) differ between groups. Seven crown traits, including fractal dimensions (FD1: smaller scales, FD2: larger scales) and leaf areas, were evaluated for all 15 miniature conifers; an average silhouette-to-total-area ratio was also calculated for each of the 10 needlelike-leaf conifers. Between-group differences in mean values are significant (P < 0.05) for STI, FD1, FD2, and the average leaf area displayed (ĀD). Between-group differences in sign and strength of correlations are observed. For example, the correlation between STI and FD1 is negative and significant (P < 0.10) for the needlelike-leaf group, but is positive and significant (P < 0.05) for the miniature conifers with scalelike leaves, which had lower STI and higher FD1 on average in our study; the positive correlation between STI and ĀD is significant (P < 0.05) for the scalelike-leaf group, and very moderate for the needlelike-leaf one. A contrasting physical attachment of the leaves to branches may explain part of the between-group differences. Our findings open new avenues for the understanding of fundamental plant growth processes; the information gained could be included in a multi-scale approach to tree crown modeling.

  6. Effect of light regime and provenance on leaf characteristics, growth and flavonoid accumulation in Cyclocarya paliurus (Batal) Iljinskaja coppices.

    PubMed

    Liu, Yang; Qian, Chenyun; Ding, Sihui; Shang, Xulan; Yang, Wanxia; Fang, Shengzuo

    2016-12-01

    As a highly valued and multiple function tree species, Cyclocarya paliurus is planted and managed for timber production and medical use. However, limited information is available on its genotype selection and cultivation for growth and phytochemicals. Responses of growth and secondary metabolites to light regimes and genotypes are useful information to determine suitable habitat conditions for the cultivation of medicinal plants. Both light regime and provenance significantly affected the leaf characteristics, leaf flavonoid contents, biomass production and flavonoid accumulation per plant. Leaf thickness, length of palisade cells and chlorophyll a/b decreased significantly under shading conditions, while leaf areas and total chlorophyll content increased obviously. In the full light condition, leaf flavonoid contents showed a bimodal temporal variation pattern with the maximum observed in August and the second peak in October, while shading treatment not only reduced the leaf content of flavonoids but also delayed the peak appearing of the flavonoid contents in the leaves of C. paliurus. Strong correlations were found between leaf thickness, palisade length, monthly light intensity and measured flavonoid contents in the leaves of C. paliurus. Muchuan provenance with full light achieved the highest leaf biomass and flavonoid accumulation per plant. Cyclocarya paliurus genotypes show diverse responses to different light regimes in leaf characteristics, biomass production and flavonoid accumulation, highlighting the opportunity for extensive selection in the leaf flavonoid production.

  7. Total Lactic Acid Bacteria (LAB), Antioxidant Activity, and Acceptance of Synbiotic Yoghurt with Binahong Leaf Extract (Anredera cordifolia (Ten.) Steenis)

    NASA Astrophysics Data System (ADS)

    Lestari, R. P.; Nissa, C.; Afifah, D. N.; Anjani, G.; Rustanti, N.

    2018-02-01

    Alternative treatment for metabolic syndrome can be done by providing a diet consist of functional foods or beverages. Synbiotic yoghurt containing binahong leaf extract which high in antioxidant, total LAB and fiber can be selected to reduce the risk of metabolic syndrome. The effect of binahong leaf extract in synbiotic yoghurt against total LAB, antioxidant activity, and acceptance were analyzed. The experiment was done with complete randomized design with addition of binahong leaf extract 0% (control); 0.12%; 0.25%; 0.5% in synbiotic yoghurt. Analysis of total LAB using Total Plate Count test, antioxidant activity using DPPH, and acceptance were analyzed by hedonic test. The addition of binahong leaf extract in various doses in synbiotic yoghurt decreased total LAB without significant effect (p=0,145). There was no effect of addition binahong leaf extract on antioxidant activity (p=0,297). The addition of binahong leaf extract had an effect on color, but not on aroma, texture and taste. The best result was yoghurt synbiotic with addition of 0,12% binahong leaf extract. Conclusion of the research was the addition of binahong leaf extract to synbiotic yogurt did not significantly affect total LAB, antioxidant activity, aroma, texture and taste; but had a significant effect on color.

  8. The effects of elevated CO2 and nitrogen fertilization on stomatal conductance estimated from 11 years of scaled sap flux measurements at Duke FACE.

    PubMed

    Ward, Eric J; Oren, Ram; Bell, David M; Clark, James S; McCarthy, Heather R; Kim, Hyun-Seok; Domec, Jean-Christophe

    2013-02-01

    In this study, we employ a network of thermal dissipation probes (TDPs) monitoring sap flux density to estimate leaf-specific transpiration (E(L)) and stomatal conductance (G(S)) in Pinus taeda (L.) and Liquidambar styraciflua L. exposed to +200 ppm atmospheric CO(2) levels (eCO(2)) and nitrogen fertilization. Scaling half-hourly measurements from hundreds of sensors over 11 years, we found that P. taeda in eCO(2) intermittently (49% of monthly values) decreased stomatal conductance (G(S)) relative to the control, with a mean reduction of 13% in both total E(L) and mean daytime G(S). This intermittent response was related to changes in a hydraulic allometry index (A(H)), defined as sapwood area per unit leaf area per unit canopy height, which decreased a mean of 15% with eCO(2) over the course of the study, due mostly to a mean 19% increase in leaf area (A(L)). In contrast, L. styraciflua showed a consistent (76% of monthly values) reduction in G(S) with eCO(2) with a total reduction of 32% E(L), 31% G(S) and 23% A(H) (due to increased A(L) per sapwood area). For L. styraciflua, like P. taeda, the relationship between A(H) and G(S) at reference conditions suggested a decrease in G(S) across the range of A(H). Our findings suggest an indirect structural effect of eCO(2) on G(S) in P. taeda and a direct leaf level effect in L. styraciflua. In the initial year of fertilization, P. taeda in both CO(2) treatments, as well as L. styraciflua in eCO(2), exhibited higher G(S) with N(F) than expected from shifts in A(H), suggesting a transient direct effect on G(S). Whether treatment effects on mean leaf-specific G(S) are direct or indirect, this paper highlights that long-term treatment effects on G(S) are generally reflected in A(H) as well.

  9. Leaf structural and photosynthetic characteristics, and biomass allocation to foliage in relation to foliar nitrogen content and tree size in three Betula species.

    PubMed

    Niinemets, Ulo; Portsmuth, Angelika; Truus, Laimi

    2002-02-01

    Young trees 0.03-1.7 m high of three coexisting Betula species were investigated in four sites of varying soil fertility, but all in full daylight, to separate nutrient and plant size controls on leaf dry mass per unit area (MA), light-saturated foliar photosynthetic electron transport rate (J) and the fraction of plant biomass in foliage (F(L)). Because the site effect was generally non-significant in the analyses of variance with foliar nitrogen content per unit dry mass (N(M)) as a covariate, N(M) was used as an explaining variable of leaf structural and physiological characteristics. Average leaf area (S) and dry mass per leaf scaled positively with N(M) and total tree height (H) in all species. Leaf dry mass per unit area also increased with increasing H, but decreased with increasing N(M), whereas the effects were species-specific. Increases in plant size led to a lower and increases in N(M) to a greater FL and total plant foliar area per unit plant biomass (LAR). Thus, the self-shading probably increased with increasing N(M) and decreased with increasing H. Nevertheless, the whole-plant average M(A), as well as M(A) values of topmost fully exposed leaves, correlated with N(M) and H in a similar manner, indicating that scaling of MA with N(M) and H did not necessarily result from the modified degree of within-plant shading. The rate of photosynthetic electron transport per unit dry mass (J(M)) scaled positively with N(M), but decreased with increasing H and M(A). Thus, increases in M(A) with tree height and decreasing nitrogen content not only resulted in a lower plant foliar area (LAR = F(L)/M(A)), but also led to lower physiological activity of unit foliar biomass. The leaf parameters (J(M), N(M) and M(A)) varied threefold, but the whole-plant characteristic FL varied 20-fold and LAR 30-fold, indicating that the biomass allocation was more plastically adjusted to different plant internal nitrogen contents and to tree height than the foliar variables. Our results demonstrate that: (1) tree height and N(M) may independently control foliar structure and physiology, and have an even greater impact on biomass allocation; and (2) the modified within-plant light availabilities alone do not explain the observed patterns. Although there were interspecific differences with respect to the statistical significance of the relationships, all species generally fit common regressions. However, these differences were consistent, and suggested that more competitive species with inherently larger growth rates also more plastically respond to N and H.

  10. Leaf Structural and Photosynthetic Characteristics, and Biomass Allocation to Foliage in Relation to Foliar Nitrogen Content and Tree Size in Three Betula Species

    PubMed Central

    NIINEMETS, ÜLO; PORTSMUTH, ANGELIKA; TRUUS, LAIMI

    2002-01-01

    Young trees 0·03–1·7 m high of three coexisting Betula species were investigated in four sites of varying soil fertility, but all in full daylight, to separate nutrient and plant size controls on leaf dry mass per unit area (MA), light‐saturated foliar photosynthetic electron transport rate (J) and the fraction of plant biomass in foliage (FL). Because the site effect was generally non‐significant in the analyses of variance with foliar nitrogen content per unit dry mass (NM) as a covariate, NM was used as an explaining variable of leaf structural and physiological characteristics. Average leaf area (S) and dry mass per leaf scaled positively with NM and total tree height (H) in all species. Leaf dry mass per unit area also increased with increasing H, but decreased with increasing NM, whereas the effects were species‐specific. Increases in plant size led to a lower and increases in NM to a greater FL and total plant foliar area per unit plant biomass (LAR). Thus, the self‐shading probably increased with increasing NM and decreased with increasing H. Nevertheless, the whole‐plant average MA, as well as MA values of topmost fully exposed leaves, correlated with NM and H in a similar manner, indicating that scaling of MA with NM and H did not necessarily result from the modified degree of within‐plant shading. The rate of photosynthetic electron transport per unit dry mass (JM) scaled positively with NM, but decreased with increasing H and MA. Thus, increases in MA with tree height and decreasing nitrogen content not only resulted in a lower plant foliar area (LAR = FL/MA), but also led to lower physiological activity of unit foliar biomass. The leaf parameters (JM, NM and MA) varied threefold, but the whole‐plant characteristic FL varied 20‐fold and LAR 30‐fold, indicating that the biomass allocation was more plastically adjusted to different plant internal nitrogen contents and to tree height than the foliar variables. Our results demonstrate that: (1) tree height and NM may independently control foliar structure and physiology, and have an even greater impact on biomass allocation; and (2) the modified within‐plant light availabilities alone do not explain the observed patterns. Although there were interspecific differences with respect to the statistical significance of the relationships, all species generally fit common regressions. However, these differences were consistent, and suggested that more competitive species with inherently larger growth rates also more plastically respond to N and H. PMID:12099350

  11. Effect of solution and leaf surface polarity on droplet spread area and contact angle.

    PubMed

    Nairn, Justin J; Forster, W Alison; van Leeuwen, Rebecca M

    2016-03-01

    How much an agrochemical spray droplet spreads on a leaf surface can significantly influence efficacy. This study investigates the effect solution polarity has on droplet spreading on leaf surfaces and whether the relative leaf surface polarity, as quantified using the wetting tension dielectric (WTD) technique, influences the final spread area. Contact angles and spread areas were measured using four probe solutions on 17 species. Probe solution polarity was found to affect the measured spread area and the contact angle of the droplets on non-hairy leaves. Leaf hairs skewed the spread area measurement, preventing investigation of the influence of surface polarity on hairy leaves. WTD-measured leaf surface polarity of non-hairy leaves was found to correlate strongly with the effect of solution polarity on spread area. For non-polar leaf surfaces the spread area decreases with increasing solution polarity, for neutral surfaces polarity has no effect on spread area and for polar leaf surfaces the spread area increases with increasing solution polarity. These results attest to the use of the WTD technique as a means to quantify leaf surface polarity. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  12. Twig-leaf size relationships in woody plants vary intraspecifically along a soil moisture gradient

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-Dong; Yan, En-Rong; Chang, Scott X.; Wang, Xi-Hua; Zhao, Yan-Tao; Shi, Qing-Ru

    2014-10-01

    Understanding scaling relationships between twig size and leaf size along environmental gradients is important for revealing strategies of plant biomass allocation with changing environmental constraints. However, it remains poorly understood how variations in the slope and y-intercept in the twig-leaf size relationship partition among individual, population and species levels across communities. Here, we determined the scaling relationships between twig cross-sectional area (twig size) and total leaf area per twig (leaf size) among individual, population and species levels along a soil moisture gradient in subtropical forests in eastern China. Twig and leaf tissues from 95 woody plant species were collected from three sites that form a soil moisture gradient: a wet site (W), a mesophytic site (M), and a dry site (D). The variance in scaling slope and y-intercept was partitioned among individual, population and species levels using a nested ANOVA. In addition, the change in the twig-leaf size relationship over the soil moisture gradient was determined for each of overlapping and turnover species. Twig size was positively related to leaf size across the three levels, with the variance partitioned at the individual level in scaling slope and y-intercept being 98 and 90%, respectively. Along the soil moisture gradient, the twig-leaf size relationship differed inter- and intraspecifically. At the species and population levels, there were homogeneous slopes but the y-intercept was W > M = D. In contrast, at the individual level, the regression slopes were heterogeneous among the three sites. More remarkably, the twig-leaf size relationships changed from negative allometry for overlapping species to isometry for turnover species. This study provides strong evidence for the twig-leaf size relationship to be intraspecific, particularly at the individual level. Our findings suggest that whether or not species have overlapping habitats is crucial for shaping the deployment pattern between twigs and leaves.

  13. The Evolutionary Basis of Naturally Diverse Rice Leaves Anatomy

    PubMed Central

    Chatterjee, Jolly; Dionora, Jacqueline; Elmido-Mabilangan, Abigail; Wanchana, Samart; Thakur, Vivek; Bandyopadhyay, Anindya; Brar, Darshan S.; Quick, William Paul

    2016-01-01

    Rice contains genetically and ecologically diverse wild and cultivated species that show a wide variation in plant and leaf architecture. A systematic characterization of leaf anatomy is essential in understanding the dynamics behind such diversity. Therefore, leaf anatomies of 24 Oryza species spanning 11 genetically diverse rice genomes were studied in both lateral and longitudinal directions and possible evolutionary trends were examined. A significant inter-species variation in mesophyll cells, bundle sheath cells, and vein structure was observed, suggesting precise genetic control over these major rice leaf anatomical traits. Cellular dimensions, measured along three growth axes, were further combined proportionately to construct three-dimensional (3D) leaf anatomy models to compare the relative size and orientation of the major cell types present in a fully expanded leaf. A reconstruction of the ancestral leaf state revealed that the following are the major characteristics of recently evolved rice species: fewer veins, larger and laterally elongated mesophyll cells, with an increase in total mesophyll area and in bundle sheath cell number. A huge diversity in leaf anatomy within wild and domesticated rice species has been portrayed in this study, on an evolutionary context, predicting a two-pronged evolutionary pathway leading to the ‘sativa leaf type’ that we see today in domesticated species. PMID:27792743

  14. The Evolutionary Basis of Naturally Diverse Rice Leaves Anatomy.

    PubMed

    Chatterjee, Jolly; Dionora, Jacqueline; Elmido-Mabilangan, Abigail; Wanchana, Samart; Thakur, Vivek; Bandyopadhyay, Anindya; Brar, Darshan S; Quick, William Paul

    2016-01-01

    Rice contains genetically and ecologically diverse wild and cultivated species that show a wide variation in plant and leaf architecture. A systematic characterization of leaf anatomy is essential in understanding the dynamics behind such diversity. Therefore, leaf anatomies of 24 Oryza species spanning 11 genetically diverse rice genomes were studied in both lateral and longitudinal directions and possible evolutionary trends were examined. A significant inter-species variation in mesophyll cells, bundle sheath cells, and vein structure was observed, suggesting precise genetic control over these major rice leaf anatomical traits. Cellular dimensions, measured along three growth axes, were further combined proportionately to construct three-dimensional (3D) leaf anatomy models to compare the relative size and orientation of the major cell types present in a fully expanded leaf. A reconstruction of the ancestral leaf state revealed that the following are the major characteristics of recently evolved rice species: fewer veins, larger and laterally elongated mesophyll cells, with an increase in total mesophyll area and in bundle sheath cell number. A huge diversity in leaf anatomy within wild and domesticated rice species has been portrayed in this study, on an evolutionary context, predicting a two-pronged evolutionary pathway leading to the 'sativa leaf type' that we see today in domesticated species.

  15. Effect of Solar Ultraviolet-B Radiation during Springtime Ozone Depletion on Photosynthesis and Biomass Production of Antarctic Vascular Plants1

    PubMed Central

    Xiong, Fusheng S.; Day, Thomas A.

    2001-01-01

    We assessed the influence of springtime solar UV-B radiation that was naturally enhanced during several days due to ozone depletion on biomass production and photosynthesis of vascular plants along the Antarctic Peninsula. Naturally growing plants of Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. were potted and grown under filters that absorbed or transmitted most solar UV-B. Plants exposed to solar UV-B from mid-October to early January produced 11% to 22% less total, as well as above ground biomass, and 24% to 31% less total leaf area. These growth reductions did not appear to be associated with reductions in photosynthesis per se: Although rates of photosynthetic O2 evolution were reduced on a chlorophyll and a dry-mass basis, on a leaf area basis they were not affected by UV-B exposure. Leaves on plants exposed to UV-B were denser, probably thicker, and had higher concentrations of photosynthetic and UV-B absorbing pigments. We suspect that the development of thicker leaves containing more photosynthetic and screening pigments allowed these plants to maintain their photosynthetic rates per unit leaf area. Exposure to UV-B led to reductions in quantum yield of photosystem II, based on fluorescence measurements of adaxial leaf surfaces, and we suspect that UV-B impaired photosynthesis in the upper mesophyll of leaves. Because the ratio of variable to maximal fluorescence, as well as the initial slope of the photosynthetic light response, were unaffected by UV-B exposure, we suggest that impairments in photosynthesis in the upper mesophyll were associated with light-independent enzymatic, rather than photosystem II, limitations. PMID:11161031

  16. Analysis of elevation changes detected from multi-temporal LiDAR surveys in forested landslide terrain in western Oregon

    USGS Publications Warehouse

    Burns, W.J.; Coe, J.A.; Kaya, B.S.; Ma, Liwang

    2010-01-01

    We examined elevation changes detected from two successive sets of Light Detection and Ranging (LiDAR) data in the northern Coast Range of Oregon. The first set of LiDAR data was acquired during leafon conditions and the second set during leaf-off conditions. We were able to successfully identify and map active landslides using a differential digital elevation model (DEM) created from the two LiDAR data sets, but this required the use of thresholds (0.50 and 0.75 m) to remove noise from the differential elevation data, visual pattern recognition of landslideinduced elevation changes, and supplemental QuickBird satellite imagery. After mapping, we field-verified 88 percent of the landslides that we had mapped with high confidence, but we could not detect active landslides with elevation changes of less than 0.50 m. Volumetric calculations showed that a total of about 18,100 m3 of material was missing from landslide areas, probably as a result of systematic negative elevation errors in the differential DEM and as a result of removal of material by erosion and transport. We also examined the accuracies of 285 leaf-off LiDAR elevations at four landslide sites using Global Positioning System and total station surveys. A comparison of LiDAR and survey data indicated an overall root mean square error of 0.50 m, a maximum error of 2.21 m, and a systematic error of 0.09 m. LiDAR ground-point densities were lowest in areas with young conifer forests and deciduous vegetation, which resulted in extensive interpolations of elevations in the leaf-on, bare-earth DEM. For optimal use of multi-temporal LiDAR data in forested areas, we recommend that all data sets be flown during leaf-off seasons.

  17. Effect of solar ultraviolet-B radiation during springtime ozone depletion on photosynthesis and biomass production of Antarctic vascular plants.

    PubMed

    Xiong, F S; Day, T A

    2001-02-01

    We assessed the influence of springtime solar UV-B radiation that was naturally enhanced during several days due to ozone depletion on biomass production and photosynthesis of vascular plants along the Antarctic Peninsula. Naturally growing plants of Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. were potted and grown under filters that absorbed or transmitted most solar UV-B. Plants exposed to solar UV-B from mid-October to early January produced 11% to 22% less total, as well as above ground biomass, and 24% to 31% less total leaf area. These growth reductions did not appear to be associated with reductions in photosynthesis per se: Although rates of photosynthetic O(2) evolution were reduced on a chlorophyll and a dry-mass basis, on a leaf area basis they were not affected by UV-B exposure. Leaves on plants exposed to UV-B were denser, probably thicker, and had higher concentrations of photosynthetic and UV-B absorbing pigments. We suspect that the development of thicker leaves containing more photosynthetic and screening pigments allowed these plants to maintain their photosynthetic rates per unit leaf area. Exposure to UV-B led to reductions in quantum yield of photosystem II, based on fluorescence measurements of adaxial leaf surfaces, and we suspect that UV-B impaired photosynthesis in the upper mesophyll of leaves. Because the ratio of variable to maximal fluorescence, as well as the initial slope of the photosynthetic light response, were unaffected by UV-B exposure, we suggest that impairments in photosynthesis in the upper mesophyll were associated with light-independent enzymatic, rather than photosystem II, limitations.

  18. The morphology, physiology and nutritional quality of lettuce grown under hypobaria and hypoxia

    NASA Astrophysics Data System (ADS)

    Tang, Yongkang; Gao, Feng; Guo, Shuangsheng; Li, Fang

    2015-07-01

    The objectives of this research were to investigate the morphological, physiological and nutritional characteristics of lettuce plants (Lactuca sativa L. cv. Rome) under hypobaric and hypoxic conditions. Plants were grown under two levels of total pressures (101 and 30 kPa) and three levels of oxygen partial pressures (21, 6 and 2 kPa) for 20 days. Hypoxia (6 or 2 kPa) not only significantly inhibited the growth of lettuce plants by decreasing biomass, leaf area, root/shoot ratio, water content, the contents of minerals and organic compounds (vitamin C, crude protein and crude fat), but also destroyed the ultrastructure of mitochondria and chloroplast. The activities of catalase and total superoxide dismutase, the contents of glutathione and the total antioxidant capacity significantly decreased due to hypoxia. Hypobaria (30 kPa) did not markedly enhance the biomass, but it increased leaf area, root/shoot ratio and relative water content. Hypobaria also decreased the contents of total phenols, malondialdehyde and total carbohydrate and protected the ultrastructure of mitochondria and chloroplast under hypoxia. Furthermore, the activities of catalase and total superoxide dismutase, the contents of minerals and organic compounds markedly increased under hypobaria. This study demonstrates that hypobaria (30 kPa) does not increase the growth of lettuce plants, but it enhances plant's stress resistance and nutritional quality under hypoxia.

  19. Genetic and morphologic variation in 'Phyllodoce empetriformis' and 'P. glanduliflora' (Ericaceae) in Mount Rainier National Park, Washington

    USGS Publications Warehouse

    Rochefort, Regina M.; Peterson, D.L.

    2001-01-01

    Genetic and morphological diversity of Phyllodoce empetriformis (Sw.) D. Don and Phyllodoce glanduliflora (hook.) Cov. were surveyed in Mount Rainier National Park in the Cascade Mountains of Washington State. Paired populations at high and low elevations were sampled at three study areas between 1720- and 2451-m elevation. Allozyme analysis of four polymorphic loci indicates high levels of genetic diversity within populations (P. empetriformis = 94.2% and P. glanduliflora = 93.4% of total diversity) and significant differences in allele frequencies among populations and study areas. Individual populations are composed of multiple clones with high ratios of local to widespread genotypes. The proportion of distinguishable clones ranges from 32 to 83% within individual populations. Within individual populations, 18-67% of genotypes were restricted to one population. Patterns of morphologic variation, estimated through measurements of leaf width, leaf length, stem extension, and plant height paralleled those displayed by allozyme analysis. Significant differences were found in leaf width and stem length for P. empetriformis and among greenhouse populations for leaf width (P. empetriformis) and leaf length (P. glanduliflora). Species conservation strategies for Phyllodoce should concentrate on the maintenance of within-population levels of diversity, protection of adjacent populations, and protection of safe sites for recruitment of new populations.

  20. Effects of burn temperature on ash nutrient forms and availability from cattail (Typha domingensis) and sawgrass (Cladium jamaicense) in the Florida Everglades.

    PubMed

    Qian, Y; Miao, S L; Gu, B; Li, Y C

    2009-01-01

    Plant ash derived from fire plays an important role in nutrient balance and cycling in ecosystems. Factors that determine the composition and availability of ash nutrients include fire intensity (burn temperature and duration), plant species, habitat nutrient enrichment, and leaf type (live or dead leaf). We used laboratory simulation methods to evaluate temperature effects on nutrient composition and metals in the residual ash of sawgrass (Cladium jamaicense) and cattail (Typha domingensis), particularly on post-fire phosphorus (P) availability in plant ash. Live and dead leaf samples were collected from Water Conservation Area 2A in the northern Everglades along a soil P gradient, where prescribed fire may be used to accelerate recovery of this unique ecosystem. Significant decreases in total carbon and total nitrogen were detected with increasing fire temperature. Organic matter combustion was nearly complete at temperatures > or = 450 degrees C. HCl-extractable P (average, 50% of total P in the ash) and NH(4)Cl-extractable P (average, 33% of total P in the ash) were the predominant P fractions for laboratory-burned ash. Although a low-intensity fire could induce an elevation of P availability, an intense fire generally resulted in decreased water-soluble P. Significant differences in nutrient compositions were observed between species, habitat nutrient status, and leaf types. More labile inorganic P remained in sawgrass ash than in cattail ash; hence, sawgrass ash has a greater potential to release available P than cattail. Fire intensity affected plant ash nutrient composition, particularly P availability, and the effects varied with plant species and leaf type. Therefore, it is important to consider fire intensity and vegetation community when using a prescribed fire for ecosystem management.

  1. Leaf area prediction models for Tsuga canadensis in Maine

    Treesearch

    Laura S. Kenefic; R.S. Seymour

    1999-01-01

    Tsuga canadensis (L.) Carr. (eastern hemlock) is a common species throughout the Acadian forest. Studies of leaf area and growth efficiency in this forest type have been limited by the lack of equations to predict leaf area of this species. We found that sapwood area was an effective leaf area surrogate in T. canadensis, though...

  2. Variation in defence strategies in two species of the genus Beilschmiedia under differing soil nutrient and rainfall conditions.

    PubMed

    Simon, J; Miller, R E; Woodrow, I E

    2007-01-01

    The relationships between various leaf functional traits that are important in plant growth (e.g., specific leaf area) have been investigated in recent studies; however, research in this context on plants that are highly protected by chemical defences, particularly resource-demanding nitrogen-based defence, is lacking. We collected leaves from cyanogenic (N-defended) Beilschmiedia collina B. Hyland and acyanogenic (C-defended) Beilschmiedia tooram (F. M. Bailey) B. Hyland at high- and low-soil nutrient sites in two consecutive years that varied significantly in rainfall. We then measured the relationships between chemical defence and morphological and functional leaf traits under the different environmental conditions. We found that the two species differed significantly in their resource allocation to defence as well as leaf morphology and function. The N defended species had a higher leaf nitrogen concentration, whereas the C-defended species had higher amounts of C-based chemical defences (i.e., total phenolics and condensed tannins). The C-defended species also tended to have higher force to fracture and increased leaf toughness. In B. collina, cyanogenic glycoside concentration was higher with higher rainfall, but not with higher soil nutrients. Total phenolic concentration was higher at the high soil nutrient site in B. tooram, but lower in B. collina; however, with higher rainfall an increase was found in B. tooram, while phenolics decreased in B. collina. Condensed tannin concentration decreased in both species with rainfall and nutrient availability. We conclude that chemical defence is correlated with leaf functional traits and that variation in environmental resources affects this correlation.

  3. Plant traits and environment: floating leaf blade production and turnover of waterlilies.

    PubMed

    Klok, Peter F; van der Velde, Gerard

    2017-01-01

    Floating leaf blades of waterlilies fulfill several functions in wetland ecosystems by production, decomposition and turnover as well as exchange processes. Production and turnover rates of floating leaf blades of three waterlily species, Nuphar lutea (L.) Sm., Nymphaea alba L. and Nymphaea candida Presl, were studied in three freshwater bodies, differing in trophic status, pH and alkalinity. Length and percentages of leaf loss of marked leaf blades were measured weekly during the growing season. Area and biomass were calculated based on leaf length and were used to calculate the turnover rate of floating leaf blades. Seasonal changes in floating leaf production showed that values decreased in the order: Nymphaea alba , Nuphar lutea , Nymphaea candida . The highest production was reached for Nuphar lutea and Nymphaea alba in alkaline, eutrophic water bodies. The production per leaf was relatively high for both species in the acid water body. Nymphaea candida showed a very short vegetation period and low turnover rates. The ratio Total potential leaf biomass/Maximum potential leaf biomass (P/B max ) of the three species ranged from 1.35-2.25. The ratio Vegetation period (Period with floating leaves)/Mean leaf life span ranged from 2.94-4.63, the ratio Growth period (Period with appearance of new floating leaves)/Vegetation period from 0.53-0.73. The clear differences between Nymphaea candida versus Nuphar lutea and Nymphaea alba , may be due to adaptations of Nymphaea candida to an Euro-Siberic climate with short-lasting summer conditions.

  4. Plant traits and environment: floating leaf blade production and turnover of waterlilies

    PubMed Central

    2017-01-01

    Floating leaf blades of waterlilies fulfill several functions in wetland ecosystems by production, decomposition and turnover as well as exchange processes. Production and turnover rates of floating leaf blades of three waterlily species, Nuphar lutea (L.) Sm., Nymphaea alba L. and Nymphaea candida Presl, were studied in three freshwater bodies, differing in trophic status, pH and alkalinity. Length and percentages of leaf loss of marked leaf blades were measured weekly during the growing season. Area and biomass were calculated based on leaf length and were used to calculate the turnover rate of floating leaf blades. Seasonal changes in floating leaf production showed that values decreased in the order: Nymphaea alba, Nuphar lutea, Nymphaea candida. The highest production was reached for Nuphar lutea and Nymphaea alba in alkaline, eutrophic water bodies. The production per leaf was relatively high for both species in the acid water body. Nymphaea candida showed a very short vegetation period and low turnover rates. The ratio Total potential leaf biomass/Maximum potential leaf biomass (P/Bmax) of the three species ranged from 1.35–2.25. The ratio Vegetation period (Period with floating leaves)/Mean leaf life span ranged from 2.94–4.63, the ratio Growth period (Period with appearance of new floating leaves)/Vegetation period from 0.53–0.73. The clear differences between Nymphaea candida versus Nuphar lutea and Nymphaea alba, may be due to adaptations of Nymphaea candida to an Euro-Siberic climate with short-lasting summer conditions. PMID:28462025

  5. UV radiation is the primary factor driving the variation in leaf phenolics across Chinese grasslands

    PubMed Central

    Chen, Litong; Niu, Kechang; Wu, Yi; Geng, Yan; Mi, Zhaorong; Flynn, Dan FB; He, Jin-Sheng

    2013-01-01

    Due to the role leaf phenolics in defending against ultraviolet B (UVB) under previously controlled conditions, we hypothesize that ultraviolet radiation (UVR) could be a primary factor driving the variation in leaf phenolics in plants over a large geographic scale. We measured leaf total phenolics, ultraviolet-absorbing compounds (UVAC), and corresponding leaf N, P, and specific leaf area (SLA) in 151 common species. These species were from 84 sites across the Tibetan Plateau and Inner Mongolian grasslands of China with contrasting UVR (354 vs. 161 mW/cm2 on average). Overall, leaf phenolics and UVAC were all significantly higher on the Tibetan Plateau than in the Inner Mongolian grasslands, independent of phylogenetic relationships between species. Regression analyses showed that the variation in leaf phenolics was strongly affected by climatic factors, particularly UVR, and soil attributes across all sites. Structural equation modeling (SEM) identified the primary role of UVR in determining leaf phenolic concentrations, after accounting for colinearities with altitude, climatic, and edaphic factors. In addition, phenolics correlated positively with UVAC and SLA, and negatively with leaf N and N: P. These relationships were steeper in the lower-elevation Inner Mongolian than on the Tibetan Plateau grasslands. Our data support that the variation in leaf phenolics is controlled mainly by UV radiation, implying high leaf phenolics facilitates the adaptation of plants to strong irradiation via its UV-screening and/or antioxidation functions, particularly on the Tibetan Plateau. Importantly, our results also suggest that leaf phenolics may influence on vegetation attributes and indirectly affect ecosystem processes by covarying with leaf functional traits. PMID:24363898

  6. Transfer of Cadmium from Soil to Vegetable in the Pearl River Delta area, South China

    PubMed Central

    Zhang, Huihua; Chen, Junjian; Zhu, Li; Yang, Guoyi; Li, Dingqiang

    2014-01-01

    The purpose of this study was to investigate the regional Cadmium (Cd) concentration levels in soils and in leaf vegetables across the Pearl River Delta (PRD) area; and reveal the transfer characteristics of Cadmium (Cd) from soils to leaf vegetable species on a regional scale. 170 paired vegetables and corresponding surface soil samples in the study area were collected for calculating the transfer factors of Cadmium (Cd) from soils to vegetables. This investigation revealed that in the study area Cd concentration in soils was lower (mean value 0.158 mg kg−1) compared with other countries or regions. The Cd-contaminated areas are mainly located in west areas of the Pearl River Delta. Cd concentrations in all vegetables were lower than the national standard of Safe vegetables (0.2 mg kg−1). 88% of vegetable samples met the standard of No-Polluted vegetables (0.05 mg kg−1). The Cd concentration in vegetables was mainly influenced by the interactions of total Cd concentration in soils, soil pH and vegetable species. The fit lines of soil-to-plant transfer factors and total Cd concentration in soils for various vegetable species were best described by the exponential equation (), and these fit lines can be divided into two parts, including the sharply decrease part with a large error range, and the slowly decrease part with a low error range, according to the gradual increasing of total Cd concentrations in soils. PMID:25247431

  7. Transfer of cadmium from soil to vegetable in the Pearl River Delta area, South China.

    PubMed

    Zhang, Huihua; Chen, Junjian; Zhu, Li; Yang, Guoyi; Li, Dingqiang

    2014-01-01

    The purpose of this study was to investigate the regional Cadmium (Cd) concentration levels in soils and in leaf vegetables across the Pearl River Delta (PRD) area; and reveal the transfer characteristics of Cadmium (Cd) from soils to leaf vegetable species on a regional scale. 170 paired vegetables and corresponding surface soil samples in the study area were collected for calculating the transfer factors of Cadmium (Cd) from soils to vegetables. This investigation revealed that in the study area Cd concentration in soils was lower (mean value 0.158 mg kg(-1)) compared with other countries or regions. The Cd-contaminated areas are mainly located in west areas of the Pearl River Delta. Cd concentrations in all vegetables were lower than the national standard of Safe vegetables (0.2 mg kg(-1)). 88% of vegetable samples met the standard of No-Polluted vegetables (0.05 mg kg(-1)). The Cd concentration in vegetables was mainly influenced by the interactions of total Cd concentration in soils, soil pH and vegetable species. The fit lines of soil-to-plant transfer factors and total Cd concentration in soils for various vegetable species were best described by the exponential equation (y = ax(b)), and these fit lines can be divided into two parts, including the sharply decrease part with a large error range, and the slowly decrease part with a low error range, according to the gradual increasing of total Cd concentrations in soils.

  8. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups

    Treesearch

    Peter B. Reich; Michael B. Walters; David S. Ellsworth; [and others; [Editor’s note: James M.. Vose is the SRS co-author for this publication.

    1998-01-01

    Based on prior evidence of coordinated multiple leaf trait scaling, the authors hypothesized that variation among species in leaf dark respiration rate (Rd) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (Amax). However, it is not known whether such scaling, if it exists, is...

  9. Are trait-scaling relationships invariant across contrasting elevations in the widely distributed treeline species Nothofagus pumilio?

    PubMed

    Fajardo, Alex

    2016-05-01

    The study of scaling examines the relative dimensions of diverse organismal traits. Understanding whether global scaling patterns are paralleled within species is key to identify causal factors of universal scaling. I examined whether the foliage-stem (Corner's rules), the leaf size-number, and the leaf mass-leaf area scaling relationships remained invariant and isometric with elevation in a wide-distributed treeline species in the southern Chilean Andes. Mean leaf area, leaf mass, leafing intensity, and twig cross-sectional area were determined for 1-2 twigs of 8-15 Nothofagus pumilio individuals across four elevations (including treeline elevation) and four locations (from central Chile at 36°S to Tierra del Fuego at 54°S). Mixed effects models were fitted to test whether the interaction term between traits and elevation was nonsignificant (invariant). The leaf-twig cross-sectional area and the leaf mass-leaf area scaling relationships were isometric (slope = 1) and remained invariant with elevation, whereas the leaf size-number (i.e., leafing intensity) scaling was allometric (slope ≠ -1) and showed no variation with elevation. Leaf area and leaf number were consistently negatively correlated across elevation. The scaling relationships examined in the current study parallel those seen across species. It is plausible that the explanation of intraspecific scaling relationships, as trait combinations favored by natural selection, is the same as those invoked to explain across species patterns. Thus, it is very likely that the global interspecific Corner's rules and other leaf-leaf scaling relationships emerge as the aggregate of largely parallel intraspecific patterns. © 2016 Botanical Society of America.

  10. A tillering inhibition gene influences root–shoot carbon partitioning and pattern of water use to improve wheat productivity in rainfed environments

    PubMed Central

    Hendriks, P.W.; Kirkegaard, J.A.; Lilley, J.M.; Gregory, P.J.; Rebetzke, G.J.

    2016-01-01

    Genetic modification of shoot and root morphology has potential to improve water and nutrient uptake of wheat crops in rainfed environments. Near-isogenic lines (NILs) varying for a tillering inhibition (tin) gene and representing multiple genetic backgrounds were phenotyped in contrasting, controlled environments for shoot and root growth. Leaf area, shoot and root biomass were similar until tillering, whereupon reduced tillering in tin-containing NILs produced reductions of up to 60% in total leaf area and biomass, and increases in total root length of up to 120% and root biomass to 145%. Together, the root-to-shoot ratio increased two-fold with the tin gene. The influence of tin on shoot and root growth was greatest in the cv. Banks genetic background, particularly in the biculm-selected NIL, and was typically strongest in cooler environments. A separate de-tillering study confirmed greater root-to-shoot ratios with regular tiller removal in non-tin-containing genotypes. In validating these observations in a rainfed field study, the tin allele had a negligible effect on seedling growth but was associated with significantly (P<0.05) reduced tiller number (–37%), leaf area index (–26%), and spike number (–35%) to reduce plant biomass (–19%) at anthesis. Root biomass, root-to-shoot ratio at early stem elongation, and root depth at maturity were all increased in tin-containing NILs. Soil water use was slowed in tin-containing NILs, resulting in greater water availability, greater stomatal conductance, cooler canopy temperatures, and maintenance of green leaf area during grain-filling. Together these effects contributed to increases in harvest index and grain yield. In both the controlled and field environments, the tin gene was commonly associated with increased root length and biomass, but the significant influence of genetic background and environment suggests careful assessment of tin-containing progeny in selection for genotypic increases in root growth. PMID:26494729

  11. To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech?

    PubMed

    Bresson, Caroline C; Vitasse, Yann; Kremer, Antoine; Delzon, Sylvain

    2011-11-01

    The phenotypic responses of functional traits in natural populations are driven by genetic diversity and phenotypic plasticity. These two mechanisms enable trees to cope with rapid climate change. We studied two European temperate tree species (sessile oak and European beech), focusing on (i) in situ variations of leaf functional traits (morphological and physiological) along two altitudinal gradients and (ii) the extent to which these variations were under environmental and/or genetic control using a common garden experiment. For all traits, altitudinal trends tended to be highly consistent between species and transects. For both species, leaf mass per area displayed a positive linear correlation with altitude, whereas leaf size was negatively correlated with altitude. We also observed a significant increase in leaf physiological performance with increasing altitude: populations at high altitudes had higher maximum rates of assimilation, stomatal conductance and leaf nitrogen content than those at low altitudes. In the common garden experiment, genetic differentiation between populations accounted for 0-28% of total phenotypic variation. However, only two traits (leaf mass per area and nitrogen content) exhibited a significant cline. The combination of in situ and common garden experiments used here made it possible to demonstrate, for both species, a weaker effect of genetic variation than of variations in natural conditions, suggesting a strong effect of the environment on leaf functional traits. Finally, we demonstrated that intrapopulation variability was systematically higher than interpopulation variability, whatever the functional trait considered, indicating a high potential capacity to adapt to climate change.

  12. Using the conservative nature of fresh leaf surface density to measure foliar area

    NASA Astrophysics Data System (ADS)

    Castillo, Omar S.; Zaragoza, Esther M.; Alvarado, Carlos J.; Barrera, Maria G.; Dasgupta-Schubert, Nabanita

    2014-10-01

    For a herbaceous species, the inverse of the fresh leaf surface density, the Hughes constant, is nearly conserved. We apply the Hughes constant to develop an absolute method of leafarea measurement that requires no regression fits, prior calibrations or oven-drying. The Hughes constant was determined in situ using a known geometry and weights of a sub-set obtained from the fresh leaves whose areas are desired. Subsequently, the leaf-areas (at any desired stratification level), were derived by utilizing the Hughes constant and the masses of the fresh leaves. The proof of concept was established for leaf-discs of the plants Mandevilla splendens and Spathiphyllum wallisii. The conservativeness of the Hughes constant over individual leaf-zones and different leaftypes from the leaves of each species was quantitatively validated. Using the globally averaged Hughes constant for each species, the leaf-area of these and additional co-species plants, were obtained. The leaf-area-measurement-by-mass was cross-checked with standard digital image analysis. There were no statistically significant differences between the leaf-area-measurement-by-mass and the digital image analysis measured leaf-areas and the linear correlation between the two methods was very good. Leaf-areameasurement- by-mass was found to be rapid and simple with accuracies comparable to the digital image analysis method. The greatly reduced cost of leaf-area-measurement-by-mass could be beneficial for small agri-businesses in developing countries.

  13. Green technology approach towards herbal extraction method

    NASA Astrophysics Data System (ADS)

    Mutalib, Tengku Nur Atiqah Tengku Ab; Hamzah, Zainab; Hashim, Othman; Mat, Hishamudin Che

    2015-05-01

    The aim of present study was to compare maceration method of selected herbs using green and non-green solvents. Water and d-limonene are a type of green solvents while non-green solvents are chloroform and ethanol. The selected herbs were Clinacanthus nutans leaf and stem, Orthosiphon stamineus leaf and stem, Sesbania grandiflora leaf, Pluchea indica leaf, Morinda citrifolia leaf and Citrus hystrix leaf. The extracts were compared with the determination of total phenolic content. Total phenols were analyzed using a spectrophotometric technique, based on Follin-ciocalteau reagent. Gallic acid was used as standard compound and the total phenols were expressed as mg/g gallic acid equivalent (GAE). The most suitable and effective solvent is water which produced highest total phenol contents compared to other solvents. Among the selected herbs, Orthosiphon stamineus leaves contain high total phenols at 9.087mg/g.

  14. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana

    PubMed Central

    Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; Morales, Alejandro; Weise, Sean E.; Sharkey, Thomas D.

    2015-01-01

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growth analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness. PMID:25914696

  15. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana

    DOE PAGES

    Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; ...

    2015-04-09

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growthmore » analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness.« less

  16. Effect of seasonality and Cr(VI) on starch-sucrose partitioning and related enzymes in floating leaves of Salvinia minima.

    PubMed

    Rosa, Mariana; Prado, Carolina; Chocobar-Ponce, Silvana; Pagano, Eduardo; Prado, Fernando

    2017-09-01

    Effects of seasonality and increasing Cr(VI) concentrations on leaf starch-sucrose partitioning, sucrose- and starch-related enzyme activities, and carbon allocation toward leaf development were analyzed in fronds (floating leaves) of the floating fern Salvinia minima. Carbohydrates and enzyme activities of Cr-exposed fronds showed different patterns in winter and summer. Total soluble sugars, starch, glucose and fructose increased in winter fronds, while sucrose was higher in summer ones. Starch and soluble carbohydrates, except glucose, increased under increasing Cr(VI) concentrations in winter fronds, while in summer ones only sucrose increased under Cr(VI) treatment. In summer fronds starch, total soluble sugars, fructose and glucose practically stayed without changes in all assayed Cr(VI) concentrations. Enzyme activities related to starch and sucrose metabolisms (e.g. ADPGase, SPS, SS and AI) were higher in winter fronds than in summer ones. Total amylase and cFBPase activities were higher in summer fronds. Cr(VI) treatment increased enzyme activities, except ADPGase, in both winter and summer fronds but no clear pattern changes were observed. Data of this study show clearly that carbohydrate metabolism is differently perturbed by both seasonality and Cr(VI) treatment in summer and winter fronds, which affects leaf starch-sucrose partitioning and specific leaf area (SLA) in terms of carbon investment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Sensitive indicators of Stipa bungeana response to precipitation under ambient and elevated CO2 concentration

    NASA Astrophysics Data System (ADS)

    Shi, Yaohui; Zhou, Guangsheng; Jiang, Yanling; Wang, Hui; Xu, Zhenzhu

    2018-02-01

    Precipitation is a primary environmental factor in the semiarid grasslands of northern China. With increased concentrations of atmospheric greenhouse gases, precipitation regimes will change, and high-impact weather events may be more common. Currently, many ecophysiological indicators are known to reflect drought conditions, but these indicators vary greatly among species, and few studies focus on the applicability of these drought indicators under high CO2 conditions. In this study, five precipitation levels (- 30%, - 15%, control, + 15%, and + 30%) were used to simulate the effects of precipitation change on 18 ecophysiological characteristics in Stipa bungeana, including leaf area, plant height, leaf nitrogen (N), and chlorophyll content, among others. Two levels of CO2 concentration (ambient, 390 ppm; 550 ppm) were used to simulate the effects of elevated CO2 on these drought indicators. Using gray relational analysis and phenotypic plasticity analysis, we found that total leaf area or leaf number (morphology), leaf water potential or leaf water content (physiology), and aboveground biomass better reflected the water status of S. bungeana under ambient and elevated CO2 than the 13 other analyzed variables. The sensitivity of drought indicators changed under the elevated CO2 condition. By quantifying the relationship between precipitation and the five most sensitive indicators, we found that the thresholds of precipitation decreased under elevated CO2 concentration. These results will be useful for objective monitoring and assessment of the occurrence and development of drought events in S. bungeana grasslands.

  18. Ratio of Cut Surface Area to Leaf Sample Volume for Water Potential Measurements by Thermocouple Psychrometers

    PubMed Central

    Walker, Sue; Oosterhuis, Derrick M.; Wiebe, Herman H.

    1984-01-01

    Evaporative losses from the cut edge of leaf samples are of considerable importance in measurements of leaf water potential using thermocouple psychrometers. The ratio of cut surface area to leaf sample volume (area to volume ratio) has been used to give an estimate of possible effects of evaporative loss in relation to sample size. A wide range of sample sizes with different area to volume ratios has been used. Our results using Glycine max L. Merr. cv Bragg indicate that leaf samples with area to volume values less than 0.2 square millimeter per cubic millimeter give psychrometric leaf water potential measurements that compare favorably with pressure chamber measurements. PMID:16663578

  19. Assessing allometric models to predict vegetative growth of mango (Mangifera indica; Anacardiaceae) at the current-year branch scale.

    PubMed

    Normand, Frédéric; Lauri, Pierre-Éric

    2012-03-01

    Accurate and reliable predictive models are necessary to estimate nondestructively key variables for plant growth studies such as leaf area and leaf, stem, and total biomass. Predictive models are lacking at the current-year branch scale despite the importance of this scale in plant science. We calibrated allometric models to estimate leaf area and stem and branch (leaves + stem) mass of current-year branches, i.e., branches several months old studied at the end of the vegetative growth season, of four mango cultivars on the basis of their basal cross-sectional area. The effects of year, site, and cultivar were tested. Models were validated with independent data and prediction accuracy was evaluated with the appropriate statistics. Models revealed a positive allometry between dependent and independent variables, whose y-intercept but not the slope, was affected by the cultivar. The effects of year and site were negligible. For each branch characteristic, cultivar-specific models were more accurate than common models built with pooled data from the four cultivars. Prediction quality was satisfactory but with data dispersion around the models, particularly for large values. Leaf area and stem and branch mass of mango current-year branches could be satisfactorily estimated on the basis of branch basal cross-sectional area with cultivar-specific allometric models. The results suggested that, in addition to the heteroscedastic behavior of the variables studied, model accuracy was probably related to the functional plasticity of branches in relation to the light environment and/or to the number of growth units composing the branches.

  20. Water use of three hardwood species under variable CO[sub 2] and soil water conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, P.J.; Tscaplinkski, T.J.; Stewart, D.B.

    1994-06-01

    The impacts of elevated CO[sub 2] and cyclic water stress on water use of American sycamore (Platanus occidentalis L.), sweetgum (Liquidambar styraciflua L.) and sugar maple (Acer saccharum Marsh.) were evaluated. One-year-old seedlings were planted in 8-L pots and grown in four open-top chambers containing either ambient or ambient +3-- [mu]mol mol[sup [minus]1]CO[sub 2]. Soil moisture regimes were nested within each chamber. Well-watered plants were watered daily and water-stressed plants were exposed to drought cycles. Differences in plant leaf area and conductance between species altered the rate of water use, such that sycamore plants experienced 11 drought cycles whereas sweetgummore » and maple only had 5. Mean soil matric potentials at the depth of the drought cycles were [minus]1.5, [minus]0.7, and [minus]0.5 MPa for sycamore, sweetgum, and maple, respectively. Leaf-level gas exchange measures agreed with direct gravimetric observations not reduced under elevated CO[sub 2] because of increased leaf area production. Drought reduced total water use per plant and leaf, but did not preclude the CO[sub 2] effects on water use.« less

  1. Visible foliar injury caused by ozone alters the relationship between SPAD meter readings and chlorophyll concentrations in cutleaf coneflower.

    PubMed

    Neufeld, Howard S; Chappelka, Arthur H; Somers, Greg L; Burkey, Kent O; Davison, Alan W; Finkelstein, Peter L

    2006-03-01

    The ability of the SPAD-502 chlorophyll meter to quantify chlorophyll amounts in ozone-affected leaves of cutleaf coneflower (Rudbeckia laciniata var. digitata) was assessed in this study. When relatively uninjured leaves were measured (percent leaf area affected by stipple less than 6%), SPAD meter readings were linearly related to total chlorophyll with an adjusted R (2) of 0.84. However, when leaves with foliar injury (characterized as a purple to brownish stipple on the upper leaf surface affecting more than 6% of the leaf area) were added, likelihood ratio tests showed that it was no longer possible to use the same equation to obtain chlorophyll estimations for both classes of leaves. Either an equation with a common slope or a common intercept was necessary. We suspect several factors are involved in altering the calibration of the SPAD meter for measuring chlorophyll amounts in visibly ozone-injured leaves, with the most likely being changes in either light absorption or scattering resulting from tissue necrosis.

  2. Morphological and biochemical changes in Azadirachta indica from coal combustion fly ash dumping site from a thermal power plant in Delhi, India.

    PubMed

    Qadir, Sami Ullah; Raja, Vaseem; Siddiqui, Weqar A

    2016-07-01

    The foliar and biochemical traits of Azadirachta indica A. Juss from fly ash (FA) dumping site in Badarpur thermal power plant (BTPP) New Delhi, India was studied. Three different experimental sites were selected at different distances from the thermal power plant. Ambient suspended particulate matter (SPM) and plant responses such as leaf pigments (chlorophyll a, chlorophyll b, and carotenoids), total chlorophyll, net photosynthetic rate, stomatal index (SI), stomatal conductance (SC), intercellular carbon dioxide concentration [CO2]i, net photosynthetic rate (NPR), nitrogen, nitrate, nitrate reductase activity, proline, protein, reducing sugar and sulphur content were measured. Considerable reduction in pigments (chlorophyll a, chlorophyll b and carotenoids), and total chlorophyll was observed at fly ash dumping site. Fly ash stress revealed the inhibitory effect on Nitrate reductase activity (NRA), Nitrate, soluble protein, and reducing sugar content, whereas stimulatory effect was found for the stomatal index, nitrogen, proline, antioxidants and sulphur content in the leaves. Under fly ash stress, stomatal conductance was low, leading to declining in photosynthetic rate and increase in the internal CO2 concentration of leaf. Single leaf area (SLA), leaf length and leaf width also showed a declining trend from control to the polluted site. Antioxidant enzymes increased in leaves reflecting stress and extenuation of reactive oxygen species (ROS). Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Evaluation of a Leaf Collection and Street Cleaning Program as a Way to Reduce Nutrients and Organic Carbon in Urban Runoff

    NASA Astrophysics Data System (ADS)

    Selbig, W.

    2016-12-01

    Organic detritus can be major sources of nutrients and organic carbon in urban stormwater, especially in areas with dense overhead tree canopy. In order to meet impending regulation to reduce nutrient loads, many cities will require information on structural and non-structural stormwater control measures that target organic detritus. Most cities already conduct some level of leaf collection and existing street cleaning programs; however, few studies have quantified their water-quality benefits. The U.S Geological Survey measured the water-quality benefits of a municipal leaf collection program coupled with street cleaning in Madison, WI, USA during the months of October through November of 2014 and 2015. The calibration phase of the study (2014) characterized nutrient and organic carbon concentrations and loads in runoff from two paired basins without leaf collection or street cleaning. During the treatment phase (2015), leaf collection and street cleaning was done in the test basin by city personnel on a weekly basis. Additionally, prior to each precipitation event, USGS personnel removed as much organic debris from the street surface as reasonably possible. The control remained without street cleaning or leaf collection for the entire monitoring period. During the fall, leaf collection and street cleaning was able to remove the increased amount of organic debris from the curb and street surface which resulted in statistically significant (p<0.05) reductions in loads of phosphorus, nitrogen and organic carbon. Total and dissolved phosphorus loads were reduced by 84 and 83 percent, respectively. Similarly, total and dissolved organic carbon was reduced by 81 and 86 percent, and total and dissolved nitrogen was reduced by 74 and 71 percent, respectively. In the control basin, 60 percent of the annual phosphorus load occurred in fall (winter excluded), the majority of which was dissolved as orthophosphorus, compared to only 16 percent in the test basin. While the leaf collection practices adopted during this study may surpass those used by most municipal programs, results from this study suggest a significant reduction of nutrient and organic carbon loads in urban stormwater is feasible when leaves and other organic detritus are removed from streets prior to precipitation events.

  4. Total belowground carbon flux in subalpine forests is related to leaf area index, soil nitrogen, and tree height

    Treesearch

    E. Berryman; Michael Ryan; J. B. Bradford; T. J. Hawbaker; R. Birdsey

    2016-01-01

    In forests, total belowground carbon (C) flux (TBCF) is a large component of the C budget and represents a critical pathway for delivery of plant C to soil. Reducing uncertainty around regional estimates of forest C cycling may be aided by incorporating knowledge of controls over soil respiration and TBCF. Photosynthesis, and presumably TBCF, declines with...

  5. Comparison of direct and indirect methods for assessing leaf area index across a tropical rain forest landscape

    Treesearch

    Paulo C. Olivas; Steven F. Oberbauer; David B. Clark; Deborah A. Clark; Michael G. Ryan; Joseph J. O' Brien; Harlyn Ordonez

    2013-01-01

    Many functional properties of forests depend on the leaf area; however, measuring leaf area is not trivial in tall evergreen vegetation. As a result, leaf area is generally estimated indirectly by light absorption methods. These indirect methods are widely used, but have never been calibrated against direct measurements in tropical rain forests, either at point or...

  6. Leaf area compounds height-related hydraulic costs of water transport in Oregon White Oak trees.

    Treesearch

    N. Phillips; B. J. Bond; N. G. McDowell; Michael G. Ryan; A. Schauer

    2003-01-01

    The ratio of leaf to sapwood area generally decreases with tree size, presumably to moderate hydraulic costs of tree height. This study assessed consequences of tree size and leaf area on water flux in Quercus garryana Dougl. ex. Hook (Oregon White Oak), a species in which leaf to sapwood area ratio increases with tree size. We tested hypotheses that...

  7. Decapitation improves the efficiency of Cd phytoextraction by Celosia argentea Linn.

    PubMed

    Liu, Jie; Zhang, Xuehong; Mo, Lingyun; Yao, Shiyin; Wang, Yixuan

    2017-08-01

    The effect of decapitation on enhancing plant growth and Cd accumulation in Celosia argentea Linn. was evaluated using a pot experiment. Decapitation significantly enhanced the growth of C. argentea. The numbers of branch and leaf in the decapitated plants (DP) were significantly higher than those in undecapitated plants (UDP, p < 0.05). Decapitation increased the biomass by 75%-105% for roots, 108%-152% for stems, and 80%-107% for leaves. Although the transpiration and photosynthesis rates were not significantly different between DP and UPD, decapitation significantly increased the total leaf area and total transpiration per plant (p < 0.05). The higher total transpiration per plant resulted in a higher leaf Cd concentration in DP. DP accumulated Cd in shoots (197, 275, and 425 μg plant -1 ) that were 2.5-2.8 times higher than UDP (78, 108, and 152 μg plant -1 ), with the soils containing 1, 5, and 10 mg kg -1 Cd. Results suggested that decapitation is a novel and convenient method to improve the phytoextraction efficiency of C. argentea in Cd contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effects of soil conditions on survival and growth of black willow cuttings.

    PubMed

    Schaff, Steven D; Pezeshki, S Reza; Shields, F Douglas

    2003-06-01

    Current streambank restoration efforts focus on providing bank stability, enhancing water quality, and improving woody habitat using native vegetation rather than traditional engineering techniques. However, in most cases harsh site conditions limit restoration success. A two-year field study was conducted at Twentymile Creek, in northern Mississippi, investigating edaphic factors governing the survival of black willow (Salix nigra) cuttings used for streambank restoration. Low height growth, above-ground biomass production, and average leaf area were observed in willow cuttings grown in plots subjected to moisture deficits. However, sediment texture emerged as the dominant factor determining willow post growth, health, and survival. Shoot biomass, leaf biomass, and total above-ground biomass were 15-, 10-, and 14-fold greater for large willow cuttings (posts) grown in plots with sandy sediments relative to those grown in plots with similar moisture and soil redox potential but with silt and clay sediments. Average leaf size, average leaf mass and specific leaf area were all lower in fine textured plots. Under moisture conditions present at our sites, coarse-grained sediment (sand) was more conducive to willow growth, biomass production, and survival than were fine-grained sediments (silt/clay). Our results strongly suggest that soil texture and moisture conditions can determine restoration success. Therefore, it is critical that site conditions are factored into the selection of project locations prior to the initiation of willow planting restoration projects.

  9. Canopy architectural and physiological characterization of near-isogenic wheat lines differing in the tiller inhibition gene tin.

    PubMed

    Moeller, Carina; Evers, Jochem B; Rebetzke, Greg

    2014-01-01

    Tillering is a core constituent of plant architecture, and influences light interception to affect plant and crop performance. Near-isogenic lines (NILs) varying for a tiller inhibition (tin) gene and representing two genetic backgrounds were investigated for tillering dynamics, organ size distribution, leaf area, light interception, red: far-red ratio, and chlorophyll content. Tillering ceased earlier in the tin lines to reduce the frequencies of later primary and secondary tillers compared to the free-tillering NILs, and demonstrated the genetically lower tillering plasticity of tin-containing lines. The distribution of organ sizes along shoots varied between NILs contrasting for tin. Internode elongation commenced at a lower phytomer, and the peduncle was shorter in the tin lines. The flag leaves of tin lines were larger, and the longest leaf blades were observed at higher phytomers in the tin than in free-tillering lines. Total leaf area was reduced in tin lines, and non-tin lines invested more leaf area at mid-canopy height. The tiller economy (ratio of seed-bearing shoots to numbers of shoots produced) was 10% greater in the tin lines (0.73-0.76) compared to the free-tillering sisters (0.62-0.63). At maximum tiller number, the red: far-red ratio (light quality stimulus that is thought to induce the cessation of tillering) at the plant-base was 0.18-0.22 in tin lines and 0.09-0.11 in free-tillering lines at levels of photosynthetic active radiation of 49-53% and 30-33%, respectively. The tin lines intercepted less radiation compared to their free-tillering sisters once genotypic differences in tiller numbers had established, and maintained green leaf area in the lower canopy later into the season. Greater light extinction coefficients (k) in tin lines prior to, but reduced k after, spike emergence indicated that differences in light interception between NILs contrasting in tin cannot be explained by leaf area alone but that geometric and optical canopy properties contributed. The careful characterization of specifically-developed NILs is refining the development of a physiology-based model for tillering to improve understanding of the value of architectural traits for use in cereal improvement.

  10. [Effects of stereoscopic cultivation on photosynthetic characteristics and growth of Tulipa edulis].

    PubMed

    Sun, Yuan; Guo, Qiao-Sheng; Zhu, Zai-Biao; Lin, Jian-Luo; Zhou, Bo-Ya; Zhao, Min-Jie

    2016-06-01

    The effect of stereoscopic cultivation on the growth, photosynthetic characteristics and yield of Tulipa edulis was studied to explore the feasibility of stereoscopic cultivation on efficient cultivation of T.edulis. Total leaf area and photosynthetic parameters of T.edulis under stereoscopic cultivation (the upper, middle and the lower layers ) and the control were measured using LI-3100 leaf area meter and LI-6400XT photosynthesis system in the growing peak period of T.edulis.Plant biomass and biomass allocation were also determined.In addition, the bulb regeneration and yield of T.edulis were measured in the harvesting time.The results indicated that in the middle layer of stereoscopic cultivation, leaf biomass proportion was the highest, but total bulb fresh and dry weight and output growth (fresh weight) were the lowest among the treatments.And total bulb fresh weight in the middle of stereoscopic cultivation reduced significantly, by 22.84%, compared with the control.Light intensity in the lower layer of stereoscopic cultivation was moderate, in which T.edulis net photosynthetic rate and water use efficiency were higher than those of the other layers of stereoscopic cultivation, and bulb biomass proportion was the highest in all the treatments.No significant difference was detected in the total bulb fresh weight, dry weight and output growth (fresh weight) between the middle layer of stereoscopic cultivation and the control.In general, there was no significant difference in the growth status of T.edulis between stereoscopic cultivation and the control.Stereoscopic cultivation increased the yield of T.edulis by 161.66% in fresh weight and 141.35% in dry weight compared with the control in the condition of the same land area, respectively.In conclusion, stereoscopic cultivation can improve space utilization, increase the production, and achieve the high density cultivation of T.edulis. Copyright© by the Chinese Pharmaceutical Association.

  11. Joint Leaf chlorophyll and leaf area index retrieval from Landsat data using a regularized model inversion system

    USDA-ARS?s Scientific Manuscript database

    Leaf area index (LAI) and leaf chlorophyll (Chl) content represent key biophysical and biochemical controls on water, energy and carbon exchange processes in the terrestrial biosphere. In combination, LAI and leaf Chl content provide critical information on vegetation density, vitality and photosynt...

  12. Growth maximization trumps maintenance of leaf conductance in the tallest angiosperm.

    PubMed

    Koch, George W; Sillett, Stephen C; Antoine, Marie E; Williams, Cameron B

    2015-02-01

    Structural and physiological changes that occur as trees grow taller are associated with increased hydraulic constraints on leaf gas exchange, yet it is unclear if leaf-level constraints influence whole-tree growth as trees approach their maximum size. We examined variation in leaf physiology, leaf area to sapwood area ratio (L/S), and annual aboveground growth across a range of tree heights in Eucalyptus regnans. Leaf photosynthetic capacity did not differ among upper crown leaves of individuals 61.1-92.4 m tall. Maximum daily and integrated diurnal stomatal conductance (g s) averaged 36 and 34% higher, respectively, in upper crown leaves of ~60-m-tall, 80-year-old trees than in ~90-m-tall, 300-year-old trees, with larger differences observed on days with a high vapor pressure deficit (VPD). Greater stomatal regulation in taller trees resulted in similar minimum daily leaf water potentials (Ψ L) in shorter and taller trees over a broad range of VPDs. The long-term stomatal limitation on photosynthesis, as inferred from leaf δ (13)C composition, was also greater in taller trees. The δ (13)C of wood indicated that the bulk of photosynthesis used to fuel wood production in the main trunk and branches occurred in the upper crown. L/S increased with tree height, especially after accounting for size-independent variation in crown structure across 27 trees up to 99.8 m tall. Despite greater stomatal limitation of leaf photosynthesis in taller trees, total L explained 95% of the variation in annual aboveground biomass growth among 15 trees measured for annual biomass growth increment in 2006. Our results support a theoretical model proposing that, in the face of increasing hydraulic constraints with height, whole-tree growth is maximized by a resource trade-off that increases L to maximize light capture rather than by reducing L/S to sustain g s.

  13. The Integrated Role of Water Availability, Nutrient Dynamics, and Xylem Hydraulic Dysfunction on Plant Rooting Strategies in Managed and Natural Ecosystems

    NASA Astrophysics Data System (ADS)

    Mackay, D. S.; Savoy, P.; Pleban, J. R.; Tai, X.; Ewers, B. E.

    2015-12-01

    Plants adapt or acclimate to changing environments in part by allocating biomass to roots and leaves to strike a balance between water and nutrient uptake requirements on the one hand and growth and hydraulic safety on the other hand. In a recent study examining experimental drought with the TREES model, which couples plant ecophysiology with rhizosphere-and-xylem hydraulics, we hypothesized that the asynchronous nature of soil water availability and xylem repair supported root-to-leaf area (RLA) proportionality that favored long-term survival over short-term carbon gain or water use. To investigate this as a possible general principal of plant adjustment to changing environmental conditions, TREES was modified to allocate carbon to fine and coarse roots organized in ten orders differing in biomass allocated per unit absorbing root area, root lifespan, and total absorbing root area in each of several soil-root zones with depth. The expanded model allowed for adjustment of absorbing root area and rhizosphere volume based on available carbohydrate production and nitrogen (N) availability, resulting in dynamic expansion and contraction of the supply-side of the rhizosphere-plant hydraulics and N uptake capacity in response to changing environmental conditions and plant-environment asynchrony. The study was conducted partly in a controlled experimental setting with six genotypes of a widely grown crop species, Brassica rapa. The implications for forests were investigated in controlled experiments and at Fluxnet sites representing temperate mixed forests, semi-arid evergreen needle-leaf, and Mediterranean biomes. The results showed that the effects of N deficiency on total plant growth was modulated by a relative increase in fine root biomass representing a larger absorbing root volume per unit biomass invested. We found that the total absorbing root area per unit leaf area was consistently lower than that needed to maximize short-term water uptake and carbohydrate gain. Moreover, the acclimated RLA fell within a small range for both crops and trees despite changing environmental conditions, demonstrating an adaptation that was consistent with empiricism on fine roots and thus pointing to a fundamental connection between ecological and hydrological processes.

  14. Effect of litter, leaf cover and cover of basal internodes of the dominant species Molinia caerulea on seedling recruitment and established vegetation

    NASA Astrophysics Data System (ADS)

    Janeček, Štěpán; Lepš, Jan

    2005-09-01

    The effects of litter removal, leaf cover of established plants and cover of basal internodes of a dominant species Molinia caerulea on seedling germination and the dynamics of established plants were studied in a field experiment in an oligotrophic wet meadow. Although the negative influence of litter on total seedling number and seedling species composition was non-significant, litter significantly affected the dynamics of the established vegetation and caused inhibition of total leaf cover development. The effects of total leaf cover of established plants on seedling establishment changed during the vegetation season. Whereas the effect of total leaf cover was positive at the start and in the middle of the vegetation season, at the end the total leaf cover negatively affected seedling establishment. Both total leaf cover and cover of basal internodes affected seedling composition. Effects of these two variables were statistically separable suggesting that they are based on different mechanisms. The response of seedling establishment to these factors was species specific and, consequently, our data support the hypothesis that that biotically generated spatial heterogeneity can promote species co-existence through the differentiation of species regeneration niches.

  15. Crown traits of coniferous trees and their relation to shade tolerance can differ with leaf type: a biophysical demonstration using computed tomography scanning data

    PubMed Central

    Dutilleul, Pierre; Han, Liwen; Valladares, Fernando; Messier, Christian

    2015-01-01

    Plant light interception and shade tolerance are intrinsically related in that they involve structural, morphological and physiological adaptations to manage light capture for photosynthetic utilization, in order to sustain survival, development and reproduction. At the scale of small-size trees, crown traits related to structural geometry of branching pattern and space occupancy through phyllotaxis can be accurately evaluated in 3D, using computed tomography (CT) scanning data. We demonstrate this by scrutinizing the crowns of 15 potted miniature conifers of different species or varieties, classified in two groups based on leaf type (10 needlelike, 5 scalelike); we also test whether mean values of crown traits measured from CT scanning data and correlations with a shade tolerance index (STI) differ between groups. Seven crown traits, including fractal dimensions (FD1: smaller scales, FD2: larger scales) and leaf areas, were evaluated for all 15 miniature conifers; an average silhouette-to-total-area ratio was also calculated for each of the 10 needlelike-leaf conifers. Between-group differences in mean values are significant (P < 0.05) for STI, FD1, FD2, and the average leaf area displayed (ĀD). Between-group differences in sign and strength of correlations are observed. For example, the correlation between STI and FD1 is negative and significant (P < 0.10) for the needlelike-leaf group, but is positive and significant (P < 0.05) for the miniature conifers with scalelike leaves, which had lower STI and higher FD1 on average in our study; the positive correlation between STI and ĀD is significant (P < 0.05) for the scalelike-leaf group, and very moderate for the needlelike-leaf one. A contrasting physical attachment of the leaves to branches may explain part of the between-group differences. Our findings open new avenues for the understanding of fundamental plant growth processes; the information gained could be included in a multi-scale approach to tree crown modeling. PMID:25852721

  16. Photosynthesis and chlorophyll fluorescence characteristics in relationship to changes in pigment and element composition of leaves of Platanus occidentalis L. during autumnal leaf senescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, W.W. III; Winter, K.; Schreiber, U.

