Science.gov

Sample records for leaf buds analyses

  1. Use of Stored Carbon Reserves in Growth of Temperate Tree Roots and Leaf Buds: Analyses Using Radiocarbon Measurements and Modeling

    SciTech Connect

    Gaudinski, Julia B.; Torn, Margaret S.; Riley, W. J.; Swanston, Christopher W.; Trumbore, Susan E.; JoslinJr., John D.; Majdi, H; Dawson, Todd E.; Hanson, Paul J

    2009-01-01

    Characterizing the use of C reserves in trees is important for understanding stress responses, impacts of asynchrony between photosynthesis and growth demand, and isotopic exchanges in plant dynamic studies. Using an inadvertent, whole ecosystem radiocarbon (14C) exposure in a temperate deciduous oak forest and numerical modeling, we calculated that the mean age of stored C used to grow leaf buds and new fine root tissue is 0.5-1.0 y. The mean age of stored C used to grow new roots was about 0.7 y across a range of realistic values of 14C inputs to the system. The amount of stored C used on an annual basis to grow fine roots was between 15 and 55% of total root growth, with the range defined by the assumed 14C input profile. We estimate the annually-averaged mean age of C in new root tissues is 1-5 months. Therefore, accounting for storage C use in isotope root models may be unnecessary in all but the fastest cycling root populations (i.e., mean age <1 y). Consistent with the whole ecosystem labeling results, we found, using "bomb-14C," that the mean C age of new root tissues in three additional forest sites (one deciduous, two coniferous) was less than 2 years. We conclude that in many ecosystem types, growth from stored C is insufficient to impact bomb-14C based estimates of long root lifetimes.

  2. Preformation in vegetative buds of Prunus persica: factors influencing number of leaf primordia in overwintering buds.

    PubMed

    Gordon, D; Damiano, C; DeJong, T M

    2006-04-01

    We investigated the influence of bud position, cultivar, tree age, tree carbohydrate status, sampling date, drought and light exposure on the number of leaf primordia formed in dormant vegetative peach buds (Prunus persica (L.) Batsch) relative to the number of primordia formed after bud break (neoformed). During winter dormancy, vegetative peach buds from California and Italy were dissected and the number of leaf primordia recorded. Between leaf drop and bud break, the number of leaf primordia doubled from about five to about 10. Parent shoot length, number of nodes on the parent shoot, cross-sectional area of the parent shoot, bud position along the parent shoot and bud cross-sectional area were correlated with the number of leaf primordia. Previous season light exposure, drought and tree carbohydrate status did not affect the number of leaf primordia present. The number of leaf primordia differed significantly among peach varieties and tree ages at leaf drop, but not at bud break. Our results indicate that neoformation accounted for all shoot growth beyond about 10 nodes. The predominance of neoformed shoot growth in peach allows this species great plasticity in its response to current-season conditions. PMID:16414932

  3. Photosynthetic leaf area modulates tiller bud outgrowth in sorghum.

    PubMed

    Kebrom, Tesfamichael H; Mullet, John E

    2015-08-01

    Shoot branches or tillers develop from axillary buds. The dormancy versus outgrowth fates of buds depends on genetic, environmental and hormonal signals. Defoliation inhibits bud outgrowth indicating the role of leaf-derived metabolic factors such as sucrose in bud outgrowth. In this study, the sensitivity of bud outgrowth to selective defoliation was investigated. At 6 d after planting (6 DAP), the first two leaves of sorghum were fully expanded and the third was partially emerged. Therefore, the leaves were selectively defoliated at 6 DAP and the length of the bud in the first leaf axil was measured at 8 DAP. Bud outgrowth was inhibited by defoliation of only 2 cm from the tip of the second leaf blade. The expression of dormancy and sucrose-starvation marker genes was up-regulated and cell cycle and sucrose-inducible genes was down-regulated during the first 24 h post-defoliation of the second leaf. At 48 h, the expression of these genes was similar to controls as the defoliated plant recovers. Our results demonstrate that small changes in photosynthetic leaf area affect the propensity of tiller buds for outgrowth. Therefore, variation in leaf area and photosynthetic activity should be included when integrating sucrose into models of shoot branching.

  4. The use of stored carbon reserves in growth of temperate tree roots and leaf buds: Analyses using radiocarbon measurements and modeling

    SciTech Connect

    Gaudinski, J.B.; Torn, M.S.; Riley, W.J.; Swanston, C.; Trumbore, S.E.; Joslin, J.D.; Majdi, H.; Dawson, T.E.; Hanson, P.J.

    2009-02-01

    Characterizing the use of carbon (C) reserves in trees is important for understanding regional and global C cycles, stress responses, asynchrony between photosynthetic activity and growth demand, and isotopic exchanges in studies of tree physiology and ecosystem C cycling. Using an inadvertent, whole-ecosystem radiocarbon ({sup 14}C) release in a temperate deciduous oak forest and numerical modeling, we estimated that the mean age of stored C used to grow both leaf buds and new roots is 0.7 years and about 55% of new-root growth annually comes from stored C. Therefore, the calculated mean age of C used to grow new-root tissue is {approx}0.4 years. In short, new roots contain a lot of stored C but it is young in age. Additionally, the type of structure used to model stored C input is important. Model structures that did not include storage, or that assumed stored and new C mixed well (within root or shoot tissues) before being used for root growth, did not fit the data nearly as well as when a distinct storage pool was used. Consistent with these whole-ecosystem labeling results, the mean age of C in new-root tissues determined using 'bomb-{sup 14}C' in three additional forest sites in North America and Europe (one deciduous, two coniferous) was less than 1-2 years. The effect of stored reserves on estimated ages of fine roots is unlikely to be large in most natural abundance isotope studies. However, models of root C dynamics should take stored reserves into account, particularly for pulse-labeling studies and fast-cycling roots (<1 years).

  5. Gene expression analysis of bud and leaf color in tea.

    PubMed

    Wei, Kang; Zhang, Yazhen; Wu, Liyun; Li, Hailin; Ruan, Li; Bai, Peixian; Zhang, Chengcai; Zhang, Fen; Xu, Liyi; Wang, Liyuan; Cheng, Hao

    2016-10-01

    Purple shoot tea attributing to the high anthocyanin accumulation is of great interest for its wide health benefits. To better understand potential mechanisms involved in purple buds and leaves formation in tea plants, we performed transcriptome analysis of six green or purple shoot tea individuals from a F1 population using the Illumina sequencing method. Totally 292 million RNA-Seq reads were obtained and assembled into 112,233 unigenes, with an average length of 759 bp and an N50 of 1081 bp. Moreover, totally 2193 unigenes showed significant differences in expression levels between green and purple tea samples, with 1143 up- and 1050 down-regulated in the purple teas. Further real time PCR analysis confirmed RNA-Seq results. Our study identified 28 differentially expressed transcriptional factors and A CsMYB gene was found to be highly similar to AtPAP1 in Arabidopsis. Further analysis of differentially expressed genes involved in anthocyanin biosynthesis and transportation showed that the late biosynthetic genes and genes involved in anthocyanin transportation were largely affected but the early biosynthetic genes were less or none affected. Overall, the identification of a large number of differentially expressed genes offers a global view of the potential mechanisms associated with purple buds and leaves formation, which will facilitate molecular breeding in tea plants. PMID:27362295

  6. Perception of photoperiod in individual buds of mature trees regulates leaf-out.

    PubMed

    Zohner, Constantin M; Renner, Susanne S

    2015-12-01

    Experimental data on the perception of day length and temperature in dormant temperate zone trees are surprisingly scarce. In order to investigate when and where these environmental signals are perceived, we carried out bagging experiments in which buds on branches of Fagus sylvatica, Aesculus hippocastanum and Picea abies trees were exposed to natural light increase or kept at constant 8-h days from December until June. Parallel experiments used twigs cut from the same trees, harvesting treated and control twigs seven times and then exposing them to 8- or 16-h days in a glasshouse. Under 8-h days, budburst in Fagus outdoors was delayed by 41 d and in Aesculus by 4 d; in Picea, day length had no effect. Buds on nearby branches reacted autonomously, and leaf primordia only reacted to light cues in late dormancy after accumulating warm days. Experiments applying different wavelength spectra and high-resolution spectrometry to buds indicate a phytochrome-mediated photoperiod control. By demonstrating local photoperiodic control of buds, revealing the time when these signals are perceived, and showing the interplay between photoperiod and chilling, this study contributes to improved modelling of the impact of climate warming on photosensitive species.

  7. From buds to litter: seasonal changes in leaf wax concentrations and carbon isotopes and implications for the geologic past

    NASA Astrophysics Data System (ADS)

    Suh, Y. J.; Diefendorf, A. F.

    2014-12-01

    The carbon isotope composition (δ13C) of leaf waxes, such as n-alkanes, have extensively been used in paleoenvironmental studies for reconstruction of the past vegetation, climate and carbon cycling. There is however little information available on the seasonal variation of leaf wax concentration and δ13C in modern plants and when the δ13C signal is set. This lack of information confounds interpretations of leaf wax δ13C in sedimentary archives. To address this gap, this study investigates temporal changes in n-alkane and n-alkanoic acid δ13C values in several species (Acer rubrum, Acer saccharum, Ulmus Americana, Sassafras albidum, and Juniperus virginiana) within a single temperate deciduous forest stand in southern Ohio. We sampled atmospheric air, buds, leaves, leaf litter, and surface soil weekly during leaf flush and biweekly thereafter. In A. rubrum, A. saccharum, and U. Americana, buds had one or two dominant n-alkanes, such as C29 and C31. After leaf flush, the concentrations of shorter n-alkanes (C23~C27) significantly increased relative to the longer chain-lengths. We are currently analyzing remaining samples from the growing season and are analyzing bulk leaf and leaf wax (n-alkanes, n-alkanoic acids) δ13C values. This information will be important for identifying environmental and physiological controls on leaf wax δ13C and will improve interpretations of leaf wax δ13C preserved in the geologic record.

  8. Comparison of axillary bud growth and patatin accumulation in potato leaf cuttings as assays for tuber induction

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Hannapel, D. J.; Tibbitts, T. W.

    1988-01-01

    Single-node leaf cuttings from potatoes (Solanum tuberosum L.) cvs. Norland, Superior, Norchip, and Kennebec, were used to assess tuber induction in plants grown under 12, 16, and 20 h daily irradiation (400 micromol s-1 m-2 PPF). Leaf cuttings were taken from plants at four, six and 15 weeks after planting and cultured for 14 d in sand trays in humid environments. Tuber induction was determined by visually rating the type of growth at the attached axillary bud, and by measuring the accumulation of the major tuber protein, patatin, in the base of the petioles. Axillary buds from leaf cuttings of plants grown under the 12 h photoperiod consistently formed round, sessile tubers at the axils for all four cultivars at all harvests. Buds from cuttings of plants grown under the 16 and 20 h photoperiods exhibited mixed tuber, stolon, and leafy shoot growth. Patatin accumulation was highest in petioles of cuttings taken from 12 h plants for all cultivars at all harvests, with levels in 16 and 20 h cuttings approx. one-half that of the 12 h cuttings. Trends, both in visual ratings of axillary buds and in petiole patatin accumulation, followed the harvest index (ratio of tuber to total plant dry matter), suggesting that either method is an acceptable assay for tuber induction in the potato.

  9. Genetic variation of the bud and leaf phenology of seventeen poplar clones in a short rotation coppice culture.

    PubMed

    Pellis, A; Laureysens, I; Ceulemans, R

    2004-01-01

    Leaf phenology of 17 poplar ( Populus spp.) clones, encompassing spring phenology, length of growth period and end-of-year phenology, was examined over several years of different rotations. The 17 poplar clones differed in their latitude of origin (45 degrees 30'N to 51 degrees N) and were studied on a short rotation experimental field plantation, situated in Boom (province of Antwerpen, Belgium; 51 degrees 05'N, 04 degrees 22'E). A similar, clear pattern of bud burst was observed during the different years of study for all clones. Clones Columbia River, Fritzi Pauley, Trichobel (Populus trichocarpa) and Balsam Spire (Populus trichocarpa x Populus balsamifera) from 45 degrees 30'N to 49 degrees N reached bud burst (expressed as day of the year or degree day sums) almost every year earlier than clones Wolterson (Populus nigra), Gaver, Gibecq and Primo (Populus deltoides x Populus nigra) (50 degrees N to 51 degrees N). This observation could not be generalised to end-of-season phenology, for which a yearly returning pattern for all clones was lacking. Late bud burst and early leaf fall of some clones (Beaupré, Boelare, IBW1, IBW2, IBW3) was brought about by increasing rust incidence during the years of observation. For these clones, the variability in leaf phenology was reflected in high coefficients of variation among years. The patterns of genetic variation in leaf phenology have implications for short rotation intensive culture forestry and management of natural populations. Moreover, the variation in phenology reported here is relevant with regard to the genetic mapping of poplar.

  10. Characterization of bud emergence 46 (BEM46) protein: Sequence, structural, phylogenetic and subcellular localization analyses

    SciTech Connect

    Kumar, Abhishek; Kollath-Leiß, Krisztina; Kempken, Frank

    2013-08-30

    Highlights: •All eukaryotes have at least a single copy of a bem46 ortholog. •The catalytic triad of BEM46 is illustrated using sequence and structural analysis. •We identified indels in the conserved domain of BEM46 protein. •Localization studies of BEM46 protein were carried out using GFP-fusion tagging. -- Abstract: The bud emergence 46 (BEM46) protein from Neurospora crassa belongs to the α/β-hydrolase superfamily. Recently, we have reported that the BEM46 protein is localized in the perinuclear ER and also forms spots close by the plasma membrane. The protein appears to be required for cell type-specific polarity formation in N. crassa. Furthermore, initial studies suggested that the BEM46 amino acid sequence is conserved in eukaryotes and is considered to be one of the widespread conserved “known unknown” eukaryotic genes. This warrants for a comprehensive phylogenetic analysis of this superfamily to unravel origin and molecular evolution of these genes in different eukaryotes. Herein, we observe that all eukaryotes have at least a single copy of a bem46 ortholog. Upon scanning of these proteins in various genomes, we find that there are expansions leading into several paralogs in vertebrates. Usingcomparative genomic analyses, we identified insertion/deletions (indels) in the conserved domain of BEM46 protein, which allow to differentiate fungal classes such as ascomycetes from basidiomycetes. We also find that exonic indels are able to differentiate BEM46 homologs of different eukaryotic lineage. Furthermore, we unravel that BEM46 protein from N. crassa possess a novel endoplasmic-retention signal (PEKK) using GFP-fusion tagging experiments. We propose that three residues namely a serine 188S, a histidine 292H and an aspartic acid 262D are most critical residues, forming a catalytic triad in BEM46 protein from N. crassa. We carried out a comprehensive study on bem46 genes from a molecular evolution perspective with combination of functional

  11. A Comparative Analysis of Genetic Differentiation across Six Shared Willow Host Species in Leaf- and Bud-Galling Sawflies

    PubMed Central

    Leppänen, Sanna A.; Malm, Tobias; Värri, Kaisa; Nyman, Tommi

    2014-01-01

    Genetic divergence and speciation in plant-feeding insects could be driven by contrasting selection pressures imposed by different plant species and taxa. While numerous examples of host-associated differentiation (HAD) have been found, the overall importance of HAD in insect diversification remains unclear, as few studies have investigated its frequency in relation to all speciation events. One promising way to infer the prevalence and repeatability of HAD is to estimate genetic differentiation in multiple insect taxa that use the same set of hosts. To this end, we measured and compared variation in mitochondrial COI and nuclear ITS2 sequences in population samples of leaf-galling Pontania and bud-galling Euura sawflies (Hymenoptera: Tenthredinidae) collected from six Salix species in two replicate locations in northern Fennoscandia. We found evidence of frequent HAD in both species complexes, as individuals from the same willow species tended to cluster together on both mitochondrial and nuclear phylogenetic trees. Although few fixed differences among the putative species were found, hierarchical AMOVAs showed that most of the genetic variation in the samples was explained by host species rather than by sampling location. Nevertheless, the levels of HAD measured across specific pairs of host species were not correlated in the two focal galler groups. Hence, our results support the hypothesis of HAD as a central force in herbivore speciation, but also indicate that evolutionary trajectories are only weakly repeatable even in temporally overlapping radiations of related insect taxa. PMID:25551608

  12. Proteomics and transcriptomics analyses of Arabidopsis floral buds uncover important functions of ARABIDOPSIS SKP1-LIKE1

    DOE PAGES

    Lu, Dihong; Ni, Weimin; Stanley, Bruce A.; Ma, Hong

    2016-03-03

    The ARABIDOPSIS SKP1-LIKE1 (ASK1) protein functions as a subunit of SKP1-CUL1-F-box (SCF) E3 ubiquitin ligases. Previous genetic studies showed that ASK1 plays important roles in Arabidopsis flower development and male meiosis. However, the molecular impact of ASK1-containing SCF E3 ubiquitin ligases (ASK1-E3s) on the floral proteome and transcriptome is unknown. Here we identified proteins that are potentially regulated by ASK1-E3s by comparing floral bud proteomes of wild-type and the ask1 mutant plants. More than 200 proteins were detected in the ask1 mutant but not in wild-type and >300 were detected at higher levels in the ask1 mutant than in wild-type,more » but their RNA levels were not significantly different between wild-type and ask1 floral buds as shown by transcriptomics analysis, suggesting that they are likely regulated at the protein level by ASK1-E3s. Integrated analyses of floral proteomics and transcriptomics of ask1 and wild-type uncovered several potential aspects of ASK1-E3 functions, including regulation of transcription regulators, kinases, peptidases, and ribosomal proteins, with implications on possible mechanisms of ASK1-E3 functions in floral development. In conclusion, our results suggested that ASK1-E3s play important roles in Arabidopsis protein degradation during flower development. This study opens up new possibilities for further functional studies of these candidate E3 substrates.« less

  13. Comparison of Leaf Plastochron Index and Allometric Analyses of Tooth Development in Arabidopsis thaliana.

    PubMed

    Groot; Meicenheimer

    2000-03-01

    Two methods of analyses were used to investigate tooth development in serrate (se) mutant and wild-type Columbia-1 (Col-1) Arabidopsis thaliana leaves. There were almost twice as many teeth with deeper sinuses and two orders of toothing on the margins of serrate compared with Columbia-1 leaves. The main objective of this study was to test three hypotheses relative to the source of polymorphism in tooth development: (i) Teeth share similar growth rates and initial sizes, but the deeper teeth are initiated earlier in leaf development. (ii) Teeth share similar timing of initiation and growth rates, but the deeper teeth have a larger initial size. (iii) Teeth share similar timing of initiation and initial sizes, but the deeper teeth have a faster growth rate. Leaf plastochron index (LPI) was used as the time variable for leaf development. Results showed teeth in se were initiated at -27 LPI, 15 plastochrons earlier than those of Col-1. Serrate leaf expansion was biphasic, with the early phase expanding at half the relative plastochron rate of the later phase, which equaled the constant relative expansion rate of Col-1 leaves. Allometric analyses of tooth development obscured the interactions between time of tooth and leaf initiation and the early phase of leaf expansion characteristic of serrate leaves and teeth. Timing of developmental events that allometric analysis obscured can be readily detected with the LPI as a developmental index.

  14. Plantecophys--An R Package for Analysing and Modelling Leaf Gas Exchange Data.

    PubMed

    Duursma, Remko A

    2015-01-01

    Here I present the R package 'plantecophys', a toolkit to analyse and model leaf gas exchange data. Measurements of leaf photosynthesis and transpiration are routinely collected with portable gas exchange instruments, and analysed with a few key models. These models include the Farquhar-von Caemmerer-Berry (FvCB) model of leaf photosynthesis, the Ball-Berry models of stomatal conductance, and the coupled leaf gas exchange model which combines the supply and demand functions for CO2 in the leaf. The 'plantecophys' R package includes functions for fitting these models to measurements, as well as simulating from the fitted models to aid in interpreting experimental data. Here I describe the functionality and implementation of the new package, and give some examples of its use. I briefly describe functions for fitting the FvCB model of photosynthesis to measurements of photosynthesis-CO2 response curves ('A-Ci curves'), fitting Ball-Berry type models, modelling C3 photosynthesis with the coupled photosynthesis-stomatal conductance model, modelling C4 photosynthesis, numerical solution of optimal stomatal behaviour, and energy balance calculations using the Penman-Monteith equation. This open-source package makes technically challenging calculations easily accessible for many users and is freely available on CRAN. PMID:26581080

  15. QTL mapping for a trade-off between leaf and bud production in a recombinant inbred population of Microseris douglasii and M. bigelovii (Asteraceae, Lactuceae): a potential preadaptation for the colonization of serpentine soils.

    PubMed

    Gailing, O; Macnair, M R; Bachmann, K

    2004-07-01

    The different response to growth on serpentine soil is a major autecological difference between the annual asteracean species Microseris douglasii and M. bigelovii, with nearly non-overlapping distribution ranges in California. Early flowering and seed set is regarded as a crucial character contributing to escape drought and thus is strongly correlated with survival and reproductive success on serpentine as naturally toxic soil. M. bigelovii (strain C94) from non-serpentine soil produces more leaves at the expense of bud production in the first growing phase than M. douglasii (B14) from serpentine soil. A QTL mapping study for this trade-off and for other growth-related traits was performed after six generations of inbreeding (F7) from a single interspecific hybrid between B14 and C94 on plants that were grown on serpentine and alternatively on normal potting soil. The trade-off is mainly correlated with markers on one map region on linkage group 03a (lg03a) with major phenotypic effects (phenotypic variance explained [PVE] = 18.8 - 31.7 %). Plants with the M. douglasii allele in QTL-B1 (QTL-NL1) produce more buds but fewer leaves in the first 119 days on both soil types. Three modifier QTL could be mapped for bud and leaf production. In one modifier (QTL-B2 = QTL-NL4) the M. douglasii allele is again associated with more buds but fewer leaves. QTL mapped for bud set in the F6 co-localize with QTL-B1 (major QTL) and QTL-B3. Two additional QTL for leaf length and red coloration of leaves could be mapped to one map region on lg03a. Co-localization of the two QTL loci with major phenotypic effects on bud and leaf production strongly suggests that a major genetic locus controls the trade-off between the two adaptive traits. The importance of mutational changes in major genes for the adaptation to stressful environments is discussed.

  16. High Throughput Analyses of Budding Yeast ARSs Reveal New DNA Elements Capable of Conferring Centromere-Independent Plasmid Propagation

    PubMed Central

    Hoggard, Timothy; Liachko, Ivan; Burt, Cassaundra; Meikle, Troy; Jiang, Katherine; Craciun, Gheorghe; Dunham, Maitreya J.; Fox, Catherine A.

    2016-01-01

    The ability of plasmids to propagate in Saccharomyces cerevisiae has been instrumental in defining eukaryotic chromosomal control elements. Stable propagation demands both plasmid replication, which requires a chromosomal replication origin (i.e., an ARS), and plasmid distribution to dividing cells, which requires either a chromosomal centromere for segregation or a plasmid-partitioning element. While our knowledge of yeast ARSs and centromeres is relatively advanced, we know less about chromosomal regions that can function as plasmid partitioning elements. The Rap1 protein-binding site (RAP1) present in transcriptional silencers and telomeres of budding yeast is a known plasmid-partitioning element that functions to anchor a plasmid to the inner nuclear membrane (INM), which in turn facilitates plasmid distribution to daughter cells. This Rap1-dependent INM-anchoring also has an important chromosomal role in higher-order chromosomal structures that enhance transcriptional silencing and telomere stability. Thus, plasmid partitioning can reflect fundamental features of chromosome structure and biology, yet a systematic screen for plasmid partitioning elements has not been reported. Here, we couple deep sequencing with competitive growth experiments of a plasmid library containing thousands of short ARS fragments to identify new plasmid partitioning elements. Competitive growth experiments were performed with libraries that differed only in terms of the presence or absence of a centromere. Comparisons of the behavior of ARS fragments in the two experiments allowed us to identify sequences that were likely to drive plasmid partitioning. In addition to the silencer RAP1 site, we identified 74 new putative plasmid-partitioning motifs predicted to act as binding sites for DNA binding proteins enriched for roles in negative regulation of gene expression and G2/M-phase associated biology. These data expand our knowledge of chromosomal elements that may function in plasmid

  17. Leaf Length Tracker: a novel approach to analyse leaf elongation close to the thermal limit of growth in the field

    PubMed Central

    Kirchgessner, Norbert; Yates, Steven; Hiltpold, Maya; Walter, Achim

    2016-01-01

    Leaf growth in monocot crops such as wheat and barley largely follows the daily temperature course, particularly under cold but humid springtime field conditions. Knowledge of the temperature response of leaf extension, particularly variations close to the thermal limit of growth, helps define physiological growth constraints and breeding-related genotypic differences among cultivars. Here, we present a novel method, called ‘Leaf Length Tracker’ (LLT), suitable for measuring leaf elongation rates (LERs) of cereals and other grasses with high precision and high temporal resolution under field conditions. The method is based on image sequence analysis, using a marker tracking approach to calculate LERs. We applied the LLT to several varieties of winter wheat (Triticum aestivum), summer barley (Hordeum vulgare), and ryegrass (Lolium perenne), grown in the field and in growth cabinets under controlled conditions. LLT is easy to use and we demonstrate its reliability and precision under changing weather conditions that include temperature, wind, and rain. We found that leaf growth stopped at a base temperature of 0°C for all studied species and we detected significant genotype-specific differences in LER with rising temperature. The data obtained were statistically robust and were reproducible in the tested environments. Using LLT, we were able to detect subtle differences (sub-millimeter) in leaf growth patterns. This method will allow the collection of leaf growth data in a wide range of future field experiments on different graminoid species or varieties under varying environmental or treatment conditions. PMID:26818912

  18. Adventitious bud regeneration from leaf expiants of the shrubby ornamental honeysuckle, Lonicera nitida Wils. cv. 'Maigrün': effects of thidiazuron and 2,3,5-triiodobenzoic acid.

    PubMed

    Cambecèdes, J; Duron, M; Decourtye, L

    1991-11-01

    Different combinations of auxins and cytokinins were employed to assess the regeneration capacity from in vitro leaf explants of Lonicera nitida Wils. cv 'Maïgrün'. A high frequency of rhizogenesis was noticed, with 2.3 μM thidiazuron plus 2.9 μM indole-3-acetic acid as the only hormonal combination to support caulogenic responses. Increasing thidiazuron concentration and/or suppressing auxin did not improve caulogenesis. Combining thidiazuron with 2,3,5-triiodobenzoic acid produced a dramatic increase in the percentage of caulogenic explants. A maximum of 74% of adventitious bud forming explants was obtained with 2.3 μM thidiazuron plus 20 μM 2,3,5-triiodobenzoic acid. Buds were often in a rosette form and were vitreous, so that shoot elongation was difficult to obtain. The effect of the duration of the 2,3,5-triiodobenzoic acid treatment on shoot elongation was investigated. PMID:24221854

  19. Comparative analyses of leaf anatomy of dicotyledonous species in Tibetan and Inner Mongolian grasslands.

    PubMed

    Ma, Jianjing; Ji, Chengjun; Han, Mei; Zhang, Tingfang; Yan, Xuedong; Hu, Dong; Zeng, Hui; He, Jinsheng

    2012-01-01

    Knowledge of the leaf anatomy of grassland plants is crucial for understanding how these plants adapt to the environment. Tibetan alpine grasslands and Inner Mongolian temperate grasslands are two major grassland types in northern China. Tibetan alpine grasslands occur in high-altitude regions where the low temperatures limit plant growth. Inner Mongolian temperate grasslands are found in arid regions where moisture is the limiting factor. Few comparative studies concerning the leaf anatomy of grassland plants of the Tibetan Plateau and Inner Mongolian Plateau have been conducted. We examined leaf characteristics at 71 sites and among 65 species, across the alpine grasslands of the Tibetan Plateau and the temperate grasslands of the Inner Mongolian Plateau. We compared the leaf structures of plants with different life forms and taxonomies, and their adaptation to arid or cold environments. We explored relationships among leaf features and the effects of climatic factors (i.e., growing season temperature and precipitation) on leaf characteristics. Our results showed that (i) there were significant differences in leaf anatomy between Tibetan alpine and Inner Mongolian temperate grasslands. Except for mesophyll cell density, the values obtained for thickness of leaf tissue, surface area and volume of mesophyll cells were larger on the Tibetan Plateau than on the Inner Mongolian Plateau. (ii) Within the same family or genus, leaf anatomy showed significant differences between two regions, and trends were consistent with those of whole species. (iii) Leaf anatomy of woody and herbaceous plants also showed significant differences between the regions. Except for mesophyll cell density, the values obtained for the thickness of leaf tissue, and the surface area and volume of mesophyll cells were larger in herbaceous than in woody plants. (iv) Leaf anatomical traits changed accordingly. Total leaf thickness, thicknesses of lower and upper epidermal cells, and surface area

  20. Analyses of the leaf, fruit and seed of Thaumatococcus daniefii (Benth.): exploring potential uses.

    PubMed

    Chinedu, Shalom Nwodo; Oluwadamisi, Adetayo Y; Popoola, Samuel T; David, Bolaji J; Epelle, Tamunotonyesia

    2014-06-01

    Thaumatococcus daniellii is an economic plant with versatile uses in Southern Nigeria. The arils attached to the seeds contain thaumatin, a non-sugar sweetener and taste modifier. This study examined the chemical constituents of the leaf, fruit and seed of T. daniellii. The fresh fruit, on weight basis, consists of 4.8% aril, 22.8% seed and 72.4% fleshy part. The leaf contained (per 100 g): 10.67 g moisture, 8.95 g ash, 17.21 g fat, 21.06 g protein, 24.61 g crude fiber 17.50 g carbohydrate, 0.10 g calcium, 0.08 g magnesium, 0.01 g iron and 0.37 g phosphorus. The fruit (fleshy part) contained 10.04 g moisture, 21.08 g ash, 0.93 g fat, 11.53 g protein, 18.43 g crude fiber, 37.27 g carbohydrate, 0.34 g calcium, 0.30 g magnesium, 0.01 g iron and 0.21 g phosphorus. The seed contained 15.15 g moisture, 11.30 g ash, 0.21 g fat, 10.36 g protein, 20.52 g crude fiber and 42.46 g carbohydrate. Terpenoids, flavonoids, alkaloids and cardiac glycosides were significantly present in both the leaf and fruit whereas phlobatannin, saponin, steroids, anthraquinones and ascorbic acid were absent. Tannin was present only in the leaf. The leaf and fruit of T. daniellii have significant nutritional and medicinal benefits. The leaf is rich in protein and fat. The fruit is a good source of minerals, particularly, calcium and magnesium; the leaf is also rich in phosphorus. PMID:26035959

  1. Analyses of the leaf, fruit and seed of Thaumatococcus daniefii (Benth.): exploring potential uses.

    PubMed

    Chinedu, Shalom Nwodo; Oluwadamisi, Adetayo Y; Popoola, Samuel T; David, Bolaji J; Epelle, Tamunotonyesia

    2014-06-01

    Thaumatococcus daniellii is an economic plant with versatile uses in Southern Nigeria. The arils attached to the seeds contain thaumatin, a non-sugar sweetener and taste modifier. This study examined the chemical constituents of the leaf, fruit and seed of T. daniellii. The fresh fruit, on weight basis, consists of 4.8% aril, 22.8% seed and 72.4% fleshy part. The leaf contained (per 100 g): 10.67 g moisture, 8.95 g ash, 17.21 g fat, 21.06 g protein, 24.61 g crude fiber 17.50 g carbohydrate, 0.10 g calcium, 0.08 g magnesium, 0.01 g iron and 0.37 g phosphorus. The fruit (fleshy part) contained 10.04 g moisture, 21.08 g ash, 0.93 g fat, 11.53 g protein, 18.43 g crude fiber, 37.27 g carbohydrate, 0.34 g calcium, 0.30 g magnesium, 0.01 g iron and 0.21 g phosphorus. The seed contained 15.15 g moisture, 11.30 g ash, 0.21 g fat, 10.36 g protein, 20.52 g crude fiber and 42.46 g carbohydrate. Terpenoids, flavonoids, alkaloids and cardiac glycosides were significantly present in both the leaf and fruit whereas phlobatannin, saponin, steroids, anthraquinones and ascorbic acid were absent. Tannin was present only in the leaf. The leaf and fruit of T. daniellii have significant nutritional and medicinal benefits. The leaf is rich in protein and fat. The fruit is a good source of minerals, particularly, calcium and magnesium; the leaf is also rich in phosphorus.

  2. Late Quaternary climate and environmental changes in a permafrost section near Igarka, Northern Siberia based on leaf wax analyses

    NASA Astrophysics Data System (ADS)

    Schaefer, Imke; Schweri, Lea; Zech, Jana; Tananaev, Nikita; Zech, Roland

    2016-04-01

    Leaf wax biomarkers, such as long chain n-alkanes and n-alkanoic acids, and their carbon isotopic composition are a promising tool for reconstructing past climate and environmental changes and gain more and more attention in paleoresearch. Here we present the results of leaf wax analyses from a permafrost outcrop at the left banks of the Yenisei River near the city of Igarka, Northern Russia. Fluvio-glacial sediments are exposed in the lower part of the outcrop and probably date back to ~60 ka. The upper part consist of aeolian sediments deposited since, overprinted by various pedogenetic processes. First results indicate a continuous contribution of deciduous trees to the vegetation during the last glacial. Compound specific deuterium and radiocarbon analyses are in progress in order to investigate changes in paleoclimate and to establish a robust chronology.

  3. Structure of the Bro1 Domain Protein BROX and Functional Analyses of the ALIX Bro1 Domain in HIV-1 Budding

    SciTech Connect

    Zhai Q.; Robinson H.; Landesman M. B.; Sundquist W. I.; Hill C. P.

    2011-12-01

    Bro1 domains are elongated, banana-shaped domains that were first identified in the yeast ESCRT pathway protein, Bro1p. Humans express three Bro1 domain-containing proteins: ALIX, BROX, and HD-PTP, which function in association with the ESCRT pathway to help mediate intraluminal vesicle formation at multivesicular bodies, the abscission stage of cytokinesis, and/or enveloped virus budding. Human Bro1 domains share the ability to bind the CHMP4 subset of ESCRT-III proteins, associate with the HIV-1 NC{sup Gag} protein, and stimulate the budding of viral Gag proteins. The curved Bro1 domain structure has also been proposed to mediate membrane bending. To date, crystal structures have only been available for the related Bro1 domains from the Bro1p and ALIX proteins, and structures of additional family members should therefore aid in the identification of key structural and functional elements. We report the crystal structure of the human BROX protein, which comprises a single Bro1 domain. The Bro1 domains from BROX, Bro1p and ALIX adopt similar overall structures and share two common exposed hydrophobic surfaces. Surface 1 is located on the concave face and forms the CHMP4 binding site, whereas Surface 2 is located at the narrow end of the domain. The structures differ in that only ALIX has an extended loop that projects away from the convex face to expose the hydrophobic Phe105 side chain at its tip. Functional studies demonstrated that mutations in Surface 1, Surface 2, or Phe105 all impair the ability of ALIX to stimulate HIV-1 budding. Our studies reveal similarities in the overall folds and hydrophobic protein interaction sites of different Bro1 domains, and show that a unique extended loop contributes to the ability of ALIX to function in HIV-1 budding.

  4. Proteomic and gene expression analyses during bolting-related leaf color change in Brassica rapa.

    PubMed

    Zhang, Y W; Guo, M H; Tang, X B; Jin, D; Fang, Z Y

    2016-01-01

    Bolting and flowering are key processes during the growth and development of Chinese cabbage (Brassica rapa L. ssp pekinensis). Understanding the molecular mechanisms underlying bolting and flowering is of significance for improving production of the vegetable. A leaf-color change from bright green to gray-green has been observed following differentiation of the flowering stem and before bolting in the vegetable, and is considered to be a signal for bolting. Proteomics in meristem tissues of an inbred line (C30) were analyzed by two-dimensional electrophoresis during the transition period. We found that some proteins were specifically expressed while others were differentially expressed. Among these, 17 proteins were specifically expressed before the color change, 18 were specifically expressed after the color change, 21 were downregulated during the color change, and 29 were upregulated. Mass spectrometric analysis (MALDI-TOF-TOF/MS) was used to analyze 17 protein spots, and four proteins (subunit E1 of vacuolar-type H+ transporter ATPase, the large subunit of Rubicon, S-adenosylmethionine synthetase, and tubulin α-2) were identified. qPCR analysis was conducted to quantify the expression of genes encoding these proteins during the transitional period. The expression of BrVHA-E1, BrSAMS, BrrbcL, and BrTUA6 was significantly different before and after the leaf-color change, suggesting that these genes might be involved in regulating flower differentiation and bolting.

  5. Proteomic and gene expression analyses during bolting-related leaf color change in Brassica rapa.

    PubMed

    Zhang, Y W; Guo, M H; Tang, X B; Jin, D; Fang, Z Y

    2016-01-01

    Bolting and flowering are key processes during the growth and development of Chinese cabbage (Brassica rapa L. ssp pekinensis). Understanding the molecular mechanisms underlying bolting and flowering is of significance for improving production of the vegetable. A leaf-color change from bright green to gray-green has been observed following differentiation of the flowering stem and before bolting in the vegetable, and is considered to be a signal for bolting. Proteomics in meristem tissues of an inbred line (C30) were analyzed by two-dimensional electrophoresis during the transition period. We found that some proteins were specifically expressed while others were differentially expressed. Among these, 17 proteins were specifically expressed before the color change, 18 were specifically expressed after the color change, 21 were downregulated during the color change, and 29 were upregulated. Mass spectrometric analysis (MALDI-TOF-TOF/MS) was used to analyze 17 protein spots, and four proteins (subunit E1 of vacuolar-type H+ transporter ATPase, the large subunit of Rubicon, S-adenosylmethionine synthetase, and tubulin α-2) were identified. qPCR analysis was conducted to quantify the expression of genes encoding these proteins during the transitional period. The expression of BrVHA-E1, BrSAMS, BrrbcL, and BrTUA6 was significantly different before and after the leaf-color change, suggesting that these genes might be involved in regulating flower differentiation and bolting. PMID:27525926

  6. Concepts and Analyses in the CT Scanning of Root Systems and Leaf Canopies: A Timely Summary.

    PubMed

    Lafond, Jonathan A; Han, Liwen; Dutilleul, Pierre

    2015-01-01

    Non-medical applications of computed tomography (CT) scanning have flourished in recent years, including in Plant Science. This Perspective article on CT scanning of root systems and leaf canopies is intended to be of interest to three categories of readers: those who have not yet tried plant CT scanning, and should find inspiration for new research objectives; readers who are on the learning curve with applications-here is helpful advice for them; and researchers with greater experience-the field is evolving quickly and it is easy to miss aspects. Our conclusion is that CT scanning of roots and canopies is highly demanding in terms of technology, multidisciplinarity and big-data analysis, to name a few areas of expertise, but eventually, the reward for researchers is directly proportional! PMID:26734022

  7. Analyses of the proteomes of the leaf, hypocotyl, and root of young soybean seedlings.

    PubMed

    Afroz, Amber; Hashiguchi, Akiko; Khan, Muhammad Rashid; Komatsu, Setsuko

    2010-03-01

    The functions of organs in young soybean seedling were determined by means of proteomic analysis. Extracts from leaves, hypocotyls, and roots were separated by two-dimensional polyacrylamide gel electrophoresis, and the proteins were identified by mass spectrometry and protein sequencing. The identified proteins were categorized into various groups according to their function. The leaf was abundant in proteins associated with energy production (50.0%), the hypocotyl was rich in defense proteins (31.8%), and the root contained defense-related proteins (16.7%) and destination and storage proteins (26.7%). Stem 31-kDa glycoprotein, 20 kDa chaperonin, 50S ribosomal protein, and trypsin inhibitor were common to all three tissues. The sequence information obtained from the soybean proteome should be helpful in predicting the functions of unknown proteins.

  8. Concepts and Analyses in the CT Scanning of Root Systems and Leaf Canopies: A Timely Summary

    PubMed Central

    Lafond, Jonathan A.; Han, Liwen; Dutilleul, Pierre

    2015-01-01

    Non-medical applications of computed tomography (CT) scanning have flourished in recent years, including in Plant Science. This Perspective article on CT scanning of root systems and leaf canopies is intended to be of interest to three categories of readers: those who have not yet tried plant CT scanning, and should find inspiration for new research objectives; readers who are on the learning curve with applications—here is helpful advice for them; and researchers with greater experience—the field is evolving quickly and it is easy to miss aspects. Our conclusion is that CT scanning of roots and canopies is highly demanding in terms of technology, multidisciplinarity and big-data analysis, to name a few areas of expertise, but eventually, the reward for researchers is directly proportional! PMID:26734022

  9. Concepts and Analyses in the CT Scanning of Root Systems and Leaf Canopies: A Timely Summary.

    PubMed

    Lafond, Jonathan A; Han, Liwen; Dutilleul, Pierre

    2015-01-01

    Non-medical applications of computed tomography (CT) scanning have flourished in recent years, including in Plant Science. This Perspective article on CT scanning of root systems and leaf canopies is intended to be of interest to three categories of readers: those who have not yet tried plant CT scanning, and should find inspiration for new research objectives; readers who are on the learning curve with applications-here is helpful advice for them; and researchers with greater experience-the field is evolving quickly and it is easy to miss aspects. Our conclusion is that CT scanning of roots and canopies is highly demanding in terms of technology, multidisciplinarity and big-data analysis, to name a few areas of expertise, but eventually, the reward for researchers is directly proportional!

  10. Antiproliferative and phytochemical analyses of leaf extracts of ten Apocynaceae species

    PubMed Central

    Wong, Siu Kuin; Lim, Yau Yan; Abdullah, Noor Rain; Nordin, Fariza Juliana

    2011-01-01

    Background: The anticancer properties of Apocynaceae species are well known in barks and roots but less so in leaves. Materials and Methods: In this study, leaf extracts of 10 Apocynaceae species were assessed for antiproliferative (APF) activities using the sulforhodamine B assay. Their extracts were also analyzed for total alkaloid content (TAC), total phenolic content (TPC), and radical scavenging activity (RSA) using the Dragendorff precipitation, Folin–Ciocalteu, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays, respectively. Results: Leaf extracts of Alstonia angustiloba, Calotropis gigantea, Catharanthus roseus, Nerium oleander, Plumeria obtusa, and Vallaris glabra displayed positive APF activities. Extracts of Allamanda cathartica, Cerbera odollam, Dyera costulata, and Kopsia fruticosa did not show any APF activity. Dichloromethane (DCM) extract of C. gigantea, and DCM and DCM:MeOH extracts of V. glabra showed strong APF activities against all six human cancer cell lines. Against breast cancer cells of MCF-7 and MDA-MB-231, DCM extracts of C. gigantea and N. oleander were stronger than or comparable to standard drugs of xanthorrhizol, curcumin, and tamoxifen. All four extracts of N. oleander were effective against MCF-7 cells. Extracts of Kopsia fruticosa had the highest TAC while those of Dyera costulata had the highest TPC and RSA. Extracts of C. gigantea and V. glabra inhibited the growth of all six cancer cell lines while all extracts of N. oleander were effective against MCF-7 cells. Conclusion: Extracts of C. gigantea, V. glabra, and N. oleander therefore showed great promise as potential candidates for anticancer drugs. The wide-spectrum APF activities of these three species are reported for the first time and their bioactive compounds warrant further investigation. PMID:21772753

  11. Transcriptomic and Proteomic Analyses of Resistant Host Responses in Arachis diogoi Challenged with Late Leaf Spot Pathogen, Phaeoisariopsis personata

    PubMed Central

    Kumar, Dilip; Kirti, Pulugurtha Bharadwaja

    2015-01-01

    Late leaf spot is a serious disease of peanut caused by the imperfect fungus, Phaeoisariopsis personata. Wild diploid species, Arachis diogoi. is reported to be highly resistant to this disease and asymptomatic. The objective of this study is to investigate the molecular responses of the wild peanut challenged with the late leaf spot pathogen using cDNA-AFLP and 2D proteomic study. A total of 233 reliable, differentially expressed genes were identified in Arachis diogoi. About one third of the TDFs exhibit no significant similarity with the known sequences in the data bases. Expressed sequence tag data showed that the characterized genes are involved in conferring resistance in the wild peanut to the pathogen challenge. Several genes for proteins involved in cell wall strengthening, hypersensitive cell death and resistance related proteins have been identified. Genes identified for other proteins appear to function in metabolism, signal transduction and defence. Nineteen TDFs based on the homology analysis of genes associated with defence, signal transduction and metabolism were further validated by quantitative real time PCR (qRT-PCR) analyses in resistant wild species in comparison with a susceptible peanut genotype in time course experiments. The proteins corresponding to six TDFs were differentially expressed at protein level also. Differentially expressed TDFs and proteins in wild peanut indicate its defence mechanism upon pathogen challenge and provide initial breakthrough of genes possibly involved in recognition events and early signalling responses to combat the pathogen through subsequent development of resistivity. This is the first attempt to elucidate the molecular basis of the response of the resistant genotype to the late leaf spot pathogen, and its defence mechanism. PMID:25646800

  12. Microarray analyses for identifying genes conferring resistance to pepper leaf curl virus in chilli pepper (Capsicum spp.).

    PubMed

    Rai, Ved Prakash; Rai, Ashutosh; Kumar, Rajesh; Kumar, Sanjay; Kumar, Sanjeet; Singh, Major; Singh, Sheo Pratap

    2016-09-01

    Pepper leaf curl virus (PepLCV) is a serious threat to pepper (Capsicum spp.) production worldwide. Molecular mechanism underlying pepper plants response to PepLCV infection is key to develop PepLCV resistant varieties. In this study, we generated transcriptome profiles of PepLCV resistant genotype (BS-35) and susceptible genotype (IVPBC-535) after artificial viral inoculation using microarray technology and detail experimental procedures and analyses are described. A total of 319 genes differentially expressed between resistant and susceptible genotypes were identified, out of that 234 unique genes were found to be up-regulated > 2-fold in resistant line BS-35 when compared to susceptible, IVPBC-535. The data set we generated has been analyzed to identify genes that are involved in the regulation of resistance against PepLCV. The raw data have been deposited in the Gene Expression Omnibus (GEO) database under accession number GSE41131.

  13. Microarray analyses for identifying genes conferring resistance to pepper leaf curl virus in chilli pepper (Capsicum spp.).

    PubMed

    Rai, Ved Prakash; Rai, Ashutosh; Kumar, Rajesh; Kumar, Sanjay; Kumar, Sanjeet; Singh, Major; Singh, Sheo Pratap

    2016-09-01

    Pepper leaf curl virus (PepLCV) is a serious threat to pepper (Capsicum spp.) production worldwide. Molecular mechanism underlying pepper plants response to PepLCV infection is key to develop PepLCV resistant varieties. In this study, we generated transcriptome profiles of PepLCV resistant genotype (BS-35) and susceptible genotype (IVPBC-535) after artificial viral inoculation using microarray technology and detail experimental procedures and analyses are described. A total of 319 genes differentially expressed between resistant and susceptible genotypes were identified, out of that 234 unique genes were found to be up-regulated > 2-fold in resistant line BS-35 when compared to susceptible, IVPBC-535. The data set we generated has been analyzed to identify genes that are involved in the regulation of resistance against PepLCV. The raw data have been deposited in the Gene Expression Omnibus (GEO) database under accession number GSE41131. PMID:27556012

  14. Bud Dormancy and Growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nearly all land plants produce ancillary meristems in the form of axillary or adventitious buds in addition to the shoot apical meristem. Outgrowth of these buds has a significant impact on plant architecture and the ability of plants to compete with neighboring plants, as well as to respond to and ...

  15. EARLY BUD-BREAK 1 (EBB1) is a regulator of release from seasonal dormancy in poplar trees.

    PubMed

    Yordanov, Yordan S; Ma, Cathleen; Strauss, Steven H; Busov, Victor B

    2014-07-01

    Trees from temperate latitudes transition between growth and dormancy to survive dehydration and freezing stress during winter months. We used activation tagging to isolate a dominant mutation affecting release from dormancy and identified the corresponding gene EARLY BUD-BREAK 1 (EBB1). We demonstrate through positioning of the tag, expression analysis, and retransformation experiments that EBB1 encodes a putative APETALA2/Ethylene responsive factor transcription factor. Transgenic up-regulation of the gene caused early bud-flush, whereas down-regulation delayed bud-break. Native EBB1 expression was highest in actively growing apices, undetectable during the dormancy period, but rapidly increased before bud-break. The EBB1 transcript was localized in the L1/L2 layers of the shoot meristem and leaf primordia. EBB1-overexpressing transgenic plants displayed enlarged shoot meristems, open and poorly differentiated buds, and a higher rate of cell division in the apex. Transcriptome analyses of the EBB1 transgenics identified 971 differentially expressed genes whose expression correlated with the EBB1 expression changes in the transgenic plants. Promoter analysis among the differentially expressed genes for the presence of a canonical EBB1-binding site identified 65 putative target genes, indicative of a broad regulatory context of EBB1 function. Our results suggest that EBB1 has a major and integrative role in reactivation of meristem activity after winter dormancy.

  16. Supercooling in Overwintering Azalea Flower Buds 1

    PubMed Central

    George, Milon F.; Burke, Michael J.; Weiser, Conrad J.

    1974-01-01

    Differential thermal analysis and nuclear magnetic resonance spectroscopy experiments on whole flower buds and excised floral primordia of azalea (Rhododendron kosterianum, Schneid.) proved that supercooling is the mode of freezing resistance (avoidance) of azalea flower primordia. Increase in the linewidth of nuclear magnetic resonance spectra for water upon thawing supports the view that injury to the primordia occurs at the moment of freezing. Nonliving primordia freeze at the same temperatures as living primordia, indicating that morphological features of primordial tissues are a key factor in freezing avoidance of dormant azalea flower primordia. Differential thermal analyses was used to study the relationship of cooling rate to the freezing points of floral primordia in whole flower buds. At a cooling rate of 8.5 C per hour, primordia in whole buds froze at about the same subfreezing temperatures as did excised primordia cooled at 37 C per hour. At more rapid cooling rates primordia in intact buds froze at higher temperatures. PMID:16658832

  17. Tropical Storm Bud

    Atmospheric Science Data Center

    2013-04-19

    article title:  A Strengthening Eastern Pacific Storm     View Larger Image ... Imaging SpectroRadiometer (MISR) show then Tropical Storm Bud as it was intensifying toward hurricane status, which it acquired ...

  18. Use of RAPD analyses to estimate population genetic parameters in the alfalfa leaf-cutting bee, Megachile rotundata.

    PubMed

    Lu, R; Rank, G H

    1996-08-01

    RAPD analyses were performed on five geographically isolated populations of Megachile rotundata. We used haploid males of the alfalfa leaf-cutting bee, M. rotundata, to overcome the limitation of the dominance of RAPD markers in the determination of population genetic parameters. Sixteen primers gave rise to 130 polymorphic and 31 monomorphic bands. The unbiased estimators calculated in this study include within- and between-population heterozygosity, nucleotide divergence, and genetic distance. The genetic diversity (H = 0.32-0.35) was found to be about 10 times that of previous estimates (H = 0.033) based on allozyme data. Contrary to the data obtained at the protein level, our results suggest that Hymenoptera do not have a lower level of genetic variability at the DNA level compared with other insect species. Regardless of the different assumptions underlying the calculation of heterozygosity, divergence, and genetic distance, all five populations showed a parallel interrelationship for the three parameters. We conclude that RAPD markers are a convenient tool to estimate population genetic variation in haploid M. rotundata and that with an adequate sample size the technique is applicable to the evaluation of divergence in diploid populations. Key words : Megachile rotundata, RAPD, heterozygosity, genetic distance, nucleotide divergence. PMID:18469925

  19. Influences of polar auxin transport on polarity of adventitious bud formation in hybrid populas

    SciTech Connect

    Kim, Myung Won ); Hackett, W. )

    1989-04-01

    The role of auxin and cytokinin distribution of polar regeneration of adventitious bud has been investigated. Explants from leaf midvein were labelled with {sup 14}C-NAA and {sup 14}C-BA and the radioactivity in proximal, mid, and distal portions was counted after 24h and 48h. Explants showing polar regeneration of buds on the proximal end showed a clear polar distribution of {sup 14}CNAA. Auxin transport inhibitors (NPA, TIBA) eliminated polar distribution of auxin and reduced polarity of bud formation and the total number of buds formed, but did not reduce callus formation. Increased concentration of Ca(NO{sub 3}){sub 2} decreased polarity of bud formation and increased the number of buds formed but did not affect the distribution of auxin of cytokinin. Some factor in addition to polar distribution of auxin or cytokinin-auxin ratio appears to influence the polarity of adventitious bud formation.

  20. Dental cell sheet biomimetic tooth bud model.

    PubMed

    Monteiro, Nelson; Smith, Elizabeth E; Angstadt, Shantel; Zhang, Weibo; Khademhosseini, Ali; Yelick, Pamela C

    2016-11-01

    Tissue engineering and regenerative medicine technologies offer promising therapies for both medicine and dentistry. Our long-term goal is to create functional biomimetic tooth buds for eventual tooth replacement in humans. Here, our objective was to create a biomimetic 3D tooth bud model consisting of dental epithelial (DE) - dental mesenchymal (DM) cell sheets (CSs) combined with biomimetic enamel organ and pulp organ layers created using GelMA hydrogels. Pig DE or DM cells seeded on temperature-responsive plates at various cell densities (0.02, 0.114 and 0.228 cells 10(6)/cm(2)) and cultured for 7, 14 and 21 days were used to generate DE and DM cell sheets, respectively. Dental CSs were combined with GelMA encapsulated DE and DM cell layers to form bioengineered 3D tooth buds. Biomimetic 3D tooth bud constructs were cultured in vitro, or implanted in vivo for 3 weeks. Analyses were performed using micro-CT, H&E staining, polarized light (Pol) microscopy, immunofluorescent (IF) and immunohistochemical (IHC) analyses. H&E, IHC and IF analyses showed that in vitro cultured multilayered DE-DM CSs expressed appropriate tooth marker expression patterns including SHH, BMP2, RUNX2, tenascin and syndecan, which normally direct DE-DM interactions, DM cell condensation, and dental cell differentiation. In vivo implanted 3D tooth bud constructs exhibited mineralized tissue formation of specified size and shape, and SHH, BMP2 and RUNX2and dental cell differentiation marker expression. We propose our biomimetic 3D tooth buds as models to study optimized DE-DM cell interactions leading to functional biomimetic replacement tooth formation.

  1. Dental cell sheet biomimetic tooth bud model.

    PubMed

    Monteiro, Nelson; Smith, Elizabeth E; Angstadt, Shantel; Zhang, Weibo; Khademhosseini, Ali; Yelick, Pamela C

    2016-11-01

    Tissue engineering and regenerative medicine technologies offer promising therapies for both medicine and dentistry. Our long-term goal is to create functional biomimetic tooth buds for eventual tooth replacement in humans. Here, our objective was to create a biomimetic 3D tooth bud model consisting of dental epithelial (DE) - dental mesenchymal (DM) cell sheets (CSs) combined with biomimetic enamel organ and pulp organ layers created using GelMA hydrogels. Pig DE or DM cells seeded on temperature-responsive plates at various cell densities (0.02, 0.114 and 0.228 cells 10(6)/cm(2)) and cultured for 7, 14 and 21 days were used to generate DE and DM cell sheets, respectively. Dental CSs were combined with GelMA encapsulated DE and DM cell layers to form bioengineered 3D tooth buds. Biomimetic 3D tooth bud constructs were cultured in vitro, or implanted in vivo for 3 weeks. Analyses were performed using micro-CT, H&E staining, polarized light (Pol) microscopy, immunofluorescent (IF) and immunohistochemical (IHC) analyses. H&E, IHC and IF analyses showed that in vitro cultured multilayered DE-DM CSs expressed appropriate tooth marker expression patterns including SHH, BMP2, RUNX2, tenascin and syndecan, which normally direct DE-DM interactions, DM cell condensation, and dental cell differentiation. In vivo implanted 3D tooth bud constructs exhibited mineralized tissue formation of specified size and shape, and SHH, BMP2 and RUNX2and dental cell differentiation marker expression. We propose our biomimetic 3D tooth buds as models to study optimized DE-DM cell interactions leading to functional biomimetic replacement tooth formation. PMID:27565550

  2. "Bud, Not Buddy."

    ERIC Educational Resources Information Center

    Brodie, Carolyn S.

    2002-01-01

    Discusses the award-winning book "Bud, Not Buddy" written by Christopher Paul Curtis. Lists different versions of the book; suggests learning activities; lists sources for biographical information and interviews with Curtis, teacher guides, professional articles, and other Depression era novels; and provides a citation for the author's Newberry…

  3. Berkeley UXO Discriminator (BUD)

    SciTech Connect

    Gasperikova, Erika; Smith, J. Torquil; Morrison, H. Frank; Becker, Alex

    2007-01-01

    The Berkeley UXO Discriminator (BUD) is an optimally designed active electromagnetic system that not only detects but also characterizes UXO. The system incorporates three orthogonal transmitters and eight pairs of differenced receivers. it has two modes of operation: (1) search mode, in which BUD moves along a profile and exclusively detects targets in its vicinity, providing target depth and horizontal location, and (2) discrimination mode, in which BUD, stationary above a target, from a single position, determines three discriminating polarizability responses together with the object location and orientation. The performance of the system is governed by a target size-depth curve. Maximum detection depth is 1.5 m. While UXO objects have a single major polarizability coincident with the long axis of the object and two equal transverse polarizabilities, scrap metal has three different principal polarizabilities. The results clearly show that there are very clear distinctions between symmetric intact UXO and irregular scrap metal, and that BUD can resolve the intrinsic polarizabilities of the target. The field survey at the Yuma Proving Ground in Arizona showed excellent results within the predicted size-depth range.

  4. The mode of origin of root buds and root sprouts in the clonal tree Sassafras albidum (Lauraceae).

    PubMed

    Bosela, M; Ewers, F

    1997-11-01

    The developmental anatomy of root buds and root sprouts was examined in the clonal tree Sassafras albidum. Root samples from 13 clones that varied widely in age and vigor were sectioned and two types of buds were found, "additional" buds and "reparative" buds. Additional buds form during the early growth of uninjured roots and they perennate by growing outwards in concert with the vascular cambium such that bud traces are produced in the secondary xylem. Reparative buds form de novo in response to senescence, injuries, or other types of disturbance. Reparative buds were found on the roots of seven of the clones, whereas additional buds were found on the roots of all 13 clones. The reparative buds had originated in the proliferated pericycle, where they were subtended by sphaeroblasts, or spherical nodules of wood. Few of the reparative buds were vascularized and none were connected with the vasculature of their parent roots. In contrast, most of the additional buds were vascularized, and the leaf traces of several of the additional buds appeared to be contiguous with the conducting xylem of their parent roots. To determine whether both bud types were functional, 82 field-collected root sprouts and 44 incubation-induced sprouts were sectioned at the root-sprout junction and examined for evidence relating to their mode of origin. None of the sprouts were subtended by sphaeroblasts, but 98% were subtended by bud traces, which indicated that they had originated from additional buds. Although reparative buds were more common than additional buds on some of the root samples, they appear to be dysfunctional at sprouting. Additional buds, on the other hand, are able to sprout both as a normal part of clonal spread and from root cuttings.

  5. Leaf waxes, compound-specific D/H and 14C analyses in the Loess Paleosol Sequence Möhlin, Switzerland

    NASA Astrophysics Data System (ADS)

    Wüthrich, Lorenz; Bliedtner, Marcel; Kathrin Schäfer, Imke; Zech, Jana; Gaar, Dorian; Preusser, Frank; Zech, Roland

    2016-04-01

    Leaf waxes, such as long-chain n-alkanes and n-alkanoic acids, and their D/H isotopic composition, are increasingly used for paleoenvironmental and -climate reconstructions. Recent technological innovations now also allow to perform radiocarbon analyses on leaf waxes. For this study, we analyzed leaf waxes and their δD and 14C composition in the 7 m Loess Paleosol Sequence Möhlin, Switzerland. The chain length patterns in the upper part of the profile indicate n-alkane contribution from deciduous trees, while the underlying loess is dominated by inputs from grasses and herbs. Our δD record does not show depleted, glacial values compared to the Holocene, as we had expected in analogy to the Greenland ice core records. Values are most enriched at 1 m depth, i.e. well below the topsoil. Further research is needed to disentangle source effects and evapotranspirative enrichment, before the δD record can be interpreted robustly. Our radiocarbon ages for the leaf waxes are in very good agreement with independent age control based on luminescence ages, corroborating that massive loess accumulation occurred already at 35 ka. Only the uppermost 3 m were deposited during the last glacial maximum.

  6. Leaf waxes and compound-specific δD analyses in a Holocene fluvial sediment-paleosol sequence from the upper Alazani River, SE-Georgia

    NASA Astrophysics Data System (ADS)

    Bliedtner, Marcel; von Suchodoletz, Hans; Schäfer, Imke; Zech, Jana; Zielhofer, Christoph; Zech, Roland

    2016-04-01

    Leaf waxes of terrestrial plants are relatively resistant against degradation and serve as valuable biomarkers preserved in various sedimentary archives. Compound-specific D/H analyses on leaf waxes are increasingly used to reconstruct past climate and environmental conditions. Here, we present a n-alkane and compound-specific δD record from a Holocene fluvial sediment-paleosol sequence along the upper Alazani River in eastern Georgia. Generally, such records from fluvial sedimentary archives must be divided into a catchment signal recorded in the fluvial sediment layers and a local in-situ signal recorded in the intercalated paleosols. The n-alkane homologue pattern shows a clear catchment versus in-situ signal. The paleosols are dominated by n-alkanes derived from the local vegetation, mainly grasses throughout the Holocene. The fluvial sediment layers contain leaf waxes derived from the forested catchment, although with relatively high contributions from grasses between 8 and 5 ka, possibly indicating more arid conditions. Because of the well-known altitude-effect on the isotopic composition of precipitation, we had expected more depleted δD values for the fluvial sediment layers, i.e. the catchment-derived samples, and more enriched δD values for the paleosols, i.e. the low altitude, in-situ signal. This is, however, not the case, and we speculate that the altitude effect might be offset by evapo-transpirative enrichment of tree leaf water and leaf waxes. The catchment and in-situ δD records both show a minor trend to more enriched values during the Holocene, while the recent topsoil is most depleted. Interpretation of these isotope records is not straight-forward and requires disentangling the effects of changing vegetation, source signal and local climate.

  7. Seasonality and phenology alter functional leaf traits.

    PubMed

    McKown, Athena D; Guy, Robert D; Azam, M Shofiul; Drewes, Eric C; Quamme, Linda K

    2013-07-01

    In plant ecophysiology, functional leaf traits are generally not assessed in relation to phenological phase of the canopy. Leaf traits measured in deciduous perennial species are known to vary between spring and summer seasons, but there is a knowledge gap relating to the late-summer phase marked by growth cessation and bud set occurring well before fall leaf senescence. The effects of phenology on canopy physiology were tested using a common garden of over 2,000 black cottonwood (Populus trichocarpa) individuals originating from a wide geographical range (44-60ºN). Annual phenological events and 12 leaf-based functional trait measurements were collected spanning the entire summer season prior to, and following, bud set. Patterns of seasonal trait change emerged by synchronizing trees using their date of bud set. In particular, photosynthetic, mass, and N-based traits increased substantially following bud set. Most traits were significantly different between pre-bud set and post-bud set phase trees, with many traits showing at least 25% alteration in mean value. Post-bud set, both the significance and direction of trait-trait relationships could be modified, with many relating directly to changes in leaf mass. In Populus, these dynamics in leaf traits throughout the summer season reflected a shift in whole plant physiology, but occurred long before the onset of leaf senescence. The marked shifts in measured trait values following bud set underscores the necessity to include phenology in trait-based ecological studies or large-scale phenotyping efforts, both at the local level and larger geographical scale.

  8. Differential expression analyses of host genes involved in systemic infection of Tomato leaf curl New Delhi virus (ToLCNDV).

    PubMed

    Naqvi, Afsar Raza; Sarwat, Maryam; Pradhan, Bhubaneswar; Choudhury, Nirupam Roy; Haq, Qazi Mohd Rizwanul; Mukherjee, Sunil Kumar

    2011-09-01

    Tomato leaf curl viruses (ToLCV) infect tomato plants and eventually cause several phenotypic defects, notably in the leaves in the form of upward curling. The entry of virus triggers plants' basal defense responses which eventually introduce temporal changes in the transcriptome to evade the pathogen attack. In this study, we have identified about 20 tomato ESTs using subtractive hybridization that were induced in tomato leaves upon agro-infection with the constructs bearing the dimers of Tomato leaf curl New Delhi virus (ToLCNDV) DNA-A and DNA-B components. The induced ESTs belonged to the class of genes that play crucial roles in innate immunity, plants metabolism and ethylene signaling. The expression of few of these ESTs was validated by northern blot analysis and two out of six selected genes expressed exclusively in the infected leaf tissues. Besides leaves, the expression status of selected genes was checked in a wide variety of tissues (flower, fruit, stem and root) of both healthy and infected plants by RT-PCR. These results suggest that the flower and fruit tissues, similar to leaves, exhibited induction of most of the genes while the stem and root tissues suffered from down-regulation. Overall, these results indicate that the hosts' transcriptome undergoes considerable changes in response to viral infection. PMID:21600246

  9. Histological and Molecular Characterization of Grape Early Ripening Bud Mutant.

    PubMed

    Guo, Da-Long; Yu, Yi-He; Xi, Fei-Fei; Shi, Yan-Yan; Zhang, Guo-Hai

    2016-01-01

    An early ripening bud mutant was analyzed based on the histological, SSR, and methylation-sensitive amplified polymorphism (MSAP) analysis and a layer-specific approach was used to investigate the differentiation between the bud mutant and its parent. The results showed that the thickness of leaf spongy tissue of mutant (MT) is larger than that of wild type (WT) and the differences are significant. The mean size of cell layer L2 was increased in the mutant and the difference is significant. The genetic background of bud mutant revealed by SSR analysis is highly uniform to its parent; just the variations from VVS2 SSR marker were detected in MT. The total methylation ratio of MT is lower than that of the corresponding WT. The outside methylation ratio in MT is much less than that in WT; the average inner methylation ratio in MT is larger than that in WT. The early ripening bud mutant has certain proportion demethylation in cell layer L2. All the results suggested that cell layer L2 of the early ripening bud mutant has changed from the WT. This study provided the basis for a better understanding of the characteristic features of the early ripening bud mutant in grape. PMID:27610363

  10. Histological and Molecular Characterization of Grape Early Ripening Bud Mutant

    PubMed Central

    Yu, Yi-He; Xi, Fei-Fei; Shi, Yan-Yan; Zhang, Guo-Hai

    2016-01-01

    An early ripening bud mutant was analyzed based on the histological, SSR, and methylation-sensitive amplified polymorphism (MSAP) analysis and a layer-specific approach was used to investigate the differentiation between the bud mutant and its parent. The results showed that the thickness of leaf spongy tissue of mutant (MT) is larger than that of wild type (WT) and the differences are significant. The mean size of cell layer L2 was increased in the mutant and the difference is significant. The genetic background of bud mutant revealed by SSR analysis is highly uniform to its parent; just the variations from VVS2 SSR marker were detected in MT. The total methylation ratio of MT is lower than that of the corresponding WT. The outside methylation ratio in MT is much less than that in WT; the average inner methylation ratio in MT is larger than that in WT. The early ripening bud mutant has certain proportion demethylation in cell layer L2. All the results suggested that cell layer L2 of the early ripening bud mutant has changed from the WT. This study provided the basis for a better understanding of the characteristic features of the early ripening bud mutant in grape.

  11. Histological and Molecular Characterization of Grape Early Ripening Bud Mutant

    PubMed Central

    Yu, Yi-He; Xi, Fei-Fei; Shi, Yan-Yan; Zhang, Guo-Hai

    2016-01-01

    An early ripening bud mutant was analyzed based on the histological, SSR, and methylation-sensitive amplified polymorphism (MSAP) analysis and a layer-specific approach was used to investigate the differentiation between the bud mutant and its parent. The results showed that the thickness of leaf spongy tissue of mutant (MT) is larger than that of wild type (WT) and the differences are significant. The mean size of cell layer L2 was increased in the mutant and the difference is significant. The genetic background of bud mutant revealed by SSR analysis is highly uniform to its parent; just the variations from VVS2 SSR marker were detected in MT. The total methylation ratio of MT is lower than that of the corresponding WT. The outside methylation ratio in MT is much less than that in WT; the average inner methylation ratio in MT is larger than that in WT. The early ripening bud mutant has certain proportion demethylation in cell layer L2. All the results suggested that cell layer L2 of the early ripening bud mutant has changed from the WT. This study provided the basis for a better understanding of the characteristic features of the early ripening bud mutant in grape. PMID:27610363

  12. Tumor budding correlates with poor prognosis and epithelial-mesenchymal transition in tongue squamous cell carcinoma

    PubMed Central

    Wang, Cheng; Huang, Hongzhang; Huang, Zhiquan; Wang, Anxun; Chen, Xiaohua; Huang, Lei; Zhou, Xiaofeng; Liu, Xiqiang

    2011-01-01

    BACKGROUND Tumor budding is a readily detectable histopathological feature and has been recognized as an adverse prognostic factor in several human cancers. However, the prognostic value of tumor budding in tongue squamous cell carcinoma (TSCC) has not been reported. The purpose of this study is to assess the correlation of tumor budding with the clinicopathologic features, and the known molecular biomarkers (E-cadherin and Vimentin), as well as to evaluate its prognostic significance for TSCC. METHODS Archival clinical samples of 230 patients with TSCC were examined for tumor budding. Immunohistochemistry analyses were performed to examine the expression of E-cadherin and Vimentin. Statistical analyses were carried out to assess the correlation of tumor budding with clinicopathologic parameters and patient survival. The potential association between tumor budding and alterations of E-cadherin and Vimentin expression was also assessed. RESULTS Of the 230 TSCC cases examined, tumor budding was observed in 165 cases (71.7%), with a mean tumor bud count of 7.5 (range from 1 to 48 buds). High-intensity budding (≥ 5 tumor buds) was observed in 111 cases (48.3%). Statistical analysis revealed that tumor budding was associated with tumor size (P<0.05), differentiation (P<0.05), clinical stage (P<0.05), lymph node metastasis (P<0.01), and correlated with reduced overall survival. In addition, significant associations were observed among tumor budding and the deregulation of E-cadherin (P<0.001) and Vimentin (P<0.001). CONCLUSIONS Tumor budding, which associates with epithelial-mesenchymal transition, is a frequent event and appears to be an independent prognostic factor in TSCC. PMID:21481005

  13. Phenological synchrony between Scaphoideus titanus (Hemiptera: Cicadellidae) hatchings and grapevine bud break: could this explain the insect's expansion?

    PubMed

    Chuche, J; Desvignes, E; Bonnard, O; Thiéry, D

    2015-02-01

    Scaphoideus titanus is the invasive vector of the phytoplasma causing the Flavescence dorée in European vineyards. This epidemic is a serious threat to viticulture that has been increasing for more than 60 years in Europe. We studied the effect of synchrony with the plant phenology and the effect of plant-sap quality on the individual fitness. Thus, we conducted laboratory experiments to determine if insect hatchings were synchronized with grapevine bud break. We used two natural populations: one from a cold winter vineyard and one from a mild winter vineyard. In both cases, egg hatching was synchronized with bud break and leaf appearance. The phloem quality of the young and old leaves as a food source was analysed by high-performance liquid chromatography, and the effects on S. titanus growth were evaluated. Phloem composition varied with the grapevine cutting's age but also varied between leaves of different ages from the same plant. The older leaves were less nutritious because they had the highest carbon-to-nitrogen ratio and the lowest content of essential amino acids. Despite diverse phloem qualities, no fitness difference was observed. We found that the synchronization of egg hatchings with bud break is well regulated. However, the nymphs are not affected by the phloem-sap quality, suggesting that S. titanus may accept different food qualities and that egg hatching synchrony could contribute to population expansion in vineyards.

  14. Seasonal and inter-annual variability of bud development as related to climate in two coexisting Mediterranean Quercus species

    PubMed Central

    Alla, Arben Q.; Camarero, J. Julio; Montserrat-Martí, Gabriel

    2013-01-01

    Background and Aims In trees, bud development is driven by endogenous and exogenous factors such as species and climate, respectively. However, knowledge is scarce on how these factors drive changes in bud size across different time scales. Methods The seasonal patterns of apical bud enlargement are related to primary and secondary growth in two coexisting Mediterranean oaks with contrasting leaf habit (Quercus ilex, evergreen; Quercus faginea, deciduous) over three years. In addition, the climatic factors driving changes in bud size of the two oak species were determined by correlating bud mass with climatic variables at different time scales (from 5 to 30 d) over a 15-year period. Key Results The maximum enlargement rate of buds was reached between late July and mid-August in both species. Moreover, apical bud size increased with minimum air temperatures during the period of maximum bud enlargement rates. Conclusions The forecasted rising minimum air temperatures predicted by climatic models may affect bud size and consequently alter crown architecture differentially in sympatric Mediterranean oaks. However, the involvement of several drivers controlling the final size of buds makes it difficult to predict the changes in bud size as related to ongoing climate warming. PMID:23179859

  15. The Barley Uniculme4 Gene Encodes a BLADE-ON-PETIOLE-Like Protein That Controls Tillering and Leaf Patterning1[OPEN

    PubMed Central

    Tavakol, Elahe; Okagaki, Ron; Verderio, Gabriele; Shariati J., Vahid; Hussien, Ahmed; Bilgic, Hatice; Scanlon, Mike J.; Todt, Natalie R.; Close, Timothy J.; Druka, Arnis; Waugh, Robbie; Steuernagel, Burkhard; Ariyadasa, Ruvini; Himmelbach, Axel; Stein, Nils; Muehlbauer, Gary J.

    2015-01-01

    Tillers are vegetative branches that develop from axillary buds located in the leaf axils at the base of many grasses. Genetic manipulation of tillering is a major objective in breeding for improved cereal yields and competition with weeds. Despite this, very little is known about the molecular genetic bases of tiller development in important Triticeae crops such as barley (Hordeum vulgare) and wheat (Triticum aestivum). Recessive mutations at the barley Uniculme4 (Cul4) locus cause reduced tillering, deregulation of the number of axillary buds in an axil, and alterations in leaf proximal-distal patterning. We isolated the Cul4 gene by positional cloning and showed that it encodes a BROAD-COMPLEX, TRAMTRACK, BRIC-À-BRAC-ankyrin protein closely related to Arabidopsis (Arabidopsis thaliana) BLADE-ON-PETIOLE1 (BOP1) and BOP2. Morphological, histological, and in situ RNA expression analyses indicate that Cul4 acts at axil and leaf boundary regions to control axillary bud differentiation as well as the development of the ligule, which separates the distal blade and proximal sheath of the leaf. As, to our knowledge, the first functionally characterized BOP gene in monocots, Cul4 suggests the partial conservation of BOP gene function between dicots and monocots, while phylogenetic analyses highlight distinct evolutionary patterns in the two lineages. PMID:25818702

  16. Spectral and HRTEM analyses of Annona muricata leaf extract mediated silver nanoparticles and its Larvicidal efficacy against three mosquito vectors Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti.