    1990-04-01

    The loss of chlorophyll and total leaf nitrogen during autumnal senescence of leaves from the deciduous tree Platanus occidentalis L. was accompanied by a marked decline in the photosynthetic capacity of O{sub 2} evolution on a leaf area basis. When expressed on a chlorophyll basis, however, the capacity for light- and CO{sub 2}-saturated O{sub 2} evolution did not decline, but rather increased as leaf chlorophyll content decreased. The photon yield of O{sub 2} evolution in white light (400-700 nanometers) declined markedly with decreases in leaf chlorophyll content below 150 milligrams of chlorophyll per square meter on both an incident andmore » an absorbed basis, due largely to the absorption of light by nonphotosynthetic pigments which were not degraded as rapidly as the chlorophylls. Data indicate that the efficiency for photochemical energy conversion of the remaining functional components was maintained at a high level during the natural course of autumnal senescence, and are consistent with previous studies which have characterized leaf senescence as being a controlled process. The loss of chlorophyll during senescence was also accompanied by a decline in fluorescence emanating from PSI, whereas there was little change in PSII fluorescence (measured at 77 Kelvin), presumably due to decreased reabsorption of PSII fluorescence by chlorophyll. Nitrogen was the only element examined to exhibit a decline with senescence on a dry weight basis. However, on a leaf area basis, all elements (C, Ca, K, Mg, N, P, S) declined in senescent leaves, although the contents of sulfur and calcium, which are not easily retranslocated, decreased to the smallest extent.« less

  17. Photosynthetic thermotolerance of woody savanna species in China is correlated with leaf life span

    PubMed Central

    Zhang, Jiao-Lin; Poorter, L.; Hao, Guang-You; Cao, Kun-Fang

    2012-01-01

    Background and Aims Photosynthetic thermotolerance (PT) is important for plant survival in tropical and sub-tropical savannas. However, little is known about thermotolerance of tropical and sub-tropical wild plants and its association with leaf phenology and persistence. Longer-lived leaves of savanna plants may experience a higher risk of heat stress. Foliar Ca is related to cell integrity of leaves under stresses. In this study it is hypothesized that (1) species with leaf flushing in the hot-dry season have greater PT than those with leaf flushing in the rainy season; and (2) PT correlates positively with leaf life span, leaf mass per unit area (LMA) and foliar Ca concentration ([Ca]) across woody savanna species. Methods The temperature-dependent increase in minimum fluorescence was measured to assess PT, together with leaf dynamics, LMA and [Ca] for a total of 24 woody species differing in leaf flushing time in a valley-type savanna in south-west China. Key Results The PT of the woody savanna species with leaf flushing in the hot-dry season was greater than that of those with leaf flushing in the rainy season. Thermotolerance was positively associated with leaf life span and [Ca] for all species irrespective of the time of flushing. The associations of PT with leaf life span and [Ca] were evolutionarily correlated. Thermotolerance was, however, independent of LMA. Conclusions Chinese savanna woody species are adapted to hot-dry habitats. However, the current maximum leaf temperature during extreme heat stress (44·3 °C) is close to the critical temperature of photosystem II (45·2 °C); future global warming may increase the risk of heat damage to the photosynthetic apparatus of Chinese savanna species. PMID:22875810

  18. Prediction of leaf area in individual leaves of cherrybark oak seedlings (Quercus pagoda Raf.)

    Treesearch

    Yanfei Guo; Brian Lockhart; John Hodges

    1995-01-01

    The prediction of leaf area for cherrybark oak (Quercus pagoda Raf.) seedlings is important for studying the physiology of the species. Linear and polynomial models involving leaf length, width, fresh weight, dry weight, and internodal length were tested independently and collectively to predict leaf area. Twenty-nine cherrybark oak seedlings were...

  19. Estimating leaf area and leaf biomass of open-grown deciduous urban trees

    Treesearch

    David J. Nowak

    1996-01-01

    Logarithmic regression equations were developed to predict leaf area and leaf biomass for open-grown deciduous urban trees based on stem diameter and crown parameters. Equations based on crown parameters produced more reliable estimates. The equations can be used to help quantify forest structure and functions, particularly in urbanizing and urban/suburban areas.

  20. The sensitivity of stand-scale photosynthesis and transpiration to changes in atmospheric CO2 concentration and climate

    NASA Astrophysics Data System (ADS)

    Kruijt, B.; Barton, C.; Rey, A.; Jarvis, P. G.

    The 3-dimensional forest model MAESTRO was used to simulate daily and annual photosynthesis and transpiration fluxes of forest stands and the sensitivity of these fluxes to potential changes in atmospheric CO2 concentration ([CO2]), temperature, water stress and phenology. The effects of possible feed-backs from increased leaf area and limitations to leaf nutrition were simulated by imposing changes in leaf area and nitrogen content. Two different tree species were considered: Picea sitchensis (Bong.) Carr., a conifer with long needle longevity and large leaf area, and Betula pendula Roth., a broad-leaved deciduous species with an open canopy and small leaf area. Canopy photosynthetic production in trees was predicted to increase with atmospheric [CO2] and length of the growing season and to decrease with increased water stress. Associated increases in leaf area increased production further only in the B. pendula canopy, where the original leaf area was relatively small. Assumed limitations in N uptake affected B. pendula more than P. sitchensis. The effect of increased temperature was shown to depend on leaf area and nitrogen content. The different sensitivities of the two species were related to their very different canopy structure. Increased [CO2] reduced transpiration, but larger leaf area, early leaf growth, and higher temperature all led to increased water use. These effects were limited by feedbacks from soil water stress. The simulations suggest that, with the projected climate change, there is some increase in stand annual `water use efficiency', but the actual water losses to the atmosphere may not always decrease.

  1. Ecological strategies of Al-accumulating and non-accumulating functional groups from the cerrado sensu stricto.

    PubMed

    Souza, Marcelo C de; Bueno, Paula C P; Morellato, Leonor P C; Habermann, Gustavo

    2015-01-01

    The cerrado's flora comprises aluminum-(Al) accumulating and non-accumulating plants, which coexist on acidic and Al-rich soils with low fertility. Despite their existence, the ecological importance or biological strategies of these functional groups have been little explored. We evaluated the leaf flushing patterns of both groups throughout a year; leaf concentrations of N, P, K, Ca, Mg, S, Al, total flavonoids and polyphenols; as well as the specific leaf area (SLA) on young and mature leaves within and between the groups. In Al-accumulating plants, leaf flushed throughout the year, mainly in May and September; for non-accumulating plants, leaf flushing peaked at the dry-wet seasons transition. However, these behaviors could not be associated with strategies for building up concentrations of defense compounds in leaves of any functional groups. Al-accumulating plants showed low leaf nutrient concentrations, while non-accumulating plants accumulated more macronutrients and produced leaves with high SLA since the juvenile leaf phase. This demonstrates that the increase in SLA is slower in Al-accumulating plants that are likely to achieve SLA values comparable to the rest of the plant community only in the wet season, when sunlight capture is important for the growth of new branches.

  2. Estimation of Canopy Sunlit Fraction of Leaf Area from Ground-Based Measurements

    NASA Astrophysics Data System (ADS)

    Yang, B.; Knyazikhin, Y.; Yan, K.; Chen, C.; Park, T.; CHOI, S.; Mottus, M.; Rautiainen, M.; Stenberg, P.; Myneni, R.; Yan, L.

    2015-12-01

    The sunlit fraction of leaf area (SFLA) defined as the fraction of the total hemisurface leaf area illuminated by the direct solar beam is a key structural variable in many global models of climate, hydrology, biogeochemistry and ecology. SFLAI is expected to be a standard product from the Earth Polychromatic Imaging Camera (EPIC) on board the joint NOAA, NASA and US Air Force Deep Space Climate Observatory (DSCOVR) mission, which was successfully launched from Cape Canaveral, Florida on February 11, 2015. The DSCOVR EPIC sensor orbiting the Sun-Earth Lagrange L1 point provides multispectral measurements of the radiation reflected by Earth in retro-illumination directions. This poster discusses a methodology for estimating the SFLA using LAI-2000 Canopy Analyzer, which is expected to underlie the strategy for validation of the DSCOVR EPIC land surface products. LAI-2000 data collected over 18 coniferous and broadleaf sites in Hyytiälä, Central Finland, were used to estimate the SFLA. Field data on canopy geometry were used to simulate selected sites. Their SFLAI was calculated using a Monte Carlo (MC) technique. LAI-2000 estimates of SFLA showed a very good agreement with MC results, suggesting validity of the proposed approach.

  3. Photosynthesis, Dark Respiration, and Growth of Rumex patientia L. Exposed to Ultraviolet Irradiance (288 to 315 Nanometers) Simulating a Reduced Atmospheric Ozone Column 1

    PubMed Central

    Sisson, William B.; Caldwell, Martyn M.

    1976-01-01

    Net photosynthesis, dark respiration, and growth of Rumex patientia L. exposed to a ultraviolet irradiance (288-315 nanometers) simulating a 0.18 atm·cm stratospheric ozone column were determined. The ultraviolet irradiance corresponding to this 38% ozone decrease from normal was shown to be an effective inhibitor of photosynthesis and leaf growth. The repressive action on photosynthesis accumulated through time whereas leaf growth was retarded only during the initial few days of exposure. Small increases in dark respiration rates occurred but did not continue to increase with longer exposure periods. A reduction in total plant dry weight and leaf area of approximately 50% occurred after 22 days of treatment, whereas chlorophyll concentrations remained unaltered. PMID:16659718

  4. Light acclimation optimizes leaf functional traits despite height-related constraints in a canopy shading experiment.

    PubMed

    Coble, Adam P; Cavaleri, Molly A

    2015-04-01

    Within-canopy gradients of leaf functional traits have been linked to both light availability and vertical gradients in leaf water potential. While observational studies can reveal patterns in leaf traits, within-canopy experimental manipulations can provide mechanistic insight to tease apart multiple interacting drivers. Our objectives were to disentangle effects of height and light environment on leaf functional traits by experimentally shading branches along vertical gradients within a sugar maple (Acer saccharum) forest. Shading reduced leaf mass per area (LMA), leaf density, area-based leaf nitrogen (N(area)), and carbon:nitrogen (C:N) ratio, and increased mass-based leaf nitrogen (N(mass)), highlighting the importance of light availability on leaf morphology and chemistry. Early in the growing season, midday leaf water potential (Ψ(mid)), LMA, and N(area) were driven primarily by height; later in the growing season, light became the most important driver for LMA and Narea. Carbon isotope composition (δ(13)C) displayed strong, linear correlations with height throughout the growing season, but did not change with shading, implying that height is more influential than light on water use efficiency and stomatal behavior. LMA, leaf density, N(mass), C:N ratio, and δ(13)C all changed seasonally, suggesting that leaf ageing effects on leaf functional traits are equally as important as microclimatic conditions. Overall, our results indicate that: (1) stomatal sensitivity to vapor pressure deficit or Ψ(mid) constrains the supply of CO2 to leaves at higher heights, independent of light environment, and (2) LMA and N(area) distributions become functionally optimized through morphological acclimation to light with increasing leaf age despite height-related constraints.

  5. Leaf litter bags as an index to populations of northern two-lined salamanders (Eurycea bislineata)

    USGS Publications Warehouse

    Chalmers, R.J.; Droege, S.

    2002-01-01

    Concern about recent amphibian declines has led to research on amphibian populations, but few statistically tested, standardized methods of counting amphibians exist. We tested whether counts of northern two-lined salamander larvae (Eurycea bislineata) sheltered in leaf litter bags--a relatively new, easily replicable survey technique--had a linear correlation to total number of larvae. Using experimental enclosures placed in streams, we compared number of salamanders found in artificial habitat (leaf litter bags) with total number of salamanders in each enclosure. Low numbers of the animals were found in leaf litter bags, and the relative amount of variation in the index (number of animals in leaf litter bags compared to total number of animals in stream enclosures) was high. The index of salamanders in leaf litter bags was not significantly related to total number of salamanders in enclosures for two-thirds of the replicates or with pooled replicates (P= 0.066). Consequently, we cannot recommend using leaf litter bags to index populations of northern two-lined salamanders.

  6. Seasonal variability of multiple leaf traits captured by leaf spectroscopy at two temperate deciduous forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xi; Tang, Jianwu; Mustard, John F.

    Understanding the temporal patterns of leaf traits is critical in determining the seasonality and magnitude of terrestrial carbon, water, and energy fluxes. However, we lack robust and efficient ways to monitor the temporal dynamics of leaf traits. Here we assessed the potential of leaf spectroscopy to predict and monitor leaf traits across their entire life cycle at different forest sites and light environments (sunlit vs. shaded) using a weekly sampled dataset across the entire growing season at two temperate deciduous forests. In addition, the dataset includes field measured leaf-level directional-hemispherical reflectance/transmittance together with seven important leaf traits [total chlorophyll (chlorophyllmore » a and b), carotenoids, mass-based nitrogen concentration (N mass), mass-based carbon concentration (C mass), and leaf mass per area (LMA)]. All leaf traits varied significantly throughout the growing season, and displayed trait-specific temporal patterns. We used a Partial Least Square Regression (PLSR) modeling approach to estimate leaf traits from spectra, and found that PLSR was able to capture the variability across time, sites, and light environments of all leaf traits investigated (R 2 = 0.6–0.8 for temporal variability; R 2 = 0.3–0.7 for cross-site variability; R 2 = 0.4–0.8 for variability from light environments). We also tested alternative field sampling designs and found that for most leaf traits, biweekly leaf sampling throughout the growing season enabled accurate characterization of the seasonal patterns. Compared with the estimation of foliar pigments, the performance of N mass, C mass and LMA PLSR models improved more significantly with sampling frequency. Our results demonstrate that leaf spectra-trait relationships vary with time, and thus tracking the seasonality of leaf traits requires statistical models calibrated with data sampled throughout the growing season. In conclusion, our results have broad implications for future research that use vegetation spectra to infer leaf traits at different growing stages.« less

  7. Seasonal variability of multiple leaf traits captured by leaf spectroscopy at two temperate deciduous forests

    DOE PAGES

    Yang, Xi; Tang, Jianwu; Mustard, John F.; ...

    2016-04-02

    Understanding the temporal patterns of leaf traits is critical in determining the seasonality and magnitude of terrestrial carbon, water, and energy fluxes. However, we lack robust and efficient ways to monitor the temporal dynamics of leaf traits. Here we assessed the potential of leaf spectroscopy to predict and monitor leaf traits across their entire life cycle at different forest sites and light environments (sunlit vs. shaded) using a weekly sampled dataset across the entire growing season at two temperate deciduous forests. In addition, the dataset includes field measured leaf-level directional-hemispherical reflectance/transmittance together with seven important leaf traits [total chlorophyll (chlorophyllmore » a and b), carotenoids, mass-based nitrogen concentration (N mass), mass-based carbon concentration (C mass), and leaf mass per area (LMA)]. All leaf traits varied significantly throughout the growing season, and displayed trait-specific temporal patterns. We used a Partial Least Square Regression (PLSR) modeling approach to estimate leaf traits from spectra, and found that PLSR was able to capture the variability across time, sites, and light environments of all leaf traits investigated (R 2 = 0.6–0.8 for temporal variability; R 2 = 0.3–0.7 for cross-site variability; R 2 = 0.4–0.8 for variability from light environments). We also tested alternative field sampling designs and found that for most leaf traits, biweekly leaf sampling throughout the growing season enabled accurate characterization of the seasonal patterns. Compared with the estimation of foliar pigments, the performance of N mass, C mass and LMA PLSR models improved more significantly with sampling frequency. Our results demonstrate that leaf spectra-trait relationships vary with time, and thus tracking the seasonality of leaf traits requires statistical models calibrated with data sampled throughout the growing season. In conclusion, our results have broad implications for future research that use vegetation spectra to infer leaf traits at different growing stages.« less

  8. Leaf water storage increases with salinity and aridity in the mangrove Avicennia marina: integration of leaf structure, osmotic adjustment and access to multiple water sources.

    PubMed

    Nguyen, Hoa T; Meir, Patrick; Sack, Lawren; Evans, John R; Oliveira, Rafael S; Ball, Marilyn C

    2017-08-01

    Leaf structure and water relations were studied in a temperate population of Avicennia marina subsp. australasica along a natural salinity gradient [28 to 49 parts per thousand (ppt)] and compared with two subspecies grown naturally in similar soil salinities to those of subsp. australasica but under different climates: subsp. eucalyptifolia (salinity 30 ppt, wet tropics) and subsp. marina (salinity 46 ppt, arid tropics). Leaf thickness, leaf dry mass per area and water content increased with salinity and aridity. Turgor loss point declined with increase in soil salinity, driven mainly by differences in osmotic potential at full turgor. Nevertheless, a high modulus of elasticity (ε) contributed to maintenance of high cell hydration at turgor loss point. Despite similarity among leaves in leaf water storage capacitance, total leaf water storage increased with increasing salinity and aridity. The time that stored water alone could sustain an evaporation rate of 1 mmol m -2  s -1 ranged from 77 to 126 min from subspecies eucalyptifolia to ssp. marina, respectively. Achieving full leaf hydration or turgor would require water from sources other than the roots, emphasizing the importance of multiple water sources to growth and survival of Avicennia marina across gradients in salinity and aridity. © 2017 John Wiley & Sons Ltd.

  9. A model using marginal efficiency of investment to analyse carbon and nitrogen interactions in terrestrial ecosystems (ACONITE Version 1)

    NASA Astrophysics Data System (ADS)

    Thomas, R. Q.; Williams, M.

    2014-04-01

    Carbon (C) and nitrogen (N) cycles are coupled in terrestrial ecosystems through multiple processes including photosynthesis, tissue allocation, respiration, N fixation, N uptake, and decomposition of litter and soil organic matter. Capturing the constraint of N on terrestrial C uptake and storage has been a focus of the Earth System modelling community. However there is little understanding of the trade-offs and sensitivities of allocating C and N to different tissues in order to optimize the productivity of plants. Here we describe a new, simple model of ecosystem C-N cycling and interactions (ACONITE), that builds on theory related to plant economics in order to predict key ecosystem properties (leaf area index, leaf C : N, N fixation, and plant C use efficiency) using emergent constraints provided by marginal returns on investment for C and/or N allocation. We simulated and evaluated steady-state ecosystem stocks and fluxes in three different forest ecosystems types (tropical evergreen, temperate deciduous, and temperate evergreen). Leaf C : N differed among the three ecosystem types (temperate deciduous < tropical evergreen < temperature evergreen), a result that compared well to observations from a global database describing plant traits. Gross primary productivity (GPP) and net primary productivity (NPP) estimates compared well to observed fluxes at the simulation sites. Simulated N fixation at steady-state, calculated based on relative demand for N and the marginal return on C investment to acquire N, was an order of magnitude higher in the tropical forest than in the temperate forest, consistent with observations. A sensitivity analysis revealed that parameterization of the relationship between leaf N and leaf respiration had the largest influence on leaf area index and leaf C : N. Also, a widely used linear leaf N-respiration relationship did not yield a realistic leaf C : N, while a more recently reported non-linear relationship performed better. A parameter governing how photosynthesis scales with day length had the largest influence on total vegetation C, GPP, and NPP. Multiple parameters associated with photosynthesis, respiration, and N uptake influenced the rate of N fixation. Overall, our ability to constrain leaf area index and have spatially and temporally variable leaf C : N helps address challenges for ecosystem and Earth System models. Furthermore, the simple approach with emergent properties based on coupled C-N dynamics has potential for use in research that uses data-assimilation methods to integrate data on both the C and N cycles to improve C flux forecasts.

  10. Arctic Climate during Eocene Hyperthermals: Wet Summers on Ellesmere Island?

    NASA Astrophysics Data System (ADS)

    Greenwood, D. R.; West, C. K.; Basinger, J. F.

    2012-12-01

    Previous work has shown that during the late Paleocene to middle Eocene, mesothermal conditions (i.e., MAT ~12-15° C) and high precipitation (MAP > 150cm/yr) characterized Arctic climates - an Arctic rain forest. Recent analyses of Arctic Eocene wood stable isotope chemistry are consistent with the annual and seasonal temperature estimates from leaf physiognomy and nearest living relative analogy from fossil plants, including the lack of freezing winters, but is interpreted as showing that there was a summer peak in precipitation - modern analogs are best sought on the summer-wet east coasts (e.g., China, Japan, South Korea) not the winter-wet west coasts of present-day northern temperate continents (e.g., Pacific northwest of North America). Highly seasonal 'monsoon-type' summer-wet precipitation regimes (i.e., summer precip./winter precip. > 3.0) seem to characterize Eocene hyperthermal conditions in several regions of the earth, including the Arctic and Antarctic, based on both climate model sensitivity experiments and the paleoclimate proxy evidence. The leaf physiognomy proxy previously applied to estimate Arctic Paleogene precipitation was leaf area analysis (LAA), a correlation between mean leaf size in woody dicot vegetation and annual precipitation. New data from modern monsoonal sites, however demonstrates that for deciduous-dicot dominated vegetation, summer precipitation determines mean leaf size, not annual totals, and therefore that under markedly seasonal precipitation and/or light regimes that summer precipitation is being estimated using LAA. Presented here is a new analysis of a leaf macrofloras from 3 separate florules of the Margaret Formation (Split Lake, Stenkul Fiord and Strathcona Fiord) from Ellesmere Island that are placed stratigraphically as early Eocene, and likely fall within Eocene thermal maximum 1 (ETM1; = the 'PETM') or ETM2. These floras are each characterized by a mix of large-leafed and small-leafed dicot taxa, with overall mean leaf size across all leaf morphotypes comparable to that previously reported for late Paleocene to middle Eocene floras from Ellesmere and Axel Heiberg islands of Nunavut. Applying the conventional leaf area analysis to the putatively ETM1 floras yielded estimates of mean annual precipitation 100-200cm/yr, consistent with the previous reports for the late Paleocene to middle Eocene. CLAMP analysis applied to these floras yields growing season precipitation comparable to the annual precipitation estimate from leaf area analysis. These data are interpreted as reflecting high summer precipitation in the Arctic during the late Paleocene to middle Eocene, including ETM1, as precipitation in the dark polar winter months will have had no effect on leaf size while the trees were dormant, corroborating the results from Eocene wood chemistry. High summer precipitation (i.e., light-season = wettest season) in the Eocene Arctic during hyperthermals would have contributed to regional warmth.

  11. Spatial distribution of SPAD value and determination of the suitable leaf for N diagnosis in cucumber

    NASA Astrophysics Data System (ADS)

    Hu, Jing; Li, Chenxiao; Wen, Yifang; Gao, Xinhao; Shi, Feifei; Han, Luhua

    2018-01-01

    To determine the best leaf position for nitrogen diagnosis in cucumber with SPAD meter, greenhouse experiments were carried out to study spatial distribution of SPAD value of different position of the 3rd fully expanded cucumber leaf in the effect of different nitrogen levels, and the correlations between SPAD values and nitrogen concentration of chlorophyll. The results show that there is remarkable different SPAD value in different positions of the 3rd fully expanded leaf in the flowering and fruiting stage. Comparing the coefficients of SPAD value variation, we find that the coefficient of variation of leaf edge was significantly higher than the edge of the main vein, and the coefficient of variation of triangular area of leaf tip is significantly higher than any other leaf area. There is a significant correlation between SPAD values and leaf nitrogen content. Preliminary study shows that triangular area of leaf tip from the 20% leaf tip to leaf edge is the best position for nitrogen diagnosis.

  12. Effects of feeding different proportions of silver leaf desmodium (Dismodium uncinatum) with banana (Musa paradisiaca) leaf on nutrient utilization in Horro sheep fed a basal diet of natural grass hay.

    PubMed

    Chali, Diriba; Nurfeta, Ajebu; Banerjee, Sandip; Eik, Lars Olav

    2018-03-02

    The objective was to evaluate feed intake, digestibility, body weight change and carcass characteristics of sheep fed a basal diet of hay supplemented with banana leaves and silver leaf desmodium. Thirty yearling lambs with an average initial body weight of 15.85 ± 1.6 kg were grouped into six blocks of five rams in each block. The treatments were: hay alone (T1), hay + 100% banana leaf (T2), hay + 67% banana leaf + 33% desmodium leaf (T3), hay + 33% banana leaf + 67% desmodium leaf (T4) and hay + 100% desmodium leaf (T5). Three hundred grams of treatment diets were offered daily on as fed basis. The feeding and digestibility trial lasted for 84 and 7 days, respectively, followed by carcass evaluation. The total dry matter (DM) intake for T3, T4 and T5 were greater (P<0.05) than those fed T1 and T2 diets. The lowest (P<0.05) organic matter (OM) intake was recorded in rams reared on T1 diet. The total crude protein (CP) intake was in the following order: T5 > T4 > T3 > T2 > T1. Rams lambs receiving supplementary diets had higher (P<0.05) DM, OM, CP, neutral detergent fiber and acid detergent fiber digestibility compared with the control diet. The empty body weight and slaughter weight was highest (P<0.05) in rams receiving T3, T4 and T5 diets. The average daily gain and feed conversion efficiency was highest (P<0.05) in rams receiving the supplementary diets. The DP on the basis of hot carcass weight linearly increased with increasing levels of desmodium. Rams reared on supplementary diet had higher (P<0.05) rib eye area compared with the control diet. In conclusion, when banana leaf is used as a supplement to poor quality grass, better response was obtained when fed in combination with desmodium.

  13. Defense pattern of Chinese cork oak across latitudinal gradients: influences of ontogeny, herbivory, climate and soil nutrients

    PubMed Central

    Wang, Xiao-Fei; Liu, Jian-Feng; Gao, Wen-Qiang; Deng, Yun-Peng; Ni, Yan-Yan; Xiao, Yi-Hua; Kang, Feng-Feng; Wang, Qi; Lei, Jing-Pin; Jiang, Ze-Ping

    2016-01-01

    Knowledge of latitudinal patterns in plant defense and herbivory is crucial for understanding the mechanisms that govern ecosystem functioning and for predicting their responses to climate change. Using a widely distributed species in East Asia, Quercus variabilis, we aim to reveal defense patterns of trees with respect to ontogeny along latitudinal gradients. Six leaf chemical (total phenolics and total condensed tannin concentrations) and physical (cellulose, hemicellulose, lignin and dry mass concentration) defensive traits as well as leaf herbivory (% leaf area loss) were investigated in natural Chinese cork oak (Q. variabilis) forests across two ontogenetic stages (juvenile and mature trees) along a ~14°-latitudinal gradient. Our results showed that juveniles had higher herbivory values and a higher concentration of leaf chemical defense substances compared with mature trees across the latitudinal gradient. In addition, chemical defense and herbivory in both ontogenetic stages decreased with increasing latitude, which supports the latitudinal herbivory-defense hypothesis and optimal defense theory. The identified trade-offs between chemical and physical defense were primarily determined by environmental variation associated with the latitudinal gradient, with the climatic factors (annual precipitation, minimum temperature of the coldest month) largely contributing to the latitudinal defense pattern in both juvenile and mature oak trees. PMID:27252112

  14. Colored shade nets induced changes in growth, anatomy and essential oil of Pogostemon cablin.

    PubMed

    Ribeiro, Aurislaine S; Ribeiro, Mariana S; Bertolucci, Suzan K V; Bittencourt, Wanderley J M; Carvalho, Alexandre A DE; Tostes, Wesley N; Alves, Eduardo; Pinto, José E B P

    2018-04-16

    The purpose of this investigation was to determine the influence of colored shade nets on the growth, anatomy and essential oil content, yield and chemical composition of Pogostemon cablin. The plants were cultivated under full sunlight, black, blue and red nets. The harvesting was performed 5 months after planting and it was followed by the analysis of plant growth parameters, leaf anatomy, essential oil content, yield and chemical composition. The plants grown under red net have produced more leaf, shoot, total dry weight and leaf area. Plants cultivated under colored nets showed differences in morphological features. Plants maintained under red net had a higher leaf blade thickness and polar and equatorial diameter of the stomata ratio. Additionally, higher yield of essential oil in the leaves was observed under red and blue colored shade net. The essential oil of the plants grown under red net showed the highest relative percentage of patchoulol (66.84%). Therefore, it is possible using colored shade nets to manipulate P. cablin growth, as well as its essential oil production with several chemical compositions. The analyses of principal components allowed observing that pogostol has negative correlation with α-guaiene and α-bulnesene. There was difference in total dry weight and patchoulol content when the patchouli is cultured under the red colored shade nets.

  15. Defense pattern of Chinese cork oak across latitudinal gradients: influences of ontogeny, herbivory, climate and soil nutrients

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Fei; Liu, Jian-Feng; Gao, Wen-Qiang; Deng, Yun-Peng; Ni, Yan-Yan; Xiao, Yi-Hua; Kang, Feng-Feng; Wang, Qi; Lei, Jing-Pin; Jiang, Ze-Ping

    2016-06-01

    Knowledge of latitudinal patterns in plant defense and herbivory is crucial for understanding the mechanisms that govern ecosystem functioning and for predicting their responses to climate change. Using a widely distributed species in East Asia, Quercus variabilis, we aim to reveal defense patterns of trees with respect to ontogeny along latitudinal gradients. Six leaf chemical (total phenolics and total condensed tannin concentrations) and physical (cellulose, hemicellulose, lignin and dry mass concentration) defensive traits as well as leaf herbivory (% leaf area loss) were investigated in natural Chinese cork oak (Q. variabilis) forests across two ontogenetic stages (juvenile and mature trees) along a ~14°-latitudinal gradient. Our results showed that juveniles had higher herbivory values and a higher concentration of leaf chemical defense substances compared with mature trees across the latitudinal gradient. In addition, chemical defense and herbivory in both ontogenetic stages decreased with increasing latitude, which supports the latitudinal herbivory-defense hypothesis and optimal defense theory. The identified trade-offs between chemical and physical defense were primarily determined by environmental variation associated with the latitudinal gradient, with the climatic factors (annual precipitation, minimum temperature of the coldest month) largely contributing to the latitudinal defense pattern in both juvenile and mature oak trees.

  16. USE OF NATIVE PLANTS FOR REMEDIATION OF TRICHLOROETHYLENE: I. DECIDUOUS TREES.

    PubMed

    Strycharz, S; Newman, L

    2009-02-01

    Phytoremediation of trichloroethylene (TCE) can be accomplished using fast-growing, deep-rooting trees. The most commonly used tree for phytoremediation of TCE has been the hybrid poplar. This study looks at native southeastern trees of the United States as alternatives to the use of hybrid poplar. The use of native trees for phytoremediation allows for simultaneous restoration of contaminated sites. A 2-mo, greenhouse-based study was conducted to determine if sycamore (Plantanus L.), eastern cottonwood (Populus deltoides), sweetgum (Liquidambar styraciflua L.), and willow (Salix sachalinensis) trees possess the ability to degrade TCE by assessing TCE metabolite formation in the plant tissue. In addition to the metabolic capabilities of each tree species, growth parameters were measured including change in height, water usage, total fresh weight of each tissue type, and calculated total leaf surface area. Willow trees had the greatest increase in height among all trees tested; however, at higher concentrations TCE inhibits growth. Sycamore trees had the highest overall leaf surface area and total biomass, which correlated with sycamore trees also having the highest average water usage over the course of the experiment. Carbon tubes used to sample transpiration gases from sycamore, sweetgum, and cottonwood trees did not contain detectable levels of TCE. Tenex sample collection tubes used to sample willow trees during TCE exposure showed average TCE concentrations of up to 0.354 ng TCE cm -2 leaf tissue. All exposed trees contained TCE in the root, stem, and leaf tissues. The concentration of TCE remaining in tissues at the conclusion of the experiment varied, with the highest levels found in the roots and the lowest levels found in the leaves. Metabolites were also observed in different tissue types of all trees tested. The highest concentrations of trichloroacetic acid were observed in the leaves of the sycamore trees and cottonwood trees. Based on the growth parameters tested and the ability to metabolize TCE, sycamore and native cottonwood species are the best candidates for phytoremediation from this study.

  17. Leaf phenology as one important driver of seasonal changes in isoprene emission in central Amazonia

    DOE PAGES

    Alves, Eliane G.; Tota, Julio; Turnipseed, Andrew; ...

    2018-03-06

    Isoprene fluxes vary seasonally with changes in environmental factors (e.g., solar radiation and temperature) and biological factors (e.g., leaf phenology). However, our understanding of seasonal patterns of isoprene fluxes and associated mechanistic controls are still limited, especially in Amazonian evergreen forests. Here in this article, we aim to connect intensive, field-based measurements of canopy isoprene flux over a central Amazonian evergreen forest with meteorological observations and with tower-camera leaf phenology to improve understanding of patterns and causes of isoprene flux seasonality. Our results demonstrate that the highest isoprene emissions are observed during the dry and dry-to-wet transition seasons, whereas themore » lowest emissions were found during the wet-to-dry transition season. Our results also indicate that light and temperature can not totally explain the isoprene flux seasonality. Instead, the camera-derived leaf area index (LAI) of recently mature leaf-age class (e.g. leaf ages of 3–5 months) exhibits the highest correlation with observed isoprene flux seasonality (R 2=0.59, p<0.05). Attempting to better represent leaf phenology in the Model of Emissions of Gases and Aerosols from Nature (MEGAN 2.1), we improved the leaf age algorithm utilizing results from the camera-derived leaf phenology that provided LAI categorized in three different leaf ages. The model results show that the observations of age-dependent isoprene emission capacity, in conjunction with camera-derived leaf age demography, significantly improved simulations in terms of seasonal variations of isoprene fluxes (R 2=0.52, p<0.05). This study highlights the importance of accounting for differences in isoprene emission capacity across canopy leaf age classes and of identifying forest adaptive mechanisms that underlie seasonal variation of isoprene emissions in Amazonia.« less

  18. Leaf phenology as one important driver of seasonal changes in isoprene emission in central Amazonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alves, Eliane G.; Tota, Julio; Turnipseed, Andrew

    Isoprene fluxes vary seasonally with changes in environmental factors (e.g., solar radiation and temperature) and biological factors (e.g., leaf phenology). However, our understanding of seasonal patterns of isoprene fluxes and associated mechanistic controls are still limited, especially in Amazonian evergreen forests. Here in this article, we aim to connect intensive, field-based measurements of canopy isoprene flux over a central Amazonian evergreen forest with meteorological observations and with tower-camera leaf phenology to improve understanding of patterns and causes of isoprene flux seasonality. Our results demonstrate that the highest isoprene emissions are observed during the dry and dry-to-wet transition seasons, whereas themore » lowest emissions were found during the wet-to-dry transition season. Our results also indicate that light and temperature can not totally explain the isoprene flux seasonality. Instead, the camera-derived leaf area index (LAI) of recently mature leaf-age class (e.g. leaf ages of 3–5 months) exhibits the highest correlation with observed isoprene flux seasonality (R 2=0.59, p<0.05). Attempting to better represent leaf phenology in the Model of Emissions of Gases and Aerosols from Nature (MEGAN 2.1), we improved the leaf age algorithm utilizing results from the camera-derived leaf phenology that provided LAI categorized in three different leaf ages. The model results show that the observations of age-dependent isoprene emission capacity, in conjunction with camera-derived leaf age demography, significantly improved simulations in terms of seasonal variations of isoprene fluxes (R 2=0.52, p<0.05). This study highlights the importance of accounting for differences in isoprene emission capacity across canopy leaf age classes and of identifying forest adaptive mechanisms that underlie seasonal variation of isoprene emissions in Amazonia.« less

  19. Photosynthetic light capture and processing from cell to canopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenberg, P.; DeLucia, E.H.; Schoettle, A.W.

    1995-07-01

    We have addressed the unique structural features of conifers, as they relate to photosynthetic production, at different levels of organization (from needle to canopy). Many concepts and measures must be defined for conifers so that they are consistent with the structural properties of needles and shoots. Consistency is needed in comparing the photosynthetic performance of conifers and broad leaves, wherein it is important to distinguish the effect of structural factors on light capture from differences in the photosynthetic response at a fixed interception. Needles differ from broad leaves both with respect to inner structure and external shape, which includes amore » continuum from nearly flat to cylindrical. For nonflat three-dimensional objects such as for conifer needles, total surface area is the natural measure. The meaning of the one-sided area of needles is not clear, but consistency requires that it be defined as half the total needle surface area, as concluded. Characteristic structural factors of conifers that affect their ability to harvest light are a deep canopy combined with a small needle size, which create an important penumbra effect, and the clustering of needles on shoots, which creates a discontinuous distribution of needle area. These factors imply that, at a fixed leaf area index, the intercepted PAR would be smaller in coniferous than in broad-leafed canopies, but the vertical gradient of light in conifers is less steep and light reaching the lower canopy is all penumbral (diffuse). Conifers can maintain a higher leaf area index, and this may be accomplished by a more even distribution of light between shoots at different locations in the canopy and also because shade shoots have a structure that effectively intercepts light. Broad leaves in general have higher maximum photosynthetic rates than do needles, and yet conifers are at least equally productive on a stand basis. Possible reasons are discussed.« less

  20. Correlations of leaf area with length and width measurements of leaves of black oak, white oak, and sugar maple

    Treesearch

    Philip M. Wargo

    1978-01-01

    Correlations of leaf area with length, width, and length times width of leaves of black oak, white oak, and sugar maple were determined to see if length and/or width could be used as accurate estimators of leaf area. The correlation of length times width with leaf area was high (r > + .95) for all three species. The linear equation Y = a + bX, where X = length times...

  1. Using Small Drone (UAS) Imagery to Bridge the Gap Between Field- and Satellite-Based Measurements of Vegetation Structure and Change

    NASA Astrophysics Data System (ADS)

    Mayes, M. T.; Estes, L. D.; Gago, X.; Debats, S. R.; Caylor, K. K.; Manfreda, S.; Oudemans, P.; Ciraolo, G.; Maltese, A.; Nadal, M.; Estrany, J.

    2016-12-01

    Leaf area is an important ecosystem variable that relates to vegetation biomass, productivity, water and nutrient use in natural and agricultural systems globally. Since the 1980s, optical satellite image-based estimates of leaf area based on indices such as Normalized Difference Vegetation Index (NDVI) have greatly improved understanding of vegetation structure, function, and responses to disturbance at landscape (10^3 km2) to continental (10^6 km2) spatial scales. However, at landscape scales, satellites have failed to capture many leaf area patterns indicative of vegetation succession, crop types, stress and other conditions important for ecological processes. Small drones (UAS - unmanned aerial systems) offer new means for assessing leaf area and vegetation structure at higher spatial resolutions (<1 m) and land cover features such as substrate exposure that may affect estimates of vegetation structure in satellite data. Yet it is unclear how differences in spatial and spectral resolution between UAS and satellite data affect their relationships to each other, and to common field measurements of leaf area (e.g. LiCOR photosensors) and land cover. Constraining these relationships is important for leveraging UAS data to improve scaling of field data on leaf area and biomass to satellite data from Landsat, Sentinel-2, and increasing numbers of commercial sensors. Here, we quantify relationships among field, UAS and satellite estimates of vegetation leaf area and biomass in three case study landscapes spanning semi-arid Mediterranean (Matera, Southern Italy and Mallorca, Spain) and North American temperate ecosystems (New Jersey, USA). We assess how land cover and sensor spectral characteristics affect UAS and satellite-derived NDVI, leaf-area and biomass estimates. Then, we assess the fidelity of UAS, WorldView-2, and Landsat leaf-area and biomass estimates to field-measured landscape changes and variability, including vegetation recovery from fire (Mallorca), and leaf-area and biomass variability due to orchard type and agro-ecosystem management (Matera, New Jersey). Finally, we highlight promising ways forward for improving field data collection and the use of UAS observations to monitor vegetation leaf-area and biomass change at landscape scales in natural and agricultural systems.

  2. Effects of branch height on leaf gas exchange, branch hydraulic conductance and branch sap flux in open-grown ponderosa pine.

    PubMed

    Hubbard, Robert M; Bond, Barbara J; Senock, Randy S; Ryan, Michael G

    2002-06-01

    Recent studies have shown that stomata respond to changes in hydraulic conductance of the flow path from soil to leaf. In open-grown tall trees, branches of different heights may have different hydraulic conductances because of differences in path length and growth. We determined if leaf gas exchange, branch sap flux, leaf specific hydraulic conductance, foliar carbon isotope composition (delta13C) and ratios of leaf area to sapwood area within branches were dependent on branch height (10 and 25 m) within the crowns of four open-grown ponderosa pine (Pinus ponderosa Laws.) trees. We found no difference in leaf gas exchange or leaf specific hydraulic conductance from soil to leaf between the upper and lower canopy of our study trees. Branch sap flux per unit leaf area and per unit sapwood area did not differ between the 10- and 25-m canopy positions; however, branch sap flux per unit sapwood area at the 25-m position had consistently lower values. Branches at the 25-m canopy position had lower leaf to sapwood area ratios (0.17 m2 cm-2) compared with branches at the 10-m position (0.27 m2 cm-2) (P = 0.03). Leaf specific conductance of branches in the upper crown did not differ from that in the lower crown. Other studies at our site indicate lower hydraulic conductance, sap flux, whole-tree canopy conductance and photosynthesis in old trees compared with young trees. This study suggests that height alone may not explain these differences.

  3. Interaction of drought and ozone exposure on isoprene emission from extensively cultivated poplar.

    PubMed

    Yuan, Xiangyang; Calatayud, Vicent; Gao, Feng; Fares, Silvano; Paoletti, Elena; Tian, Yuan; Feng, Zhaozhong

    2016-10-01

    The combined effects of ozone (O3 ) and drought on isoprene emission were studied for the first time. Young hybrid poplars (clone 546, Populus deltoides cv. 55/56 x P. deltoides cv. Imperial) were exposed to O3 (charcoal-filtered air, CF, and non-filtered air +40 ppb, E-O3 ) and soil water stress (well-watered, WW, and mild drought, MD, one-third irrigation) for 96 days. Consistent with light-saturated photosynthesis (Asat ), intercellular CO2 concentration (Ci ) and chlorophyll content, isoprene emission depended on drought, O3 , leaf position and sampling time. Drought stimulated emission (+38.4%), and O3 decreased it (-40.4%). Ozone increased the carbon cost per unit of isoprene emission. Ozone and drought effects were stronger in middle leaves (13th-15th from the apex) than in upper leaves (6th-8th). Only Asat showed a significant interaction between O3 and drought. When the responses were up-scaled to the entire-plant level, however, drought effects on total leaf area translated into around twice higher emission from WW plants in clean air than in E-O3 . Our results suggest that direct effects on plant emission rates and changes in total leaf area may affect isoprene emission from intensively cultivated hybrid poplar under combined MD and O3 exposure, with important feedbacks for air quality. © 2016 John Wiley & Sons Ltd.

  4. Height-related trends in leaf xylem anatomy and shoot hydraulic characteristics in a tall conifer: safety versus efficiency in water transport.

    PubMed

    Woodruff, D R; Meinzer, F C; Lachenbruch, B

    2008-01-01

    Hydraulic vulnerability of Douglas-fir (Pseudotsuga menziesii) branchlets decreases with height, allowing shoots at greater height to maintain hydraulic conductance (K shoot) at more negative leaf water potentials (Psi l). To determine the basis for this trend shoot hydraulic and tracheid anatomical properties of foliage from the tops of Douglas-fir trees were analysed along a height gradient from 5 to 55 m. Values of Psi l at which K shoot was substantially reduced, declined with height by 0.012 Mpa m(-1). Maximum K shoot was reduced by 0.082 mmol m(-2) MPa(-1) s(-1) for every 1 m increase in height. Total tracheid lumen area per needle cross-section, hydraulic mean diameter of leaf tracheid lumens, total number of tracheids per needle cross-section and leaf tracheid length decreased with height by 18.4 microm(2) m(-1), 0.029 microm m(-1), 0.42 m(-1) and 5.3 microm m(-1), respectively. Tracheid thickness-to-span ratio (tw/b)2 increased with height by 1.04 x 10(-3) m(-1) and pit number per tracheid decreased with height by 0.07 m(-1). Leaf anatomical adjustments that enhanced the ability to cope with vertical gradients of increasing xylem tension were attained at the expense of reduced water transport capacity and efficiency, possibly contributing to height-related decline in growth of Douglas fir.

  5. High doses of ethylenediurea (EDU) as soil drenches did not increase leaf N content or cause phytotoxicity in willow grown in fertile soil.

    PubMed

    Agathokleous, Evgenios; Paoletti, Elena; Manning, William J; Kitao, Mitsutoshi; Saitanis, Costas J; Koike, Takayoshi

    2018-01-01

    Ground-level ozone (O 3 ) levels are nowadays elevated in wide regions of the Earth, causing significant effects on plants that finally lead to suppressed productivity and yield losses. Ethylenediurea (EDU) is a chemical compound which is widely used in research projects as phytoprotectant against O 3 injury. The EDU mode of action remains still unclear, while there are indications that EDU may contribute to plants with nitrogen (N) when the soil is poor in N and the plants have relatively small leaf area. To reveal whether the N content of EDU acts as a fertilizer to plants when the soil is not poor in N and the plants have relatively large total plant leaf area, willow plants (Salix sachalinensis Fr. Schm) were exposed to low ambient O 3 levels and treated ten times (9-day interval) with 200mL soil drench containing 0, 800 or 1600mg EDU L -1 . Fertilizer was added to a nutrient-poor soil, and the plants had an average plant leaf area of 9.1m 2 at the beginning of EDU treatments. Indications for EDU-induced hormesis in maximum electron transport rate (J max ) and ratio of intercellular to ambient CO 2 concentration (C i :C a ) were observed at the end of the experiment. No other EDU-induced effects on leaf greenness and N content, maximum quantum yield of photosystem II (F v /F m ), gas exchange, growth and matter production suggest that EDU did not act as N fertilizer and did not cause toxicity under these experimental conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Leaf traits and associated ecosystem characteristics across subtropical and timberline forests in the Gongga Mountains, Eastern Tibetan Plateau

    Treesearch

    Tianxiang Luo; Ji Luo; Yude Pan

    2005-01-01

    Knowledge of how leaf characteristics might be used to deduce information on ecosystem functioning and how this scaling task could be done is limited. In this study, we present field data for leaf lifespan, specific leaf area (SLA) and mass and area-based leaf nitrogen concentrations (Nmass, Narea) of dominant tree species...

  7. Leaf mass area, Feb2016-May2016, PA-SLZ, PA-PNM, PA-BCI: Panama

    DOE Data Explorer

    Ely, Kim [Brookhaven National Lab; Rogers, Alistair [Brookhaven National Lab; Serbin, Shawn [Brookhaven National Lab; Wu, Jin [BNL; Wolfe, Brett [Smithsonian; Dickman, Turin [Los Alamos National Lab; Collins, Adam [Los Alamos National Lab; Detto, Matteo [Princeton; Grossiord, Charlotte [Los Alamos National Lab; McDowell, Nate [Los Alamos National Lab; Michaletz, Sean

    2017-01-01

    Leaf mass per unit area measured on a monthly basis from Feb to April 2016 at SLZ and PNM. Data from BCI only available for March. This data was collected as part of the 2016 ENSO campaign. See related datasets (existing and future) for further sample details, leaf water potential, leaf spectra, gas exchange and leaf chemistry.

  8. Effects of nitrogen fertilization on growth and reflectance characteristics of winter wheat

    NASA Technical Reports Server (NTRS)

    Hinzman, L. D.; Bauer, M. E.; Daughtry, C. S. T.

    1986-01-01

    The use of remote sensing to determine seasonal changes in agronomic and spectral properties of winter wheat canopies with different levels of N fertilization is investigated. Field experiments were conducted at Purdue Agronomy Farm, West Lafayette, IN during the 1978-1979 and 1979-1980 growing season. Spectral reflectance, total leaf N concentration, leaf chlorophyll concentration, leaf are index (LAI), and fresh and dry phytomass are measured and analyzed. Three distinct wheat canopies are detected for the O, 60, and 120 kg N/ha levels of fertilization; it is observed that with an increase in N the reflectance in the visible, and middle IR wavelengths decrease, and the IR reflectance is increased. The canopies with 120 kg N/ha display the highest LAI, maintain green leaf area the longest, and increase in fresh and dry phytomass. The relationship between spectral and agronomic variables is examined; the effect of changing chlorophyll concentration and LAI on the reflectance is studied.

  9. Convergence of tree water use within an arid-zone woodland.

    PubMed

    O'Grady, A P; Cook, P G; Eamus, D; Duguid, A; Wischusen, J D H; Fass, T; Worldege, D

    2009-07-01

    We examined spatial and temporal patterns of tree water use and aspects of hydraulic architecture in four common tree species of central Australia--Corymbia opaca, Eucalyptus victrix, E. camaldulensis and Acacia aneura--to better understand processes that constrain water use in these environments. These four widely distributed species occupy contrasting niches within arid environments including woodlands, floodplains and riparian environments. Measurements of tree water use and leaf water potential were made at two sites with contrasting water table depths during a period of high soil water availability following summer rainfall and during a period of low soil water availability following 7 months of very little rainfall during 2007. There were significant differences in specific leaf area (SLA), sapwood area to leaf area ratios and sapwood density between species. Sapwood to leaf area ratio increased in all species from April to November indicating a decline in leaf area per unit sapwood area. Despite very little rainfall in the intervening period three species, C. opaca, E. victrix and E. camaldulensis maintained high leaf water potentials and tree water use during both periods. In contrast, leaf water potential and water use in the A. aneura were significantly reduced in November compared to April. Despite contrasting morphology and water use strategies, we observed considerable convergence in water use among the four species. Wood density in particular was strongly related to SLA, sapwood area to leaf area ratios and soil to leaf conductance, with all four species converging on a common relationship. Identifying convergence in hydraulic traits can potentially provide powerful tools for scaling physiological processes in natural ecosystems.

  10. Physically-based modeling of drag force caused by natural woody vegetation

    NASA Astrophysics Data System (ADS)

    Järvelä, J.; Aberle, J.

    2014-12-01

    Riparian areas and floodplains are characterized by woody vegetation, which is an essential feature to be accounted for in many hydro-environmental models. For applications including flood protection, river restoration and modelling of sediment processes, there is a need to improve the reliability of flow resistance estimates. Conventional methods such as the use of lumped resistance coefficients or simplistic cylinder-based drag force equations can result in significant errors, as these methods do not adequately address the effect of foliage and reconfiguration of flexible plant parts under flow action. To tackle the problem, physically-based methods relying on objective and measurable vegetation properties are advantageous for describing complex vegetation. We have conducted flume and towing tank investigations with living and artificial plants, both in arrays and with isolated plants, providing new insight into advanced parameterization of natural vegetation. The stem, leaf and total areas of the trees confirmed to be suitable characteristic dimensions for estimating flow resistance. Consequently, we propose the use of leaf area index and leaf-to-stem-area ratio to achieve better drag force estimates. Novel remote sensing techniques including laser scanning have become available for effective collection of the required data. The benefits of the proposed parameterization have been clearly demonstrated in our newest experimental studies, but it remains to be investigated to what extent the parameter values are species-specific and how they depend on local habitat conditions. The purpose of this contribution is to summarize developments in the estimation of vegetative drag force based on physically-based approaches as the latest research results are somewhat dispersed. In particular, concerning woody vegetation we seek to discuss three issues: 1) parameterization of reconfiguration with the Vogel exponent; 2) advantage of parameterizing plants with the leaf area index and leaf-to-stem-area ratio, and 3) effect of plant scale (size from twigs to mature trees). To analyze these issues we use experimental data from the authors' research teams as well as from other researchers. The results are expected to be useful for the design of future experimental campaigns and developing drag force models.

  11. Simplification of a light-based model for estimating final internode length in greenhouse cucumber canopies.

    PubMed

    Kahlen, Katrin; Stützel, Hartmut

    2011-10-01

    Light quantity and quality affect internode lengths in cucumber (Cucumis sativus), whereby leaf area and the optical properties of the leaves mainly control light quality within a cucumber plant community. This modelling study aimed at providing a simple, non-destructive method to predict final internode lengths (FILs) using light quantity and leaf area data. Several simplifications of a light quantity and quality sensitive model for estimating FILs in cucumber have been tested. The direct simplifications substitute the term for the red : far-red (R : FR) ratios, by a term for (a) the leaf area index (LAI, m(2) m(-2)) or (b) partial LAI, the cumulative leaf area per m(2) ground, where leaf area per m(2) ground is accumulated from the top of each plant until a number, n, of leaves per plant is reached. The indirect simplifications estimate the input R : FR ratio based on partial leaf area and plant density. In all models, simulated FILs were in line with the measured FILs over various canopy architectures and light conditions, but the prediction quality varied. The indirect simplification based on leaf area of ten leaves revealed the best fit with measured data. Its prediction quality was even higher than of the original model. This study showed that for vertically trained cucumber plants, leaf area data can substitute local light quality data for estimating FIL data. In unstressed canopies, leaf area over the upper ten ranks seems to represent the feedback of the growing architecture on internode elongation with respect to light quality. This highlights the role of this domain of leaves as the primary source for the specific R : FR signal controlling the final length of an internode and could therefore guide future research on up-scaling local processes to the crop level.

  12. Effect of Tamarindus indica leaf powder on plasma concentrations of copper, zinc, and iron in fluorotic cows.

    PubMed

    Samal, Pinaki; Patra, R C; Gupta, A R; Mishra, S K; Jena, D; Satapathy, D

    2016-10-01

    The main objective of the study was to determine the deleterious effect of fluoride on plasma trace minerals of fluorotic cattle and to evaluate the effect of Tamarindus indica leaf powder toward correction of the same. A total of 30 cattle exhibiting chronic sign of fluorosis and 10 healthy cattle from nonfluorotic area were incorporated in this study. Fluorotic cattle were divided into three equal groups consisting of 10 cattle each. Group I from fluoride free area served as healthy control. The Group II received no treatment and served as disease control. Groups III and IV were supplemented with tamarind leaf powder at 15 g and 30 g/day with feed for 60 days. Plasma mineral status was evaluated after 60 days of treatment with double beam atomic absorption spectrophotometer. Statistical analysis of data revealed a significant (p<0.05) decrease in mean plasma copper (Cu) (0.344±0.007 ppm), zinc (Zn) (0.692±0.06 ppm), and iron (Fe) concentration (1.100±0.01 ppm) in fluorotic cattle in comparison to healthy cattle (0.58±0.010, 2.342±0.04, 1.406±0.04 ppm, respectively). Significant (p<0.05) increase in Cu, Zn, and Fe was recorded after supplementation of tamarind leaf powder to the fluorotic cattle. It was concluded that fluorotic cattle might be supplemented with T. indica leaf powder with feed for the correction of the decreased level of certain plasma minerals.

  13. [Effects of arbuscular mycorrhizal fungi on root system morphology and sucrose and glucose contents of Poncirus trifoliata].

    PubMed

    Zou, Ying-Ning; Wu, Qiang-Sheng; Li, Yan; Huang, Yong-Ming

    2014-04-01

    The effects of inoculation with Glomus mosseae, G. versiforme, and their mixture on plant growth, root system morphology, and sucrose and glucose contents of trifoliate orange (Poncirus trifoliata L.) were studied by pot culture. The results showed that all the inoculated treatments significantly increased the plant height, stem diameter, leaf number, and shoot and root biomass. In addition, the mycorrhizal treatments significantly increased the number of 1st, 2nd, and 3rd lateral roots. Inoculation with arbuscular mycorrhizal fungi significantly increased the root projected area, surface area, volume, and total root length (mainly 0-1 cm root length), but decreased the root average diameter. Meanwhile, G. versiforme showed the best effects. Mycorrhizal inoculation significantly increased the leaf sucrose and root glucose contents, but decreased the leaf glucose and root sucrose contents. Owing to the 'mycorrhizal carbon pool' in roots, inoculation with arbuscular mycorrhizal fungi resulted in high glucose content and low sucrose content of roots, which would facilitate the root growth and development, thereby the establishment of better root system morphology of host plants.

  14. Response of nitrogen metabolism to boron toxicity in tomato plants.

    PubMed

    Cervilla, L M; Blasco, B; Ríos, J J; Rosales, M A; Rubio-Wilhelmi, M M; Sánchez-Rodríguez, E; Romero, L; Ruiz, J M

    2009-09-01

    Boron (B) toxicity has become important in areas close to the Mediterranean Sea where intensive agriculture has been developed. The objective of this research was to study the effects of B toxicity (0.5 mM and 2.0 mM B) on nitrogen (N) assimilation of two tomato cultivars that are often used in these areas. Leaf biomass, relative leaf growth rate (RGR(L)), concentration of B, nitrate (NO(3) (-)), ammonium (NH(4) (+)), organic N, amino acids and soluble proteins, as well as nitrate reductase (NR), nitrite reductase (NiR), glutamine synthase (GS), glutamate synthetase (GOGAT) and glutamate dehydrogenase (GDH) activities were analysed in leaves. Boron toxicity significantly decreased leaf biomass, RGR(L), organic N, soluble proteins, and NR and NiR activities. The lowest NO(3) (-) and NH(4) (+) concentration in leaves was recorded when plants were supplied with 2.0 mM B in the root medium. Total B, amino acids, activities of GS, GOGAT and GDH increased under B toxicity. Data from the present study prove that B toxicity causes inhibition of NO(3) (-) reduction and increases NH(4) (+) assimilation in tomato plants.

  15. Growth potential limits drought morphological plasticity in seedlings from six Eucalyptus provenances.

    PubMed

    Maseda, Pablo H; Fernández, Roberto J

    2016-02-01

    Water stress modifies plant above- vs belowground biomass allocation, i.e., morphological plasticity. It is known that all species and genotypes reduce their growth rate in response to stress, but in the case of water stress it is unclear whether the magnitude of such reduction is linked to the genotype's growth potential, and whether the reduction can be largely attributed to morphological adjustments such as plant allocation and leaf and root anatomy. We subjected seedlings of six seed sources, three from each of Eucalyptus camaldulensis (potentially fast growing) and E. globulus (inherently slow growing), to three experimental water regimes. Biomass, leaf area and root length were measured in a 6-month glasshouse experiment. We then performed functional growth analysis of relative growth rate (RGR), and aboveground (leaf area ratio (LAR), specific leaf area (SLA) and leaf mass ratio (LMR)) and belowground (root length ratio (RLR), specific root length (SRL) and root mass ratio (RMR)) morphological components. Total biomass, root biomass and leaf area were reduced for all Eucalyptus provenances according to drought intensity. All populations exhibited drought plasticity, while those of greater growth potential (RGRmax) had a larger reduction in growth (discounting the effect of size). A positive correlation was observed between drought sensitivity and RGRmax. Aboveground, drought reduced LAR and LMR; under severe drought a negative correlation was found between LMR and RGRmax. Belowground, drought reduced SRL but increased RMR, resulting in no change in RLR. Under severe drought, a negative correlation was found between RLR, SRL and RGRmax. Our evidence strongly supports the classic ecophysiological trade-off between growth potential and drought tolerance for woody seedlings. It also suggests that slow growers would have a low capacity to adjust their morphology. For shoots, this constraint on plasticity was best observed in partition (i.e., LMR) whereas for roots it was clearest in morphology/anatomy (i.e., SRL). Thus, a low RGRmax would limit plastic response to drought not only at the whole plant level but also at the organ and even the tissue level. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Alpha-glucosidase Inhibitory and Antioxidant Potential of Antidiabetic Herb Alternanthera sessilis: Comparative Analyses of Leaf and Callus Solvent Fractions.

    PubMed

    Chai, Tsun-Thai; Khoo, Chee-Siong; Tee, Chong-Siang; Wong, Fai-Chu

    2016-01-01

    Alternanthera sessilis is a medicinal herb which is consumed as vegetable and used as traditional remedies of various ailments in Asia and Africa. This study aimed to investigate the antiglucosidase and antioxidant activity of solvent fractions of A. sessilis leaf and callus. Leaf and callus methanol extracts were fractionated to produce hexane, chloroform, ethyl acetate, butanol, and water fractions. Antiglucosidase and 1,1-diphenyl-2-picrylhydrazyl scavenging activities as well as total phenolic (TP), total flavonoid (TF), and total coumarin (TC) contents were evaluated. Lineweaver-Burk plot analysis was performed on leaf and callus fractions with the strongest antiglucosidase activity. Leaf ethyl acetate fraction (LEF) had the strongest antiglucosidase (EC 50 0.55 mg/mL) and radical scavenging (EC 50 10.81 μg/mL) activity among leaf fractions. Callus ethyl acetate fraction (CEF) and chloroform fraction had the highest antiglucosidase (EC 50 0.25 mg/mL) and radical scavenging (EC 50 34.12 μg/mL) activity, respectively, among callus fractions. LEF and CEF were identified as noncompetitive and competitive α-glucosidase inhibitors, respectively. LEF and CEF had greater antiglucosidase activity than acarbose. Leaf fractions had higher phytochemical contents than callus fractions. LEF had the highest TP, TF, and TC contents. Antiglucosidase and antioxidant activities of leaf fractions correlated with phytochemical contents. LEF had potent antiglucosidase activity and concurrent antioxidant activity. CEF had the highest antiglucosidase activity among all fractions. Callus culture is a promising tool for enhancing production of potent α-glucosidase inhibitors. Leaf ethyl acetate fraction (LEF) had the strongest antiglucosidase (EC 50 0.55 mg/mL) and radical scavenging (EC 50 10.81 μg/mL) activity among leaf fractionsCallus ethyl acetate fraction (CEF) and chloroform fraction had the highest antiglucosidase (EC 50 0.25 mg/mL) and radical scavenging (EC 50 34.12 μg/mL) activity, respectively, among callus fractionsLEF and CEF were identified as noncompetitive and competitive á-glucosidase inhibitors, respectivelyAntiglucosidase and antioxidant activities of leaf fractions correlated with phytochemical contents. Abbreviations used: LHF: Leaf hexane fraction, LCF: Leaf chloroform fraction, LEF: Leaf ethyl acetate fraction, LBF: Leaf butanol fraction, LWF: Leaf water fraction, CHF: Callus hexane fraction, CCF: Callus chloroform fraction, CEF: Callus ethyl acetate fraction, CBF: Callus butanol fraction, CWF: Callus water fraction, TP: Total phenolic, TF: Total flavonoid, TC: Total coumarin.

  17. Seasonality of isoprenoid emissions from a primary rainforest in central Amazonia

    DOE PAGES

    Alves, Eliane G.; Jardine, Kolby; Tota, Julio; ...

    2016-03-23

    Tropical rainforests are an important source of isoprenoid and other volatile organic compound (VOC) emissions to the atmosphere. The seasonal variation of these compounds is however still poorly understood. In this study, vertical profiles of mixing ratios of isoprene, total monoterpenes and total sesquiterpenes, were measured within and above the canopy, in a primary rainforest in central Amazonia, using a proton transfer reaction – mass spectrometer (PTR-MS). Fluxes of these compounds from the canopy into the atmosphere were estimated from PTR-MS measurements by using an inverse Lagrangian transport model. Measurements were carried out continuously from September 2010 to January 2011,more » encompassing the dry and wet seasons. Mixing ratios were higher during the dry (isoprene – 2.68 ± 0.9 ppbv, total monoterpenes – 0.67 ± 0.3 ppbv; total sesquiterpenes – 0.09 ± 0.07 ppbv) than the wet season (isoprene – 1.66 ± 0.9 ppbv, total monoterpenes – 0.47 ± 0.2 ppbv; total sesquiterpenes – 0.03 ± 0.02 ppbv) for all compounds. Ambient air temperature and photosynthetically active radiation (PAR) behaved similarly. Daytime isoprene and total monoterpene mixing ratios were highest within the canopy, rather than near the ground or above the canopy. By comparison, daytime total sesquiterpene mixing ratios were highest near the ground. Daytime fluxes varied significantly between seasons for all compounds. The maximums for isoprene (2.53 ± 0.5 µmol m -2 h -1) and total monoterpenes (1.77 ± 0.05 µmol m -2 h -1) were observed in the late dry season, whereas the maximum for total sesquiterpenes was found during the dry-to-wet transition season (0.77 ± 0.1 µmol m -2 h -1). These flux estimates suggest that the canopy is the main source of isoprenoids emitted into the atmosphere for all seasons. However, uncertainties in turbulence parameterization near the ground could affect estimates of fluxes that come from the ground. Leaf phenology seemed to be an important driver of seasonal variation of isoprenoid emissions. Although remote sensing observations of changes in leaf area index were used to estimate leaf phenology, MEGAN 2.1 did not fully capture the behavior of seasonal emissions observed in this study. This could be a result of very local effects on the observed emissions, but also suggest that other parameters need to be better determined in biogenic volatile organic compound (BVOC) models. Our results support established findings that seasonality of isoprenoids are driven by seasonal changes in light, temperature and leaf phenology. However, they suggest that leaf phenology and its role on isoprenoid production and emission from tropical plant species needs to be better understood in order to develop mechanistic explanations for seasonal variation in emissions. This also may reduce the uncertainties of model estimates associated with the responses to environmental factors. Therefore, this study strongly encourages long-term measurements of isoprenoid emissions, environmental factors and leaf phenology from leaf to ecosystem scale, with the purpose of improving BVOC model approaches that can characterize seasonality of isoprenoid emissions from tropical rainforests.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alves, Eliane G.; Jardine, Kolby; Tota, Julio

    Tropical rainforests are an important source of isoprenoid and other volatile organic compound (VOC) emissions to the atmosphere. The seasonal variation of these compounds is however still poorly understood. In this study, vertical profiles of mixing ratios of isoprene, total monoterpenes and total sesquiterpenes, were measured within and above the canopy, in a primary rainforest in central Amazonia, using a proton transfer reaction – mass spectrometer (PTR-MS). Fluxes of these compounds from the canopy into the atmosphere were estimated from PTR-MS measurements by using an inverse Lagrangian transport model. Measurements were carried out continuously from September 2010 to January 2011,more » encompassing the dry and wet seasons. Mixing ratios were higher during the dry (isoprene – 2.68 ± 0.9 ppbv, total monoterpenes – 0.67 ± 0.3 ppbv; total sesquiterpenes – 0.09 ± 0.07 ppbv) than the wet season (isoprene – 1.66 ± 0.9 ppbv, total monoterpenes – 0.47 ± 0.2 ppbv; total sesquiterpenes – 0.03 ± 0.02 ppbv) for all compounds. Ambient air temperature and photosynthetically active radiation (PAR) behaved similarly. Daytime isoprene and total monoterpene mixing ratios were highest within the canopy, rather than near the ground or above the canopy. By comparison, daytime total sesquiterpene mixing ratios were highest near the ground. Daytime fluxes varied significantly between seasons for all compounds. The maximums for isoprene (2.53 ± 0.5 µmol m -2 h -1) and total monoterpenes (1.77 ± 0.05 µmol m -2 h -1) were observed in the late dry season, whereas the maximum for total sesquiterpenes was found during the dry-to-wet transition season (0.77 ± 0.1 µmol m -2 h -1). These flux estimates suggest that the canopy is the main source of isoprenoids emitted into the atmosphere for all seasons. However, uncertainties in turbulence parameterization near the ground could affect estimates of fluxes that come from the ground. Leaf phenology seemed to be an important driver of seasonal variation of isoprenoid emissions. Although remote sensing observations of changes in leaf area index were used to estimate leaf phenology, MEGAN 2.1 did not fully capture the behavior of seasonal emissions observed in this study. This could be a result of very local effects on the observed emissions, but also suggest that other parameters need to be better determined in biogenic volatile organic compound (BVOC) models. Our results support established findings that seasonality of isoprenoids are driven by seasonal changes in light, temperature and leaf phenology. However, they suggest that leaf phenology and its role on isoprenoid production and emission from tropical plant species needs to be better understood in order to develop mechanistic explanations for seasonal variation in emissions. This also may reduce the uncertainties of model estimates associated with the responses to environmental factors. Therefore, this study strongly encourages long-term measurements of isoprenoid emissions, environmental factors and leaf phenology from leaf to ecosystem scale, with the purpose of improving BVOC model approaches that can characterize seasonality of isoprenoid emissions from tropical rainforests.« less

  19. Seasonality of isoprenoid emissions from a primary rainforest in central Amazonia

    NASA Astrophysics Data System (ADS)

    Alves, Eliane G.; Jardine, Kolby; Tota, Julio; Jardine, Angela; Yãnez-Serrano, Ana Maria; Karl, Thomas; Tavares, Julia; Nelson, Bruce; Gu, Dasa; Stavrakou, Trissevgeni; Martin, Scot; Artaxo, Paulo; Manzi, Antonio; Guenther, Alex

    2016-03-01

    Tropical rainforests are an important source of isoprenoid and other volatile organic compound (VOC) emissions to the atmosphere. The seasonal variation of these compounds is however still poorly understood. In this study, vertical profiles of mixing ratios of isoprene, total monoterpenes and total sesquiterpenes, were measured within and above the canopy, in a primary rainforest in central Amazonia, using a proton transfer reaction - mass spectrometer (PTR-MS). Fluxes of these compounds from the canopy into the atmosphere were estimated from PTR-MS measurements by using an inverse Lagrangian transport model. Measurements were carried out continuously from September 2010 to January 2011, encompassing the dry and wet seasons. Mixing ratios were higher during the dry (isoprene - 2.68 ± 0.9 ppbv, total monoterpenes - 0.67 ± 0.3 ppbv; total sesquiterpenes - 0.09 ± 0.07 ppbv) than the wet season (isoprene - 1.66 ± 0.9 ppbv, total monoterpenes - 0.47 ± 0.2 ppbv; total sesquiterpenes - 0.03 ± 0.02 ppbv) for all compounds. Ambient air temperature and photosynthetically active radiation (PAR) behaved similarly. Daytime isoprene and total monoterpene mixing ratios were highest within the canopy, rather than near the ground or above the canopy. By comparison, daytime total sesquiterpene mixing ratios were highest near the ground. Daytime fluxes varied significantly between seasons for all compounds. The maximums for isoprene (2.53 ± 0.5 µmol m-2 h-1) and total monoterpenes (1.77 ± 0.05 µmol m-2 h-1) were observed in the late dry season, whereas the maximum for total sesquiterpenes was found during the dry-to-wet transition season (0.77 ± 0.1 µmol m-2 h-1). These flux estimates suggest that the canopy is the main source of isoprenoids emitted into the atmosphere for all seasons. However, uncertainties in turbulence parameterization near the ground could affect estimates of fluxes that come from the ground. Leaf phenology seemed to be an important driver of seasonal variation of isoprenoid emissions. Although remote sensing observations of changes in leaf area index were used to estimate leaf phenology, MEGAN 2.1 did not fully capture the behavior of seasonal emissions observed in this study. This could be a result of very local effects on the observed emissions, but also suggest that other parameters need to be better determined in biogenic volatile organic compound (BVOC) models. Our results support established findings that seasonality of isoprenoids are driven by seasonal changes in light, temperature and leaf phenology. However, they suggest that leaf phenology and its role on isoprenoid production and emission from tropical plant species needs to be better understood in order to develop mechanistic explanations for seasonal variation in emissions. This also may reduce the uncertainties of model estimates associated with the responses to environmental factors. Therefore, this study strongly encourages long-term measurements of isoprenoid emissions, environmental factors and leaf phenology from leaf to ecosystem scale, with the purpose of improving BVOC model approaches that can characterize seasonality of isoprenoid emissions from tropical rainforests.

  20. Seasonality of isoprenoid emissions from a primary rainforest in central Amazonia

    NASA Astrophysics Data System (ADS)

    Alves, E. G.; Jardine, K.; Tota, J.; Jardine, A.; Yáñez-Serrano, A. M.; Karl, T.; Tavares, J.; Nelson, B.; Gu, D.; Stavrakou, T.; Martin, S.; Manzi, A.; Guenther, A.

    2015-10-01

    Tropical rainforests are an important source of isoprenoid and other Volatile Organic Compound (VOC) emissions to the atmosphere. The seasonal variation of these compounds is however still poorly understood. In this study, profiles were collected of the vertical profile of mixing ratios of isoprene, total monoterpenes and total sesquiterpenes, within and above the canopy, in a primary rainforest in central Amazonia, using a Proton Transfer Reaction-Mass Spectrometer (PTR-MS). Fluxes of these compounds from the canopy into the atmosphere were estimated from PTR-MS measurements by using an inverse Lagrangian transport model. Measurements were carried out continuously from September 2010 to January 2011, encompassing the dry and wet seasons. Mixing ratios were higher during the dry (isoprene - 2.68 ± 0.9 ppbv, total monoterpenes - 0.67 ± 0.3 ppbv; total sesquiterpenes - 0.09 ± 0.07 ppbv) than the wet season (isoprene - 1.66 ± 0.9 ppbv, total monoterpenes - 0.47 ± 0.2 ppbv; total sesquiterpenes - 0.03 ± 0.02 ppbv) for all compounds. Ambient air temperature and photosynthetically active radiation (PAR) behaved similarly. Daytime isoprene and total monoterpene mixing ratios were highest within the canopy, rather than near the ground or above the canopy. By comparison, daytime total sesquiterpene mixing ratios were highest near the ground. Daytime fluxes varied significantly between seasons for all compounds. The maximums for isoprene (2.53 ± 0.5 μmol m-2 h-1) and total monoterpenes (1.77 ± 0.05 μmol m-2 h-1) were observed in the late dry season, whereas the maximum for total sesquiterpenes was found during the dry-to-wet transition season (0.77 ± 0.1 μmol m-2 h-1). These flux estimates suggest that the canopy is the main source of isoprenoids to the atmosphere for all seasons. However, uncertainties in turbulence parameterization near the ground could affect estimates of fluxes that come from the ground. Leaf phenology seemed to be an important driver of seasonal variation of isoprenoid emissions. Although remote sensing observations of changes in leaf area index were used to estimate leaf phenology, MEGAN 2.1 did not fully capture the behavior of seasonal emissions observed in this study. This could be a result of very local effects on the observed emissions, but also suggest that other parameters need to be better determined in Biogenic Volatile Organic Compound (BVOC) models. Our results support established findings that seasonality of isoprenoids are driven by seasonal changes in light, temperature and leaf phenology. However, they suggest that leaf phenology and its role on isoprenoid production and emission from tropical plant species needs to be better understood in order to develop mechanistic explanations for seasonal variation in emissions. This also may reduce the uncertainties of model estimates associated with the responses to environmental factors. Therefore, this study strongly encourages long-term measurements of isoprenoid emissions, environmental factors and leaf phenology from leaf to ecosystem scale, with the purpose of improving BVOC model approaches that can characterize seasonality of isoprenoid emissions from tropical rainforests.

  1. Effects of inert dust on olive (Olea europaea L.) leaf physiological para.

    PubMed

    Nanos, George D; Ilias, Ilias F

    2007-05-01

    Cement factories are major pollutants for the surrounding areas. Inert dust deposition has been found to affect photosynthesis, stomatal functioning and productivity. Very few studies have been conducted on the effects of cement kiln dust on the physiology of perennial fruit crops. Our goal was to study some cement dust effects on olive leaf physiology.effects on olive leaf physiology. On Cement kiln dust has been applied periodically since April 2003 onto olive leaves. Cement dust accumulation and various leaf physiological parameters were evaluated early in July 2003. Measurements were also taken on olive trees close to the cement factory. Leaf dry matter content and specific leaf weight increased with leaf age and dust content. Cement dust decreased leaf total chlorophyll content and chlorophyll a/chlorophyll b ratio. As a result, photosynthetic rate and quantum yield decreased. In addition, transpiration rate slightly decreased, stomatal conductance to H2O and CO2 movement decreased, internal CO2 concentration remained constant and leaf temperature increased. The changes in chlorophyll are possibly due to shading and/or photosystem damage. The changes in stomatal functioning were possibly due to dust accumulation between the peltates or othe effects on stomata. Dust (in this case from a cement kiln) seems to cause substantial changes to leaf physiology, possibly leading to reduced olive productivity. Avoidance of air contamination from cement factories by using available technology should be examined together with any possible methodologies to reduce plant tissue contamination from cement dust. Longterm effects of dust (from cement kiln or other sources) on olive leaf, plant productivity and nutritional quality of edible parts could be studied for conclusive results on dust contamination effects to perennial crops.

  2. Variation in foliar respiration and wood CO2 efflux rates among species and canopy layers in a wet tropical forest.

    PubMed

    Asao, Shinichi; Bedoya-Arrieta, Ricardo; Ryan, Michael G

    2015-02-01

    As tropical forests respond to environmental change, autotrophic respiration may consume a greater proportion of carbon fixed in photosynthesis at the expense of growth, potentially turning the forests into a carbon source. Predicting such a response requires that we measure and place autotrophic respiration in a complete carbon budget, but extrapolating measurements of autotrophic respiration from chambers to ecosystem remains a challenge. High plant species diversity and complex canopy structure may cause respiration rates to vary and measurements that do not account for this complexity may introduce bias in extrapolation more detrimental than uncertainty. Using experimental plantations of four native tree species with two canopy layers, we examined whether species and canopy layers vary in foliar respiration and wood CO2 efflux and whether the variation relates to commonly used scalars of mass, nitrogen (N), photosynthetic capacity and wood size. Foliar respiration rate varied threefold between canopy layers, ∼0.74 μmol m(-2) s(-1) in the overstory and ∼0.25 μmol m(-2) s(-1) in the understory, but little among species. Leaf mass per area, N and photosynthetic capacity explained some of the variation, but height explained more. Chamber measurements of foliar respiration thus can be extrapolated to the canopy with rates and leaf area specific to each canopy layer or height class. If area-based rates are sampled across canopy layers, the area-based rate may be regressed against leaf mass per area to derive the slope (per mass rate) to extrapolate to the canopy using the total leaf mass. Wood CO2 efflux varied 1.0-1.6 μmol m(-2) s(-1) for overstory trees and 0.6-0.9 μmol m(-2) s(-1) for understory species. The variation in wood CO2 efflux rate was mostly related to wood size, and little to species, canopy layer or height. Mean wood CO2 efflux rate per surface area, derived by regressing CO2 efflux per mass against the ratio of surface area to mass, can be extrapolated to the stand using total wood surface area. The temperature response of foliar respiration was similar for three of the four species, and wood CO2 efflux was similar between wet and dry seasons. For these species and this forest, vertical sampling may yield more accurate estimates than would temporal sampling. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Climate influences the leaf area/sapwood area ratio in Scots pine.

    PubMed

    Mencuccini, M; Grace, J

    1995-01-01

    We tested the hypothesis that the leaf area/sapwood area ratio in Scots pine (Pinus sylvestris L.) is influenced by site differences in water vapor pressure deficit of the air (D). Two stands of the same provenance were selected, one in western Scotland and one in eastern England, so that effects resulting from age, genetic variability, density and fertility were minimized. Compared with the Scots pine trees at the cooler and wetter site in Scotland, the trees at the warmer and drier site in England produced less leaf area per unit of conducting sapwood area both at a stem height of 1.3 m and at the base of the live crown, whereas stem permeability was similar at both sites. Also, trees at the drier site had less leaf area per unit branch cross-sectional area at the branch base than trees at the wetter site. For each site, the average values for leaf area, sapwood area and permeability were used, together with values of transpiration rates at different D, to calculate average stem water potential gradients. Changes in the leaf area/sapwood area ratio acted to maintain a similar water potential gradient in the stems of trees at both sites despite climatic differences between the sites.

  4. Pretreatment with scutellaria baicalensis stem-leaf total flavonoid prevents cerebral ischemia-reperfusion injury

    PubMed Central

    Zhao, Shumin; Kong, Wei; Zhang, Shufeng; Chen, Meng; Zheng, Xiaoying; Kong, Xiangyu

    2013-01-01

    Pretreatment with scutellaria baicalensis stem-leaf total flavonoid has protective effects against ischemia and attenuates myocardial ischemia-reperfusion injury. In this study, rats were given scutellaria baicalensis stem-leaf total flavonoid intragastrically at 50, 100, and 200 mg/kg per day for 7 days before focal cerebral ischemia-reperfusion injury models were established using the suture method. We then determined the protective effects of scutellaria baicalensis stem-leaf total flavonoid pretreatment on focal cerebral ischemia-reperfusion injury. Results showed that neurological deficit scores increased, infarct volumes enlarged, apoptosis increased and Bcl-2 and Bax protein expression were upregulated at 24 hours after reperfusion. Pretreatment with scutellaria baicalensis stem-leaf total flavonoid at any dose lowered the neurological deficit scores, reduced the infarct volume, prevented apoptosis in hippocampal cells, attenuated neuronal and blood-brain barrier damage and upregulated Bcl-2 protein expression but inhibited Bax protein expression. Doses of 100 and 200 mg/kg were the most efficacious. Our findings indicate that pretreatment with scutellaria baicalensis stem-leaf total flavonoid at 100 and 200 mg/kg can improve the neurological functions and have preventive and protective roles after focal cerebral ischemia-reperfusion injury. PMID:25206639

  5. Leaf area and tree increment dynamics of even-aged and multiaged lodgepole pine stands in Montana

    Treesearch

    Cassandra L. Kollenberg; Kevin L. O' Hara

    1999-01-01

    Age structure and distribution of leaf area index (LAI) of even and multiaged lodgepole pine (Pinus contorta var. latifolia Engelm.) stands were examined on three study areas in western and central Montana. Projected leaf area was determined based on a relationship with sapwood cross-sectional area at breast height. Stand structure and LAI varied considerably between...

  6. What Would Happen If... Numbers 1-12.

    ERIC Educational Resources Information Center

    Tasmanian Education Dept., Hobart (Australia).

    This document presents a set of 12 science activity collections (a total of 144 activities) gathered from periodicals and other sources in Australia. The content areas commonly covered in elementary school science lessons are represented by such activity topics as: what you can do with a leaf; climbing liquids; silkworms; shadows; chemical force;…

  7. Potential Regulatory Role of Gibberellic and Humic Acids in Sprouting of Chlorophytum borivilianum Tubers

    PubMed Central

    Puteh, Adam; Hassan, Siti Aishah

    2014-01-01

    Tubers of safed musli (Chlorophytum borivilianum) were immersed in three different concentrations of gibberellic acid (GA3) or humic acid (HA) prior to planting. The highest concentration of GA3 (20 mg L−1) and all concentrations of HA (5, 10, and 15%) appeared to hasten tuber sprouting and promote uniform sprouting pattern. The use of 20 mg L−1 GA3 or 15% HA successfully improved sprouting and mean sprouting time. Safed musli growth and development was improved through the increase in the number of leaves, total leaf area, leaf area index, and total fibrous root length. This directly influenced the number of new tubers formed. The use of 20 mg L−1 GA3 or 15% HA gave similar response with nonsignificant difference among them. However, due to the cost of production, the result from this study suggests that 15% HA should be used to obtain improved sprouting percentage, homogeneous stand establishment, efficient plant growth and development, and increased yield of safed musli. PMID:24688363

  8. The Relationship between Anatomy and Photosynthetic Performance of Heterobaric Leaves1

    PubMed Central

    Nikolopoulos, Dimosthenis; Liakopoulos, Georgios; Drossopoulos, Ioannis; Karabourniotis, George

    2002-01-01

    Heterobaric leaves show heterogeneous pigmentation due to the occurrence of a network of transparent areas that are created from the bundle sheaths extensions (BSEs). Image analysis showed that the percentage of photosynthetically active leaf area (Ap) of the heterobaric leaves of 31 plant species was species dependent, ranging from 91% in Malva sylvestris to only 48% in Gynerium sp. Although a significant portion of the leaf surface does not correspond to photosynthetic tissue, the photosynthetic capacity of these leaves, expressed per unit of projected area (Pmax), was not considerably affected by the size of their transparent leaf area (At). This means that the photosynthetic capacity expressed per Ap (P*max) should increase with At. Moreover, the expression of P*max could be allowing the interpretation of the photosynthetic performance in relation to some critical anatomical traits. The P*max, irrespective of plant species, correlated with the specific leaf transparent volume (λt), as well as with the transparent leaf area complexity factor (CFAt), parameters indicating the volume per unit leaf area and length/density of the transparent tissues, respectively. Moreover, both parameters increased exponentially with leaf thickness, suggesting an essential functional role of BSEs mainly in thick leaves. The results of the present study suggest that although the Ap of an heterobaric leaf is reduced, the photosynthetic performance of each areole is increased, possibly due to the light transferring capacity of BSEs. This mechanism may allow a significant increase in leaf thickness and a consequent increase of the photosynthetic capacity per unit (projected) area, offering adaptive advantages in xerothermic environments. PMID:12011354

  9. Non-invasive absolute measurement of leaf water content using terahertz quantum cascade lasers.

    PubMed

    Baldacci, Lorenzo; Pagano, Mario; Masini, Luca; Toncelli, Alessandra; Carelli, Giorgio; Storchi, Paolo; Tredicucci, Alessandro

    2017-01-01

    Plant water resource management is one of the main future challenges to fight recent climatic changes. The knowledge of the plant water content could be indispensable for water saving strategies. Terahertz spectroscopic techniques are particularly promising as a non-invasive tool for measuring leaf water content, thanks to the high predominance of the water contribution to the total leaf absorption. Terahertz quantum cascade lasers (THz QCL) are one of the most successful sources of THz radiation. Here we present a new method which improves the precision of THz techniques by combining a transmission measurement performed using a THz QCL source, with simple pictures of leaves taken by an optical camera. As a proof of principle, we performed transmission measurements on six plants of Vitis vinifera L. (cv "Colorino"). We found a linear law which relates the leaf water mass to the product between the leaf optical depth in the THz and the projected area. Results are in optimal agreement with the proposed law, which reproduces the experimental data with 95% accuracy. This method may overcome the issues related to intra-variety heterogeneities and retrieve the leaf water mass in a fast, simple, and non-invasive way. In the future this technique could highlight different behaviours in preserving the water status during drought stress.

  10. Leaf photoacclimatory responses of the tropical seagrass Thalassia testudinum under mesocosm conditions: a mechanistic scaling-up study.

    PubMed

    Cayabyab, Napo M; Enríquez, Susana

    2007-01-01

    Here, the leaf photoacclimatory plasticity and efficiency of the tropical seagrass Thalassia testudinum were examined. Mesocosms were used to compare the variability induced by three light conditions, two leaf sections and the variability observed at the collection site. The study revealed an efficient photosynthetic light use at low irradiances, but limited photoacclimatory plasticity to increase maximum photosynthetic rates (P(max)) and saturation (E(k)) and compensation (E(c)) irradiances under high light irradiance. A strong, positive and linear association between the percentage of daylight hours above saturation and the relative maximum photochemical efficiency (F(V)/F(M)) reduction observed between basal and apical leaf sections was also found. The results indicate that T. testudinum leaves have a shade-adapted physiology. However, the large amount of heterotrophic biomass that this seagrass maintains may considerably increase plant respiratory demands and their minimum quantum requirements for growth (MQR). Although the MQR still needs to be quantified, it is hypothesized that the ecological success of this climax species in the oligotrophic and highly illuminated waters of the Caribbean may rely on the ability of the canopy to regulate the optimal leaf light environment and the morphological plasticity of the whole plant to enhance total leaf area and to reduce carbon respiratory losses.

  11. Evolutionary Association of Stomatal Traits with Leaf Vein Density in Paphiopedilum, Orchidaceae

    PubMed Central

    Sun, Mei; Zhang, Juan-Juan; Cao, Kun-Fang; Hu, Hong

    2012-01-01

    Background Both leaf attributes and stomatal traits are linked to water economy in land plants. However, it is unclear whether these two components are associated evolutionarily. Methodology/Principal Findings In characterizing the possible effect of phylogeny on leaf attributes and stomatal traits, we hypothesized that a correlated evolution exists between the two. Using a phylogenetic comparative method, we analyzed 14 leaf attributes and stomatal traits for 17 species in Paphiopedilum. Stomatal length (SL), stomatal area (SA), upper cuticular thickness (UCT), and total cuticular thickness (TCT) showed strong phylogenetic conservatism whereas stomatal density (SD) and stomatal index (SI) were significantly convergent. Leaf vein density was correlated with SL and SD whether or not phylogeny was considered. The lower epidermal thickness (LET) was correlated positively with SL, SA, and stomatal width but negatively with SD when phylogeny was not considered. When this phylogenetic influence was factored in, only the significant correlation between SL and LET remained. Conclusion/Significance Our results support the hypothesis for correlated evolution between stomatal traits and vein density in Paphiopedilum. However, they do not provide evidence for an evolutionary association between stomata and leaf thickness. These findings lend insight into the evolution of traits related to water economy for orchids under natural selection. PMID:22768224

  12. Structure Measurements of Leaf and Woody Components of Forests with Dual-Wavelength Lidar Scanning Data

    NASA Astrophysics Data System (ADS)

    Strahler, A. H.; Li, Z.; Schaaf, C.; Howe, G.; Martel, J.; Hewawasam, K.; Douglas, E. S.; Chakrabarti, S.; Cook, T.; Paynter, I.; Saenz, E. J.; Wang, Z.; Woodcock, C. E.; Jupp, D. L. B.; Schaefer, M.; Newnham, G.

    2014-12-01

    Forest structure plays a critical role in the exchange of energy, carbon and water between land and atmosphere and nutrient cycle. We can provide detailed forest structure measurements of leaf and woody components with the Dual Wavelength Echidna® Lidar (DWEL), which acquires full-waveform scans at both near-infrared (NIR, 1064 nm) and shortwave infrared (SWIR, 1548 nm) wavelengths from simultaneous laser pulses. We collected DWEL scans at a broadleaf forest stand and a conifer forest stand at Harvard Forest in June 2014. Power returned from leaves is much lower than from woody materials such as trunks and branches at the SWIR wavelength due to the liquid water absorption by leaves, whereas returned power at the NIR wavelength is similar from both leaves and woody materials. We threshold a normalized difference index (NDI), defined as the difference between returned power at the two wavelengths divided by their sum, to classify each return pulse as a leaf or trunk/branch hit. We obtain leaf area index (LAI), woody area index (WAI) and vertical profiles of leaf and woody components directly from classified lidar hits without empirical wood-to-total ratios as are commonly used in optical methods of LAI estimation. Tree heights, diameter at breast height (DBH), and stem count density are the other forest structure parameters estimated from our DWEL scans. The separation of leaf and woody components in tandem with fine-scale forest structure measurements will benefit studies on carbon allocation of forest ecosystems and improve our understanding of the effects of forest structure on ecosystem functions. This research is supported by NSF grant, MRI-0923389

  13. Canopy reflectance, photosynthesis, and transpiration. II - The role of biophysics in the linearity of their interdependence

    NASA Technical Reports Server (NTRS)

    Sellers, P. J.

    1987-01-01

    The ability of satellite sensor systems to estimate area-averaged canopy photosynthetic and transpirative properties is evaluated. The near linear relationship between the simple ratio (SR) and normalized difference (ND) and the surface biophysical properties of canopy photosynthetically active radiation (PAR) absorption, photosynthesis, and bulk stomatal resistance is studied. The models utilized to illustrate the processes of canopy reflectance, photosynthesis, and resistance are described. The dependence of SR, the absorbed fraction of PAR, and canopy photosynthesis and resistance on total leaf area index is analyzed. It is noted that the SR and ND vegetation indices and vegetation-dependent qualities are near-linearly related due to the proportion of leaf scattering coefficient in visible and near IR wavelength regions. The data reveal that satellite sensor systems are useful for the estimation of photosynthesis and transpirative properties.

  14. Quantifying plant age and available water effects on soybean leaf conductance

    USDA-ARS?s Scientific Manuscript database

    In this study, we present data characterizing the effects of soil moisture levels on total leaf conductance for two distinct determinate soybean (Glycine max (L.) Merr.) genotypes and subsequently use these data to formulate and validate a model that characterizes total leaf conductance. Conductanc...

  15. Seasonal Dynamics in Leaf Area Index in Intensively Managed Loblolly Pine

    Treesearch

    Timothy B. Harrington; Jason A. Gatch; Bruce E. Borders

    2002-01-01

    Leaf area index (LAI; leaf area per ground area) was measured monthly or bimonthly for two years (March 1999 to February 2001) with the LAI-2000 in intensively managed plantations of loblolly pine (Pinus taeda L.) at Eatonton and Waycross GA. Since establishment of the three age classes at each site, the stands have received combinations of complete...

  16. Structural adjustments in resprouting trees drive differences in post-fire transpiration.

    PubMed

    Nolan, Rachael H; Mitchell, Patrick J; Bradstock, Ross A; Lane, Patrick N J

    2014-02-01

    Following disturbance many woody species are capable of resprouting new foliage, resulting in a reduced leaf-to-sapwood area ratio and altered canopy structure. We hypothesized that such changes would promote adjustments in leaf physiology, resulting in higher rates of transpiration per unit leaf area, consistent with the mechanistic framework proposed by Whitehead et al. (Whitehead D, Jarvis PG, Waring RH (1984) Stomatal conductance, transpiration and resistance to water uptake in a Pinus sylvestris spacing experiment. Can J For Res 14:692-700). We tested this in Eucalyptus obliqua L'Hér following a wildfire by comparing trees with unburnt canopies with trees that had been subject to 100% canopy scorch and were recovering their leaf area via resprouting. In resprouting trees, foliage was distributed along the trunk and on lateral branches, resulting in shorter hydraulic path lengths. We evaluated measurements of whole-tree transpiration and structural and physiological traits expected to drive any changes in transpiration. We used these structural and physiological measurements to parameterize the Whitehead et al. equation, and found that the expected ratio of transpiration per unit leaf area between resprouting and unburnt trees was 3.41. This is similar to the observed ratio of transpiration per unit leaf area, measured from sapflow observations, which was 2.89 (i.e., resprouting trees had 188% higher transpiration per unit leaf area). Foliage at low heights (<2 m) was found to be significantly different to foliage in the tree crown (14-18 m) in a number of traits, including higher specific leaf area, midday leaf water potential and higher rates of stomatal conductance and photosynthesis. We conclude that these post-fire adjustments in resprouting trees help to drive increased stomatal conductance and hydraulic efficiency, promoting the rapid return of tree-scale transpiration towards pre-disturbance levels. These transient patterns in canopy transpiration have important implications for modelling stand-level water fluxes in forests capable of resprouting, which is frequently done on the basis of the leaf area index.

  17. Investigation of the Spectroscopic Information on Functional Groups Related to Carbohydrates in Different Morphological Fractions of Corn Stover and Their Relationship to Nutrient Supply and Biodegradation Characteristics.

    PubMed

    Xin, Hangshu; Ding, Xue; Zhang, Liyang; Sun, Fang; Wang, Xiaofan; Zhang, Yonggen

    2017-05-24

    The objectives of this study were to investigate (1) nutritive values and biodegradation characteristics and (2) mid-IR spectroscopic features within the regions associated with carbohydrate functional groups (including cellulosic component (CELC), structural carbohydrate (STCHO), and total carbohydrate (CHO)) in different morphological fractions of corn stover. Furthermore, correlation and regression analyses were also applied to determine the relationship between nutritional values and spectroscopic parameters. The results showed that different morphological sections of corn stover had different nutrient supplies, in situ biodegradation characteristics, and spectral structural features within carbohydrate regions. The stem rind and ear husk were both high in fibrous content, which led to the lowest effective degradabilities (ED) among these stalk fractions. The ED values of NDF were ranked ear husk > stem pith > leaf blade > leaf sheath > whole plant > stem rind. Intensities of peak height and area within carbohydrate regions were relatively more stable compared with spectral ratio profiles. Significant difference was found only in peak area intensity of CELC, which was at the highest level for stem rind, followed by stem pith, leaf sheath, whole plant, leaf blade, and ear husk. Correlation results showed that changes in some carbohydrate spectral ratios were highly associated with carbohydrate chemical profiles and in situ rumen degradation kinetics. Among the various carbohydrate molecular spectral parameters that were tested in multiple regression analysis, CHO height ratios, and area ratios of CELC:CHO and CELC:STCHO as well as CELC area were mostly sensitive to nutrient supply and biodegradation characteristics in different morphological fractions of corn stover.

  18. [Exploration of a quantitative methodology to characterize the retention of PM2.5 and other atmospheric particulate matter by plant leaves: taking Populus tomentosa as an example].

    PubMed

    Zhang, Zhi-Dan; Xi, Ben-Ye; Cao, Zhi-Guo; Jia, Li-Ming

    2014-08-01

    Taking Populus tomentosa as an example, a methodology called elution-weighing-particle size-analysis (EWPA) was proposed to evaluate quantitatively the ability of retaining fine particulate matter (PM2.5, diameter d ≤ 2.5 μm) and atmospheric particulate matter by plant leaves using laser particle size analyzer and balance. This method achieved a direct, accurate measurement with superior operability about the quality and particle size distribution of atmospheric particulate matter retained by plant leaves. First, a pre-experiment was taken to test the stability of the method. After cleaning, centrifugation and drying, the particulate matter was collected and weighed, and then its particle size distribution was analyzed by laser particle size analyzer. Finally, the mass of particulate matter retained by unit area of leaf and stand was translated from the leaf area and leaf area index. This method was applied to a P. tomentosa stand which had not experienced rain for 27 days in Beijing Olympic Forest Park. The results showed that the average particle size of the atmospheric particulate matter retained by P. tomentosa was 17.8 μm, and the volume percentages of the retained PM2.5, inhalable particulate matter (PM10, d ≤ 10 μm) and total suspended particle (TSP, d ≤ 100 μm) were 13.7%, 47.2%, and 99.9%, respectively. The masses of PM2.5, PM10, TSP and total particulate matter were 8.88 x 10(-6), 30.6 x 10(-6), 64.7 x 10(-6) and 64.8 x 10(-6) g x cm(-2) respectively. The retention quantities of PM2.5, PM10, TSP and total particulate matter by the P. tomentosa stand were 0.963, 3.32, 7.01 and 7.02 kg x hm(-2), respectively.

  19. Detection of Chlorophyll and Leaf Area Index Dynamics from Sub-weekly Hyperspectral Imagery

    NASA Technical Reports Server (NTRS)

    Houborg, Rasmus; McCabe, Matthew F.; Angel, Yoseline; Middleton, Elizabeth M.

    2016-01-01

    Temporally rich hyperspectral time-series can provide unique time critical information on within-field variations in vegetation health and distribution needed by farmers to effectively optimize crop production. In this study, a dense time series of images were acquired from the Earth Observing-1 (EO-1) Hyperion sensor over an intensive farming area in the center of Saudi Arabia. After correction for atmospheric effects, optimal links between carefully selected explanatory hyperspectral vegetation indices and target vegetation characteristics were established using a machine learning approach. A dataset of in-situ measured leaf chlorophyll (Chll) and leaf area index (LAI), collected during five intensive field campaigns over a variety of crop types, were used to train the rule-based predictive models. The ability of the narrow-band hyperspectral reflectance information to robustly assess and discriminate dynamics in foliar biochemistry and biomass through empirical relationships were investigated. This also involved evaluations of the generalization and reproducibility of the predictions beyond the conditions of the training dataset. The very high temporal resolution of the satellite retrievals constituted a specifically intriguing feature that facilitated detection of total canopy Chl and LAI dynamics down to sub-weekly intervals. The study advocates the benefits associated with the availability of optimum spectral and temporal resolution spaceborne observations for agricultural management purposes.

  20. Differences in the response of wheat, soybean and lettuce to reduced blue radiation

    NASA Technical Reports Server (NTRS)

    Dougher, T. A.; Bugbee, B.

    2001-01-01

    Although many fundamental blue light responses have been identified, blue light dose-response curves are not well characterized. We studied the growth and development of soybean, wheat and lettuce plants under high-pressure sodium (HPS) and metal halide (MH) lamps with yellow filters creating five fractions of blue light. The blue light fractions obtained were < 0.1, 2 and 6% under HPS lamps, and 6, 12 and 26% under MH lamps. Studies utilizing both lamp types were done at two photosynthetic photon flux levels, 200 and 500 mumol m-2 s-1 under a 16 h photoperiod. Phytochrome photoequilibria was nearly identical among treatments. The blue light effect on dry mass, stem length, leaf area, specific leaf area and tillering/branching was species dependent. For these parameters, wheat did not respond to blue light, but lettuce was highly sensitive to blue light fraction between 0 and 6% blue. Soybean stem length decreased and leaf area increased up to 6% blue, but total dry mass was unchanged. The blue light fraction determined the stem elongation response in soybean, whereas the absolute amount of blue light determined the stem elongation response in lettuce. The data indicate that lettuce growth and development requires blue light, but soybean and wheat may not.

  1. Detection of chlorophyll and leaf area index dynamics from sub-weekly hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Houborg, Rasmus; McCabe, Matthew F.; Angel, Yoseline; Middleton, Elizabeth M.

    2016-10-01

    Temporally rich hyperspectral time-series can provide unique time critical information on within-field variations in vegetation health and distribution needed by farmers to effectively optimize crop production. In this study, a dense timeseries of images were acquired from the Earth Observing-1 (EO-1) Hyperion sensor over an intensive farming area in the center of Saudi Arabia. After correction for atmospheric effects, optimal links between carefully selected explanatory hyperspectral vegetation indices and target vegetation characteristics were established using a machine learning approach. A dataset of in-situ measured leaf chlorophyll (Chll) and leaf area index (LAI), collected during five intensive field campaigns over a variety of crop types, were used to train the rule-based predictive models. The ability of the narrow-band hyperspectral reflectance information to robustly assess and discriminate dynamics in foliar biochemistry and biomass through empirical relationships were investigated. This also involved evaluations of the generalization and reproducibility of the predictions beyond the conditions of the training dataset. The very high temporal resolution of the satellite retrievals constituted a specifically intriguing feature that facilitated detection of total canopy Chl and LAI dynamics down to sub-weekly intervals. The study advocates the benefits associated with the availability of optimum spectral and temporal resolution spaceborne observations for agricultural management purposes.

  2. Growth synchrony between leaves and stems during twig development differs among plant functional types of subtropical rainforest woody species.

    PubMed

    Meng, Fengqun; Zhang, Guangfu; Li, Xincheng; Niklas, Karl J; Sun, Shucun

    2015-06-01

    During the development of woody twigs, the growth in leaf may or may not be proportional to the growth in stem. The presence or absence of a synchronicity between these two phenologies may reflect differences in life history adaptive strategies concerning carbon gain. We hypothesized that sun-adapted species are more likely to be less synchronous between growths in total leaf area (TLA) and stem length compared with shade-adapted species, with a bias in growth in stem length, and that shade-adapted species are more likely to be more synchronous between increases in individual leaf area (ILA) (leaf size) and leaf number (LN) during twig development compared with sun-adapted species, giving priority to growth of leaf size. We tested these two hypotheses by recording the phenologies of leaf emergence, leaf expansion and stem elongation during twig development for 19 evergreen woody species (including five shade-adapted understory species, six sun-adapted understory species and eight sun-adapted canopy species) in a subtropical evergreen broad-leaved forest in eastern China. We constructed indices to characterize the synchronicity between TLA and stem length (αLS) and between leaf size and leaf number (αSN) and we derived the α values from logistic functions taking the general form of A = A(max)/[1 + exp(β - αB)] (where A is the TLA or average ILA, B is the corresponding stem length or LN at a specific time, and A(max) is the maximum TLA or the maximum ILA of a twig; the higher the numerical value of α, the less synchronous the corresponding phenologies). Consistent with our hypotheses, sun-adapted species were higher both in α(LS) and α(SN), showing less synchronous patterns in the growths of TLA vs stem length and leaf size vs LN during twig development. Moreover, α(LS) and α(SN) were significantly positively correlated with relative growth rates of LN and leaf size across species, as indicated by both analyses of ordinary regression and phylogenetic generalized least squares. The across-species synchronies during twig development show that the temporal dynamics of the leaf size-twig size spectrum is of adaptive significance in plants. We suggest that temporal dynamics of plant functional traits should be extensively studied to characterize plant life history. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Spring leaf flush in aspen (Populus tremuloides) clones is altered by long-term growth at elevated carbon dioxide and elevated ozone concentration.

    PubMed

    McGrath, Justin M; Karnosky, David F; Ainsworth, Elizabeth A

    2010-04-01

    Early spring leaf out is important to the success of deciduous trees competing for light and space in dense forest plantation canopies. In this study, we investigated spring leaf flush and how long-term growth at elevated carbon dioxide concentration ([CO(2)]) and elevated ozone concentration ([O(3)]) altered leaf area index development in a closed Populus tremuloides (aspen) canopy. This work was done at the Aspen FACE experiment where aspen clones have been grown since 1997 in conditions simulating the [CO(2)] and [O(3)] predicted for approximately 2050. The responses of two clones were compared during the first month of spring leaf out when CO(2) fumigation had begun, but O(3) fumigation had not. Trees in elevated [CO(2)] plots showed a stimulation of leaf area index (36%), while trees in elevated [O(3)] plots had lower leaf area index (-20%). While individual leaf area was not significantly affected by elevated [CO(2)], the photosynthetic operating efficiency of aspen leaves was significantly improved (51%). There were no significant differences in the way that the two aspen clones responded to elevated [CO(2)]; however, the two clones responded differently to long-term growth at elevated [O(3)]. The O(3)-sensitive clone, 42E, had reduced individual leaf area when grown at elevated [O(3)] (-32%), while the tolerant clone, 216, had larger mature leaf area at elevated [O(3)] (46%). These results indicate a clear difference between the two clones in their long-term response to elevated [O(3)], which could affect competition between the clones, and result in altered genotypic composition in future atmospheric conditions. Published by Elsevier Ltd.

  4. Pectin Methylesterification Impacts the Relationship between Photosynthesis and Plant Growth1[OPEN

    PubMed Central

    Kim, Sang-Jin; Renna, Luciana; Brandizzi, Federica

    2016-01-01

    Photosynthesis occurs in mesophyll cells of specialized organs such as leaves. The rigid cell wall encapsulating photosynthetic cells controls the expansion and distribution of cells within photosynthetic tissues. The relationship between photosynthesis and plant growth is affected by leaf area. However, the underlying genetic mechanisms affecting carbon partitioning to different aspects of leaf growth are not known. To fill this gap, we analyzed Arabidopsis plants with altered levels of pectin methylesterification, which is known to modulate cell wall plasticity and plant growth. Pectin methylesterification levels were varied through manipulation of cotton Golgi-related (CGR) 2 or 3 genes encoding two functionally redundant pectin methyltransferases. Increased levels of methylesterification in a line over-expressing CGR2 (CGR2OX) resulted in highly expanded leaves with enhanced intercellular air spaces; reduced methylesterification in a mutant lacking both CGR-genes 2 and 3 (cgr2/3) resulted in thin but dense leaf mesophyll that limited CO2 diffusion to chloroplasts. Leaf, root, and plant dry weight were enhanced in CGR2OX but decreased in cgr2/3. Differences in growth between wild type and the CGR-mutants can be explained by carbon partitioning but not by variations in area-based photosynthesis. Therefore, photosynthesis drives growth through alterations in carbon partitioning to new leaf area growth and leaf mass per unit leaf area; however, CGR-mediated pectin methylesterification acts as a primary factor in this relationship through modulation of the expansion and positioning of the cells in leaves, which in turn drive carbon partitioning by generating dynamic carbon demands in leaf area growth and leaf mass per unit leaf area. PMID:27208234

  5. Pectin Methylesterification Impacts the Relationship between Photosynthesis and Plant Growth.

    PubMed

    M Weraduwage, Sarathi; Kim, Sang-Jin; Renna, Luciana; C Anozie, Fransisca; D Sharkey, Thomas; Brandizzi, Federica

    2016-06-01

    Photosynthesis occurs in mesophyll cells of specialized organs such as leaves. The rigid cell wall encapsulating photosynthetic cells controls the expansion and distribution of cells within photosynthetic tissues. The relationship between photosynthesis and plant growth is affected by leaf area. However, the underlying genetic mechanisms affecting carbon partitioning to different aspects of leaf growth are not known. To fill this gap, we analyzed Arabidopsis plants with altered levels of pectin methylesterification, which is known to modulate cell wall plasticity and plant growth. Pectin methylesterification levels were varied through manipulation of cotton Golgi-related (CGR) 2 or 3 genes encoding two functionally redundant pectin methyltransferases. Increased levels of methylesterification in a line over-expressing CGR2 (CGR2OX) resulted in highly expanded leaves with enhanced intercellular air spaces; reduced methylesterification in a mutant lacking both CGR-genes 2 and 3 (cgr2/3) resulted in thin but dense leaf mesophyll that limited CO2 diffusion to chloroplasts. Leaf, root, and plant dry weight were enhanced in CGR2OX but decreased in cgr2/3. Differences in growth between wild type and the CGR-mutants can be explained by carbon partitioning but not by variations in area-based photosynthesis. Therefore, photosynthesis drives growth through alterations in carbon partitioning to new leaf area growth and leaf mass per unit leaf area; however, CGR-mediated pectin methylesterification acts as a primary factor in this relationship through modulation of the expansion and positioning of the cells in leaves, which in turn drive carbon partitioning by generating dynamic carbon demands in leaf area growth and leaf mass per unit leaf area. © 2016 American Society of Plant Biologists. All Rights Reserved.

  6. Soil, Leaf and Root Ecological Stoichiometry of Caragana korshinskii on the Loess Plateau of China in Relation to Plantation Age

    PubMed Central

    Zeng, Quanchao; Lal, Rattan; Chen, Yanan; An, Shaoshan

    2017-01-01

    Caragana korshinskii, a leguminous shrub, a common specie, is widely planted to prevent soil erosion on the Loess Plateau. The objective of this study was to determine how the plantation ages affected soil, leaf and root nutrients and ecological stoichiometry. The chronosequence ages of C. korshinskii plantations selected for this study were 10, 20 and 30 years. Soil organic carbon (SOC) and soil total nitrogen (STN) of C. korshinskii plantations significantly increased with increase in the chronosequence age. However, soil total phosphorous (STP) was not affected by the chronosequence age. The soil C: N ratio decreased and the soil C: P and N: P ratios increased with increasing plantation age. The leaf and root concentrations of C, N, and P increased and the ratios C: N, C: P, and N: P decreased with age increase. Leaf N: P ratios were >20, indicating that P was the main factor limiting the growth of C. korshinskii. This study also demonstrated that the regeneration of natural grassland (NG) effectively preserved and enhanced soil nutrient contents. Compared with NG, shrub lands (C. korshinskii) had much lower soil nutrient concentrations, especially for long (>20 years) chronosequence age. Thus, the regeneration of natural grassland is an ecologically beneficial practice for the recovery of degraded soils in this area. PMID:28076357

  7. Oxygen radical absorbance capacity (ORAC) and phenolic and anthocyanin concentrations in fruit and leaf tissues of highbush blueberry.

    PubMed

    Ehlenfeldt, M K; Prior, R L

    2001-05-01

    Antioxidant capacity, as measured by oxygen radical absorbance capacity (ORAC), and total phenolic and total anthocyanin contents were evaluated in fruit tissues of 87 highbush blueberry (Vacciniumcorymbosum L.) and species-introgressed highbush blueberry cultivars. ORAC and phenolic levels were evaluated in leaf tissues of the same materials. Average values for ORAC, phenolics, and anthocyanins in fruit were 15.9 ORAC units, 1.79 mg/g (gallic acid equivalents), and 0.95 mg/g (cyanidin-3-glucoside equivalents), respectively. Cv. Rubel had the highest ORAC per gram of fresh weight values, at 31.1 units, and cv. Elliott had the highest values on the basis of ORAC per square centimeter of surface area. In leaf tissue, values for both ORAC and phenolics were significantly higher than in fruit tissue, with mean values of 490 ORAC units and 44.80 mg/g (gallic acid equivalents), respectively. Leaf ORAC had a low, but significant, correlation with fruit phenolics and anthocyanins, but not with fruit ORAC. An analysis of ORAC values versus calculated midparent values in 11 plants from the 87-cultivar group in which all parents were tested suggested that, across cultivars, ORAC inheritance is additive. An investigation of ORAC values in a family of 44 cv. Rubel x Duke seedlings showed negative epistasis for ORAC values, suggesting Rubel may have gene combinations contributing to ORAC that are broken up during hybridization.

  8. Does initial spacing influence crown and hydraulic architecture of Eucalyptus marginata?

    PubMed

    Grigg, A H; Macfarlane, C; Evangelista, C; Eamus, D; Adams, M A

    2008-05-01

    Long-term declines in rainfall in south-western Australia have resulted in increased interest in the hydraulic characteristics of jarrah (Eucalyptus marginata Donn ex Smith) forest established in the region's drinking water catchments on rehabilitated bauxite mining sites. We hypothesized that in jarrah forest established on rehabilitated mine sites: (1) leaf area index (L) is independent of initial tree spacing; and (2) more densely planted trees have less leaf area for the same leaf mass, or the same sapwood area, and have denser sapwood. Initial stand densities ranged from about 600 to 9000 stems ha(-1), and trees were 18 years old at the time of sampling. Leaf area index was unaffected by initial stand density, except in the most sparsely stocked stands where L was 1.2 compared with 2.0-2.5 in stands at other spacings. The ratio of leaf area to sapwood area (A(l):A(s)) was unaffected by tree spacing or tree size and was 0.2 at 1.3 m height and 0.25 at the crown base. There were small increases in sapwood density and decreases in leaf specific area with increased spacing. Tree diameter or basal area was a better predictor of leaf area than sapwood area. At the stand scale, basal area was a good predictor of L (r(2) = 0.98, n = 15) except in the densest stands. We conclude that the hydraulic attributes of this forest type are largely independent of initial tree spacing, thus simplifying parameterization of stand and catchment water balance models.

  9. Triazole induced drought tolerance in horse chestnut (Aesculus hippocastanum).

    PubMed

    Percival, Glynn C; Noviss, Kelly

    2008-11-01

    We determined the influence of the triazole derivatives paclobutrazol, penconazole, epixiconazole, propiconazole and myclobutanil on the drought tolerance and post drought recovery of container-grown horse chestnut (Aesculus hippocastanum L.) saplings. Myclobutanil neither conferred drought resistance, as assessed by its effects on a number of physiological and biochemical parameters, nor affected growth parameters measured after recovery from drought. Chlorophyll fluorescence (F(v)/F(m)), photosynthetic rates, total foliar chlorophyll and carotenoid concentrations, foliar proline concentration and superoxide dismutase and catalase activities were consistently higher and leaf necrosis and cellular electrolyte leakage was lower at the end of a 3-week drought in trees treated with paclobutrazol, penconazole, epixiconazole or propiconazole than in control trees. Twelve weeks after drought treatment, leaf area and shoot, root and total plant dry masses were greater in triazole-treated trees than in control trees with the exception of those treated with myclobutanil. In a separate study, trees were subjected to a 2-week drought and then sprayed with paclobutrazol, penconazole, epixiconazole, propiconazole or myclobutanil. Chlorophyll fluorescence, photosynthetic rate, foliar chlorophyll concentration and catalase activity over the following 12 weeks were 20 to 50% higher in triazole-treated trees than in control trees. At the end of the 12-week recovery period, leaf area and shoot, root and total plant dry masses were higher in triazole-treated trees than in control trees, with the exception of trees treated with myclobutanil. Application of triazole derivatives, with the exception of myclobutanil, enhanced tolerance to prolonged drought and, when applied after a 2-week drought, hastened recovery from drought. The magnitude of treatment effects was in the order epixiconazole approximately propiconazole > penconazole > paclobutrazol > myclobutanil.

  10. Rootstock influence on iron uptake responses in Citrus leaves and their regulation under the Fe paradox effect

    PubMed Central

    Quiñones, Ana; Bermejo, Almudena

    2017-01-01

    Background and aims This work evaluates the regulation of iron uptake responses in Citrus leaves and their involvement in the Fe paradox effect. Methods Experiments were performed in field-grown ‘Navelina’ trees grafted onto two Cleopatra mandarin × Poncirus trifoliata (L.) Raf. hybrids with different Fe-chlorosis symptoms: 030146 (non-chlorotic) and 030122 (chlorotic). Results Chlorotic leaves were smaller than non-chlorotic ones for both dry weight (DW) and area basis, and exhibited marked photosynthetic state affection, but reduced catalase and peroxidase enzymatic activities. Although both samples had a similar total Fe concentration on DW, it was lower in chlorotic leaves when expressed on an area basis. A similar pattern was observed for the total Fe concentration in the apoplast and cell sap and in active Fe (Fe2+) concentration. FRO2 gene expression and ferric chelate reductase (FC-R) activity were also lower in chlorotic samples, while HA1 and IRT1 were more induced. Despite similar apoplasmic pH, K+/Ca2+ was higher in chlorotic leaves, and both citrate and malate concentrations in total tissue and apoplast fluid were lower. Conclusion (1) The rootstock influences Fe acquisition system in the leaf; (2) the increased sensitivity to Fe-deficiency as revealed by chlorosis and decreased biomass, was correlated with lower FC-R activity and lower organic acid level in leaf cells, which could cause a decreased Fe mobility and trigger other Fe-stress responses in this organ to enhance acidification and Fe uptake inside cells; and (3) the chlorosis paradox phenomenon in citrus likely occurs as a combination of a marked FC-R activity impairment in the leaf and the strong growth inhibition in this organ. PMID:28966887

  11. Effects of illuminants and illumination time on lettuce growth, yield and nutritional quality in a controlled environment

    NASA Astrophysics Data System (ADS)

    Shen, Y. Z.; Guo, S. S.; Ai, W. D.; Tang, Y. K.

    2014-07-01

    Effects of illuminants and illumination time on the growth of lettuce were researched. Red-blue light-emitting diodes (LEDs, 90% red light +10% blue light) and white light fluorescent (WF) lamps were compared as the illuminants for plant cultivation. Under each type of illuminant, lettuce was grown at 4 illumination times: 12 h, 16 h, 20 h and 24 h, with the same light intensity of 600 μmolm-2s-1. The leaf net photosynthetic rate (Pn) under the two illuminants was comparable but the shape of lettuce was obviously affected by the illuminant. The WF lamps produced more compact plant, while red-blue LED resulted in less but longer leaves. However, the total leaf area was not significantly affected by the illuminant. The red-blue LED produced nearly same aboveground biomass with far less energy consumption relative to WF lamps. The underground biomass was lowered under red-blue LED in comparison with WF lamps. Red-blue LED could improve the nutritional quality of lettuce by increasing the concentration of soluble sugar and vitamin C (VC) and reducing the concentration of nitrate. Under each type of illuminant, longer illumination time resulted in higher Pn, more leaves and larger leaf area. The total chlorophyll concentration increased while the concentration ratio of chlorophyll a/b decreased with the extension of illumination time. Illumination time had highly significant positive correlation with biomass. Moreover, when total daily light input was kept the same, longer illumination time increased the biomass significantly as well. In addition, longer illumination time increased the concentration of crude fiber, soluble sugar and VC and reduced the concentration of nitrate. In summary, red-blue LEDs and 24 h illumination time were demonstrated to be more suitable for lettuce cultivation in the controlled environment.

  12. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups.

    PubMed

    Reich, Peter B; Walters, Michael B; Ellsworth, David S; Vose, James M; Volin, John C; Gresham, Charles; Bowman, William D

    1998-05-01

    Based on prior evidence of coordinated multiple leaf trait scaling, we hypothesized that variation among species in leaf dark respiration rate (R d ) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (A max ). However, it is not known whether such scaling, if it exists, is similar among disparate biomes and plant functional types. We tested this idea by examining the interspecific relationships between R d measured at a standard temperature and leaf life-span, N, SLA and A max for 69 species from four functional groups (forbs, broad-leafed trees and shrubs, and needle-leafed conifers) in six biomes traversing the Americas: alpine tundra/subalpine forest, Colorado; cold temperate forest/grassland, Wisconsin; cool temperate forest, North Carolina; desert/shrubland, New Mexico; subtropical forest, South Carolina; and tropical rain forest, Amazonas, Venezuela. Area-based R d was positively related to area-based leaf N within functional groups and for all species pooled, but not when comparing among species within any site. At all sites, mass-based R d (R d-mass ) decreased sharply with increasing leaf life-span and was positively related to SLA and mass-based A max and leaf N (leaf N mass ). These intra-biome relationships were similar in shape and slope among sites, where in each case we compared species belonging to different plant functional groups. Significant R d-mass -N mass relationships were observed in all functional groups (pooled across sites), but the relationships differed, with higher R d at any given leaf N in functional groups (such as forbs) with higher SLA and shorter leaf life-span. Regardless of biome or functional group, R d-mass was well predicted by all combinations of leaf life-span, N mass and/or SLA (r 2 ≥ 0.79, P < 0.0001). At any given SLA, R d-mass rises with increasing N mass and/or decreasing leaf life-span; and at any level of N mass , R d-mass rises with increasing SLA and/or decreasing leaf life-span. The relationships between R d and leaf traits observed in this study support the idea of a global set of predictable interrelationships between key leaf morphological, chemical and metabolic traits.

  13. Leaf Area Adjustment As an Optimal Drought-Adaptation Strategy

    NASA Astrophysics Data System (ADS)

    Manzoni, S.; Beyer, F.; Thompson, S. E.; Vico, G.; Weih, M.

    2014-12-01

    Leaf phenology plays a major role in land-atmosphere mass and energy exchanges. Much work has focused on phenological responses to light and temperature, but less to leaf area changes during dry periods. Because the duration of droughts is expected to increase under future climates in seasonally-dry as well as mesic environments, it is crucial to (i) predict drought-related phenological changes and (ii) to develop physiologically-sound models of leaf area dynamics during dry periods. Several optimization criteria have been proposed to model leaf area adjustment as soil moisture decreases. Some theories are based on the plant carbon (C) balance, hypothesizing that leaf area will decline when instantaneous net photosynthetic rates become negative (equivalent to maximization of cumulative C gain). Other theories draw on hydraulic principles, suggesting that leaf area should adjust to either maintain a constant leaf water potential (isohydric behavior) or to avoid leaf water potentials with negative impacts on photosynthesis (i.e., minimization of water stress). Evergreen leaf phenology is considered as a control case. Merging these theories into a unified framework, we quantify the effect of phenological strategy and climate forcing on the net C gain over the entire growing season. By accounting for the C costs of leaf flushing and the gains stemming from leaf photosynthesis, this metric assesses the effectiveness of different phenological strategies, under different climatic scenarios. Evergreen species are favored only when the dry period is relatively short, as they can exploit most of the growing season, and only incur leaf maintenance costs during the short dry period. In contrast, deciduous species that lower maintenance costs by losing leaves are advantaged under drier climates. Moreover, among drought-deciduous species, isohydric behavior leads to lowest C gains. Losing leaves gradually so as to maintain a net C uptake equal to zero during the driest period in the growing season provides the highest gain. Since these strategies are all defined based on often-modeled quantities, they can be implemented in ecosystem models depending on plant functional type and climate.

  14. Leaf density explains variation in leaf mass per area in rice between cultivars and nitrogen treatments.

    PubMed

    Xiong, Dongliang; Wang, Dan; Liu, Xi; Peng, Shaobing; Huang, Jianliang; Li, Yong

    2016-05-01

    Leaf mass per area (LMA) is an important leaf trait; however, correlations between LMA and leaf anatomical features and photosynthesis have not been fully investigated, especially in cereal crops. The objectives of this study were (a) to investigate the correlations between LMA and leaf anatomical traits; and (b) to clarify the response of LMA to nitrogen supply and its effect on photosynthetic nitrogen use efficiency (PNUE). In the present study, 11 rice varieties were pot grown under sufficient nitrogen (SN) conditions, and four selected rice cultivars were grown under low nitrogen (LN) conditions. Leaf anatomical traits, gas exchange and leaf N content were measured. There was large variation in LMA across selected rice varieties. Regression analysis showed that the variation in LMA was more closely related to leaf density (LD) than to leaf thickness (LT). LMA was positively related to the percentage of mesophyll tissue area (%mesophyll), negatively related to the percentage of epidermis tissue area (%epidermis) and unrelated to the percentage of vascular tissue area (%vascular). The response of LMA to N supplementation was dependent on the variety and was also mainly determined by the response of LD to N. Compared with SN, photosynthesis was significantly decreased under LN, while PNUE was increased. The increase in PNUE was more critical in rice cultivars with a higher LMA under SN supply. Leaf density is the major cause of the variation in LMA across rice varieties and N treatments, and an increase in LMA under high N conditions would aggravate the decrease in PNUE. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. A better way of representing stem area index in two-big-leaf models: the application and impact on canopy integration of leaf nitrogen content

    NASA Astrophysics Data System (ADS)

    Chen, M.; Butler, E. E.; Wythers, K. R.; Kattge, J.; Ricciuto, D. M.; Thornton, P. E.; Atkin, O. K.; Flores-Moreno, H.; Reich, P. B.

    2017-12-01

    In order to better estimate the carbon budget of the globe, accurately simulating gross primary productivity (GPP) in earth system models is critical. When upscaling leaf level photosynthesis to the canopy, climate models uses different big-leaf schemes. About half of the state-of-the-art earth system models use a "two-big-leaf" scheme that partitions canopies into direct and diffusively illuminated fractions to reduce high bias of GPP simulated by one-big-leaf models. Some two-big-leaf models, such as ACME (identical in this respect to CLM 4.5) add leaf area index (LAI) and stem area index (SAI) together when calculating canopy radiation transfer. This treatment, however, will result in higher fraction of sunlit leaves. It will also lead to an artificial overestimation of canopy nitrogen content. Here we introduce a new algorithm of simulating SAI in a two-big-leaf model. The new algorithm reduced the sunlit leave fraction of the canopy and conserved the nitrogen content from leaf to canopy level. The lower fraction of sunlit leaves reduced global GPP especially in tropical area. Compared to the default model, for the past 100 years (1909-2009), the averaged global annual GPP is lowered by 4.11 PgC year-1 using this new algorithm.

  16. Strategies of leaf expansion in Ficus carica under semiarid conditions.

    PubMed

    González-Rodríguez, A M; Peters, J

    2010-05-01

    Leaf area expansion, thickness and inclination, gas exchange parameters and relative chlorophyll content were analysed in field-grown fig (Ficus carica L.) leaves over time, from emergence until after full leaf expansion (FLE). Ficus carica leaves showed a subtle change in shape during the early stages of development, and FLE was reached within ca. 30 days after emergence. Changes in leaf thickness and inclination after FLE demonstrated good adaptation to environmental conditions during summer in areas with a Mediterranean climate. Changes in gas exchange parameters and relative chlorophyll content showed that F. carica is a delayed-greening species, reaching maximum values 20 days after FLE. Correlation analysis of datasets collected during leaf expansion, confirmed dependence among structural and functional traits in F. carica. Pn was directly correlated with stomatal conductance (Gs), transpiration (E), leaf area (LA) and relative chlorophyll content up to FLE. The effect of pruning on leaf expansion, a cultural technique commonly applied in this fruit tree, was also evaluated. Although leaf development in pruned branches gave a significantly higher relative leaf area growth rate (RGR(l)) and higher LA than non-pruned branches, no significant differences were found in other morphological and physiological traits, indicating no pruning effect on leaf development. All studied morphological and physiological characteristics indicate that F. carica is well adapted to semiarid conditions. The delayed greening strategy of this species is discussed.

  17. The relationship between leaf rolling and ascorbate-glutathione cycle enzymes in apoplastic and symplastic areas of Ctenanthe setosa subjected to drought stress.

    PubMed

    Saruhan, Neslihan; Terzi, Rabiye; Saglam, Aykut; Kadioglu, Asim

    2009-01-01

    The ascorbate-glutathione (ASC-GSH) cycle has an important role in defensive processes against oxidative damage generated by drought stress. In this study, the changes that take place in apoplastic and symplastic ASC-GSH cycle enzymes of the leaf and petiole were investigated under drought stress causing leaf rolling in Ctenanthe setosa (Rose.) Eichler (Marantaceae). Apoplastic and symplastic extractions of leaf and petiole were performed at different visual leaf rolling scores from 1 to 4 (1 is unrolled, 4 is tightly rolled and the others are intermediate forms). Glutathione reductase (GR), a key enzyme in the GSH regeneration cycle, and ascorbate (ASC) were present in apoplastic spaces of the leaf and petiole, whereas dehydroascorbate reductase (DHAR), which uses glutathione as reductant, monodehydroascorbate reductase (MDHAR), which uses NAD(P)H as reductant, and glutathione were absent. GR, DHAR and MDHAR activities increased in the symplastic and apoplastic areas of the leaf. Apoplastic and symplastic ASC and dehydroascorbate (DHA), the oxidized form of ascorbate, rose at all scores except score 4 of symplastic ASC in the leaf. On the other hand, while reduced glutathione (GSH) content was enhanced, oxidized glutathione (GSSG) content decreased in the leaf during rolling. As for the petiole, GR activity increased in the apoplastic area but decreased in the symplastic area. DHAR and MDHAR activities increased throughout all scores, but decreased to the score 1 level at score 4. The ASC content of the apoplast increased during leaf rolling. Conversely, symplastic ASC content increased at score 2, however decreased at the later scores. While the apoplastic DHA content declined, symplastic DHA rose at score 2, but later was down to the level of score 1. While GSH content enhanced during leaf rolling, GSSG content did not change except at score 2. As well, there were good correlations between leaf rolling and ASC-GSH cycle enzyme activities in the leaf (GR and DHAR) and leaf rolling and GSSG. These results showed that in apoplastic and symplastic areas, ASC-GSH cycle enzymes leading ROS detoxification may have a role in controlling leaf rolling.

  18. Growth response of Douglas-fir seedlings to nitrogen fertilization: importance of Rubisco activation state and respiration rates.

    PubMed

    Manter, Daniel K; Kavanagh, Kathleen L; Rose, Cathy L

    2005-08-01

    High foliar nitrogen concentration ([N]) is associated with high rates of photosynthesis and thus high tree productivity; however, at excessive [N], tree productivity is reduced. Reports of excessive [N] in the Douglas-fir forests of the Oregon Coast Range prompted this investigation of growth and needle physiological responses to increasing foliar N concentrations in 1-year-old Douglas-fir seedlings. After 1 year of N fertilization, total seedling biomass increased with each successive increase in N fertilizer concentration, except in the highest N fertilization treatment. Of the many physiological responses that were analyzed, only photosynthetic capacity (i.e., Vcmax), respiration rates and leaf specific conductance (KL) differed significantly between N treatments. Photosynthetic capacity showed a curvilinear relationship with foliar [N], reaching an apparent maximum rate when needle N concentrations exceeded about 12 mg g(-1). In vitro measurements of ribulose-1,5-bisphosphate carboxylase (Rubisco) activity suggested that photosynthetic capacity was best related to activated, not total, Rubisco content. Rubisco activation state declined as foliar [N] increased, and based on its significant correlation (r2= 0.63) with foliar Mn:Mg ratios, it may be related to Mn inactivation of Rubisco. Respiration rates increased linearly as foliar N concentration increased (r2= 0.84). The value of K(L) also increased as foliar [N] increased, reaching a maximum when foliar [N] exceeded about 10 mg g(-1). Changes in K(L) were unrelated to changes in leaf area or sapwood area because leaf area to sapwood area ratios remained constant. Cumulative effects of the observed physiological responses to N fertilization were analyzed by modeling annual net CO2 assimilation (Anet) based on treatment specific values of Vcmax, dark respiration (Rdark) and KL. Estimates of Anet were highly correlated with measured total seedling biomass (r2= 0.992), suggesting that long-term, cumulative effects of maximum Rubisco carboxylation, Rdark and KL responses to N fertilization may limit seedling production when foliar N exceeds about 13 mg g(-1) or is reduced to less than about 11 mg g(-1).

  19. Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula

    PubMed Central

    Ibrahim, Mohamed A.; Mäenpää, Maarit; Hassinen, Viivi; Kontunen-Soppela, Sari; Malec, Lukáš; Rousi, Matti; Pietikäinen, Liisa; Tervahauta, Arja; Kärenlampi, Sirpa; Holopainen, Jarmo K.; Oksanen, Elina J.

    2010-01-01

    Volatile organic compounds (VOCs) are expected to have an important role in plant adaptation to high temperatures. The impacts of increasing night-time temperature on daytime terpenoid emissions and related gene expression in silver birch (Betula pendula) and European aspen (Populus tremula) clones were studied. The plants were grown under five different night-time temperatures (6, 10, 14, 18, and 22 °C) while daytime temperature was kept at a constant 22 °C. VOC emissions were collected during the daytime and analysed by gas chromatography–mass spectrometry (GC-MS). In birch, emissions per leaf area of the C11 homoterpene 4,8-dimethy1-nona-1,3,7-triene (DMNT) and several sesquiterpenes were consistently increased with increasing night-time temperature. Total sesquiterpene (SQT) emissions showed an increase at higher temperatures. In aspen, emissions of DMNT and β-ocimene increased from 6 °C to 14 °C, while several other monoterpenes and the SQTs (Z,E)-α-farnesene and (E,E)-α-farnesene increased up to 18 °C. Total monoterpene and sesquiterpene emission peaked at 18 °C, whereas isoprene emissions decreased at 22 °C. Leaf area increased across the temperature range of 6–22 °C by 32% in birch and by 59% in aspen. Specific leaf area (SLA) was also increased in both species. The genetic regulation of VOC emissions seems to be very complex, as indicated by several inverse relationships between emission profiles and expression of several regulatory genes (DXR, DXS, and IPP). The study indicates that increasing night temperature may strongly affect the quantity and quality of daytime VOC emissions of northern deciduous trees. PMID:20181662

  20. A model using marginal efficiency of investment to analyze carbon and nitrogen interactions in terrestrial ecosystems (ACONITE Version 1)

    NASA Astrophysics Data System (ADS)

    Thomas, R. Q.; Williams, M.

    2014-09-01

    Carbon (C) and nitrogen (N) cycles are coupled in terrestrial ecosystems through multiple processes including photosynthesis, tissue allocation, respiration, N fixation, N uptake, and decomposition of litter and soil organic matter. Capturing the constraint of N on terrestrial C uptake and storage has been a focus of the Earth System Modeling community. However, there is little understanding of the trade-offs and sensitivities of allocating C and N to different tissues in order to optimize the productivity of plants. Here we describe a new, simple model of ecosystem C-N cycling and interactions (ACONITE), that builds on theory related to plant economics in order to predict key ecosystem properties (leaf area index, leaf C : N, N fixation, and plant C use efficiency) based on the outcome of assessments of the marginal change in net C or N uptake associated with a change in allocation of C or N to plant tissues. We simulated and evaluated steady-state ecosystem stocks and fluxes in three different forest ecosystems types (tropical evergreen, temperate deciduous, and temperate evergreen). Leaf C : N differed among the three ecosystem types (temperate deciduous < tropical evergreen < temperature evergreen), a result that compared well to observations from a global database describing plant traits. Gross primary productivity (GPP) and net primary productivity (NPP) estimates compared well to observed fluxes at the simulation sites. Simulated N fixation at steady-state, calculated based on relative demand for N and the marginal return on C investment to acquire N, was an order of magnitude higher in the tropical forest than in the temperate forest, consistent with observations. A sensitivity analysis revealed that parameterization of the relationship between leaf N and leaf respiration had the largest influence on leaf area index and leaf C : N. A parameter governing how photosynthesis scales with day length had the largest influence on total vegetation C, GPP, and NPP. Multiple parameters associated with photosynthesis, respiration, and N uptake influenced the rate of N fixation. Overall, our ability to constrain leaf area index and allow spatially and temporally variable leaf C : N can help address challenges simulating these properties in ecosystem and Earth System models. Furthermore, the simple approach with emergent properties based on coupled C-N dynamics has potential for use in research that uses data-assimilation methods to integrate data on both the C and N cycles to improve C flux forecasts.

  1. Leaf traits in parental and hybrid species of Sorbus (Rosaceae).

    PubMed

    Durkovic, Jaroslav; Kardosová, Monika; Canová, Ingrid; Lagana, Rastislav; Priwitzer, Tibor; Chorvát, Dusan; Cicák, Alojz; Pichler, Viliam

    2012-09-01

    Knowledge of functional leaf traits can provide important insights into the processes structuring plant communities. In the genus Sorbus, the generation of taxonomic novelty through reticulate evolution that gives rise to new microspecies is believed to be driven primarily by a series of interspecific hybridizations among closely related taxa. We tested hypotheses for dispersion of intermediacy across the leaf traits in Sorbus hybrids and for trait linkages with leaf area and specific leaf area. Here, we measured and compared the whole complex of growth, vascular, and ecophysiological leaf traits among parental (Sorbus aria, Sorbus aucuparia, Sorbus chamaemespilus) and natural hybrid (Sorbus montisalpae, Sorbus zuzanae) species growing under field conditions. A recently developed atomic force microscopy technique, PeakForce quantitative nanomechanical mapping, was used to characterize the topography of cell wall surfaces of tracheary elements and to map the reduced Young's modulus of elasticity. Intermediacy was associated predominantly with leaf growth traits, whereas vascular and ecophysiological traits were mainly parental-like and transgressive phenotypes. Larger-leaf species tended to have lower modulus of elasticity values for midrib tracheary element cell walls. Leaves with a biomass investment related to a higher specific leaf area had a lower density. Leaf area- and length-normalized theoretical hydraulic conductivity was related to leaf thickness. For the whole complex of examined leaf traits, hybrid microspecies were mosaics of parental-like, intermediate, and transgressive phenotypes. The high proportion of transgressive character expressions found in Sorbus hybrids implies that generation of extreme traits through transgressive segregation played a key role in the speciation process.

  2. The influence of elevated CO2 on non-structural carbohydrate distribution and fructan accumulation in wheat canopies

    NASA Technical Reports Server (NTRS)

    Smart, D. R.; Chatterton, N. J.; Bugbee, B.

    1994-01-01

    We grew 2.4 m2 wheat canopies in a large growth chamber under high photosynthetic photon flux (1000 micromoles m-2 s-1) and using two CO2 concentrations, 360 and 1200 micromoles mol-1. Photosynthetically active radiation (400-700 nm) was attenuated slightly faster through canopies grown in 360 micromoles mol-1 than through canopies grown in 1200 micromoles mol-1, even though high-CO2 canopies attained larger leaf area indices. Tissue fractions were sampled from each 5-cm layer of the canopies. Leaf tissue sampled from the tops of canopies grown in 1200 micromoles mol-1 accumulated significantly more total non-structural carbohydrate, starch, fructan, sucrose, and glucose (p < 0.05) than for canopies grown in 360 micromoles mol-1. Non-structural carbohydrate did not significantly increase in the lower canopy layers of the elevated CO2 treatment. Elevated CO2 induced fructan synthesis in all leaf tissue fractions, but fructan formation was greatest in the uppermost leaf area. A moderate temperature reduction of 10 degrees C over 5 d increased starch, fructan and glucose levels in canopies grown in 1200 micromoles mol-1, but concentrations of sucrose and fructose decreased slightly or remained unchanged. Those results may correspond with the use of fructosyl-residues and release of glucose when sucrose is consumed in fructan synthesis.

  3. Interacting Effects of Leaf Water Potential and Biomass on Vegetation Optical Depth

    NASA Astrophysics Data System (ADS)

    Momen, Mostafa; Wood, Jeffrey D.; Novick, Kimberly A.; Pangle, Robert; Pockman, William T.; McDowell, Nate G.; Konings, Alexandra G.

    2017-11-01

    Remotely sensed microwave observations of vegetation optical depth (VOD) have been widely used for examining vegetation responses to climate. Nevertheless, the relative impacts of phenological changes in leaf biomass and water stress on VOD have not been explicitly disentangled. In particular, determining whether leaf water potential (ψL) affects VOD may allow these data sets as a constraint for plant hydraulic models. Here we test the sensitivity of VOD to variations in ψL and present a conceptual framework that relates VOD to ψL and total biomass including leaves, whose dynamics are measured through leaf area index, and woody components. We used measurements of ψL from three sites across the US—a mixed deciduous forests in Indiana and Missouri and a piñon-juniper woodland in New Mexico—to validate the conceptual model. The temporal dynamics of X-band VOD were similar to those of the VOD signal estimated from the new conceptual model with observed ψL (R2 = 0.6-0.8). At the global scale, accounting for a combination of biomass and estimated ψL (based on satellite surface soil moisture data) increased correlations with VOD by 15% and 30% compared to biomass and water potential, respectively. In wetter regions with denser and taller canopy heights, VOD has a higher correlation with leaf area index than with water stress and vice versa in drier regions. Our results demonstrate that variations in both phenology and ψL must be considered to accurately interpret the dynamics of VOD observations for ecological applications.