    PubMed

    Santhosh, Shanthi Bhupathi; Ragavendran, Chinnasamy; Natarajan, Devarajan

    2015-12-01

    Mosquitoes transmit various diseases which mainly affect the human beings and every year cause millions of deaths globally. Currently available chemical and synthetic mosquitocidal agents pose severe side effects, pollute the environment vigorously, and become resistance. There is an urgent need to identify and develop the cost effective, compatible and eco-friendly product for mosquito control. The present study was aimed to find out the larvicidal potential of aqueous crude extract and green synthesized silver nanoparticles (AgNPs) from Annona muricata leaves were tested against fourth instar larvae of three important mosquitoes i.e. Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti using different concentrations of AgNPs (10, 20, 30, 40 and 50 ppm) and the aqueous leaf extract (100, 200, 300, 400, and 500 ppm) for 24 and 48 h. The maximum mortality was noticed in AgNPs than aqueous leaf extract of A. muricata against tested mosquitoes with least LC50 values of 37.70, 31.29, and 20.65 ppm (24h) and 546.7, 516.2, and 618.4 ppm (48 h), respectively. All tested concentrations of AgNps exhibited 100% mortality in A. aegypti larvae at 48 hour observation. In addition, the plant mediated AgNPs were characterized by UV-vis spectrum, Fourier transform infrared spectroscopy, particle size analyser, X-ray diffraction, high resonance transmission electron microscopy, and energy-dispersive X-ray spectroscopy analysis for confirmation of nanoparticle synthesis. Based on the findings of the study suggests that the use of A. muricata plant mediated AgNPs can act as an alternate insecticidal agents for controlling target mosquitoes.

  17. Spectral and HRTEM analyses of Annona muricata leaf extract mediated silver nanoparticles and its Larvicidal efficacy against three mosquito vectors Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti.

    PubMed

    Santhosh, Shanthi Bhupathi; Ragavendran, Chinnasamy; Natarajan, Devarajan

    2015-12-01

    Mosquitoes transmit various diseases which mainly affect the human beings and every year cause millions of deaths globally. Currently available chemical and synthetic mosquitocidal agents pose severe side effects, pollute the environment vigorously, and become resistance. There is an urgent need to identify and develop the cost effective, compatible and eco-friendly product for mosquito control. The present study was aimed to find out the larvicidal potential of aqueous crude extract and green synthesized silver nanoparticles (AgNPs) from Annona muricata leaves were tested against fourth instar larvae of three important mosquitoes i.e. Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti using different concentrations of AgNPs (10, 20, 30, 40 and 50 ppm) and the aqueous leaf extract (100, 200, 300, 400, and 500 ppm) for 24 and 48 h. The maximum mortality was noticed in AgNPs than aqueous leaf extract of A. muricata against tested mosquitoes with least LC50 values of 37.70, 31.29, and 20.65 ppm (24h) and 546.7, 516.2, and 618.4 ppm (48 h), respectively. All tested concentrations of AgNps exhibited 100% mortality in A. aegypti larvae at 48 hour observation. In addition, the plant mediated AgNPs were characterized by UV-vis spectrum, Fourier transform infrared spectroscopy, particle size analyser, X-ray diffraction, high resonance transmission electron microscopy, and energy-dispersive X-ray spectroscopy analysis for confirmation of nanoparticle synthesis. Based on the findings of the study suggests that the use of A. muricata plant mediated AgNPs can act as an alternate insecticidal agents for controlling target mosquitoes. PMID:26410042

  18. The anillin-related region of Bud4 is the major functional determinant for Bud4's function in septin organization during bud growth and axial bud site selection in budding yeast.

    PubMed

    Wu, Huan; Guo, Jia; Zhou, Ya-Ting; Gao, Xiang-Dong

    2015-03-01

    The anillin-related protein Bud4 of Saccharomyces cerevisiae is required for axial bud site selection by linking the axial landmark to the septins, which localize at the mother bud neck. Recent studies indicate that Bud4 plays a role in septin organization during cytokinesis. Here we show that Bud4 is also involved in septin organization during bud growth prior to cytokinesis, as bud4Δ shs1Δ cells displayed an elongated bud morphology and defective septin organization at 18°C. Bud4 overexpression also affected septin organization during bud growth in shs1Δ cells at 30°C. Bud4 was previously thought to associate with the septins via its central region, while the C-terminal anillin-related region was not involved in septin association. Surprisingly, we found that the central region of Bud4 alone targets to the bud neck throughout the cell cycle, unlike full-length Bud4, which localizes to the bud neck only during G2/M phase. We identified the anillin-related region to be a second targeting domain that cooperates with the central region for proper septin association. In addition, the anillin-related region could largely mediate Bud4's function in septin organization during bud growth and bud site selection. We show that this region interacts with the C terminus of Bud3 and the two segments depend on each other for association with the septins. Moreover, like the bud4Δ mutant, the bud3Δ mutant genetically interacts with shs1Δ and cdc12-6 mutants in septin organization, suggesting that Bud4 and Bud3 may cooperate in septin organization during bud growth. These observations provide new insights into the interaction of Bud4 with the septins and Bud3.

  19. Project BudBurst: People, Plants, and Climate Change

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Ward, D.; Havens, K.; Gardiner, L. S.; Alaback, P.

    2010-12-01

    Providing opportunities for individuals to contribute to a better understanding of climate change is the hallmark of Project BudBurst (www.budburst.org). This highly successful, national citizen science program, now in its third year, is bringing climate change education outreach to thousands of individuals. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants; and 3) increase science literacy by engaging participants in the scientific process. From its 2008 launch in February, this on-line educational and data-entry program, engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of wild and cultivated species found across the continent. Thus far, thousands of participants from all 50 states have submitted data. Project BudBurst has been the subject of almost 200 media outlets including NPR, national and regional television broadcasts, and most of the major national and regional newspapers. This presentation will provide an overview of Project BudBurst and will report on the results of the 2009 field campaign and discuss plans to expand Project BudBurst in 2010 including the use of mobile phones applications for data collection and reporting from the field. Project BudBurst co managed by the National Ecological Observatory Network and

  20. Foamy Virus Budding and Release

    PubMed Central

    Hütter, Sylvia; Zurnic, Irena; Lindemann, Dirk

    2013-01-01

    Like all other viruses, a successful egress of functional particles from infected cells is a prerequisite for foamy virus (FV) spread within the host. The budding process of FVs involves steps, which are shared by other retroviruses, such as interaction of the capsid protein with components of cellular vacuolar protein sorting (Vps) machinery via late domains identified in some FV capsid proteins. Additionally, there are features of the FV budding strategy quite unique to the spumaretroviruses. This includes secretion of non-infectious subviral particles and a strict dependence on capsid-glycoprotein interaction for release of infectious virions from the cells. Virus-like particle release is not possible since FV capsid proteins lack a membrane-targeting signal. It is noteworthy that in experimental systems, the important capsid-glycoprotein interaction could be bypassed by fusing heterologous membrane-targeting signals to the capsid protein, thus enabling glycoprotein-independent egress. Aside from that, other systems have been developed to enable envelopment of FV capsids by heterologous Env proteins. In this review article, we will summarize the current knowledge on FV budding, the viral components and their domains involved as well as alternative and artificial ways to promote budding of FV particle structures, a feature important for alteration of target tissue tropism of FV-based gene transfer systems. PMID:23575110

  1. Bud-Neck Scaffolding as a Possible Driving Force in ESCRT-Induced Membrane Budding

    PubMed Central

    Mercker, Moritz; Marciniak-Czochra, Anna

    2015-01-01

    Membrane budding is essential for processes such as protein sorting and transport. Recent experimental results with ESCRT proteins reveal a novel budding mechanism, with proteins emerging in bud necks but separated from the entire bud surface. Using an elastic model, we show that ESCRT protein shapes are sufficient to spontaneously create experimentally observed structures, with protein-membrane interactions leading to protein scaffolds in bud-neck regions. Furthermore, the model reproduces experimentally observed budding directions and bud sizes. Finally, our results reveal that membrane-mediated sorting has the capability of creating structures more complicated than previously assumed. PMID:25692588

  2. Project BudBurst: Citizen Science for All Seasons

    NASA Astrophysics Data System (ADS)

    Meymaris, K.; Henderson, S.; Alaback, P.; Havens, K.

    2008-12-01

    Providing opportunities for individuals to contribute to a better understanding of climate change is the hallmark of Project BudBurst (www.budburst.org). This highly successful, national citizen science program, now in its second year, is bringing climate change education outreach to thousands of individuals. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants; and 3) increase science literacy by engaging participants in the scientific process. From its 2008 launch in February, this on-line educational and data-entry program, engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of wild and cultivated species found across the continent. Thus far, participants from 49 states have submitted data that is being submitted to the USA National Phenology Network (www.usanpn.org) database. Project BudBurst has been the subject of almost 200 media outlets including NPR, national and regional television broadcasts, and most of the major national and regional newspapers. This presentation will provide an overview of Project Budburst and will report on the results of the 2008 field campaign and discuss plans to expand Project BudBurst in 2009. Project BudBurst is a Windows to the Universe Citizen Science program managed by the University

  3. Comparative Analyses of Tomato yellow leaf curl virus C4 Protein-Interacting Host Proteins in Healthy and Infected Tomato Tissues

    PubMed Central

    Kim, Namgyu; Kim, Jinnyun; Bang, Bongjun; Kim, Inyoung; Lee, Hyun-Hee; Park, Jungwook; Seo, Young-Su

    2016-01-01

    Tomato yellow leaf curl virus (TYLCV), a member of the genus Begomovirus, is one of the most important viruses of cultivated tomatoes worldwide, mainly causing yellowing and curling of leaves with stunting in plants. TYLCV causes severe problems in sub-tropical and tropical countries, as well as in Korea. However, the mechanism of TYLCV infection remains unclear, although the function of each viral component has been identified. TYLCV C4 codes for a small protein involved in various cellular functions, including symptom determination, gene silencing, viral movement, and induction of the plant defense response. In this study, through yeast-two hybrid screenings, we identified TYLCV C4-interacting host proteins from both healthy and symptom-exhibiting tomato tissues, to determine the role of TYLCV C4 proteins in the infection processes. Comparative analyses of 28 proteins from healthy tissues and 36 from infected tissues showing interactions with TYLCV C4 indicated that TYLCV C4 mainly interacts with host proteins involved in translation, ubiquitination, and plant defense, and most interacting proteins differed between the two tissues but belong to similar molecular functional categories. Four proteins—two ribosomal proteins, S-adenosyl-L-homocysteine hydrolase, and 14-3-3 family protein—were detected in both tissues. Furthermore, the identified proteins in symptom-exhibiting tissues showed greater involvement in plant defenses. Some are key regulators, such as receptor-like kinases and pathogenesis-related proteins, of plant defenses. Thus, TYLCV C4 may contribute to the suppression of host defense during TYLCV infection and be involved in ubiquitination for viral infection. PMID:27721687

  4. Project BudBurst: Continental-scale citizen science for all seasons

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Newman, S. J.; Ward, D.; Havens-Young, K.; Alaback, P.; Meymaris, K.

    2011-12-01

    Project BudBurst's (budburst.org) recent move to the National Ecological Observatory Network (NEON) has benefitted both programs. NEON has been able to use Project BudBurst as a testbed to learn best practices, network with experts in the field, and prototype potential tools for engaging people in continental-scale ecology as NEON develops its citizen science program. Participation in Project BudBurst has grown significantly since the move to NEON. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants at a continental-scale; and 3) increase science literacy by engaging participants in the scientific process. From its 2008 launch in February, this on-line educational and data-entry program, engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of wild and cultivated species found across the continent. Thus far, thousands of participants from all 50 states have submitted data. This presentation will provide an overview of Project BudBurst and will report on the results of the 2010 field campaign and discuss plans to expand Project BudBurst in 2012 including the use of mobile phones applications for data collection and reporting from the field. Project BudBurst is co-managed by the National Ecological Observatory Network and the Chicago

  5. [Compensation effect of cotton growth and development after soil salt content reduction at bud stage].

    PubMed

    Guo, Wen-Qi; Zhang, Pei-Tong; Li, Chun-Hong; Yin, Jian-Mei; Han, Xiao-Yong

    2014-01-01

    To elucidate the dynamic characteristics of cotton growth and development after soil salt content reduction (SD) at bud stage and its effect on yield formation, a pot experiment was conducted in which soil salt content was declined from 5 per thousand level to 2 per thousand level at cotton bud stage. The results showed that the plant height, biomass, total fruit branch and fruit node number, boll number, boll mass of cotton plants increased after soil salt content reduction at bud stage. The distribution proportions of biomass in root and boll decreased after soil salt content reduction, however, the distribution proportions of biomass in leaf, main stem and fruit branch were on the rise. The growth rate of cotton plant increased after soil salt content reduction. Plant dry matter accumulation rate of SD cotton exceeded CK cotton at 22 days after soil salt content reduction. The response of different organs of cotton plant were different to soil salt content reduction, the plant height was the earliest, followed by the fruit branch and fruit node formation, and the bud and boll were the latest, which indicated that the compensation effect of cotton growth and development after soil salt content reduction at bud stage firstly appeared on the formation and growth of new leaf, fruit branch and fruit node, and on this basis, gradually brought out yield compensation.

  6. Tropical Storms Bud and Dera

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Like dancers pirouetting in opposite directions, the rotational patterns of two different tropical storms are contrasted in this pair of Multi-angle Imaging Spectroradiometer (MISR) nadir-camera images. The left-hand image is of Tropical Storm Bud, acquired on June 17, 2000 (Terra orbit 2656) as the storm was dissipating. Bud was situated in the eastern Pacific Ocean between Socorro Island and the southern tip of Baja California. South of the storm's center is a vortex pattern caused by obstruction of the prevailing flow by tiny Socorro Island. Sonora, Mexico and Baja California are visible at the top of the image. The right-hand image is of Tropical Cyclone Dera, acquired on March 12, 2001. Dera was located in the Indian Ocean, south of Madagascar. The southern end of this large island is visible in the top portion of this image. Northern hemisphere tropical storms, like Bud, rotate in a counterclockwise direction, whereas those in the southern hemisphere, such as Dera, rotate clockwise. The opposite spins are a consequence of Earth's rotation. Each image covers a swath approximately 380 kilometers wide. Image courtesy NASA/JPL/GSFC/LaRC, MISR Team

  7. Tropical Storms Bud and Dera

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Like dancers pirouetting in opposite directions, the rotational patterns of two different tropical storms are contrasted in this pair of MISR nadir-camera images.

    The left-hand image is of Tropical Storm Bud, acquired on June 17, 2000 (Terra orbit 2656) as the storm was dissipating. Bud was situated in the eastern Pacific Ocean between Socorro Island and the southern tip of Baja California. South of the storm's center is a vortex pattern caused by obstruction of the prevailing flow by tiny Socorro Island. Sonora, Mexico and Baja California are visible at the top of the image.

    The right-hand image is of Tropical Cyclone Dera, acquired on March 12, 2001 (Terra orbit 6552). Dera was located in the Indian Ocean, south of Madagascar. The southern end of this large island is visible in the top portion of this image.

    Northern hemisphere tropical storms, like Bud, rotate in a counterclockwise direction, whereas those in the southern hemisphere, such as Dera, rotate clockwise. The opposite spins are a consequence of Earth's rotation.

    Each image covers a swath approximately 380 kilometers wide.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  8. Coevolutionary patterning of teeth and taste buds

    PubMed Central

    Bloomquist, Ryan F.; Parnell, Nicholas F.; Phillips, Kristine A.; Fowler, Teresa E.; Yu, Tian Y.; Sharpe, Paul T.; Streelman, J. Todd

    2015-01-01

    Teeth and taste buds are iteratively patterned structures that line the oro-pharynx of vertebrates. Biologists do not fully understand how teeth and taste buds develop from undifferentiated epithelium or how variation in organ density is regulated. These organs are typically studied independently because of their separate anatomical location in mammals: teeth on the jaw margin and taste buds on the tongue. However, in many aquatic animals like bony fishes, teeth and taste buds are colocalized one next to the other. Using genetic mapping in cichlid fishes, we identified shared loci controlling a positive correlation between tooth and taste bud densities. Genome intervals contained candidate genes expressed in tooth and taste bud fields. sfrp5 and bmper, notable for roles in Wingless (Wnt) and bone morphogenetic protein (BMP) signaling, were differentially expressed across cichlid species with divergent tooth and taste bud density, and were expressed in the development of both organs in mice. Synexpression analysis and chemical manipulation of Wnt, BMP, and Hedgehog (Hh) pathways suggest that a common cichlid oral lamina is competent to form teeth or taste buds. Wnt signaling couples tooth and taste bud density and BMP and Hh mediate distinct organ identity. Synthesizing data from fish and mouse, we suggest that the Wnt-BMP-Hh regulatory hierarchy that configures teeth and taste buds on mammalian jaws and tongues may be an evolutionary remnant inherited from ancestors wherein these organs were copatterned from common epithelium. PMID:26483492

  9. Coevolutionary patterning of teeth and taste buds.

    PubMed

    Bloomquist, Ryan F; Parnell, Nicholas F; Phillips, Kristine A; Fowler, Teresa E; Yu, Tian Y; Sharpe, Paul T; Streelman, J Todd

    2015-11-01

    Teeth and taste buds are iteratively patterned structures that line the oro-pharynx of vertebrates. Biologists do not fully understand how teeth and taste buds develop from undifferentiated epithelium or how variation in organ density is regulated. These organs are typically studied independently because of their separate anatomical location in mammals: teeth on the jaw margin and taste buds on the tongue. However, in many aquatic animals like bony fishes, teeth and taste buds are colocalized one next to the other. Using genetic mapping in cichlid fishes, we identified shared loci controlling a positive correlation between tooth and taste bud densities. Genome intervals contained candidate genes expressed in tooth and taste bud fields. sfrp5 and bmper, notable for roles in Wingless (Wnt) and bone morphogenetic protein (BMP) signaling, were differentially expressed across cichlid species with divergent tooth and taste bud density, and were expressed in the development of both organs in mice. Synexpression analysis and chemical manipulation of Wnt, BMP, and Hedgehog (Hh) pathways suggest that a common cichlid oral lamina is competent to form teeth or taste buds. Wnt signaling couples tooth and taste bud density and BMP and Hh mediate distinct organ identity. Synthesizing data from fish and mouse, we suggest that the Wnt-BMP-Hh regulatory hierarchy that configures teeth and taste buds on mammalian jaws and tongues may be an evolutionary remnant inherited from ancestors wherein these organs were copatterned from common epithelium.

  10. Cotton buds, momentum, and impulse

    NASA Astrophysics Data System (ADS)

    van den Berg, Ed; Nuñez, Jover; Guirit, Alfredo; van Huis, Cor

    2000-01-01

    Here is a simple experiment demonstrating impulse and momentum that was picked up from a Japanese presenter at a physics teacher conference held in Cebu City. We have not been able to trace the experiment farther and have never seen it in print. After student-author Nuñez demonstrated it during an exam on conducting demonstrations, we converted the qualitative idea into a quanitative experiment and even discovered some possibilities for student research. The lab is also suitable as homework, since it uses universally available "equipment" — cotton buds (swabs), drinking straws, and a ruler.

  11. Whole-Transcriptome Analysis of Differentially Expressed Genes in the Vegetative Buds, Floral Buds and Buds of Chrysanthemum morifolium

    PubMed Central

    Liu, Hua; Sun, Ming; Du, Dongliang; Pan, Huitang; Cheng, Tangren; Wang, Jia; Zhang, Qixiang

    2015-01-01

    Background Chrysanthemum morifolium is an important floral crop that is cultivated worldwide. However, due to a lack of genomic resources, very little information is available concerning the molecular mechanisms of flower development in chrysanthemum. Results The transcriptomes of chrysanthemum vegetative buds, floral buds and buds were sequenced using Illumina paired-end sequencing technology. A total of 15.4 Gb of reads were assembled into 91,367 unigenes with an average length of 739 bp. A total of 43,137 unigenes showed similarity to known proteins in the Swissprot or NCBI non-redundant protein databases. Additionally, 25,424, 24,321 and 13,704 unigenes were assigned to 56 gene ontology (GO) categories, 25 EuKaryotic Orthologous Groups (KOG) categories, and 285 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively. A total of 1,876 differentially expressed genes (DEGs) (1,516 up-regulated, 360 down-regulated) were identified between vegetative buds and floral buds, and 3,300 DEGs (1,277 up-regulated, 1,706 down-regulated) were identified between floral buds and buds. Many genes encoding important transcription factors (e.g., AP2, MYB, MYC, WRKY, NAC and CRT) as well as proteins involved in carbohydrate metabolism, protein kinase activity, plant hormone signal transduction, and the defense responses, among others, were considerably up-regulated in floral buds. Genes involved in the photoperiod pathway and flower organ determination were also identified. These genes represent important candidate genes for molecular cloning and functional analysis to study flowering regulation in chrysanthemum. Conclusion This comparative transcriptome analysis revealed significant differences in gene expression and signaling pathway components between the vegetative buds, floral buds and buds of Chrysanthemum morifolium. A wide range of genes was implicated in regulating the phase transition from vegetative to reproductive growth. These results should aid

  12. [Impact of TDZ and NAA on adventitious bud induction and cluster bud multiplication in Tulipa edulis].

    PubMed

    Zhu, Li-Fang; Xu, Chao; Zhu, Zai-Biao; Yang, He-Tong; Guo, Qiao-Sheng; Xu, Hong-jian; Ma, Hong-Jian; Zhao, Gui-Hua

    2014-08-01

    To explore the method of explants directly induced bud and establish the tissue culture system of mutiple shoot by means of direct organogenesis, core bud and daughter bulbs (the top of bud stem expanded to form daughter bulb) of T. edulis were used as explants and treated with thidiazuron (TDZ) and 1-naphthlcetic acid (NAA). The results showed that the optimal medium for bud inducted form core bud and daughter bulb were MS + TDZ 2.0 mg x L(-1) + NAA 4.0 mg x L(-1) and MS +TDZ 2.0 mg x L(-1) + NAA 2.0 mg x L(-1) respectively, both of them had a bud induction rate of 72.92%, 79.22%. The optimal medium for cluster buds multiplication was MS + TDZ 0.2 mg x L(-1) + NAA 0.2 mg x L(-1), and proliferation coefficient was 2.23. After proliferation, cluster buds rooting occurred on MS medium with IBA 1.0 mg x L(-1) and the rooting rate was 52.6%, three to five seedlings in each plant. Using core bud and daughter bulb of T. edulis, the optimum medium for adventitious bud directly inducted from daughter bulb, core bud and cluster bud multiplication were screened out and the tissue culture system of multiple shoot by means of direct organogenesis was established. PMID:25509282

  13. [Impact of TDZ and NAA on adventitious bud induction and cluster bud multiplication in Tulipa edulis].

    PubMed

    Zhu, Li-Fang; Xu, Chao; Zhu, Zai-Biao; Yang, He-Tong; Guo, Qiao-Sheng; Xu, Hong-jian; Ma, Hong-Jian; Zhao, Gui-Hua

    2014-08-01

    To explore the method of explants directly induced bud and establish the tissue culture system of mutiple shoot by means of direct organogenesis, core bud and daughter bulbs (the top of bud stem expanded to form daughter bulb) of T. edulis were used as explants and treated with thidiazuron (TDZ) and 1-naphthlcetic acid (NAA). The results showed that the optimal medium for bud inducted form core bud and daughter bulb were MS + TDZ 2.0 mg x L(-1) + NAA 4.0 mg x L(-1) and MS +TDZ 2.0 mg x L(-1) + NAA 2.0 mg x L(-1) respectively, both of them had a bud induction rate of 72.92%, 79.22%. The optimal medium for cluster buds multiplication was MS + TDZ 0.2 mg x L(-1) + NAA 0.2 mg x L(-1), and proliferation coefficient was 2.23. After proliferation, cluster buds rooting occurred on MS medium with IBA 1.0 mg x L(-1) and the rooting rate was 52.6%, three to five seedlings in each plant. Using core bud and daughter bulb of T. edulis, the optimum medium for adventitious bud directly inducted from daughter bulb, core bud and cluster bud multiplication were screened out and the tissue culture system of multiple shoot by means of direct organogenesis was established.

  14. Tracing QTLs for Leaf Blast Resistance and Agronomic Performance of Finger Millet (Eleusine coracana (L.) Gaertn.) Genotypes through Association Mapping and in silico Comparative Genomics Analyses

    PubMed Central

    Ramakrishnan, M.; Antony Ceasar, S.; Duraipandiyan, V.; Vinod, K. K.; Kalpana, Krishnan; Al-Dhabi, N. A.; Ignacimuthu, S.

    2016-01-01

    Finger millet is one of the small millets with high nutritive value. This crop is vulnerable to blast disease caused by Pyricularia grisea, which occurs annually during rainy and winter seasons. Leaf blast occurs at early crop stage and is highly damaging. Mapping of resistance genes and other quantitative trait loci (QTLs) for agronomic performance can be of great use for improving finger millet genotypes. Evaluation of one hundred and twenty-eight finger millet genotypes in natural field conditions revealed that leaf blast caused severe setback on agronomic performance for susceptible genotypes, most significant traits being plant height and root length. Plant height was reduced under disease severity while root length was increased. Among the genotypes, IE4795 showed superior response in terms of both disease resistance and better agronomic performance. A total of seven unambiguous QTLs were found to be associated with various agronomic traits including leaf blast resistance by association mapping analysis. The markers, UGEP101 and UGEP95, were strongly associated with blast resistance. UGEP98 was associated with tiller number and UGEP9 was associated with root length and seed yield. Cross species validation of markers revealed that 12 candidate genes were associated with 8 QTLs in the genomes of grass species such as rice, foxtail millet, maize, Brachypodium stacei, B. distachyon, Panicum hallii and switchgrass. Several candidate genes were found proximal to orthologous sequences of the identified QTLs such as 1,4-β-glucanase for leaf blast resistance, cytokinin dehydrogenase (CKX) for tiller production, calmodulin (CaM) binding protein for seed yield and pectin methylesterase inhibitor (PMEI) for root growth and development. Most of these QTLs and their putatively associated candidate genes are reported for first time in finger millet. On validation, these novel QTLs may be utilized in future for marker assisted breeding for the development of fungal

  15. Tracing QTLs for Leaf Blast Resistance and Agronomic Performance of Finger Millet (Eleusine coracana (L.) Gaertn.) Genotypes through Association Mapping and in silico Comparative Genomics Analyses.

    PubMed

    Ramakrishnan, M; Antony Ceasar, S; Duraipandiyan, V; Vinod, K K; Kalpana, Krishnan; Al-Dhabi, N A; Ignacimuthu, S

    2016-01-01

    Finger millet is one of the small millets with high nutritive value. This crop is vulnerable to blast disease caused by Pyricularia grisea, which occurs annually during rainy and winter seasons. Leaf blast occurs at early crop stage and is highly damaging. Mapping of resistance genes and other quantitative trait loci (QTLs) for agronomic performance can be of great use for improving finger millet genotypes. Evaluation of one hundred and twenty-eight finger millet genotypes in natural field conditions revealed that leaf blast caused severe setback on agronomic performance for susceptible genotypes, most significant traits being plant height and root length. Plant height was reduced under disease severity while root length was increased. Among the genotypes, IE4795 showed superior response in terms of both disease resistance and better agronomic performance. A total of seven unambiguous QTLs were found to be associated with various agronomic traits including leaf blast resistance by association mapping analysis. The markers, UGEP101 and UGEP95, were strongly associated with blast resistance. UGEP98 was associated with tiller number and UGEP9 was associated with root length and seed yield. Cross species validation of markers revealed that 12 candidate genes were associated with 8 QTLs in the genomes of grass species such as rice, foxtail millet, maize, Brachypodium stacei, B. distachyon, Panicum hallii and switchgrass. Several candidate genes were found proximal to orthologous sequences of the identified QTLs such as 1,4-β-glucanase for leaf blast resistance, cytokinin dehydrogenase (CKX) for tiller production, calmodulin (CaM) binding protein for seed yield and pectin methylesterase inhibitor (PMEI) for root growth and development. Most of these QTLs and their putatively associated candidate genes are reported for first time in finger millet. On validation, these novel QTLs may be utilized in future for marker assisted breeding for the development of fungal

  16. Transcriptome Profiling of Tiller Buds Provides New Insights into PhyB Regulation of Tillering and Indeterminate Growth in Sorghum.

    PubMed

    Kebrom, Tesfamichael H; Mullet, John E

    2016-04-01

    Phytochrome B (phyB) enables plants to modify shoot branching or tillering in response to varying light intensities and ratios of red and far-red light caused by shading and neighbor proximity. Tillering is inhibited in sorghum genotypes that lack phytochrome B (58M, phyB-1) until after floral initiation. The growth of tiller buds in the first leaf axil of wild-type (100M, PHYB) and phyB-1 sorghum genotypes is similar until 6 d after planting when buds of phyB-1 arrest growth, while wild-type buds continue growing and develop into tillers. Transcriptome analysis at this early stage of bud development identified numerous genes that were up to 50-fold differentially expressed in wild-type/phyB-1 buds. Up-regulation of terminal flower1, GA2oxidase, and TPPI could protect axillary meristems in phyB-1 from precocious floral induction and decrease bud sensitivity to sugar signals. After bud growth arrest in phyB-1, expression of dormancy-associated genes such as DRM1, GT1, AF1, and CKX1 increased and ENOD93, ACCoxidase, ARR3/6/9, CGA1, and SHY2 decreased. Continued bud outgrowth in wild-type was correlated with increased expression of genes encoding a SWEET transporter and cell wall invertases. The SWEET transporter may facilitate Suc unloading from the phloem to the apoplast where cell wall invertases generate monosaccharides for uptake and utilization to sustain bud outgrowth. Elevated expression of these genes was correlated with higher levels of cytokinin/sugar signaling in growing buds of wild-type plants. PMID:26893475

  17. Embryonic origin of amphibian taste buds.

    PubMed

    Barlow, L A; Northcutt, R G

    1995-05-01

    Despite numerous descriptive studies, the embryonic origin of vertebrate taste buds has never been experimentally determined. A number of different alternatives have been suggested for taste bud origins, including epibranchial placodes, the neural crest, and the local epithelium of the oropharyngeal cavity. The role of a series of epibranchial placodes and the cephalic neural crest, which together give rise to the cranial nerves innervating taste buds, was examined with regard to the development of oropharyngeal taste buds in an ambystomatid salamander, the axolotl. When pigmented placodal ectoderm or neural folds were grafted isotopically and isochronically into nonpigmented host embryos, known derivatives of each tissue contained pigmented cells, but labeled taste buds were never encountered. Thus, neither epibranchial placodes nor neural crest contribute cells to taste buds during embryogenesis. The majority of the oropharyngeal cavity of ambystomatid salamanders is lined by an endodermal epithelium. In order to demonstrate conclusively that taste buds arise from this local epithelium, the presumptive cephalic endoderm of early axolotl gastrulae was microinjected with the lipophilic dye, DiI. In the oropharyngeal epithelium of all larvae examined, both taste buds and general epithelial cells were labeled with DiI, indicating their common endodermal origin. Our findings are novel in that this is the first experimental demonstration of the endodermal origin of a vertebrate sensory receptor cell class. PMID:7750643

  18. Fruit load modulates flowering-related gene expression in buds of alternate-bearing ‘Moncada’ mandarin

    PubMed Central

    Muñoz-Fambuena, Natalia; Mesejo, Carlos; González-Mas, M. Carmen; Primo-Millo, Eduardo; Agustí, Manuel; Iglesias, Domingo J.

    2012-01-01

    Background and Aims Gene determination of flowering is the result of complex interactions involving both promoters and inhibitors. In this study, the expression of flowering-related genes at the meristem level in alternate-bearing citrus trees is analysed, together with the interplay between buds and leaves in the determination of flowering. Methods First defruiting experiments were performed to manipulate blossoming intensity in ‘Moncada’ mandarin, Citrus clementina. Further defoliation was performed to elucidate the role leaves play in the flowering process. In both cases, the activity of flowering-related genes was investigated at the flower induction (November) and differentiation (February) stages. Key Results Study of the expression pattern of flowering-genes in buds from on (fully loaded) and off (without fruits) trees revealed that homologues of FLOWERING LOCUS T (CiFT), TWIN SISTER OF FT (TSF), APETALA1 (CsAP1) and LEAFY (CsLFY) were negatively affected by fruit load. CiFT and TSF activities showed a marked increase in buds from off trees through the study period (ten-fold in November). By contrast, expression of the homologues of the flowering inhibitors of TERMINAL FLOWER 1 (CsTFL), TERMINAL FLOWER 2 (TFL2) and FLOWERING LOCUS C (FLC) was generally lower in off trees. Regarding floral identity genes, the increase in CsAP1 expression in off trees was much greater in buds than in leaves, and significant variations in CsLFY expression (approx. 20 %) were found only in February. Defoliation experiments further revealed that the absence of leaves completely abolished blossoming and severely affected the expression of most of the flowering-related genes, particularly decreasing the activity of floral promoters and of CsAP1 at the induction stage. Conclusions These results suggest that the presence of fruit affects flowering by greatly altering gene-expression not only at the leaf but also at the meristem level. Although leaves are required for flowering to

  19. PSII photochemistry in vegetative buds and needles of Norway spruce (Picea abies L. Karst.) probed by OJIP chlorophyll a fluorescence measurement.

    PubMed

    Katanić, Zorana; Atić, Lejla; Ferhatović, Dž; Cesar, Vera; Lepeduš, H

    2012-06-01

    Vegetative buds represent developmental stage of Norway spruce (Picea abies L. Karst.) needles where chloroplast biogenesis and photosynthetic activity begin. We used the analyses of polyphasic chlorophyll a fluorescence rise (OJIP) to compare photosystem II (PSII) functioning in vegetative buds and fully photosynthetically active mature current-year needles. Considerably decreased performance index (PIABS) in vegetative buds compared to needles pointed to their low photosynthetic efficiency. Maximum quantum yield of PSII (Fv/Fm) in buds was slightly decreased but above limited value for functionality indicating that primary photochemistry of PSII is not holdback of vegetative buds photosynthetic activity. The most significant difference observed between investigated developmental stages was accumulation of reduced primary quinine acceptor of PSII (QA-) in vegetative buds, as a result of its limited re-oxidation by passing electrons to secondary quinone acceptor, QB. We suggest that reduced electron transfer from QA- to QB could be the major limiting factor of photosynthesis in vegetative buds.

  20. Non-structural carbohydrate status in Norway spruce buds in the context of annual bud structural development as affected by acidic pollution.

    PubMed

    Svobodová; Lipavská; Albrechtová

    2000-06-01

    The present study focused on changes in the annual dynamics of the contents of non-structural saccharides (NSS) of Norway spruce vegetative buds related to their structural development under the effect of acidic pollution during the year 1995. Two types of material were analysed: (1) 4-year-old trees treated for 2 years by simulated acid rain (SAR; pH 2.9 and 3.9), and (2) 40-60-year-old trees growing in natural mountain stands exhibiting different degrees of macroscopic damage. Our study revealed that the dynamics of the NSS content reflected the major morphogenetic and developmental changes occurring during the annual bud developmental cycle. No systematic changes in the annual dynamics of NSS content were observed in buds from both mountain sites, or as a consequence of the SAR. The total sugar content of bud tissues was composed of a combination of five main sugar components: sucrose, glucose, fructose, raffinose family oligosaccharides (RFO; combination of raffinose and stachyose), and a pinitol fraction (PF) probably of cyclitols with pinitol as a main member. The dynamics of individual sugar components also reflected possible carbohydrate mediated bud frost protection. Interesting results were obtained from buds in dormant state. In dormant buds of the SAR experiment the higher value of the ratio PF:RFO of the pinitol fraction and raffinose family oligosaccharides followed the higher dose of SAR treatment. When evaluating the ratio from both types of material we assumed that changes in PF:RFO ratio corresponded to early stages of damage or acute metabolic reaction. Thus, we suggest the ratio PF:RFO as a possible non-specific metabolic marker of early bud stress reaction which is, among other stress factors, sensitive to increasing load of acidic pollutants.

  1. Chances and pitfalls of leaf wax biomarker analyses applied to fluvial sediment sequences - the example of a Holocene fluvial sediment-paleosol sequence from the upper Alazani River, eastern Georgia

    NASA Astrophysics Data System (ADS)

    von Suchodoletz, Hans; Bliedtner, Marcel; Zielhofer, Christoph; Faust, Dominik; Zech, Roland

    2016-04-01

    During the last decades, fluvial sediment sequences in many regions have intensively been studied to reconstruct Late Quaternary palaeoenvironmental and palaeohydrological conditions. However, up to now analyses of leaf wax biomarkers that are increasingly used to reconstruct paleoenvironmental and -climate conditions e.g. from lake sediments or loess-paleosol sequences were not systematically applied to Late Quaternary fluvial sediments. Given the ubiquitous distribution of fluvial sediment sequences on the earth's surface such investigations could potentially strongly enhance the knowledge about former environmental conditions in many regions. For this conceptual study we exemplarily analysed leaf wax biomarker (long-chain n-alkanes, n-alkanoic acids) in a fluvial sediment palaeosol sequence from the upper Alazani River in eastern Georgia to discuss general possibilities and pitfalls: Generally, biomarker records from fluvial archives can be divided into i) a catchment signal recorded in the fluvial sediment layers and ii) a local in-situ signal recorded in the intercalated paleosols. This offers the great chance to reconstruct paleoenvironmental conditions in both the whole catchment and at the sampling site. However, potential pitfalls are, for example, that inherited catchment signals can bias the in-situ signal from paleosols, while intermediate sediment storage in the catchment prior to sediment deposition and postsedimentary processes may alter the original catchment signal in the fluvial sediment layers. Thus, when applying leaf wax biomarker analyses to fluvial sediment sequences one has to be careful: The interpretation of the biomarker record strongly depends on the specific geomorphological and sedimentological conditions of the investigated site and of the catchment area.

  2. Making continental-scale environmental programs relevant locally for educators with Project BudBurst

    NASA Astrophysics Data System (ADS)

    Goehring, L.; Henderson, S.; Wasser, L.; Newman, S. J.; Ward, D.

    2012-12-01

    Project BudBurst is a national citizen science initiative designed to engage non professionals in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide excellent opportunities for educators and their students to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) increase awareness of the impacts of changing climates on plants at a continental-scale; and 3) increase science literacy by engaging participants in the scientific process. From its 2008 launch, this on-line program has engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of wild and cultivated species found across the continent, and in contemplating the meaning of such data in their local environments. Thus far, thousands of participants from all 50 states have submitted data. This presentation will provide an overview of Project BudBurst educational resources and share lessons learned from educators in implementing the program in formal and informal education settings. Lesson plans and tips from educators will be highlighted. Project BudBurst is co-managed by the National Ecological Observatory Network and the Chicago Botanic Garden.

  3. Acetylated H4 histone and genomic DNA methylation patterns during bud set and bud burst in Castanea sativa.

    PubMed

    Santamaría, Ma Estrella; Hasbún, Rodrigo; Valera, Ma José; Meijón, Mónica; Valledor, Luis; Rodríguez, Jose L; Toorop, Peter E; Cañal, Ma Jesús; Rodríguez, Roberto

    2009-09-01

    The relationships between genomic DNA cytosine methylation, histone H4 acetylation and bud dormancy in Castanea sativa are described. Acetylated H4 histone and genomic DNA methylation patterns showed opposite abundance patterns during bud set and bud burst. Increased and decreased methylation levels in the apical buds coincided with bud set and bud burst, respectively. Intermediate axillary buds were characterized by constant levels of DNA methylation during burst of apical buds and reduced fluctuation in DNA methylation throughout the year, which coincided with the absence of macro-morphological changes. Furthermore, acetylated histone H4 (AcH4) levels from apical buds were higher during bud burst than during bud set, as was demonstrated by immunodetection. Results were validated with three additional C. sativa provenances. Thus, global DNA methylation and AcH4 levels showed opposite patterns and coincided with changes in bud dormancy in C. sativa.

  4. Genomic analyses of cherry rusty mottle group and cherry twisted leaf-associated viruses reveal a possible new genus within the family betaflexiviridae.

    PubMed

    Villamor, D E V; Susaimuthu, J; Eastwell, K C

    2015-03-01

    It is demonstrated that closely related viruses within the family Betaflexiviridae are associated with a number of diseases that affect sweet cherry (Prunus avium) and other Prunus spp. Cherry rusty mottle-associated virus (CRMaV) is correlated with the appearance of cherry rusty mottle disease (CRMD), and Cherry twisted leaf-associated virus (CTLaV) is linked to cherry twisted leaf disease (CTLD) and apricot ringpox disease (ARPD). Comprehensive analysis of previously reported full genomic sequences plus those determined in this study representing isolates of CTLaV, CRMaV, Cherry green ring mottle virus, and Cherry necrotic rusty mottle virus revealed segregation of sequences into four clades corresponding to distinct virus species. High-throughput sequencing of RNA from representative source trees for CRMD, CTLD, and ARPD did not reveal additional unique virus sequences that might be associated with these diseases, thereby further substantiating the association of CRMaV and CTLaV with CRMD and CTLD or ARPD, respectively. Based on comparison of the nucleotide and amino acid sequence identity values, phylogenetic relationships with other triple-gene block-coding viruses within the family Betaflexiviridae, genome organization, and natural host range, a new genus (Robigovirus) is suggested. PMID:25496302

  5. Mitochondrial network size scaling in budding yeast.

    PubMed

    Rafelski, Susanne M; Viana, Matheus P; Zhang, Yi; Chan, Yee-Hung M; Thorn, Kurt S; Yam, Phoebe; Fung, Jennifer C; Li, Hao; Costa, Luciano da F; Marshall, Wallace F

    2012-11-01

    Mitochondria must grow with the growing cell to ensure proper cellular physiology and inheritance upon division. We measured the physical size of mitochondrial networks in budding yeast and found that mitochondrial network size increased with increasing cell size and that this scaling relation occurred primarily in the bud. The mitochondria-to-cell size ratio continually decreased in aging mothers over successive generations. However, regardless of the mother's age or mitochondrial content, all buds attained the same average ratio. Thus, yeast populations achieve a stable scaling relation between mitochondrial content and cell size despite asymmetry in inheritance.

  6. The Inside-Out Mechanism of Dicers from Budding Yeasts

    SciTech Connect

    Weinberg, David E.; Nakanishi, Kotaro; Patel, Dinshaw J.; Bartel, David P.

    2011-09-20

    The Dicer ribonuclease III (RNase III) enzymes process long double-stranded RNA (dsRNA) into small interfering RNAs (siRNAs) that direct RNA interference. Here, we describe the structure and activity of a catalytically active fragment of Kluyveromyces polysporus Dcr1, which represents the noncanonical Dicers found in budding yeasts. The crystal structure revealed a homodimer resembling that of bacterial RNase III but extended by a unique N-terminal domain, and it identified additional catalytic residues conserved throughout eukaryotic RNase III enzymes. Biochemical analyses showed that Dcr1 dimers bind cooperatively along the dsRNA substrate such that the distance between consecutive active sites determines the length of the siRNA products. Thus, unlike canonical Dicers, which successively remove siRNA duplexes from the dsRNA termini, budding-yeast Dicers initiate processing in the interior and work outward. The distinct mechanism of budding-yeast Dicers establishes a paradigm for natural molecular rulers and imparts substrate preferences with ramifications for biological function.

  7. The Inside-Out Mechanism of Dicers from Budding Yeasts

    SciTech Connect

    D Weinberg; K Nakanishi; D Patel; D Bartel

    2011-12-31

    The Dicer ribonuclease III (RNase III) enzymes process long double-stranded RNA (dsRNA) into small interfering RNAs (siRNAs) that direct RNA interference. Here, we describe the structure and activity of a catalytically active fragment of Kluyveromyces polysporus Dcr1, which represents the noncanonical Dicers found in budding yeasts. The crystal structure revealed a homodimer resembling that of bacterial RNase III but extended by a unique N-terminal domain, and it identified additional catalytic residues conserved throughout eukaryotic RNase III enzymes. Biochemical analyses showed that Dcr1 dimers bind cooperatively along the dsRNA substrate such that the distance between consecutive active sites determines the length of the siRNA products. Thus, unlike canonical Dicers, which successively remove siRNA duplexes from the dsRNA termini, budding-yeast Dicers initiate processing in the interior and work outward. The distinct mechanism of budding-yeast Dicers establishes a paradigm for natural molecular rulers and imparts substrate preferences with ramifications for biological function.

  8. The dormant buds of Rhabdopleura compacta (Hemichordata).

    PubMed

    Dilly, P N

    1975-06-13

    Rhabdopleura has an overwintering stage that consists of two layers of cells surrounding a central yolk mass. This cellular part is surrounded by a thick electron dense capsule which is secreted by the bud itself. The capsule is probably impervious and protective to its contents. Blood vessels join the buds to the zooids of the colony. They form the probable route of transfer of yolk from the zooids to the dormant bud. The capsule of the dormant bud has some structural features in common with the black stolon of the adult zooids. The black stolon is probably formed in a manner similar to that which made the fusellar fabric of the periderm of fossil graptolities. PMID:1149105

  9. The dormant buds of Rhabdopleura compacta (Hemichordata).

    PubMed

    Dilly, P N

    1975-06-13

    Rhabdopleura has an overwintering stage that consists of two layers of cells surrounding a central yolk mass. This cellular part is surrounded by a thick electron dense capsule which is secreted by the bud itself. The capsule is probably impervious and protective to its contents. Blood vessels join the buds to the zooids of the colony. They form the probable route of transfer of yolk from the zooids to the dormant bud. The capsule of the dormant bud has some structural features in common with the black stolon of the adult zooids. The black stolon is probably formed in a manner similar to that which made the fusellar fabric of the periderm of fossil graptolities.

  10. Leaf Activities.

    ERIC Educational Resources Information Center

    Mingie, Walter

    Leaf activities can provide a means of using basic concepts of outdoor education to learn in elementary level subject areas. Equipment needed includes leaves, a clipboard with paper, and a pencil. A bag of leaves may be brought into the classroom if weather conditions or time do not permit going outdoors. Each student should pick a leaf, examine…

  11. Taste Bud Labeling in Whole Tongue Epithelial Sheet in Adult Mice.

    PubMed

    Venkatesan, Nandakumar; Boggs, Kristin; Liu, Hong-Xiang

    2016-04-01

    Molecular labeling in whole-mount tissues provides an efficient way to obtain general information about the formation, maintenance, degeneration, and regeneration of many organs and tissues. However, labeling of lingual taste buds in whole tongue tissues in adult mice has been problematic because of the strong permeability barrier of the tongue epithelium. In this study, we present a simple method for labeling taste buds in the intact tongue epithelial sheet of an adult mouse. Following intralingual protease injection and incubation, immediate fixation of the tongue on mandible in 4% paraformaldehyde enabled the in situ shape of the tongue epithelium to be well maintained after peeling. The peeled epithelium was accessible to taste bud labeling with a pan-taste cell marker, keratin 8, and a type II taste cell marker, α-gustducin, in all three types of taste papillae, that is, fungiform, foliate, and circumvallate. Overnight incubation of tongue epithelial sheets with primary and secondary antibodies was sufficient for intense labeling of taste buds with both fluorescent and DAB visualizations. Labeled individual taste buds were easy to identify and quantify. This protocol provides an efficient way for phenotypic analyses of taste buds, especially regarding distribution pattern and number. PMID:26701416

  12. Structural Characterization of Ginsenosides from Flower Buds of Panax ginseng by RRLC-Q-TOF MS.

    PubMed

    Wu, Wei; Lu, Ziyan; Teng, Yaran; Guo, Yingying; Liu, Shuying

    2016-02-01

    Ginseng flower bud as a part of Panax ginseng has received much attention as a valuable functional food with medicinal potential. A few studies focused on systematic and comprehensive studies on its major ingredients. This study aims to rapidly characterize ginsenosides in ginseng flower buds and provide scientific basis for developing functional food, exploiting pharmaceutical effects and making full use of ginseng resources. A rapid resolution liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (RRLC-Q-TOF-MS) method was developed for rapid qualitative and quantitative analysis of ginsenosides in ginseng flower buds. The compounds were identified by comparing retention time of the reference standards, accurate mass measurement and the fragment ions obtained from RRLC-Q-TOF-MS/MS analyses. A total of 14 kinds of ginsenosides were identified and 5 kinds of malonyl-ginsenosides were first tentatively identified in ginseng flower buds. Ten kinds of main ginsenosides were quantitatively analyzed. The developed RRLC-Q-TOF-MS method was demonstrated as an effective analytical means for rapid characterization of the ginsenosides in flower buds of P. ginseng. The research result is valuable for quality control, assessment of authenticity and stability evaluation of ginseng flower buds.

  13. Structural Characterization of Ginsenosides from Flower Buds of Panax ginseng by RRLC-Q-TOF MS.

    PubMed

    Wu, Wei; Lu, Ziyan; Teng, Yaran; Guo, Yingying; Liu, Shuying

    2016-02-01

    Ginseng flower bud as a part of Panax ginseng has received much attention as a valuable functional food with medicinal potential. A few studies focused on systematic and comprehensive studies on its major ingredients. This study aims to rapidly characterize ginsenosides in ginseng flower buds and provide scientific basis for developing functional food, exploiting pharmaceutical effects and making full use of ginseng resources. A rapid resolution liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (RRLC-Q-TOF-MS) method was developed for rapid qualitative and quantitative analysis of ginsenosides in ginseng flower buds. The compounds were identified by comparing retention time of the reference standards, accurate mass measurement and the fragment ions obtained from RRLC-Q-TOF-MS/MS analyses. A total of 14 kinds of ginsenosides were identified and 5 kinds of malonyl-ginsenosides were first tentatively identified in ginseng flower buds. Ten kinds of main ginsenosides were quantitatively analyzed. The developed RRLC-Q-TOF-MS method was demonstrated as an effective analytical means for rapid characterization of the ginsenosides in flower buds of P. ginseng. The research result is valuable for quality control, assessment of authenticity and stability evaluation of ginseng flower buds. PMID:26270079

  14. Properties of peach flower buds which facilitate supercooling.

    PubMed

    Ashworth, E N

    1982-11-01

    Water in dormant peach (Prunus persica [L.] Batsch. var. ;Harbrite') flower buds deep supercooled. Both supercooling and the freezing of water within the bud axis and primordium as distinct components depended on the viability of the bud axis tissue. The viability of the primordium was not critical. Supercooling was prevented by wounding buds with a dissecting needle, indicating that bud structural features were important. Bud morphological features appeared to prevent the propagation of ice through the vascular tissue and into the primordium. In dormant buds, procambial cells had not yet differentiated into xylem vessel elements. Xylem continuity between the bud primordium and adjacent tissues did not appear to be established until buds had deacclimated. It was concluded that structural, morphological, and physiological features of the bud facilitated supercooling.

  15. Free Radical Scavenging Activity: Antiproliferative and Proteomics Analyses of the Differential Expression of Apoptotic Proteins in MCF-7 Cells Treated with Acetone Leaf Extract of Diospyros lycioides (Ebenaceae).

    PubMed

    Pilane, M C; Bagla, V P; Mokgotho, M P; Mbazima, V; Matsebatlela, T M; Ncube, I; Mampuru, L

    2015-01-01

    Breast cancer is the most common cancer in South Africa. The acetone leaf extract of Diospyros lycioides was evaluated qualitatively and quantitatively for its antioxidant potential using DPPH assay and nitric oxide radical scavenging effect, while the viability of MCF-7 cells was evaluated using the MTT. MCF-7 treated cells were stained with Hoechst 335258 dye and annexin-V-FITC to be evaluated for apoptotic effect of the extract, while mRNA expression levels of apoptotic genes were assessed by quantitative real-time PCR and deferential protein expression levels using 2D gel electrophoresis and mass spectrometry. Results revealed presence of antioxidant constituents in the extract. Extract was shown to be cytotoxic in a concentration- and time-dependent manner. Cytotoxicity was demonstrated to be due to apoptosis, with 70% of the extract-treated cells being annexin-V-positive/PI negative at 48 hours. The extract was also shown to upregulate the expression of p53 gene with concomitant downregulation of the Bcl-2 antiapoptotic gene while differentially expressed proteins were identified as enolase, pyruvate kinase, and glyceraldehyde-3-phosphate. The extract in this study was shown to induce apoptosis at an early stage which makes it an ideal source that can be explored for compounds that may be used in the treatment and management of cancer. PMID:26457109

  16. Free Radical Scavenging Activity: Antiproliferative and Proteomics Analyses of the Differential Expression of Apoptotic Proteins in MCF-7 Cells Treated with Acetone Leaf Extract of Diospyros lycioides (Ebenaceae)

    PubMed Central

    Pilane, M. C.; Bagla, V. P.; Mokgotho, M. P.; Mbazima, V.; Matsebatlela, T. M.; Ncube, I.; Mampuru, L.

    2015-01-01

    Breast cancer is the most common cancer in South Africa. The acetone leaf extract of Diospyros lycioides was evaluated qualitatively and quantitatively for its antioxidant potential using DPPH assay and nitric oxide radical scavenging effect, while the viability of MCF-7 cells was evaluated using the MTT. MCF-7 treated cells were stained with Hoechst 335258 dye and annexin-V-FITC to be evaluated for apoptotic effect of the extract, while mRNA expression levels of apoptotic genes were assessed by quantitative real-time PCR and deferential protein expression levels using 2D gel electrophoresis and mass spectrometry. Results revealed presence of antioxidant constituents in the extract. Extract was shown to be cytotoxic in a concentration- and time-dependent manner. Cytotoxicity was demonstrated to be due to apoptosis, with 70% of the extract-treated cells being annexin-V-positive/PI negative at 48 hours. The extract was also shown to upregulate the expression of p53 gene with concomitant downregulation of the Bcl-2 antiapoptotic gene while differentially expressed proteins were identified as enolase, pyruvate kinase, and glyceraldehyde-3-phosphate. The extract in this study was shown to induce apoptosis at an early stage which makes it an ideal source that can be explored for compounds that may be used in the treatment and management of cancer. PMID:26457109

  17. Characterization of a cDNA encoding cysteine proteinase inhibitor from Chinese cabbage (Brassica campestris L. ssp. pekinensis) flower buds.

    PubMed

    Lim, C O; Lee, S I; Chung, W S; Park, S H; Hwang, I; Cho, M J

    1996-01-01

    A cDNA encoding a new phytocystatin isotype named BCPI-1 was isolated from a cDNA library of Chinese cabbage flower buds. The BCPI-1 clone encodes 199 amino acids resulting in a protein much larger than other known phytocystatins. BCPI-1 has an unusually long C-terminus. A BCPI-1 fusion protein expressed in Escherichia coli strongly inhibits the enzymatic activity of papain, a cysteine proteinase. Genomic Southern blot analysis revealed that the BCPI gene is a member of a small multi-gene family in Chinese cabbage. Northern blot analysis showed that it is differentially expressed in the flower bud, leaf and root.

  18. Budded baculovirus particle structure revisited.

    PubMed

    Wang, Qiushi; Bosch, Berend-Jan; Vlak, Just M; van Oers, Monique M; Rottier, Peter J; van Lent, Jan W M

    2016-02-01

    Baculoviruses are a group of enveloped, double-stranded DNA insect viruses with budded (BV) and occlusion-derived (ODV) virions produced during their infection cycle. BVs are commonly described as rod shaped particles with a high apical density of protein extensions (spikes) on the lipid envelope surface. However, due to the fragility of BVs the conventional purification and electron microscopy (EM) staining methods considerably distort the native viral structure. Here, we use cryo-EM analysis to reveal the near-native morphology of two intensively studied baculoviruses, Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) and Spodoptera exigua MNPV (SeMNPV), as models for BVs carrying GP64 and F as envelope fusion protein on the surface. The now well-preserved AcMNPV and SeMNPV BV particles have a remarkable elongated, ovoid shape leaving a large, lateral space between nucleocapsid (NC) and envelope. Consistent with previous findings the NC has a distinctive cap and base structure interacting tightly with the envelope. This tight interaction may explain the partial retaining of the envelope on both ends of the NC and the disappearance of the remainder of the BV envelope in the negative-staining EM images. Cryo-EM also reveals that the viral envelope contains two layers with a total thickness of ≈ 6-7 nm, which is significantly thicker than a usual biological membrane (<4 nm) as measured by X-ray scanning. Most spikes are densely clustered at the two apical ends of the virion although some envelope proteins are also found more sparsely on the lateral regions. The spikes on the surface of AcMNPV BVs appear distinctly different from those of SeMNPV. Based on our observations we propose a new near-native structural model of baculovirus BVs.

  19. Early Transcriptome Analyses of Z-3-Hexenol-Treated Zea mays Revealed Distinct Transcriptional Networks and Anti-Herbivore Defense Potential of Green Leaf Volatiles

    PubMed Central

    Engelberth, Jurgen; Contreras, Claudia Fabiola; Dalvi, Chinmay; Li, Ting; Engelberth, Marie

    2013-01-01

    Green leaf volatiles (GLV), which are rapidly emitted by plants in response to insect herbivore damage, are now established as volatile defense signals. Receiving plants utilize these molecules to prime their defenses and respond faster and stronger when actually attacked. To further characterize the biological activity of these compounds we performed a microarray analysis of global gene expression. The focus of this project was to identify early transcriptional events elicited by Z-3-hexenol (Z-3-HOL) as our model GLV in maize (Zea mays) seedlings. The microarray results confirmed previous studies on Z-3-HOL -induced gene expression but also provided novel information about the complexity of Z-3-HOL -induced transcriptional networks. Besides identifying a distinct set of genes involved in direct and indirect defenses we also found significant expression of genes involved in transcriptional regulation, Ca2+-and lipid-related signaling, and cell wall reinforcement. By comparing these results with those obtained by treatment of maize seedlings with insect elicitors we found a high degree of correlation between the two expression profiles at this early time point, in particular for those genes related to defense. We further analyzed defense gene expression induced by other volatile defense signals and found Z-3-HOL to be significantly more active than methyl jasmonate, methyl salicylate, and ethylene. The data presented herein provides important information on early genetic networks that are activated by Z-3-HOL and demonstrates the effectiveness of this compound in the regulation of typical plant defenses against insect herbivores in maize. PMID:24155960

  20. Efficient transmission of Cassava brown streak disease viral pathogens by chip bud grafting

    PubMed Central

    2013-01-01

    Background Techniques to study plant viral diseases under controlled growth conditions are required to fully understand their biology and investigate host resistance. Cassava brown streak disease (CBSD) presents a major threat to cassava production in East Africa. No infectious clones of the causal viruses, Cassava brown streak virus (CBSV) or Ugandan cassava brown streak virus (UCBSV) are available, and mechanical transmission to cassava is not effective. An improved method for transmission of the viruses, both singly and as co-infections has been developed using bud grafts. Findings Axillary buds from CBSD symptomatic plants infected with virulent isolates of CBSV and UCBSV were excised and grafted onto 6–8 week old greenhouse-grown, disease-free cassava plants of cultivars Ebwanateraka, TME204 and 60444. Plants were assessed visually for development of CBSD symptoms and by RT-PCR for presence of the viruses in leaf and storage root tissues. Across replicated experiments, 70-100% of plants inoculated with CBSV developed CBSD leaf and stem symptoms 2–6 weeks after bud grafting. Infected plants showed typical, severe necrotic lesions in storage roots at harvest 12–14 weeks after graft inoculation. Sequential grafting of buds from plants infected with UCBSV followed 10–14 days later by buds carrying CBSV, onto the same test plant, resulted in 100% of the rootstocks becoming co-infected with both pathogens. This dual transmission rate was greater than that achieved by simultaneous grafting with UCBSV and CBSV (67%), or when grafting first with CBSV followed by UCBSV (17%). Conclusions The bud grafting method described presents an improved tool for screening cassava germplasm for resistance to CBSD causal viruses, and for studying pathogenicity of this important disease. Bud grafting provides new opportunities compared to previously reported top and side grafting systems. Test plants can be inoculated as young, uniform plants of a size easily handled in a

  1. Shrinkage of ipsilateral taste buds and hyperplasia of contralateral taste buds following chorda tympani nerve transection.

    PubMed

    Li, Yi-Ke; Yang, Juan-Mei; Huang, Yi-Bo; Ren, Dong-Dong; Chi, Fang-Lu

    2015-06-01

    The morphological changes that occur in the taste buds after denervation are not well understood in rats, especially in the contralateral tongue epithelium. In this study, we investigated the time course of morphological changes in the taste buds following unilateral nerve transection. The role of the trigeminal component of the lingual nerve in maintaining the structural integrity of the taste buds was also examined. Twenty-four Sprague-Dawley rats were randomly divided into three groups: control, unilateral chorda tympani nerve transection and unilateral chorda tympani nerve transection + lingual nerve transection. Rats were allowed up to 42 days of recovery before being euthanized. The taste buds were visualized using a cytokeratin 8 antibody. Taste bud counts, volumes and taste receptor cell numbers were quantified and compared among groups. No significant difference was detected between the chorda tympani nerve transection and chorda tympani nerve transection + lingual nerve transection groups. Taste bud counts, volumes and taste receptor cell numbers on the ipsilateral side all decreased significantly compared with control. On the contralateral side, the number of taste buds remained unchanged over time, but they were larger, and taste receptor cells were more numerous postoperatively. There was no evidence for a role of the trigeminal branch of the lingual nerve in maintaining the structural integrity of the anterior taste buds.

  2. Shrinkage of ipsilateral taste buds and hyperplasia of contralateral taste buds following chorda tympani nerve transection

    PubMed Central

    Li, Yi-ke; Yang, Juan-mei; Huang, Yi-bo; Ren, Dong-dong; Chi, Fang-lu

    2015-01-01

    The morphological changes that occur in the taste buds after denervation are not well understood in rats, especially in the contralateral tongue epithelium. In this study, we investigated the time course of morphological changes in the taste buds following unilateral nerve transection. The role of the trigeminal component of the lingual nerve in maintaining the structural integrity of the taste buds was also examined. Twenty-four Sprague-Dawley rats were randomly divided into three groups: control, unilateral chorda tympani nerve transection and unilateral chorda tympani nerve transection + lingual nerve transection. Rats were allowed up to 42 days of recovery before being euthanized. The taste buds were visualized using a cytokeratin 8 antibody. Taste bud counts, volumes and taste receptor cell numbers were quantified and compared among groups. No significant difference was detected between the chorda tympani nerve transection and chorda tympani nerve transection + lingual nerve transection groups. Taste bud counts, volumes and taste receptor cell numbers on the ipsilateral side all decreased significantly compared with control. On the contralateral side, the number of taste buds remained unchanged over time, but they were larger, and taste receptor cells were more numerous postoperatively. There was no evidence for a role of the trigeminal branch of the lingual nerve in maintaining the structural integrity of the anterior taste buds. PMID:26199619

  3. Ubiquitin depletion and dominant-negative VPS4 inhibit rhabdovirus budding without affecting alphavirus budding.

    PubMed

    Taylor, Gwen M; Hanson, Phyllis I; Kielian, Margaret

    2007-12-01

    The budding reactions of a number of enveloped viruses use the cellular machinery involved in the formation of the luminal vesicles of endosomal multivesicular bodies (MVB). Budding of these viruses is dependent on the presence of specific late-domain motifs in membrane-associated viral proteins. Such budding reactions usually involve ubiquitin and are blocked by expression of an ATPase-deficient form of VPS4, a cellular AAA+ ATPase believed to be required late in the MVB pathway for the disassembly/release of the MVB machinery. Here we examined the role of the MVB pathway in the budding of the late-domain-containing rhabdovirus vesicular stomatitis virus (VSV) and the alphavirus Semliki Forest virus (SFV). We tested early and late steps in the MVB pathway by depleting ubiquitin with the proteasome inhibitor MG-132 and by using cell lines inducibly expressing VPS4A or VPS4B protein. As previously shown, VSV budding was strongly dependent on ubiquitin. In contrast to the findings of previous studies with VPS4A, expression of ATPase-deficient mutants of either VPS4A or VPS4B inhibited VSV budding. Inhibition by VPS4 required the presence of the PPPY late domain on the VSV matrix protein and resulted in the accumulation of nonreleased VSV particles at the plasma membrane. In contrast, SFV budding was independent of both ubiquitin and the activity of VPS4, perhaps reflecting the important role of the highly organized envelope protein lattice during alphavirus budding.

  4. Effects of oil on internal gas transport, radial oxygen loss, gas films and bud growth in Phragmites australis

    PubMed Central

    Armstrong, Jean; Keep, Rory; Armstrong, William

    2009-01-01

    Background and Aims Oil pollution of wetlands is a world-wide problem but, to date, research has concentrated on its influences on salt marsh rather than freshwater plant communities. The effects of water-borne light oils (liquid paraffin and diesel) were investigated on the fresh/brackish wetland species Phragmites australis in terms of routes of oil infiltration, internal gas transport, radial O2 loss (ROL), underwater gas films and bud growth. Methods Pressure flow resistances of pith cavities of nodes and aerenchyma of leaf sheaths, with or without previous exposure to oil, were recorded from flow rates under applied pressure. Convective flows were measured from living excised culms with oiled and non-oiled nodes and leaf sheaths. The effect of oil around culm basal nodes on ROL from rhizome and root apices was measured polarographically. Surface gas films on submerged shoots with and without oil treatment were recorded photographically. Growth and emergence of buds through water with and without an oil film were measured. Key Results Internodes are virtually impermeable, but nodes of senesced and living culms are permeable to oils which can block pith cavity diaphragms, preventing flows at applied pressures of 1 kPa, natural convective transport to the rhizome, and greatly decreasing ROL to phyllospheres and rhizospheres. Oil infiltrating or covering living leaf sheaths prevents humidity-induced convection. Oil displaces surface gas films from laminae and leaf sheaths. Buds emerge only a few centimetres through oil and die. Conclusions Oil infiltrates the gas space system via nodal and leaf sheath stomata, reducing O2 diffusion and convective flows into the rhizome system and decreasing oxygenation of phyllospheres and rhizospheres; underwater gas exchange via gas films will be impeded. Plants can be weakened by oil-induced failure of emerging buds. Plants will be most at risk during the growing season. PMID:18996951

  5. Photoperiod and temperature responses of bud swelling and bud burst in four temperate forest tree species.

    PubMed

    Basler, David; Körner, Christian

    2014-04-01

    Spring phenology of temperate forest trees is optimized to maximize the length of the growing season while minimizing the risk of freezing damage. The release from winter dormancy is environmentally mediated by species-specific responses to temperature and photoperiod. We investigated the response of early spring phenology to temperature and photoperiod at different stages of dormancy release in cuttings from four temperate tree species in controlled environments. By tracking bud development, we were able to identify the onset of bud swelling and bud growth in Acer pseudoplatanus L., Fagus sylvatica L., Quercus petraea (Mattuschka) Liebl. and Picea abies (L.) H. Karst. At a given early stage of dormancy release, the onset and duration of the bud swelling prior to bud burst are driven by concurrent temperature and photoperiod, while the maximum growth rate is temperature dependent only, except for Fagus, where long photoperiods also increased bud growth rates. Similarly, the later bud burst was controlled by temperature and photoperiod (in the photoperiod sensitive species Fagus, Quercus and Picea). We conclude that photoperiod is involved in the release of dormancy during the ecodormancy phase and may influence bud burst in trees that have experienced sufficient chilling. This study explored and documented the early bud swelling period that precedes and defines later phenological stages such as canopy greening in conventional phenological works. It is the early bud growth resumption that needs to be understood in order to arrive at a causal interpretation and modelling of tree phenology at a large scale. Classic spring phenology events mark visible endpoints of a cascade of processes as evidenced here. PMID:24713858

  6. Photoperiod and temperature responses of bud swelling and bud burst in four temperate forest tree species.

    PubMed

    Basler, David; Körner, Christian

    2014-04-01

    Spring phenology of temperate forest trees is optimized to maximize the length of the growing season while minimizing the risk of freezing damage. The release from winter dormancy is environmentally mediated by species-specific responses to temperature and photoperiod. We investigated the response of early spring phenology to temperature and photoperiod at different stages of dormancy release in cuttings from four temperate tree species in controlled environments. By tracking bud development, we were able to identify the onset of bud swelling and bud growth in Acer pseudoplatanus L., Fagus sylvatica L., Quercus petraea (Mattuschka) Liebl. and Picea abies (L.) H. Karst. At a given early stage of dormancy release, the onset and duration of the bud swelling prior to bud burst are driven by concurrent temperature and photoperiod, while the maximum growth rate is temperature dependent only, except for Fagus, where long photoperiods also increased bud growth rates. Similarly, the later bud burst was controlled by temperature and photoperiod (in the photoperiod sensitive species Fagus, Quercus and Picea). We conclude that photoperiod is involved in the release of dormancy during the ecodormancy phase and may influence bud burst in trees that have experienced sufficient chilling. This study explored and documented the early bud swelling period that precedes and defines later phenological stages such as canopy greening in conventional phenological works. It is the early bud growth resumption that needs to be understood in order to arrive at a causal interpretation and modelling of tree phenology at a large scale. Classic spring phenology events mark visible endpoints of a cascade of processes as evidenced here.

  7. Virus Budding and the ESCRT Pathway

    PubMed Central

    Votteler, Jörg; Sundquist, Wesley I.

    2013-01-01

    Enveloped viruses escape infected cells by budding through limiting membranes. In the decade since the discovery that the Human Immunodeficiency Virus (HIV) recruits cellular ESCRT (endosomal sorting complexes required for transport) machinery to facilitate viral budding, this pathway has emerged as the major escape route for enveloped viruses. In cells, the ESCRT pathway catalyzes the analogous membrane fission events required for the abscission stage of cytokinesis and for a series of “reverse topology” vesiculation events. Studies of enveloped virus budding are therefore providing insights into the complex cellular mechanisms of cell division and membrane protein trafficking (and vice versa). Here, we review how viruses mimic cellular recruiting signals to usurp the ESCRT pathway, discuss mechanistic models for ESCRT pathway functions, and highlight important research frontiers. PMID:24034610

  8. Interaction between bud-site selection and polarity-establishment machineries in budding yeast

    PubMed Central

    Wu, Chi-Fang; Savage, Natasha S.; Lew, Daniel J.

    2013-01-01

    Saccharomyces cerevisiae yeast cells polarize in order to form a single bud in each cell cycle. Distinct patterns of bud-site selection are observed in haploid and diploid cells. Genetic approaches have identified the molecular machinery responsible for positioning the bud site: during bud formation, specific locations are marked with immobile landmark proteins. In the next cell cycle, landmarks act through the Ras-family GTPase Rsr1 to promote local activation of the conserved Rho-family GTPase, Cdc42. Additional Cdc42 accumulates by positive feedback, creating a concentrated patch of GTP-Cdc42, which polarizes the cytoskeleton to promote bud emergence. Using time-lapse imaging and mathematical modelling, we examined the process of bud-site establishment. Imaging reveals unexpected effects of the bud-site-selection system on the dynamics of polarity establishment, raising new questions about how that system may operate. We found that polarity factors sometimes accumulate at more than one site among the landmark-specified locations, and we suggest that competition between clusters of polarity factors determines the final location of the Cdc42 cluster. Modelling indicated that temporally constant landmark-localized Rsr1 would weaken or block competition, yielding more than one polarity site. Instead, we suggest that polarity factors recruit Rsr1, effectively sequestering it from other locations and thereby terminating landmark activity. PMID:24062579

  9. Bud development in corydalis (Corydalis bracteata) requires low temperature: a study of developmental and carbohydrate changes

    PubMed Central

    Khodorova, Nadejda V.; Miroslavov, Evgeniy A.; Shavarda, Alexey L.; Laberche, Jean-Claude; Boitel-Conti, Michèle

    2010-01-01

    Background and Aims Spring geophytes require a period of low temperature for proper flower development but the mechanism that underlies the relationship between cold treatment and flowering remains unknown. The present study aims to compare the developmental anatomy and carbohydrate content of the tuberous geophyte Corydalis bracteata growing under natural winter conditions from 10 to −10 °C (field-grown) and under a mild temperature regime of 18 °C (indoor-grown plants). Methods Samples were studied under light and electron microscopy. A histochemical test (periodic acid – Schiff's) was employed to identify starch in sectioned material. Sugars were analysed by capillary gas chromatography. Apoplastic wash fluid was prepared. Key Results Under natural conditions, shoots were elongated, and buds gained in dry mass and developed normally. For indoor-grown plants, these parameters were lower in value and, from December, a progressive necrosis of flower buds was observed. The tuber consisted of the new developing one, which was connected to the bud, and the old tuber with its starch reserve. Due to the absence of plasmodesmata between new and old tuber cells, sugar transport cannot be through the symplast. Thus, a potential apoplastic route is proposed from old tuber phloem parenchyma cells to the adjacent new tuber cells. Sugar content in buds during the autumn months (September–November) was lower for indoor-grown plants than control plants, whereas the sugar content in tubers during the same period was similar for plants from both temperature treatments. However, the amount of apoplastic sugars in tubers of field-grown plants was almost 15-fold higher than in indoor-grown tubers. Conclusions The results suggest that low temperature activates the apoplastic route of sugar transport in C. bracteata tubers and a consequent carbohydrate delivery to the bud. In the absence of cold treatment, the carbohydrate reserve is locked in old tuber cells so the nutrient

  10. Genome-wide transcriptome profiling provides insights into floral bud development of summer-flowering Camellia azalea

    PubMed Central

    Fan, Zhengqi; Li, Jiyuan; Li, Xinlei; Wu, Bin; Wang, Jiangying; Liu, Zhongchi; Yin, Hengfu

    2015-01-01

    The transition from vegetative to reproductive growth in woody perennials involves pathways controlling flowering timing, bud dormancy and outgrowth in responses to seasonal cues. However little is known about the mechanism governing the adaptation of signaling pathways to environmental conditions in trees. Camellia azalea is a rare species in this genus flowering during summer, which provides a unique resource for floral timing breeding. Here we reported a comprehensive transcriptomics study to capture the global gene profiles during floral bud development in C. azalea. We examined the genome-wide gene expression between three developmental stages including floral bud initiation, floral organ differentiation and bud outgrowth, and identified nine co-expression clusters with distinctive patterns. Further, we identified the differential expressed genes (DEGs) during development and characterized the functional properties of DEGs by Gene Ontology analysis. We showed that transition from floral bud initiation to floral organ differentiation required changes of genes in flowering timing regulation, while transition to floral bud outgrowth was regulated by various pathways such as cold and light signaling, phytohormone pathways and plant metabolisms. Further analyses of dormancy associated MADS-box genes revealed that SVP- and AGL24- like genes displayed distinct expression patterns suggesting divergent roles during floral bud development. PMID:25978548

  11. Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth.

    PubMed

    Balla, Jozef; Kalousek, Petr; Reinöhl, Vilém; Friml, Jiří; Procházka, Stanislav

    2011-02-01

    Shoot branching is one of the major determinants of plant architecture. Polar auxin transport in stems is necessary for the control of bud outgrowth by a dominant apex. Here, we show that following decapitation in pea (Pisum sativum L.), the axillary buds establish directional auxin export by subcellular polarization of PIN auxin transporters. Apical auxin application on the decapitated stem prevents this PIN polarization and canalization of laterally applied auxin. These results support a model in which the apical and lateral auxin sources compete for primary channels of auxin transport in the stem to control the outgrowth of axillary buds. PMID:21219506

  12. Micropropagation of Codiaeum variegatum (L.) Blume and regeneration induction via adventitious buds and somatic embryogenesis.

    PubMed

    Radice, Silvia

    2010-01-01

    Codiaeum variegatum (L) Blume cv. "Corazon de oro" and cv. "Norma" are successfully micropropagated when culture are initiated with explants taken from newly sprouted shoots. The establishment and multiplication steps are possible when 1 mg/L BA or 1 mg/L IAA and 3 mg/L 2iP are added to MS medium, according to the cultivar respectively selected.Adventive organogenesis and somatic embryogenesis are induced from leaf explants taken from in vitro buds of croton. On leaf-sectioned of "Corazon de oro" cultured in vitro, 1 mg/L BA stimulates continuous somatic embryos development and induces some shoots too. Replacing BA with 1 mg/L TDZ induces up to 100% bud regeneration in the same explants. On the other hand, leaf-sectioned of C. variegatum cv. Norma does not start somatic embryo differentiation if 1 mg/L TDZ is not added to the MS basal medium. Incipient callus is observed after 30 days of culture, and then, subculture to MS with 1 mg/L BA allows the same process to show on the "Corazon de oro" cultivar. Somatic embryos show growth arrest that is partially overcome by transfer to hormone-free basal medium with activated charcoal. Root induction is possible on basal medium plus 1 mg/L IBA. Plantlets in the greenhouse have variegated leaves true-to-type.