  4. Effect of Tamarindus indica leaf powder on plasma concentrations of copper, zinc, and iron in fluorotic cows

    PubMed Central

    Samal, Pinaki; Patra, R. C.; Gupta, A. R.; Mishra, S. K.; Jena, D.; Satapathy, D.

    2016-01-01

    Aim: The main objective of the study was to determine the deleterious effect of fluoride on plasma trace minerals of fluorotic cattle and to evaluate the effect of Tamarindus indica leaf powder toward correction of the same. Materials and Methods: A total of 30 cattle exhibiting chronic sign of fluorosis and 10 healthy cattle from nonfluorotic area were incorporated in this study. Fluorotic cattle were divided into three equal groups consisting of 10 cattle each. Group I from fluoride free area served as healthy control. The Group II received no treatment and served as disease control. Groups III and IV were supplemented with tamarind leaf powder at 15 g and 30 g/day with feed for 60 days. Plasma mineral status was evaluated after 60 days of treatment with double beam atomic absorption spectrophotometer. Results: Statistical analysis of data revealed a significant (p<0.05) decrease in mean plasma copper (Cu) (0.344±0.007 ppm), zinc (Zn) (0.692±0.06 ppm), and iron (Fe) concentration (1.100±0.01 ppm) in fluorotic cattle in comparison to healthy cattle (0.58±0.010, 2.342±0.04, 1.406±0.04 ppm, respectively). Significant (p<0.05) increase in Cu, Zn, and Fe was recorded after supplementation of tamarind leaf powder to the fluorotic cattle. Conclusion: It was concluded that fluorotic cattle might be supplemented with T. indica leaf powder with feed for the correction of the decreased level of certain plasma minerals. PMID:27847422

  5. Differences in Leaf Flammability, Leaf Traits and Flammability-Trait Relationships between Native and Exotic Plant Species of Dry Sclerophyll Forest

    PubMed Central

    Murray, Brad R.; Hardstaff, Lyndle K.; Phillips, Megan L.

    2013-01-01

    The flammability of plant leaves influences the spread of fire through vegetation. Exotic plants invading native vegetation may increase the spread of bushfires if their leaves are more flammable than native leaves. We compared fresh-leaf and dry-leaf flammability (time to ignition) between 52 native and 27 exotic plant species inhabiting dry sclerophyll forest. We found that mean time to ignition was significantly faster in dry exotic leaves than in dry native leaves. There was no significant native-exotic difference in mean time to ignition for fresh leaves. The significantly higher fresh-leaf water content that was found in exotics, lost in the conversion from a fresh to dry state, suggests that leaf water provides an important buffering effect that leads to equivalent mean time to ignition in fresh exotic and native leaves. Exotic leaves were also significantly wider, longer and broader in area with significantly higher specific leaf area–but not thicker–than native leaves. We examined scaling relationships between leaf flammability and leaf size (leaf width, length, area, specific leaf area and thickness). While exotics occupied the comparatively larger and more flammable end of the leaf size-flammability spectrum in general, leaf flammability was significantly correlated with all measures of leaf size except leaf thickness in both native and exotic species such that larger leaves were faster to ignite. Our findings for increased flammability linked with larger leaf size in exotics demonstrate that exotic plant species have the potential to increase the spread of bushfires in dry sclerophyll forest. PMID:24260169

  6. Evaluation of four methods for estimating leaf area of isolated trees

    Treesearch

    P.J. Peper; E.G. McPherson

    2003-01-01

    The accurate modeling of the physiological and functional processes of urban forests requires information on the leaf area of urban tree species. Several non-destructive, indirect leaf area sampling methods have shown good performance for homogenous canopies. These methods have not been evaluated for use in urban settings where trees are typically isolated and...

  7. ESTIMATION OF LEAF AREA INDEX IN OPEN-CANOPY PONDEROSA PINE FORESTS AT DIFFERENT SUCCESSIONAL STAGES AND MANAGEMENT REGIMES IN OREGON. (R828309)

    EPA Science Inventory

    Abstract

    Leaf area and its spatial distribution are key parameters in describing canopy characteristics. They determine radiation regimes and influence mass and energy exchange with the atmosphere. The evaluation of leaf area in conifer stands is particularly challengi...

  8. A Comparison of Simulated and Field-Derived Leaf Area Index (LAI) and Canopy Height Values from Four Forest Complexes in the Southeastern USA

    EPA Science Inventory

    Vegetative leaf area is a critical input to models that simulate human and ecosystem exposure to atmospheric pollutants. Leaf area index (LAI) can be measured in the field or numerically simulated, but all contain some inherent uncertainty that is passed to the exposure assessmen...

  9. Rapid determination of leaf area and plant height by using light curtain arrays in four species with contrasting shoot architecture.

    PubMed

    Fanourakis, Dimitrios; Briese, Christoph; Max, Johannes Fj; Kleinen, Silke; Putz, Alexander; Fiorani, Fabio; Ulbrich, Andreas; Schurr, Ulrich

    2014-04-11

    Light curtain arrays (LC), a recently introduced phenotyping method, yield a binary data matrix from which a shoot silhouette is reconstructed. We addressed the accuracy and applicability of LC in assessing leaf area and maximum height (base to the highest leaf tip) in a phenotyping platform. LC were integrated to an automated routine for positioning, allowing in situ measurements. Two dicotyledonous (rapeseed, tomato) and two monocotyledonous (maize, barley) species with contrasting shoot architecture were investigated. To evaluate if averaging multiple view angles helps in resolving self-overlaps, we acquired a data set by rotating plants every 10° for 170°. To test how rapid these measurements can be without loss of information, we evaluated nine scanning speeds. Leaf area of overlapping plants was also estimated to assess the possibility to scale this method for plant stands. The relation between measured and calculated maximum height was linear and nearly the same for all species. Linear relations were also found between plant leaf area and calculated pixel area. However, the regression slope was different between monocotyledonous and dicotyledonous species. Increasing the scanning speed stepwise from 0.9 to 23.4 m s-1 did not affect the estimation of maximum height. Instead, the calculated pixel area was inversely proportional to scanning speed. The estimation of plant leaf area by means of calculated pixel area became more accurate by averaging consecutive silhouettes and/or increasing the angle between them. Simulations showed that decreasing plant distance gradually from 20 to 0 cm, led to underestimation of plant leaf area owing to overlaps. This underestimation was more important for large plants of dicotyledonous species and for small plants of monocotyledonous ones. LC offer an accurate estimation of plant leaf area and maximum height, while the number of consecutive silhouettes that needs to be averaged is species-dependent. A constant scanning speed is important for leaf area estimations by using LC. Simulations of the effect of varying plant spacing gave promising results for method application in sets of partly overlapping plants, which applies also to field conditions during and after canopy closure for crops sown in rows.

  10. Sapwood area ofPinus contorta stands as a function of mean size and density.

    PubMed

    Long, James N; Dean, Thomas J

    1986-09-01

    An indirect test of the relationship between leaf area and the combination of mean size and density is made in stands of lodgepole pine (Pinus contorta Dougl.). Total sapwood cross-sectional area of these stands is a function of the product of density and mean diameter raised to an exponent of about 1.6. Results from other studies, representing four species, suggest that this relationship between sapwood area and the combination of mean size and density may be general. The implications of the relationship are discussed in the context of evapotranspiration, competition and self-thinning.

  11. Coupled carbon-water exchange of the Amazon rain forest, I. Model description, parameterization and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Simon, E.; Meixner, F. X.; Ganzeveld, L.; Kesselmeier, J.

    2005-04-01

    Detailed one-dimensional multilayer biosphere-atmosphere models, also referred to as CANVEG models, are used for more than a decade to describe coupled water-carbon exchange between the terrestrial vegetation and the lower atmosphere. Within the present study, a modified CANVEG scheme is described. A generic parameterization and characterization of biophysical properties of Amazon rain forest canopies is inferred using available field measurements of canopy structure, in-canopy profiles of horizontal wind speed and radiation, canopy albedo, soil heat flux and soil respiration, photosynthetic capacity and leaf nitrogen as well as leaf level enclosure measurements made on sunlit and shaded branches of several Amazonian tree species during the wet and dry season. The sensitivity of calculated canopy energy and CO2 fluxes to the uncertainty of individual parameter values is assessed. In the companion paper, the predicted seasonal exchange of energy, CO2, ozone and isoprene is compared to observations.

    A bi-modal distribution of leaf area density with a total leaf area index of 6 is inferred from several observations in Amazonia. Predicted light attenuation within the canopy agrees reasonably well with observations made at different field sites. A comparison of predicted and observed canopy albedo shows a high model sensitivity to the leaf optical parameters for near-infrared short-wave radiation (NIR). The predictions agree much better with observations when the leaf reflectance and transmission coefficients for NIR are reduced by 25-40%. Available vertical distributions of photosynthetic capacity and leaf nitrogen concentration suggest a low but significant light acclimation of the rain forest canopy that scales nearly linearly with accumulated leaf area.

    Evaluation of the biochemical leaf model, using the enclosure measurements, showed that recommended parameter values describing the photosynthetic light response, have to be optimized. Otherwise, predicted net assimilation is overestimated by 30-50%. Two stomatal models have been tested, which apply a well established semi-empirical relationship between stomatal conductance and net assimilation. Both models differ in the way they describe the influence of humidity on stomatal response. However, they show a very similar performance within the range of observed environmental conditions. The agreement between predicted and observed stomatal conductance rates is reasonable. In general, the leaf level data suggests seasonal physiological changes, which can be reproduced reasonably well by assuming increased stomatal conductance rates during the wet season, and decreased assimilation rates during the dry season.

    The sensitivity of the predicted canopy fluxes of energy and CO2 to the parameterization of canopy structure, the leaf optical parameters, and the scaling of photosynthetic parameters is relatively low (1-12%), with respect to parameter uncertainty. In contrast, modifying leaf model parameters within their uncertainty range results in much larger changes of the predicted canopy net fluxes (5-35%).

  12. Coupled carbon-water exchange of the Amazon rain forest, I. Model description, parameterization and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Simon, E.; Meixner, F. X.; Ganzeveld, L.; Kesselmeier, J.

    2005-09-01

    Detailed one-dimensional multilayer biosphere-atmosphere models, also referred to as CANVEG models, are used for more than a decade to describe coupled water-carbon exchange between the terrestrial vegetation and the lower atmosphere. Within the present study, a modified CANVEG scheme is described. A generic parameterization and characterization of biophysical properties of Amazon rain forest canopies is inferred using available field measurements of canopy structure, in-canopy profiles of horizontal wind speed and radiation, canopy albedo, soil heat flux and soil respiration, photosynthetic capacity and leaf nitrogen as well as leaf level enclosure measurements made on sunlit and shaded branches of several Amazonian tree species during the wet and dry season. The sensitivity of calculated canopy energy and CO2 fluxes to the uncertainty of individual parameter values is assessed. In the companion paper, the predicted seasonal exchange of energy, CO2, ozone and isoprene is compared to observations.

    A bi-modal distribution of leaf area density with a total leaf area index of 6 is inferred from several observations in Amazonia. Predicted light attenuation within the canopy agrees reasonably well with observations made at different field sites. A comparison of predicted and observed canopy albedo shows a high model sensitivity to the leaf optical parameters for near-infrared short-wave radiation (NIR). The predictions agree much better with observations when the leaf reflectance and transmission coefficients for NIR are reduced by 25-40%. Available vertical distributions of photosynthetic capacity and leaf nitrogen concentration suggest a low but significant light acclimation of the rain forest canopy that scales nearly linearly with accumulated leaf area.

    Evaluation of the biochemical leaf model, using the enclosure measurements, showed that recommended parameter values describing the photosynthetic light response, have to be optimized. Otherwise, predicted net assimilation is overestimated by 30-50%. Two stomatal models have been tested, which apply a well established semi-empirical relationship between stomatal conductance and net assimilation. Both models differ in the way they describe the influence of humidity on stomatal response. However, they show a very similar performance within the range of observed environmental conditions. The agreement between predicted and observed stomatal conductance rates is reasonable. In general, the leaf level data suggests seasonal physiological changes, which can be reproduced reasonably well by assuming increased stomatal conductance rates during the wet season, and decreased assimilation rates during the dry season.

    The sensitivity of the predicted canopy fluxes of energy and CO2 to the parameterization of canopy structure, the leaf optical parameters, and the scaling of photosynthetic parameters is relatively low (1-12%), with respect to parameter uncertainty. In contrast, modifying leaf model parameters within their uncertainty range results in much larger changes of the predicted canopy net fluxes (5-35%).

  13. Molecular, Physiological and Biochemical Responses of Theobroma cacao L. Genotypes to Soil Water Deficit

    PubMed Central

    dos Santos, Ivanildes C.; de Almeida, Alex-Alan Furtado; Anhert, Dário; da Conceição, Alessandro S.; Pirovani, Carlos P.; Pires, José L.; Valle, Raúl René; Baligar, Virupax C.

    2014-01-01

    Six months-old seminal plants of 36 cacao genotypes grown under greenhouse conditions were subjected to two soil water regimes (control and drought) to assess, the effects of water deficit on growth, chemical composition and oxidative stress. In the control, soil moisture was maintained near field capacity with leaf water potentials (ΨWL) ranging from −0.1 to −0.5 MPa. In the drought treatment, the soil moisture was reduced gradually by withholding additional water until ΨWL reached values of between −2.0 to −2.5 MPa. The tolerant genotypes PS-1319, MO-20 and MA-15 recorded significant increases in guaiacol peroxidase activity reflecting a more efficient antioxidant metabolism. In relation to drought tolerance, the most important variables in the distinguishing contrasting groups were: total leaf area per plant; leaf, stem and total dry biomass; relative growth rate; plant shoot biomass and leaf content of N, Ca, and Mg. From the results of these analyses, six genotypes were selected with contrasting characteristics for tolerance to soil water deficit [CC-40, C. SUL-4 and SIC-2 (non-tolerant) and MA-15, MO-20, and PA-13 (tolerant)] for further assessment of the expression of genes NCED5, PP2C, psbA and psbO to water deficit. Increased expression of NCED5, PP2C, psbA and psbO genes were found for non-tolerant genotypes, while in the majority of tolerant genotypes there was repression of these genes, with the exception of PA-13 that showed an increased expression of psbA. Mutivariate analysis showed that growth variables, leaf and total dry biomass, relative growth rate as well as Mg content of the leaves were the most important factor in the classification of the genotypes as tolerant, moderately tolerant and sensitive to water deficit. Therefore these variables are reliable plant traits in the selection of plants tolerant to drought. PMID:25541723

  14. Molecular, physiological and biochemical responses of Theobroma cacao L. genotypes to soil water deficit.

    PubMed

    Santos, Ivanildes C Dos; Almeida, Alex-Alan Furtado de; Anhert, Dário; Conceição, Alessandro S da; Pirovani, Carlos P; Pires, José L; Valle, Raúl René; Baligar, Virupax C

    2014-01-01

    Six months-old seminal plants of 36 cacao genotypes grown under greenhouse conditions were subjected to two soil water regimes (control and drought) to assess, the effects of water deficit on growth, chemical composition and oxidative stress. In the control, soil moisture was maintained near field capacity with leaf water potentials (ΨWL) ranging from -0.1 to -0.5 MPa. In the drought treatment, the soil moisture was reduced gradually by withholding additional water until ΨWL reached values of between -2.0 to -2.5 MPa. The tolerant genotypes PS-1319, MO-20 and MA-15 recorded significant increases in guaiacol peroxidase activity reflecting a more efficient antioxidant metabolism. In relation to drought tolerance, the most important variables in the distinguishing contrasting groups were: total leaf area per plant; leaf, stem and total dry biomass; relative growth rate; plant shoot biomass and leaf content of N, Ca, and Mg. From the results of these analyses, six genotypes were selected with contrasting characteristics for tolerance to soil water deficit [CC-40, C. SUL-4 and SIC-2 (non-tolerant) and MA-15, MO-20, and PA-13 (tolerant)] for further assessment of the expression of genes NCED5, PP2C, psbA and psbO to water deficit. Increased expression of NCED5, PP2C, psbA and psbO genes were found for non-tolerant genotypes, while in the majority of tolerant genotypes there was repression of these genes, with the exception of PA-13 that showed an increased expression of psbA. Mutivariate analysis showed that growth variables, leaf and total dry biomass, relative growth rate as well as Mg content of the leaves were the most important factor in the classification of the genotypes as tolerant, moderately tolerant and sensitive to water deficit. Therefore these variables are reliable plant traits in the selection of plants tolerant to drought.

  15. Genome-Wide Association Mapping of Leaf Rust Response in a Durum Wheat Worldwide Germplasm Collection.

    PubMed

    Aoun, Meriem; Breiland, Matthew; Kathryn Turner, M; Loladze, Alexander; Chao, Shiaoman; Xu, Steven S; Ammar, Karim; Anderson, James A; Kolmer, James A; Acevedo, Maricelis

    2016-11-01

    Leaf rust (caused by Erikss. []) is increasingly impacting durum wheat ( L. var. ) production with the recent appearance of races with virulence to widely grown cultivars in many durum producing areas worldwide. A highly virulent race on durum wheat was recently detected in Kansas. This race may spread to the northern Great Plains, where most of the US durum wheat is produced. The objective of this study was to identify sources of resistance to several races from the United States and Mexico at seedling stage in the greenhouse and at adult stage in field experiments. Genome-wide association study (GWAS) was used to identify single-nucleotide polymorphism (SNP) markers associated with leaf rust response in a worldwide durum wheat collection of 496 accessions. Thirteen accessions were resistant across all experiments. Association mapping revealed 88 significant SNPs associated with leaf rust response. Of these, 33 SNPs were located on chromosomes 2A and 2B, and 55 SNPs were distributed across all other chromosomes except for 1B and 7B. Twenty markers were associated with leaf rust response at seedling stage, while 68 markers were associated with leaf rust response at adult plant stage. The current study identified a total of 14 previously uncharacterized loci associated with leaf rust response in durum wheat. The discovery of these loci through association mapping (AM) is a significant step in identifying useful sources of resistance that can be used to broaden the relatively narrow leaf rust resistance spectrum in durum wheat germplasm. Copyright © 2016 Crop Science Society of America.

  16. Soybean canopy reflectance as influenced by cultural practices. [West Lafayette, Indiana

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Kollenkark, J. C.; Daughtry, C. S. T.

    1981-01-01

    Experiments were conducted at West Lafayette, Indiana in 1978 and 1979 to study the reflectance factor of soybean canopies as affected by differences in row width, population, planting date, cultivar and soil type. Reflectance factor data were acquired throughout the growing season with a LANDSAT-band radiometer. Agronomic data included plant height, leaf area index, development stage, total fresh and dry biomass, percent soil cover, and grain yield. The results indicate that row width, planting date, and cultivar influence the percent soil cover, leaf area index, and biomass present, which are in turn related to the multispectral reflectance. Additionally, the reflectance data were quite sensitive to the onset of senescence. Soil color and moisture were found to be important factors influencing the reflectance in single LANDSAT bands, but the near infrared/red reflectance ratio and the greeness transformation were less sensitive than the single bands to the soil background present.

  17. Decision-making in plants under competition.

    PubMed

    Gruntman, Michal; Groß, Dorothee; Májeková, Maria; Tielbörger, Katja

    2017-12-21

    Plants can plastically respond to light competition in three strategies, comprising vertical growth, which promotes competitive dominance; shade tolerance, which maximises performance under shade; or lateral growth, which offers avoidance of competition. Here, we test the hypothesis that plants can 'choose' between these responses, according to their abilities to competitively overcome their neighbours. We study this hypothesis in the clonal plant Potentilla reptans using an experimental setup that simulates both the height and density of neighbours, thus presenting plants with different light-competition scenarios. Potentilla reptans ramets exhibit the highest vertical growth under simulated short-dense neighbours, highest specific leaf area (leaf area/dry mass) under tall-dense neighbours, and tend to increase total stolon length under tall-sparse neighbours. These responses suggest shifts between 'confrontational' vertical growth, shade tolerance and lateral-avoidance, respectively, and provide evidence that plants adopt one of several alternative plastic responses in a way that optimally corresponds to prevailing light-competition scenarios.

  18. The response of ecosystem carbon fluxes to LAI and environmental drivers in a maize crop grown in two contrasting seasons.

    PubMed

    Vitale, Luca; Di Tommasi, Paul; D'Urso, Guido; Magliulo, Vincenzo

    2016-03-01

    The eddy correlation technique was used to investigate the influence of biophysical variables and crop phenological phases on the behaviour of ecosystem carbon fluxes of a maize crop, in two contrasting growing seasons. In 2009, the reduced water supply during the early growing stage limited leaf area expansion, thus negatively affecting canopy photosynthesis. The variability of gross primary production (GPP) and ecosystem respiration (R eco) was mainly explained by seasonal variation of leaf area index (LAI). The seasonal variation of R eco was positively influenced by soil temperatures (T soil) in 2008 but not in 2009. In 2008, a contribution of both autotrophic and heterotrophic components to total R eco could be hypothesized, while during 2009, autotrophic respiration is supposed to be the most important component. Crop phenological phases affected the response of ecosystem fluxes to biophysical drivers.

  19. Long-Term Effects of Red- and Blue-Light Emitting Diodes on Leaf Anatomy and Photosynthetic Efficiency of Three Ornamental Pot Plants

    PubMed Central

    Zheng, Liang; Van Labeke, Marie-Christine

    2017-01-01

    Light quality critically affects plant development and growth. Development of light-emitting diodes (LEDs) enables the use of narrow band red and/or blue wavelengths as supplementary lighting in ornamental production. Yet, long periods under these wavelengths will affect leaf morphology and physiology. Leaf anatomy, stomatal traits, and stomatal conductance, leaf hydraulic conductance (Kleaf), and photosynthetic efficiency were investigated in three ornamental pot plants, namely Cordyline australis (monocot), Ficus benjamina (dicot, evergreen leaves), and Sinningia speciosa (dicot, deciduous leaves) after 8 weeks under LED light. Four light treatments were applied at 100 μmol m−2 s−1 and a photoperiod of 16 h using 100% red (R), 100% blue (B), 75% red with 25% blue (RB), and full spectrum white light (W), respectively. B and RB resulted in a greater maximum quantum yield (Fv/Fm) and quantum efficiency (ΦPSII) in all species compared to R and W and this correlated with a lower biomass under R. B increased the stomatal conductance compared with R. This increase was linked to an increasing stomatal index and/or stomatal density but the stomatal aperture area was unaffected by the applied light quality. Leaf hydraulic conductance (Kleaf) was not significantly affected by the applied light qualities. Blue light increased the leaf thickness of F. benjamina, and a relative higher increase in palisade parenchyma was observed. Also in S. speciosa, increase in palisade parenchyma was found under B and RB, though total leaf thickness was not affected. Palisade parenchyma tissue thickness was correlated to the leaf photosynthetic quantum efficiency (ΦPSII). In conclusion, the role of blue light addition in the spectrum is essential for the normal anatomical leaf development which also impacts the photosynthetic efficiency in the three studied species. PMID:28611818

  20. Net primary production and phenology on a southern Appalachian watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, F.P. Jr.; Monk, C.D.

    1977-01-01

    Net primary production (NPP) is an important function of plant communities which has not often been examined seasonally in a forested ecosystem. The major objective of the study was to measure above-ground NPP seasonally and relate it to phenological activity on a hardwood forest watershed at Coweeta Hydrologic Laboratory, North Carolina. NPP was estimated as the increase in biomass, estimated from regression equations on diameter. Diameter increases were measured by venier tree bands. Phenological observations were made on bud break, leaf emergence, flowering, mature fruit, leaf senescence, and leaf fall. The species studied intensively were Acer rubrum, Quercus prinus, Caryamore » glabra, Cornus florida, and Liriodendron tulipifera. Liriodendron was found to be the most productive species per individual, but Quercus prinus was the most productive per unit ground area. The total watershed estimate of aboveground NPP was 8,754 kg ha/sup -1/yr/sup -1/ and included 47.9 percent leaves, 33.2 percent wood, 7.8 percent bark, 4.8 percent reproductive tissues, 4.2 percent loss to consumers, and 2.1 percent twigs. Increases in leaf biomass were most rapid in the spring, but woody tissue production peaked in June and continued through August. Since leaf production peaked in the spring, the plants' photosynthetic machinery was activated early in the growing season to support woody tissue production, which followed the period of rapid leaf growth, and reproductive activity. Flowering occurred during the leaf expansion period except for Acer rubrum, which flowered before leaf emergence. Fruit maturation occurred during late summer to early fall, when there were no additional biomass increases. Acer rubrum was an exception as its fruit matured during the period of leaf expansion.« less

  1. Net primary production and phenology on a southern Appalachian watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, F.P. Jr.; Monk, C.D.

    1977-10-01

    Net primary production (NPP) is an important function of plant communities which has not often been examined seasonally in a forested ecosystem. The major objective of the study was to measure above-ground NPP seasonally and relate it to phenological activity on a hardwood forest watershed at Coweeta Hydrologic Laboratory, North Carolina. NPP was estimated as the increase in biomass, estimated from regression equations on diameter. Diameter increases were measured by vernier tree bands. Phenological observations were made on bud break, leaf emergence, flowering, mature fruit, leaf senescence, and leaf fall. The species studied intensively were Acer rubrum, Quercus prinus, Caryamore » glabra, Cornus florida, and Liriodendron tulipifera. Liriodendron was found to be the most productive species per individual, but Quercus prinus was the most productive per unit ground area. The total watershed estimate of aboveground NPP was 8,754 kg ha/sup -1/ yr/sup -1/ and included 47.9% leaves, 33.2% wood, 7.8% bark, 4.8% reproductive tissues, 4.2% loss to consumers, and 2.1% twigs. Increases in leaf biomass were most rapid in the spring, but woody tissue production peaked in June and continued through August. Since leaf production peaked in the spring, the plants' photosynthetic machinery was activated early in the growing season to support woody tissue production, which followed the period of rapid leaf growth, and reproductive activity. Flowering ocurred during the leaf expansion period except for Acer rubrum, which flowered before leaf emergence. Fruit maturation occurred during late summer to early fall, when there were no additional biomass increases. Acer rubrum was an exception as its fruit matured during the period of leaf expansion.« less

  2. Interannual Variation in Stand Transpiration is Dependent Upon Tree Species

    NASA Astrophysics Data System (ADS)

    Ewers, B. E.; Mackay, D. S.; Burrows, S. N.; Ahl, D. E.; Samanta, S.

    2003-12-01

    In order to successfully predict transpirational water fluxes from forested watersheds, interannual variability in transpiration must be quantified and understood. In a heterogeneous forested landscape in northern Wisconsin, we quantified stand transpiration across four forest cover types representing more than 80 percent of the land area in order to 1) quantify differences in stand transpiration and leaf area over two years and 2) determine the mechanisms governing the changes in transpiration over two years. We measured sap flux in eight trees of each tree species in the four cover types. We found that in northern hardwoods, the leaf area of sugar maple increased between the two measurement years with transpiration per unit ground area increasing even more than could be explained by leaf area. In an aspen stand, tent caterpillars completely defoliated the stand for approximately a month until a new set of leaves flushed out. The new set of leaves resulted in a lower leaf area but the same transpiration per unit leaf area indicating there was no physiological compensation for the lower leaf area. At the same time, balsam fir growing underneath the aspen increased their transpiration rate in response to greater light penetration through the dominant aspen canopy Red pine had a thirty percent change in leaf area within a growing season due to multiple cohorts of leaves and transpiration followed this leaf area dynamic. In a forested wetland, white cedar transpiration was proportional to surface water depth between the two years. Despite the specific tree species' effects on stand transpiration, all species displayed a minimum water potential regulation resulting in a saturating response of transpiration to vapor pressure deficit that did not vary across the two years. This physiological set point will allow future water flux models to explain mechanistically interannual variability in transpiration of this and similar forests.

  3. The bias of a 2D view: Comparing 2D and 3D mesophyll surface area estimates using non-invasive imaging

    USDA-ARS?s Scientific Manuscript database

    The surface area of the leaf mesophyll exposed to intercellular airspace per leaf area (Sm) is closely associated with CO2 diffusion and photosynthetic rates. Sm is typically estimated from two-dimensional (2D) leaf sections and corrected for the three-dimensional (3D) geometry of mesophyll cells, l...

  4. Plant community diversity influences allocation to direct chemical defence in Plantago lanceolata.

    PubMed

    Mraja, Anne; Unsicker, Sybille B; Reichelt, Michael; Gershenzon, Jonathan; Roscher, Christiane

    2011-01-01

    Forecasting the consequences of accelerating rates of changes in biodiversity for ecosystem functioning requires a mechanistic understanding of the relationships between the structure of biological communities and variation in plant functional characteristics. So far, experimental data of how plant species diversity influences the investment of individual plants in direct chemical defences against herbivores and pathogens is lacking. We used Plantago lanceolata as a model species in experimental grasslands differing in species richness and composition (Jena Experiment) to investigate foliar concentrations of the iridoid glycosides (IG), catalpol and its biosynthetic precursor aucubin. Total IG and aucubin concentrations decreased, while catalpol concentrations increased with increasing plant diversity in terms of species or functional group richness. Negative plant diversity effects on total IG and aucubin concentrations correlated with increasing specific leaf area of P. lanceolata, suggesting that greater allocation to light acquisition reduced the investment into these carbon-based defence components. In contrast, increasing leaf nitrogen concentrations best explained increasing concentrations of the biosynthetically more advanced IG, catalpol. Observed levels of leaf damage explained a significant proportion of variation in total IG and aucubin concentrations, but did not account for variance in catalpol concentrations. Our results clearly show that plants growing in communities of varying species richness and composition differ in their defensive chemistry, which may modulate plant susceptibility to enemy attack and consequently their interactions with higher trophic level organisms.

  5. Potassium uptake and redistribution in Cabernet Sauvignon and Syrah grape tissues and its relationship with grape quality parameters.

    PubMed

    Ramos, María Concepción; Romero, María Paz

    2017-08-01

    The present study investigated the potassium (K) levels in petiole and other grape tissues during ripening in Vitis vinifera Shiraz and Cabernet Sauvignon, grown in areas with differences in vigour, as well as with and without leaf thinning. Potassium levels in petiole, seeds, skin and flesh were related to grape pH, acidity, berry weight and total soluble solids. Differences in K levels in petiole were in accordance with the differences in soil K. Leaf thinning gave rise to higher K levels in petiole but, in grape tissues, the differences were not significant in all samplings, with greater differences at the end of the growing cycle. Potassium levels per berry in grape tissues increased from veraison to harvest, with K mainly accumulated in skins and, to a lesser extent, in flesh. Potassium levels in flesh positively correlated with pH and total soluble solids, whereas the correlation with titratable acidity was negative. Grape juice pH and total soluble solids positively correlated with K, whereas titratable acidity correlated negatively. Leaf thinning increased K levels in petiole, although differences in K levels in grape tissues were not significant. This suggests the need to consider the K berry concentration when aiming to optimise K fertilisation programmes. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. The effects of different UV-B radiation intensities on morphological and biochemical characteristics in Ocimum basilicum L.

    PubMed

    Sakalauskaitė, Jurga; Viskelis, Pranas; Dambrauskienė, Edita; Sakalauskienė, Sandra; Samuolienė, Giedrė; Brazaitytė, Aušra; Duchovskis, Pavelas; Urbonavičienė, Dalia

    2013-04-01

    The effects of short-term ultraviolet B (UV-B) irradiation on sweet basil (Ocimum basilicum L. cv. Cinnamon) plants at the 3-4 leaf pair and flowering stages were examined in controlled environment growth chambers. Plants were exposed to 0 (reference), 2 and 4 kJ UV-B m(-2) day(-1) over 7 days. Exposure of basil plants to supplementary UV-B light resulted in increased assimilating leaf area, fresh biomass and dry biomass. Stimulation of physiological functions in young basil plants under either applied UV-B dose resulted in increased total chlorophyll content but no marked variation in carotenoid content. At the flowering stage the chlorophyll and carotenoid contents of basil were affected by supplementary UV-B radiation, decreasing with enhanced UV-B exposure. Both total antioxidant activity (2,2-diphenyl-1-picrylhydrazyl free radical assay) and total phenolic compound content were increased by UV-B light supplementation. Young and mature basil plants differed in their ascorbic acid content, which was dependent on UV-B dose and plant age. UV-B radiation resulted in decreased nitrate content in young basil plants (3-4 leaf pair stage). These results indicate that the application of short-exposure UV-B radiation beneficially influenced both growth parameters and biochemical constituents in young and mature basil plants. © 2012 Society of Chemical Industry.

  7. Effects of grazing on leaf traits and ecosystem functioning in Inner Mongolia grasslands: scaling from species to community

    NASA Astrophysics Data System (ADS)

    Zheng, S. X.; Ren, H. Y.; Lan, Z. C.; Li, W. H.; Wang, K. B.; Bai, Y. F.

    2010-03-01

    Understanding the mechanistic links between environmental drivers, human disturbance, plant functional traits, and ecosystem properties is a fundamental aspect of biodiversity-ecosystem functioning research. Recent studies have focused mostly on leaf-level traits or community-level weighted traits to predict species responses to grazing and the consequent change in ecosystem functioning. However, studies of leaf-level traits or community-level weighted traits seldom identify the mechanisms linking grazing impact on leaf traits to ecosystem functioning. Here, using a multi-organization-level approach, we examined the effects of grazing on leaf traits (i.e., leaf area, leaf dry mass and specific leaf area) and ecosystem functioning across six communities of three vegetation types along a soil moisture gradient in the Xilin River Basin of Inner Mongolia grassland, China. Our results showed that the effects of grazing on leaf traits differed substantially when scaling up from leaf-level to species, functional group (i.e., life forms and water ecotype types), and community levels; and they also varied with vegetation type or site conditions. The effects of grazing on leaf traits diminished progressively along the hierarchy of organizational levels in the meadow, whereas the impacts were predominantly negative and the magnitude of the effects increased considerably at higher organizational levels in the typical steppe. Soil water and nutrient availability, functional trade-offs between leaf size and number of leaves per individual, and differentiation in avoidance and tolerance strategies among coexisting species are likely to be responsible for the observed responses of leaf traits to grazing at different levels of organization and among vegetation types. Our findings also demonstrate that, at both the functional group and community levels, standing aboveground biomass increased with leaf area and specific leaf area. Compared with the large changes in leaf traits and standing aboveground biomass, the soil properties were relatively unaffected by grazing. Our study indicates that a multi-organization-level approach provides more robust and comprehensive predictions of the effects of grazing on leaf traits and ecosystem functioning.

  8. Leaf Area Influence on Surface Layer in a Deciduous Forest. Part 2; Detecting Leaf Area and Surface Resistance During Transition Seasons

    NASA Technical Reports Server (NTRS)

    Sakai, Ricardo K.; Fitzjarrald, David R.; Moore, Kathleen E.; Sicker, John W.; Munger, Willian J.; Goulden, Michael L.; Wofsy, Steven C.

    1996-01-01

    Temperate deciduous forest exhibit dramatic seasonal changes in surface exchange properties following on the seasonal changes in leaf area index. The canopy resistance to water vapor transport r(sub c) decreased abruptly at leaf emergence in each year but then also continued to decrease slowly during the remaining growing season due to slowly increasing LAI. Canopy resistance and PAR-albedo (albedo from photosynthetically active radiation) began to increase about one month before leaf fall with the diminishment of CO2 gradient above the canopy as well. At this time evaporation begun to be controlled as if the canopy were leafless.

  9. Evaluation and interpretation of Thematic Mapper ratios in equations for estimating corn growth parameters

    NASA Technical Reports Server (NTRS)

    Dardner, B. R.; Blad, B. L.; Thompson, D. R.; Henderson, K. E.

    1985-01-01

    Reflectance and agronomic Thematic Mapper (TM) data were analyzed to determine possible data transformations for evaluating several plant parameters of corn. Three transformation forms were used: the ratio of two TM bands, logarithms of two-band ratios, and normalized differences of two bands. Normalized differences and logarithms of two-band ratios responsed similarly in the equations for estimating the plant growth parameters evaluated in this study. Two-term equations were required to obtain the maximum predictability of percent ground cover, canopy moisture content, and total wet phytomass. Standard error of estimate values were 15-26 percent lower for two-term estimates of these parameters than for one-term estimates. The terms log(TM4/TM2) and (TM4/TM5) produced the maximum predictability for leaf area and dry green leaf weight, respectively. The middle infrared bands TM5 and TM7 are essential for maximizing predictability for all measured plant parameters except leaf area index. The estimating models were evaluated over bare soil to discriminate between equations which are statistically similar. Qualitative interpretations of the resulting prediction equations are consistent with general agronomic and remote sensing theory.

  10. Mapping evapotranspiration based on remote sensing: An application to Canada's landmass

    NASA Astrophysics Data System (ADS)

    Liu, J.; Chen, J. M.; Cihlar, J.

    2003-07-01

    The evapotranspiration (ET) from all Canadian landmass in 1996 is estimated at daily steps and 1 km resolution using a process model named boreal ecosystem productivity simulator (BEPS). The model is driven by remotely sensed leaf area index and land cover maps as well as soil water holding capacity and daily meteorological data. All the major ET components are considered: transpiration from vegetation, evaporation of canopy-intercepted rainfall, evaporation from soil, sublimation of snow in winter and in permafrost and glacier areas, and sublimation of canopy-intercepted snow. In forested areas the transpiration from both the overstory and understory vegetation is modeled separately. The Penman-Monteith method was applied to sunlit and shaded leaf groups individually in modeling the canopy-level transpiration, a methodological improvement necessary for forest canopies with considerable foliage clumping. The modeled ET map displays pronounced east-west and north-south gradients as well as detailed variations with cover types and vegetation density. It is estimated that for a relative wet year of 1996, the total ET from all Canada's landmass (excluding inland waters) was 2037 km3. If compared with the total precipitation of 5351 km3 based on the data from a medium range meteorological forecast model, the ratio of ET to precipitation was 38%. The ET averaged over Canadian land surface was 228 mm/yr in 1996, partitioned into transpiration of 102 mm yr-1 and evaporation and sublimation of 126 mm yr-1. Forested areas contributed the largest fraction of the total national ET at 59%. Averaged for all cover types, transpiration accounted for 45% of the total ET, while in forested areas, transpiration contributed 51% of ET. Modeled results of daily ET are compared with eddy covariance measurements at three forested sites with a r2 value of 0.61 and a root mean square error of 0.7 mm/day.

  11. Quantifying the Spatial Distribution of Evapotranspiration over Canada With a Process Model Using Remote Sensing, Meteorological, and Soil Data

    NASA Astrophysics Data System (ADS)

    Liu, J.; Chen, J.; Cihlar, J.

    2004-12-01

    The evapotranspiration (ET) from all Canadian landmass is estimated at daily steps and 1 km resolution using a process model named Boreal Ecosystem Productivity Simulator (BEPS). The model is driven by remotely sensed leaf area index and land cover maps, as well as soil water holding capacity and daily meteorological data. All the major ET components are considered: transpiration from vegetation, evaporation of canopy-intercepted rainfall, evaporation from soil, sublimation of snow in winter and in permafrost and glacier areas, and sublimation of canopy-intercepted snow. In forested areas, the transpiration from both the overstory and understory vegetation is modelled separately. The Penman-Monteith method was applied to sunlit and shaded leaf groups individually in modelling the canopy-level transpiration, a methodological improvement necessary for forest canopies with considerable foliage clumping. The modelled ET map displays pronounced east-west and north-south gradients as well as detailed variations with cover types and vegetation density. It is estimated that, for a relative wet year of 1996, the total ET from all Canada's landmass (excluding inland waters) was 2037 km3. If compared with the total precipitation of 5351 km3 based on the data from a medium range meteorological forecast model, the ratio of ET to precipitation was 38 %. The ET averaged over Canadian land surface was 228 mm/yr in 1996, partitioned into transpiration of 102 mm/yr and evaporation and sublimation of 126 mm/yr. Forested areas contributed the largest fraction of the total national ET at 59 %. Averaged for all cover types, transpiration accounted for 45 % of the total ET, while in forested areas, transpiration was contributed 51 % of ET. Modelled results of daily ET are compared with eddy covariance measurements at three forested sites with a r2 value of 0.61 and a root mean square error of 0.7 mm/day.

  12. Investigating the European beech (Fagus sylvatica L.) leaf characteristics along the vertical canopy profile: leaf structure, photosynthetic capacity, light energy dissipation and photoprotection mechanisms.

    PubMed

    Scartazza, Andrea; Di Baccio, Daniela; Bertolotto, Pierangelo; Gavrichkova, Olga; Matteucci, Giorgio

    2016-09-01

    Forest functionality and productivity are directly related to canopy light interception and can be affected by potential damage from high irradiance. However, the mechanisms by which leaves adapt to the variable light environments along the multilayer canopy profile are still poorly known. We explored the leaf morphophysiological and metabolic responses to the natural light gradient in a pure European beech (Fagus sylvatica L.) forest at three different canopy heights (top, middle and bottom). Structural adjustment through light-dependent modifications in leaf mass per area was the reason for most of the variations in photosynthetic capacity. The different leaf morphology along the canopy influenced nitrogen (N) partitioning, water- and photosynthetic N-use efficiency, chlorophyll (Chl) fluorescence and quali-quantitative contents of photosynthetic pigments. The Chl a to Chl b ratio and the pool of xanthophyll-cycle pigments (VAZ) increased at the highest irradiance, as well as lutein and β-carotene. The total pool of ascorbate and phenols was higher in leaves of the top and middle canopy layers when compared with the bottom layer, where the ascorbate peroxidase was relatively more activated. The non-photochemical quenching was strongly and positively related to the VAZ/(Chl a + b) ratio, while Chl a/Chl b was related to the photochemical efficiency of photosystem II. Along the multilayer canopy profile, the high energy dissipation capacity of leaves was correlated to an elevated redox potential of antioxidants. The middle layer gave the most relevant contribution to leaf area index and carboxylation capacity of the canopy. In conclusion, a complex interplay among structural, physiological and biochemical traits drives the dynamic leaf acclimation to the natural gradients of variable light environments along the tree canopy profile. The relevant differences observed in leaf traits within the canopy positions of the beech forest should be considered for improving estimation of carbon fluxes in multilayer canopy models of temperate forests. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Chemical and mechanical changes during leaf expansion of four woody species of dry Restinga woodland.

    PubMed

    Schlindwein, C C D; Fett-Neto, A G; Dillenburg, L R

    2006-07-01

    Young leaves are preferential targets for herbivores, and plants have developed different strategies to protect them. This study aimed to evaluate different leaf attributes of presumed relevance in protection against herbivory in four woody species (Erythroxylum argentinum, Lithrea brasiliensis, Myrciaria cuspidata, and Myrsine umbellata), growing in a dry restinga woodland in southern Brazil. Evaluation of leaf parameters was made through single-point sampling of leaves (leaf mass per area and leaf contents of nitrogen, carbon, and pigments) at three developmental stages and through time-course sampling of expanding leaves (area and strength). Leaves of M. umbellata showed the highest leaf mass per area (LMA), the largest area, and the longest expansion period. On the other extreme, Myrc. cuspidata had the smallest LMA and leaf size, and the shortest expansion period. Similarly to L. brasiliensis, it displayed red young leaves. None of the species showed delayed-greening, which might be related to the high-irradiance growth conditions. Nitrogen contents reduced with leaf maturity and reached the highest values in the young leaves of E. argentinum and Myrc. cuspidata and the lowest in M. umbellata. Each species seems to present a different set of protective attributes during leaf expansion. Myrciaria cuspidata appears to rely mostly on chemical defences to protect its soft leaves, and anthocyanins might play this role at leaf youth, while M. umbellata seems to invest more on mechanical defences, even at early stages of leaf growth, as well as on a low allocation of nitrogen to the leaves. The other species display intermediate characteristics.

  14. Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees.

    PubMed

    Kenzo, Tanaka; Inoue, Yuta; Yoshimura, Mitsunori; Yamashita, Megumi; Tanaka-Oda, Ayumi; Ichie, Tomoaki

    2015-01-01

    Knowledge of variations in morphophysiological leaf traits with forest height is essential for quantifying carbon and water fluxes from forest ecosystems. Here, we examined changes in leaf traits with forest height in diverse tree species and their role in environmental acclimation in a tropical rain forest in Borneo that does not experience dry spells. Height-related changes in leaf physiological and morphological traits [e.g., maximum photosynthetic rate (Amax), stomatal conductance (gs), dark respiration rate (Rd), carbon isotope ratio (δ(13)C), nitrogen (N) content, and leaf mass per area (LMA)] from understory to emergent trees were investigated in 104 species in 29 families. We found that many leaf area-based physiological traits (e.g., A(max-area), Rd, gs), N, δ(13)C, and LMA increased linearly with tree height, while leaf mass-based physiological traits (e.g., A(max-mass)) only increased slightly. These patterns differed from other biomes such as temperate and tropical dry forests, where trees usually show decreased photosynthetic capacity (e.g., A(max-area), A(max-mass)) with height. Increases in photosynthetic capacity, LMA, and δ(13)C are favored under bright and dry upper canopy conditions with higher photosynthetic productivity and drought tolerance, whereas lower R d and LMA may improve shade tolerance in lower canopy trees. Rapid recovery of leaf midday water potential to theoretical gravity potential during the night supports the idea that the majority of trees do not suffer from strong drought stress. Overall, leaf area-based photosynthetic traits were associated with tree height and the degree of leaf drought stress, even in diverse tropical rain forest trees.

  15. Large seasonal swings in leaf area of Amazon rainforests

    PubMed Central

    Myneni, Ranga B.; Yang, Wenze; Nemani, Ramakrishna R.; Huete, Alfredo R.; Dickinson, Robert E.; Knyazikhin, Yuri; Didan, Kamel; Fu, Rong; Negrón Juárez, Robinson I.; Saatchi, Sasan S.; Hashimoto, Hirofumi; Ichii, Kazuhito; Shabanov, Nikolay V.; Tan, Bin; Ratana, Piyachat; Privette, Jeffrey L.; Morisette, Jeffrey T.; Vermote, Eric F.; Roy, David P.; Wolfe, Robert E.; Friedl, Mark A.; Running, Steven W.; Votava, Petr; El-Saleous, Nazmi; Devadiga, Sadashiva; Su, Yin; Salomonson, Vincent V.

    2007-01-01

    Despite early speculation to the contrary, all tropical forests studied to date display seasonal variations in the presence of new leaves, flowers, and fruits. Past studies were focused on the timing of phenological events and their cues but not on the accompanying changes in leaf area that regulate vegetation–atmosphere exchanges of energy, momentum, and mass. Here we report, from analysis of 5 years of recent satellite data, seasonal swings in green leaf area of ≈25% in a majority of the Amazon rainforests. This seasonal cycle is timed to the seasonality of solar radiation in a manner that is suggestive of anticipatory and opportunistic patterns of net leaf flushing during the early to mid part of the light-rich dry season and net leaf abscission during the cloudy wet season. These seasonal swings in leaf area may be critical to initiation of the transition from dry to wet season, seasonal carbon balance between photosynthetic gains and respiratory losses, and litterfall nutrient cycling in moist tropical forests. PMID:17360360

  16. Can biomass responses to warming at plant to ecosystem levels be predicted by leaf-level responses?

    NASA Astrophysics Data System (ADS)

    Xia, J.; Shao, J.; Zhou, X.; Yan, W.; Lu, M.

    2015-12-01

    Global warming has the profound impacts on terrestrial C processes from leaf to ecosystem scales, potentially feeding back to climate dynamics. Although numerous studies had investigated the effects of warming on C processes from leaf to plant and ecosystem levels, how leaf-level responses to warming scale up to biomass responses at plant, population, and community levels are largely unknown. In this study, we compiled a dataset from 468 papers at 300 experimental sites and synthesized the warming effects on leaf-level parameters, and plant, population and ecosystem biomass. Our results showed that responses of plant biomass to warming mainly resulted from the changed leaf area rather than the altered photosynthetic capacity. The response of ecosystem biomass to warming was weaker than those of leaf area and plant biomass. However, the scaling functions from responses of leaf area to plant biomass to warming were different in diverse forest types, but functions were similar in non-forested biomes. In addition, it is challenging to scale the biomass responses from plant up to ecosystem. These results indicated that leaf area might be the appropriate index for plant biomass response to warming, and the interspecific competition might hamper the scaling of the warming effects on plant and ecosystem levels, suggesting that the acclimation capacity of plant community should be incorporated into land surface models to improve the prediction of climate-C cycle feedback.

  17. Nitrogen fixation is not the only trait that determines the success of tropical legumes during secondary succession

    NASA Astrophysics Data System (ADS)

    Gei, Maria G.; Powers, Jennifer S.

    2017-04-01

    Legumes trees are well represented throughout the entire precipitation gradient of tropical forests. Many of these species are able to fix atmospheric dinitrogen through symbiosis and offer a mechanism to overcome nitrogen limitation typical of initial stages of secondary forest succession. While it is often assumed the success of legumes is linked to their fixation ability, the variation of other functional traits within this large group has received considerably less attention. Here we assessed legume abundance in secondary forest plots in 42 Neotropical chronosequences (the 2ndFOR network) that span a broad gradient of precipitation regimes and identified those traits that are favored in distinct successional environments. Our main finding is that in young secondary dry forests (5-20 years), legumes that have the potential to fix nitrogen and have small leaflet size become exceptionally abundant (up to 17-99% relative basal area). We suggest that in those species, reduced leaf area could help regulate leaf temperature and minimize water loss, and the cost of reduced total leaf area may be compensated by high photosynthetic rates maximized with nitrogen obtained through fixation. Overall, our study underscores great functional heterogeneity within tropical legumes, which likely translates into diverse biogeochemical cycles. In addition, these results provide a useful framework for active restoration of degraded areas, as it identifies a group of species that accumulate carbon at fast rates under warm and dry environments, conditions that are expected to become more common in the tropics.

  18. Variation in contents of total phenolics and flavonoids and antioxidant activities in the leaves of 11 Eriobotrya species.

    PubMed

    Hong, Yanping; Lin, Shunquan; Jiang, Yueming; Ashraf, Muhammad

    2008-12-01

    Eriobotrya plants are known to have significant amounts of phenolics and flavonoids, and exhibit a strong antioxidant activity. Experiments were conducted to examine variation in the contents of total phenolics and flavonoids, and antioxidant activities in the leaves of 11 Eriobotrya species (Tibet loquat, Daduhe loquat, Hengchun loquat, Taiwan loquat, Oak leaf loquat, Bengal loquat, Fragrant loquat, Guangxi loquat, Obovate loquat, Big flower loquat, and common loquat, the last species include two materials, one is a cultivar 'Zaozhong 6', another is a wild tree). In these species, 'Zaozhong 6' loquat is a cultivar. The leaf extracts of 'Tibet', 'Obovate', 'Taiwan', 'Bengal' and 'Hengchun' loquats exhibited significantly higher contents of total flavonoids and total phenolics, compared with those of other species. Of these 11 species, the highest contents of total phenolics and total flavonoids were observed in 'Tibet' and 'Obovatae' loquats, respectively. The significantly stronger antioxidant abilities assessed by the DPPH radical scavenging activity and reducing power were obtained in the leaf extracts of 'Taiwan', 'Tibet', 'Bengal', 'Oak leaf', 'Hengchun' and 'Obovate' loquats, compared with the other species. In addition, significant correlations were found between the contents of total phenolics or flavonoids and DPPH radical scavenging activity/reducing power. This work indicates that the leaf extracts of the wild Eriobotrya species, 'Tibet', 'Obovatae', 'Taiwan', 'Bengal', 'Oak leaf' and 'Hengchun' loquats, exhibited significantly higher levels of total phenolics and flavonoids, and significantly stronger antioxidant activities, compared with the cultivated species, 'Zaozhong 6' loquat, which suggests that these wild species have a better utilization value.

  19. Long-Term Effects of Red- and Blue-Light Emitting Diodes on Leaf Anatomy and Photosynthetic Efficiency of Three Ornamental Pot Plants.

    PubMed

    Zheng, Liang; Van Labeke, Marie-Christine

    2017-01-01

    Light quality critically affects plant development and growth. Development of light-emitting diodes (LEDs) enables the use of narrow band red and/or blue wavelengths as supplementary lighting in ornamental production. Yet, long periods under these wavelengths will affect leaf morphology and physiology. Leaf anatomy, stomatal traits, and stomatal conductance, leaf hydraulic conductance (K leaf ), and photosynthetic efficiency were investigated in three ornamental pot plants, namely Cordyline australis (monocot), Ficus benjamina (dicot, evergreen leaves), and Sinningia speciosa (dicot, deciduous leaves) after 8 weeks under LED light. Four light treatments were applied at 100 μmol m -2 s -1 and a photoperiod of 16 h using 100% red (R), 100% blue (B), 75% red with 25% blue (RB), and full spectrum white light (W), respectively. B and RB resulted in a greater maximum quantum yield (F v /F m ) and quantum efficiency (Φ PSII ) in all species compared to R and W and this correlated with a lower biomass under R. B increased the stomatal conductance compared with R. This increase was linked to an increasing stomatal index and/or stomatal density but the stomatal aperture area was unaffected by the applied light quality. Leaf hydraulic conductance (K leaf ) was not significantly affected by the applied light qualities. Blue light increased the leaf thickness of F. benjamina , and a relative higher increase in palisade parenchyma was observed. Also in S. speciosa , increase in palisade parenchyma was found under B and RB, though total leaf thickness was not affected. Palisade parenchyma tissue thickness was correlated to the leaf photosynthetic quantum efficiency (Φ PSII ). In conclusion, the role of blue light addition in the spectrum is essential for the normal anatomical leaf development which also impacts the photosynthetic efficiency in the three studied species.

  20. Photosynthetic leaf area modulates tiller bud outgrowth in sorghum: Bud outgrowth is sensitive to leaf area

    DOE PAGES

    Kebrom, Tesfamichael H.; Mullet, John E.

    2014-12-12

    Shoot branches or tillers develop from axillary buds. The dormancy versus outgrowth fates of buds depends on genetic, environmental and hormonal signals. Defoliation inhibits bud outgrowth indicating the role of leaf-derived metabolic factors such as sucrose in bud outgrowth. In this study, the sensitivity of bud outgrowth to selective defoliation was investigated. At 6 d after planting (6 DAP), the first two leaves of sorghum were fully expanded and the third was partially emerged. Therefore, the leaves were selectively defoliated at 6 DAP and the length of the bud in the first leaf axil was measured at 8 DAP. Budmore » outgrowth was inhibited by defoliation of only 2 cm from the tip of the second leaf blade. The expression of dormancy and sucrose-starvation marker genes was up-regulated and cell cycle and sucrose-inducible genes was down-regulated during the first 24 h postdefoliation of the second leaf.At 48 h, the expression of these genes was similar to controls as the defoliated plant recovers. Our results demonstrate that small changes in photosynthetic leaf area affect the propensity of tiller buds for outgrowth. Therefore, variation in leaf area and photosynthetic activity should be included when integrating sucrose into models of shoot branching.« less

  1. Seedlings of temperate rainforest conifer and angiosperm trees differ in leaf area display.

    PubMed

    Lusk, Christopher H; Pérez-Millaqueo, Manuel M; Saldaña, Alfredo; Burns, Bruce R; Laughlin, Daniel C; Falster, Daniel S

    2012-07-01

    The contemporary relegation of conifers mainly to cold or infertile sites has been ascribed to low competitive ability, as a result of the hydraulic inefficiency of tracheids and their seedlings' initial dependence on small foliage areas. Here it is hypothesized that, in temperate rainforests, the larger leaves of angiosperms also reduce self-shading and thus enable display of larger effective foliage areas than the numerous small leaves of conifers. This hypothesis was tested using 3-D modelling of plant architecture and structural equation modelling to compare self-shading and light interception potential of seedlings of six conifers and 12 angiosperm trees from temperate rainforests. The ratio of displayed leaf area to plant mass (LAR(d)) was used to indicate plant light interception potential: LAR(d) is the product of specific leaf area, leaf mass fraction, self-shading and leaf angle. Angiosperm seedlings self-shaded less than conifers, mainly because of differences in leaf number (more than leaf size), and on average their LAR(d) was about twice that of conifers. Although specific leaf area was the most pervasive influence on LAR(d), differences in self-shading also significantly influenced LAR(d) of large seedlings. The ability to deploy foliage in relatively few, large leaves is advantageous in minimizing self-shading and enhancing seedling light interception potential per unit of plant biomass. This study adds significantly to evidence that vegetative traits may be at least as important as reproductive innovations in explaining the success of angiosperms in productive environments where vegetation is structured by light competition.

  2. Seedlings of temperate rainforest conifer and angiosperm trees differ in leaf area display

    PubMed Central

    Lusk, Christopher H.; Pérez-Millaqueo, Manuel M.; Saldaña, Alfredo; Burns, Bruce R.; Laughlin, Daniel C.; Falster, Daniel S.

    2012-01-01

    Background and Aims The contemporary relegation of conifers mainly to cold or infertile sites has been ascribed to low competitive ability, as a result of the hydraulic inefficiency of tracheids and their seedlings' initial dependence on small foliage areas. Here it is hypothesized that, in temperate rainforests, the larger leaves of angiosperms also reduce self-shading and thus enable display of larger effective foliage areas than the numerous small leaves of conifers. Methods This hypothesis was tested using 3-D modelling of plant architecture and structural equation modelling to compare self-shading and light interception potential of seedlings of six conifers and 12 angiosperm trees from temperate rainforests. The ratio of displayed leaf area to plant mass (LARd) was used to indicate plant light interception potential: LARd is the product of specific leaf area, leaf mass fraction, self-shading and leaf angle. Results Angiosperm seedlings self-shaded less than conifers, mainly because of differences in leaf number (more than leaf size), and on average their LARd was about twice that of conifers. Although specific leaf area was the most pervasive influence on LARd, differences in self-shading also significantly influenced LARd of large seedlings. Conclusions The ability to deploy foliage in relatively few, large leaves is advantageous in minimizing self-shading and enhancing seedling light interception potential per unit of plant biomass. This study adds significantly to evidence that vegetative traits may be at least as important as reproductive innovations in explaining the success of angiosperms in productive environments where vegetation is structured by light competition. PMID:22585929

  3. Chlorophyll Fluorescence Is a Better Proxy for Sunlit Leaf Than Total Canopy Photosynthesis

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Wang, Z.; Zhang, F.; Mo, G.

    2015-12-01

    Chlorophyll fluorescence (CF) results from non-photochemical quenching during plant photosynthesis under excessive radiation. We explore the relationship between gross primary productivity (GPP) and CF using a process ecosystem model, which separates a vegetation canopy into sunlit and shaded leaf groups and simulates the total canopy GPP as the sum of sunlit and shaded leaf GPP. Using GOME-2 and GOSAT data acquired in 2010 over the global land surface, we found that measured CF signals gridded in 1 degree resolution are well correlated with simulated total GPP and its sunlit and shaded components, but the correlation coefficients (R) are largest for the sunlit GPP and smallest for shaded GPP. The seasonal R2 values vary from 0.57 to 0.74, 0.58 to 0.71, and 0.48 to 0.56 for sunlit, total and shaded GPP, respectively. The significance levels for these correlations are all greater than p<0.01. Averaged over the globe, the total simulated shaded GPP is 39% of the total GPP. Theoretically, CF from vegetation comes mostly from sunlit leaves. The significant correlation between measured canopy-level CF and the shaded GPP is likely due to the correlation between shaded and sunlit GPP as both increase with leaf area index. Our simulation confirms the validity of using canopy-level CF measurements to assess the total GPP as the first approximation, although these measurements are a consistently better indicator of sunlit GPP than total GPP. In previous studies, the R2 values for the correlation between CF and total GPP were found to range from 0.76 to 0.88, 0.56 to 0.78, and 0.57 to 0.77 for MPI-BGC, MODIS and CASA model results, respectively. These values are similar or larger than those for sunlit GPP simulated in our study, but are considerably larger than those for total GPP in our study because the correlation for total GPP is contaminated by the inclusion of shaded GPP. All these three models use canopy total light use efficiency without considering the differences between sunlit and shaded leaves, and therefore they mostly capture spatio-temporal variations in sunlit GPP. We therefore argue that solar-induced CF measured from vegetation is a better proxy of sunlit GPP than the total GPP, and the use of CF data for assessing the terrestrial carbon cycle can be improved when sunlit and shaded GPP are modelled separately.

  4. Rain forest nutrient cycling and productivity in response to large-scale litter manipulation.

    PubMed

    Wood, Tana E; Lawrence, Deborah; Clark, Deborah A; Chazdon, Robin L

    2009-01-01

    Litter-induced pulses of nutrient availability could play an important role in the productivity and nutrient cycling of forested ecosystems, especially tropical forests. Tropical forests experience such pulses as a result of wet-dry seasonality and during major climatic events, such as strong El Niños. We hypothesized that (1) an increase in the quantity and quality of litter inputs would stimulate leaf litter production, woody growth, and leaf litter nutrient cycling, and (2) the timing and magnitude of this response would be influenced by soil fertility and forest age. To test these hypotheses in a Costa Rican wet tropical forest, we established a large-scale litter manipulation experiment in two secondary forest sites and four old-growth forest sites of differing soil fertility. In replicated plots at each site, leaves and twigs (< 2 cm diameter) were removed from a 400-m2 area and added to an adjacent 100-m2 area. This transfer was the equivalent of adding 5-25 kg/ha of organic P to the forest floor. We analyzed leaf litter mass, [N] and [P], and N and P inputs for addition, removal, and control plots over a two-year period. We also evaluated basal area increment of trees in removal and addition plots. There was no response of forest productivity or nutrient cycling to litter removal; however, litter addition significantly increased leaf litter production and N and P inputs 4-5 months following litter application. Litter production increased as much as 92%, and P and N inputs as much as 85% and 156%, respectively. In contrast, litter manipulation had no significant effect on woody growth. The increase in leaf litter production and N and P inputs were significantly positively related to the total P that was applied in litter form. Neither litter treatment nor forest type influenced the temporal pattern of any of the variables measured. Thus, environmental factors such as rainfall drive temporal variability in litter and nutrient inputs, while nutrient release from decomposing litter influences the magnitude. Seasonal or annual variation in leaf litter mass, such as occurs in strong El Niño events, could positively affect leaf litter nutrient cycling and forest productivity, indicating an ability of tropical trees to rapidly respond to increased nutrient availability.

  5. First direct landscape-scale measurement of tropical rain forest Leaf Area Index, a key driver of global primary productivity

    Treesearch

    David B. Clark; Paulo C. Olivas; Steven F. Oberbauer; Deborah A. Clark; Michael G. Ryan

    2008-01-01

    Leaf Area Index (leaf area per unit ground area, LAI) is a key driver of forest productivity but has never previously been measured directly at the landscape scale in tropical rain forest (TRF). We used a modular tower and stratified random sampling to harvest all foliage from forest floor to canopy top in 55 vertical transects (4.6 m2) across 500 ha of old growth in...

  6. The effect of leaf size on the microwave backscattering by corn

    NASA Technical Reports Server (NTRS)

    Paris, J. F.

    1986-01-01

    Attema and Ulaby (1978) proposed the cloud model to predict the microwave backscattering properties of vegetation. This paper describes a modification in which the biophysical properties and microwave properties of vegetation are related at the level of the individual scatterer (e.g., the leaf or the stalk) rather than at the level of the aggregated canopy (e.g., the green leaf area index). Assuming that the extinction cross section of an average leaf was proportional to its water content, that a power law relationship existed between the backscattering cross section of an average green corn leaf and its area, and that the backscattering coefficient of the surface was a linear function of its volumetric soil moisture content, it is found that the explicit inclusion of the effects of corn leaf size in the model led to an excellent fit between the observed and predicted backscattering coefficients. Also, an excellent power law relationship existed between the backscattering cross section of a corn leaf and its area.

  7. Determination of coefficient defining leaf area development in different genotypes, plant types and planting densities in peanut (Arachis hypogeae L.).

    PubMed

    Halilou, Oumarou; Hissene, Halime Mahamat; Clavijo Michelangeli, José A; Hamidou, Falalou; Sinclair, Thomas R; Soltani, Afshin; Mahamane, Saadou; Vadez, Vincent

    2016-12-01

    Rapid leaf area development may be attractive under a number of cropping conditions to enhance the vigor of crop establishment and allow rapid canopy closure for maximizing light interception and shading of weed competitors. This study was undertaken to determine (1) if parameters describing leaf area development varied among ten peanut ( Arachis hypogeae L.) genotypes grown in field and pot experiments, (2) if these parameters were affected by the planting density, and (3) if these parameters varied between Spanish and Virginia genotypes. Leaf area development was described by two steps: prediction of main stem number of nodes based on phyllochron development and plant leaf area dependent based on main stem node number. There was no genetic variation in the phyllochron measured in the field. However, the phyllochron was much longer for plants grown in pots as compared to the field-grown plants. These results indicated a negative aspect of growing peanut plants in the pots used in this experiment. In contrast to phyllochron, there was no difference in the relationship between plant leaf area and main stem node number between the pot and field experiments. However, there was genetic variation in both the pot and field experiments in the exponential coefficient (PLAPOW) of the power function used to describe leaf area development from node number. This genetic variation was confirmed in another experiment with a larger number of genotypes, although possible G × E interaction for the PLAPOW was found. Sowing density did not affect the power function relating leaf area to main stem node number. There was also no difference in the power function coefficient between Spanish and Virginia genotypes. SSM (Simple Simulation model) reliably predicted leaf canopy development in groundnut. Indeed the leaf area showed a close agreement between predicted and observed values up to 60000 cm 2  m -2 . The slightly higher prediction in India and slightly lower prediction in Niger reflected GxE interactions. Until more understanding is obtained on the possible GxE interaction effects on the canopy development, a generic PLAPOW value of 2.71, no correction for sowing density, and a phyllochron on 53 °C could be used to model canopy development in peanut.

  8. 78 FR 72579 - Revisions to the Arizona State Implementation Plan, Maricopa County Area

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ....01 Leaf Blower Use Restrictions 07/02/07 05/25/12 and Training; Leaf Blowers Equipment Sellers... recommend stronger control of emissions from leaf blowers, expanding leaf blowers requirements beyond county employees, control of leaf blowers in vacuum mode, control of leaf blowers on permitted sites, and greater...

  9. Influence of soil types and osmotic pressure on growth and 137Cs accumulation in blackgram (Vigna mungo L.).

    PubMed

    Win, Khin Thuzar; Oo, Aung Zaw; Bellingrath-Kimura, Sonoko Dorothea

    2017-04-01

    A pot experiment was conducted to study the effects of soil types and osmotic levels on growth and 137 Cs accumulation in two blackgram varieties differing in salinity tolerance grown in Fukushima contaminated soils. The contamination levels of the sandy clay loam and clay soil were 1084 and 2046 Bq kg -1 DW, respectively. The 137 Cs activity was higher in both plants grown on the sandy clay loam than on the clay soil regardless of soil 137 Cs activity concentration. No significant differences were observed in all measured growth parameters between the two varieties under optimal water conditions for both types of soil. However, the growth, leaf water contents and 137 Cs activity concentrations in both plants were lower in both soil types when there was water stress induced by addition of polyethylene glycol. Water stress-induced reduction in total leaf area and total biomass, in addition to leaf relative water content, were higher in salt sensitive 'Mut Pe Khaing To' than in salt tolerant 'U-Taung-2' plants for both soil types. Varietal difference in decreased 137 Cs uptake under water stress was statically significant in the sandy clay loam soil, however, it was not in the clay soil. The transfer of 137 Cs from soil to plants (i.e., root, stem and leaf) was higher for the sandy clay loam for both plants when compared with those of the clay soil. The decreased activity of 137 Cs in the above ground samples (leaf and stem) in both plants in response to osmotic stress suggested that plant available 137 Cs decreased when soil water is limited by osmotic stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A nature-based approach for managing the invasive weed species Gutenbergia cordifolia for sustainable rangeland management.

    PubMed

    Ngondya, Issakwisa B; Munishi, Linus K; Treydte, Anna C; Ndakidemi, Patrick A

    2016-01-01

    The invasive weed species Gutenbergia cordifolia has been observed to suppress native plants and to dominate more than half of the entire crater floor (250 km 2 ) in the Ngorongoro Conservation Area (NCA). As this species has been found to be toxic to ruminants it might strongly impact animal populations in this ecologically diverse ecosystem. Hence, a nature-based approach is urgently needed to manage its spread. We tested two Desmodium spp extracts applied to G. cordifolia and assessed the latter's germination rate, height, fresh weight and leaf total chlorophyll content after 30 days in both laboratory and screen house experiments. Seedling germination rate was halved by Desmodium uncinatum leaf extract (DuL), particularly under higher concentrations (≥75 %) rather than lower concentrations (≤62.5 %). Likewise, in both laboratory and screen house experiments, germination rate under DuL treatments declined with increasing concentrations. Seedling height, fresh weight and leaf total chlorophyll content (Chl) were also most strongly affected by DuL treatments rather than D. uncinatum root extract, Desmodium intortum leaf extract or D. intortum root extract treatments. Generally, seedlings treated with higher DuL concentrations were half as tall, had one-third the weight and half the leaf Chl content compared to those treated with lower concentrations. Our study shows a novel technique that can be applied where G. cordifolia may be driving native flora and fauna to local extinction. Our data further suggest that this innovative approach is both ecologically safe and effective and that D. uncinatum can be sustainably used to manage invasive plants, and thus, to improve rangeland productivity.

  11. Leaf Chlorophyll Content Estimation of Winter Wheat Based on Visible and Near-Infrared Sensors.

    PubMed

    Zhang, Jianfeng; Han, Wenting; Huang, Lvwen; Zhang, Zhiyong; Ma, Yimian; Hu, Yamin

    2016-03-25

    The leaf chlorophyll content is one of the most important factors for the growth of winter wheat. Visual and near-infrared sensors are a quick and non-destructive testing technology for the estimation of crop leaf chlorophyll content. In this paper, a new approach is developed for leaf chlorophyll content estimation of winter wheat based on visible and near-infrared sensors. First, the sliding window smoothing (SWS) was integrated with the multiplicative scatter correction (MSC) or the standard normal variable transformation (SNV) to preprocess the reflectance spectra images of wheat leaves. Then, a model for the relationship between the leaf relative chlorophyll content and the reflectance spectra was developed using the partial least squares (PLS) and the back propagation neural network. A total of 300 samples from areas surrounding Yangling, China, were used for the experimental studies. The samples of visible and near-infrared spectroscopy at the wavelength of 450,900 nm were preprocessed using SWS, MSC and SNV. The experimental results indicate that the preprocessing using SWS and SNV and then modeling using PLS can achieve the most accurate estimation, with the correlation coefficient at 0.8492 and the root mean square error at 1.7216. Thus, the proposed approach can be widely used for winter wheat chlorophyll content analysis.

  12. Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana.

    PubMed

    Ling, Qihua; Huang, Weihua; Jarvis, Paul

    2011-02-01

    The SPAD-502 meter is a hand-held device that is widely used for the rapid, accurate and non-destructive measurement of leaf chlorophyll concentrations. It has been employed extensively in both research and agricultural applications, with a range of different plant species. However, its utility has not been fully exploited in relation to the most intensively studied model organism for plant science research, Arabidopsis thaliana. Measurements with the SPAD-502 meter produce relative SPAD meter values that are proportional to the amount of chlorophyll present in the leaf. In order to convert these values into absolute units of chlorophyll concentration, calibration curves must be derived and utilized. Here, we present calibration equations for Arabidopsis that can be used to convert SPAD values into total chlorophyll per unit leaf area (nmol/cm(2); R(2) = 0.9960) or per unit fresh weight of leaf tissue (nmol/mg; R(2) = 0.9809). These relationships were derived using a series of Arabidopsis chloroplast biogenesis mutants that exhibit chlorophyll deficiencies of varying severity, and were verified by the subsequent analysis of senescent or light-stressed leaves. Our results revealed that the converted SPAD values differ from photometric measurements of solvent-extracted chlorophyll by just ~6% on average.

  13. A method for reconstructing the development of the sapwood area of balsam fir.

    PubMed

    Coyea, M R; Margolis, H A; Gagnon, R R

    1990-09-01

    Leaf area is commonly estimated as a function of sapwood area. However, because sapwood changes to heartwood over time, it has not previously been possible to reconstruct either the sapwood area or the leaf area of older trees into the past. In this study, we report a method for reconstructing the development of the sapwood area of dominant and codominant balsam fir (Abies balsamea (L.) Mill.). The technique is based on establishing a species-specific relationship between the number of annual growth rings in the sapwood area and tree age. Because the number of annual growth rings in the sapwood of balsam fir at a given age was found to be independent of site quality and stand density, the number of rings in sapwood (NRS) can be predicted from the age of a tree thus: NRS = 14.818 (1 - e(-0.031 age)), unweighted R(2) = 0.80, and NRS = 2.490 (1 - e(-0.038 age)), unweighted R(2) = 0.64, for measurements at breast height and at the base of the live crown, respectively. These nonlinear asymptotic regression models based only on age, were not improved by adding other tree variables such as diameter at breast height, diameter at the base of the live crown, total tree height or percent live crown.

  14. Leaf Mass Area, Leaf Carbon and Nitrogen Content, Barrow, Alaska, 2012-2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Alistair; Ely, Kim; Serbin, Shawn

    Carbon, Nitrogen and Leaf Mass Area of leaves sampled from the Barrow Environmental Observatory, Barrow, Alaska. Species measured; Arctophila fulva, Arctagrostis latifolia, Carex aquatilis, Dupontia fisheri, Eriophorum angustifolium, Petasites frigidus, Salix pulchra, Vaccinium vitis-idaea, Salix rotundifolia, Luzula arctica, Saxifraga punctata and Potentilla hyparctica.

  15. Influence of stand density on soil CO2 efflux for a Pinus densiflora forest in Korea.

    PubMed

    Noh, Nam Jin; Son, Yowhan; Lee, Sue Kyoung; Yoon, Tae Kyung; Seo, Kyung Won; Kim, Choonsig; Lee, Woo-Kyun; Bae, Sang Won; Hwang, Jaehong

    2010-07-01

    We investigated the influence of stand density [938 tree ha(-1) for high stand density (HD), 600 tree ha(-1) for medium stand density (MD), and 375 tree ha(-1) for low stand density (LD)] on soil CO(2) efflux (R (S)) in a 70-year-old natural Pinus densiflora S. et Z. forest in central Korea. Concurrent with R (S) measurements, we measured litterfall, total belowground carbon allocation (TBCA), leaf area index (LAI), soil temperature (ST), soil water content (SWC), and soil nitrogen (N) concentration over a 2-year period. The R (S) (t C ha(-1) year(-1)) and leaf litterfall (t C ha(-1) year(-1)) values varied with stand density: 6.21 and 2.03 for HD, 7.45 and 2.37 for MD, and 6.96 and 2.23 for LD, respectively. In addition, R (S) was correlated with ST (R (2) = 0.77-0.80, P < 0.001) and SWC (R (2) = 0.31-0.35, P < 0.001). It appeared that stand density influenced R (S) via changes in leaf litterfall, LAI and SWC. Leaf litterfall (R (2) = 0.71), TBCA (R (2) = 0.64-0.87), and total soil N contents in 2007 (R (2) = 0.94) explained a significant amount of the variance in R (S) (P < 0.01). The current study showed that stand density is one of the key factors influencing R (S) due to the changing biophysical and environmental factors in P. densiflora.

  16. Environmental plasticity of Pinot noir grapevine leaves: A trans-European study of morphological and biochemical changes along a 1,500-km latitudinal climatic gradient.

    PubMed

    Castagna, Antonella; Csepregi, Kristóf; Neugart, Susanne; Zipoli, Gaetano; Večeřová, Kristýna; Jakab, Gábor; Jug, Tjaša; Llorens, Laura; Martínez-Abaigar, Javier; Martínez-Lüscher, Johann; Núñez-Olivera, Encarnación; Ranieri, Annamaria; Schoedl-Hummel, Katharina; Schreiner, Monika; Teszlák, Péter; Tittmann, Susanne; Urban, Otmar; Verdaguer, Dolors; Jansen, Marcel A K; Hideg, Éva

    2017-11-01

    A 2-year study explored metabolic and phenotypic plasticity of sun-acclimated Vitis vinifera cv. Pinot noir leaves collected from 12 locations across a 36.69-49.98°N latitudinal gradient. Leaf morphological and biochemical parameters were analysed in the context of meteorological parameters and the latitudinal gradient. We found that leaf fresh weight and area were negatively correlated with both global and ultraviolet (UV) radiation, cumulated global radiation being a stronger correlator. Cumulative UV radiation (sumUVR) was the strongest correlator with most leaf metabolites and pigments. Leaf UV-absorbing pigments, total antioxidant capacities, and phenolic compounds increased with increasing sumUVR, whereas total carotenoids and xanthophylls decreased. Despite of this reallocation of metabolic resources from carotenoids to phenolics, an increase in xanthophyll-cycle pigments (the sum of the amounts of three xanthophylls: violaxanthin, antheraxanthin, and zeaxanthin) with increasing sumUVR indicates active, dynamic protection for the photosynthetic apparatus. In addition, increased amounts of flavonoids (quercetin glycosides) and constitutive β-carotene and α-tocopherol pools provide antioxidant protection against reactive oxygen species. However, rather than a continuum of plant acclimation responses, principal component analysis indicates clusters of metabolic states across the explored 1,500-km-long latitudinal gradient. This study emphasizes the physiological component of plant responses to latitudinal gradients and reveals the physiological plasticity that may act to complement genetic adaptations. © 2017 John Wiley & Sons Ltd.

  17. Convergent production and tolerance among 107 woody species and divergent production between shrubs and trees.

    PubMed

    He, Wei-Ming; Sun, Zhen-Kai

    2016-02-08

    Green leaves face two fundamental challenges (i.e., carbon fixation and stress tolerance) during their lifespan. However, the relationships between leaf production potential and leaf tolerance potential have not been explicitly tested with a broad range of plant species in the same environment. To do so, we conducted a field investigation based on 107 woody plants grown in a common garden and complementary laboratory measurements. The values, as measured by a chlorophyll meter, were significantly related to the direct measurements of chlorophyll content on a leaf area basis. Area-based chlorophyll content was positively correlated with root surface area, whole-plant biomass, leaf mass per area (LMA), and force to punch. Additionally, LMA had a positive correlation with force to punch. Shrubs had a higher leaf chlorophyll content than trees; however, shrubs and trees exhibited a similar leaf lifespan, force to punch, and LMA. These findings suggest that the production potential of leaves and their tolerance to stresses may be convergent in woody species and that the leaf production potential may differ between shrubs and trees. This study highlights the possibility that functional convergence and divergence might be linked to long-term selection pressures and genetic constraints.

  18. Convergent production and tolerance among 107 woody species and divergent production between shrubs and trees

    PubMed Central

    He, Wei-Ming; Sun, Zhen-Kai

    2016-01-01

    Green leaves face two fundamental challenges (i.e., carbon fixation and stress tolerance) during their lifespan. However, the relationships between leaf production potential and leaf tolerance potential have not been explicitly tested with a broad range of plant species in the same environment. To do so, we conducted a field investigation based on 107 woody plants grown in a common garden and complementary laboratory measurements. The values, as measured by a chlorophyll meter, were significantly related to the direct measurements of chlorophyll content on a leaf area basis. Area-based chlorophyll content was positively correlated with root surface area, whole-plant biomass, leaf mass per area (LMA), and force to punch. Additionally, LMA had a positive correlation with force to punch. Shrubs had a higher leaf chlorophyll content than trees; however, shrubs and trees exhibited a similar leaf lifespan, force to punch, and LMA. These findings suggest that the production potential of leaves and their tolerance to stresses may be convergent in woody species and that the leaf production potential may differ between shrubs and trees. This study highlights the possibility that functional convergence and divergence might be linked to long-term selection pressures and genetic constraints. PMID:26854019

  19. The relationship of leaf photosynthetic traits V cmax and Jmax - to leaf nitrogen, leaf phosphorus, and specific leaf area: A meta-analysis and modeling study

    DOE PAGES

    Walker, Anthony P.; Beckerman, Andrew P.; Gu, Lianhong; ...

    2014-07-25

    Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation (Vcmax) and the maximum rate of electron transport (Jmax). Understanding and making accurate prediction of C fluxes thus requires accurate characterization of these rates and their relationship with plant nutrient status over large geographic scales. Plant nutrient status is indicated by the traits: leaf nitrogen (N), leaf phosphorus (P), and specific leaf area (SLA). Correlations between Vcmax and Jmax and leaf nitrogen (N) are typically derivedmore » from local to global scales, while correlations with leaf phosphorus (P) and specific leaf area (SLA) have typically been derived at a local scale. Thus, there is no global-scale relationship between Vcmax and Jmax and P or SLA limiting the ability of global-scale carbon flux models do not account for P or SLA. We gathered published data from 24 studies to reveal global relationships of Vcmax and Jmax with leaf N, P, and SLA. Vcmax was strongly related to leaf N, and increasing leaf P substantially increased the sensitivity of Vcmax to leaf N. Jmax was strongly related to Vcmax, and neither leaf N, P, or SLA had a substantial impact on the relationship. Although more data are needed to expand the applicability of the relationship, we show leaf P is a globally important determinant of photosynthetic rates. In a model of photosynthesis, we showed that at high leaf N (3 gm 2), increasing leaf P from 0.05 to 0.22 gm 2 nearly doubled assimilation rates. Lastly, we show that plants may employ a conservative strategy of Jmax to Vcmax coordination that restricts photoinhibition when carboxylation is limiting at the expense of maximizing photosynthetic rates when light is limiting.« less

  20. The relationship of leaf photosynthetic traits V cmax and Jmax - to leaf nitrogen, leaf phosphorus, and specific leaf area: A meta-analysis and modeling study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Anthony P.; Beckerman, Andrew P.; Gu, Lianhong

    Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation (Vcmax) and the maximum rate of electron transport (Jmax). Understanding and making accurate prediction of C fluxes thus requires accurate characterization of these rates and their relationship with plant nutrient status over large geographic scales. Plant nutrient status is indicated by the traits: leaf nitrogen (N), leaf phosphorus (P), and specific leaf area (SLA). Correlations between Vcmax and Jmax and leaf nitrogen (N) are typically derivedmore » from local to global scales, while correlations with leaf phosphorus (P) and specific leaf area (SLA) have typically been derived at a local scale. Thus, there is no global-scale relationship between Vcmax and Jmax and P or SLA limiting the ability of global-scale carbon flux models do not account for P or SLA. We gathered published data from 24 studies to reveal global relationships of Vcmax and Jmax with leaf N, P, and SLA. Vcmax was strongly related to leaf N, and increasing leaf P substantially increased the sensitivity of Vcmax to leaf N. Jmax was strongly related to Vcmax, and neither leaf N, P, or SLA had a substantial impact on the relationship. Although more data are needed to expand the applicability of the relationship, we show leaf P is a globally important determinant of photosynthetic rates. In a model of photosynthesis, we showed that at high leaf N (3 gm 2), increasing leaf P from 0.05 to 0.22 gm 2 nearly doubled assimilation rates. Lastly, we show that plants may employ a conservative strategy of Jmax to Vcmax coordination that restricts photoinhibition when carboxylation is limiting at the expense of maximizing photosynthetic rates when light is limiting.« less

  1. Rapid determination of leaf area and plant height by using light curtain arrays in four species with contrasting shoot architecture

    PubMed Central

    2014-01-01

    Background Light curtain arrays (LC), a recently introduced phenotyping method, yield a binary data matrix from which a shoot silhouette is reconstructed. We addressed the accuracy and applicability of LC in assessing leaf area and maximum height (base to the highest leaf tip) in a phenotyping platform. LC were integrated to an automated routine for positioning, allowing in situ measurements. Two dicotyledonous (rapeseed, tomato) and two monocotyledonous (maize, barley) species with contrasting shoot architecture were investigated. To evaluate if averaging multiple view angles helps in resolving self-overlaps, we acquired a data set by rotating plants every 10° for 170°. To test how rapid these measurements can be without loss of information, we evaluated nine scanning speeds. Leaf area of overlapping plants was also estimated to assess the possibility to scale this method for plant stands. Results The relation between measured and calculated maximum height was linear and nearly the same for all species. Linear relations were also found between plant leaf area and calculated pixel area. However, the regression slope was different between monocotyledonous and dicotyledonous species. Increasing the scanning speed stepwise from 0.9 to 23.4 m s−1 did not affect the estimation of maximum height. Instead, the calculated pixel area was inversely proportional to scanning speed. The estimation of plant leaf area by means of calculated pixel area became more accurate by averaging consecutive silhouettes and/or increasing the angle between them. Simulations showed that decreasing plant distance gradually from 20 to 0 cm, led to underestimation of plant leaf area owing to overlaps. This underestimation was more important for large plants of dicotyledonous species and for small plants of monocotyledonous ones. Conclusions LC offer an accurate estimation of plant leaf area and maximum height, while the number of consecutive silhouettes that needs to be averaged is species-dependent. A constant scanning speed is important for leaf area estimations by using LC. Simulations of the effect of varying plant spacing gave promising results for method application in sets of partly overlapping plants, which applies also to field conditions during and after canopy closure for crops sown in rows. PMID:24721154

  2. An extended PROSPECT: Advance in the leaf optical properties model separating total chlorophylls into chlorophyll a and b.

    PubMed

    Zhang, Yao; Huang, Jingfeng; Wang, Fumin; Blackburn, George Alan; Zhang, Hankui K; Wang, Xiuzhen; Wei, Chuanwen; Zhang, Kangyu; Wei, Chen

    2017-07-25

    The PROSPECT leaf optical model has, to date, well-separated the effects of total chlorophyll and carotenoids on leaf reflectance and transmittance in the 400-800 nm. Considering variations in chlorophyll a:b ratio with leaf age and physiological stress, a further separation of total plant-based chlorophylls into chlorophyll a and chlorophyll b is necessary for advanced monitoring of plant growth. In this study, we present an extended version of PROSPECT model (hereafter referred to as PROSPECT-MP) that can combine the effects of chlorophyll a, chlorophyll b and carotenoids on leaf directional hemispherical reflectance and transmittance (DHR and DHT) in the 400-800 nm. The LOPEX93 dataset was used to evaluate the capabilities of PROSPECT-MP for spectra modelling and pigment retrieval. The results show that PROSPECT-MP can both simultaneously retrieve leaf chlorophyll a and b, and also performs better than PROSPECT-5 in retrieving carotenoids concentrations. As for the simulation of DHR and DHT, the performances of PROSPECT-MP are similar to that of PROSPECT-5. This study demonstrates the potential of PROSPECT-MP for improving capabilities of remote sensing of leaf photosynthetic pigments (chlorophyll a, chlorophyll b and carotenoids) and for providing a framework for future refinements in the modelling of leaf optical properties.

  3. Elk browsing increases aboveground growth of water-stressed willows by modifying plant architecture.

    PubMed

    Johnston, Danielle B; Cooper, David J; Hobbs, N Thompson

    2007-12-01

    In the northern elk wintering range of Yellowstone National Park, USA, wolf (Canis lupus) removal allowed elk (Cervus elaphus) to overbrowse riparian woody plants, leading to the exclusion of beaver (Castor canadensis) and a subsequent water table decline in many small stream valleys. Reduced elk browsing following wolf reintroduction may or may not facilitate willow (Salix sp.) recovery in these areas. To determine if the effect of elk browsing on willow interacts with that of beaver abandonment, we manipulated elk browsing and the water table in a factorial experiment. Under the condition of an ambient (low) water table, elk browsing increased shoot water potential (Psis), photosynthesis per unit leaf area (A), stomatal conductance per unit leaf area (gs), and aboveground current annual growth (CAG) by 50%. Elk browsing occurred entirely during dormancy and did not affect total plant leaf area (L). Improved water balance, photosynthetic rate, and annual aboveground productivity in browsed willows appeared to be due to morphological changes, such as increased shoot diameter and decreased branching, which typically increase plant hydraulic conductivity. An elevated water table increased Psis, A, gs, CAG, and L, and eliminated or lessened the positive effect of browsing on CAG for most species. Because low water tables create conditions whereby high willow productivity depends on the morphological effects of annual elk browsing, removing elk browsing in areas of water table decline is unlikely to result in vigorous willow stands. As large willow standing crops are required by beaver, a positive feedback between water-stressed willow and beaver absence may preclude the reestablishment of historical conditions. In areas with low water table, willow restoration may depend on actions to promote the re-establishment of beaver in addition to reducing elk browsing.

  4. Exogenous application of plant growth regulators (PGRs) induces chilling tolerance in short-duration hybrid maize.

    PubMed

    Waqas, Muhammad Ahmed; Khan, Imran; Akhter, Muhammad Javaid; Noor, Mehmood Ali; Ashraf, Umair

    2017-04-01

    Chilling stress hampers the optimal performance of maize under field conditions precipitously by inducing oxidative stress. To confer the damaging effects of chilling stress, the present study aimed to investigate the effects of some natural and synthetic plant growth regulators, i.e., salicylic acid (SA), thiourea (TU), sorghum water extract (SWE), and moringa leaf extract (MLE) on chilling stress tolerance in autumn maize hybrid. Foliar application of growth regulators at low concentrations was carried out at six leaf (V6) and tasseling stages. An increase in crop growth rate (CGR), leaf area index (LAI), leaf area duration (LAD), plant height (PH), grain yield (GY), and total dry matter accumulation (TDM) was observed in exogenously applied plants as compared to control. In addition, improved physio-biochemical, phenological, and grain nutritional quality attributes were noticed in foliar-treated maize plots as compared to non-treated ones. SA-treated plants reduced 20% electrolyte leakage in cell membrane against control. MLE and SA were proved best in improving total phenolic, relative water (19-23%), and chlorophyll contents among other applications. A similar trend was found for photosynthetic and transpiration rates, whereas MLE and SWE were found better in improving CGR, LAI, LAD, TDM, PH, GY, grains per cob, 1000 grain weight, and biological yield among all treatments including control. TU and MLE have significantly reduced the duration in phenological events of crop at the reproductive stage. MLE, TU, and SA also improved the grain protein, oil, and starch contents as compared to control. Enhanced crop water productivity was also observed in MLE-treated plants. Economic analysis suggested that MLE and SA applications were more economical in inducing chilling stress tolerance under field conditions. Although eliciting behavior of all growth regulators improved morpho-physiological attributes against suboptimal temperature stress conditions, MLE and SA acted as leading agents which proved to be better stress alleviators by improving plant physio-biochemical attributes and maize growth.

  5. Leaf area index, biomass carbon and growth rate of radiata pine genetic types and relationships with LiDAR

    Treesearch

    Peter N. Beets; Stephen Reutebuch; Mark O. Kimberley; Graeme R. Oliver; Stephen H. Pearce; Robert J. McGaughey

    2011-01-01

    Relationships between discrete-return light detection and ranging (LiDAR) data and radiata pine leaf area index (LAI), stem volume, above ground carbon, and carbon sequestration were developed using 10 plots with directly measured biomass and leaf area data, and 36 plots with modelled carbon data. The plots included a range of genetic types established on north- and...

  6. Estimating individual tree leaf area in loblolly pine plantations using LiDAR-derived measurments of height and crown dimensions

    Treesearch

    Scott D. Roberts; Thomas J. Dean; David L. Evans; John W. McCombs; Richard L. Harrington; Partick A. Glass

    2005-01-01

    Accurate estimates of leaf area index (LAI) could provide useful information to forest managers, but due to difficulties in measurement, leaf area is rarely used in decision-making. A reliable approach to remotely estimating LA1 would greatly facilitate its use in forest management. This study investigated the potential for using small-footprint iDAR, a laser-based...

  7. Viewing forests from below: fine root mass declines relative to leaf area in aging lodgepole pine stands.

    PubMed

    Schoonmaker, A S; Lieffers, V J; Landhäusser, S M

    2016-07-01

    In the continued quest to explain the decline in productivity and vigor with aging forest stands, the most poorly studied area relates to root system change in time. This paper measures the wood production, root and leaf area (and mass) in a chronosequence of fire-origin lodgepole pine (Pinus contorta Loudon) stands consisting of four age classes (12, 21, 53, and ≥100 years), each replicated ~ five times. Wood productivity was greatest in the 53-year-old stands and then declined in the ≥100-year-old stands. Growth efficiency, the quantity of wood produced per unit leaf mass, steadily declined with age. Leaf mass and fine root mass plateaued between the 53- and ≥100-year-old stands, but leaf area index actually increased in the older stands. An increase in the leaf area index:fine root area ratio supports the idea that older stand are potentially limited by soil resources. Other factors contributing to slower growth in older stands might be lower soil temperatures and increased self-shading due to the clumped nature of crowns. Collectively, the proportionally greater reduction in fine roots in older stands might be the variable that predisposes these forests to be at a potentially greater risk of stress-induced mortality.

  8. Peach water relations, gas exchange, growth and shoot mortality under water deficit in semi-arid weather conditions.

    PubMed

    Rahmati, Mitra; Davarynejad, Gholam Hossein; Génard, Michel; Bannayan, Mohammad; Azizi, Majid; Vercambre, Gilles

    2015-01-01

    In this study the sensitivity of peach tree (Prunus persica L.) to three water stress levels from mid-pit hardening until harvest was assessed. Seasonal patterns of shoot and fruit growth, gas exchange (leaf photosynthesis, stomatal conductance and transpiration) as well as carbon (C) storage/mobilization were evaluated in relation to plant water status. A simple C balance model was also developed to investigate sink-source relationship in relation to plant water status at the tree level. The C source was estimated through the leaf area dynamics and leaf photosynthesis rate along the season. The C sink was estimated for maintenance respiration and growth of shoots and fruits. Water stress significantly reduced gas exchange, and fruit, and shoot growth, but increased fruit dry matter concentration. Growth was more affected by water deficit than photosynthesis, and shoot growth was more sensitive to water deficit than fruit growth. Reduction of shoot growth was associated with a decrease of shoot elongation, emergence, and high shoot mortality. Water scarcity affected tree C assimilation due to two interacting factors: (i) reduction in leaf photosynthesis (-23% and -50% under moderate (MS) and severe (SS) water stress compared to low (LS) stress during growth season) and (ii) reduction in total leaf area (-57% and -79% under MS and SS compared to LS at harvest). Our field data analysis suggested a Ψstem threshold of -1.5 MPa below which daily net C gain became negative, i.e. C assimilation became lower than C needed for respiration and growth. Negative C balance under MS and SS associated with decline of trunk carbohydrate reserves--may have led to drought-induced vegetative mortality.

  9. Interacting Effects of Leaf Water Potential and Biomass on Vegetation Optical Depth: Effects of LWP and Biomass on VOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momen, Mostafa; Wood, Jeffrey D.; Novick, Kimberly A.

    Remotely sensed microwave observations of vegetation optical depth (VOD) have been widely used for examining vegetation responses to climate. Nevertheless, the relative impacts of phenological changes in leaf biomass and water stress on VOD have not been explicitly disentangled. In particular, determining whether leaf water potential (ψL) affects VOD may allow these data sets as a constraint for plant hydraulic models. Here we test the sensitivity of VOD to variations in ψL and present a conceptual framework that relates VOD to ψL and total biomass including leaves, whose dynamics are measured through leaf area index, and woody components. We usedmore » measurements of ψL from three sites across the US—a mixed deciduous forests in Indiana and Missouri and a piñon-juniper woodland in New Mexico—to validate the conceptual model. The temporal dynamics of X-band VOD were similar to those of the VOD signal estimated from the new conceptual model with observed ψL (R2 = 0.6–0.8). At the global scale, accounting for a combination of biomass and estimated ψL (based on satellite surface soil moisture data) increased correlations with VOD by ~ 15% and 30% compared to biomass and water potential, respectively. In wetter regions with denser and taller canopy heights, VOD has a higher correlation with leaf area index than with water stress and vice versa in drier regions. Our results demonstrate that variations in both phenology and ψL must be considered to accurately interpret the dynamics of VOD observations for ecological applications.« less

  10. Peach Water Relations, Gas Exchange, Growth and Shoot Mortality under Water Deficit in Semi-Arid Weather Conditions

    PubMed Central

    Rahmati, Mitra; Davarynejad, Gholam Hossein; Génard, Michel; Bannayan, Mohammad; Azizi, Majid; Vercambre, Gilles

    2015-01-01

    In this study the sensitivity of peach tree (Prunus persica L.) to three water stress levels from mid-pit hardening until harvest was assessed. Seasonal patterns of shoot and fruit growth, gas exchange (leaf photosynthesis, stomatal conductance and transpiration) as well as carbon (C) storage/mobilization were evaluated in relation to plant water status. A simple C balance model was also developed to investigate sink-source relationship in relation to plant water status at the tree level. The C source was estimated through the leaf area dynamics and leaf photosynthesis rate along the season. The C sink was estimated for maintenance respiration and growth of shoots and fruits. Water stress significantly reduced gas exchange, and fruit, and shoot growth, but increased fruit dry matter concentration. Growth was more affected by water deficit than photosynthesis, and shoot growth was more sensitive to water deficit than fruit growth. Reduction of shoot growth was associated with a decrease of shoot elongation, emergence, and high shoot mortality. Water scarcity affected tree C assimilation due to two interacting factors: (i) reduction in leaf photosynthesis (-23% and -50% under moderate (MS) and severe (SS) water stress compared to low (LS) stress during growth season) and (ii) reduction in total leaf area (-57% and -79% under MS and SS compared to LS at harvest). Our field data analysis suggested a Ψstem threshold of -1.5 MPa below which daily net C gain became negative, i.e. C assimilation became lower than C needed for respiration and growth. Negative C balance under MS and SS associated with decline of trunk carbohydrate reserves – may have led to drought-induced vegetative mortality. PMID:25830350

  11. Allocation to leaf area and sapwood area affects water relations of co-occurring savanna and forest trees.

    PubMed

    Gotsch, Sybil G; Geiger, Erika L; Franco, Augusto C; Goldstein, Guillermo; Meinzer, Frederick C; Hoffmann, William A

    2010-06-01

    Water availability is a principal factor limiting the distribution of closed-canopy forest in the seasonal tropics, suggesting that forest tree species may not be well adapted to cope with seasonal drought. We studied 11 congeneric species pairs, each containing one forest and one savanna species, to test the hypothesis that forest trees have a lower capacity to maintain seasonal homeostasis in water relations relative to savanna species. To quantify this, we measured sap flow, leaf water potential (Psi(L)), stomatal conductance (g (s)), wood density, and Huber value (sapwood area:leaf area) of the 22 study species. We found significant differences in the water relations of these two species types. Leaf area specific hydraulic conductance of the soil/root/leaf pathway (G (t)) was greater for savanna species than forest species. The lower G (t) of forest trees resulted in significantly lower Psi(L) and g (s) in the late dry season relative to savanna trees. The differences in G (t) can be explained by differences in biomass allocation of savanna and forest trees. Savanna species had higher Huber values relative to forest species, conferring greater transport capacity on a leaf area basis. Forest trees have a lower capacity to maintain homeostasis in Psi(L) due to greater allocation to leaf area relative to savanna species. Despite significant differences in water relations, relationships between traits such as wood density and minimum Psi(L) were indistinguishable for the two species groups, indicating that forest and savanna share a common axis of water-use strategies involving multiple traits.

  12. Leaf quality and insect herbivory in model tropical plant communities after long-term exposure to elevated atmospheric CO2.

    PubMed

    Arnone, J A; Zaller, J G; Körner, Ch; Ziegler, C; Zandt, H

    1995-09-01

    Results from laboratory feeding experiments have shown that elevated atmospheric carbon dioxide can affect interactions between plants and insect herbivores, primarily through changes in leaf nutritional quality occurring at elevated CO 2 . Very few data are available on insect herbivory in plant communities where insects can choose among species and positions in the canopy in which to feed. Our objectives were to determine the extent to which CO 2 -induced changes in plant communities and leaf nutritional quality may affect herbivory at the level of the entire canopy. We introduced equivalent populations of fourth instar Spodoptera eridania, a lepidopteran generalist, to complex model ecosystems containing seven species of moist tropical plants maintained under low mineral nutrient supply. Larvae were allowed to feed freely for 14 days, by which time they had reached the seventh instar. Prior to larval introductions, plant communities had been continuously exposed to either 340 μl CO 2 l -1 or to 610 μl CO 2 l -1 for 1.5 years. No major shifts in leaf nutritional quality [concentrations of N, total non-structural carbohydrates (TNC), sugar, and starch; ratios of: C/N, TNC/N, sugar/N, starch/N; leaf toughness] were observed between CO 2 treatments for any of the species. Furthermore, no correlations were observed between these measures of leaf quality and leaf biomass consumption. Total leaf area and biomass of all plant communities were similar when caterpillars were introduced. However, leaf biomass of some species was slightly greater-and for other species slightly less (e.g. Cecropia peltata)-in communities exposed to elevated CO 2 . Larvae showed the strongest preference for C. peltata leaves, the plant species that was least abundant in all communites, and fed relatively little on plants species which were more abundant. Thus, our results indicate that leaf tissue quality, as described by these parameters, is not necessarily affected by elevated CO 2 under relatively low nutrient conditions. Hence, the potential importance of CO 2 -induced shifts in leaf nutritional quality, as determinants of herbivory, may be overestimated for many plant communities growing on nutrient-poor sites if estimates are based on traditional laboratory feeding studies. Finally, slight shifts in the abundance of leaf tissue of various species occurring under elevated CO 2 will probably not significantly affect herbivory by generalist insects. However, generalist insect herbivores appear to become more dependent on less-preferred plant species in cases where elevated CO 2 results in reduced availability of leaves of a favoured plant species, and this greater dependency may eventually affect insect populations adversely.

  13. Influence of Changes in Daylength and Carbon Dioxide on the Growth of Potato

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond; Tibbitts, Theodore W.

    1997-01-01

    Potatoes (Solanum tuberosum L.) are highly productive in mid- to high-latitude areas where photoperiods change significantly throughout the growing season. To study the effects of changes in photoperiod on growth and tuber development of potato cv. Denali, plants were grown for 112 d with 400 micromol/sq m/s photosynthetic photon flux (PPF) under a 12-h photoperiod (short days, SD), a 24-h photoperiod (long days, LD), and combinations where plants were moved between the two photoperiods 28, 56, or 84 d after planting. Plants given LD throughout growth received the greatest total daily PPF and produced the greatest tuber yields. At similar levels of total PPF, plants given SD followed by LD yielded greater tuber dry mass (DM) than plants given LD followed by SD. Stem DM per plant, leaf DM, and total plant DM all increased with an increasing proportion of LD and increasing daily PPF, regardless of the daylength sequence. When studies were repeated, but at an enriched (1000micromol/mol) CO2 concentration, overall growth trends were similar, with high CO2 resulting in greater stem length, stem DM, leaf DM, and total plant DM; but high CO2 did not increase tuber DM.

  14. Different mechanisms drive the performance of native and invasive woody species in response to leaf phosphorus supply during periods of drought stress and recovery.

    PubMed

    Oliveira, Marciel Teixeira; Medeiros, Camila Dias; Frosi, Gabriella; Santos, Mauro Guida

    2014-09-01

    The effects of drought stress and leaf phosphorus (Pi) supply on photosynthetic metabolism in woody tropical species are not known, and given the recent global environmental change models that forecast lower precipitation rates and periods of prolonged drought in tropical areas, this type of study is increasingly important. The effects of controlled drought stress and Pi supply on potted young plants of two woody species, Anadenanthera colubrina (native) and Prosopis juliflora (invasive), were determined by analyzing leaf photosynthetic metabolism, biochemical properties and water potential. In the maximum stress, both species showed higher leaf water potential (Ψl) in the treatment drought +Pi when compared with the respective control -Pi. The native species showed higher gas exchange under drought +Pi than under drought -Pi conditions, while the invasive species showed the same values between drought +Pi and -Pi. Drought affected the photochemical part of photosynthetic machinery more in the invasive species than in the native species. The invasive species showed higher leaf amino acid content and a lower leaf total protein content in both Pi treatments with drought. The two species showed different responses to the leaf Pi supply under water stress for several variables measured. In addition, the strong resilience of leaf gas exchange in the invasive species compared to the native species during the recovery period may be the result of higher efficiency of Pi use. The implications of this behavior for the success of this invasive species in semiarid environments are discussed. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. Season-dependent and independent responses of Mediterranean scrub to light conditions.

    PubMed

    Zunzunegui, María; Díaz-Barradas, Mari Cruz; Jáuregui, Juan; Rodríguez, Herminia; Álvarez-Cansino, Leonor

    2016-05-01

    Semi-arid plant species cope with excess of solar radiation with morphological and physiological adaptations that assure their survival when other abiotic stressors interact. At the leaf level, sun and shade plants may differ in the set of traits that regulate environmental stressors. Here, we evaluated if leaf-level physiological seasonal response of Mediterranean scrub species (Myrtus communis, Halimium halimifolium, Rosmarinus officinalis, and Cistus salvifolius) depended on light availability conditions. We aimed to determine which of these responses prevailed independently of the marked seasonality of Mediterranean climate, to define a leaf-level strategy in the scrub community. Thirty six leaf response variables - involving gas exchange, water status, photosystem II photochemical efficiency, photosynthetic pigments and leaf structure - were seasonally measured in sun exposed and shaded plants under field conditions. Physiological responses showed a common pattern throughout the year, in spite of the marked seasonality of the Mediterranean climate and of species-specific differences in the response to light intensity. Variables related to light use, CO2 assimilation, leaf pigment content, and LMA (leaf mass area) presented differences that were consistent throughout the year, although autumn was the season with greater contrast between sun and shade plants. Our data suggest that in Mediterranean scrub shade plants the lutein pool could have an important role in the photoprotection of the photosynthetic tissues. There was a negative linear correlation between the ratio lutein/total chlorophylls and the majority of leaf level variables. The combined effect of abiotic stress factors (light and drought or light and cold) was variable-specific, in some cases enhancing differences between sun and shade plants, while in others leading to unified strategies in all scrub species. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Enemy release and plant invasion: patterns of defensive traits and leaf damage in Hawaii.

    PubMed

    Funk, Jennifer L; Throop, Heather L

    2010-04-01

    Invasive species may be released from consumption by their native herbivores in novel habitats and thereby experience higher fitness relative to native species. However, few studies have examined release from herbivory as a mechanism of invasion in oceanic island systems, which have experienced particularly high loss of native species due to the invasion of non-native animal and plant species. We surveyed putative defensive traits and leaf damage rates in 19 pairs of taxonomically related invasive and native species in Hawaii, representing a broad taxonomic diversity. Leaf damage by insects and pathogens was monitored in both wet and dry seasons. We found that native species had higher leaf damage rates than invasive species, but only during the dry season. However, damage rates across native and invasive species averaged only 2% of leaf area. Native species generally displayed high levels of structural defense (leaf toughness and leaf thickness, but not leaf trichome density) while native and invasive species displayed similar levels of chemical defenses (total phenolics). A defense index, which integrated all putative defense traits, was significantly higher for native species, suggesting that native species may allocate fewer resources to growth and reproduction than do invasive species. Thus, our data support the idea that invasive species allocate fewer resources to defense traits, allowing them to outperform native species through increased growth and reproduction. While strong impacts of herbivores on invasion are not supported by the low damage rates we observed on mature plants, population-level studies that monitor how herbivores influence recruitment, mortality, and competitive outcomes are needed to accurately address how herbivores influence invasion in Hawaii.

  17. The Influence of Prescribed Fire, Habitat, and Weather on Amblyomma americanum (Ixodida: Ixodidae) in West-Central Illinois, USA.

    PubMed

    Gilliam, Mary E; Rechkemmer, Will T; McCravy, Kenneth W; Jenkins, Seán E

    2018-03-22

    The distribution of Amblyomma americanum (L.) is changing and reports of tick-borne disease transmitted by A. americanum are increasing in the USA. We used flagging to collect ticks, surveyed vegetation and collected weather data in 2015 and 2016. A. americanum dominated collections in both years (97%). Ticks did not differ among burn treatments; however, tick abundance differed between years among total, adult, and larval ticks. Habitat variables showed a weak negative correlation to total ticks in respect to: Shannon diversity index, percent bare ground, perennial cover, and coarse woody debris. Nymphal ticks showed a weak negative correlation to percent bare ground and fewer adults were collected in areas with more leaf litter and coarse woody debris. Conversely, we found larvae more often in areas with more total cover, biennials, vines, shrubs, and leaf litter, suggesting habitat is important for this life stage. We compared weather variables to tick presence and found, in 2015, temperature, precipitation, humidity, and sample period influenced tick collection and were life stage specific. In 2016, temperature, precipitation, humidity, wind, and sample period influenced tick collection and were also life stage specific. These results indicate that spring burns in an oak woodland do not reduce ticks; other variables such as habitat and weather are more influential on tick abundance or presence at different life stages.

  18. Plasticity in the Huber value contributes to homeostasis in leaf water relations of a mallee Eucalypt with variation to groundwater depth.

    PubMed

    Carter, Jennifer L; White, Donald A

    2009-11-01

    Information on how vegetation adapts to differences in water supply is critical for predicting vegetation survival, growth and water use, which, in turn, has important impacts on site hydrology. Many field studies assess adaptation to water stress by comparing between disparate sites, which makes it difficult to distinguish between physiological or morphological changes and long-term genetic adaptation. When planting trees into new environments, the phenotypic adaptations of a species to water stress will be of primary interest. This study examined the response to water availability of Eucalyptus kochii ssp. borealis (C. Gardner) D. Nicolle, commonly integrated with agriculture in south-western Australia for environmental and economic benefits. By choosing a site where the groundwater depth varied but where climate and soil type were the same, we were able to isolate tree response to water supply. Tree growth, leaf area and stand water use were much larger for trees over shallow groundwater than for trees over a deep water table below a silcrete hardpan. However, water use on a leaf area basis was similar in trees over deep and shallow groundwater, as were the minimum leaf water potential observed over different seasons and the turgor loss point. We conclude that homeostasis in leaf water use and water relations was maintained through a combination of stomatal control and adjustment of sapwood-to-leaf area ratios (Huber value). Differences in the Huber value with groundwater depth were associated with different sapwood-specific conductivity and water use on a sapwood area basis. Knowledge of the coordination between water supply, leaf area, sapwood area and leaf transpiration rate for different species will be important when predicting stand water use.

  19. Tree ecophysiology research at Taylor Woods

    Treesearch

    Thomas E. Kolb; Nate G. McDowell

    2008-01-01

    We summarize the key findings of tree ecophysiology studies performed at Taylor Woods, Fort Valley Experimental Forest, Arizona between 1994 and 2003 that provide unique insight on impacts of long-term stand density management in ponderosa pine forests on tree water relations, leaf gas exchange, radial growth, leaf area-to-sapwood-area ratio, growth efficiency, leaf...

  20. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro)

    NASA Astrophysics Data System (ADS)

    Christoffersen, Bradley O.; Gloor, Manuel; Fauset, Sophie; Fyllas, Nikolaos M.; Galbraith, David R.; Baker, Timothy R.; Kruijt, Bart; Rowland, Lucy; Fisher, Rosie A.; Binks, Oliver J.; Sevanto, Sanna; Xu, Chonggang; Jansen, Steven; Choat, Brendan; Mencuccini, Maurizio; McDowell, Nate G.; Meir, Patrick

    2016-11-01

    Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media approach to modeling plant hydraulics in which all parameters of the constitutive equations are biologically interpretable and measurable plant hydraulic traits (e.g., turgor loss point πtlp, bulk elastic modulus ɛ, hydraulic capacitance Cft, xylem hydraulic conductivity ks,max, water potential at 50 % loss of conductivity for both xylem (P50,x) and stomata (P50,gs), and the leaf : sapwood area ratio Al : As). We embedded this plant hydraulics model within a trait forest simulator (TFS) that models light environments of individual trees and their upper boundary conditions (transpiration), as well as providing a means for parameterizing variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits, including wood density (WD), leaf mass per area (LMA), and photosynthetic capacity (Amax), and evaluated the coupled model (called TFS v.1-Hydro) predictions, against observed diurnal and seasonal variability in stem and leaf water potential as well as stand-scaled sap flux. Our hydraulic trait synthesis revealed coordination among leaf and xylem hydraulic traits and statistically significant relationships of most hydraulic traits with more easily measured plant traits. Using the most informative empirical trait-trait relationships derived from this synthesis, TFS v.1-Hydro successfully captured individual variation in leaf and stem water potential due to increasing tree size and light environment, with model representation of hydraulic architecture and plant traits exerting primary and secondary controls, respectively, on the fidelity of model predictions. The plant hydraulics model made substantial improvements to simulations of total ecosystem transpiration. Remaining uncertainties and limitations of the trait paradigm for plant hydraulics modeling are highlighted.

  1. [Aboveground architecture and biomass distribution of Quercus variabilis].

    PubMed

    Yu, Bi-yun; Zhang, Wen-hui; Hu, Xiao-jing; Shen, Jia-peng; Zhen, Xue-yuan; Yang, Xiao-zhou

    2015-08-01

    The aboveground architecture, biomass and its allocation, and the relationship between architecture and biomass of Quercus variabilis of different diameter classes in Shangluo, south slope of Qinling Mountains were researched. The results showed that differences existed in the aboveground architecture and biomass allocation of Q. variabilis of different diameter classes. With the increase of diameter class, tree height, DBH, and crown width increased gradually. The average decline rate of each diameter class increased firstly then decreased. Q. variabilis overall bifurcation ratio and stepwise bifurcation ratio increased then declined. The specific leaf areas of Q. variabilis of all different diameter classes at vertical direction were 0.02-0.03, and the larger values of leaf mass ratio, LAI and leaf area ratio at vertical direction in diameter level I , II, III appeared in the middle and upper trunk, while in diameter level IV, V, VI, they appeared in the central trunk, with the increase of diameter class, there appeared two peaks in vertical direction, which located in the lower and upper trunk. The trunk biomass accounted for 71.8%-88.4% of Q. variabilis aboveground biomass, while the branch biomass accounted for 5.8%-19.6%, and the leaf biomass accounted for 4.2%-8.6%. With the increase of diameter class, stem biomass proportion of Q. variabilis decreased firstly then increased, while the branch and leaf biomass proportion showed a trend that increased at first then decreased, and then increased again. The aboveground biomass of Q. variabilis was significantly positively correlated to tree height, DBH, crown width and stepwise bifurcation ratio (R2:1), and positively related to the overall bifurcation ratio and stepwise bifurcation ratio (R3:2), but there was no significant correlation. Trunk biomass and total biomass aboveground were negatively related to the trunk decline rate, while branch biomass and leaf biomass were positively related to trunk decline rate, but their correlations were all not significant.

  2. Species and population variation to salinity stress in Panicum hemitomon, Spartina patens, and Spartina alterniflora: Morphological and physiological constraints

    USGS Publications Warehouse

    Hester, M.W.; Mendelssohn, I.A.; McKee, K.L.

    2001-01-01

    Panicum hemitomon, Spartina patens, and Spartina alterniflora are wide-spread dominant grasses of fresh, brackish, and salt marsh plant communities, respectively. Our previous research identified significant intraspecific variation in salt tolerance and morphology among populations within each species. In this study our objectives were to determine shorter-term physiological/biochemical responses to salinity stress and identify potential indicators of salt tolerance, with the ultimate goal of discerning similarities and differences in the mechanisms of salinity stress resistance. We subjected a subset of six populations within each species, ranging from high to low salt tolerance, to sublethal salinity levels (4, 20, and 30 ppt, respectively, for species) and monitored physiological and growth responses after 1 week (early harvest) and 5 weeks (late harvest). In all three species sublethal salinity levels generally resulted in significantly reduced net CO2 assimilation, leaf expansion, midday leaf xylem pressure, water use efficiency, and live and total biomass; and significantly increased leaf Na+/K+ ratio, leaf proline, leaf glycine betaine, leaf sucrose, root-to-shoot ratio, and dead:total aboveground biomass ratio. All three species displayed significant population (intraspecific) variation in net CO2 assimilation, leaf expansion, water use efficiency, midday leaf xylem pressure, leaf proline, leaf glycine betaine (except Panicum, where it could not be accurately determined), leaf Na+/K+ ratio, leaf sucrose, total plant biomass, dead:total aboveground biomass ratio, and root-to-shoot ratio. General indicators of salt tolerance (regardless of species) included high net CO2 assimilation rates and water use efficiencies, and low ratios of root-to-shoot and dead:total aboveground biomass. Factor analysis and a-priori linear contrasts revealed some unique differences between species in terms of the relative importance of morphology and physiology in explaining intraspecific variation in salt tolerance. Plant morphology (size attributes) were strongly associated with salt tolerance in P. hemitomon, weakly associated with salt tolerance in S. patens, and not associated with salt tolerance in S. alterniflora. Highly salt-tolerant populations of Spartina alterniflora displayed the greatest ion selectivity (lower leaf Na+/K+ ratios), which was not displayed by the other two species. These results suggest that plant size attributes can be very important in explaining population differences in salt tolerance in glycophytes, but may be independent of salt tolerance in halophytes, which have specialized physiological (and/or anatomical) adaptations that can confer salinity stress resistance through mechanisms such as selective ion exclusion and secretion. ?? 2001 Elsevier Science B.V. All rights reserved.

  3. Gap effects on leaf traits of tropical rainforest trees differing in juvenile light requirement.

    PubMed

    Houter, Nico C; Pons, Thijs L

    2014-05-01

    The relationships of 16 leaf traits and their plasticity with the dependence of tree species on gaps for regeneration (gap association index; GAI) were examined in a Neotropical rainforest. Young saplings of 24 species with varying GAI were grown under a closed canopy, in a medium-sized and in a large gap, thus capturing the full range of plasticity with respect to canopy openness. Structural, biomechanical, chemical and photosynthetic traits were measured. At the chloroplast level, the chlorophyll a/b ratio and plasticity in this variable were not related to the GAI. However, plasticity in total carotenoids per unit chlorophyll was larger in shade-tolerant species. At the leaf level, leaf mass per unit area (LMA) decreased with the GAI under the closed canopy and in the medium gap, but did not significantly decrease with the GAI in the large gap. This was a reflection of the larger plasticity in LMA and leaf thickness of gap-dependent species. The well-known opposite trends in LMA for adaptation and acclimation to high irradiance in evergreen tropical trees were thus not invariably found. Although leaf strength was dependent on LMA and thickness, plasticity in this trait was not related to the GAI. Photosynthetic capacity expressed on each basis increased with the GAI, but the large plasticity in these traits was not clearly related to the GAI. Although gap-dependent species tended to have a greater plasticity overall, as evident from a principle component analysis, leaf traits of gap-dependent species are thus not invariably more phenotypically plastic.

  4. Trends in leaf photosynthesis in historical rice varieties developed in the Philippines since 1966.

    PubMed

    Hubbart, S; Peng, S; Horton, P; Chen, Y; Murchie, E H

    2007-01-01

    Crop improvement in terms of yield is rarely linked to leaf photosynthesis. However, in certain crop plants such as rice, it is predicted that an increase in photosynthetic rate will be required to support future grain yield potential. In order to understand the relationships between yield improvement and leaf photosynthesis, controlled environment conditions were used to grow 10 varieties which were released from the International Rice Research Institute (IRRI) between 1966 and 1995 and one newly developed line. Two growth light intensities were used: high light (1500 micromol m(-2) s(-1)) and low light (300 micromol m(-2) s(-1)). Gas exchange, leaf protein, chlorophyll, and leaf morphology were measured in the ninth leaf on the main stem. A high level of variation was observed among high light-grown plants for light-saturated photosynthetic rate per unit leaf area (P(max)), stomatal conductance (g), content of ribulose bisphosphate carboxylase-oxygenase (Rubisco), and total leaf protein content. Notably, between 1966 and 1980 there was a decline in P(max), g, leaf protein, chlorophyll, and Rubisco content. Values recovered in those varieties released after 1980. This striking trend coincides with a previous published observation that grain yield in IRRI varieties released prior to 1980 correlated with harvest index whereas that for those released after 1980 correlated with biomass. P(max) showed significant correlations with both g and Rubisco content. Large differences were observed between high light- and low light-grown plants (photoacclimation). The photoacclimation 'range' for P(max) correlated with P(max) in high light-grown plants. It is concluded that (i) leaf photosynthesis may be systematically affected by breeding strategy; (ii) P(max) is a useful target for yield improvements where yield is limited by biomass production rather than partitioning; and (iii) the capacity for photoacclimation is related to high P(max) values.

  5. [Latitudinal Changes in Plant Stoichiometric and Soil C, N, P Stoichiometry in Loess Plateau].

    PubMed

    Li, Ting; Deng, Qiang; Yuan, Zhi-you; Jiao, Feng

    2015-08-01

    Field investigations and sampling were conducted in Loess Plateau, including Fu County, Ganquan County, Ansai County, Jingbian County and Hengshan County and Yuyang District. Our objective was to examine changes of leaf and soil stoichiometry characteristics along latitudinal gradient in Loess Plateau, and to provide references for the prediction of soil nutrient status of the ecosystem and constraints of plant nutrition elements in Loess Plateau. The results showed that (1) Across the 35.95 degrees-38.36 degrees N latitude gradient, leaf C, N and P stoichiometry were ranging from 336.95 to 477.38 mg x g(-1) for C, from 18.09 to 33.173 mg x g(-1) for N and from 1.07 to 1.73 mg x g(-1) for P, the arithmetic means were 442.9 mg x g(-1), 25.79 mg x g(-1) and 1.37 mg x g(-1), separately, the variation coefficients were 11.9%, 17.4% and 13.3%. There were obvious correlation between leaf C, N, P and latitude, leaf C, C : N ratio and C: P ratio significantly decreased with the increasing latitude, while leaf N and P significantly increased with the increasing latitude. The relationship between N: P ratio and latitude was not significant. (2) The content of soil organic C and soil total N decreased with increasing latitude and soil layer. In contrast, with the increase of latitude, soil P increased and then decreased. In the 0-10 cm, 10-20 cm soil layers, soil C: N ratio did not change significantly with latitude, while in the 20-40 cm layer, C: N ratio decreased obviously, but soil C: P and N: P ratios decreased with the increasing latitude in all soil layers. (3) Leaf C, C: N and C: P ratios were correlated to soil organic C, soil total N and soil total P in all soil layers, leaf N and P were correlated to soil organic C and soil total N, while leaf N: P ratio was not correlated to soil organic C, soil total N and soil total P. There was a certain correlation between the leaf C, N, P and latitude, however, the correlations between leaf and soil C, N, P were inconsistent. These results demonstrate that the plants were under P limitation in Loess Plateau.

  6. Experimental manipulation of leaf litter colonization by aquatic invertebrates in a third order tropical stream.

    PubMed

    Uieda, V S; Carvalho, E M

    2015-05-01

    Through a manipulative experiment, the colonization of leaf litter by invertebrates was investigated in two sections of a tropical stream (spatial scale) that differed in function of the canopy cover, one with the presence (closed area) and another without riparian vegetation (open area), during one month of the dry and one of the wet season (temporal scale). The work aimed to verify differences related to four variables: season, canopy cover, leaf type and leaf condition. Litter bags containing arboreal and herbaceous leaves (leaf type variable), non-conditioned and preconditioned (leaf condition variable) were placed at the bottom of the stream in each area (canopy cover variable) and season (dry and wet), and removed after 13-day colonization. The analysis of the remaining litter dry mass per leaf bag emphasizes differences related mainly to seasonality, canopy cover and leaf type, although leaf condition was also important when combined with those three factors. Comparing the abundance of invertebrates per treatment, there was a tendency of high predominance of Chironomidae during the dry season and greater taxa diversity and evenness during the wet season, when the water flow increase could alter the availability of microhabitats for local fauna. Even though canopy cover alone was not a significant source of variation in the abundance of invertebrates, the results showed a tendency of a combined effect of canopy cover with seasonality and leaf condition.

  7. Extracting forest canopy structure from spatial information of high resolution optical imagery: tree crown size versus leaf area index

    Treesearch

    C. Song; M.B. Dickinson

    2008-01-01

    Leaves are the primary interface where energy, water and carbon exchanges occur between the forest ecosystems and the atmosphere. Leaf area index (LAI) is a measure of the amount of leaf area in a stand, and the tree crown size characterizes how leaves are clumped in the canopy. Both LAI and tree crown size are of essential ecological and management value. There is a...

  8. Extracting scene feature vectors through modeling, volume 3

    NASA Technical Reports Server (NTRS)

    Berry, J. K.; Smith, J. A.

    1976-01-01

    The remote estimation of the leaf area index of winter wheat at Finney County, Kansas was studied. The procedure developed consists of three activities: (1) field measurements; (2) model simulations; and (3) response classifications. The first activity is designed to identify model input parameters and develop a model evaluation data set. A stochastic plant canopy reflectance model is employed to simulate reflectance in the LANDSAT bands as a function of leaf area index for two phenological stages. An atmospheric model is used to translate these surface reflectances into simulated satellite radiance. A divergence classifier determines the relative similarity between model derived spectral responses and those of areas with unknown leaf area index. The unknown areas are assigned the index associated with the closest model response. This research demonstrated that the SRVC canopy reflectance model is appropriate for wheat scenes and that broad categories of leaf area index can be inferred from the procedure developed.

  9. Leaf morphological effects predict effective path length and enrichment of 18O in leaf water of different Eucalyptus species

    NASA Astrophysics Data System (ADS)

    Kahmen, A.; Merchant, A.; Callister, A.; Dawson, T. E.; Arndt, S. K.

    2006-12-01

    Stable isotopes have been a valuable tool to study water or carbon fluxes of plants and ecosystems. In particular oxygen isotopes (δ18O) in leaf water or plant organic material are now beginning to be established as a simple and integrative measure for plant - water relations. Current δ18O models, however, are still limited in their application to a broad range of different species and ecosystems. It remains for example unclear, if species-specific effects such as different leaf morphologies need to be included in the models for a precise understanding and prediction of δ18O signals. In a common garden experiment (Currency Creek Arboretum, South Australia), where over 900 different Eucalyptus species are cultivated in four replicates, we tested effects of leaf morphology and anatomy on δ18O signals in leaf water of 25 different species. In particular, we determined for all species enrichment in 18O of mean lamina leaf water above source water (Δ18O) as related to leaf physiology as well as leaf thickness, leaf area, specific leaf area and weight and selected anatomical properties. Our data revealed that diurnal Δ18O in leaf water at steady state was significantly different among the investigated species and with differences up to 10% at midday. Fitting factors (effective path length) of leaf water Δ18O models were also significantly different among the investigated species and were highly affected by species-specific morphological parameters. For example, leaf area explained a high percentage of the differences in effective path length observed among the investigated species. Our data suggest that leaf water δ18O can act as powerful tool to estimate plant - water relations in comparative studies but that additional leaf morphological parameters need to be considered in existing δ18O models for a better interpretation of the observed δ18O signals.

  10. Comparing salt tolerance of beet cultivars and their halophytic ancestor: consequences of domestication and breeding programmes

    PubMed Central

    Rozema, Jelte; Cornelisse, Danny; Zhang, Yuancheng; Li, Hongxiu; Bruning, Bas; Katschnig, Diana; Broekman, Rob; Ji, Bin; van Bodegom, Peter

    2015-01-01

    Salt tolerance of higher plants is determined by a complex set of traits, the timing and rate of evolution of which are largely unknown. We compared the salt tolerance of cultivars of sugar beet and their ancestor, sea beet, in hydroponic studies and evaluated whether traditional domestication and more recent breeding have changed salt tolerance of the cultivars relative to their ancestor. Our comparison of salt tolerance of crop cultivars is based on values of the relative growth rate (RGR) of the entire plant at various salinity levels. We found considerable salt tolerance of the sea beet and slightly, but significantly, reduced salt tolerance of the sugar beet cultivars. This indicates that traditional domestication by selection for morphological traits such as leaf size, beet shape and size, enhanced productivity, sugar content and palatability slightly affected salt tolerance of sugar beet cultivars. Salt tolerance among four sugar beet cultivars, three of which have been claimed to be salt tolerant, did not differ. We analysed the components of RGR to understand the mechanism of salt tolerance at the whole-plant level. The growth rate reduction at higher salinity was linked with reduced leaf area at the whole-plant level (leaf area ratio) and at the individual leaf level (specific leaf area). The leaf weight fraction was not affected by increased salinity. On the other hand, succulence and leaf thickness and the net assimilation per unit of leaf area (unit leaf rate) increased in response to salt treatment, thus partially counteracting reduced capture of light by lower leaf area. This compensatory mechanism may form part of the salt tolerance mechanism of sea beet and the four studied sugar beet cultivars. Together, our results indicate that domestication of the halophytic ancestor sea beet slightly reduced salt tolerance and that breeding for improved salt tolerance of sugar beet cultivars has not been effective. PMID:25492122

  11. Remote sensing of tamarisk biomass, insect herbivory, and defoliation: Novel methods in the Grand Canyon Region, Arizona

    USGS Publications Warehouse

    Sankey, Temuulen T.; Sankey, Joel B.; Horne, Rene; Bedford, Ashton

    2016-01-01

    Tamarisk is an invasive, riparian shrub species in the southwestern USA. The northern tamarisk beetle (Diorhabda carinulata) has been introduced to several states to control tamarisk. We classified tamarisk distribution in the Glen Canyon National Recreation Area, Arizona using a 0.2 m resolution, airborne multispectral data and estimated tamarisk beetle effects (overall accuracy of 86 percent) leading to leaf defoliation in a 49,408 m2 area. We also estimated individual tamarisk tree biomass and their uncertainties using airbonre liday data (100 points/m2). On average, total above ground tamarisk biomass was 8.67 kg/m2 (SD=17.6). The tamarisk beetle defoliation resulted in a mean leaf biomass loss of 0.52 kg/m2 and an equivalent of 25,692 kg across the entire study area. Our defoliated tamarisk map and biomass estimates can help inform restoration treatments to reduce tamarisk. Continued monitoring of tamarisk and tamarisk beetle effects are recommended to understand the currently-unknown eventual equilibrium between the two species and the cascading effects on ecosystem processes.

  12. Leaf-on canopy closure in broadleaf deciduous forests predicted during winter

    USGS Publications Warehouse

    Twedt, Daniel J.; Ayala, Andrea J.; Shickel, Madeline R.

    2015-01-01

    Forest canopy influences light transmittance, which in turn affects tree regeneration and survival, thereby having an impact on forest composition and habitat conditions for wildlife. Because leaf area is the primary impediment to light penetration, quantitative estimates of canopy closure are normally made during summer. Studies of forest structure and wildlife habitat that occur during winter, when deciduous trees have shed their leaves, may inaccurately estimate canopy closure. We estimated percent canopy closure during both summer (leaf-on) and winter (leaf-off) in broadleaf deciduous forests in Mississippi and Louisiana using gap light analysis of hemispherical photographs that were obtained during repeat visits to the same locations within bottomland and mesic upland hardwood forests and hardwood plantation forests. We used mixed-model linear regression to predict leaf-on canopy closure from measurements of leaf-off canopy closure, basal area, stem density, and tree height. Competing predictive models all included leaf-off canopy closure (relative importance = 0.93), whereas basal area and stem density, more traditional predictors of canopy closure, had relative model importance of ≤ 0.51.

  13. Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance.

    PubMed

    Scoffoni, Christine; Vuong, Christine; Diep, Steven; Cochard, Hervé; Sack, Lawren

    2014-04-01

    Leaf shrinkage with dehydration has attracted attention for over 100 years, especially as it becomes visibly extreme during drought. However, little has been known of its correlation with physiology. Computer simulations of the leaf hydraulic system showed that a reduction of hydraulic conductance of the mesophyll pathways outside the xylem would cause a strong decline of leaf hydraulic conductance (K(leaf)). For 14 diverse species, we tested the hypothesis that shrinkage during dehydration (i.e. in whole leaf, cell and airspace thickness, and leaf area) is associated with reduction in K(leaf) at declining leaf water potential (Ψ(leaf)). We tested hypotheses for the linkage of leaf shrinkage with structural and physiological water relations parameters, including modulus of elasticity, osmotic pressure at full turgor, turgor loss point (TLP), and cuticular conductance. Species originating from moist habitats showed substantial shrinkage during dehydration before reaching TLP, in contrast with species originating from dry habitats. Across species, the decline of K(leaf) with mild dehydration (i.e. the initial slope of the K(leaf) versus Ψ(leaf) curve) correlated with the decline of leaf thickness (the slope of the leaf thickness versus Ψ(leaf) curve), as expected based on predictions from computer simulations. Leaf thickness shrinkage before TLP correlated across species with lower modulus of elasticity and with less negative osmotic pressure at full turgor, as did leaf area shrinkage between full turgor and oven desiccation. These findings point to a role for leaf shrinkage in hydraulic decline during mild dehydration, with potential impacts on drought adaptation for cells and leaves, influencing plant ecological distributions.

  14. Drought effect on growth, gas exchange and yield, in two strains of local barley Ardhaoui, under water deficit conditions in southern Tunisia.

    PubMed

    Thameur, Afwa; Lachiheb, Belgacem; Ferchichi, Ali

    2012-12-30

    Two local barley strains cv. Ardhaoui originated from Tlalit and Switir, sourthern Tunisia were grown in pots in a glasshouse assay, under well-watered conditions for a month. Plants were then either subjected to water deficit (treatment) or continually well-watered (control). Control pots were irrigated several times each week to maintain soil moisture near field capacity (FC), while stress pots experienced soil drying by withholding irrigation until they reached 50% of FC. Variation in relative water content, leaf area, leaf appearance rate and leaf gas exchange (i.e. net CO(2) assimilation rate (A), transpiration (E), and stomatal conductance (gs)) in response to water deficit was investigated. High leaf relative water content (RWC) was maintained in Tlalit by stomatal closure and a reduction of leaf area. Reduction in leaf area was due to decline in leaf gas exchange during water deficit. Tlalit was found to be drought tolerant and able to maintain higher leaf RWC under drought conditions. Water deficit treatment reduced stomatal conductance by 43% at anthesis. High net CO(2) assimilation rate under water deficit was associated with high RWC (r = 0.998; P < 0.01). Decline in net CO(2) assimilation rate was due mainly to stomatal closure. Significant differences between studied strains in leaf gas exchange parameters were found, which can give some indications on the degree of drought tolerance. Thus, the ability of the low leaf area plants to maintain higher RWC could explain the differences in drought tolerance in studied barley strains. Results showed that Tlalit showed to be more efficient and more productive than Switir. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Effect of acid mist and air pollutants on yellow-poplar seedling height and leaf growth

    Treesearch

    Leon S. Dochinger; Keith F. Jensen; Keith F. Jensen

    1985-01-01

    One-year-old yellow-poplar seedlings were treated with acid mist at pH 2.5, 3.5, 4.5, and 5.5 either alone or in combination with 0.1 ppm 03, S02, and NO2 or NO2 plus S02. After 4 and 8 weeks of treatment, height, leaf area, and leaf and new shoot weight were determined and growth analysis variables calculated. Height, leaf area, and dry weight decreased with...

  16. Chrysanthemum morphology, photosynthetic efficiency and antioxidant capacity are differentially modified by light quality.

    PubMed

    Zheng, Liang; Van Labeke, Marie-Christine

    2017-06-01

    The effect of light quality on leaf morphology, photosynthetic efficiency and antioxidant capacity of leaves that fully developed under a specific spectrum was investigated in Chrysanthemum cv. Four light treatments were applied at 100μmolm -2 s -1 and a photoperiod of 14h using light-emitting diodes, which were 100% red (R), 100% blue (B), 75% red with 25% blue (RB) and white (W), respectively. Intraspecific variation was investigated by studying the response of eight cultivars. Overall, red light significantly decreased the leaf area while the thinnest leaves were observed for W. Chlorophyll content and Chl a/b ratio was highest for W and lowest under R. B and RB resulted in the highest maximum quantum yield (F v /F m ) and quantum efficiency (Φ PSII ). A negative correlation between heat dissipation (NPQ) and Φ PSII was found. Blue light induced the highest hydrogen peroxide content, which is a proxy for total ROS generation, followed by W and RB while low contents were found under R. The antioxidative response was not always correlated with hydrogen content and differed depending on the light quality treatment. Blue light enhanced the proline levels, while carotenoids, total flavonoid and phenolic compounds were higher under W. Intraspecific variation in the responses were observed for most parameters with exception of leaf thickness; this intraspecific variation was most pronounced for total phenolic and flavonoid compounds. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Tree ecophysiology research at Taylor Woods (P-53)

    Treesearch

    Thomas E. Kolb; Nate G. McDowell

    2008-01-01

    We summarize the key findings of tree ecophysiology studies performed at Taylor Woods, Fort Valley Experimental Forest, Arizona between 1994 and 2003 that provide unique insight on impacts of long-term stand density management in ponderosa pine forests on tree water relations, leaf gas exchange, radial growth, leaf area-to-sapwood-area ratio, growth efficiency, leaf...

  18. Leaf area and net photosynthesis during development of Prunus serotina seedlings

    Treesearch

    Stephen B. Horsley; Kurt W. Gottschalk

    1993-01-01

    We used the plastochron index to study the relationship between plant age, leaf age and development, and net photosynthesis of black cherry (Prtmus serotina Ehrh.) seedlings. Leaf area and net photosynthesis were measured on all leaves >=75 mm of plants ranging in age from 7 to 20 plastochrons. Effects of plant developmental stage...

  19. Temporal relationships between spectral response and agronomic variables of a corn canopy

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Markham, B. L.; Tucker, C. J.; Mcmurtrey, J. E., III

    1981-01-01

    Attention is given to an experiment in which spectral radiance data collected in three spectral regions are related to corn canopy variables. The study extends the work of Tucker et al. (1979) in that more detailed measurements of corn canopy variables were made using quantitative techniques. Wet and dry green leaf biomass is considered along with the green leaf area index, chlorotic leaf biomass, chlorotic leaf area, and leaf water content. In addition, spectral data were collected with a hand-held radiometer having Landsat-D Thematic Mapper (TM) bands TM3 (0.63-0.69 micrometers), TM4 (0.76-0.90 micrometers), and TM5 (1.55-1.75 micrometers). TM3, TM4, and TM5 seem to be well situated spectrally for making remotely sensed measurements related to chlorophyll concentration, leaf density, and leaf water content.

  20. Distributions of fossil fuel originated CO2 in five metropolitan areas of Korea (Seoul, Busan, Daegu, Daejeon, and Gwangju) according to the Δ14C in ginkgo leaves

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Hong, W.; Park, G.; Sung, K. S.; Lee, K. H.; Kim, Y. E.; Kim, J. K.; Choi, H. W.; Kim, G. D.; Woo, H. J.

    2013-01-01

    We collected a batch of ginkgo (Ginkgo biloba Linnaeus) leaf samples at five metropolitan areas of Korea (Seoul, Busan, Daegu, Daejeon, and Gwangju) in 2009 to obtain the regional distribution of fossil fuel originated CO2 (fossil fuel CO2) in the atmosphere. Regions assumed to be free of fossil fuel CO2 were also selected, namely Mt. Chiak, Mt. Kyeryong, Mt. Jiri, Anmyeon Island, and Jeju Island and ginkgo leaf samples were collected in those areas during the same period. The Δ14C values of the samples were measured using Accelerator Mass Spectrometry (AMS) and the fossil fuel CO2 ratios in the atmosphere were obtained in the five metropolitan areas. The average ratio of fossil fuel CO2 in Seoul was higher than that in the other four cities. The leaves from the Sajik Tunnel in Seoul recorded the highest FFCTC (fossil fuel CO2 over total CO2 in atmosphere), 13.9 ± 0.5%, as the air flow of the surrounding neighborhood of the Sajik Tunnel was blocked.