  13. Leaf Development

    PubMed Central

    2013-01-01

    Leaves are the most important organs for plants. Without leaves, plants cannot capture light energy or synthesize organic compounds via photosynthesis. Without leaves, plants would be unable perceive diverse environmental conditions, particularly those relating to light quality/quantity. Without leaves, plants would not be able to flower because all floral organs are modified leaves. Arabidopsis thaliana is a good model system for analyzing mechanisms of eudicotyledonous, simple-leaf development. The first section of this review provides a brief history of studies on development in Arabidopsis leaves. This history largely coincides with a general history of advancement in understanding of the genetic mechanisms operating during simple-leaf development in angiosperms. In the second section, I outline events in Arabidopsis leaf development, with emphasis on genetic controls. Current knowledge of six important components in these developmental events is summarized in detail, followed by concluding remarks and perspectives. PMID:23864837

  14. Identification and Quality Assessment of Chrysanthemum Buds by CE Fingerprinting

    PubMed Central

    Xing, Xiaoping; Li, Dan

    2015-01-01

    A simple and efficient fingerprinting method for chrysanthemum buds was developed with the aim of establishing a quality control protocol based on biochemical makeup. Chrysanthemum bud samples were successively extracted by water and alcohol. The fingerprints of the chrysanthemum buds samples were obtained using capillary electrophoresis and electrochemical detection (CE-ED) employing copper and carbon working electrodes to capture all of the chemical information. 10 batches of chrysanthemum buds were collected from different regions and various factories to establish the baseline fingerprint. The experimental data of 10 batches electropherogram buds by CE were analyzed by correlation coefficient and the included angle cosine methods. A standard chrysanthemum bud fingerprint including 24 common peaks was established, 12 from each electrode, which was successfully applied to identify and distinguish between chrysanthemum buds from 2 other chrysanthemum species. These results demonstrate that fingerprint analysis can be used as an important criterion for chrysanthemum buds quality control. PMID:26064777

  15. The essential function of Rrs1 in ribosome biogenesis is conserved in budding and fission yeasts.

    PubMed

    Wan, Kun; Kawara, Haruka; Yamamoto, Tomoyuki; Kume, Kazunori; Yabuki, Yukari; Goshima, Tetsuya; Kitamura, Kenji; Ueno, Masaru; Kanai, Muneyoshi; Hirata, Dai; Funato, Kouichi; Mizuta, Keiko

    2015-09-01

    The Rrs1 protein plays an essential role in the biogenesis of 60S ribosomal subunits in budding yeast (Saccharomyces cerevisiae). Here, we examined whether the fission yeast (Schizosaccharomyces pombe) homologue of Rrs1 also plays a role in ribosome biogenesis. To this end, we constructed two temperature-sensitive fission yeast strains, rrs1-D14/22G and rrs1-L51P, which had amino acid substitutions corresponding to those of the previously characterized budding yeast rrs1-84 (D22/30G) and rrs1-124 (L61P) strains, respectively. The fission yeast mutants exhibited severe defects in growth and 60S ribosomal subunit biogenesis at high temperatures. In addition, expression of the Rrs1 protein of fission yeast suppressed the growth defects of the budding yeast rrs1 mutants at high temperatures. Yeast two-hybrid analyses revealed that the interactions of Rrs1 with the Rfp2 and Ebp2 proteins were conserved in budding and fission yeasts. These results suggest that the essential function of Rrs1 in ribosome biogenesis may be conserved in budding and fission yeasts.

  16. Bilingual Buds: The Evolution of a Program

    ERIC Educational Resources Information Center

    Huang, Sharon

    2009-01-01

    The impetus to begin Bilingual Buds came about six years ago when the author, pregnant with twins and commuting into New York City, was reading about the numerous cognitive benefits for children of acquiring a second language early in their lives. She was surprised to learn that even by the age of six months, children begin to lose the ability to…

  17. Radiation effects on bovine taste bud membranes

    SciTech Connect

    Shatzman, A.R.; Mossman, K.L.

    1982-11-01

    In order to investigate the mechanisms of radiation-induced taste loss, the effects of radiation on preparations of enriched bovine taste bud membranes were studied. Taste buds containing circumvallate papilae, and surrounding control epithelial tissues devoid of taste buds, were obtained from steers and given radiation doses of 0-7000 cGy (rad). Tissue fractions were isolated into membrane-enriched and heterogeneous components using differential and sucrose gradient centrifugation of tissue homogenates. The yield of membranes, as measured by protein content in the buoyant membrane-enriched fractions, was reduced in quantity with increasing radiation dose. The relation between radiation dose and membrane quantity in membrane-enriched fractions could be fit by a simple exponential model with taste bud-derived membranes twice as radiosensitive as membranes from control epithelial tissue. Binding of sucrose, sodium, and acetate and fluoride stimulation of adenylate cyclase were nearly identical in both irradiated and nonirradiated intact membranes. Radiation had no effect on fractions of heterogeneous components. While it is not clear what changes are occurring in enriched taste cell membranes, damage to membranes may play an important role in the taste loss observed in patients following radiotherapy.

  18. Dormant bud preservation for germplasm conservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The suitability of dormant buds (DB) for cryopreservation of different plant species has been demonstrated in several reports. For the majority of the species, processing DB for long-term liquid nitrogen storage does not involve establishing tissue cultures and the time for growing out post-cryo mat...

  19. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.

    PubMed

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun; Krimm, Robin F

    2015-01-01

    Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood.

  20. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds123

    PubMed Central

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun

    2015-01-01

    Abstract Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood. PMID:26730405

  1. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.

    PubMed

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun; Krimm, Robin F

    2015-01-01

    Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood. PMID:26730405

  2. Physiological differences between bud breaking and flowering after dormancy completion revealed by DAM and FT/TFL1 expression in Japanese pear (Pyrus pyrifolia).

    PubMed

    Ito, Akiko; Saito, Takanori; Sakamoto, Daisuke; Sugiura, Toshihiko; Bai, Songling; Moriguchi, Takaya

    2016-01-01

    The regulatory mechanisms underlying bud breaking (scale leaf elongation) and flowering in the lateral flower buds of Japanese pear (Pyrus pyrifolia Nakai 'Kosui') are unknown. To more fully characterize these processes, we treated pear trees with different amounts of chilling initiated at different times. Chilling for ∼900 h at 6 °C always induced bud breaking (scale elongation in ≥70% lateral flower bud) when provided between October and February, whereas chilling provided earlier (between October and December) was less effective on flowering (floret growth and development) than later chilling and the flowering rate increased with longer chilling durations. During chilling, the expression of pear DAMs (PpMADS13-1, 13-2 and 13-3) in lateral flower buds decreased as chilling accumulated irrespective of the timing of chilling. In addition, pear TFL1 (PpTFL1-1a) in the lateral flower buds was expressed at higher levels when the time interval for chilling was earlier. On the other hand, during forcing at 15 °C after chilling, the expression pattern of all three PpMADS13 genes was similar among the treatments, and the expression levels seemed lower in the treatment where scale leaves of the lateral flower bud elongated faster, whereas pear FT (PpFT2a) was expressed at higher levels in the buds whose flower clusters elongated more vigorously during forcing. From these results, we infer that flowering time may be mediated via the balance of flowering-related genes FT and TFL1, whereas bud breaking may be regulated via the DAM genes in Japanese pear.

  3. Dual Function of CD81 in Influenza Virus Uncoating and Budding

    PubMed Central

    He, Jiang; Sun, Eileen; Bujny, Miriam V.; Kim, Doory; Davidson, Michael W.; Zhuang, Xiaowei

    2013-01-01

    As an obligatory pathogen, influenza virus co-opts host cell machinery to harbor infection and to produce progeny viruses. In order to characterize the virus-host cell interactions, several genome-wide siRNA screens and proteomic analyses have been performed recently to identify host factors involved in influenza virus infection. CD81 has emerged as one of the top candidates in two siRNA screens and one proteomic study. The exact role played by CD81 in influenza infection, however, has not been elucidated thus far. In this work, we examined the effect of CD81 depletion on the major steps of the influenza infection. We found that CD81 primarily affected virus infection at two stages: viral uncoating during entry and virus budding. CD81 marked a specific endosomal population and about half of the fused influenza virus particles underwent fusion within the CD81-positive endosomes. Depletion of CD81 resulted in a substantial defect in viral fusion and infection. During virus assembly, CD81 was recruited to virus budding site on the plasma membrane, and in particular, to specific sub-viral locations. For spherical and slightly elongated influenza virus, CD81 was localized at both the growing tip and the budding neck of the progeny viruses. CD81 knockdown led to a budding defect and resulted in elongated budding virions with a higher propensity to remain attached to the plasma membrane. Progeny virus production was markedly reduced in CD81-knockdown cells even when the uncoating defect was compensated. In filamentous virus, CD81 was distributed at multiple sites along the viral filament. Taken together, these results demonstrate important roles of CD81 in both entry and budding stages of the influenza infection cycle. PMID:24130495

  4. Single-cell phenomics in budding yeast

    PubMed Central

    Ohya, Yoshikazu; Kimori, Yoshitaka; Okada, Hiroki; Ohnuki, Shinsuke

    2015-01-01

    The demand for phenomics, a high-dimensional and high-throughput phenotyping method, has been increasing in many fields of biology. The budding yeast Saccharomyces cerevisiae, a unicellular model organism, provides an invaluable system for dissecting complex cellular processes using high-resolution phenotyping. Moreover, the addition of spatial and temporal attributes to subcellular structures based on microscopic images has rendered this cell phenotyping system more reliable and amenable to analysis. A well-designed experiment followed by appropriate multivariate analysis can yield a wealth of biological knowledge. Here we review recent advances in cell imaging and illustrate their broad applicability to eukaryotic cells by showing how these techniques have advanced our understanding of budding yeast. PMID:26543200

  5. Synchronization of the Budding Yeast Saccharomyces cerevisiae.

    PubMed

    Foltman, Magdalena; Molist, Iago; Sanchez-Diaz, Alberto

    2016-01-01

    A number of model organisms have provided the basis for our understanding of the eukaryotic cell cycle. These model organisms are generally much easier to manipulate than mammalian cells and as such provide amenable tools for extensive genetic and biochemical analysis. One of the most common model organisms used to study the cell cycle is the budding yeast Saccharomyces cerevisiae. This model provides the ability to synchronise cells efficiently at different stages of the cell cycle, which in turn opens up the possibility for extensive and detailed study of mechanisms regulating the eukaryotic cell cycle. Here, we describe methods in which budding yeast cells are arrested at a particular phase of the cell cycle and then released from the block, permitting the study of molecular mechanisms that drive the progression through the cell cycle.

  6. Eukaryotic-Like Virus Budding in Archaea

    PubMed Central

    Quemin, Emmanuelle R. J.; Chlanda, Petr; Sachse, Martin; Forterre, Patrick

    2016-01-01

    ABSTRACT Similar to many eukaryotic viruses (and unlike bacteriophages), viruses infecting archaea are often encased in lipid-containing envelopes. However, the mechanisms of their morphogenesis and egress remain unexplored. Here, we used dual-axis electron tomography (ET) to characterize the morphogenesis of Sulfolobus spindle-shaped virus 1 (SSV1), the prototype of the family Fuselloviridae and representative of the most abundant archaea-specific group of viruses. Our results show that SSV1 assembly and egress are concomitant and occur at the cellular cytoplasmic membrane via a process highly reminiscent of the budding of enveloped viruses that infect eukaryotes. The viral nucleoprotein complexes are extruded in the form of previously unknown rod-shaped intermediate structures which have an envelope continuous with the host membrane. Further maturation into characteristic spindle-shaped virions takes place while virions remain attached to the cell surface. Our data also revealed the formation of constricted ring-like structures which resemble the budding necks observed prior to the ESCRT machinery-mediated membrane scission during egress of various enveloped viruses of eukaryotes. Collectively, we provide evidence that archaeal spindle-shaped viruses contain a lipid envelope acquired upon budding of the viral nucleoprotein complex through the host cytoplasmic membrane. The proposed model bears a clear resemblance to the egress strategy employed by enveloped eukaryotic viruses and raises important questions as to how the archaeal single-layered membrane composed of tetraether lipids can undergo scission. PMID:27624130

  7. Differential regional expression of multiple ADAMs during feather bud formation.

    PubMed

    Lin, Juntang; Luo, Jiankai; Redies, Christoph

    2011-09-01

    The expression of seven members of the ADAM family was investigated by in situ hybridization in the developing feather buds of chicken. The expression profiles of the ADAMs in the cells and tissues of the feather buds differ from each other. ADAM9, ADAM10, and ADAM17 are expressed in the epidermis of the feather bud, whereas ADAM23 expression is restricted to the bud crest, with a distribution similar to that of sonic hedgehog. ADAM13 is not only expressed in the epidermis, but also in restricted regions of the dermis. Both ADAM12 and ADAM22 are expressed in the dermis of the feather bud, with an opposite mediolateral and anteroposterior polarity. Furthermore, the mRNAs of all investigated ADAMs show regional differences in their expression, for example, in the neck and in the roots of the leg and wing. These results suggest that ADAMs play a variety of roles during avian feather bud formation.

  8. Cedar leaf oil poisoning

    MedlinePlus

    Cedar leaf oil is made from some types of cedar trees. Cedar leaf oil poisoning occurs when someone swallows this substance. ... The substance in cedar leaf oil that can be harmful is thujone (a hydrocarbon).

  9. Cell Polarization and Cytokinesis in Budding Yeast

    PubMed Central

    Bi, Erfei; Park, Hay-Oak

    2012-01-01

    Asymmetric cell division, which includes cell polarization and cytokinesis, is essential for generating cell diversity during development. The budding yeast Saccharomyces cerevisiae reproduces by asymmetric cell division, and has thus served as an attractive model for unraveling the general principles of eukaryotic cell polarization and cytokinesis. Polarity development requires G-protein signaling, cytoskeletal polarization, and exocytosis, whereas cytokinesis requires concerted actions of a contractile actomyosin ring and targeted membrane deposition. In this chapter, we discuss the mechanics and spatial control of polarity development and cytokinesis, emphasizing the key concepts, mechanisms, and emerging questions in the field. PMID:22701052

  10. Fruit load induces changes in global gene expression and in abscisic acid (ABA) and indole acetic acid (IAA) homeostasis in citrus buds

    PubMed Central

    Shalom, Liron; Samuels, Sivan; Zur, Naftali; Shlizerman, Lyudmila; Doron-Faigenboim, Adi; Blumwald, Eduardo; Sadka, Avi

    2014-01-01

    Many fruit trees undergo cycles of heavy fruit load (ON-Crop) in one year, followed by low fruit load (OFF-Crop) the following year, a phenomenon known as alternate bearing (AB). The mechanism by which fruit load affects flowering induction during the following year (return bloom) is still unclear. Although not proven, it is commonly accepted that the fruit or an organ which senses fruit presence generates an inhibitory signal that moves into the bud and inhibits apical meristem transition. Indeed, fruit removal from ON-Crop trees (de-fruiting) induces return bloom. Identification of regulatory or metabolic processes modified in the bud in association with altered fruit load might shed light on the nature of the AB signalling process. The bud transcriptome of de-fruited citrus trees was compared with those of ON- and OFF-Crop trees. Fruit removal resulted in relatively rapid changes in global gene expression, including induction of photosynthetic genes and proteins. Altered regulatory mechanisms included abscisic acid (ABA) metabolism and auxin polar transport. Genes of ABA biosynthesis were induced; however, hormone analyses showed that the ABA level was reduced in OFF-Crop buds and in buds shortly following fruit removal. Additionally, genes associated with Ca2+-dependent auxin polar transport were remarkably induced in buds of OFF-Crop and de-fruited trees. Hormone analyses showed that auxin levels were reduced in these buds as compared with ON-Crop buds. In view of the auxin transport autoinhibition theory, the possibility that auxin distribution plays a role in determining bud fate is discussed. PMID:24706719

  11. Fruit load induces changes in global gene expression and in abscisic acid (ABA) and indole acetic acid (IAA) homeostasis in citrus buds.

    PubMed

    Shalom, Liron; Samuels, Sivan; Zur, Naftali; Shlizerman, Lyudmila; Doron-Faigenboim, Adi; Blumwald, Eduardo; Sadka, Avi

    2014-07-01

    Many fruit trees undergo cycles of heavy fruit load (ON-Crop) in one year, followed by low fruit load (OFF-Crop) the following year, a phenomenon known as alternate bearing (AB). The mechanism by which fruit load affects flowering induction during the following year (return bloom) is still unclear. Although not proven, it is commonly accepted that the fruit or an organ which senses fruit presence generates an inhibitory signal that moves into the bud and inhibits apical meristem transition. Indeed, fruit removal from ON-Crop trees (de-fruiting) induces return bloom. Identification of regulatory or metabolic processes modified in the bud in association with altered fruit load might shed light on the nature of the AB signalling process. The bud transcriptome of de-fruited citrus trees was compared with those of ON- and OFF-Crop trees. Fruit removal resulted in relatively rapid changes in global gene expression, including induction of photosynthetic genes and proteins. Altered regulatory mechanisms included abscisic acid (ABA) metabolism and auxin polar transport. Genes of ABA biosynthesis were induced; however, hormone analyses showed that the ABA level was reduced in OFF-Crop buds and in buds shortly following fruit removal. Additionally, genes associated with Ca(2+)-dependent auxin polar transport were remarkably induced in buds of OFF-Crop and de-fruited trees. Hormone analyses showed that auxin levels were reduced in these buds as compared with ON-Crop buds. In view of the auxin transport autoinhibition theory, the possibility that auxin distribution plays a role in determining bud fate is discussed.

  12. Electrochemical Regulation of Budding Yeast Polarity

    PubMed Central

    Piel, Matthieu; Chang, Fred; Minc, Nicolas

    2014-01-01

    Cells are naturally surrounded by organized electrical signals in the form of local ion fluxes, membrane potential, and electric fields (EFs) at their surface. Although the contribution of electrochemical elements to cell polarity and migration is beginning to be appreciated, underlying mechanisms are not known. Here we show that an exogenous EF can orient cell polarization in budding yeast (Saccharomyces cerevisiae) cells, directing the growth of mating projections towards sites of hyperpolarized membrane potential, while directing bud emergence in the opposite direction, towards sites of depolarized potential. Using an optogenetic approach, we demonstrate that a local change in membrane potential triggered by light is sufficient to direct cell polarization. Screens for mutants with altered EF responses identify genes involved in transducing electrochemical signals to the polarity machinery. Membrane potential, which is regulated by the potassium transporter Trk1p, is required for polarity orientation during mating and EF response. Membrane potential may regulate membrane charges through negatively charged phosphatidylserines (PSs), which act to position the Cdc42p-based polarity machinery. These studies thus define an electrochemical pathway that directs the orientation of cell polarization. PMID:25548923

  13. Glutamate: Tastant and Neuromodulator in Taste Buds.

    PubMed

    Vandenbeuch, Aurelie; Kinnamon, Sue C

    2016-07-01

    In taste buds, glutamate plays a double role as a gustatory stimulus and neuromodulator. The detection of glutamate as a tastant involves several G protein-coupled receptors, including the heterodimer taste receptor type 1, member 1 and 3 as well as metabotropic glutamate receptors (mGluR1 and mGluR4). Both receptor types participate in the detection of glutamate as shown with knockout animals and selective antagonists. At the basal part of taste buds, ionotropic glutamate receptors [N-methyl-d-aspartate (NMDA) and non-NMDA] are expressed and participate in the modulation of the taste signal before its transmission to the brain. Evidence suggests that glutamate has an efferent function on taste cells and modulates the release of other neurotransmitters such as serotonin and ATP. This short article reviews the recent developments in the field with regard to glutamate receptors involved in both functions as well as the influence of glutamate on the taste signal. PMID:27422519

  14. RACK1 regulates mesenchymal cell recruitment during sexual and asexual reproduction of budding tunicates.

    PubMed

    Tatzuke, Yuki; Sunanaga, Takeshi; Fujiwara, Shigeki; Kawamura, Kaz

    2012-08-15

    A homolog of receptor for activated protein kinase C1 (RACK1) was cloned from the budding tunicate Polyandrocarpa misakiensis. By RT-PCR and in situ hybridization analyses, PmRACK1 showed biphasic gene expression during asexual and sexual reproduction. In developing buds, the signal was exclusively observed in the multipotent atrial epithelium and undifferentiated mesenchymal cells that contributed to morphogenesis by the mesenchymal-epithelial transition (MET). In juvenile zooids, the signal was first observable in germline precursor cells that arose as mesenchymal cell aggregated in the ventral hemocoel. In mature zooids, the germinal epithelium in the ovary and the pharynx were the most heavily stained parts. GFP reporter assay indicated that the ovarian expression of PmRACK1 was constitutive from germline precursor cells to oocytes. To elucidate the in vivo function of PmRACK1, RNA interference was challenged. When growing buds were incubated with 5 nmol/mL siRNA, most mesenchymal cells remained round and appeared to have no interactions with the extracellular matrix (ECM), causing lower activity of MET without any apparent effects on cell proliferation. The resultant zooids became growth-deficient. The dwarf zooids did not form buds or mature gonads. Prior to RNAi, buds were treated with human BMP4 that could induce PmRACK1 expression, which resulted in MET activity. We conclude that in P. misakiensis, PmRACK1 plays roles in mesenchymal cell recruitment during formation of somatic and gonad tissues, which contributes to zooidal growth and sexual and asexual reproduction.

  15. One New Conjugate of a Secoiridoid Glucoside with a Sesquiterpene Glucoside from the Flower Buds of Lonicera japonica.

    PubMed

    Yang, Biao; Meng, Zhaoqing; Ma, Yimin; Wang, Zhenzhong; Ding, Gang; Huang, Wenzhe; Sun, Lin; Hu, Yumei; Liu, Wenjun; Zhang, Chunxiao; Cao, Zeyu; Li, Jiachun; Zhong, Yan; Xiao, Wei

    2015-09-01

    Secosesquside (1), a new secoiridoid glucoside-sesquiterpene conjugate, together with three known secoiridoid derivatives, were isolated from flower buds of Lonicerajaponica. The isolated compounds were elucidated by extensive spectroscopic analyses, especially 2D NMR experiments. The anti-inflammatory activities of the new compound were also evaluated by enzyme-linked immunosorbent assay. PMID:26594743

  16. An elastic model of partial budding of retroviruses

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Nguyen, Toan

    2008-03-01

    Retroviruses are characterized by their unique infection strategy of reverse transcription, in which the genetic information flows from RNA back to DNA. The most well known representative is the human immunodeficiency virus (HIV). Unlike budding of traditional enveloped viruses, retrovirus budding happens together with the formation of spherical virus capsids at the cell membrane. Led by this unique budding mechanism, we proposed an elastic model of retrovirus budding in this work. We found that if the lipid molecules of the membrane are supplied fast enough from the cell interior, the budding always proceeds to completion. In the opposite limit, there is an optimal size of partially budded virions. The zenith angle of these partially spherical capsids, α, is given by α˜(2̂/κσ)^1/4, where κ is the bending modulus of the membrane, σ is the surface tension of the membrane, and τ characterizes the strength of capsid protein interaction. If τ is large enough such that α˜π, the budding is complete. Our model explained many features of retrovirus partial budding observed in experiments.

  17. Kinetics of human immunodeficiency virus budding and assembly

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Nguyen, Toan

    2009-03-01

    Human immunodeficiency virus (HIV) belongs to a large family of RNA viruses, retroviruses. Unlike budding of regular enveloped viruses, retroviruses bud concurrently with the assembly of retroviral capsids on the cell membrane. The kinetics of HIV (and other retroviruses) budding and assembly is therefore strongly affected by the elastic energy of the membrane and fundamentally different from regular viruses. The main result of this work shows that the kinetics is tunable from a fast budding process to a slow and effectively trapped partial budding process, by varying the attractive energy of retroviral proteins (call Gags), relative to the membrane elastic energy. When the Gag-Gag attraction is relatively high, the membrane elastic energy provides a kinetic barrier for the two pieces of the partial capsids to merge. This energy barrier determines the slowest step in the kinetics and the budding time. In the opposite limit, the membrane elastic energy provides not only a kinetic energy barrier, but a free energy barrier. The budding and assembly is effectively trapped at local free energy minimum, corresponding to a partially budded state. The time scale to escape from this metastable state is exponentially large. In both cases, our result fit with experimental measurements pretty well.

  18. Dormancy induction and release in buds and seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dormancy is a complex trait in both buds and seeds, which is an important mechanism for survival during the life cycle of plants. Over the years, a vast wealth of information has been generated on how environmental and developmental signals impact dormancy in buds and seeds. At the molecular level, ...

  19. Season of fire manipulates bud bank dynamics in northern mixed-grass prairie

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In perennial grassland dominated systems, belowground bud banks regulate plant community dynamics. Plant community responses to disturbance are largely driven by the ability to generate future aboveground growth originating from belowground axillary buds. This study examined bud bank dynamics for...

  20. Leaf phenology in relation to canopy closure in southern Appalachian trees.

    PubMed

    Lopez, Omar R; Farris-Lopez, Krista; Montgomery, Rebecca A; Givnish, Thomas J

    2008-11-01

    Leaf phenology varies markedly across tree species of temperate deciduous forests. Early leafing in spring may increase light capture and carbon gain prior to canopy closure, allowing saplings to survive in understory sites deeply shaded in midsummer. We quantified sapling leaf phenology for 18 tree species and seasonal variation in understory light availability at three sites along a ridge-slope-cove landform gradient in the Great Smoky Mountains National Park. Early leafing species (e.g., Aesculus flava, Carpinus caroliniana) broke bud an average of 24 d before late leafers (e.g., Magnolia fraseri, Nyssa sylvatica). Canopy closure occurred 14-18 d earlier and summer understory light was on average 63-74% lower on intermediate and mesic sites than on the xeric site. Early leafing species intercepted 45-80% of their growing season photon flux before canopy closure vs. 8-15% for late leafers. However, earlier leafing increased exposure to freezing temperatures by 5.5% per week near the mean time of bud break. Early leafing is strongly correlated with midsummer shade, risk of freezing temperatures, and distribution on mesic sites across a "main spectrum" of 15 deciduous species. Differences in leaf phenology and resultant impacts on spring carbon gain may help determine tree shade tolerance and distribution in southern Appalachian forests.

  1. Rabies virus inactivates cofilin to facilitate viral budding and release.

    PubMed

    Zan, Jie; An, Shu-Ting; Mo, Kai-Kun; Zhou, Jian-Wei; Liu, Juan; Wang, Hai-Long; Yan, Yan; Liao, Min; Zhou, Ji-Yong

    2016-09-01

    Cytoplasmic actin and actin-associated proteins have been identified in RABV particles. Although actin is involved in RABV entry into cells, the specific role of actin in RABV budding and release remains unknown. Our study found that RABV M protein-mediated virion budding depends on intact actin filaments. Confocal microscopy demonstrated a block to virions budding, with a number of M protein-mediated budding vesicles detained in the cell cytoplasm. Furthermore, RABV infection resulted in inactivation of cofilin and upregulation of phosphorylated cofilin. Knockdown of cofilin reduced RABV release. These results for the first time indicate that RABV infection resulted in upregulation of phosphorylated cofilin to facililtate actin polymerization for virus budding. PMID:27396619

  2. Transcription profiling of the chilling requirement for bud break in apples: a putative role for FLC-like genes.

    PubMed

    Porto, Diogo Denardi; Bruneau, Maryline; Perini, Pâmela; Anzanello, Rafael; Renou, Jean-Pierre; dos Santos, Henrique Pessoa; Fialho, Flávio Bello; Revers, Luís Fernando

    2015-05-01

    Apple production depends on the fulfilment of a chilling requirement for bud dormancy release. Insufficient winter chilling results in irregular and suboptimal bud break in the spring, with negative impacts on apple yield. Trees from apple cultivars with contrasting chilling requirements for bud break were used to investigate the expression of the entire set of apple genes in response to chilling accumulation in the field and controlled conditions. Total RNA was analysed on the AryANE v.1.0 oligonucleotide microarray chip representing 57,000 apple genes. The data were tested for functional enrichment, and differential expression was confirmed by real-time PCR. The largest number of differentially expressed genes was found in samples treated with cold temperatures. Cold exposure mostly repressed expression of transcripts related to photosynthesis, and long-term cold exposure repressed flavonoid biosynthesis genes. Among the differentially expressed selected candidates, we identified genes whose annotations were related to the circadian clock, hormonal signalling, regulation of growth, and flower development. Two genes, annotated as FLOWERING LOCUS C-like and MADS AFFECTING FLOWERING, showed strong differential expression in several comparisons. One of these two genes was upregulated in most comparisons involving dormancy release, and this gene's chromosomal position co-localized with the confidence interval of a major quantitative trait locus for the timing of bud break. These results indicate that photosynthesis and auxin transport are major regulatory nodes of apple dormancy and unveil strong candidates for the control of bud dormancy.

  3. This bud's for you: mechanisms of cellular nucleocytoplasmic trafficking via nuclear envelope budding.

    PubMed

    Fradkin, Lee G; Budnik, Vivian

    2016-08-01

    The nuclear envelope (NE) physically separates the cytoplasmic and nuclear compartments. While this barrier provides advantages, it also presents a challenge for the nuclear export of large ribonucleoprotein (RNP) complexes. Decades-old dogma holds that all such border-crossing is via the nuclear pore complex (NPC). However, the diameter of the NPC central channel limits the passage of large cargos. Here, we review evidence that such large RNPs employ an endogenous NE-budding pathway, previously thought to be exclusive to the nuclear egress of Herpes viruses. We discuss this and other models proposed, the likelihood that this pathway is conserved, and the consequences of disrupting NE-budding for synapse development, localized translation of synaptic mRNAs, and laminopathies inducing accelerated aging. PMID:27236823

  4. Budding yeast for budding geneticists: a primer on the Saccharomyces cerevisiae model system.

    PubMed

    Duina, Andrea A; Miller, Mary E; Keeney, Jill B

    2014-05-01

    The budding yeast Saccharomyces cerevisiae is a powerful model organism for studying fundamental aspects of eukaryotic cell biology. This Primer article presents a brief historical perspective on the emergence of this organism as a premier experimental system over the course of the past century. An overview of the central features of the S. cerevisiae genome, including the nature of its genetic elements and general organization, is also provided. Some of the most common experimental tools and resources available to yeast geneticists are presented in a way designed to engage and challenge undergraduate and graduate students eager to learn more about the experimental amenability of budding yeast. Finally, a discussion of several major discoveries derived from yeast studies highlights the far-reaching impact that the yeast system has had and will continue to have on our understanding of a variety of cellular processes relevant to all eukaryotes, including humans.

  5. Budding Yeast for Budding Geneticists: A Primer on the Saccharomyces cerevisiae Model System

    PubMed Central

    Duina, Andrea A.; Miller, Mary E.; Keeney, Jill B.

    2014-01-01

    The budding yeast Saccharomyces cerevisiae is a powerful model organism for studying fundamental aspects of eukaryotic cell biology. This Primer article presents a brief historical perspective on the emergence of this organism as a premier experimental system over the course of the past century. An overview of the central features of the S. cerevisiae genome, including the nature of its genetic elements and general organization, is also provided. Some of the most common experimental tools and resources available to yeast geneticists are presented in a way designed to engage and challenge undergraduate and graduate students eager to learn more about the experimental amenability of budding yeast. Finally, a discussion of several major discoveries derived from yeast studies highlights the far-reaching impact that the yeast system has had and will continue to have on our understanding of a variety of cellular processes relevant to all eukaryotes, including humans. PMID:24807111

  6. Calling Card Analysis in Budding Yeast.

    PubMed

    Mayhew, David; Mitra, Robi D

    2016-02-01

    Calling card analysis is a high-throughput method for identifying the genomic binding sites of multiple transcription factors in a single experiment in budding yeast. By tagging a DNA-binding protein with a targeting domain that directs the insertion of the Ty5 retrotransposon, the genomic binding sites for that transcription factor are marked. The transposition locations are then identified en masse by Illumina sequencing. The calling card protocol allows for simultaneous analysis of multiple transcription factors. By cloning barcodes into the Ty5 transposon, it is possible to pair a unique barcode with every transcription factor in the experiment. The method presented here uses expression of transcription factors from their native loci; however, it can also be altered to measure binding sites of transcription factors overexpressed from a plasmid. PMID:26832687

  7. Effect of Growth Regulators on CO2 Assimilation in Leaves, and its Correlation with the Bud Break Response in Photosynthesis 1

    PubMed Central

    Bidwell, R. G. S.; Turner, Wendy B.

    1966-01-01

    Experiments have been done to confirm the previously reported effect of indoleacetic acid (IAA) on the rate of CO2 assimilation in bean leaves. It was shown that spraying the leaves of a variety of plants caused an increase in the rate of CO2 assimilation from 30% to 100% during the half-hour to 1 hour period following spraying. The only plant tested which did not show such an effect was corn. The breaking of dormancy of axial buds in the bean plant was correlated with an increase in the rate of CO2 assimilation in adjacent leaves for a brief period of time. It has been shown that IAA solution sprayed on 1 leaflet of a leaf can cause an increase in the rate of CO2 assimilation in the other leaflets, and that IAA applied to the cut stem of a leaflet or a developing bud can be transported to adjacent leaves and cause an increase in the CO2 assimilation rate. The reaction caused by IAA is very similar to that caused by the breaking of dormancy of a bud. This indicates that the bud break response in CO2 assimilation in leaves is caused by auxin synthesized in a bud as it begins to grow, and exported into adjacent leaves. PMID:16656249

  8. Measuring mitotic spindle dynamics in budding yeast

    NASA Astrophysics Data System (ADS)

    Plumb, Kemp

    In order to carry out its life cycle and produce viable progeny through cell division, a cell must successfully coordinate and execute a number of complex processes with high fidelity, in an environment dominated by thermal noise. One important example of such a process is the assembly and positioning of the mitotic spindle prior to chromosome segregation. The mitotic spindle is a modular structure composed of two spindle pole bodies, separated in space and spanned by filamentous proteins called microtubules, along which the genetic material of the cell is held. The spindle is responsible for alignment and subsequent segregation of chromosomes into two equal parts; proper spindle positioning and timing ensure that genetic material is appropriately divided amongst mother and daughter cells. In this thesis, I describe fluorescence confocal microscopy and automated image analysis algorithms, which I have used to observe and analyze the real space dynamics of the mitotic spindle in budding yeast. The software can locate structures in three spatial dimensions and track their movement in time. By selecting fluorescent proteins which specifically label the spindle poles and cell periphery, mitotic spindle dynamics have been measured in a coordinate system relevant to the cell division. I describe how I have characterised the accuracy and precision of the algorithms by simulating fluorescence data for both spindle poles and the budding yeast cell surface. In this thesis I also describe the construction of a microfluidic apparatus that allows for the measurement of long time-scale dynamics of individual cells and the development of a cell population. The tools developed in this thesis work will facilitate in-depth quantitative analysis of the non-equilibrium processes in living cells.

  9. The essential oil of Populus balsamifera buds: its chemical composition and cytotoxic activity.

    PubMed

    Piochon-Gauthier, Marianne; Legault, Jean; Sylvestre, Muriel; Pichette, André

    2014-02-01

    The chemical composition of Populus balsamifera essential oils obtained from spring buds, fall buds, and young leaves were determined by GC and GC-MS analyses. The major constituent, (+)-alpha-bisabolol, a rare sesquiterpene, was isolated from spring oil using reverse-phase preparative HPLC. The cytotoxic activity of balsam poplar oils and isolated (+)-alpha-bisabolol was assessed in vitro against human lung carcinoma (A549) and colorectal adenocarcinoma (DLD-1) cell lines. Essential oils were cytotoxic with IC50 ranging from 35 to 50 microg/mL. (+)-alpha-Bisabolol exhibited pronounced activity (IC50 14 microg/mL) against both cancer cell lines. It also exhibited interesting cytotoxic activity (IC50 23 microg/mL) against human glioma (U251), higher than the one observed for (-)-alpha-bisabolol (IC50 34 microg/mL), which is known for its apoptosis-inducing effect against glioma cells.

  10. Transcriptome analysis of chestnut (Castanea sativa) tree buds suggests a putative role for epigenetic control of bud dormancy

    PubMed Central

    Santamaría, María Estrella; Rodríguez, Roberto; Cañal, María Jesús; Toorop, Peter E.

    2011-01-01

    Background and Aims Recent papers indicated that epigenetic control is involved in transitions in bud dormancy, purportedly controlling gene expression. The present study aimed to identify genes that are differentially expressed in dormant and non-dormant Castanea sativa buds. Methods Two suppression subtractive hybridization cDNA libraries were constructed to characterize the transcriptomes of dormant apical buds of C. sativa, and buds in which dormancy was released. Key Results A total of 512 expressed sequence tags (ESTs) were generated in a forward and reverse subtractive hybridization experiment. Classification of these ESTs into functional groups demonstrated that dormant buds were predominantly characterized by genes associated with stress response, while non-dormant buds were characterized by genes associated with energy, protein synthesis and cellular components for development and growth. ESTs for a few genes involved in different forms of epigenetic modification were found in both libraries, suggesting a role for epigenetic control in bud dormancy different from that in growth. Genes encoding histone mono-ubiquitinase HUB2 and histone acetyltransferase GCN5L were associated with dormancy, while a gene encoding histone H3 kinase AUR3 was associated with growth. Real-time RT-PCR with a selection of genes involved in epigenetic modification and stress tolerance confirmed the expression of the majority of investigated genes in various stages of bud development, revealing a cyclical expression pattern concurring with the growth seasons for most genes. However, senescing leaves also showed an increased expression of several of the genes associated with dormancy, implying pleiotropy. Furthermore, a comparison between these subtraction cDNA libraries and the poplar bud dormancy transcriptome and arabidopsis transcriptomes for seed dormancy and non-dormancy indicated a common basis for dormancy in all three systems. Conclusions Bud dormancy and non-dormancy in C

  11. Changes in Leaf Trichomes and Epicuticular Flavonoids during Leaf Development in Three Birch Taxa

    PubMed Central

    VALKAMA, ELENA; SALMINEN, JUHA-PEKKA; KORICHEVA, JULIA; PIHLAJA, KALEVI

    2004-01-01

    • Background and Aims Changes in number of trichomes and in composition and concentrations of their exudates throughout leaf development may have important consequences for plant adaptation to abiotic and biotic factors. In the present study, seasonal changes in leaf trichomes and epicuticular flavonoid aglycones in three Finnish birch taxa (Betula pendula, B. pubescens ssp. pubescens, and B. pubescens ssp. czerepanovii) were followed. • Methods Trichome number and ultrastructure were studied by means of light, scanning and transmission electron microscopy, while flavonoid aglycones in ethanolic leaf surface extracts were analysed by high-pressure liquid chromatography. • Key Results Density of both glandular and non-glandular trichomes decreased drastically with leaf expansion while the total number of trichomes per leaf remained constant, indicating that the final number of trichomes is established early in leaf development. Cells of glandular trichomes differentiate before those of the epidermis and produce secreted material only during the relatively short period (around 1–2 weeks) of leaf unfolding and expansion. In fully expanded leaves, glandular trichomes appeared to be at the post-secretory phase and function mainly as storage organs; they contained lipid droplets and osmiophilic material (probably phenolics). Concentrations (mg g−1 d. wt) of surface flavonoids decreased with leaf age in all taxa. However, the changes in total amount (µg per leaf) of flavonoids during leaf development were taxon-specific: no changes in B. pubescens ssp. czerepanovii, increase in B. pendula and in B. pubescens ssp. pubescens followed by the decline in the latter taxon. Concentrations of most of the individual leaf surface flavonoids correlated positively with the density of glandular trichomes within species, suggesting the participation of glandular trichomes in production of surface flavonoids. • Conclusions Rapid decline in the density of leaf trichomes and

  12. Taste bud homeostasis in health, disease, and aging.

    PubMed

    Feng, Pu; Huang, Liquan; Wang, Hong

    2014-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50-100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8-12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging.

  13. Molecular and Pathogenetic Aspects of Tumor Budding in Colorectal Cancer

    PubMed Central

    Dawson, Heather; Lugli, Alessandro

    2015-01-01

    In recent years, tumor budding in colorectal cancer has gained much attention as an indicator of lymph node metastasis, distant metastatic disease, local recurrence, worse overall and disease-free survival, and as an independent prognostic factor. Tumor buds, defined as the presence of single tumor cells or small clusters of up to five tumor cells at the peritumoral invasive front (peritumoral buds) or within the main tumor body (intratumoral buds), are thought to represent the morphological correlate of cancer cells having undergone epithelial–mesenchymal transition (EMT), an important mechanism for the progression of epithelial cancers. In contrast to their undisputed prognostic power and potential to influence clinical management, our current understanding of the biological background of tumor buds is less established. Most studies examining tumor buds have attempted to recapitulate findings of mechanistic EMT studies using immunohistochemical markers. The aim of this review is to provide a comprehensive summary of studies examining protein expression profiles of tumor buds and to illustrate the molecular pathways and crosstalk involved in their formation and maintenance. PMID:25806371

  14. A permeability barrier surrounds taste buds in lingual epithelia

    PubMed Central

    Dando, Robin; Pereira, Elizabeth; Kurian, Mani; Barro-Soria, Rene; Chaudhari, Nirupa

    2014-01-01

    Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003–1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste. PMID:25209263

  15. A permeability barrier surrounds taste buds in lingual epithelia.

    PubMed

    Dando, Robin; Pereira, Elizabeth; Kurian, Mani; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D

    2015-01-01

    Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003-1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste.

  16. Taste bud homeostasis in health, disease, and aging.

    PubMed

    Feng, Pu; Huang, Liquan; Wang, Hong

    2014-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50-100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8-12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging. PMID:24287552

  17. Negative feedback regulation of auxin signaling by ATHB8/ACL5-BUD2 transcription module.

    PubMed

    Baima, Simona; Forte, Valentina; Possenti, Marco; Peñalosa, Andrés; Leoni, Guido; Salvi, Sergio; Felici, Barbara; Ruberti, Ida; Morelli, Giorgio

    2014-06-01

    The role of auxin as main regulator of vascular differentiation is well established, and a direct correlation between the rate of xylem differentiation and the amount of auxin reaching the (pro)cambial cells has been proposed. It has been suggested that thermospermine produced by ACAULIS5 (ACL5) and bushy and dwarf2 (BUD2) is one of the factors downstream to auxin contributing to the regulation of this process in Arabidopsis. Here, we provide an in-depth characterization of the mechanism through which ACL5 modulates xylem differentiation. We show that an increased level of ACL5 slows down xylem differentiation by negatively affecting the expression of homeodomain-leucine zipper (HD-ZIP) III and key auxin signaling genes. This mechanism involves the positive regulation of thermospermine biosynthesis by the HD-ZIP III protein Arabidopsis thaliana homeobox8 tightly controlling the expression of ACL5 and BUD2. In addition, we show that the HD-ZIP III protein REVOLUTA contributes to the increased leaf vascularization and long hypocotyl phenotype of acl5 likely by a direct regulation of auxin signaling genes such as like auxin resistant2 (LAX2) and LAX3. We propose that proper formation and differentiation of xylem depend on a balance between positive and negative feedback loops operating through HD-ZIP III genes.

  18. Characterization of Septin Ultrastructure in Budding Yeast Using Electron Tomography

    PubMed Central

    Bertin, Aurélie; Nogales, Eva

    2015-01-01

    Summary Septins are essential for the completion of cytokinesis. In budding yeast, Saccharomyces cerevisiae, septins are located at the bud neck during mitosis and are closely connected to the inner plasma membrane. In vitro, yeast septins have been shown to self-assemble into a variety of filamentous structures, including rods, paired filaments, bundles and rings [1–3]. Using electron tomography of freeze-substituted section and cryo-electron tomography of frozen sections, we determined the three dimensional organization of the septin cytoskeleton in dividing budding yeast with molecular resolution [4,5]. Here we describe the detailed procedures used for our characterization of the septin cellular ultrastructure. PMID:26519309

  19. [Establishment of high frequency regeneration via leaf explants of 'Red Sun' kiwifruit (Actinidia chinensis)].

    PubMed

    Zhao, Xupeng; Luo, Keming; Zhou, Yue; Wu, Xiuhua; Yang, Li; Tang, Shaohu

    2013-11-01

    A high efficient in vitro regeneration protocol was developed from leaf explants of the female 'Red Sun' kiwifruit (Actinidia chinensis) and the multiplication coefficient and rooting rate of adventitious buds were also optimized. This method does not require formation of callus tissues which leads to somaclonal variations. The results show that the adventitious buds developing directly from explants tissue were noticed after 30 d of culture. The maximum regeneration frequency of adventitious buds is 100% and 18.67 shoots was observed in each leaf explants when MS medium was supplemented with 3.0 mg/L BA+1.0 mg/L NAA. The optimal culture medium for bud multiplication is MS+2.0 mg/L BA+1.0 mg/L NAA+0.1 mg/L GA3 and the multiplication coefficient reached 8.63. On the rooting medium with 1/2 MS+0.8 mg/L IBA for 15 d, the adventitious plantlets were transferred into matrix perlite supplied with 1/2 MS liquid medium for 15 d and the rooting rate reached 100%. 95 out of 98 plantlets (96.94%) survived acclimatization, producing healthy plants in the greenhouse. Taken together, a highly efficient regeneration method via leaf explants of 'Red Sun' kiwifruit was successfully established. This protocol may be useful for micropropagation and genetic transformation studies of 'Red Sun' kiwifruit.

  20. Transcriptomic analysis of ‘Suli’ pear (Pyrus pyrifolia white pear group) buds during the dormancy by RNA-Seq

    PubMed Central

    2012-01-01

    Background Bud dormancy is a critical developmental process that allows perennial plants to survive unfavorable environmental conditions. Pear is one of the most important deciduous fruit trees in the world, but the mechanisms regulating bud dormancy in this species are unknown. Because genomic information for pear is currently unavailable, transcriptome and digital gene expression data for this species would be valuable resources to better understand the molecular and biological mechanisms regulating its bud dormancy. Results We performed de novo transcriptome assembly and digital gene expression (DGE) profiling analyses of ‘Suli’ pear (Pyrus pyrifolia white pear group) using the Illumina RNA-seq system. RNA-Seq generated approximately 100 M high-quality reads that were assembled into 69,393 unigenes (mean length = 853 bp), including 14,531 clusters and 34,194 singletons. A total of 51,448 (74.1%) unigenes were annotated using public protein databases with a cut-off E-value above 10-5. We mainly compared gene expression levels at four time-points during bud dormancy. Between Nov. 15 and Dec. 15, Dec. 15 and Jan. 15, and Jan. 15 and Feb. 15, 1,978, 1,024, and 3,468 genes were differentially expressed, respectively. Hierarchical clustering analysis arranged 190 significantly differentially-expressed genes into seven groups. Seven genes were randomly selected to confirm their expression levels using quantitative real-time PCR. Conclusions The new transcriptomes offer comprehensive sequence and DGE profiling data for a dynamic view of transcriptomic variation during bud dormancy in pear. These data provided a basis for future studies of metabolism during bud dormancy in non-model but economically-important perennial species. PMID:23234335

  1. Micropropagation of Helleborus through axillary budding.

    PubMed

    Beruto, Margherita; Viglione, Serena; Bisignano, Alessandro

    2013-01-01

    Helleborus genus, belonging to the Ranunculaceae family, has 20 species of herbaceous perennial flowering plants. The commercial exploitation of this plant is dependent on the selection and propagation of appropriate lines. High propagation rate could be accomplished by using a suitable tissue culture method enabling the rapid introduction of valuable selections in the market. However, in vitro cultivation of Helleborus is still very difficult. Thereby the development of reliable in vitro propagation procedures is crucial for future production systems. Axillary buds cultured on agar-solidified Murashige and Skoog medium supplemented with 1 mg/L benzyladenine, 0.1 mg/L β-naphthoxyacetic acid, and 2 mg/L isopentenyl adenine develop shoots after 16 weeks of culture under 16 h light regime, 50-60 μmol/s/m(2), and 19 ± 1°C. The multiplication rate ranges from 1.4 to 2.1. However, the genotype and the number of subcultures affect the efficiency of the micropropagation process. The rooting of shoots is about 80% in solidified MS medium containing 1 mg/L 1-naphthaleneacetic acid and 3 mg/L indole-3-butyric acid. The described protocol provides information which can contribute to the commercial production of Helleborus plants.

  2. Mechanical feedback stabilizes budding yeast morphogenesis

    NASA Astrophysics Data System (ADS)

    Banavar, Samhita; Trogdon, Michael; Petzold, Linda; Campas, Otger

    Walled cells have the ability to remodel their shape while sustaining an internal turgor pressure that can reach values up to 10 atmospheres. This requires a tight and simultaneous regulation of cell wall assembly and mechanochemistry, but the underlying mechanisms by which this is achieved remain unclear. Using the growth of mating projections in budding yeast (S. cerevisiae) as a motivating example, we have developed a theoretical description that couples the mechanics of cell wall expansion and assembly via a mechanical feedback. In the absence of a mechanical feedback, cell morphogenesis is inherently unstable. The presence of a mechanical feedback stabilizes changes in cell shape and growth, and provides a mechanism to prevent cell lysis in a wide range of conditions. We solve for the dynamics of the system and obtain the different dynamical regimes. In particular, we show that several parameters affect the stability of growth, including the strength of mechanical feedback in the system. Finally, we compare our results to existing experimental data.

  3. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    NASA Astrophysics Data System (ADS)

    Shibata, M.; Torigoe, M.; Matsumoto, Y.; Yamamoto, M.; Takizawa, N.; Hada, Y.; Mori, Y.; Takarabe, K.; Ono, F.

    2014-05-01

    Our studies on the tolerance of plants and animals against very high pressure of several GPa have been extended to a smaller sized fungus, the budding yeast Saccharomyces cerevisiae. Several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate, and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar. It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for longer than 12 h were found dead. The high pressure tolerance of budding yeast is a little weaker than that of tardigrades.

  4. Innervation of the undifferentiated limb bud in rabbit embryo.

    PubMed Central

    Cameron, J; McCredie, J

    1982-01-01

    The concept that there are no nerves in the limb bud of mammalian embryos prior to differentiation has been re-examined. Rabbit embryos were collected at 260 and 290 hours gestation, which is prior to cartilage formation in the forelimb at 320 hours. Forelimb buds and adjacent neural tube were excised, fixed and embedded for light and electron microscopy. The limb buds were sectioned in two planes by serial 1 micrometer sections and inspected by light microscopy. Bundles of nerve fibres were seen within the proximal third of the limb bud, with distal ramification into adjacent zones of condensing mesenchyme. Electron microscopy confirmed the presence of axons and associated immature Schwann cells. These results demonstrate the existence of an anatomical framework through which a neurotrophic influence might be brought to bear upon mesenchyme prior to early differentiation. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 PMID:7130041

  5. Polarity-Driven Geometrical Cluster Growth Model of Budding Yeast

    NASA Astrophysics Data System (ADS)

    Cabral, Reniel B.; Lim, May T.

    We present a polarity-driven activator-inhibitor model of budding yeast in a two-dimensional medium wherein impeding metabolites secretion (or growth inhibitors) and growth directionality are determined by the local nutrient level. We found that colony size and morphological features varied with nutrient concentration. A branched-type morphology is associated with high impeding metabolite concentration together with a high fraction of distal budding, while opposite conditions (low impeding metabolite concentration, high fraction of proximal budding) promote Eden-type patterns. Increasing the anisotropy factor (or polarity) produced other spatial patterns akin to the electrical breakdown under varying electric field. Rapid changes in the colony morphology, which we conjecture to be equivalent to a transition from an inactive quiescent state to an active budding state, appeared when nutrients were limited.

  6. A Comparative Proteomic Analysis of the Buds and the Young Expanding Leaves of the Tea Plant (Camellia sinensis L.).

    PubMed

    Li, Qin; Li, Juan; Liu, Shuoqian; Huang, Jianan; Lin, Haiyan; Wang, Kunbo; Cheng, Xiaomei; Liu, Zhonghua

    2015-06-18

    Tea (Camellia sinensis L.) is a perennial woody plant that is widely cultivated to produce a popular non-alcoholic beverage; this beverage has received much attention due to its pleasant flavor and bioactive ingredients, particularly several important secondary metabolites. Due to the significant changes in the metabolite contents of the buds and the young expanding leaves of tea plants, high-performance liquid chromatography (HPLC) analysis and isobaric tags for relative and absolute quantitation (iTRAQ) analysis were performed. A total of 233 differentially expressed proteins were identified. Among these, 116 proteins were up-regulated and 117 proteins were down-regulated in the young expanding leaves compared with the buds. A large array of diverse functions was revealed, including roles in energy and carbohydrate metabolism, secondary metabolite metabolism, nucleic acid and protein metabolism, and photosynthesis- and defense-related processes. These results suggest that polyphenol biosynthesis- and photosynthesis-related proteins regulate the secondary metabolite content of tea plants. The energy and antioxidant metabolism-related proteins may promote tea leaf development. However, reverse transcription quantitative real-time PCR (RT-qPCR) showed that the protein expression levels were not well correlated with the gene expression levels. These findings improve our understanding of the molecular mechanism of the changes in the metabolite content of the buds and the young expanding leaves of tea plants.

  7. A Comparative Proteomic Analysis of the Buds and the Young Expanding Leaves of the Tea Plant (Camellia sinensis L.)

    PubMed Central

    Li, Qin; Li, Juan; Liu, Shuoqian; Huang, Jianan; Lin, Haiyan; Wang, Kunbo; Cheng, Xiaomei; Liu, Zhonghua

    2015-01-01

    Tea (Camellia sinensis L.) is a perennial woody plant that is widely cultivated to produce a popular non-alcoholic beverage; this beverage has received much attention due to its pleasant flavor and bioactive ingredients, particularly several important secondary metabolites. Due to the significant changes in the metabolite contents of the buds and the young expanding leaves of tea plants, high-performance liquid chromatography (HPLC) analysis and isobaric tags for relative and absolute quantitation (iTRAQ) analysis were performed. A total of 233 differentially expressed proteins were identified. Among these, 116 proteins were up-regulated and 117 proteins were down-regulated in the young expanding leaves compared with the buds. A large array of diverse functions was revealed, including roles in energy and carbohydrate metabolism, secondary metabolite metabolism, nucleic acid and protein metabolism, and photosynthesis- and defense-related processes. These results suggest that polyphenol biosynthesis- and photosynthesis-related proteins regulate the secondary metabolite content of tea plants. The energy and antioxidant metabolism-related proteins may promote tea leaf development. However, reverse transcription quantitative real-time PCR (RT-qPCR) showed that the protein expression levels were not well correlated with the gene expression levels. These findings improve our understanding of the molecular mechanism of the changes in the metabolite content of the buds and the young expanding leaves of tea plants. PMID:26096006

  8. Real Life Science with Dandelions and Project BudBurst.

    PubMed

    Johnson, Katherine A

    2016-03-01

    Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone. Journal of Microbiology & Biology Education. PMID:27047605

  9. Real Life Science with Dandelions and Project BudBurst.

    PubMed

    Johnson, Katherine A

    2016-03-01

    Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone. Journal of Microbiology & Biology Education.

  10. Real Life Science with Dandelions and Project BudBurst

    PubMed Central

    Johnson, Katherine A.

    2016-01-01

    Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone. Journal of Microbiology & Biology Education PMID:27047605

  11. Impact of peritumoral and intratumoral budding in esophageal adenocarcinomas.

    PubMed

    Thies, Svenja; Guldener, Lars; Slotta-Huspenina, Julia; Zlobec, Inti; Koelzer, Viktor H; Lugli, Alessandro; Kröll, Dino; Seiler, Christian A; Feith, Marcus; Langer, Rupert

    2016-06-01

    Tumor budding has prognostic significance in many carcinomas and is defined as the presence of detached isolated single cells or small cell clusters up to 5 cells at the invasion front (peritumoral budding [PTB]) or within the tumor (intratumoral budding [ITB]). For esophageal adenocarcinomas (EACs), there are currently only few data about the impact of this morphological feature. We investigated tumor budding in a large collective of 200 primarily resected EACs. Pancytokeratin staining was demonstrated to be superior to hematoxylin and eosin staining for the detection of buds with substantial to excellent interobserver agreement and used for subsequent analysis. PTB and ITB were scored across 10 high-power fields (HPFs). The median count of tumor buds was 130/10 HPFs for PTB (range, 2-593) and 80/10 HPFs for ITB (range, 1-656). PTB and ITB correlated significantly with each other (r = 0.9; P < .001). High PTB and ITB rates were seen in more advanced tumor categories (P < .001 each); tumors with lymph node metastases (P < .001/P = .002); and lymphatic, vascular, and perineural invasion and higher tumor grading (P < .001 each). Survival analysis showed an association with worse survival for high-grade ITB (P = .029) but not PTB (P = .385). However, in multivariate analysis, lymph node and resection status, but not ITB, were independent prognostic parameters. In conclusion, PTB and ITB can be observed in EAC to various degrees. High-grade budding is associated with aggressive tumor phenotype. Assessment of tumor budding, especially ITB, may provide additional prognostic information about tumor behavior and may be useful in specific cases for risk stratification of EAC patients. PMID:26980046

  12. Paraphyly and budding speciation in the hairy snail (Pulmonata, Hygromiidae)

    PubMed Central

    Kruckenhauser, Luise; Duda, Michael; Bartel, Daniela; Sattmann, Helmut; Harl, Josef; Kirchner, Sandra; Haring, Elisabeth

    2014-01-01

    Delimitation of species is often complicated by discordance of morphological and genetic data. This may be caused by the existence of cryptic or polymorphic species. The latter case is particularly true for certain snail species showing an exceptionally high intraspecific genetic diversity. The present investigation deals with the Trochulus hispidus complex, which has a complicated taxonomy. Our analyses of the COI sequence revealed that individuals showing a T. hispidus phenotype are distributed in nine highly differentiated mitochondrial clades (showing p-distances up to 19%). The results of a parallel morphometric investigation did not reveal any differentiation between these clades, although the overall variability is quite high. The phylogenetic analyses based on 12S, 16S and COI sequences show that the T. hispidus complex is paraphyletic with respect to several other morphologically well-defined Trochulus species (T. clandestinus, T. villosus, T. villosulus and T. striolatus) which form well-supported monophyletic groups. The nc marker sequence (5.8S–ITS2–28S) shows only a clear separation of T. o. oreinos and T. o. scheerpeltzi, and a weakly supported separation of T. clandestinus, whereas all other species and the clades of the T. hispidus complex appear within one homogeneous group. The paraphyly of the T. hispidus complex reflects its complicated history, which was probably driven by geographic isolation in different glacial refugia and budding speciation. At our present state of knowledge, it cannot be excluded that several cryptic species are embedded within the T. hispidus complex. However, the lack of morphological differentiation of the T. hispidus mitochondrial clades does not provide any hints in this direction. Thus, we currently do not recommend any taxonomic changes. The results of the current investigation exemplify the limitations of barcoding attempts in highly diverse species such as T. hispidus. PMID:25170185

  13. Tumor Budding: The Name is EMT. Partial EMT.

    PubMed

    Grigore, Alexandru Dan; Jolly, Mohit Kumar; Jia, Dongya; Farach-Carson, Mary C; Levine, Herbert

    2016-01-01

    Tumor budding is a histological phenomenon encountered in various cancers, whereby individual malignant cells and/or small clusters of malignant cells are seen in the tumor stroma. Postulated to be mirror epithelial-mesenchymal transition, tumor budding has been associated with poor cancer outcomes. However, the vast heterogeneity in its exact definition, methodology of assessment, and patient stratification need to be resolved before it can be routinely used as a standardized prognostic feature. Here, we discuss the heterogeneity in defining and assessing tumor budding, its clinical significance across multiple cancer types, and its prospective implementation in clinical practice. Next, we review the emerging evidence about partial, rather than complete, epithelial-mesenchymal phenotype at the tumor bud level, and its connection with tumor proliferation, quiescence, and stemness. Finally, based on recent literature, indicating a co-expression of epithelial and mesenchymal markers in many tumor buds, we posit tumor budding to be a manifestation of this hybrid epithelial/mesenchymal phenotype displaying collective cell migration.

  14. Early epithelial signaling center governs tooth budding morphogenesis.

    PubMed

    Ahtiainen, Laura; Uski, Isa; Thesleff, Irma; Mikkola, Marja L

    2016-09-12

    During organogenesis, cell fate specification and patterning are regulated by signaling centers, specialized clusters of morphogen-expressing cells. In many organs, initiation of development is marked by bud formation, but the cellular mechanisms involved are ill defined. Here, we use the mouse incisor tooth as a model to study budding morphogenesis. We show that a group of nonproliferative epithelial cells emerges in the early tooth primordium and identify these cells as a signaling center. Confocal live imaging of tissue explants revealed that although these cells reorganize dynamically, they do not reenter the cell cycle or contribute to the growing tooth bud. Instead, budding is driven by proliferation of the neighboring cells. We demonstrate that the activity of the ectodysplasin/Edar/nuclear factor κB pathway is restricted to the signaling center, and its inactivation leads to fewer quiescent cells and a smaller bud. These data functionally link the signaling center size to organ size and imply that the early signaling center is a prerequisite for budding morphogenesis. PMID:27621364

  15. Tumor Budding: The Name is EMT. Partial EMT.

    PubMed Central

    Grigore, Alexandru Dan; Jolly, Mohit Kumar; Jia, Dongya; Farach-Carson, Mary C.; Levine, Herbert

    2016-01-01

    Tumor budding is a histological phenomenon encountered in various cancers, whereby individual malignant cells and/or small clusters of malignant cells are seen in the tumor stroma. Postulated to be mirror epithelial-mesenchymal transition, tumor budding has been associated with poor cancer outcomes. However, the vast heterogeneity in its exact definition, methodology of assessment, and patient stratification need to be resolved before it can be routinely used as a standardized prognostic feature. Here, we discuss the heterogeneity in defining and assessing tumor budding, its clinical significance across multiple cancer types, and its prospective implementation in clinical practice. Next, we review the emerging evidence about partial, rather than complete, epithelial-mesenchymal phenotype at the tumor bud level, and its connection with tumor proliferation, quiescence, and stemness. Finally, based on recent literature, indicating a co-expression of epithelial and mesenchymal markers in many tumor buds, we posit tumor budding to be a manifestation of this hybrid epithelial/mesenchymal phenotype displaying collective cell migration. PMID:27136592

  16. Cryotolerance of apple tree bud is independent of endodormancy.

    PubMed

    Bilavcik, Alois; Zamecnik, Jiri; Faltus, Milos

    2015-01-01

    Increasing interest in cryopreservation of dormant buds reveals the need for better understanding of the role of dormancy in cryotolerance. Dormancy stage and low-temperature survival of vegetative apple buds (Malus domestica Borkh.), cultivars 'Sampion' and 'Spartan', collected from orchard were evaluated during three seasons contrasting in temperature and precipitation throughout the arrested plant growth period. During each season, the cultivars differed either in the onset of the endodormancy or in the length of the endodormant period. A simple relation between endodormancy of the buds and their water content was not detected. The cryosurvival of vegetative apple buds of both cultivars correlated with their cold hardening without direct regard to their particular phase of dormancy. The period of the highest bud cryotolerance after low-temperature exposure overlapped with the endodormant period in some evaluated seasons. Both cultivars had the highest cryosurvival in December and January. The presented data were compared with our previous results from a dormancy study of in vitro apple culture. Endodormancy coincided with the period of successful cryosurvival of apple buds after liquid nitrogen exposure, but as such, it was not decisive for their survival and did not limit their successful cryopreservation.

  17. Leaf waxes in riparian trees: hydrogen isotopes, concentrations, and chain-length patterns

    NASA Astrophysics Data System (ADS)

    Tipple, B. J.; Ehleringer, J.; Doman, C.; Khachaturyan, S.

    2011-12-01

    The stable hydrogen isotope ratios of epicuticular leaf wax n-alkanes record aspects of a plant's ecophysiological conditions. However, it remains unclear as to whether n-alkane hydrogen isotope values (δ2H) directly reflect environmental water (source water or tissue water) or environmental water in combination with a biochemical fractionation. Furthermore, it is uncertain if leaf n-alkane δ2H values reflect a single time interval during leaf expansion or if n-alkane δ2H values record the combination of inputs throughout the entire lifespan of a leaf. These different possibilities will influence how leaf wax biomarkers are interpreted in both ecological and environmental reconstruction contexts. To address these issues, we sampled leaves/buds, stems, and water sources of five common western U.S. riparian species under natural field conditions throughout the growing season. Riparian species were selected because the input water source is most likely to be nearly constant through the growing season. We found that species in this study demonstrated marked and systematic variations in n-alkane concentration, average chain length, and δ2H values. Intraspecific patterns were consistent: average chain lengths and δ2H values increased from bud opening through full leaf expansion with little variation during the remainder of the sampling interval, while leaf-wax concentration as a fraction of total biomass increased throughout the growing season. These data imply that leaf-wax δ2H values reflect multiple periods of wax growth and that the leaf wax is continually produced throughout a leaf's lifespan.

  18. Two WUSCHEL-related homeobox genes, narrow leaf2 and narrow leaf3, control leaf width in rice.

    PubMed

    Ishiwata, Aiko; Ozawa, Misa; Nagasaki, Hiroshi; Kato, Makio; Noda, Yusaku; Yamaguchi, Takahiro; Nosaka, Misuzu; Shimizu-Sato, Sae; Nagasaki, Akie; Maekawa, Masahiko; Hirano, Hiro-Yuki; Sato, Yutaka

    2013-05-01

    Leaf shape is one of the key determinants of plant architecture. Leaf shape also affects the amount of sunlight captured and influences photosynthetic efficiency; thus, it is an important agronomic trait in crop plants. Understanding the molecular mechanisms governing leaf shape is a central issue of plant developmental biology and agrobiotechnology. Here, we characterized the narrow-leaf phenotype of FL90, a linkage tester line of rice (Oryza sativa). Light and scanning electron microscopic analyses of FL90 leaves revealed defects in the development of marginal regions and a reduction in the number of longitudinal veins. The narrow-leaf phenotype of FL90 shows a two-factor recessive inheritance and is caused by the loss of function of two WUSCHEL-related homeobox genes, NAL2 and NAL3 (NAL2/3), which are duplicate genes orthologous to maize NS1 and NS2 and to Arabidopsis PRS. The overexpression of NAL2/3 in transgenic rice plants results in wider leaves containing increased numbers of veins, suggesting that NAL2/3 expression regulates leaf width. Thus, NAL2/3 can be used to modulate leaf shape and improve agronomic yield in crop plants. PMID:23420902

  19. [Bud population dynamics of Phragmites australis in heterogeneous habitats of Northeast grassland, China].

    PubMed

    2015-02-01

    To adapt ecological environment, typical clonal plants can occur continuously by means of buds. The changes in the bud bank and bud flow in the heterogeneous habitats become the foundation for deep understanding the characteristics of vegetative propagation. By sampling soil from the unit area, a comparative analysis was performed for rhizome bud population dynamics of Phragmites australis community in both meadow soil and saline-alkali soil habitats in meadow grassland of Northeast China. The one-age class rhizome buds formed in the current year were used as input, with the other age classes rhizome buds as output, counting the dormancy buds and death buds. The results showed that the storage, input, output, dormancy, death and the input rates of P. australis rhizome bud populations in meadow soil habitat were significantly higher than that in saline-alkali habitat. There was no significant difference in output rate between the two habitats. The dormant rate in saline-alkali habitat was significantly greater than that in meadow soil habitat. The death rates remained at relatively low levels in both, less than 2%. With the going of growing season, the input buds and input rate of bud bank increased in the two habitats, while the output buds remained relatively stable. The output rate increased first and decreased later, the dormancy buds and dormant rate decreased. Bud bank and bud flow were positively related to soil moisture, soil organic matter and soil available nitrogen content. However, they were negatively related to soil pH value and soil available phosphorus content. Bud bank and bud flow had a similar seasonal variation. Constantly for both habitats, P. australis populations generated new rhizome buds supplied to the bud bank and kept a stable output to maintain their vegetative propagation.

  20. Electron Tomography Reveals the Steps in Filovirus Budding

    PubMed Central

    Welsch, Sonja; Kolesnikova, Larissa; Krähling, Verena; Riches, James D.; Becker, Stephan; Briggs, John A. G.

    2010-01-01

    The filoviruses, Marburg and Ebola, are non-segmented negative-strand RNA viruses causing severe hemorrhagic fever with high mortality rates in humans and nonhuman primates. The sequence of events that leads to release of filovirus particles from cells is poorly understood. Two contrasting mechanisms have been proposed, one proceeding via a “submarine-like” budding with the helical nucleocapsid emerging parallel to the plasma membrane, and the other via perpendicular “rocket-like” protrusion. Here we have infected cells with Marburg virus under BSL-4 containment conditions, and reconstructed the sequence of steps in the budding process in three dimensions using electron tomography of plastic-embedded cells. We find that highly infectious filamentous particles are released at early stages in infection. Budding proceeds via lateral association of intracellular nucleocapsid along its whole length with the plasma membrane, followed by rapid envelopment initiated at one end of the nucleocapsid, leading to a protruding intermediate. Scission results in local membrane instability at the rear of the virus. After prolonged infection, increased vesiculation of the plasma membrane correlates with changes in shape and infectivity of released viruses. Our observations demonstrate a cellular determinant of virus shape. They reconcile the contrasting models of filovirus budding and allow us to describe the sequence of events taking place during budding and release of Marburg virus. We propose that this represents a general sequence of events also followed by other filamentous and rod-shaped viruses. PMID:20442788

  1. Are there efferent synapses in fish taste buds?

    PubMed

    Reutter, Klaus; Witt, Martin

    2004-12-01

    In fish, nerve fibers of taste buds are organized within the bud's nerve fiber plexus. It is located between the sensory epithelium consisting of light and dark elongated cells and the basal cells. It comprises the basal parts and processes of light and dark cells that intermingle with nerve fibers, which are the dendritic endings of the taste sensory neurons belonging to the cranial nerves VII, IX or X. Most of the synapses at the plexus are afferent; they have synaptic vesicles on the light (or dark) cells side, which is presynaptic. In contrast, the presumed efferent synapses may be rich in synaptic vesicles on the nerve fibers (presynaptic) side, whereas the cells (postsynaptic) side may contain a subsynaptic cistern; a flat compartment of the smooth endoplasmic reticulum. This structure is regarded as a prerequisite of a typical efferent synapse, as occurring in cochlear and vestibular hair cells. In fish taste buds, efferent synapses are rare and were found only in a few species that belong to different taxa. The significance of efferent synapses in fish taste buds is not well understood, because efferent connections between the gustatory nuclei of the medulla with taste buds are not yet proved.

  2. Are there efferent synapses in fish taste buds?

    PubMed

    Reutter, Klaus; Witt, Martin

    2004-12-01

    In fish, nerve fibers of taste buds are organized within the bud's nerve fiber plexus. It is located between the sensory epithelium consisting of light and dark elongated cells and the basal cells. It comprises the basal parts and processes of light and dark cells that intermingle with nerve fibers, which are the dendritic endings of the taste sensory neurons belonging to the cranial nerves VII, IX or X. Most of the synapses at the plexus are afferent; they have synaptic vesicles on the light (or dark) cells side, which is presynaptic. In contrast, the presumed efferent synapses may be rich in synaptic vesicles on the nerve fibers (presynaptic) side, whereas the cells (postsynaptic) side may contain a subsynaptic cistern; a flat compartment of the smooth endoplasmic reticulum. This structure is regarded as a prerequisite of a typical efferent synapse, as occurring in cochlear and vestibular hair cells. In fish taste buds, efferent synapses are rare and were found only in a few species that belong to different taxa. The significance of efferent synapses in fish taste buds is not well understood, because efferent connections between the gustatory nuclei of the medulla with taste buds are not yet proved. PMID:16217620

  3. Growth and development of Brassica genotypes differing in endogenous gibberellin content. I. Leaf and reproductive development.

    PubMed

    Zanewich, K P; Rood, S B; Williams, P H

    1990-08-01

    Leaf and reproductive development were compared in 3 rapid cycling Brassica rapa genotypes grown for 4 weeks under greenhouse conditions. The dwarf mutant, rosette (ros), is gibberellin (GA)-deficient, while the tall mutant, elongated internode (ein), has enhanced endogenous GA levels. Germination was delayed in ros and a selection of a more severe form of ros, named dormant (do), has even more retarded germination and some seeds entirely fail to germinate. Seeds of do and ros respond to exogenous GA, by rapid germination. The 3 genotypes, ros, normal and ein, displayed similar developmental sequences, although floral bud formation and subsequent floral development and anthesis were delayed in ros. Conversely, anthesis was slightly accelerated in ein. Individual leaf areas were reduced in both ros and ein relative to the normal genotype, but leaf numbers were similar in all 3 genotypes. Differences in leaf morphology (heterophylly) were also observed; the normal genotype and ein plants possessed uniform leaf shapes and relatively smooth leaf margins, although petiole length was increased in ein. The mutant ros had scalloped leaf margins and convoluted leaf blades in addition to shortened petioles. These phenotypes suggest a role for GA in the regulation of germination and reproductive and leaf development in Brassica.

  4. Budding yeast colony growth study based on circular granular cell

    NASA Astrophysics Data System (ADS)

    Aprianti, Devi; Khotimah, S. N.; Viridi, S.

    2016-08-01

    Yeast colony growth can be modelled by using circular granular cells, which can grow and produce buds. The bud growth angle can be set to regulate cell budding pattern. Cohesion force, contact force and Stokes force were adopted to accommodate the behaviour and interactions among cells. Simulation steps are divided into two steps, the explicit step is due to cell growing and implicit step for the cell rearrangement. Only in explicit step that time change was performed. In this study, we examine the influence of cell diameter growth time and reproduction time combination toward the growth of cell number and colony formation. We find a commutative relation between the cell diameter growth time and reproduction time to the specific growth rate. The greater value of the multiplication of the parameters, the smaller specific growth rate is obtained. It also shows a linear correlation between the specific growth rate and colony diameter growth rate.

  5. Budding and vesiculation induced by conical membrane inclusions

    NASA Astrophysics Data System (ADS)

    Auth, Thorsten; Gompper, Gerhard

    2009-09-01

    Conical inclusions in a lipid bilayer generate an overall spontaneous curvature of the membrane that depends on concentration and geometry of the inclusions. Examples are integral and attached membrane proteins, viruses, and lipid domains. We propose an analytical model to study budding and vesiculation of the lipid bilayer membrane, which is based on the membrane bending energy and the translational entropy of the inclusions. If the inclusions are placed on a membrane with similar curvature radius, their repulsive membrane-mediated interaction is screened. Therefore, for high inclusion density the inclusions aggregate, induce bud formation, and finally vesiculation. Already with the bending energy alone our model allows the prediction of bud radii. However, in case the inclusions induce a single large vesicle to split into two smaller vesicles, bending energy alone predicts that the smaller vesicles have different sizes whereas the translational entropy favors the formation of equal-sized vesicles. Our results agree well with those of recent computer simulations.

  6. Light Signaling in Bud Outgrowth and Branching in Plants

    PubMed Central

    Leduc, Nathalie; Roman, Hanaé; Barbier, François; Péron, Thomas; Huché-Thélier, Lydie; Lothier, Jérémy; Demotes-Mainard, Sabine; Sakr, Soulaiman

    2014-01-01

    Branching determines the final shape of plants, which influences adaptation, survival and the visual quality of many species. It is an intricate process that includes bud outgrowth and shoot extension, and these in turn respond to environmental cues and light conditions. Light is a powerful environmental factor that impacts multiple processes throughout plant life. The molecular basis of the perception and transduction of the light signal within buds is poorly understood and undoubtedly requires to be further unravelled. This review is based on current knowledge on bud outgrowth-related mechanisms and light-mediated regulation of many physiological processes. It provides an extensive, though not exhaustive, overview of the findings related to this field. In parallel, it points to issues to be addressed in the near future. PMID:27135502

  7. Global Climatic Controls On Leaf Size

    NASA Astrophysics Data System (ADS)

    Wright, I. J.; Prentice, I. C.; Dong, N.; Maire, V.

    2015-12-01

    Since the 1890s it's been known that the wet tropics harbour plants with exceptionally large leaves. Yet the observed latitudinal gradient of leaf size has never been fully explained: it is still unclear which aspects of climate are most important for understanding geographic trends in leaf size, a trait that varies many thousand-fold among species. The key is the leaf-to-air temperature difference, which depends on the balance of energy inputs (irradiance) and outputs (transpirational cooling, losses to the night sky). Smaller leaves track air temperatures more closely than larger leaves. Widely cited optimality-based theories predict an advantage for smaller leaves in dry environments, where transpiration is restricted, but are silent on the latitudinal gradient. We aimed to characterize and explain the worldwide pattern of leaf size. Across 7900 species from 651 sites, here we show that: large-leaved species predominate in wet, hot, sunny environments; smaller-leaved species typify hot, sunny environments only when arid; small leaves are required to avoid freezing in high latitudes and at high elevation, and to avoid overheating in dry environments. This simple pattern was unclear in earlier, more limited analyses. We present a simple but robust, fresh approach to energy-balance modelling for both day-time and night-time leaf-to-air temperature differences, and thus risk of overheating and of frost damage. Our analysis shows night-chilling is important as well as day-heating, and simplifies leaf temperature modelling. It provides both a framework for modelling leaf size constraints, and a solution to one of the oldest conundrums in ecology. Although the path forward is not yet fully clear, because of its role in controlling leaf temperatures we suggest that climate-related leaf size constraints could usefully feature in the next generation of land ecosystem models.

  8. Relationships among micronuclei, nucleoplasmic bridges and nuclear buds within individual cells in the cytokinesis-block micronucleus assay.

    PubMed

    Cheong, Han S J; Seth, Isheeta; Joiner, Michael C; Tucker, James D

    2013-07-01

    Micronuclei have been used extensively in studies as an easily evaluated indicator of DNA damage but little is known about their association with other types of damage such as nucleoplasmic bridges and nuclear buds. Here, radiation-induced clastogenic events were evaluated via the cytokinesis-block micronucleus assay in two normal human lymphoblastoid cell lines exposed to neutrons or γ-radiation. DNA damage induced by the chemical agents mitomycin C and phleomycin was also evaluated in two normal and two mitochondrial mutant human lymphoblastoid cell lines. In addition to micronuclei, nucleoplasmic bridges and nuclear buds were enumerated by recording the coincident presence of these end points within individual cells, and the associations among these three end points were evaluated for all treatment conditions. The common odds ratios for micronuclei and nucleoplasmic bridges were found to be significantly larger than unity, indicating that the presence of one or more micronuclei in a cell imposes a significant risk of having one or more nucleoplasmic bridges in that same cell, and vice versa. The strength of this association did not change significantly with radiation dose or concentration of the chemical clastogens. Common odds ratios for association between micronuclei and buds, and between bridges and buds were also found to be significantly higher than unity. However, associations between micronuclei and buds could not be calculated for some treatments due to heterogeneity in the odds ratios and hence may depend on chemical clastogen concentration or radiation dose. This study provides evidence of how paired analyses among genetic end points in the cytokinesis-block micronucleus assay can provide information concerning abnormalities of cell division and possibly about structural chromosomal rearrangements induced by clastogens.

  9. Activation of the Retroviral Budding Factor ALIX▿†

    PubMed Central

    Zhai, Qianting; Landesman, Michael B.; Chung, Hyo-Young; Dierkers, Adam; Jeffries, Cy M.; Trewhella, Jill; Hill, Christopher P.; Sundquist, Wesley I.

    2011-01-01

    The cellular ALIX protein functions within the ESCRT pathway to facilitate intralumenal endosomal vesicle formation, the abscission stage of cytokinesis, and enveloped virus budding. Here, we report that the C-terminal proline-rich region (PRR) of ALIX folds back against the upstream domains and auto-inhibits V domain binding to viral late domains. Mutations designed to destabilize the closed conformation of the V domain opened the V domain, increased ALIX membrane association, and enhanced virus budding. These observations support a model in which ALIX activation requires dissociation of the autoinhibitory PRR and opening of the V domain arms. PMID:21715492

  10. [Effects of cold-shock on the growth and flower bud differentiation of tomato seedlings under high temperature stress].

    PubMed

    Li, Sheng-li; Xia, Ya-zhen; Sun, Zhi-qiang

    2016-02-01

    In order to explore the effects of cold-shock on the growth and flower bud differentiation of tomato seedlings under high temperature, tomato seedlings were subjected to cold-shock treat- ments every day with 10 °C for 10 minutes in. an artificial climate chamber. Tomato seedlings were treated with cold-shock at the first true leaf stage and the treatment lasted for 15 days. Tomato seed- lings without cold-shock were used as control. At the fourth true leaf period of tomato seedlings, five plants were randomly sampled and the growth characteristics and the ultrastructure changes of meso- phyll cell of tomato seedlings were examined. The flower bud differentiation process of tomato seed- lings was observed at the periods of the second, fourth and sixth true leaves respectively. Flowering and fruiting of tomato seedlings were also investigated after transplanting. The results showed that the stem diameter and health index of tomato seedlings with cold-shock were enhanced by 7.2% and 55.5% compared with seedlings without cold-shock. Mesophyll cells of the seedlings with cold-shock arranged loosely and various organelles such as chloroplasts and mitochondria were morphologically integrated, while chloroplasts and mitochondria of seedlings mesophyll cells without cold-shock swelled up and thylakoids vacuolized apparently. The flower bud differentiation process of seedlings with cold-shock could be advanced significantly at the early seedling stage compared with the control and the advancement was weakened with the seedling growing. Fruit set number and percentage on the first and second inflorescence of tomato plants transplanted by seedlings with cold-shock were enhanced significantly compared with those of the control. These results indicated that the injury of membrane structure of various organelles, especially chloroplast and mitochondria could be allevia- ted by cold-shock treatment under high temperature tress. Cold-shock treatment could not only im- prove the

  11. [Effects of cold-shock on the growth and flower bud differentiation of tomato seedlings under high temperature stress].

    PubMed

    Li, Sheng-li; Xia, Ya-zhen; Sun, Zhi-qiang

    2016-02-01

    In order to explore the effects of cold-shock on the growth and flower bud differentiation of tomato seedlings under high temperature, tomato seedlings were subjected to cold-shock treat- ments every day with 10 °C for 10 minutes in. an artificial climate chamber. Tomato seedlings were treated with cold-shock at the first true leaf stage and the treatment lasted for 15 days. Tomato seed- lings without cold-shock were used as control. At the fourth true leaf period of tomato seedlings, five plants were randomly sampled and the growth characteristics and the ultrastructure changes of meso- phyll cell of tomato seedlings were examined. The flower bud differentiation process of tomato seed- lings was observed at the periods of the second, fourth and sixth true leaves respectively. Flowering and fruiting of tomato seedlings were also investigated after transplanting. The results showed that the stem diameter and health index of tomato seedlings with cold-shock were enhanced by 7.2% and 55.5% compared with seedlings without cold-shock. Mesophyll cells of the seedlings with cold-shock arranged loosely and various organelles such as chloroplasts and mitochondria were morphologically integrated, while chloroplasts and mitochondria of seedlings mesophyll cells without cold-shock swelled up and thylakoids vacuolized apparently. The flower bud differentiation process of seedlings with cold-shock could be advanced significantly at the early seedling stage compared with the control and the advancement was weakened with the seedling growing. Fruit set number and percentage on the first and second inflorescence of tomato plants transplanted by seedlings with cold-shock were enhanced significantly compared with those of the control. These results indicated that the injury of membrane structure of various organelles, especially chloroplast and mitochondria could be allevia- ted by cold-shock treatment under high temperature tress. Cold-shock treatment could not only im- prove the

  12. Do seasonal changes in light availability influence the inverse leafing phenology of the neotropical dry forest understory shrub Bonellia nervosa (Theophrastaceae)?

    PubMed

    Chaves, Oscar M; Avalos, Gerardo

    2008-03-01

    In tropical dry forests most plants are deciduous during the dry season and flush leaves with the onset of the rains. In Costa Rica, the only species displaying the opposite pattern is Bonellia nervosa. To determine if seasonal changes in light availability are associated with the leaf and reproductive phenology of this species, we monitored leaf production, survival, and life span, as well as flower and fruit production from April 2000 to October 2001 in Santa Rosa National Park. Leaf flushing and flower bud production took place shortly after the autumnal equinox when day length starts to decrease. Leaves began expansion at the end of the wet season, and plants reached 70 % of their maximum leaf area at the beginning of the dry season, maintaining their foliage throughout the entire dry period. Leaf shedding occurred gradually during the first three months of the wet season. Leaf flushing and shedding showed high synchrony, with leaf numbers being related to light availability. Maximum leaf production coincided with peaks in radiation during the middle of the dry season. Decreasing day length induces highly synchronous flower bud emergence in dry forest species, but this is the first study indicating induction of leaf flushing by declining day length. PMID:18624241

  13. Do seasonal changes in light availability influence the inverse leafing phenology of the neotropical dry forest understory shrub Bonellia nervosa (Theophrastaceae)?

    PubMed

    Chaves, Oscar M; Avalos, Gerardo

    2008-03-01

    In tropical dry forests most plants are deciduous during the dry season and flush leaves with the onset of the rains. In Costa Rica, the only species displaying the opposite pattern is Bonellia nervosa. To determine if seasonal changes in light availability are associated with the leaf and reproductive phenology of this species, we monitored leaf production, survival, and life span, as well as flower and fruit production from April 2000 to October 2001 in Santa Rosa National Park. Leaf flushing and flower bud production took place shortly after the autumnal equinox when day length starts to decrease. Leaves began expansion at the end of the wet season, and plants reached 70 % of their maximum leaf area at the beginning of the dry season, maintaining their foliage throughout the entire dry period. Leaf shedding occurred gradually during the first three months of the wet season. Leaf flushing and shedding showed high synchrony, with leaf numbers being related to light availability. Maximum leaf production coincided with peaks in radiation during the middle of the dry season. Decreasing day length induces highly synchronous flower bud emergence in dry forest species, but this is the first study indicating induction of leaf flushing by declining day length.

  14. Psidium guajava and Piper betle leaf extracts prolong vase life of cut carnation (Dianthus caryophyllus) flowers.

    PubMed

    Rahman, M M; Ahmad, S H; Lgu, K S

    2012-01-01

    The effect of leaf extracts of Psidium guajava and Piper betle on prolonging vase life of cut carnation flowers was studied. "Carola" and "Pallas Orange" carnation flowers, at bud stage, were pulsed 24 hours with a floral preservative. Then, flowers were placed in a vase solution containing sprite and a "germicide" (leaf extracts of P. guajava and P. betle, 8-HQC, or a copper coin). Flowers treated with 8-HQC, copper coin, and leaf extracts had longer vase life, larger flower diameter, and higher rate of water uptake compared to control (tap water). The leaf extracts of P. guajava and P. betle showed highest antibacterial and antifungal activities compared to the other treatments. Both showed similar effects on flower quality as the synthetic germicide, 8-HQC. Therefore, these extracts are likely natural germicides to prolong vase life of cut flowers.

  15. Psidium guajava and Piper betle leaf extracts prolong vase life of cut carnation (Dianthus caryophyllus) flowers.

    PubMed

    Rahman, M M; Ahmad, S H; Lgu, K S

    2012-01-01

    The effect of leaf extracts of Psidium guajava and Piper betle on prolonging vase life of cut carnation flowers was studied. "Carola" and "Pallas Orange" carnation flowers, at bud stage, were pulsed 24 hours with a floral preservative. Then, flowers were placed in a vase solution containing sprite and a "germicide" (leaf extracts of P. guajava and P. betle, 8-HQC, or a copper coin). Flowers treated with 8-HQC, copper coin, and leaf extracts had longer vase life, larger flower diameter, and higher rate of water uptake compared to control (tap water). The leaf extracts of P. guajava and P. betle showed highest antibacterial and antifungal activities compared to the other treatments. Both showed similar effects on flower quality as the synthetic germicide, 8-HQC. Therefore, these extracts are likely natural germicides to prolong vase life of cut flowers. PMID:22619568

  16. Psidium guajava and Piper betle Leaf Extracts Prolong Vase Life of Cut Carnation (Dianthus caryophyllus) Flowers

    PubMed Central

    Rahman, M. M.; Ahmad, S. H.; Lgu, K. S.

    2012-01-01

    The effect of leaf extracts of Psidium guajava and Piper betle on prolonging vase life of cut carnation flowers was studied. “Carola” and “Pallas Orange” carnation flowers, at bud stage, were pulsed 24 hours with a floral preservative. Then, flowers were placed in a vase solution containing sprite and a “germicide” (leaf extracts of P. guajava and P. betle, 8-HQC, or a copper coin). Flowers treated with 8-HQC, copper coin, and leaf extracts had longer vase life, larger flower diameter, and higher rate of water uptake compared to control (tap water). The leaf extracts of P. guajava and P. betle showed highest antibacterial and antifungal activities compared to the other treatments. Both showed similar effects on flower quality as the synthetic germicide, 8-HQC. Therefore, these extracts are likely natural germicides to prolong vase life of cut flowers. PMID:22619568

  17. Effects of environmental parameters, leaf physiological properties and leaf water relations on leaf water delta18O enrichment in different Eucalyptus species.

    PubMed

    Kahmen, Ansgar; Simonin, Kevin; Tu, Kevin P; Merchant, Andrew; Callister, Andrew; Siegwolf, Rolf; Dawson, Todd E; Arndt, Stefan K

    2008-06-01

    Stable oxygen isotope ratios (delta18O) have become a valuable tool in the plant and ecosystem sciences. The interpretation of delta18O values in plant material is, however, still complicated owing to the complex interactions among factors that influence leaf water enrichment. This study investigated the interplay among environmental parameters, leaf physiological properties and leaf water relations as drivers of the isotopic enrichment of leaf water across 17 Eucalyptus species growing in a common garden. We observed large differences in maximum daily leaf water delta18O across the 17 species. By fitting different leaf water models to these empirical data, we determined that differences in leaf water delta18O across species are largely explained by variation in the Péclet effect across species. Our analyses also revealed that species-specific differences in transpiration do not explain the observed differences in delta18O while the unconstrained fitting parameter 'effective path length' (L) was highly correlated with delta18O. None of the leaf morphological or leaf water related parameters we quantified in this study correlated with the L values we determined even though L was typically interpreted as a leaf morphological/anatomical property. A sensitivity analysis supported the importance of L for explaining the variability in leaf water delta18O across different species. Our investigation highlighted the importance of future studies to quantify the leaf properties that influence L. Obtaining such information will significantly improve our understanding of what ultimately determines the delta18O values of leaf water across different plant species. PMID:18208514

  18. Extensive transcriptome changes during natural onset and release of vegetative bud dormancy in Populus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To survive winter conditions, axillary buds of poplar transition from paradormancy to endodormancy. Following sufficient chilling, endodormant axillary buds will transition from endodormancy to ecodormancy. We utilized the near whole genome NimbleGen poplar microarrays to follow transcriptome diff...

  19. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    NASA Astrophysics Data System (ADS)

    Ono, Fumihisa; Shibata, Michiko; Torigoe, Motoki; Matsumoto, Yuta; Yamamoto, Shinsuke; Takizawa, Noboru; Hada, Yoshio; Mori, Yoshihisa; Takarabe, Kenichi

    2013-06-01

    In our previous studies on the tolerance of small plants and animals to the high hydrostatic pressure of 7.5 GPa, it was shown that all the living samples could be borne at this high pressure, which is more than one order of magnitude higher than the proteinic denaturation pressure. To make this inconsistency clear, we have extended these studies to a smaller sized fungus, budding yeast Saccharomyces cerevisiae. A several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate (PC72, Sumitomo 3M), and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar (PDA). It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for 12 and 24 h were found dead. The high pressure tolerance of budding yeast is weaker than that of tardigrades.

  20. Intracellular and extracellular regulation of ureteric bud morphogenesis

    PubMed Central

    DAVIES, JAMIE

    2001-01-01

    The urinary collecting duct system of the permanent kidney develops by growth and branching of an initially unbranched epithelial tubule, the ureteric bud. Formation of the ureteric bud as an outgrowth of the wolffian duct is induced by signalling molecules (such as GDNF) that emanate from the adjacent metanephrogenic mesenchyme. Once it has invaded the mesenchyme, growth and branching of the bud is controlled by a variety of molecules, such as the growth factors GDNF, HGF, TGFβ, activin, BMP-2, BMP-7, and matrix molecules such as heparan sulphate proteoglycans and laminins. These various influences are integrated by signal transduction systems inside ureteric bud cells, with the MAP kinase, protein kinase A and protein kinase C pathways appearing to play major roles. The mechanisms of morphogenetic change that produce branching remain largely obscure, but matrix metalloproteinases are known to be necessary for the process, and there is preliminary evidence for the involvement of the actin/myosin contractile cytoskeleton in creating branch points. PMID:11322719

  1. Science Shorts: Project BudBurst--Analyzing Data

    ERIC Educational Resources Information Center

    Davis, Kimberly J.; Coskie, Tracy L.

    2008-01-01

    Project BudBurst is a national program intended to get students and other "citizen scientists" to participate in a real study about plants, the environment, and climate change. It also provides an excellent opportunity for students to build data-analysis skills. A collaboration of several agencies and universities, the program began last year and…

  2. Postnatal development of the vallate papilla and taste buds in rats.

    PubMed

    Hosley, M A; Oakley, B

    1987-06-01

    The postnatal maturation of the vallate papilla and its taste buds was quantitatively investigated in rats by ligh microscopy. Specifically, we measured postnatal increases in the size of mature vallate taste buds and the vallate papilla, increases in the thickness of the gustatory epidermis, and increases in the number of mature taste buds and taste cells per bud. Mature taste buds, defined as those having a taste pore, are rare at birth but proliferate rapidly during the first postnatal month until an average of 610 mature taste buds has accumulated by 90 days. Throughout this postnatal period, mature taste buds adjust to the developmental thickening of the epidermis by continuously increasing in length. Mature taste buds also increase in width, in part due to a threefold increase from 10 and 45 days in the number of taste cells per bud. From 10 to 21 days there is an average daily net increase of three cells per mature taste bud. The maturational increase in taste buds and cells may contribute to the functional changes in taste nerve responses known to occur over the course of several generations of taste receptor cells. The dimensions of the vallate papilla and the surface area of the gustatory epithelium increase logarithmically with age. Although mature taste buds continue to increase in number until 90 days, both taste bud density (178/mm2) and the number of cells per mature taste bud (70-75 cells) reach ceilings by 45 days. Thus, density-dependent factors appear to control vallate taste bud maturation. The immaturity of lingual taste buds in newborn rats supports the view that odor, rather than taste, is the chemosensory signal that guides suckling in altricial rodents. PMID:3619089

  3. Accumulation of particles on the surface of leaves during leaf expansion.

    PubMed

    Wang, Lei; Gong, Huili; Liao, Wenbo; Wang, Zhi

    2015-11-01

    Plants can effectively remove airborne particles from ambient air and consequently improve air quality and human health. The accumulation of particles on the leaf surfaces of three plant species with different epicuticular wax ultrastructures, such as thin films, platelets and tubules, was investigated during leaf expansion in Beijing under extremely high particulate matter (PM) concentration. The accumulation of particles on the leaf surfaces after bud break rapidly reached a high amount within 4-7 days. Rainfall occasionally resulted in a considerable increase in the accumulation of particles on the leaf surfaces at a high PM concentration, which resulted from the wet deposition of PM, and balanced the amount of PM on the leaf surfaces over a longer period. The equilibrium value of the particle cover area on the adaxial leaf surface of the three test species in this study was 10%-50% compared with 3%-35% on the abaxial leaf surface. The epicuticular wax ultrastructures contributed significantly to the PM adsorption of the leaves. The capability of these ultrastructures to capture PM decreased in the following order: thin films, platelets and tubules. The ridges (at a scale of 1-2 μm) on the leaf surfaces were more efficient at accumulating PM, particularly PM2.5, compared with the roughness (P-V distance) at a 5-20-μm scale. PMID:26093221

  4. Accumulation of particles on the surface of leaves during leaf expansion.

    PubMed

    Wang, Lei; Gong, Huili; Liao, Wenbo; Wang, Zhi

    2015-11-01

    Plants can effectively remove airborne particles from ambient air and consequently improve air quality and human health. The accumulation of particles on the leaf surfaces of three plant species with different epicuticular wax ultrastructures, such as thin films, platelets and tubules, was investigated during leaf expansion in Beijing under extremely high particulate matter (PM) concentration. The accumulation of particles on the leaf surfaces after bud break rapidly reached a high amount within 4-7 days. Rainfall occasionally resulted in a considerable increase in the accumulation of particles on the leaf surfaces at a high PM concentration, which resulted from the wet deposition of PM, and balanced the amount of PM on the leaf surfaces over a longer period. The equilibrium value of the particle cover area on the adaxial leaf surface of the three test species in this study was 10%-50% compared with 3%-35% on the abaxial leaf surface. The epicuticular wax ultrastructures contributed significantly to the PM adsorption of the leaves. The capability of these ultrastructures to capture PM decreased in the following order: thin films, platelets and tubules. The ridges (at a scale of 1-2 μm) on the leaf surfaces were more efficient at accumulating PM, particularly PM2.5, compared with the roughness (P-V distance) at a 5-20-μm scale.

  5. Molecular events of apical bud formation in white spruce, Picea glauca.

    PubMed

    El Kayal, Walid; Allen, Carmen C G; Ju, Chelsea J-T; Adams, Eri; King-Jones, Susanne; Zaharia, L Irina; Abrams, Suzanne R; Cooke, Janice E K

    2011-03-01

    Bud formation is an adaptive trait that temperate forest trees have acquired to facilitate seasonal synchronization. We have characterized transcriptome-level changes that occur during bud formation of white spruce [Picea glauca (Moench) Voss], a primarily determinate species in which preformed stem units contained within the apical bud constitute most of next season's growth. Microarray analysis identified 4460 differentially expressed sequences in shoot tips during short day-induced bud formation. Cluster analysis revealed distinct temporal patterns of expression, and functional classification of genes in these clusters implied molecular processes that coincide with anatomical changes occurring in the developing bud. Comparing expression profiles in developing buds under long day and short day conditions identified possible photoperiod-responsive genes that may not be essential for bud development. Several genes putatively associated with hormone signalling were identified, and hormone quantification revealed distinct profiles for abscisic acid (ABA), cytokinins, auxin and their metabolites that can be related to morphological changes to the bud. Comparison of gene expression profiles during bud formation in different tissues revealed 108 genes that are differentially expressed only in developing buds and show greater transcript abundance in developing buds than other tissues. These findings provide a temporal roadmap of bud formation in white spruce.

  6. Induction of ectopic taste buds by SHH reveals the competency and plasticity of adult lingual epithelium.

    PubMed

    Castillo, David; Seidel, Kerstin; Salcedo, Ernesto; Ahn, Christina; de Sauvage, Frederic J; Klein, Ophir D; Barlow, Linda A

    2014-08-01

    Taste buds are assemblies of elongated epithelial cells, which are innervated by gustatory nerves that transmit taste information to the brain stem. Taste cells are continuously renewed throughout life via proliferation of epithelial progenitors, but the molecular regulation of this process remains unknown. During embryogenesis, sonic hedgehog (SHH) negatively regulates taste bud patterning, such that inhibition of SHH causes the formation of more and larger taste bud primordia, including in regions of the tongue normally devoid of taste buds. Here, using a Cre-lox system to drive constitutive expression of SHH, we identify the effects of SHH on the lingual epithelium of adult mice. We show that misexpression of SHH transforms lingual epithelial cell fate, such that daughter cells of lingual epithelial progenitors form cell type-replete, onion-shaped taste buds, rather than non-taste, pseudostratified epithelium. These SHH-induced ectopic taste buds are found in regions of the adult tongue previously thought incapable of generating taste organs. The ectopic buds are composed of all taste cell types, including support cells and detectors of sweet, bitter, umami, salt and sour, and recapitulate the molecular differentiation process of endogenous taste buds. In contrast to the well-established nerve dependence of endogenous taste buds, however, ectopic taste buds form independently of both gustatory and somatosensory innervation. As innervation is required for SHH expression by endogenous taste buds, our data suggest that SHH can replace the need for innervation to drive the entire program of taste bud differentiation. PMID:24993944

  7. Induction of ectopic taste buds by SHH reveals the competency and plasticity of adult lingual epithelium.

    PubMed

    Castillo, David; Seidel, Kerstin; Salcedo, Ernesto; Ahn, Christina; de Sauvage, Frederic J; Klein, Ophir D; Barlow, Linda A

    2014-08-01

    Taste buds are assemblies of elongated epithelial cells, which are innervated by gustatory nerves that transmit taste information to the brain stem. Taste cells are continuously renewed throughout life via proliferation of epithelial progenitors, but the molecular regulation of this process remains unknown. During embryogenesis, sonic hedgehog (SHH) negatively regulates taste bud patterning, such that inhibition of SHH causes the formation of more and larger taste bud primordia, including in regions of the tongue normally devoid of taste buds. Here, using a Cre-lox system to drive constitutive expression of SHH, we identify the effects of SHH on the lingual epithelium of adult mice. We show that misexpression of SHH transforms lingual epithelial cell fate, such that daughter cells of lingual epithelial progenitors form cell type-replete, onion-shaped taste buds, rather than non-taste, pseudostratified epithelium. These SHH-induced ectopic taste buds are found in regions of the adult tongue previously thought incapable of generating taste organs. The ectopic buds are composed of all taste cell types, including support cells and detectors of sweet, bitter, umami, salt and sour, and recapitulate the molecular differentiation process of endogenous taste buds. In contrast to the well-established nerve dependence of endogenous taste buds, however, ectopic taste buds form independently of both gustatory and somatosensory innervation. As innervation is required for SHH expression by endogenous taste buds, our data suggest that SHH can replace the need for innervation to drive the entire program of taste bud differentiation.

  8. Fire and nitrogen alter axillary bud number and activity in purple threeawn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Belowground accumulation of vegetative buds provides a reservoir of meristems that can be utilized following disturbance. Perennial grass bud banks are the primary source of nearly all tiller growth, yet understanding of fire and nitrogen effects on bud banks is limited. We tested effects of fire ...

  9. A critical three-way junction is conserved in budding yeast and vertebrate telomerase RNAs

    PubMed Central

    Brown, Yogev; Abraham, Mira; Pearl, Sivan; Kabaha, Majdi M.; Elboher, Elhanan; Tzfati, Yehuda

    2007-01-01

    The telomerase ribonucleoprotein copies a short template within its integral RNA moiety onto eukaryotic chromosome ends, compensating for incomplete replication and degradation. Non-template regions of telomerase RNA (TER) are also crucial for telomerase function, yet they are highly divergent in sequence among species and their roles are largely unclear. Using both phylogenetic and mutational analyses, we predicted secondary structures for TERs from Kluyveromyces budding yeast species. A comparison of these secondary structure models with the published model for the Saccharomyces cerevisiae TER reveals a common arrangement into three long arms, a templating domain in the center and several conserved elements in the same positions within the structure. One of them, a three-way junction element, is highly conserved in budding yeast TERs. This element also shows sequence and structure similarity to the critical CR4-CR5 activating domain of vertebrate TERs. Mutational analysis in Kluyveromyces lactis confirmed that this element, and in particular the residues conserved across yeast and vertebrates, is critical for telomerase action both in vivo and in vitro. These findings demonstrate that despite the extreme divergence of TER sequences from different organisms, they do share conserved elements, which presumably carry out common roles in telomerase function. PMID:17855392

  10. Budding Yeast Silencing Complexes and Regulation of Sir2 Activity by Protein-Protein Interactions

    PubMed Central

    Tanny, Jason C.; Kirkpatrick, Donald S.; Gerber, Scott A.; Gygi, Steven P.; Moazed, Danesh

    2004-01-01

    Gene silencing in the budding yeast Saccharomyces cerevisiae requires the enzymatic activity of the Sir2 protein, a highly conserved NAD-dependent deacetylase. In order to study the activity of native Sir2, we purified and characterized two budding yeast Sir2 complexes: the Sir2/Sir4 complex, which mediates silencing at mating-type loci and at telomeres, and the RENT complex, which mediates silencing at the ribosomal DNA repeats. Analyses of the protein compositions of these complexes confirmed previously described interactions. We show that the assembly of Sir2 into native silencing complexes does not alter its selectivity for acetylated substrates, nor does it allow the deacetylation of nucleosomal histones. The inability of Sir2 complexes to deacetylate nucleosomes suggests that additional factors influence Sir2 activity in vivo. In contrast, Sir2 complexes show significant enhancement in their affinities for acetylated substrates and their sensitivities to the physiological inhibitor nicotinamide relative to recombinant Sir2. Reconstitution experiments showed that, for the Sir2/Sir4 complex, these differences stem from the physical interaction of Sir2 with Sir4. Finally, we provide evidence that the different nicotinamide sensitivities of Sir2/Sir4 and RENT in vitro could contribute to locus-specific differences in how Sir2 activity is regulated in vivo. PMID:15282295

  11. Leaf growth is conformal

    NASA Astrophysics Data System (ADS)

    Alim, Karen; Armon, Shahaf; Shraiman, Boris I.; Boudaoud, Arezki

    2016-10-01

    Growth pattern dynamics lie at the heart of morphogenesis. Here, we investigate the growth of plant leaves. We compute the conformal transformation that maps the contour of a leaf at a given stage onto the contour of the same leaf at a later stage. Based on the mapping we predict the local displacement field in the leaf blade and find it to agree with the experimentally measured displacement field to 92%. This approach is applicable to any two-dimensional system with locally isotropic growth, enabling the deduction of the whole growth field just from observation of the tissue contour.

  12. Leaf growth is conformal.

    PubMed

    Alim, Karen; Armon, Shahaf; Shraiman, Boris I; Boudaoud, Arezki

    2016-01-01

    Growth pattern dynamics lie at the heart of morphogenesis. Here, we investigate the growth of plant leaves. We compute the conformal transformation that maps the contour of a leaf at a given stage onto the contour of the same leaf at a later stage. Based on the mapping we predict the local displacement field in the leaf blade and find it to agree with the experimentally measured displacement field to 92%. This approach is applicable to any two-dimensional system with locally isotropic growth, enabling the deduction of the whole growth field just from observation of the tissue contour. PMID:27597439

  13. Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1

    PubMed Central

    Kang, Hui; Tsygankov, Denis; Lew, Daniel J.

    2016-01-01

    Bud formation by Saccharomyces cerevisiae must be coordinated with the nuclear cycle to enable successful proliferation. Many environmental stresses temporarily disrupt bud formation, and in such circumstances, the morphogenesis checkpoint halts nuclear division until bud formation can resume. Bud emergence is essential for degradation of the mitotic inhibitor, Swe1. Swe1 is localized to the septin cytoskeleton at the bud neck by the Swe1-binding protein Hsl7. Neck localization of Swe1 is required for Swe1 degradation. Although septins form a ring at the presumptive bud site before bud emergence, Hsl7 is not recruited to the septins until after bud emergence, suggesting that septins and/or Hsl7 respond to a “bud sensor.” Here we show that recruitment of Hsl7 to the septin ring depends on a combination of two septin-binding kinases: Hsl1 and Elm1. We elucidate which domains of these kinases are needed and show that artificial targeting of those domains suffices to recruit Hsl7 to septin rings even in unbudded cells. Moreover, recruitment of Elm1 is responsive to bud emergence. Our findings suggest that Elm1 plays a key role in sensing bud emergence. PMID:27053666

  14. Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1.

    PubMed

    Kang, Hui; Tsygankov, Denis; Lew, Daniel J

    2016-06-01

    Bud formation by Saccharomyces cerevisiae must be coordinated with the nuclear cycle to enable successful proliferation. Many environmental stresses temporarily disrupt bud formation, and in such circumstances, the morphogenesis checkpoint halts nuclear division until bud formation can resume. Bud emergence is essential for degradation of the mitotic inhibitor, Swe1. Swe1 is localized to the septin cytoskeleton at the bud neck by the Swe1-binding protein Hsl7. Neck localization of Swe1 is required for Swe1 degradation. Although septins form a ring at the presumptive bud site before bud emergence, Hsl7 is not recruited to the septins until after bud emergence, suggesting that septins and/or Hsl7 respond to a "bud sensor." Here we show that recruitment of Hsl7 to the septin ring depends on a combination of two septin-binding kinases: Hsl1 and Elm1. We elucidate which domains of these kinases are needed and show that artificial targeting of those domains suffices to recruit Hsl7 to septin rings even in unbudded cells. Moreover, recruitment of Elm1 is responsive to bud emergence. Our findings suggest that Elm1 plays a key role in sensing bud emergence. PMID:27053666

  15. [Inhibition of decomposing leaf litter of Cinnamomum camphora on growth of Capsicum annu- um and the alleviation effect of nitrogen application].

    PubMed

    Chen, Hong; Hu, Ting-xing; Wang, Qian; Hu, Hong-ling; Jiang, Xue; Zhou, Guang-liang; Chen, Gang

    2015-02-01

    Effects of decomposing leaf litter of Cinnamomum camphora on growth, physiological and phenological traits of Capsicum annuum, and modification of these effects by nitrogen application were investigated using a pot experiment. C. camphora leaf litter was applied at rate of 0, 25, 50 100 g per pot, resulting into four treatments, i.e., CK (the control), L25, L50, and L100. Nitrogen application was firstly performed on the 39th d of decomposition (3.0 g urea was added to each pot six times). Leaf area, plant height, basal diameter and biomass production of C. annuum were all inhibited sharply by exposure to the leaf litter, and the inhibition effect increased with the increasing leaf litter in terms of both the intensity and the stability. Treated with L25, budding number reduced by 88.7% averagely during 55th-75th d, and the rate of fructification plant decreased by 40% on the 96th d of decomposition, while neither buds nor fruits were observed when exposed to L50 and L100 at that time. Pigment contents and net photosynthetic rate (Pn) were impacted due to leaf litter addition, and malonaldehyde (MDA) was only markedly promoted by L100. Inhibition on growth and development of C. annuum caused by leaf litter decomposition could be alleviated by nitrogen application. Leaf area treated with leaf litter recovered to the control level on the 52nd d after nitrogen application, and similar results appeared on the 83rd d after nitrogen application for other growth traits. Budding and fructification status were also visibly improved.

  16. Comparative proteomic and transcriptomic approaches to address the active role of GA4 in Japanese apricot flower bud dormancy release

    PubMed Central

    Zhuang, Weibing; Gao, Zhihong; Zhang, Zhen

    2013-01-01

    Hormones are closely associated with dormancy in deciduous fruit trees, and gibberellins (GAs) are known to be particularly important. In this study, we observed that GA4 treatment led to earlier bud break in Japanese apricot. To understand better the promoting effect of GA4 on the dormancy release of Japanese apricot flower buds, proteomic and transcriptomic approaches were used to analyse the mechanisms of dormancy release following GA4 treatment, based on two-dimensional gel electrophoresis (2-DE) and digital gene expression (DGE) profiling, respectively. More than 600 highly reproducible protein spots (P<0.05) were detected and, following GA4 treatment, 38 protein spots showed more than a 2-fold difference in expression, and 32 protein spots were confidently identified according to the databases. Compared with water treatment, many proteins that were associated with energy metabolism and oxidation–reduction showed significant changes after GA4 treatment, which might promote dormancy release. We observed that genes at the mRNA level associated with energy metabolism and oxidation–reduction also played an important role in this process. Analysis of the functions of the identified proteins and genes and the related metabolic pathways would provide a comprehensive proteomic and transcriptomic view of the coordination of dormancy release after GA4 treatment in Japanese apricot flower buds. PMID:24014872

  17. Cell Biology of Yeast Zygotes, from Genesis to Budding

    PubMed Central

    Tartakoff, Alan M.

    2015-01-01

    The zygote is the essential intermediate that allows interchange of nuclear, mitochondrial and cytosolic determinants between cells. Zygote formation in S. cerevisiae is accomplished by mechanisms that are not characteristic of mitotic cells. These include shifting the axis of growth away from classical cortical landmarks, dramatically reorganizing the cell cortex, remodeling the cell wall in preparation for cell fusion, fusing with an adjacent partner, accomplishing nuclear fusion, orchestrating two steps of septin morphogenesis that account for a delay in fusion of mitochondria, and implementing new norms for bud site selection. This essay emphasizes the sequence of dependent relationships that account for this progression from cell encounters through to zygote budding. It briefly summarizes classical studies of signal transduction and polarity specification and then focuses on downstream events. PMID:25862405

  18. Cell biology of yeast zygotes, from genesis to budding.

    PubMed

    Tartakoff, Alan M

    2015-07-01

    The zygote is the essential intermediate that allows interchange of nuclear, mitochondrial and cytosolic determinants between cells. Zygote formation in Saccharomyces cerevisiae is accomplished by mechanisms that are not characteristic of mitotic cells. These include shifting the axis of growth away from classical cortical landmarks, dramatically reorganizing the cell cortex, remodeling the cell wall in preparation for cell fusion, fusing with an adjacent partner, accomplishing nuclear fusion, orchestrating two steps of septin morphogenesis that account for a delay in fusion of mitochondria, and implementing new norms for bud site selection. This essay emphasizes the sequence of dependent relationships that account for this progression from cell encounters through zygote budding. It briefly summarizes classical studies of signal transduction and polarity specification and then focuses on downstream events. PMID:25862405

  19. Recurrent peripheral odontogenic fibroma associated with basal cell budding.

    PubMed

    Sreeja, C; Vezhavendan, N; Shabana, F; Vijayalakshmi, D; Devi, M; Arunakiry, N

    2014-07-01

    Peripheral odontogenic fibroma (POdF) is a rare benign odontogenic neoplasm. It represents the soft tissue counterpart of central odontogenic fibroma. The embryonic source of POdF has been suggested by many as arising from the rest of dental lamina that has persisted in the gingiva following its disintegration. It presents clinically as a firm, slow growing and sessile gingival mass, which is difficult to distinguish with more common inflammatory lesions. Very few cases of recurrence have been documented. It has been stated that histological budding of basal cell layer of the surface squamous epithelium is associated with higher recurrence and the presence of calcification in direct apposition to the epithelial rest is associated with lower recurrence. Hereby, we present a case which histologically exhibited budding of the basal cell layer, which could have been the reason for its recurrence. PMID:25210375

  20. Recurrent peripheral odontogenic fibroma associated with basal cell budding

    PubMed Central

    Sreeja, C.; Vezhavendan, N.; Shabana, F.; Vijayalakshmi, D.; Devi, M.; Arunakiry, N.

    2014-01-01

    Peripheral odontogenic fibroma (POdF) is a rare benign odontogenic neoplasm. It represents the soft tissue counterpart of central odontogenic fibroma. The embryonic source of POdF has been suggested by many as arising from the rest of dental lamina that has persisted in the gingiva following its disintegration. It presents clinically as a firm, slow growing and sessile gingival mass, which is difficult to distinguish with more common inflammatory lesions. Very few cases of recurrence have been documented. It has been stated that histological budding of basal cell layer of the surface squamous epithelium is associated with higher recurrence and the presence of calcification in direct apposition to the epithelial rest is associated with lower recurrence. Hereby, we present a case which histologically exhibited budding of the basal cell layer, which could have been the reason for its recurrence. PMID:25210375

  1. Endogenous peripheral neuromodulators of the mammalian taste bud.

    PubMed

    Dando, Robin

    2010-10-01

    The sensitivity of the mammalian taste system displays a degree of plasticity based on short-term nutritional requirements. Deficiency in a particular substance may lead to a perceived increase in palatability of this substance, providing an additional drive to redress this nutritional imbalance through modification of intake. This alteration occurs not only in the brain but also, before any higher level processing has occurred, in the taste buds themselves. A brief review of recent advances is offered.

  2. Strategies of leaf expansion in Ficus carica under semiarid conditions.

    PubMed

    González-Rodríguez, A M; Peters, J

    2010-05-01

    Leaf area expansion, thickness and inclination, gas exchange parameters and relative chlorophyll content were analysed in field-grown fig (Ficus carica L.) leaves over time, from emergence until after full leaf expansion (FLE). Ficus carica leaves showed a subtle change in shape during the early stages of development, and FLE was reached within ca. 30 days after emergence. Changes in leaf thickness and inclination after FLE demonstrated good adaptation to environmental conditions during summer in areas with a Mediterranean climate. Changes in gas exchange parameters and relative chlorophyll content showed that F. carica is a delayed-greening species, reaching maximum values 20 days after FLE. Correlation analysis of datasets collected during leaf expansion, confirmed dependence among structural and functional traits in F. carica. Pn was directly correlated with stomatal conductance (Gs), transpiration (E), leaf area (LA) and relative chlorophyll content up to FLE. The effect of pruning on leaf expansion, a cultural technique commonly applied in this fruit tree, was also evaluated. Although leaf development in pruned branches gave a significantly higher relative leaf area growth rate (RGR(l)) and higher LA than non-pruned branches, no significant differences were found in other morphological and physiological traits, indicating no pruning effect on leaf development. All studied morphological and physiological characteristics indicate that F. carica is well adapted to semiarid conditions. The delayed greening strategy of this species is discussed.

  3. Biomolecules and Natural Medicine Preparations: Analysis of New Sources of Bioactive Compounds from Ribes and Rubus spp. Buds

    PubMed Central

    Donno, Dario; Mellano, Maria Gabriella; Cerutti, Alessandro Kim; Beccaro, Gabriele Loris

    2016-01-01

    It is well known that plants are important sources for the preparation of natural remedies as they contain many biologically active compounds. In particular, polyphenols, terpenic compounds, organic acids, and vitamins are the most widely occurring groups of phytochemicals. Some endemic species may be used for the production of herbal preparations containing phytochemicals with significant bioactivity, as antioxidant activity and anti-inflammatory capacities, and health benefits. Blackberry sprouts and blackcurrant buds are known to contain appreciable levels of bioactive compounds, including flavonols, phenolic acids, monoterpenes, vitamin C, and catechins, with several clinical effects. The aim of this research was to perform an analytical study of blackcurrant and blackberry bud-preparations, in order to identify and quantify the main biomarkers, obtaining a specific phytochemical fingerprint to evaluate the single botanical class contribution to total phytocomplex and relative bioactivity, using a High Performance Liquid Chromatograph−Diode Array Detector; the same analyses were performed both on the University laboratory and commercial preparations. Different chromatographic methods were used to determine concentrations of biomolecules in the preparations, allowing for quantification of statistically significant differences in their bioactive compound content both in the case of Ribes nigrum and Rubus cultivated varieties at different harvest stages. In blackcurrant bud-extracts the most important class was organic acids (50.98%) followed by monoterpenes (14.05%), while in blackberry preparations the main bioactive classes were catechins (50.06%) and organic acids (27.34%). Chemical, pharmaceutical and agronomic-environmental knowledge could be important for obtaining label certifications for the valorization of specific genotypes, with high clinical and pharmaceutical value: this study allowed to develop an effective tool for the natural preparation quality

  4. Biomolecules and Natural Medicine Preparations: Analysis of New Sources of Bioactive Compounds from Ribes and Rubus spp. Buds.

    PubMed

    Donno, Dario; Mellano, Maria Gabriella; Cerutti, Alessandro Kim; Beccaro, Gabriele Loris

    2016-02-05

    It is well known that plants are important sources for the preparation of natural remedies as they contain many biologically active compounds. In particular, polyphenols, terpenic compounds, organic acids, and vitamins are the most widely occurring groups of phytochemicals. Some endemic species may be used for the production of herbal preparations containing phytochemicals with significant bioactivity, as antioxidant activity and anti-inflammatory capacities, and health benefits. Blackberry sprouts and blackcurrant buds are known to contain appreciable levels of bioactive compounds, including flavonols, phenolic acids, monoterpenes, vitamin C, and catechins, with several clinical effects. The aim of this research was to perform an analytical study of blackcurrant and blackberry bud-preparations, in order to identify and quantify the main biomarkers, obtaining a specific phytochemical fingerprint to evaluate the single botanical class contribution to total phytocomplex and relative bioactivity, using a High Performance Liquid Chromatograph-Diode Array Detector; the same analyses were performed both on the University laboratory and commercial preparations. Different chromatographic methods were used to determine concentrations of biomolecules in the preparations, allowing for quantification of statistically significant differences in their bioactive compound content both in the case of Ribes nigrum and Rubus cultivated varieties at different harvest stages. In blackcurrant bud-extracts the most important class was organic acids (50.98%) followed by monoterpenes (14.05%), while in blackberry preparations the main bioactive classes were catechins (50.06%) and organic acids (27.34%). Chemical, pharmaceutical and agronomic-environmental knowledge could be important for obtaining label certifications for the valorization of specific genotypes, with high clinical and pharmaceutical value: this study allowed to develop an effective tool for the natural preparation quality

  5. Biomolecules and Natural Medicine Preparations: Analysis of New Sources of Bioactive Compounds from Ribes and Rubus spp. Buds.

    PubMed

    Donno, Dario; Mellano, Maria Gabriella; Cerutti, Alessandro Kim; Beccaro, Gabriele Loris

    2016-01-01

    It is well known that plants are important sources for the preparation of natural remedies as they contain many biologically active compounds. In particular, polyphenols, terpenic compounds, organic acids, and vitamins are the most widely occurring groups of phytochemicals. Some endemic species may be used for the production of herbal preparations containing phytochemicals with significant bioactivity, as antioxidant activity and anti-inflammatory capacities, and health benefits. Blackberry sprouts and blackcurrant buds are known to contain appreciable levels of bioactive compounds, including flavonols, phenolic acids, monoterpenes, vitamin C, and catechins, with several clinical effects. The aim of this research was to perform an analytical study of blackcurrant and blackberry bud-preparations, in order to identify and quantify the main biomarkers, obtaining a specific phytochemical fingerprint to evaluate the single botanical class contribution to total phytocomplex and relative bioactivity, using a High Performance Liquid Chromatograph-Diode Array Detector; the same analyses were performed both on the University laboratory and commercial preparations. Different chromatographic methods were used to determine concentrations of biomolecules in the preparations, allowing for quantification of statistically significant differences in their bioactive compound content both in the case of Ribes nigrum and Rubus cultivated varieties at different harvest stages. In blackcurrant bud-extracts the most important class was organic acids (50.98%) followed by monoterpenes (14.05%), while in blackberry preparations the main bioactive classes were catechins (50.06%) and organic acids (27.34%). Chemical, pharmaceutical and agronomic-environmental knowledge could be important for obtaining label certifications for the valorization of specific genotypes, with high clinical and pharmaceutical value: this study allowed to develop an effective tool for the natural preparation quality

  6. Deer predation on leaf miners via leaf abscission

    NASA Astrophysics Data System (ADS)

    Yamazaki, Kazuo; Sugiura, Shinji

    2008-03-01

    The evergreen oak Quercus gilva Blume sheds leaves containing mines of the leaf miner Stigmella sp. (Lepidoptera: Nepticulidae) earlier than leaves with no mines in early spring in Nara, central Japan. The eclosion rates of the leaf miner in abscised and retained leaves were compared in the laboratory to clarify the effects of leaf abscission on leaf miner survival in the absence of deer. The leaf miner eclosed successfully from both fallen leaves and leaves retained on trees. However, sika deer ( Cervus nippon centralis Kishida) feed on the fallen mined leaves. Field observations showed that deer consume many fallen leaves under Q. gilva trees, suggesting considerable mortality of leaf miners due to deer predation via leaf abscission. This is a previously unreported relationship between a leaf miner and a mammalian herbivore via leaf abscission.

  7. Leptin's effect on taste bud calcium responses and transmitter secretion.

    PubMed

    Meredith, Tricia L; Corcoran, Alan; Roper, Stephen D

    2015-05-01

    Leptin, a peptide hormone released by adipose tissue, acts on the hypothalamus to control cravings and appetite. Leptin also acts to decrease taste responses to sweet substances, though there is little detailed information regarding where leptin acts in the taste transduction cascade. The present study examined the effects of leptin on sweet-evoked responses and neuro transmitter release from isolated taste buds. Our results indicate that leptin moderately decreased sweet-evoked calcium mobilization in isolated mouse taste buds. We also employed Chinese hamster ovary biosensor cells to examine taste transmitter release from isolated taste buds. Leptin reduced ATP and increased serotonin release in response to sweet stimulation. However, leptin has no effect on bitter-evoked transmitter release, further showing that the action of leptin is sweet specific. Our results support those of previous studies, which state that leptin acts on taste tissue via the leptin receptor, most likely on Type II (Receptor) cells, but also possibly on Type III (Presynaptic) cells.

  8. A cellular lineage analysis of the chick limb bud

    PubMed Central

    Pearse, R.V.; Scherz, P. J.; Campbell, J. K.; Tabin, C. J.

    2009-01-01

    The chick limb bud has been used as a model system for studying pattern formation and tissue development for more than 50 years. However, the lineal relationships among the different cell types and the migrational boundaries of individual cells within the limb mesenchyme have not been explored. We have used a retroviral lineage analysis system to track the fate of single limb bud mesenchymal cells at different times in early limb development. We find that progenitor cells labeled at stage 19–22 can give rise to multiple cell types including clones containing cells of all five of the major lateral plate mesoderm-derived tissues (cartilage, perichondrium, tendon, muscle connective tissue, and dermis). There is a bias, however, such that clones are more likely to contain the cell types of spatially adjacent tissues such as cartilage/perichondrium and tendon/muscle connective tissue. It has been recently proposed that distinct proximodistal segments are established early in limb development; however our analysis suggests that there is not a strict barrier to cellular migration along the proximodistal axis in the early stage 19–22 limb buds. Finally, our data indicate the presence of a dorsal/ventral boundary established by stage 16 that is inhibitory to cellular mixing. This boundary is demarcated by the expression of the LIM-homeodomain factor lmx1b. PMID:17888899

  9. Leptin's effect on taste bud calcium responses and transmitter secretion.

    PubMed

    Meredith, Tricia L; Corcoran, Alan; Roper, Stephen D

    2015-05-01

    Leptin, a peptide hormone released by adipose tissue, acts on the hypothalamus to control cravings and appetite. Leptin also acts to decrease taste responses to sweet substances, though there is little detailed information regarding where leptin acts in the taste transduction cascade. The present study examined the effects of leptin on sweet-evoked responses and neuro transmitter release from isolated taste buds. Our results indicate that leptin moderately decreased sweet-evoked calcium mobilization in isolated mouse taste buds. We also employed Chinese hamster ovary biosensor cells to examine taste transmitter release from isolated taste buds. Leptin reduced ATP and increased serotonin release in response to sweet stimulation. However, leptin has no effect on bitter-evoked transmitter release, further showing that the action of leptin is sweet specific. Our results support those of previous studies, which state that leptin acts on taste tissue via the leptin receptor, most likely on Type II (Receptor) cells, but also possibly on Type III (Presynaptic) cells. PMID:25537017

  10. Ecological Conditions Favoring Budding in Colonial Organisms under Environmental Disturbance

    PubMed Central

    Nakamaru, Mayuko; Takada, Takenori; Ohtsuki, Akiko; Suzuki, Sayaki U.; Miura, Kanan; Tsuji, Kazuki

    2014-01-01

    Dispersal is a topic of great interest in ecology. Many organisms adopt one of two distinct dispersal tactics at reproduction: the production of small offspring that can disperse over long distances (such as seeds and spawned eggs), or budding. The latter is observed in some colonial organisms, such as clonal plants, corals and ants, in which (super)organisms split their body into components of relatively large size that disperse to a short distance. Contrary to the common dispersal viewpoint, short-dispersal colonial organisms often flourish even in environments with frequent disturbances. In this paper, we investigate the conditions that favor budding over long-distance dispersal of small offspring, focusing on the life history of the colony growth and the colony division ratio. These conditions are the relatively high mortality of very small colonies, logistic growth, the ability of dispersers to peacefully seek and settle unoccupied spaces, and small spatial scale of environmental disturbance. If these conditions hold, budding is advantageous even when environmental disturbance is frequent. These results suggest that the demography or life history of the colony underlies the behaviors of the colonial organisms. PMID:24621824

  11. Epigenetic regulation of bud dormancy events in perennial plants

    PubMed Central

    Ríos, Gabino; Leida, Carmen; Conejero, Ana; Badenes, María Luisa

    2014-01-01

    Release of bud dormancy in perennial plants resembles vernalization in Arabidopsis thaliana and cereals. In both cases, a certain period of chilling is required for accomplishing the reproductive phase, and several transcription factors with the MADS-box domain perform a central regulatory role in these processes. The expression of DORMANCY-ASSOCIATED MADS-box (DAM)-related genes has been found to be up-regulated in dormant buds of numerous plant species, such as poplar, raspberry, leafy spurge, blackcurrant, Japanese apricot, and peach. Moreover, functional evidence suggests the involvement of DAM genes in the regulation of seasonal dormancy in peach. Recent findings highlight the presence of genome-wide epigenetic modifications related to dormancy events, and more specifically the epigenetic regulation of DAM-related genes in a similar way to FLOWERING LOCUS C, a key integrator of vernalization effectors on flowering initiation in Arabidopsis. We revise the most relevant molecular and genomic contributions in the field of bud dormancy, and discuss the increasing evidence for chromatin modification involvement in the epigenetic regulation of seasonal dormancy cycles in perennial plants. PMID:24917873

  12. Trichomes control flower bud shape by linking together young petals.

    PubMed

    Tan, Jiafu; Walford, Sally-Anne; Dennis, Elizabeth S; Llewellyn, Danny

    2016-01-01

    Trichomes are widespread in plants and develop from surface cells on different tissues(1). They have many forms and functions, from defensive spines to physical barriers that trap layers of air to insulate against desiccation, but there is growing evidence that trichomes can also have developmental roles in regulating flower structure(2,3). We report here that the trichomes on petals of cotton, Gossypium hirsutum L., are essential for correct flower bud shape through a mechanical entanglement of the trichomes on adjacent petals that anchor the edges to counter the opposing force generated by asymmetric expansion of overlapping petals. Silencing a master regulator of petal trichomes, GhMYB-MIXTA-Like10 (GhMYBML10), by RNA interference (RNAi) suppressed petal trichome growth and resulted in flower buds forming into abnormal corkscrew shapes that exposed developing anthers and stigmas to desiccation damage. Artificially gluing petal edges together could partially restore correct bud shape and fertility. Such petal 'Velcro' is present in other Malvaceae and perhaps more broadly in other plant families, although it is not ubiquitous. This mechanism for physical association between separate organs to regulate flower shape and function is different from the usual organ shape control(4) exerted through cell-to-cell communication and differential cell expansion within floral tissues(5,6). PMID:27322517

  13. Chemotransduction in Necturus taste buds, a model for taste processing.

    PubMed

    Roper, S D

    1990-01-01

    The taste bud in Necturus serves as a good model for taste mechanisms in vertebrates. The large size of taste cells and relative accessibility of the tissue for detailed electrophysiological and ultrastructural studies makes this species well-suited for studying taste transduction. Important features of taste transduction that have been learned from investigations in Necturus are that voltage-gated potassium channels are preferentially distributed on the apical membrane of taste cells; voltage-gated potassium channels allow K ions to enter the cell when taste buds are stimulated with K salts; some chemical stimuli act by closing K channels, thereby eliciting depolarizing receptor potentials in taste cells. Many of these findings have been confirmed and extended in other animals, including mammals. Furthermore, recent evidence from experiments in Necturus suggests that there is a considerable degree of synaptic coupling among taste cells. This synaptic coupling could form the basis for signal processing and integration in the peripheral sensory organs of taste, the taste buds. PMID:1700850

  14. Development of the human tail bud and splanchnic mesenchyme.

    PubMed

    Hashimoto, Ryozo

    2013-03-01

    The purpose of this paper was to shed some light on anorectal development from a viewpoint of the tail bud and splanchnic mesenchyme for better understanding of the morphogenesis of the human anorectum. Human embryos ranging from Carnegie stage 11 to 23 (CS 11 to 23) were adopted in this study. Seventeen embryos preserved at the Congenital Anomaly Research Center of Kyoto University Graduate School of Medicine were histologically examined. The cloaca, extending caudally to the hindgut, was dramatically enlarged, particularly both its dorsal portion and membrane, that is, the cloacal membrane resulting from the development of the tailgut derived from the tail bud. The splanchnic mesenchyme surrounding the hindgut was spread out in the direction of the urorectal septum ventrally, suggesting that it participated in the formation of the septum. No fusion of the urorectal septum and the cloacal membrane was found. The splanchnic mesenchyme proliferated and developed into smooth muscle (circular and longitudinal) layers from cranial to caudal along the hindgut. The tail bud seems to cause both the adequate dilation of the dorsal cloaca and the elongation of the cloacal membrane; its dorsal portion in particular will be necessary for normal anorectal development. The splanchnic mesenchyme developed and descended toward the pectinate line and formed the internal sphincter muscle at the terminal bowel.

  15. Seasonal variability of mercury concentration in soils, buds and leaves of Acer platanoides and Tilia platyphyllos in central Poland.

    PubMed

    Kowalski, Artur; Frankowski, Marcin

    2016-05-01

    In this paper, we present the results of mercury concentration in soils, buds and leaves of maple (Acer platanoides-Ap) and linden (Tilia platyphyllos-Tp) collected in four periods of the growing season of trees, i.e. in April (IV), June (VI), August (VIII) and November (IX) in 2013, from the area of Poznań city (Poland). The highest average concentration of mercury for 88 samples was determined in soils and it equaled 65.8 ± 41.7 ng g(-1) (range 14.5-238.9 ng g(-1)); lower average concentration was found in Ap samples (n = 66): 55.4 ± 18.1 ng g(-1) (range 26.5-106.9 ng g(-1)); in Tp samples 50.4 ± 15.8 ng g(-1) (range 23.1-88.7 ng g(-1)) and in 22 samples of Tp buds 40.8 ± 22.7 ng g(-1) (range 12.4-98.7 ng g(-1)) and Ap buds 28.2 ± 13.6 ng g(-1) (range 8.0-59.5 ng g(-1)). Based on the obtained results, it was observed that the highest concentration of mercury in soils occurred in the centre of Poznań city (95.5 ± 39.1 ng g(-1)), and it was two times higher than the concentration of mercury in other parts of the city. Similar dependencies were not observed for the leaf samples of Ap and Tp. It was found that mercury concentrations in the soil and leaves of maple and linden were different depending on the period of the growing season (April to November). Mercury content in the examined samples was higher in the first two research periods (April IV, June VI), and then, in the following periods, the accumulation of mercury decreased both in soil and leaf samples of the two tree species. There was no correlation found between mercury concentration in leaves and mercury concentration in soils during the four research periods (April-November). When considering the transfer coefficient, it was observed that the main source of mercury in leaves is the mercury coming from the atmosphere.

  16. Seasonal variability of mercury concentration in soils, buds and leaves of Acer platanoides and Tilia platyphyllos in central Poland.

    PubMed

    Kowalski, Artur; Frankowski, Marcin

    2016-05-01

    In this paper, we present the results of mercury concentration in soils, buds and leaves of maple (Acer platanoides-Ap) and linden (Tilia platyphyllos-Tp) collected in four periods of the growing season of trees, i.e. in April (IV), June (VI), August (VIII) and November (IX) in 2013, from the area of Poznań city (Poland). The highest average concentration of mercury for 88 samples was determined in soils and it equaled 65.8 ± 41.7 ng g(-1) (range 14.5-238.9 ng g(-1)); lower average concentration was found in Ap samples (n = 66): 55.4 ± 18.1 ng g(-1) (range 26.5-106.9 ng g(-1)); in Tp samples 50.4 ± 15.8 ng g(-1) (range 23.1-88.7 ng g(-1)) and in 22 samples of Tp buds 40.8 ± 22.7 ng g(-1) (range 12.4-98.7 ng g(-1)) and Ap buds 28.2 ± 13.6 ng g(-1) (range 8.0-59.5 ng g(-1)). Based on the obtained results, it was observed that the highest concentration of mercury in soils occurred in the centre of Poznań city (95.5 ± 39.1 ng g(-1)), and it was two times higher than the concentration of mercury in other parts of the city. Similar dependencies were not observed for the leaf samples of Ap and Tp. It was found that mercury concentrations in the soil and leaves of maple and linden were different depending on the period of the growing season (April to November). Mercury content in the examined samples was higher in the first two research periods (April IV, June VI), and then, in the following periods, the accumulation of mercury decreased both in soil and leaf samples of the two tree species. There was no correlation found between mercury concentration in leaves and mercury concentration in soils during the four research periods (April-November). When considering the transfer coefficient, it was observed that the main source of mercury in leaves is the mercury coming from the atmosphere. PMID:26846237

  17. Antibacterial Balsacones J-M, Hydroxycinnamoylated Dihydrochalcones from Populus balsamifera Buds.

    PubMed

    Simard, François; Gauthier, Charles; Chiasson, Éric; Lavoie, Serge; Mshvildadze, Vakhtang; Legault, Jean; Pichette, André

    2015-05-22

    A phytochemical investigation of buds from the hardwood tree Populus balsamifera led to the isolation of six new cinnamoylated dihydrochalcones as pairs of racemates and one as a racemic mixture along with the known compound iryantherin-D (2), the absolute configuration of which was determined for the first time. The structures of balsacones J (1), K (3), L (4), and M (5) were elucidated on the basis of spectroscopic data (1D and 2D NMR, IR, and MS). Chiral HPLC separations were carried out, and the absolute configuration of the isolated enantiomers unambiguously established via X-ray diffraction analyses and electron circular dichroism spectroscopic data. Each of the purified enantiomers exhibited potent in vitro antibacterial activity against Staphylococcus aureus with IC50 values ranging from 0.61 to 6 μM.

  18. Transcriptomic Analysis for Different Sex Types of Ricinus communis L. during Development from Apical Buds to Inflorescences by Digital Gene Expression Profiling.

    PubMed

    Tan, Meilian; Xue, Jianfeng; Wang, Lei; Huang, Jiaxiang; Fu, Chunling; Yan, Xingchu

    2015-01-01

    The castor plant (Ricinus communis L.) is a versatile industrial oilseed crop with a diversity of sex patterns, its hybrid breeding for improving yield and high purity is still hampered by genetic instability of female and poor knowledge of sex expression mechanisms. To obtain some hints involved in sex expression and provide the basis for further insight into the molecular mechanisms of castor plant sex determination, we performed DGE analysis to investigate differences between the transcriptomes of apices and racemes derived from female (JXBM0705P) and monoecious (JXBM0705M) lines. A total of 18 DGE libraries were constructed from the apices and racemes of a wild monoecious line and its isogenic female derivative at three stages of apex development, in triplicate. Approximately 5.7 million clean tags per library were generated and mapped to the reference castor genome. Transcriptomic analysis showed that identical dynamic changes of gene expression were indicated in monoecious and female apical bud during its development from vegetation to reproduction, with more genes expressed at the raceme formation and infant raceme stages compare to the early leaf bud stage. More than 3000 of differentially expressed genes (DEGs) were detected in Ricinus apices at three developmental stages between two different sex types. A number of DEGs involved in hormone response and biosynthesis, such as auxin response and transport, transcription factors, signal transduction, histone demethylation/methylation, programmed cell death, and pollination, putatively associated with sex expression and reproduction were discovered, and the selected DEGs showed consistent expression between qRT-PCR validation and the DGE patterns. Most of those DEGs were suppressed at the early leaf stage in buds of the mutant, but then activated at the following transition stage (5-7-leaf stage) of buds in the mutant, and ultimately, the number of up-regulated DEGs was equal to that of down-regulation in the

  19. Transcriptomic Analysis for Different Sex Types of Ricinus communis L. during Development from Apical Buds to Inflorescences by Digital Gene Expression Profiling

    PubMed Central

    Tan, Meilian; Xue, Jianfeng; Wang, Lei; Huang, Jiaxiang; Fu, Chunling; Yan, Xingchu

    2016-01-01

    The castor plant (Ricinus communis L.) is a versatile industrial oilseed crop with a diversity of sex patterns, its hybrid breeding for improving yield and high purity is still hampered by genetic instability of female and poor knowledge of sex expression mechanisms. To obtain some hints involved in sex expression and provide the basis for further insight into the molecular mechanisms of castor plant sex determination, we performed DGE analysis to investigate differences between the transcriptomes of apices and racemes derived from female (JXBM0705P) and monoecious (JXBM0705M) lines. A total of 18 DGE libraries were constructed from the apices and racemes of a wild monoecious line and its isogenic female derivative at three stages of apex development, in triplicate. Approximately 5.7 million clean tags per library were generated and mapped to the reference castor genome. Transcriptomic analysis showed that identical dynamic changes of gene expression were indicated in monoecious and female apical bud during its development from vegetation to reproduction, with more genes expressed at the raceme formation and infant raceme stages compare to the early leaf bud stage. More than 3000 of differentially expressed genes (DEGs) were detected in Ricinus apices at three developmental stages between two different sex types. A number of DEGs involved in hormone response and biosynthesis, such as auxin response and transport, transcription factors, signal transduction, histone demethylation/methylation, programmed cell death, and pollination, putatively associated with sex expression and reproduction were discovered, and the selected DEGs showed consistent expression between qRT-PCR validation and the DGE patterns. Most of those DEGs were suppressed at the early leaf stage in buds of the mutant, but then activated at the following transition stage (5-7-leaf stage) of buds in the mutant, and ultimately, the number of up-regulated DEGs was equal to that of down-regulation in the

  20. The Nucleocapsid Domain of Gag Is Dispensable for Actin Incorporation into HIV-1 and for Association of Viral Budding Sites with Cortical F-Actin

    PubMed Central

    Stauffer, Sarah; Rahman, Sheikh Abdul; de Marco, Alex; Carlson, Lars-Anders; Glass, Bärbel; Oberwinkler, Heike; Herold, Nikolas; Briggs, John A. G.; Müller, Barbara

    2014-01-01

    ABSTRACT Actin and actin-binding proteins are incorporated into HIV-1 particles, and F-actin has been suggested to bind the NC domain in HIV-1 Gag. Furthermore, F-actin has been frequently observed in the vicinity of HIV-1 budding sites by cryo-electron tomography (cET). Filamentous structures emanating from viral buds and suggested to correspond to actin filaments have been observed by atomic force microscopy. To determine whether the NC domain of Gag is required for actin association with viral buds and for actin incorporation into HIV-1, we performed comparative analyses of virus-like particles (VLPs) obtained by expression of wild-type HIV-1 Gag or a Gag variant where the entire NC domain had been replaced by a dimerizing leucine zipper [Gag(LZ)]. The latter protein yielded efficient production of VLPs with near-wild-type assembly kinetics and size and exhibited a regular immature Gag lattice. Typical HIV-1 budding sites were detected by using cET in cells expressing either Gag or Gag(LZ), and no difference was observed regarding the association of buds with the F-actin network. Furthermore, actin was equally incorporated into wild-type HIV-1 and Gag- or Gag(LZ)-derived VLPs, with less actin per particle observed than had been reported previously. Incorporation appeared to correlate with the relative intracellular actin concentration, suggesting an uptake of cytosol rather than a specific recruitment of actin. Thus, the NC domain in HIV-1 Gag does not appear to have a role in actin recruitment or actin incorporation into HIV-1 particles. IMPORTANCE HIV-1 particles bud from the plasma membrane, which is lined by a network of actin filaments. Actin was found to interact with the nucleocapsid domain of the viral structural protein Gag and is incorporated in significant amounts into HIV-1 particles, suggesting that it may play an active role in virus release. Using electron microscopy techniques, we previously observed bundles of actin filaments near HIV-1 buds

  1. Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis.

    PubMed

    Brewer, Philip B; Dun, Elizabeth A; Ferguson, Brett J; Rameau, Catherine; Beveridge, Christine A

    2009-05-01

    During the last century, two key hypotheses have been proposed to explain apical dominance in plants: auxin promotes the production of a second messenger that moves up into buds to repress their outgrowth, and auxin saturation in the stem inhibits auxin transport from buds, thereby inhibiting bud outgrowth. The recent discovery of strigolactone as the novel shoot-branching inhibitor allowed us to test its mode of action in relation to these hypotheses. We found that exogenously applied strigolactone inhibited bud outgrowth in pea (Pisum sativum) even when auxin was depleted after decapitation. We also found that strigolactone application reduced branching in Arabidopsis (Arabidopsis thaliana) auxin response mutants, suggesting that auxin may act through strigolactones to facilitate apical dominance. Moreover, strigolactone application to tiny buds of mutant or decapitated pea plants rapidly stopped outgrowth, in contrast to applying N-1-naphthylphthalamic acid (NPA), an auxin transport inhibitor, which significantly slowed growth only after several days. Whereas strigolactone or NPA applied to growing buds reduced bud length, only NPA blocked auxin transport in the bud. Wild-type and strigolactone biosynthesis mutant pea and Arabidopsis shoots were capable of instantly transporting additional amounts of auxin in excess of endogenous levels, contrary to predictions of auxin transport models. These data suggest that strigolactone does not act primarily by affecting auxin transport from buds. Rather, the primary repressor of bud outgrowth appears to be the auxin-dependent production of strigolactones. PMID:19321710

  2. Differentiation of Apical Bud Cells in a Newly Developed Apical Bud Transplantation Model Using GFP Transgenic Mice as Donor

    PubMed Central

    Sakagami, Ryuji; Yoshinaga, Yasunori; Okamura, Kazuhiko

    2016-01-01

    Rodent mandibular incisors have a unique anatomical structure that allows teeth to grow throughout the lifetime of the rodent. This report presents a novel transplantation technique for studying the apical bud differentiation of rodent mandibular incisors. Incisal apical end tissue with green fluorescent protein from transgenic mouse was transplanted to wild type mice, and the development of the transplanted cells were immunohistologically observed for 12 weeks after the transplantation. Results indicate that the green fluorescent apical end tissue replaced the original tissue, and cells from the apical bud differentiated and extended toward the incisal edge direction. The immunostaining with podoplanin also showed that the characteristics of the green fluorescent tissue were identical to those of the original. The green fluorescent cells were only found in the labial side of the incisor up to 4 weeks. After 12 weeks, however, they were also found in the lingual side. Here the green fluorescent cementocyte-like cells were only present in the cementum close to the dentin surface. This study suggests that some of the cells that form the cellular cementum come from the apical tissue including the apical bud in rodent incisors. PMID:26978064

  3. Damped leaf flexure hinge

    NASA Astrophysics Data System (ADS)

    Chen, Zhong; Chen, Guisheng; Zhang, Xianmin

    2015-05-01

    Flexure-based mechanism like compliant actuation system embeds complex dynamics that will reduce the control bandwidth and limits their dynamic positioning precision. This paper presents a theoretical model of a leaf flexure hinge with damping layers using strain energy method and Kelvin damping model. The modified loss factor of the damped leaf flexure hinge is derived, and the equivalent viscous damping coefficient of the damped leaf hinge is obtained, which could be used to improve the pseudo-rigid-model. The free vibration signals of the hinge in three different damping configurations are measured. The experimental modal analysis also is performed on the three kinds of damped leaf flexure hinges in order to evaluate their 1st order bending natural frequency and vibration-suppressing effects. The evaluation of modified loss factor model also is performed. The experimental results indicate that the constrained layer damping can enhance the structure damping of the hinge even if only single damping layer each side, the modified loss factor model can get good predicts of a damped leaf flexure hinge in the frequency range below 1st order natural frequency, and it is necessary that the dimensional parameters of the damping layers and basic layer of the hinge should be optimized for simplification at the mechanism's design stage.

  4. Damped leaf flexure hinge.

    PubMed

    Chen, Zhong; Chen, Guisheng; Zhang, Xianmin

    2015-05-01

    Flexure-based mechanism like compliant actuation system embeds complex dynamics that will reduce the control bandwidth and limits their dynamic positioning precision. This paper presents a theoretical model of a leaf flexure hinge with damping layers using strain energy method and Kelvin damping model. The modified loss factor of the damped leaf flexure hinge is derived, and the equivalent viscous damping coefficient of the damped leaf hinge is obtained, which could be used to improve the pseudo-rigid-model. The free vibration signals of the hinge in three different damping configurations are measured. The experimental modal analysis also is performed on the three kinds of damped leaf flexure hinges in order to evaluate their 1st order bending natural frequency and vibration-suppressing effects. The evaluation of modified loss factor model also is performed. The experimental results indicate that the constrained layer damping can enhance the structure damping of the hinge even if only single damping layer each side, the modified loss factor model can get good predicts of a damped leaf flexure hinge in the frequency range below 1st order natural frequency, and it is necessary that the dimensional parameters of the damping layers and basic layer of the hinge should be optimized for simplification at the mechanism's design stage. PMID:26026549

  5. Ice nucleation activity in various tissues of Rhododendron flower buds: their relevance to extraorgan freezing.

    PubMed

    Ishikawa, Masaya; Ishikawa, Mikiko; Toyomasu, Takayuki; Aoki, Takayuki; Price, William S

    2015-01-01

    Wintering flower buds of cold hardy Rhododendron japonicum cooled slowly to subfreezing temperatures are known to undergo extraorgan freezing, whose mechanisms remain obscure. We revisited this material to demonstrate why bud scales freeze first in spite of their lower water content, why florets remain deeply supercooled and how seasonal adaptive responses occur in regard to extraorgan freezing in flower buds. We determined ice nucleation activity (INA) of various flower bud tissues using a test tube-based assay. Irrespective of collection sites, outer and inner bud scales that function as ice sinks in extraorgan freezing had high INA levels whilst florets that remain supercooled and act as a water source lacked INA. The INA level of bud scales was not high in late August when flower bud formation was ending, but increased to reach the highest level in late October just before the first autumnal freeze. The results support the following hypothesis: the high INA in bud scales functions as the subfreezing sensor, ensuring the primary freezing in bud scales at warmer subzero temperatures, which likely allows the migration of floret water to the bud scales and accumulation of icicles within the bud scales. The low INA in the florets helps them remain unfrozen by deep supercooling. The INA in the bud scales was resistant to grinding and autoclaving at 121(∘)C for 15 min, implying the intrinsic nature of the INA rather than of microbial origin, whilst the INA in stem bark was autoclaving-labile. Anti-nucleation activity (ANA) was implicated in the leachate of autoclaved bud scales, which suppresses the INA at millimolar levels of concentration and likely differs from the colligative effects of the solutes. The tissue INA levels likely contribute to the establishment of freezing behaviors by ensuring the order of freezing in the tissues: from the primary freeze to the last tissue remaining unfrozen.