  1. Effect of cold plasma treatment on seedling growth and nutrient absorption of tomato

    NASA Astrophysics Data System (ADS)

    Jiafeng, JIANG; Jiangang, LI; Yuanhua, DONG

    2018-04-01

    The effects of cold plasma (CP) treatment on seed germination, seedling growth, root morphology, and nutrient uptake of a tomato were investigated. The results showed that 80 W of CP treatment significantly increased tomato nitrogen (N) and phosphorus (P) absorption by 12.7% and 19.1%, respectively. CP treatment significantly improved the germination potential of tomato seed by 11.1% and the germination rate by 13.8%. Seedling growth characteristics, including total dry weight, root dry weight, root shoot rate, and leaf area, significantly increased after 80 W of CP treatment. Root activity was increased by 15.7% with 80 W of CP treatment, and 12.6% with 100 W of CP treatment. CP treatment (80 W) markedly ameliorated tomato root morphology, and root length, surface area, and volume, which increased 21.3%, 23.6%, and 29.0%, respectively. Our results suggested that CP treatment improved tomato N and P absorption by promoting the accumulation of shoot and root biomass, increasing the leaf area and root activity, and improving the length, surface area, and volume of root growth. Thus, CP treatment could be used in an ameliorative way to improve tomato nutrient absorption.

  2. Leaf area and light use efficiency patterns of Norway spruce under different thinning regimes and age classes

    PubMed Central

    Gspaltl, Martin; Bauerle, William; Binkley, Dan; Sterba, Hubert

    2013-01-01

    Silviculture focuses on establishing forest stand conditions that improve the stand increment. Knowledge about the efficiency of an individual tree is essential to be able to establish stand structures that increase tree resource use efficiency and stand level production. Efficiency is often expressed as stem growth per unit leaf area (leaf area efficiency), or per unit of light absorbed (light use efficiency). We tested the hypotheses that: (1) volume increment relates more closely with crown light absorption than leaf area, since one unit of leaf area can receive different amounts of light due to competition with neighboring trees and self-shading, (2) dominant trees use light more efficiently than suppressed trees and (3) thinning increases the efficiency of light use by residual trees, partially accounting for commonly observed increases in post-thinning growth. We investigated eight even-aged Norway spruce (Picea abies (L.) Karst.) stands at Bärnkopf, Austria, spanning three age classes (mature, immature and pole-stage) and two thinning regimes (thinned and unthinned). Individual leaf area was calculated with allometric equations and absorbed photosynthetically active radiation was estimated for each tree using the three-dimensional crown model Maestra. Absorbed photosynthetically active radiation was only a slightly better predictor of volume increment than leaf area. Light use efficiency increased with increasing tree size in all stands, supporting the second hypothesis. At a given tree size, trees from the unthinned plots were more efficient, however, due to generally larger tree sizes in the thinned stands, an average tree from the thinned treatment was superior (not congruent in all plots, thus only partly supporting the third hypothesis). PMID:25540477

  3. Sensitive Indicators of Zonal Stipa Species to Changing Temperature and Precipitation in Inner Mongolia Grassland, China

    PubMed Central

    Lv, Xiaomin; Zhou, Guangsheng; Wang, Yuhui; Song, Xiliang

    2016-01-01

    Climate change often induces shifts in plant functional traits. However, knowledge related to sensitivity of different functional traits and sensitive indicator representing plant growth under hydrothermal change remains unclear. Inner Mongolia grassland is predicted to be one of the terrestrial ecosystems which are most vulnerable to climate change. In this study, we analyzed the response of four zonal Stipa species (S. baicalensis, S. grandis, S. breviflora, and S. bungeana) from Inner Mongolia grassland to changing temperature (control, increased 1.5, 2, 4, and 6°C), precipitation (decreased 30 and 15%, control, increased 15 and 30%) and their combined effects via climate control chambers. The relative change of functional traits in the unit of temperature and precipitation change was regarded as sensitivity coefficient and sensitive indicators were examined by pathway analysis. We found that sensitivity of the four Stipa species to changing temperature and precipitation could be ranked as follows: S. bungeana > S. grandis > S. breviflora > S. baicalensis. In particular, changes in leaf area, specific leaf area and root/shoot ratio could account for 86% of the changes in plant biomass in the four Stipa species. Also these three measurements were more sensitive to hydrothermal changes than the other functional traits. These three functional indicators reflected the combination of plant production capacity (leaf area), adaptive strategy (root/shoot ratio), instantaneous environmental effects (specific leaf area), and cumulative environmental effects (leaf area and root/shoot ratio). Thus, leaf area, specific leaf area and root/shoot ratio were chosen as sensitive indicators in response to changing temperature and precipitation for Stipa species. These results could provide the basis for predicting the influence of climate change on Inner Mongolia grassland based on the magnitude of changes in sensitive indicators. PMID:26904048

  4. Size-dependent enhancement of water relations during post-fire resprouting.

    PubMed

    Schafer, Jennifer L; Breslow, Bradley P; Hollingsworth, Stephanie N; Hohmann, Matthew G; Hoffmann, William A

    2014-04-01

    In resprouting species, fire-induced topkill causes a reduction in height and leaf area without a comparable reduction in the size of the root system, which should lead to an increase in the efficiency of water transport after fire. However, large plants undergo a greater relative reduction in size, compared with small plants, so we hypothesized that this enhancement in hydraulic efficiency would be greatest among large growth forms. In the ecotone between long-leaf pine (Pinus palustris Mill.) savannas and wetlands, we measured stomatal conductance (gs), mid-day leaf water potential (Ψleaf), leaf-specific whole-plant hydraulic conductance (KL.p), leaf area and height of 10 species covering a range of growth forms in burned and unburned sites. As predicted, KL.p was higher in post-fire resprouts than in unburned plants, and the post-fire increase in KL.p was positively related to plant size. Specifically, large-statured species tended to undergo the greatest relative reductions in leaf area and height, and correspondingly experienced the greatest increases in KL.p. The post-fire increase in KL.p was smaller than expected, however, due to a decrease in absolute root hydraulic conductance (i.e., not scaled to leaf area). The higher KL.p in burned sites was manifested as an increase in gs rather than an increase in Ψleaf. Post-fire increases in gs should promote high rates of photosynthesis for recovery of carbohydrate reserves and aboveground biomass, which is particularly important for large-statured species that require more time to recover their pre-fire size.

  5. Impact of UV-A radiation on the performance of aphids and whiteflies and on the leaf chemistry of their host plants.

    PubMed

    Dáder, Beatriz; Gwynn-Jones, Dylan; Moreno, Aránzazu; Winters, Ana; Fereres, Alberto

    2014-09-05

    Ultraviolet (UV) radiation directly regulates a multitude of herbivore life processes, in addition to indirectly affecting insect success via changes in plant chemistry and morphogenesis. Here we looked at plant and insect (aphid and whitefly) exposure to supplemental UV-A radiation in the glasshouse environment and investigated effects on insect population growth. Glasshouse grown peppers and eggplants were grown from seed inside cages covered by novel plastic filters, one transparent and the other opaque to UV-A radiation. At a 10-true leaf stage for peppers (53 days) and 4-true leaf stage for eggplants (34 days), plants were harvested for chemical analysis and infested by aphids and whiteflies, respectively. Clip-cages were used to introduce and monitor the insect fitness and populations of the pests studied. Insect pre-reproductive period, fecundity, fertility and intrinsic rate of natural increase were assessed. Crop growth was monitored weekly for 7 and 12 weeks throughout the crop cycle of peppers and eggplants, respectively. At the end of the insect fitness experiment, plants were harvested (68 days and 18-true leaf stage for peppers, and 104 days and 12-true leaf stage for eggplants) and leaves analysed for secondary metabolites, soluble carbohydrates, amino acids, total proteins and photosynthetic pigments. Our results demonstrate for the first time, that UV-A modulates plant chemistry with implications for insect pests. Both plant species responded directly to UV-A by producing shorter stems but this effect was only significant in pepper whilst UV-A did not affect the leaf area of either species. Importantly, in pepper, the UV-A treated plants contained higher contents of secondary metabolites, leaf soluble carbohydrates, free amino acids and total content of protein. Such changes in tissue chemistry may have indirectly promoted aphid performance. For eggplants, chlorophylls a and b, and carotenoid levels decreased with supplemental UV-A over the entire crop cycle but UV-A exposure did not affect leaf secondary metabolites. However, exposure to supplemental UV-A had a detrimental effect on whitefly development, fecundity and fertility presumably not mediated by plant cues as compounds implied in pest nutrition - proteins and sugars - were unaltered. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Novel Digital Features Discriminate Between Drought Resistant and Drought Sensitive Rice Under Controlled and Field Conditions.

    PubMed

    Duan, Lingfeng; Han, Jiwan; Guo, Zilong; Tu, Haifu; Yang, Peng; Zhang, Dong; Fan, Yuan; Chen, Guoxing; Xiong, Lizhong; Dai, Mingqiu; Williams, Kevin; Corke, Fiona; Doonan, John H; Yang, Wanneng

    2018-01-01

    Dynamic quantification of drought response is a key issue both for variety selection and for functional genetic study of rice drought resistance. Traditional assessment of drought resistance traits, such as stay-green and leaf-rolling, has utilized manual measurements, that are often subjective, error-prone, poorly quantified and time consuming. To relieve this phenotyping bottleneck, we demonstrate a feasible, robust and non-destructive method that dynamically quantifies response to drought, under both controlled and field conditions. Firstly, RGB images of individual rice plants at different growth points were analyzed to derive 4 features that were influenced by imposition of drought. These include a feature related to the ability to stay green, which we termed greenness plant area ratio (GPAR) and 3 shape descriptors [total plant area/bounding rectangle area ratio (TBR), perimeter area ratio (PAR) and total plant area/convex hull area ratio (TCR)]. Experiments showed that these 4 features were capable of discriminating reliably between drought resistant and drought sensitive accessions, and dynamically quantifying the drought response under controlled conditions across time (at either daily or half hourly time intervals). We compared the 3 shape descriptors and concluded that PAR was more robust and sensitive to leaf-rolling than the other shape descriptors. In addition, PAR and GPAR proved to be effective in quantification of drought response in the field. Moreover, the values obtained in field experiments using the collection of rice varieties were correlated with those derived from pot-based experiments. The general applicability of the algorithms is demonstrated by their ability to probe archival Miscanthus data previously collected on an independent platform. In conclusion, this image-based technology is robust providing a platform-independent tool for quantifying drought response that should be of general utility for breeding and functional genomics in future.

  7. Explaining biomass growth of tropical canopy trees: the importance of sapwood.

    PubMed

    van der Sande, Masha T; Zuidema, Pieter A; Sterck, Frank

    2015-04-01

    Tropical forests are important in worldwide carbon (C) storage and sequestration. C sequestration of these forests may especially be determined by the growth of canopy trees. However, the factors driving variation in growth among such large individuals remain largely unclear. We evaluate how crown traits [total leaf area, specific leaf area and leaf nitrogen (N) concentration] and stem traits [sapwood area (SA) and sapwood N concentration] measured for individual trees affect absolute biomass growth for 43 tropical canopy trees belonging to four species, in a moist forest in Bolivia. Biomass growth varied strongly among trees, between 17.3 and 367.3 kg year(-1), with an average of 105.4 kg year(-1). We found that variation in biomass growth was chiefly explained by a positive effect of SA, and not by tree size or other traits examined. SA itself was positively associated with sapwood growth, sapwood lifespan and basal area. We speculate that SA positively affects the growth of individual trees mainly by increasing water storage, thus securing water supply to the crown. These positive roles of sapwood on growth apparently offset the increased respiration costs incurred by more sapwood. This is one of the first individual-based studies to show that variation in sapwood traits-and not crown traits-explains variation in growth among tropical canopy trees. Accurate predictions of C dynamics in tropical forests require similar studies on biomass growth of individual trees as well as studies evaluating the dual effect of sapwood (water provision vs. respiratory costs) on tropical tree growth.

  8. Photosynthetic capacity peaks at intermediate size in temperate deciduous trees.

    PubMed

    Thomas, Sean C

    2010-05-01

    Studies of age-related changes in leaf functional biology have generally been based on dichotomous comparisons of young and mature individuals (e.g., saplings and mature canopy trees), with little data available to describe changes through the entire ontogeny of trees, particularly of broadleaf angiosperms. Leaf-level gas-exchange and morphological parameters were quantified in situ in the upper canopy of trees acclimated to high light conditions, spanning a wide range of ontogenetic stages from saplings (approximately 1 cm in stem diameter) to trees >60 cm d.b.h. and nearing their maximum lifespan, in three temperate deciduous tree species in central Ontario, Canada. Traits associated with growth performance, including leaf photosynthetic capacity (expressed on either an area, mass or leaf N basis), stomatal conductance, leaf size and leaf N content, generally showed a unimodal ('hump-shaped') pattern, with peak values at an intermediate ontogenetic stage. In contrast, leaf mass per area (LMA) and related morphological parameters (leaf thickness, leaf tissue density, leaf C content) increased monotonically with tree size, as did water-use efficiency; these monotonic relationships were well described by simple allometric functions of the form Y = aX(b). For traits showing unimodal patterns, tree size corresponding to the trait maximum differed markedly among traits: all three species showed a similar pattern in which the peak for leaf size occurred in trees approximately 2-6 cm d.b.h., followed by leaf chemical traits and photosynthetic capacity on a mass or leaf N basis and finally by photosynthetic capacity on a leaf area basis, which peaked approximately at the size of reproductive onset. It is argued that ontogenetic increases in photosynthetic capacity and related traits early in tree ontogeny are general among relatively shade-tolerant tree species that have a low capacity for leaf-level acclimation, as are declines in this set of traits late in tree ontogeny.

  9. Turning over a new 'leaf': multiple functional significances of leaves versus phyllodes in Hawaiian Acacia koa.

    PubMed

    Pasquet-Kok, Jessica; Creese, Christine; Sack, Lawren

    2010-12-01

    Hawaiian endemic tree Acacia koa is a model for heteroblasty with bipinnately compound leaves and phyllodes. Previous studies suggested three hypotheses for their functional differentiation: an advantage of leaves for early growth or shade tolerance, and an advantage of phyllodes for drought tolerance. We tested the ability of these hypotheses to explain differences between leaf types for potted plants in 104 physiological and morphological traits, including gas exchange, structure and composition, hydraulic conductance, and responses to varying light, intercellular CO(2) , vapour pressure deficit (VPD) and drought. Leaf types were similar in numerous traits including stomatal pore area per leaf area, leaf area-based gas exchange rates and cuticular conductance. Each hypothesis was directly supported by key differences in function. Leaves had higher mass-based gas exchange rates, while the water storage tissue in phyllodes contributed to greater capacitance per area; phyllodes also showed stronger stomatal closure at high VPD, and higher maximum hydraulic conductance per area, with stronger decline during desiccation and recovery with rehydration. While no single hypothesis completely explained the differences between leaf types, together the three hypotheses explained 91% of differences. These findings indicate that the heteroblasty confers multiple benefits, realized across different developmental stages and environmental contexts. © 2010 Blackwell Publishing Ltd.

  10. Monocot Leaves are Eaten Less than Dicot Leaves in Tropical Lowland Rain Forests: Correlations with Toughness and Leaf Presentation

    PubMed Central

    Grubb, Peter J.; Jackson, Robyn V.; Barberis, Ignacio M.; Bee, Jennie N.; Coomes, David A.; Dominy, Nathaniel J.; De La Fuente, Marie Ann S.; Lucas, Peter W.; Metcalfe, Daniel J.; Svenning, Jens-Christian; Turner, Ian M.; Vargas, Orlando

    2008-01-01

    Background and Aims In tropical lowland rain forest (TLRF) the leaves of most monocots differ from those of most dicots in two ways that may reduce attack by herbivores. Firstly, they are tougher. Secondly, the immature leaves are tightly folded or rolled until 50–100 % of their final length. It was hypothesized that (a) losses of leaf area to herbivorous invertebrates are generally greatest during leaf expansion and smaller for monocots than for dicots, and (b) where losses after expansion are appreciable any difference between monocots and dicots then is smaller than that found during expansion. Methods At six sites on four continents, estimates were made of lamina area loss from the four most recently mature leaves of focal monocots and of the nearest dicot shoot. Measurements of leaf mass per unit area, and the concentrations of water and nitrogen were made for many of the species. In Panama, the losses from monocots (palms) and dicots were also measured after placing fully expanded palm leaflets and whole dicot leaves on trails of leaf-cutter ants. Key Results At five of six sites monocots experienced significantly smaller leaf area loss than dicots. The results were not explicable in terms of leaf mass per unit area, or concentrations of water or nitrogen. At only one site was the increase in loss from first to fourth mature leaf significant (also large and the same in monocots and dicots), but the losses sustained during expansion were much smaller in the monocots. In the leaf-cutter ant experiment, losses were much smaller for palms than for dicots. Conclusions The relationship between toughness and herbivory is complex; despite the negative findings of some recent authors for dicots we hypothesize that either greater toughness or late folding can protect monocot leaves against herbivorous insects in tropical lowland rain forest, and that the relative importance varies widely with species. The difficulties of establishing unequivocally the roles of leaf toughness and leaf folding or rolling in a given case are discussed. PMID:18387972

  11. Seagrass morphometrics at species level in Moreton Bay, Australia from 2012 to 2013.

    PubMed

    Samper-Villarreal, Jimena; Roelfsema, Chris; Kovacs, Eva M; Adi, Novi S; Lyons, Mitchell; Mumby, Peter J; Lovelock, Catherine E; Saunders, Megan I; Phinn, Stuart R

    2017-05-09

    Seagrass above, below and total biomass, density and leaf area, length and width were quantified at a species level for 122 sites over three sampling periods in Moreton Bay, Australia. Core samples were collected in two regions: (1) a high water quality region with varying species assemblages and canopy complexity (98 sites); and (2) along a turbidity gradient in the bay (24 sites within four locations). Core samples were collected using a 15 cm diameter×20 cm long corer. Seagrass dry biomass per component was quantified per species present in each sample. A total of 220 biomass and density data records are included, 130 from the high water quality region and 90 from the turbidity gradient. These data provide a detailed assessment of biomass, density and leaf metrics per species sampled from Moreton Bay over 2012-2013. In future, these can be used as a baseline to assess seasonal and spatial variation within the bay, within the region and among regions.

  12. Seagrass morphometrics at species level in Moreton Bay, Australia from 2012 to 2013

    PubMed Central

    Samper-Villarreal, Jimena; Roelfsema, Chris; Kovacs, Eva M.; Adi, Novi S.; Lyons, Mitchell; Mumby, Peter J.; Lovelock, Catherine E.; Saunders, Megan I.; Phinn, Stuart R.

    2017-01-01

    Seagrass above, below and total biomass, density and leaf area, length and width were quantified at a species level for 122 sites over three sampling periods in Moreton Bay, Australia. Core samples were collected in two regions: (1) a high water quality region with varying species assemblages and canopy complexity (98 sites); and (2) along a turbidity gradient in the bay (24 sites within four locations). Core samples were collected using a 15 cm diameter×20 cm long corer. Seagrass dry biomass per component was quantified per species present in each sample. A total of 220 biomass and density data records are included, 130 from the high water quality region and 90 from the turbidity gradient. These data provide a detailed assessment of biomass, density and leaf metrics per species sampled from Moreton Bay over 2012–2013. In future, these can be used as a baseline to assess seasonal and spatial variation within the bay, within the region and among regions. PMID:28485717

  13. Rapid shoot-to-root signalling regulates root hydraulic conductance via aquaporins.

    PubMed

    Vandeleur, Rebecca K; Sullivan, Wendy; Athman, Asmini; Jordans, Charlotte; Gilliham, Matthew; Kaiser, Brent N; Tyerman, Stephen D

    2014-02-01

    We investigated how root hydraulic conductance (normalized to root dry weight, Lo ) is regulated by the shoot. Shoot topping (about 30% reduction in leaf area) reduced Lo of grapevine (Vitis vinifera L.), soybean (Glycine max L.) and maize (Zea mays L.) by 50 to 60%. More detailed investigations with soybean and grapevine showed that the reduction in Lo was not correlated with the reduction in leaf area, and shading or cutting single leaves had a similar effect. Percentage reduction in Lo was largest when initial Lo was high in soybean. Inhibition of Lo by weak acid (low pH) was smaller after shoot damage or leaf shading. The half time of reduction in Lo was approximately 5 min after total shoot decapitation. These characteristics indicate involvement of aquaporins. We excluded phloem-borne signals and auxin-mediated signals. Xylem-mediated hydraulic signals are possible since turgor rapidly decreased within root cortex cells after shoot topping. There was a significant reduction in the expression of several aquaporins in the plasma membrane intrinsic protein (PIP) family of both grapevine and soybean. In soybean, there was a five- to 10-fold reduction in GmPIP1;6 expression over 0.5-1 h which was sustained over the period of reduced Lo . © 2013 John Wiley & Sons Ltd.

  14. Path analysis of phenotypic traits in young cacao plants under drought conditions.

    PubMed

    Santos, Emerson Alves Dos; Almeida, Alex-Alan Furtado de; Branco, Marcia Christina da Silva; Santos, Ivanildes Conceição Dos; Ahnert, Dario; Baligar, Virupax C; Valle, Raúl René

    2018-01-01

    Drought is worldwide considered one of the most limiting factors of Theobroma cacao production, which can be intensified by global climate changes. In this study, we aimed to investigate the phenotypic correlation among morphological characteristics of cacao progenies submitted to irrigation and drought conditions and their partitions into direct and indirect effects. Path analysis with phenotypic plasticity index was used as criteria for estimation of basic and explanatory variables. The experiment was conducted in a greenhouse at the Cacao Research Center (CEPEC), Ilhéus, Bahia, Brazil, in a randomized block 21 x 2 factorial arrangement [21 cacao progenies obtained from complete diallel crosses and two water regimes (control and drought)] and six replications. In general, drought conditions influenced biomass production in most progenies, causing significant reductions in total leaf area, leaf number, leaf biomass, fine-roots length (diameter <1 mm), root volume and root area for considered drought intolerant. All progenies showed alterations in growth due to drought. Phenotypic plasticity was most strongly pronounced in root volume. Stem and root diameters, as well as stem dry biomass were the growth variables with the greatest direct effects on root volume under drought conditions, these characters being indicated in screening of cacao progenies drought tolerant.

  15. Path analysis of phenotypic traits in young cacao plants under drought conditions

    PubMed Central

    dos Santos, Emerson Alves; de Almeida, Alex-Alan Furtado; Branco, Marcia Christina da Silva; dos Santos, Ivanildes Conceição; Ahnert, Dario; Baligar, Virupax C.; Valle, Raúl René

    2018-01-01

    Drought is worldwide considered one of the most limiting factors of Theobroma cacao production, which can be intensified by global climate changes. In this study, we aimed to investigate the phenotypic correlation among morphological characteristics of cacao progenies submitted to irrigation and drought conditions and their partitions into direct and indirect effects. Path analysis with phenotypic plasticity index was used as criteria for estimation of basic and explanatory variables. The experiment was conducted in a greenhouse at the Cacao Research Center (CEPEC), Ilhéus, Bahia, Brazil, in a randomized block 21 x 2 factorial arrangement [21 cacao progenies obtained from complete diallel crosses and two water regimes (control and drought)] and six replications. In general, drought conditions influenced biomass production in most progenies, causing significant reductions in total leaf area, leaf number, leaf biomass, fine-roots length (diameter <1 mm), root volume and root area for considered drought intolerant. All progenies showed alterations in growth due to drought. Phenotypic plasticity was most strongly pronounced in root volume. Stem and root diameters, as well as stem dry biomass were the growth variables with the greatest direct effects on root volume under drought conditions, these characters being indicated in screening of cacao progenies drought tolerant. PMID:29408854

  16. High resolution imaging of subcellular glutathione concentrations by quantitative immunoelectron microscopy in different leaf areas of Arabidopsis

    PubMed Central

    Koffler, Barbara E.; Bloem, Elke; Zellnig, Günther; Zechmann, Bernd

    2013-01-01

    Glutathione is an important antioxidant and redox buffer in plants. It fulfills many important roles during plant development, defense and is essential for plant metabolism. Even though the compartment specific roles of glutathione during abiotic and biotic stress situations have been studied in detail there is still great lack of knowledge about subcellular glutathione concentrations within the different leaf areas at different stages of development. In this study a method is described that allows the calculation of compartment specific glutathione concentrations in all cell compartments simultaneously in one experiment by using quantitative immunogold electron microscopy combined with biochemical methods in different leaf areas of Arabidopsis thaliana Col-0 (center of the leaf, leaf apex, leaf base and leaf edge). The volume of subcellular compartments in the mesophyll of Arabidopsis was found to be similar to other plants. Vacuoles covered the largest volume within a mesophyll cell and increased with leaf age (up to 80% in the leaf apex of older leaves). Behind vacuoles, chloroplasts covered the second largest volume (up to 20% in the leaf edge of the younger leaves) followed by nuclei (up to 2.3% in the leaf edge of the younger leaves), mitochondria (up to 1.6% in the leaf apex of the younger leaves), and peroxisomes (up to 0.3% in the leaf apex of the younger leaves). These values together with volumes of the mesophyll determined by stereological methods from light and electron micrographs and global glutathione contents measured with biochemical methods enabled the determination of subcellular glutathione contents in mM. Even though biochemical investigations did not reveal differences in global glutathione contents, compartment specific differences could be observed in some cell compartments within the different leaf areas. Highest concentrations of glutathione were always found in mitochondria, where values in a range between 8.7 mM (in the apex of younger leaves) and 15.1 mM (in the apex of older leaves) were found. The second highest amount of glutathione was found in nuclei (between 5.5 mM and 9.7 mM in the base and the center of younger leaves, respectively) followed by peroxisomes (between 2.6 mM in the edge of younger leaves and 4.8 mM in the base of older leaves, respectively) and the cytosol (2.8 mM in the edge of younger and 4.5 mM in the center of older leaves, respectively). Chloroplasts contained rather low amounts of glutathione (between 1 mM and 1.4 mM). Vacuoles had the lowest concentrations of glutathione (0.01 mM and 0.14 mM) but showed large differences between the different leaf areas. Clear differences in glutathione contents between the different leaf areas could only be found in vacuoles and mitochondria revealing that glutathione in the later cell organelle accumulated with leaf age to concentrations of up to 15 mM and that concentrations of glutathione in vacuoles are quite low in comparison to the other cell compartments. PMID:23265941

  17. Broad Anatomical Variation within a Narrow Wood Density Range--A Study of Twig Wood across 69 Australian Angiosperms.

    PubMed

    Ziemińska, Kasia; Westoby, Mark; Wright, Ian J

    2015-01-01

    Just as people with the same weight can have different body builds, woods with the same wood density can have different anatomies. Here, our aim was to assess the magnitude of anatomical variation within a restricted range of wood density and explore its potential ecological implications. Twig wood of 69 angiosperm tree and shrub species was analyzed. Species were selected so that wood density varied within a relatively narrow range (0.38-0.62 g cm-3). Anatomical traits quantified included wood tissue fractions (fibres, axial parenchyma, ray parenchyma, vessels, and conduits with maximum lumen diameter below 15 μm), vessel properties, and pith area. To search for potential ecological correlates of anatomical variation the species were sampled across rainfall and temperature contrasts, and several other ecologically-relevant traits were measured (plant height, leaf area to sapwood area ratio, and modulus of elasticity). Despite the limited range in wood density, substantial anatomical variation was observed. Total parenchyma fraction varied from 0.12 to 0.66 and fibre fraction from 0.20 to 0.74, and these two traits were strongly inversely correlated (r = -0.86, P < 0.001). Parenchyma was weakly (0.24 ≤|r|≤ 0.35, P < 0.05) or not associated with vessel properties nor with height, leaf area to sapwood area ratio, and modulus of elasticity (0.24 ≤|r|≤ 0.41, P < 0.05). However, vessel traits were fairly well correlated with height and leaf area to sapwood area ratio (0.47 ≤|r|≤ 0.65, all P < 0.001). Modulus of elasticity was mainly driven by fibre wall plus vessel wall fraction rather than by the parenchyma component. Overall, there seem to be at least three axes of variation in xylem, substantially independent of each other: a wood density spectrum, a fibre-parenchyma spectrum, and a vessel area spectrum. The fibre-parenchyma spectrum does not yet have any clear or convincing ecological interpretation.

  18. Trade-off between soluble protein production and nutritional storage in Bromeliaceae

    PubMed Central

    Gonçalves, Ana Zangirolame; Mercier, Helenice; Oliveira, Rafael Silva; Romero, Gustavo Quevedo

    2016-01-01

    Background and Aims Bromeliads are able to occupy some of the most nutrient-poor environments especially because they possess absorptive leaf trichomes, leaves organized in rosettes, distinct photosynthetic pathways [C3, Crassulacean acid metabolism (CAM) or facultative C3–CAM], and may present an epiphytic habit. The more derived features related to these traits are described for the Tillandsioideae subfamily. In this context, the aims of this study were to evaluate how terrestrial predators contribute to the nutrition and performance of bromeliad species, subfamilies and ecophysiological types, whether these species differ in their ecophysiological traits and whether the physiological outcomes are consistent among subfamilies and types (e.g. presence/absence of tank, soil/tank/atmosphere source of nutrients, trichomes/roots access to nutrients). Methods Isotopic (15N-enriched predator faeces) and physiological methods (analyses of plant protein, amino acids, growth, leaf mass per area and total N incorporated) in greenhouse experiments were used to investigate the ecophysiological contrasts between Tillandsioideae and Bromelioideae, and among ecophysiological types when a predatory anuran contributes to their nutrition. Key Results It was observed that Bromelioideae had higher concentrations of soluble protein and only one species grew more (Ananas bracteatus), while Tillandsioideae showed higher concentrations of total amino acids, asparagine and did not grow. The ecophysiological types that showed similar protein contents also had similar growth. Additionally, an ordination analysis showed that the subfamilies and ecophysiological types were discrepant considering the results of the total nitrogen incorporated from predators, soluble protein and asparagine concentrations, relative growth rate and leaf mass per area. Conclusions Bromeliad subfamilies showed a trade-off between two strategies: Tillandsioideae stored nitrogen into amino acids possibly for transamination reactions during nutritional stress and did not grow, whereas Bromelioideae used nitrogen for soluble protein production for immediate utilization, possibly for fast growth. These results highlight that Bromeliaceae evolution may be directly associated with the ability to stock nutrients. PMID:27578765

  19. Total polyphenols, catechin profiles and antioxidant activity of tea products from purple leaf coloured tea cultivars.

    PubMed

    Kerio, L C; Wachira, F N; Wanyoko, J K; Rotich, M K

    2013-02-15

    Black (aerated) and green (unaerated) tea products, processed from 10 green and 18 purple leaf coloured cultivars of Kenyan origin, and two tea products, from the Japanese cultivars, Yabukita and Yutakamidori, were assayed for total polyphenols (TP) content, individual catechin profiles and in vitro antioxidant capacity (AA). In addition, the phenolic content of the tea products was determined using the Folin-Ciocalteu phenol reagent. Catechin fractions were identified using reverse phase high performance liquid chromatography (HPLC) with a binary gradient elution system. The AA% of the tea products was determined using a 2,2'-diphenyl picrylhydrazyl (DPPH) radical assay method. The results showed that TPs, catechin profiles and antioxidant activities were significantly (p≤0.05) higher in unaerated than in aerated teas. Tea products from the purple leaf coloured tea cultivars had levels of TPs, total catechin (TC) and antioxidant activities similar to those from the green leaf coloured cultivars, except for teas from the Japanese cultivars that were very low in the assayed parameters. Caffeine content was significantly (p≤0.05) lower in products from the purple leaf coloured cultivars than in those from the green leaf coloured tea cultivars. Antioxidant activity (%) was higher in tea products from the Kenyan germplasm than in those from the Japanese cultivars. Antioxidant potency of tea products was significantly (r=0.789(∗∗), p≤0.01) influenced by the total anthocyanin content of the purple leaf coloured cultivars. Cyanidin-3-O-glucoside was the anthocyanin most highly correlated with AA% (r=0.843(∗∗), p≤0.01 in unaerated tea). Total catechins in the unaerated products from the green leaf coloured tea cultivars were also significantly correlated with antioxidant capacity (r=0.818(∗∗), p≤0.01). Results from this study suggest that the antioxidant potency of teas is dependent on the predominant flavonoid compound, the type of tea cultivar and the processing method. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Leaf trait dissimilarities between Dutch elm hybrids with a contrasting tolerance to Dutch elm disease.

    PubMed

    Durkovic, Jaroslav; Canová, Ingrid; Lagana, Rastislav; Kucerová, Veronika; Moravcík, Michal; Priwitzer, Tibor; Urban, Josef; Dvorák, Milon; Krajnáková, Jana

    2013-02-01

    Previous studies have shown that Ophiostoma novo-ulmi, the causative agent of Dutch elm disease (DED), is able to colonize remote areas in infected plants of Ulmus such as the leaf midrib and secondary veins. The objective of this study was to compare the performances in leaf traits between two Dutch elm hybrids 'Groeneveld' and 'Dodoens' which possess a contrasting tolerance to DED. Trait linkages were also tested with leaf mass per area (LMA) and with the reduced Young's modulus of elasticity (MOE) as a result of structural, developmental or functional linkages. Measurements and comparisons were made of leaf growth traits, primary xylem density components, gas exchange variables and chlorophyll a fluorescence yields between mature plants of 'Groeneveld' and 'Dodoens' grown under field conditions. A recently developed atomic force microscopy technique, PeakForce quantitative nanomechanical mapping, was used to reveal nanomechanical properties of the cell walls of tracheary elements such as MOE, adhesion and dissipation. 'Dodoens' had significantly higher values for LMA, leaf tissue thickness variables, tracheary element lumen area (A), relative hydraulic conductivity (RC), gas exchange variables and chlorophyll a fluorescence yields. 'Groeneveld' had stiffer cell walls of tracheary elements, and higher values for water-use efficiency and leaf water potential. Leaves with a large carbon and nutrient investment in LMA tended to have a greater leaf thickness and a higher net photosynthetic rate, but LMA was independent of RC. Significant linkages were also found between the MOE and some vascular traits such as RC, A and the number of tracheary elements per unit area. Strong dissimilarities in leaf trait performances were observed between the examined Dutch elm hybrids. Both hybrids were clearly separated from each other in the multivariate leaf trait space. Leaf growth, vascular and gas exchange traits in the infected plants of 'Dodoens' were unaffected by the DED fungus. 'Dodoens' proved to be a valuable elm germplasm for further breeding strategies.

  1. Seasonal variation of temperature response of respiration in invasive Berberis thunbergii (Japanese barberry) and two co-occurring native understory shrubs in a northeastern US deciduous forest.

    PubMed

    Xu, Cheng-Yuan; Schuster, W S F; Griffin, Kevin L

    2007-10-01

    In the understory of a closed forest, plant growth is limited by light availability, and early leafing is proposed to be an important mechanism of plant invasion by providing a spring C "subsidy" when high light is available. However, studies on respiration, another important process determining plant net C gain, are rare in understory invasive plants. In this study, leaf properties and the temperature response of leaf respiration were compared between invasive Berberis thunbergii, an early leafing understory shrub, and two native shrubs, Kalmia latifolia, a broadleaf evergreen and Vaccinium corymbosum, a late-leafing deciduous species, in an oak-dominated deciduous forest. The seasonal trend of the basal respiration rates (R(0)) and the temperature response coefficient (E(0)), were different among the three shrubs and species-specific negative correlations were observed between R(0) and E(0). All three shrubs showed significant correlation between respiration rate on an area basis (20 degrees C) and leaf N on an area basis. The relationship was attributed to the variation of both leaf N on a mass basis and leaf mass per area (LMA) in B. thunbergii, but to LMA only in K. latifolia and V. corymbosum. After modeling leaf respiration throughout 2004, B. thunbergii displayed much higher annual leaf respiration (mass based) than the two native shrubs, indicating a higher cost per unit of biomass investment. Thus, respiratory properties alone were not likely to lead to C balance advantage of B. thunbergii. Future studies on whole plant C budgets and leaf construction cost are needed to address the C balance advantage in early leafing understory shrubs like B. thunbergii.

  2. Plasticity in seedling morphology, biomass allocation and physiology among ten temperate tree species in response to shade is related to shade tolerance and not leaf habit.

    PubMed

    Chmura, D J; Modrzyński, J; Chmielarz, P; Tjoelker, M G

    2017-03-01

    Mechanisms of shade tolerance in tree seedlings, and thus growth in shade, may differ by leaf habit and vary with ontogeny following seed germination. To examine early responses of seedlings to shade in relation to morphological, physiological and biomass allocation traits, we compared seedlings of 10 temperate species, varying in their leaf habit (broadleaved versus needle-leaved) and observed tolerance to shade, when growing in two contrasting light treatments - open (about 20% of full sunlight) and shade (about 5% of full sunlight). We analyzed biomass allocation and its response to shade using allometric relationships. We also measured leaf gas exchange rates and leaf N in the two light treatments. Compared to the open treatment, shading significantly increased traits typically associated with high relative growth rate (RGR) - leaf area ratio (LAR), specific leaf area (SLA), and allocation of biomass into leaves, and reduced seedling mass and allocation to roots, and net assimilation rate (NAR). Interestingly, RGR was not affected by light treatment, likely because of morphological and physiological adjustments in shaded plants that offset reductions of in situ net assimilation of carbon in shade. Leaf area-based rates of light-saturated leaf gas exchange differed among species groups, but not between light treatments, as leaf N concentration increased in concert with increased SLA in shade. We found little evidence to support the hypothesis of a increased plasticity of broadleaved species compared to needle-leaved conifers in response to shade. However, an expectation of higher plasticity in shade-intolerant species than in shade-tolerant ones, and in leaf and plant morphology than in biomass allocation was supported across species of contrasting leaf habit. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Leaf Mass Area, Leaf Carbon and Nitrogen Content, Kougarok Road and Teller Road, Seward Peninsula, Alaska, 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shawn Serbin; Alistair Rogers; Kim Ely

    Carbon, Nitrogen and Leaf Mass Area of leaves sampled from locations on the Kougarok Rd (transect A) and Teller Rd NGEE Arctic study sites, Seward Peninsula, Alaska. Species include: Alnus viridis spp. fruticosa, Arctostaphylos rubra, Betula glandulosa, Chamerion latifolium, Petasites frigidus, Salix alaxensis, Salix glauca, Salix pulchra, Salix richardsonii and Vaccinium uliginosum.

  4. Stomatal responses to changes in vapor pressure deficit reflect tissue-specific differences in hydraulic conductance.

    PubMed

    Ocheltree, T W; Nippert, J B; Prasad, P V V

    2014-01-01

    The vapor pressure deficit (D) of the atmosphere can negatively affect plant growth as plants reduce stomatal conductance to water vapor (g(wv)) in response to increasing D, limiting the ability of plants to assimilate carbon. The sensitivity of g(wv) to changes in D varies among species and has been correlated with the hydraulic conductance of leaves (K(leaf) ), but the hydraulic conductance of other tissues has also been implicated in plant responses to changing D. Among the 19 grass species, we found that K(leaf) was correlated with the hydraulic conductance of large longitudinal veins (K(lv), r(2) = 0.81), but was not related to K(root) (r(2) = 0.01). Stomatal sensitivity to D was correlated with K(leaf) relative to total leaf area (r(2) = 0.50), and did not differ between C3 and C4 species. Transpiration (E) increased in response to D, but 8 of the 19 plants showed a decline in E at high D, indicative of an 'apparent feedforward' response. For these individuals, E began to decline at lower values of D in plants with low K(root) (r(2) = 0.72). These results show the significance of both leaf and root hydraulic conductance as drivers of plant responses to evaporative demand. © 2013 John Wiley & Sons Ltd.

  5. Contrasting physiological effects of partial root zone drying in field-grown grapevine (Vitis vinifera L. cv. Monastrell) according to total soil water availability

    PubMed Central

    Romero, Pascual; Dodd, Ian C.; Martinez-Cutillas, Adrian

    2012-01-01

    Different spatial distributions of soil moisture were imposed on field-grown grapevines by applying the same irrigation volumes to the entire (DI; deficit irrigation) or part of the (PRD; partial root zone drying) root zone. Five treatments were applied: controls irrigated at 60% ETc (crop evapotranspiration) for the whole season (308 mm year−1); DI-1 and PRD-1 that received the same irrigation as controls before fruit set, 30% ETc from fruit set to harvest and 45% ETc post-harvest (192 mm year−1); and DI-2 and PRD-2 that were the same, except that 15% ETc was applied from fruit set to harvest (142 mm year−1). Compared with DI-1, PRD-1 maintained higher leaf area post-veraison and increased root water uptake, whole-plant hydraulic conductance, leaf transpiration, stomatal conductance, and photosynthesis, but decreased intrinsic gas exchange efficiency without causing differences in leaf xylem abscisic acid (ABA) concentration. Compared with DI-2, PRD-2 increased leaf xylem ABA concentration and decreased root water uptake, whole-plant hydraulic conductance, leaf transpiration, stomatal conductance, and photosynthesis, mainly at the beginning of PRD cycles. Distinctive PRD effects (e.g. greater stomatal closure) depended on the volumetric soil water content of the wet root zone, as predicted from a model of root-to-shoot ABA signalling. PMID:22451721

  6. Plant architecture and prey distribution influence foraging behavior of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae).

    PubMed

    Gontijo, Lessando M; Nechols, James R; Margolies, David C; Cloyd, Raymond A

    2012-01-01

    The arrangement, number, and size of plant parts may influence predator foraging behavior, either directly, by altering the rate or pattern of predator movement, or, indirectly, by affecting the distribution and abundance of prey. We report on the effects of both plant architecture and prey distribution on foraging by the predatory mite, Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae), on cucumber (Cucumis sativus L.). Plants differed in leaf number (2- or 6-leafed), and there were associated differences in leaf size, plant height, and relative proportions of plant parts; but all had the same total surface area. The prey, the twospotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae), were distributed either on the basal leaf or on all leaves. The effect of plant architecture on predator foraging behavior varied depending on prey distribution. The dimensions of individual plant parts affected time allocated to moving and feeding, but they did not appear to influence the frequency with which predators moved among different plant parts. Overall, P. persimilis moved less, and fed upon prey longer, on 6-leafed plants with prey on all leaves than on plants representing other treatment combinations. Our findings suggest that both plant architecture and pattern of prey distribution should be considered, along with other factors such as herbivore-induced plant volatiles, in augmentative biological control programs.

  7. Leaf Trait-Environment Relationships in a Subtropical Broadleaved Forest in South-East China

    PubMed Central

    Kröber, Wenzel; Böhnke, Martin; Welk, Erik; Wirth, Christian; Bruelheide, Helge

    2012-01-01

    Although trait analyses have become more important in community ecology, trait-environment correlations have rarely been studied along successional gradients. We asked which environmental variables had the strongest impact on intraspecific and interspecific trait variation in the community and which traits were most responsive to the environment. We established a series of plots in a secondary forest in the Chinese subtropics, stratified by successional stages that were defined by the time elapsed since the last logging activities. On a total of 27 plots all woody plants were recorded and a set of individuals of every species was analysed for leaf traits, resulting in a trait matrix of 26 leaf traits for 122 species. A Fourth Corner Analysis revealed that the mean values of many leaf traits were tightly related to the successional gradient. Most shifts in traits followed the leaf economics spectrum with decreasing specific leaf area and leaf nutrient contents with successional time. Beside succession, few additional environmental variables resulted in significant trait relationships, such as soil moisture and soil C and N content as well as topographical variables. Not all traits were related to the leaf economics spectrum, and thus, to the successional gradient, such as stomata size and density. By comparing different permutation models in the Fourth Corner Analysis, we found that the trait-environment link was based more on the association of species with the environment than of the communities with species traits. The strong species-environment association was brought about by a clear gradient in species composition along the succession series, while communities were not well differentiated in mean trait composition. In contrast, intraspecific trait variation did not show close environmental relationships. The study confirmed the role of environmental trait filtering in subtropical forests, with traits associated with the leaf economics spectrum being the most responsive ones. PMID:22539999

  8. Leaf trait-environment relationships in a subtropical broadleaved forest in South-East China.

    PubMed

    Kröber, Wenzel; Böhnke, Martin; Welk, Erik; Wirth, Christian; Bruelheide, Helge

    2012-01-01

    Although trait analyses have become more important in community ecology, trait-environment correlations have rarely been studied along successional gradients. We asked which environmental variables had the strongest impact on intraspecific and interspecific trait variation in the community and which traits were most responsive to the environment. We established a series of plots in a secondary forest in the Chinese subtropics, stratified by successional stages that were defined by the time elapsed since the last logging activities. On a total of 27 plots all woody plants were recorded and a set of individuals of every species was analysed for leaf traits, resulting in a trait matrix of 26 leaf traits for 122 species. A Fourth Corner Analysis revealed that the mean values of many leaf traits were tightly related to the successional gradient. Most shifts in traits followed the leaf economics spectrum with decreasing specific leaf area and leaf nutrient contents with successional time. Beside succession, few additional environmental variables resulted in significant trait relationships, such as soil moisture and soil C and N content as well as topographical variables. Not all traits were related to the leaf economics spectrum, and thus, to the successional gradient, such as stomata size and density. By comparing different permutation models in the Fourth Corner Analysis, we found that the trait-environment link was based more on the association of species with the environment than of the communities with species traits. The strong species-environment association was brought about by a clear gradient in species composition along the succession series, while communities were not well differentiated in mean trait composition. In contrast, intraspecific trait variation did not show close environmental relationships. The study confirmed the role of environmental trait filtering in subtropical forests, with traits associated with the leaf economics spectrum being the most responsive ones.

  9. Intercellular Distribution of Glutathione Synthesis in Maize Leaves and Its Response to Short-Term Chilling1

    PubMed Central

    Gómez, Leonardo D.; Vanacker, Hélène; Buchner, Peter; Noctor, Graham; Foyer, Christine H.

    2004-01-01

    To investigate the intercellular control of glutathione synthesis and its influence on leaf redox state in response to short-term chilling, genes encoding γ-glutamylcysteine synthetase (γ-ECS) and glutathione synthetase (GSH-S) were cloned from maize (Zea mays) and specific antibodies produced. These tools were used to provide the first information on the intercellular distribution of γ-ECS and GSH-S transcript and protein in maize leaves, in both optimal conditions and chilling stress. A 2-d exposure to low growth temperatures (chill) had no effect on leaf phenotype, whereas return to optimal temperatures (recovery) caused extensive leaf bleaching. The chill did not affect total leaf GSH-S transcripts but strongly induced γ-ECS mRNA, an effect reversed during recovery. The chilling-induced increase in γ-ECS transcripts was not accompanied by enhanced total leaf γ-ECS protein or extractable activity. In situ hybridization and immunolocalization of leaf sections showed that γ-ECS and GSH-S transcripts and proteins were found in both the bundle sheath (BS) and the mesophyll cells under optimal conditions. Chilling increased γ-ECS transcript and protein in the BS but not in the mesophyll cells. Increased BS γ-ECS was correlated with a 2-fold increase in both leaf Cys and γ-glutamylcysteine, but leaf total glutathione significantly increased only in the recovery period, when the reduced glutathione to glutathione disulfide ratio decreased 3-fold. Thus, while there was a specific increase in the potential contribution of the BS cells to glutathione synthesis during chilling, it did not result in enhanced leaf glutathione accumulation at low temperatures. Return to optimal temperatures allowed glutathione to increase, particularly glutathione disulfide, and this was associated with leaf chlorosis. PMID:15047902

  10. Temporal variation of intertidal seagrass in southern China (2008-2014)

    NASA Astrophysics Data System (ADS)

    Qiu, Guanglong; Short, Frederick T.; Fan, Hangqing; Liu, Guohua

    2017-09-01

    Understanding the temporal dynamics of seagrasses and the major influences on seagrass growth is critical for seagrass habitat conservation and administration. However, little work has been done regarding these issues in southern China. To examine inter-annual and seasonal variations of the intertidal Halophila ovalis community in southern China, we conducted quarterly sampling using the SeagrassNet methodology and assessed environmental conditions as well as direct anthropogenic impacts on the seagrass meadow from July 2008 to October 2014. Our study demonstrated strong inter-annual and seasonal dynamics of the intertidal seagrass meadow in the study area. Generally, the community performed best (highest seagrass cover, leaf area, shoot density, total biomass) in summer and worst in spring among the 4 seasons. The temporal variations in the seagrass community attributes (e.g. above-ground biomass) were significantly affected by precipitation, atmospheric visibility, and salinity, while leaf width was significantly negatively correlated with temperature, atmospheric visibility and salinity. Temperature was a major factor influencing the seagrass community (both macroalgae and seagrass), with temperature data showing an inverse relationship between seagrass and macroalgae. The above-ground: below-ground biomass ratio and leaf width of H. ovalis were the most sensitive plant parameters monitored when assessing environmental interactions. Human physical disturbances did not have a significant effect on seagrass dynamics in the study area. We concluded that long-term monitoring (like SeagrassNet) is valuable in understanding the relationship between environmental variables and seagrasses.

  11. Structural assessment of the impact of environmental constraints on Arabidopsis thaliana leaf growth: a 3D approach.

    PubMed

    Wuyts, Nathalie; Massonnet, Catherine; Dauzat, Myriam; Granier, Christine

    2012-09-01

    Light and soil water content affect leaf surface area expansion through modifications in epidermal cell numbers and area, while effects on leaf thickness and mesophyll cell volumes are far less documented. Here, three-dimensional imaging was applied in a study of Arabidopsis thaliana leaf growth to determine leaf thickness and the cellular organization of mesophyll tissues under moderate soil water deficit and two cumulative light conditions. In contrast to surface area, thickness was highly conserved in response to water deficit under both low and high cumulative light regimes. Unlike epidermal and palisade mesophyll tissues, no reductions in cell number were observed in the spongy mesophyll; cells had rather changed in volume and shape. Furthermore, leaf features of a selection of genotypes affected in leaf functioning were analysed. The low-starch mutant pgm had very thick leaves because of unusually large palisade mesophyll cells, together with high levels of photosynthesis and stomatal conductance. By means of an open stomata mutant and a 9-cis-epoxycarotenoid dioxygenase overexpressor, it was shown that stomatal conductance does not necessarily have a major impact on leaf dimensions and cellular organization, pointing to additional mechanisms for the control of CO(2) diffusion under high and low stomatal conductance, respectively. © 2012 Blackwell Publishing Ltd.

  12. [The analysis of the causes of variability of the relationship between leaf dry mass and area in plants].

    PubMed

    Vasfilov, S P

    2011-01-01

    The lamina dry mass: area ratio (LMA - Leaf Mass per Area) is a quite variable trait. Leaf dry mass consists of symplast mass (a set of all leaf protoplasts) and apoplast mass (a set of all cell walls in a leaf). The ratio between symplast and apoplast masses is positively related to any functional trait of leaf calculated per unit of dry mass. The value of this ratio is defined by cells size and their number per unit of leaf area, number of mesophyll cells layers and their differentiation between palisade and spongy ones, and also by density of cells packing. The LMA value is defined by leaf thickness and density. The extent and direction of variability in both leaf traits define the extent and direction of variability in LMA. Negative correlation between leaf thickness and density reduces the level of LMA variability. As a consequence of this correlation the following pattern emerges: the thinner a leaf, the denser it is. Changes in the traits that define the LMA value take place both within a species under the influence of environmental factors and between species that differ in leaf structure and functions. Light is the most powerful environmental factor that influences the LMA, increase in illumination leading to increase in LMA. This effect occurs during leaf growth at the expense of structural changes associated with the reduction of symplast/apoplast mass ratio. Under conditions of intense illumination, LMA may increase due to accumulation of starch. With regard to the majority of leaf functions, the mass of starch may be ascribed to apoplast. Starch accumulation in leaves is observed also under conditions of elevated CO2 concentration in the air. Under high illumination, however, LMA increases also due to increased apoplast contribution to leaf dry mass. Scarce mineral nutrition leads to LMA increase due to lowering of growth zones demands for phothosyntates and, therefore, to increase in starch content of leaves. High level of mineral nutrition during leaf growth period leads to LMA increase at the expense of mesophyll thickening where components of photosynthesis system are located. When additional environmental factors are involved, starch accumulation may be partly responsible for increase in LMA. LMA increase at the expense of starch accumulation, unlike that at the expense of mesophyll thickening, is accompanied by increased leaf density. Under conditions of water deficiency LMA increases, which in mature leaf may be caused by starch accumulation. LMA increase during leaf growth period under conditions of water deficiency is associated with decrease in the symplast/apoplast mass ratio.

  13. Psidium guajava as a bioaccumulator of nickel around an oil refinery, southern Brazil.

    PubMed

    Trindade Perry, Carolina; Divan, Armando Molina; Raya Rodriguez, Maria Teresa; Lúcia Atz, Vera

    2010-05-01

    To evaluate the potential of Psidium guajava as a biological accumulator of air pollutants, saplings were exposed at nine sites receiving atmospheric emissions from an oil refinery (five within, four outside the industrial area) and another reference site located at the Federal University of Rio Grande do Sul, 27 km from the refinery. Exposures lasted about 3 months each, coincided with the seasons, and totaled five exposures between 2005 and 2006. The following parameters were evaluated: dry weight of leaves, stems, and roots, leaf area, rate of relative height increase, Ni and S contents, maximum assimilation rate, and carboxylation efficiency invivo. P. guajava was found to be an efficient accumulator of Ni, since highly significant differences were observed (P<0.001) between sites within the industrial area and the reference site for all periods of exposure and a significant negative correlation between distance from emission source and Ni content. The S content showed significant differences (P<0.05) only at sites within the industrial area for two exposures. The dry weight, leaf area, rate of relative height increase, maximum assimilation rate, and carboxylation efficiency did not present significant differences for any period of exposure. In view of the above, we conclude that P. guajava is a good bioaccumulator for Ni. Copyright 2009 Elsevier Inc. All rights reserved.

  14. Changes in water content and distribution in Quercus ilex leaves during progressive drought assessed by in vivo 1H magnetic resonance imaging

    PubMed Central

    2010-01-01

    Background Drought is a common stressor in many regions of the world and current climatic global circulation models predict further increases in warming and drought in the coming decades in several of these regions, such as the Mediterranean basin. The changes in leaf water content, distribution and dynamics in plant tissues under different soil water availabilities are not well known. In order to fill this gap, in the present report we describe our study withholding the irrigation of the seedlings of Quercus ilex, the dominant tree species in the evergreen forests of many areas of the Mediterranean Basin. We have monitored the gradual changes in water content in the different leaf areas, in vivo and non-invasively, by 1H magnetic resonance imaging (MRI) using proton density weighted (ρw) images and spin-spin relaxation time (T2) maps. Results ρw images showed that the distal leaf area lost water faster than the basal area and that after four weeks of similar losses, the water reduction was greater in leaf veins than in leaf parenchyma areas and also in distal than in basal leaf area. There was a similar tendency in all different areas and tissues, of increasing T2 values during the drought period. This indicates an increase in the dynamics of free water, suggesting a decrease of cell membranes permeability. Conclusions The results indicate a non homogeneous leaf response to stress with a differentiated capacity to mobilize water between its different parts and tissues. This study shows that the MRI technique can be a useful tool to follow non-intrusively the in vivo water content changes in the different parts of the leaves during drought stress. It opens up new possibilities to better characterize the associated physiological changes and provides important information about the different responses of the different leaf areas what should be taken into account when conducting physiological and metabolic drought stress studies in different parts of the leaves during drought stress. PMID:20735815

  15. Changes in water content and distribution in Quercus ilex leaves during progressive drought assessed by in vivo 1H magnetic resonance imaging.

    PubMed

    Sardans, Jordi; Peñuelas, Josep; Lope-Piedrafita, Silvia

    2010-08-24

    Drought is a common stressor in many regions of the world and current climatic global circulation models predict further increases in warming and drought in the coming decades in several of these regions, such as the Mediterranean basin. The changes in leaf water content, distribution and dynamics in plant tissues under different soil water availabilities are not well known. In order to fill this gap, in the present report we describe our study withholding the irrigation of the seedlings of Quercus ilex, the dominant tree species in the evergreen forests of many areas of the Mediterranean Basin. We have monitored the gradual changes in water content in the different leaf areas, in vivo and non-invasively, by 1H magnetic resonance imaging (MRI) using proton density weighted (rhow) images and spin-spin relaxation time (T2) maps. Rhow images showed that the distal leaf area lost water faster than the basal area and that after four weeks of similar losses, the water reduction was greater in leaf veins than in leaf parenchyma areas and also in distal than in basal leaf area. There was a similar tendency in all different areas and tissues, of increasing T2 values during the drought period. This indicates an increase in the dynamics of free water, suggesting a decrease of cell membranes permeability. The results indicate a non homogeneous leaf response to stress with a differentiated capacity to mobilize water between its different parts and tissues. This study shows that the MRI technique can be a useful tool to follow non-intrusively the in vivo water content changes in the different parts of the leaves during drought stress. It opens up new possibilities to better characterize the associated physiological changes and provides important information about the different responses of the different leaf areas what should be taken into account when conducting physiological and metabolic drought stress studies in different parts of the leaves during drought stress.

  16. Leaf chemical composition of twenty-one Populus hybrid clones grown under intensive culture

    Treesearch

    Richard E. Dickson; Philip R. Larson

    1976-01-01

    Leaf material from 21 nursery-grown Populus hybrid clones was analyzed for three nitrogen fractions (total N, soluble protein, and soluble amino acids) and three carbhydrate fractions (reducing sugars, total soluble sugars, and total nonstructural carbohydrates-TNC). In addition, nursery-grown green ash and silver maple, field-grown bigtooth and trembling aspen, and...

  17. Relationships between stem diameter, sapwood area, leaf area and transpiration in a young mountain ash forest.

    PubMed

    Vertessy, R A; Benyon, R G; O'Sullivan, S K; Gribben, P R

    1995-09-01

    We examined relationships between stem diameter, sapwood area, leaf area and transpiration in a 15-year-old mountain ash (Eucalyptus regnans F. Muell.) forest containing silver wattle (Acacia dealbata Link.) as a suppressed overstory species and mountain hickory (Acacia frigescens J.H. Willis) as an understory species. Stem diameter explained 93% of the variation in leaf area, 96% of the variation in sapwood area and 88% of the variation in mean daily spring transpiration in 19 mountain ash trees. In seven silver wattle trees, stem diameter explained 87% of the variation in sapwood area but was a poor predictor of the other variables. When transpiration measurements from individual trees were scaled up to a plot basis, using stem diameter values for 164 mountain ash trees and 124 silver wattle trees, mean daily spring transpiration rates of the two species were 2.3 and 0.6 mm day(-1), respectively. The leaf area index of the plot was estimated directly by destructive sampling, and indirectly with an LAI-2000 plant canopy analyzer and by hemispherical canopy photography. All three methods gave similar results.

  18. Genetic mapping of QTL for the sizes of eight consecutive leaves below the tassel in maize (Zea mays L.).

    PubMed

    Yang, Cong; Tang, Dengguo; Qu, Jingtao; Zhang, Ling; Zhang, Lei; Chen, Zhengjie; Liu, Jian

    2016-11-01

    A set of RIL population was used to detect QTL associated with the sizes of eight consecutive leaves, across different environments, and ten QTL clusters were identified as main QTLs. One of the important parameters of the maize leaf architecture that affects light penetration into the canopy, leaf size, has long attracted breeders' attention for optimizing the plant type of maize and for maximizing the grain yield (GY). In this study, we used 253 RIL lines derived from a cross between B73 and SICAU1212 to investigate the leaf widths (LWs), leaf lengths (LLs), and leaf areas (LAs) of eight consecutive leaves of maize below the tassel and GY across different environments and to identify quantitative traits loci (QTLs) controlling the above-mentioned traits, using inclusive interval mapping for single-environment analysis plus a mixed-model-based composite interval mapping for joint analysis. A total of 171 and 159 putative QTLs were detected through these two mapping methods, respectively. Single-environment mapping revealed that 39 stable QTLs explained more than 10 % of the phenotypic variance, and 35 of the 39 QTLs were also detected by joint analysis. In addition, joint analysis showed that nine of the 159 QTLs exhibited significant QTL × environment interaction and 15 significant epistatic interactions were identified. Approximately 47.17 % of the QTLs for leaf architectural traits in joint analysis were concentrated in ten main chromosomal regions, namely, bins 1.07, 2.02, 3.06, 4.09, 5.01, 5.02, 5.03-5.04, 5.07, 6.07, and 8.05. This study should provide a basis for further fine-mapping of these main genetic regions and improvement of maize leaf architecture.

  19. Biomass Allocation Patterns Are Linked to Genotypic Differences in Whole-Plant Transpiration Efficiency in Sunflower

    PubMed Central

    Velázquez, Luciano; Alberdi, Ignacio; Paz, Cosme; Aguirrezábal, Luis

    2017-01-01

    Increased transpiration efficiency (the ratio of biomass to water transpired, TE) could lead to increased drought tolerance under some water deficit scenarios. Intrinsic (i.e., leaf-level) TE is usually considered as the primary source of variation in whole-plant TE, but empirical data usually contradict this assumption. Sunflower has a significant variability in TE, but a better knowledge of the effect of leaf and plant-level traits could be helpful to obtain more efficient genotypes for water use. The objective of this study was, therefore, to assess if genotypic variation in whole-plant TE is better related to leaf- or plant-level traits. Three experiments were conducted, aimed at verifying the existence of variability in whole-plant TE and whole-plant and leaf-level traits, and to assess their correlation. Sunflower public inbred lines and a segregating population of recombinant inbred lines were grown under controlled conditions and subjected to well-watered and water-deficit treatments. Significant genotypic variation was found for TE and related traits. These differences in whole-plant transpiration efficiency, both between genotypes and between plants within each genotype, showed no association to leaf-level traits, but were significantly and negatively correlated to biomass allocation to leaves and to the ratio of leaf area to total biomass. These associations are likely of a physiological origin, and not only a consequence of genetic linkage in the studied population. These results suggest that genotypic variation for biomass allocation could be potentially exploited as a source for increased transpiration efficiency in sunflower breeding programmes. It is also suggested that phenotyping for TE in this species should not be restricted to leaf-level measurements, but also include measurements of plant-level traits, especially those related to biomass allocation between photosynthetic and non-photosynthetic organs. PMID:29204153

  20. Biomass Allocation Patterns Are Linked to Genotypic Differences in Whole-Plant Transpiration Efficiency in Sunflower.

    PubMed

    Velázquez, Luciano; Alberdi, Ignacio; Paz, Cosme; Aguirrezábal, Luis; Pereyra Irujo, Gustavo

    2017-01-01

    Increased transpiration efficiency (the ratio of biomass to water transpired, TE) could lead to increased drought tolerance under some water deficit scenarios. Intrinsic (i.e., leaf-level) TE is usually considered as the primary source of variation in whole-plant TE, but empirical data usually contradict this assumption. Sunflower has a significant variability in TE, but a better knowledge of the effect of leaf and plant-level traits could be helpful to obtain more efficient genotypes for water use. The objective of this study was, therefore, to assess if genotypic variation in whole-plant TE is better related to leaf- or plant-level traits. Three experiments were conducted, aimed at verifying the existence of variability in whole-plant TE and whole-plant and leaf-level traits, and to assess their correlation. Sunflower public inbred lines and a segregating population of recombinant inbred lines were grown under controlled conditions and subjected to well-watered and water-deficit treatments. Significant genotypic variation was found for TE and related traits. These differences in whole-plant transpiration efficiency, both between genotypes and between plants within each genotype, showed no association to leaf-level traits, but were significantly and negatively correlated to biomass allocation to leaves and to the ratio of leaf area to total biomass. These associations are likely of a physiological origin, and not only a consequence of genetic linkage in the studied population. These results suggest that genotypic variation for biomass allocation could be potentially exploited as a source for increased transpiration efficiency in sunflower breeding programmes. It is also suggested that phenotyping for TE in this species should not be restricted to leaf-level measurements, but also include measurements of plant-level traits, especially those related to biomass allocation between photosynthetic and non-photosynthetic organs.

  1. Is There Ecological Information in Optical Polarization Data?

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert

    2015-01-01

    Optical linear polarization? In remote sensing it's due to specular reflection. The first surface that incident light encounters - a smooth water surface or the waxy first surface of a leaf's cuticle, if it's even somewhat smooth (i.e. shiny) - will specularly reflect and linearly polarize the incident light. We provide three examples of the types of ecological information contained in remotely sensed optical linear polarization measurements. Remove the surface reflection to better see the interior. The linearly polarized light reflected by leaf surfaces contains no information about cellular pigments, metabolites, or water contained in the leaf interiors of a plant canopy, because it never enters the leaf interior to interact with them. Thus, for purposes of remotely sensing the leaf interiors of a plant canopy, the linearly polarized light should be subtracted from the total reflected light, because including it would add noise to the measurement. In particular 'minus specular' vegetation indices should allow improved monitoring of a plant canopy's physiological processes. Estimate plant development stage and yield. Wheat and sorghum grain heads, following emergence, rapidly extend upward and very quickly tower over nearby leaves, partially blocking our view of the sunlight reflected by those leaf surfaces. The resulting decrease in the amount of surface reflected and polarized sunlight, if monitored over time, potentially allows per-field estimates of the dates of the heading and flowering development stages to be interleaved with weather data in models, which is key to better estimating per-field grain yield. Similar polarization changes may occur in other grasses, such as oats, barley, corn and rice, each a crop so widely grown that it potentially affects climate at the regional scale. Wetlands Mapping. The sunlight specularly reflected by surface waters is blindingly bright, spectrally flat and polarized - all of which telegraphs that the ground area is inundated. Inundated soils exchange methane with the atmosphere; non-inundated soils, carbon dioxide. Aquatic plants growing through the water surface pipe the soil-produced methane via the stomata to the atmosphere, enhancing exchanges rates by factors of 10-20 compared to ebullition (bubbling) or diffusion through the water column to the atmosphere. Thus, mapping wetland areas into three community types - inundated areas with emergent vegetation, open water and uplands - provides potentially key information to water, carbon and energy budgets at landscape to global scales.

  2. Leaf physiological versus morphological acclimation to high-light exposure at different stages of foliar development in oak.

    PubMed

    Rodríguez-Calcerrada, J; Reich, P B; Rosenqvist, E; Pardos, J A; Cano, F J; Aranda, I

    2008-05-01

    We investigated light acclimation in seedlings of the temperate oak Quercus petraea (Matt.) Liebl. and the co-occurring sub-Mediterranean oak Quercus pyrenaica Willd. Seedlings were raised in a greenhouse for 1 year in either 70 (HL) or 5.3% (LL) of ambient irradiance of full sunlight, and, in the following year, subsets of the LL-grown seedlings were transferred to HL either before leaf flushing (LL-HLBF plants) or after full leaf expansion (LL-HLAF plants). Gas exchange, chlorophyll a fluorescence, nitrogen fractions in photosynthetic components and leaf anatomy were examined in leaves of all seedlings 5 months after plants were moved from LL to HL. Differences between species in the acclimation of LL-grown plants to HL were minor. For LL-grown plants in HL, area-based photosynthetic capacity, maximum rate of carboxylation, maximum rate of electron transport and the effective photochemical quantum yield of photosystem II were comparable to those for plants grown solely in HL. A rapid change in nitrogen distribution among photosynthetic components was observed in LL-HLAF plants, which had the highest photosynthetic nitrogen-use efficiency. Increases in mesophyll thickness and dry mass per unit area governed leaf acclimation in LL-HLBF plants, which tended to have less nitrogen in photosynthetic components and a lower assimilation potential per unit of leaf mass or nitrogen than LL-HLAF plants. The data indicate that the phenological state of seedlings modified the acclimatory response of leaf attributes to increased irradiance. Morphological adaptation of leaves of LL-HLBF plants enhanced photosynthetic capacity per unit leaf area, but not per unit leaf dry mass, whereas substantial redistribution of nitrogen among photosynthetic components in leaves of LL-HLAF plants enhanced both mass- and area-based photosynthetic capacity.

  3. Exploring chemical variables in Ligustrum lucidum Ait. F. tricolor (rehd.) Rehd. in relation to air pollutants and environmental conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pignata, M.L.; Canas, M.S.; Carreras, H.A.

    1997-09-01

    A diagnostic study was done on Ligustrum lucidum Ait. f. tricolor (Rehd.) Rehd. in relation to atmospheric pollutants in Cordoba city, Argentina. The study area receives regional Pollutants and was categorized taking into account traffic level, industrial density, type of industry, location of the sample point in relation to the street corner, treeless condition, and topographic level. Dried weight/fresh weight ratio (DW/FW) and specific leaf area (SLA) were calculated, and concentrations of chlorophylls, carotenoids, total sulfur, soluble proteins, malondialdehyde (MDA), and hydroperoxy conjugated dienes (HPCD) were determined in leaf samples. Sulfur content correlates positively with traffic density and SLA correlatesmore » negatively with some combinations of the categorical variables; MDA correlates positively with topographic level and total protein concentration correlates negatively with treeless condition. On the basis of our results, traffic, location of trees, type of industry, situation of a tree with respect to others, and topographic level are the environmental variables to bear in mind when selecting analogous sampling points in a passive monitoring program. An approximation to predict tree injury may be obtained by measuring DW/FW ratio, proteins, pigments, HPCD, and MDA as they are responsible for the major variability of data.« less

  4. Locomotion and attachment of leaf beetle larvae Gastrophysa viridula (Coleoptera, Chrysomelidae).

    PubMed

    Zurek, Daniel B; Gorb, Stanislav N; Voigt, Dagmar

    2015-02-06

    While adult green dock leaf beetles Gastrophysa viridula use tarsal adhesive setae to attach to and walk on smooth vertical surfaces and ceilings, larvae apply different devices for similar purposes: pretarsal adhesive pads on thoracic legs and a retractable pygopod at the 10th abdominal segment. Both are soft smooth structures and capable of wet adhesion. We studied attachment ability of different larval instars, considering the relationship between body weight and real contact area between attachment devices and the substrate. Larval gait patterns were analysed using high-speed video recordings. Instead of the tripod gait of adults, larvae walked by swinging contralateral legs simultaneously while adhering by the pygopod. Attachment ability of larval instars was measured by centrifugation on a spinning drum, revealing that attachment force decreases relative to weight. Contributions of different attachment devices to total attachment ability were investigated by selective disabling of organs by covering them with melted wax. Despite their smaller overall contact area, tarsal pads contributed to a larger extent to total attachment ability, probably because of their distributed spacing. Furthermore, we observed different behaviour in adults and larvae when centrifuged: while adults gradually slipped outward on the centrifuge drum surface, larvae stayed at the initial position until sudden detachment.