  6. Ice nucleation activity in various tissues of Rhododendron flower buds: their relevance to extraorgan freezing.

    PubMed

    Ishikawa, Masaya; Ishikawa, Mikiko; Toyomasu, Takayuki; Aoki, Takayuki; Price, William S

    2015-01-01

    Wintering flower buds of cold hardy Rhododendron japonicum cooled slowly to subfreezing temperatures are known to undergo extraorgan freezing, whose mechanisms remain obscure. We revisited this material to demonstrate why bud scales freeze first in spite of their lower water content, why florets remain deeply supercooled and how seasonal adaptive responses occur in regard to extraorgan freezing in flower buds. We determined ice nucleation activity (INA) of various flower bud tissues using a test tube-based assay. Irrespective of collection sites, outer and inner bud scales that function as ice sinks in extraorgan freezing had high INA levels whilst florets that remain supercooled and act as a water source lacked INA. The INA level of bud scales was not high in late August when flower bud formation was ending, but increased to reach the highest level in late October just before the first autumnal freeze. The results support the following hypothesis: the high INA in bud scales functions as the subfreezing sensor, ensuring the primary freezing in bud scales at warmer subzero temperatures, which likely allows the migration of floret water to the bud scales and accumulation of icicles within the bud scales. The low INA in the florets helps them remain unfrozen by deep supercooling. The INA in the bud scales was resistant to grinding and autoclaving at 121(∘)C for 15 min, implying the intrinsic nature of the INA rather than of microbial origin, whilst the INA in stem bark was autoclaving-labile. Anti-nucleation activity (ANA) was implicated in the leachate of autoclaved bud scales, which suppresses the INA at millimolar levels of concentration and likely differs from the colligative effects of the solutes. The tissue INA levels likely contribute to the establishment of freezing behaviors by ensuring the order of freezing in the tissues: from the primary freeze to the last tissue remaining unfrozen. PMID:25859249

  7. Ice nucleation activity in various tissues of Rhododendron flower buds: their relevance to extraorgan freezing

    PubMed Central

    Ishikawa, Masaya; Ishikawa, Mikiko; Toyomasu, Takayuki; Aoki, Takayuki; Price, William S.

    2015-01-01

    Wintering flower buds of cold hardy Rhododendron japonicum cooled slowly to subfreezing temperatures are known to undergo extraorgan freezing, whose mechanisms remain obscure. We revisited this material to demonstrate why bud scales freeze first in spite of their lower water content, why florets remain deeply supercooled and how seasonal adaptive responses occur in regard to extraorgan freezing in flower buds. We determined ice nucleation activity (INA) of various flower bud tissues using a test tube-based assay. Irrespective of collection sites, outer and inner bud scales that function as ice sinks in extraorgan freezing had high INA levels whilst florets that remain supercooled and act as a water source lacked INA. The INA level of bud scales was not high in late August when flower bud formation was ending, but increased to reach the highest level in late October just before the first autumnal freeze. The results support the following hypothesis: the high INA in bud scales functions as the subfreezing sensor, ensuring the primary freezing in bud scales at warmer subzero temperatures, which likely allows the migration of floret water to the bud scales and accumulation of icicles within the bud scales. The low INA in the florets helps them remain unfrozen by deep supercooling. The INA in the bud scales was resistant to grinding and autoclaving at 121∘C for 15 min, implying the intrinsic nature of the INA rather than of microbial origin, whilst the INA in stem bark was autoclaving-labile. Anti-nucleation activity (ANA) was implicated in the leachate of autoclaved bud scales, which suppresses the INA at millimolar levels of concentration and likely differs from the colligative effects of the solutes. The tissue INA levels likely contribute to the establishment of freezing behaviors by ensuring the order of freezing in the tissues: from the primary freeze to the last tissue remaining unfrozen. PMID:25859249

  8. Leaf dynamics in growth and reproduction of Xanthium canadense as influenced by stand density

    PubMed Central

    Ogawa, Takahiro; Oikawa, Shimpei; Hirose, Tadaki

    2015-01-01

    Background and Aims Leaf longevity is controlled by the light gradient in the canopy and also by the nitrogen (N) sink strength in the plant. Stand density may influence leaf dynamics through its effects on light gradient and on plant growth and reproduction. This study tests the hypothesis that the control by the light gradient is manifested more in the vegetative period, whereas the opposite is true when the plant becomes reproductive and develops a strong N sink. Methods Stands of Xanthium canadense were established at two densities. Emergence, growth and death of every leaf on the main stem and branches, and plant growth and N uptake were determined from germination to full senescence. Mean residence time and dry mass productivity were calculated per leaf number, leaf area, leaf mass and leaf N (collectively termed ‘leaf variables’) in order to analyse leaf dynamics and its effect on plant growth. Key Results Branching and reproductive activities were higher at low than at high density. Overall there was no significant difference in mean residence time of leaf variables between the two stands. However, early leaf cohorts on the main stem had a longer retention time at low density, whereas later cohorts had a longer retention time at high density. Branch leaves emerged earlier and tended to live longer at low than at high density. Leaf efficiencies, defined as carbon export per unit investment of leaf variables, were higher at low density in all leaf variables except for leaf number. Conclusions In the vegetative phase of plant growth, the light gradient strongly controls leaf longevity, whereas later the effects of branching and reproductive activities become stronger and over-rule the effect of light environment. As leaf N supports photosynthesis and also works as an N source for plant development, N use is pivotal in linking leaf dynamics with plant growth and reproduction. PMID:26248476

  9. Involvement of EARLY BUD-BREAK, an AP2/ERF Transcription Factor Gene, in Bud Break in Japanese Pear (Pyrus pyrifolia Nakai) Lateral Flower Buds: Expression, Histone Modifications and Possible Target Genes.

    PubMed

    Anh Tuan, Pham; Bai, Songling; Saito, Takanori; Imai, Tsuyoshi; Ito, Akiko; Moriguchi, Takaya

    2016-05-01

    In the Japanese pear (Pyrus pyrifolia Nakai) 'Kosui', three developmental stages of lateral flower buds have been proposed to occur during ecodormancy to the flowering phase, i.e. rapid enlargement, sprouting and flowering. Here, we report an APETALA2/ethylene-responsive factor (AP2/ERF) transcription factor gene, named pear EARLY BUD-BREAK (PpEBB), which was highly expressed during the rapid enlargement stage occurring prior to the onset of bud break in flower buds. Gene expression analysis revealed that PpEBB expression was dramatically increased during the rapid enlargement stage in three successive growing seasons. PpEBB transcript levels peaked 1 week prior to onset of bud break in 'Kosui' potted plants treated with hydrogen cyanamide or water under forcing conditions. Chromatin immunoprecipitation-quantitative PCR showed that higher levels of active histone modifications (trimethylation of the histone H3 tail at Lys4) in the 5'-upstream and start codon regions of the PpEBB gene were associated with the induced expression level of PpEBB during the rapid enlargement stage. In addition, we provide evidence that PpEBB may interact with and regulate pear four D-type cyclin (PpCYCD3) genes during bud break in 'Kosui' lateral flower buds. PpEBB significantly increased the promoter activities of four PpCYCD3 genes in a dual-luciferase assay using tobacco leaves. Taken together, our findings uncovered aspects of the bud break regulatory mechanism in the Japanese pear and provided further evidence that the EBB family plays an important role in bud break in perennial plants. PMID:26940832

  10. Involvement of EARLY BUD-BREAK, an AP2/ERF Transcription Factor Gene, in Bud Break in Japanese Pear (Pyrus pyrifolia Nakai) Lateral Flower Buds: Expression, Histone Modifications and Possible Target Genes.

    PubMed

    Anh Tuan, Pham; Bai, Songling; Saito, Takanori; Imai, Tsuyoshi; Ito, Akiko; Moriguchi, Takaya

    2016-05-01

    In the Japanese pear (Pyrus pyrifolia Nakai) 'Kosui', three developmental stages of lateral flower buds have been proposed to occur during ecodormancy to the flowering phase, i.e. rapid enlargement, sprouting and flowering. Here, we report an APETALA2/ethylene-responsive factor (AP2/ERF) transcription factor gene, named pear EARLY BUD-BREAK (PpEBB), which was highly expressed during the rapid enlargement stage occurring prior to the onset of bud break in flower buds. Gene expression analysis revealed that PpEBB expression was dramatically increased during the rapid enlargement stage in three successive growing seasons. PpEBB transcript levels peaked 1 week prior to onset of bud break in 'Kosui' potted plants treated with hydrogen cyanamide or water under forcing conditions. Chromatin immunoprecipitation-quantitative PCR showed that higher levels of active histone modifications (trimethylation of the histone H3 tail at Lys4) in the 5'-upstream and start codon regions of the PpEBB gene were associated with the induced expression level of PpEBB during the rapid enlargement stage. In addition, we provide evidence that PpEBB may interact with and regulate pear four D-type cyclin (PpCYCD3) genes during bud break in 'Kosui' lateral flower buds. PpEBB significantly increased the promoter activities of four PpCYCD3 genes in a dual-luciferase assay using tobacco leaves. Taken together, our findings uncovered aspects of the bud break regulatory mechanism in the Japanese pear and provided further evidence that the EBB family plays an important role in bud break in perennial plants.

  11. Elevated CO{sub 2} and leaf shape: Are dandelions getting toothier?

    SciTech Connect

    Thomas, S.C.; Bazzaz, F.A.

    1996-01-01

    Heteroblastic leaf development in Taraxacum officinale is compared between plants grown under ambient (350 ppm) vs. elevated (700 ppm) CO{sub 2} levels. Leaves of elevated CO{sub 2} plants exhibited more deeply incised leaf margins and relatively more slender leaf laminae than leaves of ambient CO{sub 2} plants. These differences were found to be significant in allometric analyses that controlled for differences in leaf size, as well as analyses that controlled for leaf development order. The effects of elevated CO{sub 2} on leaf shape were most pronounced when plants were grown individually, but detectable differences were also found in plants grown at high density. Although less dramatic than in Taraxacum, significant effects of elevated CO{sub 2} on leaf shape were also found in two other weedy rosette species, Plantago major and Rumex crispus. These observations support the long-standing hypothesis that leaf carbohydrate level plays an important role in regulating heteroblastic leaf development, though elevated CO{sub 2} may also affect leaf development through direct hormonal interactions or increased leaf water potential. In Taraxacum, pronounced modifications of leaf shape were found at CO{sub 2} levels predicted to occur within the next century. 33 refs., 5 figs.

  12. Identification of differentially expressed genes in a spontaneous altered leaf shape mutant of the navel orange [Citrus sinensis (L.) Osbeck].

    PubMed

    Da, Xinlei; Yu, Keqin; Shen, Shihui; Zhang, Yajian; Wu, Juxun; Yi, Hualin

    2012-07-01

    Most of the economically important citrus cultivars have originated from bud mutations. Leaf shape and structure are important factors that impact plant photosynthesis. We found a spontaneous bud mutant exhibiting a narrow leaf phenotype in navel orange [Citrus sinensis (L.) Osbeck]. To identify and characterize the genes involved in the formation of this trait, we performed suppression subtractive hybridization (SSH) and macroarray analysis. A total of 221 non-redundant differentially expressed transcripts were obtained. These transcripts included cell wall- and microtubule-related genes and two transcription factor-encoding genes, yabby and wox, which are crucial for leaf morphogenesis. Many highly redundant transcripts were associated with stress responses, while others, encoding caffeic acid 3-O-methyltransferase (EC 2.1.1.68) and a myb-like transcription factor, might be involved in the lignin pathway, which produces a component of secondary walls. Furthermore, real-time quantitative RT-PCR was performed for selected genes to validate the quality of the expressed sequence tags (ESTs) from the SSH libraries. This study represents an attempt to investigate the molecular mechanism associated with a leaf shape mutation, and its results provide new clues for understanding leaf shape mutations in citrus.

  13. Decline of wildcelery buds in the lower Detroit River, 1950-85

    USGS Publications Warehouse

    Schloesser, Donald W.; Manny, Bruce A.

    1990-01-01

    American wildcelery buds (Vallisneria americana), an abundant food eaten by diving ducks (Aythini) during migrations, decreased in the lower Detroit River of the Great Lakes from 1950 to 1985. Bud densities decreased at 2 (-14 and -18 buds/mA?) of 5 locations and were similar at 3 (-2, +2, and +3 buds/mA?) of 5 locations. Net change in all 5 areas combined, however, was a decrease of 36,720,000 buds, a 72% decline. Estimated potential losses of waterfowl feeding days caused by the decreased bud densities were 147,000 for canvasbacks (Aythya valisineria), 241,000 for redhead ducks (A. americana), or 664,000 for lesser scaup (A. affinis). Thus, the decline of wildcelery in the Detroit River may have contributed to decreased use of Michigan migration routes by some waterfowl species between 1950 and 1985.

  14. Reconstituting ring-rafts in bud-mimicking topography of model membranes

    NASA Astrophysics Data System (ADS)

    Ryu, Yong-Sang; Lee, In-Ho; Suh, Jeng-Hun; Park, Seung Chul; Oh, Soojung; Jordan, Luke R.; Wittenberg, Nathan J.; Oh, Sang-Hyun; Jeon, Noo Li; Lee, Byoungho; Parikh, Atul N.; Lee, Sin-Doo

    2014-07-01

    During vesicular trafficking and release of enveloped viruses, the budding and fission processes dynamically remodel the donor cell membrane in a protein- or a lipid-mediated manner. In all cases, in addition to the generation or relief of the curvature stress, the buds recruit specific lipids and proteins from the donor membrane through restricted diffusion for the development of a ring-type raft domain of closed topology. Here, by reconstituting the bud topography in a model membrane, we demonstrate the preferential localization of cholesterol- and sphingomyelin-enriched microdomains in the collar band of the bud-neck interfaced with the donor membrane. The geometrical approach to the recapitulation of the dynamic membrane reorganization, resulting from the local radii of curvatures from nanometre-to-micrometre scales, offers important clues for understanding the active roles of the bud topography in the sorting and migration machinery of key signalling proteins involved in membrane budding.

  15. Phenological variation of leaf functional traits within species.

    PubMed

    Fajardo, Alex; Siefert, Andrew

    2016-04-01

    A basic assumption of the trait-based approach in plant ecology is that differences in functional trait values are greater between species than within species. We questioned this assumption by assessing (1) the relative extent of inter- and intraspecific leaf trait variation throughout a complete growing season (phenological variation) in a group of deciduous and evergreen woody species, and (2) whether species rankings based on leaf traits were maintained across the growing season. We analysed leaf mass per area (LMA) and leaf nutrient concentrations (C, N, P), including the C:N and N:P ratios. Intraspecific trait variation (ITV) due to phenology was significantly greater than interspecific variation for leaf N concentration on a mass basis (Nm; 68.90 %) and for the leaf C:N ratio (60.60 %), whereas interspecific variation was significantly higher than ITV for LMA (62.30 %) and for leaf C concentration on a mass (Cm) and area (Ca) basis (Cm 70.40 %; Ca 65.30 %). ITV was particularly low for LMA (<20 %). Species rankings were highly modified by phenology for a number of leaf traits (Pm, N:P ratio) but were relatively well conserved throughout the growing season for others (LMA, Nm). Patterns of ITV across the growing season differed significantly between deciduous and evergreen species for all traits except leaf P but did not vary between native and exotic species. Overall, our results show that intraspecific phenological variation in leaf traits may be similar to or greater than interspecific variation and that temporal patterns of ITV vary considerably among traits and species, especially for leaf nutrient concentrations, factors which can potentially affect quantitative interspecific relationships.

  16. Sucrose is an early modulator of the key hormonal mechanisms controlling bud outgrowth in Rosa hybrida.

    PubMed

    Barbier, François; Péron, Thomas; Lecerf, Marion; Perez-Garcia, Maria-Dolores; Barrière, Quentin; Rolčík, Jakub; Boutet-Mercey, Stéphanie; Citerne, Sylvie; Lemoine, Remi; Porcheron, Benoît; Roman, Hanaé; Leduc, Nathalie; Le Gourrierec, José; Bertheloot, Jessica; Sakr, Soulaiman

    2015-05-01

    Sugar has only recently been identified as a key player in triggering bud outgrowth, while hormonal control of bud outgrowth is already well established. To get a better understanding of sugar control, the present study investigated how sugar availability modulates the hormonal network during bud outgrowth in Rosa hybrida. Other plant models, for which mutants are available, were used when necessary. Buds were grown in vitro to manipulate available sugars. The temporal patterns of the hormonal regulatory network were assessed in parallel with bud outgrowth dynamics. Sucrose determined bud entrance into sustained growth in a concentration-dependent manner. Sustained growth was accompanied by sustained auxin production in buds, and sustained auxin export in a DR5::GUS-expressing pea line. Several events occurred ahead of sucrose-stimulated bud outgrowth. Sucrose upregulated early auxin synthesis genes (RhTAR1, RhYUC1) and the auxin efflux carrier gene RhPIN1, and promoted PIN1 abundance at the plasma membrane in a pPIN1::PIN1-GFP-expressing tomato line. Sucrose downregulated both RwMAX2, involved in the strigolactone-transduction pathway, and RhBRC1, a repressor of branching, at an early stage. The presence of sucrose also increased stem cytokinin content, but sucrose-promoted bud outgrowth was not related to that pathway. In these processes, several non-metabolizable sucrose analogues induced sustained bud outgrowth in R. hybrida, Pisum sativum, and Arabidopsis thaliana, suggesting that sucrose was involved in a signalling pathway. In conclusion, we identified potential hormonal candidates for bud outgrowth control by sugar. They are central to future investigations aimed at disentangling the processes that underlie regulation of bud outgrowth by sugar.

  17. Model of human immunodeficiency virus budding and self-assembly: Role of the cell membrane

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Nguyen, Toan T.

    2008-11-01

    Budding from the plasma membrane of the host cell is an indispensable step in the life cycle of the human immunodeficiency virus (HIV), which belongs to a large family of enveloped RNA viruses, retroviruses. Unlike regular enveloped viruses, retrovirus budding happens concurrently with the self-assembly of the main retrovirus protein subunits (called Gag protein after the name of the genetic material that codes for this protein: Group-specific AntiGen) into spherical virus capsids on the cell membrane. Led by this unique budding and assembly mechanism, we study the free energy profile of retrovirus budding, taking into account the Gag-Gag attraction energy and the membrane elastic energy. We find that if the Gag-Gag attraction is strong, budding always proceeds to completion. During early stage of budding, the zenith angle of partial budded capsids, α , increases with time as α∝t1/2 . However, if the Gag-Gag attraction is weak, a metastable state of partial budding appears. The zenith angle of these partially spherical capsids is given by α0≃(τ2/κσ)1/4 in a linear approximation, where κ and σ are the bending modulus and the surface tension of the membrane, and τ is a line tension of the capsid proportional to the strength of Gag-Gag attraction. Numerically, we find α0<0.3π without any approximations. Using experimental parameters, we show that HIV budding and assembly always proceed to completion in normal biological conditions. On the other hand, by changing Gag-Gag interaction strength or membrane rigidity, it is relatively easy to tune it back and forth between complete budding and partial budding. Our model agrees reasonably well with experiments observing partial budding of retroviruses including HIV.

  18. Sucrose is an early modulator of the key hormonal mechanisms controlling bud outgrowth in Rosa hybrida.

    PubMed

    Barbier, François; Péron, Thomas; Lecerf, Marion; Perez-Garcia, Maria-Dolores; Barrière, Quentin; Rolčík, Jakub; Boutet-Mercey, Stéphanie; Citerne, Sylvie; Lemoine, Remi; Porcheron, Benoît; Roman, Hanaé; Leduc, Nathalie; Le Gourrierec, José; Bertheloot, Jessica; Sakr, Soulaiman

    2015-05-01

    Sugar has only recently been identified as a key player in triggering bud outgrowth, while hormonal control of bud outgrowth is already well established. To get a better understanding of sugar control, the present study investigated how sugar availability modulates the hormonal network during bud outgrowth in Rosa hybrida. Other plant models, for which mutants are available, were used when necessary. Buds were grown in vitro to manipulate available sugars. The temporal patterns of the hormonal regulatory network were assessed in parallel with bud outgrowth dynamics. Sucrose determined bud entrance into sustained growth in a concentration-dependent manner. Sustained growth was accompanied by sustained auxin production in buds, and sustained auxin export in a DR5::GUS-expressing pea line. Several events occurred ahead of sucrose-stimulated bud outgrowth. Sucrose upregulated early auxin synthesis genes (RhTAR1, RhYUC1) and the auxin efflux carrier gene RhPIN1, and promoted PIN1 abundance at the plasma membrane in a pPIN1::PIN1-GFP-expressing tomato line. Sucrose downregulated both RwMAX2, involved in the strigolactone-transduction pathway, and RhBRC1, a repressor of branching, at an early stage. The presence of sucrose also increased stem cytokinin content, but sucrose-promoted bud outgrowth was not related to that pathway. In these processes, several non-metabolizable sucrose analogues induced sustained bud outgrowth in R. hybrida, Pisum sativum, and Arabidopsis thaliana, suggesting that sucrose was involved in a signalling pathway. In conclusion, we identified potential hormonal candidates for bud outgrowth control by sugar. They are central to future investigations aimed at disentangling the processes that underlie regulation of bud outgrowth by sugar. PMID:25873679

  19. Effect of CO sub 2 enriched air on the kinetics of leaf expansion. [Pisum sativa; Glycine max

    SciTech Connect

    Potter, J.R. )

    1991-05-01

    Vegetative plants of Pisum sativum (pea) and Glycine max (soybean) were transferred from 350 to 1,200 ppm CO{sub 2} when they had one (pea) or two (soybean) mature leaves and several developing leaves. Controls were kept at 350 ppm. For pea, high CO{sub 2} for 8 days increased dry mass of root, stem, and leaf fractions by 30-50%. Leaf dry mass increase was due primarily to carbohydrate, particularly starch. Dawn levels of starch increased 10-fold within 1 day at high CO{sub 2} and 20-fold at 2 days. At 2 days after transfer leaf starch levels were 1.0 mg cm{sup {minus}2} of leaf area or nearly 30% of leaf dry weight. Soybean data are less complete, but 10 days at high CO{sub 2} increased leaf + stem dry mass by 50% and leaf weight per unit area increased by 14 and 48% at dawn within 1 and 2 days, respectively, at high CO{sub 2}. However 8-10 days at high CO{sub 2} increased total leaf area only slightly (about 15%) for both species, with all the leaf area increase occurring at nodes that were nearly microscopic at the time of transfer. For soybean, most of the increased leaf area due to high CO{sub 2} was from lateral bud break despite a high CO{sub 2} did not stimulated more leaves per plant. Apparently, extra photosynthate had a delayed effect on leaf expansion and did not increase nodes along the main axis. Leaf expansion under high CO{sub 2} was not limited by photosynthate.

  20. Spaceflight enhances cell aggregation and random budding in Candida albicans.

    PubMed

    Crabbé, Aurélie; Nielsen-Preiss, Sheila M; Woolley, Christine M; Barrila, Jennifer; Buchanan, Kent; McCracken, James; Inglis, Diane O; Searles, Stephen C; Nelman-Gonzalez, Mayra A; Ott, C Mark; Wilson, James W; Pierson, Duane L; Stefanyshyn-Piper, Heidemarie M; Hyman, Linda E; Nickerson, Cheryl A

    2013-01-01

    This study presents the first global transcriptional profiling and phenotypic characterization of the major human opportunistic fungal pathogen, Candida albicans, grown in spaceflight conditions. Microarray analysis revealed that C. albicans subjected to short-term spaceflight culture differentially regulated 452 genes compared to synchronous ground controls, which represented 8.3% of the analyzed ORFs. Spaceflight-cultured C. albicans-induced genes involved in cell aggregation (similar to flocculation), which was validated by microscopic and flow cytometry analysis. We also observed enhanced random budding of spaceflight-cultured cells as opposed to bipolar budding patterns for ground samples, in accordance with the gene expression data. Furthermore, genes involved in antifungal agent and stress resistance were differentially regulated in spaceflight, including induction of ABC transporters and members of the major facilitator family, downregulation of ergosterol-encoding genes, and upregulation of genes involved in oxidative stress resistance. Finally, downregulation of genes involved in actin cytoskeleton was observed. Interestingly, the transcriptional regulator Cap1 and over 30% of the Cap1 regulon was differentially expressed in spaceflight-cultured C. albicans. A potential role for Cap1 in the spaceflight response of C. albicans is suggested, as this regulator is involved in random budding, cell aggregation, and oxidative stress resistance; all related to observed spaceflight-associated changes of C. albicans. While culture of C. albicans in microgravity potentiates a global change in gene expression that could induce a virulence-related phenotype, no increased virulence in a murine intraperitoneal (i.p.) infection model was observed under the conditions of this study. Collectively, our data represent an important basis for the assessment of the risk that commensal flora could play during human spaceflight missions. Furthermore, since the low fluid

  1. Spaceflight Enhances Cell Aggregation and Random Budding in Candida albicans

    PubMed Central

    Woolley, Christine M.; Barrila, Jennifer; Buchanan, Kent; McCracken, James; Inglis, Diane O.; Searles, Stephen C.; Nelman-Gonzalez, Mayra A.; Ott, C. Mark; Wilson, James W.; Pierson, Duane L.; Stefanyshyn-Piper, Heidemarie M.; Hyman, Linda E.; Nickerson, Cheryl A.

    2013-01-01

    This study presents the first global transcriptional profiling and phenotypic characterization of the major human opportunistic fungal pathogen, Candida albicans, grown in spaceflight conditions. Microarray analysis revealed that C. albicans subjected to short-term spaceflight culture differentially regulated 452 genes compared to synchronous ground controls, which represented 8.3% of the analyzed ORFs. Spaceflight-cultured C. albicans–induced genes involved in cell aggregation (similar to flocculation), which was validated by microscopic and flow cytometry analysis. We also observed enhanced random budding of spaceflight-cultured cells as opposed to bipolar budding patterns for ground samples, in accordance with the gene expression data. Furthermore, genes involved in antifungal agent and stress resistance were differentially regulated in spaceflight, including induction of ABC transporters and members of the major facilitator family, downregulation of ergosterol-encoding genes, and upregulation of genes involved in oxidative stress resistance. Finally, downregulation of genes involved in actin cytoskeleton was observed. Interestingly, the transcriptional regulator Cap1 and over 30% of the Cap1 regulon was differentially expressed in spaceflight-cultured C. albicans. A potential role for Cap1 in the spaceflight response of C. albicans is suggested, as this regulator is involved in random budding, cell aggregation, and oxidative stress resistance; all related to observed spaceflight-associated changes of C. albicans. While culture of C. albicans in microgravity potentiates a global change in gene expression that could induce a virulence-related phenotype, no increased virulence in a murine intraperitoneal (i.p.) infection model was observed under the conditions of this study. Collectively, our data represent an important basis for the assessment of the risk that commensal flora could play during human spaceflight missions. Furthermore, since the low fluid

  2. Metabolite changes in conifer buds and needles during forced bud break in Norway spruce (Picea abies) and European silver fir (Abies alba)

    PubMed Central

    Dhuli, Priyanka; Rohloff, Jens; Strimbeck, G. Richard

    2014-01-01

    Environmental changes such as early spring and warm spells induce bud burst and photosynthetic processes in cold-acclimated coniferous trees and consequently, cellular metabolism in overwintering needles and buds. The purpose of the study was to examine metabolism in conifers under forced deacclimation (artificially induced spring) by exposing shoots of Picea abies (boreal species) and Abies alba (temperate species) to a greenhouse environment (22°C, 16/8 h D/N cycle) over a 9 weeks period. Each week, we scored bud opening and collected samples for GC/MS–based metabolite profiling. We detected a total of 169 assigned metabolites and 80 identified metabolites, comprising compounds such as mono- and disaccharides, Krebs cycle acids, amino acids, polyols, phenolics, and phosphorylated structures. Untargeted multivariate statistical analysis based on PCA and cluster analysis segregated samples by species, tissue type, and stage of tissue deacclimations. Similar patterns of metabolic regulation in both species were observed in buds (amino acids, Krebs cycle acids) and needles (hexoses, pentoses, and Krebs cycle acids). Based on correlation of bud opening score with compound levels, distinct metabolites could be associated with bud and shoot development, including amino acids, sugars, and acids with known osmolyte function, and secondary metabolites. This study has shed light on how elevated temperature affects metabolism in buds and needles of conifer species during the deacclimation phase, and contributes to the discussion about how phenological characters in conifers may respond to future global warming. PMID:25566281

  3. Maple Leaf Outdoor Centre.

    ERIC Educational Resources Information Center

    Maguire, Molly; Gunton, Ric

    2000-01-01

    Maple Leaf Outdoor Centre (Ontario) has added year-round outdoor education facilities and programs to help support its summer camp for disadvantaged children. Schools, youth centers, religious groups, and athletic teams conduct their own programs, collaborate with staff, or use staff-developed programs emphasizing adventure education and personal…

  4. Bacterial leaf spot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial leaf spot has been reported in Australia (Queensland), Egypt, El Salvador, India, Japan, Nicaragua, Sudan, and the United States (Florida, Iowa, Kansas, Maryland, and Wisconsin). It occasionally causes locally severe defoliation and post-emergence damping-off and stunting. The disease is...

  5. Comparative leaf development in angiosperms.

    PubMed

    Tsukaya, Hirokazu

    2014-02-01

    Recent accumulation of our knowledge on basic leaf development mechanisms in model angiosperm species has allowed us to pursue evolutionary development (evo/devo) studies of various kinds of leaf development. As a result, unexpected findings and clues have been unearthed aiding our understanding of the mechanisms involved in the diversity of leaf morphology, although the covered remain limited. In this review, we highlight recent findings of diversified leaf development in angiosperms.

  6. Model-data assimilation of multiple phenological observations to constrain and predict leaf area index.

    PubMed

    Viskari, Toni; Hardiman, Brady; Desai, Ankur R; Dietze, Michael C

    2015-03-01

    Our limited ability to accurately simulate leaf phenology is a leading source of uncertainty in models of ecosystem carbon cycling. We evaluate if continuously updating canopy state variables with observations is beneficial for predicting phenological events. We employed ensemble adjustment Kalman filter (EAKF) to update predictions of leaf area index (LAI) and leaf extension using tower-based photosynthetically active radiation (PAR) and moderate resolution imaging spectrometer (MODIS) data for 2002-2005 at Willow Creek, Wisconsin, USA, a mature, even-aged, northern hardwood, deciduous forest. The ecosystem demography model version 2 (ED2) was used as the prediction model, forced by offline climate data. EAKF successfully incorporated information from both the observations and model predictions weighted by their respective uncertainties. The resulting. estimate reproduced the observed leaf phenological cycle in the spring and the fall better than a parametric model prediction. These results indicate that during spring the observations contribute most in determining the correct bud-burst date, after which the model performs well, but accurately modeling fall leaf senesce requires continuous model updating from observations. While the predicted net ecosystem exchange (NEE) of CO2 precedes tower observations and unassimilated model predictions in the spring, overall the prediction follows observed NEE better than the model alone. Our results show state data assimilation successfully simulates the evolution of plant leaf phenology and improves model predictions of forest NEE.

  7. γ-Lactam alkaloids from the flower buds of daylily.

    PubMed

    Matsumoto, Takahiro; Nakamura, Seikou; Nakashima, Souichi; Ohta, Tomoe; Yano, Mamiko; Tsujihata, Junichiro; Tsukioka, Junko; Ogawa, Keiko; Fukaya, Masashi; Yoshikawa, Masayuki; Matsuda, Hisashi

    2016-07-01

    Four new alkaloids, hemerocallisamines IV-VII, were isolated from the methanol extract of flower buds of daylily. The chemical structures of the new compounds were elucidated on the basis of chemical and physicochemical evidence. The absolute stereochemistry of the hemerocallisamines IV-VI was elucidated by the application of the modified Mosher's method, HPLC analysis, and optical rotation. In the present study, the isolated alkaloids significantly inhibited the aggregation of Aβ42 in vitro. This is the first report about bioactive alkaloids with a γ-lactam ring from daylily. In addition, isolated nucleosides showed accelerative effects on neurite outgrowth under the non-fasting condition. PMID:26849229

  8. A rare glutamine derivative from the flower buds of daylily.

    PubMed

    Matsumoto, Takahiro; Nakamura, Seikou; Ohta, Tomoe; Fujimoto, Katsuyoshi; Yoshikawa, Masayuki; Ogawa, Keiko; Matsuda, Hisashi

    2014-06-01

    A rare glutamine derivative, hemerocallisamine I (1), was isolated from the methanolic extract of the flower buds of daylily, together with a new pyrrole alkaloid hemerocallisamine II (2) and a new γ-lactam derivative, hemerocallisamine III (3). The chemical structures of the new compounds were elucidated on the basis of chemical and physicochemical evidence. For hemerocallisamine I (1), the absolute configuration was determined by Mo-Kα X-ray crystallographic analysis. This is the first report of a glutamine derivative with a pyrrole ring from natural plants. PMID:24835438

  9. Post-transcriptional regulation in budding yeast meiosis.

    PubMed

    Jin, Liang; Neiman, Aaron M

    2016-05-01

    The precise regulation of gene expression is essential for developmental processes in eukaryotic organisms. As an important post-transcriptional regulatory point, translational control is complementary to transcriptional regulation. Sporulation in the budding yeast Saccharomyces cerevisiae is a developmental process controlled by a well-studied transcriptional cascade that drives the cell through the events of DNA replication, meiotic chromosome segregation, and spore assembly. Recent studies have revealed that as cells begin the meiotic divisions, translational regulation of gene expression fine tunes this transcriptional cascade. The significance and mechanisms of this translational regulation are beginning to emerge. These studies may also provide insights into translational regulation in germ cell development of multicellular organisms.

  10. γ-Lactam alkaloids from the flower buds of daylily.

    PubMed

    Matsumoto, Takahiro; Nakamura, Seikou; Nakashima, Souichi; Ohta, Tomoe; Yano, Mamiko; Tsujihata, Junichiro; Tsukioka, Junko; Ogawa, Keiko; Fukaya, Masashi; Yoshikawa, Masayuki; Matsuda, Hisashi

    2016-07-01

    Four new alkaloids, hemerocallisamines IV-VII, were isolated from the methanol extract of flower buds of daylily. The chemical structures of the new compounds were elucidated on the basis of chemical and physicochemical evidence. The absolute stereochemistry of the hemerocallisamines IV-VI was elucidated by the application of the modified Mosher's method, HPLC analysis, and optical rotation. In the present study, the isolated alkaloids significantly inhibited the aggregation of Aβ42 in vitro. This is the first report about bioactive alkaloids with a γ-lactam ring from daylily. In addition, isolated nucleosides showed accelerative effects on neurite outgrowth under the non-fasting condition.

  11. Chemical composition of volatile oil from Cinnamomum zeylanicum buds.

    PubMed

    Jayaprakasha, Guddadarangavvanahally K; Rao, Lingamallu Jaganmohan; Sakariah, Kunnumpurath K

    2002-01-01

    The hydro-distilled volatile oil of the Cinnamomum zeylanicum (C. zeylanicum) buds was analyzed using GC and GC-MS for the first time. Thirty-four compounds representing approximately 98% of the oil was characterized. It consists of terpene hydrocarbons (78%) and oxygenated terpenoids (9%). alpha-Bergamotene (27.38%) and alpha-copaene (23.05%) are found to be the major compounds. A comparison of the chemical composition of the oil was made with that of flowers and fruits.

  12. Balsacones D-I, dihydrocinnamoyl flavans from Populus balsamifera buds.

    PubMed

    Simard, François; Legault, Jean; Lavoie, Serge; Pichette, André

    2014-04-01

    A phytochemical investigation of an ethanolic extract from Populus balsamifera L. buds resulted in the isolation and characterization of twelve new flavan derivatives consisting of six pairs of enantiomers. Structures of (+) and (-)-balsacones D-I were elucidated based on spectroscopic data (1D and 2D NMR, MS) and their absolute configurations were established using X-ray single crystal diffraction analysis and ECD computational calculations. Antibacterial activity and cytotoxicity of all purified enantiomers were evaluated in vitro against Staphylococcus aureus and human skin fibroblast cells, respectively.

  13. UXO Detection and Characterization using new Berkeley UXO Discriminator (BUD)

    NASA Astrophysics Data System (ADS)

    Gasperikova, E.; Morrison, H. F.; Smith, J. T.; Becker, A.

    2006-05-01

    An optimally designed active electromagnetic system (AEM), Berkeley UXO Discriminator, BUD, has been developed for detection and characterization of UXO in the 20 mm to 150 mm size range. The system incorporates three orthogonal transmitters, and eight pairs of differenced receivers. The transmitter-receiver assembly together with the acquisition box, as well as the battery power and GPS receiver, is mounted on a small cart to assure system mobility. BUD not only detects the object itself but also quantitatively determines its size, shape, orientation, and metal content (ferrous or non-ferrous, mixed metals). Moreover, the principal polarizabilities and size of a metallic target can be determined from a single position of the BUD platform. The search for UXO is a two-step process. The object must first be detected and its location determined then the parameters of the object must be defined. A satisfactory classification scheme is one that determines the principal dipole polarizabilities of a target. While UXO objects have a single major polarizability (principal moment) coincident with the long axis of the object and two equal transverse polarizabilities, the scrap metal has all three principal moments entirely different. This description of the inherent polarizabilities of a target is a major advance in discriminating UXO from irregular scrap metal. Our results clearly show that BUD can resolve the intrinsic polarizabilities of a target and that there are very clear distinctions between symmetric intact UXO and irregular scrap metal. Target properties are determined by an inversion algorithm, which at any given time inverts the response to yield the location (x, y, z) of the target, its attitude and its principal polarizabilities (yielding an apparent aspect ratio). Signal-to-noise estimates (or measurements) are interpreted in this inversion to yield error estimates on the location, attitude and polarizabilities. This inversion at a succession of times provides

  14. Vesicular transport: the core machinery of COPI recruitment and budding.

    PubMed

    Nickel, Walter; Brügger, Britta; Wieland, Felix T

    2002-08-15

    Vesicular transport is the predominant mechanism for exchange of proteins and lipids between membrane-bound organelles in eukaryotic cells. Golgi-derived COPI-coated vesicles are involved in several vesicular transport steps, including bidirectional transport within the Golgi and recycling to the ER. Recent work has shed light on the mechanism of COPI vesicle biogenesis, in particular the machinery required for vesicle formation. The new findings have allowed us to generate a model that covers the cycle of coat recruitment, coat polymerization, vesicle budding and uncoating. PMID:12140255

  15. Analysis of Assembly and Budding of Lujo Virus

    PubMed Central

    Urata, Shuzo; Weyer, Jacqueline; Storm, Nadia; Miyazaki, Yukiko; van Vuren, Petrus Jansen; Paweska, Janusz Tadeusz

    2015-01-01

    The recently identified arenavirus Lujo virus (LUJV) causes fatal hemorrhagic fever in humans. We analyzed its mechanism of viral release driven by matrix protein Z and the cell surface glycoprotein precursor GPC. The L domains in Z are required for efficient virus-like particle release, but Tsg101, ALIX/AIP1, and Vps4A/B are unnecessary for budding. LUJV GPC is cleaved by site 1 protease (S1P) at the RKLM motif, and treatment with the S1P inhibitor PF-429242 reduced LUJV production. PMID:26719243

  16. Bud protection: a key trait for species sorting in a forest-savanna mosaic.

    PubMed

    Charles-Dominique, Tristan; Beckett, Heath; Midgley, Guy F; Bond, William J

    2015-09-01

    Contrasting fire regimes maintain patch mosaics of savanna, thicket and forest biomes in many African subtropical landscapes. Species dominating each biome are thus expected to display distinct fire-related traits, commonly thought to be bark related. Recent Australian savanna research suggests that bud position, not bark protection alone, determines fire resilience via resprouting. We tested first how bud position influences resprouting ability in 17 tree species. We then compared the effect of both bark-related protection and bud position on the distribution of 63 tree species in 253 transects in all three biomes. Tree species with buds positioned deep under bark had a higher proportion of post-fire aboveground shoot resprouting. Species with low bud protection occurred in fire-prone biomes only if they could root-sucker. The effect of bud protection was supported by a good relationship between species bud protection and distribution across a gradient of fire frequency. Bud protection and high bark production are required to survive frequent fires in savanna. Forests are fire refugia hosting species with little or no bud protection and thin bark. Root-suckering species occur in the three biomes, suggesting that fire is not the only factor filtering this functional type.

  17. The Race against Protease Activation Defines the Role of ESCRTs in HIV Budding

    PubMed Central

    Bendjennat, Mourad; Saffarian, Saveez

    2016-01-01

    HIV virions assemble on the plasma membrane and bud out of infected cells using interactions with endosomal sorting complexes required for transport (ESCRTs). HIV protease activation is essential for maturation and infectivity of progeny virions, however, the precise timing of protease activation and its relationship to budding has not been well defined. We show that compromised interactions with ESCRTs result in delayed budding of virions from host cells. Specifically, we show that Gag mutants with compromised interactions with ALIX and Tsg101, two early ESCRT factors, have an average budding delay of ~75 minutes and ~10 hours, respectively. Virions with inactive proteases incorporated the full Gag-Pol and had ~60 minutes delay in budding. We demonstrate that during budding delay, activated proteases release critical HIV enzymes back to host cytosol leading to production of non-infectious progeny virions. To explain the molecular mechanism of the observed budding delay, we modulated the Pol size artificially and show that virion release delays are size-dependent and also show size-dependency in requirements for Tsg101 and ALIX. We highlight the sensitivity of HIV to budding “on-time” and suggest that budding delay is a potent mechanism for inhibition of infectious retroviral release. PMID:27280284

  18. Quick detection of Dryocosmus kuriphilus Yasumatsu (Hymenoptera: Cynipidae) in chestnut dormant buds by nested PCR.

    PubMed

    Sartor, C; Marinoni, D Torello; Quacchia, A; Botta, R

    2012-06-01

    Dryocosmus kuriphilus Yasumatsu (Hymenoptera: Cynipidae) develops in chestnut buds that remain asymptomatic from oviposition (June-July) until budburst; it is, thus, easily spread by plant material used in propagation. Therefore, it is particularly interesting to identify infested plant batches before their movement. Unfortunately, a non-destructive method for checking buds has not yet been developed, and the only technique available is the screening of a bud sample. The visual investigation is long and requires highly skilled and trained staff. The purpose of this work was to set up an effective and fast method able to identify the presence of first instar larvae of D. kuriphilus in a large number of chestnut buds by PCR. Four primer pairs were designed on nuclear and mitochondrial sequences of a set of seven gall wasp taxa and tested on five different cynipid's DNA. Nested diagnostic PCR was carried out on DNA extracted from samples of 2 g buds simulating four levels of infestation (larvae were added to uninfested buds); 320 bp amplicon of 28S sequence was chosen as a marker to detect one larva out of 2 g buds. The method showed a potential efficiency of 5000 to 15,000 buds per week, depending on bud size.

  19. Distribution of vimentin in the developing chick taste bud during the perihatching period.

    PubMed

    Witt, M; Ganchrow, J R; Ganchrow, D

    1999-05-01

    The tissue environment within which taste bud cells develop has not been wholly elaborated. Previous studies of taste bud development in vertebrates, including the avian chick, have suggested that taste bud cells could arise from one, or several tissue sources (e.g. crest-mesenchyme, local ectoderm or endoderm). Thus, molecular markers which are present in gemmal as well as interfacing (peribud epithelium; mesenchyme-epithelium) regions, and their degree of expression during stages of taste bud development, are of special interest. The intermediate filament protein, vimentin, occurs in mesenchymal and mesodermally-derived (e.g. endothelial, fibroblast) cells as well as highly proliferating epithelium (e.g. tumors). The present study in chick gustatory tissue utilized antibodies against vimentin and the avidin-biotin-peroxidase technique to evaluate vimentin immunoreactivity (IR) within a timeframe which includes: 1) early stages of the taste bud primordium [embryonic days (E)17-E18)]; 2) the beginning of an accelerated bud cell proliferation at the time of initial, taste bud pore opening [around E19]; 3) attaining the adult complement of taste buds [around posthatch (H) day 1], and 4) completed organogenesis (H 17). During this time span, vimentin-IR was characterized in a region including and sometimes bridging taste bud and subepithelial connective tissue, whereas non-gustatory surrounding epithelium and salivary glands were vimentin-immuno-negative. Intragemmally, the proportion of vimentin-IR cells as related to total taste bud cells peaked at E19. These results indicate that vimentin expression, in part, is related to the onset of taste bud cell proliferation and suggest that mesenchyme could be one source of taste bud cells. Secondly, fibronectin, an extracellular matrix component of the epithelial basement membrane interface with mesenchyme, was expressed at or near the apical surfaces of taste bud cells projecting into the bud lumen, and in the basal gemmal

  20. Bud protection: a key trait for species sorting in a forest-savanna mosaic.

    PubMed

    Charles-Dominique, Tristan; Beckett, Heath; Midgley, Guy F; Bond, William J

    2015-09-01

    Contrasting fire regimes maintain patch mosaics of savanna, thicket and forest biomes in many African subtropical landscapes. Species dominating each biome are thus expected to display distinct fire-related traits, commonly thought to be bark related. Recent Australian savanna research suggests that bud position, not bark protection alone, determines fire resilience via resprouting. We tested first how bud position influences resprouting ability in 17 tree species. We then compared the effect of both bark-related protection and bud position on the distribution of 63 tree species in 253 transects in all three biomes. Tree species with buds positioned deep under bark had a higher proportion of post-fire aboveground shoot resprouting. Species with low bud protection occurred in fire-prone biomes only if they could root-sucker. The effect of bud protection was supported by a good relationship between species bud protection and distribution across a gradient of fire frequency. Bud protection and high bark production are required to survive frequent fires in savanna. Forests are fire refugia hosting species with little or no bud protection and thin bark. Root-suckering species occur in the three biomes, suggesting that fire is not the only factor filtering this functional type. PMID:25856385

  1. Agrobacterium-mediated transformation of apricot (Prunus armeniaca L.) leaf explants.

    PubMed

    Petri, César; Wang, Hong; Alburquerque, Nuria; Faize, Mohamed; Burgos, Lorenzo

    2008-08-01

    A protocol for Agrobacterium-mediated stable transformation for scored, whole leaf explants of the apricot (Prunus armeniaca) cultivar Helena was developed. Regenerated shoots were selected using a two-step increased concentrations of paromomycin sulphate. Different factors affecting survival of transformed buds, including possible toxicity of green fluorescent protein (GFP) and time of exposure to high cytokine concentration in the regeneration medium, were examined. Transformation efficiency, based on PCR analysis of individual putative transformed shoots from independent lines was 5.6%, when optimal conditions for bud survival were provided. Southern blot analysis on four randomly chosen PCR-positive shoots confirmed the presence of the nptII transgene. This is the first time that stable transformation of an apricot cultivar is reported and constitutes also one of the few reports on the transformation of Prunus cultivars.

  2. Potato leaf explants as a spaceflight plant test system

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.

    1986-01-01

    The use of explant tissues or organs may circumvent limitations facing whole-plant experimentation during spaceflight. In the case of potato, a crop currently being studied for application to bioregenerative life support systems, excised leaves and their subtended axillary buds can be used to test a variety of stem growth and development phases ranging from tubers through stolons (horizontal stems) to upright leafy shoots. The leaves can be fit well into small-volume test packages and sustained under relatively low irradiance levels using light-weight growing media. Tubers formed on potato leaf cuttings can yield up from 0.5 to 1.0 g fresh mass 10 days after excision and up to 2.0 g or more, 14 days from excision.

  3. Signal transduction and information processing in mammalian taste buds

    PubMed Central

    2013-01-01

    The molecular machinery for chemosensory transduction in taste buds has received considerable attention within the last decade. Consequently, we now know a great deal about sweet, bitter, and umami taste mechanisms and are gaining ground rapidly on salty and sour transduction. Sweet, bitter, and umami tastes are transduced by G-protein-coupled receptors. Salty taste may be transduced by epithelial Na channels similar to those found in renal tissues. Sour transduction appears to be initiated by intracellular acidification acting on acid-sensitive membrane proteins. Once a taste signal is generated in a taste cell, the subsequent steps involve secretion of neurotransmitters, including ATP and serotonin. It is now recognized that the cells responding to sweet, bitter, and umami taste stimuli do not possess synapses and instead secrete the neurotransmitter ATP via a novel mechanism not involving conventional vesicular exocytosis. ATP is believed to excite primary sensory afferent fibers that convey gustatory signals to the brain. In contrast, taste cells that do have synapses release serotonin in response to gustatory stimulation. The postsynaptic targets of serotonin have not yet been identified. Finally, ATP secreted from receptor cells also acts on neighboring taste cells to stimulate their release of serotonin. This suggests that there is important information processing and signal coding taking place in the mammalian taste bud after gustatory stimulation. PMID:17468883

  4. Micropropagation of Hedychium coronarium J. Koenig through rhizome bud.

    PubMed

    Mohanty, Pritam; Behera, Shashikanta; Swain, Swasti S; Barik, Durga P; Naik, Soumendra K

    2013-10-01

    An optimized protocol was developed for in vitro plant regeneration of a medicinally important herb Hedychium coronarium J. Koenig using sprouted buds of rhizomes. The rhizomes with sprouted bud were inoculated on Murashige and Skoog (Physiol Plant 15:473-497, 1962) medium (MS) supplemented with either N(6)-benzyladenine (BA) alone (1.0-4.0 mg L(-1)) or in combination with 0.5 mg L(-1) naphthalene acetic acid (NAA). Of these combinations, MS supplemented with a combination of 2.0 mg L(-1) BA and 0.5 mg L(-1) NAA was most effective. In this medium, best shoots (3.6) and roots (4.0) regeneration was observed simultaneously with an average shoot and root length of 4.7 cm and 4.2 cm respectively. Regeneration of shoots and roots in the same medium at the same time (One step shoot and root regeneration) reduced the time for production of in vitro plantlets and eliminates the media cost of rooting. Cent-percent (100 %) success in plant establishment was observed in both gradual acclimatization process as well as when plants were directly transferred to outdoor in clay pots containing a mixture of garden soil and sand (2:1) without any sequential acclimatization stage.

  5. Replication-Associated Recombinational Repair: Lessons from Budding Yeast

    PubMed Central

    Bonner, Jaclyn N.; Zhao, Xiaolan

    2016-01-01

    Recombinational repair processes multiple types of DNA lesions. Though best understood in the repair of DNA breaks, recombinational repair is intimately linked to other situations encountered during replication. As DNA strands are decorated with many types of blocks that impede the replication machinery, a great number of genomic regions cannot be duplicated without the help of recombinational repair. This replication-associated recombinational repair employs both the core recombination proteins used for DNA break repair and the specialized factors that couple replication with repair. Studies from multiple organisms have provided insights into the roles of these specialized factors, with the findings in budding yeast being advanced through use of powerful genetics and methods for detecting DNA replication and repair intermediates. In this review, we summarize recent progress made in this organism, ranging from our understanding of the classical template switch mechanisms to gap filling and replication fork regression pathways. As many of the protein factors and biological principles uncovered in budding yeast are conserved in higher eukaryotes, these findings are crucial for stimulating studies in more complex organisms. PMID:27548223

  6. A computational clonal analysis of the developing mouse limb bud.

    PubMed

    Marcon, Luciano; Arqués, Carlos G; Torres, Miguel S; Sharpe, James

    2011-01-01

    A comprehensive spatio-temporal description of the tissue movements underlying organogenesis would be an extremely useful resource to developmental biology. Clonal analysis and fate mappings are popular experiments to study tissue movement during morphogenesis. Such experiments allow cell populations to be labeled at an early stage of development and to follow their spatial evolution over time. However, disentangling the cumulative effects of the multiple events responsible for the expansion of the labeled cell population is not always straightforward. To overcome this problem, we develop a novel computational method that combines accurate quantification of 2D limb bud morphologies and growth modeling to analyze mouse clonal data of early limb development. Firstly, we explore various tissue movements that match experimental limb bud shape changes. Secondly, by comparing computational clones with newly generated mouse clonal data we are able to choose and characterize the tissue movement map that better matches experimental data. Our computational analysis produces for the first time a two dimensional model of limb growth based on experimental data that can be used to better characterize limb tissue movement in space and time. The model shows that the distribution and shapes of clones can be described as a combination of anisotropic growth with isotropic cell mixing, without the need for lineage compartmentalization along the AP and PD axis. Lastly, we show that this comprehensive description can be used to reassess spatio-temporal gene regulations taking tissue movement into account and to investigate PD patterning hypothesis.

  7. Cdc28 Activates Exit from Mitosis in Budding Yeast

    PubMed Central

    Rudner, Adam D.; Hardwick, Kevin G.; Murray, Andrew W.

    2000-01-01

    The activity of the cyclin-dependent kinase 1 (Cdk1), Cdc28, inhibits the transition from anaphase to G1 in budding yeast. CDC28-T18V, Y19F (CDC28-VF), a mutant that lacks inhibitory phosphorylation sites, delays the exit from mitosis and is hypersensitive to perturbations that arrest cells in mitosis. Surprisingly, this behavior is not due to a lack of inhibitory phosphorylation or increased kinase activity, but reflects reduced activity of the anaphase-promoting complex (APC), a defect shared with other mutants that lower Cdc28/Clb activity in mitosis. CDC28-VF has reduced Cdc20- dependent APC activity in mitosis, but normal Hct1- dependent APC activity in the G1 phase of the cell cycle. The defect in Cdc20-dependent APC activity in CDC28-VF correlates with reduced association of Cdc20 with the APC. The defects of CDC28-VF suggest that Cdc28 activity is required to induce the metaphase to anaphase transition and initiate the transition from anaphase to G1 in budding yeast. PMID:10871278

  8. Novel features of ARS selection in budding yeast Lachancea kluyveri

    PubMed Central

    2011-01-01

    Background The characterization of DNA replication origins in yeast has shed much light on the mechanisms of initiation of DNA replication. However, very little is known about the evolution of origins or the evolution of mechanisms through which origins are recognized by the initiation machinery. This lack of understanding is largely due to the vast evolutionary distances between model organisms in which origins have been examined. Results In this study we have isolated and characterized autonomously replicating sequences (ARSs) in Lachancea kluyveri - a pre-whole genome duplication (WGD) budding yeast. Through a combination of experimental work and rigorous computational analysis, we show that L. kluyveri ARSs require a sequence that is similar but much longer than the ARS Consensus Sequence well defined in Saccharomyces cerevisiae. Moreover, compared with S. cerevisiae and K. lactis, the replication licensing machinery in L. kluyveri seems more tolerant to variations in the ARS sequence composition. It is able to initiate replication from almost all S. cerevisiae ARSs tested and most Kluyveromyces lactis ARSs. In contrast, only about half of the L. kluyveri ARSs function in S. cerevisiae and less than 10% function in K. lactis. Conclusions Our findings demonstrate a replication initiation system with novel features and underscore the functional diversity within the budding yeasts. Furthermore, we have developed new approaches for analyzing biologically functional DNA sequences with ill-defined motifs. PMID:22204614

  9. Receptosecretory nature of type III cells in the taste bud.

    PubMed

    Yoshie, Sumio

    2009-01-01

    Type III cells in taste buds form chemical synapses with intragemmal afferent nerve fibers and are characterized by the presence of membrane-bound vesicles in the cytoplasm. Although the vesicles differ in shape and size among species, they are primarily categorized into small clear (40 nm in diameter) and large dense-cored (90-200 nm) types. As such vesicles tend to be closely juxtaposed to the synaptic membrane of the cells, it is reasonable to consider that the vesicles include transmitter(s) towards the gustatory nerve. In the guinea-pig taste bud, stimulation with various taste substances (sucrose, sodium chloride, quinine hydrochloride, or monosodium L-glutamate) causes ultrastructural alterations of the type III cells. At the synapse, the presynaptic plasma membrane often displays invaginations of 90 nm in a mean diameter towards the cytoplasm, which indicates the dense-cored vesicles opening into the synaptic cleft by means of exocytosis. The vesicles are also exocytosed at the non-synaptic region into the intercellular space. These findings strongly suggest that the transmitters presumably contained in the vesicles are released to conduct the excitement of the type III cells to the nerves and also to exert their paracrine effects upon the surroundings, such as the Ebner's salivary gland, acting as local hormones. PMID:20224182

  10. BudBurst Buddies: Introducing Young Citizen Scientists to Plants and Environmental Change

    NASA Astrophysics Data System (ADS)

    Ward, D.; Gardiner, L. S.; Henderson, S.

    2011-12-01

    As part of Project BudBurst, the BudBurst Buddies recently moved to the National Ecological Network (NEON) as part of its Education and Public Engagement efforts. The BudBurst Buddies (www.budburstbuddies.org) were created to engage elementary school age children in the science of observing plants and the timing of phenological (life cycle) events. BudBurst Buddies is a part of the Project BudBurst national citizen science initiative (www.budburst.org), which allows individuals to engage in the scientific process, contributing to a better understanding of climate change while increasing public awareness of phenology and the impacts of climate change on plants. As a first step towards engaging the next generation of citizen scientists, BudBurst Buddies provides the opportunity for children to gain experience with scientific research and increases awareness of how plants change throughout the year. Hundreds of young students have participated in the inaugural year of BudBurst Buddies. Children can participate in BudBurst Buddies on their own, with their families, or in formal or informal education settings. The program was recently highlighted by education staff at the New York Hall of Science and numerous classrooms have been implementing this resource as part of their curriculum. Each child who participates creates a journal about a plant of his or her choosing, makes observations of the plant over the growing season and submits findings online, earning an official BudBurst Buddies certificate. An online storybook for kids tells how two children, Lily and Sage, observed plants in their neighborhood and became BudBurst Buddies. This presentation will provide an overview of the BudBurst Buddies resources including a new implementation guide and will also share feedback from the first year of implementation.

  11. Ontogeny and innervation of taste buds in mouse palatal gustatory epithelium.

    PubMed

    Rashwan, Ahmed; Konishi, Hiroyuki; El-Sharaby, Ashraf; Kiyama, Hiroshi

    2016-01-01

    We investigated the relationship between mouse taste bud development and innervation of the soft palate. We employed scanning electron microscopy and immunohistochemistry using antibodies against protein gene product 9.5 and peripherin to detect sensory nerves, and cytokeratin 8 and α-gustducin to stain palatal taste buds. At E14, nerve fibers were observed along the medial border of the palatal shelves that tracked toward the epithelium. At E15.5, primordial stages of taste buds in the basal lamina of the soft palate first appeared. At E16, the taste buds became large spherical masses of columnar cells scattered in the soft palate basal lamina. At E17, the morphology and also the location of taste buds changed. At E18-19, some taste buds acquired a more elongated shape with a short neck, extending a variable distance from the soft palate basal lamina toward the surface epithelium. At E18, mature taste buds with taste pores and perigemmal nerve fibers were observed on the surface epithelium of the soft palate. The expression of α-gustducin was demonstrated at postnatal day 1 and the number of pored taste buds increased with age and they became pear-shaped at 8 weeks. The percent of pored fungiform-like papillae at birth was 58.3% of the whole palate; this increased to 83.8% at postnatal day 8 and reached a maximum of 95.7% at 12 weeks. The innervation of the soft palate was classified into three types of plexuses in relation to taste buds: basal nerve plexus, intragemmal and perigemmal nerve fibers. This study reveals that the nerve fibers preceded the development of taste buds in the palate of mice, and therefore the nerve fibers have roles in the initial induction of taste buds in the soft palate.

  12. GATA6 Is a Crucial Regulator of Shh in the Limb Bud

    PubMed Central

    Kozhemyakina, Elena; Ionescu, Andreia; Lassar, Andrew B.

    2014-01-01

    In the limb bud, patterning along the anterior-posterior (A-P) axis is controlled by Sonic Hedgehog (Shh), a signaling molecule secreted by the “Zone of Polarizing Activity”, an organizer tissue located in the posterior margin of the limb bud. We have found that the transcription factors GATA4 and GATA6, which are key regulators of cell identity, are expressed in an anterior to posterior gradient in the early limb bud, raising the possibility that GATA transcription factors may play an additional role in patterning this tissue. While both GATA4 and GATA6 are expressed in an A-P gradient in the forelimb buds, the hindlimb buds principally express GATA6 in an A-P gradient. Thus, to specifically examine the role of GATA6 in limb patterning we generated Prx1-Cre; GATA6fl/fl mice, which conditionally delete GATA6 from their developing limb buds. We found that these animals display ectopic expression of both Shh and its transcriptional targets specifically in the anterior mesenchyme of the hindlimb buds. Loss of GATA6 in the developing limbs results in the formation of preaxial polydactyly in the hindlimbs. Conversely, forced expression of GATA6 throughout the limb bud represses expression of Shh and results in hypomorphic limbs. We have found that GATA6 can bind to chromatin (isolated from limb buds) encoding either Shh or Gli1 regulatory elements that drive expression of these genes in this tissue, and demonstrated that GATA6 works synergistically with FOG co-factors to repress expression of luciferase reporters driven by these sequences. Most significantly, we have found that conditional loss of Shh in limb buds lacking GATA6 prevents development of hindlimb polydactyly in these compound mutant embryos, indicating that GATA6 expression in the anterior region of the limb bud blocks hindlimb polydactyly by repressing ectopic expression of Shh. PMID:24415953

  13. The role of innervation in the development of taste buds: insights from studies of amphibian embryos.

    PubMed

    Barlow, L A; Northcutt, R G

    1998-11-30

    Amphibian embryos have long been model organisms for studies of development because of their hardiness and large size, as well as the ease with which they can be experimentally manipulated. These particular advantages have allowed us recently to test the role of innervation in the development of vertebrate taste buds using embryos of an aquatic salamander, the axolotl. The predominant model of taste bud genesis has been one of neural induction, in which ingrowing sensory neurites induce taste bud differentiation in the epithelium that lines the mouth and pharynx. However, when we prevented embryonic sensory neurons from contacting the oropharyngeal epithelium by using transplantation or tissue culture techniques, we found that taste bud differentiation was independent of nerve contact. Additionally, using similar types of experimental manipulations, we have recently shown that taste bud differentiation is not a result of interactions of the oropharyngeal epithelium with craniofacial mesenchyme. Surprisingly, we found that although taste bud genesis occurs very late in embryonic development, it is an intrinsic feature of the presumptive oropharyngeal epithelium extremely early, in fact as early as the completion of gastrulation. These data have prompted us to propose a new model for the development of amphibian taste buds: (i) The presumptive oropharyngeal epithelium is specified by the time gastrulation is complete; (ii) Subsequently, a distributed population of taste bud progenitors is set up within this epithelium via local cell-cell interactions. These progenitor cells give rise to taste buds, which are distributed throughout the mouth and pharynx. How widely applicable this model might be for the genesis of taste buds in other vertebrates remains to be seen. However, since it is likely that the taste system of axolotls more closely resembles the ancestral state from which both the amphibian and mammalian taste systems have evolved, it is possible that many of

  14. The effects of sialoadenectomy and exogenous EGF on taste bud morphology and maintenance.

    PubMed

    Morris-Wiman, J; Sego, R; Brinkley, L; Dolce, C

    2000-02-01

    Taste buds on the dorsal tongue surface are continually bathed in saliva rich in epidermal growth factor (EGF). In the following experiment, taste bud number and morphology were monitored following submandibular and sublingual salivary gland removal (sialoadenectomy), to determine if EGF plays a role in the maintenance and formation of taste buds. Adult male rats were divided into four groups: sialoadenectomized (SX, n = 4); sialoadenectomized with EGF replacement (SX + EGF, n = 5); sham-operated (SH, n = 4); and sham-operated with exogenous EGF (SH + EGF, n = 5). After a 3 week recovery, SX + EGF and SH + EGF animals were given 50 microg/day EGF in their drinking water for 14 days. At day 14, saliva was collected, the animals were killed and the presence of EGF determined by radioligand-binding assay. Tongues were removed and histologically examined for the presence and morphology of taste buds on fungiform and circumvallate papillae, or immunostained for the presence of EGF, TGFalpha (transforming growth factor alpha) and EGFR (EGF receptor). The removal of submandibular and sublingual salivary glands resulted in the loss of fungiform taste buds and normal fungiform papillae morphology. These effects were reversed by EGF supplementation, indicating a role for EGF in fungiform taste bud maintenance. In addition, supplementation of EGF to sham-operated animals increased the size of fungiform taste buds. In contrast, removal of salivary glands had no effect on the size, numbers, or morphology of circumvallate taste buds, suggesting that the formation and maintenance of taste buds in fungiform and circumvallate papillae may involve different and distinct processes. EGF, TGFalpha and EGFR were localized to distinct layers of the dorsal epithelium and to within both fungiform and circumvallate taste buds. Their expression within the epithelium or taste buds was not altered with sialoadenectomy, indicating that the actions of endogenous EGF and TGFalpha are distinct and

  15. Abscisic Acid Is a General Negative Regulator of Arabidopsis Axillary Bud Growth1[OPEN

    PubMed Central

    Yao, Chi; Finlayson, Scott A.

    2015-01-01

    Branching is an important process controlled by intrinsic programs and by environmental signals transduced by a variety of plant hormones. Abscisic acid (ABA) was previously shown to mediate Arabidopsis (Arabidopsis thaliana) branching responses to the ratio of red light (R) to far-red light (FR; an indicator of competition) by suppressing bud outgrowth from lower rosette positions under low R:FR. However, the role of ABA in regulating branching more generally was not investigated. This study shows that ABA restricts lower bud outgrowth and promotes correlative inhibition under both high and low R:FR. ABA was elevated in buds exhibiting delayed outgrowth resulting from bud position and low R:FR and decreased in elongating buds. ABA was reduced in lower buds of hyperbranching mutants deficient in auxin signaling (AUXIN RESISTANT1), MORE AXILLARY BRANCHING (MAX) signaling (MAX2), and BRANCHED1 (BRC1) function, and partial suppression of branch elongation in these mutants by exogenous ABA suggested that ABA may act downstream of these components. Bud BRC1 expression was not altered by exogenous ABA, consistent with a downstream function for ABA. However, the expression of genes encoding the indole-3-acetic acid (IAA) biosynthesis enzyme TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1, the auxin transporter PIN-FORMED1, and the cell cycle genes CYCLIN A2;1 and PROLIFERATING CELL NUCLEAR ANTIGEN1 in buds was suppressed by ABA, suggesting that it may inhibit bud growth in part by suppressing elements of the cell cycle machinery and bud-autonomous IAA biosynthesis and transport. ABA was found to suppress bud IAA accumulation, thus confirming this aspect of its action. PMID:26149576

  16. Sociopolitical Analyses.

    ERIC Educational Resources Information Center

    Van Galen, Jane, Ed.; And Others

    1992-01-01

    This theme issue of the serial "Educational Foundations" contains four articles devoted to the topic of "Sociopolitical Analyses." In "An Interview with Peter L. McLaren," Mary Leach presented the views of Peter L. McLaren on topics of local and national discourses, values, and the politics of difference. Landon E. Beyer's "Educational Studies and…

  17. Development and growth of primordial shoots in Norway spruce buds before visible bud burst in relation to time and temperature in the field.

    PubMed

    Sutinen, Sirkka; Partanen, Jouni; Viherä-Aarnio, Anneli; Häkkinen, Risto

    2012-08-01

    The timing of bud development in ecodormancy is critical for trees in boreal and temperate regions with seasonally alternating climates. The development of vegetative buds and the growth of primordial shoots (the primordial shoot ratio) in Norway spruce were followed by the naked eye and at stereo and light microscopic levels in fresh-cut and fixed buds obtained by regular field samplings during the spring of 2007, 2008 and 2009. Buds were collected from 15 randomly selected trees (all 16 years old in 2007) of one southern Finnish half-sib family. The air temperature was recorded hourly throughout the observation period. In 2008 and 2009, initial events in the buds, seen as accumulation of lipid droplets in the cortex area, started in mid-March and were depleted in late April, simultaneously with the early development of vascular tissue and primordial needles. In mid-April 2007, however, the development of the buds was at least 10 days ahead as a result of warm spells in March and early April. Variation in the timing of different developmental phases within and among the sample trees was negligible. There was no clear one-to-one correspondence between the externally visible and the internal development of the buds. The dependence of the primordial shoot ratio on different types of temperature sum was studied by means of regression analysis. High coefficients of determination (R(2) ≈ 95%) were attained with several combinations of the starting time (beginning of the year/vernal equinox), the threshold value (from -3 to +5 °C), and the time step (hour/day) used in the temperature summation, i.e., the prediction power of the primordial shoot ratio models turned out to be high, but the parameter estimate values were not unambiguous. According to our results, temperature sums describe the growth of the primordial shoot inside the bud before bud burst. Thus, the results provide a realistic interpretation for the present phenological models of bud development that

  18. Development and growth of primordial shoots in Norway spruce buds before visible bud burst in relation to time and temperature in the field.

    PubMed

    Sutinen, Sirkka; Partanen, Jouni; Viherä-Aarnio, Anneli; Häkkinen, Risto

    2012-08-01

    The timing of bud development in ecodormancy is critical for trees in boreal and temperate regions with seasonally alternating climates. The development of vegetative buds and the growth of primordial shoots (the primordial shoot ratio) in Norway spruce were followed by the naked eye and at stereo and light microscopic levels in fresh-cut and fixed buds obtained by regular field samplings during the spring of 2007, 2008 and 2009. Buds were collected from 15 randomly selected trees (all 16 years old in 2007) of one southern Finnish half-sib family. The air temperature was recorded hourly throughout the observation period. In 2008 and 2009, initial events in the buds, seen as accumulation of lipid droplets in the cortex area, started in mid-March and were depleted in late April, simultaneously with the early development of vascular tissue and primordial needles. In mid-April 2007, however, the development of the buds was at least 10 days ahead as a result of warm spells in March and early April. Variation in the timing of different developmental phases within and among the sample trees was negligible. There was no clear one-to-one correspondence between the externally visible and the internal development of the buds. The dependence of the primordial shoot ratio on different types of temperature sum was studied by means of regression analysis. High coefficients of determination (R(2) ≈ 95%) were attained with several combinations of the starting time (beginning of the year/vernal equinox), the threshold value (from -3 to +5 °C), and the time step (hour/day) used in the temperature summation, i.e., the prediction power of the primordial shoot ratio models turned out to be high, but the parameter estimate values were not unambiguous. According to our results, temperature sums describe the growth of the primordial shoot inside the bud before bud burst. Thus, the results provide a realistic interpretation for the present phenological models of bud development that

  19. Leaf absorbance and photosynthesis

    NASA Technical Reports Server (NTRS)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  20. Proteomic study of 'Moncada' mandarin buds from on- versus off-crop trees.

    PubMed

    Muñoz-Fambuena, Natalia; Mesejo, Carlos; Reig, Carmina; Agustí, Manuel; Tárraga, Susana; Lisón, Purificación; Iglesias, Domingo J; Primo-Millo, Eduardo; González-Mas, M Carmen

    2013-12-01

    A proteomic analysis of buds from mandarin trees with contrasting fruit load (on- and off-crop trees) was carried out during the onset of low-temperature induction. The aim of the study was to find out more about the molecular mechanism relating to alternate bearing in Citrus and its relationship with flowering. The 'Moncada' variety (Clementine 'Oroval'x'Kara' mandarin), displaying remarkable behaviour in alternate production, was used in this study. From 2D DIGE gel, 192 spots were isolated: 97 showed increased expression in the off-crop buds as compared to the on-crop buds, while 95 exhibited enhanced expression in the on-crop buds versus the off-crop buds. These spots were identified by MALDI-MS or LC-MS-MS. The largest groups of proteins up-expressed in the off-crop buds were the proteins involved in carbohydrate and amino acid metabolism, and the proteins expressed in response to stimuli such as reactive oxygen species. The largest groups of proteins up-expressed in the on-crop buds were related to primary metabolism, oxidative stress and defence responses. Depending on their function, some of these proteins can stimulate the flowering, such as fructose-bisphosphate aldolase or leucine-rich repeat transmembrane protein kinase, while others can inhibit it, such as cytochrome c oxidase subunit II. Twenty-two other proteins with unknown functions were up-expressed in the on- or off-crop buds.

  1. Size Does Matter: Staging of Silene latifolia Floral Buds for Transcriptome Studies

    PubMed Central

    Toh, Su San; Perlin, Michael H.

    2015-01-01

    Dioecious plants in the Caryophyllaceae family are susceptible to infection by members of the anthericolous smut fungi. In our studies of the Silene latifolia/Microbotryum lychnidis-dioicae pathosystem, we were interested in characterizing the plant-pathogen interaction at the molecular level before and during teliosporogenesis. This takes place during floral bud development, and we hoped to capture the interaction by Illumina Next-Gen RNA-Sequencing. Using previous literature that documented the stages of the floral buds for S. latifolia, we examined the floral buds from plants grown and infected under growth chamber conditions, using the disserting microscope to determine the stage of floral buds based on the morphology. We compiled the information and determined the size of floral buds that correspond to the desired stages of development for tissue collection, for the purpose of RNA-sequencing. This offers a practical approach for researchers who require a large number of floral buds/tissue categorized by stages of development, ascertaining whether infected/uninfected buds are at comparable stages of development and whether this also holds true for male vs. female buds. We also document our experience in infecting the plants and some of the unusual morphologies we observed after infection. PMID:26378529

  2. New technique for more rapid cryopreservation of dormant vegetative tree buds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cryopreservation of dormant buds of temperate trees in liquid nitrogen can provide a safe backup of field germplasm collections. However the process requires several months of preparation before buds can be cryopreserved. Cryopreservation at the natural moisture content (MC) would greatly accelerate...

  3. A molecular timetable for apical bud formation and dormancy induction in poplar.

    PubMed

    Ruttink, Tom; Arend, Matthias; Morreel, Kris; Storme, Véronique; Rombauts, Stephane; Fromm, Jörg; Bhalerao, Rishikesh P; Boerjan, Wout; Rohde, Antje

    2007-08-01

    The growth of perennial plants in the temperate zone alternates with periods of dormancy that are typically initiated during bud development in autumn. In a systems biology approach to unravel the underlying molecular program of apical bud development in poplar (Populus tremula x Populus alba), combined transcript and metabolite profiling were applied to a high-resolution time course from short-day induction to complete dormancy. Metabolite and gene expression dynamics were used to reconstruct the temporal sequence of events during bud development. Importantly, bud development could be dissected into bud formation, acclimation to dehydration and cold, and dormancy. To each of these processes, specific sets of regulatory and marker genes and metabolites are associated and provide a reference frame for future functional studies. Light, ethylene, and abscisic acid signal transduction pathways consecutively control bud development by setting, modifying, or terminating these processes. Ethylene signal transduction is positioned temporally between light and abscisic acid signals and is putatively activated by transiently low hexose pools. The timing and place of cell proliferation arrest (related to dormancy) and of the accumulation of storage compounds (related to acclimation processes) were established within the bud by electron microscopy. Finally, the identification of a large set of genes commonly expressed during the growth-to-dormancy transitions in poplar apical buds, cambium, or Arabidopsis thaliana seeds suggests parallels in the underlying molecular mechanisms in different plant organs.

  4. Evolution of leaf form correlates with tropical-temperate transitions in Viburnum (Adoxaceae).

    PubMed

    Schmerler, Samuel B; Clement, Wendy L; Beaulieu, Jeremy M; Chatelet, David S; Sack, Lawren; Donoghue, Michael J; Edwards, Erika J

    2012-10-01

    Strong latitudinal patterns in leaf form are well documented in floristic comparisons and palaeobotanical studies. However, there is little agreement about their functional significance; in fact, it is still unknown to what degree these patterns were generated by repeated evolutionary adaptation. We analysed leaf form in the woody angiosperm clade Viburnum (Adoxaceae) and document evolutionarily correlated shifts in leafing habit, leaf margin morphology, leaf shape and climate. Multiple independent shifts between tropical and temperate forest habitats have repeatedly been accompanied by a change between evergreen, elliptical leaves with entire margins and deciduous, more rounded leaves with toothed or lobed margins. These consistent shifts in Viburnum support repeated evolutionary adaptation as a major determinant of the global correlation between leaf form and mean annual temperature. Our results provide a new theoretical grounding for the inference of past climates using fossil leaf assemblages.

  5. Evolution of leaf form correlates with tropical–temperate transitions in Viburnum (Adoxaceae)

    PubMed Central

    Schmerler, Samuel B.; Clement, Wendy L.; Beaulieu, Jeremy M.; Chatelet, David S.; Sack, Lawren; Donoghue, Michael J.; Edwards, Erika J.

    2012-01-01

    Strong latitudinal patterns in leaf form are well documented in floristic comparisons and palaeobotanical studies. However, there is little agreement about their functional significance; in fact, it is still unknown to what degree these patterns were generated by repeated evolutionary adaptation. We analysed leaf form in the woody angiosperm clade Viburnum (Adoxaceae) and document evolutionarily correlated shifts in leafing habit, leaf margin morphology, leaf shape and climate. Multiple independent shifts between tropical and temperate forest habitats have repeatedly been accompanied by a change between evergreen, elliptical leaves with entire margins and deciduous, more rounded leaves with toothed or lobed margins. These consistent shifts in Viburnum support repeated evolutionary adaptation as a major determinant of the global correlation between leaf form and mean annual temperature. Our results provide a new theoretical grounding for the inference of past climates using fossil leaf assemblages. PMID:22810426

  6. Molecular Toolbox for Genetic Manipulation of the Stalked Budding Bacterium Hyphomonas neptunium

    PubMed Central

    Jung, Alexandra; Eisheuer, Sabrina; Cserti, Emöke; Leicht, Oliver; Strobel, Wolfgang; Möll, Andrea; Schlimpert, Susan; Kühn, Juliane

    2014-01-01

    The alphaproteobacterium Hyphomonas neptunium proliferates by a unique budding mechanism in which daughter cells emerge from the end of a stalk-like extension emanating from the mother cell body. Studies of this species so far have been hampered by the lack of a genetic system and of molecular tools allowing the regulated expression of target genes. Based on microarray analyses, this work identifies two H. neptunium promoters that are activated specifically by copper and zinc. Functional analyses show that they have low basal activity and a high dynamic range, meeting the requirements for use as a multipurpose expression system. To facilitate their application, the two promoters were incorporated into a set of integrative plasmids, featuring a choice of two different selection markers and various fluorescent protein genes. These constructs enable the straightforward generation and heavy metal-inducible synthesis of fluorescent protein fusions in H. neptunium, thereby opening the door to an in-depth analysis of polar growth and development in this species. PMID:25398860

  7. Molecular toolbox for genetic manipulation of the stalked budding bacterium Hyphomonas neptunium.

    PubMed

    Jung, Alexandra; Eisheuer, Sabrina; Cserti, Emöke; Leicht, Oliver; Strobel, Wolfgang; Möll, Andrea; Schlimpert, Susan; Kühn, Juliane; Thanbichler, Martin

    2015-01-01

    The alphaproteobacterium Hyphomonas neptunium proliferates by a unique budding mechanism in which daughter cells emerge from the end of a stalk-like extension emanating from the mother cell body. Studies of this species so far have been hampered by the lack of a genetic system and of molecular tools allowing the regulated expression of target genes. Based on microarray analyses, this work identifies two H. neptunium promoters that are activated specifically by copper and zinc. Functional analyses show that they have low basal activity and a high dynamic range, meeting the requirements for use as a multipurpose expression system. To facilitate their application, the two promoters were incorporated into a set of integrative plasmids, featuring a choice of two different selection markers and various fluorescent protein genes. These constructs enable the straightforward generation and heavy metal-inducible synthesis of fluorescent protein fusions in H. neptunium, thereby opening the door to an in-depth analysis of polar growth and development in this species.

  8. Computational model of polarized actin cables and cytokinetic actin ring formation in budding yeast

    PubMed Central

    Tang, Haosu; Bidone, Tamara C.

    2015-01-01

    The budding yeast actin cables and contractile ring are important for polarized growth and division, revealing basic aspects of cytoskeletal function. To study these formin-nucleated structures, we built a 3D computational model with actin filaments represented as beads connected by springs. Polymerization by formins at the bud tip and bud neck, crosslinking, severing, and myosin pulling, are included. Parameter values were estimated from prior experiments. The model generates actin cable structures and dynamics similar to those of wild type and formin deletion mutant cells. Simulations with increased polymerization rate result in long, wavy cables. Simulated pulling by type V myosin stretches actin cables. Increasing the affinity of actin filaments for the bud neck together with reduced myosin V pulling promotes the formation of a bundle of antiparallel filaments at the bud neck, which we suggest as a model for the assembly of actin filaments to the contractile ring. PMID:26538307

  9. Glyphosate effects on the gene expression of the apical bud in soybean (Glycine max).

    PubMed

    Jiang, Ling-Xue; Jin, Long-Guo; Guo, Yong; Tao, Bo; Qiu, Li-Juan

    2013-08-01

    Glyphosate is a broad spectrum, non-selective herbicide which has been widely used for weed control. Much work has focused on elucidating the high accumulation of glyphosate in shoot apical bud (shoot apex). However, to date little is known about the molecular mechanisms of the sensitivity of shoot apical bud to glyphosate. Global gene expression profiling of the soybean apical bud response to glyphosate treatment was performed in this study. The results revealed that the glyphosate inhibited tryptophan biosynthesis of the shikimic acid pathway in the soybean apical bud, which was the target site of glyphosate. Glyphosate inhibited the expression of most of the target herbicide site genes. The promoter sequence analysis of key target genes revealed that light responsive elements were important regulators in glyphosate induction. These results will facilitate further studies of cloning genes and molecular mechanisms of glyphosate on soybean shoot apical bud.

  10. The ureteric bud epithelium: Morphogenesis and roles in metanephric kidney patterning

    PubMed Central

    Nagalakshmi, Vidya K.; Yu, Jing

    2015-01-01

    The mammalian metanephric kidney is composed of two epithelial components –the collecting duct system and the nephron epithelium– that differentiate from two different tissues –the ureteric bud epithelium and the nephron progenitors, respectively– of intermediate mesoderm origin. The collecting duct system is generated through reiterative ureteric bud branching morphogenesis whereas the nephron epithelium is formed in a process termed nephrogenesis, which is initiated with the mesenchymal-epithelial transition of the nephron progenitors. Ureteric bud branching morphogenesis is regulated by nephron progenitors, and in return the ureteric bud epithelium regulates nephrogenesis. The metanephric kidney is also physiologically divided along the cortico-medullary axis into subcompartments that are enriched with specific segments of these two epithelial structures. Here we provide an overview of the major molecular and cellular processes underlying the morphogenesis and patterning of the ureteric bud epithelium and its roles in the cortical-medullary patterning of the metanephric kidney. PMID:25783232

  11. Plant development controls leaf area expansion in alfalfa plants competing for light

    PubMed Central

    Baldissera, Tiago Celso; Frak, Ela; Carvalho, Paulo Cesar de Faccio; Louarn, Gaëtan

    2014-01-01

    Background and Aims The growth of crops in a mixture is more variable and difficult to predict than that in pure stands. Light partitioning and crop leaf area expansion play prominent roles in explaining this variability. However, in many crops commonly grown in mixtures, including the forage species alfalfa, the sensitivity and relative importance of the physiological responses involved in the light modulation of leaf area expansion are still to be established. This study was designed to assess the relative sensitivity of primary shoot development, branching and individual leaf expansion in alfalfa in response to light availability. Methods Two experiments were carried out. The first studied isolated plants to assess the potential development of different shoot types and growth periods. The second consisted of manipulating the intensity of competition for light using a range of canopies in pure and mixed stands at two densities so as to evaluate the relative effects on shoot development, leaf growth, and plant and shoot demography. Key Results Shoot development in the absence of light competition was deterministic (constant phyllochrons of 32·5 °Cd and 48·2 °Cd for primary axes and branches, branching probability of 1, constant delay of 1·75 phyllochron before axillary bud burst) and identical irrespective of shoot type and growth/regrowth periods. During light competition experiments, changes in plant development explained most of the plant leaf area variations, with average leaf size contributing to a lesser extent. Branch development and the number of shoots per plant were the leaf area components most affected by light availability. Primary axis development and plant demography were only affected in situations of severe light competition. Conclusions Plant leaf area components differed with regard to their sensitivity to light competition. The potential shoot development model presented in this study could serve as a framework to integrate light responses

  12. Novel Features of the Prenatal Horn Bud Development in Cattle (Bos taurus)

    PubMed Central

    Wiener, Dominique Judith; Wiedemar, Natalie; Welle, Monika Maria; Drögemüller, Cord

    2015-01-01

    Whereas the genetic background of horn growth in cattle has been studied extensively, little is known about the morphological changes in the developing fetal horn bud. In this study we histologically analyzed the development of horn buds of bovine fetuses between ~70 and ~268 days of pregnancy and compared them with biopsies taken from the frontal skin of the same fetuses. In addition we compared the samples from the wild type (horned) fetuses with samples taken from the horn bud region of age-matched genetically hornless (polled) fetuses. In summary, the horn bud with multiple layers of vacuolated keratinocytes is histologically visible early in fetal life already at around day 70 of gestation and can be easily differentiated from the much thinner epidermis of the frontal skin. However, at the gestation day (gd) 212 the epidermis above the horn bud shows a similar morphology to the epidermis of the frontal skin and the outstanding layers of vacuolated keratinocytes have disappeared. Immature hair follicles are seen in the frontal skin at gd 115 whereas hair follicles below the horn bud are not present until gd 155. Interestingly, thick nerve bundles appear in the dermis below the horn bud at gd 115. These nerve fibers grow in size over time and are prominent shortly before birth. Prominent nerve bundles are not present in the frontal skin of wild type or in polled fetuses at any time, indicating that the horn bud is a very sensitive area. The samples from the horn bud region from polled fetuses are histologically equivalent to samples taken from the frontal skin in horned species. This is the first study that presents unique histological data on bovine prenatal horn bud differentiation at different developmental stages which creates knowledge for a better understanding of recent molecular findings. PMID:25993643

  13. Breaking-bud pollination: a new pollination process in partially opened flowers by small bees.

    PubMed

    Yamaji, Futa; Ohsawa, Takeshi A

    2015-09-01

    Plant-pollinator interactions have usually been researched in flowers that have fully opened. However, some pollinators can visit flowers before full opening and contribute to fruit and seed sets. In this paper, we researched the pollination biology of flowers just starting to open in four field experiments. We observed the insect visitors to Lycoris sanguinea var. sanguinea for 3 years at five sites. These observations revealed that only small bees, Lasioglossum japonicum, often entered through tiny spaces between the tepals of 'breaking buds' (i.e. partially opened flowers) and collected pollen. We hypothesized that they can pollinate this species at the breaking-bud stage, when the stigma is located near the anthers. To measure the pollination effect of small bees at the breaking-bud stage, we bagged several breaking buds after small bees had visited them and examined whether these buds were pollinated. In bagging experiments, 30% of the breaking buds set fruit and seeds. Fruit-set ratios of the breaking buds did not differ significantly from those of the fully opened flowers, which had been visited by several insect species. We also counted the pollen grain numbers on the body of L. japonicum and on the anthers of randomly-selected and manipulated flowers. These experiments revealed that all of the captured bees had some pollen of target plants and that L. japonicum collected most of the pollen grains at the breaking-bud stage. Our results showed that the new pollination process, breaking-bud pollination, happened in breaking buds by L. japonicum, although there is no evidence to reveal that this is the most effective pollination method for L. sanguinea var. sanguinea. In principle, this new pollination process can occur in other flowering plants and our results are a major contribution to studies of plant-pollinator interactions.

  14. BudBurst Buddies: A New Tool for Engaging the Youngest Citizen Scientists

    NASA Astrophysics Data System (ADS)

    Gardiner, L. S.; Henderson, S.; Ward, D.

    2010-12-01

    BudBurst Buddies (www.budburstbuddies.org) introduces elementary school age children to the science of observing plants and the timing of phenological (life cycle) events. BudBurst Buddies is a new part of the Project BudBurst national citizen science initiative (www.budburst.org), which allows individuals to engage in the scientific process, contributing to a better understanding of climate change while increasing public awareness of phenology and the impacts of climate change on plants. As a first step towards engaging the next generation of citizen scientists, BudBurst Buddies provides the opportunity for children to gain experience with scientific research and increases awareness of how plants change throughout the year. Children can participate in BudBurst Buddies on their own, with their families, or in formal or informal education settings. Each child who participates creates a journal about a plant of his or her choosing, makes observations of the plant over the growing season and submits findings online, earning an official BudBurst Buddies certificate. An online storybook for kids tells how two children, Lily and Sage, observed plants in their neighborhood and became BudBurst Buddies. This presentation will provide an overview of the BudBurst Buddies newly developed resources. BudBurst Buddies is a part of Project BudBurst, a national citizen science program coordinated by the National Ecological Observatory Network (NEON) and the Chicago Botanic Garden. Funding for this resource was provided by NEON, NSF, NASA, and the National Geographic Education Foundation.

  15. The physics of lipid droplet nucleation, growth and budding.

    PubMed

    Thiam, Abdou Rachid; Forêt, Lionel

    2016-08-01

    Lipid droplets (LDs) are intracellular oil-in-water emulsion droplets, covered by a phospholipid monolayer and mainly present in the cytosol. Despite their important role in cellular metabolism and growing number of newly identified functions, LD formation mechanism from the endoplasmic reticulum remains poorly understood. To form a LD, the oil molecules synthesized in the ER accumulate between the monolayer leaflets and induce deformation of the membrane. This formation process works through three steps: nucleation, growth and budding, exactly as in phase separation and dewetting phenomena. These steps involve sequential biophysical membrane remodeling mechanisms for which we present basic tools of statistical physics, membrane biophysics, and soft matter science underlying them. We aim to highlight relevant factors that could control LD formation size, site and number through this physics description. An emphasis will be given to a currently underestimated contribution of the molecular interactions between lipids to favor an energetically costless mechanism of LD formation.

  16. Knowing when to grow: signals regulating bud dormancy.

    PubMed

    Horvath, David P; Anderson, James V; Chao, Wun S; Foley, Michael E

    2003-11-01

    Dormancy regulation in vegetative buds is a complex process necessary for plant survival, development and architecture. Our understanding of and ability to manipulate these processes are crucial for increasing the yield and availability of much of the world's food. In many cases, release of dormancy results in increased cell division and changes in developmental programs. Much can be learned about dormancy regulation by identifying interactions of signals in these crucial processes. Internal signals such as hormones and sugar, and external signals such as light act through specific, overlapping signal transduction pathways to regulate endo-, eco- and paradormancy. Epigenetic-like regulation of endodormancy suggests a possible role for chromatin remodeling similar to that known for the vernalization responses during flowering.

  17. Anisotropic stress orients remodelling of mammalian limb bud ectoderm

    PubMed Central

    Lau, Kimberly; Tao, Hirotaka; Liu, Haijiao; Wen, Jun; Sturgeon, Kendra; Sorfazlian, Natalie; Lazic, Savo; Burrows, Jeffrey T. A.; Wong, Michael D.; Li, Danyi; Deimling, Steven; Ciruna, Brian; Scott, Ian; Simmons, Craig; Henkelman, R. Mark; Williams, Trevor; Hadjantonakis, Anna-Katerina; Fernandez-Gonzalez, Rodrigo; Sun, Yu; Hopyan, Sevan

    2016-01-01

    The physical forces that drive morphogenesis are not well characterized in vivo, especially among vertebrates. In the early limb bud, dorsal and ventral ectoderm converge to form the apical ectodermal ridge (AER), although the underlying mechanisms are unclear. By live imaging mouse embryos, we show that prospective AER progenitors intercalate at the dorsoventral boundary and that ectoderm remodels by concomitant cell division and neighbour exchange. Mesodermal expansion and ectodermal tension together generate a dorsoventrally biased stress pattern that orients ectodermal remodelling. Polarized distribution of cortical actin reflects this stress pattern in a β-catenin- and Fgfr2-dependent manner. Intercalation of AER progenitors generates a tensile gradient that reorients resolution of multicellular rosettes on adjacent surfaces, a process facilitated by β-catenin-dependent attachment of cortex to membrane. Therefore, feedback between tissue stress pattern and cell intercalations remodels mammalian ectoderm. PMID:25893915

  18. Mitochondrial inheritance in budding yeasts: towards an integrated understanding.

    PubMed

    Solieri, Lisa

    2010-11-01

    Recent advances in yeast mitogenomics have significantly contributed to our understanding of the diversity of organization, structure and topology in the mitochondrial genome of budding yeasts. In parallel, new insights on mitochondrial DNA (mtDNA) inheritance in the model organism Saccharomyces cerevisiae highlighted an integrated scenario where recombination, replication and segregation of mtDNA are intricately linked to mitochondrial nucleoid (mt-nucleoid) structure and organelle sorting. In addition to this, recent discoveries of bifunctional roles of some mitochondrial proteins have interesting implications on mito-nuclear genome interactions and the relationship between mtDNA inheritance, yeast fitness and speciation. This review summarizes the current knowledge on yeast mitogenomics, mtDNA inheritance with regard to mt-nucleoid structure and organelle dynamics, and mito-nuclear genome interactions.

  19. Taste bud leptin: sweet dampened at initiation site.

    PubMed

    Travers, Susan P; Frank, Marion E

    2015-05-01

    The intriguing observation that leptin decreases sweet-evoked peripheral gustatory responses has aroused much interest (Kawai K, Sugimoto K, Nakashima K, Miura H, Ninomiya Y. 2000. Leptin as a modulator of sweet taste sensitivities in mice. Proc Natl Acad Sci U S A. 97(20):11044-11049.) due to its implied importance in controlling appetite. The effects of this anorexic hormone, however, appear more conditional than originally believed. In this issue of Chemical Senses, a careful study by Glendinning and colleagues, find no effects of leptin on sweet-evoked chorda tympani responses, whereas an equally careful study by Meredith and colleagues, find decreased release of ATP and increased release of 5-HT from taste buds in response to sweet stimuli.

  20. Saccharomyces Genome Database: the genomics resource of budding yeast

    PubMed Central

    Cherry, J. Michael; Hong, Eurie L.; Amundsen, Craig; Balakrishnan, Rama; Binkley, Gail; Chan, Esther T.; Christie, Karen R.; Costanzo, Maria C.; Dwight, Selina S.; Engel, Stacia R.; Fisk, Dianna G.; Hirschman, Jodi E.; Hitz, Benjamin C.; Karra, Kalpana; Krieger, Cynthia J.; Miyasato, Stuart R.; Nash, Rob S.; Park, Julie; Skrzypek, Marek S.; Simison, Matt; Weng, Shuai; Wong, Edith D.

    2012-01-01

    The Saccharomyces Genome Database (SGD, http://www.yeastgenome.org) is the community resource for the budding yeast Saccharomyces cerevisiae. The SGD project provides the highest-quality manually curated information from peer-reviewed literature. The experimental results reported in the literature are extracted and integrated within a well-developed database. These data are combined with quality high-throughput results and provided through Locus Summary pages, a powerful query engine and rich genome browser. The acquisition, integration and retrieval of these data allow SGD to facilitate experimental design and analysis by providing an encyclopedia of the yeast genome, its chromosomal features, their functions and interactions. Public access to these data is provided to researchers and educators via web pages designed for optimal ease of use. PMID:22110037

  1. Saccharomyces Genome Database: the genomics resource of budding yeast.

    PubMed

    Cherry, J Michael; Hong, Eurie L; Amundsen, Craig; Balakrishnan, Rama; Binkley, Gail; Chan, Esther T; Christie, Karen R; Costanzo, Maria C; Dwight, Selina S; Engel, Stacia R; Fisk, Dianna G; Hirschman, Jodi E; Hitz, Benjamin C; Karra, Kalpana; Krieger, Cynthia J; Miyasato, Stuart R; Nash, Rob S; Park, Julie; Skrzypek, Marek S; Simison, Matt; Weng, Shuai; Wong, Edith D

    2012-01-01

    The Saccharomyces Genome Database (SGD, http://www.yeastgenome.org) is the community resource for the budding yeast Saccharomyces cerevisiae. The SGD project provides the highest-quality manually curated information from peer-reviewed literature. The experimental results reported in the literature are extracted and integrated within a well-developed database. These data are combined with quality high-throughput results and provided through Locus Summary pages, a powerful query engine and rich genome browser. The acquisition, integration and retrieval of these data allow SGD to facilitate experimental design and analysis by providing an encyclopedia of the yeast genome, its chromosomal features, their functions and interactions. Public access to these data is provided to researchers and educators via web pages designed for optimal ease of use. PMID:22110037

  2. A comprehensive model to predict mitotic division in budding yeasts

    PubMed Central

    Sutradhar, Sabyasachi; Yadav, Vikas; Sridhar, Shreyas; Sreekumar, Lakshmi; Bhattacharyya, Dibyendu; Ghosh, Santanu Kumar; Paul, Raja; Sanyal, Kaustuv

    2015-01-01

    High-fidelity chromosome segregation during cell division depends on a series of concerted interdependent interactions. Using a systems biology approach, we built a robust minimal computational model to comprehend mitotic events in dividing budding yeasts of two major phyla: Ascomycota and Basidiomycota. This model accurately reproduces experimental observations related to spindle alignment, nuclear migration, and microtubule (MT) dynamics during cell division in these yeasts. The model converges to the conclusion that biased nucleation of cytoplasmic microtubules (cMTs) is essential for directional nuclear migration. Two distinct pathways, based on the population of cMTs and cortical dyneins, differentiate nuclear migration and spindle orientation in these two phyla. In addition, the model accurately predicts the contribution of specific classes of MTs in chromosome segregation. Thus we present a model that offers a wider applicability to simulate the effects of perturbation of an event on the concerted process of the mitotic cell division. PMID:26310442

  3. A comprehensive model to predict mitotic division in budding yeasts.

    PubMed

    Sutradhar, Sabyasachi; Yadav, Vikas; Sridhar, Shreyas; Sreekumar, Lakshmi; Bhattacharyya, Dibyendu; Ghosh, Santanu Kumar; Paul, Raja; Sanyal, Kaustuv

    2015-11-01

    High-fidelity chromosome segregation during cell division depends on a series of concerted interdependent interactions. Using a systems biology approach, we built a robust minimal computational model to comprehend mitotic events in dividing budding yeasts of two major phyla: Ascomycota and Basidiomycota. This model accurately reproduces experimental observations related to spindle alignment, nuclear migration, and microtubule (MT) dynamics during cell division in these yeasts. The model converges to the conclusion that biased nucleation of cytoplasmic microtubules (cMTs) is essential for directional nuclear migration. Two distinct pathways, based on the population of cMTs and cortical dyneins, differentiate nuclear migration and spindle orientation in these two phyla. In addition, the model accurately predicts the contribution of specific classes of MTs in chromosome segregation. Thus we present a model that offers a wider applicability to simulate the effects of perturbation of an event on the concerted process of the mitotic cell division.

  4. Actin Depolymerization Drives Actomyosin Ring Contraction during Budding Yeast Cytokinesis

    PubMed Central

    Pinto, Inês Mendes; Rubinstein, Boris; Kucharavy, Andrei; Unruh, Jay R.; Li, Rong

    2012-01-01

    SUMMARY Actin filaments and myosin-II are evolutionarily conserved force generating components of the contractile ring during cytokinesis. Here we show that in budding yeast actin filament depolymerization plays a major role in actomyosin ring constriction. Cofilin mutation or chemically stabilizing actin filaments attenuates actomyosin ring constriction. Deletion of myosin-II motor domain or the myosin regulatory light chain reduced the contraction rate and also the rate of actin depolymerization in the ring. We constructed a quantitative microscopic model of actomyosin ring constriction via filament sliding driven by both actin depolymerization and myosin-II motor activity. Model simulations based on experimental measurements supports the notion that actin depolymerization is the predominant mechanism for ring constriction. The model predicts invariability of total contraction time irrespective of the initial ring size as originally reported for C elegans embryonic cells. This prediction was validated in yeast cells of different sizes due to having different ploidies. PMID:22698284

  5. The Composition, Functions, and Regulation of the Budding Yeast Kinetochore

    PubMed Central

    2013-01-01

    The propagation of all organisms depends on the accurate and orderly segregation of chromosomes in mitosis and meiosis. Budding yeast has long served as an outstanding model organism to identify the components and underlying mechanisms that regulate chromosome segregation. This review focuses on the kinetochore, the macromolecular protein complex that assembles on centromeric chromatin and maintains persistent load-bearing attachments to the dynamic tips of spindle microtubules. The kinetochore also serves as a regulatory hub for the spindle checkpoint, ensuring that cell cycle progression is coupled to the achievement of proper microtubule–kinetochore attachments. Progress in understanding the composition and overall architecture of the kinetochore, as well as its properties in making and regulating microtubule attachments and the spindle checkpoint, is discussed. PMID:23908374

  6. The maize macrohairless1 locus specifically promotes leaf blade macrohair initiation and responds to factors regulating leaf identity.

    PubMed Central

    Moose, Stephen P; Lauter, Nick; Carlson, Shawn R

    2004-01-01

    The leaf surfaces of almost all plant species possess specialized epidermal cell types that form hairs or trichomes. Maize leaves produce three distinct types of hairs, the most prominent being the macrohairs that serve as a marker for adult leaf identity and may contribute to insect resistance. This report describes the maize macrohairless1 (mhl1) locus, which promotes macrohair initiation specifically in the leaf blade. Each of seven recessive mhl1 mutant alleles significantly reduces or eliminates macrohairs in the leaf blade. The mhl1 mutations block macrohair initiation rather than interfering with macrohair morphogenesis. Genetic mapping placed mhl1 within bin 4 on chromosome 9. A second independently segregating locus was found to partially suppress the mhl1 mutant phenotype in certain genetic backgrounds. Macrohair density was observed to increase during early adult vegetative development and then progressively decline, suggesting macrohair initiation frequency is affected by factors that act throughout shoot development. Genetic analyses demonstrated that mhl1 acts in the same pathway but downstream of factors that either promote or repress adult leaf identity. Thus, mhl1 plays a key role in integrating developmental programs that regulate leaf identity during shoot development with those that specify macrohair initiation within the leaf blade. PMID:15082562

  7. Deep Supercooling in Most Tissues of Wintering Sasa senanensis and Its Mechanism in Leaf Blade Tissues.

    PubMed

    Ishikawa, M

    1984-05-01

    Cold hardiness of leaf blades, leaf sheaths, culms, rhizomes, and leaf buds in wintering Sasa senanensis (Fr. et Sav.) Rehder, a dwarf bamboo, was studied paying special attention to the types of resistance mechanisms which were determined with differential thermal analysis. Coincidence of LT(25) (lethal temperature at which 25% of the tissues are injured) with the initiation temperature of LTE (low temperature exotherm) suggested that all of these tissues described above owe their cold hardiness mechanism mostly to deep supercooling. Deep supercooling in leaf blades was also substantiated with microscopic observations, suggesting that the units of supercooling were minute tissues compartmentalized by longitudinal and cross veins. It was also shown that cooling rates and storage of shoots at -5 degrees C for 1 to 5 days in the ice-inoculated state did not greatly affect the supercooling ability of leaf blades. Sasa senanensis seemed to exhibit a unique strategy against prolonged subzero temperature, and its leaves would be a good system for the study on mechanisms of deep undercooling in plants.

  8. Changes in Clonal Poplar Leaf Chemistry Caused by Stem Galls Alter Herbivory and Leaf Litter Decomposition

    PubMed Central

    Künkler, Nora; Brandl, Roland; Brändle, Martin

    2013-01-01

    Gall-inducing insects are highly specialized herbivores that modify the phenotype of their host plants. Beyond the direct manipulation of plant morphology and physiology in the immediate environment of the gall, there is also evidence of plant-mediated effects of gall-inducing insects on other species of the assemblages and ecosystem processes associated with the host plant. We analysed the impact of gall infestation by the aphid Pemphigus spirothecae on chemical leaf traits of clonal Lombardy poplars (Populus nigra var. italica) and the subsequent effects on intensity of herbivory and decomposition of leaves across five sites. We measured the herbivory of two feeding guilds: leaf-chewing insects that feed on the blade (e.g. caterpillars and sawfly larvae) and skeletonising insects that feed on the mesophyll of the leaves (e.g. larvae of beetles). Galled leaves had higher phenol (35%) and lower nitrogen and cholorophyll contents (35% respectively 37%) than non-galled leaves, and these differences were stronger in August than in June. Total herbivory intensity was 27% higher on galled than on non-galled leaves; damage by leaf chewers was on average 61% higher on gall infested leaves, whereas damage by skeletonising insects was on average 39% higher on non-galled leaves. After nine months the decomposition rate of galled leaf litter was 15% lower than that of non-galled leaf litter presumably because of the lower nitrogen content of the galled leaf litter. This indicated after-life effects of gall infestation on the decomposers. We found no evidence for galling x environment interactions. PMID:24260333

  9. Carbohydrate uptake from xylem vessels and its distribution among stem tissues and buds in walnut (Juglans regia L.).

    PubMed

    Bonhomme, Marc; Peuch, Médéric; Ameglio, Thierry; Rageau, Rémy; Guilliot, Agnès; Decourteix, Mélanie; Alves, Georges; Sakr, Soulaiman; Lacointe, André

    2010-01-01

    Bud break pattern is a key determinant of tree architecture. The mechanisms leading to the precedence of certain buds over the others are not yet fully explained, but the availability of soluble sugars may play a significant role, especially those in the xylem sap at the onset of the growing period. Here, we measured carbon availability in the different tissues (bud, xylem and bark). To assess the capacity of buds to use the xylem sap carbohydrates, the fluxes between xylem vessels and parenchyma cells, bark and buds of walnut (Juglans regia cv 'Franquette') were measured during the rest period until bud break. This uptake capacity varies according to the temperature, the sugar and the position on the branch of the fragment studied. Between December and March, in xylem tissues, the active component of sucrose uptake was predominant compared with diffusion (90% of the total uptake), whereas the active component accounted for more moderate amounts in buds (50% of the uptake). The active uptake of hexoses took place belatedly (April) in xylem. The flow rates between xylem vessels and buds increased 1 month before bud break and reached 2000 microg sucrose h(-)(1) g DW(-)(1). Fluxes seemed to depend on bud position on the branch. However, this study strongly suggests that they were mainly dependent on the sink strength of the buds and on the sink competition between bud, xylem parenchyma and bark.

  10. Dormancy-associated MADS-box genes and microRNAs jointly control dormancy transition in pear (Pyrus pyrifolia white pear group) flower bud

    PubMed Central

    Niu, Qingfeng; Li, Jianzhao; Cai, Danying; Qian, Minjie; Jia, Huimin; Bai, Songling; Hussain, Sayed; Liu, Guoqin; Teng, Yuanwen; Zheng, Xiaoyan

    2016-01-01

    Bud dormancy in perennial plants is indispensable to survival over winter and to regrowth and development in the following year. However, the molecular pathways of endo-dormancy induction, maintenance, and release are still unclear, especially in fruit crops. To identify genes with roles in regulating endo-dormancy, 30 MIKCC-type MADS-box genes were identified in the pear genome and characterized. The 30 genes were analysed to determine their phylogenetic relationships with homologous genes, genome locations, gene structure, tissue-specific transcript profiles, and transcriptional patterns during flower bud dormancy in ‘Suli’ pear (Pyrus pyrifolia white pear group). The roles in regulating bud dormancy varied among the MIKC gene family members. Yeast one-hybrid and transient assays showed that PpCBF enhanced PpDAM1 and PpDAM3 transcriptional activity during the induction of dormancy, probably by binding to the C-repeat/DRE binding site, while DAM proteins inhibited the transcriptional activity of PpFT2 during dormancy release. In the small RNA-seq analysis, 185 conserved, 24 less-conserved, and 32 pear-specific miRNAs with distinct expression patterns during bud dormancy were identified. Joint analyses of miRNAs and MIKC genes together with degradome data showed that miR6390 targeted PpDAM transcripts and degraded them to release PpFT2. Our data show that cross-talk among PpCBF, PpDAM, PpFT2, and miR6390 played important roles in regulating endo-dormancy. A model for the molecular mechanism of dormancy transition is proposed: short-term chilling in autumn activates the accumulation of CBF, which directly promotes DAM expression; DAM subsequently inhibits FT expression to induce endo-dormancy, and miR6390 degrades DAM genes to release endo-dormancy. PMID:26466664

  11. Dormancy-associated MADS-box genes and microRNAs jointly control dormancy transition in pear (Pyrus pyrifolia white pear group) flower bud.

    PubMed

    Niu, Qingfeng; Li, Jianzhao; Cai, Danying; Qian, Minjie; Jia, Huimin; Bai, Songling; Hussain, Sayed; Liu, Guoqin; Teng, Yuanwen; Zheng, Xiaoyan

    2016-01-01

    Bud dormancy in perennial plants is indispensable to survival over winter and to regrowth and development in the following year. However, the molecular pathways of endo-dormancy induction, maintenance, and release are still unclear, especially in fruit crops. To identify genes with roles in regulating endo-dormancy, 30 MIKC(C)-type MADS-box genes were identified in the pear genome and characterized. The 30 genes were analysed to determine their phylogenetic relationships with homologous genes, genome locations, gene structure, tissue-specific transcript profiles, and transcriptional patterns during flower bud dormancy in 'Suli' pear (Pyrus pyrifolia white pear group). The roles in regulating bud dormancy varied among the MIKC gene family members. Yeast one-hybrid and transient assays showed that PpCBF enhanced PpDAM1 and PpDAM3 transcriptional activity during the induction of dormancy, probably by binding to the C-repeat/DRE binding site, while DAM proteins inhibited the transcriptional activity of PpFT2 during dormancy release. In the small RNA-seq analysis, 185 conserved, 24 less-conserved, and 32 pear-specific miRNAs with distinct expression patterns during bud dormancy were identified. Joint analyses of miRNAs and MIKC genes together with degradome data showed that miR6390 targeted PpDAM transcripts and degraded them to release PpFT2. Our data show that cross-talk among PpCBF, PpDAM, PpFT2, and miR6390 played important roles in regulating endo-dormancy. A model for the molecular mechanism of dormancy transition is proposed: short-term chilling in autumn activates the accumulation of CBF, which directly promotes DAM expression; DAM subsequently inhibits FT expression to induce endo-dormancy, and miR6390 degrades DAM genes to release endo-dormancy.

  12. Trichoplusia ni Kinesin-1 Associates with Autographa californica Multiple Nucleopolyhedrovirus Nucleocapsid Proteins and Is Required for Production of Budded Virus

    PubMed Central

    Biswas, Siddhartha; Blissard, Gary W.

    2016-01-01

    ABSTRACT The mechanism by which nucleocapsids of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) egress from the nucleus to the plasma membrane, leading to the formation of budded virus (BV), is not known. AC141 is a nucleocapsid-associated protein required for BV egress and has previously been shown to be associated with β-tubulin. In addition, AC141 and VP39 were previously shown by fluorescence resonance energy transfer by fluorescence lifetime imaging to interact directly with the Drosophila melanogaster kinesin-1 light chain (KLC) tetratricopeptide repeat (TPR) domain. These results suggested that microtubule transport systems may be involved in baculovirus nucleocapsid egress and BV formation. In this study, we investigated the role of lepidopteran microtubule transport using coimmunoprecipitation, colocalization, yeast two-hybrid, and small interfering RNA (siRNA) analyses. We show that nucleocapsid AC141 associates with the lepidopteran Trichoplusia ni KLC and kinesin-1 heavy chain (KHC) by coimmunoprecipitation and colocalization. Kinesin-1, AC141, and microtubules colocalized predominantly at the plasma membrane. In addition, the nucleocapsid proteins VP39, FP25, and BV/ODV-C42 were also coimmunoprecipitated with T. ni KLC. Direct analysis of the role of T. ni kinesin-1 by downregulation of KLC by siRNA resulted in a significant decrease in BV production. Nucleocapsids labeled with VP39 fused with three copies of the mCherry fluorescent protein also colocalized with microtubules. Yeast two-hybrid analysis showed no evidence of a direct interaction between kinesin-1 and AC141 or VP39, suggesting that either other nucleocapsid proteins or adaptor proteins may be required. These results further support the conclusion that microtubule transport is required for AcMNPV BV formation. IMPORTANCE In two key processes of the replication cycle of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), nucleocapsids are

  13. 7 CFR 29.2528 - Leaf.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf. 29.2528 Section 29.2528 Agriculture Regulations...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2528 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf....

  14. 7 CFR 29.3525 - Leaf.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf. 29.3525 Section 29.3525 Agriculture Regulations... Type 95) § 29.3525 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf....

  15. 7 CFR 29.1028 - Leaf.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf. 29.1028 Section 29.1028 Agriculture Regulations... Type 92) § 29.1028 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf....

  16. 7 CFR 29.3033 - Leaf.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf. 29.3033 Section 29.3033 Agriculture Regulations... Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf....

  17. Using dielectrophoresis to study the dynamic response of single budding yeast cells to Lyticase.

    PubMed

    Tang, Shi-Yang; Yi, Pyshar; Soffe, Rebecca; Nahavandi, Sofia; Shukla, Ravi; Khoshmanesh, Khashayar

    2015-05-01

    Budding yeast cells are quick and easy to grow and represent a versatile model of eukaryotic cells for a variety of cellular studies, largely because their genome has been widely studied and links can be drawn with higher eukaryotes. Therefore, the efficient separation, immobilization, and conversion of budding yeasts into spheroplast or protoplast can provide valuable insight for many fundamentals investigations in cell biology at a single cell level. Dielectrophoresis, the induced motion of particles in non-uniform electric fields, possesses a great versatility for manipulation of cells in microfluidic platforms. Despite this, dielectrophoresis has been largely utilized for studying of non-budding yeast cells and has rarely been used for manipulation of budding cells. Here, we utilize dielectrophoresis for studying the dynamic response of budding cells to different concentrations of Lyticase. This involves separation of the budding yeasts from a background of non-budding cells and their subsequent immobilization onto the microelectrodes at desired densities down to single cell level. The immobilized yeasts are then stimulated with Lyticase to remove the cell wall and convert them into spheroplasts, in a highly dynamic process that depends on the concentration of Lyticase. We also introduce a novel method for immobilization of the cell organelles released from the lysed cells by patterning multi-walled carbon nanotubes (MWCNTs) between the microelectrodes. PMID:25701421

  18. Increased IAA transport in axillary buds upon release from apical dominance

    SciTech Connect

    Tamas, I.A.; Reimels, A.J. )

    1989-04-01

    To investigate the transport of indoleacetic acid (IAA) simultaneously in the stem and the axillary bud, bud-bearing nodal stem segments of Phaseolus vulgaris L. were excised and agar blocks containing {sup 14}C-IAA or {sup 3}H-IAA were placed on the apical cut surface and the bud stump respectively. A plain receiver block was placed on the basal end. After a period of transport, the stem segment and the attached bud stump were sectioned, and the activity of sections and agar blocks was counted. We found that the transport of {sup 3}H-IAA from the bud stump to the receiver was greatly accelerated in plants decapitated one or two days prior to the experiment, compared to the intact controls. Decapitation also caused a decrease in the ability of the stem axis to transport {sup 14}C-IAA from the apical to the basal end of the stem segment. The increased ability of the axillary bud to transport IAA, relative to that of the stem axis, may play a role int he release of the bud from apical dominance.

  19. Neuronal Nuclear Membrane Budding Occurs during a Developmental Window Modulated by Torsin Paralogs.

    PubMed

    Tanabe, Lauren M; Liang, Chun-Chi; Dauer, William T

    2016-09-20

    DYT1 dystonia is a neurodevelopmental disease that manifests during a discrete period of childhood. The disease is caused by impaired function of torsinA, a protein linked to nuclear membrane budding. The relationship of NE budding to neural development and CNS function is unclear, however, obscuring its potential role in dystonia pathogenesis. We find NE budding begins and resolves during a discrete neurodevelopmental window in torsinA null neurons in vivo. The developmental resolution of NE budding corresponds to increased torsinB protein, while ablating torsinB from torsinA null neurons prevents budding resolution and causes lethal neural dysfunction. Developmental changes in torsinB also correlate with NE bud formation in differentiating DYT1 embryonic stem cells, and overexpression of torsinA or torsinB rescues NE bud formation in this system. These findings identify a torsinA neurodevelopmental window that is essential for normal CNS function and have important implications for dystonia pathogenesis and therapeutics. PMID:27653693

  20. Auxin dynamics after decapitation are not correlated with the initial growth of axillary buds.

    PubMed

    Morris, Suzanne E; Cox, Marjolein C H; Ross, John J; Krisantini, Santi; Beveridge, Christine A

    2005-07-01

    One of the first and most enduring roles identified for the plant hormone auxin is the mediation of apical dominance. Many reports have claimed that reduced stem indole-3-acetic acid (IAA) levels and/or reduced basipetal IAA transport directly or indirectly initiate bud growth in decapitated plants. We have tested whether auxin inhibits the initial stage of bud release, or subsequent stages, in garden pea (Pisum sativum) by providing a rigorous examination of the dynamics of auxin level, auxin transport, and axillary bud growth. We demonstrate that after decapitation, initial bud growth occurs prior to changes in IAA level or transport in surrounding stem tissue and is not prevented by an acropetal supply of exogenous auxin. We also show that auxin transport inhibitors cause a similar auxin depletion as decapitation, but do not stimulate bud growth within our experimental time-frame. These results indicate that decapitation may trigger initial bud growth via an auxin-independent mechanism. We propose that auxin operates after this initial stage, mediating apical dominance via autoregulation of buds that are already in transition toward sustained growth. PMID:15965021

  1. Carbohydrate concentrations and freezing stress resistance of silver birch buds grown under elevated temperature and ozone.

    PubMed

    Riikonen, Johanna; Kontunen-Soppela, Sari; Vapaavuori, Elina; Tervahauta, Arja; Tuomainen, Marjo; Oksanen, Elina

    2013-03-01

    The effects of slightly elevated temperature (+0.8 °C), ozone (O3) concentration (1.3 × ambient O3 concentration) and their combination on over-wintering buds of Betula pendula Roth were studied after two growing seasons of exposure in the field. Carbohydrate concentrations, freezing stress resistance (FSR), bud dry weight to fresh weight ratio, and transcript levels of cytochrome oxidase (COX), alternative oxidase (AOX) and dehydrin (LTI36) genes were studied in two clones (clones 12 and 25) in December. Elevated temperature increased the bud dry weight to fresh weight ratio and the ratio of raffinose family oligosaccharides to sucrose and the transcript levels of the dehydrin (LTI36) gene (in clone 12 only), but did not alter the FSR of the buds. Genotype-specific alterations in carbohydrate metabolism were found in the buds grown under elevated O3. The treatments did not significantly affect the transcript level of the COX or AOX genes. No clear pattern of an interactive effect between elevated temperature and O3 concentration was found. According to these data, the increase in autumnal temperatures and slightly increasing O3 concentrations do not increase the risk for freeze-induced damage in winter in silver birch buds, although some alterations in bud physiology occur. PMID:23425688

  2. Automated quantification of budding Saccharomyces cerevisiae using a novel image cytometry method.

    PubMed

    Laverty, Daniel J; Kury, Alexandria L; Kuksin, Dmitry; Pirani, Alnoor; Flanagan, Kevin; Chan, Leo Li-Ying

    2013-06-01

    The measurements of concentration, viability, and budding percentages of Saccharomyces cerevisiae are performed on a routine basis in the brewing and biofuel industries. Generation of these parameters is of great importance in a manufacturing setting, where they can aid in the estimation of product quality, quantity, and fermentation time of the manufacturing process. Specifically, budding percentages can be used to estimate the reproduction rate of yeast populations, which directly correlates with metabolism of polysaccharides and bioethanol production, and can be monitored to maximize production of bioethanol during fermentation. The traditional method involves manual counting using a hemacytometer, but this is time-consuming and prone to human error. In this study, we developed a novel automated method for the quantification of yeast budding percentages using Cellometer image cytometry. The automated method utilizes a dual-fluorescent nucleic acid dye to specifically stain live cells for imaging analysis of unique morphological characteristics of budding yeast. In addition, cell cycle analysis is performed as an alternative method for budding analysis. We were able to show comparable yeast budding percentages between manual and automated counting, as well as cell cycle analysis. The automated image cytometry method is used to analyze and characterize corn mash samples directly from fermenters during standard fermentation. Since concentration, viability, and budding percentages can be obtained simultaneously, the automated method can be integrated into the fermentation quality assurance protocol, which may improve the quality and efficiency of beer and bioethanol production processes.

  3. Carbohydrate concentrations and freezing stress resistance of silver birch buds grown under elevated temperature and ozone.

    PubMed

    Riikonen, Johanna; Kontunen-Soppela, Sari; Vapaavuori, Elina; Tervahauta, Arja; Tuomainen, Marjo; Oksanen, Elina

    2013-03-01

    The effects of slightly elevated temperature (+0.8 °C), ozone (O3) concentration (1.3 × ambient O3 concentration) and their combination on over-wintering buds of Betula pendula Roth were studied after two growing seasons of exposure in the field. Carbohydrate concentrations, freezing stress resistance (FSR), bud dry weight to fresh weight ratio, and transcript levels of cytochrome oxidase (COX), alternative oxidase (AOX) and dehydrin (LTI36) genes were studied in two clones (clones 12 and 25) in December. Elevated temperature increased the bud dry weight to fresh weight ratio and the ratio of raffinose family oligosaccharides to sucrose and the transcript levels of the dehydrin (LTI36) gene (in clone 12 only), but did not alter the FSR of the buds. Genotype-specific alterations in carbohydrate metabolism were found in the buds grown under elevated O3. The treatments did not significantly affect the transcript level of the COX or AOX genes. No clear pattern of an interactive effect between elevated temperature and O3 concentration was found. According to these data, the increase in autumnal temperatures and slightly increasing O3 concentrations do not increase the risk for freeze-induced damage in winter in silver birch buds, although some alterations in bud physiology occur.

  4. Cytokinins Are Initial Targets of Light in the Control of Bud Outgrowth1[OPEN

    PubMed Central

    Girault, Tiffanie; Barbier, François; Péron, Thomas; Pěnčík, Aleš; Sakr, Soulaiman; Lothier, Jérémy

    2016-01-01

    Bud outgrowth is controlled by environmental and endogenous factors. Through the use of the photosynthesis inhibitor norflurazon and of masking experiments, evidence is given here that light acts mainly as a morphogenic signal in the triggering of bud outgrowth and that initial steps in the light signaling pathway involve cytokinins (CKs). Indeed, in rose (Rosa hybrida), inhibition of bud outgrowth by darkness is suppressed solely by the application of CKs. In contrast, application of sugars has a limited effect. Exposure of plants to white light (WL) induces a rapid (after 3–6 h of WL exposure) up-regulation of CK synthesis (RhIPT3 and RhIPT5), of CK activation (RhLOG8), and of CK putative transporter RhPUP5 genes and to the repression of the CK degradation RhCKX1 gene in the node. This leads to the accumulation of CKs in the node within 6 h and in the bud at 24 h and to the triggering of bud outgrowth. Molecular analysis of genes involved in major mechanisms of bud outgrowth (strigolactone signaling [RwMAX2], metabolism and transport of auxin [RhPIN1, RhYUC1, and RhTAR1], regulation of sugar sink strength [RhVI, RhSUSY, RhSUC2, and RhSWEET10], and cell division and expansion [RhEXP and RhPCNA]) reveal that, when supplied in darkness, CKs up-regulate their expression as rapidly and as intensely as WL. Additionally, up-regulation of CKs by WL promotes xylem flux toward the bud, as evidenced by Methylene Blue accumulation in the bud after CK treatment in the dark. Altogether, these results suggest that CKs are initial components of the light signaling pathway that controls the initiation of bud outgrowth. PMID:27462085

  5. Cytokinins Are Initial Targets of Light in the Control of Bud Outgrowth.

    PubMed

    Roman, Hanaé; Girault, Tiffanie; Barbier, François; Péron, Thomas; Brouard, Nathalie; Pěnčík, Aleš; Novák, Ondřej; Vian, Alain; Sakr, Soulaiman; Lothier, Jérémy; Le Gourrierec, José; Leduc, Nathalie

    2016-09-01

    Bud outgrowth is controlled by environmental and endogenous factors. Through the use of the photosynthesis inhibitor norflurazon and of masking experiments, evidence is given here that light acts mainly as a morphogenic signal in the triggering of bud outgrowth and that initial steps in the light signaling pathway involve cytokinins (CKs). Indeed, in rose (Rosa hybrida), inhibition of bud outgrowth by darkness is suppressed solely by the application of CKs. In contrast, application of sugars has a limited effect. Exposure of plants to white light (WL) induces a rapid (after 3-6 h of WL exposure) up-regulation of CK synthesis (RhIPT3 and RhIPT5), of CK activation (RhLOG8), and of CK putative transporter RhPUP5 genes and to the repression of the CK degradation RhCKX1 gene in the node. This leads to the accumulation of CKs in the node within 6 h and in the bud at 24 h and to the triggering of bud outgrowth. Molecular analysis of genes involved in major mechanisms of bud outgrowth (strigolactone signaling [RwMAX2], metabolism and transport of auxin [RhPIN1, RhYUC1, and RhTAR1], regulation of sugar sink strength [RhVI, RhSUSY, RhSUC2, and RhSWEET10], and cell division and expansion [RhEXP and RhPCNA]) reveal that, when supplied in darkness, CKs up-regulate their expression as rapidly and as intensely as WL Additionally, up-regulation of CKs by WL promotes xylem flux toward the bud, as evidenced by Methylene Blue accumulation in the bud after CK treatment in the dark. Altogether, these results suggest that CKs are initial components of the light signaling pathway that controls the initiation of bud outgrowth. PMID:27462085

  6. Contribution of Underlying Connective Tissue Cells to Taste Buds in Mouse Tongue and Soft Palate

    PubMed Central

    Mederacke, Ingmar; Komatsu, Yoshihiro; Stice, Steve; Schwabe, Robert F.; Mistretta, Charlotte M.; Mishina, Yuji; Liu, Hong-Xiang

    2016-01-01

    Taste buds, the sensory organs for taste, have been described as arising solely from the surrounding epithelium, which is in distinction from other sensory receptors that are known to originate from neural precursors, i.e., neural ectoderm that includes neural crest (NC). Our previous study suggested a potential contribution of NC derived cells to early immature fungiform taste buds in late embryonic (E18.5) and young postnatal (P1-10) mice. In the present study we demonstrated the contribution of the underlying connective tissue (CT) to mature taste buds in mouse tongue and soft palate. Three independent mouse models were used for fate mapping of NC and NC derived connective tissue cells: (1) P0-Cre/R26-tdTomato (RFP) to label NC, NC derived Schwann cells and derivatives; (2) Dermo1-Cre/RFP to label mesenchymal cells and derivatives; and (3) Vimentin-CreER/mGFP to label Vimentin-expressing CT cells and derivatives upon tamoxifen treatment. Both P0-Cre/RFP and Dermo1-Cre/RFP labeled cells were abundant in mature taste buds in lingual taste papillae and soft palate, but not in the surrounding epithelial cells. Concurrently, labeled cells were extensively distributed in the underlying CT. RFP signals were seen in the majority of taste buds and all three types (I, II, III) of differentiated taste bud cells, with the neuronal-like type III cells labeled at a greater proportion. Further, Vimentin-CreER labeled cells were found in the taste buds of 3-month-old mice whereas Vimentin immunoreactivity was only seen in the CT. Taken together, our data demonstrate a previously unrecognized origin of taste bud cells from the underlying CT, a conceptually new finding in our knowledge of taste bud cell derivation, i.e., from both the surrounding epithelium and the underlying CT that is primarily derived from NC. PMID:26741369

  7. [Acaricidal activity of clove bud oil against Dermatophagoides farinae (Acari: Pyroglyphidae)].

    PubMed

    Li, Jing; Wu, Hai-Qiang; Liu, Zhi-Gang

    2009-12-01

    Volatile oil from the clove bud was extracted by petroleum ether using Soxhlet Extractor. The acaricidal activity was examined using direct contact and vapour phase toxicity bioassays. In a filter paper contact toxicity bio-assay, at 2.5 h after treatment, clove bud oil at a dose of 12.20 microg/cm2 killed all dust mites. As judged by 24-h LD50 values, potent fumigant action was observed with clove bud oil (12.20 microg/cm2), showing an adequate acaricidal activity against indoor Dermatophagoides farinae. PMID:20232631

  8. Phenotypic plasticity, QTL mapping and genomic characterization of bud set in black poplar

    PubMed Central

    2012-01-01

    Background The genetic control of important adaptive traits, such as bud set, is still poorly understood in most forest trees species. Poplar is an ideal model tree to study bud set because of its indeterminate shoot growth. Thus, a full-sib family derived from an intraspecific cross of P. nigra with 162 clonally replicated progeny was used to assess the phenotypic plasticity and genetic variation of bud set in two sites of contrasting environmental conditions. Results Six crucial phenological stages of bud set were scored. Night length appeared to be the most important signal triggering the onset of growth cessation. Nevertheless, the effect of other environmental factors, such as temperature, increased during the process. Moreover, a considerable role of genotype × environment (G × E) interaction was found in all phenological stages with the lowest temperature appearing to influence the sensitivity of the most plastic genotypes. Descriptors of growth cessation and bud onset explained the largest part of phenotypic variation of the entire process. Quantitative trait loci (QTL) for these traits were detected. For the four selected traits (the onset of growth cessation (date2.5), the transition from shoot to bud (date1.5), the duration of bud formation (subproc1) and bud maturation (subproc2)) eight and sixteen QTL were mapped on the maternal and paternal map, respectively. The identified QTL, each one characterized by small or modest effect, highlighted the complex nature of traits involved in bud set process. Comparison between map location of QTL and P. trichocarpa genome sequence allowed the identification of 13 gene models, 67 bud set-related expressional and six functional candidate genes (CGs). These CGs are functionally related to relevant biological processes, environmental sensing, signaling, and cell growth and development. Some strong QTL had no obvious CGs, and hold great promise to identify unknown genes that affect bud set. Conclusions This study

  9. Gravity-induced buds formation from protonemata apical cells in the mosses

    NASA Astrophysics Data System (ADS)

    Kyyak, Natalia; Khorkavtsiv, Yaroslava

    The acceleration of moss protonemata development after the exit it to light from darkness is important gravidependent morphogenetic manifestation of the moss protonemata. The accelerated development of mosses shows in transformation of apical protonemata cells into the gametophores buds (Ripetskyj et al., 1999). In order to establish, that such reaction on gravitation is general property of gravisensity species, or its typical only for single moss species, experiments with the following moss species - Bryum intermedium (Ludw.) Brig., Bryum caespiticium Hedw., Bryum argenteum Hedw., Dicranodontium denudatum (Brid.) Britt. were carried out. All these species in response to influence of gravitation were capable to form rich bunches of gravitropical protonemata in darkness, that testified to their gravisensity. After the transference of Petri dishes with gravitropical protonemata from darkness on light was revealed, that in 3 of the investigated species the gametophores buds were absent. Only B. argenteum has reacted to action of gravitation by buds formation from apical cells of the gravitropical protonemata. With the purpose of strengthening of buds formation process, the experiments with action of exogenous kinetin (in concentration of 10 (-6) M) were carried out. Kinetin essentially stimulated apical buds formation of B. argenteum. The quantity of apical buds has increased almost in three times in comparison with the control. Besides, on separate stolons a few (3-4) buds from one apical cell were formed. Experimentally was established, that the gametophores buds formation in mosses is controlled by phytohormones (Bopp, 1985; Demkiv et al., 1991). In conditions of gravity influence its essentially accelerated. Probably, gravity essentially strengthened acropetal transport of phytohormones and formation of attractive center in the protonemata apical cell. Our investigations have allowed to make the conclusion, that gravi-dependent formation of the apical buds is

  10. Analysis of basic leucine zipper genes and their expression during bud dormancy in peach (Prunus persica).

    PubMed

    Sun, Ming-Yue; Fu, Xi-Ling; Tan, Qiu-Ping; Liu, Li; Chen, Min; Zhu, Cui-Ying; Li, Ling; Chen, Xiu-De; Gao, Dong-Sheng

    2016-07-01

    Dormancy is a biological characteristic developed to resist the cold conditions in winter. The bZIP transcription factors are present exclusively in eukaryotes and have been identified and classified in many species. bZIP proteins are known to regulate numerous biological processes, however, the role of bZIP in bud dodormancy has not been studied extensively. In total, 50 PpbZIP transcription factor-encoding genes were identified and categorized them into 10 groups (A-I and S). Similar intron/exon structures, additional conserved motifs, and DNA-binding site specificity supported our classification scheme. Additionally, chromosomal distribution and collinearity analyses suggested that expansion of the PpbZIP transcription factor family was due to segment/chromosomal duplications. We also predicted the dimerization properties based on characteristic features of the leucine zipper and classified PpbZIP proteins into 23 subfamilies. Furthermore, qRT-PCR results indicated that PpbZIPs genes may be involved in regulating dormancy. The same gene of different species might participate in different regulating networks through interactions with specific partners. Our expression profiling results complemented the microarray data, suggesting that co-expression patterns of bZIP transcription factors during dormancy differed among deciduous fruit trees. Our findings further clarify the molecular characteristics of the PpbZIP transcription factor family, including potential gene functions during dormancy. This information may facilitate further research on the evolutionary history and biological functions of bZIP proteins in peach and other rosaceae plants.

  11. Biosynthesis of Drug Glucuronide Metabolites in the Budding Yeast Saccharomyces cerevisiae.

    PubMed

    Ikushiro, Shinichi; Nishikawa, Miyu; Masuyama, Yuuka; Shouji, Tadashi; Fujii, Miharu; Hamada, Masahiro; Nakajima, Noriyuki; Finel, Moshe; Yasuda, Kaori; Kamakura, Masaki; Sakaki, Toshiyuki

    2016-07-01

    Glucuronidation is one of the most common pathways in mammals for detoxification and elimination of hydrophobic xenobiotic compounds, including many drugs. Metabolites, however, can form active or toxic compounds, such as acyl glucuronides, and their safety assessment is often needed. The absence of efficient means for in vitro synthesis of correct glucuronide metabolites frequently limits such toxicological analyses. To overcome this hurdle we have developed a new approach, the essence of which is a coexpression system containing a human, or another mammalian UDP-glucuronosyltransferases (UGTs), as well as UDP-glucose-6-dehydrogenase (UGDH), within the budding yeast, Saccharomyces cerevisiae. The system was first tested using resting yeast cells coexpressing UGDH and human UGT1A6, 7-hydroxycoumarin as the substrate, in a reaction medium containing 8% glucose, serving as a source of UDP-glucuronic acid. Glucuronides were readily formed and recovered from the medium. Subsequently, by selecting suitable mammalian UGT enzyme for the coexpression system we could obtain the desired glucuronides of various compounds, including molecules with multiple conjugation sites and acyl glucuronides of several carboxylic acid containing drugs, namely, mefenamic acid, flufenamic acid, and zomepirac. In conclusion, a new and flexible yeast system with mammalian UGTs has been developed that exhibits a capacity for efficient production of various glucuronides, including acyl glucuronides. PMID:27241161

  12. Mitochondrial anchorage and fusion contribute to mitochondrial inheritance and quality control in the budding yeast Saccharomyces cerevisiae.

    PubMed

    Higuchi-Sanabria, Ryo; Charalel, Joseph K; Viana, Matheus P; Garcia, Enrique J; Sing, Cierra N; Koenigsberg, Andrea; Swayne, Theresa C; Vevea, Jason D; Boldogh, Istvan R; Rafelski, Susanne M; Pon, Liza A

    2016-03-01

    Higher-functioning mitochondria that are more reduced and have less ROS are anchored in the yeast bud tip by the Dsl1-family protein Mmr1p. Here we report a role for mitochondrial fusion in bud-tip anchorage of mitochondria. Fluorescence loss in photobleaching (FLIP) and network analysis experiments revealed that mitochondria in large buds are a continuous reticulum that is physically distinct from mitochondria in mother cells. FLIP studies also showed that mitochondria that enter the bud can fuse with mitochondria that are anchored in the bud tip. In addition, loss of fusion and mitochondrial DNA (mtDNA) by deletion of mitochondrial outer or inner membrane fusion proteins (Fzo1p or Mgm1p) leads to decreased accumulation of mitochondria at the bud tip and inheritance of fitter mitochondria by buds compared with cells with no mtDNA. Conversely, increasing the accumulation and anchorage of mitochondria in the bud tip by overexpression of MMR1 results in inheritance of less-fit mitochondria by buds and decreased replicative lifespan and healthspan. Thus quantity and quality of mitochondrial inheritance are ensured by two opposing processes: bud-tip anchorage by mitochondrial fusion and Mmr1p, which favors bulk inheritance; and quality control mechanisms that promote segregation of fitter mitochondria to the bud. PMID:26764088

  13. Extensive Transcriptome Changes During Natural Onset and Release of Vegetative Bud Dormancy in Populus

    PubMed Central

    Howe, Glenn T.; Horvath, David P.; Dharmawardhana, Palitha; Priest, Henry D.; Mockler, Todd C.; Strauss, Steven H.

    2015-01-01

    To survive winter, many perennial plants become endodormant, a state of suspended growth maintained even in favorable growing environments. To understand vegetative bud endodormancy, we collected paradormant, endodormant, and ecodormant axillary buds from Populus trees growing under natural conditions. Of 44,441 Populus gene models analyzed using NimbleGen microarrays, we found that 1,362 (3.1%) were differentially expressed among the three dormancy states, and 429 (1.0%) were differentially expressed during only one of the two dormancy transitions (FDR p-value < 0.05). Of all differentially expressed genes, 69% were down-regulated from paradormancy to endodormancy, which was expected given the lower metabolic activity associated with endodormancy. Dormancy transitions were accompanied by changes in genes associated with DNA methylation (via RNA-directed DNA methylation) and histone modifications (via Polycomb Repressive Complex 2), confirming and extending knowledge of chromatin modifications as major features of dormancy transitions. Among the chromatin-associated genes, two genes similar to SPT (SUPPRESSOR OF TY) were strongly up-regulated during endodormancy. Transcription factor genes and gene sets that were atypically up-regulated during endodormancy include a gene that seems to encode a trihelix transcription factor and genes associated with proteins involved in responses to ethylene, cold, and other abiotic stresses. These latter transcription factors include ETHYLENE INSENSITIVE 3 (EIN3), ETHYLENE-RESPONSIVE ELEMENT BINDING PROTEIN (EBP), ETHYLENE RESPONSE FACTOR (ERF), ZINC FINGER PROTEIN 10 (ZAT10), ZAT12, and WRKY DNA-binding domain proteins. Analyses of phytohormone-associated genes suggest important changes in responses to ethylene, auxin, and brassinosteroids occur during endodormancy. We found weaker evidence for changes in genes associated with salicylic acid and jasmonic acid, and little evidence for important changes in genes associated with

  14. Extensive Transcriptome Changes During Natural Onset and Release of Vegetative Bud Dormancy in Populus.

    PubMed

    Howe, Glenn T; Horvath, David P; Dharmawardhana, Palitha; Priest, Henry D; Mockler, Todd C; Strauss, Steven H

    2015-01-01

    To survive winter, many perennial plants become endodormant, a state of suspended growth maintained even in favorable growing environments. To understand vegetative bud endodormancy, we collected paradormant, endodormant, and ecodormant axillary buds from Populus trees growing under natural conditions. Of 44,441 Populus gene models analyzed using NimbleGen microarrays, we found that 1,362 (3.1%) were differentially expressed among the three dormancy states, and 429 (1.0%) were differentially expressed during only one of the two dormancy transitions (FDR p-value < 0.05). Of all differentially expressed genes, 69% were down-regulated from paradormancy to endodormancy, which was expected given the lower metabolic activity associated with endodormancy. Dormancy transitions were accompanied by changes in genes associated with DNA methylation (via RNA-directed DNA methylation) and histone modifications (via Polycomb Repressive Complex 2), confirming and extending knowledge of chromatin modifications as major features of dormancy transitions. Among the chromatin-associated genes, two genes similar to SPT (SUPPRESSOR OF TY) were strongly up-regulated during endodormancy. Transcription factor genes and gene sets that were atypically up-regulated during endodormancy include a gene that seems to encode a trihelix transcription factor and genes associated with proteins involved in responses to ethylene, cold, and other abiotic stresses. These latter transcription factors include ETHYLENE INSENSITIVE 3 (EIN3), ETHYLENE-RESPONSIVE ELEMENT BINDING PROTEIN (EBP), ETHYLENE RESPONSE FACTOR (ERF), ZINC FINGER PROTEIN 10 (ZAT10), ZAT12, and WRKY DNA-binding domain proteins. Analyses of phytohormone-associated genes suggest important changes in responses to ethylene, auxin, and brassinosteroids occur during endodormancy. We found weaker evidence for changes in genes associated with salicylic acid and jasmonic acid, and little evidence for important changes in genes associated with

  15. Safety and efficacy of Bixa orellana (achiote, annatto) leaf extracts.

    PubMed

    Stohs, Sidney J

    2014-07-01

    Bixa orellana leaf preparations have been used for many years by indigenous people for a variety of medicinal applications. Published research studies in animals indicate that various extracts of Bixa leaves exhibit antioxidant, broad antimicrobial (antibacterial and antifungal), anti-inflammatory, analgesic, hypoglycemic, and antidiarrheal activities. No studies have specifically assessed the ability of leaf extracts to inhibit urogenital infections although Bixa products have been used in folkloric medicine to treat gonorrhea and other infections. Few human studies have been conducted and published using Bixa leaf preparations. Many more studies have been conducted and published involving Bixa seed (annatto) extracts than with leaf extracts. No subchronic safety (toxicity) studies have been conducted in animals. A 6 month study in humans given 750 mg of leaf powder per day demonstrated no significant or serious adverse effects. Bixa leaf extracts appear to be safe when given under current conditions of use. However, additional human and animal controlled safety and efficacy studies are needed. In addition, detailed chemical analyses are required to establish structure-function relationships.

  16. Safety and efficacy of Bixa orellana (achiote, annatto) leaf extracts.

    PubMed

    Stohs, Sidney J

    2014-07-01

    Bixa orellana leaf preparations have been used for many years by indigenous people for a variety of medicinal applications. Published research studies in animals indicate that various extracts of Bixa leaves exhibit antioxidant, broad antimicrobial (antibacterial and antifungal), anti-inflammatory, analgesic, hypoglycemic, and antidiarrheal activities. No studies have specifically assessed the ability of leaf extracts to inhibit urogenital infections although Bixa products have been used in folkloric medicine to treat gonorrhea and other infections. Few human studies have been conducted and published using Bixa leaf preparations. Many more studies have been conducted and published involving Bixa seed (annatto) extracts than with leaf extracts. No subchronic safety (toxicity) studies have been conducted in animals. A 6 month study in humans given 750 mg of leaf powder per day demonstrated no significant or serious adverse effects. Bixa leaf extracts appear to be safe when given under current conditions of use. However, additional human and animal controlled safety and efficacy studies are needed. In addition, detailed chemical analyses are required to establish structure-function relationships. PMID:24357022

  17. Preformation in vegetative buds of pistachio (Pistacia vera): relationship to shoot morphology, crown structure and rootstock vigor.

    PubMed

    Spann, Timothy M; Beede, Robert H; Dejong, Theodore M

    2007-08-01

    Effects of rootstock, shoot carbohydrate status, crop load and crown position on the number of preformed leaf primordia in the dormant terminal and lateral buds of mature and immature 'Kerman' pistachio (Pistacia vera L.) trees were investigated to determine if rootstock vigor is associated with greater shoot preformation. There was no significant variation in preformation related to the factors studied, suggesting strong genetic control of preformation in 'Kerman' pistachio. The growth differences observed among trees on different rootstocks were associated with greater stimulation of neoformed growth in trees on the more vigorous rootstocks. However, most annual extension growth in mature tree crowns was preformed, contrasting with the relatively high rate of neoformation found in young tree crowns. Large amounts of neoformed growth in young trees may allow the trees to become established quickly and secure resources, whereas predominantly preformed growth in mature trees may allow for continued crown expansion without outgrowing available resources. We hypothesized that the stimulation of neoformed growth by the more vigorous rootstocks is associated with greater resource uptake or transport, or both. Understanding the source of variation in shoot extension growth on different rootstocks has important implications for orchard management practices.

  18. A new alkaloid isolated from Abies webbiana leaf

    PubMed Central

    Ghosh, Ashoke K.; Sen, Debanjan; Bhattacharya, Sanjib

    2010-01-01

    A new alkaloid namely 1-(4’-methoxyphenyl)-aziridine was isolated from the leaf of Abies webbiana Lindl. (Pinaceae), grown in Sikkim Himalayan region of India. Its chemical structure was elucidated on the basis of elemental and spectral analyses. This is the first experimental report of the isolation of any alkaloid from A. webbiana. PMID:21808564

  19. Evidence for cohesin sliding along budding yeast chromosomes

    PubMed Central

    Ocampo-Hafalla, Maria; Muñoz, Sofía; Samora, Catarina P.; Uhlmann, Frank

    2016-01-01

    The ring-shaped cohesin complex is thought to topologically hold sister chromatids together from their synthesis in S phase until chromosome segregation in mitosis. How cohesin stably binds to chromosomes for extended periods, without impeding other chromosomal processes that also require access to the DNA, is poorly understood. Budding yeast cohesin is loaded onto DNA by the Scc2–Scc4 cohesin loader at centromeres and promoters of active genes, from where cohesin translocates to more permanent places of residence at transcription termination sites. Here we show that, at the GAL2 and MET17 loci, pre-existing cohesin is pushed downstream along the DNA in response to transcriptional gene activation, apparently without need for intermittent dissociation or reloading. We observe translocation intermediates and find that the distribution of most chromosomal cohesin is shaped by transcription. Our observations support a model in which cohesin is able to slide laterally along chromosomes while maintaining topological contact with DNA. In this way, stable cohesin binding to DNA and enduring sister chromatid cohesion become compatible with simultaneous underlying chromosomal activities, including but maybe not limited to transcription. PMID:27278645

  20. Antidiabetic activity of flower buds of Michelia champaca Linn

    PubMed Central

    Jarald, E. Edwin; Joshi, S.B.; Jain, D.C.

    2008-01-01

    Objective: To identify the antihyperglycemic activity of various extracts, petroleum ether (60-80°), chloroform, acetone, ethanol, aqueous and crude aqueous, of the flower buds of Michelia champaca, and to identify the antidiabetic activity of active antihyperglycemic extract. Materials and Methods: Plant extracts were tested for antihyperglycemic activity in glucose overloaded hyperglycemic rats. The effective antihyperglycemic extract was tested for its hypoglycemic activity at two-dose levels, 200 and 400 mg/kg respectively. To confirm its utility in the higher model, the effective extract of M. champaca was subjected to antidiabetic study in alloxan induced diabetic model at two dose levels, 200 and 400 mg/kg respectively. The biochemical parameters, glucose, urea, creatinine, serum cholesterol, serum triglyceride, high density lipoprotein, low density lipoprotein, hemoglobin and glycosylated hemoglobin were also assessed in the experimental animals. Results: The ethanolic extract of M. champaca exhibited significant antihyperglycemic activity but did not produce hypoglycemia in fasted normal rats. Apart from this extract, the crude aqueous and petroleum ether extracts were found active only at the end of the first hour. Treatment of diabetic rats with ethanolic extract of this plant restored the elevated biochemical parameters significantly (P<0.05) (P<0.01) and the activity was found dose dependent. Conclusion: This study supports the traditional claim and the ethanolic extract of this plant could be added in traditional preparations for the ailment of various diabetes-associated complications. PMID:21279181

  1. A simple biophysical model emulates budding yeast chromosome condensation

    PubMed Central

    Cheng, Tammy MK; Heeger, Sebastian; Chaleil, Raphaël AG; Matthews, Nik; Stewart, Aengus; Wright, Jon; Lim, Carmay; Bates, Paul A; Uhlmann, Frank

    2015-01-01

    Mitotic chromosomes were one of the first cell biological structures to be described, yet their molecular architecture remains poorly understood. We have devised a simple biophysical model of a 300 kb-long nucleosome chain, the size of a budding yeast chromosome, constrained by interactions between binding sites of the chromosomal condensin complex, a key component of interphase and mitotic chromosomes. Comparisons of computational and experimental (4C) interaction maps, and other biophysical features, allow us to predict a mode of condensin action. Stochastic condensin-mediated pairwise interactions along the nucleosome chain generate native-like chromosome features and recapitulate chromosome compaction and individualization during mitotic condensation. Higher order interactions between condensin binding sites explain the data less well. Our results suggest that basic assumptions about chromatin behavior go a long way to explain chromosome architecture and are able to generate a molecular model of what the inside of a chromosome is likely to look like. DOI: http://dx.doi.org/10.7554/eLife.05565.001 PMID:25922992

  2. Asymmetric nucleosomes flank promoters in the budding yeast genome.

    PubMed

    Ramachandran, Srinivas; Zentner, Gabriel E; Henikoff, Steven

    2015-03-01

    Nucleosomes in active chromatin are dynamic, but whether they have distinct structural conformations is unknown. To identify nucleosomes with alternative structures genome-wide, we used H4S47C-anchored cleavage mapping, which revealed that 5% of budding yeast (Saccharomyces cerevisiae) nucleosome positions have asymmetric histone-DNA interactions. These asymmetric interactions are enriched at nucleosome positions that flank promoters. Micrococcal nuclease (MNase) sequence-based profiles of asymmetric nucleosome positions revealed a corresponding asymmetry in MNase protection near the dyad axis, suggesting that the loss of DNA contacts around H4S47 is accompanied by protection of the DNA from MNase. Chromatin immunoprecipitation mapping of selected nucleosome remodelers indicated that asymmetric nucleosomes are bound by the RSC chromatin remodeling complex, which is required for maintaining nucleosomes at asymmetric positions. These results imply that the asymmetric nucleosome-RSC complex is a metastable intermediate representing partial unwrapping and protection of nucleosomal DNA on one side of the dyad axis during chromatin remodeling.

  3. Genetically Engineered Transvestites Reveal Novel Mating Genes in Budding Yeast

    PubMed Central

    Huberman, Lori B.; Murray, Andrew W.

    2013-01-01

    Haploid budding yeast has two mating types, defined by the alleles of the MAT locus, MATa and MATα. Two haploid cells of opposite mating types mate by signaling to each other using reciprocal pheromones and receptors, polarizing and growing toward each other, and eventually fusing to form a single diploid cell. The pheromones and receptors are necessary and sufficient to define a mating type, but other mating-type-specific proteins make mating more efficient. We examined the role of these proteins by genetically engineering “transvestite” cells that swap the pheromone, pheromone receptor, and pheromone processing factors of one mating type for another. These cells mate with each other, but their mating is inefficient. By characterizing their mating defects and examining their transcriptomes, we found Afb1 (a-factor barrier), a novel MATα-specific protein that interferes with a-factor, the pheromone secreted by MATa cells. Strong pheromone secretion is essential for efficient mating, and the weak mating of transvestites can be improved by boosting their pheromone production. Synthetic biology can characterize the factors that control efficiency in biological processes. In yeast, selection for increased mating efficiency is likely to have continually boosted pheromone levels and the ability to discriminate between partners who make more and less pheromone. This discrimination comes at a cost: weak mating in situations where all potential partners make less pheromone. PMID:24121774

  4. Tanshinones extend chronological lifespan in budding yeast Saccharomyces cerevisiae.

    PubMed

    Wu, Ziyun; Song, Lixia; Liu, Shao Quan; Huang, Dejian

    2014-10-01

    Natural products with anti-aging property have drawn great attention recently but examples of such compounds are exceedingly scarce. By applying a high-throughput assay based on yeast chronological lifespan measurement, we screened the anti-aging activity of 144 botanical materials and found that dried roots of Salvia miltiorrhiza Bunge have significant anti-aging activity. Tanshinones isolated from the plant including cryptotanshione, tanshinone I, and tanshinone IIa, are the active components. Among them, cryptotanshinone can greatly extend the budding yeast Saccharomyces cerevisiae chronological lifespan (up to 2.5 times) in a dose- and the-time-of-addition-dependent manner at nanomolar concentrations without disruption of cell growth. We demonstrate that cryptotanshinone prolong chronological lifespan via a nutrient-dependent regime, especially essential amino acid sensing, and three conserved protein kinases Tor1, Sch9, and Gcn2 are required for cryptotanshinone-induced lifespan extension. In addition, cryptotanshinone significantly increases the lifespan of SOD2-deleted mutants. Altogether, those data suggest that cryptotanshinone might be involved in the regulation of, Tor1, Sch9, Gcn2, and Sod2, these highly conserved longevity proteins modulated by nutrients from yeast to humans.