  5. Locomotion and attachment of leaf beetle larvae Gastrophysa viridula (Coleoptera, Chrysomelidae)

    PubMed Central

    Zurek, Daniel B.; Gorb, Stanislav N.; Voigt, Dagmar

    2015-01-01

    While adult green dock leaf beetles Gastrophysa viridula use tarsal adhesive setae to attach to and walk on smooth vertical surfaces and ceilings, larvae apply different devices for similar purposes: pretarsal adhesive pads on thoracic legs and a retractable pygopod at the 10th abdominal segment. Both are soft smooth structures and capable of wet adhesion. We studied attachment ability of different larval instars, considering the relationship between body weight and real contact area between attachment devices and the substrate. Larval gait patterns were analysed using high-speed video recordings. Instead of the tripod gait of adults, larvae walked by swinging contralateral legs simultaneously while adhering by the pygopod. Attachment ability of larval instars was measured by centrifugation on a spinning drum, revealing that attachment force decreases relative to weight. Contributions of different attachment devices to total attachment ability were investigated by selective disabling of organs by covering them with melted wax. Despite their smaller overall contact area, tarsal pads contributed to a larger extent to total attachment ability, probably because of their distributed spacing. Furthermore, we observed different behaviour in adults and larvae when centrifuged: while adults gradually slipped outward on the centrifuge drum surface, larvae stayed at the initial position until sudden detachment. PMID:25657837

  6. Growth and production of new superior rice varieties in the shade intensity

    NASA Astrophysics Data System (ADS)

    Alridiwirsah; Harahap, E. M.; Akoeb, E. N.; Hanum, H.

    2018-02-01

    Shade intensity is one of the most important requirements for plant growth, affecting growth, development, survival, and crop productivity. This study aims to evaluate the growth and productiom of New Superior Rice Varieties In The shade Intensity. This study was conducted in Balai Pengkajian Teknologi Pertanian, Pagar Merbau, Deli Serdang, North Sumatra. The research used completely randomized design with twofactors. The shade intensity (N) were 25%, 50% and no shade intensity as a control. Whereas new superior rice varieties were V1: Inpara 2, V2: Suluttan Unsrat 2, V3: Inpari Mugibat, V4: Inpari Sidenuk, V5: Mekongga, V6: Ciherang, V7:Inpari 10, V8: Inpari 3, V9: Inpari 4, V10: Inpari 30, dan V11: Cibogo. The result indicated that new superior rice varietiesshowedsignificant effectonthe growth and productionvariablesuch as leaf area, where Inpari Sidenuk variety was the highest among the varieties. Total chorophyll, the highest was found on Inpari variety. Number of tillers and plant height where the highest was found on Ciherang variety. The shade intensity showed significant effect on leaf area, where 25% shade intensity was the highest. Total chlorophyll, the highest was found on 50% shade intensity, number of tillers, the highest was found on no shade intensity.

  7. Determination of total phenolic content and antioxidant activitity of methanol extract of Maranta arundinacea L fresh leaf and tuber

    NASA Astrophysics Data System (ADS)

    Kusbandari, A.; Susanti, H.

    2017-11-01

    Maranta arundinacea L is one of herbaceous plants in Indonesia which have flavonoid content. Flavonoids has antioxidants activity by inhibition of free radical oxidation reactions. The study aims were to determination total phenolic content and antioxidant activity of methanol extract of fresh leaf and tuber of M. arundinacea L by UV-Vis spectrophotometer. The methanol extracts were obtained with maceration and remaseration method of fresh leaves and tubers. The total phenolic content was assayed with visible spectrophotometric using Folin Ciocalteau reagent. The antioxidant activity was assayed with 1,1-diphenyl-2-picrilhidrazil (DPPH) compared to gallic acid. The results showed that methanol extract of tuber and fresh leaf of M. arundinacea L contained phenolic compound with total phenolic content (TPC) in fresh tuber of 3.881±0.064 (% GAE) and fresh leaf is 6.518±0.163 (% b/b GAE). IC50 value from fresh tuber is 1.780±0.0005 μg/mL and IC50 fresh leaf values of 0.274±0.0004 μg/mL while the standard gallic acid is IC50 of 0.640±0.0002 μg/mL.

  8. Concentrations and health risk assessment of rare earth elements in vegetables from mining area in Shandong, China.

    PubMed

    Zhuang, Maoqiang; Zhao, Jinshan; Li, Suyun; Liu, Danru; Wang, Kebo; Xiao, Peirui; Yu, Lianlong; Jiang, Ying; Song, Jian; Zhou, Jingyang; Wang, Liansen; Chu, Zunhua

    2017-02-01

    To investigate the concentrations of rare earth elements in vegetables and assess human health risk through vegetable consumption, a total of 301 vegetable samples were collected from mining area and control area in Shandong, China. The contents of 14 rare earth elements were determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The total rare earth elements in vegetables from mining and control areas were 94.08 μg kg -1 and 38.67 μg kg -1 , respectively, and the difference was statistically significant (p < 0.05). The leaf vegetable had the highest rare earth elements concentration (984.24 μg kg -1 and 81.24 μg kg -1 for mining and control areas, respectively) and gourd vegetable had the lowest rare earth elements concentration (37.34 μg kg -1 and 24.63 μg kg -1 for mining and control areas, respectively). For both areas, the rare earth elements concentration in vegetables declined in the order of leaf vegetable > taproot vegetable > alliaceous vegetable > gourd vegetable. The rare earth elements distribution patterns for both areas were characterized by enrichment of light rare earth elements. The health risk assessment demonstrated that the estimated daily intakes (0.69 μg kg -1 d -1 and 0.28 μg kg -1 d -1 for mining and control areas, respectively) of rare earth elements through vegetable consumption were significantly lower than the acceptable daily intake (70 μg kg -1 d -1 ). The damage to adults can be neglected, but more attention should be paid to the effects of continuous exposure to low levels of rare earth elements on children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest.

    PubMed

    Cosme, Luiza H M; Schietti, Juliana; Costa, Flávia R C; Oliveira, Rafael S

    2017-07-01

    Species distributions and assemblage composition may be the result of trait selection through environmental filters. Here, we ask whether filtering of species at the local scale could be attributed to their hydraulic architectural traits, revealing the basis of hydrological microhabitat partitioning in a Central Amazonian forest. We analyzed the hydraulic characteristics at tissue (anatomical traits, wood specific gravity (WSG)), organ (leaf area, specific leaf area (SLA), leaf area : sapwood area ratio) and whole-plant (height) levels for 28 pairs of congeneric species from 14 genera restricted to either valleys or plateaus of a terra-firme forest in Central Amazonia. On plateaus, species had higher WSG, but lower mean vessel area, mean vessel hydraulic diameter, sapwood area and SLA than in valleys; traits commonly associated with hydraulic safety. Mean vessel hydraulic diameter and mean vessel area increased with height for both habitats, but leaf area and leaf area : sapwood area ratio investments with tree height declined in valley vs plateau species. [Correction added after online publication 29 March 2017: the preceding sentence has been reworded.] Two strategies for either efficiency or safety were detected, based on vessel size or allocation to sapwood. In conclusion, contrasting hydrological conditions act as environmental filters, generating differences in species composition at the local scale. This has important implications for the prediction of species distributions under future climate change scenarios. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  10. An evolutionary attractor model for sapwood cross section in relation to leaf area.

    PubMed

    Westoby, Mark; Cornwell, William K; Falster, Daniel S

    2012-06-21

    Sapwood cross-sectional area per unit leaf area (SA:LA) is an influential trait that plants coordinate with physical environment and with other traits. We develop theory for SA:LA and also for root surface area per leaf area (RA:LA) on the premise that plants maximizing the surplus of revenue over costs should have competitive advantage. SA:LA is predicted to increase in water-relations environments that reduce photosynthetic revenue, including low soil water potential, high water vapor pressure deficit (VPD), and low atmospheric CO(2). Because sapwood has costs, SA:LA adjustment does not completely offset difficult water relations. Where sapwood costs are large, as in tall plants, optimal SA:LA may actually decline with (say) high VPD. Large soil-to-root resistance caps the benefits that can be obtained from increasing SA:LA. Where a plant can adjust water-absorbing surface area of root per leaf area (RA:LA) as well as SA:LA, optimal RA:SA is not affected by VPD, CO(2) or plant height. If selection favours increased height more so than increased revenue-minus-cost, then height is predicted to rise substantially under improved water-relations environments such as high-CO(2) atmospheres. Evolutionary-attractor theory for SA:LA and RA:LA complements models that take whole-plant conductivity per leaf area as a parameter. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Carbohydrate regulation of photosynthesis and respiration from branch girdling in four species of wet tropical rain forest trees.

    PubMed

    Asao, Shinichi; Ryan, Michael G

    2015-06-01

    How trees sense source-sink carbon balance remains unclear. One potential mechanism is a feedback from non-structural carbohydrates regulating photosynthesis and removing excess as waste respiration when the balance of photosynthesis against growth and metabolic activity changes. We tested this carbohydrate regulation of photosynthesis and respiration using branch girdling in four tree species in a wet tropical rainforest in Costa Rica. Because girdling severs phloem to stop carbohydrate export while leaving xylem intact to allow photosynthesis, we expected carbohydrates to accumulate in leaves to simulate a carbon imbalance. We varied girdling intensity by removing phloem in increments of one-quarter of the circumference (zero, one--quarter, half, three-quarters, full) and surrounded a target branch with fully girdled ones to create a gradient in leaf carbohydrate content. Light saturated photosynthesis rate was measured in situ, and foliar respiration rate and leaf carbohydrate content were measured after destructive harvest at the end of the treatment. Girdling intensity created no consistent or strong responses in leaf carbohydrates. Glucose and fructose slightly increased in all species by 3.4% per one-quarter girdle, total carbon content and leaf mass per area increased only in one species by 5.4 and 5.5% per one-quarter girdle, and starch did not change. Only full girdling lowered photosynthesis in three of four species by 59-69%, but the decrease in photosynthesis was unrelated to the increase in glucose and fructose content. Girdling did not affect respiration. The results suggest that leaf carbohydrate content remains relatively constant under carbon imbalance, and any changes are unlikely to regulate photosynthesis or respiration. Because girdling also stops the export of hormones and reactive oxygen species, girdling may induce physiological changes unrelated to carbohydrate accumulation and may not be an effective method to study carbohydrate feedback in leaves. In three species, removal of three-quarters of phloem area did not cause leaf carbohydrates to accumulate nor did it change photosynthesis or respiration, suggesting that phloem transport is flexible and transport rate per unit phloem can rapidly increase under an increase in carbohydrate supply relative to phloem area. Leaf carbohydrate content thus may be decoupled from whole plant carbon balance by phloem transport in some species, and carbohydrate regulation of photosynthesis and respiration may not be as common in trees as previous girdling studies suggest. Further studies in carbohydrate regulation should avoid using girdling as girdling can decrease photosynthesis through unintended means without the tested mechanisms of accumulating leaf carbohydrates. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  12. Converging patterns of vertical variability in leaf morphology and nitrogen across seven Eucalyptus plantations in Brazil and Hawaii, USA

    Treesearch

    Adam P. Coble; Alisha Autio; Molly A. Cavaleri; Dan Binkley; Michael G. Ryan

    2014-01-01

    Across sites in Brazil and Hawaii, LMA and Nmass were strongly correlated with height and shade index, respectively, which may help simplify canopy function modeling of Eucalyptus plantations. Abstract Within tree canopies, leaf mass per area (LMA) and leaf nitrogen per unit area (Narea) commonly increase with height. Previous research has suggested that these patterns...

  13. Taxonomy and remote sensing of leaf mass per area (LMA) in humid tropical forests

    Treesearch

    Gregory P. Asner; Roberta E. Martin; Raul Tupayachi; Ruth Emerson; Paola Martinez; Felipe Sinca; George V.N. Powell; S. Joseph Wright; Ariel E. Lugo

    2011-01-01

    Leaf mass per area (LMA) is a trait of central importance to plant physiology and ecosystem function, but LMA patterns in the upper canopies of humid tropical forests have proved elusive due to tall species and high diversity. We collected top-of-canopy leaf samples from 2873 individuals in 57 sites spread across the Neotropics, Australasia, and Caribbean and Pacific...

  14. Canopy Effects on Macroscale Snow Sublimation

    NASA Astrophysics Data System (ADS)

    Svoma, B. M.

    2015-12-01

    Sublimation of snow cover directly affects snow accumulation, impacting ecosystem processes, soil moisture, soil porosity, biogeochemical processes, wildfire, and water resources. Available energy, the exposed surface area of a snow cover, and exposure time with the atmosphere vary greatly in complex terrain (e.g., aspect, elevation, forest cover), with latitude, and with continentality. It is therefore difficult to scale up results from site specific short term studies. Using the 32-km NARR, the 4-km PRISM, with 30-m terrain and forest cover data, meteorological variables are downscaled to simulate sublimation from canopy intercepted snow and from the snowpack over the Salt River Basin in Arizona for a wet and dry year. Simulations indicate that: (1) total sublimation is highly variable in response to variability in both sublimation rate and snow cover duration; (2) total canopy sublimation is similar for both years while ground sublimation is considerably greater during the wet year; (3) sublimation is a relatively greater contribution to the snow water budget during the dry year (28% vs. 20% of total snowfall); (4) at high elevations, ground sublimation is less in open areas than forested areas during the dry year, while the reverse is evident during the wet year as snowpack lasted longer into spring. While a reduction in leaf area index leads to a reduction of total sublimation due to less interception in both years, ground sublimation increases during the dry year, possibly due to less sheltering from solar radiation and wind. This reduction in sheltering results in a large decrease in snowpack duration (i.e., ten days in spring) at mid-elevations for the wet year, leading to a decrease in ground sublimation. This results in a 500 meter difference in the elevation of maximum sublimation reduction upon reduced leaf area index between the two years. Forest cover properties can vary considerably on short and long time scales through natural (wildfire, bark beetle infestation, drought) and anthropogenic (land management practices) processes. Therefore, understanding how small scale changes impact snow sublimation at larger spatial scales, and how this varies temporally, is critical from ecosystem function and water resources perspectives.

  15. Branch age and light conditions determine leaf-area-specific conductivity in current shoots of Scots pine.

    PubMed

    Grönlund, Leila; Hölttä, Teemu; Mäkelä, Annikki

    2016-08-01

    Shoot size and other shoot properties more or less follow the availability of light, but there is also evidence that the topological position in a tree crown has an influence on shoot development. Whether the hydraulic properties of new shoots are more regulated by the light or the position affects the shoot acclimation to changing light conditions and thereby to changing evaporative demand. We investigated the leaf-area-specific conductivity (and its components sapwood-specific conductivity and Huber value) of the current-year shoots of Scots pine (Pinus sylvestris L.) in relation to light environment and topological position in three different tree classes. The light environment was quantified in terms of simulated transpiration and the topological position was quantified by parent branch age. Sample shoot measurements included length, basal and tip diameter, hydraulic conductivity of the shoot, tracheid area and density, and specific leaf area. In our results, the leaf-area-specific conductivity of new shoots declined with parent branch age and increased with simulated transpiration rate of the shoot. The relation to transpiration demand seemed more decisive, since it gave higher R(2) values than branch age and explained the differences between the tree classes. The trend of leaf-area-specific conductivity with simulated transpiration was closely related to Huber value, whereas the trend of leaf-area-specific conductivity with parent branch age was related to a similar trend in sapwood-specific conductivity. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Influence of irrigation and fertilization on transpiration and hydraulic properties of Populus deltoides.

    PubMed

    Samuelson, Lisa J; Stokes, Thomas A; Coleman, Mark D

    2007-05-01

    Long-term hydraulic acclimation to resource availability was explored in 3-year-old Populus deltoides Bartr. ex Marsh. clones by examining transpiration, leaf-specific hydraulic conductance (G(L)), canopy stomatal conductance (G(S)) and leaf to sapwood area ratio (A(L):A(S)) in response to irrigation (13 and 551 mm year(-1) in addition to ambient precipitation) and fertilization (0 and 120 kg N ha(-1) year(-1)). Sap flow was measured continuously over one growing season with thermal dissipation probes. Fertilization had a greater effect on growth and hydraulic properties than irrigation, and fertilization effects were independent of irrigation treatment. Transpiration on a ground area basis (E) ranged between 0.3 and 1.8 mm day(-1), and increased 66% and 90% in response to irrigation and fertilization, respectively. Increases in G(L), G(S) at a reference vapor pressure deficit of 1 kPa, and transpiration per unit leaf area in response to increases in resource availability were associated with reductions in A(L):A(S) and consequently a minimal change in the water potential gradient from soil to leaf. Irrigation and fertilization increased leaf area index similarly, from an average 1.16 in control stands to 1.45, but sapwood area was increased from 4.0 to 6.3 m(2) ha(-1) by irrigation and from 3.7 to 6.7 m(2) ha(-1) by fertilization. The balance between leaf area and sapwood area was important in understanding long-term hydraulic acclimation to resource availability and mechanisms controlling maximum productivity in Populus deltoides.

  17. Leaf Shrinkage with Dehydration: Coordination with Hydraulic Vulnerability and Drought Tolerance1[C][W][OPEN

    PubMed Central

    Scoffoni, Christine; Vuong, Christine; Diep, Steven; Cochard, Hervé; Sack, Lawren

    2014-01-01

    Leaf shrinkage with dehydration has attracted attention for over 100 years, especially as it becomes visibly extreme during drought. However, little has been known of its correlation with physiology. Computer simulations of the leaf hydraulic system showed that a reduction of hydraulic conductance of the mesophyll pathways outside the xylem would cause a strong decline of leaf hydraulic conductance (Kleaf). For 14 diverse species, we tested the hypothesis that shrinkage during dehydration (i.e. in whole leaf, cell and airspace thickness, and leaf area) is associated with reduction in Kleaf at declining leaf water potential (Ψleaf). We tested hypotheses for the linkage of leaf shrinkage with structural and physiological water relations parameters, including modulus of elasticity, osmotic pressure at full turgor, turgor loss point (TLP), and cuticular conductance. Species originating from moist habitats showed substantial shrinkage during dehydration before reaching TLP, in contrast with species originating from dry habitats. Across species, the decline of Kleaf with mild dehydration (i.e. the initial slope of the Kleaf versus Ψleaf curve) correlated with the decline of leaf thickness (the slope of the leaf thickness versus Ψleaf curve), as expected based on predictions from computer simulations. Leaf thickness shrinkage before TLP correlated across species with lower modulus of elasticity and with less negative osmotic pressure at full turgor, as did leaf area shrinkage between full turgor and oven desiccation. These findings point to a role for leaf shrinkage in hydraulic decline during mild dehydration, with potential impacts on drought adaptation for cells and leaves, influencing plant ecological distributions. PMID:24306532

  18. Faunistic patterns of leaf beetles (Coleoptera, Chrysomelidae) within elevational and temporal gradients in Sierra de San Carlos, Mexico

    PubMed Central

    Sánchez-Reyes, Uriel Jeshua; Niño-Maldonado, Santiago; Barrientos-Lozano, Ludivina; Clark, Shawn M.; Jones, Robert W.

    2016-01-01

    Abstract The study of biodiversity of Chrysomelidae in Mexico and its variation within ecological gradients has increased recently, although important areas in the country remain to be explored. We conducted a faunistic inventory and analyzed the elevational and temporal variation of leaf beetle communities in the Sierra de San Carlos, in the state of Tamaulipas, in northeastern Mexico. This is an area with high to extreme priority for conservation, and due to its insular geographical position and to the vegetational communities present, it must be considered as a sky island. We selected seven sample sites distributed in different elevations within three localities, and comprising different vegetational communities. At each site, we randomly delimited 12 sample plots of 400 m2 where sampling was conducted by entomological sweep netting and collecting directly by hand. Sampling was conducted monthly at each plot, for a total of 1,008 samples between February 2013 and January 2014. By the end of the study, we had obtained a total of 3,081 specimens belonging to six subfamilies, 65 genera, and 113 species, with Trichaltica scabricula (Crotch, 1873) being recorded for first time in Mexico. Species richness was less than the values observed at other studies conducted in the same region, which is attributed to differences in the number of plant species and to the insular location of Sierra de San Carlos; however, the higher diversity values suggest a higher quality of natural resources and vegetational communities. No consistent pattern of leaf beetle communities was correlated with elevation, although higher values of species richness and diversity were obtained at the highest elevation site. The seasonal gradient showed that the rainy season is most favorable for leaf beetle communities. We found that species composition was different between sites and months, and also that there exists a significant association between the abundance obtained at each site and particular months. These results highlight the importance of different microhabitats for species distribution, and suggest that each species of Chrysomelidae has a differential response to environmental factors that vary within the elevational gradient and according to seasons. Also, we confirm and emphasize the important status of Sierra de San Carlos as a key natural area for biological conservation. PMID:27594798

  19. Plant size and leaf area influence phenological and reproductive responses to warming in semiarid Mediterranean species.

    PubMed

    Valencia, Enrique; Méndez, Marcos; Saavedra, Noelia; Maestre, Fernando T

    2016-08-01

    Changes in vegetative and reproductive phenology rank among the most obvious plant responses to climate change. These responses vary broadly among species, but it is largely unknown whether they are mediated by functional attributes, such as size or foliar traits. Using a manipulative experiment conducted over two growing seasons, we evaluated the responses in reproductive phenology and output of 14 Mediterranean semiarid species belonging to three functional groups (grasses, nitrogen-fixing legumes and forbs) to a ~3°C increase in temperature, and assessed how leaf and size traits influenced them. Overall, warming advanced flowering and fruiting phenology, extended the duration of flowering and reduced the production of flowers and fruits. The observed reduction in flower and fruit production with warming was likely related to the decrease in soil moisture promoted by this treatment. Phenological responses to warming did not vary among functional groups, albeit forbs had an earlier reproductive phenology than legumes and grasses. Larger species with high leaf area, as well as those with small specific leaf area, had an earlier flowering and a longer flowering duration. The effects of warming on plant size and leaf traits were related to those on reproductive phenology and reproductive output. Species that decreased their leaf area under warming advanced more the onset of flowering, while those that increased their vegetative height produced more flowers. Our results advance our understanding of the phenological responses to warming of Mediterranean semiarid species, and highlight the key role of traits such as plant size and leaf area as determinants of such responses.

  20. Factors limiting regeneration of Quercus alba and Cornus florida in formerly cultivated coastal plain sites, South Carolina.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Joseph, M., Jr.; Jones, Robert, H.

    2003-01-01

    Riley, J.M. Jr., and R.H.Jones. 2003. Factors limiting regeneration of Quercus alba and Cornus florida in formerly cultivated coastal plain sites, South Carolina. For. Ecol., and Mgt. 177:571-586. To determine the extent that resources, conditions, and herbivoryy limit regeneration of Quercus alba L. and Cornus florida L. in formerly cultivated coastal plain uplands, we planted seedlings of the two species in two pine and one pine-hardwood forest understory and three adjacent clearcuts. Soil carbon and moisture, available nitrogen and phosphorous, and gap light index (GLI) were measured next to each seedling. Over two growing seasons, stem and leaf herbivory weremore » estimated and survival was recorded. At the end of 2 years, all surviving stems were harvested to determine total leaf area and 2-year biomass growth. Survival to the end of the study was not significantly different between clearcuts and understories. However, clearcuts led to significantly greater biomass growth and leaf area for both Q. alba and C. florida. Soil moisture and available nutrients were also greater in the clearcuts. Using separate multiple linear (growth) or logistic (survival) regressions for each combination of three sites, two cutting treatments and two species, we found that soil moisture significantly affected survival in 12.5% and biomass growth in 8.3% of the regressions. Light availability significantly impacted biomass growth in 16.7% of the regressions. Stem and leaf herbivory had very little impact on survival (8.3%), but when combined, these two factors significantly impacted leaf area or biomass growth in 33.3% of the regressions. Seedling responses were highly variable, and no regression model accounted for more that 70.0% of this variation. In our study, stand-scalevariation in seedling responses (especially the difference between clearcut and understory) was much greater than within-stand variation. Of the within stand factors measured, herbivory was clearly the most important. To establish these species in mesic upland coastal plain sites, we recommend planting immediately after clearcutting.« less

  1. Coordination of Leaf Photosynthesis, Transpiration, and Structural Traits in Rice and Wild Relatives (Genus Oryza).

    PubMed

    Giuliani, Rita; Koteyeva, Nuria; Voznesenskaya, Elena; Evans, Marc A; Cousins, Asaph B; Edwards, Gerald E

    2013-07-01

    The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO(2) access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 accessions (representatives of 17 species and eight genomes). Hypotheses of associations within, and between, structure, photosynthesis, and transpiration were tested. Two main clusters of positively interrelated leaf traits were identified: in the first cluster were structural features, leaf thickness (Thick(leaf)), mesophyll (M) cell surface area exposed to intercellular air space per unit of leaf surface area (S(mes)), and M cell size; a second group included functional traits, net photosynthetic rate, transpiration rate, M conductance to CO(2) diffusion (g(m)), stomatal conductance to gas diffusion (g(s)), and the g(m)/g(s) ratio.While net photosynthetic rate was positively correlated with gm, neither was significantly linked with any individual structural traits. The results suggest that changes in gm depend on covariations of multiple leaf (S(mes)) and M cell (including cell wall thickness) structural traits. There was an inverse relationship between Thick(leaf) and transpiration rate and a significant positive association between Thick(leaf) and leaf transpiration efficiency. Interestingly, high g(m) together with high g(m)/g(s) and a low S(mes)/g(m) ratio (M resistance to CO(2) diffusion per unit of cell surface area exposed to intercellular air space) appear to be ideal for supporting leaf photosynthesis while preserving water; in addition, thick M cell walls may be beneficial for plant drought tolerance.

  2. Whole organ, venation and epidermal cell morphological variations are correlated in the leaves of Arabidopsis mutants.

    PubMed

    Pérez-Pérez, José Manuel; Rubio-Díaz, Silvia; Dhondt, Stijn; Hernández-Romero, Diana; Sánchez-Soriano, Joaquín; Beemster, Gerrit T S; Ponce, María Rosa; Micol, José Luis

    2011-12-01

    Despite the large number of genes known to affect leaf shape or size, we still have a relatively poor understanding of how leaf morphology is established. For example, little is known about how cell division and cell expansion are controlled and coordinated within a growing leaf to eventually develop into a laminar organ of a definite size. To obtain a global perspective of the cellular basis of variations in leaf morphology at the organ, tissue and cell levels, we studied a collection of 111 non-allelic mutants with abnormally shaped and/or sized leaves, which broadly represent the mutational variations in Arabidopsis thaliana leaf morphology not associated with lethality. We used image-processing techniques on these mutants to quantify morphological parameters running the gamut from the palisade mesophyll and epidermal cells to the venation, whole leaf and rosette levels. We found positive correlations between epidermal cell size and leaf area, which is consistent with long-standing Avery's hypothesis that the epidermis drives leaf growth. In addition, venation parameters were positively correlated with leaf area, suggesting that leaf growth and vein patterning share some genetic controls. Positional cloning of the genes affected by the studied mutations will eventually establish functional links between genotypes, molecular functions, cellular parameters and leaf phenotypes. © 2011 Blackwell Publishing Ltd.

  3. Comparison of measured changes in seasonal soil water content by rainfed maize-bean intercrop and component cropping systems in a semi-arid region of southern Africa

    NASA Astrophysics Data System (ADS)

    Ogindo, H. O.; Walker, S.

    Seasonal water content fluctuation within the effective root zone was monitored during the growing season for a maize-bean intercrop (IMB), sole maize (SM) and sole bean (SB) in Free State Province, Republic of South Africa. Comparisons were undertaken for progressive depths of extraction 0-300 mm; 300-600 mm and 600-900 mm respectively. These enabled the understanding of water extraction behavior of the cropping systems within the different soil layers including the topsoil surface normally influenced by soil surface evaporation. Additive intercrops have been known to conserve water, largely due to the early high leaf area index and the higher total leaf area. In this study, the combined effect of the intercrop components seemed to lower the total water demand by the intercrop compared to the sole crops. During the two seasons (2000/2001 and 2001/2002) the drained upper limit (DUL) and crop lower limits (CLL) were determined. The maize-bean intercrop, sole maize and sole bean had CLL of 141 mm/m, 149 mm/m and 159 mm/m respectively. The DUL was 262 mm/m for the site and therefore the potential plant extractable soil water for the cropping systems were: 121 mm/m (IMB); 114 mm/m (SM) and 103 mm/m (SB). Overall, the intercrop did not have significantly different total soil water extraction during both seasons, although it was additive, showing that it had higher water to biomass conversion.

  4. Relative importance of habitat filtering and limiting similarity on species assemblages of alpine and subalpine plant communities.

    PubMed

    Takahashi, Koichi; Tanaka, Saeka

    2016-11-01

    This study examined how habitat filtering and limiting similarity affect species assemblages of alpine and subalpine plant communities along a slope gradient on Mt. Norikura in central Japan. Plant traits (plant height, individual leaf area, specific leaf area (SLA), leaf linearity, leaf nitrogen and chlorophyll concentrations) and abiotic environmental factors (elevation, slope inclination, ground surface texture, soil water, soil pH, soil nutrient concentrations of NH 4 -N and NO 3 -N) were examined. The metrics of variance, range, kurtosis and the standard deviation of neighbor distance divided by the range of traits present (SDNDr) were calculated for each plant trait to measure trait distribution patterns. Limiting similarity was detected only for chlorophyll concentration. By contrast, habitat filtering was detected for individual leaf area, SLA, leaf linearity, chlorophyll concentration. Abiotic environmental factors were summarized by the principal component analysis (PCA). The first PCA axis positively correlated with elevation and soil pH, and negatively correlated with sand cover, soil water, NH 4 -N and NO 3 -N concentrations. High values of the first PCA axis represent the wind-exposed upper slope with lower soil moisture and nutrient availabilities. Plant traits changed along the first PCA axis. Leaf area, SLA and chlorophyll concentration decreased, and leaf linearity increased with the first PCA axis. This study showed that the species assemblage of alpine and subalpine plants was determined mainly by habitat filtering, indicating that abiotic environmental factors are more important for species assemblage than interspecific competition. Therefore, only species adapting to abiotic environments can distribute to these environments.

  5. Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests.

    PubMed

    Ali, Arshad; Yan, En-Rong; Chang, Scott X; Cheng, Jun-Yang; Liu, Xiang-Yu

    2017-01-01

    Subtropical forests are globally important in providing ecological goods and services, but it is not clear whether functional diversity and composition can predict aboveground biomass in such forests. We hypothesized that high aboveground biomass is associated with high functional divergence (FDvar, i.e., niche complementarity) and community-weighted mean (CWM, i.e., mass ratio; communities dominated by a single plant strategy) of trait values. Structural equation modeling was employed to determine the direct and indirect effects of stand age and the residual effects of CWM and FDvar on aboveground biomass across 31 plots in secondary forests in subtropical China. The CWM model accounted for 78, 20, 6 and 2% of the variation in aboveground biomass, nitrogen concentration in young leaf, plant height and specific leaf area of young leaf, respectively. The FDvar model explained 74, 13, 7 and 0% of the variation in aboveground biomass, plant height, twig wood density and nitrogen concentration in young leaf, respectively. The variation in aboveground biomass, CWM of leaf nitrogen concentration and specific leaf area, and FDvar of plant height, twig wood density and nitrogen concentration in young leaf explained by the joint model was 86, 20, 13, 7, 2 and 0%, respectively. Stand age had a strong positive direct effect but low indirect positive effects on aboveground biomass. Aboveground biomass was negatively related to CWM of nitrogen concentration in young leaf, but positively related to CWM of specific leaf area of young leaf and plant height, and FDvar of plant height, twig wood density and nitrogen concentration in young leaf. Leaf and wood economics spectra are decoupled in regulating the functionality of forests, communities with diverse species but high nitrogen conservative and light acquisitive strategies result in high aboveground biomass, and hence, supporting both the mass ratio and niche complementarity hypotheses in secondary subtropical forests. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Fungal communities in herbaceous medicinal plants from the malnad region, southern India.

    PubMed

    Krishnamurthy, Yelugere L; Naik, Shankar B; Jayaram, Shashikala

    2008-01-01

    Fungal communities were isolated from surface sterilized leaf segments of nine ethnopharmaceutically important medicinal herbs collected from the Bhadra River Project Area, the Malnad region, Southern India. A total of 2159 isolates belonging to 55 different fungal species were isolated from 3600 leaf segments collected during the wet and dry seasons. Chaetomium globosum (7.3%), Aureobasidium pullulans (6.1%), Cladosporium cladosporioides (3.9%), Curvularia lunata (1.9%), Nigrospora oryzae (1.7%), Alternaria alternata (1.3%), Botryosphaeria subglobosa (1.1%), Phoma multirostrata (0.9%), Aspergillus niger (0.8%), Fusarium oxysporum (0.7%), Rhizoctonia solani (0.4%), and Sphaeropsis sapenea (0.3%) were the most frequently isolated fungal species. Colonization rates of fungal species varied significantly between the two seasons. Host specificity was observed in some host plants.

  7. Sagebrush and grasshopper responses to atmospheric carbon dioxide concentration.

    PubMed

    Johnson, R H; Lincoln, D E

    1990-08-01

    Seed- and clonally-propagated plants of Big Sagebrush (Artemisia tridentata var.tridentata) were grown under atmospheric carbon dioxide regimes of 270, 350 and 650 μl l -1 and fed toMelanoplus differentialis andM. sanguinipes grasshoppers. Total shrub biomass significantly increased as carbon dioxide levels increased, as did the weight and area of individual leaves. Plants grown from seed collected in a single population exhibited a 3-5 fold variation in the concentration of leaf volatile mono- and sesquiterpenes, guaianolide sesquiterpene lactones, coumarins and flavones within each CO 2 treatment. The concentration of leaf allelochemicals did not differ significantly among CO 2 treatments for these seed-propagated plants. Further, when genotypic variation was controlled by vegetative propagation, allelochemical concentrations also did not differ among carbon dioxide treatments. On the other hand, overall leaf nitrogen concentration declined significantly with elevated CO 2 . Carbon accumulation was seen to dilute leaf nitrogen as the balance of leaf carbon versus nitrogen progressively increased as CO 2 growth concentration increased. Grasshopper feeding was highest on sagebrush leaves grown under 270 and 650 μl l -1 CO 2 , but varied widely within treatments. Leaf nitrogen concentration was an important positive factor in grasshopper relative growth but had no overall effect on consumption. Potential compensatory consumption by these generalist grasshoppers was apparently limited by the sagebrush allelochemicals. Insects with a greater ability to feed on chemically defended host plants under carbon dioxide enrichment may ultimately consume leaves with a lower nitrogen concentration but the same concentration of allelochemicals. Compensatory feeding may potentially increase the amount of dietary allelochemicals ingested for each unit of nitrogen consumed.

  8. Effects of long-term individual and combined water and temperature stress on the growth of rice, wheat and maize: relationship with morphological and physiological acclimation.

    PubMed

    Perdomo, Juan Alejandro; Conesa, Miquel À; Medrano, Hipólito; Ribas-Carbó, Miquel; Galmés, Jeroni

    2015-10-01

    This study evaluates the long-term individual and combined effects of high temperature (HT) and water deficit (WD) stress on plant growth, leaf gas-exchange and water use efficiency in cultivars of the three most important crops worldwide, rice, wheat and maize. Total plant biomass (B t ) accumulation decreased under all treatments, being the combined HT-WD treatment the most detrimental in all three species. Although decreases in B t correlated with adjustments in biomass allocation patterns (i.e. the leaf area ratio), most of the variation observed in B t was explained by changes in leaf gas exchange parameters. Thus, integrated values of leaf carbon balance obtained from daily course measurements of photosynthesis and respiration were better predictors of plant growth than the instantaneous measurements of leaf gas exchange. Leaf water use efficiency, assessed both by gas exchange and carbon isotope measurements, was negatively correlated with B t under WD, but not under the combined WD and HT treatment. A comparative analysis of the negative effects of single and combined stresses on the main parameters showed an additive component for WD and HT in rice and maize, in contrast to wheat. Overall, the results of the specific cultivars included in the study suggest that the species native climate plays a role shaping the species acclimation potential to the applied stresses. In this regard, wheat, originated in a cold climate, was the most affected species, which foretells a higher affectation of this crop due to climate change. © 2014 Scandinavian Plant Physiology Society.

  9. Rapid Recovery of an Urban Remnant Reptile Community following Summer Wildfire

    PubMed Central

    2015-01-01

    Reptiles in urban remnants are threatened with extinction by increased fire frequency, habitat fragmentation caused by urban development, and competition and predation from exotic species. Understanding how urban reptiles respond to and recover from such disturbances is key to their conservation. We monitored the recovery of an urban reptile community for five years following a summer wildfire at Kings Park in Perth, Western Australia, using pitfall trapping at five burnt and five unburnt sites. The reptile community recovered rapidly following the fire. Unburnt sites initially had higher species richness and total abundance, but burnt sites rapidly converged, recording a similar total abundance to unburnt areas within two years, and a similar richness within three years. The leaf-litter inhabiting skink Hemiergis quadrilineata was strongly associated with longer unburnt sites and may be responding to the loss of leaf litter following the fire. Six rarely-captured species were also strongly associated with unburnt areas and were rarely or never recorded at burnt sites, whereas two other rarely-captured species were associated with burnt sites. We also found that one lizard species, Ctenotus fallens, had a smaller average body length in burnt sites compared to unburnt sites for four out of the five years of monitoring. Our study indicates that fire management that homogenises large areas of habitat through frequent burning may threaten some species due to their preference for longer unburnt habitat. Careful management of fire may be needed to maximise habitat suitability within the urban landscape. PMID:25992802

  10. Rapid Recovery of an Urban Remnant Reptile Community following Summer Wildfire.

    PubMed

    Davis, Robert A; Doherty, Tim S

    2015-01-01

    Reptiles in urban remnants are threatened with extinction by increased fire frequency, habitat fragmentation caused by urban development, and competition and predation from exotic species. Understanding how urban reptiles respond to and recover from such disturbances is key to their conservation. We monitored the recovery of an urban reptile community for five years following a summer wildfire at Kings Park in Perth, Western Australia, using pitfall trapping at five burnt and five unburnt sites. The reptile community recovered rapidly following the fire. Unburnt sites initially had higher species richness and total abundance, but burnt sites rapidly converged, recording a similar total abundance to unburnt areas within two years, and a similar richness within three years. The leaf-litter inhabiting skink Hemiergis quadrilineata was strongly associated with longer unburnt sites and may be responding to the loss of leaf litter following the fire. Six rarely-captured species were also strongly associated with unburnt areas and were rarely or never recorded at burnt sites, whereas two other rarely-captured species were associated with burnt sites. We also found that one lizard species, Ctenotus fallens, had a smaller average body length in burnt sites compared to unburnt sites for four out of the five years of monitoring. Our study indicates that fire management that homogenises large areas of habitat through frequent burning may threaten some species due to their preference for longer unburnt habitat. Careful management of fire may be needed to maximise habitat suitability within the urban landscape.

  11. High-Throughput Phenotyping of Maize Leaf Physiological and Biochemical Traits Using Hyperspectral Reflectance1[OPEN

    PubMed Central

    Yendrek, Craig R.; Tomaz, Tiago; Montes, Christopher M.; Cao, Youyuan; Morse, Alison M.; Brown, Patrick J.; McIntyre, Lauren M.; Leakey, Andrew D.B.

    2017-01-01

    High-throughput, noninvasive field phenotyping has revealed genetic variation in crop morphological, developmental, and agronomic traits, but rapid measurements of the underlying physiological and biochemical traits are needed to fully understand genetic variation in plant-environment interactions. This study tested the application of leaf hyperspectral reflectance (λ = 500–2,400 nm) as a high-throughput phenotyping approach for rapid and accurate assessment of leaf photosynthetic and biochemical traits in maize (Zea mays). Leaf traits were measured with standard wet-laboratory and gas-exchange approaches alongside measurements of leaf reflectance. Partial least-squares regression was used to develop a measure of leaf chlorophyll content, nitrogen content, sucrose content, specific leaf area, maximum rate of phosphoenolpyruvate carboxylation, [CO2]-saturated rate of photosynthesis, and leaf oxygen radical absorbance capacity from leaf reflectance spectra. Partial least-squares regression models accurately predicted five out of seven traits and were more accurate than previously used simple spectral indices for leaf chlorophyll, nitrogen content, and specific leaf area. Correlations among leaf traits and statistical inferences about differences among genotypes and treatments were similar for measured and modeled data. The hyperspectral reflectance approach to phenotyping was dramatically faster than traditional measurements, enabling over 1,000 rows to be phenotyped during midday hours over just 2 to 4 d, and offers a nondestructive method to accurately assess physiological and biochemical trait responses to environmental stress. PMID:28049858

  12. Hydraulic architecture and photosynthetic capacity as constraints on release from suppression in Douglas-fir and western hemlock.

    PubMed

    Renninger, Heidi J; Meinzer, Frederick C; Gartner, Barbara L

    2007-01-01

    We compared hydraulic architecture, photosynthesis and growth in Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), a shade-intolerant species, and western hemlock (Tsuga heterophylla (Raf.) Sarg.), a shade-tolerant species, to study the temporal pattern of release from suppressive shade. In particular, we sought to determine whether hydraulic architecture or photosynthetic capacity is most important in constraining release. The study was conducted at two sites with mixed stands of 10- to 20-year-old Douglas-fir and western hemlock. At one site, the stand had been thinned allowing release of the understory trees, whereas at the other site, the stand remained unthinned. Douglas-fir had lower height growth (from 1998-2003) and lower relative height growth (height growth from 1998 to 2003/height in 1998) than western hemlock. However, relative height growth of released versus suppressed trees was higher in Douglas-fir (130%) than in western hemlock (65%), indicating that, although absolute height growth was less, Douglas-fir did release from suppression. Release seemed to be constrained initially by a limited photosynthetic capacity in both species. Five years after release, Douglas-fir trees had 14 times the leaf area and 1.5 times the leaf nitrogen concentration (N (area)) of suppressed trees. Needles of released western hemlock trees had about twice the maximum assimilation rate (A (max)) at ambient [CO(2)] as needles of suppressed trees and exhibited no photoinhibition at the highest irradiances. After release, trees increased in leaf area, leaf N concentration and overall photosynthetic capacity. Subsequently, hydraulic architecture appeared to constrain release in Douglas-fir and, to a lesser extent, in western hemlock. Released trees had significantly less negative foliar delta(13)C values than suppressed trees and showed a positive relationship between leaf area:sapwood area ratio (A (L)/A (S)) and delta(13)C, suggesting that trees with more leaf area for a given sapwood area experienced a stomatal limitation on carbon gain. Nonetheless, these changes had no significant effects on leaf specific conductivities of suppressed versus released trees of either species, but leaf specific root conductance was significantly lower in released Douglas-fir.

  13. The influence of branch order on optimal leaf vein geometries: Murray's law and area preserving branching.

    PubMed

    Price, Charles A; Knox, Sarah-Jane C; Brodribb, Tim J

    2013-01-01

    Models that predict the form of hierarchical branching networks typically invoke optimization based on biomechanical similitude, the minimization of impedance to fluid flow, or construction costs. Unfortunately, due to the small size and high number of vein segments found in real biological networks, complete descriptions of networks needed to evaluate such models are rare. To help address this we report results from the analysis of the branching geometry of 349 leaf vein networks comprising over 1.5 million individual vein segments. In addition to measuring the diameters of individual veins before and after vein bifurcations, we also assign vein orders using the Horton-Strahler ordering algorithm adopted from the study of river networks. Our results demonstrate that across all leaves, both radius tapering and the ratio of daughter to parent branch areas for leaf veins are in strong agreement with the expectation from Murray's law. However, as veins become larger, area ratios shift systematically toward values expected under area-preserving branching. Our work supports the idea that leaf vein networks differentiate roles of leaf support and hydraulic supply between hierarchical orders.

  14. Light-Induced Indeterminacy Alters Shade-Avoiding Tomato Leaf Morphology1[OPEN

    PubMed Central

    Chitwood, Daniel H.; Kumar, Ravi; Ranjan, Aashish; Pelletier, Julie M.; Townsley, Brad T.; Ichihashi, Yasunori; Martinez, Ciera C.; Zumstein, Kristina; Harada, John J.; Maloof, Julin N.; Sinha, Neelima R.

    2015-01-01

    Plants sense the foliar shade of competitors and alter their developmental programs through the shade-avoidance response. Internode and petiole elongation, and changes in overall leaf area and leaf mass per area, are the stereotypical architectural responses to foliar shade in the shoot. However, changes in leaf shape and complexity in response to shade remain incompletely, and qualitatively, described. Using a meta-analysis of more than 18,000 previously published leaflet outlines, we demonstrate that shade avoidance alters leaf shape in domesticated tomato (Solanum lycopersicum) and wild relatives. The effects of shade avoidance on leaf shape are subtle with respect to individual traits but are combinatorially strong. We then seek to describe the developmental origins of shade-induced changes in leaf shape by swapping plants between light treatments. Leaf size is light responsive late into development, but patterning events, such as stomatal index, are irrevocably specified earlier. Observing that shade induces increases in shoot apical meristem size, we then describe gene expression changes in early leaf primordia and the meristem using laser microdissection. We find that in leaf primordia, shade avoidance is not mediated through canonical pathways described in mature organs but rather through the expression of KNOTTED1-LIKE HOMEOBOX and other indeterminacy genes, altering known developmental pathways responsible for patterning leaf shape. We also demonstrate that shade-induced changes in leaf primordium gene expression largely do not overlap with those found in successively initiated leaf primordia, providing evidence against classic hypotheses that shaded leaf morphology results from the prolonged production of juvenile leaf types. PMID:26381315

  15. Evidence for shifts to faster growth strategies in the new ranges of invasive alien plants

    PubMed Central

    Leishman, Michelle R; Cooke, Julia; Richardson, David M; Newman, Jonathan

    2014-01-01

    Summary Understanding the processes underlying the transition from introduction to naturalization and spread is an important goal of invasion ecology. Release from pests and pathogens in association with capacity for rapid growth is thought to confer an advantage for species in novel regions. We assessed leaf herbivory and leaf-level traits associated with growth strategy in the native and exotic ranges of 13 invasive plant species from 256 populations. Species were native to either the Western Cape region of South Africa, south-western Australia or south-eastern Australia and had been introduced to at least one of the other regions or to New Zealand. We tested for evidence of herbivore release and shifts in leaf traits between native and exotic ranges of the 13 species. Across all species, leaf herbivory, specific leaf area and leaf area were significantly different between native and exotic ranges while there were no significant differences across the 13 species found for leaf mass, assimilation rate, dark respiration or foliar nitrogen. Analysis at the species- and region-level showed that eight out of 13 species had reduced leaf herbivory in at least one exotic region compared to its native range. Six out of 13 species had significantly larger specific leaf area (SLA) in at least one exotic range region and five of those six species experienced reduced leaf herbivory. Increases in SLA were underpinned by increases in leaf area rather than reductions in leaf mass. No species showed differences in the direction of trait shifts from the native range between different exotic regions. This suggests that the driver of selection on these traits in the exotic range is consistent across regions and hence is most likely to be associated with factors linked with introduction to a novel environment, such as release from leaf herbivory, rather than with particular environmental conditions. Synthesis. These results provide evidence that introduction of a plant species into a novel environment commonly results in a reduction in the top-down constraint imposed by herbivores on growth, allowing plants to shift towards a faster growth strategy which may result in an increase in population size and spread and consequently to invasive success. PMID:25558090

  16. Enhancement of crop photosynthesis by diffuse light: quantifying the contributing factors

    PubMed Central

    Li, T.; Heuvelink, E.; Dueck, T. A.; Janse, J.; Gort, G.; Marcelis, L. F. M.

    2014-01-01

    Background and Aims Plants use diffuse light more efficiently than direct light. However, experimental comparisons between diffuse and direct light have been obscured by co-occurring differences in environmental conditions (e.g. light intensity). This study aims to analyse the factors that contribute to an increase in crop photosynthesis in diffuse light and to quantify their relative contribution under different levels of diffuseness at similar light intensities. The hypothesis is that the enhancement of crop photosynthesis in diffuse light results not only from the direct effects of more uniform vertical and horizontal light distribution in the crop canopy, but also from crop physiological and morphological acclimation. Methods Tomato (Solanum lycopersicum) crops were grown in three greenhouse compartments that were covered by glass with different degrees of light diffuseness (0, 45 and 71 % of the direct light being converted into diffuse light) while maintaining similar light transmission. Measurements of horizontal and vertical photosynthetic photon flux density (PPFD) distribution in the crop, leaf photosynthesis light response curves and leaf area index (LAI) were used to quantify each factor's contribution to an increase in crop photosynthesis in diffuse light. In addition, leaf temperature, photoinhibition, and leaf biochemical and anatomical properties were studied. Key Results The highest degree of light diffuseness (71 %) increased the calculated crop photosynthesis by 7·2 %. This effect was mainly attributed to a more uniform horizontal (33 % of the total effect) and vertical PPFD distribution (21 %) in the crop. In addition, plants acclimated to the high level of diffuseness by gaining a higher photosynthetic capacity of leaves in the middle of the crop and a higher LAI, which contributed 23 and 13 %, respectively, to the total increase in crop photosynthesis in diffuse light. Moreover, diffuse light resulted in lower leaf temperatures and less photoinhibition at the top of the canopy when global irradiance was high. Conclusions Diffuse light enhanced crop photosynthesis. A more uniform horizontal PPFD distribution played the most important role in this enhancement, and a more uniform vertical PPFD distribution and higher leaf photosynthetic capacity contributed more to the enhancement of crop photosynthesis than did higher values of LAI. PMID:24782436

  17. Use of GLM approach to assess the responses of tropical trees to urban air pollution in relation to leaf functional traits and tree characteristics.

    PubMed

    Mukherjee, Arideep; Agrawal, Madhoolika

    2018-05-15

    Responses of urban vegetation to air pollution stress in relation to their tolerance and sensitivity have been extensively studied, however, studies related to air pollution responses based on different leaf functional traits and tree characteristics are limited. In this paper, we have tried to assess combined and individual effects of major air pollutants PM 10 (particulate matter ≤ 10 µm), TSP (total suspended particulate matter), SO 2 (sulphur dioxide), NO 2 (nitrogen dioxide) and O 3 (ozone) on thirteen tropical tree species in relation to fifteen leaf functional traits and different tree characteristics. Stepwise linear regression a general linear modelling approach was used to quantify the pollution response of trees against air pollutants. The study was performed for six successive seasons for two years in three distinct urban areas (traffic, industrial and residential) of Varanasi city in India. At all the study sites, concentrations of air pollutants, specifically PM (particulate matter) and NO 2 were above the specified standards. Distinct variations were recorded in all the fifteen leaf functional traits with pollution load. Caesalpinia sappan was identified as most tolerant species followed by Psidium guajava, Dalbergia sissoo and Albizia lebbeck. Stepwise regression analysis identified maximum response of Eucalyptus citriodora and P. guajava to air pollutants explaining overall 59% and 58% variability's in leaf functional traits, respectively. Among leaf functional traits, maximum effect of air pollutants was observed on non-enzymatic antioxidants followed by photosynthetic pigments and leaf water status. Among the pollutants, PM was identified as the major stress factor followed by O 3 explaining 47% and 33% variability's in leaf functional traits. Tolerance and pollution response were regulated by different tree characteristics such as height, canopy size, leaf from, texture and nature of tree. Outcomes of this study will help in urban forest development by selection of specific pollutant tolerant tree species and leaf traits, which is suitable as air pollution mitigation measure. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Leaf spring made of fiber-reinforced resin

    NASA Technical Reports Server (NTRS)

    Hori, J.

    1986-01-01

    A leaf spring made of a matrix reinforced by at least two types of reinforcing fibers with different Young's modulus is described in this Japanese patent. At least two layers of reinforcing fibers are formed by partially arranging the reinforcing fibers toward the direction of the thickness of the leaf spring. A mixture of different types of reinforced fibers is used at the area of boundary between the two layers of reinforced fibers. The ratio of blending of each type of reinforced fiber is frequently changed to eliminate the parts where discontinuous stress may be applied to the leaf spring. The objective of this invention is to prevent the rapid change in Young's modulus at the boundary area between each layer of reinforced fibers in the leaf spring.

  19. Influence of Leaf Area Index Prescriptions on Simulations of Heat, Moisture, and Carbon Fluxes

    NASA Technical Reports Server (NTRS)

    Kala, Jatin; Decker, Mark; Exbrayat, Jean-Francois; Pitman, Andy J.; Carouge, Claire; Evans, Jason P.; Abramowitz, Gab; Mocko, David

    2013-01-01

    Leaf-area index (LAI), the total one-sided surface area of leaf per ground surface area, is a key component of land surface models. We investigate the influence of differing, plausible LAI prescriptions on heat, moisture, and carbon fluxes simulated by the Community Atmosphere Biosphere Land Exchange (CABLEv1.4b) model over the Australian continent. A 15-member ensemble monthly LAI data-set is generated using the MODIS LAI product and gridded observations of temperature and precipitation. Offline simulations lasting 29 years (1980-2008) are carried out at 25 km resolution with the composite monthly means from the MODIS LAI product (control simulation) and compared with simulations using each of the 15-member ensemble monthly-varying LAI data-sets generated. The imposed changes in LAI did not strongly influence the sensible and latent fluxes but the carbon fluxes were more strongly affected. Croplands showed the largest sensitivity in gross primary production with differences ranging from -90 to 60 %. PFTs with high absolute LAI and low inter-annual variability, such as evergreen broadleaf trees, showed the least response to the different LAI prescriptions, whilst those with lower absolute LAI and higher inter-annual variability, such as croplands, were more sensitive. We show that reliance on a single LAI prescription may not accurately reflect the uncertainty in the simulation of the terrestrial carbon fluxes, especially for PFTs with high inter-annual variability. Our study highlights that the accurate representation of LAI in land surface models is key to the simulation of the terrestrial carbon cycle. Hence this will become critical in quantifying the uncertainty in future changes in primary production.

  20. Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees.

    Treesearch

    L.S. Santiago; G. Goldstein; F.C. Meinzer; J.B. Fisher; K. Maehado; D. Woodruff; T. Jones

    2004-01-01

    We investigated how water transport capacity, wood density and wood anatomy were related to leaf photosynthetic traits in two lowland forests in Panama. Leaf-specific hydraulic conductivity (kL) of upper branches was positively correlated with maximum rates of net CO2, assimilation per unit leaf area (Aarea...

  1. Measurement of Leaf Mass and Leaf Area of Oaks In A Mediterranean-climate Region For Biogenic Emission Estimation

    NASA Astrophysics Data System (ADS)

    Karlik, J.

    Given the key role played by biogenic volatile organic compounds (BVOC) in tro- pospheric chemistry and regional air quality, it is critical to generate accurate BVOC emission inventories. Because several oak species have high BVOC emission rates, and oak trees are often of large stature with corresponding large leaf masses, oaks may be the most important genus of woody plants for BVOC emissions modeling in the natural landscapes of Mediterranean-climate regions. In California, BVOC emis- sions from oaks may mix with anthropogenic emissions from urban areas, leading to elevated levels of ozone. Data for leaf mass and leaf area for a stand of native blue oaks (Quercus douglasii) were obtained through harvest and leaf removal from 14 trees lo- cated in the Sierra Nevada foothills of central California. Trees ranged in height from 4.2 to 9.9 m, with trunk diameters at breast height of 14 to 85 cm. Mean leaf mass density was 730 g m-2 for the trees and had an overall value of 310 g m-2 for the site. Consideration of the surrounding grassland devoid of trees resulted in a value of about 150 g m-2, less than half of reported values for eastern U.S. oak woodlands, but close to a reported value for oaks found in St. Quercio, Italy. The mean value for leaf area index (LAI) for the trees at this site was 4.4 m2 m-2. LAI for the site was 1.8 m2 m-2, but this value was appropriate for the oak grove only; including the surrounding open grassland resulted in an overall LAI value of 0.9 m2 m-2 or less. A volumetric method worked well for estimating the leaf mass of the oak trees. Among allometric relationships investigated, trunk circumference, mean crown radius, and crown projec- tion were well correlated with leaf mass. Estimated emission of isoprene (mg C m-2 h-1) for the site based these leaf mass data and experimentally determined emission rate was similar to that reported for a Mediterranean oak woodland in France.

  2. Leaf traits in relation to crown development, light interception and growth of elite families of loblolly and slash pine.

    PubMed

    Chmura, Daniel J; Tjoelker, Mark G

    2008-05-01

    Crown architecture and size influence leaf area distribution within tree crowns and have large effects on the light environment in forest canopies. The use of selected genotypes in combination with silvicultural treatments that optimize site conditions in forest plantations provide both a challenge and an opportunity to study the biological and environmental determinants of forest growth. We investigated tree growth, crown development and leaf traits of two elite families of loblolly pine (Pinus taeda L.) and one family of slash pine (P. elliottii Mill.) at canopy closure. Two contrasting silvicultural treatments -- repeated fertilization and control of competing vegetation (MI treatment), and a single fertilization and control of competing vegetation treatment (C treatment) -- were applied at two experimental sites in the West Gulf Coastal Plain in Texas and Louisiana. At a common tree size (diameter at breast height), loblolly pine trees had longer and wider crowns, and at the plot-level, intercepted a greater fraction of photosynthetic photon flux than slash pine trees. Leaf-level, light-saturated assimilation rates (A(max)) and both mass- and area-based leaf nitrogen (N) decreased, and specific leaf area (SLA) increased with increasing canopy depth. Leaf-trait gradients were steeper in crowns of loblolly pine trees than of slash pine trees for SLA and leaf N, but not for A(max). There were no species differences in A(max), except in mass-based photosynthesis in upper crowns, but the effect of silvicultural treatment on A(max) differed between sites. Across all crown positions, A(max) was correlated with leaf N, but the relationship differed between sites and treatments. Observed patterns of variation in leaf properties within crowns reflected acclimation to developing light gradients in stands with closing canopies. Tree growth was not directly related to A(max), but there was a strong correlation between tree growth and plot-level light interception in both species. Growth efficiency was unaffected by silvicultural treatment. Thus, when coupled with leaf area and light interception at the crown and canopy levels, A(max) provides insight into family and silvicultural effects on tree growth.

  3. Leaf trait dissimilarities between Dutch elm hybrids with a contrasting tolerance to Dutch elm disease

    PubMed Central

    Ďurkovič, Jaroslav; Čaňová, Ingrid; Lagaňa, Rastislav; Kučerová, Veronika; Moravčík, Michal; Priwitzer, Tibor; Urban, Josef; Dvořák, Miloň; Krajňáková, Jana

    2013-01-01

    Background and Aims Previous studies have shown that Ophiostoma novo-ulmi, the causative agent of Dutch elm disease (DED), is able to colonize remote areas in infected plants of Ulmus such as the leaf midrib and secondary veins. The objective of this study was to compare the performances in leaf traits between two Dutch elm hybrids ‘Groeneveld’ and ‘Dodoens’ which possess a contrasting tolerance to DED. Trait linkages were also tested with leaf mass per area (LMA) and with the reduced Young's modulus of elasticity (MOE) as a result of structural, developmental or functional linkages. Methods Measurements and comparisons were made of leaf growth traits, primary xylem density components, gas exchange variables and chlorophyll a fluorescence yields between mature plants of ‘Groeneveld’ and ‘Dodoens’ grown under field conditions. A recently developed atomic force microscopy technique, PeakForce quantitative nanomechanical mapping, was used to reveal nanomechanical properties of the cell walls of tracheary elements such as MOE, adhesion and dissipation. Key Results ‘Dodoens’ had significantly higher values for LMA, leaf tissue thickness variables, tracheary element lumen area (A), relative hydraulic conductivity (RC), gas exchange variables and chlorophyll a fluorescence yields. ‘Groeneveld’ had stiffer cell walls of tracheary elements, and higher values for water-use efficiency and leaf water potential. Leaves with a large carbon and nutrient investment in LMA tended to have a greater leaf thickness and a higher net photosynthetic rate, but LMA was independent of RC. Significant linkages were also found between the MOE and some vascular traits such as RC, A and the number of tracheary elements per unit area. Conclusions Strong dissimilarities in leaf trait performances were observed between the examined Dutch elm hybrids. Both hybrids were clearly separated from each other in the multivariate leaf trait space. Leaf growth, vascular and gas exchange traits in the infected plants of ‘Dodoens’ were unaffected by the DED fungus. ‘Dodoens’ proved to be a valuable elm germplasm for further breeding strategies. PMID:23264236

  4. Differential responses of invasive Celastrus orbiculatus (Celastraceae) and native C. scandens to changes in light quality.

    PubMed

    Leicht, Stacey A; Silander, John A

    2006-07-01

    When plants are subjected to leaf canopy shade in forest understories or from neighboring plants, they not only experience reduced light quantity, but light quality in lowered red : far red light (R : FR). Growth and other developmental responses of plants in reduced R : FR can vary and are not consistent across species. We compared how an invasive liana, Celastrus orbiculatus, and its closely related native congener, C. scandens, responded to changes in the R : FR under controlled, simulated understory conditions. We measured a suite of morphological and growth attributes under control, neutral shading, and low R : FR light treatments. Celastrus orbiculatus showed an increase in height, aboveground biomass, and total leaf mass in reduced R : FR treatments as compared to the neutral shade, while C. scandens had increased stem diameter, single leaf area, and leaf mass to stem mass ratio. These differences provide a mechanistic understanding of the ability of C. orbiculatus to increase height and actively forage for light resources in forest understories, while C. scandens appears unable to forage for light and instead depends upon a light gap forming. The plastic growth response of C. orbiculatus in shaded conditions points to its success in forested habitats where C. scandens is largely absent.

  5. Intraspecific leaf trait variability along a boreal-to-tropical community diversity gradient

    PubMed Central

    Bastias, Cristina C.; Fortunel, Claire; Valladares, Fernando; Baraloto, Christopher; Benavides, Raquel; Cornwell, William; Markesteijn, Lars; de Oliveira, Alexandre A.; Sansevero, Jeronimo B. B.; Vaz, Marcel C.; Kraft, Nathan J. B.

    2017-01-01

    Disentangling the mechanisms that shape community assembly across diversity gradients is a central matter in ecology. While many studies have explored community assembly through species average trait values, there is a growing understanding that intraspecific trait variation (ITV) can also play a critical role in species coexistence. Classic biodiversity theory hypothesizes that higher diversity at species-rich sites can arise from narrower niches relative to species-poor sites, which would be reflected in reduced ITV as species richness increases. To explore how ITV in woody plant communities changes with species richness, we compiled leaf trait data (leaf size and specific leaf area) in a total of 521 woody plant species from 21 forest communities that differed dramatically in species richness, ranging from boreal to tropical rainforests. At each forest, we assessed ITV as an estimate of species niche breadth and we quantified the degree of trait overlap among co-occurring species as a measure of species functional similarity. We found ITV was relatively invariant across the species richness gradient. In addition, we found that species functional similarity increased with diversity. Contrary to the expectation from classic biodiversity theory, our results rather suggest that neutral processes or equalizing mechanisms can be acting as potential drivers shaping community assembly in hyperdiverse forests. PMID:28241033

  6. Ontogenetic patterns of CO sub 2 exchange of Quercus rubra L. leaves during three flushes of shoot growth II. insertion gradients of leaf photosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, P.J.; Isebrands, J.G.; Dickson, R.E.

    1988-03-01

    Carbon dioxide exchange rates (CERs) of all leaves along the stem of northern red oak (Quercus rubra L.) seedlings (a leaf insertion gradient of profile) were determined at several stages of ontogeny. Seedlings were grown and measured under growth chamber conditions favorable for the production of multiple flushes of shoot growth. The CERs were measured with a portable closed-circuit CO{sub 2} analyzer at ambient photosynthetic photon flux densities and were determined for every leaf of each seedling. Carbon dioxide exchange rates per unit projected area of individual leaves (CERA) increased along leaf-maturation gradients in expanding flushes. After flush growth wasmore » completed, all leaves of a flush has similar CERA. However, because median flush leaves were the largest, they accounted for the greatest proportion of an expanded-flush's CER. First-flush leaves were the major contributors to total seedling CER through the second flush of growth-encompassing half of the period required to produce a three-flush oak seedling. This study's data, based on short-term CER measurements, showed ontogenetic pattern of CO{sub 2} exchange similar to those reported for northern red oak under steady state laboratory conditions.« less

  7. Differential responses of invasive Celastrus orbiculatus (Celastraceae) and native C. scandens to changes in light quality

    USGS Publications Warehouse

    Leicht, S.A.; Silander, J.A.

    2006-01-01

    When plants are subjected to leaf canopy shade in forest understories or from neighboring plants, they not only experience reduced light quantity, but light quality in lowered red:far red light (R:FR). Growth and other developmental responses of plants in reduced R:FR can vary and are not consistent across species. We compared how an invasive liana, Celastrus orbiculatus, and its closely related native congener, C. scandens, responded to changes in the R:FR under controlled, simulated understory conditions. We measured a suite of morphological and growth attributes under control, neutral shading, and low R:FR light treatments. Celastrus orbiculatus showed an increase in height, aboveground biomass, and total leaf mass in reduced R:FR treatments as compared to the neutral shade, while C. scandens had increased stem diameter, single leaf area, and leaf mass to stem mass ratio. These differences provide a mechanistic understanding of the ability of C. orbiculatus to increase height and actively forage for light resources in forest understories, while C. scandens appears unable to forage for light and instead depends upon a light gap forming. The plastic growth response of C. orbiculatus in shaded conditions points to its success in forested habitats where C. scandens is largely absent.

  8. BOREAS TF-11 SSA-Fen 1995 Leaf Area Index Data

    NASA Technical Reports Server (NTRS)

    Arkebauer, Timothy J.; Hall, Forrest G. (Editor); Knapp, David E. (Editor)

    2000-01-01

    The BOREAS TF-11 team gathered a variety of data to complement its tower flux measurements collected at the SSA-Fen site. These data are LAI measurements made by the TF-11 team throughout the 1995 growing season. The data include the LAI of plants that fall into six categories: total, Carex spp., Betula pumila, Menyanthes trifoliata, Salix spp., and other vascular plants. The data are stored in tabular ASCII files.

  9. Potato growth in response to relative humidity

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Tibbitts, T. W.; Fitzpatrick, A. H.

    1989-01-01

    Potato plants (Solanum tuberosum L. cvs. Russet Burbank, Norland, and Denali) were grown for 56 days in controlled-environment rooms under continuous light at 20C and 50% or 85% RH. No significant differences in total plant dry weight were measured between the humidity treatments, but plants grown under 85% RH produced higher tuber yields. Leaf areas were greater under 50% RH and leaves tended to be larger and darker green than at 85% RH.

  10. Estimating the number of trees and forest area necessary to supply internationally traded volumes of big-leaf mahogany (Swietenia macrophylla) in Amazonia

    Treesearch

    J. Grogan; M. Schulze

    2008-01-01

    requires producer nations to certify that exported supplies were obtained in a manner non-detrimental to the species’ survival in its role in the ecosystem. Non-detriment findings based on annual export quotas should verify that current harvest rates are sustainable with respect to total commercial stocks. In order to assess this impact, a method for converting export...

  11. Ontogenetic and temporal variations in herbivory and defense of Handroanthus spongiosus (Bignoniaceae) in a Brazilian tropical dry forest.

    PubMed

    Oliveira, Karla N; Espírito-Santo, Mário M; Silva, Jhonathan O; Melo, Geraldo A

    2012-06-01

    We compared the richness and abundance of free-feeding herbivore insects (sap-sucking and leaf-chewing), leaf herbivory damage, leaf toughness and total phenolic content between two ontogenetic stages (juvenile and reproductive) of Handroanthus spongiosus (Rizzini) S. O. Grose (Bignoniaceae) throughout the rainy season in a Brazilian seasonally dry tropical forest. Twenty marked individuals of H. spongiosus were sampled per ontogenetic stage in each period of the rainy season (beginning, middle, and end). Herbivore richness and abundance did not differ between ontogenetic stages, but higher percentage of leaf damage, higher concentration of phenolic compounds, and lower leaf toughness were observed for juvenile individuals. The greatest morphospecies abundance was found at the beginning of the rainy season, but folivory increment was higher at the end, despite the fact that leaf toughness and total phenolic content increased in the same period. No significant relationships between leaf damage and both total phenolic content and leaf toughness were observed. These results suggest that insect richness and abundance do not track changes in foliage quality throughout plant ontogeny, but their decrease along rainy season confirms what was predicted for tropical dry forests. The general trends described in the current study corroborate those described in the literature about herbivores and plant ontogeny. However, the lack of relationship between herbivore damage and the two plant attributes considered here indicates that the analyses of multiple defensive traits (the defense syndrome) must be more enlightening to determine the mechanisms driving temporal and spatial patterns of herbivore attack.