  5. Regulation of the divalent metal ion transporter via membrane budding

    PubMed Central

    Mackenzie, KimberlyD; Foot, Natalie J; Anand, Sushma; Dalton, Hazel E; Chaudhary, Natasha; Collins, Brett M; Mathivanan, Suresh; Kumar, Sharad

    2016-01-01

    The release of extracellular vesicles (EVs) is important for both normal physiology and disease. However, a basic understanding of the targeting of EV cargoes, composition and mechanism of release is lacking. Here we present evidence that the divalent metal ion transporter (DMT1) is unexpectedly regulated through release in EVs. This process involves the Nedd4-2 ubiquitin ligase, and the adaptor proteins Arrdc1 and Arrdc4 via different budding mechanisms. We show that mouse gut explants release endogenous DMT1 in EVs. Although we observed no change in the relative amount of DMT1 released in EVs from gut explants in Arrdc1 or Arrdc4 deficient mice, the extent of EVs released was significantly reduced indicating an adaptor role in biogenesis. Furthermore, using Arrdc1 or Arrdc4 knockout mouse embryonic fibroblasts, we show that both Arrdc1 and Arrdc4 are non-redundant positive regulators of EV release. Our results suggest that DMT1 release from the plasma membrane into EVs may represent a novel mechanism for the maintenance of iron homeostasis, which may also be important for the regulation of other membrane proteins. PMID:27462458

  6. Programmed Cell Death Initiation and Execution in Budding Yeast

    PubMed Central

    Strich, Randy

    2015-01-01

    Apoptosis or programmed cell death (PCD) was initially described in metazoans as a genetically controlled process leading to intracellular breakdown and engulfment by a neighboring cell . This process was distinguished from other forms of cell death like necrosis by maintenance of plasma membrane integrity prior to engulfment and the well-defined genetic system controlling this process. Apoptosis was originally described as a mechanism to reshape tissues during development. Given this context, the assumption was made that this process would not be found in simpler eukaryotes such as budding yeast. Although basic components of the apoptotic pathway were identified in yeast, initial observations suggested that it was devoid of prosurvival and prodeath regulatory proteins identified in mammalian cells. However, as apoptosis became extensively linked to the elimination of damaged cells, key PCD regulatory proteins were identified in yeast that play similar roles in mammals. This review highlights recent discoveries that have permitted information regarding PCD regulation in yeast to now inform experiments in animals. PMID:26272996

  7. Septin Filament Formation is Essential in Budding Yeast

    PubMed Central

    McMurray, Michael A.; Bertin, Aurelie; Garcia, Galo; Lam, Lisa; Nogales, Eva; Thorner, Jeremy

    2011-01-01

    SUMMARY Septins are GTP-binding proteins that form ordered, rod-like multimeric complexes and polymerize into filaments, but how such supramolecular structure is related to septin function was unclear. In Saccharomyces cerevisiae, four septins form an apolar hetero-octamer (Cdc11–Cdc12–Cdc3–Cdc10–Cdc10–Cdc3–Cdc12–Cdc11) that associates end-to-end to form filaments. We show that septin filament assembly displays previously unanticipated plasticity. Cells lacking Cdc10 or Cdc11 are able to divide because the now-exposed subunits (Cdc3 or Cdc12, respectively) retain an ability to homodimerize via their so-called G interface, thereby allowing for filament assembly. In such cdc10Δ and cdc11Δ cells, the remaining septins, like wild-type complexes, localize to the cortex at the bud neck and compartmentalize non-septin factors, consistent with a diffusion barrier composed of continuous filaments in intimate contact with the plasma membrane. Conversely, Cdc10 or Cdc11 mutants that cannot self-associate, but “cap” Cdc3 or Cdc12, respectively, prevent filament formation, block cortical localization, and kill cells. PMID:21497764

  8. Regulation of myogenic differentiation in the developing limb bud

    PubMed Central

    Francis-West, Philippa H; Antoni, Laurent; Anakwe, Kelly

    2003-01-01

    The limb myogenic precursors arise by delamination from the lateral dermomyotome in response to signals from the lateral plate mesoderm. They subsequently migrate into the developing limb bud where they switch on the expression of the myogenic regulatory factors, MyoD and Myf5, and coalese to form the dorsal and ventral muscle masses. The myogenic cells subsequently undergo terminal differentiation into slow or fast fibres which have distinct contractile properties determining how a muscle will function. In general, fast fibres contract rapidly with high force and are characterized by the expression of fast myosin heavy chains (MyHC). These fibres are needed for movement. In contrast, slow fibres express slow MyHC, contract slowly and are required for maintenance of posture. This review focuses on the molecular signals that control limb myogenic development from the initial delamination and migration of the premyogenic cells to the ultimate formation of the complex muscle pattern and differentiation of slow and fast fibres. PMID:12587922

  9. Molecular cytotoxicity mechanisms of allyl alcohol (acrolein) in budding yeast.

    PubMed

    Golla, Upendarrao; Bandi, Goutham; Tomar, Raghuvir S

    2015-06-15

    Allyl alcohol (AA) is one of the environmental pollutants used as a herbicide and industrial chemical. AA undergoes enzymatic oxidation in vivo to form Acrolein (Acr), a highly reactive and ubiquitous environmental toxicant. The exposure to AA/Acr has detrimental effects on cells and is highly fatal. In corroboration to the current literature describing AA/Acr toxicity, this study aimed to investigate the molecular cytotoxicity mechanisms of AA/Acr using budding yeast as a eukaryotic model organism. Genome-wide transcriptome analysis of cells treated with a sublethal dose of AA (0.4 mM) showed differential regulation of approximately 30% of the yeast genome. Functional enrichment analysis of the AA transcriptome revealed that genes belong to diverse cellular processes including the cell cycle, DNA damage repair, metal homeostasis, stress response genes, ribosomal biogenesis, metabolism, meiosis, ubiquitination, cell morphogenesis, and transport. Moreover, we have identified novel molecular targets of AA/Acr through genetic screening, which belongs to oxidative stress, DNA damage repair, iron homeostasis, and cell wall integrity. This study also demonstrated the epigenetic basis of AA/Acr toxicity mediated through histone tails and chromatin modifiers. Interestingly, our study disclosed the use of pyrazole and ethanol as probable antidotes for AA intoxication. For the first time, this study also demonstrated the reproductive toxicity of AA/Acr using the yeast gametogenesis (spermatogenesis) model. Altogether, this study unravels the molecular mechanisms of AA/Acr cytotoxicity and facilitates the prediction of biomarkers for toxicity assessment and therapeutic approaches. PMID:25919230

  10. Regulation of the divalent metal ion transporter via membrane budding.

    PubMed

    Mackenzie, KimberlyD; Foot, Natalie J; Anand, Sushma; Dalton, Hazel E; Chaudhary, Natasha; Collins, Brett M; Mathivanan, Suresh; Kumar, Sharad

    2016-01-01

    The release of extracellular vesicles (EVs) is important for both normal physiology and disease. However, a basic understanding of the targeting of EV cargoes, composition and mechanism of release is lacking. Here we present evidence that the divalent metal ion transporter (DMT1) is unexpectedly regulated through release in EVs. This process involves the Nedd4-2 ubiquitin ligase, and the adaptor proteins Arrdc1 and Arrdc4 via different budding mechanisms. We show that mouse gut explants release endogenous DMT1 in EVs. Although we observed no change in the relative amount of DMT1 released in EVs from gut explants in Arrdc1 or Arrdc4 deficient mice, the extent of EVs released was significantly reduced indicating an adaptor role in biogenesis. Furthermore, using Arrdc1 or Arrdc4 knockout mouse embryonic fibroblasts, we show that both Arrdc1 and Arrdc4 are non-redundant positive regulators of EV release. Our results suggest that DMT1 release from the plasma membrane into EVs may represent a novel mechanism for the maintenance of iron homeostasis, which may also be important for the regulation of other membrane proteins. PMID:27462458

  11. Regulation of Bud Rest in Tubers of Potato, Solanum tuberosum L

    PubMed Central

    Shih, C. Y.; Rappaport, Lawrence

    1971-01-01

    Using the electron microscope, we compared the effects of abscisic acid and gibberellin A3 on excised buds from resting potato (Solanum tuberosum L.) tubers. Cells of abscisic acid-treated buds became progressively more vacuolated during a 12-hour time course study as compared with control (water) and gibberellin A3-treated buds. Concentric configurations of endoplasmic reticulum were present in apical cells of freshly excised buds. After about 6 hours these configurations began to open and disperse, and after 12 hours, intact concentric configurations were no longer evident. Both abscisic acid and gibberellin A3 induced opening and dispersal of the concentric configurations, sometimes as early as 0.5 hour after excision and treatment with hormones. Images PMID:16657728

  12. [The growth and form development of the limb buds in vertebrate animals].

    PubMed

    Borkhvardt, V G

    2000-01-01

    The development of the fin and limb buds involves a balance of centrifugal (active) and centripetal (passive) mechanical forces, the first of which acts to move the walls of these structures away from each other and the second holds them together. When the volume of the mesodermal core increases, the generated force meets with the resistance of the basal membrane, and as a result, the limb bud has a tendency to acquire cylindrical shape. Collagen fibers, individual mesenchymal cells, and their groups hold together the dorsal and the ventral wall of the limb bud, prevent the movement of these walls away from each other, and in this way direct bud growth along the proximodistal and the anteroposterior axes. The balance of the forces, which stretch the ectodermal layer, and those, which constrain it, have also been observed in the development of other body parts. PMID:10867933

  13. Dystonin deficiency reduces taste buds and fungiform papillae in the anterior part of the tongue.

    PubMed

    Ichikawa, H; Terayama, R; Yamaai, T; De Repentigny, Y; Kothary, R; Sugimoto, T

    2007-01-19

    The anterior part of the tongue was examined in wild type and dystonia musculorum mice to assess the effect of dystonin loss on fungiform papillae. In the mutant mouse, the density of fungiform papillae and their taste buds was severely decreased when compared to wild type littermates (papilla, 67% reduction; taste bud, 77% reduction). The mutation also reduced the size of these papillae (17% reduction) and taste buds (29% reduction). In addition, immunohistochemical analysis demonstrated that the dystonin mutation reduced the number of PGP 9.5 and calbindin D28k-containing nerve fibers in fungiform papillae. These data together suggest that dystonin is required for the innervation and development of fungiform papillae and taste buds. PMID:17156752

  14. A conserved family of proteins facilitates nascent lipid droplet budding from the ER

    PubMed Central

    Choudhary, Vineet; Ojha, Namrata; Golden, Andy

    2015-01-01

    Lipid droplets (LDs) are found in all cells and play critical roles in lipid metabolism. De novo LD biogenesis occurs in the endoplasmic reticulum (ER) but is not well understood. We imaged early stages of LD biogenesis using electron microscopy and found that nascent LDs form lens-like structures that are in the ER membrane, raising the question of how these nascent LDs bud from the ER as they grow. We found that a conserved family of proteins, fat storage-inducing transmembrane (FIT) proteins, is required for proper budding of LDs from the ER. Elimination or reduction of FIT proteins in yeast and higher eukaryotes causes LDs to remain in the ER membrane. Deletion of the single FIT protein in Caenorhabditis elegans is lethal, suggesting that LD budding is an essential process in this organism. Our findings indicated that FIT proteins are necessary to promote budding of nascent LDs from the ER. PMID:26504167

  15. Automatic nuclear bud detection using ellipse fitting, moving sticks or top-hat transformation.

    PubMed

    Zhang, C; Sun, C; Vallotton, P; Fenech, M; Pham, T D

    2013-11-01

    Micronucleus assays are extensively used by biologists to assess genotoxicity and to monitor human exposure to genotoxic materials. As recent studies suggested that nuclear buds can be a new source of micronuclei formed in interphase, the quantification of nuclear buds, which are micronucleus like objects that are attached to the nuclei in interphase, in normal and control group is needed. Three automatic nuclear bud detection algorithms fit for different situations are proposed in this paper. One is based on ellipse fitting, one is based on a stick model and the other is based on the top-hat transform. Comparison of the three methods is also given in this paper. Experimental results showed that the proposed algorithms are all effective and efficient for nuclear bud detection. PMID:23961938

  16. Lodgepole pine: the first evidence of seed-based somatic embryogenesis and the expression of embryogenesis marker genes in shoot bud cultures of adult trees.

    PubMed

    Park, So-Young; Klimaszewska, Krystyna; Park, Ji-Young; Mansfield, Shawn D

    2010-11-01

    Of the various alternatives for cloning elite conifers, somatic embryogenesis (SE) appears to be the best option. In recent years, significant areas of lodgepole pine (Pinus contorta) forest have been devastated by the mountain pine beetle (MPB) in Western Canada. In an attempt to establish an SE propagation system for MPB-resistant lodgepole pine, several families displaying varying levels of resistance were selected for experimentation involving shoot bud and immature seed explants. In bud cultures, eight embryogenic lines were induced from 2 of 15 genotypes following various treatments. Genotype had an important influence on embryogenic culture initiation, and this effect was consistent over time. These lines were identified by microscopic observation and genetic markers. Despite the abundance of early somatic embryos, the cultures have yet to develop into mature embryos. In contrast, immature zygotic embryos (ZEs) cultured from megagametophytes initiated SE at an early dominance stage via nodule-type callus in 1 of 10 genotypes. As part of the study, putative embryogenesis-specific genes, WOX2 (WUSCHELL homeobox 2) and HAP3A, were analyzed in cultures of both shoot bud explants and ZEs. On the basis of these analyses, we postulate that PcHAP3A was expressed mainly in callus and may be involved in cell division, whereas WOX2 was expressed mainly in embryonal mass (EM)-like tissues. The findings from this study, based on molecular assessment, suggest that the cell lines derived from bud cultures were truly EM. Moreover, these experimental observations suggest that PcWOX2 could be used as an early genetic marker to discriminate embryogenic cultures from callus. PMID:20935320

  17. q-deformations and the dynamics of the larch bud-moth population cycles

    NASA Astrophysics Data System (ADS)

    Iyengar, Sudharsana V.; Balakrishnan, J.

    2014-07-01

    The concept of q-deformation of numbers is applied here to improve and modify a tritrophic population dynamics model to understand defoliation of the coniferous larch trees due to outbreaks of the larch bud-moth insect population. The results are in qualitative agreement with observed behavior, with the larch needle lengths, bud-moth population and parasitoid populations all showing 9-period cycles which are mutually synchronized.

  18. Development of a full-genome cDNA clone of Citrus leaf blotch virus and infection of citrus plants.

    PubMed

    Vives, María Carmen; Martín, Susana; Ambrós, Silvia; Renovell, Agueda; Navarro, Luis; Pina, Jose Antonio; Moreno, Pedro; Guerri, José

    2008-11-01

    Citrus leaf blotch virus (CLBV), a member of the family Flexiviridae, has a ~9-kb single-stranded, positive-sense genomic RNA encapsidated by a 41-kDa coat protein. CLBV isolates are associated with symptom production in citrus including leaf blotching of Dweet tangor and stem pitting in Etrog citron (Dweet mottle disease), and some isolates are associated with bud union crease on trifoliate rootstocks, but Koch's postulates for this virus were not fulfilled. A full-genome cDNA of CLBV isolate SRA-153, which induces bud union crease, was placed under the T7 promoter (clone T7-CLBV), or between the 35S promoter and the Nos-t terminator, with or without a ribozyme sequence downstream of the CLBV sequence (clones 35SRbz-CLBV and 35S-CLBV). RNA transcripts from T7-CLBV failed to infect Etrog citron and Nicotiana occidentalis and N. benthamiana plants, whereas agro-inoculation with binary vectors carrying 35SRbz-CLBV or 35S-CLBV, and the p19 silencing suppressor, caused systemic infection and production of normal CLBV virions. Virus accumulation was similar in citron plants directly agro-infiltrated, or mechanically inoculated with wild-type or 35SRbz-CLBV-derived virions from Nicotiana, and the three sources incited the symptoms characteristic of Dweet mottle disease, but not bud union crease. Our results show that (1) virions derived from an infectious clone show the same replication, movement and pathogenicity characteristics as the wild-type CLBV; (2) CLBV is the causal agent of Dweet mottle disease but not of the bud union crease syndrome; and (3) for the first time an RNA virus could be successfully agro-inoculated on citrus plants. This infectious clone may become a useful viral vector for citrus genomic studies.

  19. Leaf hydraulics II: vascularized tissues.

    PubMed

    Rockwell, Fulton E; Holbrook, N Michele; Stroock, Abraham D

    2014-01-01

    Current models of leaf hydration employ an Ohm's law analogy of the leaf as an ideal capacitor, neglecting the resistance to flow between cells, or treat the leaf as a plane sheet with a source of water at fixed potential filling the mid-plane, neglecting the discrete placement of veins as well as their resistance. We develop a model of leaf hydration that considers the average conductance of the vascular network to a representative areole (region bounded by the vascular network), and represent the volume of tissue within the areole as a poroelastic composite of cells and air spaces. Solutions to the 3D flow problem are found by numerical simulation, and these results are then compared to 1D models with exact solutions for a range of leaf geometries, based on a survey of temperate woody plants. We then show that the hydration times given by these solutions are well approximated by a sum of the ideal capacitor and plane sheet times, representing the time for transport through the vasculature and tissue respectively. We then develop scaling factors relating this approximate solution to the 3D model, and examine the dependence of these scaling factors on leaf geometry. Finally, we apply a similar strategy to reduce the dimensions of the steady state problem, in the context of peristomatal transpiration, and consider the relation of transpirational gradients to equilibrium leaf water potential measurements.

  20. Secondary metabolites from the flower buds of Lonicera japonica and their in vitro anti-diabetic activities.

    PubMed

    Liu, Zhixiang; Cheng, Zhuoyang; He, Qingjun; Lin, Bin; Gao, Pinyi; Li, Lingzhi; Liu, Qingbo; Song, Shaojiang

    2016-04-01

    Four new compounds (1, 2, 7 and 8) and twenty known compounds were isolated from the flower buds of Lonicera japonica. Their structures were determined by extensive NMR and HR-ESIMS spectroscopic data analyses. Among them, compounds 1 and 2 are a pair of diastereoisomers possessing a rare chemical structure, and their absolute configurations were determined by comparing their experimental and calculated ECD spectra. Furthermore, all the isolates were evaluated for their inhibitory effects on α-glucosidase and protein tyrosine phosphatase 1B (PTP1B), especially 1 and 2, which displayed both significant inhibitions. In addition, the possible action mechanism of the active compounds was also explored by using molecular docking studies.

  1. Secondary metabolites from the flower buds of Lonicera japonica and their in vitro anti-diabetic activities.

    PubMed

    Liu, Zhixiang; Cheng, Zhuoyang; He, Qingjun; Lin, Bin; Gao, Pinyi; Li, Lingzhi; Liu, Qingbo; Song, Shaojiang

    2016-04-01

    Four new compounds (1, 2, 7 and 8) and twenty known compounds were isolated from the flower buds of Lonicera japonica. Their structures were determined by extensive NMR and HR-ESIMS spectroscopic data analyses. Among them, compounds 1 and 2 are a pair of diastereoisomers possessing a rare chemical structure, and their absolute configurations were determined by comparing their experimental and calculated ECD spectra. Furthermore, all the isolates were evaluated for their inhibitory effects on α-glucosidase and protein tyrosine phosphatase 1B (PTP1B), especially 1 and 2, which displayed both significant inhibitions. In addition, the possible action mechanism of the active compounds was also explored by using molecular docking studies. PMID:26915302

  2. The vegetative buds of Salix myrsinifolia are responsive to elevated UV-B and temperature.

    PubMed

    Sivadasan, Unnikrishnan; Randriamanana, Tendry R; Julkunen-Tiitto, Riitta; Nybakken, Line

    2015-08-01

    The predicted rise in temperature and variable changes in ultraviolet-B radiation will have marked effects on plant growth and metabolism. Different vegetative parts of trees have been studied to detect the impacts of enhanced temperature and UV-B, but the effects on buds have rarely been considered. In the present study, Salix myrsinifolia clones were subjected to enhanced UV-B and temperature over two growing seasons starting from 2009, and measured springtime bud development and concentrations of phenolic compounds. In 2010 and 2011 the buds under increased temperature were up to 30% longer than those in control plots. On the other hand, UV-B combined with elevated temperature significantly decreased bud length by 4-5% in 2010. This effect was stronger in males than in females. The vegetative buds contained high constitutive amounts of chlorogenic acid derivatives, which may explain the weak increase in hyperin and chlorogenic acid that are usual UV-B sheltering compounds. The elevated temperature treatment significantly increased salicin content (about 18% in males and 22% in females), while triandrin concentration decreased by only 50% in females. Our results indicate that vegetative bud size is highly affected by seasonal temperature, while UV-B induced a weaker and transient effect. PMID:25749271

  3. Acid-sensing ion channels (ASICs) in the taste buds of adult zebrafish.

    PubMed

    Viña, E; Parisi, V; Cabo, R; Laurà, R; López-Velasco, S; López-Muñiz, A; García-Suárez, O; Germanà, A; Vega, J A

    2013-03-01

    In detecting chemical properties of food, different molecules and ion channels are involved including members of the acid-sensing ion channels (ASICs) family. Consistently ASICs are present in sensory cells of taste buds of mammals. In the present study the presence of ASICs (ASIC1, ASIC2, ASIC3 and ASIC4) was investigated in the taste buds of adult zebrafish (zASICs) using Western blot and immunohistochemistry. zASIC1 and zASIC3 were regularly absent from taste buds, whereas faint zASIC2 and robust zASIC4 immunoreactivities were detected in sensory cells. Moreover, zASIC2 also immunolabelled nerves supplying taste buds. The present results demonstrate for the first time the presence of zASICs in taste buds of teleosts, with different patterns to that occurring in mammals, probably due to the function of taste buds in aquatic environment and feeding. Nevertheless, the role of zASICs in taste remains to be demonstrated.

  4. Kinetic Analysis of a Molecular Model of the Budding Yeast Cell Cycle

    PubMed Central

    Chen, Katherine C.; Csikasz-Nagy, Attila; Gyorffy, Bela; Val, John; Novak, Bela; Tyson, John J.

    2000-01-01

    The molecular machinery of cell cycle control is known in more detail for budding yeast, Saccharomyces cerevisiae, than for any other eukaryotic organism. In recent years, many elegant experiments on budding yeast have dissected the roles of cyclin molecules (Cln1–3 and Clb1–6) in coordinating the events of DNA synthesis, bud emergence, spindle formation, nuclear division, and cell separation. These experimental clues suggest a mechanism for the principal molecular interactions controlling cyclin synthesis and degradation. Using standard techniques of biochemical kinetics, we convert the mechanism into a set of differential equations, which describe the time courses of three major classes of cyclin-dependent kinase activities. Model in hand, we examine the molecular events controlling “Start” (the commitment step to a new round of chromosome replication, bud formation, and mitosis) and “Finish” (the transition from metaphase to anaphase, when sister chromatids are pulled apart and the bud separates from the mother cell) in wild-type cells and 50 mutants. The model accounts for many details of the physiology, biochemistry, and genetics of cell cycle control in budding yeast. PMID:10637314

  5. Characterization of stem/progenitor cell cycle using murine circumvallate papilla taste bud organoid

    PubMed Central

    Aihara, Eitaro; Mahe, Maxime M.; Schumacher, Michael A.; Matthis, Andrea L.; Feng, Rui; Ren, Wenwen; Noah, Taeko K.; Matsu-ura, Toru; Moore, Sean R.; Hong, Christian I.; Zavros, Yana; Herness, Scott; Shroyer, Noah F.; Iwatsuki, Ken; Jiang, Peihua; Helmrath, Michael A.; Montrose, Marshall H.

    2015-01-01

    Leucine-rich repeat-containing G-protein coupled receptor 5-expressing (Lgr5+) cells have been identified as stem/progenitor cells in the circumvallate papillae, and single cultured Lgr5+ cells give rise to taste cells. Here we use circumvallate papilla tissue to establish a three-dimensional culture system (taste bud organoids) that develops phenotypic characteristics similar to native tissue, including a multilayered epithelium containing stem/progenitor in the outer layers and taste cells in the inner layers. Furthermore, characterization of the cell cycle of the taste bud progenitor niche reveals striking dynamics of taste bud development and regeneration. Using this taste bud organoid culture system and FUCCI2 transgenic mice, we identify the stem/progenitor cells have at least 5 distinct cell cycle populations by tracking within 24-hour synchronized oscillations of proliferation. Additionally, we demonstrate that stem/progenitor cells have motility to form taste bud organoids. Taste bud organoids provides a system for elucidating mechanisms of taste signaling, disease modeling, and taste tissue regeneration. PMID:26597788

  6. The vegetative buds of Salix myrsinifolia are responsive to elevated UV-B and temperature.

    PubMed

    Sivadasan, Unnikrishnan; Randriamanana, Tendry R; Julkunen-Tiitto, Riitta; Nybakken, Line

    2015-08-01

    The predicted rise in temperature and variable changes in ultraviolet-B radiation will have marked effects on plant growth and metabolism. Different vegetative parts of trees have been studied to detect the impacts of enhanced temperature and UV-B, but the effects on buds have rarely been considered. In the present study, Salix myrsinifolia clones were subjected to enhanced UV-B and temperature over two growing seasons starting from 2009, and measured springtime bud development and concentrations of phenolic compounds. In 2010 and 2011 the buds under increased temperature were up to 30% longer than those in control plots. On the other hand, UV-B combined with elevated temperature significantly decreased bud length by 4-5% in 2010. This effect was stronger in males than in females. The vegetative buds contained high constitutive amounts of chlorogenic acid derivatives, which may explain the weak increase in hyperin and chlorogenic acid that are usual UV-B sheltering compounds. The elevated temperature treatment significantly increased salicin content (about 18% in males and 22% in females), while triandrin concentration decreased by only 50% in females. Our results indicate that vegetative bud size is highly affected by seasonal temperature, while UV-B induced a weaker and transient effect.

  7. Characterization of stem/progenitor cell cycle using murine circumvallate papilla taste bud organoid.

    PubMed

    Aihara, Eitaro; Mahe, Maxime M; Schumacher, Michael A; Matthis, Andrea L; Feng, Rui; Ren, Wenwen; Noah, Taeko K; Matsu-ura, Toru; Moore, Sean R; Hong, Christian I; Zavros, Yana; Herness, Scott; Shroyer, Noah F; Iwatsuki, Ken; Jiang, Peihua; Helmrath, Michael A; Montrose, Marshall H

    2015-01-01

    Leucine-rich repeat-containing G-protein coupled receptor 5-expressing (Lgr5(+)) cells have been identified as stem/progenitor cells in the circumvallate papillae, and single cultured Lgr5(+) cells give rise to taste cells. Here we use circumvallate papilla tissue to establish a three-dimensional culture system (taste bud organoids) that develops phenotypic characteristics similar to native tissue, including a multilayered epithelium containing stem/progenitor in the outer layers and taste cells in the inner layers. Furthermore, characterization of the cell cycle of the taste bud progenitor niche reveals striking dynamics of taste bud development and regeneration. Using this taste bud organoid culture system and FUCCI2 transgenic mice, we identify the stem/progenitor cells have at least 5 distinct cell cycle populations by tracking within 24-hour synchronized oscillations of proliferation. Additionally, we demonstrate that stem/progenitor cells have motility to form taste bud organoids. Taste bud organoids provides a system for elucidating mechanisms of taste signaling, disease modeling, and taste tissue regeneration. PMID:26597788

  8. Expression and function of myc during asexual reproduction of the budding ascidian Polyandrocarpa misakiensis.

    PubMed

    Fujiwara, Shigeki; Isozaki, Takaomi; Mori, Kyoko; Kawamura, Kazuo

    2011-12-01

    The budding ascidian Polyandrocarpa misakiensis proliferates asexually by budding. The atrial epithelium is a multipotent but differentiated tissue, which transdifferentiates into various tissues and organs after the bud separates from the parental body. We isolated cDNA clones homologous to the myc proto-oncogene from P. misakiensis. The cDNA, named Pm-myc, encoded a polypeptide of 639 amino acid residues, containing Myc-specific functional motifs, Myc box I and Myc box II, and the basic helix-loop-helix domain. Expression of Pm-myc was observed in the atrial epithelium in the organ-forming region of the developing bud, where the epithelial cells dedifferentiate and re-enter the cell cycle. The expression was also observed in fibroblast-like cells, which are known to participate in the organogenesis together with the epithelial cells. Unexpectedly, the atrial epithelium expressed Pm-myc more than one day before the dedifferentiation. The organogenesis was disturbed by Pm-myc-specific double-stranded RNA. In situ hybridization revealed that Pm-myc-positive fibroblast-like cells disappeared around the organ primordium of the dsRNA-treated bud. The results suggest that the mesenchymal-epithelial transition of fibroblast-like cells is important for the organogenesis in this budding ascidian species.

  9. Leaf Relative Water Content Estimated from Leaf Reflectance and Transmittance

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert

    2016-01-01

    Remotely sensing the water status of plants and the water content of canopies remain long term goals of remote sensing research. In the research we report here, we used optical polarization techniques to monitor the light reflected from the leaf interior, R, as well as the leaf transmittance, T, as the relative water content (RWC) of corn (Zea mays) leaves decreased. Our results show that R and T both change nonlinearly. The result show that the nonlinearities cancel in the ratio R/T, which appears linearly related to RWC for RWC less than 90%. The results suggest that potentially leaf water status and perhaps even canopy water status could be monitored starting from leaf and canopy optical measurements.

  10. Regulation of Compound Leaf Development

    PubMed Central

    Wang, Yuan; Chen, Rujin

    2013-01-01

    Leaf morphology is one of the most variable, yet inheritable, traits in the plant kingdom. How plants develop a variety of forms and shapes is a major biological question. Here, we discuss some recent progress in understanding the development of compound or dissected leaves in model species, such as tomato (Solanum lycopersicum), Cardamine hirsuta and Medicago truncatula, with an emphasis on recent discoveries in legumes. We also discuss progress in gene regulations and hormonal actions in compound leaf development. These studies facilitate our understanding of the underlying regulatory mechanisms and put forward a prospective in compound leaf studies. PMID:27135488

  11. UV radiation is the primary factor driving the variation in leaf phenolics across Chinese grasslands

    PubMed Central

    Chen, Litong; Niu, Kechang; Wu, Yi; Geng, Yan; Mi, Zhaorong; Flynn, Dan FB; He, Jin-Sheng

    2013-01-01

    Due to the role leaf phenolics in defending against ultraviolet B (UVB) under previously controlled conditions, we hypothesize that ultraviolet radiation (UVR) could be a primary factor driving the variation in leaf phenolics in plants over a large geographic scale. We measured leaf total phenolics, ultraviolet-absorbing compounds (UVAC), and corresponding leaf N, P, and specific leaf area (SLA) in 151 common species. These species were from 84 sites across the Tibetan Plateau and Inner Mongolian grasslands of China with contrasting UVR (354 vs. 161 mW/cm2 on average). Overall, leaf phenolics and UVAC were all significantly higher on the Tibetan Plateau than in the Inner Mongolian grasslands, independent of phylogenetic relationships between species. Regression analyses showed that the variation in leaf phenolics was strongly affected by climatic factors, particularly UVR, and soil attributes across all sites. Structural equation modeling (SEM) identified the primary role of UVR in determining leaf phenolic concentrations, after accounting for colinearities with altitude, climatic, and edaphic factors. In addition, phenolics correlated positively with UVAC and SLA, and negatively with leaf N and N: P. These relationships were steeper in the lower-elevation Inner Mongolian than on the Tibetan Plateau grasslands. Our data support that the variation in leaf phenolics is controlled mainly by UV radiation, implying high leaf phenolics facilitates the adaptation of plants to strong irradiation via its UV-screening and/or antioxidation functions, particularly on the Tibetan Plateau. Importantly, our results also suggest that leaf phenolics may influence on vegetation attributes and indirectly affect ecosystem processes by covarying with leaf functional traits. PMID:24363898

  12. Consequences of Repeated Defoliation on Belowground Bud Banks of Carex brevicuspis (Cyperaceae) in the Dongting Lake Wetlands, China

    PubMed Central

    Chen, Xin-Sheng; Deng, Zheng-Miao; Xie, Yong-Hong; Li, Feng; Hou, Zhi-Yong; Wu, Chao

    2016-01-01

    Despite the predominant role of bud banks in the regeneration of clonal macrophyte populations, few studies have examined the way in which clonal macrophytes adjust the demographic features of bud banks to regulate population dynamics in response to defoliation in wetlands. We investigated the density and composition of bud banks under repeated defoliation in the wetland sedge Carex brevicuspis C. B. Clarke in the Dongting Lake wetlands, China. The density and biomass of rhizome buds and shoots did not decrease significantly in response to repeated defoliation over two consecutive years. The composition of bud banks, which consisted of long and short rhizome buds, also did not change significantly in response to repeated defoliation. Nevertheless, the ramet height and the shoot, root, and rhizome mass of C. brevicuspis declined significantly under repeated defoliation. Our findings suggest that bud banks are a conservative reproductive strategy that enables C. brevicuspis to tolerate a certain amount of defoliation. The maintenance of large bud banks after repeated defoliation may enable C. brevicuspis populations to regenerate and persist in disturbed habitats. However, bud bank density of C. brevicuspis might decline in the long term because the amount of carbon stored in rhizome buds and plants is reduced by frequent defoliation. PMID:27524993

  13. Consequences of Repeated Defoliation on Belowground Bud Banks of Carex brevicuspis (Cyperaceae) in the Dongting Lake Wetlands, China.

    PubMed

    Chen, Xin-Sheng; Deng, Zheng-Miao; Xie, Yong-Hong; Li, Feng; Hou, Zhi-Yong; Wu, Chao

    2016-01-01

    Despite the predominant role of bud banks in the regeneration of clonal macrophyte populations, few studies have examined the way in which clonal macrophytes adjust the demographic features of bud banks to regulate population dynamics in response to defoliation in wetlands. We investigated the density and composition of bud banks under repeated defoliation in the wetland sedge Carex brevicuspis C. B. Clarke in the Dongting Lake wetlands, China. The density and biomass of rhizome buds and shoots did not decrease significantly in response to repeated defoliation over two consecutive years. The composition of bud banks, which consisted of long and short rhizome buds, also did not change significantly in response to repeated defoliation. Nevertheless, the ramet height and the shoot, root, and rhizome mass of C. brevicuspis declined significantly under repeated defoliation. Our findings suggest that bud banks are a conservative reproductive strategy that enables C. brevicuspis to tolerate a certain amount of defoliation. The maintenance of large bud banks after repeated defoliation may enable C. brevicuspis populations to regenerate and persist in disturbed habitats. However, bud bank density of C. brevicuspis might decline in the long term because the amount of carbon stored in rhizome buds and plants is reduced by frequent defoliation. PMID:27524993

  14. Consequences of Repeated Defoliation on Belowground Bud Banks of Carex brevicuspis (Cyperaceae) in the Dongting Lake Wetlands, China.

    PubMed

    Chen, Xin-Sheng; Deng, Zheng-Miao; Xie, Yong-Hong; Li, Feng; Hou, Zhi-Yong; Wu, Chao

    2016-01-01

    Despite the predominant role of bud banks in the regeneration of clonal macrophyte populations, few studies have examined the way in which clonal macrophytes adjust the demographic features of bud banks to regulate population dynamics in response to defoliation in wetlands. We investigated the density and composition of bud banks under repeated defoliation in the wetland sedge Carex brevicuspis C. B. Clarke in the Dongting Lake wetlands, China. The density and biomass of rhizome buds and shoots did not decrease significantly in response to repeated defoliation over two consecutive years. The composition of bud banks, which consisted of long and short rhizome buds, also did not change significantly in response to repeated defoliation. Nevertheless, the ramet height and the shoot, root, and rhizome mass of C. brevicuspis declined significantly under repeated defoliation. Our findings suggest that bud banks are a conservative reproductive strategy that enables C. brevicuspis to tolerate a certain amount of defoliation. The maintenance of large bud banks after repeated defoliation may enable C. brevicuspis populations to regenerate and persist in disturbed habitats. However, bud bank density of C. brevicuspis might decline in the long term because the amount of carbon stored in rhizome buds and plants is reduced by frequent defoliation.

  15. Differences in leaf phenology between juvenile and adult trees in a temperate deciduous forest.

    PubMed

    Augspurger, Carol K; Bartlett, Elizabeth A

    2003-06-01

    In a deciduous forest, differences in leaf phenology between juvenile and adult trees could result in juvenile trees avoiding canopy shade for part of the growing season. By expanding leaves earlier or initiating senescence later than canopy trees, juvenile trees would have some period in high light and therefore greater potential carbon gain. We observed leaf phenology of 376 individuals of 13 canopy tree species weekly over 3 years in a deciduous forest in east central Illinois, USA. Our objectives were: (1) to quantify for each species the extent of differences in leaf phenology between juvenile and conspecific adult trees; and (2) to determine the extent of phenological differences between juvenile Aesculus glabra Willd. and Acer saccharum Marsh. trees in understory and gap microhabitats. All species displayed phenological differences between life stages. For 10 species, bud break was significantly earlier, by an average of 8 days, for subcanopy individuals than for canopy individuals. In 11 species, completion of leaf expansion was earlier, by an average of 6 days, for subcanopy individuals than for canopy individuals. In contrast, there were no significant differences between life stages for start of senescence in 10 species and completion of leaf drop in nine species. For eight species, leaf longevity was significantly greater for subcanopy individuals than for canopy individuals by an average of 7 days (range = 4-10 days). Leaf phenology of subcanopy individuals of both Aesculus glabra and Acer saccharum responded to gap conditions. Leaf longevity was 11 days less in the understory than in gaps for Aesculus glabra, but 14 days more in the understory than in gaps for Acer saccharum. Therefore, leaf phenology differed broadly both between life stages and within the juvenile life stage in this community. A vertical gradient in temperature sums is the proposed mechanism explaining the patterns. Temperature sums accumulated more rapidly in the sheltered

  16. Differences in leaf phenology between juvenile and adult trees in a temperate deciduous forest.

    PubMed

    Augspurger, Carol K; Bartlett, Elizabeth A

    2003-06-01

    In a deciduous forest, differences in leaf phenology between juvenile and adult trees could result in juvenile trees avoiding canopy shade for part of the growing season. By expanding leaves earlier or initiating senescence later than canopy trees, juvenile trees would have some period in high light and therefore greater potential carbon gain. We observed leaf phenology of 376 individuals of 13 canopy tree species weekly over 3 years in a deciduous forest in east central Illinois, USA. Our objectives were: (1) to quantify for each species the extent of differences in leaf phenology between juvenile and conspecific adult trees; and (2) to determine the extent of phenological differences between juvenile Aesculus glabra Willd. and Acer saccharum Marsh. trees in understory and gap microhabitats. All species displayed phenological differences between life stages. For 10 species, bud break was significantly earlier, by an average of 8 days, for subcanopy individuals than for canopy individuals. In 11 species, completion of leaf expansion was earlier, by an average of 6 days, for subcanopy individuals than for canopy individuals. In contrast, there were no significant differences between life stages for start of senescence in 10 species and completion of leaf drop in nine species. For eight species, leaf longevity was significantly greater for subcanopy individuals than for canopy individuals by an average of 7 days (range = 4-10 days). Leaf phenology of subcanopy individuals of both Aesculus glabra and Acer saccharum responded to gap conditions. Leaf longevity was 11 days less in the understory than in gaps for Aesculus glabra, but 14 days more in the understory than in gaps for Acer saccharum. Therefore, leaf phenology differed broadly both between life stages and within the juvenile life stage in this community. A vertical gradient in temperature sums is the proposed mechanism explaining the patterns. Temperature sums accumulated more rapidly in the sheltered

  17. Remote sensing of forest canopy and leaf biochemical contents

    NASA Technical Reports Server (NTRS)

    Peterson, David L.; Matson, Pamela A.; Card, Don H.; Aber, John D.; Wessman, Carol; Swanberg, Nancy; Spanner, Michael

    1988-01-01

    Recent research on the remote sensing of forest leaf and canopy biochemical contents suggests that the shortwave IR region contains this information; laboratory analyses of dry ground leaves have yielded reliable predictive relationships between both leaf nitrogen and lignin with near-IR spectra. Attention is given to the application of these laboratory techniques to a limited set of spectra from fresh, whole leaves of conifer species. The analysis of Airborne Imaging Spectrometer data reveals that total water content variations in deciduous forest canopies appear as overall shifts in the brightness of raw spectra.

  18. Differentiated dynamics of bud dormancy and growth in temperate fruit trees relating to bud phenology adaptation, the case of apple and almond trees

    NASA Astrophysics Data System (ADS)

    El Yaacoubi, Adnane; Malagi, Gustavo; Oukabli, Ahmed; Citadin, Idemir; Hafidi, Majida; Bonhomme, Marc; Legave, Jean-Michel

    2016-04-01

    Few studies have focused on the characterization of bud dormancy and growth dynamics for temperate fruit species in temperate and mild cropping areas, although this is an appropriate framework to anticipate phenology adaptation facing future warming contexts which would potentially combine chill declines and heat increases. To examine this issue, two experimental approaches and field observations were used for high- and low-chill apple cultivars in temperate climate of southern France and in mild climates of northern Morocco and southern Brazil. Low-chill almond cultivars offered an additional relevant plant material for comparison with apple in northern Morocco. Divergent patterns of dormancy and growth dynamics were clearly found in apple tree between southern France and southern Brazil. Divergences were less pronounced between France and Morocco. A global view outlined main differences in the dormancy chronology and intensity, the transition between endordormancy and ecodormancy and the duration of ecodormancy. A key role of bud rehydration in the transition period was shown. High-chill cultivars would be submitted in mild conditions to heterogeneous rehydration capacities linked to insufficient chill fulfillment and excessive forcing linked to high temperatures. This would favor bud competitions and consequently excessive flowering durations and weak flowering. Low chilling requirements in apple and almond would conversely confer biological capacities to tolerate superficial dormancy and abrupt transition from endordormancy to ecodormancy without important heterogeneous rehydration states within buds. It may also assume that low-chill cultivars can also tolerate high temperatures during ecodormancy as well as extended flowering durations.

  19. Jacalin and peanut agglutinin (PNA) bindings in the taste bud cells of the rat: new reliable markers for type IV cells of the rat taste buds.

    PubMed

    Taniguchi, Ryo; Shi, Lei; Fujii, Masae; Ueda, Katsura; Honma, Shiho; Wakisaka, Satoshi

    2005-12-01

    Lectin histochemistry of Jacalin (Artocarpus integrifolia) and peanut agglutinin (PNA), specific lectins for galactosyl (beta-1, 3) N-acetylgalactosamine (galactosyl (beta-1, 3) GalNAc), was applied to the gustatory epithelium of the adult rat. In the ordinary lingual epithelium, Jacalin and PNA labeled the cell membrane from the basal to granular cell layer. They also bound membranes of rounded-cells at the basal portion of taste buds, but the number of PNA labeled cells was smaller than that of Jacalin labeled cells. There was no apparent difference in the binding patterns of Jacalin and PNA among the taste buds of the lingual papillae and those of the palatal epithelium. Occasionally, a few spindle-shaped cells were labeled with Jacalin, but not with PNA. Double labeling of Jacalin and alpha-gustducin, a specific marker for type II cells, revealed that Jacalin-labeled spindle-shaped taste cells were immunonegative for alpha-gustducin. Spindle-shaped cells expressing protein gene product 9.5 (PGP 9.5) immunoreactivity lacked Jacalin labeling. During the development of taste buds in circumvallate papillae, the binding pattern of Jacalin became almost identical from postnatal day 5. The present results indicate that rounded cells at the basal portion of the taste buds cells (type IV cells) bind to Jacalin and PNA, and these lectins are specific markers for type IV cells of the rat taste cells.

  20. Hormonal Regulation of Leaf Abscission

    PubMed Central

    Jacobs, William P.

    1968-01-01

    A review is given of the progress made during the last 6 years in elucidating the nature, locus of action, and transport properties of the endogenous hormones that control leaf abscission. PMID:16657014

  1. Experiments in Whole Leaf Photosynthesis

    ERIC Educational Resources Information Center

    Stewart, J. C.; And Others

    1974-01-01

    Described is a simple experimental system, which uses radioactive carbon dioxide to study whole leaf photosynthesis under a variety of conditions. Other experiments and simple apparatus for the experiments are also described. (Author/RH)

  2. 7 CFR 29.3036 - Leaf surface.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Leaf surface. The smoothness or roughness of the web or lamina of a tobacco leaf. Leaf surface is... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf surface. 29.3036 Section 29.3036 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  3. 7 CFR 29.3036 - Leaf surface.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Leaf surface. The smoothness or roughness of the web or lamina of a tobacco leaf. Leaf surface is... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf surface. 29.3036 Section 29.3036 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  4. 7 CFR 29.3036 - Leaf surface.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Leaf surface. The smoothness or roughness of the web or lamina of a tobacco leaf. Leaf surface is... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf surface. 29.3036 Section 29.3036 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  5. 7 CFR 29.3036 - Leaf surface.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Leaf surface. The smoothness or roughness of the web or lamina of a tobacco leaf. Leaf surface is... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf surface. 29.3036 Section 29.3036 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  6. 7 CFR 29.3036 - Leaf surface.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Leaf surface. The smoothness or roughness of the web or lamina of a tobacco leaf. Leaf surface is... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf surface. 29.3036 Section 29.3036 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  7. Why do leaf-tying caterpillars abandon their leaf ties?

    PubMed

    Sliwinski, Michelle; Sigmon, Elisha

    2013-01-01

    Leaf-tying caterpillars act as ecosystem engineers by building shelters between overlapping leaves, which are inhabited by other arthropods. Leaf-tiers have been observed to leave their ties and create new shelters (and thus additional microhabitats), but the ecological factors affecting shelter fidelity are poorly known. For this study, we explored the effects of resource limitation and occupant density on shelter fidelity and assessed the consequences of shelter abandonment. We first quantified the area of leaf material required for a caterpillar to fully develop for two of the most common leaf-tiers that feed on white oak, Quercus alba. On average, Psilocorsis spp. caterpillars consumed 21.65 ± 0.67 cm(2) leaf material to complete development. We also measured the area of natural leaf ties found in a Maryland forest, to determine the distribution of resources available to caterpillars in situ. Of 158 natural leaf ties examined, 47% were too small to sustain an average Psilocorsis spp. caterpillar for the entirety of its development. We also manipulated caterpillar densities within experimental ties on potted trees to determine the effects of cohabitants on the likelihood of a caterpillar to leave its tie. We placed 1, 2, or 4 caterpillars in ties of a standard size and monitored the caterpillars twice daily to track their movement. In ties with more than one occupant, caterpillars showed a significantly greater propensity to leave their tie, and left sooner and at a faster rate than those in ties as single occupants. To understand the consequences of leaf tie abandonment, we observed caterpillars searching a tree for a site to build a shelter in the field. This is a risky behavior, as 17% of the caterpillars observed died while searching for a shelter site. Caterpillars that successfully built a shelter traveled 110 ± 20 cm and took 28 ± 7 min to find a suitable site to build a shelter. In conclusion, leaf-tying caterpillars must frequently abandon their leaf

  8. What determines a leaf's shape?

    PubMed

    Dkhar, Jeremy; Pareek, Ashwani

    2014-01-01

    The independent origin and evolution of leaves as small, simple microphylls or larger, more complex megaphylls in plants has shaped and influenced the natural composition of the environment. Significant contributions have come from megaphyllous leaves, characterized usually as flat, thin lamina entrenched with photosynthetic organelles and stomata, which serve as the basis of primary productivity. During the course of evolution, the megaphylls have attained complexity not only in size or venation patterns but also in shape. This has fascinated scientists worldwide, and research has progressed tremendously in understanding the concept of leaf shape determination. Here, we review these studies and discuss the various factors that contributed towards shaping the leaf; initiated as a small bulge on the periphery of the shoot apical meristem (SAM) followed by asymmetric outgrowth, expansion and maturation until final shape is achieved. We found that the underlying factors governing these processes are inherently genetic: PIN1 and KNOX1 are indicators of leaf initiation, HD-ZIPIII, KANADI, and YABBY specify leaf outgrowth while ANGUSTIFOLIA3 and GROWTH-REGULATING FACTOR5 control leaf expansion and maturation; besides, recent research has identified new players such as APUM23, known to specify leaf polarity. In addition to genetic control, environmental factors also play an important role during the final adjustment of leaf shape. This immense amount of information available will serve as the basis for studying and understanding innovative leaf morphologies viz. the pitchers of the carnivorous plant Nepenthes which have evolved to provide additional support to the plant survival in its nutrient-deficient habitat. In hindsight, formation of the pitcher tube in Nepenthes might involve the recruitment of similar genetic mechanisms that occur during sympetaly in Petunia. PMID:25584185

  9. What determines a leaf's shape?

    PubMed

    Dkhar, Jeremy; Pareek, Ashwani

    2014-01-01

    The independent origin and evolution of leaves as small, simple microphylls or larger, more complex megaphylls in plants has shaped and influenced the natural composition of the environment. Significant contributions have come from megaphyllous leaves, characterized usually as flat, thin lamina entrenched with photosynthetic organelles and stomata, which serve as the basis of primary productivity. During the course of evolution, the megaphylls have attained complexity not only in size or venation patterns but also in shape. This has fascinated scientists worldwide, and research has progressed tremendously in understanding the concept of leaf shape determination. Here, we review these studies and discuss the various factors that contributed towards shaping the leaf; initiated as a small bulge on the periphery of the shoot apical meristem (SAM) followed by asymmetric outgrowth, expansion and maturation until final shape is achieved. We found that the underlying factors governing these processes are inherently genetic: PIN1 and KNOX1 are indicators of leaf initiation, HD-ZIPIII, KANADI, and YABBY specify leaf outgrowth while ANGUSTIFOLIA3 and GROWTH-REGULATING FACTOR5 control leaf expansion and maturation; besides, recent research has identified new players such as APUM23, known to specify leaf polarity. In addition to genetic control, environmental factors also play an important role during the final adjustment of leaf shape. This immense amount of information available will serve as the basis for studying and understanding innovative leaf morphologies viz. the pitchers of the carnivorous plant Nepenthes which have evolved to provide additional support to the plant survival in its nutrient-deficient habitat. In hindsight, formation of the pitcher tube in Nepenthes might involve the recruitment of similar genetic mechanisms that occur during sympetaly in Petunia.

  10. Increasing leaf hydraulic conductance with transpiration rate minimizes the water potential drawdown from stem to leaf.

    PubMed

    Simonin, Kevin A; Burns, Emily; Choat, Brendan; Barbour, Margaret M; Dawson, Todd E; Franks, Peter J

    2015-03-01

    Leaf hydraulic conductance (k leaf) is a central element in the regulation of leaf water balance but the properties of k leaf remain uncertain. Here, the evidence for the following two models for k leaf in well-hydrated plants is evaluated: (i) k leaf is constant or (ii) k leaf increases as transpiration rate (E) increases. The difference between stem and leaf water potential (ΔΨstem-leaf), stomatal conductance (g s), k leaf, and E over a diurnal cycle for three angiosperm and gymnosperm tree species growing in a common garden, and for Helianthus annuus plants grown under sub-ambient, ambient, and elevated atmospheric CO₂ concentration were evaluated. Results show that for well-watered plants k leaf is positively dependent on E. Here, this property is termed the dynamic conductance, k leaf(E), which incorporates the inherent k leaf at zero E, which is distinguished as the static conductance, k leaf(0). Growth under different CO₂ concentrations maintained the same relationship between k leaf and E, resulting in similar k leaf(0), while operating along different regions of the curve owing to the influence of CO₂ on g s. The positive relationship between k leaf and E minimized variation in ΔΨstem-leaf. This enables leaves to minimize variation in Ψleaf and maximize g s and CO₂ assimilation rate over the diurnal course of evaporative demand.

  11. Increasing leaf hydraulic conductance with transpiration rate minimizes the water potential drawdown from stem to leaf

    PubMed Central

    Simonin, Kevin A.; Burns, Emily; Choat, Brendan; Barbour, Margaret M.; Dawson, Todd E.; Franks, Peter J.

    2015-01-01

    Leaf hydraulic conductance (k leaf) is a central element in the regulation of leaf water balance but the properties of k leaf remain uncertain. Here, the evidence for the following two models for k leaf in well-hydrated plants is evaluated: (i) k leaf is constant or (ii) k leaf increases as transpiration rate (E) increases. The difference between stem and leaf water potential (ΔΨstem–leaf), stomatal conductance (g s), k leaf, and E over a diurnal cycle for three angiosperm and gymnosperm tree species growing in a common garden, and for Helianthus annuus plants grown under sub-ambient, ambient, and elevated atmospheric CO2 concentration were evaluated. Results show that for well-watered plants k leaf is positively dependent on E. Here, this property is termed the dynamic conductance, k leaf(E), which incorporates the inherent k leaf at zero E, which is distinguished as the static conductance, k leaf(0). Growth under different CO2 concentrations maintained the same relationship between k leaf and E, resulting in similar k leaf(0), while operating along different regions of the curve owing to the influence of CO2 on g s. The positive relationship between k leaf and E minimized variation in ΔΨstem–leaf. This enables leaves to minimize variation in Ψleaf and maximize g s and CO2 assimilation rate over the diurnal course of evaporative demand. PMID:25547915

  12. Development of flower buds in the Japanese pear (Pyrus pyrifolia) from late autumn to early spring.

    PubMed

    Saito, Takanori; Tuan, Pham Anh; Katsumi-Horigane, Akemi; Bai, Songling; Ito, Akiko; Sekiyama, Yasuyo; Ono, Hiroshi; Moriguchi, Takaya

    2015-06-01

    We periodically investigated the lateral flower bud morphology of 1-year shoots of 'Kosui' pears (Pyrus pyrifolia Nakai) in terms of dormancy progression, using magnetic resonance imaging. The size of flower buds did not change significantly during endodormancy, but rapid enlargement took place at the end of the ecodormancy stage. To gain insight into the physiological status during this period, we analyzed gene expression related to cell cycle-, cell expansion- and water channel-related genes, namely cyclin (CYC), expansin (EXPA), tonoplast intrinsic proteins (TIP) and plasma membrane intrinsic proteins (PIP). Constant but low expression of pear cyclin genes (PpCYCD3s) was observed in the transition phase from endodormancy to ecodormancy. The expression levels of PpCYCD3s were consistent with few changes in flower bud size, but up-regulated before the sprouting stage. In contrast, the expression of pear expansin and water channel-related genes (PpEXPA2, PpPIP2A, PpPIP2B, PpIδTIP1A and PpIδTIP1B) were low until onset of the rapid enlargement stage of flower buds. However, expression of these genes rapidly increased during sprouting along with a gradual increase of free water content in the floral primordia of buds. Taken together, these results suggest that flower bud size tends to stay constant until the endodormancy phase transition. Rapid enlargement of flower buds observed in March is partly due to the enhancement of the cell cycle. Then, sprouting takes place concomitant with the increase in cell expansion and free water movement.

  13. Local adaptations and climate change: converging sensitivity of bud break in black spruce provenances

    NASA Astrophysics Data System (ADS)

    Rossi, Sergio

    2015-07-01

    Species with transcontinental distribution or spread over wide geographical regions develop populations with growth traits genetically adapted to the local climate. The aim of this study was to investigate the ecotypic sensitivity of bud break, a strong adaptive trait, to a changing environment. Six phenological phases of bud break were monitored daily on black spruce [ Picea mariana (Mill.) BSP] seedlings submitted to different temperatures (12, 16 and 20 °C) and photoperiods (14, 18 and 22 h). Six provenances were tested in growth chambers, produced from seeds collected along the whole latitudinal range of the closed boreal forest in Quebec, Canada. Bud break lasted 13.3 days on average and occurred earlier in seedlings from colder sites. The annual temperature of the sites suitably tracked the clinal variation among ecotypes, providing a clear biological explanation for the environmental signal driving the adaptive divergence of populations to the local climate. Increasing temperature induced an earlier bud break according to a non-linear pattern with greater advancements observed between 12 and 16 °C. Photoperiod was significant, but sensitivity analysis indicated that its effect on bud break was marginal with respect to temperature. No interaction of provenance × treatment was observed, demonstrating an ecotypic convergence of the responses to both factors. Changes in the growing conditions could substantially modify the synchronization between bud phenology and climate, thus exposing the developing meristems of black spruce to frost damage. However, similar advancements of bud break could be expected in the different ecotypes subjected to warmer temperatures or longer day lengths.

  14. DNA barcoding to identify leaf preference of leafcutting bees

    PubMed Central

    2016-01-01

    Leafcutting bees (Megachile: Megachilidae) cut leaves from various trees, shrubs, wildflowers and grasses to partition and encase brood cells in hollow plant stems, decaying logs or in the ground. The identification of preferred plant species via morphological characters of the leaf fragments is challenging and direct observation of bees cutting leaves from certain plant species are difficult. As such, data are poor on leaf preference of leafcutting bees. In this study, I use DNA barcoding of the rcbL and ITS2 regions to identify and compare leaf preference of three Megachile bee species widespread in Toronto, Canada. Nests were opened and one leaf piece from one cell per nest of the native M. pugnata Say (N=45 leaf pieces), and the introduced M. rotundata Fabricius (N=64) and M. centuncularis (L.) (N=65) were analysed. From 174 individual DNA sequences, 54 plant species were identified. Preference by M. rotundata was most diverse (36 leaf species, H′=3.08, phylogenetic diversity (pd)=2.97), followed by M. centuncularis (23 species, H′=2.38, pd=1.51) then M. pugnata (18 species, H′=1.87, pd=1.22). Cluster analysis revealed significant overlap in leaf choice of M. rotundata and M. centuncularis. There was no significant preference for native leaves, and only M. centuncularis showed preference for leaves of woody plants over perennials. Interestingly, antimicrobial properties were present in all but six plants collected; all these were exotic plants and none were collected by the native bee, M. pugnata. These missing details in interpreting what bees need offers valuable information for conservation by accounting for necessary (and potentially limiting) nesting materials. PMID:27069650

  15. DNA barcoding to identify leaf preference of leafcutting bees.

    PubMed

    MacIvor, J Scott

    2016-03-01

    Leafcutting bees (Megachile: Megachilidae) cut leaves from various trees, shrubs, wildflowers and grasses to partition and encase brood cells in hollow plant stems, decaying logs or in the ground. The identification of preferred plant species via morphological characters of the leaf fragments is challenging and direct observation of bees cutting leaves from certain plant species are difficult. As such, data are poor on leaf preference of leafcutting bees. In this study, I use DNA barcoding of the rcbL and ITS2 regions to identify and compare leaf preference of three Megachile bee species widespread in Toronto, Canada. Nests were opened and one leaf piece from one cell per nest of the native M. pugnata Say (N=45 leaf pieces), and the introduced M. rotundata Fabricius (N=64) and M. centuncularis (L.) (N=65) were analysed. From 174 individual DNA sequences, 54 plant species were identified. Preference by M. rotundata was most diverse (36 leaf species, H'=3.08, phylogenetic diversity (pd)=2.97), followed by M. centuncularis (23 species, H'=2.38, pd=1.51) then M. pugnata (18 species, H'=1.87, pd=1.22). Cluster analysis revealed significant overlap in leaf choice of M. rotundata and M. centuncularis. There was no significant preference for native leaves, and only M. centuncularis showed preference for leaves of woody plants over perennials. Interestingly, antimicrobial properties were present in all but six plants collected; all these were exotic plants and none were collected by the native bee, M. pugnata. These missing details in interpreting what bees need offers valuable information for conservation by accounting for necessary (and potentially limiting) nesting materials. PMID:27069650

  16. Leaf phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species.

    PubMed

    Reich, Peter B; Oleksyn, Jacek; Wright, Ian J

    2009-05-01

    The ecophysiological linkage of leaf phosphorus (P) to photosynthetic capacity (A (max)) and to the A (max)-nitrogen relation remains poorly understood. To address this issue we compiled published and unpublished field data for mass-based A (max), nitrogen (N) and P (n = 517 observations) from 314 species at 42 sites in 14 countries. Data were from four biomes: arctic, cold temperate, subtropical (including Mediterranean), and tropical. We asked whether plants with low P levels have low A (max), a shallower slope of the A (max)-N relationship, and whether these patterns have a geographic signature. On average, leaf P was substantially lower in the two warmer than in the two colder biomes, with the reverse true for N:P ratios. The evidence indicates that the response of A (max) to leaf N is constrained by low leaf P. Using a full factorial model for all data, A (max) was related to leaf N, but not to leaf P on its own, with a significant leaf N x leaf P interaction indicating that the response of A (max) to N increased with increasing leaf P. This was also found in analyses using one value per species per site, or by comparing only angiosperms or only woody plants. Additionally, the slope of the A (max)-N relationship was higher in the colder arctic and temperate than warmer tropical and subtropical biomes. Sorting data into low, medium, and high leaf P groupings also showed that the A (max)-N slope increases with leaf P. These analyses support claims that in P-limited ecosystems the A (max)-N relationship may be constrained by low P, and are consistent with laboratory studies that show P-deficient plants have limited ribulose-1,5-bisphosphate regeneration, a likely mechanism for the P influence upon the A (max)-N relation.

  17. Leaf exsertion, leaf elongation, and leaf senescence in Eriophorum vaginatum and Carex Bigelowii

    SciTech Connect

    Shaver, G.R.; Yandow, T.; Laundre, J.

    1990-01-01

    Most of the common sedges of arctic vegetation show a pattern of leaf production in which the exsertion and elongation of new leaves is more or less simultaneous with the senescence of old leaves. The present study was designed to increase our understanding of the variability sequential leaf production by arctic sedges, and to determine some of the controls on that variability. We did this in two ways: first, we compared the sequential patterns of leaf growth and senescence in E. vaginatum with those of Carex Bigelowii Torr. at two tussock tundra sites near Toolik Lake on the North Slope of Alaska. Second, we compared the responses of leaf growth in these species in control and fertilized plots and in two microenvironments thought to differ sharply in nutrient availability and total productivity. 29 refs., 28 figs., 2 tabs.

  18. Specialised emission pattern of leaf trace in a late Permian (253 million-years old) conifer

    PubMed Central

    Wei, Hai-Bo; Feng, Zhuo; Yang, Ji-Yuan; Chen, Yu-Xuan; Shen, Jia-Jia; He, Xiao-Yuan

    2015-01-01

    Leaf traces are important structures in higher plants that connect leaves and the stem vascular system. The anatomy and emission pattern of leaf traces are well studied in extant vascular plants, but remain poorly understood in fossil lineages. We quantitatively analysed the leaf traces in the late Permian conifer Ningxiaites specialis from Northwest China based on serial sections through pith, primary and secondary xylems. A complete leaf traces emission pattern of a conifer is presented for the first time from the late Palaeozoic. Three to five monarch leaf traces are grouped in clusters, arranged in a helical phyllotaxis. The leaf traces in each cluster can be divided into upper, middle and lower portions, and initiate at the pith periphery and cross the wood horizontally. The upper leaf trace increases its diameter during the first growth increment and then diminishes completely, which indicates leaf abscission at the end of the first year. The middle trace immediately bifurcates once or twice to form two or three vascular bundles. The lower trace persists as a single bundle during its entire length. The intricate leaf trace dynamics indicates this fossil plant had a novel evolutionary habit by promoting photosynthetic capability for the matured plant. PMID:26198410

  19. LAMINA: a tool for rapid quantification of leaf size and shape parameters

    PubMed Central

    Bylesjö, Max; Segura, Vincent; Soolanayakanahally, Raju Y; Rae, Anne M; Trygg, Johan; Gustafsson, Petter; Jansson, Stefan; Street, Nathaniel R

    2008-01-01

    Background An increased understanding of leaf area development is important in a number of fields: in food and non-food crops, for example short rotation forestry as a biofuels feedstock, leaf area is intricately linked to biomass productivity; in paleontology leaf shape characteristics are used to reconstruct paleoclimate history. Such fields require measurement of large collections of leaves, with resulting conclusions being highly influenced by the accuracy of the phenotypic measurement process. Results We have developed LAMINA (Leaf shApe deterMINAtion), a new tool for the automated analysis of images of leaves. LAMINA has been designed to provide classical indicators of leaf shape (blade dimensions) and size (area), which are typically required for correlation analysis to biomass productivity, as well as measures that indicate asymmetry in leaf shape, leaf serration traits, and measures of herbivory damage (missing leaf area). In order to allow Principal Component Analysis (PCA) to be performed, the location of a chosen number of equally spaced boundary coordinates can optionally be returned. Conclusion We demonstrate the use of the software on a set of 500 scanned images, each containing multiple leaves, collected from a common garden experiment containing 116 clones of Populus tremula (European trembling aspen) that are being used for association mapping, as well as examples of leaves from other species. We show that the software provides an efficient and accurate means of analysing leaf area in large datasets in an automated or semi-automated work flow. PMID:18647399

  20. Simulated browsing affects leaf shedding phenology and litter quality of oak and birch saplings.

    PubMed

    Palacio, S; Hester, A J; Maestro, M; Millard, P

    2013-04-01

    Herbivore effects on leaf litter can have a strong impact on ecosystem nutrient cycling. Although such effects are well described for insect herbivory, research on the impacts of browsing by mammalian herbivores on leaf litter dynamics and nutrient cycling has been more limited, particularly at the level of the individual plant. Clipping treatments (66% shoot removal twice, plus unclipped) were applied to analyse the effect of browsing on the phenology (start date and pattern of leaf shedding) and leaf litter quality (nitrogen (N), soluble sugars, starch and total non-structural carbohydrate concentrations, plus C : N ratios) of Betula pubescens Ehrh. and Quercus petraea [Matt.] Liebl. saplings. Clipping decreased leaf litter biomass and delayed leaf senescence and shedding, but did not change the phenological timing of litterfall between senescence and shedding. The quality of leaf litter of both species was increased by simulated browsing, through an increase in N and carbohydrate concentrations (mainly soluble sugars) and a decreased C : N ratio. This is the first evidence we are aware of that browsing may cause changes in leaf shedding phenology, delaying the process without altering its pattern. Our results also indicate that simulated browsing increases the quality of leaf litter. However, the potential positive effect of browsing on N cycling through litter quality may be offset by its negative impact on the amount of N shed per tree.

  1. The glossopharyngeal nerve controls epithelial expression of Sprr2a and Krt13 around taste buds in the circumvallate papilla.

    PubMed

    Miura, Hirohito; Kusakabe, Yuko; Hashido, Kento; Hino, Akihiro; Ooki, Makoto; Harada, Shuitsu

    2014-09-19

    Tastants reach the tip of taste bud cells through taste pores which are openings in the epithelium. We found Sprr2a is selectively expressed in the upper layer of the epithelium surrounding taste buds in the circumvallate papilla (CV) where the epithelium is organized into taste pores. Sprr2a is a member of a small proline-rich protein family, which is suggested to be involved in the restitution/migration phase of epithelial wound healing. The expression of Sprr2a was restricted to the upper layer and largely segregated with Ptch1 expression that is restricted to the basal side of the epithelium around the taste buds. Denervation resulted in the gradual loss of Sprr2a-expressing cells over 10 days similarly to that of taste bud cells which is in contrast to the rapid loss of Ptch1 expression. We also found that denervation caused an increase of Keratin (Krt)13 expression around taste buds that corresponded with the disappearance of Sprr2a and Ptch1 expression. Taste buds were surrounded by Krt13-negative cells in the CV in control mice. However, at 6 days post-denervation, taste buds were tightly surrounded by Krt13-positive cells. During taste bud development, taste bud cells emerged together with Krt13-negtive cells, and Sprr2a expression was increased along with the progress of taste bud development. These results demonstrate that regional gene expression surrounding taste buds is associated with taste bud formation and controlled by the innervating taste nerve. PMID:25123441

  2. Spatio-temporal relief from hypoxia and production of reactive oxygen species during bud burst in grapevine (Vitis vinifera)

    PubMed Central

    Meitha, Karlia; Konnerup, Dennis; Colmer, Timothy D.; Considine, John A.; Foyer, Christine H.; Considine, Michael J.

    2015-01-01

    Background and Aims Plants regulate cellular oxygen partial pressures (pO2), together with reduction/oxidation (redox) state in order to manage rapid developmental transitions such as bud burst after a period of quiescence. However, our understanding of pO2 regulation in complex meristematic organs such as buds is incomplete and, in particular, lacks spatial resolution. Methods The gradients in pO2 from the outer scales to the primary meristem complex were measured in grapevine (Vitis vinifera) buds, together with respiratory CO2 production rates and the accumulation of superoxide and hydrogen peroxide, from ecodormancy through the first 72 h preceding bud burst, triggered by the transition from low to ambient temperatures. Key Results Steep internal pO2 gradients were measured in dormant buds with values as low as 2·5 kPa found in the core of the bud prior to bud burst. Respiratory CO2 production rates increased soon after the transition from low to ambient temperatures and the bud tissues gradually became oxygenated in a patterned process. Within 3 h of the transition to ambient temperatures, superoxide accumulation was observed in the cambial meristem, co-localizing with lignified cellulose associated with pro-vascular tissues. Thereafter, superoxide accumulated in other areas subtending the apical meristem complex, in the absence of significant hydrogen peroxide accumulation, except in the cambial meristem. By 72 h, the internal pO2 gradient showed a biphasic profile, where the minimum pO2 was external to the core of the bud complex. Conclusions Spatial and temporal control of the tissue oxygen environment occurs within quiescent buds, and the transition from quiescence to bud burst is accompanied by a regulated relaxation of the hypoxic state and accumulation of reactive oxygen species within the developing cambium and vascular tissues of the heterotrophic grapevine buds. PMID:26337519

  3. Nematodes from galls on Myrtaceae. VIII. Fergusobia from small galls on shoot buds, with descriptions of four new species.

    PubMed

    Davies, Kerrie A; Bartholomaeus, Faerlie; Giblin-Davis, Robin M; Ye, Weimin; Taylor, Gary S; Thomas, W Kelley

    2014-08-28

    Small shoot bud galls induced by the Fergusobia (Nematoda: Neotylenchidae)/Fergusonina (Diptera: Fergusoninidae) mutualism occur on various Eucalyptus spp. Four new species of Fergusobia, collected from small shoot bud galls on Eucalyptus camaldulensis, E. gomphocephala and E. leucoxylon, are described. Fergusobia gomphocephalae Davies n. sp. is morphologically characterized by a combination of a small C-shaped parthenogenetic female with a variable, conoid tail, a small C-shaped infective female with a hemispherical tail tip, and an arcuate or J-shaped male with a broad tail, angular spicule and short peloderan bursa. Fergusobia leucoxylonae Davies n. sp. has a C-shaped parthenogenetic female with a conoid tail with a narrowly rounded tip, an arcuate infective female with a broadly rounded tail tip, and an almost straight to barely J-shaped male with angular (not heavily sclerotised) spicule and short bursa. Fergusobia schmidti Davies & Bartholomaeus n. sp. has an arcuate to open C-shaped parthenogenetic female with a relatively large body diameter, relatively long stylet and small tail with a broadly rounded tail tip, an open C-shaped infective female with a broadly rounded to hemispherical tail tip, and an arcuate to barely J-shaped male with spicules angular at about 33% of their length and peloderan bursa arising at about half body length. Fergusobia sporangae Davies n. sp. has an arcuate to open C-shaped parthenogenetic female with a relatively long stylet and a broadly rounded tail tip, an arcuate infective female with a short tail with a broadly rounded to hemispherical tip, and an arcuate to barely J-shaped male with angular (not heavily sclerotised) spicule and short peloderan bursa. Various forms of small shoot bud galls are described. From phylogenetic analyses based on sequences of the D2/D3 expansion segment of the large subunit rRNA gene, the four new species belong to two sister clades of Fergusobia. The larval shield morphology of their associated

  4. Macroecological and macroevolutionary patterns of leaf herbivory across vascular plants.

    PubMed

    Turcotte, Martin M; Davies, T Jonathan; Thomsen, Christina J M; Johnson, Marc T J

    2014-07-22

    The consumption of plants by animals underlies important evolutionary and ecological processes in nature. Arthropod herbivory evolved approximately 415 Ma and the ensuing coevolution between plants and herbivores is credited with generating much of the macroscopic diversity on the Earth. In contemporary ecosystems, herbivory provides the major conduit of energy from primary producers to consumers. Here, we show that when averaged across all major lineages of vascular plants, herbivores consume 5.3% of the leaf tissue produced annually by plants, whereas previous estimates are up to 3.8× higher. This result suggests that for many plant species, leaf herbivory may play a smaller role in energy and nutrient flow than currently thought. Comparative analyses of a diverse global sample of 1058 species across 2085 populations reveal that models of stabilizing selection best describe rates of leaf consumption, and that rates vary substantially within and among major plant lineages. A key determinant of this variation is plant growth form, where woody plant species experience 64% higher leaf herbivory than non-woody plants. Higher leaf herbivory in woody species supports a key prediction of the plant apparency theory. Our study provides insight into how a long history of coevolution has shaped the ecological and evolutionary relationships between plants and herbivores.

  5. Macroecological and macroevolutionary patterns of leaf herbivory across vascular plants

    PubMed Central

    Turcotte, Martin M.; Davies, T. Jonathan; Thomsen, Christina J. M.; Johnson, Marc T. J.