  12. QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.).

    PubMed

    Liu, Kaiye; Xu, Hao; Liu, Gang; Guan, Panfeng; Zhou, Xueyao; Peng, Huiru; Yao, Yingyin; Ni, Zhongfu; Sun, Qixin; Du, Jinkun

    2018-04-01

    QTL controlling flag leaf length, flag leaf width, flag leaf area and flag leaf angle were mapped in wheat. This study aimed to advance our understanding of the genetic mechanisms underlying morphological traits of the flag leaves of wheat (Triticum aestivum L.). A recombinant inbred line (RIL) population derived from ND3331 and the Tibetan semi-wild wheat Zang1817 was used to identify quantitative trait loci (QTLs) controlling flag leaf length (FLL), flag leaf width (FLW), flag leaf area (FLA), and flag leaf angle (FLANG). Using an available simple sequence repeat genetic linkage map, 23 putative QTLs for FLL, FLW, FLA, and FLANG were detected on chromosomes 1B, 2B, 3A, 3D, 4B, 5A, 6B, 7B, and 7D. Individual QTL explained 4.3-68.52% of the phenotypic variance in different environments. Four QTLs for FLL, two for FLW, four for FLA, and five for FLANG were detected in at least two environments. Positive alleles of 17 QTLs for flag leaf-related traits originated from ND3331 and 6 originated from Zang1817. QTLs with pleiotropic effects or multiple linked QTL were also identified on chromosomes 1B, 4B, and 5A; these are potential target regions for fine-mapping and marker-assisted selection in wheat breeding programs.

  13. Bundle sheath lignification mediates the linkage of leaf hydraulics and venation.

    PubMed

    Ohtsuka, Akihiro; Sack, Lawren; Taneda, Haruhiko

    2018-02-01

    The lignification of the leaf vein bundle sheath (BS) has been observed in many species and would reduce conductance from xylem to mesophyll. We hypothesized that lignification of the BS in lower-order veins would provide benefits for water delivery through the vein hierarchy but that the lignification of higher-order veins would limit transport capacity from xylem to mesophyll and leaf hydraulic conductance (K leaf ). We further hypothesized that BS lignification would mediate the relationship of K leaf to vein length per area. We analysed the dependence of K leaf , and its light response, on the lignification of the BS across vein orders for 11 angiosperm tree species. Eight of 11 species had lignin deposits in the BS of the midrib, and two species additionally only in their secondary veins, and for six species up to their minor veins. Species with lignification of minor veins had a lower hydraulic conductance of xylem and outside-xylem pathways and lower K leaf . K leaf could be strongly predicted by vein length per area and highest lignified vein order (R 2  = .69). The light-response of K leaf was statistically independent of BS lignification. The lignification of the BS is an important determinant of species variation in leaf and thus whole plant water transport. © 2017 John Wiley & Sons Ltd.

  14. Distribution of leaf characteristics in relation to orientation within the canopy of woody species

    NASA Astrophysics Data System (ADS)

    Escudero, Alfonso; Fernández, José; Cordero, Angel; Mediavilla, Sonia

    2013-04-01

    Over the last few decades considerable effort has been devoted to research of leaf adaptations to environmental conditions. Many studies have reported strong differences in leaf mass per unit area (LMA) within a single tree depending on the photosynthetic photon flux density (PPFD) incident on different locations in the crown. There are fewer studies, however, of the effects of differences in the timing of light incidence during the day on different crown orientations. Leaves from isolated trees of Quercus suber and Quercus ilex in a cold Mediterranean climate were sampled to analyze differences in LMA and other leaf traits among different crown orientations. Gas-exchange rates, leaf water potentials, leaf temperatures and PPFD incident on leaf surfaces in different crown orientations were also measured throughout one entire summer day for each species. Mean daily PPFD values were similar for the leaves from the eastern and western sides of the canopy. On the western side, PPFD reached maximum values during the afternoon. Maximum leaf temperatures were approximately 10-20% higher on the west side, whereas minimum leaf water potentials were between 10 and 24% higher on the east side. Maximum transpiration rates were approximately 22% greater on the west, because of the greater leaf-to-air vapor pressure deficits (LAVPD). Mean individual leaf area was around 10% larger on the east than on the west side of the trees. In contrast, there were no significant differences in LMA between east and west sides of the crown. Contrary to our expectations, more severe water stress on the west side did not result in increases in LMA, although it was associated with lower individual leaf area. We conclude that increases in LMA measured by other authors along gradients of water stress would be due to differences in light intensity between dry and humid sites.

  15. Chloroplast avoidance movement is not functional in plants grown under strong sunlight.

    PubMed

    Higa, Takeshi; Wada, Masamitsu

    2016-04-01

    Chloroplast movement in nine climbing plant species was investigated. It is thought that chloroplasts generally escape from strong light to avoid photodamage but accumulate towards weak light to perform photosynthesis effectively. Unexpectedly, however, the leaves of climbing plants grown under strong sunlight showed very low or no chloroplast photorelocation responses to either weak or strong blue light when detected by red light transmittance through leaves. Direct observations of Cayratia japonica leaves, for example, revealed that the average number of chloroplasts in upper periclinal walls of palisade tissue cells was only 1.2 after weak blue-light irradiation and almost all of the chloroplasts remained at the anticlinal wall, the state of chloroplast avoidance response. The leaves grown under strong light have thin and columnar palisade tissue cells comparing with the leaves grown under low light. Depending on our analyses and our schematic model, the thinner cells in a unit leaf area have a wider total plasma membrane area, such that more chloroplasts can exist on the plasma membrane in the thinner cells than in the thicker cells in a unit leaf-area basis. The same strategy might be used in other plant leaves grown under direct sunlight. © 2015 John Wiley & Sons Ltd.

  16. [Quantitative estimation of evapotranspiration from Tahe forest ecosystem, Northeast China].

    PubMed

    Qu, Di; Fan, Wen-Yi; Yang, Jin-Ming; Wang, Xu-Peng

    2014-06-01

    Evapotranspiration (ET) is an important parameter of agriculture, meteorology and hydrology research, and also an important part of the global hydrological cycle. This paper applied the improved DHSVM distributed hydrological model to estimate daily ET of Tahe area in 2007 using leaf area index and other surface data extracted TM remote sensing data, and slope, aspect and other topographic indices obtained by using the digital elevation model. The relationship between daily ET and daily watershed outlet flow was built by the BP neural network, and a water balance equation was established for the studied watershed, together to test the accuracy of the estimation. The results showed that the model could be applied in the study area. The annual total ET of Tahe watershed was 234.01 mm. ET had a significant seasonal variation. The ET had the highest value in summer and the average daily ET value was 1.56 mm. The average daily ET in autumn and spring were 0.30, 0.29 mm, respectively, and winter had the lowest ET value. Land cover type had a great effect on ET value, and the broadleaf forest had a higher ET ability than the mixed forest, followed by the needle leaf forest.

  17. Contribution of aboveground plant respiration to carbon cycling in a Bornean tropical rainforet

    NASA Astrophysics Data System (ADS)

    Katayama, Ayumi; Tanaka, Kenzo; Ichie, Tomoaki; Kume, Tomonori; Matsumoto, Kazuho; Ohashi, Mizue; Kumagai, Tomo'omi

    2014-05-01

    Bornean tropical rainforests have a different characteristic from Amazonian tropical rainforests, that is, larger aboveground biomass caused by higher stand density of large trees. Larger biomass may cause different carbon cycling and allocation pattern. However, there are fewer studies on carbon allocation and each component in Bornean tropical rainforests, especially for aboveground plant respiration, compared to Amazonian forests. In this study, we measured woody tissue respiration and leaf respiration, and estimated those in ecosystem scale in a Bornean tropical rainforest. Then, we examined carbon allocation using the data of soil respiration and aboveground net primary production obtained from our previous studies. Woody tissue respiration rate was positively correlated with diameter at breast height (dbh) and stem growth rate. Using the relationships and biomass data, we estimated woody tissue respiration in ecosystem scale though methods of scaling resulted in different estimates values (4.52 - 9.33 MgC ha-1 yr-1). Woody tissue respiration based on surface area (8.88 MgC ha-1 yr-1) was larger than those in Amazon because of large aboveground biomass (563.0 Mg ha-1). Leaf respiration rate was positively correlated with height. Using the relationship and leaf area density data at each 5-m height, leaf respiration in ecosystem scale was estimated (9.46 MgC ha-1 yr-1), which was similar to those in Amazon because of comparable LAI (5.8 m2 m-2). Gross primary production estimated from biometric measurements (44.81 MgC ha-1 yr-1) was much higher than those in Amazon, and more carbon was allocated to woody tissue respiration and total belowground carbon flux. Large tree with dbh > 60cm accounted for about half of aboveground biomass and aboveground biomass increment. Soil respiration was also related to position of large trees, resulting in high soil respiration rate in this study site. Photosynthesis ability of top canopy for large trees was high and leaves for the large trees accounted for 30% of total, which can lead high GPP. These results suggest that large trees play considerable role in carbon cycling and make a distinctive carbon allocation in the Bornean tropical rainforest.

  18. Interacting Effects of Leaf Water Potential and Biomass on Vegetation Optical Depth

    NASA Astrophysics Data System (ADS)

    Momen, M.; Wood, J. D.; Novick, K. A.; Pockman, W.; Konings, A. G.

    2017-12-01

    Remotely-sensed microwave observations of vegetation optical depth (VOD) have been widely used to examine vegetation responses to climate. Such studies have alternately found that VOD is sensitive to both biomass and canopy water content. However, the relative impacts of changes in phenology or water stress on VOD have not been disentangled. In particular, understanding whether leaf water potential (LWP) affects VOD may permit the assimilation of satellite observations into new large-scale plant hydraulic models. Despite extensive validation of the relationship between satellite-derived VOD estimates and vegetation density, relatively few studies have explicitly sought to validate the sensitivity of VOD to canopy water status, and none have studied the effect of variations in LWP on VOD. In this work, we test the sensitivity of VOD to variations in LWP, and present a conceptual framework which relates VOD to a combination of leaf water potential and total biomass including leaves, whose dynamics can be measured through leaf area index, and woody biomass. We used in-situ measurements of LWP data to validate the conceptual model in mixed deciduous forests in Indiana and Missouri, as well as a pinion-juniper woodland in New Mexico. Observed X-band VOD from the AMSR-E and AMSR2 satellites showed dynamics similar to those reconstructed VOD signals based on the new conceptual model which employs in-situ LWP data (R2=0.60-0.80). Because LWP data are not available at global scales, we further estimated ecosystem LWP based on remotely sensed surface soil moisture to better understand the sensitivity of VOD across ecosystems. At the global scale, incorporating a combination of biomass and water potential in the reconstructed VOD signal increased correlations with VOD about 15% compared to biomass alone and about 30% compared to water potential alone. In wetter regions with denser and taller canopy heights, VOD has a higher correlation with leaf area index than with water stress and vice versa in drier regions (see figure 1). Therefore, variations in both phenology and leaf water potential must be accounted for to accurately interpret the dynamics of VOD observations for ecological applications.

  19. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christoffersen, Bradley O.; Gloor, Manuel; Fauset, Sophie

    Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media approach to modeling plant hydraulics in which all parameters of the constitutive equations are biologically interpretable and measurable plant hydraulic traits (e.g., turgor loss point π tlp, bulk elastic modulus ε, hydraulic capacitance C ft, xylem hydraulic conductivity k s,max, water potential at 50 % loss of conductivity for both xylem ( P 50,x) and stomata ( Pmore » 50,gs), and the leaf : sapwood area ratio A l: A s). We embedded this plant hydraulics model within a trait forest simulator (TFS) that models light environments of individual trees and their upper boundary conditions (transpiration), as well as providing a means for parameterizing variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits, including wood density (WD), leaf mass per area (LMA), and photosynthetic capacity ( A max ), and evaluated the coupled model (called TFS v.1-Hydro) predictions, against observed diurnal and seasonal variability in stem and leaf water potential as well as stand-scaled sap flux. Our hydraulic trait synthesis revealed coordination among leaf and xylem hydraulic traits and statistically significant relationships of most hydraulic traits with more easily measured plant traits. Using the most informative empirical trait–trait relationships derived from this synthesis, TFS v.1-Hydro successfully captured individual variation in leaf and stem water potential due to increasing tree size and light environment, with model representation of hydraulic architecture and plant traits exerting primary and secondary controls, respectively, on the fidelity of model predictions. The plant hydraulics model made substantial improvements to simulations of total ecosystem transpiration. As a result, remaining uncertainties and limitations of the trait paradigm for plant hydraulics modeling are highlighted.« less

  20. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro)

    DOE PAGES

    Christoffersen, Bradley O.; Gloor, Manuel; Fauset, Sophie; ...

    2016-11-24

    Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media approach to modeling plant hydraulics in which all parameters of the constitutive equations are biologically interpretable and measurable plant hydraulic traits (e.g., turgor loss point π tlp, bulk elastic modulus ε, hydraulic capacitance C ft, xylem hydraulic conductivity k s,max, water potential at 50 % loss of conductivity for both xylem ( P 50,x) and stomata ( Pmore » 50,gs), and the leaf : sapwood area ratio A l: A s). We embedded this plant hydraulics model within a trait forest simulator (TFS) that models light environments of individual trees and their upper boundary conditions (transpiration), as well as providing a means for parameterizing variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits, including wood density (WD), leaf mass per area (LMA), and photosynthetic capacity ( A max ), and evaluated the coupled model (called TFS v.1-Hydro) predictions, against observed diurnal and seasonal variability in stem and leaf water potential as well as stand-scaled sap flux. Our hydraulic trait synthesis revealed coordination among leaf and xylem hydraulic traits and statistically significant relationships of most hydraulic traits with more easily measured plant traits. Using the most informative empirical trait–trait relationships derived from this synthesis, TFS v.1-Hydro successfully captured individual variation in leaf and stem water potential due to increasing tree size and light environment, with model representation of hydraulic architecture and plant traits exerting primary and secondary controls, respectively, on the fidelity of model predictions. The plant hydraulics model made substantial improvements to simulations of total ecosystem transpiration. As a result, remaining uncertainties and limitations of the trait paradigm for plant hydraulics modeling are highlighted.« less

  1. Light Diffusion in the Tropical Dry Forest of Costa Rica

    NASA Astrophysics Data System (ADS)

    Calvo-Rodriguez, S.; Sanchez-Azofeifa, G. A.

    2016-06-01

    Leaf Area Index (LAI) has been defined as the total leaf area (one-sided) in relation to the ground. LAI has an impact on tree growth and recruitment through the interception of light, which in turn affects primary productivity. Even though many instruments exist for estimating LAI from ground, they are often laborious and costly to run continuously. Measurements of LAI from the field using traditional sensors (e.g., LAI-2000) require multiple visits to the field under very specific sky conditions, making them unsuitable to operate in inaccessible areas and forests with dense vegetation, as well as areas where persistent sunny conditions are the norm like tropical dry forests. With this context, we proposed a methodology to characterize light diffusion based on NDVI and LAI measurements taken from the field in two successional stages in the tropical dry forest of Santa Rosa National Park in Costa Rica. We estimate a "K" coefficient to characterize light diffusion by the canopy, based on field NDVI measurements derived from optical phenology instruments and MODIS NDVI. From the coefficients determined, we estimated LAI values and compared them with ground measurements of LAI. In both successional stages ground measurements of LAI had no significant difference to the tower-derived LAI and the estimated LAI from MODIS NDVI.

  2. [Effects of cropping patterns on photosynthesis characteristics of summer maize and its utilization of solar and heat resources].

    PubMed

    Zhu, Yuan-Gang; Dong, Shu-Ting; Zhang, Ji-Wang; Liu, Peng; Yang, Jin-Sheng; Jia, Chun-Lan; Liu, Jing-Guo; Li, Deng-Hai

    2010-06-01

    In order to investigate the effects of interplanting and direct seeding on the photosynthesis characteristics of summer maize and its utilization of solar and heat resources, two summer maize cultivars (Zhengdan 958 and Denghai 661) were planted in the farmlands of Denghai Seed Co. Ltd in Laizhou City of Shandong Province, with 67500 plants x hm(-2) and three sowing dates. The above-ground biomass, plant growth rate, leaf area index, and net photosynthetic rate per ear leaf were measured to reveal the photosynthesis characteristics of test cultivars. In the meantime, the characters of grain-filling were simulated by Richards' model, and the solar resource utilization efficiency of the cultivars was calculated, in combining with meteorological data. Comparing with interplanting, direct seeding increased the grain yield by 1.17%-3.33%, but decreased the thousand-grain weight significantly. Growth stages were extended under earlier sowing. The leaf area index and net photosynthetic rate from flowering to 30 d after anthesis were significantly higher under direct seeding than under interplanting, but after then, they decreased faster. Direct seeding induced a higher accumulation of dry matter and a faster plant growth rate before and after flowering. Under direct seeding, the maximum grain-filling rate reached earlier, the starting potential was higher, but the grain-filling period, active grain-filling period, and W(max) were lower, compared with those under interplanting. Also under direct seeding, the total accumulative temperature and solar radiation during growth period decreased by 150-350 degrees C x d and 200-400 MJ x m(-2), respectively, but the solar resource utilization efficiency of grain increased by 10.5%-24.7%. All the results suggested that direct seeding was superior to interplanting for the summer maize production under field condition. In order to enhance solar and heat utilization efficiency and excavate yield potential, it would be essential to improve the leaf photosynthesis efficiency and postpone leaf aging.

  3. Determination and comparative analysis of major iridoids in different parts and cultivation sources of Morinda citrifolia.

    PubMed

    Deng, Shixin; West, Brett J; Palu, 'Afa K; Jensen, C Jarakae

    2011-01-01

    Noni is a medicinal plant with a long history of use as a folk remedy in many tropical areas, and is attracting more attention worldwide. A comprehensive study on the major phytochemicals in different plant parts (fruit, leaf, seed, root and flower) and sources is of great value for fully understanding their diverse medicinal benefits. To quantitatively determine the major iridoid components in different parts of noni plants, and compare iridoids in noni fruits collected from different tropical areas worldwide. The optimal chromatographic conditions were achieved on a C(18) column with gradient elution using 0.1% formic acid aqueous formic acid and acetonitrile at 235  nm. The selective HPLC method was validated for precision, linearity, limit of detection, limit of quantitation and accuracy. Deacetylasperulosidic acid (DAA) was found to be the major iridoid in noni fruit. In order of predominance, DAA concentrations in different parts of the noni plant were dried noni fruit > fruit juice > seed > flower > leaf > root. The order of predominance for asperulosidic acid (AA) concentration was dried noni fruit > leaf > flower > root > fruit juice > seed. DAA and AA contents of methanolic extracts of noni fruits collected from different tropical regions were 13.8-42.9 and 0.7-8.9  mg/g, respectively, with French Polynesia containing the highest total iridoids and the Dominican Republic containing the lowest. Iridoids DAA and AA are found to be present in leaf, root, seed and flower of noni plants, and were identified as the major components in noni fruit. Given the great variation of iridoid contents in noni fruit grown in different tropical areas worldwide, geographical factors appear to have significant effects on fruit composition. The iridoids in noni fruit were stable at the temperatures used during pasteurisation and, therefore, may be useful marker compounds for identity and quality testing of commercial noni products. Copyright © 2010 John Wiley & Sons, Ltd.

  4. Measuring fraction of intercepted photosynthetically active radiation with a ceptometer: the importance of adopting a universal methodological approach

    USDA-ARS?s Scientific Manuscript database

    It is desirable to be able to predict above ground biomass production indirectly, without extensive sampling or destructive harvesting. Leaf area index (LAI) is the amount of leaf surface area per ground area and is an important parameter in ecophysiology. As LAI increases, the photosynthetically ...

  5. EPIC-Simulated and MODIS-Derived Leaf Area Index (LAI) Comparisons Across mMltiple Spatial Scales RSAD Oral Poster based session

    EPA Science Inventory

    Leaf Area Index (LAI) is an important parameter in assessing vegetation structure for characterizing forest canopies over large areas at broad spatial scales using satellite remote sensing data. However, satellite-derived LAI products can be limited by obstructed atmospheric cond...

  6. Determination of total flavonoids content in fresh Ginkgo biloba leaf with different colors using near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Shi, Ji-yong; Zou, Xiao-bo; Zhao, Jie-wen; Mel, Holmes; Wang, Kai-liang; Wang, Xue; Chen, Hong

    Total flavonoids content is often considered an important quality index of Ginkgo biloba leaf. The feasibility of using near infrared (NIR) spectra at the wavelength range of 10,000-4000 cm-1 for rapid and nondestructive determination of total flavonoids content in G. biloba leaf was investigated. 120 fresh G. biloba leaves in different colors (green, green-yellowish and yellow) were used to spectra acquisition and total flavonoids determination. Partial least squares (PLS), interval partial least squares (iPLS) and synergy interval partial least squares (SiPLS) were used to develop calibration models for total flavonoids content in two colors leaves (green-yellowish and yellow) and three colors leaves (green, green-yellowish and yellow), respectively. The level of total flavonoids content for green, green-yellowish and yellow leaves was in an increasing order. Two characteristic wavelength regions (5840-6090 cm-1 and 6620-6880 cm-1), which corresponded to the absorptions of two aromatic rings in basic flavonoid structure, were selected by SiPLS. The optimal SiPLS model for total flavonoids content in the two colors leaves (r2 = 0.82, RMSEP = 2.62 mg g-1) had better performance than PLS and iPLS models. It could be concluded that NIR spectroscopy has significant potential in the nondestructive determination of total flavonoids content in fresh G. biloba leaf.

  7. Long-term impact of Ophiostoma novo-ulmi on leaf traits and transpiration of branches in the Dutch elm hybrid ‘Dodoens’

    PubMed Central

    Plichta, Roman; Urban, Josef; Gebauer, Roman; Dvořák, Miloň; Ďurkovič, Jaroslav

    2016-01-01

    To better understand the long-term impact of Ophiostoma novo-ulmi Brasier on leaf physiology in ‘Dodoens’, a Dutch elm disease-tolerant hybrid, measurements of leaf area, leaf dry mass, petiole anatomy, petiole hydraulic conductivity, leaf and branch water potential, and branch sap flow were performed 3 years following an initial artificial inoculation. Although fungal hyphae were detected in fully expanded leaves, neither anatomical nor morphological traits were affected, indicating that there was no impact from the fungal hyphae on the leaves during leaf expansion. In contrast, however, infected trees showed both a lower transpiration rate of branches and a lower sap flow density. The long-term persistence of fungal hyphae inside vessels decreased the xylem hydraulic conductivity, but stomatal regulation of transpiration appeared to be unaffected as the leaf water potential in both infected and non-infected trees was similarly driven by the transpirational demands. Regardless of the fungal infection, leaves with a higher leaf mass per area ratio tended to have a higher leaf area-specific conductivity. Smaller leaves had an increased number of conduits with smaller diameters and thicker cell walls. Such a pattern could increase tolerance towards hydraulic dysfunction. Measurements of water potential and theoretical xylem conductivity revealed that petiole anatomy could predict the maximal transpiration rate. Three years following fungal inoculation, phenotypic expressions for the majority of the examined traits revealed a constitutive nature for their possible role in Dutch elm disease tolerance of ‘Dodoens’ trees. PMID:26843210

  8. Phenotypic and biochemical profile changes in calendula (Calendula officinalis L.) plants treated with two chemical mutagenesis.

    PubMed

    El-Nashar, Y I; Asrar, A A

    2016-05-06

    Chemical mutagenesis is an efficient tool used in mutation-breeding programs to improve the vital characters of the floricultural crops. This study aimed to estimate the effects of different concentrations of two chemical mutagens; sodium azide (SA) and diethyl sulfate (DES). The vegetative growth and flowering characteristics in two generations (M1 and M2) of calendula plants were investigated. Seeds were treated with five different concentrations of SA and DES (at the same rates) of 1000, 2000, 3000, 4000, and 5000 ppm, in addition to a control treatment of 0 ppm. Results showed that lower concentrations of SA mutagen had significant effects on seed germination percentage, plant height, leaf area, plant fresh weight, flowering date, inflorescence diameter, and gas-exchange measurements in plants of both generations. Calendula plants tended to flower earlier under low mutagen concentrations (1000 ppm), whereas higher concentrations delayed flowering significantly. Positive results on seed germination, plant height, number of branches, plant fresh weight, and leaf area were observed in the M2-generation at lower concentrations of SA (1000 ppm), as well as at 4000 ppm DES on number of leaves and inflorescences. The highest total soluble protein was detected at the concentrations of 1000 ppm SA and 2000 ppm DES. DES showed higher average of acid phosphatase activity than SA. Results indicated that lower concentrations of SA and DES mutagens had positive effects on seed germination percentage, plant height, leaf area, plant fresh weight, flowering date, inflorescence diameter, and gas-exchange measurements. Thus, lower mutagen concentrations could be recommended for better floral and physio-chemical performance.

  9. A Method for Calculating the Area of Zostera marina Leaves from Digital Images with Noise Induced by Humidity Content

    PubMed Central

    Leal-Ramirez, Cecilia

    2014-01-01

    Despite the ecological importance of eelgrass, nowadays anthropogenic influences have produced deleterious effects in many meadows worldwide. Transplantation plots are commonly used as a feasible remediation scheme. The characterization of eelgrass biomass and its dynamics is an important input for the assessment of the overall status of both natural and transplanted populations. Particularly, in restoration plots it is desirable to obtain nondestructive assessments of these variables. Allometric models allow the expression of above ground biomass and productivity of eelgrass in terms of leaf area, which provides cost effective and nondestructive assessments. Leaf area in eelgrass can be conveniently obtained by the product of associated length and width. Although these variables can be directly measured on most sampled leaves, digital image methods could be adapted in order to simplify measurements. Nonetheless, since width to length ratios in eelgrass leaves could be even negligible, noise induced by leaf humidity content could produce misidentification of pixels along the peripheral contour of leaves images. In this paper, we present a procedure aimed to produce consistent estimations of eelgrass leaf area in the presence of the aforementioned noise effects. Our results show that digital image procedures can provide reliable, nondestructive estimations of eelgrass leaf area. PMID:24892089

  10. Next Generation Sequencing and Transcriptome Analysis Predicts Biosynthetic Pathway of Sennosides from Senna (Cassia angustifolia Vahl.), a Non-Model Plant with Potent Laxative Properties.

    PubMed

    Rama Reddy, Nagaraja Reddy; Mehta, Rucha Harishbhai; Soni, Palak Harendrabhai; Makasana, Jayanti; Gajbhiye, Narendra Athamaram; Ponnuchamy, Manivel; Kumar, Jitendra

    2015-01-01

    Senna (Cassia angustifolia Vahl.) is a world's natural laxative medicinal plant. Laxative properties are due to sennosides (anthraquinone glycosides) natural products. However, little genetic information is available for this species, especially concerning the biosynthetic pathways of sennosides. We present here the transcriptome sequencing of young and mature leaf tissue of Cassia angustifolia using Illumina MiSeq platform that resulted in a total of 6.34 Gb of raw nucleotide sequence. The sequence assembly resulted in 42230 and 37174 transcripts with an average length of 1119 bp and 1467 bp for young and mature leaf, respectively. The transcripts were annotated using NCBI BLAST with 'green plant database (txid 33090)', Swiss Prot, Kyoto Encylcopedia of Genes & Genomes (KEGG), Cluster of Orthologous Gene (COG) and Gene Ontology (GO). Out of the total transcripts, 40138 (95.0%) and 36349 (97.7%) from young and mature leaf, respectively, were annotated by BLASTX against green plant database of NCBI. We used InterProscan to see protein similarity at domain level, a total of 34031 (young leaf) and 32077 (mature leaf) transcripts were annotated against the Pfam domains. All transcripts from young and mature leaf were assigned to 191 KEGG pathways. There were 166 and 159 CDS, respectively, from young and mature leaf involved in metabolism of terpenoids and polyketides. Many CDS encoding enzymes leading to biosynthesis of sennosides were identified. A total of 10,763 CDS differentially expressing in both young and mature leaf libraries of which 2,343 (21.7%) CDS were up-regulated in young compared to mature leaf. Several differentially expressed genes found functionally associated with sennoside biosynthesis. CDS encoding for many CYPs and TF families were identified having probable roles in metabolism of primary as well as secondary metabolites. We developed SSR markers for molecular breeding of senna. We have identified a set of putative genes involved in various secondary metabolite pathways, especially those related to the synthesis of sennosides which will serve as an important platform for public information about gene expression, genomics, and functional genomics in senna.

  11. Next Generation Sequencing and Transcriptome Analysis Predicts Biosynthetic Pathway of Sennosides from Senna (Cassia angustifolia Vahl.), a Non-Model Plant with Potent Laxative Properties

    PubMed Central

    Rama Reddy, Nagaraja Reddy; Mehta, Rucha Harishbhai; Soni, Palak Harendrabhai; Makasana, Jayanti; Gajbhiye, Narendra Athamaram; Ponnuchamy, Manivel; Kumar, Jitendra

    2015-01-01

    Senna (Cassia angustifolia Vahl.) is a world’s natural laxative medicinal plant. Laxative properties are due to sennosides (anthraquinone glycosides) natural products. However, little genetic information is available for this species, especially concerning the biosynthetic pathways of sennosides. We present here the transcriptome sequencing of young and mature leaf tissue of Cassia angustifolia using Illumina MiSeq platform that resulted in a total of 6.34 Gb of raw nucleotide sequence. The sequence assembly resulted in 42230 and 37174 transcripts with an average length of 1119 bp and 1467 bp for young and mature leaf, respectively. The transcripts were annotated using NCBI BLAST with ‘green plant database (txid 33090)’, Swiss Prot, Kyoto Encylcopedia of Genes & Genomes (KEGG), Cluster of Orthologous Gene (COG) and Gene Ontology (GO). Out of the total transcripts, 40138 (95.0%) and 36349 (97.7%) from young and mature leaf, respectively, were annotated by BLASTX against green plant database of NCBI. We used InterProscan to see protein similarity at domain level, a total of 34031 (young leaf) and 32077 (mature leaf) transcripts were annotated against the Pfam domains. All transcripts from young and mature leaf were assigned to 191 KEGG pathways. There were 166 and 159 CDS, respectively, from young and mature leaf involved in metabolism of terpenoids and polyketides. Many CDS encoding enzymes leading to biosynthesis of sennosides were identified. A total of 10,763 CDS differentially expressing in both young and mature leaf libraries of which 2,343 (21.7%) CDS were up-regulated in young compared to mature leaf. Several differentially expressed genes found functionally associated with sennoside biosynthesis. CDS encoding for many CYPs and TF families were identified having probable roles in metabolism of primary as well as secondary metabolites. We developed SSR markers for molecular breeding of senna. We have identified a set of putative genes involved in various secondary metabolite pathways, especially those related to the synthesis of sennosides which will serve as an important platform for public information about gene expression, genomics, and functional genomics in senna. PMID:26098898

  12. Evaluation of banana hybrids for tolerance to black leaf streak (Mycosphaerella fijiensis Morelet) in Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    In Puerto Rico, bananas (including plantains) are important agricultural commodities; their combined production totaled 133,500 tons in 2008. Black leaf streak (BLS) and Sigatoka leaf spot diseases, caused by Mycosphaerella fijiensis and M. musicola, respectively, are responsible for significant los...

  13. Optimal balance of water use efficiency and leaf construction cost with a link to the drought threshold of the desert steppe ecotone in northern China.

    PubMed

    Wei, Haixia; Luo, Tianxiang; Wu, Bo

    2016-09-01

    In arid environments, a high nitrogen content per leaf area (Narea) induced by drought can enhance water use efficiency (WUE) of photosynthesis, but may also lead to high leaf construction cost (CC). Our aim was to investigate how maximizing Narea could balance WUE and CC in an arid-adapted, widespread species along a rainfall gradient, and how such a process may be related to the drought threshold of the desert-steppe ecotone in northern China. Along rainfall gradients with a moisture index (MI) of 0·17-0·41 in northern China and the northern Tibetan Plateau, we measured leaf traits and stand variables including specific leaf area (SLA), nitrogen content relative to leaf mass and area (Nmass, Narea) and construction cost (CCmass, CCarea), δ(13)C (indicator of WUE), leaf area index (LAI) and foliage N-pool across populations of Artemisia ordosica In samples from northern China, a continuous increase of Narea with decreasing MI was achieved by a higher Nmass and constant SLA (reduced LAI and constant N-pool) in high-rainfall areas (MI > 0·29), but by a lower SLA and Nmass (reduced LAI and N-pool) in low-rainfall areas (MI ≤ 0·29). While δ(13)C, CCmass and CCarea continuously increased with decreasing MI, the low-rainfall group had higher Narea and δ(13)C at a given CCarea, compared with the high-rainfall group. Similar patterns were also found in additional data for the same species in the northern Tibetan Plateau. The observed drought threshold where MI = 0·29 corresponded well to the zonal boundary between typical and desert steppes in northern China. Our data indicated that below a climatic drought threshold, drought-resistant plants tend to maximize their intrinsic WUE through increased Narea at a given CCarea, which suggests a linkage between leaf functional traits and arid vegetation zonation. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Optimal balance of water use efficiency and leaf construction cost with a link to the drought threshold of the desert steppe ecotone in northern China

    PubMed Central

    Wei, Haixia; Luo, Tianxiang; Wu, Bo

    2016-01-01

    Background and Aims In arid environments, a high nitrogen content per leaf area (Narea) induced by drought can enhance water use efficiency (WUE) of photosynthesis, but may also lead to high leaf construction cost (CC). Our aim was to investigate how maximizing Narea could balance WUE and CC in an arid-adapted, widespread species along a rainfall gradient, and how such a process may be related to the drought threshold of the desert–steppe ecotone in northern China. Methods Along rainfall gradients with a moisture index (MI) of 0·17–0·41 in northern China and the northern Tibetan Plateau, we measured leaf traits and stand variables including specific leaf area (SLA), nitrogen content relative to leaf mass and area (Nmass, Narea) and construction cost (CCmass, CCarea), δ13C (indicator of WUE), leaf area index (LAI) and foliage N-pool across populations of Artemisia ordosica. Key Results In samples from northern China, a continuous increase of Narea with decreasing MI was achieved by a higher Nmass and constant SLA (reduced LAI and constant N-pool) in high-rainfall areas (MI > 0·29), but by a lower SLA and Nmass (reduced LAI and N-pool) in low-rainfall areas (MI ≤ 0·29). While δ13C, CCmass and CCarea continuously increased with decreasing MI, the low-rainfall group had higher Narea and δ13C at a given CCarea, compared with the high-rainfall group. Similar patterns were also found in additional data for the same species in the northern Tibetan Plateau. The observed drought threshold where MI = 0·29 corresponded well to the zonal boundary between typical and desert steppes in northern China. Conclusions Our data indicated that below a climatic drought threshold, drought-resistant plants tend to maximize their intrinsic WUE through increased Narea at a given CCarea, which suggests a linkage between leaf functional traits and arid vegetation zonation. PMID:27443298

  15. Isolation and characterization of allelopathic volatiles from mugwort (Artemisia vulgaris).

    PubMed

    Barney, Jacob N; Hay, Anthony G; Weston, Leslie A

    2005-02-01

    Several volatile allelochemicals were identified and characterized from fresh leaf tissue of three distinct populations of the invasive perennial weed, mugwort (Artemisia vulgaris). A unique bioassay was used to demonstrate the release of volatile allelochemicals from leaf tissues. Leaf volatiles were trapped and analyzed via gas chromatography coupled with mass spectrometry. Some of the components identified were terpenes, including camphor, eucalyptol, alpha-pinene, and beta-pinene. Those commercially available were tested individually to determine their phytotoxicity. Concentrations of detectable volatiles differed in both absolute and relative proportions among the mugwort populations. The three mugwort populations consisted of a taller, highly branched population (ITH-1); a shorter, lesser-branched population (ITH-2) (both grown from rhizome fragments from managed landscapes); and a population grown from seed with lobed leaves (VT). Considerable interspecific variation existed in leaf morphology and leaf surface chemistry. Bioassays revealed that none of the individual monoterpenes could account for the observed phytotoxicity imparted by total leaf volatiles, suggesting a synergistic effect or activity of a component not tested. Despite inability to detect a single dominant phytotoxic compound, decreases in total terpene concentration with increase in leaf age correlated with decreases in phytotoxicity. The presence of bioactive terpenoids in leaf surface chemistry of younger mugwort tissue suggests a potential role for terpenoids in mugwort establishment and proliferation in introduced habitats.

  16. Total leaf crude protein, amino acid composition and elemental content in the USDA-ARS bamboo germplasm collection

    USDA-ARS?s Scientific Manuscript database

    Bamboo shoots and leaves are valuable food sources for both humans and livestock. The USDA-ARS National Plant Germplasm System (NPGS) collections hold 93 bamboo species in 20 genera. Total leaf protein, amino acid composition and elemental content for these important genetic resources had never bee...

  17. [Characteristics of the composition of Caucasian blackberry (Rubus caucasicus L.) leaves as a raw material for tea production].

    PubMed

    Melkadze, R G; Chichkovani, N Sh; Kakhniashvili, E Z

    2008-01-01

    The composition of Caucasian blackberry (Rubus caucasicus L.) six-leaf shoot was studied. The weight of the stem reached 50% of the total weight of the shoot. The content of moisture, extractive substances, and phenolic compounds was minimal at the beginning and end of the vegetation season. Phenolic compounds were represented by catechins, leukoanthocyanidins, and flavonols. The most abundant phenolic compounds in all parts of the blackberry shoot were leukoanthocyanidins, which accounted for approximately 50% of all compounds of this class. Phenolic compounds accumulated most actively in July and August. The average content of free amino acids in the blackberry leaf during the vegetation season was 26.68 mg/g. Among the total free amino acids, eleven have been identified, five of which proved to be essential (His, Arg, Met, Leu, Val) and accounted for 40% of the total amount of amino acids. The oxidability of acetone extract of the blackberry leaf was compared to the oxidability of total phenolic compounds and tea tannin. The tea product obtained from the blackberry leaf had good organoleptic parameters and a saturated extractive complex.

  18. An artificial solar spectrum substantially alters plant development compared with usual climate room irradiance spectra.

    PubMed

    Hogewoning, Sander W; Douwstra, Peter; Trouwborst, Govert; van Ieperen, Wim; Harbinson, Jeremy

    2010-03-01

    Plant responses to the light spectrum under which plants are grown affect their developmental characteristics in a complicated manner. Lamps widely used to provide growth irradiance emit spectra which are very different from natural daylight spectra. Whereas specific responses of plants to a spectrum differing from natural daylight may sometimes be predictable, the overall plant response is generally difficult to predict due to the complicated interaction of the many different responses. So far studies on plant responses to spectra either use no daylight control or, if a natural daylight control is used, it will fluctuate in intensity and spectrum. An artificial solar (AS) spectrum which closely resembles a sunlight spectrum has been engineered, and growth, morphogenesis, and photosynthetic characteristics of cucumber plants grown for 13 d under this spectrum have been compared with their performance under fluorescent tubes (FTs) and a high pressure sodium lamp (HPS). The total dry weight of the AS-grown plants was 2.3 and 1.6 times greater than that of the FT and HPS plants, respectively, and the height of the AS plants was 4-5 times greater. This striking difference appeared to be related to a more efficient light interception by the AS plants, characterized by longer petioles, a greater leaf unfolding rate, and a lower investment in leaf mass relative to leaf area. Photosynthesis per leaf area was not greater for the AS plants. The extreme differences in plant response to the AS spectrum compared with the widely used protected cultivation light sources tested highlights the importance of a more natural spectrum, such as the AS spectrum, if the aim is to produce plants representative of field conditions.

  19. Physiological, vascular and nanomechanical assessment of hybrid poplar leaf traits in micropropagated plants and plants propagated from root cuttings: A contribution to breeding programs.

    PubMed

    Ďurkovič, Jaroslav; Husárová, Hana; Javoříková, Lucia; Čaňová, Ingrid; Šuleková, Miriama; Kardošová, Monika; Lukáčik, Ivan; Mamoňová, Miroslava; Lagaňa, Rastislav

    2017-09-01

    Micropropagated plants experience significant stress from rapid water loss when they are transferred from an in vitro culture to either greenhouse or field conditions. This is caused both by inefficient stomatal control of transpiration and the change to a higher light intensity and lower humidity. Understanding the physiological, vascular and biomechanical processes that allow micropropagated plants to modify their phenotype in response to environmental conditions can help to improve both field performance and plant survival. To identify changes between the hybrid poplar [Populus tremula × (Populus × canescens)] plants propagated from in vitro tissue culture and those from root cuttings, we assessed leaf performance for any differences in leaf growth, photosynthetic and vascular traits, and also nanomechanical properties of the tracheary element cell walls. The micropropagated plants showed significantly higher values for leaf area, leaf length, leaf width and leaf dry mass. The greater leaf area and leaf size dimensions resulted from the higher transpiration rate recorded for this stock type. Also, the micropropagated plants reached higher values for chlorophyll a fluorescence parameters and for the nanomechanical dissipation energy of tracheary element cell walls which may indicate a higher damping capacity within the primary xylem tissue under abiotic stress conditions. The performance of the plants propagated from root cuttings was superior for instantaneous water-use efficiency which signifies a higher acclimation capacity to stressful conditions during a severe drought particularly for this stock type. Similarities were found among the majority of the examined leaf traits for both vegetative plant origins including leaf mass per area, stomatal conductance, net photosynthetic rate, hydraulic axial conductivity, indicators of leaf midrib vascular architecture, as well as for the majority of cell wall nanomechanical traits. This research revealed that there were no drawbacks in the leaf physiological performance which could be attributed to the micropropagated plants of fast growing hybrid poplar. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. [Several changes of Indocalamus leaf active ingredients contents].

    PubMed

    Su, Chun-hua; Liu, Guo-hua; Wang, Fu-sheng; Ding, Yu-long; Xue, Jian-hui

    2011-09-01

    In this paper, the leaves of Indocalamus herklotsii, Indocalamus decorus, and Indocalamus latifolius were collected from Nanjing in different seasons to study the seasonal changes of the total flavonoids, tea polyphenols, and soluble sugar contents in the leaves. There existed significant differences in the test active ingredients contents among the leaves of the three Indocalamus species. The leaf total flavonoids content of the three Indocalamus species in different seasons ranged in 1.7%-2.7%, being the highest for I. herklotsii and I. decorus in spring and for I. latifolius in winter. The leaf tea polyphenols content varied from 5.5% to 7.6%; and the leaf soluble sugar content was 1.0%-8.5%, with the maximum in spring. Within the three months after leaf unfolding, the active ingredients contents in I. herklotsii and I. decorus leaves increased with leaf age. The optimal period for harvesting Indocalamus leaves was from December to next March. Among the three Indocalamus species, I. latifolius had the highest contents of the three active ingredients in leaves, suggesting that I. latifolius had greater potential value in the utilization of its leaf active ingredients than the other two species.

  1. Family differences in equations for predicting biomass and leaf area in Douglas-fir (Pseudotsuga menziesii var. menziesii).

    Treesearch

    J.B. St. Clair

    1993-01-01

    Logarithmic regression equations were developed to predict component biomass and leaf area for an 18-yr-old genetic test of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco var. menziesii) based on stem diameter or cross-sectional sapwood area. Equations did not differ among open-pollinated families in slope, but intercepts...

  2. Allometric method to estimate leaf area index for row crops

    USDA-ARS?s Scientific Manuscript database

    Leaf area index (LAI) is critical for predicting plant metabolism, biomass production, evapotranspiration, and greenhouse gas sequestration, but direct LAI measurements are difficult and labor intensive. Several methods are available to measure LAI indirectly or calculate LAI using allometric method...

  3. Throughfall under a teak plantation in Thailand: a multifactorial analysis on the effects of canopy phenology and meteorological conditions

    NASA Astrophysics Data System (ADS)

    Tanaka, N.; Levia, D. F., Jr.; Igarashi, Y.; Nanko, K.; Yoshifuji, N.; Tanaka, K.; Chatchai, T.; Suzuki, M.; Kumagai, T.

    2014-12-01

    Teak (Tectona grandis Linn. f.) plantations cover vast areas throughout Southeast Asia and are of great economic importance. This study has sought to increase our understanding of throughfall inputs under teak by analyzing the abiotic and biotic factors governing throughfall amounts and throughfall ratios in relation to three canopy phenophases (leafless, leafing, and leafed). There is no rain during the brief leaf senescence phenophase. Daily data was available for both throughfall volumes and depths as well as leaf area index. Detailed meteorological data were available in situ every ten minutes. Leveraging this high-resolution field data, we employed boosted regression trees (BRT) analysis to identify the primary controls on throughfall amount and ratio during each of the three canopy phenophases. Whereas throughfall amounts were always dominated by the magnitude of rainfall (as expected), throughfall ratios were governed by a suite of predictor variables during each phenophase. The BRT analysis demonstrated that throughfall ratio in the leafless phase was most influenced (in descending order of importance) by air temperature, rainfall amount, maximum wind speed, and rainfall intensity. Throughfall ratio in the leafed phenophase was dominated by rainfall amount which exerted 54.0% of the relative influence. The leafing phenophase was an intermediate case where rainfall amount, air temperature, and vapor pressure deficit were most important. Our results highlight the fact that throughfall ratios are differentially influenced by a suite of meteorological variables during leafless, leafing, and leafed phenophases. Abiotic variables (rainfall amount, air temperature, vapor pressure deficit, and maximum wind speed) trumped leaf area index and stand density in their effect on throughfall ratio. The leafing phenophase, while transitional in nature and short in duration, has a detectable and unique impact on water inputs to teak plantations. Further work is clearly needed to better gauge the importance of the leaf emergence period to the stemflow hydrology and forest biogeochemistry of teak plantations.

  4. Dominance of an alien shrub Rhus typhina over a native shrub Vitex negundo var. heterophylla under variable water supply patterns

    PubMed Central

    Du, Ning; Tan, Xiangfeng; Li, Qiang; Liu, Xiao; Zhang, Wenxin; Wang, Renqing; Liu, Jian; Guo, Weihua

    2017-01-01

    Temporal heterogeneity of a resource supply can have a profound effect on the interactions between alien and native plant species and their potential invasiveness. Precipitation patterns may be variable and result in a higher heterogeneity of water supply with global climate change. In this study, an alien shrub species, Rhus typhina, introduced to China from North America and a native shrub species, Vitex negundo var. heterophylla, were grown in monoculture and mixed culture under different water supply regimes, with four levels of water supply frequencies but with a constant level of total supplied water. After 60 days of treatments, the alien species was found to be the superior competitor in the mixed culture and was unaffected by changes in the water supply pattern. The dominance of R. typhina was mainly owing to its greater biomass and effective modulation of leaf physiology. However, in the mixed culture, V. negundo var. heterophylla exhibited both leaf- and whole-plant-level acclimations, including higher leaf length to petiole length and root to shoot biomass ratios, and lower specific leaf weight and leaf length to leaf width ratio. Plant height of V. negundo var. heterophylla was comparable to that of R. typhina in the mixed culture, which is a strategy to escape shading. Although water treatments had little effect on most traits in both species, the possible influence of water regimes should not be neglected. Compared with high-frequency water supply treatments, more individuals of V. negundo var. heterophylla died in low-water-frequency treatments when in competition with R. typhina, which may lead to species turnover in the field. The authors recommended that caution should be exercised when introducing R. typhina to non-native areas in the context of global climate change. PMID:28445505

  5. Dominance of an alien shrub Rhus typhina over a native shrub Vitex negundo var. heterophylla under variable water supply patterns.

    PubMed

    Du, Ning; Tan, Xiangfeng; Li, Qiang; Liu, Xiao; Zhang, Wenxin; Wang, Renqing; Liu, Jian; Guo, Weihua

    2017-01-01

    Temporal heterogeneity of a resource supply can have a profound effect on the interactions between alien and native plant species and their potential invasiveness. Precipitation patterns may be variable and result in a higher heterogeneity of water supply with global climate change. In this study, an alien shrub species, Rhus typhina, introduced to China from North America and a native shrub species, Vitex negundo var. heterophylla, were grown in monoculture and mixed culture under different water supply regimes, with four levels of water supply frequencies but with a constant level of total supplied water. After 60 days of treatments, the alien species was found to be the superior competitor in the mixed culture and was unaffected by changes in the water supply pattern. The dominance of R. typhina was mainly owing to its greater biomass and effective modulation of leaf physiology. However, in the mixed culture, V. negundo var. heterophylla exhibited both leaf- and whole-plant-level acclimations, including higher leaf length to petiole length and root to shoot biomass ratios, and lower specific leaf weight and leaf length to leaf width ratio. Plant height of V. negundo var. heterophylla was comparable to that of R. typhina in the mixed culture, which is a strategy to escape shading. Although water treatments had little effect on most traits in both species, the possible influence of water regimes should not be neglected. Compared with high-frequency water supply treatments, more individuals of V. negundo var. heterophylla died in low-water-frequency treatments when in competition with R. typhina, which may lead to species turnover in the field. The authors recommended that caution should be exercised when introducing R. typhina to non-native areas in the context of global climate change.

  6. Palisade cell shape affects the light-induced chloroplast movements and leaf photosynthesis.

    PubMed

    Gotoh, Eiji; Suetsugu, Noriyuki; Higa, Takeshi; Matsushita, Tomonao; Tsukaya, Hirokazu; Wada, Masamitsu

    2018-01-24

    Leaf photosynthesis is regulated by multiple factors that help the plant to adapt to fluctuating light conditions. Leaves of sun-light-grown plants are thicker and contain more columnar palisade cells than those of shade-grown plants. Light-induced chloroplast movements are also essential for efficient leaf photosynthesis and facilitate efficient light utilization in leaf cells. Previous studies have demonstrated that leaves of most of the sun-grown plants exhibited no or very weak chloroplast movements and could accomplish efficient photosynthesis under strong light. To examine the relationship between palisade cell shape, chloroplast movement and distribution, and leaf photosynthesis, we used an Arabidopsis thaliana mutant, angustifolia (an), which has thick leaves that contain columnar palisade cells similar to those in the sun-grown plants. In the highly columnar cells of an mutant leaves, chloroplast movements were restricted. Nevertheless, under white light condition (at 120 µmol m -2 s -1 ), the an mutant plants showed higher chlorophyll content per unit leaf area and, thus, higher light absorption by the leaves than the wild type, which resulted in enhanced photosynthesis per unit leaf area. Our findings indicate that coordinated regulation of leaf cell shape and chloroplast movement according to the light conditions is pivotal for efficient leaf photosynthesis.

  7. Seasonal variations in water relations in current-year leaves of evergreen trees with delayed greening.

    PubMed

    Harayama, Hisanori; Ikeda, Takefumi; Ishida, Atsushi; Yamamoto, Shin-Ichi

    2006-08-01

    We investigated seasonal patterns of water relations in current-year leaves of three evergreen broad-leaved trees (Ilex pedunculosa Miq., Ligustrum japonicum Thunb., and Eurya japonica Thunb.) with delayed greening in a warm-temperate forest in Japan. We used the pressure-volume method to: (1) assess the extent to which seasonal variation in leaf water relations is attributable to leaf development processes in delayed greening leaves versus seasonal variation in environmental variables; and (2) investigate variation in leaf water relations during the transition from the sapling to the adult tree stage. Leaf mass per unit leaf area was generally lowest just after completion of leaf expansion in May (late spring), and increased gradually throughout the year. Osmotic potential at full turgor (Psi(o) (ft)) and leaf water potential at the turgor loss point (Psi(w) (tlp)) were highest in May, and lowest in midwinter in all species. In response to decreasing air temperature, Psi(o) (ft) dropped at the rate of 0.037 MPa degrees C(-1). Dry-mass-based water content of leaves and the symplastic water fraction of total leaf water content gradually decreased throughout the year in all species. These results indicate that reductions in the symplastic water fraction during leaf development contributed to the passive concentration of solutes in cells and the resulting drop in winter Psi(o) (ft). The ratio of solutes to water volume increased in winter in current-year leaves of L. japonicum and E. japonica, indicating that osmotic adjustment (active accumulation of solutes) also contributed to the drop in winter in Psi(o) (ft). Bulk modulus of elasticity in cell walls fluctuated seasonally, but no general trend was found across species. Over the growing season, Psi(o) (ft) and Psi(w) (tlp) were lower in adult trees than in saplings especially in the case of I. pedunculosa, suggesting that adult-tree leaves are more drought and cold tolerant than sapling leaves. The ontogenetic increase in the stress resistance of I. pedunculosa may be related to its characteristic life form because I. pedunculosa grows taller than the other species studied.

  8. Influences of the Tamarisk Leaf Beetle (Diorhabda carinulata) on the diet of insectivorous birds along the Dolores River in Southwestern Colorado

    USGS Publications Warehouse

    Puckett, Sarah L.; van Riper, Charles

    2014-01-01

    We examined the effects of a biologic control agent, the tamarisk leaf beetle (Diorhabda carinulata), on native avifauna in southwestern Colorado, specifically, addressing whether and to what degree birds eat tamarisk leaf beetles. In 2010, we documented avian foraging behavior, characterized the arthropod community, sampled bird diets, and undertook an experiment to determine whether tamarisk leaf beetles are palatable to birds. We observed that tamarisk leaf beetles compose 24.0 percent (95-percent-confidence interval, 19.9-27.4 percent) and 35.4 percent (95-percent-confidence interval, 32.4-45.1 percent) of arthropod abundance and biomass in the study area, respectively. Birds ate few tamarisk leaf beetles, despite a superabundance of D. carinulata in the environment. The frequency of occurrence of tamarisk leaf beetles in bird diets was 2.1 percent (95-percent-confidence interval, 1.3- 2.9 percent) by abundance and 3.4 percent (95-percent-confidence interval, 2.6-4.2 percent) by biomass. Thus, tamarisk leaf beetles probably do not contribute significantly to the diets of birds in areas where biologic control of tamarisk is being applied.

  9. Dominant Species in Subtropical Forests Could Decrease Photosynthetic N Allocation to Carboxylation and Bioenergetics and Enhance Leaf Construction Costs during Forest Succession

    PubMed Central

    Xiao, Yihua; Liu, Shirong; Tong, Fuchun; Chen, Bufeng; Kuang, Yuanwen

    2018-01-01

    It is important to understand how eco-physiological characteristics shift in forests when elucidating the mechanisms underlying species replacement and the process of succession and stabilization. In this study, the dominant species at three typical successional stages (early-, mid-, and late-succession) in the subtropical forests of China were selected. At each stage, we compared the leaf construction costs (CC), payback time (PBT), leaf area based N content (NA), maximum CO2 assimilation rate (Pmax), specific leaf area (SLA), photosynthetic nitrogen use efficiency (PNUE), and leaf N allocated to carboxylation (NC), and to bioenergetics (NB). The relationships between these leaf functional traits were also determined. The results showed that the early-succession forest is characterized with significantly lower leaf CC, PBT, NA, but higher Pmax, SLA, PNUE, NC, and NB, in relation to the late-succession forest. From the early- to the late-succession forests, the relationship between Pmax and leaf CC strengthened, whereas the relationships between NB, NC, PNUE, and leaf CC weakened. Thus, the dominant species are able to decrease the allocation of the photosynthetic N fraction to carboxylation and bioenergetics during forest succession. The shift in these leaf functional traits and their linkages might represent a fundamental physiological mechanism that occurs during forest succession and stabilization. PMID:29472939

  10. Dominant Species in Subtropical Forests Could Decrease Photosynthetic N Allocation to Carboxylation and Bioenergetics and Enhance Leaf Construction Costs during Forest Succession.

    PubMed

    Xiao, Yihua; Liu, Shirong; Tong, Fuchun; Chen, Bufeng; Kuang, Yuanwen

    2018-01-01

    It is important to understand how eco-physiological characteristics shift in forests when elucidating the mechanisms underlying species replacement and the process of succession and stabilization. In this study, the dominant species at three typical successional stages (early-, mid-, and late-succession) in the subtropical forests of China were selected. At each stage, we compared the leaf construction costs (CC), payback time (PBT), leaf area based N content ( N A ), maximum CO 2 assimilation rate ( P max ), specific leaf area (SLA), photosynthetic nitrogen use efficiency (PNUE), and leaf N allocated to carboxylation ( N C ), and to bioenergetics ( N B ). The relationships between these leaf functional traits were also determined. The results showed that the early-succession forest is characterized with significantly lower leaf CC, PBT, N A , but higher P max , SLA, PNUE, N C , and N B , in relation to the late-succession forest. From the early- to the late-succession forests, the relationship between P max and leaf CC strengthened, whereas the relationships between N B , N C , PNUE, and leaf CC weakened. Thus, the dominant species are able to decrease the allocation of the photosynthetic N fraction to carboxylation and bioenergetics during forest succession. The shift in these leaf functional traits and their linkages might represent a fundamental physiological mechanism that occurs during forest succession and stabilization.

  11. The capacity to cope with climate warming declines from temperate to tropical latitudes in two widely distributed Eucalyptus species.

    PubMed

    Drake, John E; Aspinwall, Michael J; Pfautsch, Sebastian; Rymer, Paul D; Reich, Peter B; Smith, Renee A; Crous, Kristine Y; Tissue, David T; Ghannoum, Oula; Tjoelker, Mark G

    2015-01-01

    As rapid climate warming creates a mismatch between forest trees and their home environment, the ability of trees to cope with warming depends on their capacity to physiologically adjust to higher temperatures. In widespread species, individual trees in cooler home climates are hypothesized to more successfully acclimate to warming than their counterparts in warmer climates that may approach thermal limits. We tested this prediction with a climate-shift experiment in widely distributed Eucalyptus tereticornis and E. grandis using provenances originating along a ~2500 km latitudinal transect (15.5-38.0°S) in eastern Australia. We grew 21 provenances in conditions approximating summer temperatures at seed origin and warmed temperatures (+3.5 °C) using a series of climate-controlled glasshouse bays. The effects of +3.5 °C warming strongly depended on home climate. Cool-origin provenances responded to warming through an increase in photosynthetic capacity and total leaf area, leading to enhanced growth of 20-60%. Warm-origin provenances, however, responded to warming through a reduction in photosynthetic capacity and total leaf area, leading to reduced growth of approximately 10%. These results suggest that there is predictable intraspecific variation in the capacity of trees to respond to warming; cool-origin taxa are likely to benefit from warming, while warm-origin taxa may be negatively affected. © 2014 John Wiley & Sons Ltd.

  12. Canopy and seasonal profiles of nitrate reductase in soybeans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harper, J.E.; Hageman, R.H.

    1972-01-01

    Nitrate reductase activity of soybeans (Glycine max L. Merr.) was evaluated in soil plots and outdoor hydroponic gravel culture systems throughout the growing season. Nitrate reductase profiles within the plant canopy were also established. Mean activity per gram fresh weight per hour of the entire plant canopy was highest in the seedling stage while total activity (activity per gram fresh weight per hour times the total leaf weight) reached a maximum when plants were in the full bloom to midpod fill stage. Nitrate reductase activity per gram fresh weight per hour was highest in the uppermost leaf just prior tomore » full expansion and declined with leaf positions lower in the canopy. Total nitrate reductase activity per leaf was also highest in the uppermost fully expanded leaf during early growth stages. Maximum total activity shifted to leaf positions lower in the plant canopy with later growth stages. Nitrate reductase activity of soybeans grown in hydroponic systems was significantly higher than activity of adjacent soil grown plants at later growth stages, which suggested that under normal field conditions the potential for nitrate utilization may not be realized. Nitrate reductase activity per gram fresh weight per hour and nitrate content were positively correlated over the growing season with plants grown in either soil or solution culture. Computations based upon the nitrate reductase assay of plants grown in hydroponics indicated that from 1.7 to 1.8 grams N could have been supplied to the plant via the nitrate reductase process. 11 references, 9 figures, 3 tables.« less

  13. The Thermal Infrared Sensor on the Landsat Data Continutiy Mission

    USDA-ARS?s Scientific Manuscript database

    The REGularized canopy reFLECtance (REGFLEC) modeling tool integrates leaf optics, canopy reflectance, and atmospheric radiative transfer model components, facilitating accurate retrieval of leaf area index (LAI) and leaf chlorophyll content (Cab) directly from at-sensor radiances in green, red and ...

  14. Broad Anatomical Variation within a Narrow Wood Density Range—A Study of Twig Wood across 69 Australian Angiosperms

    PubMed Central

    Ziemińska, Kasia; Westoby, Mark; Wright, Ian J.

    2015-01-01

    Objectives Just as people with the same weight can have different body builds, woods with the same wood density can have different anatomies. Here, our aim was to assess the magnitude of anatomical variation within a restricted range of wood density and explore its potential ecological implications. Methods Twig wood of 69 angiosperm tree and shrub species was analyzed. Species were selected so that wood density varied within a relatively narrow range (0.38–0.62 g cm-3). Anatomical traits quantified included wood tissue fractions (fibres, axial parenchyma, ray parenchyma, vessels, and conduits with maximum lumen diameter below 15 μm), vessel properties, and pith area. To search for potential ecological correlates of anatomical variation the species were sampled across rainfall and temperature contrasts, and several other ecologically-relevant traits were measured (plant height, leaf area to sapwood area ratio, and modulus of elasticity). Results Despite the limited range in wood density, substantial anatomical variation was observed. Total parenchyma fraction varied from 0.12 to 0.66 and fibre fraction from 0.20 to 0.74, and these two traits were strongly inversely correlated (r = -0.86, P < 0.001). Parenchyma was weakly (0.24 ≤|r|≤ 0.35, P < 0.05) or not associated with vessel properties nor with height, leaf area to sapwood area ratio, and modulus of elasticity (0.24 ≤|r|≤ 0.41, P < 0.05). However, vessel traits were fairly well correlated with height and leaf area to sapwood area ratio (0.47 ≤|r|≤ 0.65, all P < 0.001). Modulus of elasticity was mainly driven by fibre wall plus vessel wall fraction rather than by the parenchyma component. Conclusions Overall, there seem to be at least three axes of variation in xylem, substantially independent of each other: a wood density spectrum, a fibre-parenchyma spectrum, and a vessel area spectrum. The fibre-parenchyma spectrum does not yet have any clear or convincing ecological interpretation. PMID:25906320

  15. Impact of anatomical traits of maize (Zea mays L.) leaf as affected by nitrogen supply and leaf age on bundle sheath conductance.

    PubMed

    Retta, Moges; Yin, Xinyou; van der Putten, Peter E L; Cantre, Denis; Berghuijs, Herman N C; Ho, Quang Tri; Verboven, Pieter; Struik, Paul C; Nicolaï, Bart M

    2016-11-01

    The mechanism of photosynthesis in C 4 crops depends on the archetypal Kranz-anatomy. To examine how the leaf anatomy, as altered by nitrogen supply and leaf age, affects the bundle sheath conductance (g bs ), maize (Zea mays L.) plants were grown under three contrasting nitrogen levels. Combined gas exchange and chlorophyll fluorescence measurements were done on fully grown leaves at two leaf ages. The measured data were analysed using a biochemical model of C 4 photosynthesis to estimate g bs . The leaf microstructure and ultrastructure were quantified using images obtained from micro-computed tomography and microscopy. There was a strong positive correlation between g bs and leaf nitrogen content (LNC) while old leaves had lower g bs than young leaves. Leaf thickness, bundle sheath cell wall thickness and surface area of bundle sheath cells per unit leaf area (S b ) correlated well with g bs although they were not significantly affected by LNC. As a result, the increase of g bs with LNC was little explained by the alteration of leaf anatomy. In contrast, the combined effect of LNC and leaf age on S b was responsible for differences in g bs between young leaves and old leaves. Future investigations should consider changes at the level of plasmodesmata and membranes along the CO 2 leakage pathway to unravel LNC and age effects further. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Modeling canopy-level productivity: is the "big-leaf" simplification acceptable?

    NASA Astrophysics Data System (ADS)

    Sprintsin, M.; Chen, J. M.

    2009-05-01

    The "big-leaf" approach to calculating the carbon balance of plant canopies assumes that canopy carbon fluxes have the same relative responses to the environment as any single unshaded leaf in the upper canopy. Widely used light use efficiency models are essentially simplified versions of the big-leaf model. Despite its wide acceptance, subsequent developments in the modeling of leaf photosynthesis and measurements of canopy physiology have brought into question the assumptions behind this approach showing that big leaf approximation is inadequate for simulating canopy photosynthesis because of the additional leaf internal control on carbon assimilation and because of the non-linear response of photosynthesis on leaf nitrogen and absorbed light, and changes in leaf microenvironment with canopy depth. To avoid this problem a sunlit/shaded leaf separation approach, within which the vegetation is treated as two big leaves under different illumination conditions, is gradually replacing the "big-leaf" strategy, for applications at local and regional scales. Such separation is now widely accepted as a more accurate and physiologically based approach for modeling canopy photosynthesis. Here we compare both strategies for Gross Primary Production (GPP) modeling using the Boreal Ecosystem Productivity Simulator (BEPS) at local (tower footprint) scale for different land cover types spread over North America: two broadleaf forests (Harvard, Massachusetts and Missouri Ozark, Missouri); two coniferous forests (Howland, Maine and Old Black Spruce, Saskatchewan); Lost Creek shrubland site (Wisconsin) and Mer Bleue petland (Ontario). BEPS calculates carbon fixation by scaling Farquhar's leaf biochemical model up to canopy level with stomatal conductance estimated by a modified version of the Ball-Woodrow-Berry model. The "big-leaf" approach was parameterized using derived leaf level parameters scaled up to canopy level by means of Leaf Area Index. The influence of sunlit/shaded leaf separation on GPP prediction was evaluated accounting for the degree of the deviation of 3-dimensional leaf spatial distribution from the random case. More specifically, we compared and evaluated the behavior of both models showing the advantages of sunlit/shaded leaf separation strategy over a simplified big-leaf approach. Keywords: canopy photosynthesis, leaf area index, clumping index, remote sensing.

  17. New dimension analyses with error analysis for quaking aspen and black spruce

    NASA Technical Reports Server (NTRS)

    Woods, K. D.; Botkin, D. B.; Feiveson, A. H.

    1987-01-01

    Dimension analysis for black spruce in wetland stands and trembling aspen are reported, including new approaches in error analysis. Biomass estimates for sacrificed trees have standard errors of 1 to 3%; standard errors for leaf areas are 10 to 20%. Bole biomass estimation accounts for most of the error for biomass, while estimation of branch characteristics and area/weight ratios accounts for the leaf area error. Error analysis provides insight for cost effective design of future analyses. Predictive equations for biomass and leaf area, with empirically derived estimators of prediction error, are given. Systematic prediction errors for small aspen trees and for leaf area of spruce from different site-types suggest a need for different predictive models within species. Predictive equations are compared with published equations; significant differences may be due to species responses to regional or site differences. Proportional contributions of component biomass in aspen change in ways related to tree size and stand development. Spruce maintains comparatively constant proportions with size, but shows changes corresponding to site. This suggests greater morphological plasticity of aspen and significance for spruce of nutrient conditions.

  18. Losses of leaf area owing to herbivory and early senescence in three tree species along a winter temperature gradient

    NASA Astrophysics Data System (ADS)

    González-Zurdo, P.; Escudero, A.; Nuñez, R.; Mediavilla, S.

    2016-11-01

    In temperate climates, evergreen leaves have to survive throughout low temperature winter periods. Freezing and chilling injuries can lead to accelerated senescence of part of the leaf surface, which contributes to a reduction of the lifespan of the photosynthetic machinery and of leaf lifetime carbon gain. Low temperatures are also associated with changes in foliar chemistry and morphology that affect consumption by herbivores. Therefore, the severity of foliar area losses caused by accelerated senescence and herbivory can change along winter temperature gradients. The aim of this study is to analyse such responses in the leaves of three evergreen species ( Quercus ilex, Q. suber and Pinus pinaster) along a climatic gradient. The leaves of all three species presented increased leaf mass per area (LMA) and higher concentrations of structural carbohydrates in cooler areas. Only the two oak species showed visible symptoms of damage caused by herbivory, this being less intense at the coldest sites. The leaves of all three species presented chlorotic and necrotic spots that increased in size with leaf age. The foliar surface affected by chlorosis and necrosis was larger at the sites with the coldest winters. Therefore, the effects of the winter cold on the lifespan of the photosynthetic machinery were contradictory: losses of leaf area due to accelerated senescence increased, but there was a decrease in losses caused by herbivory. The final consequences for carbon assimilation strongly depend on the exact timing of the appearance of the damage resulting from low temperature and grazing by herbivores.

  19. Calibrations between chlorophyll meter values and chlorophyll contents vary as the result of differences in leaf structure

    USDA-ARS?s Scientific Manuscript database

    In order to relate leaf chlorophyll meter values with total leaf chlorophyll contents (µg cm-2), calibration equations are established with measured data on leaves. Many studies have documented differences in calibration equations using different species and using different growing conditions for th...

  20. Zinc deficiency in field-grown pecan trees: changes in leaf nutrient concentrations and structure.

    PubMed

    Ojeda-Barrios, Dámaris; Abadía, Javier; Lombardini, Leonardo; Abadía, Anunciación; Vázquez, Saúl

    2012-06-01

    Zinc (Zn) deficiency is a typical nutritional disorder in pecan trees [Carya illinoinensis (Wangenh.) C. Koch] grown under field conditions in calcareous soils in North America, including northern Mexico and south-western United States. The aim of this study was to assess the morphological and nutritional changes in pecan leaves affected by Zn deficiency as well as the Zn distribution within leaves. Zinc deficiency led to decreases in leaf chlorophyll concentrations, leaf area and trunk cross-sectional area. Zinc deficiency increased significantly the leaf concentrations of K and Ca, and decreased the leaf concentrations of Zn, Fe, Mn and Cu. All nutrient values found in Zn-deficient leaves were within the sufficiency ranges, with the only exception of Zn, which was approximately 44, 11 and 9 µg g(-1) dry weight in Zn-sufficient, moderately and markedly Zn-deficient leaves, respectively. Zinc deficiency led to decreases in leaf thickness, mainly due to a reduction in the thickness of the palisade parenchyma, as well as to increases in stomatal density and size. The localisation of Zn was determined using the fluorophore Zinpyr-1 and ratio-imaging technique. Zinc was mainly localised in the palisade mesophyll area in Zn-sufficient leaves, whereas no signal could be obtained in Zn-deficient leaves. The effects of Zn deficiency on the leaf characteristics of pecan trees include not only decreases in leaf chlorophyll and Zn concentrations, but also a reduction in the thickness of the palisade parenchyma, an increase in stomatal density and pore size and the practical disappearance of Zn leaf pools. These characteristics must be taken into account to design strategies to correct Zn deficiency in pecan tree in the field. Copyright © 2012 Society of Chemical Industry.

Top