    2014-01-01

    The consumption of plants by animals underlies important evolutionary and ecological processes in nature. Arthropod herbivory evolved approximately 415 Ma and the ensuing coevolution between plants and herbivores is credited with generating much of the macroscopic diversity on the Earth. In contemporary ecosystems, herbivory provides the major conduit of energy from primary producers to consumers. Here, we show that when averaged across all major lineages of vascular plants, herbivores consume 5.3% of the leaf tissue produced annually by plants, whereas previous estimates are up to 3.8× higher. This result suggests that for many plant species, leaf herbivory may play a smaller role in energy and nutrient flow than currently thought. Comparative analyses of a diverse global sample of 1058 species across 2085 populations reveal that models of stabilizing selection best describe rates of leaf consumption, and that rates vary substantially within and among major plant lineages. A key determinant of this variation is plant growth form, where woody plant species experience 64% higher leaf herbivory than non-woody plants. Higher leaf herbivory in woody species supports a key prediction of the plant apparency theory. Our study provides insight into how a long history of coevolution has shaped the ecological and evolutionary relationships between plants and herbivores. PMID:24870043

  6. Global patterns in leaf 13C discrimination and implications for studies of past and future climate.

    PubMed

    Diefendorf, Aaron F; Mueller, Kevin E; Wing, Scott L; Koch, Paul L; Freeman, Katherine H

    2010-03-30

    Fractionation of carbon isotopes by plants during CO(2) uptake and fixation (Delta(leaf)) varies with environmental conditions, but quantitative patterns of Delta(leaf) across environmental gradients at the global scale are lacking. This impedes interpretation of variability in ancient terrestrial organic matter, which encodes climatic and ecological signals. To address this problem, we converted 3,310 published leaf delta(13)C values into mean Delta(leaf) values for 334 woody plant species at 105 locations (yielding 570 species-site combinations) representing a wide range of environmental conditions. Our analyses reveal a strong positive correlation between Delta(leaf) and mean annual precipitation (MAP; R(2) = 0.55), mirroring global trends in gross primary production and indicating stomatal constraints on leaf gas-exchange, mediated by water supply, are the dominant control of Delta(leaf) at large spatial scales. Independent of MAP, we show a lesser, negative effect of altitude on Delta(leaf) and minor effects of temperature and latitude. After accounting for these factors, mean Delta(leaf) of evergreen gymnosperms is lower (by 1-2.7 per thousand) than for other woody plant functional types (PFT), likely due to greater leaf-level water-use efficiency. Together, environmental and PFT effects contribute to differences in mean Delta(leaf) of up to 6 per thousand between biomes. Coupling geologic indicators of ancient precipitation and PFT (or biome) with modern Delta(leaf) patterns has potential to yield more robust reconstructions of atmospheric delta(13)C values, leading to better constraints on past greenhouse-gas perturbations. Accordingly, we estimate a 4.6 per thousand decline in the delta(13)C of atmospheric CO(2) at the onset of the Paleocene-Eocene Thermal Maximum, an abrupt global warming event approximately 55.8 Ma. PMID:20231481

  7. Cell contact-dependent mechanisms specify taste bud pattern during a critical period early in embryonic development.

    PubMed

    Parker, Mark A; Bell, Melanie L; Barlow, Linda A

    2004-08-01

    After gastrulation, the pharyngeal endoderm is specified to give rise to taste receptor organs without further signaling from other embryonic tissues. We hypothesized that intercellular signaling might be responsible for the specification of taste buds. To test if and when this signaling was occurring, intercellular contacts were transiently disrupted in cultures of pharyngeal endoderm from axolotl embryos, and the number, size, and distribution of taste buds analyzed. Disruption of cell contacts at progressive time points, from neurula to late tail bud stages, revealed a critical period, during mid-tail bud stages, when disruption of cell contacts resulted in a significant increase in taste bud number and size. The spatial distribution of taste buds was also altered; taste buds were more clustered in explants disrupted during the critical period. These effects were not due to general alterations in mitosis and apoptosis. Rather, at least three aspects of taste bud patterning, i.e., number, size, and distribution, are governed by mechanisms dependent on normal cell contacts during a concise time window. Furthermore, our findings are consistent with specification of taste buds by means of lateral inhibitory signaling, which we hypothesize results from cell contact-dependent or short-range diffusible signals. PMID:15254897

  8. Analysis of basic leucine zipper genes and their expression during bud dormancy in peach (Prunus persica).

    PubMed

    Sun, Ming-Yue; Fu, Xi-Ling; Tan, Qiu-Ping; Liu, Li; Chen, Min; Zhu, Cui-Ying; Li, Ling; Chen, Xiu-De; Gao, Dong-Sheng

    2016-07-01

    Dormancy is a biological characteristic developed to resist the cold conditions in winter. The bZIP transcription factors are present exclusively in eukaryotes and have been identified and classified in many species. bZIP proteins are known to regulate numerous biological processes, however, the role of bZIP in bud dodormancy has not been studied extensively. In total, 50 PpbZIP transcription factor-encoding genes were identified and categorized them into 10 groups (A-I and S). Similar intron/exon structures, additional conserved motifs, and DNA-binding site specificity supported our classification scheme. Additionally, chromosomal distribution and collinearity analyses suggested that expansion of the PpbZIP transcription factor family was due to segment/chromosomal duplications. We also predicted the dimerization properties based on characteristic features of the leucine zipper and classified PpbZIP proteins into 23 subfamilies. Furthermore, qRT-PCR results indicated that PpbZIPs genes may be involved in regulating dormancy. The same gene of different species might participate in different regulating networks through interactions with specific partners. Our expression profiling results complemented the microarray data, suggesting that co-expression patterns of bZIP transcription factors during dormancy differed among deciduous fruit trees. Our findings further clarify the molecular characteristics of the PpbZIP transcription factor family, including potential gene functions during dormancy. This information may facilitate further research on the evolutionary history and biological functions of bZIP proteins in peach and other rosaceae plants. PMID:27107182

  9. Arenavirus budding resulting from viral-protein-associated cell membrane curvature

    PubMed Central

    Schley, David; Whittaker, Robert J.; Neuman, Benjamin W.

    2013-01-01

    Viral replication occurs within cells, with release (and onward infection) primarily achieved through two alternative mechanisms: lysis, in which virions emerge as the infected cell dies and bursts open; or budding, in which virions emerge gradually from a still living cell by appropriating a small part of the cell membrane. Virus budding is a poorly understood process that challenges current models of vesicle formation. Here, a plausible mechanism for arenavirus budding is presented, building on recent evidence that viral proteins embed in the inner lipid layer of the cell membrane. Experimental results confirm that viral protein is associated with increased membrane curvature, whereas a mathematical model is used to show that localized increases in curvature alone are sufficient to generate viral buds. The magnitude of the protein-induced curvature is calculated from the size of the amphipathic region hypothetically removed from the inner membrane as a result of translation, with a change in membrane stiffness estimated from observed differences in virion deformation as a result of protein depletion. Numerical results are based on experimental data and estimates for three arenaviruses, but the mechanisms described are more broadly applicable. The hypothesized mechanism is shown to be sufficient to generate spontaneous budding that matches well both qualitatively and quantitatively with experimental observations. PMID:23864502

  10. The benefits of bathing buds: water calyces protect flowers from a microlepidopteran herbivore.

    PubMed

    Carlson, Jane E; Harms, Kyle E

    2007-08-22

    Protective floral structures may evolve in response to the negative effects of floral herbivores. For example, water calyces--liquid-filled, cup-like structures resulting from the fusion of sepals--may reduce floral herbivory by submerging buds during their development. Our observations of a water-calyx plant, Chrysothemis friedrichsthaliana (Gesneriaceae), revealed that buds were frequently attacked by ovipositing moths (Alucitidae), whose larvae consumed anthers and stigmas before corollas opened. Almost 25% of per-plant flower production was destroyed by alucitid larvae over two seasons, far exceeding the losses to all other floral herbivores combined. Experimental manipulation of water levels in calyces showed that a liquid barrier over buds halved per-flower alucitid egg deposition and subsequent herbivory, relative to buds in calyces without water. Thus, C. friedrichsthaliana's water calyx helps protect buds from a highly detrimental floral herbivore. Our findings support claims that sepal morphology is largely influenced by selection to reduce floral herbivory, and that these pressures can result in novel morphological adaptations.

  11. Study of disbudding goat kids following injection of clove oil essence in horn bud region.

    PubMed

    Molaei, Mohammad Mahdi; Mostafavi, Ali; Kheirandish, Reza; Azari, Omid; Shaddel, Mohsen

    2015-01-01

    This study was performed to evaluate the efficacy of injection of essential oil of Eugenia caryophyllata in the kid horn buds, as a new chemical technique for disbudding. Five-day-old healthy goat kids from both sexes (n = 16) were divided randomly into 4 equal groups. In groups 1, 2 and 3, 0.2 mL of clove essence and in group 4 (control) 0.2 mL of normal saline was injected into the left horn bud of goat kids. Right horn bud in all kids was considered to ensure that they are horned. During the study, the rate of horn growth were evaluated in determined time intervals between groups 1 and 4. Tissue samples were taken from right and left horn bud in groups 2 and 3, at five and ten days after clove essence injection, for microscopic study. The results of the study showed that the clove essence stopped horn growth, whereas there was no significant difference in horn growth rate between left and right horns after injection of normal saline, in group 4. Histopathological study showed that injection of clove essence caused complete necrosis of epidermis and underlying dermis with collagenolysis in horn bud tissues, 5 days after injection and then progress in healing process was observed after 10 days. According to the results of this study, it can be concluded that the injection of clove essence is an effective method to stop horn growth without any undesirable effects on clinical parameters in goat kids. PMID:25992247

  12. Study of disbudding goat kids following injection of clove oil essence in horn bud region

    PubMed Central

    Molaei, Mohammad Mahdi; Mostafavi, Ali; Kheirandish, Reza; Azari, Omid; Shaddel, Mohsen

    2015-01-01

    This study was performed to evaluate the efficacy of injection of essential oil of Eugenia caryophyllata in the kid horn buds, as a new chemical technique for disbudding. Five-day-old healthy goat kids from both sexes (n = 16) were divided randomly into 4 equal groups. In groups 1, 2 and 3, 0.2 mL of clove essence and in group 4 (control) 0.2 mL of normal saline was injected into the left horn bud of goat kids. Right horn bud in all kids was considered to ensure that they are horned. During the study, the rate of horn growth were evaluated in determined time intervals between groups 1 and 4. Tissue samples were taken from right and left horn bud in groups 2 and 3, at five and ten days after clove essence injection, for microscopic study. The results of the study showed that the clove essence stopped horn growth, whereas there was no significant difference in horn growth rate between left and right horns after injection of normal saline, in group 4. Histopathological study showed that injection of clove essence caused complete necrosis of epidermis and underlying dermis with collagenolysis in horn bud tissues, 5 days after injection and then progress in healing process was observed after 10 days. According to the results of this study, it can be concluded that the injection of clove essence is an effective method to stop horn growth without any undesirable effects on clinical parameters in goat kids. PMID:25992247

  13. Study of budding yeast colony formation and its characterizations by using circular granular cell

    NASA Astrophysics Data System (ADS)

    Aprianti, D.; Haryanto, F.; Purqon, A.; Khotimah, S. N.; Viridi, S.

    2016-03-01

    Budding yeast can exhibit colony formation in solid substrate. The colony of pathogenic budding yeast can colonize various surfaces of the human body and medical devices. Furthermore, it can form biofilm that resists drug effective therapy. The formation of the colony is affected by the interaction between cells and with its growth media. The cell budding pattern holds an important role in colony expansion. To study this colony growth, the molecular dynamic method was chosen to simulate the interaction between budding yeast cells. Every cell was modelled by circular granular cells, which can grow and produce buds. Cohesion force, contact force, and Stokes force govern this model to mimic the interaction between cells and with the growth substrate. Characterization was determined by the maximum (L max) and minimum (L min) distances between two cells within the colony and whether two lines that connect the two cells in the maximum and minimum distances intersect each other. Therefore, it can be recognized the colony shape in circular, oval, and irregular shapes. Simulation resulted that colony formation are mostly in oval shape with little branch. It also shows that greater cohesion strength obtains more compact colony formation.

  14. Study of disbudding goat kids following injection of clove oil essence in horn bud region.

    PubMed

    Molaei, Mohammad Mahdi; Mostafavi, Ali; Kheirandish, Reza; Azari, Omid; Shaddel, Mohsen

    2015-01-01

    This study was performed to evaluate the efficacy of injection of essential oil of Eugenia caryophyllata in the kid horn buds, as a new chemical technique for disbudding. Five-day-old healthy goat kids from both sexes (n = 16) were divided randomly into 4 equal groups. In groups 1, 2 and 3, 0.2 mL of clove essence and in group 4 (control) 0.2 mL of normal saline was injected into the left horn bud of goat kids. Right horn bud in all kids was considered to ensure that they are horned. During the study, the rate of horn growth were evaluated in determined time intervals between groups 1 and 4. Tissue samples were taken from right and left horn bud in groups 2 and 3, at five and ten days after clove essence injection, for microscopic study. The results of the study showed that the clove essence stopped horn growth, whereas there was no significant difference in horn growth rate between left and right horns after injection of normal saline, in group 4. Histopathological study showed that injection of clove essence caused complete necrosis of epidermis and underlying dermis with collagenolysis in horn bud tissues, 5 days after injection and then progress in healing process was observed after 10 days. According to the results of this study, it can be concluded that the injection of clove essence is an effective method to stop horn growth without any undesirable effects on clinical parameters in goat kids.

  15. Latitudinal variation in sensitivity of flower bud formation to high temperature in Japanese Taraxacum officinale.

    PubMed

    Yoshie, Fumio

    2014-05-01

    Control of flowering time plays a key role in the successful range expansion of plants. Taraxacum officinale has expanded throughout Japan during the 110 years after it was introduced into a cool temperate region. The present study tested a hypothesis that there is a genetic difference in the bud formation time in relation to temperature along latitudinal gradient of T. officinale populations. In Experiment 1, plants from three populations at different latitudes (26, 36, and 43°N) were grown at three temperatures. Time to flower bud appearance did not significantly differ among the three populations when plants were grown at 14 °C, whereas it increased with increasing latitude when grown at 19 and 24 °C. Rosette diameter was not different among the populations, indicating that the variation in bud formation time reflected a difference in genetic control rather than size variation. The latitudinal variation in bud appearance time was confirmed by Experiment 2 in which plants from 17 population were used. In Experiment 3, the size of plants that exhibited late-flowering was studied to test a hypothesis that the variation in flowering time reflects dormancy of vegetative growth, but the late-flowering plants were found to continue growth, indicating that vegetative dormancy was not the cause of the variation. The results clearly indicate that the degree of suppression of flower bud formation at high temperature decreases with latitude from north to south, which is under genetic control.

  16. Bud set in poplar--genetic dissection of a complex trait in natural and hybrid populations.

    PubMed

    Rohde, Antje; Storme, Véronique; Jorge, Véronique; Gaudet, Muriel; Vitacolonna, Nicola; Fabbrini, Francesco; Ruttink, Tom; Zaina, Giusi; Marron, Nicolas; Dillen, Sophie; Steenackers, Marijke; Sabatti, Maurizio; Morgante, Michele; Boerjan, Wout; Bastien, Catherine

    2011-01-01

    • The seasonal timing of growth events is crucial to tree distribution and conservation. The seasonal growth cycle is strongly adapted to the local climate that is changing because of global warming. We studied bud set as one cornerstone of the seasonal growth cycle in an integrative approach. • Bud set was dissected at the phenotypic level into several components, and phenotypic components with most genetic variation were identified. While phenotypic variation resided in the timing of growth cessation, and even so more in the duration from growth cessation to bud set, the timing of growth cessation had a stronger genetic component in both natural and hybrid populations. • Quantitative trait loci (QTL) were identified for the most discriminative phenotypic bud-set components across four poplar pedigrees. The QTL from different pedigrees were recurrently detected in six regions of the poplar genome. • These regions of 1.83-4.25 Mbp in size, containing between 202 and 394 genes, form the basis for further molecular-genetic dissection of bud set.

  17. Using "Bud World Party" attendance to predict adolescent alcohol use and beliefs about drinking.

    PubMed

    Thomsen, Steven R; Rekve, Dag; Lindsay, Gordon B

    2004-01-01

    This study explored the association between attendance at the "Bud World Party," a family entertainment venue created by Anheuser-Busch for the 2002 Winter Olympics, and alcohol-related beliefs and current drinking behaviors for a group of 7th and 8th graders who attend a middle school in close proximity to the downtown Salt Lake City plaza where the exhibit and related events were located. Data were collected via a questionnaire administered to 283 students 30 days after the closing ceremonies.. Logistic regression was used to predict recent alcohol consumption. Significant predictors were race (non-white) (OR = 3.9), religiosity (OR = .72), having a parent who drinks (OR = 4.8), the number of best friends who drink (OR = 2.5), and the interaction for "Bud World Party" attendance and gender (OR = 33.2). Post-hoc analysis of the interaction effect indicated that the relationship between "Bud World Party" attendance and recent alcohol consumption is moderated by gender. Girls who visited "Bud World Party" were more likely than the boys to have consumed alcohol in the past 30 days. In addition, the girls who visited "Bud World Party" were more likely to believe that drinking would increase their chances of popularity at school than the students who did not.

  18. Cytoskeletal impairment during isoamyl alcohol-induced cell elongation in budding yeast

    PubMed Central

    Murata, Wakae; Kinpara, Satoko; Kitahara, Nozomi; Yamaguchi, Yoshihiro; Ogita, Akira; Tanaka, Toshio; Fujita, Ken-ichi

    2016-01-01

    Isoamyl alcohol (IAA) induces pseudohyphae including cell elongation in the budding yeast Saccharomyces cerevisiae. Detailed regulation of microtubules and actin in developmental transition during cell elongation is poorly understood. Here, we show that although IAA did not affect the intracellular actin level, it reduced the levels of both α- and β-tubulins. In budding yeast, cytoplasmic microtubules are linked to actin via complexes consisting of at least Kar9, Bim1, and Myo2, and reach from the spindle pole body to the cortical attachment site at the bud tip. However, IAA did not affect migration of Myo2 to the bud tip and kept Kar9 in the interior portion of the cell. In addition, bud elongation was observed in Kar9-overexpressing cells in the absence of IAA. These results indicate that impairment of the link between cytoplasmic microtubules and actin is possibly involved in the lowered interaction of Myo2 with Kar9. Our study might explain the reason for delayed cell cycle during IAA-induced cell elongation. PMID:27507042

  19. NOGGIN IS REQUIRED FOR NORMAL LOBE PATTERNING AND DUCTAL BUDDING IN THE MOUSE PROSTATE

    PubMed Central

    Cook, Crist; Vezina, Chad M.; Hicks, Sarah M.; Shaw, Aubie; Yu, Min; Peterson, Richard E.; Bushman, Wade

    2008-01-01

    Mesenchymal expression of the BMP antagonist NOGGIN during prostate development plays a critical role in pre-natal ventral prostate development and opposes BMP4-mediated inhibition of cell proliferation during postnatal ductal development. Morphologic examination of newborn Noggin-/- male fetuses revealed genitourinary anomalies including cryptorchidism, incomplete separation of the hindgut from the urogenital sinus (UGS), absence of the ventral mesenchymal pad and a complete loss of ventral prostate (VP) budding. Examination of lobe-specific marker expression in the E14 Noggin-/- UGS rescued by transplantation under the renal capsule of a male nude mouse confirmed a complete loss of VP determination. More modest effects were observed in the other lobes, including decreased number of ductal buds in the dorsal and lateral prostates of newborn Noggin-/- males. BMP4 and BMP7 have been shown to inhibit ductal budding and outgrowth by negatively regulating epithelial cell proliferation. We show here that NOGGIN can neutralize budding inhibition by BMP4 and rescues branching morphogenesis of BMP4-exposed UGS in organ culture and show that the effects of BMP4 and NOGGIN activities converge on P63+ epithelial cells located at nascent duct tips. Together, these studies show that the BMP-NOGGIN axis regulates patterning of the ventral prostate, regulates ductal budding, and controls proliferation of P63+ epithelial cells in the nascent ducts of developing mouse prostate. PMID:18028901

  20. Effects of the F-actin inhibitor latrunculin A on the budding yeast Saccharomyces cerevisiae.

    PubMed

    Kopecká, Marie; Yamaguchi, Masashi; Kawamoto, Susumu

    2015-07-01

    Our basic cell biology research was aimed at investigating the effect on eukaryotic cells of the sudden loss of the F-actin cytoskeleton. Cells treated with latrunculin A (LA) in yeast extract peptone dextrose (YEPD) medium were examined using phase-contrast and fluorescent microscopy, freeze-substitution, transmission and scanning electron microscopy, counted using a Bürker chamber and their absorbance measured. The cells responded to the presence of LA, an F-actin inhibitor, with the disappearance of actin patches, actin cables and actin rings. This resulted in the formation of larger spherical cells with irregular morphology in the cell walls and ultrastructural disorder of the cell organelles and secretory vesicles. Instead of buds, LA-inhibited cells formed only 'table-mountain-like' wide flattened swellings without apical growth with a thinner glucan cell-wall layer containing β-1,3-glucan microfibrils. The LA-inhibited cells lysed. Actin cables and patches were required for bud formation and bud growth. In addition, actin patches were required for the formation of β-1,3-glucan microfibrils in the bud cell wall. LA has fungistatic, fungicidal and fungilytic effects on the budding yeast Saccharomyces cerevisiae.

  1. Actin dynamics affect mitochondrial quality control and aging in budding yeast.

    PubMed

    Higuchi, Ryo; Vevea, Jason D; Swayne, Theresa C; Chojnowski, Robert; Hill, Vanessa; Boldogh, Istvan R; Pon, Liza A

    2013-12-01

    Actin cables of budding yeast are bundles of F-actin that extend from the bud tip or neck to the mother cell tip, serve as tracks for bidirectional cargo transport, and undergo continuous movement from buds toward mother cells [1]. This movement, retrograde actin cable flow (RACF), is similar to retrograde actin flow in lamellipodia, growth cones, immunological synapses, dendritic spines, and filopodia [2-5]. In all cases, actin flow is driven by the push of actin polymerization and assembly at the cell cortex, and myosin-driven pulling forces deeper within the cell [6-10]. Therefore, for movement and inheritance from mothers to buds, mitochondria must "swim upstream" against the opposing force of RACF [11]. We find that increasing RACF rates results in increased fitness of mitochondria inherited by buds and that the increase in mitochondrial fitness leads to extended replicative lifespan and increased cellular healthspan. The sirtuin SIR2 is required for normal RACF and mitochondrial fitness, and increasing RACF rates in sir2Δ cells increases mitochondrial fitness and cellular healthspan but does not affect replicative lifespan. These studies support the model that RACF serves as a filter for segregation of fit from less-fit mitochondria during inheritance, which controls cellular lifespan and healthspan. They also support a role for Sir2p in these processes.

  2. Characterization of Flower-Bud Transcriptome and Development of Genic SSR Markers in Asian Lotus (Nelumbo nucifera Gaertn.)

    PubMed Central

    Zhang, Weiwei; Tian, Daike; Huang, Xiu; Xu, Yuxian; Mo, Haibo; Liu, Yanbo; Meng, Jing; Zhang, Dasheng

    2014-01-01

    Background Asian lotus (Nelumbo nucifera Gaertn.) is the national flower of India, Vietnam, and one of the top ten traditional Chinese flowers. Although lotus is highly valued for its ornamental, economic and cultural uses, genomic information, particularly the expressed sequence based (genic) markers is limited. High-throughput transcriptome sequencing provides large amounts of transcriptome data for promoting gene discovery and development of molecular markers. Results In this study, 68,593 unigenes were assembled from 1.34 million 454 GS-FLX sequence reads of a mixed flower-bud cDNA pool derived from three accessions of N. nucifera. A total of 5,226 SSR loci were identified, and 3,059 primer pairs were designed for marker development. Di-nucleotide repeat motifs were the most abundant type identified with a frequency of 65.2%, followed by tri- (31.7%), tetra- (2.1%), penta- (0.5%) and hexa-nucleotide repeats (0.5%). A total of 575 primer pairs were synthesized, of which 514 (89.4%) yielded PCR amplification products. In eight Nelumbo accessions, 109 markers were polymorphic. They were used to genotype a sample of 44 accessions representing diverse wild and cultivated genotypes of Nelumbo. The number of alleles per locus varied from 2 to 9 alleles and the polymorphism information content values ranged from 0.6 to 0.9. We performed genetic diversity analysis using 109 polymorphic markers. A UPGMA dendrogram was constructed based on Jaccard’s similarity coefficients revealing distinct clusters among the 44 accessions. Conclusions Deep transcriptome sequencing of lotus flower buds developed 3,059 genic SSRs, making a significant addition to the existing SSR markers in lotus. Among them, 109 polymorphic markers were successfully validated in 44 accessions of Nelumbo. This comprehensive set of genic SSR markers developed in our study will facilitate analyses of genetic diversity, construction of linkage maps, gene mapping, and marker-assisted selection breeding for

  3. Nicotine concentration in leaves of flue-cured tobacco plants as affected by removal of the shoot apex and lateral buds.

    PubMed

    Wang, Shu-Sheng; Shi, Qiu-Mei; Li, Wen-Qing; Niu, Jun-Fang; Li, Chun-Jian; Zhang, Fu-Suo

    2008-08-01

    It is believed that the nicotine concentration in tobacco is closely correlated with the amount of nitrogen (N) supplied. On the other hand, N uptake mainly occurs at the early growth stage, whereas nicotine concentration increases at the late growth stage, especially after removing the shoot apex. To identify the causes of the increased nicotine concentration in tobacco plants, and to compare the effects of different ways of mechanical wounding on nicotine concentration, field experiments were carried out in Fuzhou, Fujian Province in 2003 and 2004. Excision of the shoot apex had almost no influence on N content in the plant; however, it caused dramatic increases in nicotine concentration in leaves, especially in the middle and upper leaves. An additional increase of the nicotine concentration was obtained by removal of axillary buds. The wounding caused by routine leaf harvests, however, did not change the leaf nicotine concentration, and neither did reducing leaf harvest times. The present results revealed no direct relationship between N supply and nicotine concentration in tobacco leaves, and indicate that not all kinds of mechanical wounding were capable of stimulating nicotine synthesis in tobacco plants. Since nicotine production is highly dependent on the removal of apical meristems and hence on the major sources of auxin in the plant, and application of 1-naphthylacetic acid onto the cut surface of the stem after removing the shoot apex markedly decreased the nicotine concentration in different leaves and the total nicotine content in the plant, the results suggest that decreased auxin supply caused by removal of the shoot apex as a kind of mechanical wounding might regulate nicotine synthesis in the roots of tobacco plants.

  4. How to pattern a leaf.

    PubMed

    Bolduc, N; O'Connor, D; Moon, J; Lewis, M; Hake, S

    2012-01-01

    Leaf development presents a tremendous resource for tackling the question of patterning in biology. Leaves can be simple or highly dissected. They may have elaborated parts such as the tendrils of a pea leaf or the rolled blade of a carnivorous pitcher plant. Despite the variation in size, shape, and function, all leaves initiate in the same manner: from the flanks of a meristem. The maize leaf is useful for analysis of patterning due to the wealth of mutants and the distinct tissues along the proximal distal axis. The blade is distal, the sheath is proximal, and the ligule forms at the blade/sheath boundary. Establishment of this boundary involves the transcription factors LIGULELESS1 and LIGULELESS2 and the kinase LIGULELESS NARROW. The meristem-specific protein KNOTTED1 (KN1) binds and modulates the lg2 gene. Given the localization of KN1 at the proximal end of the leaf from the time of inception, we hypothesize that KN1 has a role in establishing the very proximal end of the leaf, whereas an auxin maximum guides the growing distal tip. PMID:23174765

  5. Progress and renewal in gustation: new insights into taste bud development.

    PubMed

    Barlow, Linda A

    2015-11-01

    The sense of taste, or gustation, is mediated by taste buds, which are housed in specialized taste papillae found in a stereotyped pattern on the surface of the tongue. Each bud, regardless of its location, is a collection of ∼100 cells that belong to at least five different functional classes, which transduce sweet, bitter, salt, sour and umami (the taste of glutamate) signals. Taste receptor cells harbor functional similarities to neurons but, like epithelial cells, are rapidly and continuously renewed throughout adult life. Here, I review recent advances in our understanding of how the pattern of taste buds is established in embryos and discuss the cellular and molecular mechanisms governing taste cell turnover. I also highlight how these findings aid our understanding of how and why many cancer therapies result in taste dysfunction.

  6. Malformation of gynoecia impedes fertilisation in bud-flowering Calluna vulgaris.

    PubMed

    Behrend, A; Borchert, T; Müller, A; Tänzer, J; Hohe, A

    2013-01-01

    In Calluna vulgaris, a common bedding plant during autumn in the northern hemisphere, the bud-blooming mutation of flower morphology is of high economic importance. Breeding of new bud-blooming cultivars suffers from poor seed set in some of the desirable bud-flowering crossing partners. In the current study, fertilisation and seed development in genotypes with good or poor seed set were monitored in detail in order to examine pre- and post-zygotic cross breeding incompatibilities. Whereas no distinct differences were detected in seed development, pollen tube growth was impeded in the pistils of genotypes characterised by poor seed set. Detailed microscopic analysis revealed malformations of the gynoecia due to imperfect fusion of carpels. Hence, a pre-zygotic mechanism hindering pollen tube growth due to malformation of gynoecia was deduced. An interaction of putative candidate genes involved in malformation of gynoecia with floral organ identity genes controlling the flower architecture is discussed.

  7. Multiple shoot-bud formation and plantlet regeneration on Castanea sativa Mill. seeds in culture.

    PubMed

    Rodríguez, R

    1982-06-01

    Primordial initiation and development of shoot-buds has been accomplished by using shoots derived from chestnut (Castanea sativa Mill) seedlings cultured with added 6-benzylaminopurine (BAP). Germination of chestnut seeds in the presence of BAP (4 - 40 μM) stimulated varying numbers of shoot-buds in those areas of the main axis that were favorably altered. When excised single shoots from these treated seeds were subcultured on a fresh medium containing BAP (4 - 40 μM) continual shoot production was observed. Bud growth and shoot elongation were stimulated by transferring cultures to a reduced concentration of BAP (2 μM) plus indole-3-butyric acid (IBA 0.4 μM). Plant regeneration occurred in the presence of IBA (0.8 μM) after a preconditioning treatment in which naphthaleneacetic acid (NAA 50 μM) and kinetin (k 2 μM) were applied to the tissue culture shoots for 7 days in light.

  8. Acaricidal activities of clove bud oil and red thyme oil using microencapsulation against HDMs.

    PubMed

    Kim, Joo Ran; Sharma, Suraj

    2011-01-01

    The purpose of this study was to produce a safer microcapsule loaded with clove bud oil and red thyme oil to reduce the population of house dust mites (HDMs). Gelatin-based microcapsules 4-85 µm in size were created, with agitation speed and type of oil playing a critical role in governing their size. Microcapsules made up of single spherical units less than 30 µm in diameter remained separate on the fibre, whereas larger microcapsules of over 30 µm ruptured or aggregated. Thermogravimetric analysis (TGA) demonstrated that microcapsules containing red thyme oil showed a more consistent range of oil loading, from 50 to 80%, than microcapsules containing clove bud oil, which ranged from 30 to 80% (more deviated). Mortality tests on Dermatophagoides farinae conducted on fabric with attached microcapsules showed that clove bud oil, containing a more phenolic monoterpenoid (eugenol), was more effective at reducing the live HDMs (94% mortality).

  9. Progress and renewal in gustation: new insights into taste bud development.

    PubMed

    Barlow, Linda A

    2015-11-01

    The sense of taste, or gustation, is mediated by taste buds, which are housed in specialized taste papillae found in a stereotyped pattern on the surface of the tongue. Each bud, regardless of its location, is a collection of ∼100 cells that belong to at least five different functional classes, which transduce sweet, bitter, salt, sour and umami (the taste of glutamate) signals. Taste receptor cells harbor functional similarities to neurons but, like epithelial cells, are rapidly and continuously renewed throughout adult life. Here, I review recent advances in our understanding of how the pattern of taste buds is established in embryos and discuss the cellular and molecular mechanisms governing taste cell turnover. I also highlight how these findings aid our understanding of how and why many cancer therapies result in taste dysfunction. PMID:26534983

  10. Existence of subtypes of gustducin-immunoreactive cells in the vallate taste bud of guinea pigs.

    PubMed

    Ohkubo, Yasuhiro; Yokosuka, Hiroyuki; Kumakura, Masahiko; Yoshie, Sumio

    2007-12-01

    Vallate taste buds in the guinea-pig tongue were immunohistochemically investigated with regard to the colocalization of gustducin with calbindin-D28K (=spot 35 protein) and type III inositol triphosphate receptor (IP(3)R-3) in order to characterize gustducin-immunoreactive cells. Individual taste bud cells ranged from totally immunopositive to totally immunonegative for these three molecules. Among the immunoreactive cells, gustducin-immunoreactive cells were divided into two cell populations: one immunopositive and the other immunonegative for calbindin-D28K. Applying our previous data to the present results, the former cells should belong to Type III cells designated by electron microscopy. This finding provides new evidence regarding the taste bud types of cells expressing gustducin in the guinea pig. PMID:18431029

  11. Ferrite-Cored Solenoidal Induction Coil Sensor for BUD (MM-1667)

    SciTech Connect

    Morrison, F.; Becker, A.; Conti, U.; Gasperikova, E.

    2011-06-15

    We have designed and lab tested a new ferrite cored induction coil sensor for measuring the secondary fields from metallic UXO with the BUD system. The objective was to replace the 5-inch diameter air-cored coils in the BUD system with smaller sensors that would allow the placement of multiple sensors in the smaller package of the new BUD hand-held system. A ferrite-cored solenoidal coil of length L can easily be made to have sensitivity and noise level roughly the same as an air-cored coil of a diameter on the same order as L. A ferrite-cored solenoidal coil can easily have a feedback configuration to achieve critical damping. The feedback configuration leads to a very stable response. Feedback ferrite-cored solenoidal coils show very little interaction as long as they are separated by one half their length.

  12. Lamin Mutations Accelerate Aging via Defective Export of Mitochondrial mRNAs through Nuclear Envelope Budding.

    PubMed

    Li, Yihang; Hassinger, Linda; Thomson, Travis; Ding, Baojin; Ashley, James; Hassinger, William; Budnik, Vivian

    2016-08-01

    Defective RNA metabolism and transport are implicated in aging and degeneration [1, 2], but the underlying mechanisms remain poorly understood. A prevalent feature of aging is mitochondrial deterioration [3]. Here, we link a novel mechanism for RNA export through nuclear envelope (NE) budding [4, 5] that requires A-type lamin, an inner nuclear membrane-associated protein, to accelerated aging observed in Drosophila LaminC (LamC) mutations. These LamC mutations were modeled after A-lamin (LMNA) mutations causing progeroid syndromes (PSs) in humans. We identified mitochondrial assembly regulatory factor (Marf), a mitochondrial fusion factor (mitofusin), as well as other transcripts required for mitochondrial integrity and function, in a screen for RNAs that exit the nucleus through NE budding. PS-modeled LamC mutations induced premature aging in adult flight muscles, including decreased levels of specific mitochondrial protein transcripts (RNA) and progressive mitochondrial degradation. PS-modeled LamC mutations also induced the accelerated appearance of other phenotypes associated with aging, including a progressive accumulation of polyubiquitin aggregates [6, 7] and myofibril disorganization [8, 9]. Consistent with these observations, the mutants had progressive jumping and flight defects. Downregulating marf alone induced the above aging defects. Nevertheless, restoring marf was insufficient for rescuing the aging phenotypes in PS-modeled LamC mutations, as other mitochondrial RNAs are affected by inhibition of NE budding. Analysis of NE budding in dominant and recessive PS-modeled LamC mutations suggests a mechanism by which abnormal lamina organization prevents the egress of these RNAs via NE budding. These studies connect defects in RNA export through NE budding to progressive loss of mitochondrial integrity and premature aging. PMID:27451905

  13. RNA-Seq-based transcriptome analysis of dormant flower buds of Chinese cherry (Prunus pseudocerasus).

    PubMed

    Zhu, Youyin; Li, Yongqiang; Xin, Dedong; Chen, Wenrong; Shao, Xu; Wang, Yue; Guo, Weidong

    2015-01-25

    Bud dormancy is a critical biological process allowing Chinese cherry (Prunus pseudocerasus) to survive in winter. Due to the lake of genomic information, molecular mechanisms triggering endodormancy release in flower buds have remained unclear. Hence, we used Illumina RNA-Seq technology to carry out de novo transcriptome assembly and digital gene expression profiling of flower buds. Approximately 47million clean reads were assembled into 50,604 sequences with an average length of 837bp. A total of 37,650 unigene sequences were successfully annotated. 128 pathways were annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and metabolic, biosynthesis of second metabolite and plant hormone signal transduction accounted for higher percentage in flower bud. In critical period of endodormancy release, 1644, significantly differentially expressed genes (DEGs) were identified from expression profile. DEGs related to oxidoreductase activity were especially abundant in Gene Ontology (GO) molecular function category. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that DEGs were involved in various metabolic processes, including phytohormone metabolism. Quantitative real-time PCR (qRT-PCR) analysis indicated that levels of DEGs for abscisic acid and gibberellin biosynthesis decreased while the abundance of DEGs encoding their degradation enzymes increased and GID1 was down-regulated. Concomitant with endodormancy release, MADS-box transcription factors including P. pseudocerasus dormancy-associated MADS-box (PpcDAM), Agamous-like2, and APETALA3-like genes, shown remarkably epigenetic roles. The newly generated transcriptome and gene expression profiling data provide valuable genetic information for revealing transcriptomic variation during bud dormancy in Chinese cherry. The uncovered data should be useful for future studies of bud dormancy in Prunus fruit trees lacking genomic information.

  14. Dormancy release and chilling requirement of buds of latitudinal ecotypes of Betula pendula and B. pubescens.

    PubMed

    Myking, T; Heide, O M

    1995-11-01

    Bud burst and dormancy release of latitudinal ecotypes of Betula pendula Roth and B. pubescens Ehrh. from Denmark ( approximately 56 degrees N), mid-Norway ( approximately 64 degrees N) and northern Norway ( approximately 69 degrees N) were studied in controlled environments. Dormant seedlings were chilled at 0, 5 or 10 degrees C from October 4 onward and then, at monthly intervals from mid-November to February, batches of seedlings were held at 15 degrees C in an 8-h (SD) or 24-h (LD) photoperiod to permit flushing. A decline in days to bud burst occurred with increasing chilling time in all ecotypes. In November, after 44 chilling days, time to bud burst was least in plants chilled at 0 and 5 degrees C. The difference diminished with increasing chilling time, and in February, after 136 chilling days, bud burst was earliest in plants chilled at 10 degrees C. Long photoperiods during flushing significantly reduced thermal time after short chilling periods (44 and 74 days), but had no effect when the chilling requirement was fully met after 105 or more chilling days. No significant difference in these responses was found between the two species. In both species, chilling requirement decreased significantly with increasing latitude of origin. Bud burst was normal in seedlings overwintered at 12 degrees C, but was erratic and delayed in seedlings overwintered at 15 and especially at 21 degrees C, indicating that the critical overwintering temperature is between 12 and 15 degrees C. We conclude that there is little risk of a chilling deficit in birch under Scandinavian winter conditions even with a climatic warming of 7-8 degrees C. The likely effects of a climatic warming include earlier bud burst, a longer growing season and increased risk of spring frost injury, especially in high latitude ecotypes. PMID:14965987

  15. TCDD inhibition of canonical Wnt signaling disrupts prostatic bud formation in mouse urogenital sinus.

    PubMed

    Branam, Amanda M; Davis, Nicole M; Moore, Robert W; Schneider, Andrew J; Vezina, Chad M; Peterson, Richard E

    2013-05-01

    In mice, in utero exposure to 2,3,7,8-tetrachlorodibenzo-p- dioxin (TCDD) reduces the number of dorsolateral prostatic buds resulting in a smaller dorsolateral prostate and prevents formation of ventral buds culminating in ventral prostate agenesis. The genes and signaling pathways affected by TCDD that are responsible for disrupting prostate development are largely unknown. Here we show that treatment of urogenital sinus (UGS) organ cultures with known inhibitors of canonical Wnt signaling also inhibits prostatic bud formation. In support of the hypothesis that TCDD decreases canonical Wnt signaling, we identify inhibitory effects of TCDD on multiple components of the canonical Wnt signaling pathway in the UGS that temporally coincide with the inhibitory effect of TCDD on prostatic bud formation: (1) expression of R-spondins (Rspo2 and Rspo3) that promote canonical Wnt signaling is reduced; (2) expression of Lef1, Tcf1, and Wif1, established canonical Wnt target genes, is decreased; (3) expression of Lgr5, a RSPO receptor that activates canonical Wnt signaling, is reduced; and (4) expression of Dickkopfs (Dkks), inhibitors of canonical Wnt signaling, is not increased by TCDD. Thus, the TCDD-induced reduction in canonical Wnt signaling is associated with a decrease in activators (Rspo2 and Rspo3) rather than an increase in inhibitors (Dkk1 and Dkk2) of the pathway. This study focuses on determining whether treatment of TCDD-exposed UGS organ cultures with RSPO2 and/or RSPO3 is capable of rescuing the inhibitory effects of TCDD on canonical Wnt signaling and prostatic bud formation. We discovered that each RSPO alone or in combination partially rescues TCDD inhibition of both canonical Wnt signaling and prostatic bud formation.

  16. Expression of NUCB2/nesfatin-1 in the taste buds of rats.

    PubMed

    Cao, Xun; Zhou, Xiao; Cao, Yang; Liu, Xiao-Min; Zhou, Li-Hong

    2016-01-01

    Nesfatin-1, an anorexigenic peptide derived from nucleobindin 2 (NUCB2), is closely involved in feeding behavior, glycometabolism, and satiety regulation. Some studies show that NUCB2/nesfatin-1 is highly expressed and interacts with many appetite-regulating peptides that are co-expressed in the gastrointestinal tract. However, it remains unclear whether nesfatin-1 is expressed and interacts similarly in taste buds. Glucagon-like peptide-1 (GLP-1), a well-known appetite down-regulating peptide, is associated with changes in the expression of nesfatin-1. Therefore, we measured the expression of the NUCB2 gene and the distribution of nesfatin-1-immunoreactive cells and investigated whether these variables change in taste buds of circumvallate papillae (CV) from rats with type 2 diabetes (T2DM) after treatment with liraglutide, a GLP-1 receptor agonist. The results showed that nesfatin-1 immunoreactive cells were localized in the taste buds of rat CV. Quantitative RT-PCR showed a significantly lower expression of NUCB2 mRNA in the taste buds of diabetic control rats (T2DM-C) than in those of the normal control group (NC) and a higher level of NUCB2 in the liraglutide treated group (T2DM + LIR) than either the T2DM-C or the NC groups. Changes in the expression of NUCB2 in the rat hypothalamus were opposite to those in CV taste buds. In summary, we found that rat CV taste buds express NUCB2/nesfatin-1, and that this expression decreases significantly in T2DM and increases after treatment with liraglutide in rat CV. This indicates that nesfatin-1 could be an important factor in the regulation of gustatory function, feeding and perhaps energy homeostasis. PMID:26522144

  17. GC-MS analysis of compounds extracted from buds of Populus balsamifera and Populus nigra.

    PubMed

    Isidorov, Valery A; Vinogorova, Vera T

    2003-01-01

    The composition of hexane and ether extracts from buds of two poplar species (Populus balsamifera and P. nigra) was investigated by GC-MS method. In hexane extracts, 54 "neutral" compounds were recorded. The greatest amounts of them are sesquiterpenes and n-alkanes. Among 56 components of ether extracts, many aliphatic acids and hydroxyacids were detected. However, the main fraction consists of phenolcarboxylic acids, substituted cinnamic acids, and their esters. It was established that chemotaxonomic differences between Populus balsamifera and P. nigra are observed in the case of both hexane and ether bud extracts.

  18. Project BudBurst - Meeting the Needs of Climate Change Educators and Scientists

    NASA Astrophysics Data System (ADS)

    Henderson, S.

    2015-12-01

    It is challenging for many to get a sense of what climate change means as long periods of time are involved - like decades - which can be difficult to grasp. However, there are a number of citizen science based projects, including NEON's Project BudBurst, that provide the opportunity for both learning about climate change and advancing scientific knowledge. In this presentation, we will share lessons learned from Project BudBurst. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events and to increase climate literacy. Project BudBurst is important from an educational perspective, but also because it enables scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants at a continental-scale; and 3) increase science literacy by engaging participants in the scientific process. It was important to better understand if and how Project BudBurst is meeting its goals. Specifically, does participation by non-experts advance scientific knowledge? Does participation advance educational goals and outcomes? Is participation an effective approach to advance/enhance science education in both formal and informal settings? Critical examination of Project BudBurst supports advancement of scientific knowledge and realization of educational objectives. Citizen science collected observations and measurements are being used by scientists as evidenced by the increase of such data in scientific publication. In addition, we found that there is a significant increase in educators utilizing citizen science as part of their instruction. Part of this increase is due to the resources and professional development materials available to educators. Working with partners also demonstrated that the needs of both science and

  19. Organogenesis during budding and lophophoral morphology of Hislopia malayensis Annandale, 1916 (Bryozoa, Ctenostomata)

    PubMed Central

    2011-01-01

    Background Bryozoans represent a large lophotrochozoan phylum with controversially discussed phylogenetic position and in group relationships. Developmental processes during the budding of bryozoans are in need for revision. Just recently a study on a phylactolaemate bryozoan gave a comprehensive basis for further comparisons among bryozoans. The aim of this study is to gain more insight into developmental patterns during polypide formation in the budding process of bryozoans. Particular focus is laid upon the lophophore, also its condition in adults. For this purpose we studied organogenesis during budding and lophophoral morphology of the ctenostome bryozoan Hislopia malayensis. Results Polypide buds develop on the frontal side of the developing cystid as proliferation of the epidermal and peritoneal layer. Early buds develop a lumen bordered by the inner budding layer resulting in the shape of a two-layered sac or vesicle. The hind- and midgut anlagen are first to develop as outpocketing of the prospective anal area. These grow towards the prospective mouth area where a comparatively small invagination marks the formation of the foregut. In between the prospective mouth and anus the ganglion develops as an invagination protruding in between the developing gut loop. Lophophore development starts with two lateral ridges which form tentacles very early. At the lophophoral base, intertentacular pits, previously unknown for ctenostomes, develop. The ganglion develops a circum-oral nerve ring from which the tentacle nerves branch off in adult zooids. Tentacles are innervated by medio-frontal nerves arising directly from the nerve ring, and medio-frontal and abfrontal nerves which originate both from an intertentacular fork. Conclusions We are able to show distinct similarities among bryozoans in the formation of the different organ systems: a two-layered vesicle-like early bud, the ganglion forming as an invagination of the epidermal layer in between the prospective

  20. Live-Cell Imaging of Mitochondria and the Actin Cytoskeleton in Budding Yeast.

    PubMed

    Higuchi-Sanabria, Ryo; Swayne, Theresa C; Boldogh, Istvan R; Pon, Liza A

    2016-01-01

    Maintenance and regulation of proper mitochondrial dynamics and functions are necessary for cellular homeostasis. Numerous diseases, including neurodegeneration and muscle myopathies, and overall cellular aging are marked by declining mitochondrial function and subsequent loss of multiple other cellular functions. For these reasons, optimized protocols are needed for visualization and quantification of mitochondria and their function and fitness. In budding yeast, mitochondria are intimately associated with the actin cytoskeleton and utilize actin for their movement and inheritance. This chapter describes optimal approaches for labeling mitochondria and the actin cytoskeleton in living budding yeast cells, for imaging the labeled cells, and for analyzing the resulting images. PMID:26498778

  1. Biophysical control of leaf temperature

    NASA Astrophysics Data System (ADS)

    Dong, N.; Prentice, I. C.; Wright, I. J.

    2014-12-01

    In principle sunlit leaves can maintain their temperatures within a narrower range than ambient temperatures. This is an important and long-known (but now overlooked) prediction of energy balance theory. Net radiation at leaf surface in steady state (which is reached rapidly) must be equal to the combination of sensible and latent heat exchanges with surrounding air, the former being proportional to leaf-to-air temperature difference (ΔT), the latter to the transpiration rate. We present field measurements of ΔT which confirm the existence of a 'crossover temperature' in the 25-30˚C range for species in a tropical savanna and a tropical rainforest environment. This finding is consistent with a simple representation of transpiration as a function of net radiation and temperature (Priestley-Taylor relationship) assuming an entrainment factor (ω) somewhat greater than the canonical value of 0.26. The fact that leaves in tropical forests are typically cooler than surrounding air, often already by solar noon, is consistent with a recently published comparison of MODIS day-time land-surface temperatures with air temperatures. Theory further predicts a strong dependence of leaf size (which is inversely related to leaf boundary-layer conductance, and therefore to absolute magnitude of ΔT) on moisture availability. Theoretically, leaf size should be determined by either night-time constraints (risk of frost damage to active leaves) or day-time constraints (risk of heat stress damage),with the former likely to predominate - thereby restricting the occurrence of large leaves - at high latitudes. In low latitudes, daytime maximum leaf size is predicted to increase with temperature, provided that water is plentiful. If water is restricted, however, transpiration cannot proceed at the Priestley-Taylor rate, and it quickly becomes advantageous for plants to have small leaves, which do not heat up much above the temperature of their surroundings. The difference between leaf

  2. Primary culture of rat taste bud cells that retain molecular markers for taste buds and permit functional expression of foreign genes.

    PubMed

    Kishi, M; Emori, Y; Tsukamoto, Y; Abe, K

    2001-01-01

    Taste buds are constituted of several kinds of cells which have distinct characteristics and play different roles. In this study, we have established an in vitro culture system by optimizing the method for isolating the cells and by selecting culture media and reagents effective for cell viability and adhesion. As a result, the taste bud cells were adhesive and viable for over 3 days when cultured onto Matrigel-coated dishes in medium based on keratinocyte growth medium. The cells retained molecular markers for both the cytoskeleton and intracellular signaling such as cytokeratin 8 and phospholipase Cbeta2. In addition, three intracellular signaling molecules, gustducin, phospholipase Cbeta2, and inositol 1,4,5-trisphosphate receptor type 3, are expressed in the same correlation as those in vivo, although the ratio of signaling molecule-positive cells vs. total cells was somewhat lower in the culture than in vivo. Next, we tried several methods to introduce foreign genes into the cells, and obtained a greater than 90% efficiency of introduction using an adenovirus vector. Finally, we show that an exogenously expressed myc-tagged alpha1A-adrenoceptor sorts into the plasma membrane, and transduces a ligand-dependent signal resulting in intracellular [Ca(2+)] increase in about half of the infected cells. These results suggest that taste bud cells after 3 days of culture retain characteristic molecular markers, and may prove useful for describing the molecular and physiological features of taste bud cells, and that these cells can be further manipulated by adenovirus-mediated gene introduction. PMID:11564431

  3. How strong is intracanopy leaf plasticity in temperate deciduous trees?

    PubMed

    Sack, Lawren; Melcher, Peter J; Liu, Wendy H; Middleton, Erin; Pardee, Tyler

    2006-06-01

    Intracanopy plasticity in tree leaf form is a major determinant of whole-plant function and potentially of forest understory ecology. However, there exists little systematic information for the full extent of intracanopy plasticity, whether it is linked with height and exposure, or its variation across species. For arboretum-grown trees of six temperate deciduous species averaging 13-18 m in height, we quantified intracanopy plasticity for 11 leaf traits across three canopy locations (basal-interior, basal-exterior, and top). Plasticity was pronounced across the canopy, and maximum likelihood analyses indicated that plasticity was primarily linked with irradiance, regardless of height. Intracanopy plasticity (the quotient of values for top and basal-interior leaves) was often similar across species and statistically indistinguishable across species for several key traits. At canopy tops, the area of individual leaves was on average 0.5-0.6 times that at basal-interior, stomatal density 1.1-1.5 times higher, sapwood cross-sectional area up to 1.7 times higher, and leaf mass per area 1.5-2.2 times higher; guard cell and stomatal pore lengths were invariant across the canopy. Species differed in intracanopy plasticity for the mass of individual leaves, leaf margin dissection, ratio of leaf to sapwood areas, and stomatal pore area per leaf area; plasticity quotients ranged only up to ≈2. Across the six species, trait plasticities were uncorrelated and independent of the magnitude of the canopy gradient in irradiance or height and of the species' light requirements for regeneration. This convergence across species indicates general optimization or constraints in development, resulting in a bounded plasticity that improves canopy performance.

  4. Structure of a Bud6/actin complex reveals a novel WH2-like actin monomer recruitment motif

    PubMed Central

    Park, Eunyoung; Graziano, Brian R.; Zheng, Wei; Garabedian, Mikael; Goode, Bruce L.; Eck, Michael J.

    2015-01-01

    SUMMARY In budding yeast, the actin-binding protein Bud6 cooperates with formins Bni1 and Bnr1 to catalyze the assembly of actin filaments. The nucleation-enhancing activity of Bud6 requires both a “core” domain that binds to the formin and a “flank” domain that binds monomeric actin. Here we describe the structure of the Bud6 flank domain in complex with actin. Two helices in Bud6flank interact with actin; one binds in a groove at the barbed-end of the actin monomer in a manner closely resembling the helix of WH2 domains, a motif found in many actin nucleation factors. The second helix rises along the face of actin. Mutational analysis verifies the importance of these Bud6-actin contacts for nucleation-enhancing activity. The Bud6 binding site on actin overlaps with that of the formin FH2 domain and is also incompatible with inter-subunit contacts in F-actin, suggesting that Bud6 interacts only transiently with actin monomers during filament nucleation. PMID:26118535

  5. Structure of a Bud6/Actin Complex Reveals a Novel WH2-like Actin Monomer Recruitment Motif.

    PubMed

    Park, Eunyoung; Graziano, Brian R; Zheng, Wei; Garabedian, Mikael; Goode, Bruce L; Eck, Michael J

    2015-08-01

    In budding yeast, the actin-binding protein Bud6 cooperates with formins Bni1 and Bnr1 to catalyze the assembly of actin filaments. The nucleation-enhancing activity of Bud6 requires both a "core" domain that binds to the formin and a "flank" domain that binds monomeric actin. Here, we describe the structure of the Bud6 flank domain in complex with actin. Two helices in Bud6(flank) interact with actin; one binds in a groove at the barbed end of the actin monomer in a manner closely resembling the helix of WH2 domains, a motif found in many actin nucleation factors. The second helix rises along the face of actin. Mutational analysis verifies the importance of these Bud6-actin contacts for nucleation-enhancing activity. The Bud6 binding site on actin overlaps with that of the formin FH2 domain and is also incompatible with inter-subunit contacts in F-actin, suggesting that Bud6 interacts only transiently with actin monomers during filament nucleation.

  6. Neurturin-GFRalpha2 signaling controls liver bud migration along the ductus venosus in the chick embryo.

    PubMed

    Tatsumi, Norifumi; Miki, Rika; Katsu, Kenjiro; Yokouchi, Yuji

    2007-07-01

    During chick liver development, the liver bud arises from the foregut, invaginates into the septum transversum, and elongates along and envelops the ductus venosus. However, the mechanism of liver bud migration is only poorly understood. Here, we demonstrate that a GDNF family ligand involved in neuronal outgrowth and migration, neurturin (NRTN), and its receptor, GFRalpha2, are essential for liver bud migration. In the chick embryo, we found that GFRalpha2 was expressed in the liver bud and that NRTN was expressed in the endothelial cells of the ductus venosus. Inhibition of GFRalpha2 signaling suppressed liver bud elongation along the ductus venous without affecting cell proliferation and apoptosis. Moreover, ectopic expression of NRTN perturbed the directional migration along the ductus venosus, leading to splitting or ectopic branching of the liver. We showed that liver buds selectively migrated toward an NRTN-soaked bead in vitro. These data represent a new model for liver bud migration: NRTN secreted from endothelial cells functions as a chemoattractant to direct the migration of the GFRalpha2-expressing liver bud in early liver development.

  7. Effect of geographical location, year and cultivar on survival of Malus sp. dormant buds stored in vapors of liquid nitrogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Woody plant crop germplasm is often grown in different geographical locations with various climatic conditions. One of the methods of a secure back-up of tree crop is storing winter buds in liquid nitrogen. It was thought that dormant buds from colder climates would have a higher post storage surviv...

  8. A septin from the filamentous fungus A. nidulans induces atypical pseudohyphae in the budding yeast S. cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Septins were first discovered in Saccharomyces cerevisiae where they form a scaffold that organizes the bud site and are a component of the morphogenesis checkpoint that coordinates budding with mitosis. Five of the seven S. cerevisiae septins (Cdc3, Cdc10, Cdc11, Cdc12 and Shs1) colocalize as a rin...

  9. Early Autumn Senescence in Red Maple (Acer rubrum L.) Is Associated with High Leaf Anthocyanin Content.

    PubMed

    Anderson, Rachel; Ryser, Peter

    2015-08-05

    Several theories exist about the role of anthocyanins in senescing leaves. To elucidate factors contributing to variation in autumn leaf anthocyanin contents among individual trees, we analysed anthocyanins and other leaf traits in 27 individuals of red maple (Acer rubrum L.) over two growing seasons in the context of timing of leaf senescence. Red maple usually turns bright red in the autumn, but there is considerable variation among the trees. Leaf autumn anthocyanin contents were consistent between the two years of investigation. Autumn anthocyanin content strongly correlated with degree of chlorophyll degradation mid to late September, early senescing leaves having the highest concentrations of anthocyanins. It also correlated positively with leaf summer chlorophyll content and dry matter content, and negatively with specific leaf area. Time of leaf senescence and anthocyanin contents correlated with soil pH and with canopy openness. We conclude that the importance of anthocyanins in protection of leaf processes during senescence depends on the time of senescence. Rather than prolonging the growing season by enabling a delayed senescence, autumn anthocyanins in red maple in Ontario are important when senescence happens early, possibly due to the higher irradiance and greater danger of oxidative damage early in the season.

  10. Modeling development and quantitative trait mapping reveal independent genetic modules for leaf size and shape.

    PubMed

    Baker, Robert L; Leong, Wen Fung; Brock, Marcus T; Markelz, R J Cody; Covington, Michael F; Devisetty, Upendra K; Edwards, Christine E; Maloof, Julin; Welch, Stephen; Weinig, Cynthia

    2015-10-01

    Improved predictions of fitness and yield may be obtained by characterizing the genetic controls and environmental dependencies of organismal ontogeny. Elucidating the shape of growth curves may reveal novel genetic controls that single-time-point (STP) analyses do not because, in theory, infinite numbers of growth curves can result in the same final measurement. We measured leaf lengths and widths in Brassica rapa recombinant inbred lines (RILs) throughout ontogeny. We modeled leaf growth and allometry as function valued traits (FVT), and examined genetic correlations between these traits and aspects of phenology, physiology, circadian rhythms and fitness. We used RNA-seq to construct a SNP linkage map and mapped trait quantitative trait loci (QTL). We found genetic trade-offs between leaf size and growth rate FVT and uncovered differences in genotypic and QTL correlations involving FVT vs STPs. We identified leaf shape (allometry) as a genetic module independent of length and width and identified selection on FVT parameters of development. Leaf shape is associated with venation features that affect desiccation resistance. The genetic independence of leaf shape from other leaf traits may therefore enable crop optimization in leaf shape without negative effects on traits such as size, growth rate, duration or gas exchange.

  11. Early Autumn Senescence in Red Maple (Acer rubrum L.) Is Associated with High Leaf Anthocyanin Content

    PubMed Central

    Anderson, Rachel; Ryser, Peter

    2015-01-01

    Several theories exist about the role of anthocyanins in senescing leaves. To elucidate factors contributing to variation in autumn leaf anthocyanin contents among individual trees, we analysed anthocyanins and other leaf traits in 27 individuals of red maple (Acer rubrum L.) over two growing seasons in the context of timing of leaf senescence. Red maple usually turns bright red in the autumn, but there is considerable variation among the trees. Leaf autumn anthocyanin contents were consistent between the two years of investigation. Autumn anthocyanin content strongly correlated with degree of chlorophyll degradation mid to late September, early senescing leaves having the highest concentrations of anthocyanins. It also correlated positively with leaf summer chlorophyll content and dry matter content, and negatively with specific leaf area. Time of leaf senescence and anthocyanin contents correlated with soil pH and with canopy openness. We conclude that the importance of anthocyanins in protection of leaf processes during senescence depends on the time of senescence. Rather than prolonging the growing season by enabling a delayed senescence, autumn anthocyanins in red maple in Ontario are important when senescence happens early, possibly due to the higher irradiance and greater danger of oxidative damage early in the season. PMID:27135339

  12. A general method for calculating the optimal leaf longevity from the viewpoint of carbon economy.

    PubMed

    Seki, Motohide; Yoshida, Tomohiko; Takada, Takenori

    2015-09-01

    According to the viewpoint of the optimal strategy theory, a tree is expected to shed its leaves when they no longer contribute to maximisation of net carbon gain. Several theoretical models have been proposed in which a tree was assumed to strategically shed an old deteriorated leaf to develop a new leaf. We mathematically refined an index used in a previous theoretical model [Kikuzawa (Am Nat 138:1250-1263, 1991)] so that the index is exactly proportional to a tree's lifelong net carbon gain. We also incorporated a tree's strategy that determines the timing of leaf expansion, and examined three kinds of strategies. Specifically, we assumed that a new leaf is expanded (1) immediately after shedding of an old leaf, (2) only at the beginning of spring, or (3) immediately after shedding of an old leaf if the shedding occurs during a non-winter season and at the beginning of spring otherwise. We derived a measure of optimal leaf longevity maximising the value of an appropriate index reflecting total net carbon gain and show that use of this index yielded results that are qualitatively consistent with empirical records. The model predicted that expanding a new leaf at the beginning of spring than immediately after shedding usually yields higher carbon gain, and combined strategy of the immediate replacement and the spring flushing earned the highest gain. In addition, our numerical analyses suggested that multiple flushing seen in a few species of subtropical zones can be explained in terms of carbon economy. PMID:25246078

  13. Modeling development and quantitative trait mapping reveal independent genetic modules for leaf size and shape.

    PubMed

    Baker, Robert L; Leong, Wen Fung; Brock, Marcus T; Markelz, R J Cody; Covington, Michael F; Devisetty, Upendra K; Edwards, Christine E; Maloof, Julin; Welch, Stephen; Weinig, Cynthia

    2015-10-01

    Improved predictions of fitness and yield may be obtained by characterizing the genetic controls and environmental dependencies of organismal ontogeny. Elucidating the shape of growth curves may reveal novel genetic controls that single-time-point (STP) analyses do not because, in theory, infinite numbers of growth curves can result in the same final measurement. We measured leaf lengths and widths in Brassica rapa recombinant inbred lines (RILs) throughout ontogeny. We modeled leaf growth and allometry as function valued traits (FVT), and examined genetic correlations between these traits and aspects of phenology, physiology, circadian rhythms and fitness. We used RNA-seq to construct a SNP linkage map and mapped trait quantitative trait loci (QTL). We found genetic trade-offs between leaf size and growth rate FVT and uncovered differences in genotypic and QTL correlations involving FVT vs STPs. We identified leaf shape (allometry) as a genetic module independent of length and width and identified selection on FVT parameters of development. Leaf shape is associated with venation features that affect desiccation resistance. The genetic independence of leaf shape from other leaf traits may therefore enable crop optimization in leaf shape without negative effects on traits such as size, growth rate, duration or gas exchange. PMID:26083847

  14. Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior.

    PubMed

    Badri, Dayakar V; Zolla, Gaston; Bakker, Matthew G; Manter, Daniel K; Vivanco, Jorge M

    2013-04-01

    It is known that environmental factors can affect the biosynthesis of leaf metabolites. Similarly, specific pairwise plant-microbe interactions modulate the plant's metabolome by stimulating production of phytoalexins and other defense-related compounds. However, there is no information about how different soil microbiomes could affect the plant growth and the leaf metabolome. We analyzed experimentally how diverse soil microbiomes applied to the roots of Arabidopsis thaliana were able to modulate plant growth and the leaf metabolome, as assessed by GC-MS analyses. Further, we determined the effects of soil microbiome-driven changes in leaf metabolomics on the feeding behavior of Trichopulsia ni larvae. Soil microbiomes differentially impacted plant growth patterns as well as leaf metabolome composition. Similarly, most microbiome-treated plants showed inhibition to larvae feeding, compared with unamended control plants. Pyrosequencing analysis was conducted to determine the soil microbial composition and diversity of the soils used in this study. Correlation analyses were performed to determine relationships between various factors (soil microbial taxa, leaf chemical components, plant growth patterns and insect feeding behavior) and revealed that leaf amino acid content was positively correlated with both microbiome composition and insect feeding behavior. PMID:23347044

  15. Behavior of Leaf Meristems and Their Modification

    PubMed Central

    Ichihashi, Yasunori; Tsukaya, Hirokazu

    2015-01-01

    A major source of diversity in flowering plant form is the extensive variability of leaf shape and size. Leaf formation is initiated by recruitment of a handful of cells flanking the shoot apical meristem (SAM) to develop into a complex three-dimensional structure. Leaf organogenesis depends on activities of several distinct meristems that are established and spatiotemporally differentiated after the initiation of leaf primordia. Here, we review recent findings in the gene regulatory networks that orchestrate leaf meristem activities in a model plant Arabidopsis thaliana. We then discuss recent key studies investigating the natural variation in leaf morphology to understand how the gene regulatory networks modulate leaf meristems to yield a substantial diversity of leaf forms during the course of evolution. PMID:26648955

  16. Spectral reflectance relationships to leaf water stress

    NASA Technical Reports Server (NTRS)

    Ripple, William J.

    1986-01-01

    Spectral reflectance data were collected from detached snapbean leaves in the laboratory with a multiband radiometer. Four experiments were designed to study the spectral response resulting from changes in leaf cover, relative water content of leaves, and leaf water potential. Spectral regions included in the analysis were red (630-690 nm), NIR (760-900 nm), and mid-IR (2.08-2.35 microns). The red and mid-IR bands showed sensitivity to changes in both leaf cover and relative water content of leaves. The NIR was only highly sensitive to changes in leaf cover. Results provided evidence that mid-IR reflectance was governed primarily by leaf moisture content, although soil reflectance was an important factor when leaf cover was less than 100 percent. High correlations between leaf water potentials and reflectance were attributed to covariances with relative water content of leaves and leaf cover.

  17. An Innovative Way to Monitor Leaf Age

    NASA Astrophysics Data System (ADS)

    Garnello, A.; Paredes, K.; Trinh, U.; Saleska, S. R.; Wu, J.

    2013-12-01

    Anthony John Garnello, Karina Paredes, Uyen Khanh Ho Trinh, Jin Wu, Scott Saleska Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA Abstract: Leaf age is an important characteristic for controlling plant functional performance and is associated with the changes of leaf physical, chemical, and physiological properties. Understanding how plant physiology changes over time will allow more accurate predictions of growth patterns, and a more comprehensive understanding of vegetative life histories. There still lacks an efficient technique in monitoring leaf age, tagging leaves is still the only way to accurately monitor leaf age. The goal of this study is to develop a multi-metric, accurate technique for better monitoring of leaf age. In order to acquire true leaf age records, 10 individual plant species were selected at the University of Arizona campus, and newly flushing leaves were tagged and monitored during the Monsoon season (from early June, 2013, to mid October, 2013). Every 2 weeks, 10 to 15 leaves in relative age order were harvested from each 1-meter branch to measure multiple key leaf metrics, including leaf thickness (via micrometer), fresh and dry weight, fresh and dry area (via ImageJ software), and leaf hyperspectral reflectance (via a handheld ASD Field Pro). Other leaf traits were also derived from our measurements, such as specific leaf area (SLA), leaf density (fresh weight/leaf volume), water percentage, and shrinkage ratio (1-dry area/fresh area). The hyperspectral version of vegetation index (a ratio derived from two spectral channels) was generated for each branch sample, by randomly selecting two channels from within the spectral domain of 350 nm to 2500 nm. The preliminary result documents three types of hyperspectral vegetation index (VI) which are highly related with leaf relative age order (R2>0.9). These include the sensitive spectral domains correlated with (a) leaf pigments (~550nm) and leaf physical

  18. Dehydration and osmotic adjustment in apple stem tissue during winter as it relates to the frost resistance of buds.

    PubMed

    Pramsohler, Manuel; Neuner, Gilbert

    2013-08-01

    In deciduous trees, measurement of stem water potential can be difficult during the leafless period in winter. By using thermocouple psychrometry, osmotic water potentials (Ψo; actual Ψo: Ψo(act); Ψo at full saturation: Ψo(sat)) of expressed sap of bark and bud tissue were measured in order to test if the severity of winter desiccation in apple stems could be sufficiently assessed with Ψo. Water potentials were related to frost resistance and freezing behaviour of buds. The determination of Ψo reliably allowed winter desiccation and osmotic adjustments in apple stem tissue to be assessed. In winter in bark tissue, a pronounced decrease in Ψo(act) and Ψo(sat) was found. Decreased Ψo(sat) indicates active osmotic adjustment in the bark as observed earlier in the leaves of evergreen woody plants. In terminal bud meristems, no significant osmotic adjustments occurred and dehydration during winter was much less. Osmotic water potentials, Ψo(act) and Ψo(sat), of bud tissue were always less negative than in the bark. To prevent water movement and dehydration of the bud tissue via this osmotic gradient, it must be compensated for either by a sufficiently high turgor pressure (Ψp) in bark tissue or by the isolation of the bud tissue from the bark during midwinter. During freezing of apple buds, freeze dehydration and extra-organ freezing could be demonstrated by significantly reduced Ψo(act) values of bud meristems that had been excised in the frozen state. Infrared video thermography was used to monitor freezing patterns in apple twigs. During extracellular freezing of intact and longitudinally dissected stems, infrared differential thermal analysis (IDTA) images showed that the bud meristem remains ice free. Even if cooled to temperatures below the frost-killing temperature, no freezing event could be detected in bud meristems during winter. In contrast, after bud break, terminal buds showed a second freezing at the frost-killing temperature that indicates

  19. Dehydration and osmotic adjustment in apple stem tissue during winter as it relates to the frost resistance of buds.

    PubMed

    Pramsohler, Manuel; Neuner, Gilbert

    2013-08-01

    In deciduous trees, measurement of stem water potential can be difficult during the leafless period in winter. By using thermocouple psychrometry, osmotic water potentials (Ψo; actual Ψo: Ψo(act); Ψo at full saturation: Ψo(sat)) of expressed sap of bark and bud tissue were measured in order to test if the severity of winter desiccation in apple stems could be sufficiently assessed with Ψo. Water potentials were related to frost resistance and freezing behaviour of buds. The determination of Ψo reliably allowed winter desiccation and osmotic adjustments in apple stem tissue to be assessed. In winter in bark tissue, a pronounced decrease in Ψo(act) and Ψo(sat) was found. Decreased Ψo(sat) indicates active osmotic adjustment in the bark as observed earlier in the leaves of evergreen woody plants. In terminal bud meristems, no significant osmotic adjustments occurred and dehydration during winter was much less. Osmotic water potentials, Ψo(act) and Ψo(sat), of bud tissue were always less negative than in the bark. To prevent water movement and dehydration of the bud tissue via this osmotic gradient, it must be compensated for either by a sufficiently high turgor pressure (Ψp) in bark tissue or by the isolation of the bud tissue from the bark during midwinter. During freezing of apple buds, freeze dehydration and extra-organ freezing could be demonstrated by significantly reduced Ψo(act) values of bud meristems that had been excised in the frozen state. Infrared video thermography was used to monitor freezing patterns in apple twigs. During extracellular freezing of intact and longitudinally dissected stems, infrared differential thermal analysis (IDTA) images showed that the bud meristem remains ice free. Even if cooled to temperatures below the frost-killing temperature, no freezing event could be detected in bud meristems during winter. In contrast, after bud break, terminal buds showed a second freezing at the frost-killing temperature that indicates

  20. First Report of Fusarium subglutinans Causing Leaf Spot Disease on Cymbidium Orchids in Korea.

    PubMed

    Han, Kyung-Sook; Park, Jong-Han; Back, Chang-Gi; Park, Mi-Jeong

    2015-09-01

    In 2006~2010, leaf spot symptoms, that is, small, yellow spots that turned into dark brown-to-black lesions surrounded by a yellow halo, were observed on Cymbidium spp. in Gongju, Taean, and Gapyeong in Korea. A Fusarium species was continuously isolated from symptomatic leaves; in pathogenicity testing, isolates caused leaf spot symptoms consisting of sunken, dark brown lesions similar to the original ones. The causal pathogen was identified as Fusarium subglutinans based on morphological and translation elongation factor 1-alpha sequence analyses. This is the first report of F. subglutinans as the cause of leaf spot disease in Cymbidium spp. in Korea.

  1. The yeast prefoldin-like URI-orthologue Bud27 associates with the RSC nucleosome remodeler and modulates transcription.

    PubMed

    Mirón-García, María Carmen; Garrido-Godino, Ana Isabel; Martínez-Fernández, Verónica; Fernández-Pevida, Antonio; Cuevas-Bermúdez, Abel; Martín-Expósito, Manuel; Chávez, Sebastián; de la Cruz, Jesús; Navarro, Francisco

    2014-09-01

    Bud27, the yeast orthologue of human URI/RMP, is a member of the prefoldin-like family of ATP-independent molecular chaperones. It has recently been shown to mediate the assembly of the three RNA polymerases in an Rpb5-dependent manner. In this work, we present evidence of Bud27 modulating RNA pol II transcription elongation. We show that Bud27 associates with RNA pol II phosphorylated forms (CTD-Ser5P and CTD-Ser2P), and that its absence affects RNA pol II occupancy of transcribed genes. We also reveal that Bud27 associates in vivo with the Sth1 component of the chromatin remodeling complex RSC and mediates its association with RNA pol II. Our data suggest that Bud27, in addition of contributing to Rpb5 folding within the RNA polymerases, also participates in the correct assembly of other chromatin-associated protein complexes, such as RSC, thereby modulating their activity.

  2. The yeast prefoldin-like URI-orthologue Bud27 associates with the RSC nucleosome remodeler and modulates transcription

    PubMed Central

    Mirón-García, María Carmen; Garrido-Godino, Ana Isabel; Martínez-Fernández, Verónica; Fernández-Pevida, Antonio; Cuevas-Bermúdez, Abel; Martín-Expósito, Manuel; Chávez, Sebastián; de la Cruz, Jesús; Navarro, Francisco

    2014-01-01

    Bud27, the yeast orthologue of human URI/RMP, is a member of the prefoldin-like family of ATP-independent molecular chaperones. It has recently been shown to mediate the assembly of the three RNA polymerases in an Rpb5-dependent manner. In this work, we present evidence of Bud27 modulating RNA pol II transcription elongation. We show that Bud27 associates with RNA pol II phosphorylated forms (CTD-Ser5P and CTD-Ser2P), and that its absence affects RNA pol II occupancy of transcribed genes. We also reveal that Bud27 associates in vivo with the Sth1 component of the chromatin remodeling complex RSC and mediates its association with RNA pol II. Our data suggest that Bud27, in addition of contributing to Rpb5 folding within the RNA polymerases, also participates in the correct assembly of other chromatin-associated protein complexes, such as RSC, thereby modulating their activity. PMID:25081216

  3. Direct adventitious shoot bud formation on hypocotyls explants in Millettia pinnata (L.) Panigrahi- a biodiesel producing medicinal tree species.

    PubMed

    Nagar, Durga Singh; Jha, Suman Kumar; Jani, Jigar

    2015-04-01

    A reproducible protocol developed for in vitro regeneration of Milletia pinnata using hypocotyl segments. Multiple shoots were induced from hypocotyl explants through direct adventitious shoot bud regeneration. The proximal end of hypocotyls was responsive for shoot bud induction. Silver nitrate and adenine sulphate had a positive effect on shoot bud induction and elongation. The maximum response and number of shoot bud produced in media supplemented with 8.88 μM BAP with 108.6 μM adenine sulphate and 11.84 μM silver nitrate. Elongated shoots were harvested and successful rooting of microshoots achieved on MS media supplemented with 9.84 μM IBA, with 81.1 % rooting. Remaining shoot buds sub-cultured for further multiplication and elongation. Each subculture produced eight to nine elongated microshoots up to four subcultures. The rooted microshoots were successfully hardened and transferred to field. PMID:25964721

  4. Analysis of Circadian Leaf Movements.

    PubMed

    Müller, Niels A; Jiménez-Gómez, José M

    2016-01-01

    The circadian clock is a molecular timekeeper that controls a wide variety of biological processes. In plants, clock outputs range from the molecular level, with rhythmic gene expression and metabolite content, to physiological processes such as stomatal conductance or leaf movements. Any of these outputs can be used as markers to monitor the state of the circadian clock. In the model plant Arabidopsis thaliana, much of the current knowledge about the clock has been gained from time course experiments profiling expression of endogenous genes or reporter constructs regulated by the circadian clock. Since these methods require labor-intensive sample preparation or transformation, monitoring leaf movements is an interesting alternative, especially in non-model species and for natural variation studies. Technological improvements both in digital photography and image analysis allow cheap and easy monitoring of circadian leaf movements. In this chapter we present a protocol that uses an autonomous point and shoot camera and free software to monitor circadian leaf movements in tomato. PMID:26867616

  5. LEAF: A Microcomputer Program for Constructing the Tukey Stem and Leaf Graph.

    ERIC Educational Resources Information Center

    Pascale, Pietro J.; Smith, Joseph

    1986-01-01

    This paper presents a BASIC microcomputer program that constructs the Tukey (1977) stem and leaf graph. Options within the LEAF program include a modified stem and leaf where the stem is split and a parallel stem and leaf graph where two separate sets of data are displayed from a common stem. (Author)

  6. 7 CFR 29.2529 - Leaf scrap.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.2529 Section 29.2529 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2529 Leaf scrap. A byproduct of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco and consists of loose and tangled whole...

  7. 7 CFR 29.3034 - Leaf scrap.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.3034 Section 29.3034 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf scrap. A by-product of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco...

  8. 7 CFR 29.3526 - Leaf scrap.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.3526 Section 29.3526 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3526 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results from...